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Abstract. The game of Amazons is a combinatorial game sharing some
properties of both chess and Go. We study programs which play Amazons
with strategies based on Monte-Carlo Tree Search and a classical search
algorithm, Alpha-Beta pruning. We execute several experiments to inves-
tigate the effect of increasing the number of searches in a Monte-Carlo
Tree Search program. We show that increasing the number of searches is
not an efficient method to strengthen the program for Amazons. On the
other hand, augmenting the algorithms with a choice of several evalua-
tion functions fulfills has great influence on playing strength.
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1 Introduction

Artificial intelligence is an important technology in our digitalized society. There
are many applications of artificial intelligence to industry, e.g., data mining in
big data processing, natural language processing, robotics, intelligent agents and
machine learning, etc. One of the most important applications, as well as proving
grounds for artificial intelligence methods is to create game playing programs for
board games like chess or Go. Monte-Carlo Tree Search is one of the simple, yet
often efficient approaches along this line. We shall study the performance of
a simple Monte-Carlo Tree Search program playing Amazons compared with
traditional artificial intelligence methods like Alpha-Beta pruning.

Alpha-Beta pruning is a search algorithm that applies an evaluation func-
tion to each leaf node in the game tree and selects the node with the highest
evaluation based on the Mini-Max principle. It has been widely studied for a
long time as a search program for two player games such as Shogi and Reversi.
When applying this method, it is important to use strong evaluation functions
[11] and enhanced pruning techniques of the game tree [10]. Monte-Carlo Tree
Search (MCTS for short) is a search algorithm based on probability statistics,
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and it can create a strategy without using an evaluation function which is first
implemented by Coulom [6]. This property made it a prime candidate for games
for which it is difficult to create an evaluation function such as Go [8] and
Arimaa [20]. For instance, it was considered difficult to write a strong program
for Go using conventional Mini-Max search technique. However, programs such
as CrazyStone [7], based on MCTS, were able to win computer Go tournaments,
proving the validity of the approach.

The game of Amazons (Amazons for short) is a two player game [24] sharing
some attributes with both chess and Go, but also being different from them in
crucial ways. There are more legal moves in each turn in the game of Amazons
than in chess. A strong game playing program must explore the game tree to
great depth. However, searching deeply in Amazons with a simple Alpha-Beta
pruning is ineffective, because the state space is huge; the number of legal moves
is so great that doing a full width search is impractical throughout at least the
first two thirds of an Amazons game [3]. Therefore, creating a strong player using
only Alpha-Beta pruning is impossible.

Amazons has been extensively studied, see, for instance, the analysis of 2 x n
Amazons [4], the analysis of endgames [5,13,14], the Amazons opening book
[16], and a study of creating strong programs by combining an evaluation func-
tion and MCTS [12]. Nobody succeeded in creating a strong game playing pro-
gram of Amazons based on simple MCTS. Kloetzer et al. [15,17] gave much
stronger approaches by combining MCTS and an evaluation function in the
search process. They also showed that the strength of MCTS combined with an
evaluation function for Amazons can be enhanced by increasing the number of
simulations. However, we are not aware of any previous analyses of direct play
between simple MCTS not using an evaluation function and Alpha-Beta prun-
ing. As such a study would emphasize the gain brought by combining evaluation
functions with MCTS, we conducted experiments in this direction.

We will carried out experiments in which a simple MCTS program not using
an evaluation function plays against an Alpha-Beta pruning program using the
classical evaluation function. We recorded how many times the MCTS program
won against the Alpha-Beta pruning program and the average time that each
program took to output a move. Our experiment showed that Alpha-Beta prun-
ing is stronger than the simple MCTS program and increasing the number of
simulations in a simple MCTS is inefficient for strengthening the strategy for
Amazons.

