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Preface

This volume contains the contributed papers and the summaries of the invited
talks of the 24th International Conference on Automated Reasoning with Ana-
lytic Tableaux and Related Methods, which was held during September 21-24 in
Wroc�law, Poland.

TABLEAUX 2015 was colocated with the 10th International Symposium on
Frontiers of Combining Systems (FroCoS 2015), whose proceedings also appeared
in the LNAI series of Springer (Volume 9322).

TABLEAUX 2015 received 34 reviewable submissions, of which 4 were sys-
tem descriptions. After reviewing, 19 full papers and 2 system descriptions were
accepted. Each submission was reviewed by at least three Program Committee
members, often with the help of external reviewers. The criteria for reviewing
were correctness, theoretical importance, and possible implementability.

The Program Committee of TABLEAUX 2015 consisted of 23 members from
11 countries in Europe, South America, and Australia. In addition, 31 external
reviewers were consulted. I am very grateful to everyone who was involved in
the reviewing process.

In addition to the contributed papers, this volume contains summaries of the
three invited talks given by Christoph Benzmüller, Roy Dyckhoff, and Oliver
Ray. Together with the Program Committee, I tried to select invited speakers
working on diverse topics, varying from the study of tableaux calculi and for-
malization of higher-order modal logics, to applications of logic in biology and
metaphysics.

The FroCoS conference had three invited talks as well, given by Andreas
Herzig, Philipp Rümmer, and Thomas Sturm. These talks could be freely at-
tended by TABLEAUX participants.

During the reviewing process, a new conference management system was
used, which is called CoCon, with Andrei Popescu and Sergey Grebenshchikov
as main developers. Distinguishing features of CoCon are that it runs locally,
and that its confidentiality has been formally verified using the proof assistant
Isabelle.

I am grateful to Tomasz Wierzbicki and Katarzyna Wodzyńska for their help
with local organization, and to Andrei Popescu for developing the web pages of
the conference.

I gratefully acknowledge sponsoring from Human Dialog, Wroc�law, and from
Springer. Rest assured - your money was well spent!

July 2015 Hans de Nivelle
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Stéphane Graham-Lengrand CNRS - École Polytechnique, Palaiseau, France
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Coherentisation of First-Order Logic

Roy Dyckhoff�

University of St Andrews, St Andrews, UK

roy.dyckhoff@st-andrews.ac.uk

http://rd.host.cs.st-andrews.ac.uk/

Abstract. This talk explores the relationship between coherent (aka
“geometric”) logic and first-order logic FOL, with special reference to
the coherence/geometricity required of accessibility conditions in Negri’s
work on modal logic (and our work with her on intermediate logic). It
has been known to some since the 1970s that every first-order theory
has a coherent conservative extension, and weaker versions of this result
have been used in association with the automation of coherent logic; but,
it is hard to find the result in the literature. We discuss various proofs
of the result, and present a coherentisation algorithm with the desirable
property of being idempotent. An announcement was in [7]; details can
be found in [8].

Keywords. Coherent logic, Accessibility conditions, Modal logic,
Intermediate logic, Automated reasoning.

* The author’s research summarised in this talk is a result of past and on-going col-
laboration with Sara Negri at the University of Helsinki.



On a (Quite) Universal Theorem Proving

Approach and Its Application in Metaphysics

Christoph Benzmüller�

Freie Universität Berlin, Germany

c.benzmueller@fu-berlin.de

Abstract. Classical higher-order logic is suited as a meta-logic in which
a range of other logics can be elegantly embedded. Interactive and au-
tomated theorem provers for higher-order logic are therefore readily
applicable. By employing this approach, the automation of a variety
of ambitious logics has recently been pioneered, including variants of
first-order and higher-order quantified multimodal logics and conditional
logics. Moreover, the approach supports the automation of meta-level
reasoning, and it sheds some new light on meta-theoretical results such
as cut-elimination. Most importantly, however, the approach is relevant
for practice: it has recently been successfully applied in a series of ex-
periments in metaphysics in which higher-order theorem provers have
actually contributed some new knowledge.

* This work has been supported by the German Research Foundation DFG under
grants BE2501/9-1,2 and BE2501/11-1.



Symbolic Support for Scientific Discovery in
Systems Biology

Oliver Ray

Department of Computer Science, University of Bristol, UK
csxor@bristol.ac.uk

http://www.cs.bris.ac.uk/~oray

Abstract. The talk will showcase recent work on the mechanisation
of scientific inference in systems biology in order to highlight some no-
table developments and open challenges from the perspective of com-
putational logic. It will place particular emphasis on the importance of
non-monotonic, non-deductive and meta-logical inference for automat-
ing the theory revision and experiment design aspects of the scientific
method. These ideas will be illustrated by means of a case study involv-
ing the metabolism of yeast and a real-world Robot Scientist platform.
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Invited Talk: Coherentisation

of First-Order Logic

Roy Dyckhoff�

University of St Andrews, St Andrews, UK
roy.dyckhoff@st-andrews.ac.uk

http://rd.host.cs.st-andrews.ac.uk/

Abstract. This talk explores the relationship between coherent (aka “ge-
ometric”) logic and first-order logic FOL, with special reference to the co-
herence/geometricity required of accessibility conditions in Negri’s work
on modal logic (and our work with her on intermediate logic). It has been
known to some since the 1970s that every first-order theory has a coherent
conservative extension, and weaker versions of this result have been used in
association with the automation of coherent logic; but, it is hard to find the
result in the literature. We discuss various proofs of the result, and present
a coherentisation algorithm with the desirable property of being idempo-
tent. An announcement was in [7]; details can be found in [8].

Keywords: coherent logic, accessibility conditions, modal logic,
intermediate logic, automated reasoning

1 Definitions

With the exception of the last definition, the following are old: see [8].
Kreisel-Putnam logic KP is the intermediate logic axiomatised over intu-

itionistic logic by the formula (¬A ⊃ (B ∨ C)) ⊃ ((¬A ⊃ B) ∨ (¬A ⊃ C)). It is
characterised by the accessibility condition:

∀xyz. (x ≤ y ∧ x ≤ z) ⊃ (y ≤ z ∨ z ≤ y ∨ ∃u.(x ≤ u ∧ u ≤ y ∧ u ≤ z ∧ F (u, y, z)))

where F (u, y, z) abbreviates ∀v. u≤v ⊃ ∃w. (v≤w ∧ (y≤w ∨ z≤w)).
A formula of FOL is positive1, aka “coherent”, iff built from atoms (i.e. �,⊥,

equations and prime formulae P (t)) using only ∨, ∧ and ∃. (Terms t can be
compound.)

