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Abstract. Order-preserving symmetric encryption (OPE) is a deterministic
encryption scheme which encryption function preserves numerical order of the
plaintexts. That allows comparison operations to be directly applied on
encrypted data in case, for example, decryption takes too much time or cryp-
tographic key is unknown. That’s why it is successfully used in cloud databases
as effective range queries can be performed based on. This paper presents
order-preserving encryption scheme based on arithmetic coding. In the first part
of it we review principles of arithmetic coding, which formed the basis of the
algorithm, as well as changes that were made. Then we describe noise function
approach, which makes algorithm cryptographically stronger and show modi-
fications that can be made to obtain order-preserving hash function. Finally we
analyze resulting vulnerability to chosen-plaintext attack.
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1 Introduction

Nowadays, the amount of information stored in various databases steadily increases. In
order to store and effectively manage large amounts of data it is needed to increase data
storages capacity and allocate funds for its administration. Another way that was
chosen by many companies is to give the database management to a third-party. Such
service is managed by a cloud operator and is called Database as a Service, DBaaS.

Obviously, this approach has its own flaws. And the most important of them is
security issue. Data can be stolen by the service provider itself or by someone else from
its storage. Fortunately, this problem can be solved by encryption. Of course if we just
encrypt the whole database with a conventional encryption algorithm, we’ll have to
encrypt and decrypt it each time we need something. So, all advantages will be lost.
That’s why special encryption schemes, such as homomorphic encryption and
order-preserving encryption, are developed. The first one allows us to handle encrypted
data, and the second – to sort them and select the desired.

All known order-preserving schemes have significant problems, such as low level
of security (polynomial monotonic functions [1], spline approximation [2], linear
functions with random noise [3]), low performance (summation of random numbers
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[4], B-trees [5]) or too-large numbers proceeding (scheme by Boldyreva [6]). Proposed
scheme doesn’t have these disadvantages and, furthermore, unlike all the others can be
used to encrypt real numbers. Also it can be used to obtain order-preserving hash
function.

This algorithm combines two main ideas, which the majority of OPE schemes
operate with: monotonic functions design and elements of coding theory (implicit
monotonic functions design). It is claimed that scheme is based on arithmetic coding
and noise function, but, in fact, this article considers only the case with binary alphabet.
In theory, nothing prevents the use of an arbitrary one.

First, let’s give a definition of order-preserving encryption. Assume there are two
sets A and B with order relation \. Function f : A ! B is strictly increasing if
8x; y 2 A; x\y , f xð Þ\f yð Þ. Order-preserving encryption is deterministic symmet-
ric encryption based on strictly increasing function.

The described order-preserving encryption scheme was developed in Laboratory of
Modern Computer Technologies of Novosibirsk State University Research Department
as a part of “Protected Database” project1 and is based on arithmetic coding and noise
function. Let us consider them precisely.

2 Splitting Procedure of Arithmetic Coding

Suppose c is non-negative integer number requiring for its representation n bits, i.e.

c ¼
Xn
i¼1

ai2i

where a1; a2; . . .; anð Þ is a bit string, a1 is the MSB. Let us define the bijection f.
Assume that the string a1; a2; . . .; anð Þ defines certain real number s 2 0; 1Þ½ as follows:

s ¼ c
2n

:

Let us find another representation for the number s. In order to do it, we use the idea
of arithmetic coding. Notice that the number s satisfies the equation 2ns ¼ c. The
equation

G xð Þ ¼ 2nx� c ¼ 0

has only one solution on the interval 0; 1Þ½ . If we solve this equation using a standard
binary search, we get the initial number s after n steps. The main idea of arithmetic
coding is that intervals can be split into parts randomly. In this case approximate
solution of the equation can be found after the less number of steps. That allows us to

1 This research is performed in Novosibirsk State University under support of Ministry of Education
and Science of Russia (contract no. 02.G25.31.0054).

194 S. Krendelev et al.



achieve compression of data while using arithmetic coding. First of all, let us consider
the splitting procedure.

