
© IFIP International Federation for Information Processing 2015
K. Saeed and W. Homenda (Eds.): CISIM 2015, LNCS 9339, pp. 58–69, 2015.
DOI: 10.1007/978-3-319-24369-6_5

Graph Databases: Their Power and Limitations

Jaroslav Pokorný()

Department of Software Engineering, Faculty of Mathematics and Physics, Charles University,
Prague, Czech Republic

pokorny@ksi.mff.cuni.cz

Abstract. Real world data offers a lot of possibilities to be represented as
graphs. As a result we obtain undirected or directed graphs, multigraphs and
hypergraphs, labelled or weighted graphs and their variants. A development of
graph modelling brings also new approaches, e.g., considering constraints. Pro-
cessing graphs in a database way can be done in many different ways. Some
graphs can be represented as JSON or XML structures and processed by their
native database tools. More generally, a graph database is specified as any stor-
age system that provides index-free adjacency, i.e. an explicit graph structure.
Graph database technology contains some technological features inherent to
traditional databases, e.g. ACID properties and availability. Use cases of graph
databases like Neo4j, OrientDB, InfiniteGraph, FlockDB, AllegroGraph, and
others, document that graph databases are becoming a common means for any
connected data. In Big Data era, important questions are connected with scala-
bility for large graphs as well as scaling for read/write operations. For example,
scaling graph data by distributing it in a network is much more difficult than
scaling simpler data models and is still a work in progress. Still a challenge is
pattern matching in graphs providing, in principle, an arbitrarily complex iden-
tity function. Mining complete frequent patterns from graph databases is also
challenging since supporting operations are computationally costly. In this pa-
per, we discuss recent advances and limitations in these areas as well as future
directions.

Keywords: Graph database · Graph storage · Graph querying · Graph scalability ·
Big graphs

1 Introduction

A graph database is any storage system that uses graph structures with nodes and
edges, to represent and store data. The most commonly used model of graphs in the
context of graph databases is called a (labelled) property graph model [15]. The prop-
erty graph contains connected entities (the nodes) which can hold any number of
properties (attributes) expressed as key-value pairs. Nodes and edges can be tagged
with labels representing their different roles in application domain. Some approaches
refer to the label as the type. Labels may also serve to attach metadata—index or con-
straint information—to certain nodes.

 Graph Databases: Their Power and Limitations 59

Relationships provide directed, semantically relevant connections (edges) between
two nodes. A relationship always has a direction, a start node, and an end node. Like
nodes, relationships can have any properties. Often, relationships have quantitative
properties, such as weight, cost, distance, ratings or time interval. Properties make the
nodes and edges more descriptive and practical in use. Both nodes and edges are de-
fined by a unique identifier.

As relationships are stored efficiently, two nodes can share any number or relation-
ships of different types without sacrificing performance. Note that although they are
directed, relationships can always be navigated regardless of direction. In fact, the
property graph model concerns data structure called in graph theory labelled and
directed attributed multigraphs.

Sometimes we can meet hypergraphs in graph database software. A hypergraph is
a generalization of the concept of a graph, in which the edges are substituted by
hyperedges. If a regular edge connects two nodes of a graph, then a hyperedge con-
nects an arbitrary set of nodes.

Considering graphs as a special structured data, an immediate idea which arises is,
how to store and process graph data in a database way. For example, we can represent
a graph by tables in a relational DBMS (RDBMS) and use sophisticated constructs of
SQL or Datalog to express some graph queries. Some graphs can be represented as
JSON or XML structures and processed by their native database tools. A more gen-
eral native solution is offered by graph databases.

One of the more interesting upcoming growth areas is the use of graph databases
and graph-based analytics on large, unstructured datasets. A special attention is de-
voted to so-called Big Graphs, e.g. Facebook with 1 Billion nodes and 140 Billion
edges, requiring special storage and processing algorithms [12].

Graph databases are focused on:

• processing highly connected data,
• be flexible in usage data models behind graphs used,
• exceptional performances for local reads, by traversing the graph.

Graph databases are often included among NoSQL databases1.
We should also mention lower tools for dealing with graphs. They include frame-

works, such as Google’s Pregel [8] - a system for large-scale graph processing on
distributed cluster of commodity machines, and its more advanced variant Giraph2
suitable for analytical purposes. They do not use a graph database for storage. These
systems are particularly suitable for OLAP and offline graph analytics, i.e. they are
optimized for scanning and processing Big Graphs in batch mode. Also the notion of
a Big Analytics occurs in this context.

