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Preface

This volume contains the papers presented at the 18th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2015), held during September
24–27, 2015 in Austin, Texas, USA. SAT 2015 was colocated with Formal Methods in
Computer-Aided Design (FMCAD 2015) and was hosted by the University of Texas at
Austin.

The International Conference on Theory and Applications of Satisfiability Testing
(SAT) is the primary annual meeting for researchers focusing on the theory and
applications of the propositional satisfiability problem, broadly construed: Besides
plain propositional satisfiability, it includes Boolean optimization (including MaxSAT
and Pseudo-Boolean (PB), constraints), Quantified Boolean Formulas (QBF), Satisfi-
ability Modulo Theories (SMT), and Constraint Programming (CP) for problems with
clear connections to propositional reasoning. Many hard combinatorial problems can
be tackled using SAT-based techniques, including problems that arise in formal veri-
fication, artificial intelligence, operations research, biology, cryptology, data mining,
machine learning, mathematics, etc. Indeed, the theoretical and practical advances in
SAT research over the past 20 years have contributed to making SAT technology an
indispensable tool in various domains.

SAT 2015 welcomed scientific contributions addressing different aspects of SAT,
including (but not restricted to) theoretical advances (including exact algorithms, proof
complexity, and other complexity issues), practical search algorithms, knowledge
compilation, implementation-level details of SAT solvers and SAT-based systems,
problem encodings and reformulations, applications, as well as case studies and reports
on insightful findings based on rigorous experimentation.

A total of 70 papers were submitted to SAT 2015, distributed into 44 regular papers
(up to 15 pages excluding references), 17 short papers (up to eight pages excluding
references), and nine tool papers (up to six pages excluding references). In contrast to
recent SAT conferences, no paper submission was found to be out of scope for the
conference. All 70 submissions were assigned for review to at least four Program
Committee members and their selected external reviewers. Continuing the procedure
initiated in SAT 2012, the review process included an author-response period, during
which the authors of submitted papers were given the opportunity to respond to the
initial reviews for their submissions. For reaching final decisions, a Program Com-
mittee discussion period followed the author-response period. This year, external
reviewers supporting the Program Committee were also invited to participate directly in
the discussions for the papers they reviewed. In the end, the Program Committee
decided to accept 21 regular papers, two short papers, and seven tool papers. Two short
papers were downgraded to tool papers.

In addition to presentations on the accepted papers, the scientific program of SAT
2015 included three invited talks:



– Dimitris Achlioptas (University of California Santa Cruz, USA)
Random Formulas are Irrelevant, Right?

– Anna Slobodova (Centaur Technology, USA)
Pragmatic Approach to Formal Verification

– Aaron Tomb (Galois, Inc., USA)
Applying Satisfiability to the Analysis of Cryptography

SAT 2015 hosted various affiliated events, including two workshops
on September 23:

– Sixth International Workshop on Pragmatics of SAT (PoS 2015)
Organizers: Daniel Le Berre and Allen Van Gelder;

– Third International Workshop on Quantified Boolean Formulas (QBF 2015)
Organizers: Florian Lonsing and Martina Seidl;

and three competitions and system evaluations:

– SAT Race 2015
Organizers: Tomas Balyo, Carsten Sinz, and Markus Iser;

– Max-SAT Evaluation 2015
Organizers: Josep Argelich, Chu-Min Li, Felip Manya, and Jordi Planes;

– Pseudo-Boolean Evaluation 2015
Organizers: Norbert Manthey and Peter Steinke

We would like to thank everyone who contributed to making SAT 2015 a success.
First and foremost we would like to thank the members of the Program Committee and
the additional external reviewers for their careful and thorough work, without which it
would not have been possible for us to put together such an outstanding conference
program. We also wish to thank all the authors who submitted their work for our
consideration. We thank the SAT Association chair Armin Biere, vice chair John
Franco, and treasurer Hans Kleine Büning for their help and advice in organizational
matters. We wish to thank the workshop chair Albert Oliveras. The EasyChair con-
ference system provided invaluable assistance in coordinating the submission and
review process, as well as in the assembly of these proceedings. We also thank the local
organization team for their efforts with practical aspects of local organization.

Finally, we gratefully thank the University of Texas at Austin, the SAT Association,
the Artificial Intelligence journal, CyberPoint, Galois, Inc., Intel, and Microsoft
Research for financial and organizational support for SAT 2015.

July 2015 Marijn Heule
Sean Weaver
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Pragmatic Approach to Formal Verification

Anna Slobodova

Centaur Technology, Taipet, Taiwan
anna@centtech.com

After more than two decades of hard work by researchers in academia and industry,
formal methods have been accepted as a viable part of the hardware design and vali-
dation process. We now have a better understanding of what is a cost-effective use of
formal methods, and companies even set aside some resources for the further devel-
opment of formal tools. Spreading formal methods into industrial scale software ver-
ification broadened the user population and increased motivation for development of
such tools.

Centaur Technology is one of the companies that adopted formal verification
(FV) as a part of their production flow. Our company designs Intel compatible x86-64
microprocessors. It does it with a relatively small team. To assure the quality of the
design, a lot of effort is spent in the process of validation. Since new additions to
x86-64 architecture widened the data on which instructions are performed, classic
simulation provides even less coverage with respect to all possible inputs to the system
than a few years ago. The FV team at Centaur Technology was created as a reaction to
this trend as well as the fact that the capacity of formal tools has reached a level where
they can be successful even on industrial scale designs. There are also more publicly
available off-shelf formal point tools (SAT, SMT, Model-checkers, etc.) that can be
incorporated into more complex validation framework. A pilot project [1] that dis-
covered a corner case bug in floating-point arithmetic was convincing enough to justify
investing in a small FV team.

Our verification framework is built on top of the ACL2 theorem prover [2]. There
are many decision procedures built in the logic of ACL2 and proved correct within this
logic. For example, packages exist, defined inside the logic, for Binary Decision
Diagrams (BDD) [3] and for And-Inverter Graph (AIG) manipulation [4]. It has a
symbolic simulator called GL [5] that can automate the proof of theorems over finite
domains. GL can be combined with word-level symbolic simulation of a hardware
model to relate that model to its specification.

While we strive for rigorous analysis, our verification approach is very pragmatic.
We connected some “trusted” tools to ACL2, for instance various Satisfiability solvers
(e.g., Glucose, Penelope, Lingeling, Riss3G), or the ABC model/equivalence checking
tool [6]. The results from these tools are tagged as “trusted” (unverified) by ACL2.
However, for tools that provide a proof trace, in some cases, we can verify the cor-
rectness of those results within ACL2. We prefer this approach to blindly trusting the
tools. However, when we exhaust approaches that have verifiable results, we are
willing to use unverified methods as well.

Our team has worked on a variety of design and verification problems [7, 8]
including microcode verification [9] and transistor-level validation. Our main focus



remains the verification of Register-transfer-level (RTL) designs written in Verilog or
System Verilog. These designs are translated to a formal model with well defined
semantics in ACL2 which allows for a rigorous analysis. The formal model is repre-
sented using our specialized word-level expression language called SVEX. An SVEX
model can be symbolically executed and compared to the symbolically evaluated
specification using GL. This process includes a word-level rewriting before it is
bit-blasted into AIG (and later into Conjunctive Normal Form – CNF), or BDD rep-
resentation. A SAT solver or BDD package is used to check equivalences. It is
worthwhile to mention that the translation steps from SVEX to AIGs and from AIGs to
CNFs or BDDs are proved correct – in fact, the whole process creates an ACL2
theorem, where the only unverified portion is typically due to the use of a SAT solver.
Such theorems usually prove properties of microoperations as executed by the RTL
design of the Centaur microprocessor. This is similar to the Symbolic Trajectory
Evaluation based approach taken by the Intel FV team [10]. However, the main dif-
ference is that our approach allows for the richer reasoning provided by ACL2
including proofs about specifications, composition of GL theorems, etc.

The specifications of the microoperations used for the verification of RTL can be
used to define operational semantics of the machine that executes microcode. This
allows for a seamless transition between two different verification domains – hardware
and microcode. We also use these microoperation specifications as the basis of a formal
executable model of a subset of the x86 ISA that can be validated by running against
Intel, AMD or Centaur’s existing microprocessors, running a few hundred thousand
tests per second. This increases our confidence in our specifications and clarifies
inconsistencies in the ISA manual [11]. Overall, our framework offers a more holistic
approach to microprocesor validation.

In this talk we give you a top-down overview of our verification methodology. We
point out problems that can be solved using automatic methods, and describe the
aspects of our work that cannot be easily automated. We hope for feedback that may
help us to be more efficient in use of your tools (SAT solvers in particular). We also
invite anybody who would like to collaborate on improving the AIG to CNF encoding
or SVEX to AIG encoding.
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Applying Satisfiability to the Analysis
of Cryptography

Aaron Tomb

Galois, Inc., Portland, USA

Cryptographic algorithms and satisfiability (SAT) solvers are intrinsically
well-matched. Most cryptographic algorithms are presented in terms of a bounded
number of operations on finite collections of bits: either to shuffle bits around in
unpredictable ways (as typical in block ciphers or hash functions), or to perform
algebraic operations on modular integers represented as vectors of bits (as in public key
cryptography). This property allows many cryptographic algorithms, as well as state-
ments about properties of those algorithms, to be represented as potentially large but
purely propositional expressions.

Once cryptographic algorithms are represented as boolean terms, analyzing them
with SAT solvers is straightforward. Any query that can be described using purely
existential or purely universal quantifiers over the free variables in these terms can, in
theory, be decided. Such queries include checking functions for injectivity (important
for key expansion [5] or random number generation [1]); finding collisions in hash
functions [6]; comparing two alternative implementations of an algorithm for equality
[2]; simplifying differential cryptanalysis [4]; and simplifying side channel attacks [7],
among others.

Many of these queries, though theoretically decidable, are not solvable in practice.
Finding hash collisions with modern secure hash functions, for instance, is intractable.
However, even in these cases, SAT solvers can help measure the relative security of
different algorithms. Reduced-round versions of widely-used hashing or encryption
algorithms are frequently analyzable by modern solvers (discovering secret keys or
hash collisions), and the relative difficulty of analysis between alternative algorithms
can be a useful comparison factor [3].

In addition to pure satisfiability queries, some other interesting problems can be
stated with alternating quantifiers around purely propositional bodies. Such problems
include synthesis of cryptographic implementation code from a specification. While
these problems are less thoroughly researched, they are within the theoretical domain of
emerging tools, such as quantified boolean formula (QBF) solvers and the exists-forall
extensions in some satisfiability modulo theories (SMT) solvers.

This talk will walk through some of the properties of cryptographic code that are
within the reach of existing solvers, as well as other properties that are currently
infeasible but that may be solvable with future tools. It will also describe some specific
tools that can be useful for applying SAT solvers to the analysis of cryptographic
algorithms.
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Random Formulas are Irrelevant, Right?

Dimitris Achlioptas

Department of Computer Science
University of California Santa Cruz, Santa Cruz, USA

Let Fkðn;mÞ denote a Boolean formula in Conjunctive Normal Form (CNF) with
m clauses over n variables, whose clauses are chosen uniformly, independently and

without replacement among all 2k
n
k

� �
non-trivial clauses of length k, i.e., clauses with

k distinct, non-complementary literals. Say that a sequence of random events En occurs
with high probability (w.h.p.) if limn!1 Pr½En� ¼ 1.

Franco and Paull pioneered the analysis of random k-CNF formulas in [9], where
they noted that Fkðn;mÞ is w.h.p. unsatisfiable if m ¼ rn and r� 2k ln 2. Chao and
Franco [4] complemented this by proving that if r\2k=k, then UNIT CLAUSE PROPA-
GATION (UCP) alone finds a satisfying truth assignment w.h.p., thus establishing m ¼
HðnÞ as the most interesting range for random k-SAT.

Chvátal and Szemerédi [5] proved that random k-CNF formulas w.h.p. have
exponential resolution complexity, implying that if F is a random k-CNF formula with
r� 2k ln 2, then w.h.p. every DPLL-type algorithm needs exponential time to prove its
unsatisfiability. The works of Mitchell, Selman, and Levesque [12] and of Kirkpatrick
and Selman [10] gave birth to the Satisfiability Threshold Conjecture: for every k� 3,
the probability of satisfiability exhibits a 0/1 law around a critical density rk. The
conjecture was made particularly attractive by the apparent maximization of algorith-
mic hardness around rk , attracting attention in computer science, mathematics, and,
most fruitfully, statistical physics.

Non-rigorous but mathematically sophisticated methods of statistical physics pre-
dicted that while for low densities the set of satisfying assignments forms a single giant
cluster, at the critical density r�ð2k=kÞ ln k it shatters into exponentially many tiny
clusters, each of which is far apart from all others. Moreover, it was predicted that
every path connecting satisfying assignments in different clusters must pass through
assignments that violate XðnÞ constraints, and that the majority of variables inside each
cluster are frozen, i.e., take the same value in all solutions in the cluster; thus getting
even a single frozen variable wrong requires changing XðmÞ variables and going over a
huge energy barrier to correct the error. This picture suggested an algorithmic barrier
and fit perfectly with the fact that efforts to improve upon the UCP lower bound of 2k=k
by analyzing more sophisticated algorithms only improved the leading constant.

To overcome the algorithmic barrier, Achlioptas and Moore [3] introduced the
second moment to the study of random k-CNF formulas. A long sequence of sub-
sequent refining works culminated very recently in the seminal work of Ding, Sly, and
Sun [8] determining the satisfiability threshold exactly for k� k0, showing that it scales
as 2k ln 2� ð1þ ln 2Þ=2þ okð1Þ, a mere additive constant below the trivial upper



bound 2k ln 2 (unfortunately k0 � 106). While [8] proceeds along a different path than
the original physics calculations, the latter offered indispensable “clues” on how to
appropriately refine the second method. Notably, the second moment method offers no
guidance whatsoever on how to find a satisfying assignment. In [6], by analyzing a
new, but still relatively simple, algorithm Coja-Oghlan matched the shattering
threshold of ð2k=kÞ ln k which remains to date the greatest density for which algorithms
provably find solutions.

Over the course of the last fifteen years, a large fraction of the physics picture has
been established rigorously. Specifically, the shattering threshold was established for
all k� 8 by Achlioptas and Coja-Oghlan [1], while Achlioptas, Coja-Oghlan and
Ricci-Tersenghi [2] proved that for r�ð4=5þ okð1ÞÞ2k ln k the majority of variables
are frozen in every cluster for all k� 9.

In [11], Mézard, Parisi, and Zecchina proposed a new satisfiability algorithm called
Survey Propagation (SP) which performs extremely well of random 3-CNF formulas.
Unfortunately, physics-style calculations of Montanari, Ricci-Tersenghi and Semerjian
[13] showed that a close relative of SP, namely Belief Propagation, fails to overcome
the algorithmic barrier as k is increased. Coja-Oghlan [7] made this a rigorous result, by
an argument that strongly suggests that SP also fails to find satisfying assignments past
the algorithmic barrier as k is increased.
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Abstract. This paper presents a stochastic local search (SLS) solver for
SAT named CCAnr, which is based on the configuration checking strategy
and has good performance on non-random SAT instances. CCAnr switches
between two modes: it flips a variable according to the CCA (configuration
checking with aspiration) heuristic if any; otherwise, it flips a variable
in a random unsatisfied clause (which we refer to as the focused local
search mode). The main novelty of CCAnr lies on the greedy heuristic in
the focused local search mode, which contributes significantly to its good
performance on structured instances. Previous two-mode SLS algorithms
usually utilize diversifying heuristics such as age or randomized strategies
to pick a variable from the unsatisfied clause. Our experiments on combina-
torial and application benchmarks from SAT Competition 2014 show that
CCAnr has better performance than other state-of-the-art SLS solvers
on structured instances, and its performance can be further improved by
using a preprocessor CP3. Our results suggest that a greedy heuristic in
the focused local search mode might be helpful to improve SLS solvers for
solving structured SAT instances.

1 Introduction

The Satisfiability problem (SAT) is a prototypical NP-complete problem of
importance in both theory and applications. Two popular approaches for solving
SAT are conflict driven clause learning (CDCL) and stochastic local search
(SLS). SLS algorithms for SAT perform a local search in the space of truth
assignments by starting with a complete assignment, and then repeatedly flipping
the truth value of a variable until a satisfying assignment has been found or some
limits (usually the time limit) have been reached. The function for choosing the
variable to be flipped is usually denoted as pickVar.

SLS algorithms for SAT mainly fall into two types: focused local search (FLS)
and two-mode SLS. Focused local search (as called in [15,17]) always picks the
flip variable from an unsatisfied clause [13,19]; two-mode SLS [1,5,10,16,18]
c© Springer International Publishing Switzerland 2015
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switches between “global local search” (where the flip variable is chosen from a
candidate set filtered from the set of all variables) and focused local search,
usually depending on whether a local optimum is reached. Also, there is a
significant line of research concerns about weighting techniques [8,14,20,21],
which are usually utilized in two-mode SLS algorithms.

SLS is well known as the most effective approach for solving random
satisfiable instances, and SLS solvers are often evaluated on random k-SAT
benchmarks. For structured instances, SLS solvers have been considered not
effective as complete solvers (particularly CDCL ones) for a long time. Nev-
ertheless, recent progress shows promising results of SLS solvers, particularly
two-mode SLS solvers, on crafted satisfiable instances. Modern two-mode SLS
solvers are competitive and complementary with complete solvers in solving
crafted instances. For example, in the crafted SAT track of SAT Competition
2009, the SLS solver Sattime solved 109 instances while the best CDCL solved 93
instances [11]; in SAT Competition 2013, CCAnr solved 21 crafted SAT instances
that the best complete solver glucose (v2.3) failed to solve, while glucose solved
53 instances that CCAnr failed to solve in the same track (Hard-combinatorial
SAT track).1 Indeed, the top three solvers in the Hard-combinatorial SAT track
of SAT Competition 2014, namely Sparrow2riss [2], CCAnr+glucose [3] and SGseq
[9] are all hybrid solvers combining an SLS solver and a complete solver.

In this paper, we present the CCAnr solver, which is a two-mode SLS solver
designed for solving structured instances. Existing two-mode SLS solvers for SAT,
including state-of-the-art ones such as Sparrow [1], Sattime [11] and CCASat [5],
employ greedy heuristics in the global local search mode with the aim of decreasing
the number of unsatisfied clauses, and employ diversifying heuristics in the focused
local search mode with the aim of better exploring the search space and avoiding
local optima. However, CCAnr employs a greedy heuristic (i.e., picking the one
with the greatest score) in the focused local search mode, which significantly
contributes to its good performance on structured instances. Our experiments
comparing different versions of CCAnr with various heuristics in the focused local
search mode show that, for solving structured instances, it could be helpful to
incorporate greedy heuristics in the focused local search mode.

The good performance of CCAnr as compared to other SLS solvers is also
confirmed by the results in the SAT Competitions 2013 and 2014. In the Hard-
combinatorial SAT track of SAT Competition 2013, CCAnr solves more instances
than other SLS solvers except Sparrow+CP3, which solves only 2 more instances
than CCAnr. In SAT Competition 2014, CCAnr+glucose is ranked second in the
same track, solving only 1 less instance than Sparrow2riss. However, we note
that both Sparrow+CP3 and Sparrow2riss utilize a powerful preprocessor CP3
[12] while CCAnr only performs unit propagation before local search. In this
sense, CCAnr can be considered as the best pure SLS solver in this track. In
this paper, we also combine CCAnr with the preprocessor CP3, and the resulting
solver solves more instances in those benchmarks, yielding further improvement
over other SLS solvers.

1 http://satcompetition.org/edacc/SATCompetition2013/experiment/20/

http://satcompetition.org/edacc/SATCompetition2013/experiment/20/
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2 Solver Description

CCAnr is built on top of the Swcca solver [4], and keeps the main technique there,
namely the configuration checking (CC) strategy with an aspiration mechanism.
In this section, we first introduce the CCA heuristic and the Swcca algorithm,
and then describe the CCAnr algorithm by specifying the difference from Swcca.
CCAnr is open-source and the code is available for download at http://lcs.ios.
ac.cn/∼caisw/SAT.html. Readers interested in the implementation may like to
refer to the codes for more details.

2.1 The CCA Heuristic and Swcca

Originally proposed in [6], the configuration checking (CC) strategy aims at
avoiding cycling (i.e., revisiting the already visited assignments too early) in
local search. CC has proved effective in local search for SAT and has been widely
used in recent SLS solvers. In the context of SAT, the idea of CC is to forbid
flipping a variable if its configuration has not been changed after its last flip,
where the configuration of a variable typically refers to truth values of all its
neighbouring variables [4,5]. The CCA heuristic combines the CC strategy with
an aspiration mechanism, which allows to flip a variable forbidden by CC if it
has a significant score, recalling that a variable’s score is the change on the
number (or the total weight) of satisfied clause produced by its flip.

It is easy to see from the above discussions that, there are two kinds of
variables of importance in the CCA heuristic, which are defined as follows.

– A configuration changed decreasing (CCD) variable is a decreasing variable
(with positive score) whose configuration has been changed (i.e., at least one
of its neighbouring variables has been flipped) since its last flip.

– A significant decreasing (SD) variable is a variable with score(x) > g, where
g is a positive sufficient large integer, and in this work g is set to the averaged
clause weight (over all clauses) w.

A two-mode SLS algorithms based on the CCA heuristic works as follows. In
the global local search mode, it prefers to pick a CCD variable with the greatest
score to flip. If there are no CCD variables, an SD variable with the greatest
score is selected there is one. If there are neither CCD variables nor SD variables,
the algorithm updates the clause weights and switches to the the focused local
search mode, where a variable in a random unsatisfied clause is picked to flip.

Based on the CCA heuristic, we have developed the Swcca algorithm [4],
which has good performance on random 3-SAT instances and crafted instances.
The pickVar function of Swcca is shown in Algorithm 1.

2.2 The CCAnr Algorithm

CCAnr is an improved version of Swcca for structured instances. Starting with a
randomly generated complete assignment, CCAnr iteratively flips a variable until
a satisfying assignment has been found or the given time limit has been reached.
There are two differences between CCAnr and Swcca algorithms.

http://lcs.ios.ac.cn/~caisw/SAT.html
http://lcs.ios.ac.cn/~caisw/SAT.html
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Algorithm 1. pickVar function in Swcca
if CCD variables exist then return a CCD variable with the greatest score,1

breaking ties in favor of the oldest one;
if SD variables exist then return an SD variable with the greatest score,2

breaking ties in favor of the oldest one;
increases clause weights of all unsatisfied clauses by one;3

if w > γ then for each clause ci, w(ci) := �ρ · w(ci)� + �(1 − ρ)w�;4

pick a random unsatisfied clause c;5

return the oldest variable in c;6

1. the smoothing formula (line 4 in Algorithm 1) is generalized as w(ci) :=
�ρ · w(ci)� + �q · w�.

2. in the focused local search mode, CCAnr picks the variable with the greatest
score from an unsatisfied clause, breaking ties by favoring the oldest one
(replace line 6 in Algorithm 1).

As will be shown in the experiment parts, the first modification, which
indeed is just about parameter setting, has little impact on the performance of
CCAnr. The second modification (i.e., the greedy heuristic in focused local search
mode) makes the essential contributions to the good performance of CCAnr, and
renders CCAnr much more effective than the original solver Swcca on structured
instances, and also outperforms (although sometimes slightly) other state-of-the-
art SLS solvers for structured instances.

2.3 Implementation Details

CCAnr is implemented in C++, and compiled by g++ with the ’O3’ optimization
option. There are three parameters in CCAnr: the threshold parameter γ, and
two factor parameters ρ and q, all of which belong to the clause weighting
scheme. The parameters are set as follows: γ = 300; ρ = 0.3; q is set to 0 if
r ≤ 15, and 0.7 otherwise (r is the clause-to-variable ratio of the instance). This
setting is adopted in CCAnr in SAT Competition 2013 and CCAnr+glucose in
SAT Competition 2014. After the competition, we found that actually setting q
to 0.7 (which equals 1 − ρ, as the same setting in Swcca) for all instances has
very close performance.

3 Experimental Results

According to results of SAT Competitions 2013 and 2014, CPSparrow, CCAnr and
Sattime are the currently the best three SLS solvers for structured SAT instances.
However, CCAnr itself did not participate in SAT Competition 2014; instead, the
hybrid solver CCAnr+glucose did. We carried out experiments to compare CCAnr
with CPSparrow (version sc14) and Sattime2014r as well as Sattime2013 (the
version used in SGseq [9] in Hard-combinatorial track of SAT Competition 2014).



CCAnr: A Configuration Checking Based Local Search Solver 5

We also develop a solver called CCAnr+CP3 which employs the CP3 preprocessor
before calling CCAnr (as CPSparrow does), and include it in the experiments.
Sattime already has a sophisticated preprocessing procedure in it.

Our experiments are conducted on Hard-combinatorial SAT benchmark (150
instances) which is also known as the crafted benchmark, and application SAT
benchmark (150 instances) in SAT Competition 2014. The experiments are
carried out on a machine under GNU/Linux, using 2 cores of Intel Core i7 2.4
GHz and 7.8 GByte RAM. Each solver was executed one time on each instance,
as in competitions.

The results are summarized in Table 1, where the first row presents the results
on the Hard-combinatorial SAT benchmark, and the second row presents the
results on the application SAT benchmark. CCAnr+CP3 gives better performance
than other solvers on both benchmarks. We also observe that even without
CP3, CCAnr solves more instances than the two competitors CPSparrow and
Sattime2014r in this experiment, although indeed the performance of CCAnr and
CPSparrow is indistinguishable. In particular, CCAnr solves 13 instances in the
Hard-combinatorial SAT benchmark which were not solved by CDCL solvers in
SAT Competition 2014.

Table 1. Comparative results on the hard-combinatorial SAT and the application SAT
benchmarks from SAT Competition 2014.

Benchmark
CCAnr+CP3 CCAnr CPSparrow Sattime2014r Sattime2013

#solv. par10 time #solv. par10 time #solv. par10 time #solv. par10 time #solv. par10 time

SC14 HC SAT 60 30115 56 31427 55 31727 46 34784 43 35864

SC14 APP SAT 35 38440 29 40449 28 40773 25 41822 23 42539

To demonstrate the importance of the greedy heuristic in the focused random
mode in CCAnr, we also compare it with three alternatives. The alternatives are
modified from from CCAnr as follows:

– CCAnr fq (short for CCAnr with fixed q) is the CCAnr solver with a fixed
setting of parameter q in the smoothing formula: q = 0.7 (i.e., q = 1 − ρ) for
all instances (in this case, the clause weighting is the same with Swcca).

– CCAnr rand picks a random variable in the selected unsatisfied clause in the
focused local search mode.

– CCAnr age picks the oldest variable in the selected unsatisfied clause in the
focused local search mode. CCAnr age corresponds to the Swcca algorithm,
but use the parameter setting of SWT scheme in CCAnr, so that we can see
the performance improvement due to the greedy heuristic.

The comparative results of CCAnr and its alternatives are reported in Table 2.
The performance of CCAnr fq is quite close to that of CCAnr, which indicates
the conditional setting rule for parameter q in the smoothing formula (used in
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Table 2. Comparative results of CCAnr and its alternatives on the hard-combinatorial
SAT and the application SAT benchmarks from SAT Competition 2014.

Benchmark
CCAnr CCAnr fq CCAnr rand CCAnr age

#solv. par10 time #solv. par10 time #solv. par10 time #solv. par10 time

SC14 HC SAT 56 31427 54 32113 47 34514 41 36484

SC14 APP SAT 29 40449 28 40755 25 41753 22 42709

CCAnr version in competitions) is not a main factor of the good performance of
CCAnr. The performance of CCAnr is considerably better than that of CCAnr age
and CCAnr rand. Noting that the only difference between CCAnr and these two
alternative solvers is that, CCAnr uses a greedy heuristic in the focused local
search mode while CCAnr age and CCAnr rand employ diversifying heuristics.
This indicates that using greedy heuristics rather than diversifying ones in the
focused local search mode might be helpful to improve SLS-based SAT solvers
on structured benchmarks.

CCAnr has also been discovered to be very competitive with other SLS-
based SAT solvers on solving Satisfiability Modulo Theories (SMT) instances,
although it can not compete with the SLS-based SMT solver called BV-SLS
which works on the theory level representation [7]. The experiments in [7] were
conducted with two benchmarks of bit-vector formulas namely QF BV and SAGE2.
The QF BV benchmark can be found in the SMT-LIB and is also part of the SMT
Competition. The SAGE2 benchmark consists of problems generated as part of the
SAGE project at Microsoft, describing some testcases for automated whitebox
fuzz testing. The number of solved instances are reported in Table 3, which is
taken from [7]. Z3 is a state-of-the-art SMT solver. As well as Z3 and BV-SLS,
the experiments include state-of-the-art SLS-based SAT solvers or those have
good performance on certain types of structured SAT instances.

Table 3. Number of solved instances in bit-vector SMT benchmarks

QF BV (7498 instances) SAGE2 (8017 instances)

CCAnr 5409 64

CCASat 4461 8

probSAT 3816 10

Sparrow 3806 12

VW2 2954 4

PAWS 3331 143

YalSAT 3756 142

Z3 (Default) 7173 5821

BV-SLS 6172 3719
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Abstract. PBLib is an easy-to-use and efficient library, written in C++,
for translating pseudo-Boolean (PB) constraints into CNF. We have
implemented fifteen different encodings of PB constraints. Our aim is to
use efficient encodings, in terms of formula size and whether unit propa-
gation maintains generalized arc consistency. Moreover, PBLib normal-
izes PB constraints and automatically uses a suitable encoder for the
translation. We also support incremental strengthening for optimization
problems, where the tighter bound is realized with few additional clauses,
as well as conditions for PB constraints.

1 Introduction

Many applications such as hardware verification and model checking benefit
from the impressive developments in the area of SAT solving by translating
high level descriptions into propositional formulas in conjunctive normal form
(CNF) [24,30]. Pseudo-Boolean (PB) constraints are expressions of the form∑n

i=1 wi ·xi�k and require that the weighted sum over the literals xi is �-related
with k. They frequently occur in scheduling, planning, and translations of prob-
lems from languages like CSP, ASP or integer programming. Moreover, optimiza-
tion problems like MaxSAT, minimal unsatisfiable core extraction, maximal sat-
isfying subformulas, and PB optimization itself, rely on good translations from
PB constraints into CNF [4,5,18,21,22]. However, there is no straightforward
translation into CNF [6,11,15,16,25].

In this paper, we present PBLib, an easy-to-use and efficient library, writ-
ten in C++, and distributed under the MIT license1. The library contains fifteen
different encodings for PB constraints, which differ in the number of clauses, aux-
iliary variables and further properties. For instance, generalized arc consistency
(GAC), a notion developed in the area of constraint programming [25], allows to
cut off the search space as soon as possible. Therefore, maintaining generalized
arc consistency by unit propagation is an important property of encodings. A
weaker property than GAC is that unit propagation detects inconsistent assign-
ments. The size of an encoding is another performance criteria, since SAT solvers
often perform better when the number of clauses is small [8,19,29]. Additionally,
1 available at http://tools.computational-logic.org/content/pblib.php

c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 9–16, 2015.
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PBLib performs constraint normalization, and supports incremental strengthen-
ing as well as conditionals. Experiments have shown that PBLib performs better
than minisat+ [10].

The rest of this paper is structured as follows: We formally introduce the
concept of encodings and generalized arc consistency in Sect. 2. Afterwards, we
describe the concepts in PBLib and present code examples in Sect. 3. In Sect. 4,
we give an overview of the tools included in PBLib. Then, we evaluate different
encodings and compare PBLib with minisat+ in Sect. 5. Finally, we conclude in
Sect. 6.

2 Pseudo-Boolean Constraints and Encodings

We assume that the reader is familiar with the concepts in propositional logic.
Pseudo-Boolean (PB) constraints are expressions of the form

∑n
i=1 wi · xi � k,

where xi are literals, wi ∈ Z are the associated weights for the literals xi for
every i ∈ {1, . . . , n}, k ∈ Z, and � ∈ {=,≤,≥} is the comparator. A cardinality
constraint is a PB constraint, where all weights are equal to 1. Depending on
the comparator, we call a cardinality constraint an at-most-one, at-least-one or
exactly-one constraint, if k = 1.

Formally, the formula F encodes the original formula G iff 1) F entails G,
and 2) for every model I of the formula G there is a model I ′ of F such that
I(x) = I ′(x) for every variable x occurring in G. The first condition states
that every model of the encoding is a model of the original formula. The second
condition states that every model of the original formula can be transformed to a
model of the encoding by modifying the interpretation of the auxiliary variables.

We consider the following two structural properties: generalized arc consis-
tency (GAC) and inconsistency detection. Both are important inference rules in
constraint programming and can significantly reduce the search space [25]. As
in [23], we describe the notions of GAC and inconsistency detection in terms of
the entailment relation. An assignment J is a consistent set of literals. We say
that J is consistent w.r.t. a constraint C iff the formula (

∧
x∈J x) ∧ C is satisfi-

able. Otherwise, J is inconsistent w.r.t. C. An encoding detects inconsistencies
by unit propagation if unit propagation in the encoding derives the empty clause,
if the assignment J is inconsistent w.r.t. C. Informally, an assignment is GAC,
if the assignment contains all entailed literals. Formally, a consistent assignment
J is GAC w.r.t. the constraint C iff for every variable y occurring in C, y ∈ J
whenever (

∧
x∈J x) ∧ C |= y, and ¬y ∈ J , whenever (

∧
x∈J x) ∧ C |= ¬y. Unit

propagation maintains GAC, if unit propagation transforms a consistent assign-
ment to generalized arc consistent assignment.

3 Description of the PBLib

Table 1 presents the encodings offered by PBLib. Unit propagation in the offered
encodings, except sorting and adder networks, detects inconsistent assignment
and maintains generalized arc consistency. We also offer a variant of the watchdog
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Table 1. A catalog of encodings offered by PBLib, categorized into different fragments
of PB constraints.

at-most-one cardinality pseudo-Boolean

sequential counter1 [27] BDD2 [10,14] BDD [10,14]
bimander [13] cardinality networks [1] adder networks [10]
commander [17] adder networks [10] watchdog [23]
k-product [7] sorting networks [10]
binary [2] binary merge [20]
pairwise sequential weight counter3 [12]
nested

1 similar to BDD, latter and regular encoding,2 similar to sequential counter
3 similar to BDD but useful for incremental encoding

and binary merge encoding for which unit propagation detects only inconsistent
assignments, with the advantage of fewer clauses.

3.1 Components of the PBLib

PB constraints. In the PBLib, a PB constraint
∑n

i=1 wi ·xi�k is specified with a
list of weighted literals, a comparator and an integer k, where every 64 bit integer
is accepted as weight and as k. The comparator can be either less equal, greater
equal, or a combination of both. Hence it is possible to specify a single constraint
like

∑n
i=1 wi · xi ≤ k1 ∧ ∑n

i=1 wi · xi ≥ k2. Note that GAC and inconsistency
detection refers to single PB constraint using ≤ or ≥ as comparator.

PreEncoder. The PreEncoder normalizes PB constraints such that the follow-
ing holds: 1. n > 0, 2. 1 ≤ wi ≤ k for every i ∈ {1, . . . , n}, 3. no literal in a
constraint occurs twice, and 4. the comparator is either less equal or both: less
equal and greater equal. Moreover, it detects trivial constraints such as units
and tautologies, directly encodes them, and applies some simplifications such as
removing unnecessary comparators.

ClauseDatabase. As container for the clauses in a formula a ClauseDatabase
is used. The PBLib contains different instances of ClauseDatabases such as a
VectorClauseDatabase that stores each clause in a vector, and a SATSolver-
ClauseDatabase that stores each clause in a minisat-like [9] SAT solver. The
ClauseDatabase is a simple interface, requiring only an implementation for the
addition method for single clauses. This makes it easy to integrate PBLib in
projects. Moreover, every ClauseDatabase can process minisat+ like Boolean
circuits [10] by translating them into clauses.

AuxVarManager. For handling auxiliary variables, PBLib uses an auxiliary
variable manager, called AuxVarManager. Initialized with a fresh variable, Aux-
VarManager returns the next free variable upon request. It is possible to reset
already used auxiliary variables as well as marking individual variables as fresh
variables. Hence the AuxVarManager helps to keep the set of used variables tight.
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Encoder. The PBLib contains 15 different encoders, where each produces dif-
ferent clause sets. Some encoders are only applicable for specific subsets of PB
constraint, e.g. at-most-one or cardinality constraints. In the framework of the
PBLib, it is easy to extend the set of encoders with new encodings.

IncrementalData. It is required to use the class IncPBConstraint to repre-
sent PB constraints that supports incrementally strengthening. After the ini-
tial encoding of such a constraint, the IncPBConstraint stores IncrementalData
internally that allows to restrict the constraint with a tighter bound. This allows
the implementation of an easy to handle SAT-based linear optimization algo-
rithm.

Conditionals. PB and incremental PB constraints can be augmented with con-
ditions, i.e. finite conjunctions of literals. This is achieved by adding the comple-
mentary literals to all activation clauses of the encoding. For example, we can
express the following constraint with a single constraint in PBLib:

(x5 ∧ x6) → (−3 ≤ −7x1 + 5x2 + 9x3 − 3x10 + 7x10 ≤ 8)

PB2CNF. The PB2CNF class handles constructed PB constraints: It normal-
izes the constraint, classifies it, and chooses a suitable encoding depending on
the kind and size of the constraint. Produced clauses are stored in the given
ClauseDatabase and auxiliary variables are managed by the AuxVarManager.

3.2 Example

We demonstrate how to encode the constraint 3x1 − 2x2 + 7x3 ≥ −4 in the
following example. First, we reserve space for two vectors containing the decision
literals and their associated weights, and for the resulting formula, which is
a vector of vectors of literals. Moreover, we specify the first free variable in
firstAuxVar. Finally, we call the method encodeGeq that encodes the constraint
and stores the result in formula.

#include "PB2CNF.h"
int main() {

PBLib::PB2CNF pb2cnf;
vector< int64_t > weights = {3, -2, 7};
vector< int32_t > literals = {-1, -2, 3};
vector< vector< int32_t > > formula;
int32_t firstAuxVar = 4;
int64_t k = -4;
pb2cnf.encodeGeq(weights, literals, k, formula, firstAuxVar);

}

You can also add a less equal and a greater equal comparator, as well as incre-
mental constraints. For the latter one, we need the generic formula container
ClauseDatabase and an instance of AuxVarManager. Moreover, we have to use
the configurations class of the PBLib. In the following example, the constraint
−5 ≤ −7x1 + 5x2 + 9x3 − 3x10 + 7x10 ≤ 100 is encoded:
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using namespace PBLib;
PBConfig config = make_shared< PBConfigClass >();
VectorClauseDatabase formula(config);
PB2CNF pb2cnf(config);
AuxVarManager auxvars(11);
vector< WeightedLit > literals =

{WeightedLit(1, -7), WeightedLit(-2, 5), WeightedLit(-3, 9),
WeightedLit(-10, -3), WeightedLit(10, 7)};

IncPBConstraint constraint(literals, BOTH, 100, -5);
pb2cnf.encodeIncInital(constraint, formula, auxvars);

We can increase the bounds:

constraint.encodeNewGeq(3, formula, auxvars);
constraint.encodeNewLeq(8, formula, auxvars);

The constraint −3 ≤ −7x1 + 5x2 + 9x3 − 3x10 + 7x10 ≤ 8 is encoded with the
code above in combination with the formula encoded with encodeIncInital.

4 Included Tools

The PBLib includes the following programs: pbencoder, pbsolver and a fuzzer.
pbencoder takes as input a list of PB constraints in the OPB format [26] and
encodes them into CNF. The result is printed on the standard output. pbsolver
solves a OPB instance by translating the PB constraints and afterwards solving
the resulting CNF formula with a back-end SAT solver such as minisat 2.2 [28].
For optimization instances, pbsolver iteratively encodes upper bounds until the
optimum is reached. The program fuzzer randomly generates PB constraints,
and afterwards encode them with different configurations. This program helps
to find bugs in new or customized implementations.

5 Empirical Evaluation and Related Work

We evaluated pbsolver on all new instances in the PB competition 2012, in
total 2782 instances2. Note that the most recent PB competition was held in
the year 2012. Besides various encodings inside the PBLib, we compared the
performance of minisat+ [10] on this benchmark. The evaluation was performed
on a PC cluster with Intel E5-2690 CPUs (2.90 GHz) and 2 GB RAM.

minisat+ follows the same approach for solving PB constraints: It translates
them into CNF and applies an iterative solving strategy for optimization prob-
lems. In contrast to PBLib, minisat+ uses only three encodings: BDDs, sorting
networks and adder networks. BDDs in minisat+ are encoded with three clauses
per BDD node instead of only two as in the PBLib and presented in [14]. For
a fair comparison, we used minisat 2.2 as back-end SAT solver in pbsolver and
in minisat+. Figure 1 shows the results of the evaluation. Adder and sorting
2 available at http://www.cril.univ-artois.fr/PB12/

http://www.cril.univ-artois.fr/PB12/
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Fig. 1. A comparison of different encodings in the PBLib and minisat+ using 2782
new instances in the PB competition 2012

networks have the least number of clauses, but the worst runtime, because in
both encodings unit propagation neither detects inconsistent assignments nor
maintains generalized arc consistency. We observe that the plot for the default
configuration and the use of BDDs for general PB constraint are nearly the
same. This can be explained since PBLib decides for the BDD encoding due to
the low number of clauses. In contrast to minisat+, PBLib in pbsolver solves sig-
nificantly more instances in the timeout of 1800 seconds. This has two reasons:
First, PBLib uses a better BDD encoding. Second, minisat+ does not distinguish
between at-most-one, at-most-k and PB constraint. Therefore, all constraints,
but clauses, are handled in the same way. Instead, PBLib detects these special
cases and chooses a more appropriate encoding.

The Java library Boolvar/PB [3] is also related to the PBLib: It uses basically
the same encodings as minisat+, but sorting networks have been replaced by the
watchdog encoding.

6 Conclusion

In this paper, we presented PBLib, an efficient and easy-to-use library for encod-
ing PB constraints into clause sets. It normalizes PB constraints before encod-
ing them, and can automatically choose between fifteen different encodings that
vary in size and propagation properties. Moreover, PBLib supports incremental
strengthening and conditional PB constraints. Experiments have shown that our
library outperforms minisat+ in the recent benchmark of the PB evaluation. It
is distributed under the MIT license.

In future, we plan to implement more encodings, and to increase confidence
in the tools by mechanically verifying them.
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Abstract. In this paper we present several improvements to extraction
of a minimal unsatisfiable subformula (MUS) of a Boolean formula. As
our first contribution, we describe model rotation on preprocessed for-
mulas and show that preprocessing significantly improves model rotation.
We find very convenient to adopt the framework of labeled CNF formulas
and we present our algorithms in this more general framework. We use
the assumption-based approach for computing MUSes due to its simplic-
ity and the ability to use any SAT-solver as the back-end. However, this
comes with a price: it is well-known that the assumption-based approach
performs significantly worse than the resolution-based approach. This
leads to our second contribution, we show how to bridge the gap between
the two approaches using “chunking”. An extensive experimental evalu-
ation shows that our method significantly outperforms state-of-the-art
solutions in the context of group MUS extraction.

1 Introduction

The problem of computing a minimal explanation of unsatisfiability of a Boolean
formula has attracted a lot of recent research. Given an unsatisfiable Boolean
formula F in conjunctive normal form (CNF), computing an MUS of F is the
problem of finding a minimal unsatisfiable subset of its clauses (that is, an unsat-
isfiable subset of clauses such that removal of any clause renders it satisfiable).
Further, in many applications the formula F comes partitioned into several
disjoint groups (subsets), and computing a group MUS (GMUS) (also called
high-level MUS) is the problem of finding a minimal unsatisfiable subset of these
groups [1,2]. Of course, MUS is a special case of GMUS, where each group con-
sists of a single clause. A further generalization of GMUS, called labeled MUS
(LMUS), was recently introduced in [3–5] and corresponds to the case where the
groups do not need to be disjoint. This name comes from an alternative descrip-
tion of the problem, in which each clause in F has an associated set of labels, and
the problem consists of finding a minimal subset L of labels with the property
that the subset of clauses of F with all their labels in L is unsatisfiable.

All state-of-the-art MUS extraction techniques make use of Boolean satisfia-
bility (SAT) solvers, and the key observation from [3] is that by working with

c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 17–32, 2015.
DOI: 10.1007/978-3-319-24318-4 3
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labeled CNF formulas (LCNF), one can easily enable various preprocessing tech-
niques for MUS extraction – a task which is not simple otherwise. For example,
the problem of finding an MUS of the original formula can be translated to a
certain LMUS computation on the preprocessed formula, but not in general to
an MUS or a GMUS computation. Further, [3] experimentally demonstrates the
practical importance of preprocessing on standard group MUS benchmarks.

As our first contribution, we amplify the importance of preprocessing for
MUS and GMUS computations. To this end, we adopt the LCNF framework
and adapt the recursive model rotation (RMR) [6] from MUS computations to
this more general context. We denote the new technique by LRMR (label-based
recursive model rotation). We emphasize that LRMR is a general technique and
is applicable to preprocessed formulas for MUS and GMUS computations. We
experimentally show that LRMR on preprocessed formulas finds significantly
more necessary labels than LRMR on original formulas, which directly trans-
lates into a reduction in the number of SAT queries required for the computa-
tion. Moreover, we show that the benefit of preprocessing for model rotation
continuously increases as one increases the preprocessing effort.

Efficiently implementing preprocessing in an MUS extractor leads to a
dilemma. Let us recall that there are two standard approaches, both based on
incremental SAT solving. In the assumption-based approach (as implemented in
MUSER2 [7]) one creates a fresh activation literal for each clause (group or label)
and uses the common interface of a SAT solver (such as MINISAT [8]) to solve
a formula under assumptions. Setting some of the activation literals to TRUE
and some to FALSE enables to activate and deactivate groups of clauses. In the
resolution-based approach (as implemented in HaifaMUC [9]) one uses the ability
of certain SAT solvers to produce a resolution proof in the case that a problem
is unsatisfiable. There is in fact a hybrid approach implemented in MINISATabb

[10], which technically uses assumptions but modifies the SAT solver to organize
the assumptions in a form of a partial resolution graph.

The dilemma is as follows. On the one hand, using the pure assumption-based
approach has the ability to use any SAT solver for the back-end, and allows for a
significantly simpler implementation, which is indirectly corroborated by the fact
that neither HaifaMUC nor MINISATabb fully support preprocessing in the context
of GMUS extraction. On the other hand, it is well-known that assumption-based
approaches are slower than resolution-based approaches. There are several rea-
sons for this, see [10,11]. First, in incremental SAT solving with many assump-
tions, learned clauses become significantly larger, and this leads to an increased
memory consumption, more cache misses, and a significantly increased average
number of literals that need to be considered in BCP and in conflict clause anal-
ysis. More importantly, modern SAT solvers use a crucial optimization described
in [12] that allows one to minimize learned conflict clauses by using additional
resolutions with existing clauses. However, this additional minimization is only
applied when the resulting conflict clause is a strict sub-clause of the initial con-
flict clause: in other words, conflict clauses become shorter (and more useful)
at the expense of bringing more clauses into the proof. Having many activation
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literals to a large extent prevents this minimization, which makes the learned con-
flict clauses significantly less useful, and which in turn significantly degrades the
performance of an assumption-based MUS extractor. An especially tantalizing
illustration of this phenomenon can be witnessed by running MUSER2 on its own
minimal cores (either from regular MUS or GMUS benchmarks) and noticing
that in many cases the time required to solve the minimized formula is an order
of magnitude larger than the time required to solve the original formula. We
note that neither HaifaMUC nor MINISATabb have the above problem, and their
performance is only improved when running on the fully minimized formulas. In
fact, MINISATabb solves the problem by using assumption aware clause minimiza-
tion ([10], Section 2.5), in which additional resolutions are allowed as long as
only the set of non-activation literals is decreased. In this sense MINISATabb per-
forms exactly as a resolution-based approach. It is also interesting to note that
HaifaMUC uses the same observation in the opposite way and in some cases pre-
vents performing additional resolutions if this involves new groups to be pulled
into the proof ([11], Optimization B).

As our second contribution, we show how a single LMUS computation can
be reduced to a sequence of simpler LMUS computations by splitting the set of
labels into chunks and by iteratively analyzing these chunks. This approach is
closely related to the approach of computing a minimal equivalent subformula
(MES) by an incremental reduction into GMUS (see [13], Section 3.4). In the
assumption-based approach, the size of each chunk represents a trade-off. Consid-
ering smaller chunks makes the overall approach less incremental and degrades
the quality of label-set refinement. However, it decreases the number of activa-
tion literals introduced in each SAT query and in particular allows for a better
conflict clause minimization (all the clauses without an activation literal become
usable as additional resolvents). We experimentally show that when the formula
is minimal or close to minimal (as for example obtained using trimming, see for
example [14]), chunking essentially bridges the gap between the assumption and
the resolution based approaches.

In summary, this paper presents two interdependent contributions. First, we
amplify the role of preprocessing for computing MUSes and GMUSes, and we
suggest to use the assumption-based approach as it does not require any modifi-
cation to the SAT-solver and leads to a significantly simpler and less error-prone
implementation. However this introduces a problem that the conflict clauses
discovered by the SAT solver become less useful, and we solve this problem
(to a large extent) using chunking. We experimentally show that the combined
algorithm significantly outperforms state-of-the-art techniques when computing
group MUSes. We speculate that an implementation of preprocessing and label-
based model rotation in the resolution-based approach would improve the per-
formance even further.

The rest of the paper is organized as follows. Section 2 describes prelim-
inaries, including the LCNF framework from [3]. In Section 3 we describe the
algorithms for LMUS extraction and label-based model rotation, and in Section 4
we describe the algorithm for chunking. Section 5 contains experimental results.
Section 6 concludes the paper.
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2 Preliminaries

We briefly recall some basic notions of satisfiability solving. A literal is either a
Boolean variable or its negation. A clause is a disjunction of literals and a CNF
is a conjunction of clauses. When convenient, we view clauses and CNFs as sets.

Given a CNF formula F , we denote the set of variables that occur in F by
V ar(F). An assignment τ for F is a map τ : V ar(F) → {0, 1}. Assignments
are extended to clauses and formulas according to the semantics of classical
propositional logic. By Unsat(F , τ) we denote the set of clauses of F that are
falsified by τ . If τ(F) = 1, then τ is a model of F . If a formula F has (resp.
does not have) a model, then F is satisfiable (resp. unsatisfiable). By SAT and
UNSAT we denote the set of all satisfiable (resp. unsatisfiable) CNF formulas.

Next, we recall several notions of minimal unsatisfiability actively studied in
the literature.

Definition 1 (Minimal Unsatisfiable Subformula, MUS). Given an
unsatisfiable CNF formula F = C1 ∪ · · · ∪ Cn, an MUS of F is a subset
F ′ = Ci1 ∪ · · · ∪ Cik of F such that F ′ ∈ UNSAT and, for every 1 ≤ j ≤ k,
F ′ \ Cij ∈ SAT.

Definition 2 (Group Minimal Unsatisfiable Subformula, GMUS [1,2]).
Given an explicitly partitioned unsatisfiable CNF formula F = G0 ∪ · · · ∪ Gn, a
group oriented MUS of F is a subset F ′ = G0 ∪ Gi1 ∪ · · · ∪ Gik of F such that
F ′ ∈ UNSAT and, for every 1 ≤ j ≤ k, F ′ \ Gij ∈ SAT.

A further extension of Definition 2 to the case where the groups do not need
to be disjoint was recently proposed in [3,5]. Let L be a non-empty set of clause
labels. A labeled CNF (LCNF) is a tuple 〈F , λ〉, where F is a CNF formula
and λ : F → 2L is a labeling function. In this way, with each clause C we
associate its set of labels λ(C), and a labeled CNF formula can be also viewed
as a conjunction (or a set) of labeled clauses {〈C, λ(C)〉}. We also denote a
labeled clause 〈C, λ(C)〉 as Cλ(C), and somewhat abusing notation, we also use
the symbol F = {Cλ(C)} to represent a labeled CNF formula.

Given an LCNF formula F = {〈C, λ(C)〉}, we denote the set of labels that
occur in F by Label(F). Let K ⊆ Label(F). We define FK ⊆ F as a subset of
labeled clauses of F with at least one label in K: FK = {〈C, λ(C)〉 | λ(C)∩K 
=
∅}. We define the induced formula F|K as a subset of labeled clauses of F with
all their labels in K: F|K = {〈C, λ(C)〉 | λ(C) ⊆ K}. Finally, we define a
projection of F onto K ⊆ L by restricting the labels of labeled clauses in F to
K: Project(F ,K) = {〈C, λ(C) ∩ K〉}.

Satisfiability of an LCNF formula is defined in terms of satisfiability of its
clauses, and we reuse the notation SAT (resp. UNSAT) for the set of satisfiable
(resp. unsatisfiable) LCNF formulas.

Definition 3 (Label Minimal Unsatisfiable Subformula, LMUS [3,5]).
Given an LCNF formula F , a set of labels K ⊆ λ(F) is a label minimal unsat-
isfiable subset (LMUS) of F if F|K ∈ UNSAT and, ∀K ′ � K, F|K′ ∈ SAT.
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We emphasize that LMUS is defined in terms of labels of the labeled formula.
Note that LMUS can be viewed as an extension of GMUS (and hence also of
MUS) by associating a label for each of the groups. Given an LCNF formula
F and a label l ∈ Label(F), we say that l is necessary for F if F is UNSAT
and F \ F{l} is SAT. Next, we recall from [3] the two key benefits of the LMUS
framework.

Labeled Preprocessing Techniques. Using the LMUS framework allows
one to easily apply the (labeled versions of) common preprocessing techniques,
including subsumption, self-subsumption, and variable-elimination. As one exam-
ple, labeled subsumption asserts that whenever 〈C1, λ1〉 and 〈C2, λ2〉 are two
labeled clauses of F with C1 ⊆ C2 and λ1 ⊆ λ2, then 〈C2, λ2〉 can be removed.
As another example, given two labeled clauses 〈x ∨ C1, λ1〉 and 〈¬x ∨ C2, λ2〉,
their labeled resolvent is defined as 〈C1 ∪ C2, λ1 ∪ λ2〉, and labeled variable elim-
ination allows replacing all labeled clauses involving a variable or its negation
by all labeled resolvents on this variable. We refer to [3] for additional details.

LMUS Implementation in the Assumption-Based Framework. Given an
LCNF formula F , we can create a fresh variable pl for every label l ∈ Label(F),
and replace every labeled clause 〈C, λ〉 by a regular clause (C ∨ ∨

l∈λ(C) pl). In
other words, each label of every clause now appears as an additional literal in
that clause. Moreover, the labeled preprocessing techniques correspond to the
classical preprocessing techniques, as long as variable elimination is disallowed
to eliminate variables pl (note that this functionality of freezing variables is
already supported in most modern SAT solvers). In other words, supporting
LMUS computations is virtually free in the assumption-based approach.

3 LMUS Extraction

Algorithm 1 presents a high-level algorithm for computing an LMUS of an unsat-
isfiable LCNF. Without the optimizations on lines 2 and 15, it can be viewed
as a direct adaptation of the hybrid algorithm for computing an MUS (see [15],
Algorithm 3) to the more general framework of LCNFs.

Let us first present a quick overview of Algorithm 1 omitting many important
details. It accepts an unsatisfiable LCNF formula F as input and maintains the
following data structures: the set of necessary labels L (initially empty), the
working set of labels Lw (initialized to Label(F)), and the working formula Fw

(initialized to F). On each iteration of the while-loop (line 6) we choose a label
l from Lw, and invoke a SAT solver (line 8) on the formula Fw \ F{l}

w obtained
from Fw by removing all clauses labeled with l. We use the following standard
notation: SAT returns a triple (st, τ,U), where if the formula is satisfiable, then
st = true and τ is a satisfying assignment, and if the formula is unsatisfiable,
then τ = false and U is an unsatisfiable core. If Fw\F{l}

w is unsatisfiable (lines 9–
11), then l is not necessary, in which case the clauses of F{l}

w are permanently
removed from the working formula Fw, and l is removed from the working set
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Algorithm 1. LHYB(F) – Hybrid LMUS Extraction
Input : F — a (trimmed) unsatisfiable LCNF formula
Output : LMUS L of F

1 begin
2 LSimplify(F) // Main preprocessing
3 L ← ∅ // LMUS under-approximation
4 Lw ← Label(F ) // Working set of labels
5 Fw ← F // Working formula
6 while Lw 
= 0 do
7 l ← PickLabel(Lw)
8 (st, τ,U) = SAT(Fw \ F{l}

w )
9 if st=false then

10 Lw ← Lw ∩ Label(U) // Refinement
11 Fw ← Fw|L∪Lw

12 else
13 LModelRotation(Fw, L, τ) // Rotation
14 Lw ← Lw \ L

15 if condition then
16 LSimplify(Fw) // Additional preprocessing
17 Lw ← Label(Fw)
18 return L

of labels Lw. Otherwise (lines 12–14), l is necessary, in which case l is added to
L and removed from Lw.

Next we describe in detail the important optimizations required for this algo-
rithm to be practically efficient.

Label-Set Refinement. Label-set refinement ([15,16]) is a technique that takes
advantage of the capability of modern SAT solvers to produce unsatisfiable
cores (in the resolution-based approach) or return conflicting assumptions (in
the assumption-based approach). Consider the case that the formula Fw \ F{l}

w

is unsatisfiable and let U denote an unsatisfiable core. The key observation is
that (in addition to l) any label l′, with the property that no clause marked by
l′ appears in U , can be removed from L. In practice this is a crucial optimization
technique that allows one to remove multiple unnecessary labels in a single SAT
solver call.

Main Preprocessing. The main novelty of the LMUS computation is the abil-
ity to apply preprocessing techniques to simplify the formula [3]. In Algorithm 1,
the main preprocessing is accomplished by a call to LSimplify at the start of
the algorithm (line 2). Following [3], we use labeled clause elimination, labeled
variable elimination, labeled subsumption (including labeled unit propagation),
and labeled self-subsumption. As described previously, in the assumption-based
framework each label has its own activation variable, and all of these techniques
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are already supported by MINISAT (if we disallow variable elimination to elimi-
nate activation variables of the labels).

There are several key benefits of preprocessing. First, the formula gener-
ally becomes easier to solve, leading to a decreased runtime of an average
SAT solver query (see line 8). Second, labeled variable elimination can drop
many (unnecessary) labels. We illustrate this on an example. Suppose that
F = {(p∨q){l1}, (¬p∨r){l2}, (¬q∨¬r){l3}, (¬q∨s){l4}, (¬r){l5}, (¬s){l6}}. Suppose
that variable elimination first eliminates variable p, replacing the clauses (p ∨
q){l1}, (¬p∨r){l2} by their labeled resolvent clause (q∨r){l1,l2}, and then further
eliminates variable q resulting in the LCNF {(r ∨ s){l1,l2,l4}, (¬r){l5}, (¬s){l6}}.
Note that there are no more clauses labeled by l3 and hence l3 is unnecessary.
This example also demonstrates that even if in the original LCNF each clause
has at most one label (as the result of a conversion from an MUS or a GMUS
problem), after preprocessing each clause will in general have several labels. We
will show later that this makes preprocessing extremely beneficial for model
rotation.

Let us recall that MINISAT has two integer-valued parameters that control
the influence of variable elimination on a more fine-grained level: cl-lim that
prohibits eliminating a variable if it produces a resolvent clause of a larger length,
and grow that prohibits eliminating a variable if the number of clauses in the
CNF increases by more than this value. We have experimentally found that for
GMUS extraction it is highly beneficial to increase these parameters beyond
their default values: in our implementation we set cl-lim to 200 and grow to 40.

Additional Preprocessing. The labeled preprocessing techniques can also be
naturally integrated into the main while-loop of the algorithm (lines 15–17).
We note that as the formula Fw gets progressively simplified throughout the
computation, this has value even after the main preprocessing. However, to keep
the presented experimental data as clean as possible, we do not use this technique
in the experiments.

Label-based Model Rotation. Label-based recursive model rotation (LRMR)
can be viewed as both a generalization of the recursive model rotation for regular
MUSes [6] and variable-based model rotation for variable-based MUSes [17]. Let
us first make the following observation.

Proposition 1. Let F be a labeled CNF formula, let τ be a complete assignment
to V ar(F), let Unsat(F , τ) denote the subset of clauses of F that are falsified by τ ,
and let L =

⋂
C∈Unsat(F,τ) Label(C). Then any label in L is necessary for F .

Proof. Take any l ∈ ⋂
C∈Unsat(F,τ) Label(C). By this assumption,

Unsat(F , τ) ⊆ F{l}, and hence F \ F{l} ⊆ F \ Unsat(F , τ) ∈ SAT. Thus l
is necessary. ��
Following this proposition, let us call an assignment τ a witness for necessity
of a label l in F (or simply a witness for l) if it satisfies the condition l ∈⋂

C∈Unsat(F,τ) Label(C).
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Clearly, when the main SAT query SAT(Fw\F{l}
w ) in Algorithm 1 is satisfiable

and τ is the assignment returned by the SAT solver, τ represents a witness for
l in Fw. However, it is possible that there are other labels shared among all
the clauses of Unsat(Fw, τ) – and these labels can be immediately declared as
necessary for Fw, without additional SAT calls. A special case of interest is
when Unsat(Fw, τ) consists of a single clause – in this case all the other labels
of that clause are necessary. As an example, consider the LCNF F = {(r ∨
s){l1,l2,l4}, (¬r){l5}, (¬s){l6}} from before, and consider the satisfying assignment
τ to F \ F{l1} given by τ = {r = 0, s = 0}. This same assignment is a witness
for each of the labels l1, l2 and l4.

Model rotation exploits the idea of starting with an assignment τ that is a
witness for some label l, and obtaining an assignment τ ′ that is a witness for
some other label l′ by flipping the value of one of the variables. For example,
flipping the value of r in the example above leads to a witness τ ′ = {r = 1, s = 0}
for l5, while flipping the value of s leads to a witness τ ′′ = {r = 0, s = 1} of l6.

A natural question is which variables should be considered for flipping. Let us
assume that τ is a witness for l, and suppose that τ ′ is obtained by flipping the
value of a variable x ∈ V ar(F). If x /∈ V ar(Unsat(F , τ)) then Unsat(F , τ ′) ⊇
Unsat(F , τ) – and so at best τ ′ is a witness for the same labels as τ . On the other
hand, even if the variable x is shared among all of the clauses of Unsat(F , τ),
there is no guarantee that flipping x will result in another witness. As an example,
consider F = {(x){l1}, (¬x){l2}, (¬x){l3}} and an assignment τ = {x = 0} that
is a witness for l1. The assignment τ ′ = {x = 1} is not a witness for either
l2 or l3. In addition, it is also possible that x is not shared among all of the
clauses of F but flipping the value of x does result in another witness. Consider
F = {(z∨y){l1,l2}, (x∨z){l1,l3}, (¬y∨¬x){l2}, (¬z){l3}, (¬x∨z){l2}} and a witness
τ = {x = 0, y = 0, z = 0} for l1. In this case Unsat(F , τ) = {(z ∨ y), (z ∨ x)}
and x is not a shared variable, yet τ ′ = {x = 1, y = 0, z = 0} is a witness for l2.
Back to the general case, when τ ′ happens to also be a witness, then it can be
analyzed just in the same way as τ , leading to a recursive process of detection of
necessary labels and construction of witnesses, which we refer to as label-based
recursive model rotation (LRMR).

Algorithm 2 presents the algorithm for LRMR. Note that the new necessary
label l found by the SAT call in Algorithm 1 is always added to the set L as
a result of LRMR. Motivated by the examples above, we consider the set of all
variables present in at least one clause of Unsat(F , τ) as candidates for rotation.
For each such variable v, we create a new assignment by flipping the value of v
in τ and then compute the set of labels witnessed by τ ′. The purpose of the if-
statement on line 6 of Algorithm 2 is to prevent the algorithm from re-detecting
labels that are already known to be necessary and to bound the number of
recursive calls to LModelRotation. In practice, LRMR is a light-weight technique
for detection of necessary labels and represents a crucial optimization that allows
one to detect multiple necessary labels in a single SAT solver call.

In our implementation we actually consider the eager version of LRMR [11]
which allows revisiting necessary labels detected by the previous invocation of
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Algorithm 2. LModelRotation(F , L, τ) – Label-based Model Rotation
Input : F — an unsatisfiable labelled CNF formula

: L – a set of necessary labels for F
: τ – a model of F \ F{l} for some l ∈ Label(F)

Effect : L contains l and possibly additional necessary labels of F
1 begin
2 L ← L ∪ {l} // l is a new necessary label
3 foreach v ∈ V ar(Unsat(F , τ)) do
4 τ ′ ← τ |¬v // flip v in τ
5 foreach l ∈ ⋂

C∈Unsat(F,τ ′) Label(C) do
6 if l /∈ L then
7 LModelRotation(F , L, τ ′) // recurse

LModelRotation from Algorithm 1 – as it is very likely that starting with a
different initial model would lead to discovering a different set of new necessary
labels.

4 Chunking

The idea of splitting an MUS computation into chunks has already appeared in
the context of computing minimal equivalent subformulas using an incremental
reduction to GMUS [13]. In this section we adapt this idea to the context of
LMUS computation.

Let F be an unsatisfiable LCNF formula and suppose that the set L =
Label(F) of labels of F is partitioned into two chunks: L = L1 ∪ L2. We first
concentrate on minimizing the L1-labels required for unsatisfiability. To this
end, we consider the formula F1 = Project(F , L1), obtained by removing all
the non-L1 labels from the clauses of F , and apply the LMUS computation
to F1. Let K1 ⊆ L1 represent the result of this computation. It follows that
the formula F \ FL1\K1 (obtained from F by removing all the clauses with a
label in L1 \ K1) remains unsatisfiable, and that no additional label in K1 can
be removed. Next, starting from the formula F \ FL1\K1 , we concentrate on
minimizing the L2-labels required for unsatisfiability. As before, we consider the
formula F2 = Project(F \ FL1\K1 , L2) obtained by removing all the non-L2

labels. Let K2 ⊆ L2 represent the result of the LMUS computation applied to
F2. Again, it follows that the formula F \F (L1\K1)∪(L2\K2) remains unsatisfiable,
and that no additional label in K2 can be removed. In other words, K1 ∪ K2 is
an LMUS of the original formula F .

Algorithm 3 is based on the iterative and slightly optimized application of
the observation above. The input to the algorithm is an unsatisfiable LCNF
formula F and a disjoint partitioning of its set of labels into chunks. As the first
step, we simplify F using preprocessing (see Section 3 for details). The algorithm
maintains the working formula Fw. Consider an iteration of the for-loop. First,
we create an auxiliary LCNF Gj by removing from each clause of Fw all the
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Algorithm 3. LHYB(F , {L1, . . . , Ln}) – LMUS Extraction with chunks
Input : F — a (trimmed) unsatisfiable LCNF formula

: L = {L1, . . . , Ln} – a partition of Label(F) into n chunks
Output : LMUS L of F

1 begin
2 LSimplify(F) // Main preprocessing
3 Fw ← F // Working formula
4 for j ← 1 to n do
5 Gj = Project(Fw, Lj) // Leave only Lj labels
6 Kj ← LHYB(Gj) // Call Algorithm 1

7 Fw ← Fw \ FLj\Kj
w // Remove clauses with Lj \ Kj labels

8 Fw ← Project(Fw, Lj+1 ∪ · · · ∪ Ln) // Remove Kj labels

9 return K1 ∪ · · · ∪ Kn

non-Lj labels (line 5). Next, we apply Algorithm 1 to compute an LMUS Kj of
Gj (line 6), after which all the clauses with a label in Lj \ Kj are permanently
removed from Fw (line 7). Finally, we remove all the Kj labels from every clause
of Fw (and in some sense finalize them).

Proposition 2. The set K1 ∪ · · · ∪ Kn computed by Algorithm 3 is an LMUS
of F .

We illustrate the execution of Algorithm 3 on a simple example. Let F =
{(p ∨ r){l1}, (q ∨ r){l2}, (¬p ∨ r){l3}, (¬q ∨ r){l4}, (¬r){l5}}, L1 = {l1, l2}, L2 =
{l3, l4} and L3 = {l5}. Suppose that no preprocessing is applied. We set Fw = F
(line 3). On the first iteration of the for-loop we create the formula G1 = {(p ∨
r){l1}, (q ∨ r){l2}, (¬p∨ r){}, (¬q ∨ r){}, (¬r){}} (line 5). Suppose that the LMUS
computation applied to G1 results in K1 = {l2} (line 6). This allows to remove
from Fw all the clauses with an l1-label, resulting in Fw = {(q ∨ r){l2}, (¬p ∨
r){l3}, (¬q ∨ r){l4}, (¬r){l5}} (line 7). Furthermore, we remove the l2-label from
every clause, resulting in Fw = {(q ∨ r){}, (¬p ∨ r){l3}, (¬q ∨ r){l4}, (¬r){l5}}
(line 8). On the second iteration of the for-loop, we create the formula G2 =
{(q ∨ r){}, (¬p ∨ r){l3}, (¬q ∨ r){l4}, (¬r){}} (line 5), with K2 = {l4} (line 6),
and we update Fw to {(q ∨ r){}, (¬q ∨ r){}, (¬r){l5}} (lines 7 − 8). On the final
iteration of the for-loop we detect that K3 = {l5}, and the algorithm terminates
with the LMUS K1 ∪ K2 ∪ K3 = {l2, l4, l5}.

In the assumption-based approach, the size of each chunk represents an impor-
tant trade-off. On the one hand, using chunks of smaller size significantly reduces
the number of assumptions passed to the SAT solver, and as a result significantly
improves the runtime of each SAT query. As we show in the experiments, using
chunks (of reasonable size) leads to a dramatic performance speed-up on for-
mulas that are already minimal or close to minimal. On the other hand, each
invocation of Algorithm 1 from Algorithm 3 requires to create a fresh instance of
a SAT solver, making the overall approach less incremental. Even more impor-
tantly, the two crucial optimizations used in Algorithm 1, namely refinement
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and rotation, become local to each chunk. As we show in the experiments, rota-
tion is not a problem, but the lack of global refinement leads to larger formulas
and consequently to a significant performance slow-down when the initial LCNF
formula contains a lot of redundancy. To summarize: chunking works extremely
well after trimming, but not otherwise.

We finish this section with a few additional implementation details on the
integration of Algorithm 1 in Algorithm 3. As the main preprocessing is now
performed in Algorithm 3, we completely disable all preprocessing in Algorithm 1.
Second, we use the satisfying assignments discovered by Algorithm 1 for rotation
on the global formula, thus also discovering necessary labels in other chunks.

5 Experiments

5.1 Overall GMUS Evaluation

We have implemented Algorithm 3 (assumption-based approach with preprocess-
ing and chunking) on top of the SAT solver MINISAT. We call our implementation
IBMUC1. For all practical purposes IBMUC should be viewed as a variant of MUSER2.

The default options for IBMUC were chosen as follows: the main preprocessing
in Algorithm 3 is set to the most aggressive mode (MINISAT’s options “-grow=40”
and “-cl-lim=200”); the size of each chunk is set to 4000; all preprocessing in
Algorithm 1 is turned off; groups were evaluated in the original order (sorted by
increasing index).

We focus on GMUS extraction, and we consider the following state-of-the-
art tools for comparison: MUSER22 [7], MINISATabb

3 [10], HaifaMUC4 [9,11]. It
should be noted that MUSER2 represents a pure assumption-based approach,
HaifaMUC represents a pure resolution-based approach, while MINISATabb rep-
resents a hybrid approach (or more precisely, a resolution-based approach imple-
mented via assumptions). For fair comparison, we select MINISAT as the default
back-end SAT solver in each of these tools. Neither MINISATabb nor HaifaMUC
support preprocessing for GMUS extraction, and we enable preprocessing in
MUSER2 (using the “-minisats” option).

For our experiments we use all 197 group MUS benchmarks from the MUS
track of the 2011 SAT Competition5 under various initial trimming scenarios.
More precisely, we have modified HaifaMUC to perform iterative trimming of the
original formula, and we consider the GMUS formulas obtained after 1, 5, and
10 rounds of trimming (we refer to these as T1, T5 and T10 respectively). In
addition, we consider original formulas (ORIG) and fully minimized formulas
(CORE) obtained by running IBMUC on T10 formulas (the choice of IBMUC is

1 The tool was developed during the internship of the first author at IBM. Due to
legal issues, we cannot make the source code publicly available.

2 http://logos.ucd.ie/wiki/doku.php?id=muser
3 http://fmv.jku.at/musaddlit
4 We thank Vadim Ryvchin for providing us the version used in [11].
5 http://www.satcompetition.org/2011

http://logos.ucd.ie/wiki/doku.php?id=muser
http://fmv.jku.at/musaddlit
http://www.satcompetition.org/2011
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irrelevant since all of the tools produce the same or very similar results in most
cases). The statistics for GMUS formulas considered are presented in Table 1,
where “Trim Ratio” represents the ratio of the number of groups in trimmed
formulas and those in CORE, and “Trim Time” represents the trimming time.
However, these numbers should only be considered as a proof of concept, since
we believe that an extension of DMUSer [14] to GMUSes would provide both
better trim ratios and better runtimes.

Table 1. Summary for GMUS formulas considered

ORIG T1 T5 T10 CORE
Trim Ratio 7.6 1.9 1.3 1.2 1
Trim Time 0 726 1764 2686 NA
Trim ratio: ratio of the number of groups in trimmed formulas and those in CORE;

Trim time: trimming time in seconds (NA for CORE).

All of the experiments are performed on a 2.0 GHz Linux-based machine with
an Intel Xeon E7540 processor and 32 GB of RAM. The time-limit for each run
is set to 2000 seconds.

Table 2. Summary for GMUS extraction under different trimming strength

ORIG T1 T5 T10 CORE
HaifaMUC 11548 10759 8969 8775 6166
MINISATabb 19649 (1) 9202 7503 6295 5577
MUSER2 12032 9375 (1) 7501 8111 (1) 74345 (14)
IBMUC 43917 (12) 12446 (2) 5143 4619 2752

Total runtimes in seconds and number of timeouts (in parentheses).

The cumulative runtimes for each of the tools HaifaMUC (HM), MINISATabb

(MA), MUSER2 (M2) and IBMUC (IB) are presented in Table 2 and displayed in
Figure 1. In addition, for IBMUC we explicitly show the time spent on satisfi-
able SAT calls (SAT), unsatisfiable SAT calls (UNSAT), and preprocessing and
rotation (OTHER). Several comments are in order. First, chunking significantly
deteriorates performance on original formulas (or more generally on formulas
with many redundancies) as it limits refinement to be local for each chunk, which
in turn significantly increases the total time for UNSAT queries. On the other
hand, chunking is crucial in the assumption-based approach when considering
fully minimized formulas (or more generally formulas with very few redundan-
cies), justifying our statements from the introduction. The two resolution-based
approaches HaifaMUC and MINISATabb are more stable: their runtimes are consis-
tently decreased with additional trimming.

We can also see that IBMUC clearly outperforms other tools on T5, T10 and
CORE formulas, with the corresponding speed-ups of at least 1.45x, 1.36x and
2x respectively. A more detailed analysis shows that out of 197 instances, the
combinatorial problem “4pipe.gcnf” is particularly hard for all the assumption-
based solvers; if it were excluded from the evaluation, then the corresponding
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Fig. 1. Detailed time statistics corresponding to Table 2. The columns for IB at ORIG
and for M2 at CORE are truncated.

speed-ups would rise to 1.9x, 2x and 3x respectively. By also taking the trim-
ming time into account, we can see that medium trimming (T5) benefits all
MUS extractors, while the more aggressive trimming (T10) does not pay off the
additional effort spent for its computation (although as mentioned previously
this could change if our trimming procedure were improved). Thus we choose T5
and CORE as the most interesting scenarios, since the latter could be important
in the context of GMUS validation. The scatter plots in Figure 2 show a detailed
comparison of GMUS extraction times of HaifaMUC (on X-axis) versus IBMUC,
MUSER2, MINISATabb (on Y-axis). For better visualization, the plots follow a loga-
rithmic scale, and the instances with solving times greater than 400 seconds are
truncated. We can see that in both scenarios HaifaMUC and MINISATabb perform
very similarly, while IBMUC is a clear winner.

5.2 Parameter Impact

In Figure 3 we present a detailed analysis of the impact of preprocessing and
chunking on IBMUC’s performance on T5 formulas. We have excluded the bench-
mark “4pipe.gcnf” from the evaluation (since its running time by far dominates
all the other runtimes). For the left two plots, we vary the initial preprocess-
ing effort, with the data points representing (left to right): no preprocessing,
MINISAT’s default preprocessing (grow=0, cl-lim=20), more aggressive (grow=6,
cl-lim=30), even more aggressive (grow=10, cl-lim=50), and (our default) most
aggressive (grow=40, cl-lim=200). For the right two plots, we vary the number
of chunks (or more precisely the number of groups in each chunk), with the data
points representing (left to right): a single chunk, 6000 groups per chunk, 5000
groups per chunk, (our default) 4000 groups per chunk, 3000 groups per chunk.
In the top plots we present the cumulative number of satisfiable solver queries
(SAT) and the corresponding time, and in the bottom two plots we present the



30 V. Balabanov and A. Ivrii

Fig. 2. Detailed solver-to-solver comparison on T5 (left) and CORE (right) formulas,
with HaifaMUC on X-axis, and MINISATabb, MUSER2 and IBMUC on Y-axis.

Fig. 3. Influence of preprocessing and chunking on T5 formulas. Left: preprocessing.
Right: chunking. Top: number of SAT calls and SAT time. Bottom: number of UNSAT
calls and UNSAT time.

cumulative number of unsatisfiable solver queries (UNSAT) and the correspond-
ing time. By computing the ratio between the total time and the number of
queries, we can estimate an average time for SAT and for UNSAT queries for
each data point.

From the top-left plot we can see that preprocessing is extremely effective
at decreasing the total number of SAT queries required. This effect is due solely
to improved model rotation. We can also note that preprocessing makes the
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average SAT query slightly faster, however this effect is not significant. From
the bottom-left plot we see that preprocessing is also effective in reducing the
total number of UNSAT queries. We speculate that this is due to the refinement
capability of preprocessing: even after trimming many unnecessary labels get
removed when applying variable elimination, subsumption and self-subsumption.
In addition, we note that preprocessing also has a clear beneficial effect on the
average UNSAT query time.

From the top-right plot we can see that chunking does not have any effect
on the number of rotations found (and hence on the number of SAT calls),
however chunking helps to reduce the average time for a SAT query and hence
the total SAT time. Finally, the bottom-right plot shows that chunking in gen-
eral degrades the performance of core refinement (the number of UNSAT calls
increases as there are more chunks) and justifies our claim that the size of each
chunk represents an interesting trade-off (with an empirically best value being
4000).

We have performed many additional experiments. We have experimented
with the order of label removal – no significant effect on T5 formulas. We have
replaced MINISAT by Glucose [18] as the SAT solver back-end, which resulted
in additional significant performance improvements – the time required to solve
“4pipe.gcnf” was reduced from 1900s to 20s, and the time required to solve the
remaining formulas was reduced from 3243s to 2400s. We emphasize that abso-
lutely no modification to Glucose was required, justifying the wider applicability
of the assumption-based approach. We have also conducted experiments on T10
and CORE formulas – the conclusions are exactly the same as for T5 formulas
(up to a slightly different best empirical value for the chunk size).

We have also conducted preliminary experiments on standard MUS bench-
marks and a preliminary conclusion is that by applying preprocessing too aggres-
sively (for example, with grow=40) helps rotation but hurts solving. In other
words, we have witnessed a significant reduction in the number of SAT solver
queries (just as for GMUSes), but each individual solver query becomes signif-
icantly more expensive (contrary to GMUSes). One promising solution, which
we leave to further work, is to consider different formulas for solving and for
rotation (each obtained from the original formula by applying a suitable amount
of preprocessing).

6 Conclusions

In this paper we have further extended the ideas from [3] on using preprocessing
for MUS computations, and in particular presented an algorithm for recursive
model rotation on preprocessed (labeled) formulas and showed that it has a
clear benefit for GMUS computation. In addition, we have shown that the main
weakness of the assumption-based approach for MUS computation can be easily
addressed using chunking. In conclusion, a careful choice of the back-end SAT
solver, trimming, preprocessing, chunking and recursive rotation leads to the best
overall approach.
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8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

9. Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable
cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187.
Springer, Heidelberg (2011)

10. Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292.
Springer, Heidelberg (2013)

11. Nadel, A., Ryvchin, V., Strichman, O.: Accelerated deletion-based extraction of
minimal unsatisfiable cores. JSAT 9, 27–51 (2014)
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Abstract. We give improved deterministic algorithms solving sparse
instances of MAX-SAT and MAX-k-CSP. For instances with n variables
and cn clauses (constraints), we give algorithms running in time poly(n)·
2n(1−µ) for

– μ = Ω( 1
c
) and polynomial space solving MAX-SAT and MAX-k-

SAT,
– μ = Ω( 1√

c
) and exponential space solving MAX-SAT and MAX-k-

SAT,
– μ = Ω( 1

ck2 ) and polynomial space solving MAX-k-CSP,
– μ = Ω( 1√

ck3 ) and exponential space solving MAX-k-CSP.

The previous MAX-SAT algorithms have savings μ = Ω( 1
c2 log2 c

) for run-

ning in polynomial space [15] and μ = Ω( 1
c log c

) for exponential space [5].
We also give an algorithm with improved savings for satisfiability of
depth-2 threshold circuits with cn wires.

Keywords: Satisfiability algorithm · MAX-SAT · MAX-k-CSP

1 Introduction

The maximum satisfiability problem (MAX-SAT) is to find an assignment that
maximizes the number of satisfied clauses in a CNF formula. MAX-k-SAT is the
special case where all clauses have at most k literals. For instances with n vari-
ables and m = cn clauses, a trivial brute-force search solves MAX-SAT in time
O(mn2n). We are interested in better algorithms running in time Õ(2n(1−μ))
for μ > 0; we will call μ the savings over exhaustive search, and we use Õ()
to ignore polynomial factors. To the best of our knowledge, the best savings
is μ = Ω( 1

c log c ) obtained by Dantsin and Wolpert [5] for an exponential-space
algorithm. For polynomial space algorithms, the best savings is μ = Ω( 1

c2 log2 c
)

shown by Sakai, Seto, and Tamaki [15] recently.
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The algorithm of Sakai, Seto, and Tamaki [15] is based on concentrated
shrinkage under restrictions, which was used by Santhanam [16] for solving the
satisfiability problem on de Morgan formulas. Santhanam [16] observed that, by
greedily restricting the most frequent variables in a formula until p fraction of
the variables are left, the formula size shrinks with high probability by a factor
of pΓ for Γ � 1.5. We will call Γ the shrinkage exponent for de Morgan formulas
with respect to greedy restrictions. The satisfiability algorithm [16] recursively
restricts n − Ω(n) variables, and then gets nontrivial savings since almost all
restricted formulas have size much smaller than the number of variables left.
Sakai, Seto, and Tamaki [15] showed that a similar shrinkage property holds for
MAX-k-SAT instances, which leads to an algorithm with savings μ = Ω( 1

c2k2 ) for
instances with cn clauses. For solving MAX-SAT, they applied Schuler’s width
reduction [1,17] to reduce MAX-SAT to MAX-k-SAT for k = O(log n); their
final MAX-SAT algorithm [15] has savings μ = Ω( 1

c2 log2 c
).

In this work, we improve the savings in [15] further to the following.

Theorem 1. There is a polynomial-space algorithm solving MAX-SAT
instances with n variables and cn clauses in time Õ(2n(1−μ)) for μ = Ω( 1c ).

Our algorithm is based on an improvement of concentrated shrinkage under
greedy restrictions. We define a measure on MAX-SAT instances, which takes
into account the numbers of clauses of different widths. We show that by a
greedy restriction of all but p fraction of the variables, the measure shrinks with
high probability by a factor of pΓ for Γ � 2. This improved shrinkage exponent
allows us to get better savings in the algorithm for the maximization problem.
Furthermore, since the measure does not depend on the clause width, we do not
need Schuler’s width reduction which was used by [15], and our algorithm does
not differentiate between MAX-SAT and MAX-k-SAT.

We further improve the savings when the algorithm is allowed to run in
exponential space. Here we use Williams’ algorithm [19] for MAX-2-SAT as a
black-box, and improve the shrinkage exponent to Γ � 3 by defining a differ-
ent measure on MAX-SAT instances. This improved shrinkage exponent again
implies better savings in the algorithm.

Theorem 2. There is an exponential-space algorithm solving MAX-SAT
instances with n variables and cn clauses in time Õ(2n(1−μ)), for μ = Ω( 1√

c
).

This improves the previous best-known result with savings μ = Ω( 1
c log c ) by

Dantsin and Wolpert [5] for solving MAX-SAT in exponential space.
Our approach is quite generic; we also apply it to solve sparse MAX-k-CSP.

Specifically, we give a measure for MAX-k-CSP instances, and show that the
measure shrinks nontrivially with probability 1 under greedy restrictions. This
allows us to give the following algorithms.

Theorem 3. For MAX-k-CSP instances with n variables and cn constraints,
there is a polynomial-space algorithm running in time Õ(2n(1−μ)) with savings
μ = Ω( 1

ck2 ), and an exponential-space algorithm with savings μ = Ω( 1√
ck3 ).
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All our algorithms extend to counting the number of optimal assign-
ments for the weighted version of the problem, where each clause/constraint
is given a weight, and the goal is to maximize the total weight of satisfied
clauses/constraints.

We also consider depth-2 threshold circuits, which can be viewed as a gener-
alization of MAX-SAT. Impagliazzo, Paturi, and Schneider [10] recently gave a
satisfiability algorithm with savings μ = 1

cO(c2) for depth-2 threshold circuits of
cn wires. Using our shrinkage approach, we improve the savings slightly to 1

cO(c) ,
with a much simpler analysis.

1.1 Related Work

Exact algorithms for sparse MAX-SAT and MAX-k-SAT have been well studied.
For MAX-SAT instances with n variables and m = cn clauses, the best savings
of polynomial-space algorithms was Ω( 1

c2 log2 c
) [15] (and Ω( 1

c log3 c
) for a ran-

domized algorithm), improving a previous result Ω( 1
2O(c) ) [13]. The best savings

of exponential-space algorithms was Ω( 1
c log c ) [5]. In this work, we improve the

savings for both polynomial-space and exponential-space algorithms.
There are also algorithms with running time expressed as Õ(2δm) for a con-

stant δ < 1, where m is the number of clauses/constraints. For example, the best
such algorithms achieved δ � 0.4057 for MAX-SAT [2], δ � 0.1583 for MAX-2-
SAT [7], and δ � 0.1901 for MAX-2-CSP [7]. However, such algorithms are not
better than exhaustive search for m > n/δ.

For general (non-sparse) instances, the only non-trivial exact algorithm is
Williams’ algorithm for MAX-2-CSP (and MAX-2-SAT), which runs in time
Õ(2nω/3) for ω < 2.376 and in exponential space. It is open whether we have
non-trivial MAX-2-CSP algorithms running in polynomial space, or generalize
Williams’ algorithm for MAX-3-CSP or MAX-3-SAT. In this work, we will use
Williams’ algorithm as a blackbox for improving algorithms for sparse MAX-k-
CSP and MAX-SAT.

The shrinkage approach to satisfiability algorithms was initiated by San-
thanam [16] for de Morgan formulas. The algorithm was improved later [3,4,12]
by improving the shrinkage exponents with respect to certain greedy restric-
tions. In particular, the improvement in [4] follows from a measuring technique
of [9,14] for de Morgan formulas.

The measuring and shrinkage technique we use in this work is also related to
the “measure and conquer” approach [6], which was used to give improved exact
algorithms for graph problems such as maximum independent set. The main dif-
ference is that, the usual “measure and conquer” approach reduces the measure
additively in each recursive step, whereas the shrinkage approach reduces the
measure by a multiplicative factor (depending on the shrinkage exponent), and
moreover the reduction only occurs with high probability in the latter case.

1.2 Organization of the Paper

We give preliminaries in Section 2. Since our MAX-SAT algorithms require more
involved analysis than MAX-k-CSP, we first present our MAX-k-CSP algorithms
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in Section 3, and then MAX-SAT algorithms in Section 4. In Section 5, we apply
a similar approach to improve satisfiability algorithms for depth-2 threshold
circuits.

2 Preliminaries

2.1 MAXSAT, MAX-k-SAT, MAX-k-CSP

Let x1, . . . , xn be boolean variables. A literal is either a variable or its negation.
A clause is a disjunction of literals; a k-clause is a clause on k literals. The
MAX-SAT problem is to find, given a collection of clauses, an assignment to the
variables maximizing the number of satisfied clauses (we call such an assignment
optimal). MAX-k-SAT is the special case of MAX-SAT where all clauses have at
most k literals. The weighted MAX-SAT problem generalizes MAX-SAT by asso-
ciating with each clause an integer weight, and the goal is to find an assignment
maximizing the total weight of satisfied clauses.

A k-constraint is a boolean function on k variables. The (weighted) MAX-
k-CSP problem generalizes (weighted) MAX-k-SAT by allowing arbitrary con-
straints rather than disjunctions of literals. We will also consider the problems of
counting the number of optimal assignments for the above optimization problems.

2.2 Concentration Bounds

A sequence of random variables X0,X1, . . . , Xn is a supermartingale with respect
to a sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] �
Xi−1, for 1 � i � n. We need the following variant of Azuma’s inequality.

Lemma 1 ([3]). Let {Xi}n
i=0 be a supermartingale with respect to {Ri}n

i=1. Let
Yi = Xi − Xi−1. If, for every 1 � i � n, the random variable Yi (conditioned on
Ri−1, . . . , R1) assumes two values each with probability 1/2, and there exists a
constant ci � 0 such that Yi � ci, then, for any λ, we have

Pr[Xn − X0 � λ] � exp
(

− λ2

2
∑n

i=1 c2i

)

.

3 MAX-k-CSP

3.1 Known Algorithms for MAX-2-CSP

Williams [19] gave an algorithm with constant savings solving general (non-
sparse, weighted) MAX-2-CSP and MAX-2-SAT. In fact, Williams’s algorithm
also counts the number of optimal assignments.

Theorem 4 ([11,19]). For MAX-2-CSP instances with n variables and m con-
straints where each constraint has a weight at most W , there is an algorithm
which counts the number of optimal assignments in time O(μ(nmW ) · 2nω/3),
where ω < 2.376 and μ(b) = b log b log log b.
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Note that, Williams’ algorithm requires exponential space; it is not known
whether there are polynomial-space algorithms with constant savings.

For sparse instances of MAX-2-CSP with cn constraints, several known algo-
rithms [8,18] have savings of the form μ = Ω( 1c ). In the following, we show
one simple algorithm with savings Ω(1c ). The algorithm is based on a greedy
restriction of the most frequent variables appearing in 2-constraints. Although
the hidden constant in the savings Ω(1c ) is not the best, we wish to use it as a
warm-up for our later algorithms.

Lemma 2. There is a polynomial-space algorithm solving MAX-2-CSP with n
variables and cn 2-constraints in time Õ(2n(1−Ω( 1

c ))).

Proof. Given a MAX-2-CSP instance with cn 2-constraints, we assume each 2-
constraint is over two distinct variables. Let x be a variable which appears the
maximum number of times in the 2-constraints. This means x appears in at least
2c of 2-constraints. We make two branches by fixing x = 0 in one branch and
x = 1 in the other. In each branch, the number of remaining 2-constraints is at
most cn − 2c = cn(1 − 2/n) � cn(1 − 1/n)2. Then recursively restrict the most
frequent variables one at a time. After n−pn steps, for p = 1/(2c), there will be
pn variables left unfixed, but the number of remaining 2-constraints will be at
most cn(1−1/n)2 · · · (1−1/(pn+1))2 = cn ·p2 = pn/2. Then after at most pn/2
more steps (restricting the most frequent variable in each step), all 2-constraints
will be eliminated, and we get a MAX-1-CSP instance (on pn/2 variables).

We can maintain the number of satisfied constraints along each recursive
branch, and, at the end of each branch, solve MAX-1-CSP by setting each vari-
able to a value which satisfies at least as many constraints as the other. The
total number of branches is at most 2n−pn/2. Therefore, the running time is
Õ(2n−pn/2) = Õ(2n(1− 1

4c )), and the algorithm uses polynomial space. ��
Note that, this algorithm can be extended to solve weighted MAX-2-CSP

and also count the number of optimal assignments, by maintaining necessary
information along the recursive branches. If W is the maximum weight of the
constraints, the running time will be Õ(2n(1− 1

4c ) · log W ).

3.2 A Polynomial-space Algorithm for MAX-k-CSP

We first extend the algorithm in Lemma 2 to solve MAX-k-CSP. We introduce
a measure on the instances, and use greedy restrictions such that the measure
(and thus, the size of the instance) reduces non-trivially.

Let F be a MAX-k-CSP instance on n variables. For each i-constraint C in F ,
we define σ(C) = σi ≡ i(i − 1). Let σ(F ) =

∑
C∈F σ(C). Consider a restriction

ρ where we randomly pick a variable and fix it. For an i-constraint C,

Eρ[σ(C|ρ)] � n − i

n
σi +

i

n
σi−1 = σi ·

[

1 − i

n

(

1 − σi−1

σi

)]

= σi ·
(

1 − 2
n

)

.

We then have Eρ[σ(F |ρ)] � σ(F )(1 − 2/n) � σ(F )(1 − 1/n)2. By averaging,
we can deterministically find one variable (in polynomial time) such that, after



38 R. Chen and R. Santhanam

fixing it to either 0 or 1, σ(F ) reduces by a factor of (1−1/n)2. If we repeat this
recursively until pn variables left, the measure on the restricted instance will be
at most σ(F )p2. Our algorithm follows from this non-trivial shrinkage.

Theorem 5. For MAX-k-CSP instances on n variables with cn constraints,
there is an algorithm running in Õ(2n(1−Ω( 1

ck2 ))) time and polynomial space.

Proof. Let F be an instance with cn constraints; then σ(F ) � cnσk = cnk(k−1).
The algorithm recursively restricts one variable at a time. At the i-th step,
restrict a variable x such that the measure reduces by a factor of (1−1/(n−i+1))2

for both restrictions x = 0 and x = 1. After n − pn steps, for p = 1
ck(k−1) , the

restricted instance F ′ has σ(F ′) � σ(F )p2 � pn. Note that, this holds for all
recursive branches.

Suppose the number of i-constraints left in F ′ is bi; then since σ(F ′) =
∑k

i=2 bii(i − 1) � pn, we have
∑k

i=2 bi(i − 1) � pn/2. Therefore, after pn/2
recursive steps (fix all but one variable in each i-constraint), all remaining con-
straints have width 1, and we can solve MAX-1-CSP in polynomial time. The
recursion tree has at most 2n−pn/2 branches. The total running time is at most
poly(n) · 2n(1−p/2), and the algorithm uses polynomial space. ��

3.3 An Exponential-Space Algorithm for MAX-k-CSP

We next give an algorithm with improved running time but using exponential
space. The algorithm reduces MAX-k-CSP to MAX-2-CSP via greedy restric-
tions as before, and then solves MAX-2-CSP using Williams’ algorithm [19].
Using a different measure on the instances, we can improve the shrinkage expo-
nent, and get better savings in the running time.

Let F be an instance with n variables and cn constraints. For each i-
constraint C, we change the measure to σ(C) = σi ≡ i(i − 1)(i − 2). Then
σ(F ) � cn · k(k − 1)(k − 2). Under a restriction ρ which randomly fixes one
variable, we have, for i � 3,

E[σ(C|ρ)] � σi ·
[

1 − i

n

(

1 − σi−1

σi

)]

= σi ·
(

1 − 3
n

)

� σi ·
(

1 − 1
n

)3

.

Then E[σ(F |ρ)] � σ(F )
(
1 − 1

n

)3. By averaging, we can deterministically find a
variable such that σ(F ) shrinks by

(
1 − 1

n

)3.

Theorem 6. For MAX-k-CSP instances with n variables and cn constraints,
there is an algorithm running in time Õ(2n(1−μ)) for μ = Ω( 1√

ck3 ).

Proof. We recursively restrict variables one by one. At the i-th step, restrict
a variable x such that the measure reduces by (1 − 1/(n − i + 1))3. After
n − pn steps for p =

√
1

ck(k−1)(k−2) , let F ′ be the restricted instance; we have

σ(F ′) � σ(F ) · p3 � pn. Then we can further restrict pn/6 variables such that
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all remaining constraints have width at most 2 (restrict all but two variables in
each constraint). We get MAX-2-CSP instances for each branch and solve by
Williams’ algorithm in Theorem 4. The running time is at most

poly(n) · 2n−pn+pn/6 · 2(pn−pn/6)·2.376/3 = poly(n) · 2
n(1−Ω( 1√

ck3
))

.

��
Note that, the algorithm uses exponential space as required by Williams’

algorithm. In general, this shrinkage approach gives a reduction from sparse
instances of large width to dense instances of small width.

Theorem 7. If, for some r, MAX-r-CSP is solvable in time 2n(1−δ), where δ is
independent of the number of clauses, then, for all k > r, MAX-k-CSP instances
with cn constraints are solvable in time Õ(2n(1−μ)) for μ = Ω( δ

c1/rk1+1/r ).

The proof is essentially the same as in Theorem 6, by changing σi = i(i −
1) · · · (i − r). We omit the proof here.

We also note that, the algorithm in Theorem 6 can be generalized to count
optimal assignments for even weighted instances. As required by Williams’ algo-
rithm in Theorem 4, for maximum constraint weight W , the running time
increases by a factor of poly(W ). This is in contrast with the polynomial-space
algorithms in Lemma 2 and Theorem 5, where the running time increases by a
factor of O(log W ).

4 MAX-SAT and MAX-k-SAT

The algorithms for MAX-k-CSP also apply to the special case MAX-k-SAT.
However, we can still improve the savings by eliminating the dependency on the
clause width, and also generalize the algorithms to solve MAX-SAT. Here we
still use the greedy restriction approach, but need a more involved analysis on
the shrinkage of the instance size.

4.1 A Polynomial-Space Algorithm for MAX-SAT

Let F be a MAX-SAT instance on n variables and cn clauses. We associate with
each i-clause a measure σi. Let C be an i-clause, for i � 2. Let ρ be a restriction
which randomly picks and fixes one variable. Then C becomes an (i − 1)-clause
or a constant each with probability i/2n. Thus,

E[σ(C|ρ)] � n − i

n
σi +

i

2n
σi−1 = σi ·

[

1 − i

n

(

1 − σi−1

2σi

)]

.

We can choose
σ1 = 0, σ2 = 1, and σi = 2, i � 3.

It is easy to check that, for all i � 2, E[σ(C|ρ)] � σi(1−2/n) � σi(1−1/n)2. Then
we have E[σ(F |ρ)] � σ(F )(1−1/n)2. By averaging, we can deterministically find
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a variable x such that [σ(F |x=1) + σ(F |x=0)]/2 � σ(F )(1 − 1/n)2. Note that,
this only bounds the average of σ(F |x=1) and σ(F |x=0).

The MAX-SAT algorithm then follows by restricting variables recursively.
Although we only have shrinkage on average in each step, we can argue that,
shrinkage happens with high probability over the whole process, using a similar
approach as in [3,16].

Theorem 8 (Theorem 1 Restated). There is a polynomial-space algorithm
solving MAX-SAT instances with n variables and cn clauses in time Õ(2n(1−μ))
for μ = Ω(1c ).

Proof. Let F be an instance with n variables and cn clauses, and thus σ(F ) �
2cn. The algorithm recursively restricts one variable at a time.

Let F0 := F , and Fi be the restricted instance after the i-th step. At the
i-th step, we find a variable x in Fi−1 such that, by randomly fixing x to 0 or 1,
E[σ(Fi)] � σ(Fi−1)(1 − 1

n−i+1 )2.
Define

Zi = log σ(Fi) − log σ(Fi−1) − 2 log
(

1 − 1
n − i + 1

)

.

By Jensen’s inequality, conditioned on the random bits assigned to the first
i − 1 variables, E[Zi] � 0. We also have Zi � ci := −2 log

(
1 − 1

n−i+1

)
, since

σ(Fi) � σ(Fi−1).
Then {∑i

j=1 Zj} is a supermartingale with respect to the random bits
assigned to restricted variables. By Lemma 1, for any λ,

Pr

⎡

⎣
i∑

j=1

Zj � λ

⎤

⎦ � exp

(

− λ2

2
∑i

j=1 c2j

)

.

The left-hand side is

Pr
[
log σ(Fi)− log σ(F )−2 log

(
n−i
n

)
� λ

]
= Pr

[
σ(Fi) � eλσ(F )

(
n−i
n

)2]
.

For each 1 � j � i, by log(1+x) � x, we have cj = 2 log(1+ 1
n−j ) � 2

n−j . Thus,
∑i

j=1 c2j � 4
n−i−1 since

i∑

j=1

(
1

n − j

)2

�
i∑

j=1

(
1

n − j − 1
− 1

n − j

)

� 1
n − i − 1

.

For i = n − pn, λ = ln 2, and pn > 20, we get

Pr
[
σ(Fi) � 4cnp2

]
� Pr

[
σ(Fi) � 2σ(F )p2

]
� e−λ2(pn−1)/8 < 2−pn/20.
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Choose p = δ/4c, for δ to be fixed later. We have that, after restricting n−pn
variables, with probability at least 1 − 2−pn/20, there are at most 4cnp2 = δpn
remaining clauses of width at least 2.

Claim. There is a polynomial-space algorithm running in time Õ(2n/2) which
solves MAX-SAT for instances with n variables and δn clauses of width at least
2, for δ � 0.1.

Proof. We recursively restrict arbitrary variables that appear in clauses of width
at least 2, and stop when all remaining clauses have width 1; then solve MAX-
1-SAT easily. Let m = δn be the number of clauses of width at least 2. The
recursion tree has size bounded by the recurrence T (n,m) � T (n − 1,m) +
T (n − 1,m − 1). This is at most

(
n
δn

)
�

(
e
δ

)δn
< 2n/2, where the first inequality

follows from
(
n
k

)
�

(
ne
k

)k. ��
Choose δ = 0.1. By the above claim, the running time for branches left with

at most δpn clauses of width at least 2 is 2n−pn · 2pn/2 = 2n−pn/2. For the other
branches, we use brute-force search; the running time is at most 2n · 2−pn/20.
Therefore, the total running time is bounded by poly(n) · 2n(1−Ω(1/c)). ��

4.2 An Exponential-Space Algorithm for MAX-SAT

To improve the savings in the running time, we can improve the shrinkage
exponent by reducing the instances to MAX-2-SAT, and apply Williams’ algo-
rithm [19].

We let σ1 = σ2 = 0, σ3 = 1, σ4 = 2, and σi = 3, for i � 5. It is easy to see
that, under one step of random restriction ρ, for an i-clause C where i � 3,

σ(C|ρ) � σi ·
[

1 − i

n

(

1 − σi−1

2σi

)]

� σi ·
(

1 − 3
n

)

.

Thus, for an instance F ,

σ(F |ρ) � σ(F ) ·
(

1 − 3
n

)

� σ(F ) ·
(

1 − 1
n

)3

.

Theorem 9 (Theorem 2 restated). For MAX-SAT instances on n variables
with cn constraints, there is an algorithm running in time Õ(2n(1−μ)) for μ =
Ω( 1√

c
).

The proof is similar to the proof of Theorem 1. We can greedily restrict n−pn
variables. Then with high probability (at least 1 − 2−pn/20), there are at most
4cnp3 clauses of width at least 3; we solve such restricted instances following the
claim below for p =

√
δ/4c and δ = 0.01. Otherwise, we use brute-force search.

The total running time is bounded by Õ(2n(1−Ω(p))). We omit the complete
proof.
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Claim. MAX-SAT instances on n variables and δn clauses of width larger than
2, for δ � 0.01, are solvable in time Õ(20.9n) and exponential space.

Proof. We recursively restrict variables appearing in clauses of width larger than
2; when all clauses have width at most 2, we use Williams’ algorithm in Theo-
rem 4 for MAX-2-SAT. The total running time is bounded by

(
n
δn

) · 22.376n/3 �
(

e
δ

)δn · 22.376n/3 < 20.9n. ��
Again, we have the following reduction from sparse instances of large width

to dense instances of small width.

Theorem 10. If for some r, MAX-r-SAT is solvable in time 2n(1−δ), where δ
is independent of the number of clauses, then MAX-SAT for instances with cn
clauses is solvable in time Õ(2n(1−μ)) for μ = Ω( δ

c1/r
).

Sakai et al. [15] uses Schuler’s width reduction to reduce MAX-SAT instances
with cn clauses to MAX-k-SAT instances for k = O(log c), and then solve MAX-
k-SAT in time O(2n(1−μ)) for μ = Ω( 1

c2k2 ); their final algorithm [15] for MAX-
SAT runs in time O(2n(1−μ)) for μ = Ω( 1

c2 log2 c
). Our result avoids Schuler’s

width reduction and improves the running time.
Our MAX-SAT algorithms can be extended to solve the weighted version

and also the counting problem. For instances with clause weight at most W ,
the running time of the polynomial-space algorithm (Theorem 1) increases by
a factor of log(W ), and the running time of the exponential-space algorithm
(Theorem 2) increases by a factor of poly(W ).

5 Sparse Depth-2 Threshold Circuits

A threshold circuit is a boolean circuit where all internal gates are threshold
gates; a threshold gate on k inputs computes a function sign(

∑k
i=1 wixi + w0)

where wi’s are integer weights. A depth-2 threshold circuit on n inputs has one
output threshold gate at the top, a layer of threshold gates in the middle, and
n input gates at the bottom. Obviously, a MAX-SAT instance with m clauses is
a special case of depth-2 threshold circuits with m + 1 threshold gates.

Impagliazzo et al. [10] showed a nontrivial satisfiability algorithm for depth-2
threshold circuits with linear number of wires (a wire is an edge in the underlying
graph of the circuit). For depth-2 threshold circuits with cn wires, the algorithm
runs in time Õ(2(1−μ)n) for μ = 1

cO(c2) . They first give an algorithm for the
special case where there are few threshold gates, and then applied restrictions
to eliminate threshold gates non-trivially. Using our shrinkage approach, we can
improve the parameters in gate elimination, which implies better savings of the
algorithm.

Lemma 3. Given a depth-2 threshold circuits with n variables and cn wires,
there is a set U of at least pn variables for p = 1

cO(c) such that the number of
threshold gates depending on at least two variables in U is at most δpn, for any
constant δ < 1. Furthermore, U can be constructed in polynomial time.
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This lemma follows directly from the following claim. Impagliazzo et al. [10]
showed this result for p = 1

cO(c2) using a more dedicated analysis.

Claim. Let S be a collection of subsets of [n] such that
∑

A∈S |A| � cn. Then
there is a subset U ⊆ [n] of size at least pn for p = 1

cO(c) such that there are at
most δpn subsets in S containing at least two elements in U , for any constant
δ < 1. Furthermore, U can be constructed in polynomial time.

Proof. Define σ(S) =
∑

A∈S |A| − |S|. At the beginning, let U = [n] and obtain
T from S by eliminating singletons; note that σ(T ) = σ(S). We will greedily
eliminate elements from U and subsets in T such that σ(T ) reduces non-trivially.
We maintain T as the collection of subsets each containing at least two elements
from U .

At each step, check whether |T | � δ|U |. If so, then we are done and return U .
Otherwise, it holds that |T | > δ|U |; we will greedily eliminate one element

and continue the process. Suppose that
∑

A∈T |A| = c′|U | for c′ � c. Then we
can easily find some x ∈ U which appears in at least c′ subsets in T . Eliminate
x from U and from all subsets in T ; we also remove any singletons from T . Let
U ′ = U \ {x}, and denote by T ′ the new collection. Then

∑

A∈T ′
|A| � c′|U | − c′ = c′(|U | − 1) � c|U ′|,

and since σ(T ) = c′|U | − |T | < (c′ − δ)|U |,

σ(T ′) � σ(T ) − c′ < σ(T )
(

1 − c′

(c′ − δ)|U |
)

� σ(T )
(

1 − 1
|U |

)c/(c−δ)

.

Fix p′ = (2(c − δ))−(c−δ)/δ = c−O(c). If |T | � δ|U | holds at the i-th step for
some i � n − p′n, then we have returned U at the i-th step; the claim holds for
p = |U |/n = c−O(c).

If the process continues for n−p′n steps (|T | > δ|U | holds at each step), then
the collection T after n − p′n steps has σ(T ) � (cn − δn)p′c/(c−δ) � p′n/2. Note
that we still have p′n elements in U . Then, for each A ∈ T , eliminate all but one
arbitrary element of A from U and all subsets in T ; we also remove any singletons
from T . Since σ(T ) � p′n/2, we can eliminate at most p′n/2 elements in total.
Finally, there are at least p′n/2 elements left in U , but T becomes empty; that
is |T | = 0 � δ|U |. We return U ; the claim holds for p � p′/2 = c−O(c).

��
We need the following algorithm [10] for the special case where there are few

threshold gates.

Lemma 4 ([10]). For depth-2 threshold circuits with n variables and δn thresh-
old gates for δ < 0.099, there is a satisfiability algorithm running in time
Õ(2(1−μ)n) for a constant μ > 0.

We then get the following improved algorithm by combining greedy restric-
tions in Lemma 3 with the algorithm of Lemma 4.
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Theorem 11. There is a satisfiability algorithm for depth-2 circuits with n vari-
ables and cn wires running in time Õ(2n(1−μ′)) for μ′ = 1

cO(c) .

Proof. Given a depth-2 threshold circuit with n variables and cn wires, we fix
δ < 0.099, and find a subset U of pn variables for p = 1

cO(c) as in Lemma 3. We
restrict all variables not in U . By enumerating assignments to variables not in
U , we get 2n−pn branches. Each branch gives a restricted circuit on pn variables
and δpn threshold gates; then apply the algorithm of Lemma 4 for each branch,
which takes time Õ(2(1−μ)pn) for a constant μ.

The total running time is bounded by Õ(2n−pn · 2(1−μ)pn) = Õ(2n−n/cO(c)
).
��

6 Open Questions

A major open question is to improve the savings to Ω(1/polylog(c)) for solv-
ing MAX-SAT/MAX-k-SAT on instances of cn clauses. For depth-2 thresh-
old circuits with cn wires, it would be interesting to improve the savings to
Ω(1/poly(c)), or give an algorithm for circuits with cn gates, instead of wires.
It is challenging to get constant savings for solving non-sparse MAX-k-SAT, for
any k � 3.
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(eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 165–176. Springer, Heidelberg
(2014)

5. Dantsin, E., Wolpert, A.: MAX-SAT for formulas with constant clause density can
be solved faster than in O(2n) time. In: Biere, A., Gomes, C.P. (eds.) SAT 2006.
LNCS, vol. 4121, pp. 266–276. Springer, Heidelberg (2006)

6. Fomin, F., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)

7. Gaspers, S., Sorkin, G.: A universally fastest algorithm for max 2-sat, max 2-csp,
and everything in between. J. Comput. Syst. Sci. 78(1), 305–335 (2012)

8. Golovnev, A., Kutzkov, K.: New exact algorithms for the 2-constraint satisfaction
problem. Theor. Comput. Sci. 526, 18–27 (2014)

9. Impagliazzo, R., Nisan, N.: The effect of random restrictions on formula size. Ran-
dom Structures and Algorithms 4(2), 121–134 (1993)



Improved Algorithms for Sparse MAX-SAT and MAX-k-CSP 45

10. Impagliazzo, R., Paturi, R., Schneider, S.: A satisfiability algorithm for sparse
depth two threshold circuits. In: 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, Berkeley, CA, USA, October 26–29, 2013,
pp. 479–488 (2013)

11. Koivisto, M.: Optimal 2-constraint satisfaction via sum-product algorithms. Inf.
Process. Lett. 98(1), 24–28 (2006)

12. Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demor-
gan formula size. In: Proceedings of the Fifty-Fourth Annual IEEE Symposium on
Foundations of Computer Science, pp. 588–597 (2013)

13. Kulikov, A.S., Kutzkov, K.: New bounds for MAX-SAT by clause learning. In:
Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649,
pp. 194–204. Springer, Heidelberg (2007)

14. Paterson, M., Zwick, U.: Shrinkage of de Morgan formulae under restriction. Ran-
dom Structures and Algorithms 4(2), 135–150 (1993)

15. Sakai, T., Seto, K., Tamaki, S.: Solving sparse instances of Max SAT via width
reduction and greedy restriction. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 32–47. Springer, Heidelberg (2014)

16. Santhanam, R.: Fighting perebor: new and improved algorithms for formula and
qbf satisfiability. In: Proceedings of the Fifty-First Annual IEEE Symposium on
Foundations of Computer Science, pp. 183–192 (2010)

17. Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive
normal form. J. Algorithms 54(1), 40–44 (2005)

18. Scott, A., Sorkin, G.: Linear-programming design and analysis of fast algorithms
for max 2-csp. Discret. Optim. 4(3–4), 260–287 (2007)

19. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348(2–3), 357–365 (2005)



Laissez-Faire Caching for Parallel #SAT Solving

Jan Burchard(B), Tobias Schubert, and Bernd Becker

Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 051,
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Abstract. The problem of counting the number of satisfying assign-
ments of a propositional formula (#SAT) can be considered to be the
big brother of the well known SAT problem. However, the higher compu-
tational complexity and a lack of fast solvers currently limit its usability
for real world problems.

