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Abstract. UnifyCore is a concept of SDN centric, OpenFlow based and access
agnostic network architecture, which changes the way networks are being built
today. It is designed in a way, so present access technologies can be easily
integrated in it. It provides set of architectural components and rules, which help
to easily decouple components of the access technology and put their func-
tionalities into UnifyCore building blocks. This simplifies the overall network
architecture and allows the use of common transport core for all access tech-
nologies. First proof of concept built on UnifyCore is the GPRS network, which
is a challenge for SDN, since it does not have split user and control plane
transport. In this paper we introduce and explain features that allow fully SDN
UnifyCore to be integrated with existing legacy network infrastructure
(switches/routers).
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1 Introduction

One of the drivers behind software defined networking (SDN) trend was the inflex-
ibility of existing networking approaches and industry that limited the space for
innovation. On the other hand, researchers also struggled with black box networking
approaches and architectures, which limited the experimental capabilities of exist-
ing network equipment. Since then, SDN spread through wired networks and it is
making its way, together with network functions virtualization (NFV), to the network
operator world, where most of the industry struggles with network equipment, which is
often hard to integrate with existing infrastructure that does not provide open interfaces,
so complicated work arounds need to be done.

In UnifyCore architecture we are trying to address the heterogeneity and inflex-
ibility of the network infrastructure, which causes complicated network management,
control, new service deployment and orchestration. This is the case mainly with large
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network operators, who provide services over multiple technologies such as multiple
wireless technologies (GPRS/UMTS/LTE), xDSL and optical at the same time. Cus-
tomers naturally expect same look and feel of the service regardless of the technology
being used. With standard networking approaches, this hard and often expensive to
reach.

Our UnifyCore approach offers joint control by using open APIs on the central
SDN controller and access network control elements (access managers). By using this
approach, network operators can easily orchestrate and have better control of the
network.

The paper is structured as follows. First two sections give an overview of the
foundation of mobile networks and SDN. Next, state of the art in the area of mobile
software defined networks is briefly introduced. Rest of the paper focuses on
the UnifyCore architecture and its features. Last section concludes the paper.

2 Mobile Networks Basics

As general packet radio service (GPRS) was the first network technology we integrated
into UnifyCore, we will first introduce some essential concepts of this network. In this
paper we focus only on the packet switched part of the network, therefore we won’t
explain procedures and nodes of the circuit switched part of the network.

GPRS network consists of the radio access network (RAN) and the core network
(CN). In RAN, base transceiver station (BTS) and base station controller (BSC) are
located. BTS is a device which handles the radio interface. It is responsible for
modulation/demodulation, error checking and correction and communicates with BSC
on one side and mobile station (MS) on the other side. In BSC, all logic of the radio
access network is located. Multiple BTSs are controller by a single BSC. BSC connects
the RAN to the core network, more precisely to the serving GPRS support node
(SGSN). This node is responsible for mobility management, session management,
authentication and ciphering in the GPRS network. Further to the core network, SGSN
connects to the gateway GPRS support node (GGSN). As the name implies, this node
is a gateway from the mobile network to the external networks such as Internet or
corporate intranet/VPN.

A basic call flow in mobile network includes two main procedures. Fist attach
procedure is executed. During this procedure the mobile station is authenticated and
gets connected to the network. At this point, mobile station does not have any IP
connectivity. Circuit switched calls and SMSs are available (attach both to circuit
switched and packet switched part of the network is assumed). In order to communicate
for example with the Internet, second procedure called PDP context activation has to be
executed. In this procedure, the mobile station specifies the service, which is requested
by filling up the access point name information element (APN). If the procedure
succeeds, the network assigns an IP address to the mobile station and transfer of the
data across the network is possible.

Further details about GPRS and other mobile networks such as universal mobile
telecommunications system (UMTS) and long term evolution (LTE) technologies can
be found in respective 3GPP standards or books [1–3].
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3 Software Defined Networking

As mentioned before, the key driver behind SDN was situation in network industry,
that mainly used black boxes from different vendors, which provided only CLI or
SNMP for management and integration, and there was no standard APIs providing full
control over the network appliance. This situation made integration of network infra-
structure of different vendors very difficult and expensive. Such integration compli-
cated network automation and integration processes. It also led to a vendor lock-ins in
some cases. From the research point of view, black boxes provide little to no space for
experiments, so SDN was introduce to challenge these limitations.