A sentence is a coherent implication iff of the form ∀x. C ⊃ D, where C,D
are positive. Also called a “geometric implication”.

A sentence is a special coherent implication (SCI) iff of the form ∀x. C ⊃ D
where C is a conjunction of atoms and D is a finite disjunction of existentially
quantified conjunctions of atoms. Also called a “coherent implication”.

A first-order theory is coherent (aka “geometric”) iff axiomatisable by coherent
implications. Wlog these can be SCIs.

� The author’s research summarised in this talk is a result of past and on-going
collaboration with Sara Negri at the University of Helsinki.

1 Model theorists have a different usage, allowing also ∀. Our usage is from [12].

c© Springer International Publishing Switzerland 2015
H. De Nivelle (Ed.): TABLEAUX 2015, LNAI 9323, pp. 3–5, 2015.
DOI: 10.1007/978-3-319-24312-2_1

http://rd.host.cs.st-andrews.ac.uk/


4 R. Dyckhoff

A first-order theory is a conservative extension of the f.-o. theory T iff theo-
remhood in the two theories coincides for formulae in the language of T .

A formula of FOL is weakly positive iff the only occurrences of ¬, ⊃ and ∀ are
positive occurrences. [Equivalently, iff the only occurrences of ¬, ⊃ and ∀ are
strictly positive.] Formulae in NNF are weakly positive; so are positive formulae.

2 Results

Every First-Order Theory has a Coherent Conservative Extension.
The proof technique goes back to Skolem [18], and involves “atomisation”—the
addition of new predicate symbols to the signature and new axioms, in SCI form,
to give them meaning. Interestingly, a model-theoretic argument shows this to
be distinct from the use of abbreviative definitions.

The first trace of a weak version of this result seems to be in the unpublished
1975 Montréal thesis [1]. Other traces are in [3], [12], [15] and (with extensive
discussion of different algorithms) [16]. The weak versions say only that (e.g.) an
equi-satisfiable (e.g. in the sense of “satisfiable in the same domains”) coherent
extension may be constructed. Some algorithms replace all non-atomic formulas
of the language, or just all non-atomic subformulas of the axioms of the theory,
by new atoms.

We present a new algorithm (for converting an axiom A to a finite set of
SCIs that axiomatise a conservative extension of the theory axiomatised by A),
which is, rather than beginning with a structure-destroying conversion to NNF,
idempotent. In other words, applied to a formula already in SCI form, it has no
effect; and for others, such as the above condition for KP, it makes only minimal
changes. First, it is trivial to convert a formula by simple classical equivalences
such as (C ⊃ D) ⊃ B ≡ (C ∧ ¬D) ∨ B to weakly positive form: NNF would
do, but usually changes too much for our purposes. Second, analysis of a weakly
positive formula directly generates appropriate SCIs, essentially as already noted
in [14]. By applying certain simple intuitionistic equivalences their number can
be reduced. An implementation can be found at our website.

For completeness we will mention, but have little new to say on, the automa-
tion of coherent logic itself, for which see e.g. [2], [3], [4], [9], [11], [15], [16] and
[17]. For recent views from a different perspective, mentioning neither “coherent”
nor “geometric”, see (e.g.) [5] and [10].

3 Significance

Apart from the general significance—coherent logic offers, like tableaux, a good
alternative to resolution [loss of formula structure, Skolemisation], as argued by
[3] and others—the results are applicable to Negri’s labelled sequent calculi (or
equivalent prefixed tableaux) for modal [13] and intermediate [6] logics, where
accessibility conditions have to be SCIs.

We stop short of a full translation of (e.g.) modal formulas into FOL, pre-
ferring to let ordinary sequent calculus (or tableaux) handle them and to let
coherent logic handle the accessibility conditions. In other words, logics such as
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Kreisel-Putnam logic KP (where the standard condition given above is not an
SCI) can easily be reformulated so that the conditions become SCIs, as already
observed in (for KP) [6] and in [7].
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A Propositional Tableaux Based Proof Calculus

for Reasoning with Default Rules�

Valent́ın Cassano1, Carlos Gustavo Lopez Pombo2,3, and Thomas S.E.
Maibaum1

1 Department of Computing and Software, McMaster University, Canada
2 Departamento de Computación, Universidad Nacional de Buenos Aires, Argentina

3 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET)

Abstract. Since introduced by Reiter in his seminal 1980 paper: ‘A
Logic for Default Reasoning’, the subject of reasoning with default rules
has been extensively dealt with in the literature on nonmonotonic reason-
ing. Yet, with some notable exceptions, the same cannot be said about its
proof theory. Aiming to contribute to the latter, we propose a tableaux
based proof calculus for a propositional variant of Reiter’s presentation
of reasoning with default rules. Our tableaux based proof calculus is
based on a reformulation of the semantics of Reiter’s view of a default
theory, i.e., a tuple comprised of a set of sentences and a set of default
rules, as a premiss structure. In this premiss structure, sentences stand
for definite assumptions, as normally found in the literature, and default
rules stand for tentative assumptions, as opposed to rules of inference, as
normally found in the literature. On this basis, a default consequence is
defined as being such relative to a premiss structure, as is our notion of a
default tableaux proof. In addition to its simplicity, as usual in tableaux
based proof calculi, our proof calculus allows for the discovery of the
non-existence of proofs by providing corresponding counterexamples.

1 Introduction

It is commonly recognized that the subject of reasoning with default rules, hence-
forth default reasoning, occupies a prominent role in the logical approach to
non-monotonic reasoning. Introduced by Reiter in his seminal 1980 paper, ‘A
Logic for reasoning with Default Rules’ (q.v. [1]), default reasoning has been
extensively investigated from a syntactical and semantical point of view, with
several variants to Reiter’s original ideas being proposed (q.v. [2]).