Suppose c ¼ p
pþq ; l ¼ q

pþq, where p; q are random natural numbers. Obviously,

cþ l ¼ 1. Let us split the interval 0; 1Þ½ into two parts 0; p
pþq

�h
;

p
pþq ; 1

�h
. If

G p
pþq

� �
[ 0, the interval 0; p

pþq
�h

is selected, and the output is 0-bit (b1 ¼ 0). If

G p
pþq

� �
\0, the interval p

pþq ; 1
�h
is selected, and b1 ¼ 1. Let us denote a1; b1Þ½ the

interval was selected.
This interval is again split into parts in the ratio c : l. According to the sign of

function GðxÞ in the splitting point, one of the segments is selected. Proceeding by
induction, the interval ak; bkÞ½ can be calculated for 8k. Its length is crln�r, where r is
the number of zeros in string b. If 8r : 1

2n \crlk�r, then s 2 ak; bkÞ½ and c ¼ 2ns are
uniquely defined by b ¼ ðb1; . . .; bkÞ. It is also obvious that this mapping preserves an
order.

Generalizing used in the adaptive arithmetic coding, as well as in the proposed
algorithm, is that it is possible to use different ratio on each step. This allows us to
achieve stronger security of encryption.

3 Noise Function

It is known that the composition of two strictly increasing functions strictly increases.
Therefore, to provide stronger security of cryptographic algorithm special random
strictly increasing function is used in addition to the splitting procedure. In fact, we use
inverse function of the one that was generated.

It was proved [6] that OPE schemes cannot satisfy the standard notions of security,
such as indistinguishability against chosen-plaintext attack (IND-CPA) [7], since they
leak the ordering information of the plaintexts. If an adversary knows plaintexts p1; p2
and corresponding ciphertexts c1; c2 and c, such that c1\c\c2, it is obvious that the
plaintext for c lies in the interval ðp1; p2Þ. In addition, the adversary can always find the
decryption function in some approximation, for instance, using linear interpolation.

And moreover, in case of using, for example, encryption method developed by
David A. Singer and Sun S. Chung [1], where strictly increasing polynomial functions
f xð Þ ¼ a0 þ a1xþ . . .þ anxn are used for encryption, the adversary can calculate the
exact encryption function if he has ðnþ 1Þ arbitrary pairs (plaintext, ciphertext). It is
enough to solve the system of equations:

a0 þ a1x0 þ . . .þ anxn0 ¼ y0
a0 þ a1x1 þ . . .þ anxn1 ¼ y1

..

.

a0 þ a1xn þ . . .þ anxnn ¼ yn

8>>><
>>>:
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Thus, the adversary can get a0; . . .anð Þ and correspondingly encryption function
fðxÞ.

In order to complicate his task it is necessary to maximize the amount of pairs
required for this attack and complexity of the system of equations f xið Þ ¼ yi. There-
fore, it was decided to generate noise function from class of function

f xð Þ ¼
Z x

c
a0 þ a1t + a2t2
� �

a3 þ a4 sin a5 þ a6tð Þ þ a7 cos a8 þ a9tð Þð Þdt;

where c is an arbitrary constant and coefficients ai are selected so that

a0 þ a1tþ a2t2
� �ða3 þ a4 sin a5 þ a6tð Þ þ a7 cosða8 þ a9tÞÞ[ 0

for 8t 2 ðc; xmaxÞ. In this case fðxÞ is strictly increasing function (see Fig. 1). This
integral can be calculated explicitly, which increases the speed of function value cal-
culation. Nevertheless, the system of equations

Z x0

c

a0 þ a1tþ a2t2ð Þða3 þ a4 sin a5 þ a6tð Þþ
a7 cosða8 þ a9tÞÞ dt ¼ y0Z x1

c

a0 þ a1tþ a2t2ð Þða3 þ a4 sin a5 þ a6tð Þþ
a7 cosða8 þ a9tÞÞ dt ¼ y1

..

.Z xk

c

a0 þ a1tþ a2t2ð Þða3 þ a4 sin a5 þ a6tð Þþ
a7 cosða8 þ a9tÞÞ dt ¼ yk

8>>>>>>>>><
>>>>>>>>>:

Fig. 1. Example of the correct noise function from the class. Due to such combination of sine
and cosine, its behavior is hard to predict without a0; . . .a9ð Þ coefficients knowledge.
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is difficult to solve, which indicates that proposed algorithm is cryptographically strong
against this type of attack.

