
Efficient MUS Enumeration of Horn Formulae
with Applications to Axiom Pinpointing

M. Fareed Arif1, Carlos Menćıa1(B), and Joao Marques-Silva1,2

1 CASL, University College Dublin, Dublin, Ireland
farif@ucdconnect.ie, {carlos.mencia,jpms}@ucd.ie

2 INESC-ID, IST, ULisboa, Lisbon, Portugal

Abstract. The enumeration of minimal unsatisfiable subsets (MUSes)
finds a growing number of practical applications, that includes a wide
range of diagnosis problems. As a concrete example, the problem of axiom
pinpointing in the EL family of description logics (DLs) can be mod-
eled as the enumeration of the group-MUSes of Horn formulae. In turn,
axiom pinpointing for the EL family of DLs finds important applications,
such as debugging medical ontologies, of which SNOMED CT is the best
known example. The main contribution of this paper is to develop an
efficient group-MUS enumerator for Horn formulae, HgMUS, that finds
immediate application in axiom pinpointing for the EL family of DLs.
In the process of developing HgMUS, the paper also identifies perfor-
mance bottlenecks of existing solutions. The new algorithm is shown to
outperform all alternative approaches when the problem domain targeted
by group-MUS enumeration of Horn formulae is axiom pinpointing for
the EL family of DLs, with a representative suite of examples taken from
different medical ontologies.

1 Introduction

Description Logics (DLs) are well-known knowledge representation for-
malisms [4]. DLs find a wide range of applications in computer science, including
the semantic web and representation of ontologies, but also in medical bioinfor-
matics.

Given an ontology (that consists of a set of axioms) and a subsumption rela-
tion entailed by the ontology, axiom pinpointing is the problem of finding mini-
mal axiom sets (MinAs), equivalently minimal sub-ontologies, each one entailing
the given subsumption relation [48]. So, each MinA represents a minimal expla-
nation or justification for the subsumption relation. Example applications of
axiom pinpointing include context-based reasoning, error-tolerant reasoning [32],
and ontology debugging and revision [26,49]. Axiom pinpointing for different
description logics (DLs) has been studied extensively for more than a decade,
with related work in the mid 90s [1,3,5–8,25,31,33,37,39,40,42,48–51,53].

The EL family of DLs is well-known for being tractable (i.e. polynomial-
time decidable). Despite being inexpressive, the EL family of DLs, concretely by
using the more expressive, and still tractable, EL+, has been used for represent-
ing ontologies in the medical sciences, including the well-known SNOMED CT
c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 324–342, 2015.
DOI: 10.1007/978-3-319-24318-4 24

Efficient Group-MUS Enumeration of Horn Formulae 325

ontology [55]. Work on axiom pinpointing for the EL family of DLs can be traced
to 2006, namely the CEL tool [5]. Later, in 2009, the use of SAT was proposed
for axiom pinpointing in the EL family of DLs [50,51,56], concretely for the more
expressive DL EL+. This seminal work proposed a propositional Horn encoding
that can be exponentially smaller than earlier work [5,7,8]. Moreover, the use of
SAT for axiom pinpointing for the EL family of DLs, named EL+SAT [50,51,56],
was shown to consistently outperform earlier work, concretely CEL [5]. Recent
work [1] builds on these propositional encodings, but exploits the relationship
between axiom pinpointing and enumeration of minimal unsatisfiable subsets
(MUSes) [30], achieving conclusive performance gains over earlier work.

Nevertheless, this recent work has a number of potential drawbacks that will
be analyzed later in the paper.

The relationship between axiom pinpointing and MUS enumeration was also
studied elsewhere [33]. Instead of exploiting hitting set dualization, this alterna-
tive approach exploits the enumeration of implicants [33].

The main contribution of this paper is to develop an efficient group-MUS
enumerator for Horn formulae, referred to as HgMUS, that finds immediate
application in axiom pinpointing for the EL family of DLs. In the process of
developing HgMUS, the paper also identifies performance bottlenecks of exist-
ing solutions, in particular EL+SAT [50,51]. The new group-MUS enumerator for
Horn formulae builds on the large body of recent work on problem solving with
SAT oracles. This includes, among others, MUS extraction [12], MCS extraction
and enumeration [34], and partial MUS enumeration [28,29,44]. HgMUS also
exploits earlier work on solving Horn propositional formulae [17,38], and devel-
ops novel algorithms for MUS extraction in propositional Horn formulae. The
experimental results, using well-known problem instances, demonstrate conclu-
sive performance improvements over all other existing approaches, in most cases
by several orders of magnitude.

The paper is organized as follows. Section 2 introduces the notation and
definitions used throughout the paper. Section 3 reviews recent work on MUS
enumeration, which serves as the basis for HgMUS. Afterwards, the new
group-MUS enumerator HgMUS is described in Section 4. Section 5 compares
HgMUS with existing alternatives. Experimental results on well-known prob-
lem instances from axiom pinpointing for the EL family of DLs are analyzed
in Section 6. The paper concludes in Section 7.

2 Preliminaries

Standard definitions of propositional logic are assumed [13]. This paper considers
Boolean formulae in Conjunctive Normal Form (CNF). A CNF formula F is
defined over a set of Boolean variables V (F) = {x1, ..., xn} as a conjunction of
clauses (c1 ∧ ... ∧ cm). A clause c is a disjunction of literals (l1 ∨ ... ∨ lk) and a
literal l is either a variable x or its negation ¬x. We refer to the set of literals
appearing in F as L(F). Formulae can also be represented as sets of clauses, and
clauses as sets of literals.

326 M.F. Arif et al.

A truth assignment, or interpretation, is a mapping μ : V (F) → {0, 1}. If all
the variables in V (F) are assigned a truth value, μ is referred to as a complete
assignment. Interpretations can also be seen as conjunctions or sets of literals.
Truth valuations are lifted to clauses and formulae as follows: μ satisfies a clause
c if it contains at least one of its literals. Given a formula F , μ satisfies F (written
μ� F) if it satisfies all its clauses, being μ referred to as a model of F .