On the other hand, the proof theoretical aspects of default reasoning seem
to have received far less attention. More precisely, Reiter’s own discussion on
a proof theory for normal default rules, in the later sections of [1], does not

� Valent́ın Cassano and Thomas S.E. Maibaum wish to acknowledge the support of the
Ontario Research Fund and the Natural Sciences and Engineering Research Council
of Canada. Carlos G. Lopez Pombo’s research is supported by the European Union
7th Framework Programme under grant agreement no. 295261 (MEALS), and by
grants UBACyT 20020130200092BA, PICT 2013-2129, and PIP 11220130100148CO.

c© Springer International Publishing Switzerland 2015
H. De Nivelle (Ed.): TABLEAUX 2015, LNAI 9323, pp. 6–21, 2015.
DOI: 10.1007/978-3-319-24312-2_2
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necessarily formulate a proof calculus, for it gives no particular set of rules for
constructing proof-like objects. Instead, for us, this discussion is best understood
as another way of formally defining the concept of an extension, in this case for
default rules that are normal. In the context of tableaux methods, works such
as that of Risch in [3] and that of Amati et. al. in [4] are also focused on the
concept of an extension, extending the work of Reiter by providing tableaux
based definitions, and by proving some general properties, of its major variants.
However, in and of themselves, neither [3] nor [4] present a tableaux based proof
calculus, i.e., a mechanization of a consequence relation, for default reasoning.

In contrast, a noteworthy contribution in a rather traditional proof-theoretical
line of research is the work of Bonatti and Olivetti in [5]. Therein, the authors
present a sequent calculus for what they call skeptical default logic, a proposi-
tional variant of Reiter’s presentation of default reasoning where default conse-
quences are drawn skeptically. The work of Bonatti and Olivetti gains in interest
for it introduces a complete mechanization of a consequence relation for default
reasoning in proof-theoretical terms via the notion of an anti-sequent calculus.

In this work, also in a rather traditional proof-theoretical line of research, at
least when seen from the perspective of a standard presentation of a tableaux
method, we present a tableaux based proof calculus for a propositional variant of
Reiter’s presentation of default reasoning where default consequences are taken
skeptically. More precisely, we reformulate the semantics of Reiter’s view of a
default theory, i.e., a tuple comprised of a set of sentences and a set of default
rules, as a premiss structure. In this premiss structure, sentences stand for def-
inite assumptions, as commonly found in the literature on default reasoning,
and default rules stand for tentative assumptions, a departure from the common
treatment of default rules as rules of inference normally found in the literature
on default reasoning. It is on this basis that we propose our tableaux based proof
calculus. In doing this, we have two main goals in mind. First, we aim at con-
tributing to the mechanization of the notion of derivability for default reasoning.
Second, we view the tableaux based proof calculus that is presented here as a
first step towards an abstract definition of default tableaux proof calculi, i.e.,
one that is independent of the underlying logical system. To give an idea of the
latter, a tableau method for a logic L is a procedure for testing for the existence
of models for sets of formulas of L which can be used to construct canonical
models by applying rules for decomposing formulas into their components in a
structured and semantics preserving way. In the presence of negation,1 a tech-
nique for building models can be understood as a refutation mechanism for the
logic. This allows for tableaux methods to be used as proof calculi (for a set of
sentences Γ ∪ {σ} of L, proving σ from Γ , Γ �L σ, requires us to check that
there is no model of Γ ∪ {¬σ}). Model construction and provability as features
of a tableaux method for a logic L accommodate the use of default rules defined

1 A logic L defined on a language L is said to have negation if for any sentence σ in
L , there is a sentence σ′ in L , denoted as ¬σ, such that for any set Γ of sentences
in L , Γ |=L σ iff Γ �|=L ¬σ (where |=L indicates semantic entailment in L).
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on the language of L in the form of premiss assumptions that are only used
tentatively. These features set the context for a default tableaux method.

Structure of this work: §2 introduces the basics of a tableaux based proof calculus
for classical propositional logic and a propositional variant of Reiter’s presen-
tation of default reasoning; §3 introduces our proposed tableaux based proof
calculus for the propositional variant of Reiter’s presentation of default reason-
ing in question; §4 discusses our ideas; lastly, §5 offers some conclusions and
comment on some of the further work that we plan to undertake.

2 Preliminaries

2.1 Propositional Tableaux

Let L be the standard propositional language determined by a denumerable set
of propositional symbols p, q, . . . and the logical connectives of: � and ⊥ (‘truth’
and ‘falsity’); ¬ (‘negation’); ∧, ∨, and ⊃ (‘conjunction’, ‘disjunction’, and ‘ma-
terial implication’). Members of L , indicated by lowercase Greek letters, are
called sentences. A substitution is a mapping s from the propositional symbols
of L into L . It is a well-known result that any substitution s extends uniquely
to all members of L . A sentence σ is a substitution instance of another sentence
σ′ iff σ = s(σ′) for s a substitution. A sentence σ is: a literal if it is either a
propositional variable or a negation thereof; of linear type if it is a substitution
instance of p∧q, ¬(p∨q), ¬(p ⊃ q), or ¬¬p; of branching type if it is a substitution
instance of ¬(p∧q), p∨q, or p ⊃ q. The lowercase Greek letters α and β indicate
arbitrary sentences of linear and branching type, respectively. The components
of a sentence α of linear type, and of a sentence β of branching type, indicated
as α1 and α2, and as β1 and β2, respectively, are defined as usual – e.g., if α is a
substitution instance of p∧q, then, its components are the corresponding substi-
tution instances of p and q, respectively; if β is a substitution instance of p ⊃ q,
then, its components are the corresponding substitution instances of ¬p and q,
respectively. The previous unifying notation, quoting Smullyan, “will save us
considerable repetition of essentially the same arguments” (q.v. [6, pp. 20–21]).

Definition 1 (Tableau from Premisses). Let σ be a sentence and Γ be a
finite set of sentences; the set of all tableaux for σ with premisses in Γ is the
smallest set of labeled trees T that satisfies the following conditions:

R0 The unique one-node labeled tree with label {σ}∪Γ ′, where Γ ′ ⊆ Γ , is in T .
– Let τ be in T , l be a leaf of τ with label Γ ′, and τ ′ a labeled tree:

R1 If a sentence α of linear type belongs to Γ ′, and τ ′ is obtained from τ by
adding a new node n′ with label Γ ′ ∪ {α1, α2} as an immediate successor of
l, then, τ ′ belongs to T .