4 Cryptographic Scheme

4.1 Key Generation

As a private key of encryption algorithm we consider noise function f xð Þ ¼R x
c a0 þ a1tþ a2t2ð Þða3 þ a4 sin a5 þ a6tð Þ þ a7 cosða8 þ a9tÞÞdt and a set of ratios
pi; qið Þ.

In order for an encrypted n-bit number to be uniquely decrypted, the length of
intervals computed during decryption has to be less than 1

2n. The largest length of the

interval that can be obtained during decryption is
Q
i

max pi;qið Þ
piþqi

f
0
maxðxÞ. So the algo-

rithm of calculation the set of ratios is:

1. Generate random ratios pi; qi.
2. Check the condition

Y
i

max pi; qið Þ
pi þ qi

f
0
max xð Þ\ 1

2n

If this conditions if satisfied, go to the step 3, else go back
to the step 1.

3. Output the set of ratios p1; q1ð Þ; p2; q2ð Þ; . . .; pk; qkð Þ:
The key is the set K ¼ ½ a0; . . .; a9ð Þ; p1; q1ð Þ; p2; q2ð Þ; . . .; pk; qkð Þ�:

4.2 Encryption

Assume we need to encrypt n-bit integer s with the key K ¼ ½fðxÞ; p1; q1ð Þ;
p2; q2ð Þ; . . .; pk; qkð Þ�, where fðxÞ is a noise function, f a0ð Þ ¼ 0, fðb0Þ ¼ 2n, and ðpi; qiÞ
is a set of ratios. Consider the i-th iteration of algorithm.

The current interval ai�1; bi�1Þ½ is split in the ratio pi : qi. Let it be split at the point
x 2 ai�1; bi�1Þ½ , i.e.

x ¼ ai�1 þ bi�1 � ai�1ð Þpi
pi þ qi

:

If fðxÞ[ s, then bi ¼ 0, ai ¼ ai�1; bi ¼ x. Otherwise, bi ¼ 1; ai ¼ x; bi ¼ bi�1.
Notice that 8i; f�1ðsÞ 2 ai; biÞ½ according to the selection of ai and bi. After per-

forming k iterations, (where k is the size of the key, i.e. the number of ratios) we obtain
the bit sequence b ¼ b1; . . .; bkð Þ; bi 2 0; 1f g, which is a ciphertext for s.
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4.3 Decryption

Suppose there is a bit sequence b ¼ b1; . . .; bkð Þ; bi 2 0; 1f g, which is the ciphertext
for s, encrypted with some key K. Let us consider the i-th iteration of the algorithm.

Similar to the encryption algorithm, current interval ai�1; bi�1Þ½ is split in the ratio
pi : qi. Let it be split at the point x 2 ai�1; bi�1Þ½ , i.e.

x ¼ ai�1 þ bi�1 � ai�1ð Þpi
pi þ qi

:

If bi ¼ 0, then ai ¼ ai�1; bi ¼ x. Otherwise, ai ¼ x, bi ¼ bi�1.
After performing k iterations, we obtain the interval ak; bkÞ½ and the condition

fðbkÞ � fðakÞð Þ\ 1
2n is satisfied according to the key selection. As s 2 fðakÞ; fðbkÞÞ½ , the

s is uniquely decoded as follows:

s ¼ 2nfðakÞ þ 1;

where xb c is the largest integer, which comes before x.

5 Scheme Modifications

5.1 Application of the Scheme for Fixed-Point Arithmetic

It is easy to see that this scheme can be generalized to the set of rational numbers.
Encryption and decryption algorithms are the same except for the final operation – the
length of the segment ak; bkÞ½ that determines encrypted number is reduced to 2l times,
where l is the number of bit decimal places. It should be known at the stage of key
generation and condition from point 2 takes the following form:

Y
i

max pi; qið Þ
pi þ qi

� f 0maxðxÞ\
1

2nþl

After key generation number l can’t be modified and is a part of the key. So, the
secret key K now is the set ½l; a0; . . .; a9ð Þ; p1; q1ð Þ; p2; q2ð Þ; . . .; pk; qkð Þ�.