SDN brings separation of user and control plane of the network appliance. By
doing this, each plane can evolve separately and can be optimized for its needs.
Moreover as these two functions formerly residing in the same box are split by SDN,
need for a communication protocol or API between these two planes was evident. Most
successful SDN approach is probably the OpenFlow protocol.

3.1 OpenFlow

OpenFlow, as the name induces, builds on the idea of network flows. A flow in the
network is specified by n-tuple of protocol header fields. Different set of protocol
headers and header fields are supported in each version of the protocol. OpenFlow
network is composed of OpenFlow controller which communicates with OpenFlow
switches or forwarders in other words.

Forwarder is composed by set of flow tables, where flow entries can be written and
by which packets are processed. In each flow entry, selected protocol header fields –
match fields are specified, and set of actions to be performed after match are associated
with it. Flow entries are installed by the SDN controller at any time. When a packet is
received by the OpenFlow forwarder, its header fields are compared against flow
entries and in case of match actions and instruction are executed. This way, any new
networking approach is dependent only at the logic in the controller, since the
OpenFlow protocol and OpenFlow switch capabilities are standardized and at atomic
level (network flow) [4].

There are many more SDN related approaches, both academic – I2RS [5], ForCES
[6], PCEP [7] and vendor specific – OnePK [8], but these have little relevance to our
work, moreover OpenFlow is the leader on the market and the academia.

4 Related Work

Most of the present work focusing on mobile SDN is addressing different kinds of
mobile gateway nodes decomposition or network functions placement [9, 10]. Then
there are approaches, which address network architectures in general and bring new use
cases and functionalities, which are enabled by OpenFlow [11]. Some of telco vendors
address mobile SDN with their specific approaches such OpenFlow’s mobile coun-
terpart MobileFlow [12] or extend standard OpenFlow protocol with mobile specific
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features [13]. Third part of the SDN mobile related research is the SDN
based/controlled RAN [14, 15].

The vast majority of the papers focus on the same technology – LTE. How-
ever GPRS, on which the UnifyCore demo is based, is the dominant technology for the
M2M services, thanks to its maturity and simple radio interface that enables low
terminal price that is crucial for massive M2M deployment. Finally, GPRS is expected
to continue to provide such services and an umbrella fallback network for next one or
two decades.

5 UnifyCore – Novel Core Network Architecture

UnifyCore architecture was developed with backwards compatibility and SDN focus in
mind. It is aimed to provide mobile services and features of packet core
(GPRS/UMTS/LTE), but can be also used as a transport core platform for aggregation
of traffic from different access technologies and provide umbrella control and auto-
mation platform.

In UnifyCore architecture, the access technology specific protocols are terminated
as close to the border between access network and core network as possible. The idea
behind this is to use a common transport core, which is not complicated by various
access technologies. Different access technologies such as GPRS, UMTS and LTE or
WiFi are controlled by dedicated control elements called access managers. These nodes
understand the signaling protocols used by the access network and terminals and
provide necessary operations such as mobility/session management and signaling. As
we mentioned before, common transport core is independent of access technologies
connected to it, thus is controlled by a logically separate element – SDN controller.
Core control SDN controller and access managers communicate via ReSTful API.

Traffic in the different access networks is usually encapsulated to various access
specific protocols, moreover some technologies combine control and user data in a
single stream of messages (for example GPRS, as shown later in the evaluation part).
For separation of user and control plane data, UnifyCore uses OpenFlow enabled
border forwarders called adaptors. Some of the access network protocols are not
compatible with present OpenFlow match rules, so we use OpenFlow extensions to
support such protocols. These extensions have to be supported on both access man-
agers and border forwarders (adaptors), however they do not have to be supported in
core, as it is access agnostic and based just on Ethernet tunneling [16]. This further
emphasized the aim for simple common core.