Similar to SAT, utilizing the parallel computation power of modern
CPUs could greatly increase the solving speed in the realm of #SAT.
However, in comparison to SAT there is an additional obstacle for the
parallelization of #SAT that is caused by the usage of conflict learning
together with the #SAT specific techniques of component caching and
sub-formula decomposition. The combination can result in an incorrect
final result being computed due to incorrect values in the formula cache.
This problem is easily resolvable in a sequential solver with a depth-first
node order but requires additional care and handling in a parallel one.
In this paper we introduce laissez-faire caching which allows for an arbi-
trary node computation order in both a sequential and parallel solver
while ensuring a correct final result. Additionally, we apply this new
caching approach to build countAntom, the world’s first parallel #SAT-
solver.

Our experimental results clearly show that countAntom achieves con-
siderable speedups through the parallel computation while maintaining
correct results on a large variety of benchmarks coming from different
real-world applications. Moreover, our analysis indicates that laissez-faire
caching only adds a small computational overhead.

1 Introduction

The problem of counting the number of satisfying assignments of a propositional
formula (#SAT) can be directly derived from the simpler Boolean satisfiability
problem (SAT) which has become one of the important work horses in modern
computer science, especially in the domains of artificial intelligence, planning,
model checking, and hardware test.

Its #P-completeness [1] however makes #SAT a much harder problem which
is reflected in the comparatively small size of currently solvable formulas.

Any real world applicability, though, highly depends on the possibility of
solving larger formulas. Applications for #SAT could then be found wherever
problems are encoded as propositional formulas. Especially, every SAT instance
is a possible #SAT instance: If a formula encodes a problem such that it is
c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 46–61, 2015.
DOI: 10.1007/978-3-319-24318-4 5
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satisfiable if the event X can occur, the number of satisfying assignments often
represents the likelihood of X to occur.

One possibility of increasing the speed of the computation is to harness to
parallel computation power of modern CPUs. This approach has shown great
speedups for the SAT problem [2–4] but has, thus far, not been extended to
#SAT.

Modern #SAT solvers contain several improvements like component caching
and sub-formula decomposition which are generally not present in a SAT solver.
The combination of these techniques with conflict learning can cause the final
result to be computed incorrectly due to incorrect values in the cache [5]. In
current sequential #SAT solvers like cachet [5] or sharpSat [6] this problem can
easily be resolved because the decision tree is traversed in a depth-first manner.
Since such a node order cannot be guaranteed in a parallel solver this simple
solution is not applicable anymore.

In this paper we introduce laissez-faire caching as a solution to incorrect
cache values which is independent of the node order. It can therefore be used in
a parallel solver as well as in a sequential one where a changed node order might
increase the solving speed too. Utilizing this new caching scheme we created
countAntom, the first parallel #SAT solver which is competitive or even supe-
rior to [6] when used as a sequential solver and moreover gives large speedups in
parallel mode.

The remainder of this paper is structured as follows: Sections 2 and 3 give
a short overview of the mathematical notation and of modern #SAT solving
techniques, respectively. Next, Section 4 introduces laissez-faire caching which is
followed by an explanation of the general layout of countAntom in Section 5. In
Section 6 we present our experimental results. Section 7 concludes with a short
summary and outlook onto future work.

2 Basic Notations

A propositional formula is built up of variables (v1, v2, . . .) which are linked by
operators (¬,∧,∨,⊕, . . .). In the context of (#)SAT, formulas are usually given
in conjunctive normal form (CNF). A formula in CNF is composed of clauses
connected by conjunctions (∧ ). Each clause consists of literals connected with
disjunctions (∨ ). A literal is a variable or a negated variable (v or ¬v). For
simplicity, a set notation is used: A clause v1 ∨ ¬v2 ∨ v3 is represented as a set
of literals {v1,¬v2, v3} and a formula c1 ∧ c2 ∧ c3 as a set of clauses {c1, c2, c3}.

A (partial) variable assignment π assigns (some) variables a truth value (true
or false). Based on a variable assignment, a clause or the whole formula can
be evaluated as either true or false (e.g., for a clause c and an assignment π
we write c|π = false, iff c evaluates to false for π). If the clause or formula
is evaluated as true, it is called satisfied, if it is evaluated as false, it is called
unsatisfied. To satisfy a formula in CNF all clauses have to be satisfied. To satisfy
a clause it is sufficient that one of its literals evaluates as true.
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A variable that is not assigned is free. The concept of free variables is extended
to literals: A literal is free if its variable is free.

A clause with free literals which is not satisfied (yet) is called open. An open
clause that has exactly one free literal l is unit. Unit clauses imply a variable
assignment which makes l evaluate as true because each clause has to be satisfied
in order to satisfy the entire formula. Given a partial variable assignment π the
residual formula consists of the remaining open clauses of the original formula
without the assigned literals.

The model count of a formula ϕ (abbreviated as mc(ϕ)) is the number of
different variable assignments π with ϕ|π = true.

Given two clauses c1 and c2 with a shared variable v occurring positively in
the one and negatively in the other, the clauses can be combined into a new
clause through resolution. The resolvent c1 ⊗ c2 is computed by combining the
literals of c1 and c2 and removing all occurrences of v: c1⊗c2 = (c1∪c2)\{v,¬v}.
Adding the resolvent of two clauses to a formula results in an equivalent formula
and thus the model count does not change, either.

3 #SAT Solving

There are different approaches to #SAT solving which either compute exact or
approximative results (with or without any guarantees). This paper presents an
exact #SAT solver which computes the number of satisfying assignments by
counting the number of satisfied branches in the decision tree.

Even though approximative solvers outperform their exact counterparts on
some formula classes they can also be considerably slower on others. Thus a
combined approach of running both an approximative and exact solver in parallel
could offer the highest solving speed even when the result does not have to be
correct [7]. Hence further improving the performance of exact search based #SAT
solvers still remains an important objective.

Like most exact #SAT solvers countAntom is a modified DPLL [8] based SAT
solver which is extended with various techniques that are usually too costly in the
SAT context but provide speedups for #SAT. Of greatest interest and gain are
sub-formula decomposition [9] and formula caching [10]. Additionally common
SAT solver improvements like preprocessing, a fast deduction implementation,
an advanced decision heuristic and the learning of conflict clauses are used.

3.1 Conflict Learning

Whenever the current variable assignment is in conflict (e.g., because a variable
has to be assigned to true and false at the same time to satisfy the formula)
the solver creates a conflict clause. This conflict clause attempts to capture the
reason behind the current conflict (which might only be a subset of the current
variable assignment) to avoid repeating the same assignment pattern again. The
conflict clause is generated by resolving clauses of the current formula and is
then added as a new clause.
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3.2 Sub-Formula Decomposition

During the computation the residual formula might become divisible into mul-
tiple sets of clauses with no variable occurring in more than one set. Each set
corresponds to a sub-formula which can be solved separately. The final model
count in one branch of the decision tree is then computed by multiplying the
results from all sub-formulas.

When splitting a formula with n + m variables into two sub-formulas with
n and m variables, the worst case computation complexity is reduced from
O(2n+m) to O(2n + 2m). To increase the chance of a successful split operation,
learned conflict clauses are not considered for this operation because they might
add additional dependencies between otherwise disjoint sub-formulas which were
not present in the original formula.

For graphical representation the concept of the decision tree in which each
node represents a decision variable and each outgoing edge of a node corresponds
to an assignment of that variable to either true or false is extended into that
of a component tree (see Figure 1 for an example). When a node is split into
sub-formulas they are represented as sibling nodes each of which is computed
separately.

3.3 Formula Caching

Nodes with the same residual formula might occur multiple times in different
locations in the component tree. Formula caching allows the solver to re-use
previously computed results in case the same residual formula is encountered
again. In combination with sub-formula decomposition, the cache stores the value
of every computed node in the component tree.

3.4 Incorrect Results in the Cache

When combining conflict learning with sub-formula decomposition and caching,
it might happen that an incorrect value is stored in the cache [5]. This rare
event can only occur when the residual formula is split into two or more sub-
formulas and one of these sub-formulas is unsatisfiable. Since one sub-formula
is unsatisfiable the whole branch of the component tree (and hence the residual
formula) is unsatisfiable. Through the influence of learned conflict clauses, which
prune the search space, the results for the remaining sibling sub-formulas might
be incorrect because some satisfying assignments are erroneously ignored.

As an example consider the formula ϕ presented in [5]:

ϕ =
{

c1
︷ ︸︸ ︷
{p0, p1,¬a1},

c2
︷ ︸︸ ︷
{p0,¬p2, a2},

c3
︷ ︸︸ ︷
{a1, a2, a3},

c4
︷ ︸︸ ︷
{¬p1, b1},

c5
︷ ︸︸ ︷
{¬b1, b2},

c6
︷ ︸︸ ︷
{p2,¬b2}

}

(1)
The clause cx = {p0,¬a1, a2} can be inferred from ϕ through resolution

using c1, c4, c5, c6 and c2. Therefore, cx could have been learned and added
to the formula as a conflict clause. When working with the variable assignment
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p0 = false, p1 = true, p2 = false the formula can be split into two sub-formulas
ϕ1 =

{{a1, a2, a3}
}

and ϕ2 =
{{b1}, {¬b1, b2}, {¬b2}

}
. Clearly, ϕ2 is unsatisfi-

able and thus is the entire branch of ϕ. There are 7 satisfying assignments for
ϕ1. However, taking the learned clause cx into account a different result is com-
puted: mc (ϕ1 ∧ cx) = 5. The cache only stores the results for sub-formulas of
the original formula (disregarding any learned clauses like cx) to increase the
likeliness of a cache hit. Normally (without an unsatisfied sibling) this is valid
because adding learned conflict clauses results in an equivalent formula and they
can therefore be used or ignored at will. However, in case of an unsatisfied sibling
mc(ϕ1) = 7 �= mc(ϕ1 ∧ cx) = 5. Thus storing mc(ϕ) = 5 in the cache is clearly
incorrect and might result in an erroneous final result.

Without caching this does not cause any problem because the possibly incor-
rect result is multiplied by the model count of the unsatisfied sub-formula which
is 0. Through caching, however, the incorrect value might be used in a satisfied
branch of the tree causing an incorrect final model count (see Figure 1).

p2

(b1) ∧ (¬b1 ∨ b2) ∧ (¬b2)
UNSAT

(a1 ∨ a2 ∨ a3)

n

. . . . . .

fa
lse

m
cache hit

Fig. 1. A component tree with an unsatisfied node. Utilizing the cached result of any
satisfied sibling of that node can result in an erroneous final model count. In this
example node m uses the cached result of node n which is potentially incorrect.

4 Laissez-Faire Caching

Solving the problem of incorrect results in the cache in a sequential solver is com-
paratively simple. Assuming the solver traverses the component tree in a depth-
first manner, removing possibly incorrect results from the cache as soon as an
unsatisfiable sub-formula is encountered suffices. Through the depth-first node
order any possibly incorrect result definitely is not used in a satisfiable branch
of the component tree before it is deleted from the cache. Current sequential
#SAT solvers like cachet use this method.

When such a node order cannot be guaranteed, for example in a parallel
solver, this simple solution is insufficient to always provide correct results. A
straightforward solution would be controlling the cache access through rules.
These rules could ensure that results from the cache can only be used when the
access is similar to a depth-first tree traversal. In a parallel solver such rules
would degrade the cache performance because the node order by design is not
depth-first. Therefore, many results in the cache could not be used by the threads.
For example splitting the computation into two threads on a decision with each
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thread proceeding one of the resulting branches in a depth-first manner would
not allow the threads to use any cached results created by the other thread.

Laissez-faire caching, our solution to this problem offers a more refined access
strategy. It allows for access to all nodes stored in the cache regardless of their
relation to the current node. Only in the rare event of a possibly incorrect value
being stored in the cache, additional computations are required. The approach
is based on the following three principles:

1. Use every result available in the cache without any limitations.
2. When a node n uses the result of the node m from the cache a new depen-

dency between the nodes is created.
3. If a node that is stored in the cache becomes invalid it informs all nodes

that depend on its value to initialize a re-computation to correct potentially
incorrect intermediate results.

Clearly, normal cache access is as fast as it is without any modifications since
there are no access rules. On a cache hit a new dependency has to be created
which requires a constant amount of additional computation steps. Only in the
event of a re-computation additional work has to be performed.

4.1 Node Re-Computation

When a node depends on an incorrect cache result it has to be recomputed. How-
ever, it is not clear whether the result of a node m with an unsatisfiable sibling is
actually correct or not in the first place. For many nodes with unsatisfied siblings
the correct value is computed. To verify if m’s result was computed correctly the
solver would have to re-compute it without any learned conflict clauses. This is
not feasible because it might require a large amount of additional computation
steps.

Instead, every possibly incorrect result is assumed to be incorrect. Of the
nodes ni which depend upon this result only one node n needs to be re-computed;
the remaining dependencies can use the result of this re-computed node because
they all represent the same sub-formula. Since this approach allows for the usage
of all available conflict clauses during the re-computation of n it is far superior
to validating every possible incorrect node m without conflict clauses.

When n has to be recomputed it also needs to inform its parent node p since
the model count of p depends on a possibly incorrect value and may thus be
incorrect as well. Should p be finished and stored in the cache, it has to be
removed from the cache, the nodes depending on p’s value have to be informed
and p’s parent has to be notified of the incorrect child in turn.

Thus removing a single node m from the cache can result in a cascade of
invalidations. However, given the right re-computation order only a single node
needs to be fully computed by the solver: As discussed above, only one depen-
dency n of m needs to be recomputed. All other dependent nodes can then get
an updated value from the cache which in turn allows their parent nodes to store
a new result in the cache. This allows all nodes which depend on the parents to
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retrieve updated values from the cache. The update sequence continues for all
invalidated nodes with n being the only node that needed a full re-computation.

4.2 Memory Consumption and Cleanup

A drawback of laissez-faire caching is that every node n that is a cache hit
potentially needs to be recomputed because the node it depended on is removed
from the cache again. To recompute n, the information of the sub-formula it
represents as well as information about its parent node need to be available.
Additionally, all nodes that depended in some manner on the value of n (i.e., all
nodes on the path from n to the root of the component tree) might also become
invalid when n is invalidated and must also be re-computable.

Therefore, almost the entire component tree has to be kept in memory during
the computation. Given the size of common formulas, this requirement quickly
becomes a space issue even with today’s large memory modules. To reduce the
memory consumption, the stored component tree is pruned periodically. During
this operation all finished nodes are removed. This deletes both nodes that are
stored in the cache and nodes that are cache hits.

Erasing nodes from the cache is in line with the observation that the usability
of cache entries quickly decays over time [5]. Hence, the performance decrease
of such a non-selective pruning is expected to be minimal compared to only
removing a subset of nodes.

When removing nodes their dependencies have to be taken into account. To
this end the concept of dependencies is extended from the original “node n uses
node m’s value from the cache” to a more general “node n in some way depends
on node m”. All dependencies of a node are moved to the node’s parent on
its deletion (see Figure 2). Should at any later point in time a node become
invalidated, a larger part of the component tree might need to be re-computed
because the exact node which requires re-computation has been removed.

As an example, assume that the node n1 in Figure 2 is unsatisfiable. Hence
the node n2 and all of its siblings are possibly incorrect and invalidated. In the
original component tree this would trigger the re-computation of the nodes n4

and n5. In the pruned component tree the entire negative branch of n3 has to
be recomputed because the solver has lost all knowledge of the nodes in this
branch which creates a substantial overhead. The real extent of this overhead is
analyzed with the experimental results in Section 6.3.

5 countAntom Solver Structure

Our parallel #SAT solver countAntom consists of independent solver threads each
of which works very similar to a sequential #SAT solver. The implementation is
based on the antom SAT solver [11] and the boost threading library [12] which
provides simple to use parallelization with sufficient control over each thread.

The component tree is represented through one object for each node. To
ensure thread-safety, each node provides its own mutex, guaranteeing that no
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Fig. 2. A component tree before and after a memory cleanup operation. The cache
hit dependencies are moved to the parents of the removed nodes and are joined into a
single general dependency.

two threads can ever work on the same node at the same time. Deadlock freedom
is provided through a special node locking order: When a thread attempts to
lock a node n it must either already hold the lock for n’s parent or it must be
the first lock that the thread obtains. Thus, once a thread obtains its first lock
for a node n all subsequent locking will occur in the subtree with root n. Locks
are released in reverse order of acquisition.

Additionally, all access to shared structures like the cache is restricted
through appropriate mutexes to ensure thread safety.

5.1 Node Computation

The node computation within the threads is similar to those of a sequential
#SAT solver limited to a single step at a time:

1. Get the next component tree node n to be computed.
2. Check if a result for n is stored in the cache. In case of a cache hit add a

new dependency and inform n’s parent that a child node is finished. If there
was a cache hit the computation of n is concluded, otherwise continue.

3. Backtrack from the last computed node m to n. Unlike the backtracking
operation in a SAT solver n is not always a node on the path from the root
of the component tree to m (see Figure 3). Thus, our backtrack operation
first removes assignments up to the first common ancestor a of m and n and
then re-assigns the required variables on the path from a to n.

4. Choose a decision variable and assign it to either true or false. As decision
heuristic VSADS [13] is used.

5. Calculate the implications of the previous assignment and perform a conflict
analysis if there is a conflict. In case of a conflict the branch is marked as
unsatisfiable.
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6. If there was no conflict split the residual formula into sub-formulas and
store the resulting component tree nodes in a list of nodes which need to
be computed. Should the residual formula be satisfied the split operation
returns an empty set. In this case the number of satisfying assignments in
the branch is calculated as 2#free variables.

7. If the decision variable has not yet been assigned to both true and false
remove its current assignment, add its inverse and continue with step 5.

8. Should both outgoing branches be satisfied or unsatisfied inform the parent
node that one of its child nodes is finished.

The calculations thus move up and down the component tree: New nodes are
added as children and parent nodes are informed as soon as their child nodes
are finished. This in turn might allow the parent node to compute its own model
count (when all of its children are finished). As soon as the model count of a
satisfiable node is computed it is added to the cache. If a node is unsatisfiable the
results of all its sibling nodes are not required anymore because the branch will
remain unsatisfiable and the sibling’s result cannot be used by any other node.
Therefore these nodes are aborted and their values removed from the cache if
they were already finished.

v5

v1

m

v6

n
backtrack

Fig. 3. During the backtrack from m to n the solver removes the assignment v5 = false
and adds the assignments v5 = true and v6 = false.

To simplify the parallel computation each node stores its current state (see
Figure 4). The possible states consist of those found in a classic #SAT solver
(the states new, cache hit, waiting for child results, aborted and finished represent
the normal life-cycle of a node), and some additional ones which are required
because of the removal of nodes during a memory cleanup operation (incomplete
and marked for deletion).

Should a cache entry become invalid all its dependencies have to be recom-
puted and are, thus, returned to the new state. Additionally, their parents have
to wait for child results, again if they were previously finished.

When nodes are removed from the component tree to reduce the memory
consumption they are first marked for deletion and then deleted. The parents of
deleted nodes become incomplete. If an incomplete node has an incorrect child
or depended on an incorrect node it has to be completely recomputed because
not all information on its children is available.
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Fig. 4. The state diagram for a node in countAntom with caching and the option to
remove nodes from the component tree.

5.2 Node Order

The order of computation plays a vital role for two reasons: Firstly, depending on
which node is computed first it is possible that conflict clauses are learned earlier
or the cache is utilized more efficiently. Secondly, each thread has to backtrack
to the next node it has to compute. The further the backtracking distance, the
lower is the overall performance of the solver.

Our implementation aims to keep the backtracking distance as small as possi-
ble while ensuring that each thread can always perform computations on a node.
It does so by allowing each thread to keep a local list of nodes to be computed
next. This list is implemented as a stack which results in a depth-first compo-
nent tree traversal. Additionally, a global, shared node list is maintained by all
threads to which nodes are added if its size is below a defined threshold. When
a thread’s local list becomes empty it takes a new node from the global list.

The local node lists ensure that the backtracking distance is kept to a mini-
mum (similar to that of a sequential solver) while the global list is used for work
sharing among the threads.

5.3 Caching

The cache is implemented as a hash table and shared among all threads. For
each node a hash value is computed through the formula it represents. Hash
conflicts are resolved through a linked conflict list for each bucket. Each cache
access follows the laissez-faire approach.
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Parallelization adds a new challenge to caching: Two threads might compute
the number of satisfying assignments for nodes with the same sub-formula at the
same time. As previously discussed, it is possible that the results for the nodes
are different (if one has an unsatisfiable sibling). Thus, the hash table is extended
such that it is able to store multiple different results for the same sub-formula.
Even when the results for the same sub-formula differ, it is not clear which result
is correct. It is even possible that two conflicting values are both incorrect.

By choosing a sufficiently large hash table size, the cache access time can be
considered as constant.

Each successful cache lookup creates a new dependency. To allow for sim-
ple modification of dependencies during the memory cleanup operation they
are implemented as simple C-structs with pointers to the nodes involved in the
dependency and a mutex for access. In case the dependency has to be modi-
fied, the mutex allows the thread to change the dependency without locking the
second node (which would be contrary to the defined locking order).

6 Experimental Results

We tested laissez-faire caching in combination with our parallel #SAT solver
countAntom. Our solver is compared to cachet [5] and sharpSAT [6] which to
the authors’ knowledge are the fastest exact #SAT solvers available.

The benchmarks system uses two octa-core Intel Xeon E5-2650v2 2.60 GHz
CPU with 64 GB of memory. If not stated otherwise the solver’s memory limit
is set to 4 GB. All times are given in seconds. The timeout (X) is set to 1 h.
An entry of ? marks an internal solver error (e.g., a segmentation fault) due to
which the solver did not finish the computation.

6.1 Benchmarks

In addition to the benchmarks presented in previous #SAT solver publications
(which are labeled as Classic) several additional real-life #SAT formulas were
selected:

The Fault Injection benchmarks (referred to as FI easy and FI hard) encode
a fault injection through clock manipulation into a cryptographic circuit as
described in [14]. The satisfiability probability of a formula is the likelihood
of a successful injection when encrypting random data.

The Output Probability benchmarks contain the cone of influence of the out-
put of a circuit and force that output to be true. Thus, the number of satisfying
assignments corresponds to the probability that the output is true on a random
input assignment. The circuits originate from the ITC 99 [15], ISCAS 89 [16]
and ISCAS 85 [17] industrial benchmark sets.

Table 1 gives an overview of the selected formulas together with the single
threaded runtime of the solvers.

Although all benchmarks are structured formulas, the solvers exhibit a large
performance difference between the Classic and our real life benchmarks. This
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Table 1. Runtime comparison among cachet, sharpSAT and countAntom (with a single
solver thread).

Formula #variables #clauses Model count cachet sharpSAT countAntom

C
la

ss
ic

2bitadd 10 590 1422 0 ? 29.80 138.73
4blocks 758 47820 55097 ? 15.47 16.67
bmc-ibm-2 2810 11683 ≈ 1.333 · 1019 0.05 0.04 0.16
bmc-ibm-3 14930 72106 ≈ 2.472 · 1019 21.89 2.27 21.13
bmc-ibm-4 28161 139716 ≈ 9.729 · 1079 3598.67 3.66 199.64
bmc-ibm-5 9396 41207 ≈ 2.458 · 10171 195.72 14.15 8.03
logistics.b 843 7301 ≈ 4.526 · 1023 ? 0.88 2.84
logistics.c 1141 10719 ≈ 3.980 · 1024 ? 36.51 127.71

F
I

ea
sy

easy 28 1244 4694 3791872 28.79 28.98 4.89
easy 29 1201 4520 12684800 487.39 338.75 40.68
easy 30 1177 4426 28830208 ? 632.60 58.95
easy 31 1123 4207 33171456 430.35 208.81 2.91

F
I

h
a
rd

hard 30 4705 17689 ≈ 1.771 · 1032 X X 159.97
hard 31 4489 16816 ≈ 2.326 · 1034 X X 65.83
hard 32 4245 15844 ≈ 8.514 · 1034 X X 45.86
hard 33 4157 15484 ≈ 8.514 · 1034 X X 28.50

O
u
tp

u
t

P
ro

b b14c 04 805 2194 ≈ 2.230 · 1043 219.14 460.42 391.65
b22c 79 511 1317 ≈ 8.308 · 1034 574.75 118.14 72.51
c0499 10 130 352 ≈ 1.099 · 1012 3598.60 X 1.73
c1908 08 291 884 4563402752 ? 304.90 71.99
cs38417 1411 379 900 ≈ 3.796 · 1029 3598.54 2686.16 146.69
cs38417 291 328 748 ≈ 2.293 · 1028 1133.63 375.47 52.67

can be attributed to solver specific optimizations and the different origins of the
formulas. The decision heuristic of countAntom was slightly modified for the
Classic formulas to increase the performance. Overall, countAntom outperforms
both cachet and sharpSAT on most of our real life benchmarks even with only
a single thread.

6.2 Parallel Performance

Since only countAntom provides a parallel solving mode we analyze only its
results in the remainder of this section. To measure the performance of our
parallel implementation we compare the solving speed with a single thread to
that with n threads. The quotient of these values is called the speedup.

We determined the runtime with 1 to 16 threads for each of the benchmark
formulas with five repetitions. The arithmetic means of the results are shown in
Table 2. The average speedup for each formula group is visualized in Figure 5.

Clearly, parallelization greatly increases the solving speed across all formula
groups. The average speedup for all groups increases from 1 to 8 threads, reaching
around 3 with 4 threads and between 3.5 and 5.5 with 8 threads.

Adding a 9th thread decreases the performance across all groups. With up to
8 threads the computation can be performed by a single processor. If the system’s
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Table 2. The arithmetic mean of the runtime of countAntom across 5 repetitions with
1 to 16 threads.

Number of threads
Formula 1 2 3 4 5 6 7 8 9 . . . 14 15 16

C
la
ss
ic

2bitadd 10 140.0 32.8 30.3 47.2 22.0 21.9 21.8 25.8 33.2 . . . 17.6 19.6 16.6
4blocks 16.8 12.4 10.3 9.73 9.08 8.91 8.21 8.10 8.17 . . . 7.78 7.52 7.56
bmc-ibm-2 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 . . . 0.08 0.08 0.08
bmc-ibm-3 21.3 14.4 10.3 10.3 10.5 9.75 10.4 9.04 8.80 . . . 8.54 9.03 9.44
bmc-ibm-4 203.6 116.9 74.1 70.3 80.1 41.3 49.8 51.3 51.0 . . . 15.0 29.5 14.9
bmc-ibm-5 7.97 4.42 3.39 2.86 2.63 2.05 1.90 1.66 1.91 . . . 1.48 1.79 1.42
logistics.b 2.75 1.42 0.99 0.94 0.79 0.71 0.70 0.66 0.72 . . . 0.84 0.90 0.83
logistics.c 130.1 33.6 27.0 19.3 15.9 14.5 12.6 13.0 11.6 . . . 11.7 11.4 10.4

F
I
E
a
sy

easy 28 4.79 2.33 1.75 1.39 1.09 0.95 0.83 0.75 0.84 . . . 1.20 0.75 0.86
easy 29 41.6 23.2 16.9 12.8 11.4 10.2 8.92 8.05 9.60 . . . 10.0 8.95 7.54
easy 30 59.7 32.8 25.6 22.1 17.4 15.3 13.6 12.4 13.3 . . . 11.9 11.3 10.3
easy 31 2.82 1.60 1.09 0.92 0.78 0.68 0.63 0.59 0.68 . . . 0.97 0.81 0.66

F
I
H
a
rd

hard 30 164.4 87.9 64.2 64.3 66.8 58.2 40.6 34.9 32.6 . . . 26.8 25.2 21.8
hard 31 67.7 34.6 26.1 22.0 22.6 18.5 16.8 14.8 16.0 . . . 13.9 12.4 12.1
hard 32 48.0 24.5 21.0 17.1 14.9 12.7 12.1 11.0 12.3 . . . 10.7 9.60 9.16
hard 33 29.5 15.1 11.0 10.3 8.41 8.42 6.95 7.15 9.44 . . . 8.07 7.36 6.05

O
u
tp

u
t
P
ro

b b14c 04 392.8 284.1 216.8 211.2 184.9 175.7 162.0 161.1 161.5 . . . 154.9 150.7 145.6
b22c 79 74.1 40.3 29.9 24.3 20.4 17.7 16.2 14.6 15.4 . . . 14.3 13.1 12.8
c0499 10 1.63 0.81 0.91 0.73 0.64 0.74 0.73 0.73 0.79 . . . 1.55 1.44 1.88
c1908 08 70.6 39.3 30.7 27.1 23.1 19.8 17.8 16.5 18.5 . . . 19.3 18.3 15.8
cs38417 1411 137.7 84.5 67.4 52.3 46.4 40.9 36.2 32.7 35.0 . . . 33.7 31.3 28.8
cs38417 291 49.6 29.6 24.2 19.4 16.6 19.1 18.2 16.7 19.3 . . . 22.2 20.5 18.6
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Fig. 5. The average speedup for the different benchmark groups with 1 to 16 threads.

second processor is added the speedup degrades due to the less tight coupling of
the two CPUs and additional shared memory access overhead. Thus, the lower
performance is due to the hardware structure of the benchmark system.
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With even more threads the speedup increases again but at a much slower
pace. For most formulas the maximum speedup is achieved when utilizing all 16
available cores.

6.3 Impact of Laissez-Faire Caching

Compared to the caching techniques used by sequential #SAT solvers, laissez-
faire caching in combination with the parallelization adds computational
overhead: During the calculations all nodes have to be kept in the memory. Fur-
thermore each cache hits creates a new dependency. These dependencies require
special attention during cleanup operations.

To evaluate the overhead, we compare the runtime of countAntom with and
without laissez-faire caching in Table 3. To that end the dependencies are dis-
abled and the cache is used as it would be in a sequential solver. Therefore,
should a node be removed from the cache, nodes that used its results will not be
informed nor invalidated. Of course this does not ensure the correctness of the
final result and is only useful in this evaluation.

Table 3. The arithmetic mean across 30 repetitions for the runtime and number of
decisions of countAntom using 16 threads with and without adding laissez-faire caching
dependencies.

Without dependencies With dependencies

Formula Time Decisions Time Decisions Time dif.

C
la

ss
ic

2bitadd 10 18.81 445697.87 21.49 472866.50 +14.24%
4blocks 7.46 33846.07 7.55 35581.60 +1.24%
bmc-ibm-2 0.08 369.60 0.08 430.90 +1.68%
bmc-ibm-3 8.53 8904.63 8.48 8955.20 -0.56%
bmc-ibm-4 17.76 516041.60 21.88 520252.13 +23.18%
bmc-ibm-5 1.43 38053.63 1.56 42288.77 +8.57%
logistics.b 0.68 28246.40 0.76 27475.37 +11.40%
logistics.c 9.56 530838.50 10.93 526091.10 +14.37%

F
I

ea
sy

easy 28 0.67 36781.73 0.81 37818.23 +21.24%
easy 29 6.37 584328.57 7.32 582706.80 +15.00%
easy 30 8.46 679935.27 10.12 685038.97 +19.63%
easy 31 0.68 48725.23 0.65 48882.03 -5.71%

F
I

ea
sy

hard 30 21.71 1963895.83 24.39 1961081.03 +12.33%
hard 31 10.24 919613.30 11.99 920852.03 +17.14%
hard 32 7.79 685190.73 9.06 683700.13 +16.41%
hard 33 5.88 530489.23 6.95 525454.10 +18.14%

O
u
tp

u
t

P
ro

b b14c 04 125.93 11450672.97 144.38 11575403.60 +14.65%
b22c 79 9.82 687743.87 12.18 689614.17 +24.05%
c0499 10 1.36 169984.70 1.72 192928.97 +26.44%
c1908 08 13.16 1548375.23 16.04 1565834.00 +21.96%
cs38417 1411 22.50 2083893.87 29.02 2090450.30 +28.99%
cs38417 291 14.51 1240944.37 19.35 1201234.33 +33.34%
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The comparison clearly shows that dependencies have a negative impact both
in terms of computation time and number of decisions. However, the average
increase in computation time is relatively minor at 15.35 %. Thus, the number
of required re-computations due to incorrect results in the cache appears to be
low and the overall impact of laissez-faire caching acceptable. There are two out-
liers in the experiments: The formulas bmc-ibm-3 and easy 31 are solved faster
with dependencies than without. This can, however, be attributed to general
variations in solving speed due to the nondeterministic behavior of the parallel
computation and the fast solving speed and is thus not analyzed further.

The overhead through the explicit representation of the component tree
through one object for each node is inherent in our implementation and can-
not be disabled for testing purposes.

7 Conclusion

This paper introduced two new contributions to the realm of #SAT solving:
Firstly, laissez-faire caching offers a new caching technique that provides a solu-
tion to the problem of incorrect cache values which is independent from the node
computation order. Thus, it can be used in any #SAT solver be it sequential or
parallel that requires a not depth-first tree traversal. Secondly, countAntom is
the world’s first parallel #SAT solver.

Our experiments clearly show the viability of parallelization for #SAT: The
speedup of countAntom with multiple cores is almost linear on many formu-
las and on average between 3.5 and 5.5 when using 8 threads on a octa-core
CPU. Additionally, a speedup was observed for every single tested formula.
Adding more threads which are executed on multiple different CPUs yields only
a minor improvement. The overhead created by adding dependencies between
nodes and recomputing nodes which depend on possibly incorrect values in the
cache appears to be small at around 15 % on average.

Future improvements could focus on three areas: Firstly, the memory con-
sumption of the current implementation of laissez-faire caching is rather large.
This leads to many time consuming memory cleanup operations. Optimizing the
size of each component tree node or switching to an implicit representation of
nodes would therefore speedup the solving process. This is especially relevant
for large formulas which already have a higher memory consumption

Secondly, as with any solver there are many parameters for different heuristics
which are set manually. The goal in this area is to develop a heuristic for this
parameter selection (for example by choosing different initial parameters for each
thread and using the parameter set of the best one after a specific time). This
would increase the performance especially for unknown formulas.

Thirdly, expanding the solver to work on systems without shared memory (for
example on a computation grid) could allow it to tackle even larger formulas. One
possibility is a hierarchical approach with many multi-threaded nodes sharing
information and jointly solving the problem. This would require an additional
communication layer to guide the computation.
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Overall countAntom is the first step into the direction of faster #SAT solving
and shows that #SAT can be effectively and efficiently solved in parallel.
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Abstract. In this paper, we present SATGraf, a tool for visualizing the
evolution of the structure of a Boolean SAT formula in real time as it
is being processed by a conflict-driven clause-learning (CDCL) solver.
The tool is parametric, allowing the user to define the structure to be
visualized. In particular, the tool can visualize the community structure
of real-world Boolean satisfiability (SAT) instances and their evolution
during solving. Such visualizations have been the inspiration for several
hypotheses about the connection between community structure and the
running time of CDCL SAT solvers, some which we have already empir-
ically verified. SATGraf has enabled us in making the following empir-
ical observations regarding CDCL solvers: First, we observe that the
Variable State Independent Decaying Sum (VSIDS) branching heuristic
consistently chooses variables with a high number of inter-community
edges, i.e., high-centrality bridge variables. Second, we observe that the
VSIDS branching heuristic and hence the CDCL search procedure is
highly focused, i.e., VSIDS disproportionately picks variables from a few
communities in the community-structure of input SAT formulas.

1 Introduction

Conflict-driven clause-learning (CDCL) SAT solvers have witnessed dramatic
improvements in their efficiency over the last 20 years, and consequently have
become drivers of progress in many areas of computer science such as formal
verification [1,2]. There is general agreement that these solvers somehow exploit
structure inherent in industrial instances. In order to understand what this struc-
ture is and the mechanism by which CDCL solvers exploit it, we need visualiza-
tion/evolution tools that can help us formalize and visually check our hypotheses
that can subsequently be verified using the scientific method.

In order to enable researchers to improve their intuitions of how CDCL solvers
work, better understand the structure of industrial instances, and visualize in
real-time how CDCL solvers exploit said structure, we built the SATGraf visual-
ization/evolution tool. SATGraf takes as input a Boolean formula, and outputs
a rendering of its variable-incidence graph (VIG) as well as showing how the
structure evolves in real-time while being solved by a SAT solver. SATGraf is
parametric, i.e., it can be configured to display any structure discoverable in a

c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 62–70, 2015.
DOI: 10.1007/978-3-319-24318-4 6
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SAT formula. SATGraf enables researchers to formalize and visually check their
hypotheses about the behavior of SAT solvers.

SATGraf has been invaluable to us in formulating and visually checking many
hypotheses about CDCL SAT solvers that we proposed, which we were able to
subsequently verify empirically. For example, in our paper on community struc-
ture and their impact on SAT solver performance [3] we provide empirical evi-
dence that community structure correlates more strongly with the running time
of CDCL solvers than traditional hypotheses such number of clauses, variables
and their ratio. We used SATGraf to visually check that many classes of easy-to-
solve industrial instances have “good” community structure. Another hypothesis
that SATGraf helped us verify is that the VSIDS branching heuristic dispropor-
tionately favors high-centrality bridge variables, i.e., those that belong to clauses
that lie between communities in the community structure of SAT instances.

Background: While SATGraf is able to display any user-defined structure, we
focus here on community structure. The idea of decomposing graphs into natural
communities arose in the study of complex networks. Modularity is a measure of
the quality of the community structure of a graph and ranges from 0 to 1, where
0 is a poor community structure and 1 a strong community structure. Infor-
mally, we say a graph has poor community structure (modularity close to 0) if
there are more inter-community edges than intra-community edges. Conversely,
if the graph has more intra-community edges than inter-community edges, this
correlates with good community structure (modularity close to 1). Modularity
is often used in optimization methods for detecting community structure in net-
works. The precise definition and its calculation can be found in [4]. Many
algorithms [5,6] have been proposed to solve the problem of finding an optimal
community structure of a graph, the most well-known among them being the
one from Girvan and Newman [5]. We refer the reader to these papers [5–7] for
complete descriptions of community detection algorithms.

Contributions: We make the following contributions in this paper.1

The SATGraf Tool: We present SATGraf, a tool that enables researchers to
visualize the community structure of a SAT instance and see its evolution while
solving by a real world CDCL solver.
VSIDS & High-centrality Bridge Variables: Using SATGraf we observed
that the VSIDS branching heuristic disproportionately picks high-centrality
bridge variables in the community structure of input instances during the entire
run of the solver.
Focused Search by CDCL Solvers: Using SATGraf we observed that the
VSIDS branching heuristic disproportionately picks variables from a few com-
munities in the community structure of SAT instances during the entire run of
the solver.
1 All code and data can be obtained from the SATGraf formula visualization/evolution
tool website: http://satbench.uwaterloo.ca/satgraf/index

http://satbench.uwaterloo.ca/satgraf/index
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(a) Industrial instance: aes 16 10
keyfind 3

(b) Random instance: unif-k3-r4.267-
v421-c1796-S4839562527790587617

Fig. 1. Community structure of instances from the SAT 2013 Competition

Unnecessary Backtracking Steps: Using SATGraf we observed that back-
tracking resets decisions and propagations unrelated to the current conflict.

2 How SATGraf Works

SATGraf is implemented in phases as described below:

Phase 1: First, SATGraf converts an input Boolean formula (in DIMACS for-
mat) into its corresponding graph. Currently the only format we consider
for this is the variable-incidence graph, however other implementations such
as the clause-incidence graph are possible.

Phase 2: Second, SATGraf computes structure metrics as defined by the
user. Currently the user may choose from either the Clauset-Newman-Moore
(CNM) algorithm [5] or the online (OL) community algorithm [6], however
it is possible for the user to specify their own additional algorithms.

Phase 3: Third, SATGraf uses a user-specified layout algorithm to render
the graph while maintaining the structure detected in phase 2. Currently
the user may choose from either a modified version of layout algorithm by
Kamada and Kawai (KK) [8] or the Fruch-Reingold (FR) algorithm [9].
Other “fast” layout options include a grid or circle solution, where commu-
nities are treated as separate graphs and use either the KK or FR layout
algorithms, these communities are then placed on a grid or circle pattern.
While these options do not display the structure as clearly, they scale better.

Phase 4: Finally, users of SATGraf can replay different stages of the evolution.
While doing this they may also hide communities, edges or variables, that
are not of interest to obtain a clearer view of those that are. To this end
the user may also zoom in on specific communities within the graphical
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representation, and choose whether to hide, or colour variables that have
been assigned values at any point during the evolution. The user may also
choose to export the entire graphical evolution as a GIF file for later analysis,
though this does create large files.

The modular design of SATGraf allows for easy integration of any other
structure metric or layout algorithm for either of these categories. Figure 1
shows the graph generated by SATGraf for two instances from the SAT 2013
competition [10]. Figure 1a is an industrial instance, and Figure 1b shows a
randomly-generated instance. Edges between variables within the same commu-
nity are assigned a distinct colour, one per community. White edges represent
inter-community edges, and red edges resulting from conflict clauses. As is evi-
dent, the industrial instance has lot more distinct communities that can be
neatly partitioned, while the randomly generated instances typically have lots
inter-community edges.

SATGraf can present the evolution of a formula by interacting with modified
versions of SAT solvers. Currently only MiniSAT is supported, however C source
code is included in the project to ease integration with other solvers. MiniSAT
interacts with SATGraf’s evolution mechanism by notifying it when a variable
changes value – either by decision or propagation — and when new conflict
clauses are added. SATGraf then updates the graph by either hiding, showing or
colouring edges and nodes, or by redrawing the graph (if the user requests it).
This allows users to observe the overall evolution of the structure of the formula,
but also to see how each community is affected during solution. SATGraf is open
source and available at [11,12] with an easy install version available at [13]. The
project was developed in Java and has a modified version of MiniSAT included.

3 Results

SATGraf has been tested on several industrial, hard combinatorial, and
randomly-generated formulas from the 2013 SAT competition [10]. The time
taken to display the community structure of a single instance grows with the size
of the input formula. This is to be expected due to the nature of the community
detection and placement algorithms — which is the most time-consuming com-
ponent. The resulting graphs, using the OL community detection and FR layout
algorithms, can be seen in Figure 1. The community structure of the industrial
instance has much better modularity than the one for the randomly-generated
instance. This can be verified both visually and through the modularity measure:
the industrial instance has a modularity of 0.77, while the randomly-generated
one has a modularity of 0.16. Their solve times using MiniSAT are also different;
The industrial instance takes 0.076 and the randomly-generated instance times
out after 5000 seconds. SATGraf has been found to be efficient when viewing
a number of different SAT instances, the largest observed containing approxi-
mately 450,000 variables and 1.4 million clauses. However, this utilised the “grid”
layout algorithm. Unfortunately neither the number of variables, nor the number
of clauses provide an accurate representation of the running time of SATGraf,
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as it is the number of edges that drives most of the workload. As such, a sin-
gle clause containing 500 variables, will be more intensive than a 40,000 3-CNF
formula.

SATGraf’s evolution feature is partly shown in two pictures in Figure 2. The
SAT instance here is obtained from a feature model [14] called Fiasco that can
be downloaded from the SATGraf website [15]. A GIF of the entire evolution of
Fiasco can also be found here. We chose this SAT formula since it is a good
representation of an industrial application of SAT solvers. Furthermore, this
instance is small enough so that we can actually show, in a timely manner, how
the SAT solver dynamically morphs its graph (the instance and the generated
learnt clauses). Finally, the solvers [16,17] solved this formula without generating
too many conflicts, and thus it was easier to make sense of the evolution of the
graph of this instance.

Observing the evolution showed an interesting trend. Namely, the removal of
entire communities during the solving process. This evolution can be seen when
going from the graph of the original SAT formula in Figure 2a, to the graph
after the solver generates the first conflict shown in Figure 2b. It is easy to see
that some of the communities have completely disappeared by the absence of
their associated colour, i.e., the corresponding clauses have been satisfied.

(a) Initial state (b) After 550 decisions

Fig. 2. Partial evolution of the fiasco formula

3.1 Observation #1: VSIDS Chooses High-Centrality Bridge
Variables

Whilst visualising industrial instances using SATGraf, we found that VSIDS
was consistently choosing decision variables that have a high number of inter-
community edges, which we call high-centrality bridge variables. For example in
the SAT competition formula aes 16 10 keyfind 3 98% of the first 5000 decision
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variables had inter-community edges. This leads us to suspect that VSIDS is
discovering the community structure implicitly whilst solving. We have found
similar results for other industrial and hard combinatorial instances from the
SAT competition. It is possible that the decision variables consistently being
inter-community variables is either a random artefact of the VSIDS heuristic, or
simply that a large number of the variables in the formula had inter-community
edges. However, we do not believe this to be the case. In fact after 5000 deci-
sions, 66% of the decision variables had more inter-community edges than intra-
community edges. This observation presents a conjecture that can be validated
independently through modifications to the VSIDS algorithm and empirical mea-
surements, which is the subject of current research in our group.

3.2 Observation #2: VSIDS Moves Infrequently Between
Communities

In addition to our previous observations, we observed that a high percentage of
decision variables occurred within the same communities. When considering the
aes 16 10 keyfind 3 SAT formula, 80% of the decision variables were chosen from
the same community as the previous decision variable. This would support the
hypothesis that formulas which have a good community structure are sometimes
solved one community at a time.

3.3 Observation #3: Backtracking May Incur Unnecessary
Overhead

Whilst visualising the SAT formula toybox on SATGraf, we found that despite
the high level of separability of the formula (mostly distinct, unconnected com-
munities), backtracking caused variables that were unconnected to the conflict
variables (either directly or transitively) to be reset. In most SAT formulas of
interest, the communities will not be as clearly separated as in the toybox exam-
ple. However, we present the conjecture that in some situations the backtracking
of CDCL solvers results in more work being done than is necessary. We suggest
that a potential solution to this would be a selective backtracking algorithm, that
determines which variables are affected by a backtrack. While this would require
additional time during solution to determine affected variables, in instances with
higher solve times, it could prove effective.

Table 1. Comparison of SAT Visualization tools

Tool Interactive Evolution Community 3D Implication

DPVis[18] ✓ ✓ ✗ ✗ ✓

GraphInsight[19] ✓ ✗ ✗ ✓ ✗

iSat[20] ✗ ✓ ✗ ✗ ✗

GraphViz[21] ✗ ✗ ✗ ✗ ✗

SATGraf ✓ ✓ ✓ ✗ ✓
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4 Related Work

SATGraf is the only tool that we know of that has both visualization capabilities
to view the “user-defined structure” of SAT instances and evolution feature that
shows how this structure is morphed during solution. While other tools [18–21]
have visualization or evolution capabilities, they do not allow for user defined
structure, nor do they show how the solver morphs this structure. Instead, the
choice of graph structure of SAT instances is hard-coded in these tools. Addi-
tionally, we support community structure, while the tools we compare against
do not. Table 1 highlights the differences between visualization tools that we
found. Those differences range across a handful of categories such as interactive
(ability to hide/show nodes, edges or other structural information); evolution
(ability to see the evolution of the SAT formula); structure (ability to display
the community (or any other) structure); 3D (three dimensional capability) and
implication (can generate the implication graph). DPVis [18], is the closest to
SATGraf in terms of features. It is a graphing tool designed to expose how a
CDCL solver morphs a SAT instance as it is being solved. It offers a number
of features such as multiple layout algorithms, the ability to set specific values
on literals displayed in the graph, and performing unit propagation. However,
unlike SATGraf it does not allow the user to specify the formula structure (e.g.,
community structure), nor does it allow the user to specify a non-included real-
world solver as the evolution engine. DPVis uses a built-in implementation of
the DPLL algorithm, along with a hard coded interface to MiniSAT to display
the evolution, whereas SATGraf uses a user provided real world solver. While
currently only two solvers support this technique (MiniPure and MiniSAT), it
is possible for the user to implement this on any solver, using the provided API.
Each tool presented in Table 1 has different strengths and weaknesses. How-
ever, the only tool that can accomplish visualizing additional structure of a SAT
formula, both in its original state and while being solved by a SAT solver, is
SATGraf.

5 Conclusion

SATGraf presents a way to visualise a SAT instance’s community structure. Fur-
thermore, SATGraf has the ability to dynamically graph the community structure
of a CDCL SAT solver’s progress while solving a SAT formula. These features
were shown to be unique to SATGraf when compared to various similar tools.
These new capabilities yielded hypotheses regarding the correlation between the
community structure of input instances and performance of CDCL SAT solvers.
We found that the better the modularity is, the less time the SAT solver needs,
and the CDCL SAT solver often seems to solve SAT formulas one community
at a time.
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Abstract. We propose a notion of hints, clauses that are not necessarily
consistent with the input formula. The goal of adding hints is to speed up
the SAT solving process. For this purpose, we provide an efficient general
mechanism for hint addition and removal. When a hint is determined to
be inconsistent, a hint-based partial resolution-graph of an unsatisfiable
core is used to reduce the search space. The suggested mechanism is used
to boost performance by adding generated hints to the input formula.
We describe two specific hint-suggestion methods, one of which increases
performance by 30% on satisfiable SAT ’13 competition instances and
solves 9 instances not solved by the baseline solver.

1 Introduction

Modern backtrack search-based SAT solvers are indispensable in a broad variety
of applications [3]. In a classical SAT interface, the solver is given one formula in
conjunctive normal form (CNF) and determines whether it is satisfiable or not.
Performance of SAT solvers has improved dramatically over the past years [15].
The main advancements came as result of developing new heuristics for existing
conflict-driven clause-learning (CDCL) solver techniques, like deletion strategies,
decision heuristics, and restart strategies (plus preprocessing and in-processing).

In this work, we propose and investigate a novel method for cutting the search
space explored by the SAT solver so as to help it reach a solution faster. The
idea is to add hints, clauses that are not necessarily “correct”, in the sense that
they are not necessarily implied by the original input formula.

We call our hint-addition platform HSat (Hint Sat), and present two variants
that have been implemented in HaifaMUC [13]. HaifaMUC is an adaptation
of MiniSat 2.2 [4], which we will henceforth refer to it as Base.

The addition of hints H to the original formula F creates an extended formula
F ′. Hints can, of course, affect the satisfiability of the formula. As long as H is
implied by F , the extended formula F ′ will be equi-satisfiable with the original
F (either both are satisfiable or neither is). This means that if F is satisfiable
but F ′ is not, then there must be a contradiction between the added hints and
the original formula.

In HSat, we try to solve only the extended formula F ′. In case it is satisfi-
able, we are done, and the solver declares that the original formula was likewise
satisfiable. Otherwise, the extended formula is unsatisfiable, in which case we
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need to understand whether the hints are the cause of unsatisfiability, that is,
whether any hint is a necessary part of the proof of the empty clause. This is
accomplished by an examination of the resolution graph that is built during the
run of the solver on F ′. In [14], the authors presented an efficient way (their
“optimization A”) of saving a partial resolution with respect to a given subset
of input clauses. We use this ability to restrict tracking so that only the effects of
hints are recorded in the partial graph. Marking clauses to track their origin is
an old idea used in Chaff [8] and later reintroduced in [17], and is well adapted to
cases when tracking of clauses is required. When the extended formula is unsat-
isfiable, we check the cone of the empty clause. If it includes a hint, then the
status of the original formula remains unknown and additional operations are
required (like deletion of the hints). Otherwise, the original formula is unsatisfi-
able, and we are done. Handling of inconsistent clauses was done in several other
applications, like parallel solving [6,7]; our solution differs, having the ability to
track the full effect of the partial resolution tree.

In case the result is unknown and the UNSAT core contains only one hint,
an additional optimization can be made by using the UNSAT core of the partial
resolution graph. Suppose the UNSAT core contains only hint h, then h must
contradict F , and ¬h is implied by F . As ¬h is, in this circumstance, a set
(conjunction) of unit clauses, each literal in h can be negated and added as a fact
to F , which will increase the number of facts and reduce the search space to be
explored. This optimization can be generalized to include all graph dominators
in the partial resolution graph. (See Theorem 1 below.)

We introduce two heuristics for hint generation. The first, “Avoiding Failing
Branches” (Afb), is a purely deterministic hint-addition method. The main idea
behind it is the same idea that drives restarts in modern SAT solvers, namely,
the possibility that the solver is spending too much time on “bad branches”,
branches that do not contain the satisfying assignment to the problem. Our
motivation is to prevent the solver from entering branches that have already been
explored. In our algorithm, we describe an explored branch that is a subset of
decision variables. We pick the most conflict-active decisions and add a hint that
explicitly precludes choosing that set again. In this approach, we keep a score for
each literal. The score is boosted every time a clause containing it participates
in a conflict. The literals with the highest scores are added to a hint in their
negated form. The hint is then added right after a restart, and the same set of
active decision variables will never be chosen unless the hint is removed. This
approach leads to significantly improved solver times for satisfiable instances.

A second heuristic, “Randomize Hints” (Rh), draws a given number of ran-
dom assignments, and tries to create a set of hints that will contradict the
instance. When the solver concludes unsatisfiability, all dominators of the par-
tial resolution graph are extracted, and all literals in all dominators are added
as facts in their negated form.

We continue in the next section with the formalization and various prelimi-
naries. Section 3 presents the HSat algorithm, and, in Sect. 5, we demonstrate
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its correctness. The two heuristic hint-generation methods of Sect. 4 are empir-
ically evaluated in Sect. 6. We conclude and discuss future work in Sect. 7.

This paper contains several contributions. An efficient generic mechanism is
introduced to add hints, the goal of which is to speed up the solver. It is based on
the ability to remove clauses and all the facts derived from them. In HSat, we use
the partial resolution graph of Base to remove the hints and their effect in case
of an unsatisfiable conclusion. In [9–11] and later in [14], it was shown that the
alternative, using selector variables for clause removal [5,12], is inferior to the use
of the resolution graph. We extend the path-strengthening technique published
in [10]. Instead of using only immediate children of the removed clauses, we use
all dominators in the partial resolution graph provided in Base. We introduce
two algorithms for hint generation, one of them (Afb) increasing performance
for satisfiable instances by 19–30%.

2 Preliminaries

We presume some basic knowledge of the Boolean Satisfiability Problem and
CDCL SAT solvers [3]. Let ϕ be a CNF formula c1 ∧ c2 · · · ∧ cm. We write ci ∈ ϕ
if ϕ = c1 ∧ · · · ∧ ci ∧ · · · ∧ cm. Each clause c = �1 ∨ �2 ∨ · · · ∨ �k is a disjunction
of literals, and each literal �i is either a variable v or its negation ¬v. We write
�j ∈ ci if ci = �1∨· · ·∨�j ∨· · ·∨�k. In what follows, V denotes the set of variables
occurring in ϕ, and n = |V |.

For two clauses ci = v ∨ c and cj = ¬v ∨ c′, both involving the same variable
v ∈ V , their binary resolvent is

Resol(ci, cj) � c ∨ c′ .

A conflict occurs when several solver decisions and subsequent implications
result with a clause being unsatisfiable. In CDCL SAT solvers, a clause prevent-
ing the last conflicting set of decisions is created and added; it is referred to as
a conflict clause. In [8], it was shown that the best clause is the one created by
finding the cut in the implication graph that includes the Unique-Implication-
Point (UIP) closest to the conflict. That cut corresponds to a number of binary
resolutions performed on clauses that are inside the cut or intersect it. For exam-
ple, Fig. 1 illustrates the cut and the clauses c4, c5, c6 that participated in the
resolutions that derived the conflict.

If ϕ is a formula and H is a set of hint clauses, then by ϕ ∧ H we mean their
conjunction: ϕ ∧ ∧

h∈H h, which we will call a hint-extended formula.
In HSat, we use a resolution graph to determine why ϕ ∧ H is unsatisfiable,

when it is, by extracting the UNSAT core.

Definition 1 (Hyper-Resolution). Let c1, c2, . . . , ci be all the clauses (from
the implication graph) that participated in the binary resolutions that created the
first UIP conflict clause U . The Hyper-Resolution function

Hyper(c1, c2, . . . , ci) � U

yields that resulting conflict clause U .
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Fig. 1. Conflict analysis graph. The grey nodes represent decision variables while the
black nodes represent propagated values. The vertical line is the first UIP cut.

Writing vi = a@b means that vi was assigned to a at decision level b.

As mentioned in Sect. 1, we use a partial resolution graph to generate hints.
This graph is used to determine whether there exists a directed path from H to
an empty clause.

Definition 2 (Resolution Graph). The Resolution Graph G = (V,E) is
defined recursively as follows:

V := ϕ ∪ H ∪ {Hyper(c1, . . . , cm) | c1, . . . , cm ∈ V }
E := {(ci,Hyper(c1, . . . , ci, . . . , cm)) | c1, . . . cm ∈ V } .

In words, the vertices are the initial clauses and hints closed under hyper-
resolution and the edges point from participating clauses to their hyper-resolvent.

Determining whether a path exists from H to the empty clause is possible by
saving only the part relevant to hints. The partial resolution graph will consist
only of hints or conflict clauses that were derived by some hint. To do so, we
start just with the hints and define the relevant hint-based Partial Resolution
Graph as follows:

Definition 3 (Partial Resolution Graph). The Partial Resolution Graph
GP = (VP , EP ) is defined recursively as follows:

VP := H ∪ {Hyper(c1, . . . , ci, . . . , cm) | ci ∈ VP , c1, . . . , ci−1, ci+1, . . . , cm ∈ V }
EP := {(ci,Hyper(c1, . . . , ci, . . . , cm)) | ci ∈ VP , c1, . . . , ci−1, ci+1, . . . , cm ∈ V } .

In words, the vertices are the hints closed under hyper-resolution and the edges
point from participating clauses to their hyper-resolvent. Figure 2 contains an
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Fig. 2. Resolution graph. Black nodes are the set H. Blue nodes are the hyper resolvents
of VP . The grey nodes are the nodes in V \ VP .

example illustrating Definitions 2,3. The nodes c4, c5, c6, c9 form the set ϕ, while
c7, c8 are the hints in H. The entire graph represents G while the black and blue
nodes and the edges between them are the restricted graph GP .

Having defined the partial resolution graph, we are interested in isolating the
proof of unsatisfiability. To do so, we define the UNSAT core (UC) of a resolution
graph.

Definition 4 (UNSAT Core). The UNSAT core is a subset UC of ϕ∪H that
is backward reachable from the empty clause in G.

We are interested in finding that part of UC that is relevant to the hints:

Definition 5 (Relevant UNSAT Core). The Relevant UnsatCore is the
intersection RC = H ∩ UC.

We refer to the set of all dominator points (a vertex that lies along every path)
between RC and the empty clause in an UNSAT proof as DominatorRC .

The negation ¬h of a clause h = �1 ∨ �2 · · · ∨ �k is the set (conjunction) of its
negated literals ¬�1 ∧ ¬�2 · · · ∧ ¬�k, viewed as unit facts.

3 Hint Addition

We proffer a general platform for adding clauses without worrying that they
might be inconsistent with the input formula. These “hint” clauses can be created
using prior knowledge about the formula’s origins or from information garnered
during SAT solving, as explained in Sect. 4. Our solution enjoys several benefits:



76 J. Kalechstain et al.

1. No additional literals are added.
2. We delay the effect of hints by using techniques from HaifaMUC as

described in [14].
3. “Bad” hints, hints participating in the empty clause derivation, are used for

search space reduction.

We use a resolution-graph-based solution to avoid the need for extra literals
and to enable further optimizations in case the extended formula is unsatisfiable
on account of the hints. In addition, we want to prevent any aggressive inter-
vention of hints in the SAT solver’s solution process, by using hints only when
necessary, which is achieved by delaying their use. We discriminate in favor of
the use of ordinary clauses because conflicts derived from hints are not necessar-
ily consistent with the formula. The same motivation underlies modern Minimal
Unsatisfiable Set (MUS) and Group Minimal Unsatisfiable Set (GMUS) solvers,
which prefer to use clauses already known to be in the minimal core, to keep that
as small as possible. Because of the similarity between hints and core clauses in
MUS and GMUS solvers, we base our solver on HaifaMUC and use the opti-
mization techniques described in [14]. These techniques allow us to prioritize
ordinary clauses over hints and therefore reduce the run-time effect of hints.

The optimizations relevant to hints are the following:

1. Maintain only the partial resolution proof of clauses derived from the added
hints. This prevents the keeping of the whole resolution proof in the memory
and significantly reduces the memory footprint of the solver.

2. Selective clause minimization. Clause minimization [2,16] is a technique for
shrinking conflict clauses. If the learned clause is not derived from the hints,
then during shrinking we prevent the use of hints in the minimization. The
result is that no additional dependencies on hints are added even at the
expense of longer learned clauses.

3. Postponed propagation over hints. This optimization is performed by chang-
ing the order of BCP (Binary Constraint Propagation). BCP first runs over
ordinary (non-hint) clauses, and only if no conflict is found does it run over
hints. The motivation is to prefer conflicts caused by ordinary clauses.

4. Selective learning of hints and selective backtracking. Both optimizations
change the learning scheme by reducing the number of clauses effected by
hints in case an ordinary clause can be learned.

We denote these optimization techniques collectively as HMucOpt.
One of the benefits of using a resolution-graph method is the availability of

clause relation information, which can be used in case the extended formula is
unsatisfiable on account of hints. In [10], a path strengthening technique was
presented in relation to the MUS problem solution. It uses the partial resolution
graph and is used to check whether a clause c is part of the MUS. Checking
whether c ∈ MUS can be done by checking if the formula is unsatisfiable without
using c. If it is, then c cannot be part of the minimal core. To speed up the SAT
solver run, the negation of the clause is added to the SAT Solver as assumptions.
Path strengthening extends this set of assumptions by analyzing the resolution
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Algorithm 1HSat– Solves an extended formula, negates dominators and cleans
hints’ effects.
Input: instance – Boolean formula in CNF form

H – Initial set of Hints (in our case ∅)
Output: SAT or UNSAT (ignore timeout)

1: while true do
2: model := Solve(instance ∧ H) � New h ∈ H can be added in Solve()
3: if model �= null then
4: return SAT � We have the model
5: else
6: RC := GetRC ()
7: if RC.Size() = 0 then
8: return UNSAT
9: else

10: DominatorRC := GetDominators(RC)
11: for each D ∈ DominatorRC do
12: instance := instance ∧ Negate(D)

13: for each ci ∈ RC do
14: RemoveClauses(ci)

graph. If c has only one derived clause in the cone of the empty clause, then
the literals of this clause are added as assumptions as well. This operation is
performed recursively until a clause with more than one child is reached. In
HSat, we extend this by using all dominators between the hint clause and the
empty clause in the partial resolution graph.

Algorithm 1 introduces the general workflow of HSat. Operation Solve() is
a modification of a generic SAT solver with several additions. First, it allows the
addition of new hints and produces a partial resolution in case those hints are
added. In addition, Solve() contains an implementation of HMucOpt. Oper-
ation Solve() can return satisfiable or unsatisfiable. In the satisfiable case, we
are done, as the solver found a satisfying assignment to the formula. In case the
result is unsatisfiable, we check the RC (UNSAT core of hints) created by the
hints. The extraction of RC is performed using GetRC (). If RC is empty, then
the solver found a proof of the empty clause without relying on hints, so the
original formula is unsatisfiable. Otherwise, we find all dominators of the RC
using GetDominators(). (See Alg. 2 and the next paragraph.) For each domi-
nator, we add its negation via Negate() to the input formula and create a new
instance, which goes back to Solve(). Before the next call to Solve(), we clean
the effect of hints in GP by means of RemoveClauses(). The correctness of Alg. 1
is justified by the observations of Sect. 5. As mentioned already, for Solve() we
use a modification of Base, so all the optimizations HMucOpt are used, as
was introduced in [14]. This way, we ensure an increased chance of finding the
solution without hints if such a solution is easy to find.

The operation GetDominators() gets all nodes v ∈ VP such that all
paths from H to the empty clause go through v. At first, we save all nodes
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Algorithm 2 GetDominators() – Gets all dominators in GP . This set will be
negated in Alg. 1
Input: GP – The Partial Resolution Graph
Input: workList – list of vertices. Initially set to RC
Output: DominatorRC – The dominators with respect to GP

1: while workList.Size() > 0 do
2: v := GetAllParentsMarked(workList)
3: if workList.Size() = 1 then
4: DominatorRC .Push(v) � A dominator

5: Mark(v) � v now marked
6: for each u ∈ Children(v) do
7: if ¬IsMarked(u) then
8: workList.Push(u)

9: workList.Remove(v)

10: return DominatorRC

from RC in a list called workList. The algorithm iterates until workList is
empty. We get from the list some v ∈ VP that has all parent marked using
GetAllParentsMarked(workList). Note that since RC has no parents, all mem-
bers of RC have all parents marked. If the size of workList is 1, then v is a
dominator and we push it into DominatorRC . We mark v using Mark(v) and
push all its unmarked children into workList. Note that the empty clause is a
child too.

4 Hint Creation Algorithms

Heuristics for hint generation can vary from completely random selection to a
purely deterministic selection algorithm.

4.1 Avoiding Failing Branches

In this section, we present a deterministic heuristic for hint creation based on the
restart strategy and conflicts. We call this heuristic Avoiding Failing Branches
(Afb). The idea is to track the most conflict-active decisions in the explored
branch and add a hint that explicitly prevents choosing that set again. If a
restart took place, it is reasonable to assume heuristically that the last explored
branch is less likely to contain the satisfying assignment.

In Afb, we keep an array of variable activity to determine the most conflict-
active decisions. When the solver encounters a conflict, we update the scores
of all variables responsible for the conflict. We will explain what “responsible”
means shortly.

The decision to add hints is taken upon backtracking. If the backtracking
is actually a restart, then the most active literals are chosen to participate in
a hint, which is added right after the restart. Because the literals are added in
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Algorithm 3 Update the score of a variable after a conflict. The score is updated
for all decision variables in the first UIP, and for all variables in the reason clause
for non-decision variables.
1: Analyze() {
2: · · ·
3: U := ComputeFirstUip()
4: · · ·
5: for each � ∈ U do
6: v := Var(�) � v is the variable of �
7: if DecisionVariable(v) then
8: variableScores[v] := variableScores[v] + 1
9: else

10: cv := Reason(v)
11: for each �′ ∈ cv do
12: v′ := V ar(�′)
13: variableScores[v′] := variableScores[v′] + 1

14: ...
15: }

their negated form, all explored branches containing the set of literals in the hint
will not be re-explored.

In Alg. 3, which is implemented within the function Analyze() of MiniSat
2.2 [4], we update the score of the variables participating in a conflict. For this
purpose, we keep an array of variables (variableScores), which is updated for all
literals that are in the first UIP (U) computed in ComputeFirstUip(). We then
iterate all variables v ∈ U . If v is a decision variable (DecisionVariable(v)), we
increment its score by one. Otherwise, we take the reason for v being assigned
(cv := Reason(v)) and increment the score for all variables in cv.

In Fig. 1, the first UIP node is U = v10 ∨ ¬v4 ∨ v11. Alg. 3 will first compute
U and iterate through all its literals. The scores of decision variables v10, v11 are
increased in line 8; v4 is not a decision variable, so its reason, c3, is computed in
line 10. The score of variables v2, v3, v4 is increased in line 13.

The hints are added in the function CancelUntil() of MiniSat 2.2 [4]. If a
restart is decided upon, we use the information acquired by Alg. 3 to choose the
most active literals to participate in the hint. A literal � is chosen to participate
if variableScores[Var(�)] is greater than some threshold θ. The integer conflict is
the number of conflicts since Solve() was called. Three magic numbers, α ∈ [0..1],
x ∈ N, y ∈ N, also appear in Alg. 4. They are used in the following fashion:

1. A literal � is added to the hint if variableScores[Var(�)] > α × conflicts = θ.
2. We observed that, as time passes, it’s advisable to increase θ.
3. Parameter x was added as a minimal threshold to prevent adding hints too

“quickly”. The idea is to prevent hints from being used when easy instances
are solved.

4. Parameter y is used to ensure that new hints are not too small. Small hints
can be too influential in the search procedure.
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Algorithm 4 Afb hint addition – Adds a hint built of all negated literals with
a score exceeding θ.
1: CancelUntil(backtrackLevel){
2: if backtrackLevel > 0 then � This is not a restart
3: Performing backtracking until backtrackLevel . . .
4: Upon freeing variable v:
5: variableScores[v] := 0
6: . . .
7: else � This is a restart
8: if conflicts > x then
9: for each decision variable v with decision � do

10: if variableScores[v] > α × conflicts then
11: hint.Push(¬l)

12: for each variable v with decision � do
13: variableScores[v] := 0

14: Perform backtracking until backtrackLevel = 0 . . .
15: if hint.Size() > y then
16: AddClause(hint)

17: hint.Clear()

18: ...
19: }

We maintain a vector of literals, hint, to store the clause that might form the
future hint. Function AddClause() adds the hint to the input instance.

4.2 Randomized Hints

We introduce next a completely random selection algorithm for hint creation,
based on random assignments and satisfiability checking. We call this heuristic
Randomize Hints (Rh). In this algorithm, we use random assignments to see if
we can learn literals that are likely untrue, that is, if chosen, a conflict is reached.
We add these literals to form a new hint, that will hopefully lead the solver to
an unsatisfiable conclusion. This hint is then negated, and the explored search
space is reduced.

The randomized hint is created before HSat is called. First, k random assign-
ments are drawn, each with uniform distribution over {0, 1}n. These assignments
are then checked on every clause. If some clause is unsatisfied, we bump the grade
of all literals in the clause. We keep a vector of grades, literalsGrades(), and track
the maximal graded literals that will be chosen to participate in the hint. We
encourage the solver to pick the literals of the hint as decisions by increasing the
activity of the variables involved in MiniSat’s VarBumpActivity(v).

The following functions and variables are used in Alg. 5 for random hints:

1. DrawRandomAssignments(num) creates num random assignments.
2. ClauseSatisfied(c, σ) returns true iff σ(c) = true.
3. PopMax () returns and removes the literal with the highest score.
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Algorithm 5 Create randomized hints – draws random assignments and boosts
score for all literals in a clause unsatisfied by an assignment. The literals with
the highest scores are chosen to participate in hints.
Input: sizeOfHint – Size of the hint
Input: assignments – Number of assignments to

draw

1: DrawRandomAssignments(assignments)
2: for each Assignment σ do
3: for each Clause c do
4: if ¬ClauseSatisfied(c, σ) then
5: for each literal � ∈ c do
6: literalsGrades[l] := literalsGrades[l] + 1
7: VarBumpActivity(V ar(�))

8: for i ∈ [0..sizeOfHint − 1] do
9: hint[i] := literalsGrades.PopMax()

10: AddClause(hint)
11: hint.Clear()

5 Theoretical Basis

For completeness, a few observations are in place, which should serve to convince
readers that correctness is being maintained.

Proposition 1. For any formula ϕ, a set of hints H and assignment σ : V →
{0, 1} of truth values to the variables of ϕ ∧ H,

σ(ϕ ∧ H) ⇒ σ(ϕ) .

Proposition 2. For any formula ϕ and set of hints H,

ϕ ∧ H ∈ UNSAT ⇒ ϕ ∧ ¬H ≡ ϕ .

By ¬H, we mean
∨

h∈H ¬h.

Proof. If ϕ ∧ H ∈ UNSAT, then ¬(ϕ ∧ H), which is equivalent to ϕ ⇒ ¬H. �
From Proposition 2, we establish the following:

Proposition 3. Given ϕ ∧ H ∈ UNSAT and |H| = 1 where h = �1 ∨ �2 · · · ∨ �k

ϕ ∧ ¬�1 ∧ ¬�2 ∧ · · · ∧ ¬�k ≡ ϕ .

This observation is critical for HSat. In this case, k new facts are learned, which
helps reduce the fraction of the search space that gets explored.

As mentioned earlier, this idea can be generalized to include all dominators.

Theorem 1. If ϕ ∧ H is unsatisfiable, then ϕ ≡ ϕ ∧ ¬D for every D ∈
DominatorRC .

Proof. Since D ∈ DominatorRC , it is sufficient to prove ϕ ∧ D ∈ UNSAT. By
Proposition 2, ϕ ≡ ϕ ∧ ¬D. �
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6 Experimental Results

6.1 AFB Results: SAT 2013

We compare now the performance of HSat, with and without heuristic Afb. We
find that hints have a positive effect for satisfiable instances but cause a moderate
degradation for unsatisfiable ones. The positive results for satisfiable instances
are in line with our presumption that, if a restart takes place, it is heuristically
likelier that the satisfying assignment to the problem lies on another branch.

We ran over 150 satisfiable instances from SAT 2013, but the results reported
below refer only to the 113 that were fully solved by at least one solver within
half an hour. All of the instances are publicly available at [1]. We implemented all
the algorithms in Base [14], which is built on top of MiniSat 2.2 [4]. The code
is public and available at [13]. For the experiments, we used machines running
Intel� Xeon� processors with 3Ghz CPU frequency and 32GB of memory.

Table 1. Afb performance results for SAT 2013: satisfiable (left) and unsatisfiable
(right) instances. Run-time is in minutes.

SAT Base Afb

Run-time 990 697

Unsolved (by one) 9 4

UNSAT Base Afb

Run-time 727 779

Unsolved (by one) 2 3

Fig. 3. Comparing Afb to Base.
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Table 1 displays a 30% improvement in overall runtime for satisfiable
instances. Furthermore, there are 9 instances solved by Afb that are not solved
by the base solver, compared to 4 instances solved by Base but not by Afb.

In addition, 130 unsatisfiable instances from SAT 2013 were tested; the
reported results refer only to the 60 that were fully solved by at least one solver
within the 30-minute time limit. Table 1 shows a 7% degradation in overall
runtime for unsatisfiable instances.

Figure 3 presents Base vs. Afb. The diagonal y = x emphasizes the supe-
riority of Afb. Figure 4 presents the time differential between Base and Afb.
On average, Afb solves one of these problem instances 2 1

2 minutes faster than
the baseline. The graphs refer to satisfiable instances only.

Fig. 4. The time difference (in seconds) between Base and Afb

Fig. 5. Comparing percentage of instances solved by Base and Afb.
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Table 2. Afb performance results for SAT 2014: satisfiable instances. Run-time is in
minutes.

SAT Base Afb

Run-time 833 681

Unsolved (by one) 9 2

Figure 5 shows three curves, plotted at one minute intervals. The lower curve
(A) is the percentage of instances solved by Base and Afb both; the middle (B)
is the percentage of instances solved by Base the upper (C) is the percentage
solved by either one. The gap B−A represents the percentage of instances solved
by Base but not by Afb; C − B represents the percentage solved by Afb but
not by Base. Notably, C − B is consistently larger than B − A.

We observe that the positive effect of Afb is due to successful branch cutting
by hints and not because of HSat’s ability to negate dominators. Most of the
hints added did not contradict the instance, so HSat’s UNSAT core abilities
were not helpful in Afb.

For the SAT 2013 benchmark, we also measured the average size of hints
(number of literals participating in a hint), the average number of hints per
instance, and the number of dominators found in all instances:

SAT UNSAT
Hint average size 34 43
Hints per instance 0.84 1.16
Dominators 2 15

Hints were used in 34% of the satisfiable instances and 39% of the unsatisfiable
cases.

6.2 AFB Results: SAT 2014

We used the same configuration when testing Afb on satisfiable instances from
the SAT 2014 competition. Table 2 shows a 19% improvement in overall runtime
for satisfiable instances. Furthermore, there were 9 instances solved by Afb that
were not solved by the base solver, compared to 2 instances solved by Base but
not by Afb. These results refer only to the 98 instances that were fully solved
by at least one solver within 30 minutes.

6.3 RH Results: SAT 2013

The same configuration as in Sect. 6.1 was used for the Rh heuristic on satisfi-
able instances from SAT 2013, and the same instances were tested. The results
reported below refer only to the 116 instances that were fully solved by at least
one solver within 30 minutes. Table 3 shows a 8% improvement in overall runtime
for satisfiable instances.
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Table 3. Rh performance results: satisfiable (left) and unsatisfiable (right) instances.
Run-time is in minutes.

SAT Base Rh

Run-time 1080 988

Unsolved (by one) 12 12

UNSAT Base Rh

Run-time 757 888

Unsolved (by one) 3 9

We were admittedly surprised to see that satisfiable instances were solved
faster because of “good” hints, hints that do not contradict the input. We were
surprised because we tried to build hints that would contradict the input and
have the negation of dominators drive the solution.

In addition, 130 unsatisfiable instances from SAT 2013 were tested; the results
below refer only to the 60 that were fully solved by at least one solver within
the 30-minute time limit. Table 3 shows a 15% degradation in overall runtime
for unsatisfiable instances.

Combining the two heuristics, Afb and Rh, as though they would run in
parallel for half an hour on the SAT 2013 benchmark, we obtain 16 SAT instances
that are solved for which Base times out, versus 2 that only Base solves, and
5 UNSAT instances that Base fails on, versus 3 only by Base.

7 Discussion

We have introduced a new paradigm and platform, called HSat, with which one
can speed up SAT solving by means of added clauses. It enables the addition of
“hint” clauses that are not necessarily derivable from the original formula but
which can nevertheless help the solver reach a solution faster. HSat avoids the
addition of new literals, using instead a partial resolution graph to keep track
of the effect of hints. We have seen that the Afb hint heuristic, which causes
the prover to avoid retaking the most conflict-active decisions, outperforms the
(hintless) baseline system and introduces a significant improvement in the solver
core. On a benchmark of 280 instances, 150 of which are satisfiable: Afb achieved
a 30% runtime improvement over the baseline and solved 9 instances not solved
by the baseline prover.

Though these results are very encouraging, we have reason to believe that
future work can lead to further improvements. For example, we tried to increment
conflict decision variable scores by an amount that is inversely proportional to its
depth in the proof tree, so those closer to the root (which have greater impact)
get greater weight. This approach did not work for the thresholds we looked
at, but might work for others. Another example is that our hint heuristics do
not work well for unsatisfiable instances, the main reason being that there are
usually no dominator clauses, in which case unsatisfiability does not drive the
subsequent search very well. In this case, the incremental running of Alg. 1 just
adds overhead. An interesting avenue for research would be to design hints that
create multiple dominators or that lead the solver to a contradiction faster.
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There are an endless number of ways to create hints, and many places in
the process to add them; so far we have only explored a few options. It is likely
that there remain even more interesting ways to create good hints for satisfiable
instances and, hopefully, for unsatisfiable ones, too.
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The authors would like to thank Alex Nadel and Ofer Strichman for their advice and
reading of a draft of this paper. This work is part of the first author’s M.Sc. thesis at
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Abstract. In incremental SAT solving, information gained from pre-
vious similar instances has so far been limited to learned clauses that
are still relevant, and heuristic information such as activity weights and
scores. In most settings in which incremental satisfiability is applied,
many of the instances along the sequence of formulas being solved are
unsatisfiable. We show that in such cases, with a P-time analysis of the
proof, we can compute a set of literals that are logically implied by
the next instance. By adding those literals as assumptions, we accelerate
the search.

1 Introduction

Incremental SAT solving is used in numerous applications, including Bounded
Model Checking [5], SMT solving [10], unsat core extraction [7], high-level
(group) UNSAT core extraction [13], and model-checking via IC3 [6]. In all these
applications a sequence of closely related SAT formulas is being solved, and by
saying that they are solved incrementally we mean that the SAT solver retains
information between subsequent calls, in order to expedite the overall process.
Originally there was clause sharing [16–18], which means that learnt clauses at
step i, which are still relevant for step i + 1, are retained. As of MiniSat [8]
most competitive solvers support assumptions, which enables them to support
a far more general incrementality mechanism, which not only retains relevant
learned clauses, but also heuristic information such as literal scores and vari-
able activity. Assuming that consecutive instances are similar, this information
saves time. Furthermore, only the added clauses and the assumptions have to be
communicated to the solver at each iteration, thus saving time on parsing and
reloading the formula to memory.

In this article we show that whenever an instance ψ in the sequence of solved
formulas is proven to be unsatisfiable, we can extract from the proof constants
that can be added to the next instance ψ′, hence offering a new type of data
transfer in incremental solving. Our context is a CDCL solver such as Minisat [8],
which is augmented with in-memory proof logging, or is at least capable of
c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 88–103, 2015.
DOI: 10.1007/978-3-319-24318-4 8
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producing a proof on demand. There is an overhead associated with maintaining
the proof in memory, and generic SAT solvers typically refrain from doing it.
In some applications such proof logging is necessary, however, like solvers used
in interpolation-based model-checking [2,11], the minimal-core extraction tool
HaifaMUC [14,15], and the incremental solver described in [14]. For this work
we chose to focus on HaifaMUC, as it is open source. HaifaMUC maintains
in memory a partial proof, and more specifically the part of the proof that is
rooted at clauses that will potentially be removed in future instances, which is
all that we need for our technique.

In graph terms, a proof is a directed graph in which nodes represent clauses
and edges represent the antecedent relation between them, i.e., the parents of
a clause are its antecedents. When the empty clause is reachable from some
roots of the graph we call the proof a refutation. The edges maintained by
solvers, including HaifaMUC, correspond to hyper resolution inference. Such
an inference has multiple clauses c1 . . . cn as antecedents, and one clause c as a
consequent, if and only if there exists a binary resolution proof of c from c1 . . . cn.
For simplicity we will refer to the nodes in the resolution proof simply as the
clauses that they represent. For a root clause c, let cone(c) denote the maximal
reachable subgraph that is rooted at c. For a set of clauses C, we overload cone
by defining cone(C) =

⋃
c∈C cone(c).

Our technique exploits the following observation, which was originally made
by Nadel in his thesis [12]:

Observation 1. Let π be a refutation. Then every vertex cut in π represents
an inconsistent set of clauses.

Intuitively this observation is correct because every set of clauses that forms a
cut (i.e., separates the roots from the empty clause), implies the empty clause,
and hence must be unsatisfiable. A consequent of this observation is

Corollary 1. Let π be a refutation, and let C be a set of root clauses in its core.
Let vc be a vertex cut in cone(C), i.e., vc separates C from the empty clause.
Then

π \ cone(C) ⇒
∨

cl∈vc

¬cl . (1)

To see why (1) is correct, observe first that π \ cone(C) and cone(C) represent
a partition of π. Falsely assume, then, that there exists an assignment α such
that α |= π \ cone(C) ∧ ∧

cl∈vc cl. Take any subset of clauses from π \ cone(C)
that together with vc form a cut in π. Since α satisfies both that subset and vc,
then α satisfies a full cut in π, which contradicts Observation 1.

The cut vc is of course not unique in cone(C). Let Cuts(C), then, be the set
of all cuts in cone(C). We can now generalize (1) to

π \ cone(C) ⇒
∧

vc∈Cuts(C)

∨

cl∈vc

¬cl . (2)

How is (2) relevant to faster incremental SAT solving? Consider the case that
we have an unsatisfiable instance ψ accompanied with a refutation π, and in the
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next iteration we would like to remove a set of root clauses C and add another
set of clauses C ′. This means that we now need to check

ψ′ ≡ C ′ ∧ (π \ cone(C)) . (3)

According to (2) we can check instead the equivalent formula

ψ′ ∧
∧

vc∈Cuts(C)

∨

cl∈vc

¬cl . (4)

For simplicity of the discussion we will ignore from hereon the added clauses C ′,
since they do not affect the correctness argument.

There is no a priory reason to believe that checking (4) is easier than checking
ψ′ itself, however. First, the set Cuts can be exponential in size and generally
cannot be computed efficiently; second, even if we have this set or part thereof,
adding a disjunction of terms which is, while being logically implied by the for-
mula, not emanating from the search itself, is not likely to accelerate the search.
But suppose that instead of considering all cuts, we only consider singleton cuts,
i.e., those that include a single clause. In such a case (4) amounts to adding the
negation of those clauses, or in other words adding constants to the formula,
which are likely to accelerate the search.

In the case of deletion-based MUC extraction, it is rather easy to find sin-
gleton cuts, because it is always the case that |C| = 1: each iteration corre-
sponds to removing a single candidate clause and checking the satisfiability of
the remaining formula. This property is used in a technique called path strength-
ening (PS) [14], which helps finding minimal unsatisfiable cores faster. It is
illustrated in Fig. 1.

To see how PS finds those cuts, let c be the removed clause, i.e. C = c. PS
focuses on the subgraph of cone(c) that leads to the empty clause:

Definition 1 (Rhombus). Let c be a root clause in the core of a refutation
π. Then the rhombus of c, denoted ♦π(c), is the clauses in cone(c) that are on
some path from c to the empty clause ⊥.

We overload ♦π to a set of clauses in the natural way: ♦π(C) =
⋃

c∈C ♦π(c).
PS finds in linear time a maximal ‘chain’ of clauses c0, c1, . . . , cn in ♦π(c0)

such that c0 ≡ c, for 0 ≤ i < n, ci is a parent of ci+1, and, finally, cn is the
only clause in this chain that has multiple children in ♦π(c0). Note that this
means that each of them is a dominator in ♦π(c0) with respect to the empty
clause. It then checks π \ cone(c) under the assumptions {¬l | ∃i ∈ [1..n]. l ∈
ci}. These extra assumptions, empirically, accelerate the search [14]. PS can be
seen as an extension of redundancy removal, which was used in the MUC-finder
MUSer2 [3], that only uses ¬c0 as assumptions.

Whereas PS is based on a sequence of clauses c0, . . . , cn as explained above,
in this article we show that there are many more literals that can be easily found
and assumed in the next instance. In particular, we observe that

Observation 2. The negation of every literal that appears in every path from
C to the empty clause is implied by ψ′.
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Fig. 1. Demonstrating path strengthening (PS) [14]. Left: given a refutation π, every
vertex cut corresponds to a set of clauses that must be contradictory, since together
they imply the empty clause. Right: consequently, when removing a clause and its
cone (cone(c) = {c, c1..c4, ⊥}), the rest of the formula, which here is marked with
a dashed polygon, cannot be satisfied with a model that also satisfies a vertex cut
in ♦π(c) = {c, c1..c3, ⊥}. Each of c and c1 constitute a (singleton) cut in ♦π(c). PS
exploits this property, and adds their negation as assumptions when solving ψ′ ≡
π \ cone(c). Identifying such a chain of clauses takes linear time.

To see why, consider such a literal l and the set of clauses S = (l∨A1), (l∨A2), . . .
in ♦π(C) that it appears in, where A1, A2, . . . are disjunctions of literals. By
definition, S ∈ Cuts(C). Then according to (2), we have

ψ′ ⇒
∨

cl∈S

¬cl (5)

or equivalently
ψ′ ⇒ (¬l ∧ ¬A1) ∨ (¬l ∧ ¬A2) ∨ . . . , (6)

from which we can conclude

ψ′ ⇒ ¬l ∧ (¬A1 ∨ ¬A2 ∨ . . .) (7)

and then
ψ′ ⇒ ¬l . (8)

Hence, ¬l is implied by ψ′, which means that we can add it as an assumption
when solving ψ′. We will show in Sect. 2 a P-time algorithm for detecting such
literals, and analyze its complexity. We call this extended technique Mining
Backbone Literals, or MBL for short. The term backbone literals of a formula
appeared in the past in multiple contexts such as phase transition, maxSAT and
optimization problems (see a recent survey in [9]). It is defined as literals that
are satisfied in all models of the formula. Generally deciding whether a literal
has this property is NP-complete [9]), which underlines the benefit we gain from
analyzing the proof of ψ. Note that in contrast to all the prior works mentioned
in the above survey, we are not interested in finding the complete set of such
literals.
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Finally, even more literals can be found efficiently if we consider the solver’s
state. Let Con be the set of constants implied by ψ′, i.e., literals implied at
decision level 0 (those, of course, are backbone literals as well). We say that a
path in the resolution graph is satisfied by Con if at least one of its clauses is
satisfied by Con. More literals can be found based on the following observation,
which extends Observation 2:

Observation 3. The negation of every literal that appears in every path which
is not satisfied by Con from C to the empty clause is implied by ψ′.

A special case is when all paths from C to the empty clause are satisfied by Con.
Then ψ′ ⇒ false and we can immediately declare ψ′ to be unsatisfiable. We will
prove the correctness of this technique, which we call MBL-inline, or MBLi for
short, and discuss variations thereof in Sec. 2.2.

Note that PS as described earlier finds only a subset of what MBL (and
MBLi) finds, because any literal in the clauses c0, . . . , cn that PS finds has the
property mentioned in Observation 2: it appears in every path from C ≡ c0 to
the empty clause. Furthermore, in contrast to PS which is only relevant when
|C| = 1, MBL addresses the general case, where C is arbitrary, and hence is
relevant for general incremental SAT solving.

A Preview of Our Empirical Results. As a case study we experimented
with this technique in the context of finding minimal unsatisfiable cores (MUC)
based on clause-deletion. Our new technique MBL finds on average five times
more assumption literals comparing to PS, and does so in a negligible amount
of time.

Having PS as our base-line, MBL reduces the run-time of MUC extraction
by 6%-7% on average only, depending on the benchmark set. With additional
optimizations targeted on MUC extraction that increase the benefit of finding
these extra literals, we reach an improvement of 10%. We will describe those
optimizations in Sec. 3. This is, admittedly, a modest improvement. Our analysis
of the data reveals two possible reasons for this.

Fig. 2. Assumptions have a diminishing value.

First, our data shows that
extra assumptions have dimin-
ishing value, since at some
point many of them are already
implied by previous assump-
tions and constants (constants
are literals implied at deci-
sion level 0), and are therefore
redundant. The ratio of implied
assumptions depends on the
order in which they are given to
the solver, but since this order is
rather arbitrary in our case, we
measured the redundancy with
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the default ordering. In our benchmark sets redundancy varies a lot between
instances. In the SAT’11 and SAT02β benchmark sets (each with hundreds of
instances) we measured ≈40% and ≈22% redundancy on average, respectively.
We witnessed a positive correlation between the number of assumptions and the
redundancy ratio. The scatter graph in Fig. 2 shows this data for the SAT02β

benchmark set. One can observe that when the number of assumptions per SAT
call is high, the redundancy also goes up, and approaches 1.

Second, there are particular characteristics of deletion-based MUC extrac-
tion, which make it vulnerable, in terms of run-time, to assumptions. We will
discuss those in detail in Sect. 3. These characteristics are not present in other
known popular domains of incremental satisfiability, such as bounded model
checking, so it is reasonable to assume that a larger benefit will be observed in
such domains.

In the next section we present an algorithm for computing MBL and a vari-
ation thereof called MBLi. In Sect. 3 we will describe in some detail our case
study of MUC extraction: how it is applied and what did we learn from our
experiments in this domain.

2 Mining Backbone Literals

As before let C denote the set of root clauses that are removed when progressing
from ψ to ψ′. We assume that ψ is unsatisfiable, and that C is in the core of the
refutation π. In our implementation each node n in ♦π(C) is a structure with
four fields:

– n.clause
– n.LitSet — a set of literals that are present in all paths from C to n.

Initialized to ∅;
– n.NumOfParents — the number of parents n has in ♦π(C). Initialized to 0.
– n.visited — whether n was visited before in the traversal. Initialized to

false.

Alg. 1 presents MBL-Get, which computes the MBL literals — those that are
present on each path from the root nodes C to the empty clause. In the end of
the algorithm, the following relation holds for each node n in ♦π(C):

n.LitSet =

⎛

⎝
⋂

p∈parents(n)
p.LitSet

⎞

⎠ ∪ n.clause . (9)

In words, the literals that appear on every path from C to n, are those that
appear on every path to each of its parents, and the literals in the clause of n
itself.

MBL-Get begins by calling CountParents, which simply updates
n.NumOfParents with the number of parents n has inside the ♦π(C). The func-
tion children(p), which is called in line 6, returns the set of children p has
in ♦π(C). MBL-Get maintains a queue of nodes, initialized in line 14 to the
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clauses in C. A node n enters this queue only after its n.LitSet was fully com-
puted (in the case of a root node, its literal set is the clause itself, as can be seen
in line 11). From (9) it is clear that we can compute this set only after such sets
were computed for all of n’s parents. This is why we need n.NumOfParents: we
use it to guarantee that a node enters the queue only after all its parents were
processed — see lines 24 and 26. We refer to the currently processed node as
the parent, and denote it by p, as can be seen in line 16. We iterate through p’s
children, intersect their current literal sets with p.LitSet in line 23, and if p
is the last parent of a child node n, then we add in line 25 n.clause (see right
element of (9)) and enqueue n. The last node to be processed — see line 17 — is
the empty clause. Its literal-set is the result of this procedure. The negation of
each of these literals can be added to ψ′, the next formula to be solved, without
changing its satisfiability.

Algorithm 1. CountParents updates n.NumOfParents for each node n with
the number of parents in ♦π(C). MBL-Get computes the set of literals that
are on every path from C to the empty clause. Those are the literals that are
present in each clause along some vertex cut of ♦π(C).
1: function CountParents(nodeSet C)
2: NodeQueue Q; � A queue of nodes
3: Q.enqueue(C);
4: while Q is not empty do
5: p = Q.dequeue();
6: for each node n in children(p) do
7: n.NumOfParents++;
8: if n.NumOfParents = 1 then Q.enqueue(n); � Ensures n enters Q once

9: function MBL-Get(nodeSet C)
10: CountParents(C);
11: for each c in C do
12: c.LitSet = c.Clause;

13: NodeQueue Q; � A queue of nodes
14: Q.enqueue(C);
15: while Q is not empty do
16: p = Q.dequeue();
17: if p.clause.isEmpty() then return p.LitSet;

18: for each node n in children(p) do
19: n.NumOfParents--;
20: if !n.visited then
21: n.LitSet = p.LitSet;
22: n.visited = true;
23: else n.LitSet.intersect(p.LitSet);

24: if n.NumOfParents = 0 then � All parents handled
25: n.LitSet.union(n.clause);
26: Q.enqueue(n);
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Complexity. Let N,E be the number of nodes and edges in ♦π(C), respectively,
and let K be the size of the largest clause in ♦π(C). The maximal size of the
literal set is the number of different literals in ♦π(C), which we will denote by L.
Each of the clauses have to be sorted for the union and intersection operations
(lines 23 and 25), which takes O(N(K log K)). Intersection takes not more than
O(L), and there are O(E) intersections. The overall complexity is thus E · L +
N · K log K.

Example 1. Fig. 3 shows a possible ♦π(C) for C having a single clause c = (1
2 -3) on the left, and the corresponding n.LitSet computed for each node n by
MBL-Get on the right. Note that ♦π(C) is part of a hyper-resolution proof,
hence the internal nodes may have additional incoming edges from outside of
♦π(C), which are not shown in the figure. The algorithm returns n.LitSet for
n being the empty clause in line 17, namely the literal set (1 2 -3 5) in this case.
These are the literals that appear in all paths from C to the empty clause. In
case of |C| = 1, as it is in this example, the output always includes the literals of
the root clause itself. Here the prefix of clauses under c that has a single parent
in the cone of c is just c itself. Hence with PS we would return in this case (1 2
-3) only, while missing the literal 5.

(1 2 -3)

(-3 4 5) (5 -7)

(6 8)

( )

{1 2 -3}

{1 2 -3 4 5} {1 2 -3 5 -7}

{1 2 -3 4 5 6 8}

{1 2 -3 5}

Fig. 3. Left: a partial (hyper) resolution graph corresponding to ♦π(1 2 -3). Right: At
each node n, showing n.LitSet at the end of MBL-Get.

2.1 Optimizations and Implementation Details

Some additional details about how we implemented MBL-Get in practice fol-
low:

– Optimization I. In case |C| = 1, we collect the literals in the initial chain of
clauses (the same chain that was used in PS and was described in Sect. 1) —
these are known to be part of the end result. Then, rather than propagating
them down the resolution graph, we just save them and add them to the
set of literals that is eventually returned by MBL-Get. In the example
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resolution graph of Fig. 3, this optimization amounts to not propagating (1
2 -3) down the graph, rather adding these literals only at the very end, hence
saving some of the cost of intersection in line 23. Since the overall algorithm
is linear in the size of the graph, the importance of this optimization is
admittedly marginal.

– Optimization II. Cutoff values: we collected statistics that show that when
the width of ♦π(C) is large, only few MBL literals, if at all, are detected;
furthermore, the wider ♦π(C) is, the longer it takes to compute the liter-
als1. We therefore terminate early the computation if either the number of
children of C in ♦π(C) crosses a certain threshold Th1, or the width of
♦π(C) crosses another threshold Th2 (i.e., the size of the queue in line 4).
Our implementation currently sets these values by default to Th1 = 400
and Th2 = 500, based on (limited) experiments. If one of the thresholds is
crossed we revert to PS (we can do it in our case because, recall, for MUC
extraction it is always the case that |C| = 1. In the general case the fallback
solution can be to not report assumptions to the next instance).

– Handling Deleted Clauses. The description of MBL-Get so far ignored
the fact that not all clauses are available along the resolution graph due
to clause deletion. Our solver maintains the graph itself (the arcs), but the
clauses themselves are possibly deleted from memory. Our solution to this
problem is to skip line 25 when encountering such a clause. This means that
the end result may be weakened, since some of the literals in that clause
could have been included in that set.

2.2 Constants can Increase the Number of Assumptions

Constants — variables that are forced to a particular Boolean value at decision
level 0 — are prevalent in the solving process. In our experiments with indus-
trial benchmarks we witnessed hundreds of constants already after the initial
propagation at level 0, and then many more learned during the search. Let σ be
the partial assignment corresponding to the constants right after the propaga-
tion at decision level 0 (note that we are not restricting ourselves to the initial
propagation; the solver may backtrack to level 0 many times during the search).
By definition of constants, any assignment that satisfies the formula, if such an
assignment exists, is an extension of σ. This fact can be used to increase the set
of MBL literals as hinted in the introduction (see Observation 3).

In the traversal of ♦π(C) by MBL-Get, we ignore the set of clauses {c′ |
σ |= c′}, i.e., the set of clauses that are satisfied by the constants. This effectively
‘cuts’ paths to the empty clause, and hence potentially increases the set of MBL
literals, because we intersect the literal sets in line 23 of less clauses. To apply
this optimization, right after line 18 we check if n.clause is satisfied by σ, and
if yes then we continue, i.e., jump to the next iteration of the for loop.

1 It was shown in [4] that wide proofs are necessarily long, although there the reference
was to resolution and not hyper resolution. If we consider the rank of each clause in
the hyper-resolution proof to be bounded, then this result applies here as well.
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Theorem 1. Let l denote a literal in n.LitSet, where n is the empty clause,
in the revised MBL-Get described above. Then ψ′ ⇒ ¬l.

Proof. Observe that the set of clauses S in ♦π(C) that contain l, and the set S′

of nodes that were ignored by the revised procedure as described above, form
a cut in ♦π(C). Falsely assume the existence of an assignment α such that
α |= ψ′ ∧ l. Then α |= ∧

cl∈S∪S′ cl, because it satisfies l and it coincides with σ
on the constants. Take any subset of nodes in ψ′ that together with S ∪ S′ form
a cut in π. Since that subset is also satisfied by α, then we have a cut in π that
is satisfied by α, which contradicts Observation 1. ��
As an illustration, consider again Example 1, and suppose that -7 is a constant
implied by the formula. Then the clause (5 -7) is satisfied and hence ignored,
and then the literal set reaching the empty clause is larger: (1 2 -3 4 5 6 8).

Note that the MBL literals may imply other constants, hence this idea can
be applied iteratively, until convergence. Empirically it happens quite often that
with this process all paths to the empty clause are cut by constants, a case in
which we immediately return UNSAT, since every assignment that satisfies ψ′

also satisfies a cut in ♦π(C).
We implemented several variations of this basic idea, and let the user control

them via flags. One flag controls whether it is indeed applied iteratively until
convergence, or only once. Another flag determines whether to apply this in the
beginning of the search after propagation at level 0, or, at the other extreme,
every time the solver backtracks to level 0 with a new learned constant. In the
experiments presented in Sec. 3.2, we refer to this technique with the first flag
turned off and the second turned on, as MBL-inline, or MBLi for short.

3 A Case Study: Using MBL in the Context of MUC
Extraction

We implemented the ideas described in the previous section in HaifaMUC [14,
15], a minimal unsat core extractor, which is based on resolution and hence fits
our needs. In the following subsection we will describe the core algorithm of
HaifaMUC, which will help us later, in sect. 3.2, to explain the experimental
results.

3.1 How HaifaMUC Extracts Minimal Unsatisfiable Cores

HaifaMUC is a deletion-based minimal unsatisfiable core extractor that main-
tains (parts of) the proof in memory. Algorithm 2 describes in pseudo-code a
simplified version of its main loop (see [14] for the full version), still based on
PS. For MBL simply replace the called function in line 19 with MBL-Get. The
implementation of MBLi is more complicated as it is intertwined in the search
engine of the solver, so we will not present it here in pseudocode. The code is
rather self-explanatory so let us only emphasize the role of the Boolean variable
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LastProofOK. This variable is set to false if the last unsatisfiability proof relied
on assumptions. In such a case we cannot perform PS, because we do not have a
proof of the empty clause (we only have a proof of the negation of the assump-
tions). An actual proof of the empty clause is necessary because without it we
cannot compute a path with the properties explained in Sect. 1. Examining the
logs one can frequently see an unsat proof based on assumptions, and then a
long sequence of SAT results, none of which can enjoy the benefit of PS. This
leads us to:

Observation 4. Reaching an unsat answer based on assumptions, while gener-
ally being faster than without them, has two drawbacks:

1. PS (and similarly MBL) cannot be used until another iteration results in a
full proof, and

2. Only the candidate clause c is removed rather than everything outside the
cone (compare line 7 to lines 10–12).

This observation helps understanding the results that will be presented next.

Algorithm 2. The basic main algorithm of HaifaMUC with PS. In the first
iteration the condition in line 5 is true and in line 6 it is false.
Input: Unsat formula ψ.
Output: A MUC of ψ.

1: assumptions = ∅;
2: Mark all ψ’s clauses as ‘unknown’;
3: while true do
4: 〈res, π〉 := SAT (ψ, assumptions);
5: if res = UNSAT then
6: if assumptions used in proof then
7: Mark c as ‘not in MUC’;
8: LastProofOK = false;
9: else

10: for each root outside of core(π) do
11: Mark root as ‘not in MUC’;
12: Remove cone(root) from ψ;

13: LastProofOK = true;

14: else � SAT
15: Mark c as ‘MUC’; � c is now in core
16: Add TmpRemoved back to ψ;

17: if no clause is marked as ‘unknown’ then return clauses marked as ‘MUC’;

18: Select c from roots marked as ‘unknown’;
19: if LastProofOK then assumptions = PathStrengthening(c);
20: else assumptions = ¬c;

21: TmpRemoved = cone(c);
22: ψ = ψ \ TmpRemoved;



Mining Backbone Literals in Incremental SAT 99

3.2 Experiments

Results with the 2011 MUC Competition Benchmarks. We took the 200
benchmarks of the 2011 MUC-extraction track2 (the mus/ subdirectory in the
archive), the only competition ever held in this track, and removed four of them
that could not be solved by any of the techniques in 15 minutes. According to
the remaining 196 benchmarks — see Fig. 4 (left) — there is 6% improvement
in the run-time of MBL comparing to PS, our base line, whereas MBLi has a
0.5% negative effect. When considering the run-time per benchmark family —
see Fig. 4 (right) — it is evident that the degradation in results of MBLi happens
only in one family (the ‘abstraction-refinement-intel’ set)3, whereas in the other
families it either improves or has marginal effect on the results. Returning to the
table in the left of the figure: ‘literals’ is the number of added assumption literals,
‘iterations’ is the number of iterations until a MUC is found, and ‘lit/iter’ is the
ratio between them; ‘unsat by assump.’ is the number of iterations in which the
solver returned unsat based on the assumptions; ‘overhead’ is the total run time
spent on finding the literals (i.e., for all iterations); ‘longest call’ is the longest
SAT call (in sec.) in every CNF instance (not including the initial run) of Alg. 2,
and finally ‘% implied assump.’ is the percentage of literals that their value was
already implied by previous literals and constants in the formula by the time we
tried to apply them.

Measure PS MBL MBLi

success 196 196 196

time 21.5 20.3 21.7

literals 2770.8 11377.2 9886.1

iterations 1180.6 1188.5 1203.7

lit / iter 2.3 9.6 8.2

unsat by assump. 226.5 232.4 236.2

decisions (M) 30.7 30.6 47.3

overhead 0.0 0.3 0.3

longest call 0.5 0.4 0.4

% implied assump. 0.4 0.5 0.5

Bench. Family PS MBL MBLi

fdmus-v100 16.7 16.8 16.7

abs-ref-intel 26.3 22.3 36.7

atpg 0.0 0.0 0.0

bmc-aerielogic 4.6 4.4 4.4

bmc-default 6.3 6.3 6.3

design-debugging 1.1 1.1 1.0

equivalence-checking 59.9 55.3 43.3

fpga-routing 58.2 50.3 50.8

hardware-verification 48.4 47.7 44.9

product-configuration 0.0 0.0 0.0

software-verification 63.1 57.6 64.9

Total 21.5 20.3 21.7

Fig. 4. Results with the 2011 MUC track benchmarks. Left: various measures. Right:
Run-time (sec.) by family;

The number of assumption literals that we add per SAT invocation is 4.1X
larger with MBL comparing to with PS. Interestingly it is only 3.5X for MBLi,
despite the fact that MBLi searches more aggressively for such literals. The
reason for this phenomenon is related to the first item of Observation 4: more
2 Officially that track was called MUS, for minimal unsatisfiable set.
3 In fact it happens because of one benchmark in this family – an extreme outlier.
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assumptions increase the probability that the proof relies on them, which in
turn shuts off the search for such assumptions in future iterations, until there
is an unsat proof without assumptions. Indeed observe that ‘unsat by assump.’
is higher for MBLi. Also observe that the number of iterations is higher with
MBLi, which relates to the second part of Observation 4.

Analysis of the run-time of MBL: according to the ‘overhead’ row, the total
amount of time spent on computing the MBL literals is less than half a second
per CNF instance. Dividing it by the number of iterations shows that it takes
on average around 3 ∗ 10−4 seconds per SAT call. Recall that we bound the
search for MBL literals to prevent spending too much time in case the proof is
large (see optimization II in Sect. 2), hence the theoretical exponential upper-
bound on the size of the proof is irrelevant: the overhead is always small. Indeed
examining the data further reveals that it takes less than 10−3 sec. in 95% of the
cases and less than 2 ∗ 10−2 seconds in all cases. For comparison, we analysed
the run time of the solver itself. The average time of a SAT call (not including
the initial call) in the case of MBL is 0.012 sec., which is about 40X longer than
the time it takes to compute the MBL literals. In these instances the SAT run-
time is particularly short4. Hence the relative overhead is expected to be smaller
on harder instances.

Analysis of implied assumptions. We already mentioned in the introduction that
more assumptions typically implies more redundancy, i.e., a larger portion of
them are implied by other assumptions. To quantify the connection between
these two figures, we computed their Spearman correlation ρ. This is a frequently-
used measurement for checking monotonicity between two arrays, i.e., for two
arrays A1, A2 of equal size, ρ(A1, A2) = 1 if and only if for all i, j, when A1[i] >
A1[j] then A2[i] > A2[j]; ρ(A1, A2) = −1 if the opposite relation holds, and
ρ(A1, A2) = 0 if there is no relation between the two arrays. With the above
benchmark set we computed ρ = 0.57, which shows a strong connection between
these two figures.

Results with the SAT 2002β Competition Benchmarks. The SAT 2002β

competition benchmark set contains over 500 CNF application instances. After
removing those that are SAT and benchmarks that cannot be solved with any of
our parameters within 15 minutes, we were left with 216 instances. The table in
Fig. 5 presents these results. The 5 columns on the right repeat the results for
those 52 benchmarks in the set that at least in one of the parameters sets, they
impose a SAT call that takes over a second. The table shows a gain of 5% and
6% to MBL and MBLi in the first set, respectively, and a gain of 3% and 7% to
MBL and MBLi in the second set, respectively. The increased benefit matches
our intuition that extra assumptions can help more in hard SAT calls.

4 This is expected for this benchmark set, because only easy CNF instances were
selected for inclusion in this set to begin with.
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all longest > 1

Measure PS MBL MBLi PS MBL MBLi

success 215 215 215 52 52 52

time 62.3 59.3 58.9 264.5 258.1 245.9

literals 3321.9 5778.1 5925.3 9484.5 32960.1 31628.3

iterations 1032.4 1037.1 1044.4 3817.0 3909.9 3867.7

lit/iter 3.2 5.6 5.7 2.5 8.4 8.2

unsat by assump. 284 285.9 287 1296.1 1386.0 1331.42

decisions (M) 10.0 10.3 10.6 68.7 69.8 67.7

overhead 0.0 0.1 0.2 0.0 0.8 1.2

longest call 2.0 1.9 1.8 9.8 9.3 8.9

% implied lit. 0.1 0.1 0.1 0.0 0.2 0.2

Fig. 5. Results on the sat02β benchmarks, rounded.

3.3 Mitigating the Side-Effect of Assumptions on MUC Search

As described in Observation 4, in MUC extraction extra assumptions can have
indirect negative impact on the run-time. We now describe several heuristics
that we experimented with, to mitigate this undesired side-effect.

– Delayed activation. Activate assumptions (in any one of the three methods)
and the search for additional assumptions (with MBLi), only after running
for a while without assumptions. If the solver is able to find a solution within
this delay, we gain by having a proper proof.

– Continue execution after detection of UNSAT by assumptions. When reach-
ing UNSAT based on the assumptions, ignore the fact that we know the result
is unsat, and continue the search for a bounded amount of time (defined by
a ‘budget’ R) with the hope that the SAT solver will detect UNSAT without
using the assumptions. The value of the assumptions with such a strategy is
limited to the SAT case, and as a fallback solution when it takes too much
time to find a proof without them.
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In our implementation both the
delay and the budget R are defined
in terms of the number of restarts.
We experimented with two variation of
the second optimization above: either
reset R to 0 for every SAT call, or
not. The latter makes sense in the con-
text of MUC, because the earlier itera-
tions, when they end with UNSAT, are
able to remove large parts of the proof
via an analysis of the core, hence we
want to spend time for finding a proof
without assumptions. Indeed in all the
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empirically winning configurations the latter option was selected. The table in
Fig. 6 shows results of the best configurations that we found for this benchmark
set. The best configuration shows 10% improvement over the base-line, and one
more solved instance. The scatter graph above on the right shows that most of
the benefit is in the hard instances.

The default of HaifaMUC is now set to the above best configuration, and
its source code is available in [1]. Spreadsheets with detailed results can be found
at the same location.

Measure PS, R=120 MBL, R=160 MBLi, R = 80, Delay=5 MBLi, R=40

success 215 216 215 215

time 56.9 56.5 57.0 56.1

literals 3057.3 11820.9 3162.6 7940.6

iterations 969.9 998.7 979.4 1003.7

lit/iter 3.2 11.8 3.2 7.9

unsat by assump. 211.1 212.6 223.5 245.0

decisions (M) 10.1 10.5 10.0 10.2

overhead 0.00 0.38 0.03 0.21

longest call 1.83 2.15 1.73 1.67

% implied assump. 0.14 0.27 0.15 0.24

Fig. 6. Results on the SAT02β benchmarks, rounded, with various configurations of
the heuristics to mitigate the negative side-effect of extra assumptions. A timeout is
counted as 900 sec.

4 Conclusions and Future Work

We presented a technique called Mining Backbone Literals (MBL) and varia-
tions thereof, that potentially accelerates incremental satisfiability. It is based
on analysing resolution refutations for the purpose of finding literals that are
logically implied by the consecutive SAT call. This is a new type of data transfer
in incremental satisfiability.

Our case study in the domain of MUC extraction showed only modest
improvement (≈10%) in run-time, but as we explained this is mostly related to
specific characteristics of the MUC-extraction algorithm, which are not present
in other domains in which incremental SAT is used. We hope that future research
will a) reveal how to overcome these characteristics in deletion-based MUC
extraction, and b) investigate the impact of MBL in other domains. Recently
a new format (‘IPASIR’) for incremental solving was suggested as part of the
preparations for the SAT’15 race, and hopefully standard benchmarks will follow
soon; then it will be very interesting to try our methods in the domain of general
incremental satisfiability.
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Abstract. SAT filters are a novel and compact data structure that can
be used to quickly query a word for membership in a fixed set. They have
the potential to store more information in a fixed storage limit than a
Bloom filter. Constructing a SAT filter requires sampling diverse solu-
tions to randomly constructed constraint satisfaction instances, but there
is flexibility in the choice of constraint satisfaction problem. Presented
here is a case study of SAT filter construction with a focus on constraint
satisfaction problems based on MAX-CUT clauses (Not-all-equal 3-SAT,
2-in-4-SAT, etc.) and frustrated cycles in the Ising model. Solutions are
sampled using a D-Wave quantum annealer, and results are measured
against classical approaches. The SAT variants studied are of interest in
the context of SAT filters, independent of the solvers used.

Keywords: SAT filter · Quantum annealing · Ising model · Maximum
cut · Sampling · Constraint satisfaction problem

1 Introduction

Weaver et al. [37] recently presented SAT filters as an efficient data structure
by which a set can be filtered with no false negatives and a false positive rate
approaching zero as the situation requires. The construction of a SAT filter with
high space efficiency and low false positive rate requires finding many solutions to
a random n-variable instance of a constraint satisfaction problem (CSP), which
was originally chosen to be k-SAT for k ≥ 3 [37]. The effectiveness of the filter
with respect to storage requirements, or efficiency, requires a low probability
that a randomly generated clause would be satisfied by every solution in the
filter. Consequently the solutions must satisfy various independence tests, e.g.
they should not differ by only a few bitflips.

