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    Chapter 5   
 Arbuscular Mycorrhizas in Different 
Successional Stages in Some Brazilian 
Ecosystems                     

       Waldemar     Zangaro      and     Artur     Berbel     Lirio     Rondina    

5.1           Introduction 

 During tropical succession, light-demanding pioneer and early-secondary tree spe-
cies, which have very fast growth rates, replace the early-successional plant com-
munities such as grasses, shrubs, and forbs. At later stages of succession, pioneer 
and early-secondary trees species, which are plants incapable of growing and repro-
ducing under their own shadow (Saldarriaga et al.  1988 ), are replaced by late- 
secondary and climax tree species, which predominate in closed canopies and 
display intrinsic slow growth rates and tolerance to shading (Denslow and Guzman 
 2000 ; Guariguata and Ostertag  2001 ; Zangaro et al.  2003 ). 

 Many plant species belonging to different ecological groups of succession in trop-
ical ecosystems rely on arbuscular mycorrhizal fungi ( AMF  ) for water and nutrients 
uptake. The AMF  external hyphae   increase the volume of soil that can be explored 
beyond the depletion zone formed around the absorbing roots (Smith and Read 
 2008 ), mainly in relation to P, and receive carbohydrates from the host plant. The low 
diameter of AMF hyphae can uptake P from small sites that cannot be accessed by 
root hairs (Jakobsen  1995 ). AMF make  symbiosis   with many plant species, including 
herbaceous and woody (Janos  1983 ; Sanders et al.  1996 ; Zangaro et al.  2003 ). This 
symbiosis plays an important role in plant nutrient acquisition, growth, and survival 
(Smith and Read  2008 ), besides increasing the photosynthetic rate and roots longev-
ity (Linderman  1988 ; Comas et al.  2002 ). The AMF association is important for 
rehabilitation of degraded lands and is highly promising for inoculation of native 
woody species, especially in low-fertility soils (Perry et al.  1987 ; Zangaro et al.  2000 ). 
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In this chapter, we will discuss differences in the  relationships among distinct  plant 
functional groups   and AMF, as well as the implications of these relations for tropical 
ecological succession.  

5.2     Differential Response of Tropical Herbaceous 
and Woody Species to AMF 

 AMF are an important biotic factor that  infl uences   differentially the establishment, 
survivor, growth, and reproduction of herbaceous and shrubby species of early 
phases of tropical succession. Rondina et al. ( 2014 ) assessed the effect of AMF on 
seedling development of 27 heliophilous herbaceous and shrubby tropical species 
grown in low- and high-fertility soils for 100 days. As shown in Fig.  5.1 , most spe-
cies grown in both soil types exhibited high AMF root colonization (80 %). In the 
low-fertility soil and non-AMF inoculation, the individuals of most plant species 
died between 50 and 70 days after the experiment installation. The individuals of 
the few plant species that survived in this condition grew little and displayed about 
88 % less shoot dry mass than plants inoculated with AMF (Fig.  5.1 ). In the low- 
fertility soil, only six species fl owered and fl owering increased with AMF in one 
plant species and four species only fl owered in the presence of AMF (Fig.  5.2 ). In 
the high-fertility soil, plant species non-inoculated with AMF exhibited seedlings 
about 13 % less shoot dry mass (Fig.  5.1 ), lower total leaf area, leaf area expansion, 
total root length, and nutrient concentrations in shoots than seedlings inoculated 
with AMF. Sixteen plant species fl owered in the high-fertility soil, but 11 species 
displayed earlier fl owering and 10 species exhibited more abundant fl owering when 
grown with AMF (Fig.  5.2 ). Rondina et al. ( 2014 ) attributed the better fl owering of 
mycorrhizal plants to the higher nutrient concentration in shoots (especially P and 
N) when compared with non-mycorrhizal plants. It possibly allowed more nutrients 
mobilized to the production of fl owers. Furthermore, more nutrients in combination 
with the increase of total leaf area and leaf area expansion, also displayed by mycor-
rhizal plants, may enhance photosynthesis and C availability to fl owering. The early 
and more abundant fl owering exhibited by mycorrhizal plants may be very advanta-
geous for these plants, which have short life span and are commonly highly prolifi c, 
in competition at the beginning of tropical succession.