Given two formulae F and G, F entails G (written F � G) iff all the models
of F are also models of G. F and G are equivalent (written F ≡ G) iff F � G and
G � F .

A formula F is satisfiable (F � ⊥) if there exists a model for it. Otherwise it is
unsatisfiable (F � ⊥). SAT is the decision problem of determining the satisfiability
of a propositional formula. This problem is in general NP-complete [15].

Some applications require computing certain types of models. In this paper,
we will make use of maximal models, i.e. models such that a set-wise maximal
subset of the variables are assigned value 1:

Definition 1 (MxM). Let F be a satisfiable propositional formula, μ� F a
model of F and P ⊆ V (F) the set of variables appearing in μ with positive
polarity. μ is a maximal model (MxM) of F iff F∪P � ⊥ and for all v ∈ V (F)\P ,
F ∪ P ∪ {v}� ⊥.

Herein, we will denote a maximal model by P , i.e. the set of its positive
literals.

Horn formulae constitute an important subclass of propositional logic. These
are composed of Horn clauses, which have at most one positive literal. Satisfia-
bility of Horn formulae is decidable in polynomial time [17,23,38].

Given an unsatisfiable formula F , the following subsets represent different
notions regarding (set-wise) minimal unsatisfiability and maximal satisfiability
[30,34]:

Definition 2 (MUS). M ⊆ F is a Minimally Unsatisfiable Subset (MUS) of
F iff M is unsatisfiable and ∀c ∈ M,M \ {c} is satisfiable.

Definition 3 (MCS). C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C
is satisfiable and ∀c ∈ C,F \ (C \ {c}) is unsatisfiable.

Definition 4 (MSS). S ⊆ F is a Maximal Satisfiable Subset (MSS) iff S is
satisfiable and ∀c ∈ F \ S,S ∪ {c} is unsatisfiable.

An MSS is the complement of an MCS. MUSes and MCSes are closely related
by the well-known hitting set duality [10,14,46,54]: Every MCS (MUS) is an
irreducible hitting set of all MUSes (MCSes) of F . In the worst case, there can be
an exponential number of MUSes and MCSes [30,41]. Besides, MCSes are related
to the MaxSAT problem, which consists in finding an assignment satisfying as
many clauses as possible. The smallest MCS (largest MSS) represents an optimal
solution to MaxSAT.

Motivated by several applications, MUSes and related concepts have been
extended to CNF formulae where clauses are partitioned into disjoint sets called
groups [30].

Efficient Group-MUS Enumeration of Horn Formulae 327

Definition 5 (Group-Oriented MUS). Given an explicitly partitioned unsat-
isfiable CNF formula F = G0 ∪ ... ∪ Gk, a group-oriented MUS (or group-MUS)
of F is a set of groups G ⊆ {G1, ...,Gk}, such that G0 ∪ G is unsatisfiable, and
for every Gi ∈ G, G0 ∪ (G \ Gi) is satisfiable.

Note the special role G0 (group-0); this group consists of background clauses
that are included in every group-MUS. Because of G0 a group-MUS, as opposed to
MUS, can be empty. Nevertheless, in this paper we assume that G0 is satisfiable.

Equivalently, the related concepts of group-MCS and group-MSS can be
defined in the same way. We omit these definitions here due to lack of space.
In the case of MaxSAT, the use of groups is investigated in detail in [22].

3 MUS Enumeration in Horn Formulae

Enumeration of MUSes has been the subject of research that can be traced to
the seminal work of Reiter [46]. A well-known family of algorithms uses (explicit)
minimal hitting set dualization [10,14,30]. The organization of these algorithms
can be summarized as follows. First compute all the MCSes of a CNF formula.
Second, MUSes are obtained by computing the minimal hitting sets of the set of
MCSes. The main drawback of explicit minimal hitting set dualization is that, if
the number of MCSes is exponentially large, these approaches will be unable to
compute MUSes, even if the total number of MUSes is small. As a result, recent
work considered what can be described as implicit minimal hitting set dual-
ization [28,29,44]. In these approaches (namely eMUS [44] and MARCO [29]
MUS enumerators), either an MUS or an MCS is computed at each step of
the algorithm, with the guarantee that one or more MUSes will be computed
at the outset. In some settings, implicit minimal hitting set dualization is the
only solution for finding some MUSes of a CNF formula. As pointed out in
this recent work, implicit minimal hitting set dualization aims to complement,
but not replace, the explicit dualization alternative, and in some settings where
enumeration of MCSes is feasible, the latter may be the preferred option [29,44].

Algorithm 1 shows the eMUS enumeration algorithm [44], also used in the
most recent version of MARCO [29]. It relies on a two-solver approach aimed at
enumerating the MUSes/MCSes of an unsatisfiable formula F . On the one hand,
a formula Q is used to enumerate subsets of F . This formula is defined over a set
of variables I = {pi | ci ∈ F}, each one of them associated with one clause ci ∈ F .
Iteratively until Q becomes unsatisfiable, eMUS computes a maximal model P
of Q and tests the satisfiability of the corresponding subformula F ′ ⊆ F . If it
is satisfiable, F ′ represents an MSS of F , and the clause I \ P is added to Q,
preventing the algorithm from generating any subset of the MSS (superset of
the MCS) again. Otherwise, if F ′ is unsatisfiable, it is reduced to an MUS M,
which is blocked adding to Q a clause made of the variables in I associated
with M with negative polarity. This way, no superset of M will be generated.
Algorithm 1 is guaranteed to find all MUSes and MCSes of F , in a number of
iterations that corresponds to the sum of the number of MUSes and MCSes.