This application is a natural fit for a D-Wave Two (DW2) quantum annealer,
which is capable of quickly sampling many low-energy states of a spin system
in the Ising model [18,35] using open-system quantum annealing [1,3,9]. As the
basis of the filter one can choose a CSP that is readily expressed in the Ising
model, for example Not-all-equal 3-SAT [17,20]. In the context of filters and
elsewhere, CSP solution sampling is a problem of both theoretical and practical
interest [6,16].
c© D-Wave Systems Inc. 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 104–120, 2015.
DOI: 10.1007/978-3-319-24318-4 9
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This paper reports on a case study using a D-Wave quantum annealer to solve
SAT instances and construct SAT filters, providing comparisons with classical
solvers and comparing filters generated using several SAT variants, the choice
of which has great effect on the characteristics of the resulting filter. Although
processor size restricts the study to relatively small instances, the study gives
a first look at several “exotic” SAT filters and an early application of sampling
optima via quantum annealing.

Section 2 discusses the preliminaries of SAT filters and blocked SAT filters,
which involve constructing a SAT filter for each bucket of a dense hash table.
Section 3 discusses the expression and solution of CSPs in the Ising model.
Section 4 discusses the CSPs used to construct filters. Sections 5 and 6 review
the results of two cases in this study; the first investigates the construction of a
filter with many blocks of fixed size, while the second investigates how filters and
solver performance evolve for various CSPs as the number of variables increases.
Finally Section 7 offers conclusions.

2 Filters, SAT Filters and Blocked SAT Filters

Given a domain W and a subset X ⊂ W , the set membership problem is to
determine if an element x of W is in X. A filter is a data structure that allows
fast set membership queries, possibly with false positives but not false negatives.
That is, if x ∈ X then the filter will always return F (x) = 1 (maybe). If x /∈ X
then the filter will (deterministically) return either F (x) = 1 (maybe) or F (x) =
0 (no). Here it is assumed that |X| � |W |, and therefore the false positive rate
p of the filter can be defined as the probability that a randomly selected x ∈ W
has F (x) = 1.

The aim is to minimize the false positive rate of F while minimizing storage
requirements (in bits, denoted by |F |), construction time, and query time. Given
a storage limit of |F | bits, the information-theoretic limit on the false positive
rate is given by the equation

− log2(p)
|F |/|X| ≤ 1. (1)

This result appears as Theorem 4.1 in [37], summarizing results in [36]. Here the
numerator represents the bits of cut-down and the denominator represents the
average storage bits per keyword in X. The efficiency of the filter F is therefore
defined as

E(F ) =
− log2(p)
|F |/|X| . (2)

The standard tool for this situation is a Bloom filter [2]. A Bloom filter F is
constructed for X with false positive rate p using parameters r and n derived
from |X| and p. The filter consists of a bitstring B = (b1, . . . , bn) and r hash
functions h1, . . . , hr, each of which hashes an element of W (ideally uniformly)
to an element of {1, . . . , n}. To construct the filter, initialize all bits of B to zero.
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Then for each x ∈ X and hash function hi set bhi(x) = 1. To query F (x), simply
check if

∏r
i=1 bhi(x) = 1. If so, then F (x) = 1. If not, then F (x) = 0. Optimal

choices of n and r will, for sufficiently large X, give a filter F with efficiency
E(F ) ≈ ln(2) ≈ 0.69.

2.1 SAT Filters

It is possible to exceed the efficiency of a Bloom filter using SAT filters, intro-
duced recently by Weaver et al. [37]. A SAT filter is, like a Bloom filter, a space-
efficient data structure used for set membership testing with one-way error1.
Unlike Bloom filters, SAT filters are offline: new elements cannot be added to
the filter after the filter is built. And unlike any online filters [24], SAT filters
can achieve efficiency arbitrarily close to 1. SAT filters can be constructed using
a variety of constraints, and the constraint used typically imposes an upper
bound on efficiency (see Section 4.4). This section describes a 3-SAT filter for
illustrative purposes.

During construction of a Bloom filter with r = 1, each keyword x ∈ X is
hashed to a bit in B. During construction of a 3-SAT filter with r = 1, each
keyword xi ∈ X is hashed to a uniformly chosen 3-SAT clause Ci = h(xi) over n
variables, where n is given an appropriate value with respect to |X|. Here a clause
is constructed by choosing three distinct variables at random, and negating each
one independently with probability 1

2 . The conjunction of these random clauses
gives a random 3-SAT formula:

F =
|X|∧

i

Ci. (3)

Random 3-SAT instances have a satisfiability phase transition near 4.26
clauses per variable [8]. This means that if |X| ≤ (4.26 − ε)n for ε > 0, and
|X| is sufficiently large, then F is satisfiable with high probability [27]. Storage
of the 3-SAT filter F consists of storing the hash function h and a collection
S = (s1, . . . , sk) of solutions to F . F (x) is queried by checking whether the
clause C = h(x) is satisfied by each truth assignment in S.

If r = 1, then |F | = n (here hash functions are not included in the analysis
of storage cost, so we store r = 1 bits per variable) and the false positive rate of
a 3-SAT filter is 7/8. Since |F |/|X| � 1/4.26, this gives the efficiency

E(F ) =
− log2(7/8)

n/|X| � 0.81. (4)

The false positive rate given by a single solution is generally too high. Weaver et
al. provided two ways of dealing with this issue [37]. The first is to construct a
multi-instance filter, which stores one solution to each of multiple formulae. The
second is to construct a single-instance filter, which stores multiple solutions to

1 A variety of alternatives to Bloom filters have been proposed, e.g. [11,28–30].
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a single formula. The former suffers from increased query time, since multiple
hashes must be evaluated. The latter suffers from decreased efficiency, since
multiple solutions will generally not be perfectly independent. The severity of
this dependence depends heavily on the SAT variant used.

2.2 Blocked SAT Filters

In certain situations it is impractical to find solutions to a SAT formula on
n variables and |X| clauses – this case study is limited to CSPs on at most
110 variables (typically fewer) due to the limited size of the D-Wave processor.
This situation calls for a blocked filter [30], which uses a blocking hash function
ĥ : W → {1, . . . , b} that divides X into b blocks

Xi = {x ∈ X | ĥ(x) = i}. (5)

A filter Fi is then constructed for each block Xi, and to query x ∈ W for
membership in X, x is queried for membership in Xĥ(x) using Fĥ(x).

This blocked filter, like a normal filter, has one-way error. Under the assump-
tion that ĥ maps members of W to {1, . . . , b} equiprobably, the false positive
rate p is the mean of the b false positive rates {pi}bi=1 of the individual filters.
More rigorously, letting Wi = {x ∈ W | ĥ(x) = i},

p =
m∑

i=1

|Wi|
|W | pi. (6)

Even in the case where r = 1, blocked filters can adversely affect efficiency
because of the variance in bin sizes under ĥ [21,30]. This issue is considered in
Section 5.

3 Solving CSPs in the Ising Model with a D-Wave
Processor

This paper contains results from a D-Wave Two (DW2) quantum annealing
processor using a Washington W3 chip operating over 1097 of 1152 configured
qubits in a C12 Chimera layout [4]. All runs use the minimum anneal time of
20µs.

D-Wave quantum annealing processors are designed to minimize the energy
of an Ising spin configuration. Input to the processor consists of an Ising Hamil-
tonian (h, J), where h ∈ R

N is a vector of local fields and J ∈ R
N×N is a

matrix of couplings, which may be assumed to be symmetric. The energy of a
spin configuration s ∈ {−1, 1}N is defined as

E(s) = E(h, J, s) = sTJs + sTh. (7)

The output of an anneal (i.e. a hardware run) of the processor is a low-energy
state s, which consists of an Ising spin (either −1 or 1) for each qubit.
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In a D-Wave processor, not all pairs of qubits are coupled, and therefore the
set of nonzero entries of J must respect the physical constraints of the processor.
One can view (h, J) as a set of vertex and edge weights, respectively, of the
qubit connectivity graph, whose vertices correspond to qubits and whose edges
correspond to couplers. The qubit connectivity graph for the processor used in
this report is shown in Fig. 1.

Fig. 1. The 1097-qubit hardware graph (left) of the processor used, with detail (center)
of the bottom-left corner. This graph is a subgraph of the 1152-qubit 12 × 12 Chimera
grid. The irregular pattern of connectivity was designed so that high-connectivity prob-
lems can be effectively emulated. (right, color online) An embedded problem of two
interacting clauses is shown (2in4(x0, x1, x2, x3) ∧ 2in4(x3, x4, x5, x6)). Each variable
is represented by one or more qubits; thicker lines indicate two variables acting as
a single logical variable (achieved by energy penalties causing qubit behavior to coin-
cide). Given this contraction the variables interact in two cliques through the remaining
edges.

A state s minimizing E(h, J, s) is called a ground state of (h, J); all other
states are called excited states. A lowest-energy excited state is called a first
excited state. Given a ground state s0 and a first excited state s1, g := E(s1) −
E(s0) is the minimum final gap of the Hamiltonian.

3.1 Constraint Satisfaction Problems in the Ising Model

Let f be a Boolean function with an n-dimensional binary range. For simplicity,
assume f : {−1, 1}n → {0, 1}. Now suppose an n-dimensional Ising Hamiltonian
(h, J) satisfies E(s) = x if f(s) = 0, and E(s) ≥ x + g if f(s) = 1. Then (h, J)
encodes f with gap g.

Now take a collection of Boolean functions
{

fi : {−1, 1}n → {0, 1} }k

i=1
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and a collection of Hamiltonians {(hi, Ji)}ki=1 such that (hi, Ji) encodes fi with
gap gi. Then the Hamiltonian (

∑k
i=1 hi,

∑k
i=1 Ji) encodes maxi fi with gap

mini gi.
This fact makes the Ising model suitable for application to constraint sat-

isfaction problems [15,19,25]. In particular, it is straightforward to formulate
certain SAT variants as Ising problems in such a way that they can be solved by
DW2: Let f(s) = 0 represent satisfaction; max therefore represents conjunction
in this context.

3.2 Graph Minors in the Ising Model

Random instances of the SAT variants considered here are constructed as a
weighted subgraph G of either a complete graph Kn or a complete bipartite graph
Kn

2 ,n2
. In general, these instances cannot be solved directly using the D-Wave

processor’s native connectivity. Rather, G must be embedded in the hardware
graph GH as a graph minor, which amounts to transforming GH into G by the
operations of edge contraction, vertex deletion, and edge deletion [10]. Edge and
vertex deletion can be realized trivially in the Ising model by setting couplers
to J = 0. Edge contraction can be realized by setting couplers to J = −κ,
where κ is large, and the coupling therefore compels a set of qubits to act as a
single logical qubit. The choice of the parameter κ is nontrivial. In this paper,
runs on minor-embedded instances are optimized over five possible choices of
κ. See [7,20,35] for further discussion. Embedding G into GH is achieved here
using a specialized heuristic algorithm [5]. In Fig. 1, edge contraction of a 2-cell
Chimera graph allows representation of a 2in4SAT Ising problem described a
pair of 4-cliques, anti-ferromagnetically coupled, sharing one variable.

4 SAT Variants in the Ising Model

Although k-SAT was previously used to construct SAT filters [37], it is not
amenable to representation in the Ising model. To represent a SAT relations k
binary variables with only pairwise relations available is not possible for k ≥ 3
without the introduction of additional ancillary variables to mediate the interac-
tions. To represent an instance on n variables and m clauses requires at least m
ancillary variables, so an instance near the phase transition has many more ancil-
lary Ising variables than original variables. Not-all-equal 3-SAT (NAE3SAT) is
an NP-complete SAT variant that does not present the same obstacle [14,17,20].
This section first discusses issues surrounding NAE3SAT, then moves on to fur-
ther extensions. Ultimately we are interested in sampling satisfying assignments,
which for the problem classes presented is NP-hard [16].

4.1 NAE3SAT

An NAE3SAT clause consists of three literals, and is satisfied precisely if at
least one literal is true and one literal is false. Thus a clause ensures that three
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literals are not all equal. This requirement is easily expressed in the Ising model.
Consider the Ising problem

min
s1,s2,s3∈{−1,1}

(s1s2 + s2s3 + s1s3) .

This Hamiltonian has six ground states with energy −1, corresponding to states
in which not all variables are equal. The other two states have energy 3, mean-
ing that this Hamiltonian encodes a NAE3SAT clause with gap 4. The qubit
connectivity graph of a NAE3SAT clause is a triangle with a coupling of +1 on
each edge.

Monotone NAE3SAT. Unlike 3-SAT, NAE3SAT remains NP-complete when
all literals are non-negated – in this case the problem is equivalent to hyper-
graph 2-coloring [23]. This variant is called monotone NAE3SAT or MNAE3SAT.
Asymptotically, NAE3SAT and MNAE3SAT have very similar characteristics.
For small systems, however, marginal gains in efficiency can be realized from
the fact that not all solutions satisfy the same number of possible clauses.
These small-system considerations are relevant due to limitations imposed by
the D-Wave processor. All MNAE3SAT instances studied here have 45 variables.
Instances on up to around 65 variables can be embedded consistently.

4.2 MAX-CUT SAT Variants

The Ising formulation of an NAE3SAT clause can be thought of as an unweighted
MAX-CUT problem on a triangle, i.e. a K3. Replacing K3 with larger cliques
gives a sequence of SAT variants with different properties: NAE3SAT, 2in4SAT,
2or3in5SAT, 3in6SAT, etc. These variants can more generally be called kMCSAT
for k = 3, 4, 5, 6, . . .. A randomly constructed kMCSAT clause contains a random
k-set of variables, each one of which is negated independently with probability 1

2 ;
the coupling on the edge between two variables is −1 if precisely one is negated,
and is +1 otherwise.

When k is even, kMCSAT clauses are locally inflexible, since no single bit flip
connects any two solutions. When these clauses are agglomerated in a random
manner, a global rearrangement of the state space is required on the core of the
graph to move between solutions. In other words, solutions are isolated. If the
core of the graph is the graph itself (i.e. if every variable is in at least two clauses)
then a typical kMCSAT instance will be locked, meaning that solutions are not
only isolated, but separated pairwise by O(log n) bit flips [38]. By contrast,
when k is odd there can be local rearrangements that connect solutions, and
large clusters of closely related (in Hamming space) solutions are to be expected.
Large sets of this type are undesirable in the construction of SAT filters, because
two closely related solutions will only store slightly more information than one
solution alone.
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4.3 Bipartite 4FLSAT

To this point, each SAT variant presented operates implicitly over the complete
graph Kn. That is, any set of k variables can be chosen to be in a clause.
Further, there is yet another perspective on NAE3SAT: a clause can be thought
of as a frustrated loop (cycle, in graph theoretic terms) in the Ising model. Each
NAE3SAT clause is represented in the Ising model by a cycle of couplings with
values ±1, containing an odd number of antiferromagnetic (positive, repulsive)
couplings. So a random NAE3SAT clause is generated as a random frustrated
3-cycle from the complete graph.

In a new variant called bipartite 4FLSAT (B4FLSAT), each clause is a frus-
trated 4-cycle in the complete bipartite graph Kn

2 ,n2
. These instances are closely

related to the frustrated loop instances that were the subject of recent bench-
marking work [15,19] where the instances are constructed in the native Chimera
topology using frustrated loops of varying length. A B4FLSAT clause is satisfied
if and only if the Ising state corresponding to the truth assignment minimizes
the energy of the clause in the Ising model.

min
s1,s2,s3,s4∈{−1,1}

(−s1s2 − s2s3 − s3s4 + s1s4) .

Explicitly, the truth assignments satisfying a B4FLSAT clause with no negated
literals are TTTT, TTTF, TTFF, TFFF, FFFF, FFFT, FFTT, and FTTT. A 4FLSAT
clause has a false positive rate of 1/2. B4FLSAT instances are unlocked, like
kMCSAT for odd k.

4.4 Threshold Analysis

Despite the small size of the problems investigated here, it is useful to under-
stand the asymptotic structure of the solution space that governs the quality
of attainable filters and scaling of sampling methods. A common feature of the
SAT variants described here is the presence of a satisfiability transition and a
dynamical transition. The satisfiability threshold is the ratio αs of constraints
to variables separating, asymptotically almost surely, regimes with and without
solutions. The satisfiability threshold thus implies a bound Es on the maximum
(asymptotically achievable) efficiency, since any filter built from an unsatisfiable
instance will have false positive rate 1. The dynamical transition is, by contrast,
the ratio αd at which the solution space shatters into disconnected components.
This shattering is related to hardness for sampling and optimization, although
the relationship is complicated and an active area of research [22].

A simple rigorous upper bound on the satisfiability threshold (α1MM)
is obtained by a first moment method [27]; equivalently, α1MM gives the
information-theoretic upper bound on αs in the context of filters. Transitions are
also approximable by statistical physics techniques, namely the 1RSB energetic
cavity method and the reconstruction on trees method [26,27]. The thresholds
indicate that building efficient SAT filters requires sampling in the shattered
phase, where local search methods will often struggle. Table 1 gives estimates on
the transitions and maximum efficiency of NAE3SAT, 3in6SAT, and B4FLSAT.
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Table 1. Thresholds and efficiency of the three CSPs studied in Section 6

Problem Dynamical αd Satisfiability αs Annealed α1MM Efficiency Es

NAE3SAT 1.50 2.11 2.409 0.88
3in6SAT 0.48 0.57 0.596 0.96

B4FLSAT 0.50 0.78 1 0.78

4.5 Software Solvers

The next sections compare performance of the D-Wave processor against three
classical software approaches. The first two, WalkSAT [33] and Dimetheus [12,
13], are SAT solvers, and are applied directly to the SAT problems in question
(after naive clause-wise conversion to CNF). The third, Selby’s solver [32], is
a specialized implementation of the Hamze-de Freitas-Selby algorithm, written
to solve Ising problems on D-Wave’s native Chimera architecture. The version
used, like in previous work [19], is modified to make it act more analogously to
the D-Wave processor.

Both SAT solvers were run naively with the aim of generating 1000 solutions
to each SAT instance. WalkSAT was run with default command line parameters
and 1000 random restarts. Dimetheus was run 1000 times with command line
parameters -guide 0 and -cdclSelectDirRule 0. For both Selby and DW2,
samples were mapped from the embedded Chimera space to the SAT space via
majority vote, then quenched to a local minimum (see [20] for further explana-
tion).

5 Case Study 1: A Blocked MNAE3SAT Filter

This section describes the construction of a 3500-block MNAE3SAT for 262,144
randomly generated 16-byte numbers (UUIDs). The MNAE3SAT instance for
each block was constructed over 45 variables, giving a mean clause-to-variable
ratio of ᾱ ≈ 1.664. This is very close to the minimum requirement for matching
the efficiency of a Bloom filter (ignoring small-system MNAE3SAT considera-
tions discussed in Section 4), i.e. log(2)/ log2(3/4). Of the 3500 MNAE3SAT
instances, 77 were unsatisfiable.

For each MNAE3SAT instance, 24,000 (not necessary optimal) samples were
drawn from DW2, 10,000 from Selby, and 1000 each from WalkSAT and Dime-
theus. WalkSAT and Dimetheus successfully returned 1000 solutions for each
satisfiable instance, while the number of solutions returned by DW2 and Selby
varied substantially (see Fig. 2). Variation in the numbers reflect different oper-
ational modes of the algorithms, and the probability of each solver’s output of
being a valid solution (low for DW2 and Selby). In order to avoid conditioning
filter construction on the number of solutions returned, each instance drew from
a set of solutions whose size was limited by the minimum number of solutions
returned by any solver. For most blocks this was Dimetheus and WalkSAT.

Fig. 3 shows the distribution of α and the number of solutions for these
blocks (computed using sharpSAT [34]), highlighting a challenge in constructing
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Fig. 2. Solutions returned by DW2 (left) and Selby (right)

efficient blocked filters. In order to ensure that almost all blocks are satisfiable,
the number of blocks must be high enough that almost the entire binomial
distribution of α is below the satisfiability threshold αs. The effect seen here
declines in importance as the size of blocks increases, and can be mitigated in
several ways that trade efficiency for query time or similar [21]. This paper does
not explore the question further.
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Fig. 3. Clause-to-variable ratios (left) and solution counts (right) for 3500 MNAE3SAT
instances. A line indicates − log(2)/ log2(3/4), the ratio at which a single-solution
NAE3SAT filter matches the optimal efficiency of a Bloom filter

Fig. 4 shows the decline in efficiency for the overall filter as more and more
solutions are stored per block, up to 20. Two methods of selecting r SAT solutions
for a filter block are used. In the online approach, r random solutions are selected
from the multiset of solutions returned by the solver in question. This reflects
the situation where the solver returns solutions that are independent of the
previously returned solutions, and the user wants r solutions as fast as possible.
In the greedy offline approach, each solution is iteratively selected subject to
minimizing the false positive rate of the filter at that point. This reflects the more
realistic situation in which the user spends a certain amount of time generating
SAT solutions, then constructs a filter greedily with a subset of the solutions at
hand.

It is interesting that in this context Dimetheus starts out strong and declines
in efficacy, while the opposite is true for WalkSAT. For online filter construction,
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Fig. 4. (Color online) Blocked filter efficiency versus false positive rate for MNAE3SAT
filter at mean clause-to-variable ratio of 1.66. Upper data with lines represents offline
(greedy) filter construction. Lower data represents online filter construction. The effi-
ciency of an ideal Bloom filter, 0.69, is indicated

Selby offers a significant advantage over DW2. This can be explained by current
calibration nonidealities in the processor, which tilt the processor in a certain direc-
tion in the Hamming space, reducing its ability to sample solutions equitably. All
solvers can easily solve the instances in question; the next section includes a look
at performance scaling for various CSPs.

6 Case Study 2: Filter and Performance Scaling

The second part of the case study investigates how the construction of fil-
ters evolves as SAT instances grow. Considered here are random NAE3SAT,
3in6SAT, and B4FLSAT instances of increasing size. For each CSP the testbed
contains 10 instances of each size shown, using only even sizes for B4FLSAT.
Each instance is generated near the midpoint between the dynamical and satis-
fiability thresholds; NAE3SAT, 3in6SAT, and B4FLSAT use target ratios of 1.8,
0.55, and 0.70, respectively. For each size of each SAT variant, the ten instances
were used as blocks in the construction of a blocked SAT filter.

For each SAT instance in this section, only 20,000 samples were drawn using
DW2, representing a total anneal time of 0.4s. As before, 10,000 samples were
drawn using Selby, and 1000 were drawn using each of WalkSAT and Dimetheus.
False positive rates for the filters were estimated using a Monte Carlo approach.

Fig. 5 shows the evolution of filter efficiency versus false positive rate as the
number of solutions used for each block increases from 1 to 20. The dependence
on the properties of the CSP used are clear. 3in6SAT filters should show potential
for very efficient filters that suffer from a low clause-to-variable ratio and the
requirement of solving a hard CSP, but large filters reflect the low number of
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solutions returned by DW2 and more so Selby on these instances. Although the
B4FLSAT filters maintain a relatively consistent false positive rate, these filters
are bound to have efficiency at most 0.78, as discussed in Section 4.4.
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Fig. 6. (Color online) Instance-wise comparison of false positive rates for DW2 versus
classical software solvers for offline filter construction. Filters using 3, 6, and 12 solu-
tions are denoted by ◦, �, and � respectively. Colors/shades denote problem size as
in Fig. 5. Points below the diagonal favor DW2.

Fig. 6 gives a direct comparison of false positive rate for offline filters gen-
erated using output from DW2 versus each classical solver, using 3, 6, and 12
solutions per block. WalkSAT’s relatively poor performance on small B4FLSAT
instances seems to be a bona fide weakness of the solver as a sampler on these
small systems, which may have troublesome structural characteristics. False pos-
itive rates for DW2 would likely improve given refined calibration, which is cur-
rently underway. Overall, the four solvers give results of comparable quality.
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Fig. 7. (Color online) Instance-wise comparison of solution time for DW2 versus clas-
sical software solvers. × markers indicate median for a given size.

6.1 Scaling of Solution Time

Fig. 7 shows how the time required by each solver to draw a solution scales with
the number of variables. Dimetheus, being a multi-mode solver that sometimes
resorts to exhaustive search, is likely entering this slow mode prematurely for small
instances of NAE3SAT and B4FLSAT. Solution time of DW2 versus WalkSAT is
particularly interesting for 3in6SAT, as explained in the conclusion.Althoughboth
solvers find the B4FLSAT instances easy, it would be interesting to know if there
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is an explanation behind the sharp inflection point in the lower-middle panel. The
analysis here is quite superficial, but serves to give a counterpoint to Fig. 5 from
the perspective of problem difficulty rather than filter efficiency.

7 Conclusions

The case study of 3500 MNAE3SAT instances provides evidence that DW2 is
capable of constructing filters competitively, but solution of larger instances is
required to improve efficiency. NAE3SAT, at these block sizes, can only give
high efficiency at high false positive rates. Furthermore, NAE3SAT filter effi-
ciency reaches an information-theoretic limit at 0.88. This motivates the study
of more exotic CSPs in the Ising model. kMCSAT filters for k ≥ 4 and B4FLSAT
filters both show advantages and weaknesses when compared with NAE3SAT.
Tradeoffs are between difficulty, maximum efficiency at the satisfiability phase
transition, maintenance of efficiency as false positive rate drops, and block size
relative to keyword count.

The fact that DW2 appears to show a scaling advantage over WalkSAT (see
Fig. 7, center panel) for this limited set of small 3in6SAT instances raises the
question of whether or not multi-qubit cotunneling could play a role for large-
clause MAX-CUT CSPs. Embedded 3in6SAT problems may be a good place to
look for instances with long relaxation times, i.e. where an advantage might be
gained by lengthening the anneal time from 20µs. To this point, finding such
instances has been a challenge [15,31,35].

The ability of a SAT filter to drill down to a low false positive rate is a
reflection of the global richness of the solution space. This study shows the
limitations of small-blocked filters, and points to kMCSAT filters for larger k as
a possible avenue of research.

Acknowledgments. The authors are very grateful to Sean Weaver for helpful discus-
sions and advice regarding this work and to the anonymous referees for their careful
readings.

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution Noncommercial License, which permits any noncommercial use, distribu-

tion, and reproduction in any medium, provided the original author(s) and source are

credited.

References

1. Albash, T., Vinci, W., Mishra, A., Warburton, P.A., Lidar, D.A.: Consistency tests
of classical and quantum models for a quantum annealer. Physical Review A 91(4),
042314 (2015)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)



Constructing SAT Filters with a Quantum Annealer 119

3. Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev,
V.S., Amin, M., Smirnov, A., Mohseni, M., Neven, H.: Computational role of col-
lective tunneling in a quantum annealer. arXiv preprint arXiv:1411.4036 (2014)

4. Bunyk, P., Hoskinson, E., Johnson, M., Tolkacheva, E., Altomare, F., Berkley,
A., Harris, R., Hilton, J., Lanting, T., Przybysz, A., et al.: Architectural consid-
erations in the design of a superconducting quantum annealing processor. IEEE
Transactions on Applied Superconductivity (2014)

5. Cai, J., Macready, W., Roy, A.: A practical heuristic for finding graph minors.
arXiv preprint arXiv:1406.2741 (2014)

6. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator
of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 608–623. Springer, Heidelberg (2013)

7. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter
setting problem. Quantum Information Processing 7(5), 193–209 (2008)

8. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in ran-
dom 3-SAT. Artificial Intelligence 81(1), 31–57 (1996)

9. Dickson, N., et al.: Thermally assisted quantum annealing of a 16-qubit problem.
Nature Communications 4, May 1903, January 2013. http://www.ncbi.nlm.nih.
gov/pubmed/23695697

10. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer (2012)

11. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than Bloom. In: Proceedings of the 10th ACM International on Con-
ference on Emerging Networking Experiments and Technologies, pp. 75–88. ACM
(2014)

12. Gableske, O.: Dimetheus. In: SAT Competition 2014: Solver and Benchmark
Descriptions, pp. 29–30 (2014)

13. Gableske, O.: An Ising model inspired extension of the product-based MP frame-
work for SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 367–383.
Springer, Heidelberg (2014)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman (1979)
15. Hen, I., Albash, T., Job, J., Rønnow, T.F., Troyer, M., Lidar, D.: Probing for quan-

tum speedup in spin glass problems with planted solutions (2015). arXiv preprint
arXiv:1502.01663v2

16. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Computer Science 43, 169–188
(1986)

17. Jiménez, A., Kiwi, M.: Computational hardness of enumerating groundstates of
the antiferromagnetic Ising model in triangulations. Discrete Applied Mathematics
(2014)

18. Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris,
R., Berkley, A., Johansson, J., Bunyk, P., et al.: Quantum annealing with manu-
factured spins. Nature 473(7346), 194–198 (2011)

19. King, A.D.: Performance of a quantum annealer on range-limited constraint satis-
faction problems (2015). arXiv preprint arXiv:1502.02098v1

20. King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing plat-
form. arXiv preprint arXiv:1410.2628 (2014)

21. Krimer, E., Erez, M.: The power of 1+α for memory-efficient Bloom filters. Internet
Mathematics 7(1), 28–44 (2011)

http://arxiv.org/abs/1411.4036
http://arxiv.org/abs/1406.2741
http://www.ncbi.nlm.nih.gov/pubmed/23695697
http://www.ncbi.nlm.nih.gov/pubmed/23695697
http://arxiv.org/abs/1502.01663v2
http://arxiv.org/abs/1502.02098v1
http://arxiv.org/abs/1410.2628


120 A. Douglass et al.
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Abstract. Model counting is the task of computing the number of
assignments to variables V that satisfy a given propositional theory F .
The model counting problem is denoted as #SAT. Model counting is
an essential tool in probabilistic reasoning. In this paper, we introduce
the problem of model counting projected on a subset of original variables
that we call priority variables P ⊆ V. The task is to compute the number
of assignments to P such that there exists an extension to non-priority
variables V \ P that satisfies F . We denote this as #∃SAT. Projected
model counting arises when some parts of the model are irrelevant to the
counts, in particular when we require additional variables to model the
problem we are counting in SAT. We discuss three different approaches
to #∃SAT (two of which are novel), and compare their performance on
different benchmark problems.

1 Introduction

Model counting is the task of computing the number of models of a given proposi-
tional theory, represented as a set of clauses (SAT). Often, instead of the original
model count, we are interested in model count projected on a set of variables P.

Given a problem on variables P, we may need to introduce additional vari-
ables to encode the constraints on the variables P into Boolean clauses in the
propositional theory F . Counting the models of F does not give the correct
count if the new variables are not functionally defined by the original variables
P. Thankfully, most methods of encoding constraints introduce new variables
that are functionally defined by original variables, but there are cases where the
most efficient encoding of constraints does not enjoy this property. Hence we
should consider projected model counting for these kinds of problems.

Alternatively, in the counting problem itself, we may only be interested in
some of the variables involved in the problem. Unless the interesting variables
functionally define the uninteresting variables, we need projected model count-
ing. An example is in evaluating robustness of a given solution. The goal is to
count the changes that can be made to a subset of variables in the solution
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such that it still remains a solution (possibly after allowing some repairs, e.g. in
supermodels of a propositional theory [10]). The variables representing change
are priority variables. In our benchmarks, we consider an example from the plan-
ning domain, where we are interested in robustness of a given partially ordered
plan to the initial conditions, i.e., we want to count the number of initial states,
such that the given partially ordered plan still reaches the given goal state(s).

Projected model counting is a challenging problem that has received little
attention. It is in #PNP. If all the variables are priority variables, then it becomes
a #SAT problem (#P), and if all variables are non-priority variables, then it
reduces to SAT (NP). There has been little development of specialized algorithms
for projected model counting in the literature. Some dedicated attempts at solv-
ing the problem are presented in [13] and [8]. In the latter, the primary moti-
vation is solution enumeration, and not counting. Closely related problems are
projection or forgetting in formulas that are in deterministic decomposable nega-
tion normal form (d-DNNF [4]) [5], and Boolean quantifier elimination [3,11,19].

In this paper, we present three different approaches for projected model
counting.

– The first technique is straight-forward and its basic idea is to modify DPLL-
based model counters to search first on the priority variables, followed by
finding only a single solution for the remaining problem. This technique is
not novel and has been proposed in [13]. It has also been suggested in [15] in a
slightly different context. Unlike [13] which uses external calls to Minisat to
check satisfiability of non-priority components, we handle all computations
within the solver.

– The second approach is a significant extension of the algorithm presented in
[8]. The basic idea is that every time a solution S is found, we generalize it by
greedily finding a subset of literals S′ that are sufficient to satisfy all clauses
of the problem. By adding ¬S′ as a clause, we save an exponential amount
of search that would visit all extensions of S′. This extension conveniently
blends in the original algorithm of [8], which has the property that the num-
ber of blocking clauses are polynomial in the number of priority variables at
any time during the search.

– Our third technique is a novel idea which reuses model counting algorithms:
computing the d-DNNF of the original problem, forgetting the non-priority
variables in the d-DNNF, converting the resulting DNNF to CNF, and count-
ing the models of this CNF.

We compare these three techniques on different benchmarks to illustrate their
strengths and weaknesses.

2 Preliminaries

We consider a finite set V of propositional variables. A literal l is a variable v ∈ V
or its negation ¬v. The negation of a literal ¬l is ¬v if l = v or v if l = ¬v. Let
var(l) represent the variable of the literal, i.e., var(v) = var(¬v) = v. A clause
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is a set of literals that represents their disjunction, we shall write in parentheses
(l1, . . . , ln). For any formula (e.g. a clause) C, let vars(C) be the set of variables
appearing in C. A formula F in conjunctive normal form (CNF) is a conjunction
of clauses, and we represent it simply as a set of clauses. An assignment θ is a set
of literals, such that if l ∈ θ, then ¬l /∈ θ. We shall write them using set notation.
Given an assignment θ then ¬θ is the clause

∨
l∈θ ¬l. Given an assignment θ over

V and set of variables P then θP = {l | l ∈ θ, var(l) ∈ P}
Given an assignment θ, the residual of a CNF F w.r.t. θ is written F |θ and is

obtained by removing each clause C in F such that there exists a literal l ∈ C∩θ,
and simplifying the remaining clauses by removing all literals from them whose
negation is in θ. We say that an assignment θ is a solution cube, or simply a
cube, of F iff F |θ is empty. The size of a cube θ, size(θ) is equal to 2|V|−|θ|. A
solution in the classical sense is a cube of size 1. The model count of F , written,
ct(F ) is the number of solutions of F .

We consider a set of priority variables P ⊆ V. Let the non-priority variables
be N , i.e., N = V \ P. Given a cube θ′ of formula F , then θ ≡ θ′

P is a projected
cube of F . The size of the projected cube is equal to 2|P|−|θ|. The projected
model count of F , ct(F,P) is equal to the number of projected cubes of size 1.
The projected model count can also be defined as the number of assignments θ
s.t. vars(θ) = P and there exists an assignment θ′ s.t. vars(θ′) = N and θ ∪ θ′

is a solution of F .
A Boolean formula is in negation normal form (NNF) iff the only sub-

formulas that have negation applied to them are propositional variables. An NNF
formula is decomposable (DNNF) iff for all conjunctive formulae c1 ∧ · · · ∧ cn in
the formula, the sets of variables of conjuncts are pairwise disjoint, vars(ci) ∩
var(cj) = ∅, 1 ≤ i 
= j ≤ n. Finally, a DNNF is deterministic (d-DNNF) if
for all disjunctive formulae d1 ∨ · · · ∨ dn in the formula, the disjuncts are pair-
wise logically inconsistent, di ∧ dj is unsatisfiable, 1 ≤ i 
= j ≤ n. A d-DNNF
is typically represented as a tree or DAG with inner nodes and leaves being
OR/AND operators and literals respectively. Model counting on d-DNNF can
be performed in polynomial time (in d-DNNF size) by first computing the satis-
faction probability and then multiplying the satisfaction probability with total
number of assignments. Satisfaction probability can be computed by evaluating
the arithmetic expression that we get by replacing each literal with 0.5, ∨ with
+ and ∧ with × in the d-DNNF.

3 Model Counting

In this section we review two algorithms for model counting that are necessary
for understanding the remainder of this paper. For a more complete treatment
of model counting algorithms, see [12].

3.1 Solution Enumeration Using SAT Solvers

In traditional DPLL-algorithm [6], once a decision literal is retracted, it is
guaranteed that all search space extending the current assignment has been
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exhausted. Due to this, we can be certain that the search procedure is com-
plete and does not miss any solution. This is not true, however, for modern SAT
solvers [14] that use random restarts and First-UIP backjumping. In the latter,
the search backtracks to the last point in search where the learned clause is
asserting, and that might mean backjumping over valid solution space. It is not
trivial to infer from the current state of the solver which solutions have already
been seen and therefore, to prevent the search from finding an already visited
solution θ, SAT solvers add the blocking clause ¬θ in the problem formulation
as soon as θ is found.

3.2 DPLL-style Model Counting

One of the most successful approaches for model counting extends the DPLL
algorithm (see [2,16,18]). Such model counters borrow many useful features from
SAT solvers such as nogood learning, watched literals and backjumping etc to
prune parts of search that have no solution. However, they have three additional
important optimizations that make them more efficient at model counting as
compared to solution enumeration using a SAT solver. A key property of all
these optimizations is that their implementation relies on actively maintaining
the residual formula during the search. This requires visiting all clauses in the
worst case at every node in the search tree.

Say we are solving F and the current assignment is θ. The first optimization
in model counting is cube detection; as soon as the residual is empty, we can stop
the search and increment our model count by size(θ). This avoids continuing the
search to visit all extensions of the cube since all of them are solutions of F .
The second optimization is caching [1] which reuses model counts of previously
encountered sub-problems instead of solving them again as follows. Say we have
computed the model count below θ and it is equal to c, we store c against F |θ.
If, later in the search, our assignment is θ′ and F |θ = F |θ′ , then we can simply
increment our count by c by looking up the residual. The third optimization
is dynamic decomposition and it relies on the following property of Boolean
formulas: given a formula G, if (clauses of) G can be split into G1, . . . , Gn such
that vars(Gi) ∩ vars(Gj) = ∅, 1 ≤ i 
= j ≤ n, and

⋃
i∈1..n vars(Gi) = vars(G),

then ct(G) = ct(G1) × . . . × ct(Gn). Model counters use this property and split
the residual into disjoint components and count the models of each component
and multiply them to get the count of the residual. Furthermore, when used with
caching, the count of each component is stored against it so that if a component
appears again in the search, then we can retrieve its count instead of computing
it again.

4 Projected Model Counting

In this section, we present three techniques for projected model counting.
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4.1 Restricting Search to Priority Variables

This algorithm works by slightly modifying the DPLL-based model counters as
follows. First, when solving any component, we only allow search decisions on
non-priority variables if the component does not have any priority variables.
Second, if we find a cube for a component, then the size of that cube is equal to
2 to the power of number of priority variables in the component. Finally, as soon
as we find a cube for a component, we recursively mark all its parent components
(components from earlier decision levels whose decomposition yielded the current
component), that do not have any priority variables as solved. As a result, the
count of 1 from the last component is propagated to all parent components whose
clauses are exclusively on non-priority variables. Essentially, we store the fact
that such components are satisfiable.

Example 1. Consider the formula F with priority variables P = {p, q, r} and
non-priority variables N = {x, y, z}.

(¬q, x,¬p), (¬r,¬y, z), (r,¬z,¬p), (z, y,¬p, r), (r, z,¬y,¬p), (p, q)

Here is the trace of a possible execution using the algorithm in this subsection.
We represent a component as a pair of (unfixed) variables and residual clauses.
1a. Decision p. The problem splits into C1 = ({q, x}, {(¬q, x)}) and
C2 = ({r, y, z}, {(¬r,¬y, z), (r,¬z), (z, y, r), (r, z,¬y)}).
2a. We solve C1 first. Decision ¬q. We get C3 = ({x}, ∅) and ct(C3,P) = 1
(trivial), we backtrack to C1. 2b. Decision q, propagates x, and it is a solution.
We backtrack and set ct(C1,P) = ct(C3,P) + 1 = 2.
2c. Now, we solve C2. Decision r gives C4 = ({y, z}, {(¬y, z)}).
3a. Decision z, we get C5 = ({y}, ∅) and ct(C5,P) = 1. We backtrack to level
C2 setting ct(C4,P) = 1 since the last decision was a non-priority variable.
2d. Decision ¬r fails (propagates z, y, ¬y). We set ct(C2,P) = ct(C4,P) = 1
and backtrack to root F to try the other branch.
1b. Decision ¬p, propagates q and gives C6 = ({x}, ∅) and C7 =
({r, y, z}, {(¬r,¬y, z)}). We note that ct(C6,P) = 1 (trivial) and move on to
solve C7.
2e. Decision ¬r gives C8 = ({y}, ∅) and C9 = ({z}, ∅) with counts 1 each. We go
back to C7 to try the other branch.
2f. Decision r gives C10 = ({y, z}, {(¬y, z)}) which is the same as C4 which has
the count of 1. Therefore, ct(C7,P) = ct(C8,P)× ct(C9,P)+ ct(C4,P) = 2. All
components are solved, and there are no more choices to be tried, we go back to
root to get the final model count.

A visualization of the search is shown in Figure 1. The overall count is
ct(F,P) = ct(C1,P) × ct(C2,P) + ct(C6,P) × ct(C7,P) = 4. �

4.2 Blocking Seen Solutions

This approach extends the projected model counting algorithm given in [8],
which has been implemented in the ASP solver clasp [7,9]. The algorithm is
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Fig. 1. A visualization of the search tree for model counting with priority variables.
Nodes are marked with residual clauses and counts. Dotted edges indicate dynamic
decomposition, dashed edged indicate backjumps over non-priority decisions.

originally for model enumeration, not model counting, and therefore, it suffers in
instances where there are small number of cubes, but the number of extensions
of these cubes to solutions is large. We present a modification of the algorithm
that does not have this shortcoming. But first, let us briefly summarize the
motivation behind the algorithm and its technical details.

The motivation presented in [8] is absence of any specialized algorithm in
SAT (as well as ASP) for model enumeration on a projected set of variables,
and the apparent flaws in the following two straight-forward approaches for
model enumeration. The first is essentially the approach in 4.1 without dynamic
decomposition, caching, and cube detection, i.e., to search on variables in P first
and check for a satisfying extension over N . This interference with the search
can be exponentially more expensive in the worst case, although this approach is
not compared against other methods in the experiment. The second approach is
to keep track of solutions that have been found and for each explored solution θ,
add the blocking clause ¬θP (this is also presented in [13], although the algorithm
restarts and calls Minisat by adding the clause each time a solution is found).
In the worst case, the number of solutions can be exponential in |P|, and this
approach, as experiments confirm, can quickly blow up in space. Note that, as
opposed to the learned clauses which are redundant w.r.t. the original CNF and
can be removed any time during the search, the blocking clauses need to be
stored permanently, and cannot be removed naively.

The algorithm of [8] runs in polynomial space and works as follows. At any
given time during its execution, the search is divided into controlled and free
search. The free part of the search runs as an ordinary modern DPLL-based
SAT solver would run with backjumping, conflict-analysis etc. In the controlled
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part of the search, the decision literals are strictly on variables in P and how they
are chosen is described shortly. Following the original convention, let bl represent
the last level of controlled search space. Initially, it is equal to 0. Every time a
solution θ (with projection θP ) is found, the search jumps back to bl, selects a
literal x from θP that is unfixed (at bl), and forces it to be the next decision. It
increments bl by 1, adds the blocking clause ¬θP and most importantly, couples
the blocking clause with the decision x in the sense that when we backtrack
from x and try (force) ¬x, ¬θP can be removed from memory as it is satisfied
by ¬x. Additionally, backtracking in the controlled region is provably designed
to disallow skipping over any solution. Therefore, when we try ¬x, all solutions
under x will have been explored. Furthermore, with ¬x, all subsequent blocking
clauses that were added will have been satisfied since all of them include ¬x.
This steady removal of clauses ensures that the number of blocking clauses at
any given time is in O(|P|).

We now describe how we extend the above algorithm by adding solution
minimization to it. We keep a global solution count, initially set to 0. Once
a solution θ is found, we generalize (minimize) the solution as shown in the
procedure shrink Figure 2. We start constructing the new solution cube S by
adding all current decisions from 1 . . . bl. Then, for each clause in the problem
(C in pseudo-code) and current blocking clauses (B), we intersect it with the
current assignment. If the intersection contains a literal whose variable is in N or
S, we skip the clause, otherwise, we add one priority literal from the intersection
in S (we choose one with the highest frequency in the original CNF). After
visiting all clauses, we use ¬S as a blocking clause instead of the one generated
by the algorithm above (¬θP ). Finally, we add 2|P|−|S| to the global count. The
rest of the algorithm remains the same. Note that the decision literals from the
controlled part of the search are necessary to add in the cube, since the algorithm
in [8] assumes that once a controlled decision is retracted, all the blocking clauses
that were added below it are satisfied. This could be violated by our solution
minimization if we do not add controlled decisions to S.

Example 2. Consider the CNF in Example 1. Initially, the controlled search part
is empty, B = ∅ and bl = 0 as per the original algorithm. Say clasp finds the
solution: {p,¬q, x, z, r,¬y}. shrink produces the generalized solution: S = {r, p}
by parsing the clauses (r, z,¬p) and (p, q) respectively (all other clauses can be
satisfied by non-priority literals). We increment the model count by 2 (23−|S|),
store the blocking clause ¬S = (¬r,¬p) and increment bl by 1. Say, we pick r,
due to the added blocking clause, it propagates ¬p, which propagates q. Say that
clasp now finds the solution {r,¬p, q,¬y, z, x}. In shrink, we start by including
r in S since that is a forced decision, and then while parsing the clauses, we get
S = {r,¬p, q}. Note that if we didn’t have to include the blocking clause (¬r,¬p),
then we could get away with S = {r, q} which would be wrong since that shares
the solution {r, q, p} with the previous cube. We increment the count to 3 and
cannot force any other decision, so we try the decision ¬r in the controlled part.
At the same time, upon backtracking, we remove all blocking clauses from B, so
it is now empty. Say clasp finds the solution {¬r,¬p, q, x,¬y, z}, shrink gives
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Fig. 2. Pseudo-code for shrinking a solution θ of original clauses C and blocking clauses
B to a solution cube S, adding its count and a blocking clause to prevent its reoccur-
rence.

S = {¬r,¬p, q}. We increment the count to 4, and when we add ¬S as a blocking
clause, there are no more solutions under ¬r. Therefore, our final count is 4. The
visualization for this example is given in Figure 3. �

4.3 Counting Models of Projected d-DNNF

As mentioned in Section 2, it is possible to do model counting on d-DNNF
in polynomial time (in the size of the d-DNNF), however, once we perform
projection on P (or forgetting on N [5]) by replacing all literals whose variables
are in N with true, the resulting logical formula is not deterministic anymore
and model counting is no longer tractable (see [5]).

In this approach, we first compute the d-DNNF of F , then project away the
literals from the d-DNNF whose variables are in N , convert this projected DNNF
back to CNF, and then count the models of this CNF. The pseudo-code is given
in Figure 4. The conversion from d-DNNF to CNF is formalized in the procedure
d2c, which takes as its input a d-DNNF (as a list of nodes Nodes) and returns
a CNF C. It is assumed that Nodes is topologically sorted, i.e., the children of
all nodes appear before their parents. d2c maps nodes to literals in the output
CNF with the dictionary litAtNode. It also maps introduced (Tseitin) variables
to expressions that they represent in a map litWithHash. v represents the index
of the next Tseitin variable to be created. d2c initializes its variables with the
method init(). Next, it visits each node n, and checks its type. If it is a literal
and if it is a non-priority variable, then it is replaced with true (projected away),
otherwise, the node is simply mapped to the literal. If n is an AND or an OR
node, then we get corresponding literals of its children from the method simplify.
We compute the hash to see if we can reuse some previous introduced variable
instead of introducing a new one. If not, then we create a new variable through
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Fig. 3. A visualization of counting models via blocking solutions. The curly arcs indi-
cate free search, ending in a solution, with an associated count. The controlled search is
indicated by full arcs, and blocking clauses associated with controlled search decisions
are shown on arcs.

the method Tseitin which also posts the corresponding equivalence clauses in C.
Finally, we post a clause that says that the literal for the root (which is the
last node) should be true. The method simplify essentially maps all the children
nodes to their literals. Furthermore, if one of the literals is true and the input
is an OR-node, it returns a list containing a true literal. For an AND node, it
filters all the true literals from the children.

The next theorem shows that the method described in this section for pro-
jected model counting is correct.

Theorem 1. ct(C) = ct(F,P)

Proof (sketch). The entire algorithm transforms the theory from F to C by
producing 2 auxiliary states: the d-DNNF of F (let us call it D) and the projec-
tion of this d-DNNF (let us call this DP). By definition, F and D are logically
equivalent. On the other end, notice that the models of DP and C are in one-
to-one correspondence. Although the two are not logically equivalent due to the
addition of Tseitin variables, it can be shown that these variables do not intro-
duce any extra model nor eliminate any existing model since they are simply
functional definitions of variables in P by construction (as a side note, the only
reason for introducing these variables is to efficiently encode DP as CNF, other-
wise, C and DP would be logically equivalent). Furthermore, we can show that
the simplifications (replacing true ∨ E with true and true ∧ E with E) in the
procedure simplify, and reusing Tseitin variables (through hashing) also do not
affect the bijection. This just leaves us with the task of establishing bijection
between the models of D and DP , which, fortunately, has already been done in
[4]. Theorem 9 in the paper says that replacing non-priority literals with true
literals in a d-DNNF is a proper projection operation, and Lemma 3 establishes
logical equivalence between D and DP modulo variables in P.

Example 3. Consider the formula F with priority variables p, q and non-priority
variables x, y, z:

(¬x, p), (q,¬x, y), (¬p,¬y,¬z, q), (x, q), (¬q, p)
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d2c(Nodes)
init()
for (n ∈ Nodes)

if (n is a literal l)
if (var(l) ∈ N )

litAtNode[n] := true
else litAtNode[n] := l

elif (n = op(c1, . . . , ck))
(l1, . . . , lj) := simplify(n)
if (j = 1)

litAtNode[n] := l1
else

h := hash(op, (l1, . . . , lj))
if (litWithHash.hasKey(h))

litAtNode[n] := litWithHash[h]
else

v′ := Tseitin(op, (l1, . . . , lj))
litAtNode[n] := v′

litWithHash[h] := v′

C.add({litAtNode[Nodes.last()]})
return C

init()
C = (), litAtNode = {}, litWithHash = {}
v := |V|

simplify(op(c1, . . . , ck))
L = ()
for (c ∈ c1, . . . , ck)

if (litAtNode[c] = true)
if (op = OR) return (true)

else
L.add(litAtNode[c])

return L

Tseitin(op, (l1, . . . , lj))
Add clauses v ⇔ op(l1, . . . , lj) in C
v := v + 1
return v − 1

Fig. 4. Pseudo-code for projected model counting via counting models of CNF encoding
of projected DNNF
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(b) Projected d-DNNF

a1 ⇔ q ∨ ¬q
a2 ⇔ a1 ∧ p
a3 ⇔ p ∧ q
a4 ⇔ a2 ∨ a3

a4

(c) Formula from d2c

Fig. 5. Example of application of d2c

The projected model count is 2 ((p, q) and (p,¬q)).
Figure 5 shows the initial d-DNNF (5a), the DNNF obtained by replacing

all non-priority literals by true and simplifying (5b) and the d2c translation of
the projected DNNF (5c). Notice that if we perform model counting naively on
the projected DNNF, we get a count of 3 since we double count the model (p, q).
The satisfaction probability is:

(
1
2

+
1
2
) × 1

2
+ (

1
2

× 1
2
) =

3
4

From satisfaction probability, we get the wrong model count 22× 3
4 = 3. However,

if we count the models of the translated formula in (5c), we get the correct count
of 2. �
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5 Experiments

We compare the following solvers on various benchmarks: clasp in its projection
mode (clasp), our extension of clasp with cube minimization (#clasp), model
counting with searching on priority variables first (dSharp P), and counting
models of projected DNNF (d2c). In each row of the following tables, |P| is the
number of priority variables. T and D represent the execution time and number
of decisions taken by the solver. R is a parameter to gauge the quality of cubes
computed by #clasp, the higher it is, the better. It is equal to log2(

#sols
#cubes ).

A value of 0 indicates that all solution cubes computed have size 1, while the
maximum value is equal to the number of priority variables, which is the unique
case when there is only one cube and every assignments to priority variables
is a solution. R essentially quantifies the advantage over enumeration, the less
constrained a problem is, and the more general the cubes are, the higher the
advantage. S is the size (in bytes) of the CNF computed by d2c that is sub-
sequently given to the solver sharpSAT for model counting. The timeout for
all experiments is 10 minutes. All times are shown in seconds. The experiments
were run on NICTA’s HPC cluster. 1

5.1 Uniform Random 3-SAT and Boolean Circuits

Table 1 shows the results from uniform random 3-SAT and random Boolean
circuits. In this table, for each problem instance, we show how the solvers perform
as we increase the number of priority variables. A “. . . ” after a row means that
every solver either ran out of time or memory for all subsequent number of
priority variables until the next one shown. For each instance, a row is added
that provides the following information about it: name, number of solutions as
reported by dSharp, number of variables and clauses and time and decisions
taken by dSharp. Note that this time should be added to the time of d2c in
order to get the actual time of d2c approach.

Let us look at the results form uniform random 3-SAT. All instances have 100
variables, and the number of clauses is varied. We try clause-to-variable ratios of
1, 1.5, 2, 3 and 4. Note that for model counting, the difficulty peaks at the ratio
of approximately 1.5 [12]. For the first 3 instances, #clasp is the clear winner
while clasp also does well, dSharp P lags behind both, and d2c does not even
work since the original instance cannot be solved by dSharp. For #clasp, as
we increase the number of clauses, the cube quality decreases due to the prob-
lem becoming more constrained and cube minimization becoming less effective.
For 300 clauses, we see a significant factor coming into play for dSharp P. The
original instance is solved by dSharp. As we increase the number of priority
variables until nearly the middle, the performance of dSharp P degrades, but
after 50 priority variables, it starts getting better. This is because the degrada-
tion due to searching on priority variables first becomes less significant and the

1 All benchmarks and solvers are available at: http://people.eng.unimelb.edu.au/
pstuckey/countexists

http://people.eng.unimelb.edu.au/pstuckey/countexists
http://people.eng.unimelb.edu.au/pstuckey/countexists
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search starts working more naturally in its VSADS mode [17]. d2c also solves
two rows in this instance but is still largely crippled as compared to other solvers.
Finally, with 400 clauses, we are well past the peak difficulty and the number
of models is small enough to be enumerated efficiently by clasp. All solvers
finish all rows of this instance in less than .15 seconds. We tried the same ratios
for 200 and 300 variables. For 200 variables, we saw the same trend, although
the problem overall becomes harder and the number of solved rows decreases.
For 300 variables, the problem becomes significantly harder to be considered a
suitable benchmark.

The Boolean circuits are generated with n variables as follows: we keep a set
initialized with the n original variables, then as long as the set is not a singleton,
we randomly pick an operator o (AND, OR, NOT), remove random operands
V from the set, create a new variable v and post the constraints v ↔ o(V ) and
put v back in the set. The process is repeated c times. In the table, we show
the results where n is 30, and c is 1,5,10. Note that a higher value of c means
that the problem is more constrained. Overall, for all instances, dSharp P is
the superior approach, followed by clasp; and d2c is better than #clasp in
c = 1 but the converse is true for higher values of c. All solvers find c = 5 to be
the most difficult instance. We saw similar trends for different values of n that
have appropriate hardness with same values of c.

5.2 Planning

Table 2 summarizes performance of different projected model counting algo-
rithms on checking robustness of partially ordered plans to initial conditions.
We take five planning benchmarks: depots, driver, rovers, logistics, and storage.
For each benchmark, we have two variants, one with the goal state fixed and
one where the goal is relaxed to be any viable goal (shown with a capital A in
the table representing any goal). For the two variants, the priority variables are
defined such that by doing projected model counting, we count the following.
For the first problem, we count the number of initial states the given plan can
achieve the given goal from. For the second problem, we count the number of
initial states plus all goal configurations that the given plan works for. Each
row in the table represents the summary of 10 instances of same size. The first
3 columns show the instance parameters. For each solver, �shows how many
instance the solver was able to finish within time and memory limits. All other
solver parameters are averages over finished instances. Another difference from
the previous table is that we have added the execution time of dSharp in d2c
and dSharp time is shown in parenthesis. There was no case in which only
dSharp finished and the remaining steps of d2c did not finish.

Overall, dSharp P solves the most instances (42), followed by #clasp (41),
d2c (34), and finally clasp which solves only 4 instances from the storage
benchmark, and otherwise suffers due to the inability to detect cubes. dSharp P
and d2c only fail on all instances in 2 benchmarks while #clasp fails in 4, so
they are more robust in that sense. For d2c, the running time is largely taken
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by producing the d-DNNF and the second round of model counting is relatively
cheaper. The cube quality of #clasp is quite significant for all instances that
it solves.

Table 1. Results from random uniform 3-SAT and Boolean circuits

clasp #clasp dSharp P d2c
|P| # T D T D R T D T D S

UF #=— |V |=100 |C|=100 T=— D=—
5 32 0 2271 0 291 3.00 .04 1150 — — —

10 1024 .01 71309 0 533 7.19 .99 35927 — — —
15 32768 .40 2023146 0 1888 10.30 7.92 370034 — — —
25 2.7e+07 345.57 1.4e+09 0 10584 17.36 — — — — —
35 1.8e+10 — — .02 62016 24.32 — — — — —
50 1.9e+14 — — 107.75 7.1e+07 27.04 — — — — —
. . .

UF #=— |V |=100 |C|=150 T=— D=—
5 32 0 1937 0 247 3.00 .03 1286 — — —

10 1024 .02 54077 .01 2933 4.19 .68 27142 — — —
15 32768 .42 1767073 0 2101 9.96 31.63 1057551 — — —
25 2.1e+07 270.91 8.7e+08 .34 393130 11.25 — — — — —
35 2.8e+09 — — 24.98 1.5e+07 12.84 — — — — —
. . .

UF #=— |V |=100 |C|=200 T=— D=—
5 32 0 1354 0 259 2.42 .04 1304 — — —

10 1024 .01 47771 0 1370 5.25 1.12 37596 — — —
15 30712 .43 1408296 0 4659 8.29 37.07 874826 — — —
25 1.8e+07 218.20 6.4e+08 1.69 1801261 8.54 — — — — —
. . .

UF #=2.603e+11 |V |=100 |C|=300 T=31.44 D=571163
5 32 0 986 0 646 0.75 .05 671 40.92 31 865K

10 970 .02 25441 .02 11450 1.20 2.07 14146 102.63 969 1.6M
15 12990 .22 290973 .11 61663 2.30 12.74 144211 — — 6.7M
25 226117 3.84 3432170 1.66 464908 3.21 57.57 808670 — — 15M
35 5126190 49.02 6.6e+07 15.65 3367386 4.67 161.67 2834211 — — 38M
50 — — — — — — — — — — 61M
65 1.6e+09 — — — — — 70.80 1552565 — — 89M
75 2.0e+10 — — — — — 70.74 1330586 — — 104M
85 2.9e+10 — — — — — 50.18 780597 — — 113M

100 2.6e+11 — — — — — 28.62 571163 — — 134M

UF #=45868 |V |=100 |C|=400 T=.05 D=244
5 7 0 1078 0 907 0.49 .08 219 .01 6 549

10 25 0 1308 0 1103 0.94 .14 322 .01 17 1.3K
15 32 0 1582 0 1242 1.09 .12 376 .01 21 3.1K
25 105 .01 2242 0 1290 2.32 .09 373 .01 34 3.4K
35 246 .01 3068 0 1338 2.52 .06 363 .01 107 8.6K
50 952 .01 6737 .01 2241 3.24 .05 361 .02 202 14K
65 3417 .01 16388 .01 2889 4.41 .05 262 .09 321 21K
75 7964 .04 26979 .02 2845 5.32 .05 250 .04 426 22K
85 13274 .04 36445 .02 3993 5.18 .05 237 .06 563 26K

100 45868 .11 46623 .03 4639 6.74 .04 244 .07 688 31K
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Table 1. (continued)

clasp #clasp dSharp P d2c
|P| # T D T D R T D T D S

n=30 c=1 #=9.657e+08 |V |=99 |C|=167 T=0 D=111
5 16 0 409 0 292 0.54 0 113 .01 4 1.1K
9 160 0 3418 0 1184 1.54 0 143 0 8 1.2K

14 552 0 9305 0 5030 1.00 0 82 .01 22 3.8K
24 248960 1.16 2718019 1.49 833682 2.07 0 130 .01 169 6.1K
34 1621760 6.13 1.2e+07 6.45 1999088 3.13 .01 111 .05 656 9.7K
49 3.9e+07 104.26 1.9e+08 353.25 1.4e+07 4.78 .01 162 .10 1393 14K
64 1.5e+08 394.21 4.6e+08 — — — 0 129 .18 2143 18K
74 4.4e+08 — — — — — .01 108 .21 2982 20K
84 7.2e+08 — — — — — 0 99 .20 2624 24K
99 9.7e+08 — — — — — .01 111 .20 2517 27K

n=30 c=5 #=9.426e+07 |V |=389 |C|=867 T=288.45 D=1036363
19 12192 .16 155331 .75 146058 0.00 16.48 120619 — — 5.8M
38 208716 2.57 1882991 15.23 1985136 0.00 95.37 834705 — — 47M
58 1.2e+07 93.69 3.7e+07 — — — — — — — 100M
97 3.3e+07 248.76 6.9e+07 — — — 427.85 1509308 — — 171M

136 6.1e+07 428.89 9.1e+07 — — — — — — — 252M
...

291 9.3e+07 — — — — — 300.78 985065 — — 574M
330 9.4e+07 — — — — — 299.02 1074927 — — 672M
389 9.4e+07 — — — — — 308.84 1036363 — — 783M

n=30 c=10 #=5066 |V |=766 |C|=1771 T=.32 D=1400
38 282 .01 1196 .03 1797 0.00 .31 1412 .08 256 36K
76 1618 .02 3479 .12 5434 0.00 .40 1600 .81 2046 137K

114 2581 .03 4984 .21 7953 0.00 .52 1787 1.69 3702 173K
191 4948 .05 5558 .52 12243 0.00 .54 1904 4.98 7519 330K
268 5066 .07 5458 .63 12235 0.00 .38 1784 6.69 10508 478K
383 5066 .09 5513 .85 12356 0.00 .69 1975 9.27 12528 698K
497 5066 .08 5253 1.47 12471 0.00 .39 1680 12.46 11818 1.1M
574 5066 .11 5211 1.68 12358 0.00 .52 1616 14.85 11911 1.1M
651 5066 .09 5500 1.21 12546 0.00 .36 1500 13.42 11807 1.4M
766 5066 .09 5072 2.06 12389 0.00 .33 1400 21.61 11644 1.6M

Table 2. Results from robustness of partially ordered plans to initial conditions

Instance clasp #clasp dSharp P d2c
Name |V| |C| |P| � T D � T D R � T D � T D S

depotsA 9402 211901 224 0 — — 0 — — — 1 24.82 92206 1 8.34 (6.98) 1813 154K
depots 9211 211796 111.8 0 — — 2 4.16 4.43e+6 31.54 1 24.74 91909 1 7.71 (6.67) 1642 149K
driverA 2068 12798 135 0 — — 0 — — — 5 36.01 27104.8 3 164.73 (161.42) 68.33 150.5K
driver 1999 12700 68 0 – — 10 0.31 1.23e+5 51.7 5 15.8 1.45e+4 3 118.67 (116.00) 29.3 109K

logisticsA 18972 324568 447 0 — — 0 — — — 0 — — 0 — — —
logistics 18702 324352 224 0 — — 6 33.52 1.81e6 165.09 0 — — 0 — — —
roversA 3988 27634 209 0 — — 0 — — — 5 69.92 51965 3 1.11 (1.06) 53.33 5.37K
rovers 3851 27535 104 0 — — 10 0.30 36769.7 88.16 5 76.26 52245.4 3 1.04 (1.01) 12.67 3.4K

storageA 915 3465 93 1 454.2 2.5e9 3 43.81 3.89e7 18.01 10 49.04 47112.50 9 103.35 (78.60) 1964.2 440.21K
storage 851 3420 47 3 15.05 7.87e7 10 0.05 30686 30.47 10 15.48 12444 9 57.1 (53.46) 625.67 254.58K
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6 Related Work and Conclusion

The area of Boolean Quantifier Elimination (BQE) seems closely related to pro-
jected model counting. Although the goal in BQE is to produce a non-priority
variables free representation (usually CNF), some algorithms can also be adapted
for projected model counting. Of particular interest are techniques in [3] and
[11]. The algorithm of [3] finds cubes in decreasing (increasing) order of cube
size (number of literals in cube). While this approach does not require cube
minimization, it does not run in polynomial space, and if a problem only has
large cubes, then significant time might be wasted searching for smaller ones.
The second interesting approach, with promising results, is given in [11], which
uses a DPLL-style search and also decomposes the program at each step like the
approach described in 4.1. A good direction for future work is to investigate how
well these techniques lend themselves to projected model counting and whether
there is any room for integration with the ideas presented in this paper.

In this paper we compare four algorithms for projected model counting. We
see that each algorithm can be superior in appropriate circumstances:

– When the number of solutions is small then clasp [8] is usually the best.
– When the number of solution cubes is much smaller than solutions, and there

is not much scope for component caching, then #clasp is the best.
– When component caching and dynamic decomposition are useful then
dSharp P is the best.

– Although d2c is competitive, it rarely outperforms both #clasp and
dSharp P. Having said that, d2c approach has another important aspect
besides projected model counting. It is a method to perform projection on
a d-DNNF without losing determinism. This can be done by computing the
d-DNNF of the CNF produced by the d2c procedure (instead of model count-
ing), and then simply forgetting the Tseitin variables (replacing with true).
It can be shown that this operation preserves determinism. Furthermore,
our experiments show that the last model counting step takes comparable
time to computing the first d-DNNF in most cases (and in many cases, takes
significantly less time), which means that the approach is an efficient way of
performing projection on a d-DNNF.
While we use d-DNNF for d2c approach, it is possible to use other, less suc-
cinct, languages like Ordered Binary Decision Diagrams (OBDDs). We leave
the comparison with other possible knowledge compilation-based approaches
for projected model counting as future work.

As the problem of projected model counting is not heavily explored, there is sig-
nificant scope for improving algorithms for it. A simple improvement would be to
portfolio approach to solving the problem, combining all four of the algorithms,
to get something close to the best of each of them.
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Abstract. We consider the algorithmic task of computing a maximal
autarky for a clause-set F , i.e., a partial assignment which satisfies every
clause of F it touches, and where this property is destroyed by adding
any non-empty set of further assignments. We employ SAT solvers as
oracles here, and we are especially concerned with minimising the num-
ber of oracle calls. Using the standard SAT oracle, log2(n(F )) oracle
calls suffice, where n(F ) is the number of variables, but the drawback
is that (translated) cardinality constraints are employed, which makes
this approach less efficient in practice. Using an extended SAT oracle,
motivated by the capabilities of modern SAT solvers, we show how to
compute maximal autarkies with 2

√
n(F ) simpler oracle calls, by a novel

algorithm, which combines the previous two main approaches, based on
the autarky-resolution duality and on SAT translations.

1 Introduction

A well-known application area of SAT solvers is the analysis of over-constrained
systems, i.e. systems of constraints that are inconsistent. A number of compu-
tational problems can be related with the analysis of over-constrained systems.
These include minimal explanations of inconsistency, and minimal relaxations to
achieve consistency. Pervasive to these computational problems is the problem
of computing a “maximal autarky” of a propositional formula, since clauses sat-
isfied by an autarky cannot be included in minimal explanations of inconsistency
or minimal relaxations to achieve consistency. In the experimental study [26] it
was realised that using as few SAT calls as possible, via cardinality-constraints,
performs much worse than using a linear number of calls. To use only a sublinear
number of calls, without using cardinality constraints, is the goal of this paper.

Given a satisfiable clause-set F and a partial assignment ϕ, in general ϕ ∗F ,
the result of the application (instantiation) of ϕ to F , might be unsatisfiable. ϕ is
an autarky for (arbitrary) F iff every clause C of F touched by ϕ (i.e., var(C) ∩
var(ϕ) �= ∅) is satisfied by ϕ (i.e., ∃x ∈ C : ϕ(x) = 1). Now if F is satisfiable,

This work is partially supported by SFI PI grant BEACON (09/IN.1/I2618), FCT
grant POLARIS (PTDC/EIA-CCO/123051/2010) and national funds through FCT
with reference UID/CEC/50021/2013.

c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 138–155, 2015.
DOI: 10.1007/978-3-319-24318-4 11



Computing Maximal Autarkies with Few and Simple Oracle Queries 139

then also ϕ∗F is satisfiable, since due to the autarky property holds ϕ∗F = {C ∈
F : var(C) ∩ var(ϕ) = ∅} ⊆ F . Thus “autarky reduction” F � ϕ ∗ F can take
place (satisfiability-equivalently). An early use of autarkies is [4], for the solution
of 2-SAT. The notion “autarky” was introduced in [30] for faster k-SAT decision,
which can be seen as an extension of [4]. For an overview of such uses of autarkies
for SAT solving see [8]. Besides such incomplete usage (using only autarkies “at
hand”), the complete search for “all” autarkies (or the “strongest” one) is of
interest. Either with (clever) exponential-time algorithms, or for special classes
of clause-sets, where polynomial-time is possible, or considering only restricted
forms of autarkies to enable polynomial-time handling; see [11] for an overview.
In [18,19] autarky theory is generalised to non-boolean clause-sets.

Finitely many autarkies can be composed to yield another autarky, which
satisfies precisely the clauses satisfied by (at least) one of them; this was first
observed in [31]. So complete autarky reduction for a clause-set F , elimination of
clauses satisfied by some autarky as long as possible, yields a unique sub-clause-
set, called the lean kernel Na(F ) ⊆ F , as introduced in [14] and further studied
in [16]; we note that F ∈ SAT ⇔ Na(F ) = 
, where 
 is the empty clause-set.
Clause-sets without non-trivial autarkies are called lean, and are characterised
by Na(F ) = F ; the set of all lean clause-sets is called LEAN , and was shown
to be coNP-complete in [16]. A maximal autarky for F is one which can not
be extended; note that a maximal autarky ϕ always exist, where ϕ = 〈〉, the
empty partial assignment, iff F is lean. An autarky ϕ is maximal iff var(ϕ) =
var(F ) \ var(Na(F )). Thus var(F ) \ var(Na(F )) is called the largest autarky var-
set. For a maximal autarky ϕ the result of the autarky reduction is Na(F ), while
any autarky which yields Na(F ) is called quasi-maximal.

Algorithmic problems associated with autarkies. The basic algorithmic problems
related to general “autarky systems”, which allow to specialise the notion of
autarky, for example in order to enable polynomial-time computations, are dis-
cussed in [11, Section 11.11.6]. Regarding decision problems, for this paper only
one problem is relevant here, namely AUTARKY EXISTENCE, deciding whether a
clause-set F has a non-trivial autarky; the negation is LEAN, deciding whether
F ∈ LEAN . An early oracle-result is [16, Lemma 8.6], which shows, given an
oracle for LEAN, how to compute LEAN KERNEL with at most n(F ) oracle calls (for
all “normal autarky systems”, using the terminology from [11, Section 11.11]).
We are concerned in this paper with the functional problems, where the four
relevant problems are as follows, also stating the effort for checking a solution:

NON-TRIVIAL AUTARKY: Find some non-trivial autarky (if it exists; otherwise
return the empty autarky). Checking an autarky is in P .

QUASI-MAXIMAL AUTARKY or MAXIMAL AUTARKY: Find a (quasi-)maximal
autarky; by a trivial computation, from a quasi-maximal autarky we can com-
pute a maximal one. Checking that ϕ is a quasi-maximal autarky for F means
checking that ϕ is an autarky (easy), and that ϕ ∗ F is lean, and so checking
is in coNP. A quasi-maximal autarky can be computed by repeated calls to
NON-TRIVIAL AUTARKY (until no non-trivial autarky exists anymore).
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NON-TRIVIAL VAR-AUTARKY: Find the var(iable)-set of some non-trivial
autarky (if it exists; otherwise return the empty set). Checking that V is the
variable-set of an autarky means checking that F [V ], the restriction of F to V ,
is satisfiable, thus checking is in NP.

(QUASI-)MAXIMAL VAR-AUTARKY or LEAN KERNEL: Compute the largest
autarky var-set (or a quasi-maximal one), or compute the lean kernel; all three
tasks are equivalent by trivial computations. Checking that V is the largest
autarky var-set means checking that F [V ] is satisfiable and that {C ∈ F :
var(F ) ∩ V = ∅} is lean, so checking is in DP ([32]). The solution to MAXIMAL
VAR-AUTARKY or to LEAN KERNEL is unique and always exists. The var-set of
a quasi-maximal autarky can be computed by repeated calls to NON-TRIVIAL
VAR-AUTARKY.

Just having the var-set of the autarky ϕ enables us to perform the autarky
reduction F � ϕ∗F , namely ϕ∗F = {C ∈ F : var(C)∩var(ϕ) = ∅}, but from the
var-set var(ϕ) in general we can not derive the autarky ϕ itself, which is needed
to provide a certificate for the autarky-property. For example, F is satisfiable iff
var(F ) is the largest autarky var-set, and in general without further hard work
it is not possible to obtain the satisfying assignment from (just) the knowledge
that F is satisfiable. An interesting case is discussed in [21, Subsection 4.3] and
(in greater depth) in [22, Section 10], where we can compute a certain autarky
reduction in polynomial-time, but it is not known how to find the autarky (effi-
ciently). So NON-TRIVIAL VAR-AUTARKY is weaker than NON-TRIVIAL AUTARKY,
and MAXIMAL VAR-AUTARKY is weaker than MAXIMAL AUTARKY. We tackle in this
paper the hardest problem, MAXIMAL AUTARKY.

To obtain a complexity calibration, we can consider the computational model
where polynomial-time computation and (only) one oracle call is used. Then
MAXIMAL VAR-AUTARKY is equivalent to PARALLEL SAT, which has as input a list
F1, . . . , Fm of clause-sets, and as output m bits deciding satisfiability of the
inputs: On the one hand, given these F1, . . . , Fm, make them variable-disjoint
and input their union to the MAXIMAL VAR-AUTARKY oracle — Fi is satisfiable iff
var(Fi) is contained in the largest autarky var-set. On the other hand it is an easy
exercise to see, that for example via the translation F � t(F ) used in this paper,
introduced as Γ2 in [26], we can compute the largest autarky var-set by inputting
t(F )∪{{v1}}, . . . , t(F )∪{{vn}} to PARALLEL-SAT, where var(F ) = {v1, . . . , vn}.
Similarly it is easy to see that MAXIMAL AUTARKY is equivalent to PARALLEL FSAT
(here now also the satisfying assignments are computed).

General approaches for the lean kernel. See [11, Section 11.10] for an overview. A
fundamental method for computing a (quasi-)maximal autarky, strengthened in
this paper, uses the autarky-resolution duality ([14, Theorem 3.16]): the variables
in the largest autarky var-set are precisely the variables not usable in any reso-
lution refutation. The basic algorithm, reviewed as algorithm A0 in Definition 5
in this paper (with a refined analysis), was first given in [15] and somewhat gen-
eralised in [11, Theorem 11.10.1]; see [20] for a discussion and some experimental
results. A central concept is, what in this paper we call an extended SAT oracle
O01, which for a satisfiable input outputs a satisfying assignment, while O01 on
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an unsatisfiable input outputs the variables used by some resolution refutation.
In order to also accommodate polynomial-time results, the oracle O01 may get
its inputs from a class C of clause-sets, which is stable (closed) under removal
of variables. However, for the new algorithm of this paper (Algorithm A01 pre-
sented in Theorem 1), we do not consider classes C as for A0, since the input
is first transformed, and then also some clauses are added, which would com-
plicate the requirements on C. The other main method to compute autarkies
uses reduction to SAT problems, denoted by F � t(F ) in this paper, where
the solutions of t(F ) correspond to the autarkies of F . This was started by [25],
and further extended first in [11, Subsection 11.10.4], and then in [26], which
contains a thorough discussion of the various reductions. The basic algorithm
here is A1 (Definition 8), which iteratively extracts autarkies via the transla-
tion until reaching the lean kernel. When combined with cardinality constraints
and binary search, indeed log2 n oracle calls are sufficient; see Algorithm Abs

(Definition 9). But these cardinality constraints make the tasks much harder
for the SAT oracle. The new algorithm A01 of this paper (Definition 10) indeed
combines the two basic approaches A0,A1, by applying the autarky-resolution
duality to the translation and using a more clever choice of “steering clauses” to
search for autarkies. To better understand this combination of approaches, all
four algorithms A0, A1, Abs and A01, are formulated in a unified way, striving
for elegance and precision. One feature is, that the input is updated in-place,
which not only improves efficiency, but also simplifies the analysis considerably.

Related literature. When for C (as above) the extended SAT oracle O01 runs
in polynomial time, then by [11, Theorem 11.10.1] the algorithm A0 computes
a quasi-maximal autarky in polynomial time. The basic applications to 2-CNF,
HORN, and the case that every variable occurs at most twice, are reviewed in [11,
Section 11.10.9]. The other known polytime results regarding computation of the
lean kernel use the deficiency, as introduced in [6], and further studied in [14]).
Here the above algorithm A0 can not be employed, since crossing out variables
can increase this measure (see [18, Section 10] for a discussion). [13, Theorem 4.2]
shows that the lean kernel is computable in polynomial time for bounded (max-
imal) deficiency. In [5] the weaker result, that SAT is decidable in polynomial
time for bounded maximal deficiency, has been shown, and strengthened later
in [36] to fixed-parameter tractability, which is unknown for the computation
of the lean kernel. [18, Theorem 10.3] shows that also a maximal autarky can
be computed in polynomial time for bounded maximal deficiency, and this for
generalised non-boolean clause-sets, connecting to constraint satisfaction.

The connection to the field of hypergraph 2-colouring, the problem of decid-
ing whether one can colour the vertices of a hypergraph with two colours, such
that monochromatic hyperedges are avoided, has been established in [17]; see [11,
Section 11.12.2] and [22, Subsection 1.6] for overviews. Exploiting the solution
of a long-outstanding open problem by [29,33], the lean kernel is computable in
polynomial time by [17] for classes of clause-sets, which by [22, Subsection 1.6],
via the translation of SAT problems into hypergraph 2-colourability problems,
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strongly generalises the polytime results (discussed above) for maximal defi-
ciency of clause-sets (partially proven, partially conjectured).

Autarkies have a hidden older history in the field of Qualitative Matrix Analy-
sis (QMA), which yields potential applications of autarky algorithms in eco-
nomics and elsewhere. QMA was initiated by [35], based on the insight that
in economics often the magnitude of a quantity is irrelevant, but only the sign
matters. So qualitative solvability of systems of equations and/or inequalities
is considered, a special property of such systems, namely that changes of the
coefficients, which leave their signs invariant, do not change the signs of the
solutions. For a textbook, concentrating on the combinatorial theory, see [2],
while a recent overview is [7]. The very close connections to autarky theory have
been realised in [16, Section 5] (motivated by [3]), and further expanded in [17];
see [11, Subsection 11.12.1] for an overview. While preparing this paper we came
across [9], which introduces “weak satisfiability”, which is precisely the existence
of a non-trivial autarky. It is shown ([9, Theorem 5]), that weak satisfiability is
NP-complete; this is the earliest known proof of LEAN being coNP-complete.
Apparently these connections to SAT have not been pursued further. The central
notions in the early history of QMA were “S-matrix” and “L-matrix”, which by
[16] are essentially the variable-clause matrices of certain sub-classes of LEAN .
Unaware of these connections, [10, Theorem 1.2] showed directly that recognition
of L-matrices is coNP-complete. Lean clause-sets correspond to “L+-matrices”
introduced in [23], and the decomposition of a clause-set into the lean kernel and
the largest autark sub-clause-set now becomes a triangular matrix decomposition
into an L+-matrix and the remainder ([23, Lemma 3.3]).

Applications. See [20] for a general discussion of various redundancy criteria in
clause-sets. Identification of maximal autarkies finds application in the analysis
of over-constrained systems, for example autark clauses cannot be included in
MUSes (minimally unsatisfiable sub-clause-sets) and so, by minimal hitting set
duality, cannot be included in MCSes (minimal corrections sets, whose removal
leads to a satisfiable clause-set). As discussed above, via the computation of a
maximal autarky we can compute basic matrix decompositions of QMA; appar-
ently due to the lack of efficient implementations, at least the related subfield
of QMA (which is concerned with NP-hard problems) had yet little practical
applications, and the efficient algorithms for computing maximal autarkies via
SAT (and extensions) might be a game changer here.

Overview. In Section 2 we provide all background. Section 3 discusses ora-
cles (O,O1,O0,O01), and reviews the first basic algorithm A0 (Definition 5),
analysed in Lemma 2. Section 4 introduces the basic translation F � t(F ),
where t(F ) expresses autarky-search for F , and proves various properties. The
second basic algorithm A1 is reviewed in Definition 8 and analysed in Lemma
4. Algorithm Abs is given in Definition 9, using cardinality constraints (trans-
lated into CNF). The use of “steering clauses”, collected into a set P of positive
clauses, is discussed in Subsection 4.2, with the main technical result Corollary
2, which shows that variables involved in a resolution refutation of t(F ) ∪ P can
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not be part of the largest autarky var-set of F . The novel algorithm A01 finally
is introduced in Section 5, first using an unspecified P (Definition 10), and then
instantiating this scheme in Theorem 1 to obtain at most 2

√
n(F ) many calls

to O01. We conclude in Section 6 by presenting conjectures and open problems.

2 Preliminaries

We use N = {n ∈ Z : n ≥ 1} and N0 = N ∪ {0}. The powerset of a set X is
denoted by P(X), while Pf(X) := {X ′ ∈ P(X) : X ′ finite }. Maps are sets of
ordered pairs, and so for maps f, g the relation f ⊆ g says, that f(x) = g(x)
holds for each x in the domain of f , which is contained in the domain of g.

We have the set VA of variables, with N ⊆ VA, and the set LIT of literals,
with VA ⊂ LIT . The complementation operation is written x ∈ LIT �→ x ∈
LIT , and fulfils x = x. On N the complementation is arithmetical negation,
and thus Z \ {0} ⊆ LIT . Every literal is either a variable or a complemented
variable; forgetting the possible complementation is done by the projection var :
LIT → VA. For L ⊆ LIT we use L := {x : x ∈ L} and lit(L) := L ∪ L. A
clause is a finite set C ⊂ LIT of literals with C ∩ C = ∅, while a clause-set is
a finite set of clauses; the set of all clause-sets is denoted by CLS. The empty
clause is denoted by ⊥ := ∅, the empty clause-set by 
 := ∅ ∈ CLS. Furthermore
p–CLS := {F ∈ CLS : ∀C ∈ F : |C| ≤ p} for p ∈ N0.

For a clause C we define var(C) := {var(x) : x ∈ C}, while for a clause-set
F we define var(F ) :=

⋃
C∈F var(C). We use the following measures: n(F ) :=

|var(F )| ∈ N0 is the number of variables, c(F ) := |F | ∈ N0 is the number of
clauses, �(F ) :=

∑
C∈F |C| ∈ N0 is the number of literal occurrences.

A partial assignment is a map ϕ : V → {0, 1} for some finite V ⊂ VA, where
we write var(ϕ) := V , while the set of all partial assignments is denoted by PASS.
A special partial assignment is the empty partial assignment 〈〉 := ∅ ∈ PASS.
Furthermore we use lit(ϕ) := lit(var(ϕ)), and extend ϕ to lit(ϕ) via ϕ(v) = 1 −
ϕ(v) for v ∈ var(ϕ). For ε ∈ {0, 1} we define ϕ−1(ε) := {x ∈ lit(ϕ) : ϕ(x) = ε}.

The application ϕ ∗ F ∈ CLS of ϕ ∈ PASS to F ∈ CLS is defined as
ϕ ∗ F := {C \ ϕ−1(0) : C ∈ F ∧ C ∩ ϕ−1(1) = ∅}. Then SAT := {F ∈
CLS | ∃ϕ ∈ PASS : ϕ ∗ F = 
}, and USAT := CLS \ SAT .

The restriction of F ∈ CLS to V ⊆ VA is defined as F [V ] := {C ∩ lit(V ) :
C ∈ F} \ {⊥} ∈ CLS, i.e., removal of clauses C ∈ F with var(C) ∩ V = ∅, and
restriction of the remaining clauses to variables in V .

Finally we use CLS(V ) := {F ∈ CLS : var(F ) ⊆ V }, PASS(V ) := {ϕ ∈
PASS : var(ϕ) ⊆ V } and TASS(V ) := {ϕ ∈ PASS : var(ϕ) = V } (“total
assignments”) for V ⊆ VA.

Now to autarkies; this paper is essentially self-contained, but if more informa-
tion is desired, see the handbook chapter [11]. A partial assignment ϕ ∈ PASS
is an autarky for F ∈ CLS iff for all C ∈ F with var(ϕ) ∩ var(C) �= ∅ holds
ϕ ∗ {C} = 
 iff ∀C ∈ F : ϕ ∗ {C} ∈ {
, {C}}; the set of all autarkies
for F is denoted by Auk(F ) ⊆ PASS. The empty partial assignment 〈〉 is an
autarky for every F ∈ CLS, and in general we call an autarky ϕ for F trivial
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if var(ϕ) ∩ var(F ) = ∅. For 
 as well as {⊥} every partial assignment is a triv-
ial autarky. Note that every satisfying assignment for F is also an autarky for
F , and it is a trivial autarky iff F = 
. Another simple but useful property
is that ϕ is an autarky for

⋃
i∈I Fi for a finite family (Fi)i∈I of clause-sets iff

ϕ is an autarky for all Fi, i ∈ I. We also note that ϕ is an autarky for F iff
ϕ is an autarky for F ∪ {⊥} iff ϕ is an autarky for F \ {⊥} (for autarkies the
empty clause is invisible). In general it is best to allow that autarkies assign
non-occurring variables, but it is also needed to have a notation which disallows
this; following [11, Definition11.9.1]:

Definition 1. For F ∈ CLS let Aukr(F ) := Auk(F ) ∩ PASS(var(F )) (‘r” like
“restricted” or “relevant”), while by var(Aukr(F )) :=

⋃
ϕ∈Aukr(F ) var(ϕ) we

denote the largest autarky-var-set.

LEAN ⊂ USAT ∪{
} is the set of F ∈ CLS such that Aukr(F ) = {〈〉}, while
the lean kernel of F ∈ CLS, denoted by Na(F ) ⊆ F , is the largest element of
LEAN contained in F (it is easy to see that LEAN is closed under finite union).
We have var(Aukr(F ))∪var(Na(F )) = var(F ) and var(Aukr(F ))∩var(Na(F )) =
∅. See [11, Subsection 11.8.3] for various characterisations of the lean kernel.

Definition 2. For F ∈ CLS let nA(F ) := |var(Aukr(F ))| ∈ N0 be the number
of variables in the largest autarky-var-set and nL(F ) := |var(Na(F ))| ∈ N0 be
the number of variables in the lean kernel.

So n(F ) = nA(F ) + nL(F ). On the finite set Aukr(F ) we have a natural partial
order given by inclusion. There is always the smallest element 〈〉 ∈ Aukr(F ),
while the maximal elements of Aukr(F ) are called maximal autarkies for F . For
maximal autarkies ϕ,ψ holds var(ϕ) = var(ψ) = var(Aukr(F )); here we use that
the composition of autarkies is again an autarky, i.e., for autarkies ϕ,ψ for F
there is an autarky θ for F with ϕ ∗ (ψ ∗ F ) = ψ ∗ (ϕ ∗ F ) = θ ∗ F .

Definition 3. Let Auk↑(F ) ⊆ Aukr(F ) be the set of maximal autarkies.

A quasi-maximal autarky for F is an ϕ ∈ Aukr(F ) with ϕ ∗ F = Na(F ).
By supplying arbitrary values for the missing variables we obtain efficiently a
maximal autarky from a quasi-maximal autarky.

3 Oracles

The main computational task considered in this paper is the computation of
some element of Auk↑(F ) for inputs F ∈ CLS. Our emphasis is on the number
of calls to an “oracle”, which solves NP-hard problems, while otherwise the
computations are in polynomial time. The NP (-SAT) oracle O : CLS →
{0, 1} just maps F ∈ CLS to 1 in case of F ∈ SAT , and to 0 otherwise. As we will
see in Example 4, for deciding leanness, one call suffices. For a (standard) SAT
oracle O1 : CLS → {0}∪({1}×PASS), the SAT solver also returns a satisfying
assignment, and then also a non-trivial autarky can be returned in case of non-
leanness. As introduced in [15], we consider here a strengthened oracle O01,
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to return something also for unsatisfiable inputs. Recall that a tree resolution
refutation for F ∈ CLS is a binary tree, where the nodes are labelled with
clauses, such that the leaves are labelled by (some) clauses of F (the “axioms”),
while the root is labelled with ⊥, and such that for each inner node, with children
labelled by clauses C,D, we have C ∩ D = {x} for some x ∈ LIT , while the
label of that inner node is (C \ {x}) ∪ (D \ {x}).

Definition 4. An extended SAT oracle is a map O01 : CLS → {0, 1} ×
(Pf(VA) ∪ PASS), which for input F ∈ USAT returns (0, var(F ′)) for some
F ′ ⊆ F , such that there is a tree refutation using as axioms precisely F ′, and for
F ∈ SAT returns (1, ϕ) for some ϕ ∈ PASS(var(F )) and ϕ∗F = 
. If we don’t
need the satisfying assignment, then we use O0 : CLS → {1} ∪ ({0} × Pf(VA)).

In the following we will indicate the type of oracle by using one of O0,O1,O01.
See [11, Subsection 11.10.3] for a short discussion how to efficiently integrate the
computations for O0,O01 into a SAT solver, both look-ahead ([8]) and CDCL
solvers ([28]). It is important to notice here that we do not need a full resolution
refutation, but only the variables involved in it. The above use of tree resolution
is only a convenient way of stating the condition that all axioms are actually
used in the refutation. Furthermore, there is no need for any sort of minimisation
of the refutation, as we see by the following lemma.

Lemma 1. If for F ∈ CLS holds O0(F ) = (0, V ), then V ∩ var(Aukr(F )) = ∅.
Proof: As shown in [14, Lemma 3.13], for any autarky ϕ ∈ Auk(F ) and any
clause C touched by ϕ there is no tree resolution refutation of F using C. �

So the more clauses are involved in the resolution refutation (i.e., the larger
V ), the more variables we can exclude from the largest autarky-var-set, and
thus minimising resolution refutation in general will be counter-productive. One
known approach to compute a maximal autarky of F ∈ CLS, as reviewed in
[11, Subsection 11.10.3] (especially Theorem 11.10.1 there), is based on the full
autarky-resolution duality ([14, Theorem 3.16]): the variables involved in some
autarky of F are altogether, i.e., var(Aukr(F )) = var(F ) \ var(Na(F )), precisely
the variables not usable by some tree resolution refutation of F . So the algo-
rithm, called A0(F ) here, iteratively removes variables not usable in an autarky
and clauses consisting solely of such variables, via Lemma 1, until a satisfying
assignment ϕ is found (which must happen eventually), and ϕ is then a quasi-
maximal (due to autarky-resolution duality):

Definition 5. For input F ∈ CLS, the algorithm A0(F ), using oracle O01 and
computing a partial assignment ϕ, performs the following computation:

1. While var(F ) �= ∅ do:
(a) Compute O01(F ), obtaining (0, V ) resp. (1, ϕ).
(b) In case of (0, V ), let F := F [var(F ) \ V ].
(c) In case of (1, ϕ), let F := 
.

2. Return ϕ.
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Lemma 2 ([14]). For F ∈ CLS the algorithm A0(F ) computes a quasi-maximal
autarky for F , using at most min(nL(F ) + 1, n(F )) calls of oracle O01.

The best case for algorithm A0(F ) in terms of the number of oracle calls is
given for F ∈ SAT , where just one call suffices. For the worst-case F ∈ LEAN
on the other hand A0(F ) might use n(F ) oracle calls:

Example 1. Let F :=
{ {1}, {−1}, {2}, {−2}, . . . , {n}, {−n}}

for n ∈ N0. We
have F ∈ LEAN , and each loop iteration will remove exactly one pair {i}, {−i},
until all clauses are removed.

4 The Basic Translation

We now review the translation t : CLS(VA0) → CLS from [26], called Γ2 there,
which represents the search for an autarky ϕ for F ∈ CLS(VA0) as a SAT
problem t(F ); here VA0 is the set of primary variables, while the variables in
VA \ VA0 are used as auxiliary variables. The translation t(F ) uses two types
of variables, the primary variables v ∈ var(F ) themselves, where v �→ 1 now
means v ∈ var(ϕ), and for every v ∈ var(F ) two auxiliary variables t(v), t(v),
where t(x) �→ 1 for x ∈ lit(F ) means ϕ(x) = 1. In other words, the three
possible states of a variable v ∈ var(F ) w.r.t. the partial assignment ϕ, namely
“unassigned” (v /∈ var(ϕ)), “set true” (ϕ(v) = 1), “set false” (ϕ(v) = 0), are
represented by three of the four states of assigned variables t(v), t(v), namely
“unassigned” is t(v), t(v) �→ 0, “set true” is t(v) �→ 1, t(v) �→ 0, and “set false”
is t(v) �→ 0, t(v) �→ 1. The variable v in the translation t(F ) just acts as an
indicator variable, showing whether v is involved in the autarky or not. We have
then three types of clauses in t(F ): the autarky clauses for C ∈ F and x ∈ C,
stating that if x gets false by the autarky, then some other literal of C must
get true, plus the AMO (at-most-one) clauses for t(v), t(v) and the connection
between v and t(v), t(v). It is useful for argumentation to have the more general
form tV (F ), where only ϕ with var(ϕ) ⊆ V are considered:

Definition 6. We assume a set N ⊆ VA0 ⊂ VA of “primary variables” together
with an injection t : lit(VA0) → VA, yielding the “auxiliary variables”, such
that VA0 ∩ t(lit(VA0)) = ∅ and VA0 ∪ t(lit(VA0)) = VA. For V ⊆ VA0 let
V ′ := V ∪ t(lit(V )). In general we define an equivalence relation on VA, where
every equivalence class contains (precisely) three elements, namely v, t(v), t(v)
for v ∈ VA0. A set V ⊆ VA is saturated, if for v ∈ V and every equivalent v′

holds v′ ∈ V . The saturation V ⊆ V ′ ⊆ VA of V ⊆ VA is the saturation under
this equivalence relation, i.e., addition of all equivalent variables.

Now the translation tV : CLS(VA0) → CLS(V ′) for V ∈ Pf(VA0) has the
following clauses for tV (F ):

I for C ∈ F and x ∈ C with var(x) ∈ V the autarky clause {t(x)} ∪ {t(y) :
y ∈ C \ {x}, var(y) ∈ V } (i.e., t(x) → ∨

y∈C\{x},var(y)∈V t(y));

II for each v ∈ V the AMO-clause {t(v), t(v)};
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III for each v ∈ V the clauses of v ↔ (t(v) ∨ t(v)), i.e., the three clauses
{v, t(v), t(v)}, {t(v), v}, {t(v), v} (the indicator clauses).

Especially t(F ) := tvar(F )(F ) for F ∈ CLS(VA0).

For F ∈ CLS(VA0) and V ∈ Pf(VA0) holds var(tV (F )) = V ′ = V ∪ t(lit(V )),
V ∩ t(lit(V )) = ∅, and n(t(F )) = 3n(F ), c(t(F )) = �(F ) + 4n(F ). Due to the
four AMO- and indicator-clauses, every satisfying assignment for tV (F ) must be
total, that is, for ϕ ∈ PASS with ϕ ∗ tV (F ) = 
 holds var(tV (F )) ⊆ var(ϕ).

Example 2. For F =
{ {1}, {−1}, . . . , {n}, {−n}}

as in Example 1, we have 2n

autarky clauses, which are {t(i)} for i ∈ {−n, . . . , n} \ {0}.

Partial assignments ϕ on the primary variables are translated to assignments
on the primary+auxiliary variables via t0,V (ϕ) (assigning unassigned variables
to 0 in the translation) and t(ϕ) (leaving them unassigned), while the backwards
direction goes via via t−1(ϕ):

Definition 7. For V ∈ Pf(VA0) we define a translation t0,V : PASS(V ) →
TASS(V ′) for ϕ ∈ PASS(V ) by t0,V (ϕ)(v) = 1 ⇔ v ∈ var(ϕ) for v ∈ V , while
t0,V (ϕ)(t(x)) = 1 ⇔ var(x) ∈ var(ϕ) ∧ ϕ(x) = 1 for x ∈ lit(V ).

The translation t : PASS(VA0) → PASS for ϕ ∈ PASS(VA0) is the partial
assignment, where var(t(ϕ)) is the saturation of var(ϕ), while t(ϕ)(v) = 1 for
v ∈ var(ϕ), and t(ϕ)(t(x)) = 1 ⇔ ϕ(x) = 1 for x ∈ lit(ϕ).

In the other direction, any partial assignment ϕ ∈ PASS with var(ϕ) sat-
urated yields a partial assignment t−1(ϕ) ∈ PASS(VA0) with var(t−1(ϕ)) :=
ϕ−1(1) ∩ VA0 and t−1(ϕ)(v) = ϕ(t(v)) for v ∈ var(t−1(ϕ)).

As already stated, t0,V (ϕ) makes explicit which variables are unassigned by ϕ,
namely assigning them with 0, and thus it needs to know V , while t(ϕ) just
leaves them unassigned. We have t−1(t0,V (ϕ)) = t−1(t(ϕ)) = ϕ.

Example 3. tV (F ) ∈ SAT for F ∈ CLS(VA0) and V ∈ Pf(VA0), since for
t0,V (〈〉) = 〈v → 0 : v ∈ V 〉∪〈t(x) → 0 : x ∈ lit(V )〉 we have t0,V (〈〉)∗tV (F ) = 
.

t(F ) does its job, i.e., its solutions represent all the autarkies of F :

Lemma 3 ([26]). Consider F ∈ CLS(VA0) and V ∈ Pf(VA0).

1. If O1(tV (F )) = (1, ϕ), then t−1(ϕ) ∈ Aukr(F ) ∩ PASS(V ).
2. t0,V (ϕ) ∗ tV (F ) = 
 for ϕ ∈ Aukr(F ) ∩ PASS(V ).

Before discussing the usage of t(F ), we remark that the variables var(F ) ⊆
var(t(F )) are used purely for a more convenient discussion, while for a practical
application they would be dropped, and the translation called Γ3 in [26] would
be used (except possibly for Algorithm Abs defined later, which uses cardinality
constraints): the variables of t(F ) then would be just t(lit(F )), and the clauses
would be the autarky- and AMO-clauses (only). In our applications v ∈ var(F )
occurs in the translations only positively, and would be replaced by the two
positive literals t(v), t(v) (together).
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4.1 Basic Usages

Example 4. A simple algorithm for finding a non-trivial autarky for var(F ) �= ∅
evaluates O1(t(F )∪{var(F )}). By Lemma 3 we get, that if the solver returns 0,
then F ∈ LEAN , while if (1, ϕ) is returned, then t−1(ϕ) is a non-trivial autarky
for F (the non-triviality is guaranteed by the additional clause var(F )).

Algorithm A1(F ), computing a maximal autarky, iterates the algorithm from
Example 4; the details are as follows, where we formulate the algorithm in such
a way that it has the same basic structure as A0 (recall Definition 5) and our
novel algorithm A01 (to be given in Definition 10):

Definition 8. For input F ∈ CLS(VA0) the algorithm A1(F ), using oracle O1

and computing a partial assignment ϕ, performs the following computation:

1. ϕ := 〈〉, P := {var(F )}, F := t(F ).
2. While var(P ) �= ∅ do:

(a) Compute O1(F ∪ P ), obtaining 0 resp. (1, ψ).
(b) In case of 0, let P := 
 and F := 
.
(c) In case of (1, ψ), let ψ′ := t−1(ψ), and update P := P [var(P ) \ var(ψ′)],

F := t(ψ′) ∗ F , and ϕ := ϕ ∪ ψ′.
In words: obtain the autarky ψ′ from ψ, remove the variables of ψ′ from
P and F , and add ψ′ to the result-autarky ϕ.

3. Return ϕ.

Lemma 4. For F ∈ CLS(VA0) the algorithm A1(F ) computes ϕ ∈ Auk↑(F ),
using at most min(nA(F ) + 1, n(F )) calls of oracle O1.

Proof: The algorithm always terminates, and moreover for the number m ≥ 0
of executions of the while-body we have m ≤ min(nA(F )+1, n(F )), since in each
round P gets reduced by some variables from an autarky (due to the choice of P ).
Let F−1 be the input, let F0 := t(F−1), and let Fi for i = 1, . . . , m be the current
F after execution of i-th iteration; similarly, let P0 be the original value of P ,
and let Pi be the current P after the i-th iteration, and let ϕ0 := 〈〉, and let ϕi be
the value of ϕ after the i-th iteration. Finally, let Vi for i = 1, . . . , m be var(Pi)
in case of 0 resp. the value of var(ψ′) after round i, and let W0 := var(F−1), and
let Wi := Wi−1\Vi for i = 1, . . . , m. Inductively we show that Fi = tWi

(ϕi∗F−1)
for i ∈ {0, . . . , m}, where ϕi is an autarky for F−1 by Lemma 3, Part 1, and
Pi = P0[Wi] for i ∈ {1, . . . , m}, where Wm = ∅. Variables only vanish as part of
some autarky for F−1, and thus ϕi ∈ Auk↑(F−1[W0 \ Wi]) for i ∈ {0, . . . , m}. �

The best case for algorithm A1(F ) in terms of the number of oracle calls is
given for F ∈ LEAN , where just one call suffices. For the worst-case F ∈ SAT
however, A1(F ) might use n(F ) oracle calls:

Example 5. Let F := {{1}, . . . , {n}} ∈ SAT for n ∈ N0. In the worst case
(depending on the answers of O1), in each call only one unit-clause {i} is
removed.
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The algorithm realising the currently best number of calls to O1 uses SAT-
encodings of cardinality constraints (see [34]); different from the literature, we
follow our general scheme and iteratively apply the autarkies found:

Definition 9. For input F ∈ CLS(VA0) the algorithm Abs(F ), using oracle
O1 and computing a partial assignment ϕ, performs the following computation:

1. ϕ := 〈〉, n := n(F ), V := var(F ), F := t(F ) (n is an upper bound on the
size of a maximal autarky, V is the set of variables potentially used by it).

2. While n �= 0 do:
(a) m := �n

2 �; let G be a CNF-representation of the cardinality constraint
“

∑
v∈V v ≥ m”; compute O1(F ∪ G), obtaining 0 resp. (1, ψ).

(b) In case of 0, let n := m − 1.
(c) In case of (1, ψ), let ψ′ := t−1(ψ), and update n := n − n(ψ′), V :=

V \ var(ψ′), F := t(ψ′) ∗ F , and ϕ := ϕ ∪ ψ′.
3. Return ϕ.

As it should be obvious by now:

Lemma 5. For F ∈ CLS(VA0) the algorithm Abs(F ) computes ϕ ∈ Auk↑(F ),
using at most �log2(n(F ))� calls of oracle O1 (for n(F ) > 0).

That the upper bound of Lemma 5 is attained, can be seen again with Exam-
ple 5 (in the worst case). We remark that if we allow calls to Partial MaxSAT
(see [24] for an overview), then just one call is enough (as used in [25]), and that
without cardinality constraints, namely using t(F ) as the hard clauses and {v}
for v ∈ var(F ) as the soft clauses. Indeed, as shown in [26, Proposition1], this
translation has a unique “minimal correction set” (MCS), i.e., a unique minimal
subset of the soft clauses, whose removal yields a satisfiable clause-set, and so
any MCS-solver can be used (just one call).

4.2 Adding Positive “Steering” Clauses

Generalising the use of P in Algorithm A1, we consider some positive clause-
set P over var(F ) (i.e., P ⊆ P(var(F ))), and use t(F ) ∪ P ∈ CLS to gain larger
autarkies. Note that the elements of P require variables to be in the autarky, and
so in general P should contain several shorter clauses, while for A1 we just used
one full clause (containing all variables). If the oracle then yields unsatisfiability,
this is no longer the end of the search (due to the lean kernel been reached),
since the clauses of P involved in the refutation might not involve all remaining
variables. The extended oracle is now needed to tell us which clauses of P were
used. To do so, we first note that autarkies for F yield autarkies for t(F ) ∪ P
(where for a simpler algorithm we allow P to contain variables not in t(F )):

Lemma 6. Consider F ∈ CLS(VA0) and P ∈ Pf(Pf(VA0)). For ϕ ∈ Aukr(F )
we have t(ϕ) ∈ Aukr(t(F ) ∪ P ).
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Proof: t(ϕ) is an autarky for P , since t(ϕ) does not set variables from var(F ) to
0. By Lemma 3, Part 2, we get that t0(ϕ) is a satisfying assignment for t(ϕ); now
t(ϕ) just unsets all triples v, t(v), t(v) with v /∈ var(ϕ), where t0(ϕ) sets these
three variables to 0. Thus obviously t(ϕ) is also an autarky for the AMO-clauses
and the indicator clauses. Assume an autarky clause D for C ∈ F and x ∈ C,
touched by t(ϕ) but not satisfied. Thus there is y ∈ C with var(x) /∈ var(ϕ)
and ϕ(y) = 0; since ϕ is an autarky, there is y′ ∈ C with ϕ(y′) = 1, whence
t(ϕ)(t(y′)) = 1 with t(y′) ∈ C, contradicting the assumption. �

Thus the saturation of the largest autarky-var-set of F is contained in the
largest autarky-var-set for t(F ) ∪ P :

Corollary 1. Consider F ∈ CLS(VA0) and P ∈ Pf(Pf(VA0)). Then the set
var(Aukr(t(F ) ∪ P )) is saturated and contains var(Aukr(F )).

Proof: It remains to show that var(Aukr(t(F )∪P )) is saturated, and this follows
by just considering the AMO-clauses and the indicator clauses: If v is assigned,
then also t(v), t(v) need to be assigned for an autarky, while if one of t(v), t(v)
is assigned, then also v needs to be assigned. �

Using Lemma 1, we obtain the main insight, that if the oracle yields (0, V )
for t(F ) ∪ P , then none of the elements of V are in the largest autarky-var-set:

Corollary 2. If for F ∈ CLS(VA0) and P ∈ Pf(Pf(VA0)) the oracle yields
O0(t(F ) ∪ P ) = (0, V ), then V ′ ∩ var(Aukr(F )) = ∅ (recall Definition 6 for V ′).

5 The New Algorithm

We now present the novel algorithm scheme S01(F, P ), combining algorithms
A0 (Definition 5) and A1 (Definition 8), which takes as input F ∈ CLS and
additionally P ⊆ P(var(F )), and computes some autarky ϕ ∈ Aukr(F ); for
our current best generic instantiation we specify P in Theorem 1, obtaining
algorithm A01(F ).

Definition 10. For inputs F ∈ CLS(VA0) and P ⊆ P(var(F )), the algorithm
S01(F, P ), using oracle O01 and computing a partial assignment ϕ, performs
the following computation (using the saturation V ′ as in Definition 6):

1. ϕ := 〈〉, F := t(F ).
2. While var(P ) �= ∅ do:

(a) Compute O01(F ∪ P ), obtaining (0, V ) resp. (1, ψ).
(b) In case of (0, V ), let V := V ′, P := P [var(P ) \ V ], F := F [var(F ) \ V ].
(c) In case of (1, ψ), let ψ′ := t−1(ψ), and update P := P [var(P ) \ var(ψ′)],

F := t(ψ′) ∗ F , and ϕ := ϕ ∪ ψ′.
3. Return ϕ.

While ⊥ ∈ P is of no real use, it doesn’t cause a problem for the algorithm,
and will be removed from P in the first round by the restriction (whether the
implicit resolution refutation of t(F ) ∪ P chooses ⊥ as the refutation or not).
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Lemma 7. For F ∈ CLS(VA0) and P ⊆ P(var(F )) the algorithm S01(F, P )
computes an autarky ϕ ∈ Aukr(F ). If var(P ) = var(F ), then ϕ ∈ Auk↑(F ).

Proof: The proof extends the proof of Lemma 4, by extending the handling of
the case O01(F ∪ P ) = (0, V ). The algorithm always terminates, since in each
round P gets reduced. Let m ≥ 0 be the number of executions of the while-
body. Let F−1 be the input, let F0 := t(F−1), and let Fi for i = 1, . . . , m be the
current F after execution of i-th iteration; similarly, let P0 be the input-value
of P , and let Pi be the current P after the i-th iteration, and let ϕ0 := 〈〉, and
let ϕi be the value of ϕ after the i-th iteration. Finally, let Vi for i = 1, . . . , m
be the value of V resp. var(ψ′) after round i, and let W0 := var(F−1), and let
Wi := Wi−1 \ Vi for i = 1, . . . , m. Inductively we show that Fi = tWi

(ϕi ∗ F−1)
for i ∈ {0, . . . , m}, where ϕi is an autarky for F−1 by Lemma 3, Part 1, and Pi =
P0[Wi] for i ∈ {1, . . . , m}. Since variables vanish from P only by restriction, we
have V1∪ . . . Vm ⊇ var(P ), and thus Wm ⊆ W0 \var(P ). Variables only vanish, if
either they are realised as not being element of var(Aukr(F−1)) (Corollary 2), or
as part of some autarky for F−1. So ϕi ∈ Auk↑(F−1[W0 \Wi]) for i ∈ {0, . . . , m},
and if var(P ) = var(F−1), then ϕm is a maximal autarky for F−1. �

If instead of an unrestricted (maximal) autarky ϕ ∈ Aukr(F ) we want to
compute a (maximal) autarky ϕ ∈ Aukr(F ) with var(ϕ) ⊆ V for some given
V ⊆ VA, then we may just replace the input F by F [V ] (or we choose P with⋃

P = V , and restrict the result).

Example 6. The simplest cases for computing maximal autarkies use (I) P =
{var(F )} or (II) P = {{v} : v ∈ var(F )}. In Case I, we essentially obtain A1

(Definition 8), and S01(F, P ) produces autarkies until the lean kernel is reached,
so we only have SAT-answers with one final UNSAT-answer. In Case II, the
scheme becomes very similar to A0 (Definition 5), and we remove elements of
P until we obtain the variables of var(Aukr(F )), and so we only have UNSAT-
answers with one final SAT answer. If F ∈ LEAN , then in Case I only one call
of the oracle is needed (as in Example 4), while in Case II, for F as in Example
1 we need n(F ) oracle calls. On the other hand, if F ∈ SAT , then in Case I, for
F as in Example 5 we need n(F ) oracle calls, while in Case II only one call of
the oracle is needed.

A more intelligent use of S01 employs a better P , to mix the SAT- and
UNSAT-answers of the oracle.

Lemma 8. For F ∈ CLS(VA0) and P ⊆ P(var(F )) with P ∈ p–CLS (p ∈ N0),
algorithm S01(F, P ) uses at most min(p,nA(F ))+min(c(P ),nL(F )) oracle calls.

Proof: Every oracle call removes at least one clause from P (in the unsat-case),
since tV (F ) ∈ SAT , or one variable from all clauses of P (in the sat-case). �

So we need to minimise the sum of the number of clauses in P and the
maximal clause-length, which is achieved by using disjoint clauses of size

√
n(F );

by Lemmas 7, 8 we obtain:
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Theorem 1. Consider F ∈ CLS(VA0). Choose P ′ ⊆ P(var(F )) such that P ′ is
a partitioning of var(F ) (the elements are pairwise disjoint and non-empty, the
union is var(F )) with ∀V ∈ P ′ : |V | ≤ �√n(F )� and c(P ′) ≤ �√n(F )�.

Such a partitioning P ′ can be computed in linear time. Algorithm A01(F ) :=
S01(F, P ′) computes a maximal autarky for F , using at most min(s,nA(F )) +
min(s,nL(F )) ≤ 2s calls of O01, where s := �√n(F )� ∈ N0 .

Up to the factor, the upper bound of Theorem 1 is attained:

Example 7. For F as in Example 2 as well as F as in Example 5 we need now
�√n(F )� oracle calls (in the worst-case).

6 Conclusion and Outlook

We reviewed the algorithms A0,A1,Abs for computing maximal autarkies, using
a unified scheme, and presented the new algorithm A01. We are employing four
different types of oracles: O is the basic oracle, just indicating satisfiability resp.
unsatisfiability, O0 in the unsatisfiable case yields the set of variables used by
some resolution refutation, O1 in the satisfiable case yields a satisfying assign-
ment, while O01 combines these capabilities. We investigated in some depth the
translation F � t(F ), which encodes the autarky search for F . The complexi-
ties of the four algorithms are summarised as follows (with slight inaccuracies),
stating the number and type of oracle calls and the call-instances:

– A0(F ): nL(F ) calls of O01, subinstances of F .
– A1(F ): nA(F ) calls of O1, subinstances of t(F ) plus one large positive clause.
– A01(F ):

√
n(F ) calls of O01, subinstances of t(F ) plus positive clauses.