R2 If a sentence β of branching type belongs to Γ ′, and τ ′ is obtained from τ
by adding two new nodes n′ and n′′ with labels Γ ′ ∪ {β1} and Γ ′ ∪ {β2},
respectively, as immediate successors of l, then, τ ′ belongs to T .
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R3 For any sentence γ in Γ , if τ ′ is obtained from τ by adding a new node n′

with label Γ ′ ∪ {γ} as immediate successors of l, then, τ ′ belongs to T .

A labeled tree τ is a tableau for σ with premisses in Γ iff it is a member of T .

Definition 1 emphasizes the view of tableau constructions as proof-theoretical
objects, more precisely, proof attempts, i.e., we view a tableau for ¬σ with pre-
misses in Γ as an attempt at proving that σ is a consequence of the set of pre-
misses Γ , with any closed tableau for ¬σ with premisses in Γ being a successful
proof attempt, i.e., a proof. This view of a proof is made precise in Definition 3
with the aid of Definition 2.

Definition 2 (Closed Tableau). Let τ be a tableau for σ with premisses in
Γ ; a node n of τ with label Γ ′ is closed iff one of the following conditions holds:

– {⊥,¬�} ∩ Γ �= ∅.
– {σ,¬σ} ⊆ Γ for some sentence σ.

The node n is open iff it is not closed. The tableau τ is closed iff all its leaf nodes
are closed, otherwise τ is open.

Definition 3 (Proof). Let σ be a sentence and Γ a finite set of sentences; a
proof of σ from Γ is a closed tableau for ¬σ with premisses in Γ . The sentence σ
is provable from Γ iff there is a proof of σ from Γ . In addition, σ is a consequence
of Γ , or follows from Γ , indicated by Γ � σ, iff σ is provable from Γ .

(a) ¬r
p ⊃ (q ⊃ r)

(b) ¬r
p ⊃ (q ⊃ r)
¬p

(c) ¬r
p ⊃ (q ⊃ r)
q ⊃ r

(d) ¬r
p ⊃ (q ⊃ r)
¬p
p

(e) ¬r
p ⊃ (q ⊃ r)
q ⊃ r
¬q

(f) ¬r
p ⊃ (q ⊃ r)
q ⊃ r
r

(g) ¬r
p ⊃ (q ⊃ r)
q ⊃ r
¬q
q

Fig. 1. Tableau for ¬r with premisses in {p, q, p ⊃ (q ⊃ r)}

Fig. 1 depicts proof of r from {p, q, p ⊃ (q ⊃ r)}. In this figure, (a) is the initial
node from which τ is constructed as per R0 in Definition 1; nodes (b) and (c)
are added as immediate successors of (a) as per R2 in Definition 1; nodes (d) is
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added as an immediate successor of (b) as per R3 in Definition 1; nodes (e) and
(f) are added as immediate successors of (c) as per R2 in Definition 1; and lastly,
node (g) is added as an immediate successor of (e) as per R3 in Definition 1.

While finding a proof of σ from Γ is the same as finding that there are no
models of Γ ∪ {¬σ}, the latter being a more common use for tableau construc-
tions, we favor the view of tableau constructions as proof attempts for it more
readily construes the method of tableaux as a proof calculus. It is a well-known
result that such a proof calculus is both sound and complete with respect to the
standard model theory of classical propositional logic (q.v. [6]).

Moreover, there are two properties of the previous presentation of the method
of tableaux as a proof calculus that are worth noting: (i) it can be demonstrated
that any attempt at proving that σ follows form Γ can be extended to a successful
one if such a proof were to exist; and (ii) tableau constructions also make it
possible to discover the nonexistence of proofs by looking at some particular
tableau constructions. The second point is made precise below.

Definition 4 (Completed Tableau). Let τ be a tableau for σ with premisses
in Γ ; a node n of τ with label Γ ′ is completed iff the following conditions are
met:

– For any sentence α of linear type, if α ∈ Γ ′, then, {α1, α2} ⊆ Γ ′.
– For any sentence β of linear type, if β ∈ Γ ′, then, either β1 ∈ Γ ′ or β2 ∈ Γ ′.
– Γ ⊆ Γ ′.

The tableau τ is completed iff all leaf nodes of τ are completed.

(a) ¬r
p ∧ q ⊃ r

(b) ¬r
p ∧ q ⊃ r
¬(p ∧ q)

(c) ¬r
p ∧ q ⊃ r
r

(d) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬p

(e) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬q

(f) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬p
p

(g) ¬r
p ∧ q ⊃ r
¬(p ∧ q)
¬q
p

Fig. 2. Tableau for ¬r with premisses in {p, p ∧ q ⊃ r}

From the perspective of a proof calculus, Definition 4 gains in interest for: (i)
it indicates to us when to stop in the construction of a sought after proof; and
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(ii) if a completed tableau is not closed, i.e., it has a leaf node that is open, then,
the set of sentences labeling this node is satisfiable (q.v. node (g) in Fig. 2).
This result, known as Hintikka’s lemma, q.v., [6, pp. 26–28], indicates that the
sought after proof does not exist (a result that will be used in the definition of
a tableaux method for default reasoning presented in Section 3). Non-existence
of proofs is made precise in Proposition 1.

Proposition 1. Let τ be a tableau for ¬σ with premisses in Γ ; if τ has a leaf
node that is open and complete, then, no expansion of τ results in a closed tableau
for ¬σ with premisses in Γ , i.e., a proof of σ from Γ .

2.2 Reasoning with Default Rules

The set D of all default rules defined on the standard propositional language L
is the set of all tuples

π : ρ

χ

where {π, ρ, χ} ⊆ L . Members of D , for inline formatting purposes displayed
as π : ρ / χ, are called default rules. In a default rule π : ρ / χ, the sentences
π, ρ, and χ are called: prerequisite, justification, and consequent, respectively.
For a set of default rules Δ, Π(Δ) indicates the set of all prerequisites of the
default rules in Δ, i.e., Π(Δ) = {π | π : ρ / χ ∈ Δ}; P (Δ) indicates the set
of all justifications of the default rules in Δ, i.e., P (Δ) = {ρ | π : ρ / χ ∈ Δ};
and X(Δ) indicates the set of all consequents of the default rules in Δ, i.e.,
X(Δ) = {χ | π : ρ / χ ∈ Δ}.