This paper considers the problem of enumerating the group-MUSes of an
unsatisfiable Horn formula. As highlighted earlier, and as discussed later in the

328 M.F. Arif et al.

Algorithm 1. eMUS [44] / MARCO [29]
Input: F a CNF formula
Output: Reports the set of MUSes of F

1 I ← {pi | ci ∈ F} // Variable pi picks clause ci
2 Q ← ∅
3 while true do
4 (st, P) ← MaximalModel(Q)
5 if not st then return
6 F ′ ← {ci | pi ∈ P} // Pick selected clauses

7 if not SAT(F ′) then
8 M ← ComputeMUS(F ′)
9 ReportMUS(M)

10 b ← {¬pi | ci ∈ M} // Negative clause blocking the MUS

11 else
12 b ← {pi | pi ∈ I \ P} // Positive clause blocking the MCS

13 Q ← Q ∪ {b}

paper, enumeration of the group-MUSes of unsatisfiable Horn formulae finds
important applications in axiom pinpointing for the EL family of DLs, including
EL+. It should be observed that the difference between the enumeration of plain
MUSes of Horn formulae and the enumeration of group-MUSes is significant.
First, enumeration of group-MUSes of Horn formulae cannot be achieved in
total polynomial time, unless P = NP. This is an immediate consequence from
the fact that axiom pinpointing for the EL family of DLs cannot be achieved in
total polynomial time, unless P = NP [7], and that axiom pinpointing for the EL
family of DLs can be reduced in polynomial time to group-MUS enumeration
of Horn formulae [1]. Second, enumeration of MUSes of Horn formulae can be
achieved in total polynomial time (actually with polynomial delay) [43].

Given the above, a possible approach for enumerating group-MUSes of Horn
formulae is to use an existing solution, either based on explicit or implicit mini-
mal hitting set dualization. For example, the use of explicit minimal hitting dual-
ization was recently proposed in EL2MCS [1]. Alternatively, either eMUS [44]
or the different versions of MARCO [28,29] could be used, as also pointed out
in [33].

This paper opts instead to exploit the implicit minimal hitting set dualiza-
tion approach [28,29,44], but develops a solution that is specific to the problem
formulation. This solution is described in the next section.

4 Algorithm for Group-MUS Enumeration in Horn
Formulae

This section describes HgMUS, a novel and efficient group-MUS enumerator for
Horn formulae based on implicit minimal hitting set dualization. In this section,
H denotes the group of clauses G0, i.e. the background clauses. Moreover, I
denotes the set of (individual) groups of clauses, with I = {G1, . . . ,Gk}. So,
the unsatisfiable group-Horn formula corresponds to F = H ∪ I. Also, in this

Efficient Group-MUS Enumeration of Horn Formulae 329

Algorithm 2. Computation of Maximal Models
Input: Q a CNF formula
Output: (st, P): with st a Boolean and P an MxM (if it exists)

1 (P,U,B) ← ({{x} | ¬x /∈ L(Q)}, {{x} | ¬x ∈ L(Q)}, ∅)
2 (st, P, U) ← InitialAssignment(Q ∪ P)
3 if not st then return (false, ∅)
4 while U �= ∅ do
5 l ← SelectLiteral(U)
6 (st, µ) = SAT(Q ∪ P ∪ B ∪ {l})
7 if st then (P,U) ← UpdateSatClauses(µ, P, U)
8 else (U,B) ← (U \ {l}, B ∪ {¬l})

9 return (true, P) // P is an MxM of Q

section, the formula Q shown in Algorithm 1 is defined on a set of variables
associated to the groups in I. For the problem instances considered later in the
paper (obtained from axiom pinpointing for the EL family of DLs), each group
of clauses contains a single unit clause. However, the algorithm would work for
arbitrary groups of clauses.

4.1 Organization

The high-level organization of HgMUS mimics that of eMUS/MARCO
(see Algorithm 1), with a few essential differences. First, the satisfiability testing
step (because it operates on Horn formulae) uses the dedicated linear time algo-
rithm LTUR [38]. LTUR can be viewed as one-sided unit propagation, since only
variables assigned value 1 are propagated. Moreover, the simplicity of LTUR
enables very efficient implementations, that use adjacency lists for represent-
ing clauses instead of the now more commonly used watched literals. Second,
the problem formulation motivates using a dedicated MUS extraction algo-
rithm, which is shown to be more effective in this concrete case than other
well-known approaches [12]. Third, we also highlight important aspects of the
eMUS/MARCO implicit minimal hitting set dualization approach, which we
claim have been overlooked in earlier work [51,56].

4.2 Computing Maximal Models

The use of maximal models for computing either MCSes of a formula or a
set of clauses that contain an MUS was proposed in earlier work [44], which
exploited SAT with preferences for computing maximal models [20,47]. The use
of SAT with preferences for computing maximal models is also exploited in
related work [50,51].

Computing maximal models of a formula Q can be reduced to the problem of
extracting an MSS of a formula Q′ [34], where the clauses of Q are hard and, for
each variable xi ∈ V (Q), it includes a unit soft clause ci ≡ {xi}. Also, recent work
[9,21,34,36] has shown that state-of-the-art MCS/MSS computation approaches
outperform SAT with preferences. HgMUS uses a dedicated algorithm based on
the LinearSearch MCS extraction algorithm [34], due to its good performance
in MCS enumeration. Since all soft clauses are unit, it can also be related with

330 M.F. Arif et al.

the novel Literal-Based eXtractor algorithm [36]. Shown in Algorithm 2, it relies
on making successive calls to a SAT solver. It maintains three sets of literals:
P , an under-approximation of an MxM (i.e. positive literals s.t. Q ∪ P � ⊥), B,
with negative literals ¬l such that Q ∪ P ∪ {l}� ⊥ (i.e. backbone literals), and
U , with the remaining set of positive literals to be tested. Initially, P and U
are initialized from a model μ� Q, P (U) including the literals appearing with
positive (negative) polarity in μ. Then, iteratively, it tries to extend P with
a new literal l ∈ U , by testing the satisfiability of Q ∪ P ∪ B ∪ {l}. If it is
satisfiable, all the literals in U satisfied by the model (including l) are moved to
P . Otherwise, l is removed from U and ¬l is added to B. This algorithm has a
query complexity of O(|V (Q)|).

