
© IFIP International Federation for Information Processing 2015 
K. Saeed and W. Homenda (Eds.): CISIM 2015, LNCS 9339, pp. 58–69, 2015. 
DOI: 10.1007/978-3-319-24369-6_5 

Graph Databases: Their Power and Limitations 

Jaroslav Pokorný() 

Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, 
Prague, Czech Republic 

pokorny@ksi.mff.cuni.cz 

Abstract. Real world data offers a lot of possibilities to be represented as 
graphs. As a result we obtain undirected or directed graphs, multigraphs and 
hypergraphs, labelled or weighted graphs and their variants. A development of 
graph modelling brings also new approaches, e.g., considering constraints. Pro-
cessing graphs in a database way can be done in many different ways. Some 
graphs can be represented as JSON or XML structures and processed by their 
native database tools. More generally, a graph database is specified as any stor-
age system that provides index-free adjacency, i.e. an explicit graph structure. 
Graph database technology contains some technological features inherent to 
traditional databases, e.g. ACID properties and availability. Use cases of graph 
databases like Neo4j, OrientDB, InfiniteGraph, FlockDB, AllegroGraph, and 
others, document that graph databases are becoming a common means for any 
connected data. In Big Data era, important questions are connected with scala-
bility for large graphs as well as scaling for read/write operations. For example, 
scaling graph data by distributing it in a network is much more difficult than 
scaling simpler data models and is still a work in progress. Still a challenge is 
pattern matching in graphs providing, in principle, an arbitrarily complex iden-
tity function. Mining complete frequent patterns from graph databases is also 
challenging since supporting operations are computationally costly. In this pa-
per, we discuss recent advances and limitations in these areas as well as future 
directions. 
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1 Introduction 

A graph database is any storage system that uses graph structures with nodes and 
edges, to represent and store data. The most commonly used model of graphs in the 
context of graph databases is called a (labelled) property graph model [15]. The prop-
erty graph contains connected entities (the nodes) which can hold any number of 
properties (attributes) expressed as key-value pairs. Nodes and edges can be tagged 
with labels representing their different roles in application domain. Some approaches 
refer to the label as the type. Labels may also serve to attach metadata—index or con-
straint information—to certain nodes. 
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Relationships provide directed, semantically relevant connections (edges) between 
two nodes. A relationship always has a direction, a start node, and an end node. Like 
nodes, relationships can have any properties. Often, relationships have quantitative 
properties, such as weight, cost, distance, ratings or time interval. Properties make the 
nodes and edges more descriptive and practical in use. Both nodes and edges are de-
fined by a unique identifier.  

As relationships are stored efficiently, two nodes can share any number or relation-
ships of different types without sacrificing performance. Note that although they are 
directed, relationships can always be navigated regardless of direction. In fact, the 
property graph model concerns data structure called in graph theory labelled and 
directed attributed multigraphs.  

Sometimes we can meet hypergraphs in graph database software. A hypergraph is 
a generalization of the concept of a graph, in which the edges are substituted by 
hyperedges. If a regular edge connects two nodes of a graph, then a hyperedge con-
nects an arbitrary set of nodes. 

Considering graphs as a special structured data, an immediate idea which arises is, 
how to store and process graph data in a database way. For example, we can represent 
a graph by tables in a relational DBMS (RDBMS) and use sophisticated constructs of 
SQL or Datalog to express some graph queries. Some graphs can be represented as 
JSON or XML structures and processed by their native database tools. A more gen-
eral native solution is offered by graph databases. 

One of the more interesting upcoming growth areas is the use of graph databases 
and graph-based analytics on large, unstructured datasets. A special attention is de-
voted to so-called Big Graphs, e.g. Facebook with 1 Billion nodes and 140 Billion 
edges, requiring special storage and processing algorithms [12]. 

Graph databases are focused on: 

• processing highly connected data, 
• be flexible in usage data models behind graphs used, 
• exceptional performances for local reads, by traversing the graph. 

Graph databases are often included among NoSQL databases1.  
We should also mention lower tools for dealing with graphs. They include frame-

works, such as Google’s Pregel [8] - a system for large-scale graph processing on 
distributed cluster of commodity machines, and its more advanced variant Giraph2 
suitable for analytical purposes. They do not use a graph database for storage. These 
systems are particularly suitable for OLAP and offline graph analytics, i.e. they are 
optimized for scanning and processing Big Graphs in batch mode. Also the notion of 
a Big Analytics occurs in this context.  