In traditional database terminology, we should distinguish a Graph Database
Management Systems (GDBMS) and a graph database. Unfortunately, the latter sub-
stitutes often the former in practice. We will also follow this imprecise terminology.

1 http://nosql-database.org/
2 http://giraph.apache.org/

60 J. Pokorný

There are a lot of papers about graph models, graph databases, e.g. [7], [12], [16],
and theory and practise of graph queries, e.g. [4]. Now the most popular book is rather
practically oriented work [15]. A performance comparison of some graph databases is
presented, e.g., in [6], [9].

In this paper, a lot of examples from the graph database technology will be docu-
mented on the most popular graph database Neo4j3, particularly in its version 2.2. In
Section 2 we describe some basic technological features of graph databases. Section 3
presents an overview of graph databases categories as well as some their representa-
tives, i.e., some commercial products. Section 4 presents some facts concerning the
paper title and offers some research challenges. Finally, Section 5 concludes the paper.

2 Graph Database Technology

According to other DBMS, we can distinguish a number of basic components of
graph database technology. They include graph storage, graph querying, scalability,
and transaction processing. We will discuss them in the following subsections.

2.1 Graph Storage

An important feature of graph databases is that provide native processing capabilities,
at least a property called index-free adjacency, meaning that every node is directly
linked to its neighbour node. A database engine that utilizes index-free adjacency is
one in which each node maintains direct references to its adjacent nodes; each node,
therefore acts as an index of other nearby nodes, which is much cheaper than using
global indexes. This is appropriate for local graph queries where we need one index
lookup for starting node, and then we will traverse relationships by dereferencing
physical pointers directly. In RDBMS we would probably need joining more tables
trough foreign keys and, possibly, additional index lookups.

Obviously, more advanced indexes are used. For example, it is desirable to retrieve
graphs quickly from a large database via graph-based indices, e.g. path-based meth-
ods. The approach used in [17] introduces so called gIndex using frequent substruc-
tures as the basic indexing features. Unfortunately, most of these techniques are
usable only for small graphs.

Some graph stores offer a graph interface over non-native graph storage, such as a
column store in the Virtuoso Universal Server4 in application for RDF data. Often
other DBMS is used as back-end storage. For example, the graph database FlockDB5
stores graph data, but it is not optimized for graph-traversal operations. Instead, it is
optimized for very large adjacency lists. FlockDB uses MySQL as the basic database
storage system just for storing adjacency lists.

3 http://www.neo4j.org/ (retrieved on 9.3.2015)
4 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015)
5 https://github.com/twitter/flockdb (retrieved on 9.3.2015)

 Graph Databases: Their Power and Limitations 61

2.2 Graph Querying

Query capabilities are fundamental for each DBMS. Those used in graph databases,
of course, come from the associated graph model [2]. The simplest type of a query
preferably uses the index-free adjacency. A node vk є V is said to be at a k-hop dis-
tance from another node v0 є V, if there exists a shortest path from v0 to vk comprising
of k edges. In practice, the basic queries are the most frequent. They include look for a
node, look for the neighbours (1-hop), scan edges in several hops (layers), retrieve an
attribute values, etc. Looking for a node based on its properties or through its identifi-
er is called point querying.

Retrieving an edge by id, may not be a constant time operation. For example,
Titan6 will retrieve an adjacent node of the edge to be retrieved and then execute a
node query to identify the edge. The former is constant time but the latter is potential-
ly linear in the number of edges incident on the node with the same edge label.

As more complex queries we meet very often subgraph and supergraph queries.
They belong to rather traditional queries based on exact matching. Other typical que-
ries include breadth-first/depth-first search, path and shortest path finding, finding
cliques or dense subgraphs, finding strong connected components, etc. Algorithms
used for such complex queries need often iterative computation. This is not easy, e.g.,
with the MapReduce (MR) framework used usually in NoSQL databases for BigData
processing. But the authors of [14] show for finding connected components that some
efficient MR algorithms exist. In Big Graphs often approximate matching is needed.
Allowing structural relaxation, then we talk about structural similarity queries.