Algorithm 2 integrates a new technique, which consists in pre-initializating
P with the pure positive literals appearing in Q and U with the remaining
ones (line 1), and then requiring the literals of P to be satisfied by the initial
assignment (line 2). It can be easily proved that these pure literals are included
in all MxMs of Q, so a number of calls to the SAT solver could be avoided.
Moreover, the SAT solver will never branch on these variables, easing the decision
problems. This technique is expected to be effective in HgMUS. Note that,
in this context, Q is made of two types of clauses: positive clauses blocking
MCSes of the Horn formula, and negative clauses blocking MUSes. So, with this
technique, the computation of MxMs is restricted to the variables representing
groups appearing in some MUS of the Horn formula.1

4.3 Adding Blocking Clauses

One important aspect of HgMUS are the blocking clauses created and added
to the formula Q (see Algorithm 1). These follow what was first proposed in
eMUS [44] and MARCO [28,29]. For each MUS, the blocking clause consists of
a set of negative literals, requiring at least one of the clauses in the MUS not
to be included in future selected sets of clauses. For each MCS, the blocking
clause consists of a set of positive literals, requiring at least one of the clauses in
the MCS to be included in future selected sets of clauses. The way MCSes are
handled is essential to prevent that MCS and sets containing the same MCS to
be selected again. Although conceptually simple, it can be shown that existing
approaches may not guarantee that supersets of MCSes (or subsets of the MSSes)
are not selected. As argued later, this is the case with EL+SAT [51,56].

4.4 Deciding Satisfiability of Horn Formulae

It is well-known that Horn formulae can be decided in linear time [17,23,38].
HgMUS implements the LTUR algorithm [38]. There are important reasons
for this choice. First, LTUR is expected to be more efficient than plain unit
propagation, since only variables assigned value 1 need to be propagated. Second,
most implementations of unit propagation in CDCL SAT solvers (i.e. that use
watched literals) are not guaranteed to run in linear time [19]; this is for example
the case with all implementations of Minisat [18] and its variants, for which unit

1 SATPin [33] also exploits this insight of relevant variables, but not in the contexts
of MxMs.

Efficient Group-MUS Enumeration of Horn Formulae 331

Algorithm 3. Insertion-based [16] MUS extraction using LTUR [38]
Input: H, denotes the G0 clauses; I, denotes the set of (individual) group

clauses
Output: M, denotes the computed MUS

1 (M, cr) ← (H, 0)
2 LTUR prop(M,M) // Start by propagating G0 clauses

3 while true do
4 if cr > 0 then
5 M ← M ∪ {cr} // Add transition clause cr to M
6 if not LTUR prop(M, {cr}) then
7 LTUR undo(M,M)
8 return M \ H // Remove G0 clauses from computed MUS

9 S ← ∅
10 while true do
11 cr ← SelectRemoveClause(I) // Target transition clause

12 S ← S ∪ {cr}
13 if not LTUR prop(M ∪ S, {cr}) then
14 I ← S \ {cr} // Update working set of groups

15 LTUR undo(M,S)
16 break // cr represents a transition clause

propagation runs in worst-case quadratic time. As a result, using an off-the-
shelf SAT solver and exploiting only unit propagation (as is done for example
in earlier work [33,50,51]) is unlikely to be the most efficient solution. Besides
the advantages listed above, the use of a linear time algorithm for deciding the
satisfiability of Horn formulae turns out to be instrumental for MUS extraction,
as shown in the next section. In order to use LTUR for MUS extraction, an
incremental version has been implemented, which allows for the incremental
addition of clauses to the formula and incremental identification of variables
assigned value 1. Clearly, the amortized run time of LTUR, after adding m = |F|
clauses, is O(||F||), with ||F|| the number of literals appearing in F .

4.5 MUS Extraction in Horn Formulae

For arbitrary CNF formulae, a number of approaches exist for MUS extraction,
with the most commonly used one being the deletion-based approach [11,12], but
other alternatives include the QuickXplain algorithm [24] and the more recent
Progression algorithm [35]. It is also well-known and generally accepted that, due
to its query complexity, the insertion-based algorithm [16] for MUS extraction
is in practice not competitive with existing alternatives [12].

Somewhat surprisingly, this is not the case with Horn formulae when
(an incremental implementation of) the LTUR algorithm is used. A modi-
fied insertion-based MUS extraction algorithm that exploits LTUR is shown
in Algorithm 3. LTUR prop propagates the consequences of adding some new
set of clauses, given some existing incremental context. LTUR undo unpropagates
the consequences of adding some set of clauses (in order), given some existing

332 M.F. Arif et al.

incremental context. The organization of the algorithm mimics the standard
insertion-based MUS extraction algorithm [16], but the use of the incremental
LTUR yields run time complexity that improves over other approaches. Consider
the operation of the standard insertion-based algorithm [16], in which clauses
are iteratively added to the working formula. When the formula becomes unsat-
isfiable, a transition clause [12] has been identified, which is then added to the
MUS being constructed. The well-known query complexity of the insertion-based
algorithm is O(m × k) where m is the number of clauses and k is the size of
a largest MUS. Now consider that the incremental LTUR algorithm is used.
To find the first transition clause, the amortized run time is O(||F||). Clearly,
this holds true for any transition clause, and so the run time of MUS extrac-
tion with the LTUR algorithm becomes O(|M| × ||F||), where M ⊆ I is a
largest MUS. Algorithm 3 highlights the main differences with respect to a stan-
dard insertion-based MUS extraction algorithm. In contrast, observe that for a
deletion-based algorithm the run time complexity will be O(|I|×||F||). In situa-
tions where the sizes of MUSes are much smaller than the number of groups in I,
this difference can be significant. As a result, when extracting MUSes from Horn
formulae, and when using a polynomial time incremental decision procedure, an
insertion-based algorithm should be used instead of other more commonly used
alternatives.

5 Comparison with Existing Alternatives

This section compares HgMUS with the group MUS enumerators used in
EL+SAT [50,51], EL2MCS [1] and SATPin [33]. An experimental comparison
with these and other methods for axiom pinpointing for the EL family of DLs is
presented in Section 6.