From the mobile networks architecture, UnifyCore borrows the APN concept. As
mentioned in the second section, in 3GPP mobile network, the APN is associated with
GGSN (P-GW in LTE) interface and signifies a service offered at that point. We use the
concept of APN, but as we do not have a GGSN or P-GW in our architecture, our
APNs may be located at any border forwarder Fig. 1.

Further details on the philosophy and architecture can be found in previous paper
on the topic [16]. In this paper, we focus on the backwards compatibility enablers of the
UnifyCore – mainly ICMP topology discovery and ARP APN search.
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5.1 ICMP Topology Discovery

In order to setup a MAC (Ethernet) tunnel, few procedures have to be executed. These
procedures include ICMP topology discovery (executed when a new OpenFlow for-
warder joins UnifyCore topology) and ARP discovery for localization of traffic egress
and ingress points (APNs). For the topology discovery UnifyCore uses its own
topology discovery method based on the ICMP protocol.

Process works in two phases. First phase includes bootstrap of OpenFlow enabled
forwarders. When a forwarder joins UnifyCore controller, it is asked to clear its whole
configuration. Next a new OpenFlow rule is installed to first flow table (Table 0 in our
case). This rule forwards all ICMP echo requests with given destination IP to the
controller. Together with this topology discovery flow rule, a rule for ARP discovery is
installed as well (explained in separate section of the paper). If this new node is an
adaptor type, extra rules are installed. These rules ensure adaptation of access network
user traffic for core network and routing of control plane messages to the access
network manager.

Second phase is the topology discovery itself and starts when controller constructs
ICMP echo request with encoded source forwarder ID (datapath ID) and source port ID
in the payload of ICMP message and injects them to all ports of newly joined for-
warder. As these packets reach the adjacent forwarders (these forwarders joined net-
work before), they are matched with the ICMP discovery rule and are forwarded back
to the controller. Controller examines the message that has been just forwarded to it and
extracts the source forwarder ID and source port from the OpenFlow header and
originator forwarder ID and port from the ICMP payload. From this information,
controller is able to construct a view of topology.

ICMP topology discovery method, same as MAC tunneling, is compatible with
standard featureless L2 switches. If a L2 switch (or group of switches) connects two
forwarders, incoming ICMP echo will be flooded to all ports of the switch and finally
will reach some adjacent OpenFlow forwarder, which will send the ICMP echo to the
controller. Controller will examine the content of the OpenFlow header and payload
and update the topology accordingly. In this case, the L2 switch connecting two

Fig. 1. High level UnifyCore architecture
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OpenFlow forwarders is considered to be a direct link between the sending and
receiving forwarder. However this L2 switch does not break the UnifyCore concept and
capabilities in any way. If there are more interconnected switches between two for-
warders, the ICMP echo may be received by the controller multiple times and multiple
connections may be discovered (Fig. 2).

5.2 ARP Search – Ingress and Egress Point (APN) Discovery

As mentioned before, the APN represents the ingress and egress point of the UnifyCore
domain.

At the very start, UnifyCore controller looks at its configuration file and finds all the
APNs (ingress and egress points) it is serving. Each APN name from the configuration
file gets resolved by the DNS lookups to an IP address. Next, when a forwarder joins
the network, together with ICMP topology discovery ARP search process is executed at
this forwarder.

The process has several phases. It starts with the deletion of the whole flow table
configuration (as mentioned earlier). This first step is common for ARP search and
ICMP topology discovery. Next, rules for ARP search are installed on this new for-
warder (together with ICMP discovery rules as mentioned before). First flow rule
installed is the redirection of all ARP replies to the controller. At this rule we match
Ethernet type 806 and ARP operation 2. Action for this flow rule is to forward ARP
replies to controller, where it could be further processed. It has to be noted, that from
the definition, OpenFlow forwarders do not feature ARP logic, therefore ARP message
processing has to be done in the controller (or non-standard OpenFlow extensions have
to be used).