    Thus, AMF have different infl uences on the development of herbaceous and 
shrubby tropical species, depending on  soil fertility  : in low-fertility soil, AMF espe-
cially affect the survival, growth, and fl owering. But in high-fertility soil, although 
mycorrhizal symbiosis did not provide large plant biomass accumulation, AMF still 
have a very important role in shoot nutrient concentrations and fl owering. Some 
studies have found similar results for herbaceous species of other South America 
ecosystems. Urcelay et al. ( 2012 ) showed that in three typical Asteraceae species of 
Chaquean region ( Bidens pilosa ,  Tagetes minuta , and  Zinnia peruviana ), mycor-
rhizal plants had lower shoot dry mass than non-mycorrhizal plants. Grilli et al. 
( 2014 ) reported that the mycorrhizal colonization of  Euphorbia acerensis  and 
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 Euphorbia dentata  can be high (80 %), and plants associated with AMF exhibited 
lower or not different dry mass than plants without AMF. However, the high mycor-
rhizal colonization infl uenced negatively the reproduction traits of these 
Euphorbiaceae species, like infl orescence and fruits production. 

 The seedling growth response to AMF of approximately 150 native woody spe-
cies belonging to different ecological successional groups from Brazilian tropical 
forests, studied by Carneiro et al. ( 1996 ), Siqueira et al. ( 1998 ), Zangaro et al. 
( 2000 ,  2002 ,  2003 ,  2005 ,  2007 ), Pouyú-Rojas and Siqueira ( 2000 ), Siqueira and 
Saggin-Júnior ( 2001 ), Zangaro and Andrade ( 2002 ), Matsumoto et al. ( 2005 ), 
Patreze and Cordeiro ( 2005 ), Pasqualini et al. ( 2007 ), and Vandresen et al. ( 2007 ), 
are shown in Fig.  5.3 . Plant woody species were classifi ed into different ecological 

  Fig. 5.1    Shoot biomass  response   to AMF ( a ) and mycorrhizal colonization ( b ) of herbaceous and 
shrubby plant species of early stages of tropical succession grown in low- and high-fertility soils. 
 Vertical bars  indicate the standard error ( n  = 5).  Dashed lines  represent the average of plants’ 
response to AMF and mycorrhizal infection intensity considering all species in the low-fertility 
soil ( n  = 26);  dotted lines  represent the same in the high-fertility soil ( n  = 27). Means followed by 
the same letter do not differ from each other by Student’s  t  test at  P <  0.05. *Indicate signifi cant 
differences in mycorrhizal infection intensity between soil fertilities within species by Student’s  t  
test (* P  < 0.05; ** P  < 0.01).  Dagger  represents death of the plants in the treatment. Species: 
AH =  Amaranthus hybridus , AC =  Asclepias curassavica , BC =  Baccharis  sp., HB =  Hypochaeris 
brasiliensis , PR =  Porophyllum ruderale , VC =  Vernonia cognata , VP =  Vernonia polyanthes , 
TS =  Tecoma stans , MC =  Momordica charantia , CN =  Chamaecrista nictitans , CI =  Crotalaria 
incana , IH =  Indigofera hirsuta , MI =  Mimosa invisa , SO =  Senna obtusifolia , HS =  Hyptis spicig-
era , LN =  Leonotis nepetifolia , LS =  Leonurus sibiricus , SM =  Sidastrum micranthum , 
CE =  Cenchrus echinatus , CH =  Chloris elata , DI =  Digitaria insularis , EP =  Eragrostis pilosa , 
MM =  Melinis minutifl ora , MR =  Melinis repens , PP =  Pennisetum purpureum , SA =  Sorghum arun-
dinaceum , SV =  Solanum viarum . Data from Rondina et al. ( 2014 ) with changes       
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successional groups such as pioneer, early-secondary, late-secondary, and climax. 
The response to AMF inoculation and the  intensity   of AMF  root colonization of the   
native woody species decreased with the advance among successional ecological 
groups. Plant biomass response to AMF and AMF root colonization was very high 
among early-successional woody species, revealing the importance of arbuscular 
mycorrhizal association for the initial growth of this woody species, which are 
involved in the initial tropical forest structuring. In contrast, plant species belonging 
to late stages of succession that dominates in the mature forests showed low AMF 
root colonization and biomass response. These woody species display limited use of 
the AMF as tool for mineral acquisition during seedling stages.