– Abs(F ): log2(n(F )) calls of O1, subinstances of t(F ) plus one varying cardi-
nality constraint in CNF-representation.

Question 1. As we can see from Examples 6, 7, the choice P ′ from Theorem 1,
instantiating the scheme S01 and yielding A01, can be improved at least in special
cases. Are more intelligent choices of P possible, heuristically, for special classes,
or even in general? The optimal choice (hard to compute) is P := {var(Na(F ))}∪
{{v} : v ∈ var(Aukr(F ))}, which needs two oracle calls.

Question 2. We conjecture the number Ω(
√

n(F )) of oracle calls from Theorem
1 to be optimal in general, but the question here is, how to formalise the restric-
tions to the input of oracle O01 (so that for example the SAT translations of
cardinality constraints are excluded). With these restrictions in place, we also
conjecture that when only using oracle O1 (as algorithm A1 does (Definition 8)),
that then in general Ω(n(F )) many calls are needed.

Question 3. How do A0,A1,A01,Abs compare to each other? Are they pairwise
incomparable? Is their oracle usage optimal under suitable constraints?

Question 4. In this paper we concentrated on the hardest functional task: What
about the complexity of the computation of the lean kernel, when using oracles
O,O0,O1,O01 ? Do we need less calls than for computing maximal autarkies?
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Only one precise conjecture on lower bounds for the computation of maximal
autarkies seems possible currently:

Conjecture 1. The computation of a maximal autarky for input F ∈ CLS, when
using a SAT oracle O1, in general needs Ω(log2(n(F ))) many calls; possibly one
can even show that for every (deterministic) algorithm there exists an instance
needing at least log2(n(F )) many calls.

Finally we remark that for the considerations of this paper more fine-grained
complexity notions for function classes and their oracle usage are needed. Func-
tion classes just using NP-oracles (only returning yes/no) have been studied
starting with [12], while a systematic study of “function oracles” has been started
in [27], using “witness oracles”; we note that O0,O01 are not such witness oracles
(we can not easily check the returned var-sets).
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Abstract. A simple yet successful approach to parallel satisfiability
(SAT) solving is to run several different (a portfolio of) SAT solvers on
the input problem at the same time until one solver finds a solution. The
SAT solvers in the portfolio can be instances of a single solver with differ-
ent configuration settings. Additionally the solvers can exchange informa-
tion usually in the form of clauses. In this paper we investigate whether
this approach is applicable in the case of massively parallel SAT solving.
Our solver is intended to run on clusters with thousands of processors,
hence the name HordeSat. HordeSat is a fully distributed portfolio-based
SAT solver with a modular design that allows it to use any SAT solver
that implements a given interface. HordeSat has a decentralized design
and features hierarchical parallelism with interleaved communication and
search. We experimentally evaluated it using all the benchmark problems
from the application tracks of the 2011 and 2014 International SAT Com-
petitions. The experiments demonstrate that HordeSat is scalable up to
hundreds or even thousands of processors achieving significant speedups
especially for hard instances.

1 Introduction

Boolean satisfiability (SAT) is one of the most important problems of theoretical
computer science with many practical applications in which SAT solvers are used
in the background as high performance reasoning engines. These applications
include automated planning and scheduling [21], formal verification [22], and
automated theorem proving [10]. In the last decades the performance of state-
of-the-art SAT solvers has increased dramatically thanks to the invention of
advanced heuristics [25], preprocessing and inprocessing techniques [19] and data
structures that allow efficient implementation of search space pruning [25].

The next natural step in the development of SAT solvers was parallelization.
A very common approach to designing a parallel SAT solver is to run several
instances of a sequential SAT solver with different settings (or several different
SAT solvers) on the same problem in parallel. If any of the solvers succeeds
in finding a solution all the solvers are terminated. The solvers also exchange
information mainly in the form of learned clauses. This approach is referred to
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as portfolio-based parallel SAT solving and was first used in the SAT solver
ManySat [14]. However, so far it was not clear whether this approach can scale
to a large number of processors.

Another approach is to run several search procedures in parallel and ensure
that they work on disjoint regions of the search space. This explicit search space
partitioning has been used mainly in solvers designed to run on large parallel
systems such as clusters or grids of computers [9].

In this paper we describe HordeSat – a scalable portfolio-based SAT solver
and evaluate it experimentally. Using efficient yet thrifty clause exchange and
advanced diversification methods, we are able to keep the search spaces largely
disjoint without explicitly splitting search spaces. Another important feature of
HordeSat is its modular design, which allows it to be independent of any concrete
search engines. HordeSat uses Sat solvers as black boxes communicating with
them via a minimalistic interface.

Experiments made using benchmarks from the application tracks of the 2011
and 2014 Sat Competitions [3] show that HordeSat can outperform state-of-the-
art parallel SAT solvers on multiprocessor machines and is scalable on computer
clusters with thousands of processors. Indeed, we even observe superlinear aver-
age speedup for difficult instances.

2 Preliminaries

A Boolean variable is a variable with two possible values True and False. By
a literal of a Boolean variable x we mean either x or x (positive or negative
literal). A clause is a disjunction (OR) of literals. A conjunctive normal form
(CNF) formula is a conjunction (AND) of clauses. A clause can be also inter-
preted as a set of literals and a formula as a set of clauses. A truth assignment φ
of a formula F assigns a truth value to its variables. The assignment φ satisfies
a positive (negative) literal if it assigns the value True (False) to its variable
and φ satisfies a clause if it satisfies any of its literals. Finally, φ satisfies a CNF
formula if it satisfies all of its clauses. A formula F is said to be satisfiable if
there is a truth assignment φ that satisfies F . Such an assignment is called a
satisfying assignment. The satisfiability problem (SAT) is to find a satisfying
assignment of a given CNF formula or determine that it is unsatisfiable.

Conflict Driven Clause Learning. Most current complete state-of-the-art
SAT solvers are based on the conflict-driven clause learning (CDCL) algo-
rithm [23]. In this paper we will use CDCL solvers only as black boxes and
therefore we provide only a very coarse-grained description. For a detailed dis-
cussion of CDCL refer to [5]. In Figure 1 we give a pseudo-code of CDCL. The
algorithm performs a depth-first search of the space of partial truth assignments
(assignDecisionLiteral, backtrack – unassigns variables) interleaved with
search space pruning in the form of unit propagation (doUnitPropagation) and
learning new clauses when the search reaches a conflict state (analyzeConflict,
addLearnedClause). If a conflict cannot be resolved by backtracking then the
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CDCL (CNF formula F )
CDCL0 while not all variables assigned do
CDCL1 assignDecisionLiteral
CDCL2 doUnitPropagation
CDCL3 if conflict detected then
CDCL4 analyzeConflict
CDCL5 addLearnedClause
CDCL6 backtrack or return UNSAT
CDCL7 return SAT

Fig. 1. Pseudo-code of the conflict-driven clause learning (CDCL) algorithm

formula is unsatisfiable. If all the variables are assigned and no conflict is detected
then the formula is satisfiable.

3 Related Work

In this section we give a brief description of previous parallel SAT solving
approaches. A much more detailed listing and description of existing parallel
solvers can be found in recently published overview papers such as [15,24].

Parallel CDCL – Pure Portfolios. The simplest approach is to run CDCL
several times on the same problem in parallel with different parameter settings
and exchanging learned clauses. If there is no explicit search space partitioning
then this approach is referred to as the pure portfolio algorithm. The first parallel
portfolio SAT solver was ManySat [14]. The winner of the latest (2014) Sat
Competition’s parallel track – Plingeling [4] is also of this kind.

The motivation behind the portfolio approach is that the performance of
CDCL is heavily influenced by a high number of different settings and parameters
of the search such as the heuristic used to select a decision literal. Numerous
heuristics can be used in this step [25] but none of them dominates all the other
heuristics on each problem instance. Decision heuristics are only one of the many
settings that strongly influence the performance of CDCL solvers. All of these
settings can be considered when the diversification of the portfolio is performed.
For an example see ManySat [14]. Automatic configuration of SAT solvers in
order to ensure that the solvers in a portfolio are diverse is also studied [30].

Exchanging learned clauses grants an additional boost of performance. It is
an important mechanism to reduce duplicate work, i.e., parallel searches working
on the same part of the search space. A clause learned from a conflict by one
CDCL instance distributed to all the other CDCL instances will prevent them
from doing the same work again in the future.

The problem related to clause sharing is to decide how many and which
clauses should be exchanged. Exchanging all the learned clauses is infeasible
especially in the case of large-scale parallelism. A simple solution is to distribute
all the clauses that satisfy some conditions. The conditions are usually related
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to the length of the clauses and/or their glue value [1]. An interesting technique
called “lazy clause exchange” was introduced in a recent paper [2]. We leave
the adaptation of this technique to future work however, since it would make
the design of our solver less modular. Most of the existing pure portfolio SAT
solvers are designed to run on single multi-processor computers. An exception is
CL-SDSAT [17] which is designed for solving very difficult instances on loosely
connected grid middleware. It is not clear and hard to quantify whether this app-
roach can yield significant speedups since the involved sequential computation
times would be huge.

Parallel CDCL – Partitioning The Search Space Explicitly. The classi-
cal approach to parallelizing SAT solving is to split the search space between the
search engines such that no overlap is possible. This is usually done by starting
each solver with a different fixed partial assignment. If a solver discovers that its
partial assignment cannot be extended into a solution it receives a new assign-
ment. Numerous techniques have presented how to manage the search space
splitting based on ideas such guiding paths [9], work stealing [20], and generat-
ing sufficiently many tasks [11]. Similarly to the portfolio approach the solvers
exchange clauses.

Most of the previous SAT solvers designed for computer clusters or grids use
explicit search space partitioning. Examples of such solvers are GridSAT [9], PM-
SAT [11], GradSat [8], C-sat [26], ZetaSat [6] and SatCiety [28]. Experimentally
Comparing HordeSat with those solvers is problematic, since these solvers are
not easily available online or they are implemented for special environments using
non-standard middleware. Nevertheless we can get some conclusions based on
looking at the experimental sections of the related publications.

Older grid solvers such as GradSat [8], PM-SAT [11] SatCiety [28], ZetaSat [6]
and C-sat [26] are evaluated on only small clusters (up to 64 processors) using
small sets of older benchmarks, which are easily solved by current state-of-the-art
sequential solvers and therefore it is impossible to tell how well do they scale for
a large number of processors and current benchmarks. The solver GridSAT [9] is
run on a large heterogeneous grid of computers containing hundreds of nodes for
several days and is reported to solve several (at that time) unsolved problems.
Nevertheless, most of those problems can now be solved by sequential solvers
in a few minutes. Speedup results are not reported. A recent grid-based solving
method called Part-Tree-Learn [16] is compared to Plingeling and is reported
to solve less instances than Plingeling. This is despite the fact that in their
comparison the number of processors available to Plingeling was slightly less [16].

To design a successful explicit partitioning parallel solver, complex load bal-
ancing issues must be solved. Additionally, explicit partitioning clearly brings
runtime and space overhead. If the main motivation of explicit partitioning is to
ensure that the search-spaces explored by the solvers have no overlap, then we
believe that the extra work does not pay off and frequent clause sharing is enough
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to approximate the desired behavior 1. Moreover, in [18] the authors argue that
plain partitioning approaches can increase the expected runtime compared to
pure portfolio systems. They prove that under reasonable assumptions there is
always a distribution that results in an increased expected runtime unless the
process of constructing partitions is ideal.

4 Design Decisions

In this section we provide an overview of the high level design decisions made
when designing our portfolio-based SAT solver HordeSat.

Modular Design. Rather than committing to any particular SAT solver we
design an interface that is universal and can be efficiently implemented by current
state-of-the-art SAT solvers. This results in a more general implementation and
the possibility to easily add new SAT solvers to our portfolio.

Decentralization. All the nodes in our parallel system are equivalent. There
is no leader or central node that manages the search or the communication.
Decentralized design allows more scalability and also simplifies the algorithm.

Overlapping Search and Communication. The search and the clause
exchange procedures run in different (hardware) threads in parallel. The sys-
tem is implemented in a way that the search procedure never waits for any
shared resources at the expense of losing some of the shared clauses.

Hierarchical Parallelization. HordeSat is designed to run on clusters of com-
puters (nodes) with multiple processor cores, i.e., we have two levels of paral-
lelization. The first level uses the shared memory model to communicate between
solvers running on the same node and the second level relies on message passing
between the nodes of a cluster.

The details and implementation of these points are discussed below.

5 Black Box for Portfolios

Our goal is to develop a general parallel portfolio solver based on existing state-
of-the-art sequential CDCL solvers without committing to any particular solver.
To achieve this we define a C++ interface that is used to access the solvers in
the portfolio. Therefore new SAT solvers can be easily added just by implement-
ing this interface. By core solver we will mean a SAT solver implementing the
interface.

In this section we describe the essential methods of the interface. All the
methods are required to be implemented in a thread safe way, i.e., safe execution

1 According to our experiments only 2-6% of the clauses are learned simultaneously
by different solvers in a pure portfolio, which is an indication that the overlap of
search-spaces is relatively small.
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by multiple threads at the same time must be guaranteed. First we start with
the basic methods which allow us to solve formulas and interrupt the solver.

void addClause(vector<int> clause): This method is used to load the initial
formula that is to be solved. The clauses are represented as lists of literals which
are represented as integers in the usual way. All the clauses must be considered
by the solver at the next call of solve.

SatResult solve(): This method starts the search for the solution of the for-
mula specified by the addClause calls. The return value is one of the following
SatResult = {SAT, UNSAT, UNKNOWN}. The result UNKNOWN is returned when
the solver is interrupted by calling setSolverInterrupt().

void setSolverInterrupt(): Posts a request to the core solver instance to inter-
rupt the search as soon as possible. If the method solve has been called, it will
return UNKNOWN. Subsequent calls of solve on this instance must return UNKNOWN
until the method unsetSolverInterrupt is called.

void unsetSolverInterrupt(): Removes the request to interrupt the search.
Using these four methods, a simple portfolio can be built. When using sev-

eral instances of the same deterministic SAT solver, some diversification can be
achieved by adding the clauses in a different order to each solver.

More options for diversification are made possible via the following two meth-
ods. A good way of diversification is to set default phase values for the variables
of the formula, i.e., truth values to be tried first. These are then used by the
core solver when selecting decision literals. In general many solver settings can
be changed to achieve diversification. Since these may be different for each core
solver we define a general method for diversification which the core solver can
implement in its own specific way.

void setPhase(int var, bool phase): This method is used to set a default
phase of a variable. The solver is allowed to ignore these suggestions.

void diversify(int rank, int size): This method tells the core solver to diver-
sify its settings. The specifics of diversification are left to the solver. The provided
parameters can be used by the solver to determine how many solvers are working
on this problem (size) and which one of those is this solver (rank). A trivial
implementation of this method could be to set the pseudo-random number gen-
erator seed of the core solver to rank.

The final three methods of the interface deal with clause sharing. The solvers
can produce and accept clauses. Not all the learned clauses are shared. It is
expected that each core solver initially offers only a limited number of clauses
which it considers most worthy of sharing. The solver should increase the number
of exported clauses when the method increaseClauseProduction is called. This
can be implemented by relaxing the constraints on the learned clauses selected
for exporting.

void addLearnedClause(vector<int> clause): This method is used to add
learned clauses received from other solvers of the portfolio. The core solver can
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decide when and whether the clauses added using this method are actually con-
sidered during the search.

void setLearnedClauseCallback(LCCallback* callback): This method is
used to set a callback class that will process the clauses shared by this solver. To
export a clause, the core solver will call the void write(vector<int> clause)
method of the LCCallback class. Each clause exported by this method must be a
logical consequence of the clauses added using addClause or addLearnedClause.

void increaseClauseProduction(): Inform the solver that more learned
clauses should be shared. This could mean for example that learned clauses
of bigger size or higher glue value [1] will be shared.

The interface is designed to closely match current CDCL SAT solvers, but
any kind of SAT solver can be used. For example a local search SAT solver could
implement the interface by ignoring the calls to the clause sharing methods.

For our experiments we implemented the interface by writing binding code
for MiniSat [29] and Lingeling [4]. In the latter case no modifications to the
solver were required and the binding code only uses the incremental interface of
Lingeling. As for MiniSat, the code has been slightly modified to support the
three clause sharing methods.

6 The Portfolio Algorithm

In this section we describe the main algorithm used in HordeSat. As already
mentioned in section 4 we use two levels of parallelization. HordeSat can be
viewed as a multithreaded program that communicates using messages with
other instances of the same program. The communication is implemented using
the Message Passing Interface (MPI) [12]. Each MPI process runs the same
multithreaded program and takes care about the following tasks:

– Start the core solvers using solve. Use one fresh thread for each core solver.
– Read the formula and add its clauses to each core solver using addClause.
– Ensure diversification of the core solvers with respect to the other processes.
– Ensure that if one of the core solvers solves the problem all the other

core solvers and processes are notified and stopped. This is done by using
setSolverInterrupt for each core solver and sending a message to all the
participating processes.

– Collect the exported clauses from the core solvers, filter duplicates and send
them to the other processes. Accept the exported clauses of the other pro-
cesses, filter them and distribute them to the core solvers.

The tasks of reading the input formula, diversification, and solver starting are
performed once after the start of the process. The communication of ending and
clause exchange is performed periodically in rounds until a solution is found. The
main thread sleeps between these rounds for a given amount of time specified as
a parameter of the solver (usually around 1 second). The threads running the
core solvers are working uninterrupted during the whole time of the search.
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6.1 Diversification

Since we can only access the core solvers via the interface defined above, our
only tools for diversification are setting phases using the setPhase method and
calling the solver specific diversify method.

The setPhase method allows us to partition the search space in a semi-
explicit fashion. An explicit search space splitting into disjoint subspaces is usu-
ally done by imposing phase restrictions instead of just recommending them.
The explicit approach is used in parallel solvers utilizing guiding paths [9] and
dynamic work stealing [20].

We have implemented and tested the following diversification procedures
based on literal phase recommendations.

– Random. Each variable gets a phase recommendation for each core solver
randomly. Note that this is different from selecting a random phase each
time a decision is made for a variable in the CDCL procedure.

– Sparse. Each variable gets a random phase recommendation on exactly one
of the host solvers in the entire portfolio. For the other solvers no phase
recommendation is made for the given variable.

– Sparse Random. For each core solver each variable gets a random phase
recommendation with a probability of (#solvers)−1, where #solvers is the
total number of core solvers in the portfolio.

Each of these can be used in conjunction with the diversify method whose
behavior is defined by the core solvers. As already mentioned we use Lingeling
and MiniSat as core solvers. In case of MiniSat, we implemented the diversify
method by only setting the random seed. For Lingeling we copied the diver-
sification algorithm from Plingeling [4], which is the multi-threaded version of
Lingeling based on the portfolio approach and the winner of the parallel appli-
cation track of the 2014 SAT Competition [3]. In this algorithm 16 different
parameters of Lingeling are used for diversification.

6.2 Clause Sharing

The clause sharing in our portfolio happens periodically in rounds. Each round a
fixed sized (1500 integers in the implementation) message containing the literals
of the shared clauses is exchanged by all the MPI processes in an all-to-all fashion.
This is implemented by using the MPI Allgather [12] collective communication
routine defined by the MPI standard.

Each process prepares the message by collecting the learned clauses from
its core solvers. The clauses are filtered to remove duplicates. The fixed sized
message buffer is filled up with the clauses, shorter clauses are preferred. Clauses
that did not fit are discarded. If the buffer is not filled up to its full capacity
then one of the core solvers of the process is requested to increase its clause
production by calling the increaseClauseProduction method.

The detection of duplicate clauses is implemented by using Bloom filters [7].
A Bloom filter is a space-efficient probabilistic set data structure that allows
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false-positive matches, which in our case means that some clauses might be
considered to be duplicates even if they are not. The usage of Bloom filters
requires a set of hash functions that map clauses to integers. We use the following
hash function which ensures that permuting the literals of a clause does not
change its hash value.

Hi(C) =
⊕

�∈C

� · primes[abs(� · i) mod |primes|]

where i > 0 is a parameter we are free to choose, C is a clause, ⊕ denotes
bitwise exclusive-or, and primes is an array of large prime numbers. Literals are
interpreted as integers in the usual way, i.e., xj as j and xj as −j.

Each MPI process maintains one Bloom filter gx for each of its core solvers
x and an additional global one g. When a core solver x exports a learned clause
C, the following steps are taken.

– Clause C is added to gx.
– If C �∈ g, C is added to g as well as into a data structure e for export.
– If several core solvers concurrently try to access e, only one will succeed and

the new clauses of the other core solvers are ignored. This way, we avoid
contention at the shared resource e and rather ignore some clauses.

After the global exchange of learned clauses, the incoming clauses need to be
filtered for duplicates and distributed to the core solvers. The first task is done
by using the global Bloom filter g. For the second task we utilize the thread local
filters gx to ensure that each of them receives only new clauses.

All the Bloom filters are periodically reset, which allows the repeated sharing
of clauses after some time. Our initial experiments showed that this approach is
more beneficial than maintaining a strict “no duplicate clauses allowed”-policy.

Overall, there are three reasons why a clause offered by a core solver can get
discarded. One is that it was duplicate or wrongly considered to be duplicate due
to the probabilistic nature of Bloom filters. Second is that another core solver
was adding its clause to the data structure for global export at the same time.
The last reason is that it did not fit into the fixed size message sent to the other
MPI processes. Although important learned clauses might get lost, we believe
that this relaxed approach is still beneficial since it allows a simpler and more
efficient implementation of clause sharing.

7 Experimental Evaluation

To examine our portfolio-based parallel SAT solver HordeSat we did experi-
ments with two kinds of benchmarks. We used the benchmark formulas from the
application tracks of the 2011 and 2014 SAT Competitions [3] (545 instances) 2

2 Originally we only used the 2014 instances. A reviewer suggested to try the 2011
instances also, conjecturing that they would be harder to parallelize. Surprisingly,
the opposite turned out to be true.
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Fig. 2. The influence of diversification and clause sharing on the performance of Horde-
Sat using Lingeling (16 processes with 1 thread each) on random 3-SAT problems.

and randomly generated 3-SAT formulas (200 sat and 200 unsat instances). The
random formulas have 250–440 variables and 4.25 times as many clauses, which
corresponds to the phase transition of 3-SAT problems [27].

The experiments were run on a cluster allowing us to reserve up to 128 nodes.
Each node has two octa-core Intel Xeon E5-2670 processors (Sandy Bridge) with
2.6 GHz and 64 GB of main memory. Therefore each node has 16 cores and
the total number of available cores is 2048. The nodes communicate using an
InfiniBand 4X QDR Interconnect and use the SUSE Linux Enterprise Server 11
(x86 64) (patch level 3) operating system. HordeSat was compiled using g++
(SUSE Linux) 4.3.4 [gcc-4 3-branch revision 152973] with the “-O3” flag.

If not stated otherwise, we use the following parameters: The time of sleeping
between clause sharing rounds is 1 second. The default diversification algorithm
is the combination of “sparse random” and the native diversification of the core



166 T. Balyo et al.

solver. In the current version two core solvers are supported – Lingeling and
MiniSat. The default value is Lingeling which is used in all the experiments
presented below. It is also possible to use a combination of Lingeling and MiniSat.
Using only Lingeling gives by far the best results on the used benchmarks. The
time limit per instance is 1 000 seconds for parallel solvers and 50 000 seconds for
the sequential solver Lingeling. Detailed results of all the presented experiments
as well as the source code of HordeSat and all the used benchmark problems can
be found at http://baldur.iti.kit.edu/hordesat.

7.1 Clause Sharing and Diversification

We investigated the individual influence of clause sharing and diversification
on the performance of our portfolio. In the case of application benchmarks we
obtained the unsurprising result that both diversification and clause sharing are
highly beneficial for satisfiable as well as unsatisfiable instances. However, for
random 3-SAT problems the results are more interesting.

By looking at the cactus plots in Figure 2 we can observe that clause sharing
is essential for unsatisfiable instances while not significant and even slightly
detrimental for satisfiable problems. On the other hand, diversification has only
a small benefit for unsatisfiable instances. This observation is related to a more
general question of intensification vs diversification in parallel SAT solving [13].

For the experiments presented in Figure 2 we used sparse diversification
combined with the diversify method, which in this case copies the behavior
of Plingeling. It is important to note that some diversification arises due to the
non-deterministic nature of Lingeling, even when we do not invoke it explicitly
by using the setPhase or diversify methods.

7.2 Scaling on Application Benchmarks

In parallel processing, one usually wants good scalability in the sense that the
speedup over the best sequential algorithm goes up near linearly with the number
of processors. Measuring scalability in a reliable and meaningful way is difficult
for SAT solving since running times are highly nondeterministic. Hence, we need
careful experiments on a large benchmark set chosen in an unbiased way. We
therefore use the application benchmarks of the 2011 and 2014 Sat Competi-
tions. Our sequential reference is Lingeling which won the most recent (2014)
competition. We ran experiments using 1,2,4,. . . ,512 processes with four threads
each, each cluster nodes runs 4 processes. The results are summarized in Figure 3
using cactus plots. We can observe that increased parallelism is always beneficial
for the 2011 benchmarks. In the case of all the benchmarks the benefits beyond
32 nodes are not apparent.

From a cactus plot it is not easy to see whether the additional performance
is a reasonable return on the invested hardware resources. Therefore Table 1
summarizes that information in several ways in order to quantify the overall
scalability of HordeSat on the union of the 2011 and 2013 benchmarks. We
compute speedups for all the instances solved by the parallel solver. For instances

http://baldur.iti.kit.edu/hordesat
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Fig. 3. The impact of doubling the number of processors on the runtime and the
number solved problems for the 2011 and the union of 2011 and 2013 application
instances. The labels represent (#nodes)x(#processes/node)x(#threads/process).

not solved by Lingeling within its time limit T = 50 000s we generously assume
that it would solve them if given T + ε seconds and use the runtime of T for
speedup calculation. Column 4 gives the average of these values. We observe
considerable superlinear speedups on average for all the configurations tried.
However, this average is not a very robust measure since it is highly dependent
on a few very large speedups that might be just luck. In Column 5 we show the
total speedup, which is the sum of sequential runtimes divided by the sum of
parallel runtimes and Column 6 contains the median speedup.

Nevertheless, these figures treat HordeSat unfairly since most instances are
actually too easy for investing a lot of hardware. Indeed, in parallel computing,
it is usual to analyze the performance on many processors using weak scaling
where one increases the amount of work involved in the considered instances
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Table 1. HordeSat configurations (#nodes)x(#processes/node)x(#threads/process)
compared to Plingeling with a given number of threads. The second column is the
number of instances solved by the parallel solvers, the third is the number of instances
solved by both Lingeling and the parallel solver. The following six columns contain the
average, total, and median speedups for either all the instances solved by the parallel
solvers or only big instances (solved after 10(#threads) seconds by Lingeling). The last
column contains the “count based speedup” values defined in Subsection 7.2.

Core Parallel Both Speedup All Speedup Big

Solvers Solved Solved Avg. Tot. Med. Avg. Tot. Med. CBS

1x4x4 385 363 303 25.01 3.08 524 26.83 4.92 5.86

2x4x4 421 392 310 30.38 4.35 609 33.71 9.55 22.44

4x4x4 447 405 323 41.30 5.78 766 49.68 16.92 68.90

8x4x4 466 420 317 50.48 7.81 801 60.38 32.55 102.27

16x4x4 480 425 330 65.27 9.42 1006 85.23 63.75 134.37

32x4x4 481 427 399 83.68 11.45 1763 167.13 162.22 209.07

64x4x4 476 421 377 104.01 13.78 2138 295.76 540.89 230.37

128x4x4 476 421 407 109.34 13.05 2607 352.16 867.00 216.69

pling8 372 357 44 18.61 3.11 67 19.20 4.12 4.77

pling16 400 377 347 24.83 3.53 586 26.18 5.89 7.34

1x8x1 373 358 53 19.57 3.13 81 20.42 4.36 4.79

1x16x1 400 376 325 27.78 4.06 548 30.30 6.98 7.34

proportionally to the number of processors. Therefore in columns 7–9 we restrict
ourselves to those instances where Lingeling needs at least 10p seconds where
p is the number of core solvers used by HordeSat. The average speedup gets
considerably larger as well as the total speedup, especially for the large con-
figurations. The median speedup also increases but remains slightly sublinear.
Figure 4 shows the distribution of speedups for these instances.

Another way to measure speedup robustly is to compare the times needed
to solve a given number of instances. Let T1 (Tp) denote the per instance time
limits of the sequential (parallel) solver (50 000s (1 000s) in our case). Let n1 (np)
denote the number of instances solved by the sequential (parallel) solver within
time T1 (Tp). If n1 ≥ np (n1 < np) let T ′

1 (T ′
p) denote the smallest time limit for

the sequential (parallel) solver such that it solves np (n1) instances within the
time limit T ′

1 (T ′
p). We define the count based speedup (CBS) as

CBS =

{
T1/T ′

p if n1 < np

T ′
1/Tp otherwise .

The CBS scales almost linearly up to 512 cores and stagnates afterward.
We are not sure whether this indicates a scalability limit of HordeSat or rather
reflects a lack of sufficiently difficult instances – in our collection, there are only
65 eligible instances.
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Fig. 4. Distribution of speedups on the “big instances” – the data corresponding to
Columns 7–9 of Table 1.

Fig. 5. Comparison of HordeSat and Plingeling with Lingeling on the 2011 and 2014
Sat Competition benchmarks.

7.3 Comparison with Plingeling

The most similar parallel SAT solver to our portfolio is the state-of-the-art solver
Plingeling [4]. Plingeling is the winner of the parallel track of the 2014 SAT
Competition. Both solvers are portfolio-based, they are using Lingeling and even
some diversification code is shared. The main differences are in the clause sharing
algorithms and that Plingeling does not run on clusters only single computers.
For this reason we can compare the two solvers only on a single node. The
results of this comparison on the benchmark problems of the 2011 and 2014 SAT
Competition are displayed in Figure 5. Speedup values are given in Table 1.
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Both solvers significantly outperform Lingeling. The performance of Horde-
Sat and Plingeling is almost indistinguishable when running with 8 cores, while
on 16 cores HordeSat gets slightly ahead of Plingeling.

8 Conclusion

HordeSat has the potential to reduce solution times of difficult yet solvable
SAT instances from hours to minutes using hundreds of cores on commodity
clusters. This may open up new interactive applications of SAT solving. We find
it surprising that this was achieved using a relatively simple, portfolio based
approach that is independent of the underlying core solver. In particular, this
makes it likely that HordeSat can track future progress of sequential SAT solvers.

The Sat solver that works best with HordeSat for application benchmarks
is Lingeling. Plingeling is another parallel portfolio solver based on Lingeling
and it is also the winner of the most recent (2014) Sat Competition. Comparing
the performance of HordeSat and Plingeling reveals that HordeSat is almost
indistinguishable when running with 8 cores and slightly outperforms Plingeling
when running with 16 cores. This demonstrates that there is still room for the
improvement of shared memory based parallel portfolio solvers.

Our experiments on a cluster with up to 2048 processor cores show that
HordeSat is scalable in highly parallel environments. We observed superlinear
and nearly linear scaling in several measures such as average, total, and median
speedups, particularly on hard instances. In each case increasing the number of
available cores resulted in significantly reduced runtimes.

8.1 Future Work

An important next step is to work on the scalability of HordeSat for 1024 cores
and beyond. This will certainly involve more adaptive clause exchange strategies.
Even for single node configurations, low level performance improvements when
using modern machines with dozens of cores seem possible. We also would like
to investigate what benefits can be gained by having a tighter integration of
core solvers by extending the interface. Including other kinds of (not necessarily
CDCL – based) core solvers might also bring improvements.

When considering massively parallel SAT solving we probably have to move
to even more difficult instances to make that meaningful. When this also means
larger instances, memory consumption may be an issue when running many
instances of a SAT solver on a many-core machine. Here it might be interesting
to explore opportunities for sharing data structures for multiple SAT solvers or
to decompose problems into smaller subproblems by recognizing their structure.

Acknowledgments. We would like to thank Armin Biere for fruitful discussion about
the usage of the Lingeling API in a parallel setting.
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Abstract. For SAT and QBF formulas many techniques are applied in
order to reduce/modify the number of variables and clauses of the for-
mula, before the formula is passed to the actual solving algorithm. It is
well known that these preprocessing techniques often reduce the compu-
tation time of the solver by orders of magnitude. In this paper we gen-
eralize different preprocessing techniques for SAT and QBF problems to
dependency quantified Boolean formulas (DQBF) and describe how they
need to be adapted to work with a DQBF solver core. We demonstrate
their effectiveness both for CNF- and non-CNF-based DQBF algorithms.

1 Introduction

Many problems, practically relevant and at the same time hard from a com-
plexity theoretic point of view, can be reduced to solving quantifier-free (SAT)
or quantified (QBF) Boolean formulas. Such applications range, among many
others, from verification and test of hard- and software [1,2] to planning [3],
product configuration [4], and cryptanalysis [5]. During the last three decades,
the development of very efficient algorithms to solve such formulas has paved
the way from academic interest to industrial application of solver techniques.
SAT-formulas with hundred thousands of variables and millions of clauses can
be solved nowadays, with QBF about two orders of magnitude behind.

In this paper, we consider the more general, still practically relevant formal-
ism of dependency quantified Boolean formulas (DQBF). “Standard” quantified
Boolean formulas (in prenex normal form) have the restriction that each exis-
tential variable depends on all universal variables in whose scope it is. This
restriction is relaxed for DQBF, which allows arbitrary dependencies at the cost
of a higher complexity for the decision problem – for SAT it is NP-complete [6],
for QBF PSPACE-complete [7], and for DQBF it is NEXPTIME-complete [8].
However, some applications like the verification of incomplete circuits [9] or
the synthesis of safe controllers [10] require the higher expressiveness of DQBF.
Therefore, first solvers for DQBF have been presented recently: iDQ [11] reduces
the solution of a DQBF to the solution of a series of SAT instantiations. HQS [12]
applies quantifier elimination to solve the formula.

This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center AVACS (SFB/TR 14).
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Part of the success of SAT and QBF solving is due to efficient preprocessing
of the formula under consideration. The goal of preprocessing is to simplify the
formula by reducing/modifying the number of variables, clauses and quantifier
alternations, such that it can be solved more efficiently afterwards. However,
there is typically a trade-off between the number of variables and the number
of clauses; e. g., eliminating variables by resolution can increase the number of
clauses significantly, which in turn increases memory consumption and the cost
of subsequent operations on the formula. Removing redundant clauses is also
not always beneficial: search-based SAT and QBF solvers add implied clauses
to the formula to drive the search away from unsatisfiable parts of the search
space [13,14], which often reduces computation times considerably.

For SAT and QBF, efficient and effective preprocessing tools are available
like SatELite [15], Coprocessor [16] for SAT and squeezeBF [17], bloqqer [18]
for QBF. Both available DQBF solvers, however, still lack a preprocessing phase
before the actual solving process. Due to the success of preprocessing in SAT
and QBF, one can expect that preprocessing is beneficial for DQBF, too – even
more because the actual solving process is more costly than for QBF. This raises
the question which techniques can be generalized from SAT and QBF to DQBF.
Which adaptations need to be made to make them correct for the more general
formalism? After suitable adaptations have been found, the correctness proofs
have to be re-done for DQBF carefully because for QBF they often exploit the
fact that dependencies in QBF follow a linear order. But also techniques like
the detection of backbone literals [19,20], which work for DQBF in the same
way as for SAT and QBF, have to be re-thought: in SAT only incomplete, but
cheap syntactic tests for the special case of unit literals are useful – determining
backbone literals completely is as expensive as solving the SAT problem itself.
For DQBF the situation is different as the decision problem is much harder.
Even solving QBF approximations [9,21] of the formula at hand as an incomplete
decision procedure can be beneficial. Additionally the higher flexibility regarding
the dependency sets in DQBF makes some techniques more powerful compared
to QBF and enables new techniques.

Taken together, in this paper for the first time preprocessing techniques are
made available for DQBF solving. We generalize successful preprocessing tech-
niques for QBF to DQBF like blocked clause elimination (BCE) [18,22], equiv-
alence reasoning [17], structure extraction [23], and variable elimination by res-
olution [24]. All correctness proofs are available in an extended version of this
paper [25]. We present experimental results which show the effectiveness of these
techniques for DQBF. We demonstrate that the applied techniques have to be
chosen depending on the solving techniques applied in the solver core. For exam-
ple, BCE prevents an effective undoing of Tseitin transformation [26], which is
used to transform a formula into conjunctive normal form (CNF). Therefore, it
is better to disable BCE if the underlying solver core does not rely on a for-
mula in CNF, and to use BCE if undoing Tseitin transformation is not possible
because the solver core requires a formula in CNF. The experiments show that
preprocessing both reduces the computation times and significantly increases the
number of solved instances of both solvers, iDQ and HQS.
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Structure of this paper. The next section introduces the necessary foundations
of DQBF. Section 3 reviews incomplete, but cheap decision procedures for DQBF,
Section 4 describes the preprocessing techniques for DQBF that we apply in our
tool to simplify the DQBF at hand. Section 5 gives an experimental evaluation
of the described techniques, and Section 6 concludes the paper.

2 Preliminaries

In this section, we briefly review the necessary foundations regarding dependency
quantified Boolean formulas.

Let ϕ, κ be quantifier-free Boolean formulas over the set V of variables and
v ∈ V . We denote by ϕ[κ/v] the Boolean formula which results from ϕ by
replacing all occurrences of v (simultaneously) by κ. For a set V ′ ⊆ V we denote
by A(V ′) the set of Boolean assignments for V ′, i. e., A(V ′) =

{
ν

∣
∣ ν : V ′ →

{0, 1}}
.

Definition 1 (DQBF). Let V = {x1, . . . , xn, y1, . . . , ym} be a set of Boolean
variables. A dependency quantified Boolean formula (DQBF) ψ over V has
the form ψ := ∀x1∀x2 . . . ∀xn∃y1(Dψ

y1
)∃y2(Dψ

y2
) . . . ∃ym(Dψ

ym
) : ϕ where Dψ

yi
⊆

{x1, . . . , xn} for i = 1, . . . , m is the dependency set of yi, and ϕ is a Boolean
formula over V , the matrix of ψ.

We often write ψ = Q : ϕ with the quantifier prefix Q and the matrix ϕ. Through-
out the whole paper we assume, unless explicitly stated differently, that a DQBF
ψ = Q : ϕ as in Definition 1 with ϕ in CNF is given. We denote its set of uni-
versal variables by V ψ

∀ = {x1, . . . , xn} and its set of existential variables by
V ψ

∃ = {y1, . . . , ym}. If we do not need to distinguish between existential and
universal variables, we write v ∈ V . Q \ {v} denotes the prefix that results from
removing a variable v ∈ V from Q together with its quantifier. If v is existential,
then its dependency set is removed as well; if v is universal, then all occurrences
of v in the dependency sets of existential variables are removed. Similarly we
use Q ∪ {∃y(Dψ

y )
}

to add existential variables to the prefix. The order in which
the variables appear in the prefix is irrelevant. We introduce the dependency
function depψ : V → 2V by depψ(v) = Dψ

v if v ∈ V ψ
∃ , and depψ(v) = {v} for

v ∈ V ψ
∀ .

Definition 2 (Semantics of DQBF). Let ψ be a DQBF with matrix ϕ as
above. ψ is satisfied (written � ψ) iff there are functions syi

: A(Dψ
yi

) → {0, 1}
for 1 ≤ i ≤ m such that replacing each yi by (a Boolean expression for) syi

turns
ϕ into a tautology. Then syi

is called a Skolem function for yi.

Two DQBFs ψ1 and ψ2 are equivalent iff � ψ1 ⇔ � ψ2 holds.

Definition 3 (QBF). A quantified Boolean formula (QBF)1 is a DQBF ψ

such that Dψ
y ⊆ Dψ

y′ or Dψ
y′ ⊆ Dψ

y holds for any pair y, y′ ∈ V ψ
∃ of existential

variables.
1 We only consider closed QBFs in prenex form here, i. e., QBFs in which all variables

are bound by a quantifer and in which the quantifiers precede the matrix.
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In the following we assume that the matrix ϕ is given in conjunctive normal
form (CNF). A formula is in CNF if it is a conjunction of clauses; a clause is
a disjunction of literals, and a literal is either a variable v or its negation ¬v.
We identify a formula in CNF with its set of clauses and a clause with its set
of literals, e. g., we write

{{x1,¬x2}, {x2,¬x3}
}

for the formula (x1 ∨ ¬x2) ∧
(x2 ∨ ¬x3). A clause C subsumes a clause C ′ iff C ⊆ C ′. For a literal �, var(�)
denotes the corresponding variable, i. e., var(v) = var(¬v) = v and depψ(�) =
depψ

(
var(�)

)
. Moreover, we define the “sign” sgn of a literal as sgn(v) = 1 and

sgn(¬v) = 0.
Each DQBF can be transformed such that the matrix is in CNF. While

transforming the matrix directly into CNF can cause an exponential blow-up in
size, Tseitin transformation [26] can do this with only a linear increase in size
at the cost of additional existential variables. The idea is to introduce auxiliary
existential variables that store the truth value of sub-expressions. Since the values
of these variables are uniquely determined by the sub-expression, they can simply
depend on all universal variables.

We assume that none of the clauses of the CNF ϕ under consideration is
tautological, i. e., there is no variable v such that {v,¬v} ⊆ C for all C ∈ ϕ.
The preprocessing operations we present check the modified or added clauses
whether they are tautologies and, if this is the case, remove or ignore them.

Definition 4 (Resolution). Let ϕ be a formula in CNF, � a literal, and C,C ′ ∈
ϕ clauses such that � ∈ C and ¬� ∈ C ′. The resolvent of C and C ′ w. r. t. to the
pivot literal � is given by C ⊗� C ′ :=

(
C \ {�}) ∪ (

C ′ \ {¬�})
.

Resolvents are implied by the formula, i. e., if R is a resolvent of two clauses in
ϕ, then ϕ and ϕ ∪ {R} are equivalent [27].

Currently, three solvers for DQBF have been proposed: An extension of the
DPLL algorithm, typically applied for solving SAT and QBF formulas, has been
described in [28]. However, no implementation thereof is available. The second
solver is iDQ [11], which relies on a formula in CNF and uses instantiation-based
solving, i. e., it reduces deciding a DQBF to deciding a series of SAT problems.
Finally, there is the solver HQS [12], which applies quantifier elimination on
And-Inverter Graphs (AIGs) to solve the formula. An AIG is essentially a circuit
which consists of AND and inverter gates only. Although HQS reads the same
CNF-based input format as iDQ, its back-end can handle Boolean formulas
of arbitrary structure. We use both iDQ and HQS for the evaluation of the
preprocessing techniques presented in the following.

3 Incomplete, but Cheap Decision Procedures

Before we present our preprocessing techniques for DQBF, we review an incom-
plete, but cheap decision procedure (called “filter”) for DQBF. Our approach is
as follows: First we apply preprocessing for DQBF, which is helpful for both the
filter technique and the actual solver core. Then we run the filter technique, and
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only if it finishes with an inconclusive result, we apply the solver core. Experi-
ments showed that it is beneficial to use a filter before the solving process.

The filter is based on QBF approximations: By using an appropriate quanti-
fier prefix and the same matrix, a DQBF ψ can be over-approximated by a QBF
Ψ↑ such that the unsatisfiability of Ψ↑ implies the unsatisfiability of ψ [9]. This
is the case if DΨ↑

y ⊇ Dψ
y for all y ∈ V ψ

∃ . Similarly one can construct an under-
approximation Ψ↓ such that the satisfiability of Ψ↓ implies the satisfiability of
ψ. As the under-approximation was inconclusive for all instances in our experi-
ments, we focus on over-approximations to show the unsatisfiability of DQBFs.
For the formal definitions of the approximations we refer the reader to [9].

Finkbeiner and Tentrup [21] improve these over-approximations by construct-
ing a series of more and more precise QBF formulas. To make this possible they
modify both the sets of variables and the matrix of the DQBF: The idea is to
use k ≥ 1 copies of the matrix and its variables. It is required that the existential
variables are assigned consistently over all copies and that all copies of the matrix
are satisfied. Consistent means that if the universal variables in the dependency
set of an existential variable are assigned the same values in two copies, then the
existential variables have to carry the same value. Since the sizes of the QBF
instances grow considerably with increasing values of k, in most cases only values
k ≤ 3 are beneficial. For more details we refer the reader to [21].

4 Preprocessing Techniques for DQBF

In this section we describe techniques which can be applied to preprocess a
DQBF. The proofs of the main theorems and lemmas are given in the extended
version [25] of this paper.

4.1 Backbones, Monotonic and Equivalent Variables

Here we describe techniques which reduce both the number of variables in the
formula and the number of clauses.

Unit and pure variables are well-known concepts from SAT and QBF solving.
They can be replaced by constant values without influencing the formula’s truth
value. Typically a variable is defined as unit if the matrix contains a clause
consisting only of this variable. A variable is pure if it occurs in the whole
matrix either only positive or only negative:

Definition 5 (Unit and pure literals). A literal � is a unit literal if {�} ∈ ϕ;
� is a pure literal if ¬� does not appear in any clause of ϕ.

These are syntactic criteria that can be checked efficiently. This is necessary
because in particular the detection of unit literals is one of the main operations
of search-based SAT and QBF solvers as a part of Boolean constraint propagation
(BCP).

For DQBF preprocessing, it is possible to use more expensive checks to deter-
mine variables which may be replaced by constants. Therefore we give a more
general semantic definition:
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Definition 6 (Backbones and monotonic variables). A variable v ∈ V is
a positive (negative) backbone if ϕ[0/v] (ϕ[1/v], resp.) is unsatisfiable. A literal
� is a backbone, if � = v and v a positive backbone, or if � = ¬v and v a negative
backbone. A variable v ∈ V is positive (negative) monotonic if ϕ[0/v] ∧ ¬ϕ[1/v]
(ϕ[1/v] ∧ ¬ϕ[0/v], resp.) is unsatisfiable.

The following theorem states how we can exploit backbones and monotonic
variables to reduce the size of the formula:

Theorem 1. Let ψ = Q : ϕ be a DQBF and v ∈ V a backbone or a monotonic
variable. If v is a positive or negative backbone and universal, ψ is unsatisfiable.
Otherwise ψ is equivalent to ψ′ where

• ψ′ = Q \ {v} : ϕ[1/v] if v is existential and either a positive backbone or
positive monotonic, or v is universal and negative monotonic;

• ψ′ = Q \ {v} : ϕ[0/v] if v is existential and either a negative backbone or
negative monotonic, or v is universal and positive monotonic.

This theorem has been proven formally in [29]. Checks whether a variable is a
backbone or monotonic can be done using a SAT solver. As already mentioned, in
the SAT and QBF context typically efficient (sound but not complete) syntactic
criteria are applied to detect backbones and monotonic variables. It is easy to
show that unit literals are backbones and pure literals are monotonic.

Another cheap criterion to identify backbones uses the binary implication
graph of a formula (which later also used to identify equivalent literals):

Definition 7. Let ϕ2 =
{
C ∈ ϕ

∣
∣ |C| = 2

}
be the set of binary clauses.

The binary implication graph of ψ is the directed graph BIP(ψ) = (L,E)
with the set L = {v,¬v | v ∈ V } of literals as its set of nodes and E ={
(v,¬w), (¬v, w)

∣
∣ {v, w} ∈ ϕ2

}
the set of edges.

Then the following lemma holds:

Lemma 1. A literal � is a backbone if there is a path in BIP(ψ) from ¬� to �.

If there is a path from literal � to literal �′, we can derive the clause {¬�, �′}
by resolution. In case of the lemma, the path from ¬� to � implies that we can
derive the clause {¬¬�, �} = {�}. Since this is a resolvent of clauses in ϕ, it may
be added to ϕ. Then we can apply Definition 5 to obtain the result.

Unit and pure literals, according to Definition 5, and backbones according
to Lemma 1, can be determined efficiently by traversing the matrix or, respec-
tively, the binary implication graph. Since solving a DQBF is much harder than
solving a SAT (or even QBF) problem and the gain by eliminating one variable
is larger, it often pays off to additionally use semantic checks (cf. Definition 6)
for backbones and monotonic variables, which are based on solving a sequence
of SAT problems. For backbones in the QBF context this observation has been
made in [30].

Definition 8 (Equivalent literals). The literals � and μ are equivalent w. r. t.
a propositional formula ϕ iff ϕ is equivalent to ϕ ∧ (� ≡ μ).
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Theorem 2. Let � and μ be equivalent literals. We assume, w. l. o. g., that
sgn(�) = 1. If var(�), var(μ) ∈ V ψ

∀ , then ψ is unsatisfiable. Otherwise, we assume
w. l. o. g. that var(�) ∈ V ψ

∃ . If var(μ) ∈ V ψ
∀ and var(μ) �∈ Dψ

var(�), then ψ is

unsatisfiable. If var(μ) ∈ V ψ
∀ and var(μ) ∈ Dψ

var(�), then ψ is equivalent to

Q \ {
var(�)

}
: ϕ[μ/�]. If var(�), var(μ) ∈ V ψ

∃ , then ψ is equivalent to

ψ′ :=
(
Q \ {var(μ), var(�)}) ∪ {∃ var(μ)(Dψ

var(μ) ∩ Dψ
var(�))

}
: ϕ[μ/�] .

A proof can be found in the extended version [25] of this paper.
To detect equivalent literals, we exploit the following lemma:

Lemma 2. Two literals �, μ are equivalent if there is a path in BIP(ψ) from �
to μ and vice versa.

We decompose BIP(ψ) into strongly connected components (SCCs) using Tar-
jan’s SCC algorithm [31]. SCCs have the property that there is a path between
each pair of nodes in an SCC. Therefore literals within one SCC are equivalent.
They are replaced by one representative by applying Theorem 2. This procedure
was described e. g., in [16,32–35] for SAT preprocessing. Further equivalent lit-
erals can be found using structure extraction (see Section 4.5). Of course, even
SAT checks based on Definition 8 may be beneficial in the DQBF context.

4.2 Reduction of Dependency Sets

In a DQBF, a universal variable x ∈ V ψ
∀ may be contained in the dependency

set Dψ
y of an existential variable y ∈ V ψ

∃ , but actually, due to the structure of
the matrix, the Skolem function for y does not need to exploit the information
about x’s value to satisfy the formula. If such a situation is detected, x can be
removed from Dψ

y . This potentially reduces the number of copies of variables, if
universal expansion according to Theorem 5 is used for solving a DQBF.

An example for a situation when dependency sets may be reduced is when a
circuit is transformed into CNF by Tseitin transformation. The dependency set
Dψ

y of a Tseitin variable y can be an arbitrary superset of the universal variables
in its cone-of-influence. The variables in Dψ

y that are not in the cone-of-influence
of y can be removed from Dψ

y without affecting the truth value of the formula.

Definition 9. An existential variable y ∈ V ψ
∃ is independent of a universal

variable x ∈ V ψ
∀ if either x �∈ Dψ

y or replacing Dψ
y by Dψ

y \ {x} does not change
the truth value of ψ.

Deciding whether two variables are independent has the same complexity as
deciding the DQBF itself [36]. Therefore one resorts to sufficient criteria to show
independence. The most simple ones are based on the incidence graph of the
matrix:

The variable-clause incidence graph GV,ϕ = (V ∪ ϕ,E) of the formula is an
undirected graph with E =

{{v, C} ∈ V × ϕ
∣
∣ v ∈ C ∨ ¬v ∈ C

}
.
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Theorem 3 (Standard dependency scheme). An existential variable y ∈
V ψ

∃ is independent of a universal variable x ∈ V ψ
∀ if there is no path in GV,ϕ

from x to y, visiting only variables in {z ∈ V ψ
∃ |x ∈ Dψ

z } in between.

For a proof for this theorem, which generalizes a theorem from [36], see [25].
In the QBF context more powerful dependency schemes have been developed

which can possibly identify more variables as independent, see, e. g., [36–40]. A
generalization of these techniques will have an immediate benefit for DQBF solv-
ing by increasing the potential to save variable copies during universal expansion.

4.3 Universal Reduction, Resolution, and Universal Expansion

Universal reduction, resolution, and universal expansion are well-known tech-
niques used during the solution of QBFs. Universal reduction removes a univer-
sal variable from a clause if the clause does not contain any existential variable
which depends upon it. This technique has already been generalized to DQBF
in [11,41].

Lemma 3 (Universal reduction, [11,41]). Let Q : ϕ ∧ C be a DQBF and
� ∈ C a universal literal such that for all k ∈ C with k �= � we have var(�) �∈
depψ(k). Then Q : ϕ ∧ C and Q : ϕ ∧ (

C \ {�})
are equivalent.

For QBF resolution and universal reduction together are able to derive the
empty clause iff the formula is unsatisfiable. This does not hold for DQBF [41].
Resolution in QBF formulas allows to eliminate an existential variable by replac-
ing the clauses containing this variable with their resolvents. While adding resol-
vents is sound for DQBF as well, eliminating existential variables by resolu-
tion [15] only works under certain conditions. Here we give a set of sufficient
conditions which allow variable elimination by resolution for DQBF. In partic-
ular when the formula is created by Tseitin transformation [26], variable elimi-
nation by resolution is applicable to a large subset of the formula’s existential
variables.

Theorem 4 (Variable elimination by resolution). Let y ∈ V ψ
∃ be an exis-

tential variable of ψ. We partition ϕ into the sets ϕy = {C ∈ ϕ | y ∈ C},
ϕ¬y = {C ∈ ϕ | ¬y ∈ C}, and ϕ∅ = ϕ \ (Cy ∪ C¬y).
If one of the following conditions is satisfied:

• for all C ∈ ϕy and all k ∈ C we have depψ(k) ⊆ depψ(y),
• for all C ′ ∈ ϕ¬y and all k ∈ C ′ we have depψ(k) ⊆ depψ(y), or
• y is the defined variable of a functional definition, i. e., there are clauses

encoding the relationship y ≡ f(V ′) for some function f and arguments
V ′ ⊆ V \ {y}, depψ(v) ⊆ depψ(y) for all v ∈ V ′ (cf. Sec. 4.5),

then ψ is equivalent to ψ′ := Q \ {y} : ϕ∅ ∧ ∧

C∈ϕy

∧

C′∈ϕ¬y

C ⊗y C ′.

Proof sketch. Resolvents are implied by the matrix, i. e., adding resolvents to the
matrix yields an equivalent formula. If ψ is satisfied, then removing the clauses
in ϕy and ϕ¬y cannot make the formula unsatisfied, i. e., ψ′ is satisfied.
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Assume that ψ′ is satisfied by Skolem functions sz for z ∈ V ψ
∃ \{y}. We define

sy := ¬ϕy
[
0/y

][
sz/z for z ∈ V ψ

∃ \ {y}]
in the first case, sy := ¬ϕ¬y

[
1/y

][
sz/z

for z ∈ V ψ
∃ \ {y}]

in the second case, and sy := f(V ′)
[
sz/z for z ∈ V ψ

∃ \ {y}]
in

the third case. It is not hard to show that sy is an admissible Skolem function
for y and that ϕ[sv/v for v ∈ V ψ

∃ ] is indeed a tautology. Details can be found in
the extended version [25] of this paper. ��

Theorem 4 does not provide a decision algorithm for arbitrary DQBFs, since
it is possible that the conditions do not hold for any existential variable. More-
over, eliminating all existential variables fulfilling the conditions of Theorem 4 is
in general not feasible because the number of clauses can grow considerably dur-
ing elimination. We first create a list of variables that may be eliminated. For each
such variable y we estimate the cost cy of elimination, i. e., cy := |ϕ∅|+|ϕy|·|ϕ¬y|

|ϕ| .
We eliminate one variable y with minimum cost provided that cy is less than
a user-specified factor ε > 1. After resolving variables we check for subsumed
clauses, i. e., clauses C such that there is a clause C ′ with C ′ ⊆ C. Then C can
be deleted [27].

Universal expansion [9,41–43] is the corresponding method for eliminating
universal variables. It is the main operation which the solver HQS [12] uses to
transform the DQBF at hand into an equivalent QBF. This QBF can be solved
by an arbitrary QBF solver.

Theorem 5 (Universal expansion). Let xi ∈ V ψ
∀ , and Eψ

xi
=

{
yi ∈ V ψ

∃
∣
∣ xi ∈

depψ(yj)
}
. Then ψ is equivalent to

(
Q\{xi}

)∪{∃y′
j(D

ψ
yj

\{xi})
∣
∣ yj ∈ Eψ

xi

}
: ϕ[1/xi]∧ϕ[0/xi][y′

j/yj for all yj ∈Eψ
xi

] .

A formal proof of this theorem is given, e. g., in [9]. In order to avoid unnecessary
variable copies, we check using the standard dependency scheme (cf. Theorem 3)
which existential variables actually depend on the expanded universal variable.

4.4 Blocked Clause Elimination

The concept of blocked clauses was introduced by Järvisalo et al. for SAT in
[22] and later generalized to QBF by Biere et al. in [18]. Blocked clauses can
be removed from a formula without changing its truth value. Before checking
for blockedness, clauses can be extended by so-called hidden and covered literals
[18,44,45]. This does not change the truth value of the formula, but increases
the chance that a clause is blocked.

In this section, we first generalize the notion of blocked clauses to DQBF
such that blocked clauses satisfy the same properties as in SAT and QBF. Then
we investigate how to generalize hidden and covered literals to DQBF.

For a QBF Q : ϕ ∧ C, a clause C containing an existential literal � ∈ C can
be omitted (resulting in an equivalent formula), if ‘� is blocking for C’, which
means that for all C ′ ∈ ϕ with ¬� ∈ C ′ there is a variable k such that {k,¬k} ⊆
C ⊗� C ′ and k precedes � in the quantifier prefix (which means in DQBF notions:
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depψ(k) ⊆ depψ(�)). In the QBF context the intuitive background of blocked
clause elimination is simple: Consider a solving approach to QBF which always
removes the innermost existential quantifiers (which depend on all universal ones)
by resolution2 and the innermost universal quantifiers (upon which no existential
variable depends) by universal reduction until all quantifiers have been removed
[24]. If � is blocking for C, all resolvents resulting from C contain {k,¬k}, i. e.,
are tautological, and their addition makes no contribution. The condition ‘k
precedes � in the quantifier prefix’ ensures that var(k) has not been removed
before � in the process sketched above, i. e., the reason {k,¬k} for the resolvents
being tautological has not been removed. This implies that we can alternatively
remove C from ϕ ∧ C in the very beginning without changing the result of the
solving process.

Fortunately, we can show that the notion of blocked clauses has a natural
generalization to DQBF. However, the proof idea of blocked clause elimination
sketched above does not work anymore, since in DQBF there is no linear order
for the quantifiers such that ‘removing quantifiers starting with the innermost’
does not have a counterpart in DQBF; the correctness proof has to be re-done for
DQBF carefully taking into account that arbitrary dependencies may be defined
in a DQBF. We first give the generalized definition of blocked clauses:

Definition 10 (Blocked clauses). Let Q : ϕ ∧ C be a DQBF and C a clause
with � ∈ C. Literal � is a blocking literal for C if � is existential and for all
C ′ ∈ ϕ with ¬� ∈ C ′ there is a variable k such that {k,¬k} ⊆ C ⊗� C ′ and
depψ(k) ⊆ depψ(�). A clause is blocked if it contains a blocking literal.

Now we can prove results that are analogous to QBF and SAT.

Theorem 6 (Blocked clause elimination, BCE). Let Q : ϕ∧C be a DQBF
with a blocked clause C. Then Q : ϕ ∧ C and Q : ϕ are equivalent.

Proof sketch. The theorem can be shown by induction on the number |depψ(�)|
of �’s dependencies. The base case depψ(�) = ∅ works analogously to the QBF
case, see [18]. For the induction step, we choose an arbitrary universal variable
x ∈ depψ(�) and eliminate it by universal expansion (see Theorem 5). In the
resulting formula, � and its copy �′ depend on one variable less. One can show
that both copies of C in this formula are either blocked or tautological. Therefore
they can be removed by the induction assumption. Un-doing the expansion step
yields the result. A more detailed proof can be found in [25]. ��

The purpose of the following techniques is to extend clauses by redundant
literals. This increases the chance that the clause is blocked and can be deleted.
If the extended clause is not blocked, the additional literals are removed again.

Definition 11 (Hidden literals). Let Q : ϕ ∧ C be a DQBF. A literal � �∈
C is a hidden literal for C if there is a clause {�1, . . . , �n,¬�} ∈ ϕ such that
{�1, . . . , �n} ⊆ C.
2 Adding all possible resolvents with pivot variable v and then removing all clauses

containing v or ¬v corresponds to existential quantification of v.
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Theorem 7 (Hidden literal addition, HLA). Let Q : ϕ∧C be a DQBF and
� a hidden literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧ (

C ∪ {�})
are equivalent.

The idea of hidden literal addition is based on self-subsuming resolution [15].
The resolvent (C ∪ {�}) ⊗� {�1, . . . , �n,¬�} is equal to C and subsumes C ∪
{�}. Thus after adding the resolvent C, C ∪ {�} can be removed, leading to an
equivalent formula. Note that the argument for hidden literal addition is based
on a consideration of the matrix only, thus in this case the argumentation is
exactly the same as for SAT and QBF.

This is in contrast to the ‘covered literal addition’ described in the follow-
ing. For covered literals we need a careful generalization of the QBF definition
together with a non-trivial proof of the generalization to DQBF.

Definition 12 (Covered literals). Let ψ = Q : ϕ∧C be a DQBF and let � be
an existential literal with � ∈ C. The set of resolution candidates for C w. r. t.
� is the set Rψ(C, �) =

{
C ′ ∈ ϕ

∣
∣ ¬� ∈ C ′ ∧ ∀v ∈ V : ({v,¬v} ⊆ C ⊗� C ′ ⇒

depψ(v) �⊆ depψ(�))
}
.

A literal k is a covered literal for C w. r. t. � if depψ(k) ⊆ depψ(�) and
k ∈ ⋂

Rψ(C, �) \ {¬�}.
Theorem 8 (Covered literal addition, CLA). Let Q : ϕ ∧ C be DQBF and
k a covered literal for C. Then Q : ϕ ∧ C and Q : ϕ ∧ (

C ∪ {k})
are equivalent.

Proof sketch. Assume that k is a covered literal for C w. r. t. �. We show the the-
orem by induction on the number |depψ(�)| of dependencies of �. The induction
base where depψ(�) = ∅ is similar to the QBF case (cf. [18]). For the induction
step, we apply universal expansion of an arbitrary variable in depψ(�) (see Theo-
rem 5) to obtain a formula in which � and its copy �′ both depend on one variable
less. It is rather technical to show that adding k (k′) to the copies of C in this
formula leads to an equivalent formula, since these copies are either tautological
or k (k′) is a covered literal. By undoing the expansion step we obtain the desired
result. For a detailed proof we refer to [25]. ��

A rough basic intuition for covered literal addition is as follows: “If a literal
k is already contained in all non-tautological resolvents of a clause C with pivot
literal �, then k may be added to C resulting in an equivalent formula.” In
addition to this basic idea we need the condition depψ(k) ⊆ depψ(�) and a bigger
set of resolution candidates Rψ(C, �) =

{
C ′ ∈ ϕ

∣
∣ ¬� ∈ C ′ ∧ ∀v ∈ V : ({v,¬v} ⊆

C ⊗� C ′ ⇒ depψ(v) �⊆ depψ(�))
}

instead of Rψ(C, �) =
{
C ′ ∈ ϕ

∣
∣ ¬� ∈ C ′∧

�v ∈ V : {v,¬v} ⊆ C ⊗� C ′} in order to be able to lead the (rather involved)
proof of Theorem 8, see [25].

In order to reduce the size of the formula, we determine for each clause C the
set H of hidden and the set K of covered literals. Then we check if C ∪ H ∪ K
is blocked or tautological. If this is the case, C is removed; otherwise C remains
unchanged. This is iterated until we reach a fixed point.

Note that if a hidden or covered literal is universal, its addition can be helpful
not only because it can make a clause blocked. If a CNF-based solver core uses
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elimination of universal variables to decide the formula, all clauses which contain
an existential variable that depends on the eliminated universal variable have
to be doubled [9]. If the clause contains the universal variable to be eliminated,
one of these copies is satisfied and can therefore be omitted (cf. [46]).

4.5 Structure Extraction

The DQBF’s matrix in CNF is often created from a circuit or a Boolean expres-
sion by Tseitin transformation [26], where a new existential variable ve is created
for each sub-expression e (or gate output). Clauses encoding the relationship
ve ≡ e are added and the sub-expression e is replaced by the variable ve. If a
solver (like HQS) does not rely on a matrix in CNF, this transformation step can
be undone. This removes all artificially introduced variables. Structure extrac-
tion is used in the QBF solver AIGsolve [23].

For example, a k-input AND gate y ≡ AND(�1, . . . , �k) has a Tseitin encod-
ing consisting of (k + 1) clauses {¬y, �1}, . . . , {¬y, �k}, {y,¬�1, . . . ,¬�k}. In a
functional definition y ≡ f(�1, . . . , �k), y is called the defined variable, f is the
definition of y, and the clauses corresponding to the relationship y ≡ f(�1, . . . , �k)
are the defining clauses.

Theorem 9. Let ψ = Q : ϕ be a DQBF and ϕf ⊆ ϕ the defining clauses
for the relationship y ≡ f(�1, . . . , �k). Then ψ is equivalent to Q \ {y} : (ϕ \
ϕf )[f(�1, . . . , �k)/y] if y ∈ V ψ

∃ and for i = 1, . . . , k we have depψ(�i) ⊆ depψ(y).

Our implementation checks for defining clauses for (multi-input) (N)AND
gates and 2-input XOR gates, both with arbitrarily negated inputs. We do not
extract definitions that lead to cyclic dependencies.

Gate detection can be used as the last step of the preprocessing routine. If
a relationship y ≡ f(�1, . . . , �k) is detected which does not lead to cyclic depen-
dencies, we remove y from the prefix and the defining clauses from the matrix.
We additionally use a data structure which assigns to each defined variable its
definition. To create an AIG representation that can be passed to a non-CNF-
based solver core like HQS, we convert the remaining clause into an AIG and
then substitute the defined variables by their definitions.

The same structure extraction procedure can also be used to identify equiv-
alent variables and unnecessary variable dependencies. For both purposes, the
relationships are only detected, but neither are the defining clauses removed nor
is the data structure that stores the relationships updated. Therefore this can
also be used if the solver back-end requires a matrix in CNF: If there is the rela-
tionship y ≡ f(�1, . . . , �k) and

⋃k
i=1 depψ(�i) � Dψ

y , then Dψ
y can be replaced by

⋃k
i=1 depψ(�i). If two defined variables y, y′ with the same definition are detected,

i. e., y ≡ f(�1, . . . , �k) and y′ ≡ f(�1, . . . , �k), then y and y′ are equivalent and
Theorem 2 can be applied to remove one of them.
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5 Experimental Results

We have implemented the described techniques in C++ as a preprocessor for our
DQBF solver HQS. To support other back-end solvers, too, it is able to write
the resulting formula into a file in DQDIMACS format, which can be read by
the currently only competing solver iDQ [11].

As benchmark instances we use 4381 formulas, resulting from the verifica-
tion of incomplete circuits [9,11,21] and controller synthesis [10]. The synthesis
benchmarks are those shipped with the tool Demiurge 1.1.0 [10]. We used the
encoding described in [10] to create a DQBF formulation.

All experiments were run on one Intel Xeon E5-2650v2 core at 2.60 GHz
with 64 GB of main memory, running Ubuntu Linux 12.04 in 64-bit mode as
operating system. We aborted all experiments whose computation time exceeded
900 seconds or which required more than 8 GB of memory. For solving QBFs,
we use DepQBF 4.0 [47,48] with the QBF preprocessor bloqqer [18] (version 35)
if the matrix is in CNF, and AIGsolve [23] if the matrix is given as an AIG.

We used two parameter settings for preprocessing, in the following called V1

and V2. Both use the detection of backbones (by syntactic and semantic checks),
monotonic variables (by syntactic checks), and equivalent variables (both using
the binary implication graph and structure extraction). We reduce the depen-
dency sets of the existential variables using the standard dependency scheme
and structure extraction. For these operations, the functional definitions are
only detected, but neither are the defined variables replaced by their definition
nor are the defining clauses removed.

• V1 additionally enables structure extraction, which replaces the defined
variables by their definitions. V1 does not yield a CNF representation, but rather
an And-Inverter Graph (AIG) [49] for the formula. Since iDQ requires a CNF
representation of the matrix, V1 can only be combined with HQS.

Table 1. Effect of preprocessing

Solver Filter Preproc. Solved

none k = 1 none 935
none k = 1 V1 2459
none k = 2 V1 2733
none k = 1 V2 2240

HQS none none 1537
HQS none V1 3629
HQS k = 1 V1 3752
HQS k = 1 V1 + BCE 2174
HQS k = 2 V1 3737
HQS k = 1 V2 3542

iDQ none none 1073
iDQ none V2 1378
iDQ k = 1 none 1359
iDQ k = 1 V2 2714

• V2 applies BCE after adding hidden and
covered literals and variable elimination by
resolution (ε = 1.1), but disables structure
extraction. V2 yields a matrix in CNF; there-
fore it can be combined with both iDQ and
HQS.

Table 1 shows the number of solved instances
(out of 4381) for different combinations of pre-
processing, filtering (see Section 3), and the
HQS or iDQ solver cores. Preprocessing alone
can only solve a small fraction of all instances
(80 for V1 and 57 for V2). The filter solves
already 935 instances for k = 1 (slightly more
with higher values of k). The combination
of preprocessing V1 with the filter allows to
decide 2459 instances (2240 with V2). In spite
of using bloqqer as preprocessor for simplifying the QBF over-approximations
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for filtering, doing DQBF preprocessing before reduces the solving times for the
QBFs. Without DQBF preprocessing, solving the QBF approximation runs into
a timeout frequently.

For HQS as solver back-end, the trend is similar: without preprocessing and
filtering, HQS is able to solve 1537 instances, with V1 preprocessing this number
increases to 3629 instances, and if filtering is used thereafter, 3752 instances can
be solved. We can also see that BCE largely prevents structure extraction: if all
described techniques are enabled, only 2174 instances can be solved successfully.
Increasing the value of k to 2 does not seem beneficial at least if a time limit of
15 min is used. For larger time limit, k = 2 can slightly increase the number of
solved instances. Finally, if we combine V2 with filtering (k = 1) and HQS, we can
also observe a positive effect on the number of solved instances (3542); however,
it is not as strong as with V1, which includes structure extraction instead of
BCE.

iDQ without filtering and preprocessing solves 1073 instances. This number
is increased to 1378 by preprocessing (V2) and to 1359 instances by filtering
(k = 1). The combination with filtering and preprocessing yields 2714 solved
instances.

In summary, the combination of filtering and preprocessing significantly
increases the number of solved instances by a factor of up to 2.44 (for HQS) and
2.52 (for iDQ). The best results are obtained if the preprocessing techniques are
chosen according to the solver core.

Now we focus on the size of the instances before and after preprocessing.
Preprocessing variant V2 reduces the number of clauses by 64 % on average, the
number of existential variables by 76 % on average, but leaving the number of
universal variables essentially unchanged. As preprocessing variant V1 does not
yield a CNF representation, we cannot compare the number of clauses. Instead
we compare the size of the AIG representation of the matrix before and after
preprocessing. V1 reduces the number of existential variables by 97 % on average
(including all Tseitin variables), the number of AIG nodes by 84 %, leaving the
number of universal variables almost unchanged, too.

If the CNF structure of the matrix needs to be preserved (as in V2) not all
Tseitin variables can be removed by identifying functional definitions and by
elimination by resolution, since this leads to a significant increase in size of the
CNF. This effect is lessened by BCE, in particular if HLA and CLA are enabled.

Finally, we take a closer look at the solving times of the instances. For the
instances which were solved with or without preprocessing and filtering, Fig. 1
compares the computation times when using only the solver core and when using
the solver core after preprocessing and filtering. The times include everything
from reading the input files to termination. The upper two pictures show HQS
with V1 (Fig. 1(a)) and V2 (Fig. 1(b)) and filtering using k = 1, compared to HQS
without preprocessing and filtering. Fig. 1(c) shows iDQ with V2, compared to
iDQ without preprocessing. In Fig. 1(d) we present the accumulated running
times over all instances (unsolved instances contributing the time limit of 900
seconds) and the average running time of the solved instances.
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(a) HQS with filtering and V1 (b) HQS with filtering and V2
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(c) iDQ with filtering and V2 (d) Solution times (in seconds)
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UNSAT Solver Filter Preproc. Suma Avg.b

HQS none none 2 668 335 70.75
HQS yes V1 583 097 4.53
HQS yes V2 797 037 11.84
iDQ none none 3 006 803 35.65
iDQ yes V2 2 028 601 6.02

a over all instances
b over the solved instances

Fig. 1. Running times (in seconds) for HQS and iDQ with and without preprocessing.

In all three cases, preprocessing and filtering reduce the computation times for
the vast majority of instances significantly, often by orders of magnitude. The
very few exceptions in case of iDQ are instances that are very easy to solve
such that the overhead for preprocessing exceeds the solving time. We can also
observe that many instances, for which the solver core alone ran into a time out
or memory out, can be solved successfully after preprocessing and filtering.

6 Conclusion

We have shown how preprocessing techniques for SAT and QBF can be general-
ized to DQBF. Experiments have demonstrated that they can reduce the running
time of the actual solving process by orders of magnitude, both for CNF-based
and non-CNF-based solver cores.
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In future we want to investigate more powerful dependency schemes and how
the flexibility in the dependency sets can be exploited when choosing sets of
universal variables to eliminate in order to obtain a QBF.
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Abstract. We consider the incremental computation of minimal unsat-
isfiable cores (MUCs) of QBFs. To this end, we equipped our incremental
QBF solver DepQBF with a novel API to allow for incremental solving
based on clause groups. A clause group is a set of clauses which is incre-
mentally added to or removed from a previously solved QBF. Our imple-
mentation of the novel API is related to incremental SAT solving based
on selector variables and assumptions. However, the API entirely hides
selector variables and assumptions from the user, which facilitates the
integration of DepQBF in other tools. We present implementation details
and, for the first time, report on experiments related to the computation
of MUCs of QBFs using DepQBF’s novel clause group API.

1 Introduction

Let ψ = Q̂. φ be a QBF in prenex CNF (PCNF) where Q̂ = Q1x1 . . . Qnxn with
Qi ∈ {∀,∃} is the prefix containing quantified propositional variables xi and φ
is a quantifier-free CNF. Given a PCNF ψ = Q̂. φ, an unsatisfiable core (UC)
of ψ is an unsatisfiable PCNF ψ′ = Q̂′. φ′ such that Q̂′ ⊆ Q̂ and φ′ ⊆ φ. The
prefix Q̂′ is obtained from Q̂ by deleting the quantified variables which do not
occur in φ′. A minimal unsatisfiable core (MUC)1 of ψ is an unsatisfiable core
ψ′ = Q̂′. φ′ of ψ where, for every C ∈ φ′, the PCNF Q̂′. (φ′ \ {C}) is satisfiable.

Incremental solving is crucial for the computation of MUCs in the context of
propositional logic (SAT), e.g. [1,3,8,13,24,25,29]. Modifications of a CNF by
adding and deleting clauses in incremental solving are typically implemented by
selector variables and assumptions [2,9,10,17,20,21,23,26,30]. An added clause
C is augmented by a fresh selector variable s so that actually C ∪ {s} is added.
Via the solver API, the user assigns these variables as assumptions under which
the CNF is solved to control whether a clause is effectively present in the CNF.

Different from the assumption-based approach, the SAT solver zChaff2 [27]
provides an API to modify the CNF by adding and removing groups (sets) of
clauses. Clauses are associated with an integer ID of the group they belong to.
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2 zChaff website (July 2015): https://www.princeton.edu/∼chaff/zchaff.html
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In assumption-based incremental solving, clause groups may be emulated by
augmenting all clauses in a group by the same selector variable. The user must
specify the necessary assumptions via the API in all forthcoming solver invoca-
tions to enable and disable the right groups. In contrast to that, zChaff allows to
delete groups by a single API function call. In terms of usability, we argue that
incremental solving by a clause group API is less error-prone, more accessible to
inexperienced users, and facilitates the integration of the solver in other tools.

We present a novel clause group API of our QBF solver DepQBF (version 4.0
or later)3 in the style of zChaff. Different from zChaff, we implemented clause
groups based on selector variables and assumptions to combine the conceptual
simplicity of zChaff’s API with state of the art assumption-based incremental
solving. As a novel feature of our API, the handling of selector variables and
assumptions is entirely carried out by the solver and is hidden from the user.
Our approach is applicable to any SAT or QBF solver supporting assumptions.
Based on the novel clause group API of DepQBF, we implemented a tool to
compute MUCs of PCNFs, a problem which has not been considered so far.
Results on benchmarks used in the QBF Gallery 2014 illustrate the applicability
of the clause group API for MUC computation of PCNFs.

2 Implementing a Clause Group API

DepQBF is a solver for PCNFs based on the QBF-specific variant of the DPLL
algorithm [6] with learning [12,18,32]. Since version 3.0 [20,21], DepQBF sup-
ports incremental QBF solving via an API to add and remove clauses in a
stack-based way (cf. Fig. 3 in [21]). This API is suitable for solving incremental
encodings where clauses added most recently tend to be removed again in subse-
quent solver calls, like reachability problems such as conformant planning [11] or
bounded model checking [4,15]. The new clause group API of DepQBF, however,
allows to add and delete clauses arbitrarily, which is necessary for the incremental
computation of MUCs of PCNFs. We first present our novel approach to keeping
selector variables invisible to the user, which is a unique feature of DepQBF. To
this end, we distinguish between selector variables and variables in the encoding.

Let S = 〈ψ1, . . . , ψn〉 be a sequence of PCNFs. We consider variables over
which the PCNFs ψi are defined as user variables because they are part of
the problem encoding represented by S. When solving S incrementally, selector
variables used to augment clauses in ψi are not part of the original encoding.
Variables v are stored in an array VA indexed by an integer ID id(v) of v such
that VA[id(v)] = v. User and selector variables reside in separate sections of VA:

VA: 0 1 . . . . . . us − 1 us us + 1 . . . . . . vs − 1
︸ ︷︷ ︸ ︸ ︷︷ ︸

user variables selector variables

The total size of VA is vs. The user variable section has size us. The following
invariants are maintained: VA[id(v)] = v where id(v) < us if v is a user variable
3 DepQBF is free software: http://lonsing.github.io/depqbf/

http://lonsing.github.io/depqbf/


Incrementally Computing Minimal Unsatisfiable Cores 193

int main (int argc, char ** argv) {

Solver *s = create();

new_scope_at_nesting

(s,QTYPE_FORALL,1);

add(s,1);add(s,2);add(s,0);

new_scope_at_nesting

(s,QTYPE_EXISTS,2);

add(s,3);add(s,4);add(s,0);

ClauseGroupID id1 = new_cls_grp(s);

open_cls_grp(s,id1);

add(s,-1);add(s,-3);add(s,0);

close_cls_grp(s,id1);

ClauseGroupID id2 = new_cls_grp(s);

open_cls_grp(s,id2);

add(s,1);add(s,2);add(s,4);add(s,0);

add(s,1);add(s,-4);add(s,0);

close_cls_grp(s,id2);

...//continues on right column.

...//continued from left column.

Result res = sat(s);

assert(res == RESULT_UNSAT);

ClauseGroupID *rgrps =

get_relevant_cls_grps(s);

assert(rgrps[0] == id2);

reset(s);

deactivate_cls_grp(s,rgrps[0]);

res = sat(s);

assert(res == RESULT_SAT);

reset(s);

activate_cls_grp(s,rgrps[0]);

free(rgrps);

delete_cls_grp(s,id1);

res = sat(s);

assert(res == RESULT_UNSAT);

delete(s); }

Fig. 1. Clause group code example. Variables xi are encoded as integers i. Given the
PCNF ψ := ∀x1, x2∃x3, x4. C1∧C2∧C3 with C1 = (¬x1∨¬x3), C2 = (x1∨x2∨x4), C3 =
(x1 ∨ ¬x4), C1 is put in group id1 and C2, C3 in group id2. An unsatisfiable core
consisting only of group id2 is extracted from ψ. Deactivating group id2 results in the
PCNF ∀x1∃x3. C1. Activating id2 again and deleting id1 yields ∀x1, x2∃x4. C2 ∧ C3.

and us ≤ id(v) < vs if v is a selector variable. If a new user variable v with
id(v) ≥ us is added via the solver API, then VA is resized together with the user
variable section. In this case the selector variables are assigned new, larger IDs
and copied to a new position in VA. Then the literals of selector variables are
renamed according to the newly assigned IDs in all (learned) clauses and cubes
present in the current PCNF in a single pass. Resizing only the selector variable
section of VA does not require assigning new IDs to selector variables. Similar to
implementations of other SAT or QBF solvers, the user is responsible to avoid
unnecessarily large user variable indices and thus avoid resizing VA.

The API of DepQBF prevents accessing selector variables in VA, which are
hence invisible to the user. In contrast to traditional solver implementations,
e.g. [10], where the user is responsible to maintain selector variables manually,
the internal separation between user and selector variables allows to conveniently
allocate and rename selector variables on the fly inside the solver and without
any user interaction. This feature is particularly useful for solving dynamically
generated sequences S = 〈ψ1, . . . , ψn〉 of PCNFs where the exact user variable
IDs in each ψi are unknown at the beginning.

In the following, we present the novel clause group API of DepQBF along
with the example shown in Fig. 1. A new clause group is created by calling
new cls grp(), which returns a unique unsigned integer cgid as the ID of the
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group. Each time a new group cgid is created, internally a fresh selector variable
s is allocated in the array VA and associated with the group cgid .

A group cgid must be opened by open cls grp(cgid) before clauses can be
added to it. All clauses added via the API are associated with the currently
opened group cgid by internally augmenting them with the selector variable s of
group cgid . Groups must be closed by close cls grp(cgid). When solving the
current PCNF by sat(), internally the selector variables of all created groups are
assigned false as assumptions to effectively activate the clauses in these groups.

Deleting a group by delete cls grp(cgid) invalidates its ID. When solving
the current PCNF by sat(), internally the selector variables of all deleted groups
are assigned true as assumptions to deactivate the clauses in all deleted groups
and all learned clauses derived therefrom. Deleted clauses are physically removed
from the data structures in a garbage collection phase if their number exceeds
a certain threshold. Clauses which are added to the PCNF without opening a
group by open cls grp(cgid) before are permanent and cannot be deleted.

In contrast to deletion, clause groups can also be deactivated by call-
ing deactivate cls grp(cgid). When solving the current PCNF by sat(),
internally the selector variables of deactivated groups are assigned true sim-
ilarly to deleted groups. However, clauses in deactivated groups are never
removed from the data structures. Deactivated groups are activated again by
activate cls grp(cgid). Selector variables of activated groups are assigned
false when solving the current PCNF.

DepQBF also allows for traditional incremental solving where the user han-
dles selector variables manually [10]. Implementations of this approach like Min-
iSAT, for example, allow to physically delete clauses by first adding a unit clause
containing a selector variable and then simplifying the formula based on unit
clauses. This is in contrast to DepQBF where the formula is not simplified based
on unit clauses to avoid the internal elimination of variables, which may be
unexpected by the user.

If the current PCNF has been found unsatisfiable by sat(), then calling
get relevant cls grps() returns an array of the IDs of those groups which
contain clauses used by the solver to determine unsatisfiability. The clauses in
these groups amount to an unsatisfiable core of the PCNF. That core is obtained
by internally collecting all selector variables relevant for unsatisfiability4 and
mapping them to the respective clause group IDs.

3 Computing Minimal Unsatisfiable Cores of QBFs

In contrast to theory [16], the computation of MUCs of PCNFs in practice has
not been considered so far. Approaches to nonminimal UCs of PCNFs were
presented in the context of checking Q-resolution refutations of PCNFs [31] and
QMaxSAT [14]. For the first time we report on experiments related to the compu-
tation of MUCs of PCNFs. To this end, we implemented a tool to incrementally
compute MUCs of PCNFs using the clause group API of DepQBF as follows.
4 Similar to the function analyzeFinal in Minisat, for example.
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Table 1. Statistics for unsatisfiable instances from the QBF Gallery 2014 where MUCs
were successfully computed. Numbers of solved instances out of total ones are shown
in parentheses. MUCs computed (#m), total time to solve the initial unsatisfiable
instances (ut) and to compute the MUCs (mt), total number of clauses in initial for-
mulas (|CNF |) and in MUCs (|MUC |), total number of QBF solver calls (#c), and the
average (r) and median (r̃) sizes of MUCs relative to the respective CNF sizes.

QBF Gallery Track #m ut mt |CNF | |MUC | #c r r̃

applications (190 of 735): 182 6,304 7,941 4,744,494 73,206 81,631 6.1% 2.9%
QBFLIB (58 of 276): 46 1,009 2,264 323,497 34,777 36,888 14.1% 5.1%
preprocessing (38 of 243): 34 1,623 1,080 451,197 23,220 24,572 4.0% 2.2%

Given an unsatisfiable PCNF ψ0 = Q̂. φ, first every single clause of ψ0 is
put in an individual clause group. Let ψ := ψ0. The PCNF ψ is solved and a
UC ψ′ = Q̂′. φ′ is extracted by get relevant cls grps. Then ψ is replaced by
ψ′ by deleting the clause groups which do not belong to ψ′ from ψ. Given the
updated ψ = Q̂. φ, every clause C ∈ φ is checked by solving the PCNF ψ′′ =
Q̂. (φ\{C}). To this end, the group containing C is deactivated. If ψ′′ is satisfiable
then C is part of an MUC and hence C is activated again (C is a transition
clause [25]). Otherwise, a UC ψ′ of ψ′′ is extracted, ψ is replaced by the UC ψ′

like above, and again every clause in the updated ψ is checked. After every clause
in the current ψ has been checked, the final ψ is an MUC of ψ0. The number
of solver calls in this well-known elimination-based algorithm is linear in the
size of ψ0 [13,24,25]. It applies iterative clause set refinement [3,8,28] by UCs.
UCs are extracted by selector variables [1] in get relevant cls grps, which is
in contrast to extraction based on resolution proofs [28,29]. The algorithm is
common to compute MUCs of CNFs but has not been applied to PCNFs so far.

Using our tool, we computed MUCs of instances from the applications (AT),
QBFLIB (QT), and preprocessing (PT) tracks of the QBF Gallery 2014.5 We
preprocessed the instances from AT and QT using Bloqqer [5]. In total, we
allowed 900s of wall clock time and seven GB of memory to solve an instance
by DepQBF and to compute an MUC. Table 1 summarizes the results of our
experiments6 run on an AMD Opteron 6238 at 2.6 GHz under 64-bit Linux.
MUCs were successfully computed for 95% of the solved unsatisfiable instances
in AT (79% of QT and 89% of PT ). On average, MUC computation took 43s
in AT (49s in QT and 31s in PT ). When increasing the total timeout to 3600s,
then 186 MUCs were computed in AT (48 in QT and 36 in PT ).

Iterative clause set refinement by UCs potentially reduces the number of
solver calls. In the worst case, there is one solver call per each single clause in
the initial PCNF ψ0. However, on average there was one solver call per 58, 8,
and 18 clauses in AT, QT, and PT, respectively.

The physical deletion of clauses not belonging to a MUC reduces the mem-
ory footprint and the run time. The plot below shows the sorted total run

5 http://qbf.satisfiability.org/gallery/
6 We refer to an appendix of this paper with additional experimental data [22].

http://qbf.satisfiability.org/gallery/
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times (y-axis) of the MUC workflow on instances in AT where MUCs were suc-
cessfully computed (x-axis). If clauses are deleted by delete cls grp (UC-d)
then 182 MUCs are computed but only 169 if clauses are permanently deac-
tivated by deactivate cls grp instead (UC-nd). We attribute this effect to
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overhead caused by deactivated clauses
still present in the data structures.
Only 79 MUCs are computed with-
out iterative clause set refinement by
UCs using get relevant cls grps and
instead checking every clause in ψ0 one by
one (OBO). We made similar observations
for QT and PT. On instances where an
MUC was computed by both UC-d and
UC-nd, in general UC-nd is slower (up to
+316% on PT ) and has a larger memory
footprint (up to +70% on AT ). The difference between UC-d and OBO is more
pronounced, where in general OBO is slower (up to +4126% on PT ) and has a
larger memory footprint (up to +243% on AT ).

Our experiments show that physical deletion of clauses by delete cls grp
(UC-d) and the extraction of UCs by get relevant cls grps based on selector
variables are crucial for the computation of MUCs of PCNFs. These features are
provided directly by the novel clause group API of DepQBF.

4 Conclusion

We presented a novel API of our solver DepQBF for incremental QBF solving
based on clause groups and its application to MUC computation. The clause
group API is conceptually simple yet employs state of the art approaches to
assumption-based incremental SAT solving. Improvements of assumption-based
incremental solving [2,17,30] are also applicable to our implementation.

The API encapsulates the handling of selector variables and assumptions
entirely inside the solver. This is a unique feature of DepQBF, which facilitates
its integration in other tools. It is particularly useful for solving dynamically
generated sequences of PCNFs where the exact variable IDs are unknown at the
beginning. The clause group API is general and fits any search-based SAT and
QBF solver capable of solving under assumptions.

A potential application of the clause group API is (M)UC extraction of
PCNFs in core-guided QMaxSAT [14] and SMT, similar to SAT-based UC
extraction in SMT [7]. Further, our API readily supports the extraction of high-
level UCs [19,28,29] where, different from our experiments with MUC compu-
tation, multiple clauses are put in a clause group. We applied the novel clause
group API of DepQBF to compute MUCs of PCNFs for the first time. Our
results indicate the efficiency and applicability of our implementation. As future
work, we want to integrate incremental preprocessing in DepQBF in a way where
the implementation details are hidden by the API [30].
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Abstract. We show that the traces of recently introduced dynamic pro-
gramming algorithms for #SAT can be used to construct structured
deterministic DNNF (decomposable negation normal form) representa-
tions of propositional formulas in CNF (conjunctive normal form). This
allows us prove new upper bounds on the complexity of compiling CNF
formulas into structured deterministic DNNFs in terms of parameters
such as the treewidth and the clique-width of the incidence graph.

1 Introduction

The aim of knowledge compilation is to succinctly represent propositional knowl-
edge bases in a format that allows for answering a number of queries in polyno-
mial time [6]. Choosing a representation language generally involves a trade-off
between succinctness and the range of queries that can be efficiently answered.
Constraints arising in various domains can often be conveniently modeled by
propositional formulas in conjunctive normal form (CNFs), but most queries of
interest, such as model counting, are intractable for CNF formulas.

Decomposable Negation Normal Forms (DNNFs) are a restricted form of
Boolean circuits in negation normal form (NNF) such that the subcircuits lead-
ing into an AND gate are defined on disjoint sets of variables [4]. DNNFs—which
generalize variants of binary decision diagrams such as ordered binary decision
diagrams (OBDDs)—are among the most succinct representation languages con-
sidered in knowledge compilation. Although CNFs do not have DNNF represen-
tations of polynomial size in general [1,6] they can be efficiently compiled into
DNNFs when certain structural parameters are small, see [4,5,11,13–15].

Among the key properties of DNNFs is that they allow for clause entailment
queries in polynomial time. By imposing further restrictions, one obtains lan-
guages that efficiently support a wider range of queries and operations. A DNNF
is deterministic (a d-DNNF, for short) if the subcircuits leading into an OR gate
do not have satisfying assignments in common, and structured if its variables
can be associated with the leaves of a binary tree so that, for each AND gate,
one can find a tree node whose principal subtrees contain the variables occurring
in the subcircuits leading into that gate. Deterministic DNNFs support model
counting in linear time [5], and structured DNNFs allow for an efficient conjoin
operation [13].
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24318-4 15
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In this paper, we prove the following result (Theorem 1):

Theorem. A CNF formula with n variables, m clauses, and PS-width k can be
compiled into a structured d-DNNF of size O(k3(n + m)).

PS-width is a parameter that was introduced to characterize CNF formulas
for which the model counting problem (#SAT) can be solved efficiently by means
of recently developed dynamic programming algorithms [16,17]. We prove The-
orem 1 by showing that the traces of these algorithms can be used to construct
structured d-DNNF representations of CNF formulas.

Our rationale for stating and proving the above theorem in terms of PS-width
is that this parameter generalizes most width measures of formulas commonly
considered in the literature [16]. Accordingly, we are able to immediately derive
a number of corollaries. For instance, a CNF formula with m clauses and an inci-
dence graph1 of clique-width k has PS-width at most mk [16]. This allows us to
state an upper bound in terms of incidence clique-width as follows (Corollary 2):

Corollary. A CNF formula with n variables, m clauses, and incidence clique-
width k can be compiled into a structured d-DNNF of size O(m3k(n + m)).

In particular, any class of formulas of bounded incidence clique-width admits
compilation into structured d-DNNFs of polynomial size. Such classes can have
unbounded incidence treewidth, effectively putting them out of reach of known
compilation algorithms generating DNNFs of size exponential in the incidence
treewidth [15].

One can further show that a formula with incidence treewidth k has PS-width
at most 2k+1 (see Proposition 1). Accordingly, the upper bound of Theorem 1
translates into the following bound in terms of incidence treewidth (Corollary 1):

Corollary. A CNF formula with n variables, m clauses, and incidence treewidth
k can be compiled into a structured d-DNNF of size O(8k(n + m)).

This comes close to the best known upper bound of O(3kn) on the complex-
ity of compiling CNFs with incidence treewidth k into structured DNNFs [11],
while allowing us to compile into the more restrictive language of structured
deterministic DNNFs.

As far as compilation of CNFs into d-DNNFs is concerned, the best known
result using a structural parameter is an upper bound of O(2kn) for CNF formu-
las with n variables and decision-width k [12]. As the decision-width of a formula
is no greater than the treewidth of its primal graph, this bound translates into
an upper bound of O(2kn) for formulas with n variables and primal treewidth k.
The incidence treewidth of a formula is at most its primal treewidth plus one, but
there are classes of formulas with bounded incidence treewidth and unbounded
primal treewidth, so Corollary 1 yields an improvement whenever the difference
between primal treewidth and incidence treewidth is sufficiently large.

1 The incidence graph of a formula is the bipartite graph whose vertex classes consist
of variables and clauses, and a variable is adjacent to the clauses it occurs in.
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The degree of the polynomial in the upper bound of Corollary 2 depends on
the incidence clique-width k, and one may wonder whether this can be improved
to a bound of the form, say, 2O(k)(n + m)c for some constant c. We show that
such an improvement is impossible, subject to a complexity-theoretic assumption
(Theorem 2).

The remainder of the paper is structured as follows. In Section 2 we intro-
duce basic notation and terminology. Section 3 proves Theorem 1 by showing how
ideas implemented in recently introduced dynamic programming algorithms for
#SAT can be used for compilation into structured d-DNNFs. We present corol-
laries of this result in Section 4. Section 5 provides evidence that our upper bound
on the DNNF size of formulas in terms of incidence clique-width (Corollary 2)
cannot be substantially improved. We conclude in Section 6.

2 Preliminaries

Formulas. A literal is a variable x or a negated variable ¬x. A clause is a finite
set of literals. A clause is tautological if it contains the same variable negated
as well as unnegated. A (CNF) formula (or CNF, for short) is a finite set of
non-tautological clauses. If x is a variable, we let var(x) = var(¬x) = x. The
set of variables occurring in a clause C is var(C) = { var(�) | � ∈ C }, and
the set of variables occurring in a formula F is var(F ) =

⋃
C∈F var(C). The

length of a formula F is
∑

C∈F |C|. The incidence graph of a formula F is the
bipartite graph I(F ) = (F, var(F ), E) such that there is an edge xC ∈ E joining
a variable x ∈ var(F ) and a clause C ∈ F if and only if x ∈ var(C).

A truth assignment (assignment, for short) is a mapping τ : X → {0, 1},
where X is a set of variables. Extending assignments to literals in the usual way,
we say that an assignment τ satisfies a clause C if there is a literal � ∈ C such
that τ(�) = 1. An assignment satisfies a formula F if it satisfies every clause
C ∈ F .

DNNFs. A (Boolean) circuit in negation normal form (or NNF ) is a directed
acyclic graph (DAG) with a single sink node (outdegree 0) where each source
node (indegree 0) is labelled by a constant (0 or 1) or by a literal, and each other
node is labelled by ∧ (AND) or ∨ (OR). If ϕ is an NNF and v is a vertex of
ϕ, the sub-NNF of ϕ rooted at v is the NNF obtained from ϕ by deleting every
vertex from which v cannot be reached along a directed path. We write var(ϕ)
for the set of variables occurring in an NNF ϕ. Let ϕ be an NNF and let τ be an
assignment to X ⊇ var(ϕ). Relative to τ , we associate each vertex v of ϕ with
a value valϕ(v, τ) ∈ {0, 1} as follows. If v is labelled with a constant c ∈ {0, 1}
then valϕ(v, τ) = c, and if v is labelled with a literal � then valϕ(v, τ) = τ(�).
If v is an AND node then we let valϕ(v, τ) = min{ valϕ(w, τ) | w is a child
of v }, and if v is an OR node we define valϕ(v, τ) = max{ valϕ(w, τ) | w is
a child of v }. We say that τ satisfies ϕ if valϕ(s, τ) = 1, where s denotes the
(unique) sink of ϕ. An NNF ϕ is said to compute a CNF formula F if the
satisfying assignments of ϕ and F coincide. Similarly, we say that two NNFs ϕ
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and ψ are equivalent, in symbols ϕ ≡ ψ, if they have the same set of satisfying
assignments. For convenience, we interpret propositional expressions over literals
and {0, 1,∧,∨} as NNFs. We also use the names of NNFs in expressions involving
logical connectives, writing, for instance, ϕ ∧ ψ to denote the NNF constructed
from ϕ and ψ by adding a new AND node as a sink that has incoming edges
from the sinks of ϕ and ψ.

An NNF ϕ is decomposable (in short, a DNNF ) if every AND node v of ϕ
satisfies the following property: if v has incoming edges from v1 and v2, and ϕ1

and ϕ2 denote the sub-NNFs of ϕ rooted at v1 and v2, respectively, then var(ϕ1)
and var(ϕ2) are disjoint. A DNNF ϕ is deterministic (a d-DNNF ) if, for every
pair of distinct children v1 and v2 of an OR node, the sub-NNFs rooted at v1
and v2 do not have satisfying assignments in common.

3 From Dynamic Programming to Structured d-DNNFs

In this section, we show how ideas implemented in #SAT algorithms by Slivovsky
and Szeider [17] and Saether et. al. [16] can be used for compiling CNF formulas
into structured d-DNNFs.

3.1 Branch Decompositions, Projections, and PS-width

Given a formula F , the algorithms of [16,17] perform dynamic programming on
a branch decomposition of F ∪ var(F ). Here, a branch decomposition of a finite
set S is a binary tree whose leaves are in one-to-one correspondence with S
(see the left-hand side of Figure 1 for an illustration). Formally, we will think
of a branch decomposition as a pair (T, δ) consisting of a rooted binary tree T
and a bijection δ from the set of leaves of T to the set S. Accordingly, if (T, δ)
is a branch decomposition of the set F ∪ var(F ) for some formula F , then δ
bijectively maps each leaf of T to a variable or a clause of F .2

Partial solution counts computed by dynamic programming in [16,17] are
stored in tables indexed by pairs of projections. Here, the projection of a truth
assignment τ : X → {0, 1} onto a formula F is the set F (τ) of clauses of F
satisfied by τ . Observe that the projection of the union of two assignments σ
and τ (that agree on the intersection of their domains) onto F satisfies F (σ∪τ) =
F (σ)∪F (τ), and that τ is a satisfying assignment of F if, and only if, F (τ) = F .
For a formula F and a set X of variables we write proj (F,X) for the set of
projections of truth assignments τ : X → {0, 1} onto F , formally

proj (F,X) = {F (τ) | τ : X → {0, 1} }.

Let F be a CNF formula and let T = (T, δ) be a branch decomposition of
F ∪ var(F ). For a node v of T , let Tv denote the subtree of T rooted at v, and

2 Such decompositions can be thought of as generalizations of vtrees, which are binary
trees whose leaves are in one-to-one correspondence with a set of variables and that
have been studied before in knowledge compilation [13].
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let L(Tv) denote the set of leaves of Tv. We write XT
v for the set of variables in

the image of L(Tv) under δ, and FT
v for the set of clauses in the image of L(Tv)

under δ. We write XT
v = var(F ) \ XT

v for the set of variables and FT
v = F \ FT

v

for the set of clauses outside the subtree rooted at v. When T is clear from the
context (as will be the case) we will omit T from the superscript.

Our main result states that a CNF formula can be represented by a structured
d-DNNF of size polynomial in the number of clauses and a parameter called PS-
width, which is defined as follows [16]: let F be a formula and let T = (T, δ) be
a branch decomposition of F ∪ var(F ). The PS-width of T is defined

psw(T ) = max
v∈V (T )

max(|proj (Fv,Xv)|, |proj (Fv,Xv)|).

That is, the PS-width of T is the maximum number of projections “across” one
of the bipartitions of F and var(F ) induced by a node of T . The PS-width of a
formula F is the minimum PS-width of a branch decomposition of F ∪ var(F ).

3.2 Records and Dynamic Programming

We now describe the “records” used by the dynamic programming algorithms
for #SAT [16,17].

Let F be a formula, let T = (T, δ) be a branch decomposition of F ∪ var(F ),
and let v be a node of T . A shape (for v, with respect to T ) is a pair S = (S, S′)
of subsets of F such that S ∈ proj (Fv,Xv) and S′ ∈ proj (Fv,Xv). We say that
an assignment τ : Xv → {0, 1} has shape S if

(A) Fv(τ) = S, and
(B) Fv(τ) ∪ S′ = Fv.

We write NT
v (S) for the set of assignments of shape S (again, we drop T from the

superscript if it is clear which branch decomposition we are using). The interme-
diate values for dynamic programming computed at node v are the cardinalities
|Nv(S)| for each shape S for v.

The reason for using shapes rather than just computing the number of assign-
ments τ : Xv → {0, 1} with projection F (τ) = S for each S ∈ proj (F,Xv) is
that, in some cases of interest (such as formulas of bounded clique-width [17]),
the cardinality |proj (F,Xv)| can be exponential in the number m of clauses
while the number of shapes is bounded by a polynomial in m. This reduction
in the amount of information required to represent partial solution counts is
achieved by the use of an “expectation from the outside”: by Condition (B), an
assignment τ of shape (S, S′) satisfies Fv when combined with an assignment
σ : Xv → {0, 1} such that Fv(σ) = S′. Since we are interested in satisfying
assignments of F we expect τ to be paired with such an assignment σ and do
not have to keep track of the projection Fv(τ).

We now explain how shapes for an inner node can be related to shapes for
its child nodes in order to perform dynamic programming. Let F be a formula
and let (T, δ) be a branch decomposition of F ∪ var(F ). Let S = (S, S′) be a
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shape for an inner node v of T , and let S1 = (S1, S
′
1), S2 = (S2, S

′
2) be shapes

for its children v1 and v2, respectively. We say that S1 and S2 generate S if

(a) S = (S1 ∪ S2) ∩ Fv,
(b) S′

1 = (S′ ∪ S2) ∩ Fv1 , and
(c) S′

2 = (S′ ∪ S1) ∩ Fv2 .

The following result relates the shapes for an inner node to the generating shapes
for its children (here, 
 denotes the disjoint union).

Lemma 1. Let F be a formula, let T = (T, δ) be a branch decomposition of
F ∪ var(F ), and let v be an inner node of T with children v1 and v2. Let S be a
shape for v, and let G denote the set of pairs of shapes S1 for v1 and S2 for v2
such that S1 and S2 generate S. Then

Nv(S) =
⊔

(S1,S2)∈G

{ τ1 ∪ τ2 | τ1 ∈ Nv1(S1), τ2 ∈ Nv2(S2) }.

Lemma 1 is an easy consequence of the following two lemmas (cf. [17]).

Lemma 2. Let v be a node of T with children v1 and v2. Let S1 = (S1, S
′
1) be

a shape for v1, let S2 = (S2, S
′
2) be a shape for v2, and let S = (S, S′) be a

shape for v generated by S1 and S2. If τ1 ∈ Nv1(S1) and τ2 ∈ Nv2(S2) then
τ1 ∪ τ2 ∈ Nv(S).

Proof. Let τ1 ∈ Nv1(S1) and τ2 ∈ Nv2(S2). As Fv1(τ1) = S1 and Fv2(τ2) = S2,
we get Fv(τ1 ∪ τ2) = (S1 ∪ S2) ∩ Fv. This shows that Condition (A) is satisfied.
Consider a clause C ∈ Fv and assume without loss of generality that C ∈ Fv1 .
Suppose C /∈ Fv(τ1 ∪ τ2). Then τ1 does not satisfy C and thus C ∈ S′

1 by
Condition (B). But τ2 does not satisfy C either, so C /∈ S2. The shapes S1

and S2 generate S, so S′
1 ⊆ S′ ∪ S2 and thus C ∈ S′ by Condition (b). This

proves that Condition (B) is satisfied. We conclude that τ1 ∪ τ2 has shape S as
claimed. �

Lemma 3. Let v be a node of T with children v1 and v2, let S = (S, S′) be a
shape for v, and let τ ∈ Nv(S). Let τ1 and τ2 denote the restrictions of τ to Xv1

and Xv2 , respectively. There is a unique pair of shapes S1 for v1 and S2 for v2
generating S such that τ1 ∈ Nv1(S1) and τ2 ∈ Nv2(S2).

Proof. Let S1 = Fv1(τ1) and S2 = Fv2(τ2). Let τ ′ : Xt → {0, 1} be the
assignment such that S′ = Fv(τ). Then the sets S′

1 = (S′ ∪ S2) ∩ Fv1 and
S′
2 = (S′ ∪ S1) ∩ Fv2 are the projections of the assignments τ ′ ∪ τ2 and τ ′ ∪ τ1

onto Fv1 and Fv2 , respectively. It follows that S1 = (S1, S
′
1) is a shape for v1

and that S2 = (S2, S
′
2) is a shape for v2. We verify that τ1 has shape S1. Con-

dition (A) is satisfied by construction. To see that Condition (B) is satisfied as
well, let C ∈ Fv1 and suppose C is not satisfied by τ1. There are two cases. If τ2
does not satisfy C either then τ = τ1 ∪ τ2 does not satisfy C and C ∈ S′ since τ
has shape S. Otherwise we have C ∈ Fv2(τ2), that is, C ∈ S2. In either case
we have C ∈ S′

1 by choice of S′
1. The proof that τ2 has shape S2 is symmetric.
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Let R1 = (R1, R
′
1) and R2 = (R2, R

′
2) be shapes for v1 and v2 such that R1

and R2 generate S and such that τ1 ∈ Nv1(R1) and τ2 ∈ Nv2(R2). We have
R1 = Fv1(τ1) = S1 and R2 = Fv2(τ2) = S2 by Condition (A). As R1 and R2

generate S, we further have R′
1 = (S′ ∪ R2) ∩ Fv1 and R′

2 = (S′ ∪ R1) ∩ Fv2 .
That is, R′

1 = S′
1 and R′

2 = S′
2, so R1 = S1 and R2 = S2. �


3.3 Constructing a Structured d-DNNF

Lemma 1 can be turned into a recurrence for determining the model count of F
by dynamic programming [16,17]. It can also be used to construct a structured
d-DNNF for F .

To simplify matters, for the remainder of this subsection let F be an arbi-
trary, but fixed, formula, and let T = (T, δ) be an arbitrary, but fixed, branch
decomposition of F ∪ var(F ). Starting at the leaves of T , we are going to con-
struct a DNNF ϕv(S) for each node v and each shape S for v. For a leaf node
v of T , we have to consider two cases:

1. Suppose δ(v) = x for a variable x of F . For � ∈ {x,¬x}, let τ� denote the
assignment τ� : {x} → {0, 1} such that τ(�) = 1. The pairs Sx = (F (τx), ∅)
and S¬x = (F (τ¬x), ∅) are the only shapes for v, and Nv(Sx) = {τx} as well
as Nv(S¬x) = {τ¬x}. Accordingly, we let ϕv(Sx) ≡ x and ϕv(S¬x) ≡ ¬x.

2. Let δ(v) = C for a clause C ∈ F . The pairs S⊥ = (∅, ∅) and S� = (∅, {C})
are the only shapes for v. Since Xv = ∅ it suffices to determine whether
the empty assignment ε : ∅ → {0, 1} has one of these shapes. Because the
empty assignment does not satisfy any clause we get Nv(S�) = {ε} and
Nv(S⊥) = ∅, so we define ϕv(S⊥) ≡ 0 and ϕv(S�) ≡ 1.

Let v be an inner node of T with children v1 and v2, and assume we have
constructed ϕv1(S1) for each shape S1 for v1 and ϕv2(S2) for each shape S2

for v2. Let S be a shape for v and let G denote the set of pairs of shapes S1

for v1 and S2 for v2 that generate S. We construct ϕv(S) as

ϕv(S) ≡
∨

(S1,S2)∈G

ϕv1(S1) ∧ ϕv2(S2). (1)

That is, we create an AND node conjoining every pair ϕv1(S1) and ϕv2(S2) such
that S1 and S2 generate S, and then add an OR node that has an incoming
edge from each AND node thus created. We assume that the resulting DNNF
has been simplified by propagating constants.

Lemma 4. For each node v of T and shape S for v, ϕv(S) is a d-DNNF such
that var(ϕv(S)) ⊆ Xv and such that an assignment τ : Xv → {0, 1} satisfies
ϕv(S) if, and only if, τ ∈ Nv(S).

Proof. It is easy to check that the statement holds for each leaf node v of T . Let v
be an inner node and suppose the statement holds for its children v1 and v2. Let S
be a shape for v. By assumption, var(ϕv1(S1)) ⊆ Xv1 and var(ϕv2(S2)) ⊆ Xv2
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x1 x2 x3C1 C2 C3 C4 x1 x2 x3

Fig. 1. The tree on the left is a branch decomposition of a formula F = {C1, C2, C3, C4}
with var(F ) = {x1, x2, x3}. To obtain the vtree on the right, we first delete each leaf
node associated with a clause, as well inner nodes turned into leaf nodes by these
deletions (the corresponding vertices are shown in grey). The resulting tree is turned
into a binary tree by contracting edges incident to nodes of degree two (these edges
are represented by dashed lines).

for every shape S1 for v1 and every shape S2 for v2. We have Xv = Xv1 ∪ Xv2

and since Xv1 and Xv2 are disjoint it follows that ϕv(S) is a DNNF satisfying
var(ϕv(S)) ⊆ Xv. Let τ : Xv → {0, 1} be a satisfying assignment of ϕv(S), and
let τ1 and τ2 denote the restrictions of τ to Xv1 and Xv2 , respectively. There
is a pair of shapes S1 and S2 generating S such that τ satisfies the disjunct
ϕv1(S1)∧ϕv2(S2). By assumption, the lemma holds for v1 and v2. In particular,
var(ϕv1(S1)) ⊆ Xv1 and var(ϕv2(S2)) ⊆ Xv2 , so τ1 satisfies ϕv1(S1) and τ2
satisfies ϕv2(S2), which in turn implies that τ1 ∈ Nv1(S1) and τ2 ∈ Nv2(S2). It
now follows from Lemma 1 that τ has shape S. In addition to that, Lemma 1
tells us that (S1,S2) is the unique pair of shapes generating S such that τ1 has
shape S1 and τ2 has shape S2. Thus ϕv1(S1) ∧ ϕv2(S2) is the unique disjunct
satisfied by τ . By assumption, ϕv1(S

′
1) and ϕv2(S

′
2) are deterministic DNNFs

for each shape S′
1 for v1 and S′

2 for v2, so ϕv(S) is deterministic as well. Now
let τ : Xv → {0, 1} be an assignment of shape S, and let τ1 and τ2 denote its
restrictions to Xv1 and Xv2 , respectively. By Lemma 1, there has to be a pair
(S1,S2) of shapes S1 for v1 and S2 for v2 generating S such that τ1 ∈ Nv1(S1)
and τ2 ∈ Nv2(S2). It follows from our assumption that the lemma holds for v1
and v2 that τ1 satisfies ϕv1(S1) and that τ2 satisfies ϕv2(S2). Thus τ satisfies
ϕv1(S1) ∧ ϕv2(S2) and ϕv(S). �

To show that ϕv(S) is a structured DNNF, we have to provide a vtree respected
by ϕv(S) [13]. A vtree is a binary tree whose leaves are in one-to-one corre-
spondence with a set of variables. We will think of a vtree simply as a branch
decomposition of a set X of variables. A DNNF ϕ respects a vtree (T, δ) if each
AND node v of ϕ has exactly two children and furthermore satisfies the following
property: let v1 and v2 be the children of v in T , and let ϕ1 and ϕ2 denote the
sub-DNNFs of ϕ rooted at v1 and v2, respectively; then there is a node t of T
with children t1 and t2 such that the sub-DNNFs satisfy var(ϕ1) ⊆ δ(L(Tt1))
and var(ϕ2) ⊆ δ(L(Tt2)). Here, L(Tti) denotes the set of leaves in the subtree Tti ,
for i ∈ {1, 2}.