Next, the controller sends an ARP request from each port of the forwarder. For each
APN in the database (from the configuration file) controller sends one ARP request per
forwarder port (target IP address of the APN). Following this approach, we expect, that
at the APN location (adjacent network domain) there is a non-SDN capable edge router,
thus we use a standard “legacy” ARP procedure. If a SDN capable domain was behind
the UnifyCore domain, we could have used some SDN inter-domain signaling. This
approach further improves UnifyCore compatibility with existing legacy networks.

Fig. 2. ICMP topology discovery (a) and ARP search (b).
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It has to be noted, that since ARP is a LAN protocol, the source IP address has to be
from the same subnet, as is the APN. Moreover different APNs can have and normally
they have different IP addresses from different subnets, therefore controller choses
addresses from these domains.

When these ARP request are sent out through all ports of newly added forwarder,
they are captured and processed by the adjacent forwarders or an edge router serving
the APN. In case of adjacent OpenFlow forwarder nothing happens and no ARP reply
is generated (because OpenFlow forwarders do not process ARP the way standard
routers do). In case of edge router with given IP address (serving the APN controller
was looking for), the router generates ARP response, which will be received by the
given forwarder and sent to the controller (ARP reply rule matched). Controller pro-
cesses the message and extracts the forwarder ID and port ID from OpenFlow header.
This way, the controller discovers APNs, their location in the network topology and
can construct tunnels for user traffic transport (Fig. 2).

When a new ingress or egress point (APN) location is found, controller starts tunnel
setup between all already discovered APNs and this newly discovered one. First a
shortest path algorithm is executed, which returns a set of forwarders and ports which
should be used along the way from one APN to another. If an ingress point is an
adaptor, first flow table is left for the traffic adaptation rules, which are set on a user
basis. Rules in this table will strip off the access specific headers and forward packets to
second table, which is the MAC tunnel table. Here the destination MAC address of the
Ethernet frame is set and the frame itself is forwarded to tunnel by assigned interface.
Next forwarders along the way perform very similar task. They match the destination
MAC address and forward the frame to respective port (given by the OpenFlow rule).
The very last forwarder in the way may change the destination MAC address to match
the MAC address of the egress point (APN). This is the case only when more MAC
tunnels are established to the same egress point (APN), for example for different QoS
classes or tunnels from different source. In case of single tunnel towards this given
APN, destination MAC address corresponds to the MAC address of the router in the
adjacent domain.

In the opposite direction (downlink), border router serving given APN in the
adjacent domain could search for MAC address of an IP address present in the access
network. As mentioned before, forwarders do not have the capability to respond to
ARP request, so this is forwarded to the controller by an OpenFlow rule. Controller
responds with the MAC address of the tunnel belonging to given end device in the
access network. After receiving the requested MAC address, the edge router sends
packet to the edge forwarder. This forwarder examines the destination MAC address
and forwards it to a given port, specified by the OpenFlow rule. Next forwarders in the
way to the access network forward the Ethernet frame in a similar manner. The access
edge forwarder (adaptor) finally appends the access specific protocol headers, and in
case there are more tunnels towards this endpoint, sets the destination MAC address to
the MAC address of the first network node in the access network.

It has to be noted, that uplink and downlink tunnels have different tunnel IDs (MAC
addresses), and so traffic can be routed in an asymmetrical manner.

Presence of tunnels even before any need for data transfer further enhances the
session setup time. In comparison with for example GPRS or UMTS, where the tunnels
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are created in a dynamic manner based on mobile station requests. Tunnel setup by
exchange of signaling messages between SGSN and GGSN takes naturally more time,
than proactive tunnel setup at UnifyCore start.

6 Evaluation

For our initial UnifyCore proof of concept, we chose a rather specific use case – GPRS
over UnifyCore. As mentioned before, most of the mobile oriented SDN research
papers deal with LTE or UMTS. However, both technologies share the split user plane
and control plane approach, thus introduction of SDN to such system is rather trivial.

Our work focuses on GPRS, which is basically the oldest packet based 3GPP
network. Despite its age, it is still being heavily used around the globe. Moreover
development on this technology continues and for example release 13 GPRS/EDGE
terminals and networks bring further enhancements for the M2M use cases [17]. This
indicates that even now, GPRS is highly relevant network technology and integration
of GPRS and SDN is an interesting topic.