Inspired by the SQL language, graph databases are often equipped by a declarative
query language. Today, the most known graph declarative query language is Cypher
working with Neo4j database. Cypher commands are loosely based on SQL syntax
and are targeted at ad hoc queries of the graph data. A rather procedural graph lan-
guage is the traversal language Gremlin7.

The most distinctive output for a graph query is another graph, which is ordinarily
a transformation, a selection or a projection of the original graph stored in the data-
base. This implies that graph visualization is strongly tied to the graph querying [13].

2.3 Scalability

Sharding (or graph partitioning) is crucial to making graphs scale. Scaling graph data
by distributing it across multiple machines is much more difficult than scaling the
simpler data in other NoSQL databases, but it is possible. The reason is the very na-
ture way the graph data is connected. When distributing a graph, we want to avoid
having relationships that span machines as much as possible; this is called the mini-
mum point-cut problem. But what looks like a good distribution one moment may no
longer be optimal a few seconds later. Typically, graph partition problems fall under
the category of NP-hard problems. Scaling is usually connected with three things:

6 http://thinkaurelius.github.io/titan/ (retrieved on 9.3.2015)
7 http://gremlindocs.com/

62 J. Pokorný

• scaling for large datasets,
• scaling for read performance,
• and scaling for write performance.

In practice, the former is most often discussed. Today, it is not problem in graph
databases area. For example, Neo4j currently has an arbitrary upper limit on the size
of the graph on the order of 1010. This is enough to support most of real-world graphs,
including a Neo4j deployment that has now more than half of Facebook's social graph
in one Neo4j cluster.

Scaling for reads usually presents no problem. For example, Neo4j has historically
focused on read performance. In master-slave regime read operations can be done
locally on each slave. To improve scalability in highly concurrent workloads, Neo4j
uses two levels of caching.

Scaling for writes can be accomplished by scaling vertically, but at some point, for
very heavy write loads, it requires the ability to distribute the data across multiple
machines. This is the real challenge. For example, Titan is a highly scalable OLTP
graph database system optimized for thousands of users concurrently accessing and
updating one Big Graph.

2.4 Transaction Processing

As in any other DBMS, there are three generic use cases for graphs:

• CRUD (create, read, update, delete) applications,
• query processing - reporting, data warehousing, and real-time analytics,
• batch mode analytics or data discovery.

Graph databases are often optimized and focused on one or more of these uses.
Particularly, the first two uses are focused on transactions processing, i.e. OLTP data-
bases. When dealing with many concurrent transactions, the nature of the graph data
structure helps spread the transactional overhead across the graph. As the graph grows
transactional conflicts typically falls away, i.e. extending the graph tends to the more
throughputs. But not all graph databases are fully ACID. However, the variant based
on the BASE properties often considered in the context of NoSQL databases is not
too appropriate for graphs.

In general, distributed graph processing requires the application of appropriate par-
titioning and replication strategies such as to maximise the locality of the processing,
i.e., minimise the need to ship data between different network nodes.

For example, Neo4j uses master-slave replication, i.e. one machine is designated as
the master and the others as slaves. In Neo4j, all writes directed towards any machine
are passed through the master, which in turn ships updates to the slaves when polled.
If the master fails, the cluster automatically elects a new master.

Neo4j requires a quorum in order to serve write load. It means that a strict majority
of the servers in the cluster need to be online in order for the cluster to accept write
operations. Otherwise, the cluster will degrade into read-only operation until a quor-
um can be established. Emphasize, that today’s graph databases do not have the same

 Graph Databases: Their Power and Limitations 63

level of write throughput as other types of NoSQL databases. This is a consequence of
master-slave clustering and proper ACID transactions.

Some more complex architectures occur in the world of graph databases. Typical-
ly, a simple database is used to absorb load, and then feed the data into a graph data-
base for refinement and analysis. The architecture Neo4j 2.2 contains even a bulk
loader which operates at throughput of million records per second.

3 Categories of Graph Databases

There are a lot of graph databases. The well-maintained and structured Web site8
included 20 products belonging among GDBMSs in 2011. The development of graph
databases until 2011 is described in [1]. Wikipedia9 describes 45 such tools. One half
of them are ACID compliant.