Departing from the position sustaining that a default rule is a defeasible
rule of inference, i.e., a rule of inference that is open to revision or annulment,
commonly found in the literature on default reasoning, we view a default rule
π : ρ / χ as indicating an assumption that is made tentatively: χ can be posited
provided that π is fulfilled and that ρ is not established (ρ acts as a rebuttal
condition). This view of default rules is based on the observation that they are
not logic defining rules of inference, but, instead, they are premiss-like objects
defined in the logic. On this basis, given a set of sentences Φ and a set of default
rules Δ, we reformulate Reiter’s view of 〈Φ,Δ〉 as a default theory, q.v. [1, p. 88],
as a premiss structure. In this premiss structure, the sentences in Φ stand for
definite assumptions and the default rules in Δ stand for tentative assumptions.

The notion of a default consequence δ of a premiss structure 〈Φ,Δ〉, indicated
by 〈Φ,Δ〉 |∼ δ, is then justified resorting to the notion of an extension. More
precisely, a sentence δ is a default consequence of a premiss structure 〈Φ,Δ〉 iff
for every extension E of 〈Φ,Δ〉, E � δ. In this respect, an extension is seen as
an interpretation structure of a syntactical kind, i.e., the usual role of a model
is taken up by an extension. The notion of an extension in question here is
introduced in Definition 7 with the aid of Definitions 5 and 6. Several other
variants of Reiter’s notion of an extension are presented in [2].

Definition 5. A set of default rules Δ is tentative w.r.t. a set of sentences Γ
iff every π : ρ / χ ∈ Δ is such that: (i) Γ � π, and (ii) Γ ∪X(Δ) �� ρ.
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Example 1. The set of default rules {p : q / r, r : s / t} is tentative w.r.t. the set
of sentences {p}, but not w.r.t. the set of sentences {p, q}.

Definition 6. A set of default rules Δ is sequentiable w.r.t. a set of sentences
Φ iff there is a chain C of subsets of Δ ordered by inclusion such that: (i) ∅ ∈ C;
(ii) let Δ′ ∈ C and δ ∈ Δ \Δ′, if Δ′ ∪ {δ} is tentative w.r.t. Φ ∪ X(Δ′), then
Δ′ ∪ {δ} ∈ C; and (iii) Δ =

⋃
Δ′∈C Δ′.

Example 2. The set of default rules {p : q / r, r : s / t} is sequentiable w.r.t. the
set of sentences {p}. The set of default rules {p : u / q ∧ t, p : t / r ∧ u} is not
sequentiable w.r.t. the set of sentences {p}.

Definition 7 (Extension). Let Φ be a set of sentences and Δ be a set of default
rules; the class E of extensions of 〈Φ,Δ〉 consists of all sets Φ ∪ X(Δ′), where
Δ′ is a subset of Δ such that: (i) Δ′ is sequentiable w.r.t. Φ; and (ii) for any
other Δ′′ ⊆ Δ that is sequentiable w.r.t. Φ, if Δ′ ⊆ Δ′′, then, Δ′′ = Δ′. A set E
of sentences is an extension of 〈Φ,Δ〉 iff E ∈ E .

Example 3. The class of extensions associated to the premiss structure 〈{p, p ⊃
(q ∨ r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉 consists of the sets E1 and E2 defined
as: E1 = {p, p ⊃ (q ∨ r ⊃ s), q ∧ t}, and E2 = {p, p ⊃ (q ∨ r ⊃ s), r ∧ u}.

Proposition 2 states two important properties that are satisfied by extensions
if defined as in Definition 7.

Proposition 2. For every premiss structure 〈Φ,Δ〉, the class E of extensions
of 〈Φ,Δ〉 is not empty. Moreover, extensions, as in Definition 7, satisfy the
property of semimonotonicity, i.e., for any two premiss structures 〈Φ,Δ〉 and
〈Φ,Δ ∪Δ′〉, every extension of 〈Φ,Δ〉 is included in some extension of 〈Φ,Δ′〉.

Examples 4 and 5 illustrate the way in which the notion of an extension
justifies the notion of a default consequence.

Example 4. Let 〈Φ,Δ〉 be the premiss structure of Example 3, the sentence s
is a default consequence of 〈Φ,Δ〉. To see why this is the case, observe that
the class of extensions associated to this premiss structure is comprised of the
extensions: E1 = {p, p ⊃ (q ∨ r ⊃ s), q ∧ t}, and E2 = {p, p ⊃ (q ∨ r ⊃ s), r ∧ u}.
Immediately, E1 � s and that E2 � s. Hence 〈Φ,Δ〉 |∼ s.

Example 5. At the same time, observe that if 〈Φ,Δ〉 is as in Example 3, the
sentence t is not a default consequence of 〈Φ,Δ〉. To see why this is the case,
observe that, whereas E1 � t, E2 �� t. Hence 〈Φ,Δ〉 �|∼ t.

It should be noted that, given the machinery presented above, determining
whether a sentence is a default consequence of a premiss structure requires an
enumeration-based approach, i.e., all extensions associated to the premiss struc-
ture in question must be constructed in order to check whether the alleged default
consequence is indeed so (something that may be done by constructing suitable
tableaux and checking whether they are closed, e.g., following the approaches
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proposed in [3] and in [4]). This enumeration-based approach is rather inefficient
for two main reasons. First, constructing all extensions associated to a premiss
structure is rather costly, the number of extensions associated with non-trivial
premiss structures being exponential in the number of default rules. Second, enu-
merating all extensions associated to a premiss structure requires us to consider
all default rules in this premiss structure. What is then needed is a systemati-
zation of the kind of reasoning involved in proving in all extensions, i.e., a proof
calculus for default reasoning. In that respect, being able to check that a sen-
tence is a default consequence of a premiss structure resorting only to a part of
this premiss structure is a highly desirable feature of a proof calculus for default
reasoning. Although this is not a trivially achieved, we incorporate it as a basic
guiding feature in the tableaux based proof calculus that we present in Section 3.

3 Default Tableaux

Definition 8 introduces the basic elements of the tableaux based proof calculus
for default reasoning, the notion of a default tableau.