We implemented the UnifyCore GPRS architecture in the following way. We
removed SGSN and GGSN from the architecture and split their logic between SDN
controller and GPRS access manager called vGSN (virtual GPRS Support Node).
Session management (tunnel management) functions are centralized in the SDN con-
troller and GPRS signaling (mobility management, signaling and authentication) is
performed on the vGSN. This function split is following the UnifyCore concept
introduced in one of previous paper [16]. In user plane we use a GPRS adaptor (GPRS
enabled OpenFlow forwarder), which first splits GPRS message stream into user plane
data and signaling messages. Next the signaling is sent to vGSN and user plane data is
adapted to pure Ethernet (MAC tunneling). In the downlink direction, the GPRS
adaptor encapsulates the pure Ethernet data into GPRS protocols and sends it to GPRS
radio access network (Fig. 3). We named the GPRS adaptor ePCU or PCU-ng. This
stands for enhanced PCU or PCU for next generation networks.

For the evaluation, we implemented the whole solution over the open-source
software. As a controller base, Ryu controller framework was used. In the controller,
OpenFlow extensions were added, in order to enable controller to command the ePCU
(GPRS protocol stack extensions). As a forwarder, ofsoftswitch13 was chosen. GPRS
protocol stack extensions were implemented here as well. The GPRS access manager
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Fig. 3. GPRS protocol stacks (user plane) in standard 3GPP architecture [1] (a) and in
UnifyCore based architecture (b).
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module is based on open-source code from a hacker community, which is focusing on
security holes in mobile networks – osmocom. Snippets of source code of two projects
– osmo-sgsn and openGGSN were combined in order to build our vGSN. In the GPRS
access network sysmoBTS hardware was used. This base station is compatible with
osmo-sgsn and compliant to standard 3GPP Gb interface signaling.

The setup was verified using off-the-shelf mobile phones of different types – from
smart phones to feature phones. During tests, terminals were not aware of any changes
in the core network, which was basically one of our most important goals and GPRS
data transfer was functional in both directions.

7 Conclusion

The transformation from classical network architectures to SDN based is inevitable.
However, very similar to IPv4 to IPv6 transition, for a certain time, classical networks
and SDN networks will coexist. First in the form of SDN islands inside classical
network sea, next the situation will be just the opposite. Finally, SDN will become the
dominant networking technology.

For this transition period, UnifyCore features set of approaches such as ICMP
discovery and ARP search, which enable it to integrate with standard router/switch
based transport architecture. These methods not only allow UnifyCore to communicate
with existing adjacent infrastructure, but also allow operators to protect past invest-
ments in the existing hardware with which is UnifyCore fully compatible.

Both ARP APN discovery and ICMP topology discovery mechanisms might seem
redundant, but it has to be noted, that pure OpenFlow forwarders do not support
standard features of switches or routers such as ARP message processing or Ethernet
broadcast forwarding/flooding. Processing of such messages has to be set by the
controller by OpenFlow match rules, actions and instructions.

From the 3GPP mobile network point of view, the UnifyCore easily integrates with
standard 3GPP networks – end to end by Gb and Gi interfaces. Our prototype proves
that even complicated Gb interface (without user data and signaling separation) is easy
to integrate into UnifyCore with a flexible SDN approach.

At the time being we are starting with performance evaluation of the key features of
the GPRS prototype. As mentioned before, functional validation was already done with
real mobile phones, however such setup was unable to generate traffic load.

Performance of MAC tunneling implemented over user space forwarder application
(ofsoftswitch13) is being evaluated using common iPerf2 and iPerf3 tools. For the
GPRS related parts (signaling and user data separation, GPRS encapsulation/
decapsulation) we are not aware of any free open-source performance measurement
tools. Therefore, commercial tools such as Spirent LandSlide [18] or Ixia EPC test [19]
need to be used, or new tool for such evaluation has to be implemented from scratch.
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