We distinguish general purpose GDBMs, like Neo4j, InfiniteGraph10, Sparksee11,
Titan, GraphBase12, and Trinity13, and special ones, e.g. the Web graph database
InfoGrid14 and FlockDB, or multimodel databases such as document-oriented data-
bases enabling traversing between documents. For example, OrientDB15 brings to-
gether the power of graphs and the flexibility of documents into one scalable database
even with an SQL layer. HyperGraphDB16 stores not only graphs but also hypergraph
structures. All the graph information is stored in the form of key-value pairs.

An interesting question is which graph databases are most popular today. In June
2015, the web page DB-Engines Ranking of GDBMS17 considering 17 graph prod-
ucts presented Neo4j, OrientDB, and Titan on the first three places. GDBMS
Sparksee is on the 6th place.

In Section 3.1 we present two typical representatives of the general purpose cate-
gory. From those special ones, more attention will be devoted to RDF triplestores in
Section 3.2. The framework Pregel is explained in Section 3.3.

3.1 General Graph Purpose Databases - Examples

We describe shortly two successful graph GDBMSs - Neo4j and Sparksee - in some
detail. In both GDBMSs a graph is a labelled directed attributed multigraph, where
edges can be either directed or undirected.

8 http://nosql-database.org/ (retrieved on 9.3.2015)
9 http://en.wikipedia.org/wiki/Graph_database#cite_1 (retrieved on 12.6.2015)
10 http://www.objectivity.com/infinitegraph#.U8O_yXnm9I0 (retrieved on 9.3.2015)
11 http://sparsity-technologies.com/#sparksee (retrieved on 9.3.2015)
12 http://graphbase.net/ (retrieved on 9.3.2015)
13 http://research.microsoft.com/en-us/projects/trinity/ (retrieved on 9.3.2015)
14 http://infogrid.org/trac/ (retrieved on 9.3.2015)
15 http://www.orientechnologies.com/ (retrieved on 9.3.2015)
16 http://www.hypergraphdb.org/index
17 http://db-engines.com/en/ranking/graph+dbms (retrieved on 12.6.2015)

64 J. Pokorný

Example 1: Neo4j
Neo4j (now in version 2.2) is the world’s leading GDBMS. It is an open-source, high-
ly scalable, robust (fully ACID compliant) native graph database.

Neo4j stores data as nodes and relationships. Both nodes and relationships can hold
properties in a key-value form. Values can be either a primitive or an array of one
primitive type. Nodes are often used to represent entities, but depending on the do-
main the relationships may be used for that purpose as well. The nodes and edges
have internal unique identifiers that can be used for the data search. Nodes cannot
reference themselves directly [5]. The semantics can be expressed by adding directed
relationships between nodes

Graph processing in Neo4j entails mostly random data access which can be unsuit-
able for Big Graphs. Graphs that cannot fit into main memory may require more disk
accesses, which significantly influences graph processing. Big Graphs similarly to
other Big Data collections must be partitioned over multiple machines to achieve
scalable processing (see Section 2.3).

Example 2: Sparksee
In addition to the basic graph model, Sparksee also introduces the notion of a virtual
edge that connects nodes having the same value for a given attribute. These edges are
not materialized. A Sparksee graph is stored in a single file; values and identifiers are
mapped by mapping functions into B+-trees. Bitmaps are used to store nodes and
edges of a certain type.

The architecture of Sparksee includes the core, that manages and queries the graph
structures, then an API layer to provide an application programming interface, and the
higher layer applications, to extend the core capabilities and to visualize and browse
the results. To speed up the different graph queries and other graph operations,
Sparksee offers these index types:

• attributes,
• unique attributes,
• edges to index their neighbours, and
• indices on neighbours.

Sparksee implements a number of graph algorithms, e.g. shortest path, depth-first
searching, finding strong connected components.

3.2 Triplestores

Some graph-oriented products are intended for special graph applications, mostly
RDF data expressed in the form of subject (S) - predicate (P) – object (O). RDF
graphs can be viewed as a special kind of a property graph. At the logical level, an
RDF graph is then represented as one table. For example, AllegroGraph18 works
with RDF graphs. BrightStarDB19, Bigdata20 and SparkleDB21 (formerly known as

18 http://franz.com/agraph/ (retrieved on 9.3.2015)
19 http://brightstardb.com/ (retrieved on 9.3.2015)

 Graph Databases: Their Power and Limitations 65

Meronymy) serve for similar purposes. These triple stores employ intelligent data
management solutions which combine full text search with graph analytics and logical
reasoning to produce deeper results. Sometimes, quad stores are used holding a fourth
attribute - the graph name (N) corresponding normally with the namespace of the
ontology. AllegroGraph deals even with quints (S, P, O, N, ID), the ID can be used to
attach metadata to a triple.