In traditional database terminology, we should distinguish a Graph Database 
Management Systems (GDBMS) and a graph database. Unfortunately, the latter sub-
stitutes often the former in practice. We will also follow this imprecise terminology. 

                                                           
1 http://nosql-database.org/ 
2 http://giraph.apache.org/ 
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There are a lot of papers about graph models, graph databases, e.g. [7], [12], [16], 
and theory and practise of graph queries, e.g. [4]. Now the most popular book is rather 
practically oriented work [15]. A performance comparison of some graph databases is 
presented, e.g., in [6], [9].  

In this paper, a lot of examples from the graph database technology will be docu-
mented on the most popular graph database Neo4j3, particularly in its version 2.2. In 
Section 2 we describe some basic technological features of graph databases. Section 3 
presents an overview of graph databases categories as well as some their representa-
tives, i.e., some commercial products. Section 4 presents some facts concerning the 
paper title and offers some research challenges. Finally, Section 5 concludes the paper.  

2 Graph Database Technology 

According to other DBMS, we can distinguish a number of basic components of 
graph database technology. They include graph storage, graph querying, scalability, 
and transaction processing. We will discuss them in the following subsections. 

2.1 Graph Storage 

An important feature of graph databases is that provide native processing capabilities, 
at least a property called index-free adjacency, meaning that every node is directly 
linked to its neighbour node. A database engine that utilizes index-free adjacency is 
one in which each node maintains direct references to its adjacent nodes; each node, 
therefore acts as an index of other nearby nodes, which is much cheaper than using 
global indexes. This is appropriate for local graph queries where we need one index 
lookup for starting node, and then we will traverse relationships by dereferencing 
physical pointers directly. In RDBMS we would probably need joining more tables 
trough foreign keys and, possibly, additional index lookups.  

Obviously, more advanced indexes are used. For example, it is desirable to retrieve 
graphs quickly from a large database via graph-based indices, e.g. path-based meth-
ods. The approach used in [17] introduces so called gIndex using frequent substruc-
tures as the basic indexing features.  Unfortunately, most of these techniques are 
usable only for small graphs. 

Some graph stores offer a graph interface over non-native graph storage, such as a 
column store in the Virtuoso Universal Server4 in application for RDF data. Often 
other DBMS is used as back-end storage. For example, the graph database FlockDB5 
stores graph data, but it is not optimized for graph-traversal operations. Instead, it is 
optimized for very large adjacency lists. FlockDB uses MySQL as the basic database 
storage system just for storing adjacency lists. 

                                                           
3 http://www.neo4j.org/ (retrieved on 9.3.2015) 
4 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015) 
5 https://github.com/twitter/flockdb (retrieved on 9.3.2015) 
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2.2 Graph Querying 

Query capabilities are fundamental for each DBMS. Those used in graph databases, 
of course, come from the associated graph model [2]. The simplest type of a query 
preferably uses the index-free adjacency. A node vk є V is said to be at a k-hop dis-
tance from another node v0 є V, if there exists a shortest path from v0 to vk comprising 
of k edges. In practice, the basic queries are the most frequent. They include look for a 
node, look for the neighbours (1-hop), scan edges in several hops (layers), retrieve an 
attribute values, etc. Looking for a node based on its properties or through its identifi-
er is called point querying.  

Retrieving an edge by id, may not be a constant time operation. For example,  
Titan6 will retrieve an adjacent node of the edge to be retrieved and then execute a 
node query to identify the edge. The former is constant time but the latter is potential-
ly linear in the number of edges incident on the node with the same edge label. 

As more complex queries we meet very often subgraph and supergraph queries. 
They belong to rather traditional queries based on exact matching. Other typical que-
ries include breadth-first/depth-first search, path and shortest path finding, finding 
cliques or dense subgraphs, finding strong connected components, etc. Algorithms 
used for such complex queries need often iterative computation. This is not easy, e.g., 
with the MapReduce (MR) framework used usually in NoSQL databases for BigData 
processing. But the authors of [14] show for finding connected components that some 
efficient MR algorithms exist.  In Big Graphs often approximate matching is needed. 
Allowing structural relaxation, then we talk about structural similarity queries.   

Inspired by the SQL language, graph databases are often equipped by a declarative 
query language. Today, the most known graph declarative query language is Cypher 
working with Neo4j database. Cypher commands are loosely based on SQL syntax 
and are targeted at ad hoc queries of the graph data. A rather procedural graph lan-
guage is the traversal language Gremlin7. 