  Fig. 5.2    Number of  fl owers   per plant and days elapsed for appearance of the fi rst fl ower buds after 
plant emergence (number in brackets) of herbaceous and shrubby plant species of early stages of 
tropical succession grown in low- and high-fertility soils, with or without AMF.  Vertical bars  indi-
cate the standard error ( n  = 5). Means followed by the same lowercase (low-fertility soil) or upper-
case (high-fertility soil) letters do not differ by Student’s  t -test at  P  < 0.05. Species:  Amaranthus 
hybridus  ( a ),  Hypochaeris brasiliensis  ( b ),  Porophyllum ruderale  ( c ),  Momordica charantia  ( d ), 
 Chamaecrista nictitans  ( e ),  Crotalaria incana  ( f ),  Indigofera hirsuta  ( g ),  Senna obtusifolia  ( h ), 
 Hyptis spicigera  ( i ),  Leonotis nepetifolia  ( j ),  Leonurus sibiricus  ( k ),  Cenchrus echinatus  ( l ), 
 Digitaria insularis  ( m ),  Eragrostis pilosa  ( n ),  Melinis repens  ( o ),  Sorghum arundinaceum  ( p ). Data 
from Rondina et al. ( 2014 )         
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Fig. 5.2 (continued)
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  Fig. 5.3    Plant response  to   AMF inoculation ( a ) and AMF root colonization ( b ) of native woody 
species belonging to different successional stages. Means followed by same letter are not different 
by Tukey–Kramer HSD test at 0.05 level. Data from 93 plant species for response to inoculation 
and 121 plant species for root colonization. Data from Zangaro ( 2012 )       
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   Pioneer and early- secondary   woody species when grown in the absence of AMF 
presented lower nutrient concentrations in leaves. These concentrations increased 
strongly when the same plant species was grown with arbuscular mycorrhizas (Zangaro 
et al.  2003 ), indicating that the pioneer and early-secondary species are not able to 
acquire nutrients from a low-fertility soil when AMF are not present. Pioneer and 
early-secondary species show inherent high growth rate and their high nutrient accu-
mulation when grown with AMF, suggesting that the high demand for nutrients can be 
reached only in the presence of AMF association. For late- secondary and climax 
species there was no alteration in nutrient concentration and accumulation on leaves in 
the presence or absence of AMF, which probably led to the absence of  plant   biomass 
response to AMF in both high- and low-fertility soils (Zangaro et al.  2007 ).  