2 The Game of Amazons

The game of Amazons is a combinatorial two-player game invented in 1988 by
Zamkauskas [24] and first published (in Spanish) in issue 4 of the puzzle magazine
El Acertijo in 1992. Amazons is played on a 10 x 10 chess-style board. The game
starts by placing four black and white queens on the specified cells on the board.
The first player (Py) selects and moves one of the white queens according to the
movement of a queen in chess (vertical, horizontal and diagonal straight lines on
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the board). Then, Py chooses any empty cell in the range of the queen moved
and thwarts it. No piece can be placed on the thwarted cell nor pass through it
thereafter. Similarly, the second player (Pg) selects and moves one of the black
queens and chooses any empty cell in the range of the queen moved and thwarts
it. The players Py and P move alternately and the player who can no longer
complete their moves (both moving a queen and thwarting a cell) loses the game.
Amazons resembles Go in that it is considered good strategy for one to create
their own territory, while the movement of the pieces on the board is borrowed
from chess. It should be noted, that while Amazons originally uses a 10 x 10
board, the game can also be considered in a more general manner on an n X n
board as a variant. Figure 1 shows the initial setting of an Amazons game and
the board after the first player made their first move.

LTl T [T [T T el
Fig. 1. From initial placement to the first movement of Py,

Amazons is known to have a very large number of legal moves in a given turn
compared with other board games such as chess, Shogi or Go. For example, the
number of legal moves of a player in their turn in chess is about 35 on average
(see [1]), in Shogi it is 80 (see [22]) and in Go it is 361 on a 19 x 19 board. In
contrast, in the first turn of Amazons the starting player has 2176 legal moves,
and each player has 400 legal moves per turn on average even during the game.
Therefore, the evaluation of the game tree involves many more states than in
the case of previously mentioned board games and creating a strong computer
player for Amazons is considered difficult [3].

3 Alpha-Beta Pruning

The game tree for a two-player game is a directed graph whose nodes are states
in the game and whose edges are legitimate moves. Alpha-Beta pruning is an
algorithm to find the best move from a state according to an evaluation function
and the Min-Max principle (see [18]) by analyzing part of the game tree. The
algorithm has been studied since J. McCarthy showed an idea in 1956. It is a
widely used algorithm in the field of two player games; notable examples includes
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chess and Reversi. First, Alpha-Beta pruning expands the game tree until a
specified search depth. After that, it applies the evaluation function to the child
nodes of the portion of the game tree expanded up to then. The evaluation of the
nodes higher up in the tree is done by the Mini-Max principle. After obtaining
the evaluation of all the nodes, the algorithm selects the move leading to the
child node with the highest value.

Alpha-Beta pruning can lead to a stronger strategy if one increases the
allowed search depth. However, since Amazons has a very large number of legal
moves on average, it is difficult to explore the game tree to a large depth because
of time and memory limitations. The Alpha-Beta pruning program in our exper-
iment used depth-first search for evaluating the nodes to a depth of 2. Several
different heuristics for Amazons have already been studied [9]. For the Alpha-
Beta pruning programs we used the three evaluation functions given in [21] and
described below. In what follows, by turn player in a state we mean the player
whose turn it is to move in that state and by opponent we mean the other. When
not specified explicitly, by evaluating a state we mean evaluation from the point
of view of the turn player.

3.1 Mobility Evaluation

In Amazons, it is advantageous to have more legal moves available in one’s turn
because players who cannot move, lose the game. Consequently, if the number of
legal moves is small in a state, it is considered to be an unfavorable game-state for
the player. In other words, reducing the number of legal moves of the opponent is
considered as an effective strategy. Let mobility evaluation (ME) of a state be the
value obtained by subtracting the number of legal moves of the opponent from
the number of legal moves of the turn player in a given game state. For example,
if Py has 161 legal moves in a certain game state and Pg has 166 moves, then
ME of the state X from Py ’s point of view is MEy (X)) = 161 — 166 = —5.

3.2 Territory Evaluation

The concept of territory is important in Amazons. A territory of a player is a
cell which is reachable by the queens of only that player, so advantageous game
states should have many of these. The player who has access to more empty cells
is in advantage because the playing area is divided in several separated subareas
in the end-game of Amazons.

Figure 2 shows the minimum number of moves required to reach each cell on
the game board by any of the pieces of the players. The value in the upper left
corner of each blank cell is the minimum number of moves needed for Py, to
reach it, whereas the value in the lower right corner represents the corresponding
number required for Pg. For example, to reach cell C6, player Py needs at least
four moves, e.g., B8 — A7 — A6 — B5 — (6. In contrast, Pg requires only
two moves, B3 — A4 — (C6. Therefore, Pg has a faster access to C6 than Py
so according to territory evaluation, cell C'6 belongs to the territory of Pp. Let
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Fig. 2. Territory evaluation

Dx (A) denote the minimum number of moves needed for player X to reach cell
A. In the example above, Dy (C6) =4 and Dp(C6) = 2.