Definition 8 (Default Tableau). Let σ be a sentence, and Φ and Δ be finite
sets of sentences and default rules, respectively; the set of all default tableaux for
σ with premisses in 〈Φ,Δ〉 is the smallest set Tdr of labeled trees that satisfies
the following conditions:

R0 The unique one-node labeled tree with label 〈Φ ∪ {σ}, ∅〉 is in Tdr.
– Let τ be in Tdr, l a leaf node of τ with label 〈Φ′, Δ′〉, and τ ′ a labeled tree:

R1 If a sentence α of linear type belongs to Φ′, and τ ′ is obtained from τ by
adding a new node n′ with label 〈Φ′∪{α1, α2}, Δ′〉 as an immediate successor
of l, then, τ ′ is in Tdr.

R2 If a sentence β of branching type belongs to Φ′, and τ ′ is obtained from τ by
adding two new nodes n′ and n′′ with labels 〈Φ′∪{β1}, Δ′〉 and 〈Φ′∪{β2}, Δ′〉,
respectively, as immediate successors of l, then, τ ′ is in Tdr.

– Let n be a node of τ with label 〈Φ′, Δ′〉:
R3 For any default rule π : ρ / χ in Δ, if τ ′ is obtained from τ by adding a new

node n′ with label 〈Φ′ ∪ {χ}, Δ′ ∪ {π : ρ / χ}〉 as an immediate successor of
n, then, τ ′ is in Tdr iff the following side conditions are satisfied:
(a) there is a closed tableau for ¬π with premisses in Φ ∪X(Δ′), and
(b) for every ρ′ ∈ P (Δ′) ∪ {ρ}, there is a tableau for ¬ρ′ with premisses in

Φ ∪X(Δ′) ∪ {χ} that is both complete and open.

A default tableau for σ with premisses in 〈Φ,Δ〉 is a labeled tree τ in Tdr.

In order to understand the basic ideas underpinning the formulation of a
default tableau, consider a situation in which we are required to prove that the
sentence s is a default consequence of the premiss structure 〈{p, p ⊃ (q ∨ r ⊃
s)}, {p : u / q ∧ t, p : t / r ∧ u}〉. In attempting such a proof by refutation, we
need to establish from the premiss structure in question that assuming ¬s leads
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to a contradiction. As a first step, we may attempt this proof by appealing
only to the sentences in {p, p ⊃ (q ∨ r ⊃ s)}. Given this initial standpoint, we
begin our proof with a labeled tree with a single node (a) labeled by L(a) =
{p, p ⊃ (q ∨ r ⊃ s),¬s}. Now, since p ⊃ (q ∨ r ⊃ s) belongs to L(a), we add
as immediate successors of (a) nodes (b) and (c) labeled by L(b) = L(a) ∪ {¬p}
and L(c) = L(a) ∪ {q ∨ r ⊃ s}, respectively. Then, since q ∨ r ⊃ s belongs
to L(c), we add as immediate successors of (c) nodes (d) and (e) labeled by
L(d) = L(c)∪{¬(q∨ r)} and L(e) = L(c)∪{s}, respectively. Lastly, since ¬(q∨ r)
belongs to L(d), we add as an immediate successor of (d) a node (f) labeled by
L(f) = L(d)∪{¬q,¬r}. The previous default tableau construction steps yield the
default tableau, a standard set of sentences labeled tableau, depicted in Fig. 3.

(a) p ⊃ (q ∨ r ⊃ s)
p
¬s

(b) p ⊃ (q ∨ r ⊃ s)
p
¬s
¬p

(c) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s

(d) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)

(e) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s
s

(f) p ⊃ (q ∨ r ⊃ s)
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r

Fig. 3. Default tableau for ¬s with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t,
p : t / r ∧ u}〉

At this point, it may be observed that (b) and (e) are leaf nodes that are
closed, and that (f) is a leaf node that is open and “completed”. However, since
we have not made use of the default rules in the premiss structure, (f) is only
“completed” w.r.t. the tableau construction rules for classical propositional logic.
Our proof is not done yet for we can proceed and use the default rules in the
premiss structure. Given that, as per R3 in Definition 8, the side conditions
hold for applying p : u / q ∧ t hold, we can add as an immediate successor of (f)
a new node (g) labeled by S(g) = S(f) ∪ {q ∧ t}, simultaneously recording that
p : u / q ∧ t has been used. Next, since q ∧ t belongs to S(g), we can add as an
immediate successor of (g) a new node (i) labeled by S(i) = S(g) ∪ {q, t}. It is
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immediate to check that the leaf node (i) is closed and completed in a default
tableau sense. (Given that, as per R3 in Definition 8, the side conditions for
p : t / r ∧ u do not hold, this branch cannot be extended further.)

Notwithstanding, even though (i) is closed and completed, our proof that s is
a default consequence of 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉 is still
unfinished, the reason being that the addition of (g) as an immediate successor
of (f) preempted the use of the other default rule in the premiss structure, i.e.,
of p : t / r ∧ u. Since the main idea underpinning a default tableau is that of
systematizing a notion of provability in all extensions, a default proof should
not depend on a particular selection of default rules to be applied. This means
that we are required to check what would have been the case had we chosen
to resort to p : t / r ∧ u instead of p : u / q ∧ t. Thus, given that, as per R3 in
Definition 8, the side conditions for applying p : t / r ∧ r hold, we need to add
as an immediate successor of (f) a new node (h) labeled by S(h) = S(f)∪{r∧u};
simultaneously recording that p : t / r ∧ r has now been used. This branch can
be completed, in a default tableau sense, by adding a new node (j) with label
S(j) = S(h)∪{r, u} as an immediate successor of (h). These tableau construction
steps yield the default tableau depicted in Fig. 4.

As with Definition 1, underpinning Definition 8 is the idea of emphasizing the
view of default tableau constructions as proof-theoretical objects; more precisely,
as proof-attempts (in this case, the focus is on proving that a sentence is a default
consequence of a finite premiss structure). This view of a default tableau as a
proof-theoretical object, and hence of the method of default tableau as a proof
calculus, is made precise in Definition 11, with the aid of Definitions 9 and 10.

Definition 9 (Closedness). Let τ be a default tableau for σ with premisses in
〈Φ,Δ〉; a node n of τ with label 〈Φ′, Δ′〉 is closed (otherwise it is open) iff either
of the following conditions holds:

– {⊥,¬�} ∩ Φ′ �= ∅.
– {σ,¬σ} ⊆ Φ′ for some sentence σ.