5.3     Fine Root Traits and AMF Colonization Intensity 
for Nutrient Acquisition 

 It has  been      widely accepted  from   research in temperate regions that the plant root 
architecture controlled mycorrhizal benefi t. Plant species that explore large soil vol-
ume display long fi ne roots, highly branched, with low diameter, covered with 
numerous root hairs, and are expected to exhibit low levels of AMF root coloniza-
tion (Manjunath and Habte  1991 ; Schweiger et al.  1995 ; Brundrett  2002 ). On the 
other hand, plant species with coarse root systems and few root hairs tend to have 
high AMF colonization (Baylis  1975 ; Graham and Syvertsen  1985 ; Hetrick et al. 
 1992 ; Manjunath and Habte  1991 ; Reinhardt and Miller  1990 ; Schweiger et al. 
 1995 ). The results of Rondina et al. ( 2014 ) and Zangaro et al. ( 2005 ,  2007 ), for 
seedlings grown in greenhouse, and Zangaro et al. ( 2008 ,  2012a ,  b ,  2013 ,  2014 ), for 
fi eld results from tropical herbaceous and native woody species, do not  support   this 
hypothesis. The AMF root colonization and spore production among tropical native 
woody species belonging to different phases of succession display relations with the 
morphological root characteristics and plant metabolic demand. Generally, plant 
species belonging to early-successional stages with fi ne roots and abundant and long 
root hairs displayed high AMF colonization and sporulation (Table  5.1 ). By contrast, 
late-successional woody species with coarse roots and few root hairs displayed low 
AMF colonization and spore production (Zangaro et al.  2005 ,  2007 ).

   In tropical soils, which generally have low P available, the early-successional 
woody species with apparent root morphology for high uptake capacity are not able 
to ensure adequate nutrition for maintaining their inherent fast growth rate, becoming 
arbuscular mycorrhizas essential for their nutrient acquisition. Zangaro et al. ( 2005 , 
 2007 ,  2008 ,  2014 ) suggested that, in addition to high carbon allocation to fi ne root 
construction, early-successional species maintain more AMF because they present 
morphological root traits (high root length, high specifi c root length, low diameter, 
long and dense root hairs) with high interface, which favor the contact with 
mycorrhizal propagules in the soil. Indeed, the high nutrient accumulation exhibited 
for early-successional species expresses its high external demand for nutrients. 
Thus, fast-growing woody species display inherent intense metabolism that demands 
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high amounts of nutrients to support the high growth rates and, therefore, maintain 
more AMF in root and soil to supply their nutritional needs. The relatively higher 
investment in leaves by the early-successional species increases the amount of pho-
toassimilates that can be allocated to roots (Nielsen et al.  1998 ; Lynch and Ho  2005 ) 
and more carbohydrates may be provided to AMF in roots. 

 By contrast, plants from mature forest present less AMF colonization in fi ne roots 
in addition to less sporulation in soil. Several features such as shading, low growth 
rates, and metabolic demands may result in a reduced availability of  carbohydrates to 
AMF in roots and consequently less mycorrhizal root colonization and sporulation in 
the mature forest (Zangaro et al.  2005 ,  2007 ,  2012a ,  2014 ). Late- successional woody 
species display root morphology for low nutrient acquisition capacities (low root 
length, low specifi c root length, short and sparse root hairs) and are able to maintain 
their growth in the absence of AMF, even in defi cient P soils (Zangaro et al.  2007 ). 
Therefore, the fi ne roots alone may be responsible for the nutrient acquisition among 
late-successional trees species.  This      indicates that slow- growing species may exhibit 
other strategies for nutrient acquisition instead of AMF association, as an additional 
enzymatic nutrient acquisition mechanisms (Chapin  1980 ),  nutrient   use effi ciency 
(Manjunath and Habte  1991 ; Koide  1991 ), low requirement due to both low growth 
rate and metabolic demand (Zangaro et al.  2007 ), and high seed reserves for seedlings 
growth (Siqueira et al.  1998 ; Zangaro et al.  2000 ; Pasqualini et al.  2007 ).  

5.4     Abundance of AMF in Different Stages of Succession 

 Mycorrhizal variables such  as   AMF root colonization and AMF spores density in soil 
were accessed over several years from sites covered with grasses, secondary forests, 
and mature forests in Atlantic, Araucaria, and Pantanal ecosystems in Brazil 
(Fig.  5.4 ). Mycorrhizal root colonization and mycorrhizal spore number over several 
months were also accessed from grassland, scrub, secondary forest, and mature forest 
of the Atlantic rainforest biome, located at Londrina municipality, Paraná state, 
Southern Brazil (Fig.  5.5 ). The AMF  root colonization   and the AMF  spore density   in 