The most distinctive output for a graph query is another graph, which is ordinarily 
a transformation, a selection or a projection of the original graph stored in the data-
base. This implies that graph visualization is strongly tied to the graph querying [13].  

2.3 Scalability 

Sharding (or graph partitioning) is crucial to making graphs scale. Scaling graph data 
by distributing it across multiple machines is much more difficult than scaling the 
simpler data in other NoSQL databases, but it is possible. The reason is the very na-
ture way the graph data is connected. When distributing a graph, we want to avoid 
having relationships that span machines as much as possible; this is called the mini-
mum point-cut problem. But what looks like a good distribution one moment may no 
longer be optimal a few seconds later. Typically, graph partition problems fall under 
the category of NP-hard problems. Scaling is usually connected with three things:  

                                                           
6 http://thinkaurelius.github.io/titan/ (retrieved on 9.3.2015) 
7 http://gremlindocs.com/ 



62 J. Pokorný 

• scaling for large datasets,  
• scaling for read performance,  
• and scaling for write performance.  

In practice, the former is most often discussed.  Today, it is not problem in graph 
databases area. For example, Neo4j currently has an arbitrary upper limit on the size 
of the graph on the order of 1010. This is enough to support most of real-world graphs, 
including a Neo4j deployment that has now more than half of Facebook's social graph 
in one Neo4j cluster. 

Scaling for reads usually presents no problem. For example, Neo4j has historically 
focused on read performance. In master-slave regime read operations can be done 
locally on each slave. To improve scalability in highly concurrent workloads, Neo4j 
uses two levels of caching. 

Scaling for writes can be accomplished by scaling vertically, but at some point, for 
very heavy write loads, it requires the ability to distribute the data across multiple 
machines. This is the real challenge. For example, Titan is a highly scalable OLTP 
graph database system optimized for thousands of users concurrently accessing and 
updating one Big Graph.  

2.4 Transaction Processing 

As in any other DBMS, there are three generic use cases for graphs:  

• CRUD (create, read, update, delete) applications,  
• query processing - reporting, data warehousing, and real-time analytics,  
• batch mode analytics or data discovery.  

Graph databases are often optimized and focused on one or more of these uses. 
Particularly, the first two uses are focused on transactions processing, i.e. OLTP data-
bases. When dealing with many concurrent transactions, the nature of the graph data 
structure helps spread the transactional overhead across the graph. As the graph grows 
transactional conflicts typically falls away, i.e. extending the graph tends to the more 
throughputs. But not all graph databases are fully ACID. However, the variant based 
on the BASE properties often considered in the context of NoSQL databases is not 
too appropriate for graphs.  

In general, distributed graph processing requires the application of appropriate par-
titioning and replication strategies such as to maximise the locality of the processing, 
i.e., minimise the need to ship data between different network nodes. 

For example, Neo4j uses master-slave replication, i.e. one machine is designated as 
the master and the others as slaves. In Neo4j, all writes directed towards any machine 
are passed through the master, which in turn ships updates to the slaves when polled. 
If the master fails, the cluster automatically elects a new master.  

Neo4j requires a quorum in order to serve write load. It means that a strict majority 
of the servers in the cluster need to be online in order for the cluster to accept write 
operations. Otherwise, the cluster will degrade into read-only operation until a quor-
um can be established. Emphasize, that today’s graph databases do not have the same 
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level of write throughput as other types of NoSQL databases. This is a consequence of 
master-slave clustering and proper ACID transactions. 

Some more complex architectures occur in the world of graph databases. Typical-
ly, a simple database is used to absorb load, and then feed the data into a graph data-
base for refinement and analysis. The architecture Neo4j 2.2 contains even a bulk 
loader which operates at throughput of million records per second. 

3 Categories of Graph Databases 

There are a lot of graph databases. The well-maintained and structured Web site8  
included 20 products belonging among GDBMSs in 2011. The development of graph 
databases until 2011 is described in [1]. Wikipedia9 describes 45 such tools. One half 
of them are ACID compliant.  

We distinguish general purpose GDBMs, like Neo4j, InfiniteGraph10, Sparksee11, 
Titan, GraphBase12, and Trinity13, and special ones, e.g. the Web graph database 
InfoGrid14 and FlockDB, or multimodel databases such as document-oriented data-
bases enabling traversing between documents. For example, OrientDB15 brings to-
gether the power of graphs and the flexibility of documents into one scalable database 
even with an SQL layer. HyperGraphDB16 stores not only graphs but also hypergraph 
structures. All the graph information is stored in the form of key-value pairs.  