On Compiling CNFs into Structured Deterministic DNNFs 207

For a node v of T , let vtree(T , v) = (T ′, δ′), where T ′ is the tree obtained
from the subtree Tv by deleting all leaves w such that δ(w) ∈ F , followed—if
necessary—by a sequence of operations to make the resulting tree binary, and δ′

is the restriction of δ to leaves of T ′. Verify that vtree(T , v) is a branch decom-
position of Xv and hence a vtree. We illustrate this construction in Figure 1.

Lemma 5. For each node v of T and shape S for v, the DNNF ϕv(S) respects
vtree(T , v).

Proof. The lemma trivially holds for each leaf node v of T and shape S for v, as
ϕv(S) does not contain any AND nodes. Let v be an inner node of T with chil-
dren v1 and v2, and assume the lemma holds for v1 and v2 and their respective
shapes. Let S be a shape for v. By construction, each AND node introduced in
ϕv(S) computes a conjunction ϕv1(S1) ∧ ϕv2(S2), where S1 and S2 are shapes
for v1 and v2, respectively, that generate S. Since we assume ϕv(S) to be sim-
plified, both Xv1 and Xv2 have to be nonempty: otherwise, one of the conjuncts
ϕvi

(Si) for i ∈ {1, 2} would satisfy var(ϕvi
(Si)) = ∅ by Lemma 4 and would

have been simplified to a constant, which in turn would have been propagated
through the AND node. Let vtree(T , v) = (T ′, δ′), let vtree(T , v1) = (T1, δ1),
and let vtree(T , v2) = (T2, δ2). As both Xv1 and Xv2 are nonempty, T ′ is a
binary tree whose principal subtrees are T1 and T2. By Lemma 4, the conjuncts
satisfy var(ϕv1(S1)) ⊆ Xv1 and var(ϕv2(S2)) ⊆ Xv2 . In combination with the
assumption that the DNNF ϕvi

(S′
i) respects vtree(T , vi) for each i ∈ {1, 2} and

shape S′
i for vi, this implies that ϕv(S) respects vtree(T , v). �


Let r denote the root of T and let ∅ = (∅, ∅). We now prove that our construction
yields a structured d-DNNF representation of F .

Lemma 6. The pair ∅ is the only shape for r and ϕr(∅) is a structured d-DNNF
computing F .

Proof. The first part follows from the fact that Xr = var(F ) and Fr = F , so
that Xr = ∅ and Fr = ∅. By Lemma 4 and Lemma 5, ϕr(∅) is a structured
d-DNNF such that an assignment τ : var(F ) → {0, 1} satisfies ϕr(∅) if, and
only if, τ ∈ Nr(∅). By Condition (B), an assignment τ : var(F ) → {0, 1} has
shape ∅ if, and only if, F (τ) ∪ ∅ = F . That is, Nr(∅) is the set of satisfying
assignments of F . �

Let n be the number of variables of F , let m be the number of clauses in F , and
let k denote the PS-width of T . The size of the structured d-DNNF constructed
for F can be bounded as follows.

Lemma 7. The DNNF ϕr(∅) has size at most 7k3(n + m).

Proof. We can assume without loss of generality that T contains at least one
inner node. Let v be an inner node of T with children v1 and v2. Consider the
DNNFs ϕv1(S1) for shapes S1 for v1 and ϕv2(S2) for shapes S2 for v2. We claim
that all DNNFs ϕv(S) for shapes S of v can be constructed from these DNNFs
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by introducing at most 5k3 new nodes and edges. If S is a shape for v and S1

and S2 are shapes for v1 and v2 that generate S, we have to introduce an AND
node and two edges to construct the DNNF computing ϕv1(S1) ∧ ϕv2(S2), as
well an edge from this AND node to the OR node that will eventually compute
ϕv(S). In the worst case, we have to create this OR node first. In total, we have
to introduce at most 5 nodes and edges for each triple (S,S1,S2) of shapes such
that S1 and S2 generate S. How many such triples are there? For any three
projections S1 ∈ proj (Fv1 ,Xv1), S2 ∈ proj (Fv2 ,Xv2), and S′ ∈ proj (Fv,Xv),
the projections S′

1 ∈ proj(Fv1 ,Xv1), S′
2 ∈ proj(Fv2 ,Xv2), and S ∈ proj (Fv,Xv)

such that S1 = (S1, S
′
1) and S2 = (S2, S

′
2) generate S = (S, S′) is uniquely

determined. As there are at most k3 such projections, we have to introduce at
most 5k3 nodes and edges. The tree T has exactly n + m − 1 inner nodes, so we
need at most 5k3(n + m) nodes and edges to construct the DNNF ϕr(∅) from
the DNNFs constructed for leaves of T . For each leaf node there at most two
DNNFs consisting of a single node and there are n + m leaves, so we require at
most 7k3(n + m) nodes and edges in total. �


Since we did not make any assumptions about the formula F and the branch
decomposition T , Lemma 6 and Lemma 7 yield the following result.

Theorem 1. A CNF formula with n variables, m clauses, and PS-width k can
be compiled into a structured d-DNNF of size O(k3(n + m)).

The above construction leads to an algorithm which, given a formula F and a
branch decomposition T of F ∪ var(F ), computes a structured d-DNNF repre-
sentation of F . The pseudocode listed as Algorithm 1 provides the outlines of
this procedure.3 Using an efficient method for computing the set of shapes for
each node during the initialization phase (for details, see Saether et. al. [16]), this
algorithm can be made to run in time O(k3m(n + m)), where n is the number
of variables of F , m is the number of clauses of F , and k is the PS-width of T .

4 Corollaries

Theorem 1 allows us to derive compilation results for CNF formulas based on
structural properties of their incidence graphs, namely treewidth, directed clique-
width, and clique-width [8].

We first consider treewidth. A tree decomposition of a graph G = (V,E) is a
pair (T, (Bt)t∈V (T )) where T is a tree and (Bt)t∈V (T ) is a family of subsets of V
(called “bags”) such that:

1. For every vertex v ∈ V , the set {t ∈ V (T ) | v ∈ Bt} is non-empty and
connected in T .

2. For every edge uv ∈ E, there is a t ∈ V (T ) such that u, v ∈ Bt.

3 To enhance readability, we suppress double brackets around shapes, writing, for
instance, ϕv(S, S′) instead of ϕv((S, S′)).
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Algorithm 1. Compiling CNFs into structured d-DNNFs.
Input: a CNF F and a branch decomposition (T, δ) of F ∪ var(F )
Output: a structured d-DNNF computing F
// initialization, precomputing shapes

1 for v in T

2 compute proj (Fv, Xv) and proj (Fv, Xv)
// compilation, leaf nodes

3 for v in L(T )
4 if δ(v) in var(F )
5 x = δ(v)
6 Sx = { C ∈ F | x ∈ C }
7 S¬x = { C ∈ F | ¬x ∈ C }
8 ϕv(Sx, ∅) = x
9 ϕv(S¬x, ∅) = ¬x

10 else
11 C = δ(v)
12 ϕv(∅, {C}) = 1
13 ϕv(∅, ∅) = 0

14 mark v as processed

// compilation, inner nodes
15 while T contains an unprocessed node
16 let v be an unprocessed node whose children v1 and v2 have been processed

17 for (S1, S2, S
′) in proj (Fv1 , Xv1) × proj (Fv2 , Xv2) × proj (Fv, Xv)

18 S = S1 ∪ S2

19 S′
1 = S′ ∪ S2

20 S′
2 = S′ ∪ S1

21 if ϕv(S, S′) has not been created
// initialize ϕv(S, S′)

22 ϕv(S, S′) = 0

23 ϕv(S, S′) = ϕv(S, S′) ∨ (ϕv1(S1, S
′
1) ∧ ϕv2(S2, S

′
2))

24 propagate constants in ϕv(S, S′)
25 mark v as processed

26 return ϕr(∅, ∅)

The width of a tree decomposition (T, (Bt)t∈V (T )) is the maximum size of a bag
minus one, and the treewidth of G is the minimum of width attained over all
tree decompositions of G. The incidence treewidth of a formula F defined as the
treewidth of its incidence graph I(F ).

Proposition 1. A formula of incidence treewidth k has PS-width at most 2k+1.

Proof (Sketch). Let F be a formula and let T = (T, (Bt)t∈V (T )) be a tree decom-
position of its incidence graph such that T has width k. We can assume without
loss of generality that T is binary (this can be achieved by copying nodes and
bags of T ). We construct a branch decomposition T ′ = (T ′, δ) of F ∪ var(F ) as
follows: for every variable x ∈ var(F ) we introduce a vertex vx and connect it
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to the node t of T such that t is closest to the root among nodes whose asso-
ciated bags contain the variable x. For each clause C ∈ F we add a vertex vC

in an analogous way. The result is a tree where every vertex has at most three
neighbors. We obtain the desired branch decomposition T ′ by iteratively delet-
ing all leaves not among the nodes vx and vC introduced in the first step and
contracting paths to edges. We now claim the following.

– For every v ∈ T ′, there are at most k+1 clauses in Fv that contain a variable
from Xv. Each projection Fv(τ) of an assignment τ : Xv → {0, 1} onto Fv

is a subset of these clauses, so |proj (Fv,Xv)| ≤ 2k+1.
– Symmetrically, for every v ∈ T ′, there are at most k +1 variables in Xv that

occur in a clause C ∈ Fv. It follows that |proj (Fv,Xv)| ≤ 2k+1 because there
are at most 2k+1 assignments τ : Xv → {0, 1}.

That is, T ′ has PS-width at most 2k+1. �

Combining Proposition 1 and Theorem 1, we obtain the following result.

Corollary 1. A formula with n variables, m clauses, and incidence treewidth k
can be compiled into a structured deterministic DNNF of size O(8k(n + m)).

Clique-width is a generalization of treewidth defined as follows. A k-graph is
a pair (G,λ) consisting of a graph G = (V (G), E(G)) and a mapping λ : V (G) →
{1, . . . , k}. We call λ(v) the label of vertex v. We define the following operations
for constructing k-graphs:

(i) For i ∈ {1, . . . , k}, we write •i for the k-graph (G,λ) where G contains a
single isolated vertex v and λ(v) = i.

(ii) Let i, j ∈ {1, . . . , k} such that i �= j, and let G = (G,λ) be a k-graph.
Then ρi→j(G) = (G,λ′), where λ′(v) = λ(v) if λ(v) �= i, and λ′(v) = j if
λ(v) = i, for each vertex v ∈ V (G).

(iii) Let i, j ∈ {1, . . . , k} such that i �= j, and let G = (G,λ) be a k-graph. Then
ηi,j(G) = (G′, λ), where G′ is the graph such that V (G′) = V (G), and such
that E(G′) = E(G) ∪ { vw | λ(v) = i, λ(w) = j }. That is, G′ is obtained
from G by adding an edge between any two vertices v and w such that v is
labelled i and w is labelled j.

(iv) We write G 
 G′ to denote the disjoint union of two k-graphs G = (G,λ)
and G′ = (G′, λ′), that is, G 
 G′ = (G 
 G′, λ ∪ λ′).

A k-expression is a well-formed expression using the symbols •i (constant), ρi→j ,
ηi,j (both unary), and 
 (binary). The k-graph associated with a k-expression t
(and any k-graph isomorphic to it) is called the value of t. If a k-expression t
has the value (G,λ) we say that t is a k-expression of G. The clique-width of a
graph G is the minimum k such that there is a k-expression of G.

A formula with m clauses and incidence clique-width k has PS-width at most
mk [16]. In combination with Theorem 1, this gives the following result.4

4 By the same token, the statement could also be proved for other structural param-
eters, like Boolean width, rank-width, or MIM-width [16,18].
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Corollary 2. A formula with n variables, m clauses, and incidence clique-
width k can be compiled into a structured d-DNNF of size O(m3k(n + m)).

The directed clique-width of a directed graph is defined analogously to clique-
width. If F is a CNF formula with a directed incidence graph5 of directed
clique-width k, then F has PS-width at most 4k [2]. By combining this fact
and Theorem 1, we obtain the following.

Corollary 3. A formula with n variables, m clauses, and directed incidence
clique-width k can be compiled into a structured d-DNNF of size O(64k(n+m)).

5 A Lower Bound for Clique-Width

Note that there is a qualitative difference in the size bounds of Corollary 1 and
Corollary 3 on the one hand, and Corollary 2 on the other hand. If k is the value
of a structural parameter of a formula with n variables and m clauses, then the
former bound has the shape 2O(k)(n + m), whereas the latter bound has the
shape mO(k)(n + m). For small values of k and large values of n and m, bounds
of the form 2O(k)(n + m) are preferable to bounds of the form mO(k)(n + m).

In this section we will give evidence that the size bound of Corollary 2
is optimal qualitatively, so that the qualitative difference discussed above is
unavoidable. To this end, we introduce the following notions from parameterized
complexity.

A parameterized problem is a pair (P, κ) where P is a decision problem and
κ : {0, 1} → N is a computable function associating every instance of P with a
parameter. A parameterized problem (P, κ) is in the complexity class FPT, or
fixed-parameter tractable, if there is an algorithm solving P in time f(κ(x))|x|c
for every instance x, where f : N → N is a computable function and c is a
constant. A parameterized problem (P, κ) is in the complexity class FPT/ppoly
if there is an algorithm that, given an instance x of P and f ′(κ(x))|x|c′

advice
bits, correctly solves x in time f(κ(x))|x|c where f : N → N and f ′ : N → N are
computable functions and c, c′ are constants [3].6 Clearly, FPT is contained in
FPT/ppoly.

Theorem 2. Assume that W[1] � FPT/ppoly. Then there is no computable
function f : N → N and constant c such that for every CNF-formula F with n
variables, m clauses and clique-width k there is a DNNF D such that F and D
compute the same function and the size of D is at most f(k)(n + m)c.

The assumption W[1] �⊆ FPT/ppoly is a parameterized analogue of the
assumption NP �⊆ P/poly in classical complexity; the latter is known to hold

5 The directed incidence graph is an orientation of the incidence graph encoding pos-
itive and negative occurrences of variables.

6 Note that the advice given to the algorithm may only depend on κ(x) and |x| but
not directly on x. Thus for two instances x and x′ with κ(x) = κ(x′) and |x| = |x′|
the algorithm is given the same advice string.
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unless the Polynomial Hierarchy collapses to the second level [9]. Although
W[1] �⊆ FPT/ppoly is a stronger assumption than W[1] �⊆ FPT, which is stan-
dard in parameterized complexity, we still consider it plausible, since it is not
clear how nonuniformity should help in solving W[1]-hard problems.

Proof (of Theorem 2). We use a reduction from partitioned clique to the satis-
fiability problem presented in [10]. The partitioned clique problem is to decide,
given a k-partite graph G whose color classes all have the same size, whether
G has a clique of size k, i.e. containing a vertex from every color class. Here,
k is the parameter of the problem instance. The partitioned clique problem is
W[1]-complete under fixed-parameter tractable many-one reductions; see [7] for
more details.

In [10], it is shown (Theorem 4 and Corollary 1) that, given a k-partite graph
G = (V1, . . . , Vk, E) with the same number of vertices in each color class, one
can construct a CNF formula FG such that the incidence graph of FG has clique-
width at most k+4 and the size of FG is polynomial in the size of G, and such that
the formula FG has a satisfying assignment if and only if G has a clique of size k.
If Vi = {vi

1, . . . , v
i
n}, the formula contains the variables Vi for each 1 ≤ i ≤ k.

For each pair (u, v) such that v ∈ Vi, u ∈ Vj (i �= j), and such that uv /∈ E, the
formula FG contains the clause Cu,v = {¬u,¬v} ∪ {w | w ∈ (Vi ∪ Vj) \ {u, v} }.
The idea is that the variables vi

j mapped to 1 by a satisfying assignment of FG

correspond to a partitioned clique of G. The clauses Cu,v are padded with the
remaining variables in order to keep the clique-width of FG’s incidence graph
small; to make sure that a clause Cu,v cannot be satisfied by these extra variables
when u and v are both assigned to 1, a “selection gadget” is attached to each
color class Vi. This gadget (which we will not describe here) guarantees that
each satisfying assignment of FG maps exactly one of the variables in each color
class Vi to 1.

We modify this construction in the following way. Let Gk
n = (V1, . . . , Vk, ∅)

denote the empty k-partite graph with n vertices in each color class. The for-
mula FGk

n
contains a clause Cu,v for each pair of variables u ∈ Vi, v ∈ Vj (i �= j),

as Gk
n does not contain any edges. Starting from FGk

n
, we construct a new for-

mula Fk,n by adding a distinct relaxation variable xu,v to each clause Cu,v.
These variables allow us to “switch clauses on and off” as needed. Adding the
variable xu,v to the clause Cu,v corresponds to adding a vertex xu,v and a “dan-
gling edge” {xu,v, Cu,v} to the incidence graph of FGk

n
. This can be done for

each clause Cu,v while increasing the clique-width of the incidence graph by
at most 3, as can be seen from the following argument. Consider a (k + 4)-
expression t of the incidence graph I(FGk

n
) of FGk

n
. For each clause Cu,v, the

expression t contains a subexpression •j that introduces the vertex Cu,v with
some label j ∈ {1, . . . , k + 4}. Using fresh labels, we replace each such subex-
pression with the expression ρk+6→k+7(ρk+5→j(ηk+5,k+6(•k+5
•k+6))). That is,
instead of introducing Cu,v with label j, we first introduce it with label k + 5,
along with the vertex xu,v, which we label with k + 6. We then create the edge
{Cu,v, xu,v} and before relabelling both vertices: the vertex Cu,v gets its original
label j, while vertex xu,v is assigned an auxiliary label k + 7 to make sure it
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does not become the endpoint of further edges. The resulting expression is a
(k + 7)-expression of I(Fk,n).

Given a k-partite graph G with n vertices in each color class, the formula FG

can be obtained from Fk,n by assigning the relaxation variables: simply set xu,v

to 1 if uv is an edge of G, and to 0 if uv is not an edge of G.
Now assume, by way of contradiction, that there is a function f : N → N

and a constant c such that for every CNF formula F with n variables, m clauses
and clique-width k, there is a DNNF D such that F and D compute the same
function and the size of D is at most f(k)(n + m)c. Then in particular, there is
a constant c′ such that for every n and k, there is a DNNF Dk,n of size f(k)nc′

that computes Fk,n.
We now describe a non-uniform algorithm for the partitioned clique problem:

Given a k-partite graph G with n vertices in each color class, the advice string is
a desciption of Dk,n. The algorithm first sets the relaxation variables so as to get
a DNNF DG computing FG. This can be done in linear time [4]. The graph G has
a k-clique if and only if DG is satisfiable. Since checking satisfiability of DNNF
can be done in linear time [4], this gives the desired algorithm. It follows that the
partitioned clique problem, and hence every problem in W[1], is in FPT/ppoly,
which is a contradiction to the assumption of the lemma. We conclude that
DNNFs of the desired size cannot exist if W[1] �⊆ FPT/ppoly. �


6 Conclusion

We demonstrated how dynamic programming algorithms for #SAT [16,17] can
be modified to construct structured d-DNNF representations of CNF formulas.
This observation allowed us to prove an upper bound on the size of structured d-
DNNF representations of CNFs in terms of a parameter called PS-width [16]. We
showed that this bound translates into new upper bounds in terms of parameters
such as the treewidth and the clique-width of the incidence graph. We also pro-
vided evidence that the upper bound in terms of incidence clique-width cannot
be substantially improved, even for general DNNFs.

The d-DNNFs generated by our compilation algorithm do not necessarily fall
into the more restricted subclass of decision DNNFs. We do not know whether
this is an artifact of our methods or due to an inherent limitation of decision
DNNFs. In particular, we would like to know if CNF formulas can be com-
piled into decision DNNFs of size exponential only in their incidence treewidth.
Finally, it would be interesting to compare PS-width to other recently proposed
width measures of CNF-formulas, such as CV-width [11] and decision-width [12].
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Abstract. Most modern SAT solvers expose a range of parameters to
allow some customization for improving performance on specific types
of instances. Performing this customization manually can be challenging
and time-consuming, and as a consequence several automated algorithm
configuration methods have been developed for this purpose. Although
automatic algorithm configuration has already been applied successfully
to many different SAT solvers, a comprehensive analysis of the configu-
ration process is usually not readily available to users. Here, we present
SpySMAC to address this gap by providing a lightweight and easy-to-use
toolbox for (i) automatic configuration of SAT solvers in different set-
tings, (ii) a thorough performance analysis comparing the best found
configuration to the default one, and (iii) an assessment of each param-
eter’s importance using the fANOVA framework. To showcase our tool,
we apply it to Lingeling and probSAT, two state-of-the-art solvers with
very different characteristics.

1 Introduction

Over the last decade, modern SAT solvers have become more and more sophis-
ticated. With this sophistication, usually the number of parameters inside the
algorithm increases, and the performance may crucially depend on the setting of
these parameters. For example, in the case of the prominent competition-winning
solver Lingeling [3], there are 323 parameters which give rise to approximately
101341 possible settings. Exploring these parameter spaces manually is tedious
and time-consuming at best. Consequently, automated methods for solving this
so-called algorithm configuration problem have been developed to find parameter
settings with good performance on a given class of instances [1,11,14,17].

Despite several success stories of automated configuration of SAT solvers [10,
16,19], the reasons why a configuration system chose a certain parameter set-
ting often remain unclear to SAT solver developers. Especially, information
about the importance of specific parameter settings is usually not provided.
To give more insights into the configuration process of SAT solvers, we present
SpySMAC, a lightweight toolbox that combines: (i) the state-of-the-art algorithm
configuration system SMAC [11], (ii) automatic evaluation comparing the perfor-
mance of the default and the optimized configuration across training and test

c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 215–222, 2015.
DOI: 10.1007/978-3-319-24318-4 16



216 S. Falkner et al.

instances, and (iii) an automatic method to quantify the importance of param-
eters, fANOVA [13]. In the end, SpySMAC generates a report with relevant tables
and figures that summarize the results and reveal details about the configuration
process. The standardized input and output of SAT solvers allowed us to design
SpySMAC to be very easy to use for both developers and users of SAT solvers.

2 Algorithm Configuration and Analysis

The general task of algorithm configuration consists of determining a well-
performing parameter configuration for a given instance set and a performance
metric (e.g., runtime). To this end, an algorithm configuration system, or config-
urator for short, iteratively evaluates different configurations trying to improve
the overall performance. After a given time budget is exhausted, the configu-
ration process ends, and the configurator returns the best parameter setting
found. The configurator can typically only explore a small fraction of the space
of all possible configurations since that space is exponential in the number of
parameters and evaluating a single configuration requires running it on multiple
instances.

Several different approaches have been taken towards efficiently searching
through the configuration space, among others: iterated local search (ParamILS
[14]), genetic algorithms (GGA [1]), iterated racing procedures (irace [17]), and
model-based Bayesian optimization (SMAC [11]). The Configurable SAT Solver
Challenge (CSSC) [15] recently evaluated these configurators (except irace) and
achieved significant speed-ups for various solvers and benchmarks. For example,
in the CSSC 2014, the PAR10 score1 of Lingeling [3], clasp [9], and probSAT [2]
improved by up to a factor of 5, 108 and 1500, respectively. Across a wide range
of solvers on a broad collection of benchmarks, SMAC consistently achieved the
largest speedups in the challenge; therefore, we decided to use it in our tool.

SMAC is a sequential model-based algorithm configuration system: it models
the performance metric based on finished runs (as a function of the parameter
configuration used in each run and characteristics of the instance used), and
uses this model to determine the next promising configuration to evaluate. It
uses random forests as the underlying model [4], methods from Bayesian opti-
mization [5], and applies mechanisms to evaluate poor configurations only on
few instances terminating long runs early [11,14].

To give some insights into the configuration process, different complemen-
tary techniques have been developed towards identifying parameter importance.
These include forward selection of parameters based on an empirical performance
model [12], ablation paths between the default and optimized configuration to
identify the important parameter value flips [8], and functional ANOVA (fANOVA)
to quantify the importance of parameters in the entire configuration space based
on random forests as empirical performance models [13].

1 PAR10 is the penalized average runtime where timeouts are accounted for 10 time
the runtime cutoff.



SpySMAC: Automated Configuration and Performance Analysis 217

User input SpySMAC run.py SpySMAC analyze.py
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default
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configured
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run data
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scatter plot
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Fig. 1. Schematic of SpySMAC’s workflow. The only significant user input (left) is needed
to start the configuration phase via SpySMAC run.py. The n independent SMAC runs
search for a better configuration while SMACde only evaluates the default performance.
After all runs have finished, SpySMAC analyze.py is called to prepare a report showing
details about the configuration process and the final configuration.

Each of these methods has some advantages and disadvantages. The forward
selection approach is the only of the three that can detect patterns relating
instance characteristics to well-performing configurations, but forward selection
can be computationally very demanding as it requires the fitting of hundreds
of machine learning models. The ablation path is the only one that directly
quantifies the performance difference of each changed parameter based on new
experiments, but the drawback is that for long ablation paths these experiments
can take even longer than the configuration step. Finally, the functional ANOVA
approach is computationally efficient (it only requires fitting a single machine
learning model and does not require any new algorithm runs) and does not only
quantify which parameters are important but also how well each of the param-
eters’ values perform. While we are ultimately planning to support all of these
methods, SpySMAC’s first version focuses on fANOVA to keep the computational
cost of the analysis step low.

3 SpySMAC’s Framework

The workflow in SpySMAC is as follows. First, the user provides information about
the solver, its parameters and the instance set. Based on that, the configuration
phase (running SMAC) and analysis phase (evaluating performance and parameter
importance) are conducted. Figure 1 shows a schematic workflow.

The solver specifics provided by the user include the solver binary, and a
specification of its parameters and their possible ranges. We use SMAC’s parame-
ter configuration space (PCS) file format. This format allows the declaration of
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real, integer, ordinal and categorical parameters, as well as conditional parame-
ters that are only active dependent on other (so-called parent) parameters (e.g.,
subparameters of a heuristic h are only active if h is selected by another parent
parameter). Complex dependencies can be expressed as hierarchies of condition-
alities, as well as forbidden partial assignments of parameters (e.g., if one choice
for a data structure is not compatible with a certain type of preprocessing). For
a detailed introduction, please refer to SpySMAC’s documentation. For the solvers
that competed in the CSSC, these PCS files are already available, which provides
many examples for writing new PCS files.

The user also needs to provide a set of benchmark instances to use for the
configuration step and for the subsequent validation. It is possible to either
specify the training and the test set directly, or to specify a single instance set
that SpySMAC will split into disjoint training and test sets. Splitting the instances
into two sets is necessary to get a unbiased performance estimate on unseen, new
instances, to avoid over-tuning effects.

The configuration phase consists of multiple, independent SMAC runs (which
should take place on the same type of hardware to yield comparable runtimes).
Since the configuration of algorithms is a stochastic process and many local
minima in the configuration space exist, multiple runs of SMAC can be used to
improve the performance of the final configuration found. In principle, one very
long run of SMAC would have the same effect, but multiple runs can be effectively
parallelized on multi-core systems or compute clusters. We emphasize that we
determine the best performing configurations among all SMAC runs based on the
training set, not on the test set. This avoids over-tuning effects, again.

After all configuration runs have finished, the separate evaluation step can
commence. The user simply executes the analyze script, SpySMAC analyze.py, to
automatically generate a report summarizing the results. This report includes a
performance evaluation of the default configuration and the found configuration
on the test and training instances2, scatter plots to visualize the performance
on each instance, as well as cumulative distribution function (CDF) and cactus
plots to visualize the runtime distributions.

The analysis step can also run fANOVA based on the performance data col-
lected during the configuration to compute parameter importance, producing a
table with quantitative results for each parameter and plots to visualize the effect
of different parameter values. The fANOVA step is based on a machine learning
model fitted on the combined performance data of all solver runs performed in
the configuration phase. For many solver runs (i.e., hundreds of thousands runs),
even fANOVA’s computations can take up to several hours and require several GB
memory; therefore, fANOVA is an optional part of the analyzing step.

2 Showing the training and test performance helps to identify over-tuning effects, i.e.,
the performance improved on the training set but not on test set.
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Fig. 2. Performance overview for test and training data (left), and the parameter
importance determined by fANOVA for Lingeling on CircuitFuzz (right)

4 Spying on Lingeling and probSAT

In this section, we apply SpySMAC to two solvers and three different benchmarks
from the Configurable SAT Solver Challenge: Lingeling [3] on an instance set
from circuit-based CNF fuzzing (CircuitFuzz [6]), and probSAT [2] on two col-
lections of random satisfiable CNF formulas (7-SAT instances with 90 clauses,
7SAT90-SAT, and 3-SAT instances with 1000 clauses, 3SAT1k-SAT, see [19]).

Figure 2 shows tables generated for the report for the Lingeling example.
By comparing the test and training performance, one can see that SMAC found
a configuration improving over the standard parameter setting. Even though
Lingeling’s default already performed very well on this instance set, SMAC was
still able to lower the average runtime further, and to reduce the number of
timeouts. The table on the right shows the ten most important parameters of
Lingeling on this set. The importance score quantifies the effect of varying a
parameter across all instantiations of all other parameters. A high value corre-
sponds to large variations in the performance meaning it is important to set this
parameter to a specific value (see [13] for more detail).

As an example for probSAT, we used two other scenarios from the CSSC
to show the differences our tool can reveal about the configuration on differ-
ent instance sets. Figure 3 displays the kind of performance plots generated
for the report for one of the sets. It clearly shows that configuration success-
fully improved the performance, reducing mean runtimes for training and test
instances by more than a factor of four.

To demonstrate what insights can be gained from the analysis, Figure 4 shows
the parameter importance plots for the parameter cb1, the constant probSAT
uses to weight the break score in its scoring function. The fANOVA procedure
reveals this parameter to be the most important one in both scenarios, but the
values differ for the two sets: it should be set high for 7-SAT and low for 3-SAT.
We note that this automatically-derived insight is aligned with expert practice
for setting probSAT’s cb1 parameter. By doing thorough sets of experiments,
developers can use our tool to understand the impact of their parameters better,
and to try to find ways to adapt parameters based on prior knowledge, such as
the clause length in our example here.
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Fig. 3. Example scatter plot (left) and CDF plot (right) from applying SpySMAC to
probSAT on 7SAT90-SAT. Both show that parameter tuning significantly improves the
overall performance across the whole range of runtimes.

Fig. 4. Parameter importance plot for the most important parameter cb1 on
7SAT90-SAT (left) and 3SAT1k-SAT (right). The plots show the mean performance (blue
line) with confidence intervals (red area) as a function of cb1, marginalized over all
other parameters. The best found configurations set it to 4.35 and 2.86 respectively.

5 Conclusion

We have presented SpySMAC: a tool for automatic SAT solver configuration using
SMAC combined with extensive analysis allowing the user to “spy” into the config-
uration process of a solver on a given instance set. The report SpySMAC generates
offers some insight into performance improvements and also quantifies param-
eter importance by applying fANOVA. We have shown for three examples how
the framework works, re-running and analyzing three CSSC scenarios effort-
lessly. For the future, we plan to integrate more methods to evaluate parameter
importance, including ablation [8] and forward selection to identify key parame-
ters [12]. SpySMAC is available at www.ml4aad.org/spysmac under AGPL license
with a long list of examples.

www.ml4aad.org/spysmac


SpySMAC: Automated Configuration and Performance Analysis 221

References
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Abstract. We introduce h-modularity, a structural parameter of CNF
formulas, and present algorithms that render the decision problem SAT
and the model counting problem #SAT fixed-parameter tractable when
parameterized by h-modularity. The new parameter is defined in terms
of a partition of clauses of the given CNF formula into strongly intercon-
nected communities which are sparsely interconnected with each other.
Each community forms a hitting formula, whereas the interconnections
between communities form a graph of small treewidth. Our algorithms
first identify the community structure and then use it for an efficient solu-
tion of SAT and #SAT, respectively. We further show that h-modularity
is incomparable with known parameters under which SAT or #SAT is
fixed-parameter tractable.

1 Introduction

Large networks often exhibit a certain structure, where nodes form strongly
interconnected communities which are sparsely connected with each other; to
what extent a network exhibits such a structure can be measured by its modu-
larity [17–19,31]. Recently the community structure and modularity of practical
SAT instances has been empirically studied, revealing an interesting correlation
between the modularity and the solving time of state-of-the art SAT solvers.
Interestingly, learnt clauses tend to lie within communities and learnt clauses of
low Literal Block Distance (LBD) are shared by few communities [1,20]. These
findings contribute towards a better understanding of the spectacular perfor-
mance of today’s SAT solvers on practical instances, which is generally not well
understood and remains a challenge for the research community [29].

However, the presence of a community structure with low modularity is not a
guarantee for an instance to be easy; instead, the correlation between modularity
and solving time is of statistical nature. In fact, it is not difficult to show that SAT
remains NP-hard for highly modular instances. More specifically, given any SAT
formula F , one can use a padding process (i.e., the addition of multiple variable-
disjoint dense satisfiable subformulas) to create an equisatisfiable formula F ′

whose size is linear in F and whose modularity can be better than any arbitrarily
fixed threshold.
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In this paper we propose the notion of h-modularity for SAT instances that
provides a worst-case performance guarantee for SAT decision. The h-modularity
of a SAT instance is an integer-valued parameter, where instances with small h-
modularity can provably be solved quickly. More precisely, we propose an algo-
rithm that, given a SAT instance F of input length � and h-modularity k, decides
the satisfiability of F in time f(k)�2, where f is singly exponential function in the
parameter k. In other words, SAT is fixed-parameter tractably (FPT) in the param-
eter h-modularity. We also provide an FPT algorithm for propositional model
counting (i.e., #SAT) parameterized by h-modularity. The parameter dependency
is single-exponential for SAT and double-exponential for #SAT.

Our parameter is defined based on the partition of the set of clauses into
subsets, which we call h-communities. Each h-community forms a strongly inter-
connected set of clauses. This is ensured by the requirement that any two
clauses of an h-community clash in at least one variable (i.e., h-communities are
so-called “hitting formulas” [11–13,22]). Furthermore, the h-communities are
sparsely interconnected with each other, which is ensured by the requirement
that a certain graph which represents the interaction between h-communities
has small treewidth as well as h-communities are of small degree (graphs of
small treewidth are sparse [14,24]). A formal definition of h-modularity is given
in Section 3. We show that h-modularity is incomparable with the parameters
signed clique-width and clustering-width, hence h-modularity is not dominated
by well-known parameters that admit fixed-parameter tractability of SAT or
#SAT. As a consequence, our parameter pushes the frontiers of tractability for
SAT and exploits a type of structure not accessible to known FPT algorithms.

2 Preliminaries

2.1 SAT and #SAT

We consider propositional formulas in conjunctive normal form (CNF), repre-
sented as sets of clauses. That is, a literal is a (propositional) variable x or a
negated variable x; a clause is a finite set of literals not containing a complemen-
tary pair x and x; a formula is a finite set of clauses. For a literal l = x we write
l = x; for a clause C we set C = { l | l ∈ C }. For a clause C, var(C) denotes
the set of variables x with x ∈ C or x ∈ C. Similarly, for a formula F we write
var(F ) =

⋃
C∈F var(C). The length of a formula F is defined as

∑
C∈F |C|.

We say that two clauses C,D overlap if C ∩ D �= ∅; we say that C and D
clash if C and D overlap. Note that two clauses can clash and overlap at the
same time. Two clauses C,D are adjacent if var(C) ∩ var(D) �= ∅ (i.e., if C and
D clash or overlap), and the degree deg(C) of C in a formula F is the number
of clauses D ∈ F adjacent to C. The dual graph of a formula F is the graph
whose vertices are clauses of F and whose edges are defined by the adjacency
relation of clauses. The dual graph allows us to use standard graph terminology,
such as neighborhood and edge-disjoint paths, when speaking about a formula.

We will also use the primal graph of a formula F , specifically in the proof of
Theorem 3. The primal graph of F is the graph whose vertices are variables of
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F and where two variables a, b are adjacent iff there exists a clause C such that
a, b ∈ C.

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1 − τ(x) for x ∈ X. F [τ ] denotes the formula obtained from F by removing
all clauses that contain a literal x with τ(x) = 1 and by removing from the
remaining clauses all literals y with τ(y) = 0; F [τ ] is the restriction of F to τ .
Note that var(F [τ ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1} and
every formula F . A truth assignment τ : X → {0, 1} satisfies a formula F if
F [τ ] = ∅. A truth assignment τ : var(F ) → {0, 1} that satisfies F is a model of
F . We denote by #(F ) the number of models of F . A formula F is satisfiable if
#(F ) > 0.

2.2 Parameterized Complexity

Next we give a brief and rather informal review of the most important concepts
of parameterized complexity. For an in-depth treatment of the subject we refer
the reader to other sources [7,21].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if instances (I, k) of size n (with respect to some
reasonable encoding) can be solved in time O(f(k)nc) where f is a computable
function and c is a constant independent of k. The function f is called the
parameter dependence.

2.3 Hitting Formulas

A hitting formula is a CNF formula with the property that any two of its clauses
clash (see [11,12,22]). The same notion for DNF formulas is termed orthogonal-
ity [5]. The following result makes hitting formulas particularly attractive in the
context of SAT and #SAT.

Fact 1 ([10]). A hitting formula F with n variables has exactly 2n −∑
C∈F 2n−|C| models.

The following observation will be implicitly used in several of our proofs.

Fact 2. Let F be a hitting formula, and let F ′ be obtained from F by an arbitrary
sequence of clause deletions and restrictions under truth assignments. Then F ′

is also a hitting formula.

2.4 Treewidth

Let G be a simple, undirected, finite graph with vertex set V = V (G) and edge
set E = E(G). For standard graph-theoretic notions not defined here, we refer
to [6]. A tree decomposition of G is a pair ({Xi : i ∈ I}, T ) where Xi ⊆ V , i ∈ I,
and T is a tree with elements of I as nodes such that:
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1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
2. for each vertex v ∈ V , the set { i ∈ I | v ∈ Xi } induces a (connected) subtree

in T with at least one node.

The width of a tree decomposition is maxi∈I |Xi|− 1. The treewidth [14,23] of G
is the minimum width taken over all tree decompositions of G and it is denoted
by tw(G).

Fact 3 ([3]). There exists an algorithm which, given a graph G and an integer
k, runs in time 2kO(1) ·(|V (G)|+ |E(G)|), and either outputs a tree decomposition
of G of width at most k or correctly determines that tw(G) > k.

It is well known that, for every clique over Z ⊆ V (G) in G, it holds that every tree
decomposition of G contains an element Xi such that Z ⊆ Xi [14]. Furthermore,
an n-vertex graph of treewidth k is sparse and has O(nk) edges [14,24].

3 h-Communities and h-Modularity

Let F be a formula. We call a hitting formula H ⊆ F a hitting community (or
h-community in brief) in F . The degree deg(H) of an h-community H is the
number of edges in the dual graph of F between a clause in H and a clause outside
of H. A hitting community structure (or h-structure in brief) P is a partitioning
of F into h-communities, and the degree deg(P) of P is max{deg(H) | H ∈ P }.

To measure the treewidth of an h-structure P, we construct a community
graph G as follows. The vertices of G are the h-communities in P, and two
vertices A,B in G are joined by an edge if and only if there exist clauses C ∈ A
and D ∈ B which are adjacent. Then we let tw(P) = tw(G).

We define the h-modularity of an h-structure P as the maximum over deg(P)
and tw(P). The h-modularity h-mod(F ) of a formula F is then defined as the
minimum h-mod(P) over all h-structures P of F .

Observe that this definition ensures that clauses in individual h-communities
are strongly interconnected (since they form hitting formulas), but each h-
community is only sparsely connected to other h-communities (due to the com-
munity graph having small treewidth and degree). At the same time we will
prove that, unlike modularity, h-modularity is a parameter that guarantees the
existence of structure which can be algorithmically exploited to establish the
fixed-parameter tractability of SAT and #SAT.

Example: Consider the formula F = {xya, xya, xy, xy, abc, b, cdef , de, fgh,
hi, ij, jklmn, uvgklmn, uvl, uv}. Figure 1 (left) then illustrates the dual graph
of F with the indicated partition P = {H1, . . . , H6} of F into h-communities
H1 = {xya, xya, xy, xy}, H2 = {abc, b}, H3 = {cdef , de}, H4 = {fgh, hi},
H5 = {ij, jklmn}, and H6 = {uvgklmn, uvl, uv}. Figure 1 (right) shows the
community graph of P; it is easy to verify that this graph has treewidth 2 [14]
(observe, for instance, that the deletion of a single vertex turns it into a tree).
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The h-communities H1 and H3 have degree 2, and all other h-communities have
degree 3. Therefore the h-modularity of F is at most max(3, 2) = 3.

H1

H6

H2

H3

H4

H5

H1

H6

H2

H3

H4

H5

Fig. 1. The dual graph (left) and community graph (right) of the formula F and the
h-structure P.

An h-structure P of F is called a witness of h-mod(F ) ≤ k if h-mod(P) ≤ k.
Given an h-structure P of F and a subformula F ′ ⊆ F , we denote by P[F ′] the
h-structure induced by P on F ′; observe that h-mod(P[F ′]) ≤ h-mod(P).

We introduce some additional notation which will be useful later, always w.r.t.
a fixed h-structure. A clause C ∈ H is a bridge clause if there exists a clause
outside of H adjacent to C. A variable x is a bridge variable if it occurs in a
clause in one h-community and at least one other clause in another h-community.
Notice that every clause containing a bridge variable is a bridge clause, and
that h-structures of low h-modularity can still contain a large number of bridge
variables, even in a single h-community.

We can now formalize the parameterized problems we are solving and present
our main results.

#SAT[h-mod]
Instance: A formula F of length � and an integer k ≥ 0.
Task : Either compute the number of models of F , or correctly deter-
mine that h-mod(F ) > k.
Parameter : k.

The problem SAT[h-mod] is then defined analogously to #SAT[h-mod],
with the distinction that the task is only to determine whether the number of
models is non-zero (in which case we say that F is satisfiable).

Theorem 1. #SAT[h-mod] and SAT[h-mod] are fixed parameter tractable.

Our approach for proving Theorem 1 can be separated into two main tasks:
first, we compute an h-structure P of small h-modularity, and then we use P
to solve the problem. Our techniques to achieve this are discussed in detail
in the following two sections. We remark that the parameter dependence is
single-exponential for our SAT algorithm and double-exponential for our #SAT
algorithm.

Before proceeding, we make a short digression comparing the new notion
of h-modularity to established parameters for SAT. We say that parameter X
dominates parameter Y if there exists a computable function f such that for
each formula F we have X(F ) ≤ f(Y (F )) [25]. In particular, if X dominates
Y and SAT is FPT parameterized by X, then SAT is FPT parameterized by
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Y [25]. We say that two parameters are incomparable if neither dominates the
other. In the following, we show that h-modularity is incomparable with the
signed clique-width (the clique-width of the signed incidence graph [4,28]) and
with clustering-width (the smallest number of variables whose deletion results
in a variable-disjoint union of hitting formulas) [22]. We remark that the former
claim implies that h-modularity is not dominated by the treewidth of neither the
incidence nor the primal graph, since these parameters are dominated by signed
clique-width [28]. Furthermore, h-modularity is also not dominated by signed
rank-width [9], which both dominates and is dominated by signed clique-width.

Proposition 1. The following claims hold.

1. Signed clique-width and h-modularity are incomparable.
2. Clustering-width and h-modularity are incomparable.

Proof. We prove both claims by showing that there exist classes of formulas
such that each formula in the class has one parameter bounded while the other
parameter can grow arbitrarily. For a formula F , let scw(F ) and clu(F ) denote
its signed clique-width and clustering width, respectively. Our proof does not
require a formal definition of these parameters, as we refer to known properties
of these notions.

Let N be the set of positive integers, and let us choose an arbitrary i ∈ N.
For the first claim, it is known that already the class of all hitting formulas
has unbounded scw [22]. In particular, this means that there exists a hitting
formula F1 such that scw(F1) ≥ i. Recall that, since F1 is a hitting formula,
clearly h-mod(F1) = 0.

Conversely, consider the following formula F2 = {C,C1, . . . , Ci+2}. The for-
mula contains variables x1, . . . xi+2, and each variable xj occurs (either positively
or negatively) in clause C and Cj . Then the incidence graph of F2 is a tree and
hence has treewidth 1. Since signed clique-width dominates the treewidth of the
incidence graph, it follows that there exists a constant c independent of i such
that scw(F2) ≤ c (in particular, one can check from the definition of scw that
c ≤ 2). On the other hand, the degree of any h-community H containing C is at
least i + 1, and hence h-mod(F2) ≥ i + 1.

We proceed similarly for the second claim; let i ∈ N. Let F ′′
1 be a hitting

formula, let F ′
1 be constructed by adding a new variable z into an arbitrary

clause in F ′′
1 and adding a clause Z containing only z (both occurrences can

either be positive or negative). Observe that clu(F ′
1) = h-mod(F ′

1) = 1. Let F1

then contain i + 2 disjoint copies of F ′
1; clearly, clu(F1) = i + 2. However, since

the h-modularity of a formula is equal to the maximum h-modularity over all of
its connected components, it holds that h-mod(F1) = 1.

Conversely, let F ′
2 and F ′′

2 be variable-disjoint hitting formulas containing
at least i + 2 clauses each, and let F2 be obtained from a disjoint union of F ′

2

and F ′′
2 by adding a variable z which occurs (either positively or negatively) in


i/2� clauses in F ′
2 and in 
i/2� clauses in F ′′

2 . While F2 is not a hitting formula,
deleting z results in two variable-disjoint hitting formulas and hence clu(F2) = 1.
On the other hand, the three inclusion-maximal h-communities in F2 are F ′

2, F ′′
2
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and possibly the set of clauses where z occurs; each of these have a degree which
is greater than i. Consequently, it holds that h-mod(F2) ≥ i + 1. �

4 Finding h-Structures

Our approach for finding h-structures of small h-modularity consists of two steps.
Generally speaking, we introduce a preprocessing procedure which we exhaus-
tively apply until all clauses have a sufficiently small degree (Lemma 1), and once
the degree of all clauses is sufficiently small we compute a tree decomposition of
the dual graph and use it to find a suitable h-structure (Lemma 2). The result
is an FPT-approximation algorithm [16]. One of the technical obstacles we have
to overcome is that the preprocessing procedure given by Lemma 1 only guaran-
tees the preservation of h-modularity up to a certain bound. This bound then
represents an additional constraint on the approximation algorithm presented in
Lemma 2.

Lemma 1. There exists an algorithm which, given q ∈ N and a formula F of
length � containing a clause C such that deg(C) > 3q + 2, runs in time O(�2)
and either correctly determines that h-mod(F ) > q, or outputs a strictly smaller
subformula F ′ with the following property: if h-mod(F ′) ≤ q, then h-mod(F ) =
h-mod(F ′). Furthermore, a witness P of h-mod(F ) can be computed from F ,
F ′ and a witness P ′ of h-mod(F ′) ≤ q in linear time.

Proof. Let Z0 be the set containing C and all clauses which are neighbors of C,
let Z1 be the subset of Z0 containing clauses which have a neighbor outside of
Z0, and let Z = Z0 \Z1. Let W be the subset of Z containing clauses which have
at least q + 2 neighbors in Z. We now make a series of tests:

1. if Z1 > q, then h-mod(F ) > q;
2. if |W | < q + 3, then h-mod(F ) > q;
3. if W is not a hitting formula, then h-mod(F ) > q;
4. if Z contains a clause which clashes with exactly |W | − 1 clauses in W , then

h-mod(F ) > q;
5. let B ∈ W be a clause with no neighbors outside W ; if no such B exists,

then h-mod(F ) > q.

Otherwise we set F ′ = F \ B.
We prove correctness. Observe that if |Z1| > q then there exists no P of h-

modularity at most q. Indeed, for each neighbor D of Z1 outside of Z0, it holds
that D and C cannot be in the same h-community, since they are not adjacent.
Hence each element of Z1 increases the degree of the h-community containing C
by at least 1; either due to the edge between C and that element, or the edge
between D and that element. Hence we can assume that |Z| ≥ 2q + 3.

For the second test, observe that if |W | < q + 3 then there exists no P of
h-modularity at most q. Indeed, since the number of neighbors of C in Z is at
least 2q + 2, at least q + 2 of these neighbors must be in the same h-community
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as C if h-mod(P) ≤ q. This implies that at least q +2 of these neighbors would
have to be pairwise-adjacent, and in particular would each have at least q + 2
neighbors in Z. Then W necessarily must contain C and at least q +2 neighbors
of C.

For the third test, if W is not a hitting formula, then any h-structure P of
h-modularity at most q would need to partition W into (subsets of) at least
two h-structures; let HC be the hypothetical h-community containing C, and let
D ∈ W \ HC . Since D has q + 2 neighbors in Z, there are at least q + 2 edge-
disjoint paths between D and C, and each of these paths contributes at least 1
to the degree of HC . But then it follows that deg(HC) ≥ q + 2, which would
contradict h-mod(P) ≤ q, and hence W must be a hitting formula. Observe that
this argument also implies that every clause in W is in fact adjacent to every
other clause in W , and that every P of h-modularity at most q must contain an
h-community HC which contains W .

For the fourth test, assume there exists a clause D which clashes with exactly
|W | − 1 clauses in W . Consider any witness P of h-mod(F ) ≤ q, and let HC

be the h-community containing C. Since D �∈ HC and there are at least q + 1
edge-disjoint paths between D and C, the existence of D would imply that
deg(HC) ≥ q + 1.

For the fifth test, recall that for any clause Q ∈ Z \W it holds that W ∪{Q}
cannot be a hitting formula because Q cannot be adjacent to every clause in W .
Hence every clause in W with a neighbor outside of W contributes at least 1 to
the degree of any h-community containing W . Together with |W | > q + 2 this
implies that if no clause B exists, then h-mod(F ) > q.

Finally, assume there exists a clause B ∈ W with no neighbors outside of W
and let F ′ = F \B. If h-mod(F ′) > q then the lemma already holds, so assume
there exists a witness P ′ of h-mod(F ′) ≤ q. Let W ′ = W \ B. Observe that W ′

must be contained in a single h-community H ′ ∈ P ′, since otherwise the fact
that each clause of W ′ is adjacent to every other clause of W ′ would contradict
the degree bound given by h-mod(P ′) ≤ q. Then let P be obtained from P ′ by
adding B to H ′. Observe that there cannot exist a clause D ∈ H ′ such that D
and B do not clash; since D clashes with every other clause in W , it follows that
D would clash with |W | − 1 clauses in W . Hence B ∪H ′ is still an h-community.
Furthermore, by our choice of B it holds that B contains no neighbors outside
of W ′, and hence deg(H ′) = deg(H ′ ∪ {B}) and in turn deg(P ′) = deg(P).

Finally, observe that, if we are given a witness P ′ of h-mod(F ′) ≤ q, we can
construct a witness of h-mod(F ) by adding B back into the unique h-community
in P containing the neighbors of B (i.e., W ′). �
Lemma 2. There exists an algorithm which, given k ∈ N and a formula F of
length � such that deg(F ) ≤ 12k2 + 2, runs in time 2kO(1) · �, and either outputs
an h-structure P of F such that h-mod(P) ≤ k2 + k, or correctly determines
that h-mod(F ) > k.

Proof. We first test whether the treewidth of the dual graph G of F is at most
k · (12k2 + 3); if not, then h-mod(F ) > k, and if yes, we compute a tree
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decomposition of F . This can be achieved in time at most 2kO(1) · � by Fact 3.
Next, we enumerate every inclusion-maximal clique in G of cardinality at least
k + 2 in time O(k3) · � by a simple traversal of the tree decomposition. Let L
be the set of all such cliques. For each clique K ∈ L we test whether K is a
hitting formula and whether deg(K) ≤ k; if not, then h-mod(F ) > k. For each
pair of cliques K1,K2 ∈ L we test that they are pairwise disjoint; if not, then
h-mod(F ) > k. Let G′ be the graph obtained from G by contracting each clique
in L into a single vertex; that is, each K ∈ L is replaced by a vertex adjacent to
all neighbors of K. We test that deg(G′) ≤ 2k and tw(G′) ≤ k2 +k; if not, then
h-mod(F ) > k. Finally, let P ′ be the vertex set of G′. Then P ′ is an h-structure
witnessing h-mod(F ) ≤ k2 + k.

We prove correctness. First, assume for a contradiction that tw(G) > k ·
(12k2 +3) and that there exists a witness P ′ of h-mod(F ) ≤ k. Since deg(F ) ≤
12k2 + 2, every h-community in P ′ must have size at most 12k2 + 3. Let (β, T )
be a width-k tree decomposition of the community graph of P ′, and let β′ be
obtained by replacing each h-community H ∈ P ′ with

⋃
C∈H C. Then (β′, T )

is a tree decomposition of G of width at most k · (12k2 + 3), contradicting our
assumptions.

Next, assume that there exists a clique K ∈ L which is not a hitting for-
mula. Then any hypothetical h-structure P of F must partition K into several
h-communities. Let C,D ∈ K and H ∈ P be such that C ∈ H and D �∈ H.
Since there exist k + 1 edge-disjoint paths between C and D, this implies that
deg(H) ≥ k + 1 and hence h-mod(P) > k.

Similarly, assume that there exist inclusion-maximal cliques K1,K2 ∈ L
which intersect in some clause C. Then any hypothetical h-structure P must con-
tain an h-community H containing C, and there must exist a clause D ∈ K1∪K2

such that D �∈ H. As in the previous case, this gives rise to at least k + 1 edge-
disjoint paths between C and D and hence h-mod(P) > k. In particular, we
conclude that each element of L must form an h-community in any hypothet-
ical witness of h-mod(F ) ≤ k. This in turn implies that if there exists an
h-community K ∈ L of degree at least k + 1, then h-mod(F ) > k.

We proceed by considering the graph G′. Assume it contains a vertex v of
degree at least 2k + 1. If v is a clause in F , then at most k neighbors of v can
form an h-community with v (since we have contracted all cliques of cardinality
at least k +2). This means that at least k +1 neighbors of v would contribute to
the degree of the h-community containing v, which guarantees h-mod(F ) > k.
On the other hand, if v is an element of L, then we already know that v itself
must be an h-community in any witness of h-mod(F ) ≤ k, and hence v having
more than k neighbors also implies h-mod(F ) > k.

Next, consider the case tw(G′) > k2+k. Observe that each hitting subformula
of F not contained in L contains at most k + 1 clauses. Consider a width-k tree
decomposition (β, T ) of the community graph Q of a hypothetical witness of
h-mod(F ) ≤ k. By replacing, in β, each h-community H ∈ V (Q) \ L with the
set of clauses contained in H, we would obtain a tree decomposition of G′ of
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width at most k · (k + 1), contradicting our assumption. Hence we conclude that
h-mod(F ) > k.

Finally, we summarize why P ′ is indeed an h-structure of G such that
h-mod(P ′) ≤ k2 + k. The fact that P ′ is an h-structure follows by construc-
tion; indeed, each element in P ′ is either a single clause, or an element of L
which is guaranteed to be a hitting formula. Regarding the h-modularity of P ′,
recall that G′ is the community graph of P ′ and that tw(G′) ≤ k2 + k. As for
the degree bound, each vertex v in G′ is either a clause C in F , which means
that deg(v) ≤ 2k, or an element of K, in which case we have already tested that
deg(v) ≤ k. �
Theorem 2. There exists an algorithm which, given k ∈ N and a formula F of
length �, runs in time O(�3) + 2kO(1) · �, and either outputs an h-structure P of
F such that h-mod(P) ≤ k2 + k, or correctly determines that h-mod(F ) > k.

Proof. We begin by exhaustively applying Lemma 1 on F for q = 4k2; let us
denote the resulting formula F ′. Then we apply Lemma 2 on F ′ to find an h-
structure P ′ of F ′ such that h-mod(P ′) ≤ k2 + k ≤ q. Finally, we use Lemma 1
to convert P ′ into an h-structure P of F . Correctness follows from the correctness
of Lemmas 1 and 2. �

5 Using h-Structures

With Theorem 2 in hand, we proceed to show how the identified h-structure of
small h-modularity can be used to obtain fixed-parameter tractability of SAT
and #SAT. The general strategy is to replace each h-community by a suitable
object that represents all the satisfying assignments of this h-community. This
way, variables only appearing in a single h-community are eliminated. In case of
SAT, we represent an h-community by a set of clauses over the bridge variables
of the h-community, and in the case of #SAT, we represent an h-community
by a so-called valued constraint. This way, we reduce the problems SAT and
#SAT parameterized by h-modularity to certain problems (SAT and SumProd,
respectively) parameterized by primal treewidth. For solving the latter problems
we can use known algorithms.

For making this general strategy work, we have to overcome the difficulty
that the number of bridge variables of a single h-community can be arbitrarily
large even when the input formula has small h-modularity. In the case of SAT
we can handle this by replacing the input formula with a satisfiability-equivalent
subformula using a known construction. This approach does not work for #SAT
since this replacement does not preserve the number of models. However, by
replacing equivalence classes of variables that appear in the same way in all
clauses by 3-valued variables (which represent the three possibilities that all
variables in the module are set to true, all are set to false, or some are set to
true and some to false, respectively), we can reduce the number of variables for
a single valued constraint so that we can make our overall strategy work.

We begin with the conceptually simpler case of SAT. Our solution relies on
the following folklore result.
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Fact 4 ([26]). There exists an algorithm which takes as input a formula F of
length � and a tree decomposition of the primal graph of F of width k, runs in
time 2O(k) · �2, and determines whether F is satisfiable.

Theorem 3. Given a formula F ′ of length � and an h-structure P ′ of F ′, we
can decide whether F ′ is satisfiable in time 2O(h-mod(P′)2) · �2.

Proof. Our algorithm has three steps. First, we compute an equisatisfiable sub-
formula F of F ′ where F has the following property: for every nonempty set
X of variables of F there are at least |X| + 1 clauses C of F such that some
variable in X occurs in C. Formulas with this property are called 1-expanding or
matching-lean, and it is known that for any formula F ′ of length �, an equisatis-
fiable 1-expanding subformula F can be computed in time O(�3/2) [8,15,27]. We
set P = P ′[F ] and k = h-mod(P ′); note that h-mod(P) = h-mod(P ′[F ]) ≤
h-mod(P ′) = k. Observe that since each H ∈ P satisfies deg(H) ≤ k, it fol-
lows that the number of bridge variables which occur in any clause in H is
upper-bounded by k.

For the second step, we construct a formula I as follows. The variable set of I
consists of all the bridge variables of P. For each h-community H ∈ P containing
bridge variables XH = {x1, . . . , xp} and for each assignment α of variables in
XH , we test whether α satisfies H; if it does not, we add the clause Cα over Xα

into I, where Cα is the unique clause which is not satisfied by α.
For the final third step, we compute a tree decomposition of the primal graph

of I with width at most k2+k by Fact 3, and then decide whether I is satisfiable
by Fact 4. If it is, we output “YES”, and otherwise we output “NO”. The rest of
the proof is dedicated to verifying the bound on the treewidth of I and arguing
correctness.

We argue that the treewidth of the primal graph of I at most k2 + k. Let
(β, T ) be a tree decomposition of the community graph G of P of width at most
k. Consider the tree decomposition (γ, T ) obtained from (β, T ) by replacing each
h-community H in β by XH . Since F is 1-expanding and the variables of XH

only appear in at most k+1 clauses of F due to the degree bound, the cardinality
of each XH is upper-bounded by k + 1. Consequently, the cardinality of each
element in γ is at most k2 + k.

Next, we show that (γ, T ) is indeed a tree decomposition of the primal graph
of I. For every edge ab in this graph, there exists at least one clause C ∈ H
which contains both variable a and variable b in its scope, and hence a, b are
both bridge variables for H, which in turn means that a, b will both be present
in every element of γ which used to contain H; this proves that the first property
of tree decompositions is satisfied. For every bridge variable a, let Da denote
the set of h-communities which contain a. Since each pair of h-communities
containing a are adjacent in the community graph of P, Da forms a clique in
the community graph of P and hence there must exist an element θa of β which
contains every h-community in Da. Since a occurs in an element of γ if and
only if this originated from an element of β containing an h-community in Da,
and since all h-communities in Da occur in θa, we conclude that the nodes of
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T containing a are connected in (γ, T ); this proves that the second property of
tree decompositions is satisfied.

Finally, we argue that I is satisfiable if and only if F is satisfiable. Let τI be
a satisfying assignment for I, and consider the assignment τ which assigns each
bridge variable in F based on τI . The resulting instance F [τ ] consists of variable-
disjoint h-communities. Furthermore, by the construction of each constraint in
I, it holds that each h-commnunity in F [τ ] is satisfiable, and hence both F [τ ]
and F are satisfiable. On the other hand, let τF be a satisfying assignment for F ,
and consider the restriction τ of τF to the set of bridge variables. Then applying
τ on F once again results in a satisfiable formula F [τ ] consisting of variable-
disjoint h-communities. Furthermore, since each such h-community is satisfiable,
it follows that τ also satisfies every clause in I. �

Our next goal is to show how h-structures of low h-modularity can be used to
solve #SAT. To this end, we will make use of a reduction to the SumProd (Sum
of Products) problem [2], sometimes also called Valued #CSP [30], which can
be viewed as a generalization of the Constraint Satisfaction problem. An
instance I of SumProd is a triple (V,D, C), where V is a finite set of variables,
D is a finite set of domain values, and C is a finite set of valued constraints. Each
valued constraint C in C is a tuple (SC , fC), where SC , the constraint scope, is
a non-empty sequence s1, s2, . . . , sr of distinct variables of V , and fC , the cost
function, is a function from Dr to N ∪ {0}.

An assignment is a mapping ψ : V → D. Each assignment ψ results
in a cost, fC(ψ), being assigned to each constraint C, where fC(ψ) =
fC((ψ(s1), ψ(s2), . . . , ψ(sr))). The task in the SumProd problem is to compute
the value cost(I), defined as the sum over all assignments of the products of cost
functions for that assignment. In other words, cost(I) =

∑
ψ:V →D

∏
C∈C fC(ψ).

The primal graph G of a SumProd instance I is defined as follows. The
vertices of G are the variables of I, and two vertices a, b of G are adjacent if
and only if there exists a constraint whose scope contains both a and b. The
primal treewidth of I, denoted ptw(I), is the treewidth of the primal graph
of I. The crucial property which we exploit is that primal treewidth allows
a straightforward dynamic programming FPT algorithm for SumProd over a
fixed and finite domain D. The following fact assumes that arithmetic operations
can be carried out in polynomial time in the number of variables.

Fact 5 ([2]). Let D be a fixed set. There exists an algorithm which takes as input
an n-variable instance I = (V,D, C) of SumProd and a tree decomposition of
the primal graph of I of width k, runs in time 2O(k) ·nO(1), and correctly outputs
cost(I).

Lemma 3. There exists an algorithm which, given a formula F of length � and
an h-structure P of F , runs in time O(3h-mod(P) · �O(1)), and computes an
instance I = (V,D, C) of SumProd such that ptw(I) ≤ 2O(h-mod(P)), D =
{0, 1,mix}, |V | ≤ � and cost(I) is the number of models of F .

Proof (Sketch). Our goal is to capture the contribution of an h-community H
to the total number of models of F by using only a small number of variables in
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I; specifically, the number of these variables should depend only on h-mod(P).
Unlike in Theorem 3, here we cannot directly use 1-expanding subformulas, since
these do not preserve the number of models. So instead we group bridge variables
into equivalence classes, where two bridge variables are in the same equivalence
class iff they occur in the same way in the same clauses; crucially, the number
of equivalence classes which intersect with each H is bounded by a function
of h-mod(P). Furthermore, every “mixed” assignment (mapping at least one
variable to 0 and at least one to 1) of an equivalence class satisfies the same
clauses as any other mixed assignment of that equivalence class, allowing us to
aggregate all such assignments without loss of information. Then we construct
our instance I so that each of its variables represents one equivalence class,
and each constraint represents one h-community. An assignment ψ of I then
corresponds to determining whether all bridge variables of F in each equivalence
class are assigned to 0, to 1, or mix.

The cost function is then constructed so as to capture the contribution of each
h-community to the total number of models. However, since many assignments in
F can be aggregated into a single assignment in I due to the mix value, the cost
function also needs to reflect this. To this end, each equivalence class is assigned
(arbitrarily) to some valued constraint C and whenever that equivalence class
is mapped to mix, fC is increased by a factor corresponding to the number of
assignments in F aggregated into this mixed assignment.

The desired running time follows by showing that equivalence classes can
be computed in at most O(�3) time and that the number of equivalence classes
which occur in the same h-community is upper-bounded by 3h-mod(P)+1. The
lemma then follows from the following two claims, whose proofs are omitted in
this version: (i) ptw(I) ≤ 2O(h-mod(P)), and (ii) cost(I) is the number of models
of F . �
Theorem 4. Given a formula F of length � and an h-structure P of F , we can
count the number of models of F in time 22

O(h-mod(P)) · �O(1).

Proof. Let k = h-mod(P). We apply Lemma 3 to obtain an instance I =
(V,D, C) of SumProd such that ptw(I) ≤ 2O(k) and cost(I) is the number of
models of F . Next, we compute a tree decomposition of the primal graph of I of
width 2O(k): either by observing that the algorithm of Lemma 3 implicitly also
computes such a tree decomposition of I, or in time 22

O(k) · � by Fact 3. Finally,
we use Fact 5 to solve I in time 22

O(k) · �O(1). �
Proof (of Theorem 1). Let F be the given CNF formula and k the parameter.
First we apply Theorem 2 to either find an h-structure P of F of h-modularity
at most k2 + k, or correctly determine that h-mod(F ) > k. To decide whether
F is satisfiable, we now use Theorem 3. This establishes that SAT[h-mod(F )] is
fixed parameter tractable. To compute the number of models of F , we use The-
orem 4. This establishes the fixed parameter tractability of #SAT[h-mod(F )]
and concludes the proof. �
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6 Concluding Notes

We have introduced the notion of an h-community structure in CNF formulas
and the associated parameter h-modularity. Furthermore, we have shown that it
is fixed-parameter tractable to find a suitable h-community structure and to use
it to solve the problems SAT and #SAT, all parameterized by the h-modularity
(Theorems 2, 3, and 4, respectively). Since the h-modularity is small for formulas
where other known parameters can be arbitrarily large (Proposition 1), our FPT
results provide worst-case performance guarantees for instances that are not
accessible by known methods. Our results give rise to the question of how the
notion of h-community structure can be further generalized, for example by using
a suitably defined property for the communities that generalizes hitting formulas.
This way, we hope that ultimately one can build bridges between empirically
observed problem hardness and theoretical worst case upper bounds.
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11. Büning, H.K., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A.,
Heule, M.J.H., van Maaren, H., Walsh, T. (eds) Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185, chapter 11, pp. 339–401. IOS
Press (2009)
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Abstract. Nowadays, Conflict-Driven Clause Learning (CDCL) tech-
niques are one of the key components of modern SAT solvers specialized
in industrial instances. Last years, one of the focuses has been put on
strategies to select which learnt clauses are removed during the search.
Originally, one need for removing clauses was motivated by the finite-
ness of memory. Recently, it has been shown that more aggressive clause
deletion policies may improve solvers performance, even when memory
is sufficient. Also, the utility of learnt clauses has been related to the
modular structure of industrial SAT instances.

In this paper, we show that augmenting SAT instances with learnt
clauses does not always make them easier for the SAT solver. In fact, it
makes worse the solver performance in many cases. However, we identify
a set of highly useful learnt clauses, and we show that augmenting SAT
instances with this set of clauses contributes to improve the solver per-
formance in many cases, especially in satisfiable formulas. These clauses
are related to the community structure of the formula, and they can be
computed in a fast preprocessing step. This would suggest that the com-
munity structure may play an important role in clause deletion policies.

1 Introduction

Modern CDCL SAT solvers have been shown to be very efficient at solving
industrial, or real-world, SAT instances. They integrate four major components:
conflict-driven clause learning [17], activity-based variable branching heuris-
tics [13], lazy data structures [13], and restarts [8]. In [10], it is empirically
shown that these four components contribute to such success, but clause learn-
ing is the most important. Most CDCL solvers learn just one clause each time
a conflict is found for the partially computed assignment. It has been observed
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that not all learnt clauses have the same usefulness or relevance. Moreover, a
clause may be relevant at a certain instant of the search, but it may become use-
less later. Clause removal policies were initially proposed with the objective of
saving memory and speed up propagations by the solver [7,13]. But the picture
is more complex now. Since Glucose [2], aggressive clause removal policies are
essential ingredients of CDCL solvers (more than 95% of the learnt clauses can
be removed) and the initial arguments for clause database managements (unit
propagation speed and memory issues) do not completely hold anymore. The
intriguing question on how to predict efficiently and effectively the relevance of
new learnt clauses is still open.

The structure of a SAT instance may be modeled as a graph with variables as
nodes and clauses as edges. In [1], authors use this model to show that industrial
SAT instances usually exhibit a clear community structure, i.e., high modularity.
This means that we can find a partition of this graph into communities, with
many edges between nodes of the same community and few edges connecting
distinct communities. In [15], it is shown that the measure proposed in Glucose
(i.e., the Literal Block Distance or LBD) can be strongly related to the commu-
nity structure of the initial formula. However, this last result was just a one-way
observation of the CDCL SAT solvers behavior: while LBD seems related to the
number of communities in a learnt clause, it was not possible until now to exploit
this correlation the other way, i.e., by using the community structure to guide
the search in a CDCL SAT solver.

In this work, we show that community structure can be used to detect rele-
vant learnt clauses. In particular, we present a technique that uses this structure
to transform the formula adding learnt clauses, and hence guiding the search.
This causality is much stronger than the previous observed correlation. Although
we present our technique as a preprocessor for readability, our contribution is to
give empirical evidence that the community structure can be used to generate
relevant clauses, which is much stronger than identifying them (e.g., LBD is used
to rank existing clauses). This would suggest that the community structure may
play an important role in clause deletion policies.

Our preprocessor uses the community structure to split the instance into
disjoint subformulas, and augments it with the learnt clauses of solving pairs
of such subformulas. Intuitively, these clauses could be related to the notion of
glue clauses used in Glucose. Our inspiration comes from the observation that
clause learning destroys the (original) community structure of the instance. We
give empirical evidence about the commonly accepted claim that having more
learnt clauses does not always speed up the solving process. However, we show
that augmenting the instance with our technique works experimentally. This is
the case in several sets of industrial benchmarks and several CDCL SAT solvers.
Notice that augmenting a formula with learnt clauses is against the common
idea of preprocessing, which generally tries to reduce the instance.

The rest of this paper is structured as follows. After some preliminaries in
Section 2, we review in Section 3 some observations about the effect of clause
learning on the community structure of SAT instances. In Section 4, we provide
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some insights on the relevance of clauses learnt by a CDCL solver. In Section 5,
we propose an algorithm that exploits the community structure to detect relevant
clauses, and evaluate its performance in Section 6. We review some related works
in Section 7, and we conclude in Section 8.

2 Preliminaries

The Boolean Satisfiability Problem (SAT) is the problem of determining if the
variables of a propositional formula can be assigned in such a way that the
formula is evaluated as true. A literal is either a Boolean variable x or its
negation ¬x, a clause is a disjunction of literals, and a conjunctive normal form
(CNF ) instance is a conjunction of clauses.

An undirected weighted graph G is a pair G = (V,w), where V is the set of
nodes, and w : V × V → R+ is the edge-weight function that satisfies w(x, y) =
w(y, x).

The Variable Incidence Graph (VIG) of a SAT instance Γ is the graph whose
nodes represent the variables of Γ , and there exists an edge between two variables
if they both appear in a clause c. A clause with l literals results into

(
l
2

)
edges.

Thus, to give the same relevance to all clauses, edges have a weight w(x, y) =
∑

c∈Γ
x,y∈c

1/
(|c|
2

)
, where |c| = l is the length of the clause c.

The community structure of a graph is usually measured using the notion
of modularity [14]. Defined for a graph G and a partition P of its vertexes into
communities, the modularity Q (see Eq. 1) measures the fraction of internal edges
(edges connecting vertexes of the same community) w.r.t. a random graph with
same number of vertexes and same degree. This avoids that the best partition
is the one made up by an only community containing all vertexes.

Q(G,P ) =
∑

Pi∈P

∑

x,y∈Pi

w(x, y)

∑

x,y∈V

w(x, y)
−

⎛

⎜
⎜
⎝

∑

x∈Pi

deg(x)

∑

x∈V

deg(x)

⎞

⎟
⎟
⎠

2

(1)

The modularity of a graph is the maximal modularity for any possible parti-
tion: Q(G) = max{Q(G,P ) | P}. This optimal modularity will be in the range
[0, 1]. Computing the modularity of a graph is NP-hard [5]. Due to its com-
plexity, instead of computing the (exact) modularity, most of methods in the
literature approximate a lower-bound in the value of Q, trying to find a parti-
tion that maximizes this value. One of the most accurate and fastest algorithms
is the Louvain method [4], extensively used to compute the modularity of large
real-world networks.

In this work, we use the Louvain method to compute a partition of the
formula into disjoint subformulas (i.e., sets of clauses). The cost of this algorithm
depends on the number of nodes of the graph. We run this algorithm on the VIG,
which is one of the graph representation of the formula with smallest number of
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Fig. 1. Graph of communities of the instance ibm-2002-22r-k60: original formula
(left), solved formula considering small learnt clauses (center), and solved formula con-
sidering small and medium-sized learnt clauses (right). Nodes and edges are accordingly
scaled by community size and weight, respectively.

nodes1, and we assign each clause to the most frequent community among its
variables (randomly assigned in case of ties). We have observed that this formula
partitioning (using the VIG) is similar to the one obtained using other graph
models, but its computation is much faster.

3 Clause Learning Destroys the Community Structure

In this section, we review some observations about the community structure of
real-world SAT formulas, clause learning, and the relation between them.

Industrial SAT instances have been shown to have a very clear community
structure, with modularity Q in the VIG higher to 0.7 in most of the cases. Recall
that the maximum value of Q is 1. This means that we can find a partition of
their variables into communities, such that clauses mainly constraint variables
of the same community. However, this partition is destroyed by the addition of
learnt clauses [1], as we will see in this section.

In order to represent how this (initial) community structure is destroyed by
the effects of clause learning, we can use the graph of communities2. This graph
is built as follows: all nodes of the VIG (variables) that belong to the same
community are merged into a single node in the graph of communities, and
weighted edges are updated accordingly.3 In Fig. 1 (left), we represent the graph
of communities of the industrial formula ibm-2002-22r-k60. This instance has a
modularity Q = 0.91 and 35 communities. Glucose solved this formula keeping a
total of 504964 learnt clauses. We can recompute the graph of communities after
adding some of these learnt clauses to the original instance. In Fig. 1 (center and

1 In other models, clauses are represented as nodes in the graph.
2 We cannot directly represent the VIG due to its large number of nodes (variables).
3 The weight of the edge connecting communities A and B is the addition of the

weights of the edges connecting one node from A and one node from B.
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Fig. 2. Impact of adding learnt clauses on modularity, in instances E05X15 (left) and
isqrt1 32 (right). Each point (x, y), with y measured in the left Y axis, represents a
clause learnt at instant x and increasing Q on y. We also represent the evolution of the
modularity Q (using the right Y axis).

right), we represent the graph of communities after adding small learnt clauses
(up to 10 literals), and medium-sized learnt clauses (up to 50 literals), respec-
tively.4 In these graphs of communities, the node size is scaled according to the
number of variables that belong to each community. Also, edges are scaled by
their weights. Notice that edges weights are computed using the weights of the
VIG (i.e., taking into account the length of the clauses). As it is stated in [1],
the community structure is clear in all of these three graphs. However, as we
consider more learnt clauses, we can observe two phenomena. First, the number
of communities (number of nodes in the graph of communities) decreases. This
means that variables that originally belonged to distinct communities are now
grouped into the same community. Second, the weight of the inter-communities
edges increases. Therefore, from the two previous effects, we observe that the
solver prefers to learn clauses containing variables of distinct (original) commu-
nities (also stated in [1]). This means that, in general, clause learning contributes
to decrease the modularity.

A question now is: are there some learnt clauses that contribute to increase
the modularity even when most of them do not? In order to answer this ques-
tion, we can measure the increase of the modularity ΔQ that each learnt clause
produces. Notice that ΔQ is positive when most of the new edges generated by
such clause connect nodes (variables) of the same community. Otherwise, ΔQ
is negative. After an extensive experimentation, we see that, in general, learnt
clauses produce a very small decrease of the modularity (i.e., ΔQ < 0, in most
cases). In Fig. 2, we represent this analysis for the industrial instances E05X15
and isqrt1 32. Each point (x, y), with y measured in the left Y axis, represents
a clause learnt at instant x and increasing Q on y. We also represent (using
the right Y axis) the value of the modularity Q using the original partition of

4 As each clause of length l generates
(
l
2

)
edges, it is hard to compute these graphs

using long clauses.
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Fig. 3. Scatter plots of solving original instances (first step) versus generating and
solving formulas augmented with learnt clauses (second plus third steps), at p =
25%, 50%, 75% and 99%

variables, along the execution. We can see that, even when some learnt clauses
contribute to increase the value of Q, most of them do not (i.e., ΔQ < 0),
and thus Q tends to decrease. Due to space limitations, we only represent this
analysis in two benchmarks. However, we observed similar results in most indus-
trial SAT instances studied. Therefore, we can conclude that, in general, learnt
clauses contribute to destroy the (original) community structure of the formula.
It is not due to some particular clauses but rather a general phenomenon of the
learning mechanism.

4 On the Relevance of Learnt Clauses

In this section, we try to answer the following question: if we augment the original
formula with a set of learnt clauses obtained from some CDCL solver, will this
contribute to solve the formula faster? In order to answer this question, we first
introduce the notion of relevant clauses.

Definition 1. Given a SAT solver S, a formula Γ , and a set of clauses ϕ, we
say that ϕ is relevant for Γ and S, if ϕ is a logical consequence of Γ and Γ ∪ ϕ
is easier to solve for S than Γ .
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Fig. 4. Scatter plots of solving original instances (first step) versus solving formulas
augmented with learnt clauses (third step), at p = 25%, 50%, 75% and 99%

Notice that in this definition we neglect the time needed to compute ϕ.
Obviously, previous definition is informal. In order to experimentally validate
if a set of clauses is relevant, we have considered a significant set of industrial
instances.

In a first experiment, we select the set of instances of the application track
of the SAT Competition 2013 solved in less than one hour. Notice that this set
contains both satisfiable and unsatisfiable instances. This experiment is divided
in three steps. In all of them, we use the CDCL SAT solver MiniSAT [7].

First step: we compute the number of conflicts c needed to solve the formula
in an arbitrary run.

Second step: we repeat the same execution stopping the search after a certain
number of conflicts p · c (where 0 < p < 1), and we generate a new instance
augmenting the original formula with the learnt clauses stored in the solver at
that instant.

Third step: we solve the augmented formula generated in the previous step.
We could think that the third step is just the continuation of the second step

due to a restart after p · c conflicts. But this is far from being true. First, CDCL
SAT solvers do have more contextual information than learnt clauses, such as the
activity counters, status of restarts, etc. It is also interesting to notice that the
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phase caching scheme [16] is not saved in the third step: a learnt clause could
have been responsible for a propagation, and thus responsible for setting the
phase caching scheme when backtracking, but this learnt clause could have been
removed. Second, the learnt clauses used to generate the augmented formula will
be treated as original clauses in the third step, i.e., they cannot be removed by
the solver.

Since we limited the number of conflicts to p · c in the second step, you could
expect to need around (1−p) ·c conflicts to complete the search in the third step.
Surprisingly, in our experiments, this is true when the instance is unsatisfiable,
but not when it is satisfiable. If the formula is satisfiable, the aggregated runtime
of generating the augmented formula (second step) and solving it (third step)
is usually higher than the runtime required to solve the original instance (first
step).

Let us present these observations in detail. In Fig. 3, we present the scat-
ter plot of the runtime of solving the original formula (first step) versus gen-
erating and solving the augmented formula (second plus third steps), with
p = 25%, 50%, 75% and 99%, and distinguishing SAT and UNSAT instances. In
unsatisfiable instances, there is almost no difference (i.e., almost all points are on
the diagonal). On the contrary, in satisfiable formulas the differences are much
bigger (almost all points are far from the diagonal). Moreover, as we increase p,
solving original instances is faster than generating and solving their correspond-
ing augmented formulas (almost all points are above the diagonal). In Fig. 4, we
present the scatter plots of solving the original formula (first step) versus just
solving the augmented formula (third step). Notice that in this case, we do not
take into account the runtime needed to generate these augmented instances.
However, even in this case, solving some satisfiable augmented instances takes
more time than solving their corresponding original formulas.

We have observed that augmenting an instance with learnt clauses does not
always contribute to make it easier, when the formula is satisfiable. Let us con-
jecture why. First, although adding learnt clauses helps to reduce the search
space, there are other key components, such as the activity counters and the
phase component caching. These heuristics are set to their optimal5 values after
a certain number of conflicts. The phase component caching may play a crucial
role here, since the solver may use this information to keep the solution to a sub-
problem. Therefore, even if we have an oracle providing a set of learnt clauses,
this does not mean that you will find a satisfying assignment faster. Also notice
that the status of the activity counters cannot be reproduced from this set of
learnt clauses. These counters depend on all clauses learnt during the execution
of a solver, but some of them may have been removed, and therefore they do
not belong to the provided set anymore. Second, in [18] it was shown that the
runtime of solving unsatisfiable formulas is much more robust than for satisfiable
ones. Shuffling the instance may have an important impact on satisfiable prob-
lems, but not on unsatisfiable ones: the effort to find the UNSAT answer (and
the size its proof) are always of the same order. If we try to link our result to

5 In order to guide the search to a satisfying assignment.
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Algorithm 1. Modularity-based SAT Instance Preprocessor (modprep)
Input: SAT Instance Γ
Output: SAT Instance Γ ′

1 Γ ′ := Γ ;
2 C := communityStructure(Γ );
3 foreach pair (ci, cj) of connected communities of C do
4 Solver s;
5 s.solve(ci ∪ cj);
6 if s == UNSAT then
7 return ∅;

8 Γ ′ := Γ ′ ∪ s.learntClauses

9 return Γ ′;

this work, we think a reasonable explanation is the following one. For satisfiable
instances, the solver is mostly starting again the whole search, trying to learn
the correct phase component caching values. In this case, adding learnt clauses
can slightly help, but the overall process is dominated by the high discrepancy
of CPU time needed for satisfiable problems when shuffling the instance. For
unsatisfiable instances, this shows that the solver is continuing the same proof.

Therefore, even when adding learnt clauses does not always help in satisfiable
instances, is it possible to find a set of highly useful clauses that makes these
formulas easier? In the next section, we will show that we can use the community
structure to identify some clauses that are indeed relevant for those instances,
i.e., they help to solve satisfiable instances faster.

5 Detecting Relevant Learnt Clauses

Learnt clauses are redundant by definition, hence not strictly necessary. How-
ever, they can help to prevent exploring the same unsatisfiable subspaces during
the search. Moreover, their role could be to guide the solver in building the
UNSAT proof by resolution. It is essential here to see CDCL SAT solvers as a
combination of backtrack search algorithms (where learnt clauses are used to
prevent exploring the same search space) and resolution proof engines (where
learnt clauses are used to derive new learnt clauses).

In the early versions of CDCL solvers, memory was an important issue [7,13].
Therefore, some heuristics were proposed to remove useless clauses. Moreover, it
is important to correctly manage the learnt clauses database in order to maintain
a good unit propagation speed. More recently [2], some clause removal policies
have been proposed. They aggressively remove most of the learnt clauses (95%
of the learnt clauses can be removed). The proposed strategy is now one of
the standards in CDCL engines. Thus, this policy is not only about maintain-
ing good unit propagation rates, but also to guide the solver to some easier
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proofs. In Glucose, it was proposed to consider the number of decision levels
occurring in a learnt clause as a measure of its quality (this was called Literal
Block Distance, LBD, lower is better). The idea was that literals propagated
at the same decision level were tightly connected and may often be propagated
again and again together. Clauses of LBD 2 (called glue clauses) are kept forever
in Glucose. Recently [15], it was shown that the LBD value was correlated to the
number of communities of the clause. In this section, we show that community
structure can be used to detect relevant learnt clauses.

In Alg. 1, we propose a technique presented as a preprocessing step, called
Modularity-based SAT Instance Preprocessor (modprec). It augments the orig-
inal formula with some learnt clauses based on its community structure. This
algorithm proceeds as follows. First, it computes the community structure of
the original formula (line 2), as described in Section 2. Recall that each commu-
nity represents a set of clauses of the original instance. Then, for each pair of
connected communities6, it creates a subformula containing both communities,
and solves it (line 5). If this subformula is UNSAT, it returns the empty clause.
Otherwise, the original instance is augmented with the clauses the solver learnt
for solving such subformula (line 8). Finally, it returns the augmented instance.

Notice that the previous algorithm imposes a very strong condition, which
is solving all subformulas between two connected communities and keeping all
learnt clauses found in this process. This could be further refined. Moreover, this
preprocessing step could be heuristically applied during the search in the flavor
of inprocessing approaches [9].

Although we will show in next section that this approach works experimen-
tally, we may wonder why these learnt clauses indeed improve the performance
of the solver. It is worth noticing that, by construction, these learnt clauses are
usually composed of at most 2 communities, and thus are clearly related to the
notion of glue clauses aforementioned. In addition, as we showed in Section 3,
learnt clauses contribute to destroy the original community structure. In order
to do this, we first need to connect pairs of communities, then triples of commu-
nities, and so forth; since we learn clauses that connect all communities (i.e., the
whole formula) and we derive the empty clause. Therefore, we do not want to
erase the base of this process (clauses connecting pairs of communities). Notice
that a solver not aware of the community structure may remove them, unless,
as we do, these clauses are added in a preprocessing step as original clauses. i.e.,
the solver will not remove them.

In this work, we only consider learnt clauses connecting pairs of communities
at the preprocessing step, and not triples or higher arities. This is because the
combinatorial space for pairs can be managed efficiently by the SAT solver. For
bigger arities, we would need some additional filtering criterion, or working on
a parallel solver (discussed in Section 8).

6 Two communities are connected if there exists at least one variable appearing in
both of them.
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Fig. 5. Evaluation of application instances of the SAT Competition 2011, distinguishing
satisfiable instances (top) and unsatisfiable instances (bottom), for Glucose, Lingering,
MiniSAT-blbd, and MiniSAT; with and without using our preprocessor

6 Experimental Evaluation

In this section, we present an experimental evaluation of the modularity-based
preprocessor presented in the previous section. All experiments were run in a
cluster of 9 nodes IBM dx360 M2, each of them with 32GB of RAM and 2
processors Intel(R) Xeon(R) CPU L5520 2.27 GHz, limiting all experiments to a



Using Community Structure to Detect Relevant Learnt Clauses 249

single core and to a maximum of 4GB of RAM. We use four representative CDCL
SAT solvers: MiniSAT [7], Lingeling [3], Glucose [2], and MiniSAT-blbd [6].
MiniSAT is one of the most popular CDCL SAT solvers, while the three others
were the best ranked solvers in the application track of the last SAT Competition
2014: Lingeling won both the UNSAT and the SAT+UNSAT tracks, MiniSAT-
blbd won the SAT track, and Glucose was the second classified in the UNSAT
track.

First, we evaluate how expensive is running the preprocessor described in
Alg. 1 on a set of industrial SAT instances. We use the 300 application instances
of the SAT Competition 2011. Notice that Alg. 1 can be split into two steps:
i) partitioning the input formula into subformulas; and ii) solving them.

We compute the community structure as described in [1]7. For this set of
300 application instances, this tool is able to correctly compute the community
structure of 298 instances. This process is, in general, very fast. The average,
median and maximum runtimes are respectively 12.6, 4.3 and 294.5 seconds.

Then, we solve all subformulas using MiniSAT. This step is performed on
the 298 industrial formulas, with an average, median and maximum runtime
of 78.0, 21.8 and 975.8 seconds, respectively. The average, median, maximum
and minimum number of clauses that our preprocessor learnt is 11243.9, 512,
794950 and 1 clauses, respectively. A natural question now is if the number of
clauses learnt with this preprocessor depends on the solver used to solve such
subformulas. We run again this step using Glucose instead that MiniSAT. Notice
that Glucose uses a more aggressive clause removal policy. However, we observe
that this solver learns, in general, a similar number of clauses as MiniSAT, and
needs a similar runtime to solve these subformulas. This is because the input
subformulas are, in general, very easy.

In the next experiment, we evaluate the performance of the mentioned
solvers, with and without using the presented preprocessor (referred in the plots
as <solver> and modprep+<solver>, respectively). In Fig. 5, we represent the
plots of this evaluation (solvers with and without using the preprocessor) for the
industrial instances of the SAT Competition 2011, distinguishing between satis-
fiable and unsatisfiable instances. We represent a cactus plot (i.e., the maximum
runtime of solving a set of instances) with logarithmic Y axis. The timeout is
set to 25000 seconds (the timeout usually used in competitions is 5000 seconds).
We remark that the reported runtime when the preprocessor is used include the
runtime of computing the community structure and the runtime of solving all
subformulas. We observe that using our preprocessor with MiniSAT, Glucose or
MiniSAT-blbd improves their performance in satisfiable instances. Moreover, in
unsatisfiable instances, Glucose also improves its performance. Interestingly, for
this timeout of 25000 seconds, enhancing a solver with our preprocessor results
into the best choice for solving satisfiable instances (using MiniSAT-blbd) and
unsatisfiable instances (using Glucose). More interestingly, the solver MiniSAT-
blbd enhanced with our preprocessor also results into the best technique to solve
satisfiable instances when a timeout of 5000 seconds is considered (similar to the

7 Tool available in http://www.iiia.csic.es/∼jgiraldez/software.

http://www.iiia.csic.es/~jgiraldez/software
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Fig. 6. Evaluation of application instances of the SAT Competition 2014, distinguishing
satisfiable instances (top) and unsatisfiable instances (bottom), for Glucose, Lingering,
and MiniSAT-blbd; with and without using our preprocessor

timeout used in the competition). It is worth noting that, for very easy instances,
the overhead of the preprocessor (i.e., computing the community structure and
solving all subformulas) does not compensate.
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Fig. 7. Evaluation of random and sequential partitions, distinguishing between satis-
fiable (left) and unsatisfiable formulas (right), using the set of industrial instances of
the SAT Competition 2011, and solved by Glucose

We want to validate if the previous results also hold in a different set of indus-
trial instances. We repeat the same experiment8 for the set of 300 application
instances of the SAT Competition 2014. In Fig. 6, we represent the cactus plot of
this experiment, distinguishing between satisfiable and unsatisfiable instances.
Again, we observe that Glucose and MiniSAT-blbd improve their performance
in both satisfiable and unsatisfiable instances when the preprocessor is used. In
fact, MiniSAT-blbd enhanced with our technique is the best solver in satisfi-
able instances. Interestingly, these solvers also improve their performance using
a shorter timeout of 5000 seconds. For instance, in our cluster MiniSAT-blbd
solves 97 SAT instances, while this solver enhanced with our preprocessor solves
111. This difference is significant in the context of competitions. Also, Glucose
solves 194 SAT+UNSAT instances, while using our technique with this solver
results into a total of 206 SAT+UNSAT solved instances. Again, this difference
is significant. However, our preprocessor does not improve the performance of
Lingeling.

Finally, we want to check if a random partition of the formula would have
the same effect as the partition provided by the community structure. For every
instance, we compute a random partition of the formula with the same number
of components as in the community structure. Also, we compute a sequential
partition, where all variables of a component have sequential indexes. Then, we
repeat all the experimentation with these random and sequential partitions. In
Fig. 7, we show the cactus plot of the results on the set of industrial instances of
the SAT Competition 2011. As expected, none of these methods performs better
than either our proposed technique or solving the original instances.

Notice that in the previous experiment, the average, median, maximum and
minimum number of clauses learnt by our preprocessor was respectively 4015.12,
28, 209085 and 0 clauses using the random partition, and 35360, 987, 951839
and 0 clauses using the sequential partition. Recall that using the community

8 Excluding MiniSAT.
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structure, our preprocessor learnt in average, median, maximum and minimum a
total of 11243.9, 512, 794950 and 1 clauses, respectively. Therefore, with random
components the number of learnt clauses is smaller than using the community
structure, whereas with sequential components this number is bigger. This sug-
gests that the partition used to create the subformulas is more important than
the number of clauses learnt by the preprocessor.

7 Related Work

A pioneering work on using community structure to speed-up solvers was pre-
sented in [12]. In particular, they proposed to solve Maximum Satisfiability for-
mulas by partitioning them according to the community structure and adding
incrementally to the MaxSAT solver the sets of clauses related to communities.

In [11], it is shown that learnt clauses are most likely to be composed by
variables on the fringes between communities. Interestingly enough, this con-
firms that the learning scheme tends to destroy the community structure: adding
clauses with internal variables of communities would increase the clustering into
communities. However, adding links between clusters by linking variables on
their fringes seems to be more efficient.

As already mentioned, our work is also related to the work in [15]. Our current
work contributes to confirm this by suggesting that good clauses are composed of
variables from a few communities but, for the first time, it was possible to guide
a CDCL SAT solver by the community structure of the formula. In particular,
we think we were able to guide the solver to learn a set of initial glue clauses.

8 Conclusions and Future Work

In this paper, we use the community structure of industrial SAT instances to
identify a set of highly useful learnt clauses. We show that augmenting a SAT
instance with clauses learnt by the solver during its execution does not always
mean to make the instance easier, especially in the case of satisfiable instances.
However, we also show that augmenting the formula with a set of clauses based
on the community structure of the formula improves the performance of the
solver in many cases. Interestingly, this improvement is especially relevant in
satisfiable instances. In particular, we use the set of clauses learnt from solving
all subformulas consisting in pairs of connected communities.

We implement this approach as a preprocessor, and we show that it works
experimentally on some representative sets of industrial instances, especially
in satisfiable formulas. Interestingly, the SAT solver MiniSAT-blbd, which was
the winner of the satisfiable track of the last SAT Competition 2014, enhanced
with our technique improves its performance. It is also the case of Glucose,
which improves its performance when it is enhanced with our technique in both
satisfiable and unsatisfiable instances. To the best of our knowledge, this is the
first time that community structure has been used to improve the performance
of a CDCL SAT solver.
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An important development of our work could be the design of a parallel
solver. Each core could work only on a subset of the initial clauses, without
communications. This could also allow us to extend our approach to tuples of
communities instead of pairs of communities.

Our approach can also be improved by trying to guess which pairs of com-
munities are important to work on. We are currently investigating this. At last,
it is also important to link the community structure of formulas with their ini-
tial problem and generation. Linking the original problem with the detected
communities is also an ongoing work.
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Abstract. We present a new algorithm to efficiently extract informa-
tion about nested functional dependencies between variables of a for-
mula in CNF. Our algorithm uses the relation between gate encodings
and blocked sets in CNF formulas. Our notion of “gate” emphasizes this
relation. The presented algorithm is central to our new tool, cnf2aig, that
produces equisatisfiable and-inverter-graphs (AIGs) from CNF formulas.
We compare the novel algorithm to earlier approaches and show that the
produced AIG are generally more succinct and use less input variables.
As the gate-detection is related to the structure of input formulas, we
furthermore analyze the gate-detection before and after applying prepro-
cessing techniques.

1 Introduction

The problem to automatically decide the satisfiability of propositional formulas
(SAT) is important in numerous areas, from verification domains [9] to hardware
layout [21] or AI planning [24]. Recent SAT solvers show a very good performance
in solving large application instances with millions of variables. The reason is
often thought to be their direct and indirect exploitation of problem-structure in
application instances [25]. There are several notions of structure [4,7,29]. In this
paper we focus on functional and partially functional relations between variables.
Usually, application instances in CNF originate from more structured represen-
tations in full propositional logic, or are projections of formulations in higher
order logics [26]. Tseitin-based CNF encodings are widely used to encode nested
gate-structures to CNF [23,27,28]. Although the functional relations between
variables are “hidden” in the CNF, they are still present and can be detected.
We show that even random instances contain up to 10% variables that our app-
roach recognizes as outputs of a gate-like structure. Furthermore we show that
our approach can be used to improve SAT solver performance.
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1.1 Related Work

Efficient encodings of Boolean formulas to CNF rely on the introduction of new
variable symbols for each connective in the formula. The well-known Tseitin [28]
encoding and optimizations like the one of Plaisted and Greenbaum [23] are of
this kind. Direct access to information about the original formula structure of
the CNFs that are encoded that way is lost, however, yet it would be beneficial
in many applications. For example, structural information can be used to mini-
mize models [13] or to increase SAT solver performance [3,11,14]. Preprocessing
techniques are also directly or indirectly related to the structure of CNFs that
originate from circuits [16].

There are approaches that explicitly recover and extract such functional
structure from existing CNFs. These are mostly based on fixed clausal pat-
terns (as in [10,19,22]) or on detection of functional dependencies for variable
elimination [8,18]. Detection is often limited to specific clausal patterns that
arise from encoding basic Boolean functions such as AND or OR. For cardinality
constraints, a semantic detection based on unit propagation has also been pre-
sented [3]. Blocked Set Decomposition has been successfully used to generate
and-inverter-graphs (AIGs) from CNF; Balyo et al. [2] present an AIG encod-
ing that is based on the solution algorithm for blocked sets that we explain in
Section 2.3.

1.2 Contributions

We present a general notion of gates that encompasses arbitrary functional rela-
tions between one output and several input variables in CNF. We also investigate
the relation between blocked clauses and functional relations. In our opinion, this
has not been made clear enough in the past. We also see great potential in con-
necting CNF encodings and pre-processing techniques more closely.

We developed the tool cnf2aig, which implements a new algorithm for gate
detection and generates AIGs from arbitrary CNFs. We show that the AIGs
generated by our tool are more compact and use fewer variables than those
produced by the tool presented in [2]. Furthermore we compared SAT solver
performance in an experimental tool-chain that was first presented in [2] and
show that using our gate recognition approach results in faster runtimes.

We furthermore experimentally show that some pre-processing techniques,
such as bounded variable elimination, are detrimental to our gate detection app-
roach, whereas especially blocked clause decomposition (BCD) but also bounded
variable addition (BVA) have a rather positive effect on recognition rates.

2 Theoretical Background

We use a Boolean algebra with variables V and the common operators ∧,∨,¬
with their usual semantics. A literal l is either a variable or its complement.
Given a Boolean formula F , vars(F ) denotes the set of variables and lits(F ) the
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set of literals that occur in F . A formula is in Conjunctive Normal Form (CNF)
if it is a conjunction of disjunctions of literals. A CNF C is represented by a
set of clauses, where a clause is a set of literals. In the following, Cl denotes the
subset of clauses in C that contain literal l, i.e. Cl = {c ∈ C | l ∈ c}. Given
a CNF C, a literal l ∈ lits(C) is pure in F iff Cl = ∅. The restriction C|l=v

is derived from C by assigning v to literal l and subsequent simplification. A
variable assignment a : V → {0, 1} is represented by a set Ma of literals such
that v ∈ Ma iff a(v) = 1 and ¬v ∈ Ma iff a(v) = 0.

Given two clauses c1 and c2 and a literal l, such that l ∈ c1 and l ∈ c2, the
resolvent c1 ⊗l c2 is the clause (c1 ∪ c2) \ {l, l} It holds that c1, c2 |= c1 ⊗l c2.
For sets of clauses C1 and C2, the set C1 ⊗l C2 denotes the set of all resolvents
between clauses in C1 and C2 on l.

Given a CNF C, a clause c ∈ C is blocked in C if there exists a literal l ∈ c
such that for every clause d ∈ Cl the resolvent c ⊗l d is tautological. The literal
l is also called the blocking literal of c. A set of clauses D ⊆ C is blocked iff each
clause D is blocked in C.

Given a formula F in CNF we can construct an equivalent formula G via
unit propagation, denoted by F 
UP G, by removing for each unit clause {l} ∈ F
all clauses in Fl and replacing each clause c ∈ Fl by c \ {l}, repeating the whole
process until all unit clauses are processed.

2.1 Gates and Monotonicity

In this section we introduce gates as relations and show some interesting prop-
erties and how they correspond to their propositional encodings. By B = {0, 1}
we denote the set of Boolean constants.

Definition 1 (Gate). An n-ary gate G is a functional relation G ⊆ B
n × B of

n input variables P = (p1, . . . , pn) and one output variable o.

Functionality breaks down into the two properties left-totality and right-
uniqueness, i.e. a relation is functional iff it is left-total and right-unique. A
n+1-ary relation G with inputs P = (p1, . . . , pn) and output o is

– left-total if ∀P ∈ B
n.∃o ∈ B.(p1, . . . , pn, o) ∈ G

– right-unique if ∀P ∈ B
n.∃o ∈ B.(p1, . . . , pn, o) ∈ G

From left-totality follows that for every 2n combinations of inputs there exists
an output such that the tuple is in the gate and from right-uniqueness follows
that there is exactly one output such that the tuple is in the gate.

Given a gate G(p1, . . . , pn, o) there exists a corresponding Boolean function
g and a propositional encoding Γ of o ↔ g(p1, . . . , pn) such that for every tuple
T ∈ B

n × B there exists a corresponding model MT |= Γ iff T ∈ G. Given a
tuple T = (t1, . . . , tn+1) and corresponding propositional variables τi for every
ti, then the corresponding model M is constructed such that τi ∈ M iff ti = 1
and ¬τi ∈ M iff ti = 0. In the following, for simplicity, we assume Γ to be
directly encoded in CNF.
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From left-totality follows that an encoding Γ of an n-ary gate G can be
satisfied for all 2n assignments to its input variables by picking the proper output
assignment. This basic insight leads us to Proposition 1.

Proposition 1 (Left-Totality and CNF Encodings of Gates). For any
direct CNF encoding Γ of a gate G with output variable ω, each non-tautological
clause c ∈ Γ contains either ω or ¬ω. Furthermore all resolvents r ∈ Γω ⊗ω Γω

are necessarily tautologic.

Proof. Let G be a gate with encoding Γ and let c ∈ Γ be a non-tautological
clause. Now assume that ω ∈ c and also ¬ω ∈ c. This contradicts left-totality as
such a clause c imposes a restriction on the input variables such that there is no
possible output (0 or 1) in the corresponding gate G. The same argument can
be applied to resolvents r ∈ Γω ⊗ω Γω. By definition of resolution it holds that
ω ∈ vars(r). As Γ |= r the assumption that r is non-tautological also contradicts
left-totality as such a resolvent also imposes a restriction solely on the input
variables. So each resolvent r ∈ Γω ⊗ω Γω is necessarily tautologic. �

Usually, in CNF encodings a gate’s output can be input to other gates and
can even be inverted such that in compressed encodings its output is used in
several polarities as input to other gates. We address these issues in the following
definitions of nesting and monotonicity.

Definition 2 (Nesting of Gates). A gate G with output o is directly nested in
another gate H if output o is input to H. We denote this by G < H. Moreover,
we use the symbol <+ for the transitive closure of <, and say that G is nested
in H if G <+ H. Nesting is a transitive, irreflexive and asymmetric relation on
gates, i.e. it imposes a strict partial order.1

Assume a formula F in CNF and a set of gates G = {G1, . . . , Gn} contained
in F , i.e. the clauses of their CNF encodings are contained in F . Then F can
be partitioned into a “gate part”, FG and a remaining part FR = F \ FG. In G,
some of the gates are “output gates” which are not nested in other gates. These
are the maximal elements of < in G. We assume in the following that there is a
unique maximal gate in G. If this is not the case, we add an additional AND gate
on top (with output oF ), connecting all outputs of the maximal gates in G. We
also integrate the remainder FR into this gate by adding oF as additional literal
to each clause in FR. Moreover, we add the unit clause {oF } to F . The resulting
formula F ′ is equisatisfiable to F .

Thereby we can more easily detect partially encoded gates that provide a
sufficient encoding if the gate is monotonic as we argue as follows.

A Boolean function g(p1, . . . , pi, . . . , pn) is monotonically increasing in argu-
ment i, if a ≤ b implies g(p1, . . . , a, . . . , pn) ≤ g(p1, . . . , b, . . . , pn), and mono-
tonically decreasing if a ≤ b implies g(p1, . . . , a, . . . , pn) ≥ g(p1, . . . , b, . . . , pn).
A Boolean function is monotonic iff it is monotonic in every argument. Com-
mon examples for monotonic functions are AND and OR, common examples for
1 We assume combinational circuits here (as opposed to sequential circuits).
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non-monotonic functions are XOR and EQIV. A gate is monotonic iff its output
variable is determined by a monotonic function.

To detect partially encoded gates, we define in definition 3 the notion of a
nesting polarity np for each gate. np(G) ∈ {p, n, 0}, where p indicates positive
polarity, n negative polarity, and 0 indicates that the gate has no polarity and
thus has to be encoded fully.

Definition 3 (Nesting Polarity, Monotonic Nesting). Given a set of
nested gates G with maximum gate M , then np(M) = p, and for each other
gate the polarity is defined as follows: Given a gate G = M , we define the suc-
cessor set S(G) = {G′ ∈ G | G < G′}. Now the polarity of G is determined
by:

– np(G) = p if for all elements G′ ∈ S(G) the following holds: if np(G′) = p
then G is a monotonically increasing argument of G′, or, if np(G′) = n then
G is a monotonically decreasing argument of G′.

– np(G) = n if for all elements G′ ∈ S(G) the following holds: if np(G′) = n
then G is a monotonically increasing argument of G′, or, if np(G′) = p then
G is a monotonically decreasing argument of G′.

– Otherwise np(G) = 0.

We call a gate G monotonically nested in G if np(G) = 0.

Optimizations of encodings Γ of gates often skip right-uniqueness of mono-
tonic nested gates by using partial gate encodings (i.e. either Γ o or Γ o) to reduce
the number of clauses [23]. In a nested gate structure we may use a partial encod-
ing for G without changing satisfiability iff it is monotonically nested. We may
use Γ o if np(G) = p and Γ o if np(G) = n.2

When we decode a nested gate structure from CNF we basically reduce the
number of input variables. We will later use the remaining number of input
variables as a quality measure of our applied recognition methods.

2.2 And-Inverter Graphs (AIG)

An And-Inverter Graph (AIG) encodes a nested gate structure by only using
binary AND-gates and logical negation [17]. Our tool cnf2aig produces AIGs in
the input format that is described on the website http://fmv.jku.at/aiger/.

2.3 Preprocessing

Preprocessing, or formula simplification, is to apply techniques to a given formula
F , such that the resulting formula F ′ is equisatisfiable. Furthermore, these sim-
plification techniques are assumed to make solving an application formula sim-
pler [8,15]. Some of the most powerful simplification techniques are bounded vari-
able elimination, bounded variable addition and blocked clause elimination [1,15].
2 There “emerge” additional models M that are no model for the fully encoded formula

F , i.e. M |= F \ Γ o but M �|= F . These models can be “repaired” by flipping the
output literal, i.e. if G is nested monotonic it is guaranteed [23] that Mo/o |= F .

http://fmv.jku.at/aiger/
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However, these preprocessing techniques are also assumed to destroy the struc-
ture of F , such that F ′ is “less structured”. In the following paragraphs we briefly
summarize the properties of the mentioned simplification techniques. Further-
more, we describe blocked clause decomposition, which is based on blocked clause
elimination.

Bounded Variable Elimination. Bounded variable elimination (BVE) [6,8] elim-
inates variables from a formula F by resolution. Given F x and F x, then the set
of all non-tautological resolvents S is created. If the number of clauses in S is
less or equal to the number of clauses that contain the variable x, then F x and
F x are replaced with S.

The result of applying variable elimination to a formula F on the variable
x is the formula F ′ = (F ∪ (F x ⊗v F x)) \ (F x ∪ F x). Usually, the clauses in S
are used for subsumption and strengthening, before the next variable of F is
eliminated [8]. In case F x ∪ F x contain a functional dependency for the variable
x, the set of resolvents can be reduced further [8].

Bounded Variable Addition. Bounded variable addition (BVA) [20] can be under-
stood as the reverse operation of BVE, because BVA adds a partial defini-
tion of a fresh variable v to the formula: First, a fresh variable v is intro-
duced like in extended resolution [28], resulting in the intermediate formula
G = F ∪ {{v, x, y}, {v, x}, {v, y}}, where x, y ∈ lits(F ). Next, all clauses
C,D ∈ F , which have a common subclause E such that C = E ∪ {x} and
D = E ∪ {y} are replaced by the new clause (v ∨ E), resulting in the formula
H. Finally, the formula F ′, the result of applying bounded variable addition,
is obtained from the formula H by removing the clause {v, x, y}, because this
clause is blocked. Hence, the variable v represents the output of a newly intro-
duced partial gate. In implemented variants this gate is an and-gate with an
arbitrary number of inputs [20].

Blocked Clause Elimination. Blocked clause elimination (BCE) [15] removes
blocked clauses from a formula. When C is a blocked clause in F , then F ′ is
obtained as F \ C. This removal is usually repeated until F ′ does not contain
any blocked clause any longer. BCE can also reduce a CNF with a gate encod-
ing from a full encoding to a partial encoding, wherever the formula allows this
transformation [15].

Blocked Clause Decomposition. A formula F can be decomposed by blocked
clause decomposition (BCD) [12] into two disjoint formulas G and H. Further-
more, by applying BCE to G the empty formula is obtained and likewise BCE
on H returns the empty formula. Hence, both G and H are satisfiable.

For a blocked set G a satisfying assignment can be computed in a polynomial
number of steps [12]. Assume the order of removing blocked clauses from G is
known. Then, the assignment I is modified to satisfy the current blocked clause
C ∈ G with the blocking literal l ∈ C, if I |= C by flipping the assignment of
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the literal l. Hence, the literal l can also be seen as the output of a gate C, as
its assignment is flipped according to the remaining literals of C.

Balyo et al. present several methods to perform blocked clause decomposition
in [2] . Their goal is to create one blocked set that is as large as possible next to
a smaller blocked set. For that they apply a post-processing step to an original
decomposition in order to move clauses from the smaller to the larger blocked
set as long as this set remains blocked. In the end they create a new variable v,
add a unit-clause {v}, and append the literal ¬v to every clause in the small set.
They also present an algorithm where they generate AIG from the two blocked
sets they previously generated. These AIG basically simulate the algorithm for
solving blocked sets, such that it introduces versions of blocking variables for
each possible flip that occurs in the process of solving the blocked set.

3 Recognition of Nested Gates

In the following we use the fact that we can always construct a maximum partial
gate encoding Mr with output r and function F by adding ¬r to every clause
in F such that r ∧ Mr |= F . Our method is presented by the two algorithms 1
and 2, where algorithm 1 iteratively selects a root literal o as possible output of a
gate and then uses algorithm 2 to test for existence of a recursive gate-structure
with the given output o. If algorithm 2 successfully decodes a gate with output
o it recursively continues on the inputs to decode possibly nested gates.

3.1 Iterative Root Selection

Algorithm 1 displays the outer loop recognizeGates of our gate recognition
method. The input is a CNF formula F and a constant max-tries that con-
strains the number of iterations. The output is a set of tuples {(o, Γ )}, where
each tuple (o, Γ ) represents a gate with output literal o and encoding clauses Γ .

First (in line 1) we initialize the output set, and introduce two more sets
S and C to keep track of the already processed clauses. For the given number
of tries (line 2) we select a clause from F (line 3) and keep track of the such
selected clauses in the set S (line 4) as we use them later to create the maximum
partial gate.

As long as the formula contains unprocessed unit-clauses selectClause returns
a unit-clause. If there is no unit-clause left we choose the literal with the least
number of occurrences and randomly select one clause which contains that literal.

Then in line 6 we globally mark each literal l in the selected clause as input.
This flag is used in algorithm 2 to check for monotonic nesting of the candidate
gate encoding.

For each literal l in the currently selected clause we descent into recursive
gate extraction via extractGate (line 8). The method extractGate (algorithm 2)
checks if there exists an encoding Γ ⊆ F with output literal l and if this is the
case it recursively extracts all the nested gates. The method extractGate returns
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Algorithm 1. Gate Recognition: recognizeGates(F, max-tries)

Data: F : CNF formula, max-tries: maximum number of extraction attempts
Result: G : a set of tuples (o, Γ ) where Γ is the CNF of a gate encoding with

output literal o
1 G ← C ← S ← ∅
2 for i ← 1 to max-tries do
3 c ← selectClause(F \ (C ∪ S))
4 S ← S ∪ {c}

// Globally mark inputs literals:

5 for l ∈ c do
6 setAsInput (l)

// Recursively extract nested gates:

7 for l ∈ c do
8 G′ ← extractGates(l, (F \ (C ∪ S))
9 G ← G ∪ G′

10 for (o, Γ ) ∈ G′ do
11 C ← C ∪ Γ

// Create unique maximal gate:

12 o ← newV ar
13 Γ ← ∅
14 for c ∈ F \ C do
15 Γ ← Γ ∪ {c ∪ {o}}
16 return G ∪ {(o, Γ )}

a set of tuples with one tuple per recognized gate. We keep track of the encoding
clauses of already recognized gates in C (line 11).

In the end (lines 12-15) we create a partial gate encoding for the remaining
clauses including the previously selected clauses. This partial gate is then the
maximum of our nested gate structure.

3.2 Recursive Gate Extraction

Algorithm 2 displays the inner recursive function extractGate that is used in the
outer loop of algorithm 1 do the actual gate recognition. The algorithm’s input
is a CNF that contains the yet unprocessed clauses and an output literal. The
algorithm’s output like in algorithm 1 is the set of recognized gates represented
by tuples (o, Γ ) of an output literal o and encoding clauses Γ .