    Table 5.1    The Pearson’s  correlation   coeffi cients among AMF root colonization (AMC) and AMF 
spore density in soil (AMS) with fi ne root dry mass (RDM), fi ne root length (RL), specifi c root 
length (SRL), fi ne root diameter (RD), root-hair incidence (RHI), and root-hair length (RHL) in 
the grassland, secondary, and mature forest from Pantanal, Atlantic, and Araucaria ecosystems in 
Brazil.  P -values are in parentheses. Data for fi ne roots ( n  = 18) are means from 0 to 10 cm and 
10–20 cm depth   

 Fine root traits 

 AMS  RDM  RL  SRL  RD  RHI  RHL 

 AMC  0.83 
 (<0.0001) 

 −0.16 
 (0.54) 

 0.62 
 (0.0056) 

 0.86 
 (<0.0001) 

 −0.86 
 (<0.0001) 

 0.91 
 (<0.0001) 

 0.94 
 (<0.0001) 

  AMS    –  −0.08 
 (0.75) 

 0.67 
 (0.0023) 

 0.66 
 (0.0031) 

 −0.81 
 (<0.0001) 

 0.77 
 (0.0002) 

 0.67 
 (0.0023) 

  Data from Zangaro et al. ( 2012b )  
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  Fig. 5.4    Mycorrhizal root  infection   intensity and mycorrhizal spore number over several years 
from  Araucaria  ecosystem ( a ,  b ), Atlantic ecosystem ( c ,  d ), and Pantanal ecosystem ( e ,  f ) in 
Brazil. In  Araucaria  ecosystem Grass (grassland site), Sec 15 (15-year-old secondary forest), Sec 
30 (30-year-old secondary forest), Sec 50 (50-year-old secondary forest), and Mature (mature for-
est). In Atlantic ecosystem Grass (grassland site), Scrub (5-year-old scrub vegetation), Secondary 
(20-year-old secondary forest), and Mature (mature forest). In Pantanal ecosystem Grass (grass-
land site), Secondary (15-year-old secondary forest), and Mature (mature forest).  Error bars  
are + SE of the means ( n  = 15). Means followed by the same letter among successional sites are not 
different by Tukey’s test at 0.05 level. Data from Zangaro et al. ( 2012a )       
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  Fig. 5.5    Mycorrhizal root  colonization   ( a ) and mycorrhizal spore number ( b ) over several 
months from grassland, scrub, secondary forest, and mature forest of the Atlantic rainforest 
biome, located at Londrina municipality, Paraná state, Southern Brazil. Soils and fi ne root sam-
ples were assessed at 0–5 cm depth from October 2006 until November 2007.  Error bars  are ± 1 
SE. Means followed by the same letter are not different by Tukey’s test at 0.05 level. Small letters 
compare means within a same successional site. Capital letters compare among successional sites 
( n  = 13,  P  < 0.001 for AMF root colonization and  n  = 13,  P  < 0.001 for AMF spore number). Data 
from Zangaro et al. ( 2013 )       
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soil decreased over succession, independently of studied biome. A positive correlation 
between spore numbers and mycorrhizal colonization was found, and these AMF 
variables can be considered as indicators of mycorrhizal incidence in soil (Picone 
 2000 ; Cardoso et al.  2003 ). The high and positive correlations found between AMF 
root colonization and AMF spore density may indicate the mycelial biomass of AMF 
in the soil, the AMF inoculum potential in the fi eld, and the potential of plant species 
from different functional ecological groups to support AMF association. Mycorrhizal 
colonization and AMF spores in soils showed a high close correlation with parameters 
of fi ne root morphology (Table  5.1 ), but low correlation with root dry mass, suggest-
ing that  the   morphological root characteristics are more important to the  symbiosis 
  than the fi ne root mass. These results toward plant investment in fi ne root morphology 
and AMF root colonization as an important way for plant nutrient acquisition.