5.2 Strictly Increasing Hash Function

This algorithm can also be modified to produce a strictly increasing hash function. It
can be used, for example, in encrypted database, if it stores two entities for each data:
ciphertext, that was obtained from cryptographically strong algorithm and hash value
returned by hash function. This allows both to be sure that the data won’t be decrypted
by adversary (first entity is secure and the second can’t be decrypted at all) and apply
comparison operations on encrypted data to some extent.
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To begin, we note that output has the same bit size as the number of ratios pi; qi
from the secret key. So, in order to obtain a hash function, it is enough to change the
procedure of key generation, and more precisely, its ratios generation part.

Instead of the condition checking from the point 2, satisfaction of which guaranteed
that the data can be decrypted, now we need to perform the first point – pair pi; qi
generation – a number of times. This number, evidently, is equal to the number of bits
that hash function returns.

Thus, the key generation algorithm for order-preserving m-bit hash function is:

1. Select strictly increasing noise function f(x). To do this,
generate a0; . . .a9ð Þ so that

a0 þ a1tþ a2t2
� �ða3 þ a4 sin a5 þ a6tð Þ þ a7 cosða8 þ a9tÞÞ[ 0

for 8t 2 ðc; xmaxÞ, where c is a fixed constant.
2. Generate random set of ratios p1; q1ð Þ; p2; q2ð Þ; . . .; pm; qmð Þ.
3. The key is the set K ¼ ½ a0; . . .; a9ð Þ; p1; q1ð Þ; p2; q2ð Þ; . . .; pm; qmð Þ�.

To get rid of the big numbers processing, for instance, if we need to get hash of a
large file, it is possible to split input data into parts with acceptable size and calculate
hash for each of them. The result hash value of the whole file can be found as their
concatenation. This approach allows us to hash data of any predetermined dimension.

So, there are three parameters that we can select arbitrarily depending on our
purpose: s1 – size of the processed parts, s2 – hash size for each of them (s2\s1Þ, and
s3 – maximum file size. Obviously, final hash is s2s3s1 -bit.

Since encryption algorithm remains the same, the hash function running time
depends linearly on its output size (it is equal to the number of algorithm iterations).
Therefore, it is not recommended to choose too-big s2 number.

In order to process files smaller than the maximum size, they can be padded with
zeros on the left. In this case, order is still preserves. Since this is a hash function
algorithm, decryption is no longer exists.

6 Encryption Security

As we have seen (see Sect. 3) OPE schemes cannot satisfy the standard notions of
security against chosen-plaintext attack. Different methods of cryptoanalysis are con-
sidered to determine the notion of order-preserving encryption security [2, 8–10].
Generally, the security of such schemes is based on the fact that monotonic function,
the scheme is based on, must be completely indistinguishable from truly random
monotonic function. This means that only an access to the private key allows per-
forming accurate data decryption.

So let us check this algorithm for this condition in practice. To do that, we
encrypted all 16-bit numbers (from 0 to 65535) with the same random key and ana-
lyzed the results.

As a subject of analysis we chose the difference between two ciphertexts for nearby
integers. For example, if f xð Þ ¼ 2186003864819 and f xþ 1ð Þ ¼ 2186004033407,
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where fðxÞ is encryption function, then f xþ 1ð Þ � f xð Þ ¼ 168588 is considered. One
of the reasons for this choice was the fact that success of chosen-plaintext attack by
interpolation depends on this differences (see Fig. 2).

As a result, we obtained the following data (see Fig. 3). In this chart the Y-axis
displays the difference value between two ciphertexts (higher values were rounded),
and the X-axis shows the number of them was found.

Fig. 2. Chosen-plaintext attack using values interpolation. Ciphertext for some b1-bit plaintext x
is approximated by the value of x

2b2 , where b2 is size of ciphertext. Approximation in the other
direction is counted similarly.

Fig. 3. Frequency distribution of the differences between ciphertext.
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As we see, this chart and right hyperbola y ¼ 1
x are alike. It is typical for monotonic

functions that were generated randomly and indicates that the maximum available
security of the algorithm was achieved.

But the distribution of the differences itself is also important (see Fig. 4). The
Y-axis displays f xþ 1ð Þ � fðxÞ when the X-axis shows x (from 0 to 65535).

We can see that the differences are distributed very irregularly. As it is a feature of
secure encryption, we can claim that proposed algorithm is cryptographically strong.
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