If for the given literal o a gate encoding Γ ⊆ F is recognized, the algorithm
descends recursively for each input of the extracted gate. At the end of the
recursion the union of all extracted gates is created (line 17) and returned.

Note that we always extract all the clauses that contain the output literal in
question. The first test in line 2 checks if these clauses block each other on the
output literal. As we have seen in Proposition 1 this is a mandatory property to
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Algorithm 2. Gate Extraction: extractGates(o,F)
Data: o : output literal, F : CNF formula
Result: G : a set of tuples (o, Γ ) where Γ is the CNF of a gate encoding with

output literal o
1 G ← C ← ∅
2 if Fo block Fo then
3 C ← C ∪ {Fo ∪ Fo}

// Check monotonicity of nesting:

4 if isSetAsInput(o) then
5 monotonic ← false

6 else
7 monotonic ← true

8 if monotonic ∨ isFullEncoding(o, Fo ∪ Fo) then
9 G ← G ∪ {(o, Fo ∪ Fo)}

10 inputs ← lits(Fo) \ {o}
// Globally mark inputs literals:

11 for l ∈ inputs do
12 setAsInput (l)
13 if ¬monotonic then
14 setAsInput (¬l)

// Recursively extract nested gates:

15 for l ∈ inputs do
16 G′ ← extractGates(l, F \ C)
17 G ← G ∪ G′

18 for (o, Γ ) ∈ G′ do
19 C ← C ∪ Γ

20 return G

ensure left-totality. If we are in a monotonic branch (line 7) we can then eagerly
continue as we may skip right-uniqueness in the monotonic case (see Section 2.1).

Otherwise (line 8) we have to test if the clauses realize a full gate encoding,
which includes an equivalence check. Details about the different methods of
equivalence detection that we have implemented and evaluated can be found in
Section 3.3.

In lines 12 and 14 we globally mark the input literals for follow-up monotonic-
ity detection. Note that by using literals instead of variables as gate outputs we
implicitly keep track of the nesting polarity. Also note that in line 14 we pass-on
non-monotonicity to subsequently nested gates.

3.3 Equivalence Detection Methods

Given the candidate clauses Γp and Γp such that all clauses from Γp ≡ p → g and
Γp ≡ p ← g′ are blocked on p, we have previously seen that left-totality follows
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from the blocked -property. For non-monotonically nested gates we still have to
show right-uniqueness to obtain equivalence. We implemented three methods to
deal with that situation.

Skip. In this variant we just stop gate-recognition at non-monotonic inputs. This
typically results in a larger remainder at the end of the recognition process. In
the following, we refer to this method as SKIP.

Clausal Patterns. Our second method compares the candidate clauses Γp and
Γp with a fixed set of known clausal patterns to ensure that both encode the
same function. We implemented a simple check for standard AND- and OR-gate
encodings. In the following we refer to this method as PATTERNS.

Semantic Analysis. Given the candidate clauses Γp and Γp such that Γp ≡ p →
g and Γp ≡ p ← g′ our third and most advanced method indirectly proves
right-uniqueness. From Γp we extract g by g = Γp|p=1. Then we prove that
g ∧ p ∧ Γp is UNSAT. In our current implementation we use a simplified, but
incomplete method that uses unit-propagation and Minisat’s assumptions. We
start by initializing Minisat with the complete input formula F , and then try to
prove by unit-propagation the unsatisfiability of M ∧ p ∧ F for every model M
of g (note that F |= Γp) using the assumptions M ∧ p.

As these checks are run quite often (eventually more than once per variable)
and as the construction of all models of g can be exponential, we have bounded
the number and the size of the clauses in g; i.e. we start semantic analysis only
if |Γp| ≤ k1 and for each c ∈ Γp, |c| ≤ k2. We used the values k1 = 3 and k2 = 4.
In the following we refer to this method as SEMANTIC.

3.4 AIG Construction

The output of our gate-recognition algorithm is a set of tuples {(o, Γ )} of out-
put literals o and encoding clauses Γ . These tuples can be further processed to
produce an AIG. The following paragraphs describe the method that is also
applied in our tool cnf2aig that can be downloaded at https://github.com/
IserMk/cnf2aig.

For each tuple (o, Γ ) with output literal o and clauses Γ = {c1, . . . , cn}
we create a set of and-gates in which we reuse the given variables. For each
clause ci ∈ Γ we create a new variable γi that is output of a new and-gate
γi = and(l1, l2, . . . , l|ci|) with distinct lj ∈ ci. Then we use the output literals γi

to construct the outer and-gate o = and(γ1, . . . , γn).
The result of the first step is a directed acyclic graph of n-ary and-gates with

negation. In the next step each n-ary and-gate is converted to a set of binary
and-gates via introduction of new output-variables for each newly created binary
and. The result can be directly converted to the AIG format.3

3 Currently we do not check for duplicate binary and-gates.

https://github.com/IserMk/cnf2aig
https://github.com/IserMk/cnf2aig
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Fig. 1. Relative number of recognized gates (left) and maximum nesting-depth (right)
by equivalence detection method on the application instance set

4 Experimental Results

We experimented with diverse configurations of our algorithm using the bench-
mark set from SAT-Competition 2014. We also used preprocessed CNF of the
chosen benchmark set as input to our algorithm.

Hardware. For our experiments we used a compute cluster where each node
is equipped with 2 Intel Xeon E5430 CPUs running at 2.66 GHz and 32 GB
of RAM. The operating system is OpenSuSE 11.1 Linux 64 bit. We ran each
process with a CPU time limit of 1 hour and a memory limit of 4 GB.

Software. We used existing tools for CNF preprocessing with the methods BVA,
BVE and BCD. For BVA and BVE we used version 4.27 of Coprocessor [18].4 For
BCD we used the tool mvSAT5 and applied the method solitaire decomposition
as described in [2].

Evaluation. We compare the quality of our recognition method in terms of num-
ber of recognized gates (#Gates). As some preprocessing methods change the
total number of variables (#Vars) in a problem, we additionally use the number
of recognized gates relative to the total number of variables. Note that the num-
ber of input variables of the recognized nested structure is exactly the difference
of #Vars and #Gates. The cactus plots that we used to compare the methods
either show for each problem the total or relative amount of recognized gates,
for each method sorted by that amount.

4.1 Equivalence Detection Methods

We compared the quality of our recognition algorithm using the three equivalence
detection methods that are described in Section 3.3. Figure 1 shows that while
the pattern-based equivalence detection PATTERNS gives us almost unrecogniz-
able runtime overhead it has an immense effect on the quantity of recognized
gates (compared to SKIP).

4 available at tools.computational-logic.org
5 available at http://ktiml.mff.cuni.cz/∼balyo/bcd/

tools.computational-logic.org
http://ktiml.mff.cuni.cz/~balyo/bcd/
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Fig. 2. Total and relative number of gates for the application instance set.
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Fig. 3. Total and relative number of gates for the crafted instance set.

Our implementation of the semantic equivalence detection method SEMAN-
TIC is implemented as a fallback when the PATTERNS method fails. As the
construction of models of g is exponential we imposed a bound on the number
and sizes of clauses in g for which we run the method. However it still has such
a bad runtime (many time- and memory-outs) that the methods can hardly be
compared. In the best cases of our experiments it still has some slightly improved
recognition rates.

4.2 Preprocessing and Gate Recognition

We experimented with several combinations of preprocessors before recognition.
Figures 2, 3 and 4 show the absolute and relative numbers of recognized gates
per preprocessing method for the application, crafted and random instance set,
respectively.

The plots display the quantitative recognition results on the unprocessed
CNF (none) on the CNF after BCD (BCD) on the CNF after BVA with subse-
quent BCD (BVA + BCD) and after BVE with subsequent BCD (BVE + BCD).

Unprocessed CNF. On the crafted and application instance set the recognition
results are best for the unprocessed CNF only if there are a lot of gates to
recognize (i.e. higher rates at the ”head”).
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Fig. 4. Total and relative number of gates for the random instance set.

Blocked Clause Decomposition (BCD). Running BCD before recognition causes
our algorithm to always start recursion on the inputs of the partial gate that
mvSAT constructs from the small blocked set that is generated by the BCD
algorithm [2]. This improves recognition rate at the tail of the distribution for
the crafted and for the application instance set (Figures 2 and 3). For random
instances BCD is responsible for getting a significant recognition rate of up to
10% of the variables (Figure 4).

Bounded Variable Elimination (BVE). BVE seems to “destroy” most of the
gates that our algorithm is capable of recognizing. Even BVE with a follow-up
BCD (this can be seen in the figures) does not help to improve recognition rates.

Bounded Variable Addition (BVA). Recognition rates deteriorate after applica-
tion of BVA compared to the unprocessed CNF. However, after application of
BCD (this can be seen in the figures) BVA sometimes has a positive effect on
the recognition rates. Running BVA and then BCD improves recognition rates
at the tail of the distribution even more than plain BCD does. On the other hand
recognition rates on the head of the distribution rates deteriorate even further.

4.3 Maximum Number of Recognition Tries

We investigated the impact of changing the maximum number of recognition tries
and ran gate-detection with different values of maximum tries on the unprocessed
and on the BCD-preprocessed instance set. Figure 5 shows that an increased
number of recognition tries typically does not improve recognition rates (espe-
cially when many gates can be detected) while making the algorithm slower.

4.4 And-Inverter Graphs

We used our gate-recognition approach on top of BCD to generate AIGs and
compared them to the AIGs generated by the likewise BCD-based approach
presented in [2].
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Fig. 6. Our new approach generates AIG with less input variables and more gates than
the approach implemented in mvSAT.

Quality. The number of input variables controls the degrees of freedom of a
functional structure. Figure 6 shows that our approach produces AIG with less
input variables and but slightly more gates than the reference approach in [2].

Performance. We have run some initial experiments to check whether better
structure recognition can help to elevate SAT solver performance. We tried to
recreate the setup that was used in [2]. So we used an older version (ats) of
lingeling on the benchmark set of 2013 and compared its runtime on the plain
CNF with the runtime on the reencoded CNF with both the old mvSAT and the
new cnf2aig approach. The reencoding was done as described in [2] with AIG
construction (using mvSAT or cnf2aig), followed by time-bounded circuit-level
simplifications with the tool abc (with option -dc2) and a subsequent translation
of the resulting AIG back to CNF.

Figure 7 shows the results for the 138 instances that have a high quality BCD
(at least 90% of the clauses are blocked). The experiments show that structure-
based reencoding can improve the performance of lingeling in some cases. It also
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shows the superiority of our gate recognition method with respect to the previous
approach.6

5 Conclusion and Future Work

We have seen that our algorithm recognizes nested gates in CNF more effectively
than previous approaches. Preliminary results show that our algorithm can be
used to increase SAT solver performance.

From all preprocessing techniques blocked clause decomposition (BCD) has
an outstanding effect on the recognition rate of our algorithm. Also bounded
variable addition (BVA) leads to a better recognition rate for several problems.
In the future it could be possible to integrate BCD and BVA into the gate
recognition process to achieve even better results with special tradeoffs.

When it comes to semantic analysis for detection of full gate-encodings
the performance of our algorithm can still be improved, e.g. with better data-
structures or by using easy to check necessary criteria for equivalence beforehand
in addition to the currently used bounds.

Knowledge about the gate structure of propositional formulas has been
used in the past to elevate SAT solver performance [11,14]. Equipped with our
improved gate-recognition some of these methods could become more effective
and useful, e.g. Counterexample-Guided Abstraction Refinement (CEGAR) [5].
Structure recognition might be a way to make CEGAR applicable even inside a
SAT solver.

6 Deviations in the relative performance of lingeling and mvSAT in our experiments
compared to those presented in [2] we discussed with one of the authors of [2].
Differing results might come from another version of abc we used or from differences
in the computing infrastructure.
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Abstract. Most recent MaxSAT algorithms rely on a succession of calls
to a SAT solver in order to find an optimal solution. In particular, several
algorithms take advantage of the ability of SAT solvers to identify unsat-
isfiable subformulas. Usually, these MaxSAT algorithms perform better
when small unsatisfiable subformulas are found in early iterations of the
algorithm. However, this is not the case in many problem instances, since
the whole formula is given to the SAT solver in each call.

In this paper, we propose to partition the MaxSAT formula using
a resolution-based graph representation. Partitions are then iteratively
joined by using a proximity measure extracted from the graph repre-
sentation of the formula. The algorithm ends when only one partition
remains and the optimal solution is found. Experimental results show
that this new approach further enhances a state of the art MaxSAT
solver to optimally solve a larger set of industrial problem instances.

1 Introduction

The improvements of Maximum Satisfiability (MaxSAT) technology in recent
years lead to a number of applications of MaxSAT. Many real-world prob-
lems in different areas such as fault localization in C programs, design debug-
ging, upgradability of software systems, among others, can now be solved using
MaxSAT [2,10,12,15,24]. In the last decade, several new techniques and algo-
rithms have been proposed that improved on previous MaxSAT solvers by several
orders of magnitude. Moreover, the developments in the underlying SAT technol-
ogy, namely identification of unsatisfiable subformulas and incrementality have
also been a factor in the improvements of MaxSAT solving.

MaxSAT solvers for industrial instances are usually based on iterative calls
to a SAT solver. Moreover, most of these MaxSAT algorithms take advantage
of the ability of SAT solvers to identify unsatisfiable subformulas. However, in
most cases, algorithms deal with the whole formula at each call of the SAT
solver. As a result, unnecessarily large unsatisfiable subformulas can be found at
c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 272–286, 2015.
DOI: 10.1007/978-3-319-24318-4 20
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each SAT call, resulting in a slow down of the MaxSAT algorithm. In this work,
we try to avoid this behavior by partitioning the formula and taking advantage
of structural information obtained from a formula’s graph representation.

In this paper, we improve on the current state of the art MaxSAT solv-
ing by proposing a new unsatisfiability-based algorithm for MaxSAT. The new
algorithm integrates several new features, namely: (1) usage of resolution-based
graphs to represent the MaxSAT formula, (2) partition of soft clauses in the
MaxSAT formula using the referred representation, (3) usage of structural infor-
mation obtained from the graph representation to drive the merge of partitions
and, (4) integration of these features into a new fully incremental algorithm that
improves on one of the best non-portfolio solvers from the last MaxSAT Solver
Evaluation on several partial MaxSAT industrial benchmark sets.

The paper is organized as follows. Section 2 formally defines MaxSAT and
briefly reviews the MaxSAT algorithms more closely related to the proposed app-
roach. In section 3, graph representations of CNF formulas are described. More-
over, the adaptation of resolution-based graphs is proposed. The new MaxSAT
algorithm is presented in section 4. Besides a detailed description, we show how
to extract structural information from the graph representations and integrate
it in the new algorithm. Section 5 presents the experimental results of the new
MaxSAT solver on a large set of industrial benchmark sets used at MaxSAT
evaluations. Finally, the paper concludes in section 6.

2 Preliminaries

A propositional formula in Conjunctive Normal Form (CNF), using n Boolean
variables x1, x2, . . . , xn, is defined as a conjunction of clauses, where a clause
is a disjunction of literals. A literal is either a variable xi or its complement
x̄i. The Propositional Satisfiability (SAT) problem consists of deciding whether
there exists a total assignment to the variables such that the formula is satisfied.

The Maximum Satisfiability (MaxSAT) can be seen as an optimization ver-
sion of the SAT problem. In MaxSAT, the objective is to find a total assignment
to the variables of a CNF formula that minimizes the number of unsatisfied
clauses. Notice that minimizing the number of unsatisfied clauses is equivalent
to maximizing the number of satisfied clauses.

In a partial MaxSAT formula ϕ = ϕh ∪ ϕs, some clauses are considered as
hard (ϕh), while others are declared as soft (ϕs). The goal in partial MaxSAT is
to find a total assignment to the formula variables such that all hard clauses in
ϕh are satisfied, while minimizing the number of unsatisfied soft clauses in ϕs.
There are also weighted variants of MaxSAT where soft clauses are associated
with weights greater than or equal to 1. In this case, the objective is to satisfy
all hard clauses and minimize the total weight of unsatisfied soft clauses. In this
paper, we focus solely on partial MaxSAT, but the proposed approach can be
generalized to its weighted variants. Furthermore, in all algorithms we assume
that the set of hard clauses ϕh is satisfiable. Otherwise, the MaxSAT formula
does not have a solution. This can easily be checked through a SAT call on ϕh.
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Algorithm 1. Linear Search Unsat-Sat Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ) ← (ϕh, ∅, 0)
2 foreach ci ∈ ϕs do
3 VR ← VR ∪ {ri} // ri is a new relaxation variable

4 cR ← ci ∪ {ri}
5 ϕW ← ϕW ∪ {cR}
6 while true do
7 (st, ν, ϕC) ← SAT(ϕW ∪ {CNF(∑ri∈VR

ri ≤ λ)})

8 if st = SAT then
9 return ν // satisfying assignment to ϕ

10 λ ← λ + 1

The most recent state of the art MaxSAT solvers are based on iterative calls
to a SAT solver. One of the most classic approaches is the linear Sat-Unsat
algorithm that performs a linear search on the number of unsatisfied clauses.
In this case, a new relaxation variable is initially added to each soft clause and
the resulting formula is given to a SAT solver. Whenever a solution is found, a
new cardinality constraint on the number of relaxation variables is added, such
that solutions where a higher or equal number of relaxation variables assigned
the value 1 are excluded. The cardinality constraint is encoded into a set of
propositional clauses, which are added to the working formula [3,13,17]. The
algorithm stops when the SAT call is unsatisfiable. As a result, the last solution
found is an optimal solution of the MaxSAT formula.

A converse approach is the linear search Unsat-Sat presented in Algorithm 1.
Here, a lower bound λ on the number of unsatisfied soft clauses is maintained
between iterations of the algorithm. Initially, λ is assigned value 0. In each itera-
tion, while the working formula given to the SAT solver (line 7) is unsatisfiable, λ
is incremented (line 10). Otherwise, an optimal solution to the MaxSAT formula
has been found (line 9).

Observe that a SAT solver call on a CNF formula ϕW returns a triple (st, ν,
ϕC), where st denotes the status of the solver: satisfiable (SAT) or unsatisfiable
(UNSAT). If ϕW is satisfiable, then ν stores the total assignment found for ϕW .
Otherwise, ϕC contains an unsatisfiable subformula that explains a reason for
the unsatisfiability of ϕW .

Even though the linear search Unsat-Sat algorithm does not take advantage
of current SAT solvers being able to identify unsatisfiable subformulas, there are
several more effective algorithms for MaxSAT that use this information to delay
the relaxation of soft clauses. An example is the MSU3 algorithm [16] presented
in Algorithm 2. Observe that this algorithm also performs an Unsat-Sat linear
search, but soft clauses are only relaxed when they appear in an unsatisfiable
subformula. The MSU3 algorithm takes as input a MaxSAT formula ϕ, a set of
relaxation variables VR, and a given lower bound λ. If no additional information
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Algorithm 2. MSU3 Algorithm
Input: (ϕ, VR, λ)
Output: satisfying assignment to ϕ

1 ϕW ← ϕ
2 while true do
3 (st, ν, ϕC) ← SAT(ϕW ∪ {CNF(∑ri∈VR

ri ≤ λ)})

4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 foreach ci ∈ (ϕC ∩ ϕs) do
7 VR ← VR ∪ {ri} // ri is a new variable

8 cR ← ci ∪ {ri} // ci was not previously relaxed

9 ϕW ← (ϕW \ {ci}) ∪ {cR}
10 λ ← λ + 1

is known about ϕ, then MSU3 is called with the default values ϕ = ϕh ∪ ϕs,
VR = ∅ and λ = 0.

Although more sophisticated MaxSAT algorithms exist [20], an implementa-
tion of MSU3 algorithm on the Open-WBO framework was one of the best per-
forming non-portfolio algorithms for industrial partial MaxSAT at the MaxSAT
Solver Evaluation of 20141. One of the crucial features for its success relies on
the fact that only one SAT solver instance needs to be created [17]. Therefore,
a proper implementation of MSU3 should take advantage of incrementality in
SAT solver technology. In this paper, the MSU3 algorithm is further improved
with structural information of the problem instance to solve.

3 Graph Representations

In order to extract structural properties of CNF formulas, different graph-based
models have been previously proposed. For instance, graph representations have
been used to characterize industrial SAT instances [1] and to improve on the
performance of MaxSAT algorithms [19]. In this section, we briefly review the
Clause-Variable Incidence Graph (CVIG) and adapt the use of Resolution-based
Graphs (RES) [26] to model relations in CNF formulas. Although other models
exist [1,19,25], in the context of our algorithm for MaxSAT solving, these were
found to be the best suited.

In the CVIG model, a weighted undirected graph G is built such that a
vertex is added for each variable xj and for each clause ci occurring in the CNF
formula ϕ. Moreover, for each variable xj occurring in clause ci (either as literal
xj or x̄j), an edge (ci, xj) is added to graph G. The edge weight w(ci, xj) is
defined as:

w(ci, xj) =
I(xj)
|ci| (1)

1 Results available at http://www.maxsat.udl.cat/

http://www.maxsat.udl.cat/


276 M. Neves et al.

x1 x2 x3

c1 c2 c3 c4 c5

(a) CVIG Graph

c4 c1 c3

c5 c2

(b) RES Graph

Fig. 1. Example of Graph Models

where |ci| denotes the number of literals in clause ci and I(xj) is defined as the
incidence function of xj in soft clauses as:

I(xj) = 1 +
∑

xj∈c ∧ c∈ϕs

1
|c| (2)

As described in section 2, several MaxSAT solvers rely on the identification of
unsatisfiable subformulas. In order to capture sets of clauses more closely related
that would result in an unsatisfiable subformula, we propose to adapt Resolution
Graphs (RES) to MaxSAT.

In the RES model, we have one vertex in graph G for each clause ci ∈ ϕ. Let
ci and cj denote two clauses such that xk ∈ ci and x̄k ∈ cj . Moreover, let cres

ij

be the resulting clause of applying the resolution operation on these clauses. In
this case, if cres

ij is not a tautology, then an edge (ci, cj) is added to G whose
weight is defined as:

w(ci, cj) =
1

|cres
ij | (3)

Notice that in the RES model, clauses are related if the application of the
resolution operation results in a non-trivial resolvent. Moreover, observe that the
weight of edges between pairs of clauses is greater when the size of the resolvent
is smaller. The goal is to make tighter the relations between clauses that produce
smaller clauses when resolution is applied.

Consider the following MaxSAT formula where c1 : (x1∨x2), c2 : (x̄2∨x3) and
c3 : (x̄1∨x̄3) are hard clauses and c4 : (x̄1), c5 : (x̄3) are soft clauses. Figures 1(a)
and 1(b) illustrate the structure of the graph representation of this formula when
using the CVIG and RES models. The weights of edges are not represented for
simplicity but can be obtained via Equations (1) and (3). For example, for the
CVIG model w(c1, x1) = 2

2 and for the RES model w(c2, c3) = 1
2 . Observe that

if the clause c6 : (x̄1 ∨ x̄2) was added to the formula, it would not connect to any
other clause in the RES graph because the only clause containing x1 positively
is c1 = (x1 ∨x2), but that does not connect to c6 due to x2 appearing negatively
and positively in c6 and c1, respectively. A similar type of analysis is done in
blocked clause elimination [11,14] — a technique commonly used in formula
preprocessing.
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Algorithm 3. Extended MSU3 Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 γ ← 〈γ1, . . . , γn〉 ← partitionSoft(ϕs, ϕh)
2 foreach γi ∈ γ do
3 (V i

R, λi) ← (∅, 0)

4 ν ← MSU3(ϕh ∪ γi, V
i
R, λi)

5 if |γ| = 1 then
6 return ν // no partitions were identified

7 while true do
8 (γi, γj) ← selectPartitions(γ)
9 γ ← γ \ {γi, γj}

10 (γk, V k
R , λk) ← (γi ∪ γj , V

i
R ∪ V j

R, λi + λj)

11 ν ← MSU3(ϕh ∪ γk, V k
R , λk)

12 if γ = ∅ then
13 return ν

14 else
15 γ ← γ ∪ {γk}

Although resolution-based graphs are not novel [26] and have been used in
other domains [25], in this paper we propose to enhance the resolution-based
graph representation by adding weights to edges. Moreover, as far as we know,
this representation has never been used for MaxSAT solving.

4 New Partition-Based Algorithm for MaxSAT

Despite its very good performance in industrial partial MaxSAT instances, the
MSU3 algorithm (see Algorithm 2) may suffer from two issues: (1) identification
of unnecessarily large unsatisfiable subformulas and, (2) a potentially large car-
dinality constraint to be maintained between iterations. In fact these issues are
related. If an unsatisfiable subformula with an unnecessarily large number of soft
clauses is encountered early, then an unnecessarily large cardinality constraint
has to be dealt with through most of the algorithm’s iterations.

Our approach to tackle these issues is to split the set of soft clauses. The
goal is that, at each iteration, the algorithm should only consider part of the
problem, instead of dealing with the whole problem instance in each iteration.

4.1 Algorithm Description

Algorithm 3 presents our enhancement of MSU3 with partitioning the soft clause
set. The algorithm starts by partitioning ϕs into n disjoint sets of soft clauses
γ1, γ2 . . . γn (line 1). Observe that several methods can be used to partition ϕs.
Details of this procedure are discussed later.
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For each set γi, we apply the MSU3 algorithm to the formula ϕh ∪ γi with
starting values V i

R = ∅ and λi = 0 (lines 2-4). As a result, we obtain a lower
bound value λi associated with each set of soft clauses γi. If the partitioning
procedure creates a single partition, then the algorithm terminates (line 6). Oth-
erwise, it is necessary to build the solution of the MaxSAT instance by merging
the different sets of soft clauses.

The merge process works as follows. At each iteration, two sets of soft clauses
γi and γj are selected to be merged (line 8) and removed from γ. Let γk denote
the union of γi and γj . Since γi and γj are disjoint, we necessarily have that
λi + λj is a lower bound for γk. Hence, we can safely initialize λk = λi + λj

(line 10). Next, the lower bound λk is refined by applying the MSU3 algorithm
to ϕh ∪ γk with starting values V k

R = V i
R ∪ V j

R and λk = λi + λj (line 11).When
set γ becomes empty, then all soft clauses were merged and the last solution
found is an optimal solution (line 13). Otherwise, there are still more sets to be
merged and γk is added to γ (line 15).

4.2 Partition and Merge of Soft Clauses

Algorithm 3 can be configured differently depending on two procedures: (1) how
the set of soft clauses is partitioned (line 1) and (2) how to merge two sets of
soft clauses (line 8).

In the partition procedure, our algorithm starts by representing the CNF
formula as a graph using one of the models described in section 3. Next, we apply
a community-finding algorithm on the graph representation that maximizes a
modularity measure [4] in order to obtain a graph partitioning.

Recently, the use of modularity measures has become widespread when ana-
lyzing the structure of graphs, in particular for the identification of communi-
ties [7,23]. In fact, this has already been used in the analysis of SAT instances [1]
and to improve the initial unsatisfiability-based approach proposed by Fu and
Malik [6,19]. The purpose of the modularity measure is to evaluate the quality of
the partitions, where vertices inside a partition should be densely connected and
vertices assigned to different partitions should be loosely connected. However,
finding a set of partitions with an optimal modularity value is computationally
hard [5]. In our implementation, we use the approximation algorithm proposed
by Blondel et al. [4].

At each iteration in Algorithm 3, two partitions are selected to be merged.
One can devise several different criteria to select and merge the partitions of
soft clauses. In early attempts, the merge process was sequential [19]. Given n
partitions γ1, γ2 . . . γn, at iteration i (i < n) of the algorithm, the first i partitions
γ1, γ2 . . . γi were merged sequentially.

Figure 2(a) illustrates the sequential merging procedure. Observe that the
sequential merging process is not balanced. This results in an early growth of
the identified subformulas and, as a result, an early growth of the cardinality
constraints to be maintained at each iteration of the algorithm.

In this paper, we propose a weighted balanced merge procedure that depends
on the strength of the graph connections between partitions. The goal is to delay



Exploiting Resolution-Based Representations for MaxSAT Solving 279

γ1 γ2 γn

γ1 ∪ γ2

γ1 ∪ · · · ∪ γi

γ1 ∪ · · · ∪ γn

(a) Sequential merging

γ1 γ2

γ1 ∪ γ2

γn−1 γn

γn−1 ∪ γn

γ1 ∪ · · · ∪ γn

(b) Balanced merging

Fig. 2. Examples of merge processes

having to deal with a large number of soft clauses, until the latter iterations of
the algorithm. Figure 2(b) illustrates the weighted balanced merging procedure.

Let G = (V,E) denote an undirected weighted graph where V is the set of
vertices and E the set of edges. Let w : E → R be a weight function for each edge
in the graph. The community-finding algorithm identifies a set of communities
C = {C1, C2, . . . , Cn} where every vertex u ∈ V is assigned to one and only one
community in C. Hence, since in both CVIG and RES model there is a node
for each propositional clause, one can build the partitions in a straightforward
manner. For each community Ci with vertices representing soft clauses, there is
a partition γi containing the respective soft clauses.

Based on the graph representation, one can define the strength of the connec-
tion between partitions. Let dij denote the strength between partition γi and γj .
One can define dij based on the weight between the vertices of their respective
communities Ci and Cj in the graph. Hence, dij can be defined as follows:

dij =
∑

u∈Ci∧v∈Cj

w(u, v) (4)

Considering that the graph is undirected, we necessarily have that dij = dji.
Given an initial set γ of n partitions γ1, γ2 . . . , γn, our algorithm applies a

greedy procedure that pairs all partitions γi and γj from γ to be merged, starting
with the pair with largest dij . After pairing all partitions in the initial set, we
perform the same procedure to the next n/2 partitions that result from the
initial merging iterations. This is iteratively applied until we only have a single
partition (see Figure 2(b)).

Observe that if partitions γi and γj are merged into a new partition γk,
then the connectivity strength dkl between γk to another partition γl is given by
dkl = dil + djl. This follows from the fact that the communities in the graph are
disjoint.

Finally, we would like to reference other solvers that split the set of soft
clauses by identifying disjoint unsatisfiable subformulas [8,21]. However, there
are major differences with regard to our proposed approach. First, our solver
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takes advantage of an explicit formula representation to split the set of soft
clauses, instead of using the unsatisfiable subformulas provided by the SAT
solver. Moreover, in our solver, the merge process is also guided by the explicit
representation of the formula.

Furthermore, in solvers where disjoint unsatisfiable subformulas are iden-
tified [8,21], the split occurs on the cardinality constraints at each iteration.
However, each SAT call still has to deal with the whole formula at each itera-
tion. In Algorithm 3, the SAT solver does not have to deal with all soft clauses
at each iteration, but only after the final merge step.

4.3 Algorithm Analysis

In this section a proof sketch of the correctness Algorithm 3, as well as an analysis
on the number of SAT calls is presented.

Proof (Correctness of Algorithm 3). As mentioned in section 2, we assume the set
of hard clauses ϕh is satisfiable. Otherwise, the MaxSAT formula is unsatisfiable.
This can be verified by a single SAT call on ϕh before applying Algorithm 3.

For the proof we adopt the following notation. For some set γi processed in
Algorithm 3, we write γR

i ⊆ ϕs for the set of clauses that were relaxed in the
algorithm (but clauses in γR

i do not contain the relaxation variables). We will
prove by induction the invariant that ϕh ∪ γR

i cannot be satisfied unless at least
λi clauses are removed from γR

i . The induction hypothesis is satisfied trivially
at the beginning of the algorithm as each λi is initialized to 0.

Consider the case where λi is augmented by 1 when ϕh ∪γi ∪{∑r∈V i
R

r ≤ λi}
is unsatisfiable. Let ϕC be the obtained unsatisfiable subformula from the SAT
call, let ϕR

C ⊆ ϕs be the soft clauses of ϕC that appear as relaxed in γi and let
ϕN

C = ϕs ∩ ϕC be the rest of the soft clauses in the unsatisfiable subformula
(not yet relaxed). From induction hypothesis ϕh ∪ ϕR

C cannot be satisfied unless
at least λi clauses are removed from ϕR

C ⊆ γR
i . Since ϕC is an unsatisfiable

subformula, it is impossible to satisfy ϕh ∪ ϕR
C ∪ ϕN

C by removing λi clauses
from ϕR

C . Now we need to also show that it is impossible to satisfy ϕh ∪γR
i ∪ϕN

C

by removing λi clauses from γR
i ∪ ϕN

C (this is the new set of relaxed clauses).
Let us assume for contradiction that it is possible to satisfy γR

i ∪ ϕN
C by

removing some set of clauses ξ s.t. |ξ| = λi. To show the contradiction we
consider two cases: (1) ξ ⊆ γi and (2) ξ � γi. Case (1) yields an immediate
contradiction as we would have not obtained unsatisfiability in the SAT call as
it would be possible to satisfy ϕh ∪ γR

i by removing λi clauses from γR
i . For

case (2) consider that there is a clause c ∈ ξ s.t. c is not yet relaxed, i.e. c /∈ γR.
This means that ϕh ∪γR

i is satisfiable after removing less than λi clauses, which
is a contradiction with the induction hypothesis.

To show that the invariant is preserved by the merge operation, we observe
that any merged γi and γj are disjoint and therefore so are γR

i and γR
j . In order

to satisfy ϕh ∪ (γR
i ∪γR

j ), both ϕh ∪γR
i , ϕh ∪γR

j must be satisfied. Consequently,
at least λi + λj clauses must be removed from (γR

i ∪ γR
j ).


�
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Table 1. Experimental evaluation of Open-WBO’s MSU3 algorithm, Eva500a, MSCG
and 4 different configurations of the partition-based algorithm

Instance Group Total MSU3 Eva500a MSCG S-CVIG S-RES W-CVIG W-RES
aes 7 1 1 1 1 1 1 1
atcoss/mesat 18 11 11 4 11 1 11 11
atcoss/sugar 19 12 11 4 12 3 12 12
bcp/fir 59 59 55 59 56 44 51 51
bcp/hipp-yRa1/simp 17 16 16 16 16 16 16 16
bcp/hipp-yRa1/su 38 35 34 33 34 34 35 33
bcp/msp 64 26 37 29 23 41 27 42
bcp/mtg 40 40 40 40 40 40 40 40
bcp/syn 74 43 48 47 47 48 46 49
circuit-trace-compaction 4 4 4 4 4 3 4 4
close-solutions 50 48 48 46 40 32 40 45
des 50 42 41 41 49 48 50 48
haplotype-assembly 6 5 5 5 5 5 5 5
hs-timetabling 2 1 1 0 1 1 1 1
mbd 46 45 42 43 44 45 45 45
packup-pms 40 40 40 40 40 40 40 40
pbo/mqc/nencdr 84 84 84 84 84 84 84 84
pbo/mqc/nlogencdr 84 84 84 84 84 84 84 84
pbo/routing 15 15 15 15 14 15 15 15
protein ins 12 12 8 12 12 12 12 12
tpr/Multiple path 48 48 44 42 48 48 48 48
tpr/One path 50 50 50 50 50 50 50 50
Total 827 721 719 699 715 695 717 736

Finally, we note that the number of SAT calls performed by Algorithm 3
is larger than the MSU3 algorithm. Observe that the number of unsatisfiable
SAT calls is the same for both algorithms. Let λ be the number of unsatisfiable
soft clauses at any optimal solution of the MaxSAT instance. In this case, both
algorithms perform λ unsatisfiable SAT calls. However, while MSU3 performs
only one satisfiable SAT call, Algorithm 3 performs 2n−1, where n is the number
of identified partitions (line 1).

5 Experimental Results

In this section we compare different configurations of Algorithm 3 with the
top 3 non-portfolio solvers of the MaxSAT 2014 Evaluation’s industrial par-
tial MaxSAT category. The top 3 were Open-WBO’s MSU3 incremental algo-
rithm [17,18], Eva500a [22] and MSCG [9]. The new partition-based algorithm
is also implemented using the Open-WBO framework2.

The algorithms were evaluated running on the set union of the partial
MaxSAT industrial instances of the MaxSAT evaluations of 2012, 2013 and 2014.
For each instance, algorithms were executed with a timeout of 1800 seconds and
a memory limit of 4 GB. Similar resource limitations were used during the last
MaxSAT Evaluation of 2014. These tests were conducted on a machine with 4
AMD Opteron 6376 (2.3 GHz) and 128 GB of RAM, running Debian jessie.

Table 1 presents the number of instances solved by each algorithm, per
instance set. Besides MSU3, Eva500a and MSCG, results for the best 4 config-
urations of the partition-based enhanced MSU3 algorithm are shown. S-CVIG
2 Available at http://sat.inesc-id.pt/open-wbo/

http://sat.inesc-id.pt/open-wbo/
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(a) des instance set (b) bcp/msp instance set

Fig. 3. Comparison between run times of S-RES and W-RES on des and bcp/msp

instance sets

applies the sequential merging of partitions using the CVIG graph model. S-
RES also applies sequential merging, but using the RES graph model. W-CVIG
and W-RES apply the weighted balanced merging of partitions, using the CVIG
and RES graph models, respectively. Note that all our implementations are fully
incremental, i.e. only one instance of the SAT solver is created throughout the
execution of the proposed algorithm. As with the MSU3 implementation on
Open-WBO, we take advantage of assumptions usage at each SAT call and
incremental encoding of cardinality constraints [17].

Results from Table 1 show that all variants of the partition-based algorithm
are competitive with the remaining state of the art algorithms. However, overall
results clearly show that W-RES outperforms all remaining algorithms, since it
is able to solve more instances in total. Moreover, results for the configurations
of partition-based algorithm also show that weight-based balanced merging of
partitions is preferable to sequential partitioning.

Considering that MSU3 is our base solver, most gains occur in instance sets
bcp/msp, bcp/syn and des. While in the bcp/syn and des instance sets, all
partition-based configurations perform better, in bcp/msp the resolution-based
graph partitioning allowed a significant performance boost.

Figures 3(a) and 3(b) compare the results of S-RES and W-RES on the des
and bcp/msp instance sets. In the des instances, the run time of sequential merg-
ing is slightly better, despite solving the same number of instances. Nevertheless,
in the bcp/msp instance set the weight-based balanced merging used in W-RES
clearly outperforms the sequential merging approach used in S-RES.

In Figures 4(a) and 4(b) we compare MSU3 and W-RES on the same bench-
mark sets. It can be observed that W-RES performs much better in these
instances. In the des instance set, there are some instances where W-RES is
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(a) des instance set (b) bcp/msp instance set

Fig. 4. Comparison between run times of MSU3 and W-RES on des and bcp/msp

instance sets

not as fast, since there is some time spent in finding partitions and additional
SAT calls. We note that there is always some time spent in building the graph,
applying the community finding algorithm and splitting the set of soft clauses.
However, this partitioning step is usually not very time consuming. Neverthe-
less, W-RES is able to scale better and solve more instances. In the bcp/msp
instances, the proposed techniques allow W-RES to be much better than MSU3,
as well as all other algorithms tested.

Resolution-based graph models performed worst in the bcp/fir category. It
was observed that the modularity values obtained for the resolution-based graphs
were low in this particular instance set. As a result, the partitioning obtained
for S-RES and W-RES in bcp/fir instances is not as meaningful as for other
instance sets. When this occurs, it can deteriorate the algorithm’s performance,
since the partition-based algorithm performs more SAT calls than MSU3.

When considering all benchmark sets, W-CVIG and W-RES solve different
instances and the Virtual Best Solver3 (VBS) between them solves 747 instances
(11 more than W-RES). Furthermore, there are a few instances which are only
solved by MSU3 but not by W-CVIG nor W-RES. The VBS between MSU3,
W-CVIG, W-RES can solve 752 (5 more than the VBS between W-CVIG and
W-RES). Even though W-RES outperforms the remaining algorithms, this sug-
gests that dynamically choosing the partition type could further improve the
performance of the solver.

Finally, Figure 5 shows a cactus plot with the run times of all algorithms con-
sidered in the experimental evaluation. Here we can observe that S-RES is much
slower than W-RES, clearly showing the effectiveness of the newly proposed

3 The Virtual Best Solver between a set of solvers shows the total number of instances
that can be solved by at least one of those solvers.
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Fig. 5. Cactus plot with the run times for MSU3, Eva500a, MSCG, S-CVIG, S-RES,
W-CVIG and W-RES.

weight-based merging. Overall, W-RES clearly outperforms the remaining algo-
rithms, being able to solve 700 instances in 300 seconds or less.

6 Conclusions and Future Work

In this paper we exploit resolution-based graph representations of CNF formulas
in order to develop a new state of the art algorithm for MaxSAT. In the proposed
approach, soft clauses are initially partitioned in disjoint sets by analyzing the
formula structure. The partitioning process is attained by applying a community-
finding algorithm on weighted resolution-based graphs. Next, at each iteration
of the algorithm, partitions are merged using structural information from the
graph representation until an optimal solution is found.

The proposed approach is novel in many aspects. First, the use of a resolution-
based graph representation allows to better model the interaction between
clauses. Furthermore, instead of applying a sequential merging process, the graph
representation is also used in a weight-based balanced merging procedure. More-
over, since the algorithm does not have to deal with the whole formula at each
iteration, smaller unsatisfiable cores are identified. As a result from this process,
smaller cardinality constraints are encoded into CNF at each iteration, thus
improving the algorithm’s performance.

Experimental results obtained in industrial partial MaxSAT instances clearly
show the effectiveness of the proposed algorithm. As a result, our solver improves
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upon one of the best non-portfolio solvers on the industrial partial category from
the 2014 MaxSAT solver evaluation.

The source code of the new solver will become available as part of the Open-
WBO framework. This will allow the research community to build upon the
current work to further improve MaxSAT solving.

As future work, we propose to extend the proposed approach for weighted
MaxSAT solving. Moreover, different model representations of CNF formulas are
to be tested, as well as new techniques for building and merging partitions of
soft clauses in MaxSAT formulas. Furthermore, the proposed techniques are not
exclusive to MSU3 and can also be integrated into other MaxSAT algorithms.
Additionally, these techniques can also be applied to other extensions of SAT.
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Abstract. The problem of propositional formula minimization can be
traced to the mid of the last century, to the seminal work of Quine
and McCluskey, with a large body of work ensuing from this seminal
work. Given a set of implicants (or implicates) of a formula, the goal for
minimization is to find a smallest set of prime implicants (or implicates)
equivalent to the original formula. This paper considers the more general
problem of computing a smallest prime representation of a non-clausal
propositional formula, which we refer to as formula simplification. More-
over, the paper proposes a novel, entirely SAT-based, approach for the
formula simplification problem. The original problem addressed by the
Quine-McCluskey procedure can thus be viewed as a special case of the
problem addressed in this paper. Experimental results, obtained on well-
known representative problem instances, demonstrate that a SAT-based
approach for formula simplification is a viable alternative to existing
implementations of the Quine-McCluskey procedure.

1 Introduction

The Quine-McCluskey [36,47,48] procedure for the minimization of clausal for-
mulae (i.e. formulae either represented in Conjunctive Normal Form (CNF)
or Disjunctive Normal Form (DNF)) is widely known, being a standard
topic in a number of textbooks (e.g. [22]), with a number of publicly avail-
able implementations. This problem is referred to as formula minimization
in this paper. Formula minimization finds a wide range of practical applica-
tions [5,8,11,14,17,19,28,46,49,54,55,58], ranging from security to biology. A
typical implementation of Quine-McCluskey starts by computing all the prime
implicates (or implicants) of a CNF (or DNF) formula, and then implements
a set covering step, where a minimum number of prime implicates (implicants)
is selected that is equivalent to the original function. A more general scenario
is when the original formula is non-clausal. Clearly, one can still generate all
the implicates (or implicants) of the formula, then generate all the prime impli-
cates (or prime implicants), and then execute the set covering step. However, in
practice the number of implicates may be much larger than the number of prime
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implicates. In contrast to the more restricted problem, this problem is referred to
as formula simplification in this paper. Moreover, regarding the existing imple-
mentations of Quine-McCluskey, these are not only limited to clausal formula
minimization but also usually restricted to a small number of variables. The lat-
ter is also the case for other formula simplification alternatives based on Binary
Decision Diagrams (BDDs) [10].

This paper develops novel approaches for formula simplification as well as
formula minimization, both of which are entirely SAT-based1. The proposed
approaches exploit recent work on computing prime implicates (and implicants)
with SAT solvers [27,45], but also recent work on solving MaxSAT [40] and on
computing smallest minimal unsatisfiable subformulae (SMUS) [23,24,26,31].
For the formula minimization problem, the main technical contribution is a new
way to compute the prime implicates (or implicants) of the formula. For the
formula simplification problem, the main technical contribution is the integration
of prime enumeration with smallest MUS extraction.

Throughout the paper, and similarly to the most common description of the
Quine-McCluskey procedure, the focus will be to compute the prime implicants of
a propositional formula (possibly represented in DNF) and then to select a mini-
mum size set of prime implicants equivalent to the original formula. However, the
algorithms described in the paper also apply when computing and minimizing the
set of prime implicates, possibly starting from a CNF representation.

The paper is organized as follows. Section 2 introduces the notation and
definitions used throughout the paper. Section 3 describes the novel approach to
formula simplification proposed in the paper. Preliminary experimental results
are analyzed in Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

Definitions standard in propositional satisfiability (SAT) and maximum satisfia-
bility (MaxSAT) solving are assumed [4]. In what follows, F denotes an arbitrary
propositional formula. A term t is a conjunction of literals and a clause c is a
disjunction of literals, while a literal l is either a Boolean variable or its nega-
tion. Whenever convenient, terms and clauses are treated as sets of literals. A
formula is said to be in conjunctive or disjunctive normal form (CNF or DNF,
respectively) if it is a conjunction of clauses or disjunction of terms, respectively.
Set theory notation will be also used with respect to CNF and DNF formulae
when necessary. Moreover, the term clausal will be used to denote formulae
represented as sets of sets of literals, i.e. either in CNF or DNF.

Definition 1. A term In is called an implicant of F if In � F . An implicant In

of F is called prime if any subset I ′
n � In is not an implicant of F .

Definition 2. A clause Ie is called an implicate of F if F � Ie. An implicate
Ie of F is called prime if any subset I ′

e � Ie is not an implicate of F .

1 Earlier work [52] used SAT as part of the ESPRESSO algorithm [7].
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Fig. 1. General steps of the approach

The sets of all prime implicants and prime implicates of a Boolean formula
F are denoted by PIn(F) and PIe(F), respectively. A subset P of PIn(F) (or
PIe(F)) such that P ≡ F is said to be a prime cover of F . Observe that given
F and a prime implicant In � F , the clause ¬In is a prime implicate of ¬F ,
and the other way around. Moreover, a similar connection between PIn(F) and
PIe(¬F) also holds. Additionally, the concept of an essential prime implicant
is exploited in the paper. A prime implicant is called essential if it is included
in any set of prime implicants covering F . With respect to CNF formulae, the
following definitions related to MUSes and MCSes are also used:

Definition 3. Given a CNF formula F , a set of clauses U ⊆ F is called a
minimal unsatisfiable subset (MUS) if U is unsatisfiable and any subset U ′ ⊂ U
is satisfiable. A minimum size MUS of F is called a smallest MUS (SMUS).

Definition 4. A subset C of a CNF formula F is a minimal correction subset
(MCS) if F \ C is satisfiable and ∀C′ ⊆ C ∧ C′ �= ∅, (F \ C) ∪ C′ is unsatisfiable.

These notions can be extended to the case of group oriented CNF formulae [33,
41]. A group oriented CNF formula contains groups of clauses instead of single
clauses, i.e. F = D ∪ G, where G = G1 ∪ . . . ∪ Gk is a set of k groups while
D is a don’t care group. Accordingly, a group MUS of F is a subset of groups
G′ ⊆ G such that formula D ∪ ⋃

G∈G′ G is unsatisfiable and ∀G′′ ⊂ G′ formula
D ∪ ⋃

G∈G′′ G is satisfiable.

3 Formula Simplification with SAT

The approach proposed below follows the general steps of the original Quine-
McCluskey algorithm [36,47,48] outlined in Figure 1. Given a propositional for-
mula F in an non-clausal form, it (i) enumerates all prime implicants PIn(F) (or
prime implicates PIe(F)); and (ii) computes a minimum size subset P ⊆ PIn(F)
(or P ⊆ PIe(F)) such that P ≡ F . Hereinafter, the discussion is conducted with
respect to computing a minimum size DNF representation of F (i.e. using prime
implicants of F). However, all of the proposed techniques can be easily adapted
for the case of computing a minimum size CNF of F (i.e. with the use of prime
implicates). Indeed, this results from the well-known connection between prime
implicants of F and prime implicates of ¬F (see Section 2). For this reason and
whenever convenient, some particular ideas are explained for implicate-based
formula simplification.
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3.1 Prime Implicant/Implicate Enumeration

The SAT-based approach being proposed relies on the efficient prime compilation
of Boolean formulae. Although (and in contrast to [36,47,48]) the paper is mainly
focused on non-clausal Boolean formulae, this section provides a description of
the simplified version of the algorithm targeting clausal formulae. The reader is
referred to [45] for further details and properties of the general algorithm.

Prime Compilation of Clausal Formulae. Although in general the extrac-
tion of a prime implicant requires a linear number of calls to a SAT solver,
for the case of CNF formulae minimizing a model can be done in polynomial
time. The algorithm used in this paper for the extraction of prime implicates is
based on the algorithm primer-b recently introduced in [45]. When executed on
a non-clausal formula, primer-b produces the complete set of prime implicates
and (as a by-product) a prime implicant cover. At each step, primer-b identifies
a new partial assignment to be tested. As highlighted in earlier work [45], when
a partial assignment falsifies the formula, then its negation is guaranteed to be
a prime implicate. Instead, if it satisfies the formula, the corresponding model
has to be reduced to a prime implicant. However, when we deal with CNF for-
mulae, the model can be reduced without employing a SAT solver by means of
a procedure running in polynomial time. Suppose that m is a model for a CNF
formula F . Then we have to scan all the literals in m one at a time. Let l be
the last picked literal. If when setting l to don’t care, the implicant still satis-
fies the formula, then literal l is removed. Otherwise, it is a part of the prime
implicant under construction. Note that in order to test if a literal is necessary,
it is enough to check only the clauses containing it. This can be easily done by
using an occurrence list, which for each literal stores the set of clauses where it
appears. Additionally, more sophisticated techniques [13] can be also applied for
improving the performance of the algorithm.

3.2 Computing a Smallest Prime Cover

This section describes the second phase of the proposed approach, which consists
in the following. Given a complete set of prime implicants of a Boolean formula,
it computes its subset of the smallest size such that the subset is equivalent to
the original formula.

Prime Covering Non-Clausal Formulae. Let us assume that for a given
non-clausal formula F , the complete set of prime implicants PIn(F) is computed
as described in Section 3.1. Now one needs to find a minimum size subset P ⊆
PIn(F) such that P ≡ F . Clearly, by definition of a prime implicant, for any
subset P (and, thus, for the smallest one) the following holds: P � F . Therefore,
it is enough to check whether F � P, which can be done by testing if formula
¬P ∧F is unsatisfiable. Observe that PIn(F) ≡ F and, thus, F �PIn(F). Hence,
formula

¬PIn(F) ∧ F (1)
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is obviously unsatisfiable. This means that finding a minimum size cover P of F
consists in computing a smallest size group MUS (e.g. see [33,41]) of formula (1)
where subformula F is a don’t care group, i.e. F is irrelevant for the size of
the solution, and so only clauses ¬In ∈ ¬PIn(F) are taken into account. This
problem can be solved with an off-the-shelf SMUS extractor (e.g. [23,24,26,31,
34,38]).

Note that a smallest size group MUS of formula (1) corresponds to a minimum
size prime cover P of F with respect to the number of prime implicants in P.
However, one might prefer to compute a minimum cover in terms of the total
number of occurrence of literals in it. For this, a weighted group MUS formula
can be considered, i.e. each clause ¬In ∈ ¬PIn(F) is associated with a cost equal
to |In|. Now, a smallest cost group MUS of (1) corresponds to a minimum cost
prime cover of F .

Observe that essential prime implicants of F can be identified by group MCS
extraction (e.g. see [35,43] and references therein) on the considered formula (1).
This is stated in the following proposition.

Proposition 1. Any unit MCS (i.e. an MCS containing just one clause) of
formula (1) corresponds to an essential prime implicant of formula F .

Proof. Due to the minimal hitting set duality between MCSes and MUSes of a
(group) CNF formula [33,50], a clause of a unit MCS of the formula is included
into any MUS of the formula. Since, by construction of (1), group unsatisfiable
subformulae (hence, MUSes as well) define prime covers of F , unit MCSes of (1)
define prime implicants of F that must be included into any prime cover of
F . Thus, by definition of essential prime implicants, unit MCSes correspond to
essential prime implicants of F . ��

Unit MCSes (if any) can be identified with the use of MaxSAT (e.g. [23,
24,26,31]). This requires a SAT call for extracting an unsatisfiable core of (1),
relaxing the corresponding clauses in the core, and enumerating models of the
relaxed formula. Each unit MCS is defined by such a model and, thus, requires
one SAT call per MCS. Thus, assuming that F has n essential primes, they
can be enumerated with n+1 calls to a SAT oracle. Observe that this approach
should be practically more efficient than the well-known alternative of separately
checking each prime implicant for essentiality [22,51,53], especially if |PIn(F)|
is much larger than the number of essential primes.

Moreover, identification of the essential primes can be used for the further
simplification of the group SMUS problem. Indeed, since essential prime impli-
cants are included in any cover of F , they can be excluded from ¬PIn(F) and
added to the don’t care group. Let E denote the set of all essential primes of F ,
and Q = PIn(F)\E . Then consider formula ¬Q∧ (F ∧E) where F ∧E represents
the don’t care group. For any group SMUS P ′ of this formula, the corresponding
group SMUS of (1) is P ′ ∪ E .

Clausal Formulae Minimization. This section briefly explains how one can
deal with a particular case of clausal formulae. Recall that given a clausal formula
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Fig. 2. Performance of Bica and Espresso on PLA instances

F , the approach being proposed is able to compute the exact minimum size
representation of F . Although the general technique described in Section 3.2
can be also applied to clausal formulae, a specialized MaxSAT-based approach
to clausal formulae minimization can be proposed, which can be more efficient
in practice.

Following the ideas of [36,47,48], one can formulate a set covering problem:
given a set of terms F = T1 ∪ . . .∪Tm and a complete set of its prime implicants
PIn(F), one needs to compute a smallest size set of prime implicants P ⊆ PIn(F)
such that for each Ti ∈ F there is a prime implicant Ij ∈ P covering term
Ti, i.e. Ij ⊆ Ti. The relation between the set covering problem and MaxSAT
was originally put forward in [18,44]. The translation from the set covering
problem to MaxSAT is well-known and has been studied elsewhere (e.g. see [2,
56]). Note that compared to the general case SMUS-based approach, using this
MaxSAT formulation of the problem is preferred for clausal formulae due to a
better complexity characterization (decision versions of MaxSAT and SMUS are
complete for NP [18,44] and ΣP

2 [21,30], respectively).

Approximated Solutions. Once the SMUS and MaxSAT formulations of the
simplification phase of the approach are introduced, one can immediately notice
that various techniques can be applied in order to get approximate solutions of
the considered problems. For SMUS, these include MUS extraction (e.g. see [3,
42]) and MUS enumeration (see [32]) algorithms. As for MaxSAT, a number of
MCS enumeration techniques approximating MaxSAT solutions were proposed
in the past (e.g. [20,35,43]).
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4 Preliminary Results

This section evaluates the proposed approach to Boolean formula simplification.
The experiments were performed in Ubuntu Linux on an Intel Xeon E5-2630
2.60GHz processor with 64GByte of memory. The time limit was set to 3600s
and the memory limit to 10GByte. The approach proposed above was imple-
mented in a prototype called Bica (Boolean simplifier for non-clausal formu-
lae). The Bica Boolean formula simplifier is written as a Python script, which
instruments the flow of the proposed approach and calls the existing binaries
both for doing the prime compilation phase and the minimum covering phase.
Prime implicate enumeration is done by calling Primer [45], while minimum
covering is done with the Forqes SMUS extractor [26] for non-clausal formulae,
and with the MSCG MaxSAT solver [25,39] if the formulae are clausal. Also
note that Primer is implemented on top of the MiniSat2 SAT solver [15] while
the underlying SAT solver of MSCG and Forqes is Glucose 3.03 [1]. Further
details on the experimental evaluation including the chosen benchmark sets are
presented below.

4.1 PLA Benchmarks

In order to assess the efficiency of the new approach applied to clausal Boolean
formulae, two sets of PLA circuit benchmark sets were considered. The first set
was originally described in [7] and includes 123 easy and 19 hard instances [16].
The second benchmark set called MCNC91 suite was proposed in [57] and com-
prises 41 PLA circuits. Since the approach being proposed currently cannot be
applied to multi-output Boolean circuits and in order to compare it with the well-
known implementation of the Quine-McCluskey procedure called Espresso [7,16],
each of the considered instances was split in the following way. Given a PLA cir-
cuit with n inputs and m outputs, m single-output PLA circuits were created,
each having n inputs. The total number of resulting PLA circuits constructed
this way and considered in the evaluation is 3744.

The new approach was compared to the exact version of Espresso [7,16],
which is referred to as Espresso and implements the Quine-McCluskey algo-
rithm. Figure 2 shows the performance of Espresso compared to Bica for the
considered set of clausal instances. As one can see in Figure 2a, both solvers
can minimize most of the circuits. Bica is able to solve 3740 instances (out of
3744), Espresso is not far with 3731 formulae minimized. However, the detailed
scatter plot shown in Figure 2b indicates that Bica generally performs better
than Espresso (up to 4 orders of magnitude).

4.2 Bi-decomposition Interpolation Benchmarks

The following benchmark set comes from the area of bi-decomposition of a
Boolean function (e.g. see [9]). An earlier work on using interpolants for Boolean
2 https://github.com/niklasso/minisat
3 http://www.labri.fr/perso/lsimon/glucose

https://github.com/niklasso/minisat
http://www.labri.fr/perso/lsimon/glucose
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Fig. 3. Performance of Bica and Espresso on Interpolation instances

Table 1. Performance of Bica and ABC+Espresso on QG6 instances

# solved max. time (s) min. time (s) avg. time (s)

Bica 63 3600 0.56 1592.65

ABC+Espresso 0 3600 3600 3600

function decomposition is for example [29], where the function’s components
are computed through Craig’s interpolation [12]. Thus, given such interpolants
representing the function’s components, one can try to simplify them in order
to get a simpler decomposed representation of the original Boolean function.
The interpolant formulae were generated for the standard ISCAS, ITC, and
LGSynth benchmark suites. The total number of the considered interpolant for-
mulae is 4815.

Note that the interpolants are given in a non-clausal form. In this case,
one cannot use Espresso directly. First, the formulae need to be translated
into a clausal form. For this purpose, the well-known logic synthesis system
ABC [6] was used, namely its ability to collapse a circuit with the use of BDDs.
Figure 3a shows a cactus plot illustrating the performance of both Bica and
ABC+Espresso for the considered interpolation benchmarks. Analogously to
the PLA benchmarks, both competitors perform quite well being able to solve
almost all the instances. Bica simplifies 4744 formulae while ABC+Espresso
solves 4748 instances. Figure 3b indicates that there is no clear winner in this case
even though ABC+Espresso has some advantage over Bica. A reason for this
can be that the CUDD BDD package4 used in ABC is usually able to clausify
the considered circuits within a very short time (less than a second). Also, the
number of terms reported by CUDD is usually very close to the optimum, which
simplifies the Quine-McCluskey procedure performed by Espresso.

4 http://vlsi.colorado.edu/∼fabio/CUDD/

http:// vlsi.colorado.edu/~fabio/CUDD/
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4.3 Quasigroup Classification Benchmarks

This set of non-clausal benchmarks called QG6 was proposed in [37] when encod-
ing classification theorems for quasigroups. Out of 256 formulae we chose 83
that are satisfiable. Note that these 83 benchmark instances have either 252 or
360 variables, which is larger than the number of inputs in all circuits consid-
ered in Section 4.1 and Section 4.2. Similarly to the interpolation benchmarks,
ABC+Espresso was used as an alternative to Bica. However, it was not able
to simplify any of these formulae, which is not surprising because these instances
are hard for BDDs (this may be caused by the number of variables). (For this rea-
son, no plots are presented for QG6 benchmarks and Table 1 is shown instead).
In contrast, Bica is able to simplify 63 (out of 83) formulae.

In summary, the experimental results indicate that the proposed approach
is a viable alternative to the existing implementations of the Quine-McCluskey
procedure for the case of clausal Boolean formulae. Moreover and as stated in
Section 4.3, being focused on non-clausal formulae and based on the state-of-the-
art SAT technology, the new approach performs reasonably well for non-clausal
formulae with a large number of variables, which can be out of reach for the
alternative approaches, e.g. the ones based on BDDs, or ABC and Espresso.

5 Conclusions

This paper develops entirely SAT-based solutions for propositional formula
minimization and simplification. In both cases the set of prime implicates (or
implicants) is computed using recent work on prime implicate (or implicant) enu-
meration. For the clausal formula minimization problem, a minimum-size subset
of the prime implicates that covers an initial set of implicates is obtained with
a set covering approach, which is done with MaxSAT. For non-clausal formula
simplification, the problem is more challenging, and the problem is shown to be
solved by computing a smallest MUS.

The experimental results are encouraging. For two classes of problem
instances, the new approach outperforms a well-known implementation of Quine-
McCluskey, whereas for another class of problem instances it loses to the Quine-
McCluskey procedure. Future work will investigate settings in which SAT-based
formula minimization and simplification can be shown to be the preferred option.

References

1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental
SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M.,
Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer,
Heidelberg (2013)

2. Bautista, J., Pereira, J.: A GRASP algorithm to solve the unicost set covering
problem. Computers & OR 34(10), 3162–3173 (2007)



296 A. Ignatiev et al.

3. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

5. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptology 26(2), 280–312 (2013)

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

7. Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T., Hachtel, G.D.:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
Norwell (1984)

8. Cabalar, P., Pearce, D.J., Valverde, A.: Minimal logic programs. In: Dahl, V.,
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Abstract. Very large MaxSAT instances, comprising 1020 clauses and
beyond, commonly arise in a variety of domains. We present VOLT, a
framework for solving such instances, using an iterative, lazy ground-
ing approach. In each iteration, VOLT grounds a subset of clauses in the
MaxSAT problem, and solves it using an off-the-shelf MaxSAT solver.
VOLT provides a common ground to compare and contrast different lazy
grounding approaches for solving large MaxSAT instances. We cast four
diverse approaches from the literature on information retrieval and pro-
gram analysis as instances of VOLT. We have implemented VOLT and eval-
uate its performance under different state-of-the-art MaxSAT solvers.

1 Introduction

MaxSAT solvers have made remarkable progress in performance over the last
decade. Annual evaluations to assess the state-of-the-art in MaxSAT solvers
began in 2006. These evaluations primarily focus on efficiently solving difficult
MaxSAT instances. Due to several advances in solving such instances, many
emerging problems in a variety of application domains are being cast as large
MaxSAT instances, comprising 1020 clauses and beyond.1

Large MaxSAT instances pose scalability challenges to existing solvers.
Researchers in other communities, notably statistical relational learning and
program analysis, have proposed various lazy grounding techniques to solve such
instances that arise in their application domains [4,9,15–17,19]. The high-level
idea underlying these techniques is to use an iterative counterexample-guided
approach that, in each iteration, poses a subset of clauses in the original large
MaxSAT instance to an off-the-shelf MaxSAT solver. The construction of this
subset of clauses is guided by means of counterexamples—these are clauses in
the original problem that are unsatisfied by the current solution.

This paper presents a formal framework VOLT for systematically studying the
class of lazy grounding techniques. We show how diverse existing techniques in
the literature are instances of our framework (Table 1 in Section 2). In doing so,

1 Throughout the paper, we slightly abuse terminology by using MaxSAT to refer to
the weighted partial maximum satisfiability problem, which asks for a solution that
satisfies all hard clauses and maximizes the sum of weights of satisfied soft clauses.
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Fig. 1. Syntax of weighted EPR constraints.

VOLT provides the first setting that formally compares and clarifies the relation-
ship between these various techniques.

We have implemented the VOLT framework and its instantiations. It allows any
off-the-shelf MaxSAT solver to be used in each iteration of the lazy grounding
process. We evaluate the performance of VOLT under different state-of-the-art
MaxSAT solvers using a particular instantiation. Our evaluation shows that
existing lazy grounding techniques can produce instances that are beyond the
reach of exact MaxSAT solvers. This in turn leads these techniques to sacrifice
optimality, soundness, or scalability. VOLT is only a starting point and seeks to
motivate further advances in lazy grounding and MaxSAT solving.

2 Volt: A Lazy Grounding Framework

The first step in solving large MaxSAT instances is to succinctly represent them.
VOLT uses a variant of effectively propositional logic (EPR) [11]. Our variant
operates on relations over finite domains and has an optional weight associated
with each clause. Figure 1 shows the syntax of a weighted EPR formula C, which
consists of a set of hard constraints and a set of soft constraints. For convenience
in formulating problems, we augment C with an input P which defines a set of
ground facts (extensional database or EDB). Its solution, output Q, defines a set
of ground facts that are true (intensional database or IDB).

Weighted EPR formulae are grounded by instantiating the relations over
all constants in their corresponding input domains. We presume a grounding
procedure �·� that grounds each constraint into a set of corresponding clauses.
For example, �h� =

∧
σ�h�σ grounds the hard constraint h by enumerating all

possible groundings σ of variables to constants, yielding a different clause for
each unique valuation to the variables in h. The ground clauses represent a
MaxSAT problem which can be solved to produce a solution that satisfies all
hard clauses and maximizes the sum of the weights of satisfied soft clauses.

Enumerating all possible valuations, called full grounding, does not scale to
real-world problems. Our framework VOLT, described in Algorithm 1, uses lazy
grounding to address this problem.2 The framework is parametric in procedures
2 We assume that any input P is encoded as part of the hard constraints H. For

brevity, we assume that the hard constraints H are satisfiable, allowing us to elide
showing unsat as a possible alternative to output Q.
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Table 1. Instantiating lazy grounding approaches with VOLT where Active(h, Q) =
{ �h�σ | (h =

∧n
i=1 ti ⇒ ∨m

i=1 t′
i) and (∃i : �ti�σ ∈ Q∨ �t′

i�σ ∈ Q)} and Violate(h, Q) =
{ �h�σ | Q �|= �h�σ}.

approach (φ, ψ) := Init(H, S) (φ, ψ) := Ground(H, S, Q) Done(φ, φ′, ψ,
ψ′, w, i)

SoftCegar
[4]

φ := true
ψ := �S�

φ :=
∧

h∈H

∧
Violate(h, Q)

ψ := true
φ′ = true

Cutting Plane
[16,17]

φ := true
ψ := true

φ :=
∧

h∈H

∧
Violate(h, Q)

ψ ::=
∧

(h,w)∈S

∧{ (ρ, w) |
ρ ∈ Violate(h, Q) }

clauses in φ′, ψ′

⊆
clauses in φ, ψ

Alchemy [9]
Tuffy [15]

φ :=
∧

h∈H

∧
Active(h, P )

ψ :=
∧

(h,w)∈S

∧{ (ρ, w) |
ρ ∈ Active(h, P ) }

φ :=
∧

h∈H

∧
Active(h, Q)

ψ :=
∧

(h,w)∈S

∧{ (ρ, w) |
ρ ∈ Active(h, Q) }

i > maxIters
∨ w > target

AbsRefine
[19]

φ := (
⊕

a∈A a) ∧ ¬q
ψ :=

∧
a∈A(a, w)

φ :=
∧{ ∨n

i=1 ¬�ti�σ ∨ �t0�σ |
(
∧n

i=1 ti ⇒ t0) ∈ H ∧
∀i ∈ [0..n] : �ti�σ ∈ G }

ψ := true
where G = lfp λG′. G′ ∪
{ �t0�σ | (

∧n
i=1 ti ⇒ t0) ∈ H ∧

∀i ∈ [1..n] : �ti�σ ∈ (G′ ∪ Q) }

φ′ = true

Init, Ground, and Done. Diverse lazy grounding algorithms in the literature
can be derived by different instantiations of these three procedures.

Algorithm 1. VOLT

1: input (H,S): Weighted constraints.
2: output Q: Solution (assumes �H� is

satisfiable).
3: (φ, ψ) := Init(H,S)
4: Q := ∅; w := 0; i := 0
5: loop
6: i := i + 1
7: (φ′, ψ′) := Ground(H,S,Q)
8: ifDone(φ, φ′, ψ, ψ′, w, i) returnQ
9: (φ, ψ) := (φ ∧ φ′, ψ ∧ ψ′)

10: Q := MaxSAT(φ, ψ)
11: w := Weight(Q,ψ)

In line 3, VOLT invokes the Init
procedure to compute an initial set
of hard clauses φ and soft clauses ψ.
Next, VOLT enters the loop defined
in lines 5–11. In each iteration of
the loop, the algorithm keeps track
of the previous solution Q, and the
weight w of the solution Q by calling
the Weight procedure that returns
the sum of the weights of the soft
clauses satisfied by Q. Initially, the
solution is empty with weight zero
(line 4). In line 7, VOLT invokes
the Ground procedure to compute
the set of hard clauses φ′ and soft
clauses ψ′ to be grounded next. Typ-
ically, φ′ and ψ′ correspond to the
set of hard and soft clauses violated
by the previous solution Q. Next, in line 8, the algorithm checks if Q satisfies
the terminating condition by invoking the Done procedure. If not, then in line
9, both sets of grounded clauses φ′ and ψ′ are added to the corresponding sets
of grounded hard clauses φ and grounded soft clauses ψ respectively. In line 10,
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Table 2. Benchmark program characteristics.

brief description # classes # methods bytecode (KB) source (KLOC)

antlr parser/translator generator 350 2,370 186 119
luindex document indexing and search tool 619 3,732 235 170
lusearch text indexing and search tool 640 3,923 250 178
avrora microcontroller simulator/analyzer 1,544 6,247 325 178
xalan XSLT processor to transform XML 903 6,053 354 285

this updated set φ of hard clauses and set ψ of soft clauses are fed to the MaxSAT

procedure to produce a new solution Q and its corresponding weight w.

Instantiations. Table 1 shows various lazy grounding algorithms from the lit-
erature as instantiations of the VOLT framework. SoftCegar [4] grounds all the
soft clauses upfront but lazily grounds the hard clauses. In each iteration, this
approach grounds all the hard clauses violated by the current solution Q. Note
that the Violate procedure takes as input a hard constraint h and a MaxSAT
solution Q, and returns all grounded instances of h that are violated by Q. The
algorithm terminates when no further hard clauses are violated.

Cutting Plane Inference (CPI) [16,17], on the other hand, is lazier than
SoftCegar and grounds no clauses upfront. In each iteration, both, hard and soft
constraints are checked for violations, and any violated clauses are grounded.
The algorithm terminates when no new constraints are violated.

A common approach, used in statistical relational learning tools like Alchemy
[9] and Tuffy [15], relies on the observation that most ground facts are false in
the final solution, and thereby most clauses are trivially true (since most clauses
are Horn in these applications). An active ground fact is one that has a value of
true. In each iteration, the clauses grounded are such that they contain at least
one active fact as per the current solution. Initially, only the input facts P are
considered active. This approach terminates after a fixed number of iterations
or after the weight of the satisfied clauses is greater than a target weight.

Finally, the AbsRefine approach tackles a central problem in program anal-
ysis of efficiently finding a program abstraction that keeps only information
relevant for proving properties of interest. In particular, this approach uses
the counterexample-guided abstraction refinement (CEGAR) method [5] to effi-
ciently find a suitable abstraction to prove a particular program property when
the program analysis is expressed in Datalog. For such analyses, a set of hard
Horn constraints expresses the analysis rules. A set of input ground facts A
expresses the space of abstractions, with each ground fact in A representing a
unique abstraction of cost w. The query q is a unique ground fact and proving
the query implies having q as false in the final solution Q. The problem is to then
find a solution with the lowest cost abstraction such that the query fact does not
hold and all the analysis rules are satisfied. To lazily solve this problem, AbsRe-
fine initially grounds hard constraints to ensure that in the final solution, the
query fact q is false and only a single abstraction is true. Also, soft constraints
specifying the abstraction costs are grounded upfront. Next, in the Ground
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procedure, AbsRefine grounds not only the hard clauses violated by the current
solution, but uses the Horn nature of the constraints to ground additional clauses
that would be necessarily grounded in future iterations. Specifically, it calls a
Datalog solver, with the Horn constraints and the current solution Q as input, to
compute the corresponding least fixed point (lfp) solution G. Any clause which
has all of its ground facts in set G is added to the set φ′ of hard clauses to be
grounded. This approach terminates when no further hard clauses are grounded.

Implementation. We have implemented the VOLT framework in Java. To com-
pute the set of clauses to be grounded when the hard constraints are in the
form of Horn clauses, as in [19], we use bddbddb [18], a Datalog solver. To com-
pute Violate, the grounded constraints that are violated by a solution, we follow
existing techniques [15,16] and use SQL queries implemented using PostgreSQL.

3 Empirical Evaluation

We evaluate VOLT by instantiating it with the AbsRefine approach for the prob-
lem of finding suitable abstractions for proving safety of downcasts in five Java
benchmark programs. A safe downcast is one that cannot fail because the object
to which it is applied is guaranteed to be a subtype of the target type. Our exper-
iments were done using a Linux server with 64GB RAM and 3.0GHz CPUs.

Table 2 shows statistics of the five Java programs (antlr, lusearch, luindex,
avrora, xalan) from the DaCapo suite [3], each comprising 119–285 thousand
lines of code. Note that these are fairly large real-world programs and allow us
to study the limits of VOLT’s scalability with existing MaxSAT solvers.

We use complete weighted partial MaxSAT solvers that were available from
the top performers in Random, Crafted and Industrial categories of the 9th Max-
SAT Evaluation [1]. In particular, the solvers we use are CCLS2akms [10,12],
Eva500a [14], MaxHS [6], wmifumax [7], MSCG [8,13] and WPM-2014-co [2].

Table 3 summarizes the results of running VOLT with the different MaxSAT
solvers on our benchmarks. The ‘total time’ column shows the total running time
of VOLT. A ’-’ indicates an incomplete run either because the underlying MaxSAT
solver crashed or timed out (ran for >18000 seconds) on a particular instance.
The next column ‘# iterations’ provides the number of iterations needed by
the lazy VOLT algorithm. In cases where VOLT did not terminate, this indicates
the iteration in which the MaxSAT solver failed. The ‘avg solver time’ column
provides the average time spent by the MaxSAT solver in solving an instance.
It does not include the time spent by the solver on a failed run. The ‘ground
clauses’ column provides the distinct number of clauses grounded by VOLT in
the process of solving the weighted constraints. In other words, it indicates the
size of the problem fed to the MaxSAT solver in the final iteration of the VOLT

algorithm. The ‘total clauses’ column reports the theoretical upper bound for
the number of ground clauses if all the constraints were grounded naively.

The evaluation results indicate that the MaxSAT instances generated by VOLT

are many orders of magnitude smaller than the full MaxSAT instance. It is clear
from these numbers that any approach attempting to tackle problems of this
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Table 3. Results of VOLT on program analysis benchmarks. Highlighted rows indicate
cases where the MaxSAT solver used finishes successfully in all iterations.

total avg solver grounded total
benchmark solver time (min) # iterations time (secs) clauses (×106) clauses

CCLS2akms - 1 - 7.8
Eva500a 124 15 64.8 10.4

antlr MaxHS 117 14 71.2 10.1 8.5x1035

wmifumax 109 14 44.4 10.3
MSCG - 5 22.2 7.9
WPM-2014-co 115 14 40.3 10.3
CCLS2akms - 1 - 4.6
Eva500a 127 14 78.6 14.7

lusearch MaxHS 144 14 123.1 19.1 1x1037

wmifumax 119 15 51.2 10.2
MSCG - 6 17 7.5
WPM-2014-co 196 14 332.7 16
CCLS2akms - 1 - 5.2
Eva500a 172 23 45.2 5.9

luindex MaxHS 161 22 52.5 5.9 4.5x1036

wmifumax 169 23 34.1 6.9
MSCG - 6 17.8 9
WPM-2014-co 216 21 226.3 5.7
CCLS2akms - 1 - 7
Eva500a - 4 80.2 17.6

avrora MaxHS - 13 136.7 15.5 4x1037

wmifumax - 13 115.1 9.1
MSCG - 5 31.6 16.9
WPM-2014-co - 12 2135.9 14.8
CCLS2akms - 1 - 10
Eva500a - 5 96.6 19.2

xalan MaxHS - 18 571.6 > 4290 3.8x1039

wmifumax - 14 78.7 42.9
MSCG - 5 47.6 19.7
WPM-2014-co - 12 505.7 44.3

scale needs to employ lazy techniques for solving such instances. On the other
hand, we also observe that many of the solvers are unable to solve these relatively
smaller instances generated by VOLT. For example, VOLT does not terminate using
any of the solvers for avrora and xalan.

The lack of scalability of existing solvers on the larger MaxSAT instances
from our evaluation suggests the need for further research in both, lazy ground-
ing approaches as well as MaxSAT solvers. A possible next step is to make lazy
grounding more demand-driven. This is motivated by the fact many applications
including ours are only concerned with the value of a particular variable instead
of the entire MaxSAT solution. We intend to make the MaxSAT instances gen-
erated in our evaluation publicly available to facilitate future research.

4 Conclusion

Emerging problems in fields like statistical relational learning and program anal-
ysis are being cast as very large MaxSAT instances. Researchers in these areas
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have developed approaches that lazily ground weighted EPR formulae to solve
such instances. We have presented a framework VOLT that captures the essence
of lazy grounding techniques in the literature. VOLT not only allows to formally
compare and clarify the relationship between diverse lazy grounding techniques
but also enables to empirically evaluate different MaxSAT solvers. We hope that
VOLT will stimulate further advances in lazy grounding and MaxSAT solving.
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Abstract. The way CDCL SAT solvers find a satisfying assignment is
very different from the way they prove unsatisfiability. We propose an
explanation to the difference by identifying direct connections to the
workings of some of the most important elements in CDCL solvers: the
effects of restarts and VSIDS, and the roles of learned clauses. We give
a wide range of concrete evidence that highlights the varying effects and
roles of these elements. As a result, this paper also sheds a new light on
the internal workings of CDCL. Based on our reasoning on the difference
in solver behaviors, we present several ideas for optimizing SAT solvers
for either SAT or UNSAT instances. We then show that we can achieve
improvements on both SAT and UNSAT at the same time by judiciously
exploiting the difference. We have implemented a hybrid idea mixing two
different restart strategies on top of our new solver COMiniSatPS and
observed substantial performance improvement.

1 Introduction

Annual SAT Competitions have always been very competitive, but particularly,
the recent SAT Competitions in the application domain have become extremely
intense, showing the clear indication that modern solvers have reached a state of
saturated performance. A difference of solving one or two more problem instances
may completely shuffle the ranks of the top-performing solvers. For example, the
number of solved instances by the top 13 solvers in the application SAT+UNSAT
track in 2014 ranges between 221 and 231, and between 98 and 110 by the
top 20 solvers in the SAT track. Particularly notable is that MiniSat [13] hack
solvers, despite their simplicity and the legacy of the base solver, are as good
as any top performing solvers. The top 13 and 20 solvers above include, respec-
tively, two and three MiniSat hack solvers, and one of them (minisat blbd [11])
was actually the winner in the SAT track1. Also in the SAT+UNSAT track,
MiniSat HACK 999ED [25] solved just four less problems than bronze-awardee
Riss BlackBox [2]. Moreover, in Configuration SAT Solver Challenge 2014, Min-
iSat HACK 999ED was a close runner-up to the winner (Lingeling [8]) in the
industrial track and was the top solver when using default parameters [20].

1 As an important note, minisat blbd uses many hand-picked magic constants overly
tuned for the competition benchmarks and selects them in a controversial way.
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This trend extends to previous years, e.g, in 2013, MiniSat hack solvers took
the 4th place in the application SAT+UNSAT track, and the 1st and the 3rd
in the SAT track2. In 2011, the top two solvers in the application track were
MiniSat hacks.

These results suggest that today’s solvers, includingMiniSat hacks, are increas-
ingly showing similar and saturated performance. We have witnessed impressive
advancements in SAT research since the inception of CDCL [29], but the speed and
degree of improvements is declining. Now we seem to have faced one of the ceilings
that calls for a breakthrough. However, the empirical and NP-complete nature of
practical SAT research offers opportunities to anyone in this field for making a
breakthrough at any stage. Although what we report in this paper is never close
to providing such opportunities leading to a breakthrough, we believe that it has
enough potential to push the ceiling further up.

The central theme of this paper is the well-known fact that the way CDCL
SAT solvers find a satisfying assignment is very different from the way they prove
unsatisfiability in practice [12]. Although the fact itself is very well known, it
is not well understood how and why they work differently and what can be
done accordingly to realize improvements. In this paper, we give partial expla-
nations to these questions from certain aspects. Understanding the reasons for
the difference will not only be interesting from the theoretical perspective in
explaining the actual workings of CDCL but allow us to leverage the difference
in an effective way to bring further improvements. As a proof, we implemented
simple techniques based on our reasoning on the difference in our new solver
COMiniSatPS. The main contributions of this paper is summarized as follows:

1. Reasoning on the SAT/UNSAT Difference. The SAT community is
well aware that CDCL solvers work differently between SAT and UNSAT, but
today’s solvers are not leveraging this difference to the fullest degree. This is
not an irony, because how and why they are different has not been explained
much. We will provide our explanations to the reasons for the difference. We will
support our claims with a wide range of evidence, and the main evidence is the
varying roles and effects of learned clauses, restarts, and the VSIDS heuristic [23].
The evidence will give fresh insights on the workings of these elements in CDCL.

2. Promoting Attention to the Difference. Historically, effects of a new
technique have not been analyzed separately on SAT and UNSAT in many occa-
sions, or only superficially if done. Likewise, in the 2014 Competition, every
solver used the same binary in both SAT and UNSAT tracks3, except ROKK [36].
Moreover, SAT-Race 2015 will not have an independent SAT or UNSAT track.
We call for more attention from the SAT community to this issue of neglecting
the SAT/UNSAT difference. Particularly, we strongly suggest that techniques
and solvers be evaluated separately on SAT and UNSAT whenever possible.

2 Assuming that the authors of these solvers indicated participation in the main track.
3 Some solvers disabled certain complex simplifications for UNSAT, but it was only

to be able to generate verifiable proofs. Moreover, the SAT-focused ROKK was also
limited to adjusting several parameters.
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3. Performance Improvements. First, we will come to understand how to
make solvers stronger on SAT at the expense of making it weaker on UNSAT
(and vice versa). Ultimately, we will highlight the potential of exploiting the
SAT/UNSAT difference for achieving improvements on both SAT and UNSAT
by presenting the latest version of COMiniSatPS and its results.

4. Uncovering Potential Values of Neglected Techniques. Our support-
ing evidence includes our explanations to the effectiveness (and ineffectiveness)
of the Luby-series [22] restarts. Although still used by some solvers, the Luby
strategy has largely been replaced with much more rapid restarts (e.g, Glucose-
style restarts [6]) in modern solvers. This is because rapid restarts are shown to
be vastly superior in a universal sense. However, we will show that Luby is supe-
rior to rapid restarts if restricted to satisfiable instances. With this observation,
we further raise a concern that techniques of the past can be overshadowed and
discarded too easily in favor of new ones, e.g, when the SAT community neglects
the SAT/UNSAT difference. Like in the Luby case, revisiting past and current
research with the difference in mind may reveal new insights. In the same vein,
we will uncover some interesting ideas hidden in the results of the past SAT
Competitions in the course of our discussion.

2 Background

It is assumed that readers are familiar with basic CDCL knowledge. After we
introduce COMiniSatPS, we briefly cover VSIDS and a few strategies for restarts
and learned clause management in CDCL that appear in this paper.

2.1 COMiniSatPS

COMiniSatPS4 is our new solver designed to exploit the SAT/UNSAT differ-
ence. It is officially a successor to the award-winning5 solver SWDiA5BY [25].
SWDiA5BY in turn merely implements on top of Glucose a tiny hack of another
award-winning6 MiniSat hack solver MiniSat HACK 999ED [25]. We will actually
use empirical data generated from COMiniSatPS to highlight the SAT/UNSAT
difference. However, we assure readers that COMiniSatPS is a simple MiniSat
(practically, Glucose) derivation, and all of its essence will be covered eventually
in the course of discussion.

2.2 VSIDS Branching Heuristic

VSIDS [23] is a branching heuristic to choose a decision variable for searching.
The heuristic favors variables that are more active in terms of being involved

4 Source is available at http://www.cs.nyu.edu/∼chanseok/cominisatps.
5 Three medals in SAT Competition 2014.
6 Collectively three medals in SAT Competition 2014 and Configurable SAT Solver

Challenge 2014.

http://www.cs.nyu.edu/~chanseok/cominisatps
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in recent conflict analyses. The activity scores however slowly decay over time,
which naturally penalizes variables that have been inactive for a long time.
It has long been the standard heuristic adopted by almost all modern solvers,
with small variation at best.

2.3 Learned Clause Management

MiniSat’s Clause Activity Scheme. MiniSat removes (roughly) half of the
entire learned clauses based on their activities periodically. The notion of
activity is same as in VSIDS and thus dynamic: clauses involved in recent
conflict analyses are awarded with bumped scores, and the scores decay
over time. The size of the clause database is capped to follow a geometric
progression by periodic reduction. The base of the progression is determined
by the size of an input problem (retaining more clauses for large problems).

Glucose’s LBD Scheme. Instead of using clause activities, it uses LBD [4] to
prioritize which clauses to remove. In short, LBD is a number of different
decision levels of variables in a clause (hence never greater than the clause
size), and low LBD is favored. Unlike MiniSat, the LBD value is mostly static
and determined at the time of clause creation (can only decrease occasion-
ally). Another critical difference from MiniSat is its aggressive tendency to
maintain a very compact database with short intervals between reductions.

2.4 Restart Strategies

MiniSat’s Luby-series Restarts. MiniSat’s default restart strategy that was
once a standard. The intervals between restarts (in terms of conflicts) are
fixed to follow the Luby sequence [22], each multiplied by 100: 1, 1, 2, 1, 1, 2,
4, 1, 1, 2, 1, 1, 2, 4, 8, ... . The sequence is known to be log optimal when the
runtime distribution of a problem is unknown in the theoretical sense [22].

Glucose’s Dynamic and Rapid Restarts. Restarts are dynamic [6] in that
it initiates a restart when the solver appears to learn clauses with higher LBD
than the global average. This typically results in (relatively) much more rapid
restarts. Later versions of Glucose added a method to skip restarts when the
solver seems likely to have got close to a satisfying assignment (precisely
speaking, when a lot of variables are suddenly and unusually assigned) [6].

Some of other restart strategies are worth mentioning: Lingeling’s agility and
saturation [9], and progressive saving based quality measure (PSM) [3].

3 The SAT/UNSAT Difference of CDCL in Practice

It is well known that the way a CDCL SAT solver finds a satisfying assignment
is very different from the way it finds a refutation proof for unsatisfiability. From
the complexity theory point of view, showing that a Boolean formula is satisfiable
is normally believed to reside in a different complexity class than proving that
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it is unsatisfiable. There always exists a polynomial-length witness for any sat-
isfiable formula, but it is generally believed that not every unsatisfiable formula
can have a short proof (the question of NP = co-NP). It is well known that the
proof system of a broad class of CDCL is as powerful as general resolution [27],
and that the resolution-based proofs for certain problems (e.g, pigeon-hole) are
exponential in size [18].

In this section, we discuss in detail the varying degrees of roles and effects of
learned clauses, restarts and the VSIDS heuristic between SAT and UNSAT in
an attempt to understand the nature of the SAT/UNSAT difference in CDCL.

3.1 Roles of Learned Clauses

Background. Recently, learned clause management has been an active topic
of research. Solvers maintain a huge number of learned clauses by periodically
removing them (typically halving) to contain the fast growth rate of the clause
database. The followings are some of the main goals of this periodic reduction:

– We want to accumulate clauses, since learning more lemmas is advantageous
for diverse reasons.

– However, we need to periodically forget some that seem less helpful, since
keeping too many clauses severely penalizes propagation efficiency.

– Finally, we need to make the database grow over time, e.g, to avoid repetitive
learning [3] or to ensure making progress (and for completeness too).

Each issue has its own ground for consideration based on some commonly held
assumptions about learned clauses. At the root of such assumptions is often the
view that learned clauses in CDCL are the most important asset we learn during
solving. Many believe that keeping learned clauses is essential to avoid repetition
or to ensure making progress. Some believe that it would always help if we could
predict and keep clauses that will be used frequently in future propagations or
conflicts. Even though we lack clear understanding about the roles of learned
clauses at this stage, most of such assumptions seem too obvious not to accept.
However, we will see later that some of such traditional beliefs do not hold firm
ground or justify much consideration in practice. We had already questioned
the validity of such beliefs and submitted a prototype SWDiA5BY to the 2014
Competition to challenge them. The results suggest that, in an ultimate sense,
clauses with LBD >5 are largely meaningless and that repetitive learning is either
infrequent or negligible. We will further show that, for satisfiable instances, even
LBD greater than 1 or 2 are not so helpful and VSIDS scores may be a more
important asset than learned clauses. Before that, we begin with a short survey
that hints the different roles of learned clauses between SAT and UNSAT.

A Short Survey. Fig. 1 summarizes a short survey of running Glucose 2.3 (par-
ticipant of SAT Competition 20147) on 135 benchmark problems from 2013 and
7 The authors of Glucose specified the version as 3.0 in the Competition, but the code

is precisely Glucose 2.3. This is not a mistake, since, for sequential SAT solving, there
is no real difference between 2.3, 3.0, and 4.0.
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Fig. 1. Comparison of runtimes (secs): with and without database reduction

2014 Competitions with a short timeout of 900 seconds on Intel Core i5-4460S @
2.90GHz and 12GB RAM. We selected easy problems that Glucose solved roughly
between 15 and 200 seconds according to the competition data (excluding some
that are too big). Almost all other solvers solved them very efficiently too. The
figures compare runtimes of original Glucose with a variant that never removes
learned clauses (unless satisfied). Expectations with the variant on these easy
problems could be that it would still solve them efficiently, or sometimes more
efficiently as Glucose may be removing clauses too aggressively. However, for
SAT instances, we observe large variation. We are often lucky to find a model
much faster, but sometimes the solver becomes completely lost to take signifi-
cantly more time (9 timed out). In contrast, the result is stable and robust in
the UNSAT case. It is rare to take less time, and even if it does, the gain is
negligible. The overall variation is by far smaller too (3 timed out). In fact, this
kind of difference in solver stability between SAT and UNSAT has been known
to researchers [30]. The reason becomes more clear if we look at another metric.
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Fig. 2. Difference in no. conflicts (%): with and without database reduction

Fig. 2 plots the difference (%-increase) of the number of conflicts required to
solve a problem before and after disabling clause removal. For SAT instances, the
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difference is unstable and substantial in almost all cases without clear trend. The
graph is capped at 100%, and the differences of several hundreds % are common
(up to 1200%). In contrast, in the UNSAT case, we see the trend of moderately
reduced conflicts for most cases. The overall variation is comparably small too.
We conjecture that this trend and high stability in UNSAT is because the solver
has to derive an empty clause (i.e, an UNSAT proof) by successive resolutions
based on existing clauses. That is, ignoring slowdown of unit propagation, learned
clauses are certainly useful to accumulate to prove UNSAT, and keeping every
clause would generally bring substantial improvement for UNSAT under this
assumption. However, this does not apply for SAT, and it may adversely make
the solver very unstable as observed. Therefore, for SAT, keeping non-essential
clauses might be disadvantageous rather than just being useless. However, this
short survey is too primitive to draw such a firm conclusion, so we will now
present compelling evidence. The evidence will show that learned clauses play
surprisingly insignificant roles, particularly on SAT instances.

Table 1. Solved instances with 600 (300 SAT/300 UNSAT) competition benchmarks

SWDiA5BY COMiniSatPS C Lingeling
Glucose

Core LBD cut 5 0 1 2 3 4 5 6 3 ayv aqw

SAT 109 120 131 129 129 124 129 128 133 122 119 104
2013 UNSAT 123 47 88 113 116 120 126 122 132 107 112 112

Total 232 167 219 242 245 244 255 250 265 229 231 216

SAT 88 88 93 91 92 90 90 95 94 86 88 85
2011 UNSAT 104 73 92 97 97 101 101 99 102 94 93 108

Total 192 161 185 188 189 191 191 194 196 180 181 193

Varying Roles of Learned Clauses. Table 1 shows results of running COMin-
iSatPS with different core LBD cuts [25] on the 2013 and 2011 Competition
benchmarks with timeouts of 4,200 and 1,500 seconds, respectively, on the
same machine as before. Results of Lingeling ayv (2014 Competition winner),
SWDiA5BY (runner-up), Lingeling aqw (2013 winner), and Glucose (2014) are
also included. The solver named C is a refined COMiniSatPS covered in Sec. 4.

As a minimum base, all the COMiniSatPS settings in the table manage up to
30,000 learned clauses by MiniSat’s clause activities (i.e, no LBD) and employ
hybrid restarts (Sec. 3.2). This is precisely the 0-LBD cut setting. The maximum
limit of 30,000 clauses is indeed very low as solvers routinely learn thousands of
clauses per second. Note that this 0-LBD cut can solve implausibly many prob-
lems. Particularly for SAT, it is comparable with Lingeling. We even observed,
for certain satisfiable benchmarks (e.g, 001-010.cnf from 2013), this “unreason-
able” setting is exceptionally effective and almost optimal. However, this setting
is very poor on UNSAT and particularly disastrous on the 2013 benchmarks.
Next, the 1-LBD cut keeps forever learned clauses (apart from those 30,000)
that ever attained LBD 1. Note that LBD 1 is observable only when dynamically
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updating LBD during conflict analysis, in which case we learn a unit clause and
backtrack to the top decision level. Note the dramatic improvement on UNSAT,
whose trend continues to the next LBD cut of 2. Certainly, learned clauses are
far more required for UNSAT than for SAT. This makes sense when consider-
ing how resolution derives a refutation proof. In contrast, learned clauses play
a far less significant role for SAT, and what is probably more important could
be the evolution of VSIDS scores and variable phases [26]. In some sense, this
working is rather similar to local search algorithms being able to find a satisfying
assignment by evolving the current assignment set with phase flips. In this sense,
changes to the VSIDS heuristic might be a key for future improvement for SAT.

The table also shows that not-critically-low LBD is barely useful from a
practical sense. SWDiA5BY already proved it openly in the 2014 Competition.
The table fortifies this view by showing that an increase of the LBD cut after 1
does not help on SAT, and helps rather marginally on UNSAT. Our pessimistic
hypothesis is that as SAT being NP-complete, we can only derive an easy UNSAT
proof in general (i.e, only using very low LBD) for easy (e.g, industrial) problems.
In this sense, LBD seems to be a great static measure for how much a clause
would help in composing an easy proof. In fact, we tested using a clause size
of 12 instead of LBD 5 as a core cut limit (i.e., keeping forever clauses of size
≤12). We chose the size 12 based on previous work [21]. Table 2 compares the
results of MiniSat HACK 999ED using the clause size of 12 and using LBD 5
(original MiniSat HACK 999ED) as a core cut. We used the 2013 Competition
benchmarks with a timeout of 5,000 seconds on another machine with Intel Core
2 Duo E8400 @ 3.00GHz and 4G RAM. Note the much degraded performance
on UNSAT. This is in contrast with the considerably better result on SAT.
This shows one way of improving performance on SAT at the expense of having
degraded performance on UNSAT.

However, it is critical to understand that completely ignoring high-LBD or
large clauses will not simply work in CDCL. We still need to keep recent or
active clauses around for a while to efficiently drive search by conflicts. This is
why COMiniSatPS manage up to 30,000 clauses, and MiniSat’s clause activity
scheme seems to be a great choice for this purpose.

Table 2. LBD vs. clause size as the core cut with MiniSat HACK 999ED

Core cut LBD 5 Size 12

SAT 100 107

UNSAT 103 92

Glucose’s success comes with its continuous evolution of increased aggres-
siveness in clause database reduction [4]. We will explain the efficiency of Glu-
cose’s aggressive clause removal in our terms. We realized that only low-LBD
clauses are left after each database reduction, whose trend is only reinforced with
increased aggressiveness. Fig. 3 is a typical graph of average LBD of the entire
learned clauses that confirms this behavior. The average increases over time
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Fig. 3. Glucose running on minxor128.cnf from SAT Competition 2014

locally and globally. However, reducing the database always drops the average
sharply to about 5, which accounts for the great efficiency of Glucose. Remember
that, once a clause have attained a sufficiently low LBD, it tends to remain in
the database in a stable manner, often forever if the LBD is critically low. The
lower the LBD of a clause is, the higher is its chance of being fixed into the
database. This is because low-LBD clauses have far more chances to be used
and hence updated with a lower LBD. We can also infer that, considering the
sharp LBD drop after each reduction which halves the database, most learned
clauses are generated with a much higher LBD. Therefore, from our perspec-
tive, most clauses are largely useless, and Glucose has been very good at striking
the right balance to accumulate more and more critically-low-LBD clauses while
constantly truncating a large body of useless clauses by aggressive reduction.
The reduction intervals also seem to be fine-tuned so that each reduction does
not remove critically-low-LBD clauses, or only a small portion if any.

3.2 Effects of Restarts

Restarts in CDCL are crucial and very effective to counter the heavy-tailed phe-
nomena [15] in search space exploration. In this section, we will discuss varying
effects of restarts on SAT and UNSAT in relation to the frequency of restarts.

The Value of Luby Restarts. The Luby restart strategy was once a standard
in the past after shown to be empirically superior to other existing schemes [19].
Recently, however, the huge success and continued innovations of Glucose have
popularized the trend of dynamic and rapid restarts. The result is the cur-
rently dominant state of rapid restarts in recent solvers. This is not surprising
since, e.g, Glucose’s restart strategy is decisively superior to Luby. However, we
recently became aware that Luby outperforms Glucose-style restarts in certain
benchmarks, particularly on satisfiable industrial instances.

The value of Luby is highlighted by many pieces of evidence, and we will
list some interesting ones shortly. Such evidence also reveals the weakness of



316 C. Oh

Luby at the same time. Not known to many is the surprising fact that two
MiniSat hack solvers, SINNminisat [35] and minisat bit [10] are actually the 1st-
and 3rd-place winners of the industrial SAT track in SAT Competition 20138.
Notably, however, these solvers did poorly in the UNSAT track. Original Min-
iSat also competed (only for UNSAT) and showed disastrous performance on
UNSAT. Later next year, the industrial SAT track winner was again a MiniSat
hack minisat blbd [11]. Ironically, however, minisat blbd performed worse in over-
all than the MiniSat hack track winner MiniSat HACK 999ED [25] (5th in the
SAT track). This implies that minisat blbd had exceptional strength particularly
on SAT instances. In fact, minisat blbd was ranked 13th (solving 99 problems)
while MiniSat HACK 999ED was 4th (solving 116) in the UNSAT track. (Origi-
nal MiniSat did not compete in 2014.) Then, the organizers of Competition 2011
already reported in the past that there were many good MiniSat hack solvers
for application SAT, including the top two Contrasat [14] and CIR minisat [31]:
six out of the top 10 solvers were MiniSat hacks [5]. One common property of
all those MiniSat hacks is the Luby restarts. To be qualified as a hack, most of
the hack solvers were not able to change MiniSat’s Luby strategy. This ironically
made the hack solvers excel in the SAT track (but perform poorly on UNSAT).

There exist many other examples of Luby’s strength in recent competitions.
One good example is satUZK [16] in 2013. The solver won a bronze medal in
the SAT track while ranked 23rd in the SAT+UNSAT track. Notably, satUZK
abandoned Luby to use the Glucose-style restarts in the following year.

There also have been hybrid restart strategies using Luby. It is well known
that a portfolio-based parallel approach is very effective [1]. As such, there always
have been attempts to diversify search characteristics in sequential solvers too,
e.g, by changing various major parameters dynamically or taking a hybrid set-
ting. Solvers combining different restart strategies have been around for years,
and the first appearances in a competitive event known to us are SINN [32],
TENN [33] and ZENN [34] (all from the same authors) in SAT Challenge 2012.
These solvers periodically switch between Luby and (relatively) much more rapid
restarts (e.g, Glucose restarts). It is interesting that this hybrid approach is
equally very good on both SAT and UNSAT. SINN took 2nd, ZENN 3rd, TENN
8th in the (single-engine) application track, and ZENN 3rd in the combinato-
rial track. ZENN in 2013 was officially 2nd in the SAT track and 3rd in the
SAT+UNSAT. ROKK [36] in 2014 using the same approach was also very suc-
cessful. Solving one more problem than MiniSat HACK 999ED, ROKK was ranked
7th in the SAT+UNSAT track. Here, knowing that MiniSat HACK 999ED was
ranked 11th, we again verify the performance saturation of today’s solvers.

Varying Effects of Restarts on SAT and UNSAT. Glucose has constantly
shown its particular strength on industrial UNSAT since its first release in 2009.
Relatively, however, it has been much weaker on SAT. In the application UNSAT
tracks, it was ranked 1st in 2009, 2nd in 2011, 1st in 2013, and 2nd in 2014.
In contrast, in the SAT tracks, it was ranked 8th in 2009, 10th in 2011, 12th
8 They did not win medals as they only indicated participation in the hack track.
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in 2013, and 14th in 2014. The authors were clearly aware of this weakness to
employ the clever measure of blocking restarts to compensate for this weakness
on SAT [6]. This restart blocking has brought substantial improvement on SAT,
but the recent competitions still show Glucose’s weakness on SAT. This situation
is complete opposite to the Luby-employing solvers that we have seen previously.

Table 3. Luby vs. Glucose restarts with MiniSat HACK 999ED

No. solved Avg CPU time
Luby Glucose-style Luby Glucose-style

SAT 119 100 356.7 405.1

UNSAT 85 107 1102.4 675.8

To verify this, we modified MiniSat HACK 999ED to use Luby and compared
the result with original MiniSat HACK 999ED that faithfully implements Glucose
restarts (Table 3). We used the 2013 Competition benchmarks on the Intel Core
2 Duo machine with a timeout of 5,000 seconds as before. The rightmost two
columns compare the average CPU time only for the problems that both solvers
were able to solve. It is clear that Luby is vastly inferior to Glucose restarts
on UNSAT in terms of both CPU time and the number of solved instances. In
contrast, Luby is shown to be very powerful on SAT, which explains the good
results of Luby-employing solvers in the 2013 Competition. However, we caution
the reader that the huge win over Glucose restarts comes from one benchmark
series (001-010.cnf, 30 instances, all SAT). If we exclude those benchmarks, Luby
solves 107 instances. (No difference with Glucose restarts since it solved none of
the instances.) Therefore, even if we ignore the said benchmarks entirely, Luby
is still superior to Glucose restarts on SAT. This makes a stark contrast in that
Luby is significantly bad on UNSAT.

It is worth mentioning more about the benchmarks 001-010.cnf above. Most of
the solvers in the 2013 Competition used Glucose-style or similarly rapid restarts.
According to the competition data, all of them could solve about two out of 30
instances from this benchmark series. In contrast, MiniSat hacks, satUZK, and
ZENN utilizing Luby could solve usually more than half of them. It is in fact
these benchmarks that gave the latter solvers a great advantage compensating
for the poor performance on UNSAT in the Competition.

In this context, the prominent difference between Luby and Glucose is the
frequency of restarts. Although Luby was considered “rapid” restarts at the time
of its introduction, nowadays it is very infrequent compared to Glucose restarts in
general. Notably, Luby has a distinctive feature that it occasionally guarantees
an extended periods of no restarts. As such, we conjecture that rapid9 restarts
generally help deriving a refutation proof (e.g, by lowering the average size of
clauses [28]), while remaining in the current branch in the search space increases

9 We mean being rapid in today’s sense. For example, “aggressive” or “frequent” in
[7] is now seen infrequent.
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the chance of reaching a model. This view is not really new in that Glucose blocks
restarts to compensate for the weakness on SAT [6] in recent versions. In fact,
the authors of Glucose added this blocking feature after noting the use of Luby
by the top-performing MiniSat hacks in the 2011 Competition [5]. However, it is
not uncommon that there exist largely different views that, e.g, future solvers
will evolve towards ultra rapid restarts [17].

To prove our theory, we designed and tested a very crude hybrid restart
strategy: alternating between a no-restart phase and a Glucose restart phase. The
basic idea is to force extended periods of no restarts periodically. We allocated
twice more time to the Glucose phase than to the no-restart. One alternating
cycle starts with 300 conflicts (100 for no-restart and 200 for Glucose), and the
length of the following cycle increases by 10% (i.e, 330 conflicts). The global
and local LBD averages used for Glucose’s dynamic restarts are computed and
preserved only throughout the Glucose phases, because clauses learned in the no-
restart phase will show completely different characteristics. The restart blocking
in the Glucose phase is disabled given that we have the no-restart phase. We will
discuss the result later after explaining all other changes we add to this strategy.

One important lesson in this section is that many studies on restarts (e.g, [17],
[31], [24]) have been carried out without considering the SAT/UNSAT difference.
This has contributed to the currently dominant state of rapid restarts in recent
solvers that quickly replaced Luby, even though we now see that slow Luby is
superior to rapid restarts on SAT.

3.3 VSIDS and Variable Decay Factor

We observed that Luby having occasional and extended periods of no restarts
make a solver stronger on SAT (while making it weaker on UNSAT) in general.
Our natural deduction for the reason has been that long periods of no restarts
increase chances of reaching the bottom of the search space (i.e, a model) by
giving sufficient time to the conflict-driven search before giving up with too fre-
quent restarts. From this perspective, we hypothesized that making search more
stable and steady may have positive effect on SAT. We tested our hypothesis by
focusing on making changes to VSIDS to alter the stability in search. The focus
on VSIDS was also a good starting point based on our conjecture that VSIDS
may be a more influential factor than learned clauses on SAT.

The VSIDS scores of variables “decay” over time. In MiniSat, the decay rate
is controlled by a parameter whose default value is 0.9510. A lower value implies
more dynamic and reactive nature in decision variable selection as activity scores
of old variables decay fast. That is, a lower factor makes recently active variables
more influential, while a higher factor leads to higher stability in search space
exploration. Using the value of 0.95 is almost a standard. The recent versions of
Glucose (and SWDiA5BY) initially start with a lower factor of 0.8, but the factor
increases and eventually reaches 0.95.

10 “Decaying” in MiniSat is different from original Chaff [23]: it is simulated by bumping
scores with a value that is continuously increased by the ratio of 1/0.95 per conflict.
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Table 4. Different variable decay factors with MiniSat HACK 999ED

Decay factors NR G NR G NR G NR G
in each phase 0.95 0.95 0.999 0.6 0.999 0.85 0.999 0.95

SAT 110 111 117 114

UNSAT 107 95 99 107

Changing the decay factor has a profound effect on solver performance. Our
preliminary research showed that using a factor of 0.999 in the no restart phase
slightly increases strength on SAT. Table 4 compares the number of solved
instances using different decay factors for each restart phase (2013 Competi-
tion benchmarks on the Intel Core 2 Duo machine and the timeout of 5,000
seconds as before). NR and G in the table refer to, respectively, the no restart
phase and the Glucose phase. The hybrid strategy was implemented on top of
MiniSat HACK 999ED. The first solver using the default decay factor of 0.95 for
both phases simply implements the two alternating restart phases. The other
three solvers switch decay factors for respective phases (and thus disable Glu-
cose’s feature of initially starting with the value of 0.8). Note that we tested
only 0.999 for the no restart phase. The reason is that 0.999 was our first choice
that showed immediate improvement in our preliminary research. Having little
computing resource, we did not try other values for the no restart phase. From
these observations, we decided to use the factor of 0.999 in the no restart phase.
For the Glucose phase, however, we retained the default value of 0.95, since this
value appears to be an optimal value for the moment.

Ultimately, we implemented an elaborated approach of maintaining two sep-
arate sets of VSIDS scores (hence two separate priority queues for variable selec-
tion), each used exclusively for one restart phase. Our motivation was to reduce
interference on VSIDS scores between SAT and UNSAT. In either phase, VSIDS
scores in both sets are bumped and decayed together as usual, but with different
decay factors of 0.999 and 0.95 for each respective set. This scheme seems to give
more robust outcomes and work better than simply switching the decay factors
(also better on the 2014 Competition benchmarks).

In fact, a very similar idea already appeared once in one of the past competi-
tions (but not in the literature). As mentioned, the signature feature of ZENN is
the search diversification with a hybrid approach. The authors of ZENN seemed
to have tried many interesting hybridization ideas. One of the ideas is to use
different decay factors (0.99 and 0.8) in a way similar to ours: switching the fac-
tors between two different restart strategies. However, they abandoned this idea
in their new solvers in the following year. Because there exists no publication,
it is not clear why they decided to implement and later abandon the idea. Like
Luby, it would be interesting to revisit this idea in more depth.

The results of implementing the simple hybrid restart strategy from the pre-
vious section together with the alternating decay factors are already presented
in Table 1, in the columns under COMiniSatPS using 7 different LBD cuts
(0 to 6). Since SWDiA5BY uses the LBD cut of 5, it is best to compare the
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5-LBD-cut version against SWDiA5BY. Note that because of the said instances
001-010.cnf in the 2013 benchmarks, the table shows heavily biased results of
dramatic improvement on 2013 SAT for all LBD cuts. For 2011 SAT, it shows a
slightly better result, but the degree of improvement is very marginal. For 2013
UNSAT, the LBD-cut-5 version has a slightly better result than SWDiA5BY,
which is not the case with 2011 UNSAT. In fact, we report that the overall
strength on UNSAT is slightly reduced, particularly in terms of CPU time. This
overhead on UNSAT is not really a surprise, since the entire runtime is divided
into two different restart phases. Considering that only two third of the runtime
is spent for the Glucose phase, this slight degradation on UNSAT is actually
encouraging.

This hybrid strategy is still very primitive, and we will show one possible
way of achieving further improvement on both SAT and UNSAT.

4 Refining the Hybrid Strategy

Now that we gained better understanding on the varying degrees of effects and
roles of learned clauses, restarts, and VSIDS between SAT and UNSAT, we
attempted refining the hybrid strategy with the aim of achieving further improve-
ment for both SAT and UNSAT. Before we explain our refinement, we report
that we tested several other ideas and verified that there exist many ways to
improve performance on SAT while having negative impact on UNSAT (and
vice versa), which we omit in this paper due to page limit.

We have seen that clauses of LBD >5 are barely useful, in a practical and
global sense. For UNSAT, it is the low-LBD clauses that play a central role of
establishing a foundation that provides sufficient lemmas (clauses) necessary for
constructing an easy UNSAT proof. However, giving a little bit more room for
clauses having slightly higher but sufficiently low LBD may be advantageous
in deriving a proof too. On the other hand, even LBD >1 does not seem to
help much for SAT. There could be a compromise that satisfies both SAT and
UNSAT in this context. We designed and tried an idea of adding a mid-tier in
the clause database, in addition to the existing core and local tiers [25]. The idea
is to lower the core LBD cut to have a more compact database mainly for SAT,
while the mid-tier accommodates recently used clauses of higher LBD between
4 and 6 for UNSAT. The mid-tier functions as a buffer and staging area in that
clauses may stay as long as but only if they have been involved in recent conflict
analyses. The mid-tier is checked for reduction at every 10,000 conflicts, and
clauses not used in the past 30,000 conflicts are demoted to the local tier. There
are still a few subtleties in the actual implementation details, but this workings
of the mid-tier is the essence of the refinement. To recap, (1) we bring down the
core LBD cut to 3 for increased efficiency on SAT; while (2) we retain recently
used clauses of LBD up to 6 in addition to local clauses in the hope that those
mid-tier clauses can be used efficiently as bridging elements for an UNSAT proof.
The result is presented in Table 1 as Solver C. It shows substantial improvement
both on SAT and UNSAT with the 2013 benchmarks, although the improvement
is only marginal on the 2011 benchmarks with the short timeout.
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In fact, this idea of keeping clauses that were touched in recent conflicts
was inspired by ROKK [36]. ROKK showed remarkable performance in the 2014
Competition (7th in SAT+UNSAT and 6th in SAT). The solver uses a hybrid
strategy, and its learned clause management is very peculiar. Basically, the solver
reduces the database at every 10,000 conflicts (i.e, high tendency towards shrink-
ing to 5,000 clauses over time), while protecting recently used clauses in a similar
(but much more complex) way to ours.

An interesting observation is the completely different characteristics of this
mid-tier exhibited in each restart phase. For the no-restart phase, the size of the
tier decreases quickly over time. Literals per learned clause (in an overall sense)
tend to increase quickly too. The general implication is that, when remaining in
the current search space without restarts, new learned clauses are used mostly
locally and rarely get reused. However, the situation is opposite in the Glucose-
style restart phase, although the size of the tier does not grow much anyway due
to the low limit of 30,000 conflicts to be considered recent.