5.1 EL+SAT

The best known SAT-based approach for axiom pinpointing is EL+SAT [50,
51,56]. EL+SAT is composed of two main phases. The first phase compiles
the axiom pinpointing problem to a Horn formula. The second phase enumer-
ates the so-called MinAs, and corresponds to group-MUS enumeration for this
Horn formula [1]. Although existing references emphasize the enumeration of
MinAs (MUSes) using an AllSAT approach (itself inspired by an AllSMT app-
roach [27]), the connection with MUS enumeration is immediate [1]. More impor-
tantly, EL+SAT shares a number of similarities with implicit minimal hitting set
dualization, but also crucial differences, which we now analyze.

Similar to eMUS, EL+SAT selects subformulae of an unsatisfiable Horn for-
mula. This is achieved with a SAT solver that always assigns variables value 1
when branching [51]. This corresponds to solving SAT with preferences [20,47],
and so it corresponds to computing a maximal model, inasmuch the same way
as eMUS operates.

In EL+SAT, the approach for deciding the satisfiability of Horn subformu-
lae is based on running the unit propagation engine of a CDCL SAT solver.
As explained earlier, this can be inefficient when compared with the dedi-
cated LTUR algorithm for Horn formulae [38]. Moreover, in EL+SAT, MUSes

Efficient Group-MUS Enumeration of Horn Formulae 333

are extracted with what can be viewed as a deletion-based algorithm [11,12].
Although more efficient alternatives are suggested, none is as asymptotically as
efficient as the dedicated algorithm proposed in Section 4.5.

Finally, the most important drawback is the blocking of sets of clauses that
do not contain an MUS/MinA. In our setting of implicit minimal hitting set
dualization, this represents one MCS. The approach used in EL+SAT consists
of creating a blocking clause solely based on the decision variables (which are
always assigned value 1) [51,56]2. This means that MUSes (or MinAs) and
MCSes/MSSes are blocked the same way. Thus, the learned clauses, although
blocking one MCS (and corresponding MSS), do not block supersets of MCSes
(and the corresponding subsets of the MSSes). This can result in exponentially
more iterations than necessary, and explains in part the poor performance of
EL+SAT in practice. It should be further observed that this drawback becomes
easier to spot once the problem is described as MUS enumeration by implicit
minimal hitting set dualization.

5.2 EL2MCS

EL2MCS [1] implements explicit minimal hitting set dualization. In a first phase
the MCS enumerator CAMUS2 [34] is used (the original CAMUS cannot be
used because the formula has groups). This is achieved by iterated MaxSAT
enumeration. In a second phase the MUS enumerator CAMUS [30] is used. The
differences to HgMUS are clear, in that EL2MCS uses explicit minimal hitting
set dualization and HgMUS uses implicit minimal hitting set dualization. Thus,
there are (possibly many) instances for which EL2MCS will be unable to compute
MUSes, because it will be unable to enumerate all MCSes, and this will not be
the case with HgMUS. Another potential drawback of EL2MCS is that it uses a
MaxSAT solver for MCS enumeration, although there are better alternatives [34].
Nevertheless, EL2MCS outperforms other existing approaches [5,31,33,50,51].
As shown later, the HgMUS approach proposed in this paper is the only one
that consistently outperforms EL2MCS.

5.3 SATPin

SATPin [33] represents a recent SAT-based alternative for axiom pinpointing for
the EL family of DLs, that focuses on optimizing the low-level implementation
details of the CDCL SAT solver, including the use of incremental SAT solving.
As indicated above, HgMUS opts to revisit instead the LTUR [38] algorithm
from the late 80s, since it is guaranteed to run in linear time for Horn formulae,
and can be implemented with small overhead. The SATPin approach is presented
in terms of iteratively computing implicants. Some aspects of the organization
of SATPin can be related with those of EL+SAT, namely the procedure for
extracting MUSes/MinAs. Although the actual enumeration of candidate sets
is not detailed in [33], the description of SATPin suggests the use of model
enumeration with some essential pruning techniques.

2 The clause learning mechanism used in EL+SAT is detailed in [51], page 17, first
paragraph.

334 M.F. Arif et al.

6 Experimental Results

This section evaluates group-MUS enumerators for Horn formulae obtained from
axiom pinpointing problems for the EL family of DLs, particularly applied to
medical ontologies. A set of standard benchmarks is considered. These have been
used in earlier work, e.g. [1,5,31,33,50].

Since all experiments consist of converting axiom pinpointing problems into
group-MUS enumeration problems, the tool that uses HgMUS3 as its back-end
is named EL2MUS. Thus, in this section, the results for EL2MUS illustrate the
performance of the group-MUS enumerator described in this paper.

6.1 Experimental Setup

Each considered instance represents the problem of explaining a particular sub-
sumption relation (query) entailed in a medical ontology. Four medical ontolo-
gies4 are considered: GALEN [45], GENE [2], NCI [52] and SNOMED CT [55].
For GALEN, we consider two variants: FULL-GALEN and NOT-GALEN. The
most important ontology is SNOMED CT and, due to its huge size, it also pro-
duces the hardest axiom pinpointing instances. For each ontology (including the
GALEN variants) 100 queries are considered; 50 random (expected to be eas-
ier) and 50 sorted (expected to have a large number of minimal explanations)
queries. So, there are 500 queries in total.

Given an ontology, the encoding proposed in [50,51] produces a Horn formula
that represents the reasoning steps taken in the deduction of all the subsump-
tion relations entailed by the ontology. In this formula, every variable represents
a subsumption relation between two concepts. As a result, the encoding also
produces a set of variables corresponding to the original axioms of the ontol-
ogy, which may be responsible for any subsumption relation. Explaining a given
subsumption relation (query) can be then transformed into a group-MUS enu-
meration problem where the original Horn formula and a unit clause with the
negated query forms group-0 and each original axiom constitutes a group con-
taining only a unit clause. Noticeably, any general Horn group-MUS problem
can be converted to this particular format.