The default tableau τ is closed iff its leaf nodes are closed (otherwise τ is open).

Definition 10 (d-Saturation). Let τ be a default tableau for σ with premisses
in 〈Φ,Δ〉; a node n of τ with label 〈Φ′, Δ′〉 is d-branching iff it has an immediate
successor a node n′ with label 〈Φ′′, Δ′′〉 such that Δ′ ⊂ Δ′′. A d-branching node n
of τ is d-saturated iff adding a new node n′ with label 〈Φ′ ∪{χ}, Δ′∪{π : ρ / χ}〉
as an immediate successor of n, as per R3 in Definition 8, results in n having at
least two immediate successors labeled with the same label. The default tableau τ
is d-saturated iff all of its d-branching nodes are d-saturated.

Example 6. Node (f) in Fig. 4 is both d-branching and d-saturated.

Definition 11 (Default Proof). Let σ be a sentence, and Φ and Δ be finite
sets of sentences and default rules, respectively; a default proof of σ from 〈Φ,Δ〉
is a closed and d-saturated default tableau for ¬σ with premisses in 〈Φ,Δ〉. The
sentence σ is provable from 〈Φ,Δ〉 iff there is a default proof of σ from 〈Φ,Δ〉.
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...
(f) p ⊃ (q ∨ r ⊃ s)

p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r

(g) p ⊃ (q ∨ r ⊃ s) 〈p : u / q ∧ t〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
q ∧ t

(h) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
r ∧ u

(i) p ⊃ (q ∨ r ⊃ s) 〈p : u / q ∧ t〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
q ∧ t
q
t

(j) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬s
q ∨ r ⊃ s
¬(q ∨ r)
¬q
¬r
r ∧ u
r
u

Fig. 4. Default tableau for ¬s with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t,
p : t / r ∧ u}〉

The view of default tableau constructions as constituting a proof calculus for
default reasoning conforms to the following rationale. For a sentence σ and a
finite premiss structure 〈Φ,Δ〉, we can think of any default tableau for ¬σ with
premisses in 〈Φ,Δ〉 as an attempt at proving that σ is a default consequence
of 〈Φ,Δ〉, with any default tableau for ¬σ with premisses in 〈Φ,Δ〉 that is d-
saturated and closed being a successful proof attempt, i.e., a proof that σ is a
default consequence of 〈Φ,Δ〉. By way of example, the default tableau depicted
in Fig. 4 constitutes a proof that s is a default consequence of 〈{p, p ⊃ (q ∨ r ⊃
s)}, {p : u / q ∧ t, p : t / r ∧ u}〉.

Perhaps requiring a bit of explanation is the idea of a node of a default
tableau being d-branching and d-saturated (q.v. Definition 10, exemplified by
node (f) in Fig. 4). While there is no similar concept in the construction of a
standard set labeled tableaux for classical propositional logic, its underpinning
rationale may be understood by drawing the following correspondence. Suppose
that in breaking down syntactically the sentences used in the construction of
a tableau τ we find ourselves dealing with a sentence β of branching type, if
instead of extending τ simultaneously with two nodes, whose labels correspond
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to the components of a sentence of branching type, for whatever reason, we
were restricted to expand τ one node at a time, then, we would not be able to
proceed solely at the level of leaves. In such a scenario, we would be required
to take note of which one of the components of a sentence of branching type
has been used in extending the tableau, and to consider what would be the case
had we used the other component, i.e., construct the alternative branch (at the
level of some intermediate node of τ). If a tableau is being constructed in this
way, then, it would be completed, in a branching sense, once both components
of a sentence of branching type have been used. Of course, this explanation is an
elaborate way of describing what otherwise is an extremely simple construction
which exhausts all possibilities for a sentence of branching type, i.e., “add two
different nodes as immediate successors of another one”. In this respect, there
seems to be no rationale for its preference. However, the situation is rather
different for default tableau constructions. In most cases it is necessary to have
the flexibility of considering default rules one at a time – recall from the example
shown in Section 3 how using one default rule prohibited the use of another, thus
restricting the extensions being reasoned about. In such scenarios, d-saturation
guarantees that all default rules have been considered (q.v. nodes (g) and (h) in
Fig. 4).

The correctness of default tableau constructions as constituting a proof cal-
culus for default reasoning is stated in Theorem 1.

Theorem 1 (Correctness). For any sentence σ, and for any finite sets Φ and
Δ of sentences and default rules, respectively, σ is provable from 〈Φ,Δ〉, i.e.,
there is a closed and d-saturated default tableau for ¬σ with premisses in 〈Φ,Δ〉,
iff 〈Φ,Δ〉 |∼ σ, i.e., iff for every extension E of 〈Φ,Δ〉, E � σ.

Proof (sketch). Let τ be a default tableau for ¬σ with premisses in 〈Φ,Δ〉, and let
l be any leaf node of τ with label 〈Γ ′, Δ′〉; to be noted first is that: (i) Φ∪X(Δ′) is
included in some extension E of 〈Φ,Δ〉, and (ii) Γ is a leaf node of a tableau for
¬σ with premisses in Φ ∪X(Δ′). In other words, if l is completed, constructing
τ is equivalent to constructing an extension E of 〈Φ,Δ〉 together with a leaf node
of a tableau for ¬σ with premisses in E. If l is closed, then, every leaf node of
a tableau for ¬σ with premisses in E, where E is an extension of 〈Φ,Δ〉 which
contains Φ∪X(Δ′), is also closed, i.e., E � σ. Semimontonicity and d-saturation
guarantee that all extensions of 〈Φ,Δ〉 have been considered.

From a proof-theoretical perspective, the view of default tableau constructions
as constituting a proof calculus further gains in interest for it makes it possible to
discover the nonexistence of default proofs by inspecting some particular cases of
proof attempts. For instance, the default tableau depicted in Fig. 5 indicates that
t is not a default consequence of 〈{p, p ⊃ (q∨r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉.

Definition 12 (Completed). Let τ be a default tableau for σ with premisses
in 〈Φ,Δ〉; a node n of τ with label 〈Φ′, Δ′〉 is completed iff:

– For every sentence α of linear type in Φ′, the components α1 and α2 of α
are also in Φ′.
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– For every sentence β of branching type in Φ′, at least one of the components
β1 or β2 of β is in Φ′.