Now, GraphDB™22 is the world’s leading RDF triple store that can perform se-
mantic inferring at scale allowing users to create new semantic facts from existing
facts. GraphDB™ is built on OWL (Ontology Web Language). It uses ontologies that
allow the repository to automatically reason about the data. AlegroGraph also sup-
ports reasoning and ontology modelling.

However, existing triple store technologies are not yet suitable for storing truly
large data sets efficiently. According to the W3C Wiki, AllegroGraph leads the larg-
est deployment with loading and querying 1 Trillion triples. The load operation alone
took about 338 hours.

We remind also that triple stores create only a subcategory of graph databases. Ra-
ther a hybrid solution is represented by Virtuoso Universal Server23. Its functionality
covers not only processing RDF data, but also relations, XML, text, and others.

A list of requirements often required by customers considering a triple store is in-
troduced in [10]:

• inferring,
• integration with text mining pipelines,
• scalability,
• extensibility,
• enterprise resilience,
• data integration and identity resolution,
• semantics in the cloud,
• semantic expertise.

3.3 Pregel and Giraph

Pregel and Giraph are systems for large-scale graph processing. They provide a fault-
tolerant framework for the execution of graph algorithms in parallel over many ma-
chines. Giraph utilizes Apache MR framework implementation to process graphs.

A significant approach to the design, analysis and implementation of parallel algo-
rithms, hardware and software in Pregel is now the Bulk Synchronous Processing
(BSP) model. BSP offers architecture independence and very high performance of
parallel algorithms on top of multiple computers connected by a communication net-
work.

20 http://www.systap.com/ (retrieved on 9.3.2015)
21 https://www.sparkledb.net/ (retrieved on 9.3.2015)
22 http://www.ontotext.com/products/ontotext-graphdb/ (retrieved on 9.3.2015)
23 http://virtuoso.openlinksw.com/ (retrieved on 9.3.2015)

66 J. Pokorný

BSP is a powerful generalization of MR. A subclass of BSP algorithms can be effi-
ciently implemented in MR [11]. BSP is superfast on standard commodity hardware,
orders of magnitude faster than the MR alone. It is an easy parallel programming
model to learn, it has a cost model that makes it simple to design, analyse, and opti-
mize massively parallel algorithms. It can be considered as a strong candidate to be
the programming model for parallel computing and Big Data in the next years. For
example, Google is already moving in its internal infrastructure from MR to
BSP/Pregel.

4 Limitations of Graphs Databases

Despite of the long-term research and practice in this area, there are many important
and hard problems that remain open in graph data management. They have influence
on functionality restrictions of graph databases (Section 4.1). Others are specifically
related to Big Analytics (Section 4.2). Challenges concerning some specific prob-
lems of graph database technology are summarized in Section 4.3.

4.1 Functionality Restrictions

Declarative querying: Most commercial graph databases cannot be queried using a
declarative language. Only few vendors offer a declarative query interface. This im-
plies also a lack of query optimization abilities.

Data partitioning: Most graph databases do not include the functionality to partition
and distribute data in a computer network. This is essential for supporting horizontal
scalability, too. It is difficult to partition a graph in a way that would not result in
most queries having to access multiple partitions.

Vectored operations: They support a procedure which sequentially writes data from
multiple buffers to a single data stream or reads data from a data stream to multiple
buffers. Horizontally scaled NoSQL databases support this type of data access. It
seems that it is not the case in graph databases today.

Model restrictions: Possibilities of data schema and constraints definitions are re-
stricted in graph databases. Therefore, data inconsistencies can quickly reduce their
usefulness. Often the graph model itself is restricted. Let us recall, e.g., Neo4j nodes
cannot reference themselves directly. There might be real world cases where self-
reference is required.