An interesting question is which graph databases are most popular today. In June 
2015, the web page DB-Engines Ranking of GDBMS17 considering 17 graph prod-
ucts presented Neo4j, OrientDB, and Titan on the first three places. GDBMS 
Sparksee is on the 6th place. 

In Section 3.1 we present two typical representatives of the general purpose cate-
gory. From those special ones, more attention will be devoted to RDF triplestores in 
Section 3.2. The framework Pregel is explained in Section 3.3. 

3.1 General Graph Purpose Databases - Examples 

We describe shortly two successful graph GDBMSs - Neo4j and Sparksee - in some 
detail. In both GDBMSs a graph is a labelled directed attributed multigraph, where 
edges can be either directed or undirected.  

                                                           
8 http://nosql-database.org/ (retrieved on 9.3.2015) 
9 http://en.wikipedia.org/wiki/Graph_database#cite_1 (retrieved on 12.6.2015) 
10 http://www.objectivity.com/infinitegraph#.U8O_yXnm9I0 (retrieved on 9.3.2015) 
11 http://sparsity-technologies.com/#sparksee (retrieved on 9.3.2015) 
12 http://graphbase.net/ (retrieved on 9.3.2015) 
13 http://research.microsoft.com/en-us/projects/trinity/ (retrieved on 9.3.2015) 
14 http://infogrid.org/trac/ (retrieved on 9.3.2015) 
15 http://www.orientechnologies.com/ (retrieved on 9.3.2015) 
16 http://www.hypergraphdb.org/index 
17 http://db-engines.com/en/ranking/graph+dbms (retrieved on 12.6.2015) 
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Example 1: Neo4j 
Neo4j (now in version 2.2) is the world’s leading GDBMS. It is an open-source, high-
ly scalable, robust (fully ACID compliant) native graph database.  

Neo4j stores data as nodes and relationships. Both nodes and relationships can hold 
properties in a key-value form. Values can be either a primitive or an array of one 
primitive type. Nodes are often used to represent entities, but depending on the do-
main the relationships may be used for that purpose as well. The nodes and edges 
have internal unique identifiers that can be used for the data search. Nodes cannot 
reference themselves directly [5]. The semantics can be expressed by adding directed 
relationships between nodes  

Graph processing in Neo4j entails mostly random data access which can be unsuit-
able for Big Graphs. Graphs that cannot fit into main memory may require more disk 
accesses, which significantly influences graph processing. Big Graphs similarly to 
other Big Data collections must be partitioned over multiple machines to achieve 
scalable processing (see Section 2.3). 

Example 2: Sparksee 
In addition to the basic graph model, Sparksee also introduces the notion of a virtual 
edge that connects nodes having the same value for a given attribute. These edges are 
not materialized. A Sparksee graph is stored in a single file; values and identifiers are 
mapped by mapping functions into B+-trees. Bitmaps are used to store nodes and 
edges of a certain type. 

The architecture of Sparksee includes the core, that manages and queries the graph 
structures, then an API layer to provide an application programming interface, and the 
higher layer applications, to extend the core capabilities and to visualize and browse 
the results. To speed up the different graph queries and other graph operations, 
Sparksee offers these index types:  

• attributes, 
• unique attributes,  
• edges to index their neighbours, and  
• indices on neighbours.  

Sparksee implements a number of graph algorithms, e.g. shortest path, depth-first 
searching, finding strong connected components. 

3.2 Triplestores 

Some graph-oriented products are intended for special graph applications, mostly 
RDF data expressed in the form of subject (S) - predicate (P) – object (O). RDF 
graphs can be viewed as a special kind of a property graph. At the logical level, an 
RDF graph is then represented as one table. For example, AllegroGraph18   works 
with RDF graphs. BrightStarDB19, Bigdata20 and SparkleDB21  (formerly known as 

                                                           
18 http://franz.com/agraph/ (retrieved on 9.3.2015) 
19 http://brightstardb.com/ (retrieved on 9.3.2015) 
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Meronymy) serve for similar purposes. These triple stores employ intelligent data 
management solutions which combine full text search with graph analytics and logical 
reasoning to produce deeper results. Sometimes, quad stores are used holding a fourth 
attribute - the graph name (N) corresponding normally with the namespace of the 
ontology. AllegroGraph deals even with quints (S, P, O, N, ID), the ID can be used to 
attach metadata to a triple.   