    The AMF root colonization and AMF spores density in soil exhibited strong 
reduction during succession progress in all areas studied. These results refl ect the 
greater investment in arbuscular mycorrhizal symbiosis by host plants of the early- 
successional phases than native woody species of mature forest. The higher AMF 
fungi variables in early-successional stages than in mature forests comply with the 
higher AMF spores density found in pasture or natural grasses sites than in forests 
in Australia (Jasper et al.  1991 ), in addition to humid secondary forest (Fischer et al. 
 1994 ) and mature forest (Johnson and Wedin  1997 ) in Costa Rica, dry forest in 
Mexico (Allen et al.  1998 ), natural sites in Venezuela (Cuenca et al.  1998 ), lowland 
evergreen forests in Nicaragua and Costa Rica (Picone  2000 ), tropical forest in 
southern Brazil (Zangaro and Andrade  2002 ), and low-fertility soil at mature forest 
in Costa Rica (Lovelock et al.  2003 ). Besides, Zangaro et al. ( 2000 ) found low den-
sity of AMF spores and root colonization in plants from mature forest in southern 
Brazil and suggested that slow-growing species are less able to keep AMF due to 
growth in relative high  soil fertility   and shaded environments and exhibit low meta-
bolic activity. Aidar et al. ( 2004 ) verifi ed that AMF root colonization and AMF 
spores density decreased with increasing  soil fertility   in a chronosequence of an 
Atlantic forest in southeast Brazil. Powers et al. ( 2005 ) related that the amount of 
AMF hyphae in the soils of four tropical forests in Central and South America was 
unexpectedly quite low and suggested that plants of mature forests must rely on 
their fi ne roots instead of AMF for nutrient uptake. In an analysis in 15 published 
papers, Zangaro and Moreira ( 2010 ) verifi ed that the amount of AMF spores in soils 
from mature forests and old secondary forests of the Brazilian Atlantic forest biome 
 was   lower than in recent secondary forests and open areas.  

5.5     Inoculum of AMF Available in Soil 

 The soil inoculum potential of  AMF   decreased strongly over succession in the soils 
from the mature tropical forest, in a gap in the same mature forest, and in a recent 
secondary forest (Zangaro et al.  2000 ). The inoculum potential of AMF in the soil 
of the secondary forest was approximately fi ve times greater than in the mature 
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forest and in its gap. In another experiment (Zangaro et al.  2012a ) the response to 
inoculation and the root colonization were accessed in seedlings of the woody 
mycotrophic species  Heliocarpus popayanensis  (Malvaceae) grown in 15 soils 
classes for 40 days and subsequently planted in infertile clay soil containing 1.66 mg 
P dm −3 , 1.24 mg N dm −3 , and 2.82 g C dm −3  (Fig.  5.6 ). Seedlings grown in soils from 
early stages of succession and secondary forests displayed higher AMF root coloni-
zation and  biomass response   to AMF than seedlings grown in mature forests soils. 
These results emphasize the high AMF inoculum potential in the soils from early 
stages of tropical succession and the young secondary forests and the low potential 
in mature forest conditions. Thus, the herbaceous plant from open environments 
and pioneer and early-secondary woody species may be able to multiply the AMF 
in large amounts (Zangaro et al.  2013 ,  2014 ), allowing high inoculum potential for 
their offsprings (Rondina et al.  2014 ). On the other hand, in the mature forest, the 
inoculum potential was very low, indicating that the late-secondary and climax spe-
cies that compose the most part of the vegetation in a mature forest have weak 
mycotrophy and, as a consequence, the potential of AMF inoculum is low in mature 
forest conditions.