Querying restrictions: For example, FlockDB overcomes the difficulty of horizontal
scaling the graph by limiting the complexity of graph traversal. In particular,
FlockDB does not allow multi-hop graph walks, so it cannot do a full "transitive
closure". However, FlockDB enables very fast and scalable processing of 1-hop
queries.

 Graph Databases: Their Power and Limitations 67

4.2 Big Analytics Requirements

Graph extraction: A question is how to efficiently extract a graph, or a collection of
graphs, from non-graph data stores. Most graph analytics systems assume that the
graph is provided explicitly. However, in many cases, the graph may have to be con-
structed by joining and combining information from different resources which are not
necessarily graphical. Even if the data is stored in a graph database, often we only
need to load a set of subgraphs of that database graph for further analysis.

High cost of some queries: Most real-world graphs are highly dynamic and often gen-
erate large volumes of data at a very rapid rate. One challenge here is how to store the
historical trace compactly while still enabling efficient execution of point queries and
global or neighbourhood-centric analysis tasks. Key differences from temporal
DBMSs developed in the past are the scale of data, focus on distributed and in-
memory environments, and the need to support global analytics. The last task usually
requires loading entire historical snapshots into memory.

Real time processing: As noted, graph data discovery takes place essentially in batch
environments, e.g., in Giraph. Some products aimed at data discovery and complex
analytics that will operate in real-time. An example is uRIKA24 – a Big Data Appli-
ance for Graph Analytics. It uses in-memory technology and multithreaded processor
to support non-batch operations on RDF triples.

Graph algorithms: More complex graph algorithms are needed in practice. The ideal
graph database should understand analytic queries that go beyond k-hop queries for
small k. Authors of [9] did a performance comparison of 12 open source graph data-
bases using four fundamental graph algorithms (e.g. simple source shortest path prob-
lem and Page Rank) on networks containing up to 256 million edges. Surprisingly, the
most popular graph databases have reached the worst results in these tests. Current
graph databases (like relational databases) tend to prioritize low latency query execu-
tion over high-throughput data analytics.

Parallelisation: In the context of Big Graphs there is a need for parallelisation of
graph data processing algorithms when the data is too big to handle on one server.
There is a need to understand the performance impact on graph data processing algo-
rithms when the data does not all fit into the memory available and to design algo-
rithms explicitly for these scenarios.

Heterogeneous and uncertain graph data: There is a need to find automated methods
of handling the heterogeneity, incompleteness and inconsistency between different
Big Graph data sets that need to be semantically integrated in order to be effectively
queried or analysed.

24 http://www.cray.com/products/analytics/urika-gd

68 J. Pokorný

4.3 Other Challenges

Other challenges in the development of graph databases include:

Design of graph databases: Similarly to traditional databases, some attempts to de-
velop design models and tools occur in last time. In [3], the authors propose a model-
driven, system-independent methodology for the design of graph databases starting
from ER-model conceptual schema.

Need for a benchmark: Querying graph data can significantly depend on graph prop-
erties. The benchmarks built, e.g., for RDF data are mostly focused on scaling and not
on querying. Also benchmarks covering a variety of graph analysis tasks would help
towards evaluating and comparing the expressive power and the performance of dif-
ferent graph databases and frameworks.

Developing heuristics for some hard graph problems: For example, partitioning of
large-scale dynamic graph data for efficient distributed processing belongs among
these problems, given that the classical graph partitioning problem is NP-hard.

Graph pattern matching: New semantics and algorithms for graph pattern matching
over distributed graphs are in development, given that the classical subgraph isomor-
phism problem is NP-complete.

Compressing graphs: Compressing graphs for matching without decompression is
possible. Combining parallelism with compressing or partitioning is also very inter-
esting.

Integration of graph data: In the context of Big Data, query formulation and evalua-
tion techniques to assist users querying heterogeneous graph data are needed.

Visualization: Improvement of human-data interaction is fundamental, particularly a
visualization of large-scale graph data, and of query and analysis results.

Graph streams processing: Developing algorithms for processing Big Graph data
streams with goal to compute properties of a graph without storing the entire graph.