5 Conclusion

CDCL SAT solvers prove satisfiability and unsatisfiability in very different ways.
We proposed an explanation to the difference and presented a wide range of
interesting evidence that supports our explanation. In the course, we provided
additional insights on the roles and effects of learned clauses, restarts and VSIDS,
and particularly, their varying degrees of effects between SAT and UNSAT. We
uncovered virtues of past and hidden techniques including Luby and hybridiza-
tion. We showed that there exist ways to make solvers stronger on SAT at the
expense of making it weaker on UNSAT (and vice versa), e.g, by suppressing
rapid restarts. We also suggested a possible way to improve performance on both
SAT and UNSAT by judiciously exploiting the SAT/UNSAT difference. How-
ever, the hybrid strategy of COMiniSatPS is very primitive, and the current state
is far from maintaining an optimal balance between SAT and UNSAT. More-
over, there may exist largely different ways that better exploit the SAT/UNSAT
difference. We also want to make a note that revisiting previous research with
the difference in mind may shed more light on the internal workings of CDCL.

Lastly, we emphasize that all the arguments in this paper applies only to the
problems from the industrial domain. Particularly, it may not work as explained
for the hand-crafted problems. It is well known that industrial problems are very
different from hand-crafted ones although they share some similarities. It will
be interesting to find out in which ways they are different, which might give
new insights on the CDCL workings. Similarly, the structure of one benchmark
series can be very different from the structure of another. One strategy cannot
be universally good to every series and may be good for only a certain set of
benchmark families.
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Abstract. The enumeration of minimal unsatisfiable subsets (MUSes)
finds a growing number of practical applications, that includes a wide
range of diagnosis problems. As a concrete example, the problem of axiom
pinpointing in the EL family of description logics (DLs) can be mod-
eled as the enumeration of the group-MUSes of Horn formulae. In turn,
axiom pinpointing for the EL family of DLs finds important applications,
such as debugging medical ontologies, of which SNOMED CT is the best
known example. The main contribution of this paper is to develop an
efficient group-MUS enumerator for Horn formulae, HgMUS, that finds
immediate application in axiom pinpointing for the EL family of DLs.
In the process of developing HgMUS, the paper also identifies perfor-
mance bottlenecks of existing solutions. The new algorithm is shown to
outperform all alternative approaches when the problem domain targeted
by group-MUS enumeration of Horn formulae is axiom pinpointing for
the EL family of DLs, with a representative suite of examples taken from
different medical ontologies.

1 Introduction

Description Logics (DLs) are well-known knowledge representation for-
malisms [4]. DLs find a wide range of applications in computer science, including
the semantic web and representation of ontologies, but also in medical bioinfor-
matics.

Given an ontology (that consists of a set of axioms) and a subsumption rela-
tion entailed by the ontology, axiom pinpointing is the problem of finding mini-
mal axiom sets (MinAs), equivalently minimal sub-ontologies, each one entailing
the given subsumption relation [48]. So, each MinA represents a minimal expla-
nation or justification for the subsumption relation. Example applications of
axiom pinpointing include context-based reasoning, error-tolerant reasoning [32],
and ontology debugging and revision [26,49]. Axiom pinpointing for different
description logics (DLs) has been studied extensively for more than a decade,
with related work in the mid 90s [1,3,5–8,25,31,33,37,39,40,42,48–51,53].

The EL family of DLs is well-known for being tractable (i.e. polynomial-
time decidable). Despite being inexpressive, the EL family of DLs, concretely by
using the more expressive, and still tractable, EL+, has been used for represent-
ing ontologies in the medical sciences, including the well-known SNOMED CT
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24318-4 24



Efficient Group-MUS Enumeration of Horn Formulae 325

ontology [55]. Work on axiom pinpointing for the EL family of DLs can be traced
to 2006, namely the CEL tool [5]. Later, in 2009, the use of SAT was proposed
for axiom pinpointing in the EL family of DLs [50,51,56], concretely for the more
expressive DL EL+. This seminal work proposed a propositional Horn encoding
that can be exponentially smaller than earlier work [5,7,8]. Moreover, the use of
SAT for axiom pinpointing for the EL family of DLs, named EL+SAT [50,51,56],
was shown to consistently outperform earlier work, concretely CEL [5]. Recent
work [1] builds on these propositional encodings, but exploits the relationship
between axiom pinpointing and enumeration of minimal unsatisfiable subsets
(MUSes) [30], achieving conclusive performance gains over earlier work.

Nevertheless, this recent work has a number of potential drawbacks that will
be analyzed later in the paper.

The relationship between axiom pinpointing and MUS enumeration was also
studied elsewhere [33]. Instead of exploiting hitting set dualization, this alterna-
tive approach exploits the enumeration of implicants [33].

The main contribution of this paper is to develop an efficient group-MUS
enumerator for Horn formulae, referred to as HgMUS, that finds immediate
application in axiom pinpointing for the EL family of DLs. In the process of
developing HgMUS, the paper also identifies performance bottlenecks of exist-
ing solutions, in particular EL+SAT [50,51]. The new group-MUS enumerator for
Horn formulae builds on the large body of recent work on problem solving with
SAT oracles. This includes, among others, MUS extraction [12], MCS extraction
and enumeration [34], and partial MUS enumeration [28,29,44]. HgMUS also
exploits earlier work on solving Horn propositional formulae [17,38], and devel-
ops novel algorithms for MUS extraction in propositional Horn formulae. The
experimental results, using well-known problem instances, demonstrate conclu-
sive performance improvements over all other existing approaches, in most cases
by several orders of magnitude.

The paper is organized as follows. Section 2 introduces the notation and
definitions used throughout the paper. Section 3 reviews recent work on MUS
enumeration, which serves as the basis for HgMUS. Afterwards, the new
group-MUS enumerator HgMUS is described in Section 4. Section 5 compares
HgMUS with existing alternatives. Experimental results on well-known prob-
lem instances from axiom pinpointing for the EL family of DLs are analyzed
in Section 6. The paper concludes in Section 7.

2 Preliminaries

Standard definitions of propositional logic are assumed [13]. This paper considers
Boolean formulae in Conjunctive Normal Form (CNF). A CNF formula F is
defined over a set of Boolean variables V (F) = {x1, ..., xn} as a conjunction of
clauses (c1 ∧ ... ∧ cm). A clause c is a disjunction of literals (l1 ∨ ... ∨ lk) and a
literal l is either a variable x or its negation ¬x. We refer to the set of literals
appearing in F as L(F). Formulae can also be represented as sets of clauses, and
clauses as sets of literals.
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A truth assignment, or interpretation, is a mapping μ : V (F) → {0, 1}. If all
the variables in V (F) are assigned a truth value, μ is referred to as a complete
assignment. Interpretations can also be seen as conjunctions or sets of literals.
Truth valuations are lifted to clauses and formulae as follows: μ satisfies a clause
c if it contains at least one of its literals. Given a formula F , μ satisfies F (written
μ� F) if it satisfies all its clauses, being μ referred to as a model of F .

Given two formulae F and G, F entails G (written F � G) iff all the models
of F are also models of G. F and G are equivalent (written F ≡ G) iff F � G and
G � F .

A formula F is satisfiable (F � ⊥) if there exists a model for it. Otherwise it is
unsatisfiable (F � ⊥). SAT is the decision problem of determining the satisfiability
of a propositional formula. This problem is in general NP-complete [15].

Some applications require computing certain types of models. In this paper,
we will make use of maximal models, i.e. models such that a set-wise maximal
subset of the variables are assigned value 1:

Definition 1 (MxM). Let F be a satisfiable propositional formula, μ� F a
model of F and P ⊆ V (F) the set of variables appearing in μ with positive
polarity. μ is a maximal model (MxM) of F iff F∪P � ⊥ and for all v ∈ V (F)\P ,
F ∪ P ∪ {v}� ⊥.

Herein, we will denote a maximal model by P , i.e. the set of its positive
literals.

Horn formulae constitute an important subclass of propositional logic. These
are composed of Horn clauses, which have at most one positive literal. Satisfia-
bility of Horn formulae is decidable in polynomial time [17,23,38].

Given an unsatisfiable formula F , the following subsets represent different
notions regarding (set-wise) minimal unsatisfiability and maximal satisfiability
[30,34]:

Definition 2 (MUS). M ⊆ F is a Minimally Unsatisfiable Subset (MUS) of
F iff M is unsatisfiable and ∀c ∈ M,M \ {c} is satisfiable.

Definition 3 (MCS). C ⊆ F is a Minimal Correction Subset (MCS) iff F \ C
is satisfiable and ∀c ∈ C,F \ (C \ {c}) is unsatisfiable.

Definition 4 (MSS). S ⊆ F is a Maximal Satisfiable Subset (MSS) iff S is
satisfiable and ∀c ∈ F \ S,S ∪ {c} is unsatisfiable.

An MSS is the complement of an MCS. MUSes and MCSes are closely related
by the well-known hitting set duality [10,14,46,54]: Every MCS (MUS) is an
irreducible hitting set of all MUSes (MCSes) of F . In the worst case, there can be
an exponential number of MUSes and MCSes [30,41]. Besides, MCSes are related
to the MaxSAT problem, which consists in finding an assignment satisfying as
many clauses as possible. The smallest MCS (largest MSS) represents an optimal
solution to MaxSAT.

Motivated by several applications, MUSes and related concepts have been
extended to CNF formulae where clauses are partitioned into disjoint sets called
groups [30].
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Definition 5 (Group-Oriented MUS). Given an explicitly partitioned unsat-
isfiable CNF formula F = G0 ∪ ... ∪ Gk, a group-oriented MUS (or group-MUS)
of F is a set of groups G ⊆ {G1, ...,Gk}, such that G0 ∪ G is unsatisfiable, and
for every Gi ∈ G, G0 ∪ (G \ Gi) is satisfiable.

Note the special role G0 (group-0 ); this group consists of background clauses
that are included in every group-MUS. Because of G0 a group-MUS, as opposed to
MUS, can be empty. Nevertheless, in this paper we assume that G0 is satisfiable.

Equivalently, the related concepts of group-MCS and group-MSS can be
defined in the same way. We omit these definitions here due to lack of space.
In the case of MaxSAT, the use of groups is investigated in detail in [22].

3 MUS Enumeration in Horn Formulae

Enumeration of MUSes has been the subject of research that can be traced to
the seminal work of Reiter [46]. A well-known family of algorithms uses (explicit)
minimal hitting set dualization [10,14,30]. The organization of these algorithms
can be summarized as follows. First compute all the MCSes of a CNF formula.
Second, MUSes are obtained by computing the minimal hitting sets of the set of
MCSes. The main drawback of explicit minimal hitting set dualization is that, if
the number of MCSes is exponentially large, these approaches will be unable to
compute MUSes, even if the total number of MUSes is small. As a result, recent
work considered what can be described as implicit minimal hitting set dual-
ization [28,29,44]. In these approaches (namely eMUS [44] and MARCO [29]
MUS enumerators), either an MUS or an MCS is computed at each step of
the algorithm, with the guarantee that one or more MUSes will be computed
at the outset. In some settings, implicit minimal hitting set dualization is the
only solution for finding some MUSes of a CNF formula. As pointed out in
this recent work, implicit minimal hitting set dualization aims to complement,
but not replace, the explicit dualization alternative, and in some settings where
enumeration of MCSes is feasible, the latter may be the preferred option [29,44].

Algorithm 1 shows the eMUS enumeration algorithm [44], also used in the
most recent version of MARCO [29]. It relies on a two-solver approach aimed at
enumerating the MUSes/MCSes of an unsatisfiable formula F . On the one hand,
a formula Q is used to enumerate subsets of F . This formula is defined over a set
of variables I = {pi | ci ∈ F}, each one of them associated with one clause ci ∈ F .
Iteratively until Q becomes unsatisfiable, eMUS computes a maximal model P
of Q and tests the satisfiability of the corresponding subformula F ′ ⊆ F . If it
is satisfiable, F ′ represents an MSS of F , and the clause I \ P is added to Q,
preventing the algorithm from generating any subset of the MSS (superset of
the MCS) again. Otherwise, if F ′ is unsatisfiable, it is reduced to an MUS M,
which is blocked adding to Q a clause made of the variables in I associated
with M with negative polarity. This way, no superset of M will be generated.
Algorithm 1 is guaranteed to find all MUSes and MCSes of F , in a number of
iterations that corresponds to the sum of the number of MUSes and MCSes.

This paper considers the problem of enumerating the group-MUSes of an
unsatisfiable Horn formula. As highlighted earlier, and as discussed later in the
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Algorithm 1. eMUS [44] / MARCO [29]
Input: F a CNF formula
Output: Reports the set of MUSes of F

1 I ← {pi | ci ∈ F} // Variable pi picks clause ci
2 Q ← ∅
3 while true do
4 (st, P ) ← MaximalModel(Q)
5 if not st then return
6 F ′ ← {ci | pi ∈ P} // Pick selected clauses

7 if not SAT(F ′) then
8 M ← ComputeMUS(F ′)
9 ReportMUS(M)

10 b ← {¬pi | ci ∈ M} // Negative clause blocking the MUS

11 else
12 b ← {pi | pi ∈ I \ P} // Positive clause blocking the MCS

13 Q ← Q ∪ {b}

paper, enumeration of the group-MUSes of unsatisfiable Horn formulae finds
important applications in axiom pinpointing for the EL family of DLs, including
EL+. It should be observed that the difference between the enumeration of plain
MUSes of Horn formulae and the enumeration of group-MUSes is significant.
First, enumeration of group-MUSes of Horn formulae cannot be achieved in
total polynomial time, unless P = NP. This is an immediate consequence from
the fact that axiom pinpointing for the EL family of DLs cannot be achieved in
total polynomial time, unless P = NP [7], and that axiom pinpointing for the EL
family of DLs can be reduced in polynomial time to group-MUS enumeration
of Horn formulae [1]. Second, enumeration of MUSes of Horn formulae can be
achieved in total polynomial time (actually with polynomial delay) [43].

Given the above, a possible approach for enumerating group-MUSes of Horn
formulae is to use an existing solution, either based on explicit or implicit mini-
mal hitting set dualization. For example, the use of explicit minimal hitting dual-
ization was recently proposed in EL2MCS [1]. Alternatively, either eMUS [44]
or the different versions of MARCO [28,29] could be used, as also pointed out
in [33].

This paper opts instead to exploit the implicit minimal hitting set dualiza-
tion approach [28,29,44], but develops a solution that is specific to the problem
formulation. This solution is described in the next section.

4 Algorithm for Group-MUS Enumeration in Horn
Formulae

This section describes HgMUS, a novel and efficient group-MUS enumerator for
Horn formulae based on implicit minimal hitting set dualization. In this section,
H denotes the group of clauses G0, i.e. the background clauses. Moreover, I
denotes the set of (individual) groups of clauses, with I = {G1, . . . ,Gk}. So,
the unsatisfiable group-Horn formula corresponds to F = H ∪ I. Also, in this
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Algorithm 2. Computation of Maximal Models
Input: Q a CNF formula
Output: (st, P ): with st a Boolean and P an MxM (if it exists)

1 (P,U,B) ← ({{x} | ¬x /∈ L(Q)}, {{x} | ¬x ∈ L(Q)}, ∅)
2 (st, P, U) ← InitialAssignment(Q ∪ P )
3 if not st then return (false, ∅)
4 while U �= ∅ do
5 l ← SelectLiteral(U)
6 (st, µ) = SAT(Q ∪ P ∪ B ∪ {l})
7 if st then (P,U) ← UpdateSatClauses(µ, P, U)
8 else (U,B) ← (U \ {l}, B ∪ {¬l})

9 return (true, P ) // P is an MxM of Q

section, the formula Q shown in Algorithm 1 is defined on a set of variables
associated to the groups in I. For the problem instances considered later in the
paper (obtained from axiom pinpointing for the EL family of DLs), each group
of clauses contains a single unit clause. However, the algorithm would work for
arbitrary groups of clauses.

4.1 Organization

The high-level organization of HgMUS mimics that of eMUS/MARCO
(see Algorithm 1), with a few essential differences. First, the satisfiability testing
step (because it operates on Horn formulae) uses the dedicated linear time algo-
rithm LTUR [38]. LTUR can be viewed as one-sided unit propagation, since only
variables assigned value 1 are propagated. Moreover, the simplicity of LTUR
enables very efficient implementations, that use adjacency lists for represent-
ing clauses instead of the now more commonly used watched literals. Second,
the problem formulation motivates using a dedicated MUS extraction algo-
rithm, which is shown to be more effective in this concrete case than other
well-known approaches [12]. Third, we also highlight important aspects of the
eMUS/MARCO implicit minimal hitting set dualization approach, which we
claim have been overlooked in earlier work [51,56].

4.2 Computing Maximal Models

The use of maximal models for computing either MCSes of a formula or a
set of clauses that contain an MUS was proposed in earlier work [44], which
exploited SAT with preferences for computing maximal models [20,47]. The use
of SAT with preferences for computing maximal models is also exploited in
related work [50,51].

Computing maximal models of a formula Q can be reduced to the problem of
extracting an MSS of a formula Q′ [34], where the clauses of Q are hard and, for
each variable xi ∈ V (Q), it includes a unit soft clause ci ≡ {xi}. Also, recent work
[9,21,34,36] has shown that state-of-the-art MCS/MSS computation approaches
outperform SAT with preferences. HgMUS uses a dedicated algorithm based on
the LinearSearch MCS extraction algorithm [34], due to its good performance
in MCS enumeration. Since all soft clauses are unit, it can also be related with
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the novel Literal-Based eXtractor algorithm [36]. Shown in Algorithm 2, it relies
on making successive calls to a SAT solver. It maintains three sets of literals:
P , an under-approximation of an MxM (i.e. positive literals s.t. Q ∪ P � ⊥), B,
with negative literals ¬l such that Q ∪ P ∪ {l}� ⊥ (i.e. backbone literals), and
U , with the remaining set of positive literals to be tested. Initially, P and U
are initialized from a model μ� Q, P (U) including the literals appearing with
positive (negative) polarity in μ. Then, iteratively, it tries to extend P with
a new literal l ∈ U , by testing the satisfiability of Q ∪ P ∪ B ∪ {l}. If it is
satisfiable, all the literals in U satisfied by the model (including l) are moved to
P . Otherwise, l is removed from U and ¬l is added to B. This algorithm has a
query complexity of O(|V (Q)|).

Algorithm 2 integrates a new technique, which consists in pre-initializating
P with the pure positive literals appearing in Q and U with the remaining
ones (line 1), and then requiring the literals of P to be satisfied by the initial
assignment (line 2). It can be easily proved that these pure literals are included
in all MxMs of Q, so a number of calls to the SAT solver could be avoided.
Moreover, the SAT solver will never branch on these variables, easing the decision
problems. This technique is expected to be effective in HgMUS. Note that,
in this context, Q is made of two types of clauses: positive clauses blocking
MCSes of the Horn formula, and negative clauses blocking MUSes. So, with this
technique, the computation of MxMs is restricted to the variables representing
groups appearing in some MUS of the Horn formula.1

4.3 Adding Blocking Clauses

One important aspect of HgMUS are the blocking clauses created and added
to the formula Q (see Algorithm 1). These follow what was first proposed in
eMUS [44] and MARCO [28,29]. For each MUS, the blocking clause consists of
a set of negative literals, requiring at least one of the clauses in the MUS not
to be included in future selected sets of clauses. For each MCS, the blocking
clause consists of a set of positive literals, requiring at least one of the clauses in
the MCS to be included in future selected sets of clauses. The way MCSes are
handled is essential to prevent that MCS and sets containing the same MCS to
be selected again. Although conceptually simple, it can be shown that existing
approaches may not guarantee that supersets of MCSes (or subsets of the MSSes)
are not selected. As argued later, this is the case with EL+SAT [51,56].

4.4 Deciding Satisfiability of Horn Formulae

It is well-known that Horn formulae can be decided in linear time [17,23,38].
HgMUS implements the LTUR algorithm [38]. There are important reasons
for this choice. First, LTUR is expected to be more efficient than plain unit
propagation, since only variables assigned value 1 need to be propagated. Second,
most implementations of unit propagation in CDCL SAT solvers (i.e. that use
watched literals) are not guaranteed to run in linear time [19]; this is for example
the case with all implementations of Minisat [18] and its variants, for which unit

1 SATPin [33] also exploits this insight of relevant variables, but not in the contexts
of MxMs.
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Algorithm 3. Insertion-based [16] MUS extraction using LTUR [38]
Input: H, denotes the G0 clauses; I, denotes the set of (individual) group

clauses
Output: M, denotes the computed MUS

1 (M, cr) ← (H, 0)
2 LTUR prop(M,M) // Start by propagating G0 clauses

3 while true do
4 if cr > 0 then
5 M ← M ∪ {cr} // Add transition clause cr to M
6 if not LTUR prop(M, {cr}) then
7 LTUR undo(M,M)
8 return M \ H // Remove G0 clauses from computed MUS

9 S ← ∅
10 while true do
11 cr ← SelectRemoveClause(I) // Target transition clause

12 S ← S ∪ {cr}
13 if not LTUR prop(M ∪ S, {cr}) then
14 I ← S \ {cr} // Update working set of groups

15 LTUR undo(M,S)
16 break // cr represents a transition clause

propagation runs in worst-case quadratic time. As a result, using an off-the-
shelf SAT solver and exploiting only unit propagation (as is done for example
in earlier work [33,50,51]) is unlikely to be the most efficient solution. Besides
the advantages listed above, the use of a linear time algorithm for deciding the
satisfiability of Horn formulae turns out to be instrumental for MUS extraction,
as shown in the next section. In order to use LTUR for MUS extraction, an
incremental version has been implemented, which allows for the incremental
addition of clauses to the formula and incremental identification of variables
assigned value 1. Clearly, the amortized run time of LTUR, after adding m = |F|
clauses, is O(||F||), with ||F|| the number of literals appearing in F .

4.5 MUS Extraction in Horn Formulae

For arbitrary CNF formulae, a number of approaches exist for MUS extraction,
with the most commonly used one being the deletion-based approach [11,12], but
other alternatives include the QuickXplain algorithm [24] and the more recent
Progression algorithm [35]. It is also well-known and generally accepted that, due
to its query complexity, the insertion-based algorithm [16] for MUS extraction
is in practice not competitive with existing alternatives [12].

Somewhat surprisingly, this is not the case with Horn formulae when
(an incremental implementation of) the LTUR algorithm is used. A modi-
fied insertion-based MUS extraction algorithm that exploits LTUR is shown
in Algorithm 3. LTUR prop propagates the consequences of adding some new
set of clauses, given some existing incremental context. LTUR undo unpropagates
the consequences of adding some set of clauses (in order), given some existing
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incremental context. The organization of the algorithm mimics the standard
insertion-based MUS extraction algorithm [16], but the use of the incremental
LTUR yields run time complexity that improves over other approaches. Consider
the operation of the standard insertion-based algorithm [16], in which clauses
are iteratively added to the working formula. When the formula becomes unsat-
isfiable, a transition clause [12] has been identified, which is then added to the
MUS being constructed. The well-known query complexity of the insertion-based
algorithm is O(m × k) where m is the number of clauses and k is the size of
a largest MUS. Now consider that the incremental LTUR algorithm is used.
To find the first transition clause, the amortized run time is O(||F||). Clearly,
this holds true for any transition clause, and so the run time of MUS extrac-
tion with the LTUR algorithm becomes O(|M| × ||F||), where M ⊆ I is a
largest MUS. Algorithm 3 highlights the main differences with respect to a stan-
dard insertion-based MUS extraction algorithm. In contrast, observe that for a
deletion-based algorithm the run time complexity will be O(|I|×||F||). In situa-
tions where the sizes of MUSes are much smaller than the number of groups in I,
this difference can be significant. As a result, when extracting MUSes from Horn
formulae, and when using a polynomial time incremental decision procedure, an
insertion-based algorithm should be used instead of other more commonly used
alternatives.

5 Comparison with Existing Alternatives

This section compares HgMUS with the group MUS enumerators used in
EL+SAT [50,51], EL2MCS [1] and SATPin [33]. An experimental comparison
with these and other methods for axiom pinpointing for the EL family of DLs is
presented in Section 6.

5.1 EL+SAT

The best known SAT-based approach for axiom pinpointing is EL+SAT [50,
51,56]. EL+SAT is composed of two main phases. The first phase compiles
the axiom pinpointing problem to a Horn formula. The second phase enumer-
ates the so-called MinAs, and corresponds to group-MUS enumeration for this
Horn formula [1]. Although existing references emphasize the enumeration of
MinAs (MUSes) using an AllSAT approach (itself inspired by an AllSMT app-
roach [27]), the connection with MUS enumeration is immediate [1]. More impor-
tantly, EL+SAT shares a number of similarities with implicit minimal hitting set
dualization, but also crucial differences, which we now analyze.

Similar to eMUS, EL+SAT selects subformulae of an unsatisfiable Horn for-
mula. This is achieved with a SAT solver that always assigns variables value 1
when branching [51]. This corresponds to solving SAT with preferences [20,47],
and so it corresponds to computing a maximal model, inasmuch the same way
as eMUS operates.

In EL+SAT, the approach for deciding the satisfiability of Horn subformu-
lae is based on running the unit propagation engine of a CDCL SAT solver.
As explained earlier, this can be inefficient when compared with the dedi-
cated LTUR algorithm for Horn formulae [38]. Moreover, in EL+SAT, MUSes
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are extracted with what can be viewed as a deletion-based algorithm [11,12].
Although more efficient alternatives are suggested, none is as asymptotically as
efficient as the dedicated algorithm proposed in Section 4.5.

Finally, the most important drawback is the blocking of sets of clauses that
do not contain an MUS/MinA. In our setting of implicit minimal hitting set
dualization, this represents one MCS. The approach used in EL+SAT consists
of creating a blocking clause solely based on the decision variables (which are
always assigned value 1) [51,56]2. This means that MUSes (or MinAs) and
MCSes/MSSes are blocked the same way. Thus, the learned clauses, although
blocking one MCS (and corresponding MSS), do not block supersets of MCSes
(and the corresponding subsets of the MSSes). This can result in exponentially
more iterations than necessary, and explains in part the poor performance of
EL+SAT in practice. It should be further observed that this drawback becomes
easier to spot once the problem is described as MUS enumeration by implicit
minimal hitting set dualization.

5.2 EL2MCS

EL2MCS [1] implements explicit minimal hitting set dualization. In a first phase
the MCS enumerator CAMUS2 [34] is used (the original CAMUS cannot be
used because the formula has groups). This is achieved by iterated MaxSAT
enumeration. In a second phase the MUS enumerator CAMUS [30] is used. The
differences to HgMUS are clear, in that EL2MCS uses explicit minimal hitting
set dualization and HgMUS uses implicit minimal hitting set dualization. Thus,
there are (possibly many) instances for which EL2MCS will be unable to compute
MUSes, because it will be unable to enumerate all MCSes, and this will not be
the case with HgMUS. Another potential drawback of EL2MCS is that it uses a
MaxSAT solver for MCS enumeration, although there are better alternatives [34].
Nevertheless, EL2MCS outperforms other existing approaches [5,31,33,50,51].
As shown later, the HgMUS approach proposed in this paper is the only one
that consistently outperforms EL2MCS.

5.3 SATPin

SATPin [33] represents a recent SAT-based alternative for axiom pinpointing for
the EL family of DLs, that focuses on optimizing the low-level implementation
details of the CDCL SAT solver, including the use of incremental SAT solving.
As indicated above, HgMUS opts to revisit instead the LTUR [38] algorithm
from the late 80s, since it is guaranteed to run in linear time for Horn formulae,
and can be implemented with small overhead. The SATPin approach is presented
in terms of iteratively computing implicants. Some aspects of the organization
of SATPin can be related with those of EL+SAT, namely the procedure for
extracting MUSes/MinAs. Although the actual enumeration of candidate sets
is not detailed in [33], the description of SATPin suggests the use of model
enumeration with some essential pruning techniques.

2 The clause learning mechanism used in EL+SAT is detailed in [51], page 17, first
paragraph.
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6 Experimental Results

This section evaluates group-MUS enumerators for Horn formulae obtained from
axiom pinpointing problems for the EL family of DLs, particularly applied to
medical ontologies. A set of standard benchmarks is considered. These have been
used in earlier work, e.g. [1,5,31,33,50].

Since all experiments consist of converting axiom pinpointing problems into
group-MUS enumeration problems, the tool that uses HgMUS3 as its back-end
is named EL2MUS. Thus, in this section, the results for EL2MUS illustrate the
performance of the group-MUS enumerator described in this paper.

6.1 Experimental Setup

Each considered instance represents the problem of explaining a particular sub-
sumption relation (query) entailed in a medical ontology. Four medical ontolo-
gies4 are considered: GALEN [45], GENE [2], NCI [52] and SNOMED CT [55].
For GALEN, we consider two variants: FULL-GALEN and NOT-GALEN. The
most important ontology is SNOMED CT and, due to its huge size, it also pro-
duces the hardest axiom pinpointing instances. For each ontology (including the
GALEN variants) 100 queries are considered; 50 random (expected to be eas-
ier) and 50 sorted (expected to have a large number of minimal explanations)
queries. So, there are 500 queries in total.

Given an ontology, the encoding proposed in [50,51] produces a Horn formula
that represents the reasoning steps taken in the deduction of all the subsump-
tion relations entailed by the ontology. In this formula, every variable represents
a subsumption relation between two concepts. As a result, the encoding also
produces a set of variables corresponding to the original axioms of the ontol-
ogy, which may be responsible for any subsumption relation. Explaining a given
subsumption relation (query) can be then transformed into a group-MUS enu-
meration problem where the original Horn formula and a unit clause with the
negated query forms group-0 and each original axiom constitutes a group con-
taining only a unit clause. Noticeably, any general Horn group-MUS problem
can be converted to this particular format.

Two different experiments were considered by applying two different simplifi-
cation techniques to the problem instances, both of which were proposed in [51].
The first one uses the Cone-Of-Influence (COI) reduction. These are reduced
instances in both the size of the Horn formula and the number of axioms, but
are still quite large. Similar techniques are exploited in related work [5,31,33].
The second one considers the more effective reduction technique (which we refer
to as x2), consisting in applying the COI technique, re-encoding the Horn for-
mula into a reduced ontology, and encoding this ontology again into a Horn
formula. This results in small Horn formulae, which will be useful to evaluate
the algorithms when there are a large number of MUSes/MCSes.

3 HgMUS is available at http://logos.ucd.ie/web/doku.php?id=hgmus.
4 GENE, GALEN and NCI ontologies are freely available at http://lat.inf.tu-dresden.

de/∼meng/toyont.html. The SNOMED CT ontology was requested from IHTSDO
under a nondisclosure license agreement.

http://logos.ucd.ie/web/doku.php?id=hgmus
http://lat.inf.tu-dresden.de/~meng/toyont.html
http://lat.inf.tu-dresden.de/~meng/toyont.html
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Fig. 1. Cactus plots comparing EL+SAT, SATPin, EL2MCS and EL2MUS on the COI
instances

The experiments compare EL2MUS to different algorithms, namely EL+SAT
[50,51], CEL [5], Just [31], EL2MCS [1] and SATPin [33]. EL+SAT [51] has
been shown to outperform CEL [5], whereas SATPin [33] has been shown to
outperform the MUS enumerator MARCO [29].

The comparison with CEL and Just imposes a number of constraints. First,
CEL only computes 10 MinAs, so all comparisons with CEL only consider report-
ing the first 10 MinAs/MUSes. Also, CEL uses a simplification technique similar
to COI, so CEL is considered in the first experiments. Second, Just operates on
selected subsets of EL+, i.e. the description logic used in most medical ontologies.
As a result, all comparisons with Just consider solely the problem instances for
which Just can compute correct results. Just accepts the simplified x2 ontolo-
gies, so it is considered in the second experiments. The comparison with these
tools is presented at the end of the section.

EL2MUS interfaces the SAT solver Minisat 2.2 [18] for computing maximal
models. All the experiments were performed on a Linux cluster (2 GHz) and the
algorithms were given a time limit of 3600s and a memory limit of 4 GB5.

6.2 COI Instances

Figure 1 summarizes the results for EL+SAT, EL2MCS, SATPin and EL2MUS.
As can be observed, EL2MCS has a slight performance advantage over SATPin,
and EL2MUS terminates for more instances than any of the other tools. Figure 2
shows scatter plots comparing the different tools. As can be concluded, and with
a few outliers, the performance of EL2MUS exceeds the performance of any of the
other tools by at least one order of magnitude (and often by more). Figure 2d
5 Only a sample of the results can be presented in this section due to space restrictions.

Additional results are available at http://logos.ucd.ie/web/doku.php?id=hgmus.

http://logos.ucd.ie/web/doku.php?id=hgmus
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% wins EL+SAT SATPin EL2MCS

EL+SAT – 20.29% 17.66%

SATPin 79.71% – 19.13%

EL2MCS 82.34% 80.41% –

EL2MUS 100.0% 100.0% 100.0%

> 101x 98.09% 96.78% 98.41%

> 102x 97.55% 72.07% 58.07%

> 103x 96.46% 47.75% 14.09%

> 104x 74.05% 06.49% 00.00%

> 105x 31.10% 00.45% 00.00%

(d) Summary table

Fig. 2. Scatter plots for COI instances

summarizes the results in the scatter plots, where the percentages shown are
computed for problem instances for which at least one of the tools takes more
than 0.001s. As can be observed, EL2MUS outperforms any of the other tools
in all of the problem instances and, for many cases, with two or more orders of
magnitude improvement.

6.3 x2 Instances

The x2 instances are significantly simpler than the COI instances. Thus, whereas
the COI instances can serve to assess the scalability of each approach, the
x2 instances highlight the expected performance in representative settings.
Figure 3a summarizes the performance of the tools EL+SAT, SATPin, EL2MCS
and EL2MUS. Due to its poor performance, EL+SAT does not show in the plot
(it terminates on 317 instances). Moreover, and as before in terms of terminated
instances, EL2MUS exhibits an observable performance edge.
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Fig. 3. Cactus plots comparing EL+SAT, SATPin, EL2MCS and EL2MUS on the x2
instances

A pairwise comparison between the different tools is summarized in Figure 4.
Although not as impressive as for the COI instances, EL2MUS still consistently
outperforms all other tools. Figure 4d summarizes the results, where as before
the percentages shown are computed for problem instances for which at least
one of the tools takes more than 0.001s. Observe that, for these easier instances,
SATPin becomes competitive with EL2MUS. Nevertheless, for instances taking
more than 0.1s, EL2MUS outperforms SATPin on 100% of the instances. Thus,
the 67.69% shown in the table result from instances for which both SATPin
and EL2MUS take at most 0.04s. The summary table also lists the number of
computed MUSes for the 19 instances for which EL2MUS does not terminate
(all of the other tools also do not terminate for these 19 instances). EL2MUS
computes 9948 MUSes in total. As can be observed from the table, the other
tools lag behind, and compute significantly fewer MUSes. Also, as noted earlier
in the paper, the main issue with EL2MCS is demonstrated with these results; for
these 19 instances, EL2MCS is unable to compute any MUSes. The comparison
with the other tools, EL+SAT and SATPin, reveals that EL2MUS computes
respectively in excess of a factor of 10 and of 5 more MUSes.

EL2MUS not only terminates on more instances than any other approach and
computes more MUSes for the unsolved instances; it also reports the sequences of
MUSes much faster. Figure 3b shows, for each computed MUS over the whole set
of instances, the time each MUS was reported. This figure compares EL+SAT,
SATPin and EL2MUS, as these are the only methods able to report MUSes
from the beginning. The results confirm that EL2MUS is able to find many
more MUSes in less time than the alternatives.

These experimental results suggest that, not only is EL2MUS the best per-
forming axiom pinpointing tool, on both the COI and x2 problem instances, but
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% wins EL+SAT SATPin EL2MCS

EL+SAT – 00.00% 00.00%

SATPin 100.0% – 91.55%

EL2MCS 100.0% 08.45% –

EL2MUS 100.0% 67.69% 99.32%

EL+SAT SATPin EL2MCS

# MUSes 788 1484 0

Δ MUSes 9160 8864 9948

(d) Summary table

Fig. 4. Scatter plots for x2 instances

it is also the one that is expected to scale better for more challenging problem
instances, given the results on the COI instances.

6.4 Assessment of Non SAT-Based Axiom Pinpointing Tools

Figure 5 shows scatter plots comparing EL2MUS with CEL [5] and Just [31],
respectively for the COI and x2 instances6. As indicated earlier, CEL only com-
putes 10 MinAs, and so the run times shown are for computing the first 10
MinA/MUSes. As can be observed, the performance edge of EL2MUS is clear,
with the performance gap exceeding 1 order of magnitude almost without excep-
tion. Moreover, Just [31] is a recent state of the art axiom pinpointing tool for
the less expressive ELH DL. Thus, not all subsumption relations can be repre-
sented and analyzed. The results shown are for the subsumption relations for

6 Due to lack of space the other scatter plots are not shown, but the conclusions are
the same.
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Fig. 5. Comparison of EL2MUS with CEL and with Just

which Just gives the correct results. In total, 382 instances could be considered
and are shown in the plot. As before, the performance edge of EL2MUS is clear,
with the performance gap exceeding 1 order of magnitude without exception.
In this case, since the x2 instances are in general much simpler, the performance
gap is even more significant.

7 Conclusions and Future Work

Enumeration of group MUS for Horn formulae finds important applications,
including axiom pinpointing for the EL family of DLs. Since the EL family of
DLs is widely used for representing medical ontologies, namely with EL+, enu-
meration of group MUSes for Horn formulae represents a promising and strategic
application of SAT technology. This includes, among others, SAT solvers, MCS
extractors and enumerators, and MUS extractors and enumerators. This paper
develops a highly optimized group MUS enumerator for Horn formulae, which
is shown to extensively outperform any other existing approach. Performance
gains are almost without exception at least one order of magnitude, and most
often significantly more than that. More importantly, the experimental results
demonstrate that SAT-based approaches are by far the most effective approaches
for axiom pinpointing for the EL family of DLs. When compared with other non
SAT-based approaches, the performance gains are also conclusive.

Future work will exploit integration of additional recent work on SAT-based
problem solving, e.g. in MCS enumeration and MUS enumeration, to further
improve performance of axiom pinpointing.
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Abstract. Quantified Boolean satisfiability (QSAT) is natural formu-
lation of many decision problems and yet awaits further breakthroughs
to reach the maturity enabling industrial applications. Recent advance-
ments on quantified Boolean formula (QBF) proof systems sharpen
our understanding of their proof complexities and shed light on solver
improvement. Particularly QBF solving based on formula expansion has
been theoretically and practically demonstrated to be more powerful
than non-expansion based solving. However recursive expansion suffers
from exponential formula explosion and has to be carefully managed. In
this paper, we propose a QBF solver using levelized SAT solving in the
flavor of formula expansion. New learning techniques based on circuit
structure reconstruction, complete and incomplete ALLSAT learning,
core expansion, bounded recursion, and other methods are devised to
control formula growth. Experimental results on application benchmarks
show that our prototype implementation is comparable with state-of-the-
art solvers and outperforms other solvers in certain instances.

1 Introduction

Quantified Boolean satisfiability (QSAT) is a natural formulation of various deci-
sion problems such as verification [7], planning [19], synthesis [12], and other
computer science applications. Quantified Boolean formulas (QBFs) extend
propositional logic and permit variables being existentially or universally quan-
tified. This quantification capability gives QBFs distinct power to compactly
encode logical constraints with an exponential reduction. There have been exten-
sive research efforts to develop efficient QBF solvers and preprocessors, e.g.,
[1,2,6,9–11,15,16,21,24,25]. State-of-the-art QBF solvers employ techniques
such as conflict/solution-driven learning [10], long-distance resolution [25], for-
mula expansion [1], duality recovery [9,15,24], among many others. Due to
its intrinsic hardness (PSPACE-complete complexity in contrast to the NP-
completeness of SAT), QSAT has yet to reach the maturity to spark popular
industrial adoptions and awaits further breakthroughs.

This work was supported in part by the Ministry of Science and Technology of
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Among QBF solvers, DepQBF [16] and RAReQS [11] are the repre-
sentatives of resolution-based and expansion-based solvers, respectively. The
former adopts the standard QDPLL-style reasoning with resolution-based con-
flict/solution learning; the latter employs the counterexample guided abstrac-
tion refinement (CEGAR) paradigm for expansion-based learning. The two
solvers exhibit different solving characteristics on conquering different applica-
tion instances. Recent progress in QBF proof complexities makes clear the relative
power between resolution-based and expansion-based systems [3,5]. Essentially
expansion-based QBF solving may potentially yield proofs of size exponentially
shorter than nonexpansion-based solving [3]. Therefore formula expansion can be
a key technique for efficient QBF solving. Another line of research was studied in
Ooq [9] to bridge the duality gap between solution learning and conflict learning
in resolution-based solving. Circuit information [17,22] is recovered from the QBF
under evaluation to facilitate solution learning. However, it is unclear how to close
this duality gap in expansion-based solving.

In this paper, we consider formula expansion-based learning, in contrast to
the resolution-based conflict/solution-driven learning [10], in a QDPLL-style rea-
soning. A QBF evaluation framework using levelized SAT solving [21] is proposed
for integration with formula expansion-based learning. Unlike the recursive QBF
solving proposed by RAReQS, our search space exploration is non-recursive,
and allows tighter integration with SAT solving and better control managing
formula expansion for both solution and conflict learnings than RAReQS. For
solution learning we present a (complete or incomplete) ALLSAT based expan-
sion; for conflict learning we present a localized method for recursive expan-
sion. Moreover, we show how circuit information can be incorporated in solution
learning simplification. Experimental results show that our prototyped solver
is comparable to other state-of-the-art solvers (including RAReQS, DepQBF,
and Ooq). We expect to achieve further improvement by implementation opti-
mization.

2 Preliminaries

Given a set X = {x1, . . . , xk} of Boolean variables (with domain values {0, 1} or
{False,True}), the set of valuation of X is denoted as [[X]]. A Boolean variable
x may appear in a propositional formula in the form of a positive literal (x) or
a negative literal (x or ¬x). We denote the variable corresponding to a literal l
by var(l). A clause (resp. cube) is a disjunction (resp. conjunction) of literals.
We denote the empty clause (the clause without any literals) as ⊥ and denote
the empty cube as �. A conjunctive normal form (CNF) formula consists of a
conjunction of clauses, and a disjunction normal form (DNF) formula consists
of a disjunction of cubes. In the sequel, we alternatively represent a CNF (DNF)
formula in terms of a set of clauses (cubes) and represent a clause (cube) in
terms of a set of literals. We use the Boolean connectives ¬,∧,∨,→,↔ with
their standard interpretations.
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A quantified Boolean formula (QBF) Φ over variables X = X1 ∪ · · · ∪ Xn in
the prenex conjunctive normal form (PCNF) can be expressed as

Q1X1 · · · QnXn.φ, (1)

where the prefix Φpfx = Q1X1 · · · QnXn consists of quantifiers Qi ∈ {∃,∀} and
variable sets Xi with Xi ∩ Xj = ∅ for i �= j, and the matrix Φmtx = φ is a
quantifier-free CNF formula over variables X. In the sequel, we assume that a
QBF is in the PCNF form Eq. (1) and let Xi ⊆ X∃ or Xi ⊆ X∀ be maximal in
that Qi �= Qi+1 for i = 1, . . . , n − 1. Moreover, we assume that a QBF is closed,
that is, all variables are quantified.

The set X of variables of Φ can be partitioned into existential variables
X∃ = {xi ∈ X | Qi = ∃} and universal variables X∀ = {xi ∈ X | Qi = ∀}.
A literal l is called an existential literal and a universal literal if var(l) is in
X∃ and X∀, respectively. Given a QBF over variables X, the quantification level
of variable x ∈ X, denoted lev(x), is defined to be the number of quantifier
alternations between the quantifiers ∃ and ∀ from left (outer) to right (inner)
plus 1. The same level definition extends to a literal l, i.e., lev(l) = lev(var(l)).

Without loss of generality, we assume the inner most quantifier Qn to be
existential because quantifying out a universal variable x at the inner most
quantification level from a CNF formula ϕ is equivalent to simply removing the
literals x and ¬x in ϕ.

An assignment α : X → {0, 1} on variables X is a mapping that assigns each
variable in X to {0, 1}. We alternatively represent the mappings α(x) �→ 0 and
α(x) �→ 1 for x ∈ X as literals x and x, respectively. Therefore we consider an
assignment α as a set of literals (denoting a cube). A Boolean formula φ over a
set X of variables subject to some truth assignment α : X ′ → {0, 1} on variables
X ′ ⊆ X is denoted as φ |α to mean the formula of φ induced under α. Similarly,
given a QBF Φ its induced QBF with respect to the assignment α, denoted as
Φ|α, is defined to be the QBF with the prefix same as Φpfx except for the removal
of the quantifications on variables in α and with the matrix being Φmtx|α.

A QBF is true (resp. false) if and only if it has a Skolem-function model
(Herbrand-function countermodel) [4]. A model (resp. counter-model) of a QBF
Φ can be presented as a tree. In the tree, each leaf node is labelled with 0 (False)
or 1 (True); each non-leaf node u is labelled with a variable x such that u has
two child nodes if x ∈ X∀ (resp. x ∈ X∃) and has one child node if x ∈ X∃ (resp.
x ∈ X∀); each edge (u, v) corresponds to a 0- or 1-assignment to the variable x
of u. A leaf node corresponds to either a constant 1 or constant 0. Also for each
path from the root node to a leaf node in the tree, the labels must respect the
prefix order of Φ. Collecting labels of nodes from the root to any leaf node can
get a partial assignment α such that Φmtx|α = 1 (resp. Φmtx|α = 0).

Given a clause set D over variables X, we say that a variable x ∈ X is defined
under D if for any assignment α on X\{x} �= ∅ there is exactly one assignment β
to x such that the CNF formula of D is satisfied under the combined assignment
(α, β). We say that D forms a definition of x, call x the defined variable, and call
X\{x} the support variables of x in D, denoted as sup(x). A set of definitions
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forms a circuit if each defined variable is distinct. We represent a circuit by a
directed graph G(V,E), where each vertex u ∈ V represents a variable and each
edge (u, v) ∈ E ⊆ V ×V indicates u ∈ sup(v) (we do not distinguish a vertex and
its represented variable). A circuit can be cyclic or acyclic depending on whether
or not its graph representation is cyclic. A feedback vertex set of a cyclic graph
is a subset of vertices such that their removal from the graph makes the induced
graph acyclic. For a circuit, we alternatively call the defined and non-defined
variables as the output and input variables, respectively. Note that for an acyclic
circuit any assignment to all the input variables uniquely determines the values
of the output variables.

When an acyclic circuit C appears in the context of a QBF Φ, we say that
a variable x is defined at the ith quantification level, denoted dlev(x) = i, if
lev(x) = i for x being a non-defined variable in C or maxy∈sup(x){dlev(y)} = i
for x being a defined variable in C.

3 Algorithmic Flow

Our proposed procedure for QBF evaluation is sketched in Figure 1. The algo-
rithm takes as input a QBF Φ = Q1X1, . . . , QnXn.ϕ, for Q1 = Qn = ∃ and
Xi �= ∅ for i ≥ 2 as we should assume in the sequel, and returns as output the
truth or falsity of Φ along with the assignment to variables X1. The algorithm
maintains two CNF formulas σ∃ and σ∀, which are used to exclude already con-
firmed conflict and solution assignments to existential and universal variables,
respectively, from future search. (Note that, although the interpretation of quan-
tifiers in σ∀ should be inverted, i.e., Qi = ∃ and ∀ should be interpreted as ∀ and
∃, respectively, in the sequel we always refer to the quantifiers of the original
prefix to avoid confusion.) In Line 1, σ∃ and σ∀ are initialized to ϕ and True,
respectively. In Line 2, the current assignments α[1] to X1, . . . , α[n] to Xn,
whose collection is denoted α, are initialized to ∅. Moreover, assignments ι∃ and
ι∀ denote the sets of literals implied in σ∃ and σ∀ with respect to the assignment
α. They are initialized to ∅ in Line 2. In Line 3, the current quantification level
	 is initialized to 2 if X1 = ∅ and to 1 otherwise.

After the above initialization, QBF evaluation process repeats in Lines 4-31.
In Line 5, ι∃ and ι∀ are obtained through procedure GetImplication. Depending
on the quantifier type of the current level, SAT solving is performed to search
a proper assignment on X� in Line 7 on σ∃ with respect to assignments α and
ι∀ if Q� = ∃, and in Line 23 on σ∀ with respect to assignments α and ι∃ if
Q� = ∀. For Q� = ∃, if the assignment for X� cannot be found, then either
in Line 10 declare the QBF Φ false if 	 = 1 or in Lines 11-13 strengthen σ∃
by procedure ConflictLearn and backtrack to quantification level 	 − 2. On the
contrary, if the assignment for X� is found, then in Line 16 declare Φ false
if 	 = n = 1, in Lines 17-19 strengthen σ∀ by procedure SolutionLearn and
backtrack to quantification level 	 − 1 if 	 = n �= 1, or in Line 21 continue
to quantification level 	 + 1 if 	 �= n. On the other hand, for Q� = ∀, if the
assignment for X� cannot be found, then either in Line 26 declare the QBF Φ
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QELL
input: QBF Φ = Q1X1, . . . , QnXn.ϕ with Q1 = Qn = ∃ and Xi �= ∅ for i ≥ 2
output: truth or falsity of Φ, and 1st level assignment
begin
01 σ∃ := ϕ; σ∀ := True;
02 α[1], ...,α[n] := ∅; ι∃ := ∅; ι∀ := ∅;
03 � := (X1 = ∅)? 2 : 1;
04 while (True)
05 (ι∃, ι∀, σ∃, σ∀) := GetImplication(σ∃, σ∀, α);
06 if (Q� = ∃)
07 (res, αtmp) := SatSolve(σ∃, (α, ι∀));
08 α[�] := Project(αtmp, X�);
09 if (res = False)
10 if (� = 1) return (False, ∅);
11 σ∃ := ConflictLearn(Φ, σ∃, �, α);
12 α[�], α[� − 1] := ∅;
13 � := � − 2;
14 else
15 if (� = n)
16 if (n = 1) return (True, α[1]);
17 σ∀ := SolutionLearn(Φ, σ∀, �, α);
18 α[�] := ∅;
19 � := � − 1;
20 else
21 � := � + 1;
22 else //Q� = ∀
23 (res, αtmp) := SatSolve(σ∀, (α, ι∃));
24 α[�] := Project(αtmp, X�);
25 if (res = False)
26 if (� = 2) return (True, α[1]);
27 σ∀ := SolutionLearn(Φ, σ∀, �, α);
28 α[�], α[� − 1] := ∅;
29 � := � − 2;
30 else
31 � := � + 1;
end

Fig. 1. Algorithm: QELL with regular backtrack

true if 	 = 2 or in Lines 27-29 strengthen σ∀ by procedure SolutionLearn and
backtrack to quantification level 	− 2. On the contrary, if the assignment for X�

is found, then in Line 31 continue to quantification level 	 + 1.
The procedure GetImplication of Figure 1 primarily collects the existential

literals ι∃ being implied in σ∃ and the universal literals ι∀ implied in σ∀ due
to assignment α. In addition, the procedure may strengthen σ∃ and σ∀ under
the following two circumstances. When a universal literal is implied in σ∃ under
assignment α, this implication indicates the QBF Φ is false under α and the
cause of the implication can be learned to strengthen σ∃ in prevention of wasteful
search. Similarly, when an existential literal is implied in σ∀ under assignment
α, this implication indicates Φ is true under α and the cause of the implication
can be learned to strengthen σ∀. The learning can be performed in different ways
as to be discussed in Section 4.

Notice that the implication processes of σ∃ and σ∀ in procedure GetImplica-
tion are mutual. That is, the (universal) literals of σ∀ are incorporated with α
for assignment in σ∃ and the (existential) literals of σ∃ are incorporated with α
for assignment in σ∀ to generate further implications and/or trigger additional
learning.
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QELL
input: QBF Φ = Q1X1, . . . , QnXn.ϕ with Q1 = Qn = ∃ and Xi �= ∅ for i ≥ 2
output: truth or falsity of Φ, and 1st level assignment
begin
01 σ∃ := ϕ; σ∀ := True;
02 α[1], ...,α[n] := ∅; ι∃ := ∅; ι∀ := ∅;
03 � := (X1 = ∅)? 2 : 1;
04 while (True)
05 (ι∃, ι∀, σ∃, σ∀, �, α) := GetImplication(σ∃, σ∀, α);
06 if (Q� = ∃)
07 (res, αtmp) := SatSolve(σ∃, (α, ι∀));
08 α[�] := Project(αtmp, X�);
09 if (res = False)
10 if (� = 1) return (False, ∅);
11 σ∃ := ConflictLearn(Φ, σ∃, �, α);
12 (�, α) := UpdateLevel(Φ, σ∃, σ∀, �, α);
13 else
14 if (� = n)
15 if (n = 1) return (True, α[1]);
16 σ∀ := SolutionLearn(Φ, σ∀, �, α);
17 (�, α) := UpdateLevel(Φ, σ∃, σ∀, �, α);
18 else
19 � := � + 1;
20 else //Q� = ∀
21 (res, αtmp) := SatSolve(σ∀, (α, ι∃));
22 α[�] := Project(αtmp, X�);
23 if (res = False)
24 if (� = 2) return (True, α[1]);
25 σ∀ := SolutionLearn(Φ, σ∀, �, α);
26 (�, α) := UpdateLevel(Φ, σ∃, σ∀, �, α);
27 else
28 � := � + 1;
end

Fig. 2. Algorithm: QELL with aggressive backtrack

The procedure SatSolve of Figure 1 returns the (un)satisfiability of a CNF
formula under some unit assumptions [8]. If the formula is satisfiable, it also
returns a satisfying assignment. Otherwise, an unsatisfiable set of assumptions
can be derived.

For solution learning, there are two cases. For the case due to σ∃ being sat-
isfied under assignments α[1], . . . , α[	] with 	 = n (Line 17), the assignment
α[n] can be seen as a model to existential variables Xn with respect to assign-
ments α[1], . . . , α[n − 1]. The backtrack should return to level 	 − 1 and σ∀ is
strengthened. For the other case due to σ∀ being unsatisfiable under assign-
ments α[1], . . . , α[	] (Line 27), the QBF Φ|α[1],...,α[�] induced by assignments
α[1], . . . , α[	] is true, and so is Φ|α[1],...,α[�−2]. The backtrack should return to
level 	 − 2 and σ∀ is strengthened. On the other hand, for conflict learning, due
to σ∃ being unsatisfiable under assignments α[1], . . . , α[	] (Line 11), the QBF
Φ|α[1],...,α[�] induced by assignments α[1], . . . , α[	] is false, and so is Φ|α[1],...,α[�−2].
The backtrack should return to level 	 − 2 and σ∃ is strengthened.

Note that there may be new variables being introduced during learning, but
the number of quantification levels remains unchanged. Note also that universal
reduction [14] can be applied on σ∃ and existential reduction [10] on σ∀ (by
“existential” reduction, recall our reference to the quantifiers of the original
prefix).
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The backtracks of the algorithm in Figure 1 can be improved to admit a
greater leap of backtrack as the procedure outlined in Figure 2, where proce-
dures GetImplication and UpdateLevel compute proper levels for backtrack. The
backtrack level can be determined through analyzing conflicting unit assump-
tions on assignment to σ∃ and σ∀ using incremental SAT solving. Specifically, if
the set of conflicting assumptions is empty or contains only universal variables,
then the algorithm backtracks to quantification level 1 and concludes the falsity
of the QBF. Otherwise, the backtrack level equals the maximal quantification
level of all the existential variables in the assumptions. Moreover, assignment and
implication propagation can be performed simultaneously on σ∃ and σ∀ (similar
to the implication of DepQBF).

4 Learning

Learning is a vital process in QBF evaluation. Below we elaborate the learning
techniques employed in our proposed algorithm.

4.1 Solution Learning by Levelized Blocking

We exploit the following proposition for solution learning.

Proposition 1. Given a QBF Φ = Q1X1, . . . , QnXn.ϕ with Qi = ∀, assume
the QBF Φ|α,β induced under assignments α ∈ [[X1 ∪ . . . ∪ Xi]] and β ∈ [[Xi+1]]
is true (i.e., has a model). Let ϕα be the set of clauses in ϕ that are satisfied by
the literals in α. Then Φ|α′ is true for any assignment α′ ∈ [[X1 ∪ . . . ∪ Xi]] that
satisfies ϕα|β.

For the special case of n = 3 with X1 = ∅, the proposition reduces to that
of [13]. For the general case n ≥ 3, the proposition differs from [11] in that
prior work asserts that Φ|α′ is true for α′ ∈ [[X1 ∪ . . . ∪ Xi]] if (Φ|β)|α′ is true.
Because the number of assignments α′ ∈ [[X1 ∪ . . . ∪ Xi]] satisfying ϕα|β is no
greater than the number of assignments α′ ∈ [[X1 ∪ . . . ∪ Xi]] such that Φ|α′ is
true, the formula (Φ|β)|α′ is stronger than ϕα in solution learning. However it
is computationally more expensive to check whether Φ|α′ is true than to check
whether ϕα|α′,β is satisfiable.

By Proposition 1 once the truth of QBF Φ|α,β is established, we know that
Φ|α′ is guaranteed to be true for any assignment α′ ∈ [[X1 ∪ . . . ∪ Xi]] that sat-
isfies ϕα|β . Therefore one can perform solution learning by blocking all assign-
ments α′ ∈ [[X1 ∪ . . . ∪ Xi]] that satisfy ϕα|β from future search. In this paper,
we explore two approaches to implement such solution learning. One is to negate
ϕα|β and the other is to conjunct the negation of every satisfying solution to
ϕα|β . For the former, since ϕα|β is in CNF, fresh variables need to be introduced
similar to [13] to express ¬ϕα|β in CNF. For the latter, ALLSAT computation
[23] can be performed to enumerate the satisfying solutions to ϕα|β (by hitting
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set1 generation to cover clauses ϕα|β), which can then be negated in CNF. Note
that the ALLSAT computation does not need to be complete. It is not neces-
sary to compute all the solutions to ϕα|β because the amount of solutions being
blocked only affects the strength of learning but not the correctness.

For the ALLSAT based learning, consider QBF Φ = Q1X1, . . . , QnXn.ϕ
with Qi = ∀ for i ≤ n − 1 being the quantification level under learning. Assume
Φ|α,β is true under assignments α = (α1, α2) for α1 ∈ [[X1 ∪ . . . ∪ Xi−1]] and
α2 ∈ [[Xi]], and β ∈ [[Xi+1]]. We partition the set of clauses of ϕ into three
subsets: The set of outer level clauses are those satisfied through literals in α1;
the set of current level clauses are those not satisfied through literals in α1 but
satisfied through literals in α2; the set of inner level clauses are the rest. Let ϕα

be the formula consisting of outer and current level clauses. By Proposition 1
Φ|α′ is true for any assignment α′ ∈ [[X1 ∪ . . . ∪ Xi]] that satisfies ϕα|β . Because
Qi = ∀, there may be many α′

2 ∈ [[Xi]] for which Φ|α1,α′
2,β are true. Therefore

the set of clauses in ϕ that are satisfied by the literals in (α1, α2) and the set
of clauses in ϕ that are satisfied by the literals in (α1, α

′
2) may overlap to some

extent. Particularly, the clauses that are satisfied by the literals in α1 are the
same. Therefore, we compute only one hitting set for the outer level clauses and
compute (complete or incomplete) hitting sets by ALLSAT enumeration [23] for
the current level clauses. Combining the hitting set of the outer level clauses with
each of the hitting sets of the current level clauses yields a (partial) assignment
that satisfies ϕα|β . Therefore, for solution learning the solution clauses σ∀ of
the procedures of Figures 1 and 2 can be augmented by the complements of the
combined hitting set assignments.

4.2 Solution Learning in the Presence of Circuit Information

When the matrix of a QBF contains some form of circuit structures, the infor-
mation may facilitate QBF evaluation as the following example illustrates.

Example 1. Consider the QBF ∀X, ∃y, z, T.ϕ with the matrix

ϕ = (t1 ↔ (x1 ⊕ x2))(t2 ↔ (t1 ⊕ x3)) · · · (tk−1 ↔ (tk−2 ⊕ xk))(z ↔ (tk−1 ⊕ y)),

where X = {x1, . . . , xk}, T = {t1, . . . , tk−1} and “⊕” denotes Boolean xor
operation. Observe that the singleton variable set {tk−1} separates the clause
set of subformula ϕA = (t1 ↔ (x1 ⊕x2))(t2 ↔ (t1 ⊕x3)) · · · (tk−1 ↔ (tk−2 ⊕xk))
and that of ϕB = (z ↔ (tk−1 ⊕ y)). Observe also that, for every assignment to
X, there exists some unique assignment to T that satisfies ϕA.

To evaluate the above QBF, an assignment, say, (x1, . . . , xk) = (0, . . . , 0),
(t1, . . . , tk−1) = (0, . . . , 0), y = 0, and z = 0, satisfying ϕ can be found. By the
above two observations, one can conclude that any assignment α ∈ [[X]] that
makes tk−1 false will make the QBF induced under α, i.e., ∃y, z.ϕB |¬tk−1 , true.

1 Given a CNF formula ϕ over variables X and an assignment α ∈ [[X]], the hitting
set of ϕ with respect to α is a partial assignment β ⊆ α such that each clause in ϕ
contains at least one literal in β.
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Therefore, in the next trial one only needs to search for another assignment to X
that makes tk−1 true. Suppose that a new assignment, say, (x1, . . . , xk−1, xk) =
(0, . . . , 0, 1), (t1, . . . , tk−2, tk−1) = (0, . . . , 0, 1), y = 0, and z = 1 is found. One
can further conclude that any assignment α ∈ [[X]] that makes tk−1 true will
make the QBF induced under α, i.e., ∃y, z.ϕB |tk−1 , true. Consequently the truth
of the QBF can be concluded by just two SAT solving trials.

Without any formula preprocessing, state-of-the-art solvers, such as
RAReQS and DepQBF, may take exponential time to solve the above QBF.
For RAReQS, since each refinement step only blocks two assignments to
(x1, . . . , xk), which are consistent with the current assignment to (t1, . . . , tk−1),
in total O(2k) refinement steps are required to determine the truth of the QBF.
Notice that, although the above formula can be directly solved by preprocessing
using block clause elimination [2], sophistication can be imposed on the for-
mula to prevent preprocessing taking any effect while keeping RAReQS and
DepQBF inefficient. This example illustrates the potential usefulness of circuit
information.

Notice that when circuit information is used to reconstruct partial duality
[9], the information about quantification levels of variables has to be taken into
account. Let C be the circuit constructed from a QBF Φ. Then C can be used
for solution learning if

1. all defined variables are existential,
2. maxy∈sup(x){dlev(y)} ≤ lev(x) for each defined variable x, and
3. C is acyclic.

In contrast to the three conditions used in [9] for definition extraction, the above
three conditions are used for examining a circuit’s legitimacy for solution learn-
ing. Prior work [9] extracts definitions with respect to a strict quantification
order of the prefix (even for variables of the same quantification level) and thus
may miss definitions that only present in a different order. In contract to [9],
we first find all possible definition candidates without imposing any variable
orders and then construct a circuit by adding definitions from the candidates.
Therefore, our method may construct circuits not obtainable previously.

If the constructed circuit C of a QBF is cyclic, we rewrite the QBF with
respect to a feedback vertex set of C to break all cycles while maintaining the
equisatisfiability between the original and modified QBFs. Because a variable in
a cycle is both a support variable and a defined variable, we instantiate each
variable x in the feedback vertex set by introducing a fresh new variable x′ such
that the roles of support and defined variables are separated. In addition, the
equivalence constraint (x ↔ x′) is added to the matrix to assert equisatisfiability.
The following example illustrates the QBF rewriting.

Example 2. Consider the QBF

∀u∃a, b.(a ↔ (b ∧ u))(b ↔ (a ∧ u)).

A cyclic circuit (a ↔ (b ∧ u))(b ↔ (a ∧ u)) can be extracted. To make it acyclic,
we modify the original matrix clauses. A fresh new variable b′ is inserted to the
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quantification block of level lev(b), and the equivalence relation (b ↔ b′) is added
to the original matrix clauses. The QBF after rewriting becomes

∀u∃a, b, b′.(a ↔ (b ∧ u))(b′ ↔ (a ∧ u))(b ↔ b′),

and the clause set of the constructed circuit C is (a ↔ (b ∧ u))(b′ ↔ (a ∧ u)).

Given a QBF Φ = Q1X1, . . . , QnXn.ϕ and its constructed circuit C, we
obtain an initial set of cubes for QBF solving as follows. Let ϕC ⊆ ϕ be the
circuit clauses of C. We generate a new CNF formula ϕ+

C by replacing all of the
defined variables V in ϕC with their respective fresh variables. Let V + be the
set of the introduced fresh variables. Let Φ+

pfx be the new quantification pre-
fix Q1X1, . . . , QnXn,∀V +. Then let σ∀ be ϕ+

C in Line 1 of the algorithms in
Figures 1 and 2 as the initial cubes.

Example 3. Continue Example 2. New variables au and b′
u are introduced for

variables a and b′, respectively. The new quantification prefix, the initial σ∃, and
the initial σ∀ are

Φ+
pfx = ∀u∃a, b, b′∀au, b′

u,

σ∃ = (a ↔ (b ∧ u))(b′ ↔ (a ∧ u))(b ↔ b′),
σ∀ = ϕ+

C = (au ↔ (b ∧ u))(b′
u ↔ (au ∧ u)).

The following proposition shows the soundness of adding ϕ+
C as initial cubes.

Proposition 2 ([9]). Given a QBF Φ = Q1X1, . . . , QnXn.ϕ and its constructed
circuit C, let Φ+ = Q1X1, . . . , QnXn,∀V +.(ϕ∨¬ϕ+

C ), where V + is the set of the
fresh variables corresponding to the defined variables V in ϕC. Then Φ and Φ+

are equisatisfiable.

In addition, circuit information gives the flexibility to change the quantifica-
tion levels of defined variables as stated in the following proposition.

Proposition 3. Given a QBF Φ = Q1X1, . . . , QnXn.ϕ and its constructed cir-
cuit C, let v be a defined variable with dlev(v) = i for i ≤ n and lev(v) = j
for i ≤ j ≤ n. Let v be repositioned in Φpfx to any quantification level k for
i ≤ k ≤ n and Qk = ∃; let Φ′

pfx be the new prefix. Then the QBFs Φ and Φ′
pfx.ϕ

are equisatisfiable.

In our algorithm, solution learning takes place in Line 23 of Figure 1 and in
Line 21 of Figure 2 when res = false, i.e., σ∀ is unsatisfiable under the current
assignment α. To perform solution learning, we obtain the learning level with
respect to α by analyzing conflicting unit assumptions on α in incremental SAT
solving of σ∀. The learning level of α is q = maxl∈L{lev(l)} for L = {l ∈
α| var(l) ∈ X∀}. Note that Qq = ∀ and 1 ≤ q ≤ n.

Given a QBF Φ = Q1X1, . . . , QnXn.ϕ with its constructed circuit C, to
perform solution learning with i being the learning level we define the circuit
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Ci at the ith quantification level to be the induced sub-circuit of C whose input
variables are of quantification levels less than or equal to i. Assume that Φ|α is
true under assignment α ∈ [[X1 ∪ . . . ∪ Xi]]. We partition the clauses of ϕ into
three subsets: Let ϕ1 be the set of clauses of Ci; let ϕ2 be the set of clauses
that are not in ϕ1 and are satisfied by some literal l where l is in α or var(l)
is an output variable of Ci. Let ϕ3 be the rest of the clauses of ϕ. For solution
learning, we generate a hitting set α′ for ϕ2, where α′ only contains literals whose
variables are in X1 ∪ . . . ∪ Xi ∪ Di for Di being the set of the output variables
of Ci. Let α′+ be derived from α′ with the output variables of Ci being replaced
by their corresponding variables in V +. Then σ∀ can be augmented with ¬α′+

for solution learning.
The following proposition states that solution learning by adding ¬α′+ to

σ∀ in our algorithm is sound by showing that Φ|μ is true for any assignment μ
blocked by (ϕ+

C ∧ ¬α′+), i.e., (ϕ+
C ∧ ¬α′+)|μ is unsatisfiable. Note that in our

algorithm (in Line 23 of Figure 1 or Line 21 of Figure 2), the satisfiability of
(ϕ+

C ∧ ¬α′+)|μ is checked only if the current quantification level 	 is universal.

Proposition 4. Given a QBF Φ = Q1X1, . . . , QnXn.ϕ and its constructed cir-
cuit C, let the current quantification level 	 = k with Qk = ∀. For any assignment
μ ∈ [[X1 ∪ . . . ∪ Xk]], the QBF Φ|μ is true if (ϕ+

C ∧¬α′+)|μ is false for any learned
hitting set α′+ as specified above.

In our algorithm, we actually check the satisfiability of σ∀|μ, which contains
ϕ+

C and all previously learned solutions. In the following, we prove the soundness
of solution learning with circuit information by showing that for any assignment
μ blocked by σ∀, QBF Φ|μ is true.

Lemma 1. Given two cubes μ1 and μ2, let cube μ3 be the resolvent2 of μ1 and
μ2 if it exists. If Φ|μ1 and Φ|μ2 are both true, then Φ|μ3 is true.

Proposition 5. Let the current level be 	 = k with Qk = ∀ in our algorithm.
For any assignment μ ∈ [[X1 ∪ · · · ∪ Xk]] if σ∀|μ is false, then Φ|μ is true.

The following proposition asserts that by adding ¬α′+ to σ∀, the current
assignment α will be blocked by σ∀.

Proposition 6. Let α be the current assignment, α′ be the hitting set as specified
above, and i be the learning level when α′+ is learned. Then, (ϕ+

C ∧ ¬α′+)|α is
false.

As a consequence, our solution learning is complete.

4.3 Conflict Learning

We exploit the following lemma for conflict detection (in Line 7 of Fig 1 or Fig 2).

2 Given two cubes c1 = c′
1 ∧ l and c2 = c′

2 ∧ ¬l, if c1 = c′
1 ∧ l, c2 = c′

2 ∧ ¬l for some
literal l, and {x|x ∈ c′

1 ∧ ¬x ∈ c′
2} is empty, then the resolvent of c1 and c2 exists

and is defined as {x|x ∈ c′
1 ∨ x ∈ c′

2}.
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Lemma 2. Given a QBF Φ = Q1X1, . . . , QnXn.ϕ with Qi = ∀ for some i ≤
n − 1, assume ϕ|α,β is unsatisfiable under assignments α ∈ [[X1 ∪ . . . ∪ Xi−1]]
and β ∈ [[Xi]]. Then QBF Φ|α is false.

If ϕ|α,β is unsatisfiable under assignments α ∈ [[X1 ∪ . . . ∪ Xi−1]] and β ∈ [[Xi]],
our algorithm can detect and do conflict learning when the current quantifica-
tion level 	 = i + 1. In contrast, RAReQS does not use SAT solving to check
the satisfiability of ϕ|α,β . It may keep deciding the unassigned variables at the
currently unassigned outermost quantification level and can possibly use SAT
solving only when the innermost quantification level is under decision. More-
over, RAReQS can only backtrack at most two quantification levels. Therefore,
RAReQS may potentially take more time to conclude the unsatisfiability of
Φ|α,β than our algorithm.

Furthermore, when our algorithm detects that ϕ|α,β is unsatisfiable with the
current quantification level 	 = i+1, the QBF is extended such that α will falsify
the new QBF matrix by procedure ConflictLearn based on Proposition 7. The
following definitions are used in Proposition 7. For a CNF formula ϕ unsatisfiable
under an assignment α, the unsat core ψ of ϕ with respect to α is referred to
as a (minimal) subset of the clauses in ϕ and ψ is unsatisfiable under α. Also
given a formula ϕ, we denote the new formula of ϕ with variables Z in ϕ being
substituted with Z ′ as ϕ[Z ← Z ′].

Proposition 7. Given a QBF Φ = Q1X1, . . . , QnXn.ϕ with Qi = ∀ for some
i ≤ n−1, assume ϕ|α,β is unsatisfiable under assignments α ∈ [[X1 ∪ . . . ∪ Xi−1]]
and β ∈ [[Xi]]. Let ψ be an unsat core of ϕ with respect to the assignment α, β
and let ψ′ = ψ|β [Z ← Z ′], where Z includes all variables inner to Xi and Z ′ are
fresh new variables for Z’s substitution. Then formula (ϕ ∧ ψ′) is unsatisfiable
under α.

Continuing Proposition 7, the following proposition asserts the equisatisfia-
bility between an QBF and its extended QBF under conflict learning.

Proposition 8. Let Φ′ = Q1X1, . . . , Qi−1Xi−1 ∪ Z ′, QiXi, . . . , QnXn.(ϕ ∧ ψ′)
be extended from Φ = Q1X1, . . . , QnXn.ϕ with Qi = ∀ through conflict learning
under (α, β) for α ∈ [[X1 ∪ . . . ∪ Xi−1]] and β ∈ [[Xi]]. Then Φ′ is false if and
only if Φ is false.

The following proposition states the completeness of our conflict learning.

Proposition 9. Given a false QBF Φ = Q1X1, . . . , QnXn.ϕ, our algorithm will
terminate and generate an extended QBF Φ′ of Φ such that Φ′

mtx is unsatisfiable.

In the worst case, the number of clauses in the expended QBF may double
for each formula expansion. Nevertheless to reduce memory consumption, we
can delete learned clauses by the following proposition.

Proposition 10. Assume that a conflict learning occurs at quantification level
i and our procedure backtracks to level i′ for some i′ < i. If another conflict or
solution learning occurs later at level j and our procedure first backtracks to level
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j′ for some j′ < i′, then the learned clauses generated in the conflict learning
at level i can be removed without affecting soundness and completeness of our
algorithm.

5 Related Work

RAReQS is an expansion-based solver that employs an abstraction-refinement
scheme for recursive QBF game solving. An abstract game between the existen-
tial and universal players is iteratively refined until the winner is determined at
the first quantification level. The abstract game consists of a collection of QBFs
and searching a winning move amounts to solving the abstract game QBFs recur-
sively. This recursion may incur more QBFs being generated and thus substantial
computation overhead. To alleviate this deficiency, RAReQS avoids maintain-
ing all the learned QBFs by setting a quantification level limit and recompute
QBFs when needed.

In contrast to RAReQS, our method also takes a QBF as a game, but we sim-
ply use non-quantified formulas rather than QBFs to block unsuccessful earlier
moves. By this way, we avoid recomputing a winning move from solving QBFs.
With an activity analysis heuristic, we manage to remove inactive learned formu-
las reduce memory consumption. In addition, we incorporate circuit information
to facilitate solution learning.

DepQBF is a resolution-based solver that implements a QDPLL algorithm
with conflict and solution driven learnings. It assigns variables one at a time
according to the prefix structure. It maintains two managers, one for clauses
and the other for cubes, while both clauses and cubes are combined for joint
implication propagation. For conflict learning (of both clause and cube man-
agers), a UIP-based backtracking is applied. For solution learning, a hitting set
of literals with respect to the original set of clauses (i.e., the matrix of the under-
lying QBF) is derived as a cube for solution blocking. Ooq extends DepQBF
by detecting circuit information from the matrix as initial cubes for solution
learning. Also the identified circuit clauses are excluded from the original set of
clauses in hitting set computation.

In contrast to the conflict and solution learnings of DepQBF, ours are mainly
expansion-based. We assign multiple variables in a quantification block at a time.
Our hitting set computation is localized with respect to a subset of the origi-
nal clauses (excluding circuit clauses) depending on the current quantification
level. This localization helps strengthen solution learning. However, our current
implementation does not combine clauses and cubes for joint implication prop-
agation and may be improved in the future. In contrast to Ooq, we generalize
definition detection to allow cyclic circuits and make simplification using circuit
information workable under our expansion-based solving. However, our current
implementation does not consider partial definition [17] and may be improved.
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Table 1. Statistics of solved instances.

Track total solved by some RAReQS DepQBF Ooq QELL

QBFLib 276 146 78 88 103 106
Preprocessing 243 139 104 99 73 85
Application 735 483 403 273 246 426

total 1254 768 585 460 422 617

Fig. 3. Performance comparison of QBF solvers (# solved instances vs. runtime).

6 Experimental Results

Our proposed algorithm, named QELL, was implemented in the C++ language
using MiniSAT [8]. The experiments were conducted on a Linux machine with
a Xeon 2.53 GHz CPU and 48 GB RAM. The set of benchmark instances of
QBF Gallery 2014 [18] were taken for experiments. It consists of three tracks:
QBFLib, preprocessing, and application. We only compared solvers closest to
ours, including RAReQS, DepQBF, and Ooq under their default settings.
For QELL, circuit detection was enabled by default, an upper bound of 100
clauses per ALLSAT enumeration of solution learning was set, and aggressive
backtrack were used. The benchmarks were taken as they are without being
further preprocessed. A CPU time limit of 600 seconds is set for each instance.

Table 1 shows the statistics. Columns 2-7 show for each track the total num-
ber of instances, the number of instances solved by any of the solvers, the num-
ber of instances solved by RAReQS, DepQBF, Ooq, and QELL, respectively.
Figure 3 plots the number of solved instances from all three tracks vs. the CPU
time, by which the instances are sorted in an ascending order for each solver.
Overall QELL solves more instances than the other solvers.

We note that the formulas of the first track mostly contain circuit informa-
tion, which makes Ooq and QELL effective. In particular, QELL outperforms
other solvers in families nusmv.tcas and vis.prodcell. For families s298, s713,
s820, and cmu, QELL and Ooq both outperform RAReQS and DepQBF. In
contrast, DepQBF and Ooq perform much better than the other two solvers
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Table 2. QELL vs. another solver in uniquely and commonly solved instances.

Track Description RAReQS DepQBF Ooq

QBFLib
# instances only solved by competing solver 6 30 32

# instances only solved by QELL 34 48 35
# instances solved by both solvers 72 58 71

Preprocessing
# instances only solved by competing solver 23 31 21

# instances only solved by QELL 4 17 33
# instances solved by both solvers 81 68 52

Application
# instances only solved by competing solver 28 37 8

# instances only solved by QELL 51 190 188
# instances solved by both solvers 375 236 234

total
# instances only solved by competing solver 57 98 61

# instances only solved by QELL 89 255 256
# instances solved by both solvers 528 362 357

Table 3. QELL with and without circuit information.

Track QELL w/ ckt QELL w/o ckt

QBFLib 106 72
Preprocessing 85 84
Application 426 421

Total solved 617 577

for families umbrella, w4-umbrella, biu.mv.xl, and core1108. For the sec-
ond track, only a few instances have circuit information detected by Ooq and
QELL. (Ooq detected more than QELL in these instances due to its capability
of recovering from partial circuit definitions.) Circuit information does not help
Ooq and QELL, and RAReQS and DepQBF tend to be more effective in this
track. For the third track, RAReQS and QELL outperforms DepQBF and
Ooq. Moreover, QELL was able to solve more instances than RAReQS.

Table 2 compares QELL against every other solver in terms of the numbers of
uniquely and commonly solved instances. The numbers for the first track reveal
that the solving behavior of QELL is closer to RAReQS (due to expansion-
based solving) and Ooq (due to exploitation of circuit information) than to
DepQBF. For the second and third tracks, without much circuit information
QELL is closer to RAReQS than the other two solvers. We note that there are
many cases that can only be solved by DepQBF but not QELL. It suggests the
potential benefit to combine resolution-based learning in QELL.

To see the effect of circuit information in QELL, Table 3 shows the number of
instances solved by QELL with and without circuit information. QELL benefits
from circuit information for instances of the first track, the only track that QELL
can reconstruct circuit information for almost all instances. As expected, circuit
information is in general helpful (though not always).

7 Conclusion and Future Work

We have proposed a new approach to expansion-based QBF solving. For solution
learning, we have adopted ALLSAT computation to avoid recursive expansion.
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For conflict learning, we have used localized recursive expansion to reduce for-
mula growth. In addition, we have exploited circuit information for solution
learning as an integral part of our levelized SAT solving scheme. Experiments
have demonstrated the feasibility of our methods. For future work, we plan to
explore different implementation choices for optimization.
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Abstract. During the last decade, popular SMT solvers have been
extended step-by-step with a wide range of decision procedures for dif-
ferent theories. Some SMT solvers also support the user-defined tuning
and combination of such procedures, typically via command-line options.
However, configuring solvers this way is a tedious task with restricted
options.

In this paper we present our modular and extensible C++ library
SMT-RAT, which offers numerous parameterized procedure modules for
different logics. These modules can be configured and combined into an
SMT solver using a comprehensible whilst powerful strategy, which can
be specified via a graphical user interface. This makes it easier to con-
struct a solver which is tuned for a specific set of problem instances.
Compared to a previous version, we have extended our library with a
number of new modules and support for parallelization in strategies. An
additional contribution is our thread-safe and generic C++ library CArL,
offering efficient data structures and basic operations for real arithmetic,
which can be used for the fast implementation of new theory-solving
procedures.

1 Introduction

The satisfiability problem (SAT) poses the question whether a given propositional
formula has a solution. Satisfiability-modulo-theories (SMT) tackles its natural
extension, where we allow theory constraints in place of propositions. Lazy SMT
solving [33] uses a SAT solver to find solutions of the Boolean skeleton of an
SMT formula and invokes dedicated theory solvers to check the consistency
in the underlying theory. Whereas full lazy approaches search for a complete
Boolean solution before invoking theory solvers, less lazy techniques consult
them more frequently. This cooperation highly benefits from an SMT-compliant
theory solver, which (1) works incrementally, i.e., it should be able to exploit
results from previous consistency checks; (2) it can backtrack according to the
SAT solving; (3) for inconsistent constraint sets, it should be able to find an
infeasible subset as explanation.

Most activities in the area of SMT solving focus on theories such as bit vectors
(BV), uninterpreted functions (UF) or linear arithmetic over the reals (LRA)
c© Springer International Publishing Switzerland 2015
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and integers (LIA) resulting in the SMT solvers, e. g., CVC4 [3], MathSAT5 [8],
Yices2 [15] or OpenSMT2 [6]. However, less activity can be observed for SMT
solvers for (the existential fragment of) non-linear real arithmetic (NRA): besides
some incomplete solvers like MiniSmt [38] and iSAT3 [17,32], we are only aware of
one SMT solver Z3 [24,28] that is complete for NRA. Even fewer SMT solvers are
available for (the existential fragment of) non-linear integer arithmetic (NIA),
which is undecidable in general. To the best of our knowledge, only Z3 and the
SMT solving spin-off of Aprove [9] can tackle this theory.

One of the most widely used decision procedures for NRA is the cylindrical
algebraic decomposition (CAD) method [10]. Other well-known methods use,
e.g., Gröbner bases (GB) [35] or the realization of sign conditions [4]. Also some
incomplete methods based on, e.g., interval constraint propagation (ICP) [17]
or the virtual substitution (VS) [37] can handle significant fragments. However,
the exponential worst-case complexity of solving NRA formulas [22,36] makes it
challenging to develop practically feasible solutions. Embedding the above NRA
decision procedures in SMT solvers as theory solvers is a promising symbiosis.
Highly efficient SAT solvers can handle the Boolean problem structure and learn
from previous (SAT and theory) conflicts. The expensive theory consistency
checks then only concern conjunctions of theory constraints.

Available implementations of the above decision procedures are seldom avail-
able as libraries, and even if they are, they are not SMT compliant. Thus, for
an SMT embedding, these mathematically complex decision procedures had to
be adapted and extended before an SMT-compliant implementation could be
realized. For the implementation, an efficient library for basic computations with
polynomials was needed, which, if we want to have the door open for paral-
lelization, must be additionally thread-safe. Furthermore, on a given problem
instance there might be significant differences in the running times of different
theory solvers. Therefore, we aim at their strategic combination [29] to increase
usability.

We have developed the C++ library SMT-RAT containing a variety of mod-
ules implementing SMT-compliant solving procedures. The modular design of
SMT-RAT facilitates an easy extension by further solving procedures. Modules
share a common interface allowing their combination according to a user-defined
strategy resulting in an SMT solver. Currently, SMT-RAT can solve problems of
(the quantifier-free fragments of) LRA, LIA, NRA and NIA. Compared to the
previous version of SMT-RAT [12], (1) we have extended and optimized the VS
module, the GB module (can now handle inequalities and simplify formulas),
and the CAD module (can now handle arbitrary instead of only univariate poly-
nomials); (2) we have implemented a Simplex module [15], an ICP module [18],
a module embedding a SAT solver and a module simplifying polynomial con-
straints using non-trivial factorization and sum-of-squares decomposition; (3)
we have implemented a general branch-and-bound method for finding integer
solutions with NRA modules, where the splitting decisions are lifted to the SAT
level; (4) we have extended SMT-RAT to support strategies, which compose pro-
cedures such that they run in parallel on multiple cores and implemented an

http://cs.nyu.edu/acsys/cvc3/
http://mathsat.fbk.eu/
http://yices.csl.sri.com/
http://verify.inf.usi.ch/opensmt
http://cl-informatik.uibk.ac.at/software/minismt/
https://projects.informatik.uni-freiburg.de/projects/isat3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
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easy-to-grasp graphical user interface for the construction of such a strategy;
(5) we have extended the module interfaces to support lemma exchange and
lightweight invocation, where it is allowed to avoid hard obstacles during solving
at the price of possibly not finding a conclusive answer.

2 System Architecture

2.1 Data Structures and Basic Procedures: CArL [26]

The current version of SMT-RAT integrates custom-designed data structures for
SMT formulas and basic functions to manipulate them, bundled in the library
CArL, which has also been successfully used in the tool Prophesy [13].

While there exist C++ libraries for the manipulation of polynomials such
as CoCoA[1] and GiNaC [5], these libraries share some common deficits. First
of all, they lack customization possibilities and are usually tied to one fixed
representation of numbers. Secondly, the libraries are often not flexible when it
comes to manipulation of variable (and polynomial) orderings, which is essential
for efficient implementations of a CAD or a GB procedure. Thirdly, the libraries
are usually not thread-safe, which precludes the design of parallel solvers.

In CArL, the data structure for SMT formulas is a directed acyclic graph, with
Boolean operators as inner nodes and Boolean variables or theory constraints,
e. g., polynomial inequalities, as leafs. Essential simplifications and normaliza-
tions [14] are applied by default and identical formulas are stored only once.

Polynomials are represented by default as a sum of terms. We mark leading
and constant terms and sort all terms only on demand. The data structure
is templated in several ways. Amongst others, we can use rational numbers,
native numbers, intervals and polynomials as coefficients. Furthermore, we can
use different orderings and store additional information with the polynomials
with minimal overhead by utilizing policy templates. Besides, CArL supports
univariate representations of multivariate polynomials, which is essential for,
i. a., the CAD.

Variables are represented by bit vectors, encoding their identity, their domain
and their rank (for support of fast custom-ordering of variables). Additional
information is stored in a central pool. For the representation of rational numbers,
we support gmp [20] (thread-safe) and cln [21] (faster single-threaded). Algebraic
numbers are represented by the interval-isolated root of a univariate polynomial.
Intervals in CArL are an extension of boost intervals also allowing open bounds.

Besides standard arithmetic operations, CArL includes the required proce-
dures for CAD, including Sturm sequences and root isolation, and a variant of
the Buchberger algorithm to compute Gröbner bases. The implemented methods
are specifically tailored towards SMT compliance.

2.2 Interfaces and Strategic Compositions of Procedures:
SMT-RAT [34]

Based on CArL’s data structures and basic functions, a rich set of SMT-compliant
implementations ofNRA/NIAprocedures is provided by SMT-RAT. Each procedure
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Fig. 1. A snapshot of an SMT-RAT composition of an SMT solver.

is encapsulated in a module, which fixes a common interface. Modules can be com-
posed to a solver according to a user-defined strategy. The manager class provides
the API, including the parsing of an SMT-LIBv2 input file, and a manager instance
maintains the allocation of solving tasks to modules according to the strategy. An
overview is given in Figure 1.

Modules. Each module m has an initially empty set of received formulas Crcv(m).
We can manipulate Crcv(m) by adding (removing) formulas ϕ to (from) it with
add(ϕ) (remove(ϕ)). The main function of a module is check(bool full),
which either decides whether the conjunction of the received formulas in Crcv(m)
is satisfiable or not, returning sat or unsat, respectively, or returns unknown. If
the function’s argument full is set to false, the underlying procedure of m is
allowed to omit hard obstacles during solving at the cost of returning unknown
in more cases. Usually, Crcv(m) is only slightly changed between two consecutive
check calls, hence, the solver’s performance can be significantly improved if a
module works incrementally and supports backtracking. In case m determines
the unsatisfiability of Crcv(m), it can return an infeasible subset Cinf(m) ⊆
Crcv(m). Moreover, a module can specify lemmas, which are valid formulas. They
encapsulate information which can be extracted from a module’s internal state
and propagated among other modules. Furthermore, a module itself can ask other
modules for the satisfiability of its set of passed formulas denoted by Cpas(m), if
it invokes the procedure runBackends(bool full) (controlled by the manager).
It thereby delegates work to modules that may be more suitable for the (sub-)
problems in Cpas(m).

Strategy. SMT-RAT supports user-defined strategies for the composition of mod-
ules. A graphical user interface can be used to specify strategies as directed
trees T := (V,E) with a set V of modules as nodes and the transitions
E ⊆ V ×Ω×Σ×V , with Ω being a set of conditions and Σ being a set of priority
values. A condition is an arbitrary Boolean combination of formula properties,
such as propositions about the Boolean structure of the formula, e.g., whether
it is in conjunctive normal form (CNF), about the constraints, e. g., whether
it contains equations, or about the polynomials, e.g., whether they are linear.
Furthermore, each edge carries a unique priority value from Σ = {1, . . . , |E|}.
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rat1: CNFM PPM SATM SIMM VSM CADM
�,1 �,2 �,3 �,4 �,5

rat2: CNFM PPM SATM ICPM VSM CADM
�,1 �,2 �,3 �,4 �,5

rat3: CNFM PPM SATM SIMM
VSM CADM

CADM

�,1 �,2 �,3
�,4

�,5

�,6

rat4: CNFM PPM
SATM

SATM

SIMM

ICPM

VSM

VSM

CADM

CADM

�,1
�,2

�,3 �,4 �,5

�,6 �,7 �,8 �,9

Fig. 2. Example strategies with SMT-RAT (� =̂ no condition).

Manager. The manager holds the strategy T = (V,E) and the SMT solver’s
input formula Cinput. Initially, the manager calls the method check of the module
mr, being the root of T , with Crcv(mr) = Cinput. Whenever a module m ∈ V
calls runBackends, the manager adds a solving task (σ, m, m′) to its priority
queue Q of solving tasks (ordered by the priority value), if there exists an edge
(m, ω, σ, m′) ∈ E such that ω holds for Cpas(m). If a processor p on the
machine on which SMT-RAT is executed is available, the first solving task of Q
is assigned to p and popped from Q. The manager thereby starts check of m′

with Crcv(m′) = Cpas(m) and passes the result (including infeasible subsets
and lemmas) back to m, which can now benefit in its solving and reasoning
process from this shared information. Note that a strategy-based composition
of modules works incrementally and supports backtracking not just within one
module but as a whole. Therefore, each module m stores the subsets of Crcv(m),
which form the reasons for a passed formula being added. In order to exploit the
incrementality of the modules, all backends executed in parallel terminate in a
consistent state (instead of being killed), if one of them finds an answer.

Procedures implemented as modules. Usually, a SAT solver forms the heart of
an SMT solver. In SMT-RAT, the module SATM abstracts Crcv(SATM ) to propo-
sitional logic and uses the efficient SAT solver minisat [16] to find a satisfying
solution for the Boolean abstraction. It invokes runBackends where Cpas(SATM )
contains the constraints abstracted by the assigned Boolean variables in a less-
lazy fashion [33]. The module SIMM implements the Simplex method equipped
with branch-and-bound and cutting-plane procedures as presented in [15]. We
apply it on the linear constraints of any conjunction of NRA/NIA constraints.
For a conjunction of nonlinear constraints SMT-RAT provides the modules GBM ,
VSM and CADM , implementing GB [25], VS [11] and CAD [27] procedures, respec-
tively. Moreover, the module ICPM uses ICP similar as presented in [18], lifting
splitting decisions and contraction lemmas to a preceding SATM and harness-
ing other modules for nonlinear conjunctions of constraints as backends. The
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Table 1. Results in seconds (timeout = 200s) obtained on a 2.1 GHz AMD.

Benchmark Z3 rat1 rat2 rat3 rat4
(#examples) solved time solved time solved time solved time solved time

Hong (20) 50.0% 72.8 15.0% < 1.0 100.0% < 1.0 15.0% < 1.0 100.0% < 1.0
- sat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
- unsat 10 72.8 3 < 1.0 20 < 1.0 3 < 1.0 20 < 1.0

Kissing (45) 68.9% 1155.9 17.8% 50.2 35.6% 375.9 28.9% 26.5 28.9% 54.4
- sat 31 1155.9 8 50.2 16 375.9 13 26.5 13 54.4
- unsat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

MetiTarski (7713) 99.9% 370.5 92.7% 4964.3 92.8% 4658.3 93.2% 3974.8 95.6% 3109.4
- sat 5025 133.7 4766 2180.8 4740 2952.1 4802 1803.8 4815 2290.4
- unsat 2684 236.8 2385 2783.4 2418 1706.2 2388 2170.9 2560 819.0

Keymaera (421) 99.8% 11.5 97.6% 26.0 96.9% 17.0 96.4% 74.7 98.1% 25.3
- sat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
- unsat 420 11.5 411 26.0 408 17.0 406 74.7 413 25.3

Witness (99) 21.2% 107.1 72.7% 2110.9 64.6% 332.2 21.2% 10.9 75.8% 937.9
- sat 4 75.3 55 2110.6 47 331.9 4 9.8 58 937.6
- unsat 17 31.8 17 < 1.0 17 < 1.0 17 1.1 17 < 1.0

AProve (8829) 94.0% 12011.6 79.5% 5077.8 80.3% 6128.4 76.6% 10645 80.0% 3886.3
- sat 8014 11090.9 6965 5038.7 7038 5695.5 6698 10181.3 7009 3782.3
- unsat 284 920.7 50 39.1 56 432.9 68 463.6 58 104.0

Calypto (177) 98.9% 11.6 83.6% 123.3 78.0% 323.9 37.3% 402.1 85.3% 308.3
- sat 79 7.5 64 46.5 59 236.5 21 304.5 67 224.7
- unsat 96 4.1 84 76.7 79 87.4 45 97.7 84 83.6

module CNFM invokes runBackends on Cpas(CNFM ) being a formula in CNF
which is satisfiability-equivalent to Crcv(CNFM ). The module PPM performs some
preprocessing based on factorizations and sum-of-square decompositions of poly-
nomials.

3 Experimental Results and Future Work

We evaluated the four strategies specified in Figure 2 on the five NRA bench-
mark sets Hong [23], Kissing (both crafted and dimension dependent), Meti-
Tarski [2], Keymaera [30], Witness [31] (generated by theorem proving,
counterexample-guided synthesis and formal verification, respectively) and the
two NIA benchmark sets AProve [19] and Calypto [7] (generated by auto-
mated termination analysis and sequential equivalence checking, respectively).
The first two strategies, rat1 and rat2, are sequential, using a nested combina-
tion of Simplex/ ICP, VS and CAD. The third strategy rat3 extends the first
one by applying CAD in parallel to the nested combination of VS and CAD. The
last strategy rat4 basically runs the first two strategies in parallel.

Table 1 shows the experimental results, which compare the four SMT-RAT
strategies with the currently fastest SMT solver for these theories, Z3, showing
that SMT-RAT is already competitive. We ran Z3 sequentially and in parallel and
took the best of both real-time performances for each instance. The column
“solved” shows the number of solved instances and the column “time” states
the accumulated solving time not including timeouts. On Witness, SMT-RAT
performs even better than Z3, as it benefits from the algebraic procedures being
tuned for small variable domains as occurring in these examples. It also performs
better on Hong, where it highly profits from the ICP module. Even though
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rat4 is the best SMT-RAT strategy overall, we observed that both parallel strate-
gies perform worse than expected, which is due to CADM currently not always
being able to terminate quickly with a consistent state when called in parallel.
We want to extend SMT-RAT with further modules based on linearization, bit-
blasting and further preprocessing. More experimental results can be found on
our website [34].
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Abstract. This paper studies how parallel computing can be used to
reduce the time required to solve instances of the Satisfiability Modulo
Theories problem (SMT). We address the problem in two orthogonal
ways: (i) by distributing the computation using algorithm portfolios,
search space partitioning techniques, and their combinations; and (ii) by
studying the effect of partitioning heuristics, and in particular the looka-
head heuristic, to the efficiency of the partitioning. We implemented the
approaches in the OpenSMT2 solver and experimented with the QF UF
theory on a computing cloud. The results show a consistent speed-up
on hard instances with up to an order of magnitude run time reduction
and more instances being solved within the timeout compared to the
sequential implementation.

1 Introduction

The Satisfiability Modulo Theories problem [9,27] (SMT) is the problem of deter-
mining whether a propositional formula is satisfiable, given that some of the
Boolean variables have an interpretation as equalities or inequalities in a back-
ground theory. The problem has recently gained importance as a modeling app-
roach for a vast range of application domains from software model checking (see,
for instance, [1,12]) to optimization [4,21,26,30] due to its expressiveness and
the efficient implementations. One of the features that make the SMT frame-
work inviting for domain specialists is its flexibility in admitting a wide range
of theories. The theory of quantifier-free uninterpreted functions with equalities
(QF UF) [9] is one of the most fundamental and applicable background theories,
being widely used in combination with other theories (for a list of SMT theo-
ries see http://www.smt-lib.org/), and for instance as an abstraction to obtain
more efficient decision procedure implementations [6]. The computational cost
of solving SMT instances can be very high, given that already determining the
propositional satisfiability is an NP-complete problem and the introduction of
background theories can only make the problem harder. Nevertheless there has
been relatively little research on how parallel computing can be used to speed
up the solving of SMT instances (see the related work section for a survey).

This work addresses the challenge of parallelization. We introduce an abstract
parallel algorithmic framework for SMT called the parallelization tree. The
c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 369–386, 2015.
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framework allows combining two important approaches for parallelization: algo-
rithm portfolios and the divide-and-conquer approach. The key idea of the frame-
work is that both solving and partitioning the search space can be done with a
portfolio. The approach is applicable to all SMT solvers based on the DPLL(T)
paradigm independent of the used theories, and our experiments address the cen-
tral QF UF theory. We show experimentally, both with a parallel solver imple-
mented in a cloud computing environment and with an experimentation in a
more controlled environment, that several instantiations of the parallelization
tree framework are very efficient in solving SMT instances. We are able to solve
more instances within a given timeout, observe sometimes an order of magnitude
speed-ups, and are competitive with optimized SMT solvers on hard instances.

Most SMT solvers, including [3,6,7,10,24], consist of a SAT solver that
searches for a satisfying assignment for a problem instance represented as a
set of clauses, and theory solvers that check whether the assignment is consis-
tent with respect to the theory in question. The SAT solver finds a satisfying
assignment for its clause set, and the theory solvers check the consistency of
the set of Boolean variables that have an interpretation in the theories. The
found inconsistencies are communicated to the SAT solver as clauses that the
solver adds as refinements to its clause set. The process terminates once the SAT
solver has found a satisfying assignment consistent with the theories, or when
the theory solvers have provided enough clauses for the SAT solver to determine
unsatisfiability.

One of the challenges in parallelizing SMT solvers using the divide-and-
conquer approach is that the clause set of the SAT solver does not initially
contain the full information on the SMT instance unlike in SAT solving. As a
result the approaches for parallelizing SAT solvers are not directly applicable to
SMT solving. Our approach addresses this challenge in two ways. For construct-
ing partitions we develop versions of the lookahead and the VSIDS heuristic [23]
that are both made aware of the theory solver. The parallelization tree approach,
on the other hand, is used to increase the probability of quick solving through
the use of portfolios both for solving instances and constructing partitions. To
the best of our knowledge the applications of the parallelization tree framework,
partitioning, and lookahead in SMT with QF UF are all new.

Related Work. The portfolio approach for parallel SMT solving is studied in [31]
for problems from the QF IDL logic. The system, implemented in the Z3 SMT
solver, provides an efficient clause-sharing strategy for the workers and concludes
that the best results are obtained with a random portfolio similar to ours. In
this work we use instead the QF UF logic, study different types of parallelization
approaches, and scale the solver to more CPUs. A divide-and-conquer approach for
the QF BV logic is studied in [29]. The procedure tries to solve the formula with
the Boolector SMT solver within a given timeout. If no result is obtained within
the timeout the formula is divided into two partitions using a heuristic based on
lookahead and the search is continued in parallel on the resulting partitions. The
procedure terminates when Boolector returns a satisfiable result for one formula,
or all formulas are shown unsatisfiable. We also study the lookahead heuristic for



Search-Space Partitioning for Parallelizing SMT Solvers 371

constructing partitions but concentrate on the QF UF logic and provide a more
general parallelization algorithm. A portfolio-style parallelization approach for the
QF ABV logic is presented in [28]. While the work uses several SMT solvers as
the portfolio, in our work we concentrate on implementing all the parallelization
approaches inside a single solver.

There is a substantial body of recent work on parallel SAT solving, and
for instance [22] gives a good overview of the recent advances. A number of
future challenges in parallel SAT solving in particular and in parallel constraint
programming in general is given in [13]. Our work discusses in part the challenge
of combining the portfolio style search and the divide-and-conquer approach, a
topic we believe to be orthogonal to the ones presented in [13]. More recently [2]
presents an approach based on search space partitioning, both with and without
clause sharing. A theoretically oriented study in [20] suggests that parallelizing a
SAT solver using a portfolio might in some cases be inherently difficult because of
the resolution structure. We seem to observe a similar barrier with SMT solvers,
and show experimentally that the divide-and-conquer approach, when used in
combination with a portfolio, seems to overcome this problem. The lookahead
heuristic [15] has been previously used in SAT solving and proved particularly
effective in constructing partitions [14,18]. In this work we extend this line of
work and use for the first time lookahead for parallelizing SMT solvers with
QF UF.

2 Preliminaries

Given a finite set of Boolean variables B = {x1, . . . , xn}, a clause is a set of
literals, that is, positive and negative Boolean variables x,¬x, x ∈ B. A proposi-
tional formula in conjunctive normal form (CNF) is a conjunction of clauses. In
the context of this work an SMT formula F is a propositional formula given in
CNF where the variables of a subset BT ⊆ B have an interpretation as equalities
over terms of a theory T . If x ∈ BT , the literal ¬x is interpreted as the corre-
sponding disequality in the theory T . In this work we will consider the quantifier
free theory of uninterpreted functions with equalities (QF UF).

A truth assignment σ ⊆ {x,¬x | x ∈ B} is a set of literals such that for no
x ∈ B both x ∈ σ and ¬x ∈ σ. A truth assignment is total if for all x ∈ B either
x ∈ σ or ¬x ∈ σ. A clause c is propositionally satisfied if σ ∩ c �= ∅ and a CNF
formula F is propositionally satisfied if all its clauses are propositionally satisfied.
The formula F is satisfiable if there is an assignment σ satisfying propositionally
F , and the set of equalities and disequalities imposed by the assignment σ on the
equalities in BT interpreted in the theory T is consistent. A literal l is implied
under σ in F if there is a clause c ∈ F such that l ∈ c, l �∈ σ and for all other
l′ ∈ c, l′ �= l it holds that ¬l′ ∈ σ.1 A truth assignment σ is conflicting if for some
variable x either both x and ¬x are implied or for some l ∈ σ, ¬l is implied.

An SMT solver consists of a SAT solver and a theory solver that communicate
by exchanging equalities and negations of equalities from the set BT as clauses.
1 We follow the convention that ¬¬x = x for x ∈ B.
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The SAT solver starts with an initial set of clauses F . The solver communicates
periodically non-conflicting assignments to a theory solver. Upon receiving an
assignment σ, the theory solver interprets the set σT = σ ∩ {x,¬x | x ∈ BT } as
equalities and disequalities and determines whether σT is inconsistent or consis-
tent with the theory T . In case of consistency the theory solver may provide the
SAT solver with a set of theory-implied literals l �∈ σ. If the theory solver agrees
on the consistency of a total truth assignment σ, the assignment σ is returned
as a proof of satisfiability for F . If the theory solver finds theory-implied literals
these are communicated to the SAT solver as clauses that imply the theory-
implied literals. For any theory-inconsistent truth assignment the theory solver
will communicate a set of theory clauses consisting of variables in BT and express-
ing the reason for the inconsistency of the assignment. During the search the SAT
solver can find learned clauses, that is, clauses that the SAT solver has derived
using its current clause database with conflict analysis based on resolution. A
learned clause cl has the property that if F is the current set of clauses, then
any truth assignment σ propositionally satisfying F also propositionally satisfies
cl. In contrast a theory clause learned right after communicating the satisfying
truth assignment σ for F is not propositionally satisfied by σ. Finally, the unit
propagation closure U(F, σ) is the smallest set of literals containing σ that is
closed under a rule that includes to σ all implied and theory-implied literals.

3 Parallelization Approaches for SMT

Heuristics for guiding the search on a boolean structure play an important role
in both SAT and SMT solvers. As a natural consequence of the computational
difficulty of the SMT problem heuristics are inaccurate and small changes can
result in significant differences in run times. This phenomenon can be used to
obtain speed-up in a parallel setting using a portfolio of algorithms. The main
challenge in parallelizing SMT solvers this way is that portfolio-style solving
seems to hit a scalability limit where adding more CPUs does not provide more
speed-up [18–20]. The scalability problem of the portfolio-style solving can be
addressed by allowing the search processes to share information such as learned
and theory clauses. The approach has been studied for SMT in [31] where it was
shown that sharing both types of clauses helps speeding up the solver. In this
work we use the simple portfolio obtained by forcing the SAT solver to make
certain choices randomly, potentially against the heuristic values. This approach
was found to be efficient in SAT solving [17] and was identified to be the best-
performing strategy for SMT solvers in [31].

However, this paper targets also the scalability limit in an orthogonal way
by using a divide-and-conquer approach where several solvers work in parallel
on problem instances that are constructed by partitioning the search-space of
the original instance and hence are different from each other. The solution to
the original problem instance can be obtained by combining the results from
the partitioned instances. This approach has an inherent problem that needs to
be addressed to obtain good results: If the original problem instance is unsat-
isfiable, the variance in run time results in decreased performance. Instead of
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having to solve a single instance the solver needs to solve several instances that,
despite being usually easier than the original, might still be challenging. While
the variance in solver run time makes the portfolio approach efficient, it degrades
the performance of the divide-and-conquer approach, effectively resulting in the
solver having to wait for the “unluckiest” instance to be solved. Under certain
assumptions it can be shown that for implementations based on pure divide-
and-conquer it is possible to come up with a run-time behavior that results in
increased run time when parallelized this way, and that a different organization
of the search can help to avoid this problem [19].

We show experimentally that often the partitions constructed from the orig-
inal problem are somewhat easier but not significantly so, and this results in
such slowdown anomalies. However, even in cases where the instances do not get
significantly easier it is possible to obtain good speed-up by using a portfolio app-
roach on both constructing and solving the partitions. To present our approach
we will formalize the idea of combining divide-and-conquer with portfolio. We
introduce an abstract parallelization algorithm framework called parallelization
tree and give five concrete instantiations of the framework. In addition to provid-
ing us with a convenient tool for discussing different parallelization algorithms
the framework is also used as a tool for explaining the performance results we
present in Sec. 5. We will introduce an even more practical implementation of
the framework in Sec. 4.2 which uses also a load balancing schema.

In the following we first discuss certain approaches for partitioning the search-
space in SMT and then describe the parallelization tree framework. We conclude
with concrete examples of the framework.

3.1 Search-Space Partitioning in SMT

The basic approach for constructing partitions in SMT uses a partitioning func-
tion, denoted by partf n : F �→ F1, . . . , Fn, to divide an SMT instance F into n
partitions F1, . . . , Fn. The function satisfies the conditions that F is satisfiable
if and only if F1 ∨ . . .∨Fn is satisfiable and no two partitions Fi, Fj , i �= j, share
a satisfying truth assignment. We construct partitions by conjoining partition-
ing constraints P1, . . . , Pn, in general set of clauses, to F . We use two types of
partitioning constraints: the ones obtained with the scattering approach [18] and
the ones obtained with guiding paths [5,32].

The scattering approach. The scattering approach is a technique for partitioning
an instance into arbitrary number of partitions. Each partitioning constraint Pi

is obtained by heuristically selecting a set of scattering literals li1, . . . , l
i
ki

and
conjoining these literals with the clauses obtained by negations of the previous
scattering literals. More formally this can expressed as Pi := li1 ∧ . . . ∧ liki

∧
(¬li−1

1 ∨ . . .∨¬li−1
ki−1

)∧ . . .∧ (¬l11 ∨ . . .∨¬l1k1
). The number of scattering literals ki

are selected so that the partitions constructed are approximately equally sized
under the assumption that fixing a literal will reduce the search space with a
constant factor. If n is the number of partitions to be generated, it can be shown
that the fraction obtained by fixing the scattering literals li1, . . . , l

i
ki

should be
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ri = 1
n−i+1 of the previous instance Fi−1 [16]. We simply assume that fixing a

literal will half the search space, and this results in us choosing the number of
scattering literals ki minimizing the difference |ri − 2−ki |.

The guiding paths. As an alternative to the scattering based method for con-
structing the partitions we use a simple variant of the guiding path approach [32]
where a binary tree with literals as nodes represents the n = 2k, k ≥ 1 partitions.
The root of the tree consists of the true literal, and the rest of the nodes are
either leaves with no children or have exactly two children v and ¬v where v ∈ B.
Each path true, l1, . . . , lk from the root to a leaf lk corresponds to a partitioning
constraint l1 ∧ . . . ∧ lk.

3.2 Combining Search Space Partitioning and Portfolio

The key idea in obtaining well-performing parallel solvers where search-space
partitioning plays a role is to combine elements from both the search-space
partitioning and the algorithm portfolio.

The parallelization tree abstract algorithmic framework provides a unified
way of presenting and comparing different parallelization algorithms. The paral-
lelization tree consists of two types of nodes: and-nodes and or-nodes. The root
and the leaves of the parallelization tree are and-nodes. Each and-node is asso-
ciated with an SMT instance and, with the possible exception of the root of the
parallelization tree, with one or more SMT solvers. The instance at the root of
the parallelization tree is satisfiable if any instance in the and-nodes is shown
satisfiable. A subtree rooted at an and-node is unsatisfiable if one of its children
is unsatisfiable or at least one of the solvers associated with the and-node has
shown the instance unsatisfiable. A tree rooted at an or-node is unsatisfiable if
every tree rooted at its children is unsatisfiable.

We use a partitioning operator splitk(n1, . . . , nk, F ) to construct the paral-
lelization tree. The result of applying the operator splitk on an and-node F is a
tree rooted at the and-node F having k children o1, . . . , ok. Each child node oi
is an or-node and has as children the and-nodes ai

1, . . . , a
i
ni

. Finally, each and-
node ai

j is associated with the partition obtained by applying the (randomized)
partitioning function partf ni

on the formula F .
As instances of the parallelization tree we identify five particularly interesting

parallelization algorithms.

– The plain partitioning approach plain(n, F ) corresponds to the paralleliza-
tion tree split1(n, F ) where each of the instances associated with the nodes
a1
1, . . . , a

1
n is solved with a single SMT solver.

– The portfolio approach portf (k, F ) corresponds to the parallelization tree
consisting of the root associated with the instance F and using k SMT
solvers to solve the instance.

– The safe partitioning approach safe(n, s, F ) corresponds to the paralleliza-
tion tree split1(n, F ) and solving each of the instances a1

1, . . . , a
1
n with s SMT

solvers.
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– The repeated partitioning approach rep(n, k, F ) corresponds to the paral-
lelization tree splitk(n, . . . , n, F ) where each instance associated with the
nodes a1

1, . . . , a
1
n, . . . , ak

1 , . . . , a
k
n is solved with one SMT solver.

– The iterative partitioning approach iter(k, F ) corresponds to the infinite
parallelization tree where every instance associated with an and-node is being
solved with a single SMT solver and every and-node associated with an
instance Fa has the single or-child and and-grandchildren constructed by
applying the operator split1(n, Fa).

Figure 1 illustrates the corresponding parallelization trees and the solver assign-
ments. When clear from the context, we omit the formula F as well as the other
parameters from the partitioning approach.

F

F1 F2

SS
S S

safe

F1

S
F2

S

F

plain

F1

S
F2

S

iter

FS

...
...

...
...

F1

S
F2

S
F1

S
F2

S

rep

portf

FS S

F

F 1
1 F 1

2 F 2
1

S S S
F 2
2

S

Fig. 1. Example parallelization trees (clockwise from the top left): portf (2, F ),
safe(2, 2, F ), iter(2, F ), plain(2, F ), and rep(2, 2, F ). The and-nodes are drawn with
boxes, and the or-nodes with circles. The SMT solvers are indicated with the sym-
bol S.

Concrete SMT instantiations of the parallelization tree include the CVC4
and Z3 SMT solvers which implement a portfolio, and PBoolector [29] which
implements an iterative partitioning approach.

4 A Cloud-Based Parallel SMT Solver for QF UF

We have implemented the approaches discussed in this work into the OpenSMT2
solver. The solver is a complete rewrite of the SMT solver OpenSMT [6] and
includes all the algorithmic optimizations present in OpenSMT. However, due
to improved memory management, reduced memory footprint of the critical data
structures, and certain bug fixes, the current version is approximately 10% faster
on the QF UF family of benchmarks.
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The SAT solver inside OpenSMT2 is based on MiniSAT 2.0 [11], a conflict-
driven clause-learning SAT solver. The congruence closure algorithm imple-
mented in OpenSMT2 employs the algorithm from [25] for communicating small
reasons for unsatisfiability of equalities containing uninterpreted functions to the
SAT solver.