Two different experiments were considered by applying two different simplifi-
cation techniques to the problem instances, both of which were proposed in [51].
The first one uses the Cone-Of-Influence (COI) reduction. These are reduced
instances in both the size of the Horn formula and the number of axioms, but
are still quite large. Similar techniques are exploited in related work [5,31,33].
The second one considers the more effective reduction technique (which we refer
to as x2), consisting in applying the COI technique, re-encoding the Horn for-
mula into a reduced ontology, and encoding this ontology again into a Horn
formula. This results in small Horn formulae, which will be useful to evaluate
the algorithms when there are a large number of MUSes/MCSes.

3 HgMUS is available at http://logos.ucd.ie/web/doku.php?id=hgmus.
4 GENE, GALEN and NCI ontologies are freely available at http://lat.inf.tu-dresden.

de/∼meng/toyont.html. The SNOMED CT ontology was requested from IHTSDO
under a nondisclosure license agreement.

http://logos.ucd.ie/web/doku.php?id=hgmus
http://lat.inf.tu-dresden.de/~meng/toyont.html
http://lat.inf.tu-dresden.de/~meng/toyont.html

Efficient Group-MUS Enumeration of Horn Formulae 335

0 100 200 300 400 500
instances

0

500

1000

1500

2000

2500

3000

3500
C
PU

tim
e
(s
)

EL2MUS

EL2MCS

SATPin

EL+SAT

(a) Full range [0, 500]

440 450 460 470 480
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e
(s
)

EL2MUS

EL2MCS

SATPin

EL+SAT

(b) Zoomed in the range [435-485]

Fig. 1. Cactus plots comparing EL+SAT, SATPin, EL2MCS and EL2MUS on the COI
instances

The experiments compare EL2MUS to different algorithms, namely EL+SAT
[50,51], CEL [5], Just [31], EL2MCS [1] and SATPin [33]. EL+SAT [51] has
been shown to outperform CEL [5], whereas SATPin [33] has been shown to
outperform the MUS enumerator MARCO [29].

The comparison with CEL and Just imposes a number of constraints. First,
CEL only computes 10 MinAs, so all comparisons with CEL only consider report-
ing the first 10 MinAs/MUSes. Also, CEL uses a simplification technique similar
to COI, so CEL is considered in the first experiments. Second, Just operates on
selected subsets of EL+, i.e. the description logic used in most medical ontologies.
As a result, all comparisons with Just consider solely the problem instances for
which Just can compute correct results. Just accepts the simplified x2 ontolo-
gies, so it is considered in the second experiments. The comparison with these
tools is presented at the end of the section.

EL2MUS interfaces the SAT solver Minisat 2.2 [18] for computing maximal
models. All the experiments were performed on a Linux cluster (2 GHz) and the
algorithms were given a time limit of 3600s and a memory limit of 4 GB5.

6.2 COI Instances

Figure 1 summarizes the results for EL+SAT, EL2MCS, SATPin and EL2MUS.
As can be observed, EL2MCS has a slight performance advantage over SATPin,
and EL2MUS terminates for more instances than any of the other tools. Figure 2
shows scatter plots comparing the different tools. As can be concluded, and with
a few outliers, the performance of EL2MUS exceeds the performance of any of the
other tools by at least one order of magnitude (and often by more). Figure 2d
5 Only a sample of the results can be presented in this section due to space restrictions.

Additional results are available at http://logos.ucd.ie/web/doku.php?id=hgmus.

http://logos.ucd.ie/web/doku.php?id=hgmus

336 M.F. Arif et al.

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

EL
+
SA
T

3600 sec. timeout

36
00

se
c.
tim

eo
ut

(a) Comparison with EL+SAT

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

SA
T
Pi
n

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(b) Comparison with SATPin

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L
2M

C
S

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(c) Comparison with EL2MCS

% wins EL+SAT SATPin EL2MCS

EL+SAT – 20.29% 17.66%

SATPin 79.71% – 19.13%

EL2MCS 82.34% 80.41% –

EL2MUS 100.0% 100.0% 100.0%

> 101x 98.09% 96.78% 98.41%

> 102x 97.55% 72.07% 58.07%

> 103x 96.46% 47.75% 14.09%

> 104x 74.05% 06.49% 00.00%

> 105x 31.10% 00.45% 00.00%

(d) Summary table

Fig. 2. Scatter plots for COI instances

summarizes the results in the scatter plots, where the percentages shown are
computed for problem instances for which at least one of the tools takes more
than 0.001s. As can be observed, EL2MUS outperforms any of the other tools
in all of the problem instances and, for many cases, with two or more orders of
magnitude improvement.

6.3 x2 Instances

The x2 instances are significantly simpler than the COI instances. Thus, whereas
the COI instances can serve to assess the scalability of each approach, the
x2 instances highlight the expected performance in representative settings.
Figure 3a summarizes the performance of the tools EL+SAT, SATPin, EL2MCS
and EL2MUS. Due to its poor performance, EL+SAT does not show in the plot
(it terminates on 317 instances). Moreover, and as before in terms of terminated
instances, EL2MUS exhibits an observable performance edge.

Efficient Group-MUS Enumeration of Horn Formulae 337

460 465 470 475 480 485
instances

0

500

1000

1500

2000

2500

3000

3500
C
PU

tim
e
(s
)

EL2MUS

EL2MCS

SATPin

EL+SAT

(a) Solved instances

0 2000 4000 6000 8000 10000 12000
MUSes

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e
(s
)

EL2MUS

SATPin

EL+SAT

(b) Reported MUSes

Fig. 3. Cactus plots comparing EL+SAT, SATPin, EL2MCS and EL2MUS on the x2
instances

A pairwise comparison between the different tools is summarized in Figure 4.
Although not as impressive as for the COI instances, EL2MUS still consistently
outperforms all other tools. Figure 4d summarizes the results, where as before
the percentages shown are computed for problem instances for which at least
one of the tools takes more than 0.001s. Observe that, for these easier instances,
SATPin becomes competitive with EL2MUS. Nevertheless, for instances taking
more than 0.1s, EL2MUS outperforms SATPin on 100% of the instances. Thus,
the 67.69% shown in the table result from instances for which both SATPin
and EL2MUS take at most 0.04s. The summary table also lists the number of
computed MUSes for the 19 instances for which EL2MUS does not terminate
(all of the other tools also do not terminate for these 19 instances). EL2MUS
computes 9948 MUSes in total. As can be observed from the table, the other
tools lag behind, and compute significantly fewer MUSes. Also, as noted earlier
in the paper, the main issue with EL2MCS is demonstrated with these results; for
these 19 instances, EL2MCS is unable to compute any MUSes. The comparison
with the other tools, EL+SAT and SATPin, reveals that EL2MUS computes
respectively in excess of a factor of 10 and of 5 more MUSes.