Now, GraphDB™22 is the world’s leading RDF triple store that can perform se-
mantic inferring at scale allowing users to create new semantic facts from existing 
facts. GraphDB™ is built on OWL (Ontology Web Language). It uses ontologies that 
allow the repository to automatically reason about the data. AlegroGraph also sup-
ports reasoning and ontology modelling.   

However, existing triple store technologies are not yet suitable for storing truly 
large data sets efficiently. According to the W3C Wiki, AllegroGraph leads the larg-
est deployment with loading and querying 1 Trillion triples. The load operation alone 
took about 338 hours.  

We remind also that triple stores create only a subcategory of graph databases. Ra-
ther a hybrid solution is represented by Virtuoso Universal Server23. Its functionality 
covers not only processing RDF data, but also relations, XML, text, and others.  

A list of requirements often required by customers considering a triple store is in-
troduced in [10]: 

• inferring, 
• integration with text mining pipelines, 
• scalability, 
• extensibility, 
• enterprise resilience, 
• data integration and identity resolution, 
• semantics in the cloud, 
• semantic expertise. 

3.3 Pregel and Giraph 

Pregel and Giraph are systems for large-scale graph processing. They provide a fault-
tolerant framework for the execution of graph algorithms in parallel over many ma-
chines. Giraph utilizes Apache MR framework implementation to process graphs. 

A significant approach to the design, analysis and implementation of parallel algo-
rithms, hardware and software in Pregel is now the Bulk Synchronous Processing 
(BSP) model. BSP offers architecture independence and very high performance of 
parallel algorithms on top of multiple computers connected by a communication net-
work. 

                                                                                                                                           
20 http://www.systap.com/ (retrieved on 9.3.2015) 
21 https://www.sparkledb.net/ (retrieved on 9.3.2015) 
22 http://www.ontotext.com/products/ontotext-graphdb/ (retrieved on 9.3.2015) 
23 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015) 
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BSP is a powerful generalization of MR. A subclass of BSP algorithms can be effi-
ciently implemented in MR [11]. BSP is superfast on standard commodity hardware, 
orders of magnitude faster than the MR alone. It is an easy parallel programming 
model to learn, it has a cost model that makes it simple to design, analyse, and opti-
mize massively parallel algorithms. It can be considered as a strong candidate to be 
the programming model for parallel computing and Big Data in the next years. For 
example, Google is already moving in its internal infrastructure from MR to 
BSP/Pregel. 

4 Limitations of Graphs Databases 

Despite of the long-term research and practice in this area, there are many important 
and hard problems that remain open in graph data management. They have influence 
on functionality restrictions of graph databases (Section 4.1). Others are specifically 
related to Big Analytics (Section 4.2).  Challenges concerning some specific prob-
lems of graph database technology are summarized in Section 4.3. 

4.1 Functionality Restrictions 

Declarative querying: Most commercial graph databases cannot be queried using a 
declarative language. Only few vendors offer a declarative query interface. This im-
plies also a lack of query optimization abilities. 

Data partitioning: Most graph databases do not include the functionality to partition 
and distribute data in a computer network. This is essential for supporting horizontal 
scalability, too. It is difficult to partition a graph in a way that would not result in 
most queries having to access multiple partitions. 

Vectored operations: They support a procedure which sequentially writes data from 
multiple buffers to a single data stream or reads data from a data stream to multiple 
buffers. Horizontally scaled NoSQL databases support this type of data access. It 
seems that it is not the case in graph databases today. 

Model restrictions: Possibilities of data schema and constraints definitions are re-
stricted in graph databases.  Therefore, data inconsistencies can quickly reduce their 
usefulness. Often the graph model itself is restricted. Let us recall, e.g., Neo4j nodes 
cannot reference themselves directly. There might be real world cases where self-
reference is required. 

Querying restrictions: For example, FlockDB overcomes the difficulty of horizontal 
scaling the graph by limiting the complexity of graph traversal.  In particular, 
FlockDB does not allow multi-hop graph walks, so it cannot do a full "transitive  
closure".  However, FlockDB enables very fast and scalable processing of 1-hop 
queries. 
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4.2 Big Analytics Requirements 

Graph extraction: A question is how to efficiently extract a graph, or a collection of 
graphs, from non-graph data stores. Most graph analytics systems assume that the 
graph is provided explicitly. However, in many cases, the graph may have to be con-
structed by joining and combining information from different resources which are not 
necessarily graphical. Even if the data is stored in a graph database, often we only 
need to load a set of subgraphs of that database graph for further analysis.  