5.6        Implication of the AMF Inoculum Potential 
for Secondary Forest Formation 

 The high mycorrhizal colonization  and   plant biomass response to AMF among 
early-successional woody species grown in greenhouse, in addition to high AMF 
root colonization and AMF spore abundance in soils from sites covered with grasses 
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  Fig. 5.6    Shoot dry  matter   ( a ) and root colonization ( b ) of the tropical native woody  Heliocarpus 
popayanensis  grown in infertile soil. AM fungi inoculums are from fi ve early-successional areas 
(E), fi ve secondary forests (S), and fi ve mature forests (M).  Error bars  represent ± 1 SE. Means 
followed by same letter are not different by Tukey test at 0.05 level       
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and young secondary forests, refl ect the host plant potential for multiplying the 
 AMF   among heliophilous herbaceous plants and fast-growing woody species. 
The intense  host investment to maintain high AMF soil inoculum potential toward 
large density of AMF propagules production, which may be favorable for the plant 
installation and recruitment of fast-growing species. The early-successional woody 
species are highly responsive to AMF colonization,  regardless   of soil fertility level 
(Siqueira et al.  1998 ; Zangaro et al.  2007 ), and exhibit great aggressiveness during 
establishment in open and disturbed areas (Zangaro et al.  2003 ). Thus, AMF may be 
the main biotic factor for the establishment and growth acceleration of the native 
woody species that lead for initial tropical forest structuring (Zangaro et al.  2000 ). 
In the  later   stages of succession, the light limitation increases and early- successional 
woody species with typical fast growth rate and shade intolerance has diffi culty to 
grow, reproduce, and maintain AMF association, attributed to low irradiance and its 
effect on fi ne roots carbohydrate availability to these fungi. The reduction of AMF 
in later stages of succession under light limitation is connected with concomitant 
decrease of the shade-intolerant host plant species. These declines have important 
 implications   for tropical forest succession, because the incapacity of the early- 
successional woody species to maintain AMF associations limits the  acquisition   of 
water and nutrient reducing their regeneration potential, recruitment, and competi-
tive ability in later stages of succession (Zangaro et al.  2012a ). 

 During succession progress, the fast growth and turnover of these shade- 
intolerant woody species provides a continuous soil organic enrichment and 
improves the soil structure (Uhl et al.  1982 ; Zangaro et al.  2003 ,  2009 ). The increase 
of soil surface fertility along the succession progress is attributable to the biomass 
accumulation and decomposition as the vegetation develops along the time (Silver 
et al.  1996 ; Guariguata and Ostertag  2001 ; Lugo and Helmer  2004 ; Boeger et al. 
 2005 ). Decomposition of soil organic matter produced by fast-growing woody 
species is important because of its critical role in the cycling of essential plant nutri-
ents (Degens et al.  2000 ). The transformations above- and belowground during ini-
tial forest structuring allow the posterior establishment and growth of slow-growing 
woody species, which are dominant in mature forests. Therefore, the adult native 
woody species that dominate the late succession phases of the tropical forests main-
tain low amount of AMF due to low AMF association requirements. Plants in 
mature forests, under low light intensity, can be more limited by carbon than nutri-
ent availability in soils, restricting the carbohydrate allocation to AMF and decreas-
ing the root colonization, which suggests that the low levels of AMF in mature 
forests could be due to high carbon cost for maintaining the arbuscular mycorrhizal 
symbiosis in soils containing suffi cient nutrient amounts (Zangaro  2012 ; Zangaro 
et al.  2014 ). Therefore, the low plant metabolic demand and the light availability 
appear to be important factors that determine AMF colonization and sporulation in 
mature forests. As large amount of plant photosynthetic products can be drained by 
AMF (Nielsen et al.  1998 ; Lynch and Ho  2005 ), the cost for maintaining high level 
of AMF can be signifi cant for plant species in mature forests. Thus, the symbiotic 
limitations are an important means for plant energy conservation in mature forests 
(Zangaro et al.  2012b ). Besides, lipid-rich spores and fungal hyphae are subject to 
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predation and parasitism, since they serve as a food source for a wide range of soil 
animals (Rabatin and Stinner  1988 ; Stürmer et al.  2006 ). The  soil organisms   increase 
during succession (Coleman et al.  2004 ), and the  competition   with soil organisms 
and the hyphae and spores predation may be other important aspects that contribute 
to the decrease of the AMF in soils of mature forests.     
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