EL2MUS not only terminates on more instances than any other approach and
computes more MUSes for the unsolved instances; it also reports the sequences of
MUSes much faster. Figure 3b shows, for each computed MUS over the whole set
of instances, the time each MUS was reported. This figure compares EL+SAT,
SATPin and EL2MUS, as these are the only methods able to report MUSes
from the beginning. The results confirm that EL2MUS is able to find many
more MUSes in less time than the alternatives.

These experimental results suggest that, not only is EL2MUS the best per-
forming axiom pinpointing tool, on both the COI and x2 problem instances, but

338 M.F. Arif et al.

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L
+
SA

T

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(a) Comparison with EL+SAT

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

SA
T
Pi
n

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(b) Comparison with SATPin

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

E
L
2M

C
S

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(c) Comparison with EL2MCS

% wins EL+SAT SATPin EL2MCS

EL+SAT – 00.00% 00.00%

SATPin 100.0% – 91.55%

EL2MCS 100.0% 08.45% –

EL2MUS 100.0% 67.69% 99.32%

EL+SAT SATPin EL2MCS

MUSes 788 1484 0

Δ MUSes 9160 8864 9948

(d) Summary table

Fig. 4. Scatter plots for x2 instances

it is also the one that is expected to scale better for more challenging problem
instances, given the results on the COI instances.

6.4 Assessment of Non SAT-Based Axiom Pinpointing Tools

Figure 5 shows scatter plots comparing EL2MUS with CEL [5] and Just [31],
respectively for the COI and x2 instances6. As indicated earlier, CEL only com-
putes 10 MinAs, and so the run times shown are for computing the first 10
MinA/MUSes. As can be observed, the performance edge of EL2MUS is clear,
with the performance gap exceeding 1 order of magnitude almost without excep-
tion. Moreover, Just [31] is a recent state of the art axiom pinpointing tool for
the less expressive ELH DL. Thus, not all subsumption relations can be repre-
sented and analyzed. The results shown are for the subsumption relations for

6 Due to lack of space the other scatter plots are not shown, but the conclusions are
the same.

Efficient Group-MUS Enumeration of Horn Formulae 339

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104
C
E
L

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(a) EL2MUS vs. CEL on the COI instances

10−2 10−1 100 101 102 103 104

EL2MUS

10−2

10−1

100

101

102

103

104

JU
ST

3600 sec. timeout

36
00

se
c.

tim
eo
ut

(b) EL2MUS vs. Just on the x2 instances

Fig. 5. Comparison of EL2MUS with CEL and with Just

which Just gives the correct results. In total, 382 instances could be considered
and are shown in the plot. As before, the performance edge of EL2MUS is clear,
with the performance gap exceeding 1 order of magnitude without exception.
In this case, since the x2 instances are in general much simpler, the performance
gap is even more significant.

7 Conclusions and Future Work

Enumeration of group MUS for Horn formulae finds important applications,
including axiom pinpointing for the EL family of DLs. Since the EL family of
DLs is widely used for representing medical ontologies, namely with EL+, enu-
meration of group MUSes for Horn formulae represents a promising and strategic
application of SAT technology. This includes, among others, SAT solvers, MCS
extractors and enumerators, and MUS extractors and enumerators. This paper
develops a highly optimized group MUS enumerator for Horn formulae, which
is shown to extensively outperform any other existing approach. Performance
gains are almost without exception at least one order of magnitude, and most
often significantly more than that. More importantly, the experimental results
demonstrate that SAT-based approaches are by far the most effective approaches
for axiom pinpointing for the EL family of DLs. When compared with other non
SAT-based approaches, the performance gains are also conclusive.

Future work will exploit integration of additional recent work on SAT-based
problem solving, e.g. in MCS enumeration and MUS enumeration, to further
improve performance of axiom pinpointing.

Acknowledgments. We thank the authors of EL+SAT, R. Sebastiani and M. Vescovi,
for authorizing the use of the most recent, yet unpublished, version of their work [51].
We thank the authors of SATPin [33], N. Manthey and R. Peñaloza, for bringing
SATPin to our attention, and for allowing us to use their tool. We thank A. Biere for

340 M.F. Arif et al.

pointing out reference [19], on the complexity of implementing unit propagation when
using watched literals. This work is partially supported by SFI PI grant BEACON
(09/IN.1/I2618), by FCT grant POLARIS (PTDC/EIA-CCO/123051/2010), and by
national funds through FCT with reference UID/CEC/50021/2013.