High cost of some queries: Most real-world graphs are highly dynamic and often gen-
erate large volumes of data at a very rapid rate. One challenge here is how to store the 
historical trace compactly while still enabling efficient execution of point queries and 
global or neighbourhood-centric analysis tasks. Key differences from temporal 
DBMSs developed in the past are the scale of data, focus on distributed and in-
memory environments, and the need to support global analytics. The last task usually 
requires loading entire historical snapshots into memory.  

Real time processing: As noted, graph data discovery takes place essentially in batch 
environments, e.g., in Giraph. Some products aimed at data discovery and complex 
analytics that will operate in real-time. An example is uRIKA24 – a Big Data Appli-
ance for Graph Analytics. It uses in-memory technology and multithreaded processor 
to support non-batch operations on RDF triples. 

Graph algorithms: More complex graph algorithms are needed in practice. The ideal 
graph database should understand analytic queries that go beyond k-hop queries for 
small k. Authors of [9] did a performance comparison of 12 open source graph data-
bases using four fundamental graph algorithms (e.g. simple source shortest path prob-
lem and Page Rank) on networks containing up to 256 million edges. Surprisingly, the 
most popular graph databases have reached the worst results in these tests. Current 
graph databases (like relational databases) tend to prioritize low latency query execu-
tion over high-throughput data analytics.  

Parallelisation: In the context of Big Graphs there is a need for parallelisation of 
graph data processing algorithms when the data is too big to handle on one server. 
There is a need to understand the performance impact on graph data processing algo-
rithms when the data does not all fit into the memory available and to design algo-
rithms explicitly for these scenarios. 

Heterogeneous and uncertain graph data: There is a need to find automated methods 
of handling the heterogeneity, incompleteness and inconsistency between different 
Big Graph data sets that need to be semantically integrated in order to be effectively 
queried or analysed. 

                                                           
24 http://www.cray.com/products/analytics/urika-gd 
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4.3 Other Challenges 

Other challenges in the development of graph databases include:  

Design of graph databases: Similarly to traditional databases, some attempts to de-
velop design models and tools occur in last time. In [3], the authors propose a model-
driven, system-independent methodology for the design of graph databases starting 
from ER-model conceptual schema. 

Need for a benchmark: Querying graph data can significantly depend on graph prop-
erties. The benchmarks built, e.g., for RDF data are mostly focused on scaling and not 
on querying. Also benchmarks covering a variety of graph analysis tasks would help 
towards evaluating and comparing the expressive power and the performance of dif-
ferent graph databases and frameworks.  

Developing heuristics for some hard graph problems: For example, partitioning of 
large-scale dynamic graph data for efficient distributed processing belongs among 
these problems, given that the classical graph partitioning problem is NP-hard.  

Graph pattern matching: New semantics and algorithms for graph pattern matching 
over distributed graphs are in development, given that the classical subgraph isomor-
phism problem is NP-complete.  

Compressing graphs: Compressing graphs for matching without decompression is 
possible. Combining parallelism with compressing or partitioning is also very inter-
esting. 

Integration of graph data: In the context of Big Data, query formulation and evalua-
tion techniques to assist users querying heterogeneous graph data are needed.  

Visualization: Improvement of human-data interaction is fundamental, particularly a 
visualization of large-scale graph data, and of query and analysis results. 

Graph streams processing: Developing algorithms for processing Big Graph data 
streams with goal to compute properties of a graph without storing the entire graph.  

5 Conclusions 

Graph databases are becoming mainstream. As data becomes connected in a more 
complicated way and as the technology of graph databases matures, their use will 
increase. New application areas occur, e.g. the Internet of Things, or rather Internet of 
Connected Things. Comparing to traditional RDBMS, there is a difficulty for poten-
tial users to identify the particular types of use case for which each product is most 
suitable. Performance varies greatly across different GDBMSs depending upon the 
size of the graph and how well-optimized a given tool is for a particular task. It seems 
that especially for Big Graphs and Big Analytics a lot of previous results and designs 
will have to be re-considered and re-thought in next research and development.  
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