We compute the minimum number of moves needed for each player in this
manner for each blank cell on the board and take the sum over all blank cells
to obtain the evaluation of the game-state based on the territories. We define
territory evaluation of a state X for Py as follows.

Tw(X)= Y  Ai(Dw(A),Dp(A)),
empty cells A
where
0 (n=m=o0)
aimm =37
-1 (n>m)

The evaluation value of the cells that both players reach in the same number of
moves may be set to an arbitrary value; in setting it to % we followed [21].

3.3 Relative Territory Evaluation

The basic idea of relative territory evaluation is similar to that of territory eval-
uation. In essence, territory evaluation counts the number of cells that can be
reached by a player in less moves than by the other player, disregarding the
actual difference in the number of moves. In contrast, relative territory evalua-
tion assesses the difference in the number of moves needed by the two players to
reach each blank cell. Let us define relative territory evaluation of state X for
Py as follows.
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RTw (X) = Z A2(Dw(A), Dp(4))
empty cells A
where
5 (m = o0,n < 00)
Ao(n,m) = -5 (n=o00,m < 00)
0 (n =00, m = )

m—n (otherwise)

For a cell which can be reached by only one of the players, the difference in
number of moves is by default infinite. However, for implementation purposes it
is convenient to avoid treating infinity and so we set the difference to 5 in those
cases.

4 Monte-Carlo Tree Search

A Monte-Carlo algorithm [23] is a randomized algorithm whose output is allowed
to be incorrect with a certain probability. Even though the answer may be
incorrect, in some cases this approach can be much more efficient than using
deterministic algorithms. A Monte-Carlo tree search (MCTS) [6] is a Monte-
Carlo algorithm suitable for certain decision processes, most notably employed
in game playing. Random simulations in a game tree called playouts are employed
to select the next move by game playing programs. MCTS has received consid-
erable interest due to its great success in playing Go [7].

MCTS employs playouts, which are simulations to determine the outcome
of a game played by two players who choose their moves randomly until the
game ends. As a refinement of MCTS, the method of upper confidence bounds
applied to trees (UCT) was introduced by Kocsis and Szepesvari [19] based on
the UCBI algorithm proposed by Auer et al. [2]. In a game state G with child
states G1,...,Gg, a UCT algorithm selects a child state for which the UCB1
value is maximal among the ones computed for each G;. The UCB1 value of
each child state G; is defined by the following equation:

2logn

1 1
UCB1(G;) :z:i+\/0gnmin(4,:ci:z:i2+ )

n; n;
where

— n is the number of playouts executed from game state G,

— n; is the number of playouts executed from child state G;,

- T = i— is the win-loss ratio of G;, where x; is the number of wins among
playouts from G;.

A UCT program does not necessarily have an evaluation function and its
move selection depends only on the result of playouts.

Through selecting a child node, executing the playout, and repeatedly updat-
ing winning percentages, it is possible to find the most selected child node and
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recommend it as the final move. UCT explores the game tree to a great depth
by repeating playouts, therefore it can be configured to be a strong player by
increasing the number of searches (or the allowed search time).

5 Experiment

5.1 UCT vs. Alpha-Beta

We compared a UCT algorithm and Alpha-Beta pruning by letting these two
programs play Amazons against each other. This experiment not only compared
the relative strength of UCT and Alpha-Beta pruning in Amazons but also aimed
to evaluate the improvement of the UCT program when increasing the number
of allowed searches.

We employed a simple UCT program not using heuristic techniques such as
pruning. The number of playouts performed was 10000, 30000, 50000, 100000,
200000. The Alpha-Beta pruning programs had maximum search depth 2 and
used one of the three types of evaluation functions described in Sect. 4, respec-
tively.