References

1. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient axiom pinpointing with
EL2MCS. In: KI (2015)

2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for
the unification of biology. Nature genetics 25(1), 25–29 (2000)

3. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

4. Baader, F., Horrocks, I., Sattler, U.; Description logics. In: van Harmelen, V.L.F.,
Porter, B. (eds.), Handbook of Knowledge Representation, Foundations of Artificial
Intelligence, chapter 3, pp. 135–179. Elsevier (2008)

5. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL — a polynomial-time reasoner
for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

6. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput.
20(1), 5–34 (2010)

7. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: KI, pp. 52–67 (2007)

8. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED (2008)

9. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a
simple way of managing optional clauses. In: AAAI, pp. 835–841 (2014)

10. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

11. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving
over-determined constraint satisfaction problems. In: IJCAI, pp. 276–281 (1993)

12. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

13. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

14. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

15. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158
(1971)

16. de Siqueira, N.J.L., Puget, J.-F.: Explanation-based generalisation of failures. In:
ECAI, pp. 339–344 (1988)

17. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. 1(3), 267–284 (1984)

18. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

19. Gent, I.: Optimal implementation of watched literals and more general techniques.
Journal of Artificial Intelligence Research 48, 231–252 (2013)

20. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: ECAI,
pp. 377–381 (2006)

Efficient Group-MUS Enumeration of Horn Formulae 341

21. Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: AAAI, pp. 2666–2673 (2014)

22. Heras, F., Morgado, A., Marques-Silva, J.: MaxSAT-based encodings for group
MaxSAT. AI Commun. 28(2), 195–214 (2015)

23. Itai, A., Makowsky, J.A.: Unification as a complexity measure for logic program-
ming. J. Log. Program. 4(2), 105–117 (1987)

24. Junker, U.: QuickXplain: preferred explanations and relaxations for over-
constrained problems. In: AAAI, pp. 167–172 (2004)

25. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 267–280. Springer, Heidelberg (2007)

26. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable con-
cepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 170–184. Springer, Heidelberg (2006)

27. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predi-
cate abstraction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 424–437. Springer, Heidelberg (2006)

28. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes
quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874,
pp. 160–175. Springer, Heidelberg (2013)

29. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible
MUS enumeration. Constraints (2015). http://link.springer.com/article/10.1007/
s10601-015-9183-0

30. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

31. Ludwig, M.: Just: a tool for computing justifications w.r.t. ELH ontologies. In:
ORE (2014)

32. Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic EL. In:
Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 107–121. Springer,
Heidelberg (2014)

33. Manthey, N., Peñaloza, R.: Exploiting SAT technology for axiom pinpointing. Tech-
nical Report LTCS 15–05, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, April 2015. https://ddll.inf.
tu-dresden.de/web/Techreport3010

34. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

35. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in
boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 592–607. Springer, Heidelberg (2013)

36. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
IJCAI, pp. 1973–1979 (2015)

37. Meyer, T.A., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable termi-
nologies for the description logic EL+. In: AAAI, pp. 269–274 (2006)

38. Minoux, M.: LTUR: A simplified linear-time unit resolution algorithm for Horn
formulae and computer implementation. Inf. Process. Lett. 29(1), 1–12 (1988)

39. Moodley, K., Meyer, T., Varzinczak, I.J.: Root justifications for ontology repair. In:
Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 275–280. Springer,
Heidelberg (2011)

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10601-015-9183-0
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10601-015-9183-0
https://ddll.inf.tu-dresden.de/web/Techreport3010
https://ddll.inf.tu-dresden.de/web/Techreport3010

342 M.F. Arif et al.

40. Nguyen, H.H., Alechina, N., Logan, B.: Axiom pinpointing using an assumption-
based truth maintenance system. In: DL (2012)

41. O’Sullivan, B., Papadopoulos, A., Faltings, B., Pu, P.: Representative explanations
for over-constrained problems. In: AAAI, pp. 323–328 (2007)

42. Parsia, B., Sirin, E., Kalyanpur, A.; Debugging OWL ontologies. In: WWW,
pp. 633–640 (2005)

43. Peñaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the EL
family of description logics. In: KR (2010)

44. Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: AAAI, pp. 818–825
(2013)

45. Rector, A.L., Horrocks, I.R.: Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In: Workshop
on Ontological Engineering, pp. 414–418 (1997)

46. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

47. Rosa, E.D., Giunchiglia, E.: Combining approaches for solving satisfiability prob-
lems with qualitative preferences. AI Commun. 26(4), 395–408 (2013)

48. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI, pp. 355–362 (2003)

49. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reasoning 39(3), 317–349 (2007)

50. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE-22.
LNCS, vol. 5663, pp. 84–99. Springer, Heidelberg (2009)

51. Sebastiani, R., Vescovi, M.: Axiom pinpointing in large EL+ ontologies via SAT
and SMT techniques. Technical Report DISI-15-010, DISI, University of Trento,
Italy, April 2015. Under Journal Submission. http://disi.unitn.it/rseba/elsat/elsat
techrep.pdf

52. Sioutos, N., de Coronado, S., Haber, M.W., Hartel, F.W., Shaiu, W., Wright, L.W.:
NCI thesaurus: A semantic model integrating cancer-related clinical and molecular
information. Journal of Biomedical Informatics 40(1), 30–43 (2007)

53. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

54. Slaney, J.: Set-theoretic duality: a fundamental feature of combinatorial optimisa-
tion. In: ECAI, pp. 843–848 (2014)

55. Spackman, K.A., Campbell, K.E., Côté, R.A.: SNOMED RT: a reference termi-
nology for health care. In: AMIA (1997)

56. Vescovi, M.: Exploiting SAT and SMT Techniques for Automated Reasoning and
Ontology Manipulation in Description Logics. Ph.D. thesis, University of Trento
(2011)

http://disi.unitn.it/ rseba/elsat/elsat_techrep.pdf
http://disi.unitn.it/ rseba/elsat/elsat_techrep.pdf

	Efficient MUS Enumeration of Horn Formulae with Applications to Axiom Pinpointing
	1 Introduction
	2 Preliminaries
	3 MUS Enumeration in Horn Formulae
	4 Algorithm for Group-MUS Enumeration in Horn Formulae
	4.1 Organization
	4.2 Computing Maximal Models
	4.3 Adding Blocking Clauses
	4.4 Deciding Satisfiability of Horn Formulae
	4.5 MUS Extraction in Horn Formulae

	5 Comparison with Existing Alternatives
	5.1 EL+SAT
	5.2 EL2MCS
	5.3 SATPin

	6 Experimental Results
	6.1 Experimental Setup
	6.2 COI Instances
	6.3 x2 Instances
	6.4 Assessment of Non SAT-Based Axiom Pinpointing Tools

	7 Conclusions and Future Work
	References