5 Conclusions

Graph databases are becoming mainstream. As data becomes connected in a more
complicated way and as the technology of graph databases matures, their use will
increase. New application areas occur, e.g. the Internet of Things, or rather Internet of
Connected Things. Comparing to traditional RDBMS, there is a difficulty for poten-
tial users to identify the particular types of use case for which each product is most
suitable. Performance varies greatly across different GDBMSs depending upon the
size of the graph and how well-optimized a given tool is for a particular task. It seems
that especially for Big Graphs and Big Analytics a lot of previous results and designs
will have to be re-considered and re-thought in next research and development.

 Graph Databases: Their Power and Limitations 69

Acknowledgments. This paper was supported by the GAČR grant No. P103/13/08195S.

References

1. Angeles, R.: A comparison of current graph database models. In: Proc. of the 2012 IEEE
28th International Conference on Data Engineering Workshops, ICDEW 2012,
pp. 171–177. IEEE Computer Society, Washington (2012)

2. Angeles, R., Gutierrez, C.: Survey of Graph Database Models. ACM Computing Surveys
40(1), Article 1 (2008)

3. De Virgilio, R., Maccioni, A., Torlone, R.: Model-driven design of graph databases. In:
Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 172–185.
Springer, Heidelberg (2014)

4. Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher,
gremlin and native access in Neo4j. In: Proc. of the Joint EDBT/ICDT 2013 Workshops,
EDBT 2013, pp. 195–204. ACM, NY (2013)

5. Hurwitz, J., Nugent, A., Halper, F., Kaufman, M.: Big Data for Dummies. John Wiley &
Sons, Inc. (2013)

6. Kolomičenko, V., Svoboda, M., Holubová – Mlýnková, I.: Experimental comparison of
graph databases. In: Proc. of International Conference on Information Integration and
Web-based Applications & Services, p. 115. ACM, NY (2013)

7. Larriba-Pey, J.L., Martínez-Bazán, N., Domínguez-Sal, D.: Introduction to graph data-
bases. In: Koubarakis, M., Stamou, G., Stoilos, G., Horrocks, I., Kolaitis, P., Lausen, G.,
Weikum, G. (eds.) Reasoning Web. LNCS, vol. 8714, pp. 171–194. Springer, Heidelberg
(2014)

8. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: a system for large-scale graph processing. In: Proc. of SIGMOD 2010 Int. Conf. on
Management of data, pp. 135–146. ACM, NY (2010)

9. McColl, R., Ediger, D., Poovey, J., Campbell, D., Bader, D.A.: A performance evaluation
of open source graph databases. In: Proc. of PPAA 2014, pp. 11–18. ACM, NY (2014)

10. Ontotext: The Truth about Triplestores. Ontotext (2014)
11. Pace, M.F.: BSP vs MapReduce. Procedia Computer Science 9, 246–255 (2012)
12. Pallavi, M., Saxena, A.: Review: Graph Databases. Int. Journal of Advanced Research in

Computer Science and Software Engineering 4(5), 195–200 (2014)
13. Pokorny, J., Snášel, V.: Big graph storage, processing and visualization. In: Pitas, I. (ed.)

Graph-Based Social Media Analysis, pp. 403–430. Chapman and Hall/CRC (in print,
2015)

14. Rastogi, V., Machanavajjhala, A., Chitnis, L., Sarma, A.D.: Finding Connected Compo-
nents on Map-reduce in Logarithmic Rounds. CoRR, abs/1203.5387. ACM (2012)

15. Robinson, I., Webber, J., Eifrém, E.: Graph Databases. O’Reilly Media (2013)
16. Shimpi, D., Chaudhari, S.: An overview of Graph Databases. IJCA Proceedings on Inter-

national Conference on Recent Trends in Information Technology and Computer Science
2012 ICRTITCS(3), 16–22 (2013)

17. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure –based approach. In: Proc.
of SIGMOD 2004 Int. Conf. on Management of Data, pp. 335–346. ACM, NY (2004)

	Graph Databases: Their Power and Limitations
	1 Introduction
	2 Graph Database Technology
	2.1 Graph Storage
	2.2 Graph Querying
	2.3 Scalability
	2.4 Transaction Processing

	3 Categories of Graph Databases
	3.1 General Graph Purpose Databases - Examples
	3.2 Triplestores
	3.3 Pregel and Giraph

	4 Limitations of Graphs Databases
	4.1 Functionality Restrictions
	4.2 Big Analytics Requirements
	4.3 Other Challenges

	5 Conclusions
	References