We executed the experiment on a 10 x 10 board. For each match-up, we
performed 50-50 simulations with the UCT program being the first player and
the second player, respectively, and we recorded the number of times the UCT
program won. In addition, we recorded the average time taken by UCT and
Alpha-Beta pruning to make one move and the average time it took to play one
game. This experiment was performed by using an Amazons match simulator
written in C#, developed by us. To be able to measure the times correctly,
while one game playing program is searching for a move, the other does not
compute anything. Our experiments were run on a computer with Windows 7
Professional(64bit), having an Intel(R) Xeon(R) CPU E31245(3.30 GHz) and
memory of 16 GB.

5.2 Experimental Results

Table 1 shows the number of times that the UCT programs (with different num-
ber of playouts) won against the three Alpha-Beta pruning players out of 100
games (50-50 as first and second player, respectively). Figure 3 shows the average
time taken for a move by the programs. The vertical axis of the graph is average
search time for one move; the horizontal axis represents the number of playouts
performed by the UCT. The time taken by the Alpha-Beta pruning algorithms
to compute a move only depends on the depth (2) and on the individual states
being evaluated. As the depth was fixed, the slight variations in average com-
puting time for the Alpha-Beta pruning programs is probably due to having
to evaluate different game states reached by the changing strategy of the UCT
programs and to the relatively low number of matches between the programs.
We expect that increasing the number of head-to-head matches would drive the
averages closer to each other approximating a horizontal line.
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Table 1. UCT vs Alpha-Beta: number of wins for the UCT.

Mobility | Territory | Relative territory
UCT 10000 |71 1 9
30000 |89 8 40
50000 |90 11 43
100000 | 97 24 57
200000 | 100 34 66

With respect to the number of wins of UCT against Alpha-Beta pruning, the
winning percentages of UCT were very different depending on the evaluation
function of the opponent. territory evaluation is strongest when comparing the
three types of evaluation functions. Against TE, even the UCT program with
200000 playouts won only 34 out of 100. In contrast, when playing against mobil-
ity evaluation, the UCT gained significant strength by increasing the number of
playouts, the strongest one (200000 playouts) winning all 100 matches.

There are clear differences in the number of wins against the three evaluation
functions, but it can be clearly seen that even when the UCT performed poorly
(vs. TE) its number of wins was much higher with 200000 playouts than with
10000.

60
50 1

a0 |

——UCT (vs M)
30
UCT (vsT)
—h— T,
20 UCT (vsRT)

10 +

10000 30000 50000 100000 200000

Fig. 3. UCT vs Alpha-Beta: the average time taken by the programs to make a move
(sec).

Now let us see the computation time required to make one move by the
programs. With 10000 playouts, the UCT needed on average 4s to decide on
a move and this is almost the same as for Alpha-Beta pruning. However, the
required time increased in accordance with the increase in the number of play-
outs. The UCT program with 100000 playouts needed on average 30s, while the
UCT with 200000 playouts took on average 55s. The UCT program with 200000
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playouts had less wins than losses against Alpha-Beta pruning using territory
evaluation, even though it required more than 30 times the computation time of
the Alpha-Beta pruning program.

Meanwhile, among the three versions of Alpha-Beta pruning there was only
a small difference in computing time due to the difference in the evaluation
function. Alpha-Beta pruning using mobility evaluation did not record a single
win against the UCT with 200000 playouts. However, against relative territory
evaluation under the same conditions the UCT won only 34 times. This means
that while increasing the number of playouts improved the UCT program, the
gain depended heavily on the evaluation function of the opponent, while Alpha-
Beta pruning was greatly enhanced by changing the heuristic. Moreover, the
increase in playouts caused a significant increase in computing time for UCT,
whereas the computing time for Alpha-Beta pruning was not greatly influenced
by the change in the evaluation function.

6 Conclusions

We conducted an experiment in which we set UCT based strategies against
Alpha-Beta pruning ones in Amazons matches. We showed that even Alpha-Beta
pruning with territory evaluation is faster than the simple UCT. Increasing the
number of playouts (and thus computing time, too) led to improvements in the
UCT. However, with 200000 playouts allowed, the UCT program consumed 30
times more computation time and still only won 34 out of 100 games against
Alpha-Beta pruning using territory evaluation. In conclusion, it looks like there
is more to gain in playing strength for Amazons programs by improving the
evaluation function and using classical methods like Alpha-Beta pruning than
by increasing the number of playouts using the MCTS strategy.
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