To be able to distribute in an unambiguous way the partitioning constraints
and partitions to the parallel working solvers we have implemented a format
where the propositional encoding into CNF is made explicit. Due to the format
we are able to do the partitioning in a more general way, using also Boolean
variables created with the Tseitin transformation that are not in general part of
the original problem description. The format consists of the CNF corresponding
to the Tseitin encoding of the SMT instance, and the learned and the theory
clauses available at the point when the output is constructed. The format also
contains the sorts and the terms defined in the input instance, and the mapping
between the terms and the Boolean variables.

In the following we describe details related to the implementation of the
solver: the heuristics used for constructing partitions, and the architecture of
the cloud-based tool.

4.1 Partitioning Heuristics

We implemented two different heuristics for the partitioning approach: the
VSIDS-based heuristic [23] which scores higher the variables that are often
involved in conflicts, and the lookahead heuristic which will give high scores
to variables that propagate a high number of literals. The VSIDS heuristic is
used together with the scattering approach for constructing partitions, while the
lookahead heuristic is used with the simplified guiding path approach. When
using the VSIDS heuristic we dedicate a short amount of time to perform a
search on the instance so that the VSIDS heuristic gets reasonable scores for the
variables.

The lookahead heuristic starts with an assignment σ and computes for each
variable x �∈ σ the sizes of the sets U(F, σ∪{x}) and U(F, σ∪{¬x}). The highest
score is assigned to the variable that maximizes the minimum of the sizes of
these two sets. As a result the heuristic favors variables that construct similar
sized partitions having few variables. We have implemented a few important
optimizations for the approach: if a literal l propagates n literals l1, . . . , ln, the
heuristic sets the number n for the upper bounds for all literals l1, . . . , ln. If a
variable is propagated both in the positive and in the negative polarity, and if the
lower of the upper bounds is lower than the current best value, the lookahead
on this variable can be safely skipped. Additionally if the literal propagation
results in a conflict this means that the solver can learn an arbitrary number of
learned and theory clauses and the current heuristic values are no longer valid.
In this case the heuristic does not restart the lookahead from the beginning, but
continues instead from the next literal. This trick is known to reduce the run
time of the lookahead in practice by a linear factor.
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4.2 The Client-Server Architecture

We implemented a subset of the functionality of the parallelization tree frame-
work into the OpenSMT2 solver designed to run in a computing cloud or a
cluster. The tool is available at http://verify.inf.usi.ch/parallel-opensmt2/.

The system follows the client-server architecture where the server receives a
set of SMT instances and an arbitrary number of connections from clients. The
server then manages the construction of partitions from the original instances
and distributes the partitions to the clients for solving. The server and the clients
communicate using our custom-built protocol through TCP/IP sockets, making
the solution light-weight, portable, easy to modify and easy to use.

The clients are implemented as processes with two threads, one communicat-
ing with the server and the other responsible for the solving of the SMT instance.
The communicating thread waits for an instance from the server, passes the
instance to the solving thread and then continues to listen to further commands
from the server. Currently the supported commands are initiation of a solving
of a partition and termination of the solving. If the thread solves the instance
before server sends the terminate command the result is communicated to the
server and the process returns to the initial state waiting for a new instance
from the server. The client is implemented in C++ on top of OpenSMT2, and
an architectural overview is given in Fig. 2.

Sending done

SOLVE THE PROBLEM

SENDING RESULT

WAIT FOR A PROBLEM

Problem received

Quit received

Problem solved

Fig. 2. The client architecture

The server is implemented as a two-threaded Python/2.7 program that calls
OpenSMT2 to construct the partitions. Both threads listen to connections on
separate TCP ports, the command thread for commands from the user and the
worker thread for communication with the clients on solving SMT instances.
The worker thread maintains a list of all connected clients and the list of parti-
tions to be solved, and constructs the partitions using the partitioning heuristic
and the parallelization tree. In addition the worker thread provides the unsolved
partitions to the clients again based on the selected parallelization tree. The
command thread communicates with the user. The user may send commands
such as initiations of the solving of a new SMT instances, requests to termi-
nate the current solving, or a request to print the status of current jobs. The
implementation is capable of handling client failures, exits, and new connections

http://verify.inf.usi.ch/parallel-opensmt2/
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Fig. 3. The Server Architecture

seamlessly and completely automatically. The architecture of the server and the
communication between the clients and the user is described in Fig. 3.

Currently the implementation has been adapted to the parallelization algo-
rithm safe. The implementation differs from the algorithm discussed in Sec. 3
in that it provides load balancing by feeding new unsolved partitions to a client
that has shown an instance unsatisfiable. The assigned partition is the one being
currently solved by the least number of clients. If there are more than one such
partition, one is chosen at random. Despite this difference in the following we will
use the notation introduced in Sec. 3 to describe the implementation, but will in
addition mention the number of cores used in the computation when relevant.

5 Experimental Results

This section presents the results of some of the algorithms obtained from the
parallelization tree algorithmic framework, using the cloud-based implementa-
tion presented in Sec. 4.2 as a uniform platform for testing. For completeness we
also report experimentations against other SMT solvers in Sec. 5.3. The exper-
iment set contains of all instances from the QF UF category of the SMT-LIB
benchmark collection (http://www.smt-lib.org/) having run time longer than
one minute with the default configuration of OpenSMT2. This set consists of 54
instances, 11 of which could not be solved within the 1000 seconds timeout and
4 GB memory limit. All the instances we could solve from this set turned out to
be unsatisfiable, and therefore we also added randomly selected 100 easier sat-
isfiable and unsatisfiable instances, resulting in total 254 benchmark instances.
All the experiments were run on a cluster consisting of nodes with two AMD
quad-core Opteron 2344 HE CPUs and each node was running at most four
solver processes. All times are reported in seconds.

We show the results for the hardest instances in our benchmark set in Table 1.
To the table we have selected certain approaches that illustrate the behavior of

http://www.smt-lib.org/
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Table 1. Instances solved with at least one of the approaches, but where the portfolio
approach required over 100 seconds with 64 CPUs. All the instances are unsatisfiable.

Name OSMT21 portf (64) rep(2,32) safe(2,32) plain(64) rep(8,8) safe(8,8) OSMT264

PEQ003 size9 437.37 299.76 336.00 232.81 431.44 286.11 248.32 195.70
PEQ004 size8 124.85 117.17 109.15 110.76 125.70 108.07 115.34 15.85
PEQ011 size8 572.12 302.12 267.11 265.91 388.54 309.68 280.54 258.94
PEQ012 size6 — — 456.56 507.76 621.24 574.61 532.06 382.44
PEQ014 size11 737.58 338.56 482.68 564.22 — — 540.05 539.28
PEQ016 size6 223.68 181.19 158.60 168.57 188.14 158.02 176.94 20.20
PEQ018 size7 192.58 144.96 155.99 139.68 182.50 207.46 218.02 168.18
PEQ020 size6 511.26 409.50 379.89 314.26 405.37 401.27 371.41 337.04
SEQ005 size8 174.85 159.70 144.13 144.28 132.26 148.76 131.84 16.84
SEQ010 size8 244.22 190.11 123.36 166.96 196.38 157.59 155.92 160.94
SEQ026 size7 890.18 708.89 731.43 794.43 671.05 774.14 725.79 686.63
SEQ038 size8 — 826.11 903.32 751.73 751.03 745.75 792.07 819.41
NEQ006 size6 — — — — — — — 16.62
NEQ016 size8 774.57 616.73 682.64 575.34 — 625.47 419.60 592.15
NEQ023 size7 — — — — — — — 50.75
NEQ032 size6 — 830.03 407.59 373.25 — 836.31 865.95 532.08
NEQ048 size8 476.46 430.31 421.38 341.27 479.38 349.94 445.24 458.11
NEQ048 size9 — 815.72 759.96 804.73 849.76 832.16 833.86 846.21

Total solved 12 15 16 16 13 15 16 18

the parallelization algorithms well. The columns OSMT21 and OSMT264 repre-
sent, respectively, the sequential run of the OpenSMT2 solver and the run of the
cloud-based implementation described in Sec. 4.2, using the VSIDS scattering
heuristic, the algorithm safe(8, 8) and 64 CPU cores. The rest of the columns
correspond to instantiations of the parallelization algorithms discussed in Sec. 3
with scattering and VSIDS heuristic. The reported times include also the time to
run the partitioning. The best run time for a given instance is shown in boldface
and the dashes indicate timeouts.

The results suggest that for hard instances OSMT264 performs very well
compared to the other approaches, solving the largest number of instances and
usually with a very good run time. The implementation is the fastest solver
for eight instances, the runner-up being the parallelization algorithm safe(2, 32)
with four fastest times. The run time of the implementation is very competitive
with the parallelization algorithm safe(8, 8). When a formula is partitioned to
many sub-instances some of them will be easy. The load-balancing present in the
implementation allows the solving approach to concentrate on the hard instances.

The parallelization algorithm plain performs badly for our benchmark
instances when compared to the other parallelization algorithms. This suggests
that often the partitions are not significantly easier. Therefore constructing a
large number of partitions with mutually exclusive models easily results in more
work for the parallel solver. To illustrate this better we show in Fig. 4 (top
left) a comparison between the algorithms plain(64) and rep(2, 32) using the full
benchmark set. The run times include the time required for the partitioning.
Here, as well as in all other similar graphs, we denote satisfiable instances by
× and unsatisfiable by �, and highlight timeouts with a red color. We can see
that the algorithm plain(64) is almost always worse. A closer analysis reveals
that when considering only the instances that both approaches could solve the
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algorithm rep(2, 32) solves the full problem set 9 times faster than the algorithm
plain(64).

Finally we point out that while the parallelization algorithm portf works
relatively well it seems to loose in the hard instances when compared to the
approaches that combine elements from portfolio and search-space partitioning.
In fact if we do not consider the sequential execution and the algorithm plain,
other algorithms perform better than our implementation of the portfolio.

In the following subsections we will study in more detail the observations
made based on Table 1, consider role of the heuristic used in constructing the
partitions, and finally conclude with a comparison of our implementation against
some other well-known SMT solvers.

5.1 Comparing the Implementation to the Portfolio Approach

Given a fixed amount of parallel CPUs, there is an interesting tradeoff between
the number of partitions constructed from an instance and the number of solvers
that can be assigned for each partition. The comparison in Table 1 suggests that
with this benchmark set and the VSIDS scattering heuristic good performance
is obtained by constructing only two partitions and dedicating a large number of
solvers for the two partitions (32 in the experiment) when using the paralleliza-
tion algorithms. The situation changes when we use the parallel implementation
with the load-balancing schema since usually some of the constructed partitions
are much easier than others, therefore freeing up resources for solving the yet
unsolved partitions. Figure 4 compares the implementation of the parallelization
algorithms safe(2, 32), safe(8, 8), and safe(64, 1) against the algorithm portf (64)
all using 64 cores. The results show that while the easy instances suffer from the
overhead caused by the communication in the network and the time required to
construct the partitions, the harder instances with run times more than 10 sec-
onds usually profit from the partitioning. The positive effect of partitioning the
problem into more than two parts can in particular be seen when comparing the
implementations of safe(2, 32) and safe(8, 8). Unlike in the abstract algorithms
the implementation with safe(8, 8) performs clearly better than safe(2, 32) solv-
ing one more instance and providing a total speed-up of roughly 10% on the
instances solved by both approaches. The implementation of plain(64), while
still not competitive, also performs significantly better as a result of the load
balancing.

5.2 Comparing the Partitioning Heuristics

Since the ability of the partitioning to construct easy instances plays such a criti-
cal role in the overall success of the partitioning based instances, it is interesting
to study the effect of partitioning heuristics. We compare here two different
types of heuristics, the VSIDS scattering and the lookahead with our guiding
path implementation. We also experimented with alternations of the VSIDS scat-
tering heuristics that prefer the equalities in the set BT and the purely Boolean
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Fig. 4. The run times for the parallelization algorithms plain(64) and rep(2, 32) (top
left). The portf (64) algorithm compared to the load-balancing implementations of
safe(2, 32) (top right), safe(8, 8) (bottom left) and plain(64) (bottom right) on 64 cores.

variables B \ BT . These however did not result in significant differences in our
benchmark set and the results are therefore not shown.

The results for the comparison are given in Fig. 5. Excluding the time to con-
struct the partitions, the lookahead gives a 40% reduction in the run time of the
solver when using the abstract algorithms safe(8, 8), the average speed-up being
2. However, when the time required to construct the partitions is included, the
lookahead-based heuristic looses the edge and becomes slightly worse compared
to the VSIDS-based heuristic. This results mainly from the implementation of
the lookahead-heuristic. The current implementation is not as optimized as the
VSIDS implementation, but we believe that the heuristic can be made more
efficient.

To understand the impressive efficiency of the lookahead heuristic we study
closer two examples where the abstract parallelization algorithm safe(2, 32) per-
forms well with the lookahead heuristic and with the VSIDS heuristic. The
graphs on the bottom of Fig. 5 report the cumulative run-time distributions of
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Fig. 5. The lookahead heuristic compared to the VSIDS-based scattering heuristic

the original instance and the four partitions constructed with the two heuristics.
In the first example the lookahead heuristic finds a partitioning where the two
partitions have a very similar run time distribution, whereas the VSIDS heuristic
results in a very uneven distribution where one partition is significantly easier
to solve than the other. In the second case (lower right graph in Fig. 5) the
lookahead heuristic performed on a single run worse than the VSIDS heuristic.
In this case both the heuristics resulted in a very uneven partitions. However
it would seem that the cumulative run-time distribution of the VSIDS heuris-
tic dominates on a wide area the distribution of the lookahead-based heuristic.
Interestingly there seems to be a small probability that the lookahead-heuristic
can solve the problem somewhat faster than the original problem, suggesting
that the implementation with load balancing should be capable of performing
well on this instance also for the lookahead heuristic.
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Fig. 6. Comparison of the safe(8, 8) implementation with the scattering heuristic
against other SMT solvers.

5.3 Comparison to Other SMT Solvers

Finally we report the comparison of the parallel implementation and in particu-
lar the implementation of the parallel algorithm safe(8, 8) against other solvers
in Fig. 6. All solvers were run with the default configurations. We first note that
the implementation provides a clear speed-up against the sequential version of
OpenSMT2, being 75% faster in the total run time over the benchmark set and
solving six more instances within the timeout. However, the parallel implementa-
tion suffers a penalty related to the communication delays and constructing par-
titions when the instances are easy. The comparison against MathSAT5 [7] shows
similar behavior: the parallel implementation can solve a handful of instances
within the timeout that MathSAT5 could not solve. Comparing the solver against
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CVC4 [3] reveals that the parallel implementation is capable of solving nine
more instances, using in total 12% less wall-clock time for solving all instances
in the benchmark set. Nevertheless there are several instances that CVC4 solves
much faster than the parallel implementation. We believe the reason for this is a
symmetry breaking simplification [8] implemented in CVC4 that is particularly
effective on some of the benchmarks in our set. Finally the comparison to Z3 [24]
shows that even though the parallel implementation of OpenSMT2 is not yet
competitive, there are some instances we could solve from the benchmark set that
Z3 could not solve and several others where it is likely that the parallelization
results in much lower run times compared to Z3. For lack of space we need to
omit the comparison to certain other solvers such as Yices2 [10]. We believe that
due to optimizations the results of the comparison would be similar to that of
Z3.

6 Conclusions

Approaches for solving unsatisfiable constraint problem instances based on
purely divide-and-conquer suffer from the phenomenon that an inefficient par-
titioning results in several instances that are roughly as difficult to solve as the
original instance. As a result it is common to use a portfolio of different solvers to
overcome this problem. This paper presents the generic framework called paral-
lelization tree for combining the portfolio approach with partitioning. We present
how several parallel algorithms can be seen as instances of this framework, and
provide implementations for some of the parallel algorithms for the SMT prob-
lem with the logic QF UF in computing cloud. We show with a thorough exper-
imentation that the implementations provide a significant speed-up, and are
capable of solving several more instances within a given time-out compared to
the sequential implementation. Furthermore we show that the implementations
are competitive against many state-of-the-art SMT solvers.

Based on the results we are able to point out certain directions for future
research. We believe that there is still work to be done in the heuristics for
constructing partitions: our implementation of the lookahead heuristic is fairly
straightforward and there are several techniques that can be used to improve its
performance. One such technique is identifying equalities and inequalities of the
variables. Also generalizing the lookahead to a portfolio in the way it was done
for the VSIDS heuristic seems like a viable alternative for obtaining efficient
partitionings. Finally we are interested in applying the knowledge obtained in
this study to a setting where we allow the parallel-running solvers to exchange
also learned and theory clauses.
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Abstract. Searching for minimal explanations of infeasibility in con-
straint sets is a problem known for many years. Recent developments
closed a gap between approaches that enumerate all minimal unsatisfi-
able subsets (MUSes) of an unsatisfiable formula in the Boolean domain
and approaches that extract only one single MUS. These new algorithms
are described as partial MUS enumerators. They offer a viable option
when complete enumeration is not possible within a certain time limit.

This paper develops a novel method to identify clauses that are iden-
tical regarding their presence or absence in MUSes. With this concept
we improve the performance of some of the state-of-the-art partial MUS
enumerators using its already established framework. In our approach
we focus mainly on determining minimal correction sets much faster to
improve the MUS finding subsequently. An extensive practical analysis
shows the increased performance of our extensions.

1 Introduction

Many algorithms in common applications of constraint systems cover problems of
finding a satisfying assignment, commonly known as model. Applications require
either a single model, a set of these or even all models for a given problem [15].

On the other hand, constraint sets without any model are target for the
“infeasibility analysis” algorithms, which can be partitioned into two groups.
Their tasks are a) finding a - preferably very large - part of the constraint set
that is still satisfiable and b) locating the area of the constraint set where the rea-
son for unsatisfiability lies. These two categories are known by different names:
Maximal Satisfiable Subsets (MSS) and Maximum Feasibly Subset (MaxFS)
for the former and Minimal(ly) Unsatisfiable Subset or Core (MUS/MUC) and
Irreducible Infeasible Subsystem (IIS) for the latter. Although “Max / Min” and
“SAT / UNSAT” seem to be completely opposite, they are strongly connected
via a hitting set relationship [10,27].

Minimal reasons of infeasibility in linear programming [16,23] and in artificial
intelligence [29] are studied since the 1980s. Finding MUSes in SAT covers a
lot of applications, including debugging of relational specifications [30] or type
errors [2] and model checking [9,31].

The relationship of Maximal Satisfiability and Minimal Unsatisfiability is
based on the following: any satisfiable subset of an infeasible constraint set
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cannot completely contain any unsatisfiable subset (US) of the formula, and
thus must at least exclude one constraint from every US. Searches for results of
these can be guided by the results of the other. Algorithms exist that compute
MUSes with the help of MSSes [2], vice versa [13] and even ones that use non-
minimal USes to support MSS solution finding to finally produce MUSes [22].
The latest improvements for (partially) enumerating MUSes are based on this
as well [20,26].

We propose a novel approach to improve the partial enumeration of MUSes
by using the information which clauses are very similar according to their pres-
ence or absence in MUSes. We first define basic terms and concepts (Section 2)
, before describing the related work and especially the MARCO algorithm [20]
(Section 3). We present the new techniques in Sections 4, 5 and an extensive
practical analysis (Section 6) before concluding the work and offering some pos-
sibilities for future research (Section 7).

2 Preliminaries

Although the presented algorithm can be applied on any constraint programming
problem, we focus on a special class of Boolean Satisfiability (SAT) formulae in
Conjunctive Normal Form (CNF). A formula F in CNF is a conjunctive set
of clauses C, each clause is a disjunctive set of literals. A literal is either a
Boolean variable or its complement. These variables can be assigned true(1) or
false(0), represented via a mapping m : v → {0, 1}, for all variables v. If there
exists at least one model - a mapping that satisfies each clause - the formula is
said to be satisfiable. Otherwise, the formula F is unsatisfiable. The SAT prob-
lem describes the decision problem whether a formula is satisfiable or not [14].
In this paper we focus only on unsatisfiable instances. The following definitions
are used throughout this work.

A Minimal Unsatisfiable Subset (MUS) is defined as follows:

Definition 1. A subset M ⊆ F is an MUS ⇔ M is unsatisfiable and ∀c ∈ M :
M \ {c} is satisfiable

An MUS is essentially a set of constraints, that cannot be reduced without losing
unsatisfiability. They minimize an unsatisfiable constraint set to a “core” proof
of its inconsistency. They are called “unsatisfiable cores” in some work, but we
use the term MUS.

A closely related concept is the one of Minimal Correction Subsets
(MCS):

Definition 2. A subset M ⊂ F is an MCS ⇔ F \M is satisfiable and ∀c ∈ M :
(F \ M) ∪ {c} is unsatisfiable

The removal of an MCS from the formula restores its satisfiability (“corrects”
it). The minimality is again not in cardinality, but in the face that no proper
subset of an MCS is a correction set itself. An MCS can also be defined as the
complement of a Maximal Satisfiable Subset (MSS):
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Definition 3. A subset M ⊆ F is an MSS ⇔ M is satisfiable and ∀c ∈ (F \M) :
M ∪ {c} is unsatisfiable

A very common problem regarding MSSes is finding the largest MSS. It is also
well-known as the MaxSAT problem. Any MaxSAT solution is an MSS, but the
converse does not necessarily hold.

Example 1: The following unsatisfiable formula F in CNF is used to explain
the basics. We refer to the 6 clauses of the formula as c1, . . . , c6.

F =
∧
ci : 1 ≤ i ≤ 6

c1 = (x1) c2 = (x2)
c3 = (x1 ∨ x2) c4 = (x1 ∨ x2)
c5 = (x1 ∨ x2) c6 = (x1 ∨ x2)

MUSes(F ) MCSes(F ) MSSes(F )
{c1, c2, c3} {c3} {c1, c2, c4, c5, c6}
{c1, c3, c4} {c1, c5} {c2, c3, c4, c6}
{c2, c3, c5} {c2, c4} {c1, c3, c5, c6}

{c3, c4, c5, c6} {c1, c2, c6} {c3, c4, c5}

The formula F has 4 MUSes and 4 MCS/MSS pairs. For simplicity we denote
any MUS, MCS and MSS as a set of clauses throughout this work. Note that
any MCS is a complement of an MSS and vice versa.

We use the following fact as an important connection between MUSes and
MCSes heavily: the set of MUSes of a formula F and the set of MCSes of F are
“hitting set duals” of one another. All MUSes of F form a set that is equivalent
to the set of all irreducible hitting sets of the MCSes and analogously the set of
MCSes is equivalent to all irreducible hitting sets of the MUSes. The following
Theorem 1 is proven formally in [7].

Theorem 1. Let F be an unsatisfiable formula, MUSes(F ) the set of all min-
imal unsatisfiable subsets of F and MCSes(F ) the set of all minimal correction
sets.

1. U ⊂ F is an MUS ⇔ U is an irreducible hitting set of MCSes(F )
2. C ⊂ F is an MCS ⇔ C is an irreducible hitting set of MUSes(F )

We recall an intuitive explanation for this from [21] here. Recall that an unsat-
isfiable formula F has at least one MUS M . Due to the minimality of an MUS
it can be made satisfiable by simply deleting a single clause of it. Therefore, a
way to make the whole formula F feasible, one has to “dispose” its MUSes by
removing at least one clause from every MUS. An MCS corresponds to a set of
clauses that accomplishes this: its removal restores the satisfiability of F . Thus,
any MCS has to contain at least one element of every MUS of F and due to its
minimality the irreducibility of the hitting set is obtained. A similar argument
can be found for the fact that MUSes are irreducible hitting sets of MCSes.

Example 2: We explain the property using the example from above.
Whenever an MUS and MCS have a clause in common, an “x” denotes the

fact, that the MUS and MCS hit each other. Each clause in the intersection of
all MUSes infers an MCS of size one, in this example {c3}. All other MCSes are
of larger size.
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MCSes
{c3} {c1, c5} {c2, c4} {c1, c2, c6}

MUSes

{c1, c2, c3} x x x x x
{c1, c3, c4} x x x x
{c2, c3, c5} x x x x

{c3, c4, c5, c6} x x x x

Observe that all the other MCSes hit the corresponding MUSes by their
common clauses. Note that the MCS {c1, c2, c6} is the only one, where a single
MUS {c1, c2, c3} is hit by more than one member of the MCS (via c1, c2), but
neither can be removed from the MCS, because both are exclusively responsible
for hitting the second and third MUS, respectively.

3 Related Work and the MARCO Algorithm

The algorithms for extracting a single MUS can be characterized as constructive,
destructive or dichotomic [11,28]. Nearly all state-of-the-art MUS extractors
[5,25] use a variant of a destructive MUS extraction algorithm, which was first
proposed more than 20 years ago [3,8]. A destructive MUS extractor computes a
series of reduction steps on formula F , moving into smaller unsatisfiable subsets
F ′ until all subsets F ′′ ⊂ F ′ are satisfiable. The development of the recursive
model rotation [6] led to major improvements for MUS extraction algorithms in
recent years [4].

The existing work on MUS enumeration can be divided into two main cate-
gories: a) approaches that compute MUSes directly and b) algorithms that use
hitting set techniques. The direct computation of MUSes is based on an exhaus-
tive search on the power set of subsets of the formula. The explicit enumeration
uses a HS-tree data structure [18] together with pruning rules to avoid multiple
satisfiability tests for a single subset. Every node in the tree corresponds to a
subset S of the formula F , and every child node is labeled with a subset S′ ⊂ S.
In a depth-first fashion the subsets are tested for unsatisfiability. Each unsatis-
fiable node whose children are all found to be satisfiable is marked as an MUS.
Several improvements could be made for this technique [17], but the iterative
SAT-solver calls and the explicit enumeration of all possible subsets of F are a
performance bottleneck [2].

Examples for the second category of algorithms are CAMUS [21] and
DAA [2]. CAMUS works in two phases: the first phase computes all MCSes
of a constraint set by decreasing size using MSS solutions. With every found
MSS a new blocking clause is added to F ′ to ensure, that the same subset is
not found in any further SAT-solver calls. The second phase is a hitting set app-
roach that is completely independent on any constraint solver. It starts when all
MSSes/MCSes are found.

Due to the possibility that the number of MCSes may be exponential in the
size of the formula, the first phase is potentially intractable. Therefore it is not
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Algorithm 1. MARCO
Input: unsatisfiable formula F = {c1, . . . , cn}
Output: MCSes and MUSes of F as they are discovered
1: map ← BoolFormula(s1, . . . , sn) � si are selector variables
2: while map is satisfiable do
3: m ← getModel(map)
4: seed ← {ci ∈ F : m[si] = True} � project the model to F
5: if seed is satisfiable then
6: MSS ← grow(seed,C)
7: MCS ← complement(MSS)
8: yield MCS � print the MCS without ending the algorithm
9: map ← map ∧ blockMCS(MCS)

10: else
11: MUS ← shrink(seed,C)
12: yield MUS � print the MUS without ending the algorithm
13: map ← map ∧ blockMUS(MUS)
14: end if
15: end while

suitable in cases, where some MUSes should be found very quickly. Partial MUS
enumeration resolves this problem.

The DAA (dualize and advance) algorithm is an incremental hitting set app-
roach developed by Bailey and Stuckey [2]. It uses the same relationship of
MCSes and MUSes, but computes both subsets during its execution. In every
iteration a satisfiable subset is grown into an MSS. Its complement MCS is added
to the set of already found MCSes. On this set of MCSes all minimal hitting sets
(possible MUSes) are computed. Each MUS candidate is checked for unsatisfia-
bility. Whenever one candidate is found to be satisfiable, it is used as a starting
point for the computation of a new MSS in the next iteration. The main bot-
tlenecks here are the computation of the hitting sets and the test whether each
MUS candidate is unsatisfiable.

3.1 The MARCO Algorithm

Independently from each other Previti and Marques-Silva [26] and Liffiton and
Malik [20] developed two very similar algorithms called eMUS and MARCO.
Both can be seen as partial (or incremental) MUS enumerators, not replacing
any state-of-the-art complete MUS enumerators like CAMUS [21] but providing
a viable alternative for satisfiability instances where the full enumeration is com-
putationally infeasible in limited time. Their major advantage is in reporting the
first MUS as quickly as state-of-the-art MUS extractors and reporting further
MUSes with a similar delay. We describe the MARCO algorithm here and use its
implementation for our extensions. We refer to the pseudocode in Algorithm 1.

The novel approach to (partially) enumerate MUSes is the use of an addi-
tional SAT instance containing only the selector variables s1, . . . , sn (line 1) of
the unsatisfiable formula F = (c1 ∧ . . . ∧ cn). Every model obtained from this
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“meta”-instance (called map) is an unexplored subset of the formula. Depending
on its satisfiability, it is either used to find a new MSS (MCS) or a new MUS.

Initially the meta-instance is a tautology (true in every model), meaning that
no subset has been explored. Given the fact, that the map contains the selector
variables si that were added to every clause ci in F each model can be projected
onto F to identify an unexplored element of F ’s power set of possible subsets.
If this subset, called “seed”, is satisfiable it must be a subset of an MSS and
thus can be expanded into an MSS via the grow -method (line 6). Likewise, if
the seed is unsatisfiable, it has to be a superset of an MUS and therefore it can
be used as the starting point for an MUS extraction algorithm (shrink -method
in line 11). In either case the result is reported and used to mark a region in
the map as explored. For every found MUS U and every MSS S (respectively its
complement MCS C) the following clauses are added.

blockMUS(U) :
∨

i:ci∈U si blockMCS(C) :
∨

i:ci∈S si

blockMUS(U) ensures, that at least one member of the MUS must not be
present in any further seed. In other words, all proper supersets of the MUS
are forbidden as new seeds. Likewise, blockMCS(C) ensures that at least one
clause of every MCS has to be in any seed from now on. Eventually all MCSes
and MUSes are enumerated and the algorithm terminates due to the map being
unsatisfiable.

A major difference of the eMUS approach from Previti and Marques-Silva [26]
to this MARCO algorithm is the usage of maximal models as seeds, making
the grow -method obsolete. However, the latest MARCO versions use maximal
models by default. We decided to use MARCO v1.0.1 as the base program,
in which our extensions are incorporated, since it outperforms eMUS in our
practical experiments (see Section 6).

Note, that the grow -method is used as an MSS/MCS oracle in MARCO,
instead of using maximal models, any state-of-the-art MSS/MCS extractor [1,24]
could be “plugged-in” to potentially speed-up the computation as well.

4 A First Extension: Determine MUS Members via Map

The map in MARCO allows us to determine the hitting set property of MUSes
and MCSes. In its latest release of the MARCO algorithm a feature was added
that uses top-level assignments within the map to identify clauses, that have to be
present in an MUS. Top-level assignments are implications that were caused by
the propositional logic of the map without any further assumptions of variables.
These top-level assignments can be caused for example by unit clauses, that were
added by MCSes of size one.

We decided to extend this in the following way. Given a formula F and a seed
S ⊂ F . Whenever S is unsatisfiable we determine the set of positive top-level
assignments of the map that are forced by adding the corresponding negative
literals si for each clause ci ∈ F \S as assumptions to the map. This is done via
the method getImplies(seed). Suppose during the execution of MARCO the
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MCS {c1, c2, c3} was found and the current unsatisfiable seed obtained from the
map contains s3, but not s1 nor s2. Then the clause c3 has to be present within
the MUS to ensure that the hitting set property between MUSes and MCSes is
preserved. The shrink -method would provide the result as well, but potentially
has to use one SAT-solver call to determine this. By declaring some clauses as
definitive members of the MUS the extraction algorithm can save unnecessary
SAT-solver calls. This extension alone does not lead to an improved performance.
The effort to compute the set of forced assignments is potentially larger than the
savings during the shrink -method. This is the reason we extended the grow -
method (see Section 5.4) to find more MCSes faster to improve the performance
of the MARCO algorithm with the help of the extended getImplies(seed)-
method.

5 Using Blocks to Speed-Up Partial MUS Enumeration

All our extensions to the state-of-the-art partial MUS enumeration approach are
based on the following block property of clauses, which was already introduced
as generalized nodes in an approach to speed-up Hitting-Set-Computations in
Hypergraphs [19].

Definition 4 (Block property). Given an unsatisfiable formula F . A block
b is a set of clauses b = {cx, cy, . . . , cz} that are always either exactly altogether
present in an MUS or not:

∀M ∈ MUSes(F ) : b ∩ M = ∅ ∨ b ∩ M = b

The blocks are clause maximal, meaning that the block b cannot be extended by
any clause ci ∈ F \ b without losing the block property.

Some trivial observations derived from this definition are that every clause
belongs to exactly one block and the set of blocks B is a partition of the unsat-
isfiable formula F . We denote b0 as the block of clauses that do not belong to
any MUS of F . Then F \ b0 is the union of all MUSes.

5.1 Determine the Blocks

To obtain the set of blocks B(F ) for an unsatisfiable formula F the straight-
forward approach is to enumerate all MUSes of F and use the following split
routine. Initially B0 = b0 = F . With no found MUSes all clauses of the formula
belong to the default block of clauses. Note that Mi denotes the i-th found MUS
and therefore Bi denotes the set of (interim) blocks that are formed by the MUSes
M1, . . . ,Mi. Please note that interim blocks only permit the block property for
the MUSes M1, . . . ,Mi, and not necessarily for the later ones. Nevertheless we
drop the word “interim” from it in the remaining part of the work.

Definition 5 (Splitting blocks). Let Bi = {b0, . . . , bx} be the set of blocks
for an unsatisfiable formula F , that were obtained by splitting the blocks via the
MUSes {M1, . . . ,Mi} and Mi+1 ⊂ F be the next MUS that was discovered during
the MUS enumeration algorithm. Then Bi is updated to Bi+1 via Algorithm 2.
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Algorithm 2. splitblocks
Input: blocks Bi = {b0, . . . , bx} and MUS Mi+1 ⊂ F = {c1, . . . , cn}
Output: blocks Bi+1

1: Bi+1 ← ∅
2: m ← x + 1 � new block index (bx is last element in Bi)
3: for bi ∈ Bi do
4: if i == 0 and 0 < |bi ∩ Mi+1| then � clauses that were in no MUS until now
5: bm ← bi ∩ Mi+1 � build new block bm
6: bi ← bi \ bm � update the old block bi
7: Bi+1 ← Bi+1 ∪ bi ∪ bm � add both blocks bi, bm
8: m ← m + 1
9: else if 0 < |bi ∩ Mi+1| < |bi| then � real subset

10: bm ← bi ∩ Mi+1 � build new block bm
11: bi ← bi \ bm � update the old block bi
12: Bi+1 ← Bi+1 ∪ bi ∪ bm � add both blocks bi, bm
13: m ← m + 1
14: else � block unchanged
15: Bi+1 ← Bi+1 ∪ bi
16: end if
17: end for

Since the blocks can only get smaller, each block ∈ Bk is an ancestor
for at least one block ∈ B(F ). Each ancestor block can be seen as an over-
approximation of a block, that gets tighter with more MUSes found until ulti-
mately reaching equality. Tightness is reached at latest when all MUSes were enu-
merated, but could be obtained earlier as well. For example, whenever Bk �= B(F )
contains a block of size 1 that block cannot be split any further.

Example 3: The splitblocks-method results in the following blocks for the
formula F from above and the given sequence of enumerated MUSes.

Initialization: B0 ={(C1, C2, C3, C4, C5, C6)}
1st MUS: M1 ={C1, C2, C3} B1 ={(C4, C5, C6), (C1, C2, C3)}
2nd MUS: M2 ={C1, C3, C4} B2 ={(C5, C6), (C2), (C4), (C1, C3)}
3rd MUS: M3 ={C2, C3, C5} B3 ={(C6), (C2), (C4), (C1), (C5), (C3)}
4th MUS: M4 ={C3, C4, C5, C6} B4 =B3 = B(F )

Real-world instances show some important properties: The block of clauses
that are present in no MUS at all (b0) is normally the largest block and although
there are a lot of blocks containing only one clause, several blocks of larger sizes
are present as well.

5.2 Proving the Block Property

With the block property proven, we could save many SAT-solver calls due to
the fact that whenever one clause of the block is determined to be present or
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absent in the current MUS within the shrink subroutine, all other members of
the block are determined as well, without using any additional SAT-solver calls.
To prove the block property we could use the available map instance. Recall
that the map is used to determine already covered areas of the search space.
It provides the main method with a seed from an area of the search space, that
was not yet covered by the algorithm and therefore offers a new result, either an
MCS or an MUS.

By adding (an over-approximation of) a block bi ∈ Bk to the map via
blockMUS(bi) the map provides seeds where not the whole block bi is present.
Let ci be the clause that was added to the map via blockMUS(bi) and the
seed returned from the map to be unsatisfiable. During the subsequent shrink -
method the SAT-solver either deletes all members of bi from the seed to find a
new MUS, or at least one member of bi is still present in the new MUS Mk+1.
In the first case, the block bi is not touched and thus is still valid. The algorithm
could go on with the proposed block bi added to the map. In the second case,
the block bi is divided into two new blocks bi′ and bi′′ with bi′ consisting of the
elements of bi that are present in the new Mk+1, and bi′′ = bi \ bi′ . Suppose we
continue trying to prove the block property for bi′ , since bi was proven to be an
over-approximation. Adding bi′ to the map would make bi obsolete, since bi′ is
a subset of bi and thus the clause ci′ added via blockMUS(b′

i) subsumes the
clause ci. From now on the map provides seeds where not the whole block bi′

is present until it reaches unsatisfiability. In the end, the block property of the
current block is proven, since every unsatisfiable seed that is provided by the
map without the current block has to contain the whole block.

The problem of this approach to prove the block property for a block bi is,
that it finds all MUSes M that do not contain bi. Thus the proven property is
only available when enumerating the remaining MUSes M′ = MUSes(F) \ M,
a part of them already enumerated and used to redefine bi by the splitblocks-
method. Therefore, we show in the next sections how unproven blocks (that are
over-approximations of blocks) are used to support the MUS and MCS detection.

5.3 Using Block Information During shrink-Method

The shrink -method can be any state-of-the-art MUS extraction algorithm.
MARCO uses muser2 [5]. One major advantage and prerequisite for our exten-
sion is, that the solver is able to cope with so-called group-MUS instances [21].

Definition 6. Given an explicitly partitioned unsatisfiable CNF formula F =
D ∪ ⋃

G∈G G with G = {G1, . . . , Gk}, D and Gi being disjoint sets of clauses,
a group oriented MUS of F is a subset G′ of G, such that D ∪ ⋃

G∈G′ is
unsatisfiable, and ∀G′′ ⊂ G′ : D ∪ ⋃

G∈G′′ is satisfiable.

D is the default group (often denoted as being group G0) that has to be present
in every MUS. It consists of the clauses that correspond to the implied variable
assignments given by the map as described in Section 4.
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The possibility to define partitioned groups allows us to use the block infor-
mation of clauses rather straight-forward. All blocks bi that are present in the
seed get their own group Gn+i = {seed∩ bi} with n being the number of clauses
in the unsatisfiable formula F . The lone exception from this rule is the block b0
of clauses, that were not present in any MUS until now. Each of these clauses
ci ∈ {seed ∩ b0} form their own group Gi = {ci}. Due to the blocks being
over-approximations, the block property is not proven for the members. Thus,
executing the MUS extractor on this grouped instance does not return an MUS,
but rather an over-approximation of an MUS gM ⊇ M as well. We have to run
the MUS extractor a second time iff ∃Gi ∈ gM : |Gi| > 1. For every Gi ∈ gM
with |Gi| = 1 we know that the clause representing this group has to be in
M . We add that clause to G0. Since it was found to be critical for the over-
approximation gM , it has to be critical for each subset of gM , especially M , as
well. A clause c is critical when the deletion of it from an unsatisfiable set of
clauses U causes U \ c being satisfiable.

For all other groups Gj ∈ gM with |Gj | > 1 every clause ci ∈ Gj forms
its own group Gi for the second call. Together with the increased G0, that can
be possibly (when gM ⊂ seed) further increased by new forced implications
recognized via getImplies(gM) they form a new instance where every non-
default group is of size one. Running the MUS extractor on this finally returns
an MUS M ⊂ F .

As we have seen, using the block property may cause that two MUS extrac-
tor calls have to be used to determine a single MUS. Nevertheless the sum of
SAT-solver calls in those two MUS extractor runs is usually much smaller in
comparison to the normal shrink , when a large group Gi could be deleted from
the seed within the first run.

5.4 Using Block Information to Find More MCSes

To gain additional boost of the getImplies(seed)-method we present a method
that uses the block information to determine likely candidates for other MCSes.
As we have seen in Section 4, with every blockMCS() a clause is added, which
then can be used to infer clauses, that have to be part of an MUS.

Recall, that when two clauses ci and cj are present in the same block bk,
the clauses do not appear separately in any MUS. This leads to the following
Lemma.

Lemma 1. Let block bk have at least two clauses ci and cj. For every MCS M
with ci ∈ M , there has to be another MCS M ′ = cj ∪ (M \ ci).

Proof: By the hitting set property of MCSes and MUSes and the minimality of
MCSes we know that there has to be at least one MUS U with U ∩ M = ci.
If there is no such U , then M would not be minimal. It would be possible to
eliminate ci from M and not lose the hitting set property of the set of MUSes.
But since ci and cj are in the same block bk all MUSes that were hit by ci are
hit by cj as well. Therefore M ′ = (M \ ci) ∪ cj is a valid MCS by the hitting set
property.��
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Based on this Lemma we present the following algorithm, that is called when-
ever a new MCS is found via the grow -method (line 6 in Algorithm 1):

Algorithm 3. moreMCS
Input: blocks Bi = {b0, . . . , bx} and MCS C = {c1, . . . , cn}, C ⊂ F
Output: MCSes and MUSes of F as they are discovered
1: find block blk(cj) ∈ Bi for every cj ∈ C
2: for every possible combination MCSc in {blk(c1)} × . . . × {blk(cn)} do
3: MSSc ← complement(MCSc) � get the MSS candidate
4: if MSSc is satisfiable then � new MCS found
5: yield MCSc � print the MCS without ending the algorithm
6: else � unsatisfiable seed for MUS extraction
7: MUS ← shrink(MSSc) � extract new MUS
8: yield MUS � print the MUS without ending the algorithm
9: splitblocks(MUS) � use MUS to split blocks

10: find more MCSes/MUSes in combinations of split blocks � see Example 4
11: return
12: end if
13: end for

According to Lemma 1 the algorithm tests all possible combinations as long
as the resulting candidate MSSes MSSc are satisfiable. Whenever the algorithm
detects an unsatisfiable MSSc ⊂ F , it is used as a seed to the shrink -method
to extract an MUS. This MUS is used to split the blocks, causing at least one
of the blocks {blk(c1), . . . , blk(cn)} to be split.

Example 4: Suppose C = {c1, c4} is the MCS that triggered the call of
moreMCS, blk(c1) = {c1, c2, c3}, blk(c4) = {c4, c5, c6}. That leads to |blk(c1)| ∗
|blk(c4)|−1 = 3∗3−1 = 8 possible new MCSes since {c1, c2} has not to be tested.
Suppose that {c1, c5}, {c1, c6} are tested successfully as MCSes, but {c2, c4} is
not an MCS. We know that (at least) c2 has to leave the block blk(c1) since it
violates Lemma 1.

The algorithm ensures this due to the following observation. The seed MSSc
does not contain c4, since the seed is the complement of {c2, c4}. Due to the
hitting set property and the MCS {c1, c4} at least c1 has to be present in the
new MUS, so c2 and c1 cannot remain in the same block after the split operation.

Suppose the new blocks after the split operation are bi = {c1, c3}, b′
i =

{c2}, bj = {c4, c5}, b′
j = {c6}. The new possible combinations are bi × bj , bi ×

b′
j , b

′
i × bj , b

′
i × b′

j . Please note, that in line 10 of Algorithm 3 the combinations
b′
i × bj , b

′
i × b′

j would not be tested, since no MCS was found that hits these
combinations of blocks.

The implementation ensures that no subsets are tested twice during the recur-
sion to prevent doubled results. For example, the MCS candidate {c1, c6} from
the combination bi × b′

j is not tested again, but the candidate {c3, c6} from the
same combination has to be tested.
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6 Practical Results

To evaluate the extensions to the MARCO algorithm and to compare it to the
previous approaches for (partial) MUS enumeration, MARCO and eMUS, we ran
all algorithms on a set of 207 instances from the Boolean Satisfiability domain.
These instances were drawn from a large variety of applications, with the most
prominent being hardware and software verification, product configuration and
bounded model checking. The benchmark set is a subset of the MUS track of the
2011 SAT competition1 containing only instances where at least two MUSes and
one MCS are found within the time limit of one hour. This decision is based on
the fact that our techniques for boosting the computation of MUSes and MCSes
use the block information, which is inferred from the already enumerated MUSes.
Both techniques (shrink , moreMCS) are triggered for the first time when the
original MARCO algorithm found the first MCS, respectively starts to extract
the second MUS from a part of the formula. Thus, we focus our analysis of the
effects on the performance on these instances.

We used the latest MARCO release2 v1.0.1 as the framework for our exten-
sion. It is written as a python script that uses the MiniSAT [12] solver for the
formula F as well as the map. The shrink -method uses muser2 [5] as a MUS
and group-MUS extraction algorithm. All experiments were run on 2.83GHz
Intel Xeon CPUs with a 3600 second timeout and a 16 GB memory limit.

We use the following terminology to describe the different versions of the
algorithm and its possible combinations:

– MARCO the original algorithm proposed by Liffiton et al. [20] (see
Section 3)

– MARCO+ more critical clauses obtained by getImplies-method (see
Section 4)

– MARCOs block information used during shrink (see Section 5.3)
– MARCOm block information used to find more MCSes faster (see

Section 5.4)

Thus, when mentioning MARCO+m the second and fourth option are used in
parallel.

The first results (Figure 1) show that MARCO finds more MUSes than eMUS
for 183 instances, 24 times eMUS reports more MUSes and both provide the same
amount only twice. 44 times the number of MUSes found by MARCO is one
order of magnitude higher than the number found by eMUS. In comparison to
MARCO+ the results are not so clear. In that case MARCO reports more MUSes
for 86 instances, in 70 out of 207 instances MARCO+ finds more MUSes and
for the remaining 51 instances both versions find the same amount of MUSes.
The additional effort to compute forced MUS members shown in Section 4 is
not worth it when using the original MARCO algorithm without any further
extensions.

1 http://www.satcompetition.org/2011/
2 http://sun.iwu.edu/∼mliffito/marco/

http://www.satcompetition.org/2011/
http://sun.iwu.edu/~{}mliffito/marco/
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Fig. 1. Comparing MARCO to eMUS (left) and MARCO+ (right): number of MUSes
found within time limits of 3600 seconds. Each point declares one out of the 207
instances

The additional use of MARCOm changes that. MARCO+ benefits from the
MCSes that have been produced by MARCOm earlier. The resulting version
MARCO+m reports more MUSes for 105 instances, less MUSes in 87 and for
the remaining 15 instances the same amount as the original MARCO within the
time limits. Nearly 94% of the found MCSes (6, 944, 690 out of 7, 390, 727) are
reported by the algorithm presented in Section 5.4.

6.1 Workload Computation

The partial MUS enumerators used in this work produce two different results,
MUSes and MCSes. Therefore, the evaluation and comparison of different
approaches should cover both results as well.

Figure 2 shows the relative number of MUSes and MCSes found by
MARCO+m and MARCO. The values on the x-axis are computed by the log-
arithm (to the base 2) of the fraction of MUSes found by MARCO+m and by
MARCO. The y-values show the ratio of found MCSes.

Points in the positive region of the x-axis denote instances where MARCO+m
found more MUSes in the same time limit. The same applies correspondingly
for the y-axis and the number of MCSes. For the vast majority of 91.8 % (190
out of 207) MARCO+m reports more MCSes than MARCO.

For 50.7 % of the instances (105 out of 207) MARCO+m outperforms
MARCO on both, MUSes and MCSes. The opposite holds for just 5.3 % of
the instances (11 out of 207). For 10 instances the number of found MUSes
and MCSes are identical. The remaining 81 instances where MARCO+m either
found less MUSes, but more MCSes or vice versa, cannot simply be evaluated by
the raw numbers of found MUSes/MCSes since the effort to compute one MUS,
or MCS respectively, varies.

Thus, we introduce the following scoring function, called the additional
expected workload to compare the results of two algorithms A1 and A2.
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77 105

11 4

Fig. 2. log2 of the relative number of MUSes on x-axis and of MCSes on y-axis; together
with the amount of points (instances) for every quadrant in the plane - 10 points are
lying in the point or origin

Definition 7 (The additional expected workload). Let Algorithm A1 and
Algorithm A2 be two partial MUS enumerators and the respective number of
found MUSes nU(Ai) and MCSes nC(Ai). With the time used to compute all
found MUSes tU(Ai) and MCSes tC(Ai) for a fixed instance we define the addi-
tional expected workload of A1 in comparison to A2 as:

wl(A1, A2) = nU(A1)
tU(A1) + tU(A2)
nU(A1) + nU(A2)

+ nC(A1)
tC(A1) + tC(A2)
nC(A1) + nC(A2)

− (tU(A1) + tC(A1))

The first term of the formula describes the expected time that is needed to
find the number of MUSes by algorithm A1. It is computed via the average time
both algorithms needed to compute a single MUS. The second term describes
the same for the MCSes found by algorithm A1. Subtracting the real times the
algorithm A1 spends computing MUSes and MCSes from this sum we get a
positive value iff A1 performed better than A2 because the expected runtime is
higher than the actual runtime. Note that wl(A1, A2) = −wl(A2, A1).

For the aforementioned 81 instances represented by the points in the second
and forth quadrant of the Cartesian plane shown in Figure 2 we get a sum of the
additional expected workload of 3412.86 seconds for MARCO+m in comparison
to MARCO. When expanding the sum to all 207 instances in the benchmark set
we get the additional expected workload of 99911,44 seconds with a median
of 376.26 seconds and an average of 482.66 seconds. Our approach MARCO+m
clearly outperforms the state-of-the-art MARCO algorithm.

To put these results in perspective: the overall runtime for MARCO+m on
the 207 instances is approximately 730000 seconds, with the additional expected
workload of 99911.44 seconds MARCO+m performs 13.7 % better than
MARCO.
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With Figure 3 we want to support the observation that with an increasing
amount of known MCSes the runtime to extract one MUS can be decreased.
The figure compares the runs from MARCO, MARCO+ and MARCO+m on
the instance dlx2 aa3. This instance is a hardware verification problem and was
first used in the MUS extraction track of the SAT competition 2011. On the
x-axis the sequence of extracted MUSes during the enumeration is shown. The
bars denote the amount of known MCSes at the moment the shrink -method
is called. The height of the bars gives an upper bound on how many clauses
of the MUS are known to be critical before the MUS extractor is started. The
corresponding points on the lines represent the runtime in ms that was needed
to extract the MUS in the shrink -method.

Fig. 3. Comparing MARCO+m to MARCO+ and MARCO: the difference of runtime
for the MUS extraction correlates to the difference in the number of known MCSes at
that time, especially for the MUSes in the range between 6 - 17

We see a significant difference in runtime in the majority of the MUS extrac-
tor calls (shrink -method) for the MUSes from 6 to 17. We see that the definitive
MUS members found via the getImplies-method before the start of the MUS
extractor result in a reduced runtime for MARCO+ in comparison to MARCO.
Furthermore the differences in runtime from MARCO+ and MARCO+m cor-
relate to the differences in known MCSes for the corresponding time points
during the MUS enumeration algorithm. Due to the fact that at the start of an
MUS extraction MARCO+m already found more MCSes, the algorithm is able
to detect more forced members of the MUSes beforehand via the getImplies-
method resulting in a significantly shorter MUS extraction time. After the 18th
MUS, when all three versions have found approximately the same amount of
MCSes, the runtimes of the shrink -methods approach each other again. The
average MUS extraction time for this instance and the three MARCO versions
are 154ms for MARCO, 149ms for MARCO+ and 118 ms for MARCO+m.
3 Similar results can be obtained for a whole set of benchmarks.
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The extensions of MARCO with activated shrink option (MARCOs,
MARCO+s and MARCO+ms, see Section 5.3) do not result in any improve-
ments of the performance. Thus, we do not provide any additional numbers or
charts for these versions.

7 Conclusion

We presented an extension to the MARCO algorithm based on a novel block
property for clauses. We can use this property for both interesting subset detec-
tions, the shrink -method for MUS extraction and for finding more MCSes when-
ever MARCO has found a new MCS via grow . The main performance boost is
obtained by our extension of the already available MARCO map to infer clauses
that are forced to be present in a MUS in combination with our technique to
detect MCSes faster and earlier in the search. This way the MUS extraction
algorithm can save potentially a large amount of SAT-solver calls, since the crit-
icality for these clauses does not have to be tested during the MUS extractor
call.

With the help of an extensive practical analysis we could show that our exten-
sions lead to a better performance of our MARCO variant regarding the number
of found MUSes, MCSes, as well as the expected additional workload within a
time limit of one hour for every instance. We did not analyze the performance
of MARCO+m in comparison to the state-of-the-art MUS enumerator CAMUS,
since the results obtained in the original work about partial MUS enumeration
algorithms [20,26] do not change: partial MUS enumeration does not replace
state-of-the-art MUS enumerators, but offers a viable option for instances where
the full enumeration is computationally infeasible in limited time. MARCO+m
offers better results than MARCO / eMUS, but does not close the gap com-
pletely.

Future research directions include exploring the possibilities to use the block
information directly within the grow -method or any MSS/MCS oracle, as well
as more engineering and extensive use of more sophisticated data-structures to
boost the partial MUS enumeration further. Additionally, it would be advanta-
geous to prove the block property without the current problems stated.

Another useful research direction can be the development of a novel quality
measure of an MUS. At the moment, the number of MUSes seems to be the nat-
ural measure when assessing partial MUS enumeration techniques, but finding
one MUS of superb quality with respect to the application may be better than
finding many MUSes of poor quality with respect to the application.

Acknowledgments. The authors thank the anonymous reviewers for the helpful com-
ments as well as Mark Liffiton and Ammar Malik for providing the well-documented
code of MARCO.
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Abstract. The VSIDS (variable state independent decaying sum) deci-
sion heuristic invented in the context of the CDCL (conflict-driven clause
learning) SAT solver Chaff, is considered crucial for achieving high effi-
ciency of modern SAT solvers on application benchmarks. This paper
proposes ACIDS (average conflict-index decision score), a variant of
VSIDS. The ACIDS heuristics is compared to the original implementa-
tion of VSIDS, its popular modern implementation EVSIDS (exponential
VSIDS), the VMTF (variable move-to-front) scheme, and other related
decision heuristics. They all share the important principle to select those
variables as decisions, which recently participated in conflicts. The main
goal of the paper is to provide an empirical evaluation to serve as a
starting point for trying to understand the reason for the efficiency of
these decision heuristics. In our experiments, it turns out that EVSIDS,
VMTF, ACIDS behave very similarly, if implemented carefully.

1 Introduction

The application track of SAT competitions [1,2] is dominated by conflict-driven
clause learning (CDCL) [3] solvers. Beside learning [4], the most important fea-
ture of these solvers is the variable state independent decaying sum (VSIDS) deci-
sion heuristic [5], actually in its modern variant exponential VSIDS (EVSIDS) [6],
as first implemented in the MiniSAT solver [7]. The EVSIDS heuristic allows fast
selection of decision variables and adds focus to the search, but also is able to pick
up long-term trends due to a “smoothing” component, as argued in [6].

On the practical side, there have been various attempts to improve on the
EVSIDS scheme. These include the variable move-to-front (VMTF) strategy
of the Siege SAT solver [8], the BerkMin strategy [9], which is focusing on
recently learned clauses, and the clause move-to-front (CMTF) strategies of
HaifaSAT [10] and PrecoSAT [11]. In this paper, we suggest another new deci-
sion heuristic, called average conflict-index decision score (ACIDS). Our main
contribution, however, is to show that EVSIDS, VMTF, and ACIDS empirically
perform equally well, if implemented carefully. Beside allowing simpler imple-
mentation, these empirical results further shed light on what EVSIDS actually

Supported by Austrian Science Fund (FWF), national research network RiSE
(S11408-N23). Builds on discussions from the 2014 workshop on Theoretical Foun-
dations of Applied SAT Solving (14w5101), hosted by Banff International Research
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means. They open up new directions for treating practically successful decision
heuristics formally, for instance in the context of proof complexity.

Regarding alternative decision schemes, we refer to the cube-and-conquer
approach [12]. It combines CDCL with classical look-ahead [13] solving, and is
particularly effective for solving hard combinatorial benchmarks (in parallel).
The rest of the paper will focus on decision heuristics for CDCL solving, related
to VSIDS. This paper also complements recent developments which try to relate
and explain VSIDS with community structure [14–16].

2 Decision Heuristics

Following the same decision order in every branch of a DPLL [17] search tree
amounts to a simple static decision heuristic, as in ordered binary decision dia-
grams (BDDs) [18], which even with dynamic variable reordering are restricted
to one variable order along each path from root to a leaf. The freedom of being
able to pick an arbitrary variable in every node “dynamically” is generally con-
sidered an advantage of SAT over BDDs, e.g., in the context of bounded model
checking [19]. These dynamic decision heuristics originally only took the current
partial assignment in a search node into account when selecting the next decision
variable. They did not consider how the search progressed to reach this point
in the search space. We call this set of restricted dynamic heuristics first-order
dynamic decision heuristics. A typical example is the dynamic literal individual
sum heuristic (DLIS). It selects as next decision literal one with the largest DLIS
score, which is computed as the number of still unsatisfied clauses in which a
literal occurs. A well-known and often applied variant of DLIS is the Jeroslow-
Wang heuristic [20], which for instance is discussed in [21], together with other
related early decision heuristics, including Bohm’s, MOM’s, etc.

With the introduction of learning in Grasp [4], these first-order heuristics
implicitly became second-order dynamic heuristics, since learned clauses were
used in computing scores too, and they do capture the history of the search
progress. An early evaluation [21] of decision heuristics, originally designed as
first-order heuristics but then applied as second-order heuristics together with
clause learning, showed that variants of DLIS actually perform quite well.

In principle, one has to distinguish between selecting a decision variable and
selecting a decision phase, i.e., the Boolean constant to which the selected vari-
able is assigned. However, almost all modern CDCL solvers implement phase
saving [22], which always reassigns the decision variable to the last phase it
was previously assigned. Modulo initialization, typically based on (one-sided)
Jeroslow-Wang’s heuristic [20], phase saving turns the decision heuristic into a
variable selection heuristic. Accordingly, we focus on variable selection, which in
turn will be based on selecting a variable with the highest decision score.

Using learned clauses for computing scores is actually quite expensive, since
it requires either to traverse the whole clause data base, which is growing fast due
to adding learned clauses, or requires expensive book keeping of scores during
propagation of assigned variables. The latter became expensive after it was pos-
sible to reduce propagation effort through lazy clause watching techniques [5,23],
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particularly since learned clauses tend to be large [24]. Thus, one of the most
important observations in the seminal Chaff paper [5] was that it is possible
and even beneficial to replace DLIS by an even more aggressive dynamic scoring
scheme, the VSIDS (variable state independent decaying sum) scheme, which
does not require to traverse the clause data base at decision variable selection,
nor to use expensive full occurrence list traversal for accurate score updates.

VSIDS. The variable state independent decaying sum (VSIDS) of Chaff [5]
maintains a variable score for each variable. The basic idea is that variables with
large score are preferred decisions. The original VSIDS implementation in Chaff
worked as follows. Variables are stored in an array used to search for a decision
variable. After learning a clause, the score of its variables is incremented. Further,
every 256th conflict, all variable scores are divided by 2, and the array is sorted
w.r.t. decreasing score. This process is also called variable rescoring. Moreover,
note that the order of decision variables is not changed between rescores.

The process of updating scores of variables is also referred to as variable
bumping [7]. Note, however, that in modern solvers and also in our experiments
we not only bump variables of the learned clause, but all seen variables occur-
ring in antecedents used to derive the learned clause through a regular input
resolution chain [25] from existing clauses.

The decide procedure selects the next decision variable, by searching for the
first unassigned variable in the ordered array, starting at the lower end, e.g., the
variable with the highest score during sorting. An essential optimization in Chaff
is to cache the position of the last found decision variable with maximum score
in the ordered array. This position is used as starting point for the next search. If
a variable in the array with a position smaller than the cached maximum score
position becomes unassigned then the maximum score position is updated to
that position. During rescoring, similar updates might be necessary.

The first part of VSIDS, e.g., only incrementing scores, constitutes an approx-
imation of dynamic DLIS. It counts occurrences of variables in clauses, ignor-
ing whether a clause is satisfied or not, or even removed during learned clause
deletions [3] (called clause database reduction in the following). This restricted
version of VSIDS without smoothing is denoted INC (or inc in the experiments).

As an alternative to using frequent rescoring, we propose that the smoothing
part of VSIDS can also be approximated by adding the conflict-index to the score
instead of just incrementing it. The conflict-index is the total number of conflicts
that occurred so far. We call this scheme SUM (or sum in our experiments).

At each conflict, a new clause is learned, except for instance if on-the-fly sub-
sumption [26,27] is employed. This might trigger additional conflicts, through
strengthening existing clauses, without learning a new clause. Our implementa-
tion does not bump variables in this case, nor does it increase the conflict-index.

EVSIDS. If variables are rescored at each conflict, a variant of VSIDS, called
normalized VSIDS (NVSIDS) [6], is an exponential moving average on how often
a variable occurred in antecedents of learned clauses [6]. For NVSIDS, the score
s of a bumped variable is computed as s′ = f · s + (1 − f), using a damping
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factor f with 0 < f < 1. The score of other variables, which are not bumped,
still have to be “rescored”, e.g., s′ = f · s.

At each conflict, NVSIDS requires to update the score of all variables. A more
efficient implementation, which we called exponential VSIDS (EVSIDS) in [6],
was originally proposed by the authors of MiniSAT [7]. It updates only scores of
(the much smaller set) of bumped variables by adding an exponential increasing
score increment gi, with i denoting the conflict-index and g = 1/f , thus g > 1.
As the relative order of variables for NVSIDS and EVSIDS is identical [6], the
notion of NVSIDS is only of theoretical interest (for the purpose of this paper).

Typical values for g are in the range of 1.01 to 1.2. Small values have been
shown to be useful for hard satisfiable instances (like cryptographic instances).
Large values are useful with very frequent restarts, particularly in combination
with the reuse-trail technique [28]. In Glucose 2.3, even without reusing the trail,
it was thus suggested to slowly decrease g over time from a large value to a small
one.1 In the (new) version of Lingeling used in our experiments, g is kept at 1.2.

Instead of rescoring variables explicitly, MiniSAT uses a priority queue, which
is implemented as a binary heap. This data structure allows fast insertion and
removal of variables and also updating scores, all in logarithmic time. If this
priority queue was updated eagerly to contain exactly all the unassigned vari-
ables, then searching for an unassigned variable with maximal score would even
be possible in constant time. However, the number of propagated variables per
decision can be quite large (on average, 323 propagations per decision for 275
benchmarks in the evsids column in Tab. 2). Removing them eagerly is too costly.

A lazy alternative, as first implemented in MiniSAT [7] and now being the
default implementation of modern CDCL solvers, is to remove variables with
maximum score from the priority queue until the removed variable turns out to
be unassigned. It is then used as the next decision variable. Note that, during
backtracking, this lazy scheme still requires to insert variables back into the pri-
ority queue, as they are unassigned, in order to make sure that the priority queue
contains all unassigned variables (but assigned ones are not eagerly removed).

While the original implementation of VSIDS in Chaff [5] can be considered
to be lazy too, variable selection is still imprecise, since rescoring is delayed.
An attempt to provide a more efficient implementation of rescoring with pre-
cise variable selection was implemented in the JeruSAT solver [29]. It still
uses counters, i.e., inaccurate integer scores, but instead of using one sorted
array for all variables, partitions them into doubly linked lists of variables with
the same score. This allows faster insertion, removal, update, and rescoring.

Another invention in MiniSAT, particularly important for EVSIDS, is to use
a precise floating-point representation instead of integers as in previous solvers.
Even though we do not have separate experimental evidence in this paper, our
experience suggests that using integer scores dramatically deteriorates perfor-
mance compared to using floating-point scores. Even fixed-point scores (as in
PrecoSAT [11]) need additional techniques like clause based decision heuristics
in order to be competitive with floating-point based EVSIDS.

1 Every 5000th conflict, f is increased by 0.01, starting at 0.8 until 0.95 is reached.



Evaluating CDCL Variable Scoring Schemes 409

However, gi usually grows very fast: Note that 1.014459, 1.2244 > 264, and,
more severely, 1.0171333, 1.23894 > 1.797·10308 (≈ maximum value in 64 bit IEEE
double floating-point representation). Thus, even for EVSIDS with floating-
points, the variable scores and the score increment have to be rescored occa-
sionally, as in the VSIDS scheme. This also becomes necessary if the score of
a bumped variable would overflow during an update. We will report how often
this occurs and how much time is spent on rescoring in our experiments.

VMTF. Variable selection heuristics can be seen as online sorting algorithms of
variable scores. This view suggests to use online algorithms with efficient amor-
tized complexity, such as move-to-front (MTF) [30]. A similar motivation was
given in the master thesis of Lawrence Ryan [8], which precedes MiniSAT [7] and
introduced the Siege SAT solver as well as the variable move-to-front (VMTF, or
vmtf in the experiments) strategy. As in Chaff, the restriction in Siege’s VMTF
bumping scheme was to only move variables in the learned clause. Actually, only
a small subset of those variables, e.g., of size 8, was selected, according to [8].

The restriction in Siege to move only a small subset of variables might have
been partially motivated by the cost of moving many. It is not uncommon that
tens of thousands variables occur in antecedents of a learned clause, which also
are rather long for some instances. In our experiments in Sect. 4, the default
decision heuristic (evsids in Tab. 2) bumped on average 276 literals per learned
clause of average length 105 (on 275 considered instances). Unfortunately, details
on how even this restricted version of VMTF is implemented in Siege were not
provided. The source code is not available either. We give details for a fast
implementation of unrestricted VMTF in Sect. 3.

ACIDS. As further extension to the proposed SUM heuristic we want to intro-
duce the average conflict-index decision score (ACIDS, or acids in our experi-
ments). While SUM realizes a certain amount of smoothing (compared to INC)
by giving a larger weight to later conflicts, this effect is rather small when
compared to the exponential kind of smoothing that is applied in VSIDS and
EVSIDS. However, as smoothing is conjectured to be an important part for vari-
able score heuristics [6], the latter kind of smoothing might be preferable. We
realize this as follows. In the ACIDS scheme, in the same way as for INC, SUM,
VSIDS, and EVSIDS, we keep a score for each variable. Whenever a variable is
bumped, its score is updated to be s′ = (s+ i)/2, with i being the conflict-index.
Compared to SUM, much stronger smoothing is realized by ACIDS. In addi-
tion to giving a larger weight to later conflicts, the influence of earlier conflicts
decreases exponentially in the number of times the variable is bumped.

To compare the influence of the current conflict with that of earlier ones, we
can represent the score of the variable by s = sc+sp, with sc and sp representing
the contribution of the current conflict and the previous conflicts, respectively.
As before, we define i to be the current conflict-index. Further, Ip is the set of
indices of all previous conflicts the variable was involved in. For SUM, sc = i
and sp = ΣIpip, with ip being the elements of Ip. By definition, this will lead to
sp > sc in most cases, particularly after a certain number of conflicts occurred.
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Table 1. Summary of considered variable scoring schemes, where s and s′ denote cur-
rent and updated variable scores, i the conflict-index, and f a damping factor with
0 < f < 1, used in our reformulation NVSIDS of VSIDS as exponential moving aver-
age [6]. For EVSIDS, we use the inverse g = 1/f of f (thus g > 1). For the VSIDS
version implemented in Chaff, we set hm

i = 0.5 if m divides i, and hm
i = 1 otherwise.

variable score s′ after i conflicts

bumped not-bumped

STATIC s s static decision order
INC s + 1 s increment scores
SUM s + i s sum of conflict-indices

VSIDS h256
i · s + 1 h256

i · s original implementation in Chaff [5]
NVSIDS f · s + (1 − f) f · s normalized variant of VSIDS [6]
EVSIDS s + gi s exponential dual of NVSIDS [6,7]
ACIDS (s + i)/2 s average conflict-index decision scheme
VMTF i s variable move-to-front [8]

Similarly for INC, sc = 1 and sp = |Ip|, which already implies sp > sc as soon
as a variable is bumped twice. However, for the ACIDS heuristic, we obviously
have sp < sc at every point in the search.

Note that, in contrast to VSIDS and NVSIDS, scores of variables that are not
bumped do not change for ACIDS. This not only allows to keep track of accurate
scores in each step, but also avoids (delayed) variable rescoring. Additionally,
compared to EVSIDS, the scores of variables grow much slower when using the
ACIDS heuristic. In particular, the score of a variable in ACIDS is bounded by
the conflict-index i, instead of being exponential in the number of conflicts, as it
was the case for EVSIDS. Thus, also rescoring of variables to prevent overflow
does not occur in practice. Considering overall performance, our experiments in
Sect. 4 show that ACIDS works as well as EVSIDS and VMTF.

Clause Based Decision Heuristics. There also is related work on using
recently learned clauses in variable selection, such as the BerkMin heuristic [9],
or clause-move-to-front (CMTF) strategies [10,11]. In our experience, they are
inferior to variable scoring schemes as considered in this paper, and we leave it
to future work for a more detailed comparison. The same applies to one-sided
schemes which select literals instead of variables (without phase saving).

3 Implementation

We describe how the VMTF scheme can be implemented efficiently, as well as
how these techniques can be lifted to implement a generic priority queue, which
(empirically) is efficient for all the considered scoring schemes. This new imple-
mentation of a priority queue for variable selections combines ideas originally
implemented in Chaff [5] and JeruSAT [29], but adds additional optimizations
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and works with arbitrary precise floating-point scores, in contrast to an imprecise
earlier version implemented in Lingeling [31].

Variable scores play a role while (a) bumping variables participating in deriv-
ing a learned clause, (b) deciding or searching for the next decision variable, (c)
unassigning variables during backtracking, (d) rescoring variable scores either
for explicit smoothing in VSIDS or due to protecting scores from overflow dur-
ing bumping, and (e) comparing past decisions on the trail to maximize trail
reuse [28]. First, we explain a fast implementation for VMTF, focusing on (a)-
(c). Next, we address its extension to precise scoring schemes using floating-point
numbers, which in previous implementations followed the example set by Min-
iSAT to use a binary heap data structure. Last, we discuss (d) and (e).

3.1 Fast Queue for VMTF

According to Sect. 2, the score of a variable in VMTF is the conflict-index, e.g.,
the number of conflicts at the point a variable was last bumped. With this score
definition, VMTF can be simulated with a binary heap. However, every bump
then needs a logarithmic number of steps to “bubble-up” a bumped variable
in the heap. Instead, a queue, implemented as doubly linked list which holds
all variables, only requires two simple constant time operations for bumping:
dequeue the variable and enqueue it back at the end of the list, which we consider
as head. Even storing the score seems to be redundant.

To find the next decision variable in the queue, we could start at the end
(head) of the queue and traverse it backwards until an unassigned variable is
found. Unfortunately, this algorithm has quadratic accumulated complexity. For
example, consider an instance with 10000 variables and a single clause containing
all variables in default phase. However, we can employ the same2 optimization as
used in Chaff (see Sect. 2) and remember the variable up to which the last search
proceeded until finding an unassigned variable. Since the solver will restart the
next search at this variable, we call this reference next-search.

During backtracking, variables are unassigned and (as in Chaff) next-search
potentially has to be updated to such an unassigned variable if it sits further
down the queue closer to head than the next-search variable. In order to achieve
this, we could use the scores of the variables for comparing queue position.
However, in VMTF, variables bumped at the same conflict all get the same score,
and thus simply using the score leads to violation of the following important
invariant: variables right of next-search (closer to head) are assigned.

To fix this problem, we globally count enqueue operations to the queue with
an enqueue-counter and remember with each variable the value of the enqueue-
counter at the point the variable was enqueued as enqueue-time. Thus, the
enqueue-time precisely captures the order of the elements in the queue and can
be used to precisely compare the relative positions of variables in the queue.
In the actual implementation, we use a 32-bit integer for the enqueue-counter,

2 But in reverse order, e.g., while we prefer the variable with largest score at the end
of the queue, Chaff had the variable with largest score at the first array position.



412 A. Biere and A. Fröhlich

which occasionally, e.g., after billion enqueue operations, requires to reassign
enqueue-times to all queue elements in a linear scan of the queue. Note that, in
a dedicated queue implementation for VMTF (like queue in our experiments),
the scores become redundant again, after adding enqueue-times.

3.2 Generic Queue for all Decision Heuristics

For other schemes, it is tempting to also just use a queue implemented as doubly
linked list as for VMTF, maintaining both scores and enqueue-times. Every
operation remains constant time except for bumping. We have to ensure that
the queue is sorted w.r.t. score. However, only for VMTF, bumped variables are
guaranteed to be enqueued at the end (head) of the queue, i.e., in constant time.
For other scoring schemes, a linear search is required to find the right position,
which risks an accumulated quadratic bumping effort. To reduce enqueue time,
we propose three optimizations and two modifications to the bumping order.

The first optimization is inspired by bucket sort and already gives accept-
able bumping times for EVSIDS. It is motivated by the following observation. For
EVSIDS, rescoring to avoid floating-point overflow of scores and score increment
occurs quite frequently, e.g., roughly every 2000 conflicts, as Tab. 2 suggests.
Thus, the exponents of variable scores represented as floating-point numbers
will tend to span the whole range of possible values3. So instead of a single
queue, we keep a stack of queues, indexed by the exponent of the scores of vari-
ables. Variables belong to the queue of the floating-point exponent of their score.
As the motivation on rescoring shows, this stack will soon grow to its maximum
size for EVSIDS, but for other scoring schemes (particularly for VMTF or INC)
it will only have very few elements or even just one.

Note that, since exponents can be negative, the actual index to access the stack
is obtained after adding the negation of the minimum negative exponent. Fur-
thermore, Lingeling uses its own implementation of floating-points, in order to
make execution of Lingeling deterministic across different hardware, compilers,
and compiler flags. These software floats have a 32 bit exponent, but we restrict
exponents to 10 bits including a sign bit, by proper rescoring of large scores and
truncation of small scores. MiniSAT/Glucose use 10100 as an upper score limit,
which is only a slightly smaller maximum limit than ours 2512 ≈ 10154, but then
does not use any truncation for small scores, which means that the minimum score
exponent in MiniSAT is (roughly) 2−10. So Lingeling uses 9 bits for positive scores
and 9 bits for negative scores, while MiniSAT uses slightly less than 9 bits for pos-
itives scores and (almost) full 10 bits for negative scores.

When searching for decisions as well as during backtracking, more specifically
during unassigning variables, we additionally have to maintain the highest expo-
nent of an unassigned variable. This follows the same idea as for next-search in
a single queue and only adds constant time effort for all considered operations.

During conflict analysis, variables participating in resolutions to derive a
learned clause are collected on a seen-variables stack, before they are bumped

3 Almost 2048 values for an 11-bit exponent in IEEE representation of 64 bit doubles.
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(or discarded if on-the-fly subsumption succeeds). The analysis traverses the
trail of assigned variables in reverse order. Thus, there is a similarity between
the order of variables on the seen-variables stack and the reverse order of assign-
ments. However, this is not guaranteed, particularly for variables with smaller
decision-level. The order of bumping these variables then follows this order too.

At a conflict, it can happen that thousands of variables with different score
are bumped and end up in almost random order w.r.t score order on the seen-
variables stack (or worse, in reverse order) before they are bumped. For many of
these variables, even for EVSIDS, the new updated score might end up having the
same exponent and all those variables have to be enqueued to the same queue.
However, since their scores still differ, enqueueing them degrades to insertion-
sort. There are instances where bumping leads to a time-out due to this effect.

A first modification to the order in which variables are bumped prevents
this problem. Before actually first dequeuing a bumped variable, then updating its
score, and finally enqueueing it back, we sort the seen-variables stack w.r.t. increas-
ing score. However, a similar problem occurs if all bumped variables have the same
score exponent, which also does not change during update. This is for instance
almost always the case for INC. The second modification prevents this corner
case by first dequeuing all variables on the seen-variables stack, and only then
updating their score and enqueueing them back in score order.

While EVSIDS exponents of variable scores are more or less spread out, other
schemes do not have this property, clearly not INC, but probably also SUM and
ACIDS to a smaller extent. For these schemes, score exponents might cluster
around some few values. Thus, our second optimization repeats the bucket
sort argument w.r.t. some fixed number of highest bits of the mantissa of a
variable score. For each queue (indexed by exponent), we add another cache-
table (indexed by highest bits of mantissa) of references pointing to the last
element in the queue with matching highest mantissa bits. This ensures that
these variables referenced in the cache-table have the maximum score among
variables in this queue with the same highest bits of the mantissa of their score.
In our implementation, we use the highest 8 bits and thus a cache-table of size
256. This cache is only used for fast enqueue and can be ignored otherwise.

If bumping individual variables is done in the order of their scores, as sug-
gested by the first modification above, there is a high chance that consecutively
bumped variables end up in the same queue one after each other or at least close
to each other. Thus, as a third optimization, we propose to additionally cache
the last-enqueued variable for each (sub) queue consisting of variables with the
same highest mantissa bits. In an enqueue operation, we first check whether the
corresponding cache-table entry of the second optimization points to a variable
with smaller (or equal) score. If this is the case, we enqueue right next to it. Oth-
erwise, we obtain the last-enqueued variable and start searching for the proper
enqueue position from there towards the end, e.g., towards larger scores. This
might fail if the score of the last-enqueued variable is larger or if the last-enqueue
reference is not valid, e.g., if the variable is already dequeued. We then search
backwards from the cache-table reference (towards smaller scores).
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Altogether, these optimizations and modifications seem to avoid the most
severe worst-case corner cases. We track this by profiling relative and total decide
and particularly bump time per instance. Total time summed for these over all
instances are shown in Tab. 2. Further distribution plots are included in the
additional material, mentioned in the results in Sect. 4.

3.3 Rescore, Reuse-Trail and Complexity

For the original array based VSIDS implementation, rescoring requires sorting
variables. For a binary heap implementation, one would expect that the heap
does not change, since rescoring does not change the relative order of variables.
However, due to finite precision of scores, even when using floating-points, rescor-
ing will make the score of some variables the same, even though they differed in
score before rescoring. Moreover, scores of many variables will become zero after
a few rescores (particularly in EVSIDS). In this situation, the binary heap will
only remain unchanged after rescoring if the actual scores are the only mean to
compare variables (and for instance the variable index is not used as a tie breaker
for comparing variables with the same score). The same argument applies to our
improved queue based implementation.

The reuse-trail optimization [28] is based on the following observation. After
a restart, it often happens that the same decisions are taken and the trail ends
up with the same assigned variables. Thus, the whole restart was useless. By
comparing scores of assigned previous decisions with the score of the next deci-
sion variable before restarting, this situation can be avoided. With some effort,
this technique can be lifted to our generic queue implementation. To simplify
the comparison in favor of a clean experiment, the results presented in Sect 4
are without reuse-trail (except for sc14ayv, the old 2014 version of Lingeling).

While we do not have a precise complexity analysis for this new data struc-
ture, our empirical results show that it performs almost as good as a dedicated
binary heap for EVSIDS (heap) and as a dedicated simplified queue for VMTF
(queue). This makes our empirical comparison of decision heuristics more accu-
rate since they all use the same implementation. This data structure should also
allow to experiment with new scoring schemes without the need to implement
dedicated data structures. It might also be possible to improve it further, while
our binary heap implementation is close to being as fast and compact as possible.

4 Results

The variants of Lingeling used in the experiments evolved from the SAT compe-
tition 2014 version ayv [32] (sc14ayv)4. This old 2014 version of Lingeling solved
the largest number of instances in the SAT+UNSAT application track. This suc-
cess of Lingeling can be contributed to the rather long time limit of 5000 seconds
as used in the competition. For shorter time limits, Glucose version 2.3 [33,34]

4 Acronyms in sans serif font denote SAT solver versions and configurations.
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(glucose-2.3) from 2013 and particularly its 2014 derivative SWDiA5BY A26 [35]
(swdia5bya26) show much better performance, despite lacking many effective pre-
processing and inprocessing techniques [36].

Our post competition analysis showed that this effect can be contributed to
two different aspects. On the one hand, the benchmark selection scheme used in
the SAT competition 2014 (and already in 2013) had a strong influence on those
results. Benchmarks were selected in such a way to level out performance of
solvers. The goal of the organizers was to make the competition as interesting as
possible, with the unfortunate effect, however, that unique solving capabilities,
such as inprocessing [36], are deemphasized. On the other hand, our analysis
showed that there is indeed an algorithmic feature implemented in all the Glucose
variants taking part in the competition, which on these competition benchmarks
is quite effective: the Glucose restart strategy [37].

This strategy uses the glucose level of learned clauses, which is the number of
different decision levels [33] in the learned clause. It compares current short term
average glucose level of learned clauses with a long term average. If short term
average is substantially larger than long term average (say 25%), a restart is
triggered, unless a restart happened very recently (less than 50 conflicts earlier).

To derive this conclusion, we implemented all techniques used in Glucose 2.3
and SWDiA5BY A26 previously not available in Lingeling, and compared their
effect on the considered SAT competition 2014 application track benchmarks.
Without being able to give more details, which is also not the focus of this
paper, implementing a variant of the Glucose dynamic restart scheme [37] had
the largest impact and allowed us to solve a comparable number of benchmarks
as the aforementioned Glucose variants even with much smaller time limits.

Beside incorporating effective techniques from Glucose and SWDiA5BY, the
base line version b7ztzu of Lingeling (evsids), as used in this evaluation, differs
from the 2014 version sc14ayv mainly in the implementation of the priority queue
used for selecting decision variables as detailed in Sect. 3. In other solvers, and
previously in Lingeling, the priority queue was implemented with a binary heap
data structure, as pioneered by MiniSAT [7]. This change was necessary to avoid
slowing down the decision selection procedure for certain decision heuristics,
particularly the variable move-to-front strategy (VMTF), which does not require
the overhead of a binary heap. It is also slightly faster than using a binary heap.

As Glucose (and thus SWDiA5BY) is based on MiniSAT [7] (minisat), we
also include in our comparison the latest version of MiniSAT from git-hub, which
essentially has not changed since 2011. For all these considered MiniSAT deriva-
tives, we use the default configuration with the internal MiniSAT version of
SatELite style preprocessing [38] enabled.

The experiments were performed on our benchmark cluster, consisting of
30 nodes with Intel Q9550 Core 2 Quad CPUs running at 2.83GHz and 8 GB
of main memory. Each job, e.g., pair of solver (configuration) and benchmark,
had exclusive access to one node and CPU, respectively. The time limit was set
to 1000 seconds, which is substantially smaller than the original competition
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Fig. 1. Lingeling with variable scoring schemes of Sect. 2 on SAT competition 2014
application track benchmarks using the generic priority queue implementation of
Sect. 3.

time-out of 5000 seconds (competition hardware was further roughly 1.2 times
faster). As memory limit, we used 7GB.

In this paper, we focus on the 300 instances of the SAT+UNSAT application
track of the SAT competition 2014, but exclude 25 instances, which were solved
by the new Lingeling base line version evsids, without producing any conflicts.
Among those excluded, there are 13 satisfiable “argumentation” instances [39]
submitted 2014, with name prefix “complete. . .”. These excluded 13 instances
have a simple solution, with all variables set to false. In contrast, if this is not
detected and a more sophisticated phase initialization heuristic like Jeroslow-
Wang [20] is triggered before switching to phase saving [22], they become very
hard. The old SAT competition 2014 version of Lingeling sc14ayv fails to solve
7 within 1000 seconds in our set-up.

The other excluded 12 instances are unsatisfiable combinational hardware
equivalence checking “miter” benchmarks [40] submitted 2013. They are solved
by our base line version evsids, and all other considered new variants of Lin-
geling, during the first preprocessing phase, without any search. Within 1000
seconds, the three MiniSAT/Glucose variants easily solve the 13 excluded sat-
isfiable “argumentation” instances, due to initializing the saved phase to false,
but need more effort than Lingeling to solve the unsatisfiable “miters”. Both
glucose-2.3 and swdia5bya26 fail on benchmark 6s151, and minisat even fails on
11 “miters” (but does solve 6s165-non). Note that, altogether, there were 30
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Fig. 2. Additional variants of Lingeling on SAT competition 2014 application track
benchmarks as well as other state-of-the-art SAT solvers for this set-up.

“miters” in the competition. Thus, 17 “miters” remained in our subset of 275
actually compared instances, as well as 7 out of the 20 original “argumentation”
benchmarks.

We describe additional specifics of the configurations used in our experiments
on top of what has been explained in detail in previous sections and further
summarize conclusions which can be drawn from the data provided in the tables
and cactus plots. All experimental data including source code is available at
http://fmv.jku.at/evalvsids/evalvsids.7z (27MB).

The main result of the paper is documented in Fig. 1. The cactus plot shows,
that EVSIDS, VMTF, as well as our new ACIDS scheme, perform equally well.
This is supported by the data in the upper part of Tab. 2, which corresponds
to the same experiment. In the last three rows, we see that our generic priority
queue is still somewhat optimized for EVSIDS and VMTF. For instance, ACIDS
needs more time during bumping, which applies even more to INC and SUM.

In Fig. 2 and the lower part of Tab. 2, we compare against two variants of
the new Lingeling, one using a dedicated optimized binary heap implementation
for EVSIDS on one side, and the other one using a dedicated optimized queue
implementation for VMTF. Both are slightly faster. Decision plus bumping time
decreases. Otherwise, they show very similar behavior. We also compare against
the state-of-the-art on these benchmarks, which for this small time-out of 1000
seconds, consists of SWDiA5BY A26 and also to some extent its “parent” Glucose

http://fmv.jku.at/evalvsids/evalvsids.7z
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Table 2. Additional statistics for runs in Fig. 1 (top) and Fig. 2 (bottom). Columns
correspond to the various considered configurations as discussed in the main text. Each
of the two tables consists of three parts. In the first three rows, below the configuration
names, the number of solved instances (out of 275) are listed, then split into unsat-
isfiable and satisfiable instances. The next 5 rows sum up statistics over all 275 runs.
First, there is the overall number of reductions (learned clause deletions), number of
restarts, number of times variables were rescored, followed by the number of conflicts
and decisions. In the last 5 rows, the table shows the total time spent in pre- and inpro-
cessing (simp), the CDCL loop (search), for bumping, searching for the next decision
(decide), and rescoring (again over all 275 benchmarks). To give a concrete example,
consider the “evsids” column. For all the considered 275 benchmarks, this configuration
restarted 5.8 million times and used 3.7 billion decisions. In total, it used roughly 143.1
thousand seconds in search, among which it spent 2.3 thousand seconds selecting the
next decision variable, and 7.8 thousand seconds for bumping. Altogether, it solved
157 instances (out of 275), from which 87 were unsatisfiable and 70 satisfiable.

evsids vmtf acids vsids sum inc static

solved 157 152 151 114 58 47 26
unsatisfiable 87 85 82 51 22 17 9

satisfiable 70 67 69 63 36 30 17

reductions (1e3 #) 8 8 8 10 8 8 8
restarts (1e3 #) 5826 6000 5678 4491 2612 2387 5593
rescored (1e3 #) 253 0 0 2338 0 0 0

conflicts (1e6 #) 488 476 444 604 527 540 463
decisions (1e6 #) 3691 3581 3889 4263 2603 2567 21503

simp (1e3 sec) 29.7 30.0 29.4 32.6 34.5 34.1 31.2
search (1e3 sec) 143.1 146.4 147.9 174.9 203.9 209.7 226.7

bump (1e3 sec) 7.8 6.2 16.0 16.9 34.6 37.2 0.0
decide (1e3 sec) 2.3 2.5 2.6 2.8 1.7 1.7 12.9
rescore (1e3 sec) 0.2 0.0 0.0 2.6 0.0 0.0 0.0

heap queue

swd
ia5by
a26

glu
cose
2.3

sc14
ayv

mini
sat

solved 161 156 153 144 119 101
unsatisfiable 90 86 81 79 60 41

satisfiable 71 70 72 65 59 60

reductions (1e3 #) 8 8 59 10 30 —
restarts (1e3 #) 5870 6003 3210 3846 7948 1782
rescored (1e3 #) 241 0 — — 393 —

conflicts (1e6 #) 463 474 650 728 760 1090
decisions (1e6 #) 3874 3566 5868 6818 5002 8388

simp (1e3 sec) 29.2 29.7 0.8 0.8 32.4 2.2
search (1e3 sec) 141.8 144.6 165.4 172.5 164.4 206.5

bump (1e3 sec) 3.8 4.9 — — 3.3 —
decide (1e3 sec) 4.9 2.5 — — 6.4 —
rescore (1e3 sec) 0.1 0.0 — — 0.0 —
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2.3. We also include MiniSAT 2.2, e.g., the “grandparent” of SWDiA5BY A26, and
version ayv of Lingeling of the SAT Competition 2004 (sc14ayv).

5 Conclusion

In this paper, we evaluated several important CDCL decision schemes, including
VSIDS [5] and the related EVSIDS [6] heuristic, which are considered to be one
of the major reasons for good performance of modern SAT solvers on application
benchmarks. While some reasons for the efficiency of VSIDS have been conjec-
tured before [6], there is still a lot of ongoing research on finding good expla-
nations for its performance, particularly related to problem structure [14–16].
Understanding VSIDS and related decision heuristics in a better way would
help us to further improve performance of SAT solvers from a practical point of
view, as well as open up possibilities for formal analysis in a theoretical sense.

To take a major step into that direction, we gave a detailed evaluation, com-
paring VSIDS and EVSIDS to several other heuristics, including static decision
heuristics, a non-smoothing version of VSIDS and approximations of smoothing
versions. We also proposed ACIDS, a new decision heuristic with similar proper-
ties as VSIDS, and revisited the VMTF scheme [8], which is easy to implement
and also offers an alternative perspective on the meaning of the decision order of
variables. We further provided a formalization of the score update as a function
for each heuristic to capture its effect in a clear way.

In our experiments, it turned out that EVSIDS, VMTF, and ACIDS perform
very similarly. Since efficient implementation is crucial and non-trivial for all
those heuristics, we pointed out differences in underlying data structures and
discussed important aspects of implementation in detail. We further provided
detailed results, allowing us to analyze the effect variations in heuristics and
implementations cause on the time spent in the individual steps of a search.

In addition, our results also shed new light on the performance of decision
heuristics from an algorithmic point of view, as well as on many beliefs about
decision heuristics that have been held previously. For instance, EVSIDS, VMTF,
and ACIDS have in common that they put a very strong focus on variables
that participated in the most recent conflicts. This is in contrast to heuristics,
such as INC and SUM, where the occurrence in earlier conflicts also contributes
significantly to the score of a decision variable throughout the whole progress of
the search. While VSIDS, EVSIDS, and ACIDS implement explicit smoothing
schemes to realize this kind of focus, the good performance of VMTF in our
experiments shows that this is not necessarily required when directly using a
more aggressive bumping strategy for recent conflict variables.

For future work, it will be interesting to analyze the contribution of the indi-
vidual components in detail. Having provided a formal way of describing general
scoring schemes and given several implementations of flexible data structures
in a simpler way, the next steps could be motivated by theory as well as prac-
tice. For instance, combining aggressive bumping strategies in combination with
particularly adapted smoothing schemes could yield even more efficient deci-
sion heuristics. Similarly, more refined functions for updating the variable scores
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could be beneficial as well. On the other hand, simple but yet efficient heuris-
tics, such as VMTF, might allow us to analyze CDCL more formally, e.g., in the
context of proof complexity.
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Abstract. Knowledge compilation and approximation finds a wide
range of practical applications. One relevant task in this area is to com-
pute the Horn least upper bound (Horn LUB) of a propositional the-
ory F. The Horn LUB is the strongest Horn theory entailed by F. This
paper studies this problem and proposes two new algorithms that rely
on making successive calls to a SAT solver. The algorithms are analyzed
theoretically and evaluated empirically. The results show that the pro-
posed methods are complementary and enable computing Horn LUBs
for instances with a non-negligible number of variables.

1 Introduction

Propositional logic constitutes a powerful paradigm for knowledge representa-
tion and reasoning. Its expressiveness suffices in a wealth of practical settings,
and state-of-the-art SAT CDCL solvers usually allow for efficient inference in
practice. Unfortunately, answering a query against a propositional knowledge
base (KB) is co-NP-complete, so, in general there is no guarantee that a solver
will be efficient. This is a clear difficulty when a KB is expected to be queried
many times. In this context, knowledge compilation and approximation rep-
resents an effective alternative, with related work since the early 90s [8,9,11–
15,17–19,33,34,40,47–50]. It relies on the key idea of compiling the KB into a
tractable target theory in an offline step, and then using the compiled theory
online in order to save time.

This paper investigates the computation of Horn least upper bounds (Horn
LUBs), introduced in Selman and Kautz’s seminal work [48]. Given a proposi-
tional formula F , the Horn LUB, FLUB, is the strongest Horn theory entailed
by F . So, given the query F �? c, one can check in polynomial time whether
FLUB � c, knowing that, in case it is affirmative, F � c holds as well. In the
same paper, the authors introduced the related concept of Horn greatest lower
bounds (Horn GLBs), which are the weakest Horn theories entailing F . While
the Boolean function represented by the Horn LUB is unique, there can be an
exponential number of Horn GLBs. Horn GLBs have been studied extensively
(e.g. [8,11,14,48,49]). This paper focuses solely on Horn LUBs.

A number of methods have been proposed for computing Horn LUBs. Most
of them rely on resolution and restricted forms of resolution. Relevant exam-
ples include the works of Selman and Kautz [26,48,49], del Val [18,19] and Lan-
glois, Sloan and Turán [28,29]. A different kind of algorithms, using Reduced
c© Springer International Publishing Switzerland 2015
M. Heule and S. Weaver (Eds.): SAT 2015, LNCS 9340, pp. 423–433, 2015.
DOI: 10.1007/978-3-319-24318-4 30
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Ordered Binary Decision Diagrams (ROBDDs), have been proposed in [45] for
restricted knowledge compilation to different target theories. These algorithms
were used in [46] to compare the quality of LUBs considering Horn, contra-dual
Horn, Krom and affine target theories. Interestingly, a combination of Horn and
dual-Horn LUBs is experimentally shown to represent the most accurate upper-
approximations.

Alternatively, this paper studies the use of SAT solvers to compute Horn
LUBs. SAT-based approaches constitute the current state of the art for many
different function problems on Boolean formulas, such as the computation of min-
imal unsatisfiable subsets [1,3,5,27,32,38], minimal equivalent subformulas [4],
minimal correction subsets [2,21,30,36], maximum satisfiability [22,35,39], max-
imum autarkies [31] or backbones [24] to mention a few.

This paper proposes two novel algorithms for computing Horn LUBs, which
rely on making successive calls to a SAT oracle. These algorithms are analyzed
theoretically and evaluated in an experimental study, which shows that they are
complementary and are able to solve instances with a non-negligible number of
variables.

The paper is organized as follows: Section 2 introduces basic definitions and
notation. The proposed SAT-based algorithms for computing Horn LUBs are
presented in Section 3, as well as a comparison of both approaches. Section 4
reports the results from an empirical evaluation. Finally, the paper concludes in
Section 5.

2 Preliminaries

We assume familiarity with propositional logic [7] and consider Boolean formulas
in Conjunctive Normal Form (CNF). A CNF formula F is defined over a set
of Boolean variables var(F ) = X = {x1, ..., xn} as a conjunction of clauses
(c1 ∧ ... ∧ cm). A clause c is a disjunction of literals (l1 ∨ ... ∨ lk) and a literal l
is either a variable x or its negation ¬x. Formulas (clauses) can be represented
as sets of clauses (literals).

A truth assignment, or interpretation, is a mapping µ : X → {0, 1}. If all
the variables in X are assigned a truth value, µ is referred to as a complete
assignment. Interpretations can be also seen as conjunctions or sets of literals.
Truth valuations are lifted to clauses and formulas as follows: µ satisfies a clause
c if it contains at least one of its literals, whereas µ falsifies c if it contains the
complements of all its literals. Given a formula F , µ satisfies F (written µ�F )
if it satisfies all its clauses, being µ referred to as a model of F . Models such
that a set-wise minimal set of the variables are assigned to 1 are referred to as
minimal models [6].

Unless otherwise indicated, we consider that models are complete assign-
ments. Given a model µ, its negation ¬µ is a clause including the literals in
µ with complementary polarity. The same applies the other way round. For a
model µ, µ+ (resp. µ−) denotes the set of positive (resp. negative) literals of µ.
The same notation will be used for clauses (c+, c−). The set of models of F is
denoted as M(F ).



SAT-Based Horn Least Upper Bounds 425

Given formulas F and G, F entails G (written F �G) iff M(F ) ⊆ M(G).
They are equivalent (written F ≡ G) iff F �G and G�F .

Given F an implicant I is a conjunction/set of literals such that I �F . An
implicate c is a clause such that F � c. Prime implicants/implicates are such
that they are irreducible w.r.t set-inclusion [42]. Contradictory implicants (e.g.
x ∧ ¬x) and tautologous implicates (e.g. x ∨ ¬x) are excluded without loss of
generality.

A formula F is satisfiable (F � ⊥) if there exists a model for it. Otherwise it is
unsatisfiable (F � ⊥). SAT is the decision problem of determining the satisfiability
of a propositional formula. This problem is in general NP-complete [16].

Horn formulas constitute an important subclass of propositional logic. These
are made of Horn clauses, i.e. clauses having at most one positive literal. Sat-
isfiability of Horn formulas is decidable in linear time [20,23,37]. This paper
focuses on computing the Horn least upper bound (Horn LUB) of a satisfiable
propositional formula.

Definition 1. (Horn LUB): Given a satisfiable formula F , a Horn least upper
bound (Horn LUB) is a Horn formula H such that F �H and for all Horn
formulas H ′ with F �H ′, H �H ′.

There could be many Horn formulas equivalent to the Horn LUB. All of them
represent the same Boolean function, denoted FLUB, which is unique. In the
worst-case, the smallest clausal representation of the Horn LUB is exponential
on the size of F [49]. It is well-known that the set of all Horn prime implicates
of F is equivalent to FLUB.

Definition 2. (HPI): A clause c is a Horn prime implicate (HPI) of a formula
F iff c is Horn, F � c and for all c′ � c, F � c′.

3 SAT-Based Algorithms

This section presents two novel algorithms for computing Horn LUBs. Both are
based on making successive calls to a SAT oracle. The first one, HFLUBBER,
relies on iteratively refining a upper approximation of FLUB by finding new
irredundant HPIs. The second one, IP-HORN, is built on a novel state-of-the-art
SAT-based prime implicate compilation algorithm, which is adapted to produce
HPIs. A comparison of both approaches is provided at the end of the section.

3.1 HFLUBBER: An Iterative Refinement Approach

The first approach computes a Horn LUB by iteratively discovering new HPIs
that are added to a working upper-approximation FHPIC (initially empty), which
will eventually be equivalent to FLUB and potentially much smaller than the set
of all HPIs.

HFLUBBER exploits the well-known fact that any prime implicate of a
Boolean formula F corresponds to a prime implicant of ¬F . Given an arbi-
trary upper-approximation FHPIC of FLUB, it holds that F �FLUB �FHPIC, i.e.,



426 C. Menćıa et al.

Algorithm 1. HFLUBBER
input : F a Boolean formula
output: FHPIC a Horn formula s.t. FHPIC ≡ FLUB

1 (FHPIC, B) ← (∅, ∅)
2 (st, µ) ← SAT(¬F ∧ FHPIC ∧ B)
3 while st do
4 cHPI ← FindHornPrimeImplicate(F , ¬µ)
5 if cHPI �= ∅ then FHPIC ← FHPIC ∪ {cHPI}
6 else B ← B ∪ {¬µ}
7 (st, µ) ← SAT(¬F ∧ FHPIC ∧ B)

8 return FHPIC

M(F ) ⊆ M(FLUB) ⊆ M(FHPIC). HFLUBBER tries to refine FHPIC by remov-
ing some models in M(FHPIC) (not contained in M(F )) by adding a new HPI
of F to FHPIC.

Its main organization is shown in Algorithm 1. At each step, it computes a
model µ ∈ M(FHPIC)\M(F ) and checks whether there exists an HPI cHPI of F
such that cHPI ⊆ ¬µ. To this aim, it calls a SAT solver on ¬F ∧FHPIC∧B, where
B is a formula blocking previously found models that did not lead to finding a
new HPI. Given a model µ� ¬F ∧ FHPIC ∧ B, checking the existence of an HPI
cHPI ⊆ ¬µ can be done within a linear number of calls to the SAT solver: we
only need to check maximal subsets ¬µH ⊆ ¬µ containing at most one positive
literal. There are at most |(¬µ)+|+1 options. This is illustrated in Algorithm 2.
If there exists such ¬µH, it is reduced to an HPI cHPI ⊆ ¬µH of F and cHPI is
added to FHPIC. Otherwise, ¬µ is added to B, preventing µ from being computed
again. Reducing an implicate to a prime implicate is closely related to the task
of extracting a minimal unsatisfiable subset [32], so several algorithms can be
used [5,10,25,32]. We opted to use a deletion-based approach [5], which has a
query complexity bounded on the size of the implicate to be minimized. This
algorithm is not shown in detail due to lack of space. HFLUBBER terminates
when ¬F ∧ FHPIC ∧ B � ⊥, proving that FHPIC ≡ FLUB.

HFLUBBER exhibits an interesting property: every new HPI computed is
irredundant, i.e. it is not entailed by FHPIC. This is based on the following result:

Proposition 1. Let F be a formula and an implicant µ�F . Then ∀µ′ ⊆ µ,
F � ¬µ′.

Proof. Suppose F � ¬µ′. Then F ∧ µ′ � ⊥, which entails F ∧ µ� ⊥. A contradic-
tion, since µ is an implicant of F .

Corollary 1. HFLUBBER never adds new redundant Horn prime implicates to
FHPIC.

Proof. Every new discovered HPI cHPI is a subset of ¬µ, with µ�FHPIC. So, by
Proposition 1 FHPIC � cHPI.

It could be the case that after adding a new HPI, some other HPIs of FHPIC

became redundant, so it is not guaranteed that the final FHPIC will be irredun-
dant. Anyway, this property is interesting, as every time FHPIC is added a new
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Algorithm 2. FindHornPrimeImplicate
input : F a Boolean formula, c clause
output: cHPI ⊆ c an HPI of F , if it exists. Otherwise ∅

1 (st, µ) ← SAT(F ∧ ¬(c−))
2 if ¬st then
3 cHPI ← ReduceImplicate(F, c−)
4 return cHPI

5 for l ∈ c+ do
6 (st, µ) ← SAT(F ∧ ¬(l ∪ c−))
7 if ¬st then
8 cHPI ← ReduceImplicate(F, l ∪ c−)
9 return cHPI

10 return ∅

clause, the approximation gets tighter. Correctness of the algorithm follows from
the next result.

Proposition 2. Let cH be an HPI of F s.t. FHPIC � cH. Let B be a set of clauses
representing the complement of complete models µNHi

� ¬F s.t. there exists no
¬µH ⊆ ¬µNHi with ¬µH an HPI of F . There exists a model µ� ¬F ∧FHPIC ∧B
s.t. cH ⊆ ¬µ.

Proof. First, we prove that FHPIC ∧ B � cH. Recall that FHPIC � cH. Suppose
FHPIC∧B � cH. Then FHPIC∧B∧¬cH � ⊥, and so for all models µ′ s.t. µ′ �FHPIC∧
¬cH, there exists ¬µNHi

∈ B s.t. µ′ falsifies ¬µNHi
. Equivalently, for all models

µ′ s.t. µ′ �FHPIC ∧ ¬cH, there exists ¬µNHi ∈ B such that µ′ ≡ µNHi , and so
¬cH ⊆ µNHi

. Hence cH ⊆ ¬µNHi
. A contradiction.

Now, let µ be a model s.t. µ�FHPIC ∧¬cH ∧B. Note ¬cH ⊆ µ and, equivalently,
cH ⊆ ¬µ. Because of monotonicity of logical entailment, we know µ�FHPIC

, µ� ¬cH and µ�B. Also, as cH is a prime implicate of F, ¬cH � ¬F . Hence,
µ� ¬cH � ¬F . So, µ� ¬F ∧ FHPIC ∧ B and cH ⊆ ¬µ.

Corollary 2. HFLUBBER is correct.

So, HFLUBBER is guaranteed to compute a Horn formula equivalent to
FLUB. It is easy to see that before terminating, it needs to enumerate all the
models in M(FLUB)\M(F ), so it is expected to be more efficient when the Horn
LUB is tight.

3.2 IP-HORN: Computing all Horn Prime Implicates

The second approach is based on the novel state-of-the-art primer-b algorithm [41]
for compiling a formula F into the set of its prime implicates. This method implic-
itly exploits the minimal hitting set duality relationship between the set of prime
implicants andprime implicates ofF [44]. At each iteration it either returns a prime



428 C. Menćıa et al.

implicate or a prime implicant of F . Upon termination, the set of all prime impli-
cants and a cover of the prime implicates of F are guaranteed to have been com-
puted.

IP-HORN (shown in Algorithm 3) adapts primer-b in order to perform knowl-
edge compilation restricted to the target theories of Horn LUBs. To this aim, it
instruments a dual version of primer-b and adds a special AtMostOneNeg con-
straint. It computes the set of all HPIs. It follows a two-solver approach where
an auxiliary formula Q is used to enumerate candidate sets of literals and the
original formula F is used to test whether the computed candidates constitute
implicants or implicates of F . Q is built using the so-called dual-rail encoding,
necessary to compute the complete set of HPIs. Thus var(Q) 
= var(F ) (see [41]
for further details). Iteratively, at each step, IP-HORN computes a minimal
model µQ of Q (line 4), which encodes a candidate set of literals to test. The
computation of µQ is done following an approach based on SAT with prefer-
ences [43]. Since dual-rail encoding is used for the formula Q, a mapping from
var(Q) to var(F ) is required (line 6) giving the candidate set CF to test on F .
The AtMostOneNeg constraint added to Q (line 2) results in CF having at most
one negative literal. By its construction, it is guaranteed that if CF falsifies F ,
then its negation is an HPI of F (note that its negation has at most one positive
literal). Otherwise, the candidate is an implicant, which is reduced to a prime
implicant. Note that in the case of CNF formulas, computing a prime implicant
from an implicant can be done in polynomial time. In both cases, either the
prime implicant or the HPI are blocked (line 15) to avoid future repetitions.
A proof that no HPI is repeated is a simple extension of the proofs provided
in [41]. We refer to that work for further details.

While IP-HORN does not suffer from the limitation of HFLUBBER com-
mented above, it needs to enumerate all the HPIs entailed by F and some prime
implicants. If this set is large it would affect its performance, and the result-
ing Horn formula could be larger than necessary. However the resulting formula
could be reduced by computing a minimal equivalent subformula [4].

3.3 Discussion

Both HFLUBBER and IP-HORN aim to exploit the capabilities of modern SAT
solvers in the task of computing Horn LUBs. The two approaches are essentially
different from each other, exhibiting different strengths and limitations, and so
are expected to be well-suited for different kinds of instances.

HFLUBBER computes potentially much smaller Horn formulas than IP-
HORN, but it needs to enumerate all the models of FLUB ∧¬F before terminating.
So, it is expected to perform well on instances where the Horn LUB is tight.

IP-HORN does not have the limitation of HFLUBBER, but computes the
whole set of HPIs, resulting in larger formulas and running times if this set is
very large. So, it is expected to work well when the set of HPIs is of reduced
size.
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Algorithm 3. IP-HORN
input : Formula F
output: FHPIC a Horn formula s.t. FHPIC ≡ FLUB

1 FHPIC ← ∅
2 Q ← {(¬xv ∨ ¬x¬v) | v ∈ var(F )}∪ AtMostOneNeg
3 while true do
4 (st, µQ) ← MinimalModel(Q)
5 if not st then return

6 CF ← Map(µQ)

7 (st, µF ) ← SAT(CF ∧ F )

8 if st then # µF �F ; i.e. µF is an implicant
9 In ← ReduceImplicant(µF , F )

10 b ← {xl | l ∈ In}
11 else # F � ¬CF ; i.e. ¬CF is an implicate
12 cHPI ← ¬CF

13 FHPIC ← FHPIC ∪ {cHPI}
14 b ← {¬xl | l ∈ cHPI}
15 Q ← Q ∪ {b}
16 return FHPIC

An important remark is that both algorithms generate HPIs from the begin-
ning, so this upper-approximation of FLUB could be used to try to answer deduc-
tion queries.

4 Results

We evaluate the proposed algorithms1 over a set of well-known structured sat-
isfiable CNF formulas, taken from [24], with up to 2000 variables. Most of them
have (much) more variables than the instances considered in previous works2.
In all, there are 131 instances. All the experiments were run on a Linux cluster
(2 GHz), setting a limit of 3600s and 4 GB of memory. The algorithms interface
the solver Minisat.

Figure 1 shows the running times from HFLUBBER and IP-HORN. Figure
1a includes VBS (for Virtual Best Solver), which emulates a portfolio running
both algorithms in parallel. It shows that IP-HORN solves some more instances
than HFLUBBER (66 vs 58) by the time limit, while VBS solves more instances
(70) taking less time. Nevertheless, in many cases, the results are favorable to

1 Available at http://logos.ucd.ie/web/doku.php?id=hornapp.
2 Previous works [26,28,29,46,48,49] mostly considered experiments with random 3-

CNF formulas with a few tens of variables. In [26,49], the authors consider random
instances with up to 200 variables, and also a structured instance with 576 variables,
but their experiments are restricted to computing HPIs of size 1. In addition, [28,29]
reported that previous methods (e.g. [26,48,49]) cannot scale to more than 75 vari-
ables. Finally, in [46] the authors also considered some structured instances with up
to 326 variables.

http://logos.ucd.ie/web/doku.php?id=hornapp
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Fig. 1. Plots with results from HFLUBBER and IP-HORN.

HFLUBBER, as shown in Figure 1b. This scatter plot, reveals that the two
algorithms perform indeed very differently from each other, since for several
instances there are very significant differences in favor of one of the methods.
This confirms that both algorithms are complementary.

Table 1 reports detailed results for some representative problem instances.
For each instance, it shows the number of variables (|X|) and clauses (|F |), as
well as the size of the computed Horn formulas by the time limit (#HPIs) and
the time taken in seconds (T) for both algorithms. For HFLUBBER it also shows
the number of clauses blocking models in B. The instances with 3600s indicate
that the method timed out.

The first rows show instances where HFLUBBER performs better than IP-
HORN. In these instances the difference in the number of HPIs of both approx-
imations is remarkable. In some cases, IP-HORN computes orders of magnitude
more HPIs than HFLUBBER, resulting in the former being unable to solve some
instances. Also, for these instances, HFLUBBER shows that the Horn LUB is
quite accurate, as |B| is not very large. The second part of the table show
instances where IP-HORN performs better than HFLUBBER. These instances
have a small number of HPIs, so IP-HORN is able to compute the Horn LUB
quickly. On the other hand, HFLUBBER is unable to terminate by the time
limit due to its need of enumerating a large number of models.

In all, both methods are able to compute Horn LUBs for instances with a
large number of variables, compared to what has been considered in previous
works.

5 Conclusions

Computing Horn least upper bounds represents a well-known problem in knowl-
edge compilation and approximation, which has been studied since the early 90s.
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Table 1. Results from HFLUBBER and IP-HORN on some representative problem
instances.

IP-HORN HFLUBBER

Instance |X| |F | #HPIs T(s) #HPIs |B| T(s)

elevator1-b6-s 1639 4437 965070 3600.0 3059 39870 1721.3
elevator2-b7-p 1911 5212 8921 258.4 2061 11 21.4

pdtvisbpb0 839 2480 2445680 3600.0 3339 4083 161.8
parity12-47 525 1539 685798 3063.7 1475 11 5.3
parity16-4 920 2712 541744 3600.0 3621 4 22.9
parity16-6 899 2649 715290 3600.0 2616 4 23.8

pdtvisbpb0 839 2480 2445680 3600.0 3339 4083 161.8
3blocks 283 9690 70701 353.4 1544 163901 805.9

dme6p1neg 1139 2651 1234 151.1 728 203408 3600.0
dme6ptimoneg 1067 2483 1165 125.9 960 230843 3600.0

dme3p1neg 622 1445 591 4.6 570 576686 3600.0
brpptimoneg 765 1922 728 934,4 588 368860 3600.0
srg5ptimoneg 267 626 986 0.7 322 996024 3600.0

This paper studies the use of SAT oracles for computing Horn LUBs and proposes
two new algorithms, HFLUBBER and IP-HORN, that rely on making succes-
sive calls to a CDCL solver. The two approaches are analyzed theoretically and
evaluated empirically. The results show that both algorithms are complemen-
tary, and enable the computation Horn LUBs for instances with a non-negligible
number of variables.

Future research focuses on the development of new algorithms and techniques
that mitigate the limitations of HFLUBBER and IP-HORN. Also, it would be
interesting to adapt these algorithms to different target theories (e.g. k-Horn
LUBs).
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