– For every default rule π : ρ / χ in Δ, if π : ρ / χ meets the side conditions
of Definition 8(Rule c), then, χ is in Φ′ and π : ρ / χ is in Δ′.

The default tableau τ is complete iff all of its leaf nodes are completed.

The nonexistence of default proofs is made precise in Proposition 3 with the
aid of Definition 12.

Proposition 3. If a default tableau for ¬σ with premisses in 〈Φ,Δ〉 has a com-
plete leaf node that is also open, then, σ is not a default consequence of 〈Φ,Δ〉.

Proof (sketch). Let τ be a default tableau for ¬σ with premisses in 〈Φ,Δ〉, and let
l be any leaf node of τ with label 〈Γ ′, Δ′〉; to be noted first is that: (i) Φ∪X(Δ′) is
included in some extension E of 〈Φ,Δ〉, and (ii) Γ is a leaf node of a tableau for
¬σ with premisses in Φ ∪X(Δ′). If l is open and complete, then, there is a leaf
node of a tableau for ¬σ with premisses in E, where E is an extension of 〈Φ,Δ〉
which contains Φ∪X(Δ′), that is open, i.e., E �� σ. As a result, 〈Φ,Δ〉 �|∼ σ, i.e.,
σ is not a default consequence of 〈Φ,Δ〉.

In essence, a leaf node of a default tableau that is both complete and open
constructs an extension from which the alleged default consequence does not
follow. For the case of the default tableau depicted in Fig. 5, i.e., default tableau
for ¬t with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t, p : t / r ∧ u}〉, said
extension, the set E2 = {p, p ⊃ (q ∨ r ⊃ s), r ∧ u}, is obtained from the second
component of the label of the leaf node (g) in Fig. 5 together with the set of
sentences of the premiss structure in question. That t is not a consequence of
this extension is also immediate from the information present in the leaf node
(g) in Fig. 5: the first component of this node corresponds to a leaf node of a
tableau for ¬t with premisses in E2.

4 Discussion

One of the most concise descriptions of the rationale underlying tableau methods
as proof methods is perhaps that provided by Fitting in [7]. In Fitting’s terms, a
tableau method is a formal proof procedure, existing in a variety of forms and for
several logics, but always having certain characteristics. First, it is a refutation
procedure. In order to prove that something is the case, the initial step is to
begin with a syntactical expression intended to assert the contrary. Successive
steps then syntactically break down this assertion into cases. Finally, there are
impossibility conditions for closing cases. If all cases are closed, then, the initial
assertion has been refuted. As a result, it is concluded that what had been taken
not to be case is actually the case.

The kind of default tableau constructions presented here operate in the way
just described. In order to prove that a sentence σ is a default consequence of
a premiss structure 〈Φ,Δ〉, we begin with a syntactical expression intended to
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(a) p ⊃ (q ∨ r ⊃ s)
p
¬t

(b) p ⊃ (q ∨ r ⊃ s)
p
¬t
¬p

(c) p ⊃ (q ∨ r ⊃ s)
p
¬t
q ∨ r ⊃ s

(d) p ⊃ (q ∨ r ⊃ s)
p
¬t
q ∨ r ⊃ s
¬(q ∨ r)

(e) p ⊃ (q ∨ r ⊃ s)
p
¬t
q ∨ r ⊃ s
s

(f) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬t
q ∨ r ⊃ s
s
r ∧ u

(g) p ⊃ (q ∨ r ⊃ s) 〈p : t / r ∧ u〉
p
¬t
q ∨ r ⊃ s
s
r ∧ u
r
u

Fig. 5. Default tableau for ¬t with premisses in 〈{p, p ⊃ (q ∨ r ⊃ s)}, {p : u / q ∧ t,
p : t / r ∧ u}〉

assert that this is not the case. In a default tableau, the set Φ ∪ {¬σ} is said
syntactical expression. Next, we syntactically break down the sentences in this
expression into their components according to rules R1 or R2 in Definition 8, i.e.,
depending on whether they are of linear or of branching type, respectively. R3
in Definition 8 corresponds to our view of default rules as premiss-like objects
and their corresponding usage in the construction of a default proof. Finally,
the closedness and d-saturation of a default tableau indicate the impossibility
conditions that are needed to establish whether what was asserted not to be the
case, that σ is not a default consequence of 〈Φ,Δ〉, is actually the case; altogether
establishing whether or not σ is a default consequence of 〈Φ,Δ〉.

The principles underpinning the definition and construction of a default
tableau may also be understood in comparison with those intuitions underlying
the definition and construction of a tableau for a set of sentences. For instance,
classically, every leaf node of a tableau for σ with premisses in Γ may be taken as
a partial syntactical description of a (canonical) model of Γ that is also a model
of σ; leaf nodes that are closed indicate that this description is an impossibility,
whereas leaf nodes that are open and complete indicate the contrary. In a default
tableau for σ with premisses in 〈Φ,Δ〉, the extensions of 〈Φ,Δ〉 play the role of
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models. In this respect, every leaf node of this default tableau may be taken
as a partial description of an extension E of 〈Φ,Δ〉 that has been enlarged by
incorporating σ into it; leaf nodes that are closed indicate that this enlargement
is an impossibility, whereas leaf nodes that are open and complete indicate the
contrary; d-saturation indicates that all extensions have been considered.

5 Conclusions and Further Work

In this work we have presented a tableaux based proof calculus for our reformu-
lation of Reiter’s original ideas on default reasoning. In summary and by way
of conclusion, in formulating a suitable notion of a default proof, we established
a proof-theoretical basis for mechanizing a consequence realtion for default rea-
soning. As a contribution to the proof theory of the latter, the main features of
our presentation of a proof calculus for default reasoning are: (i) its simplicity,
in that, as commented earlier on, it does not deviate from the standard pre-
sentation of a tableaux method; and (ii) the fact that, in certain cases, default
proofs may only involve part of a premiss structure (something which is also
true when it comes to showing their nonexistence). The advantages of (i) and
(ii) are immediate.

Evidently, there is much yet to be done. It is more or less immediate that,
in a worst case scenario, the complexity of a default proof inherits the com-
plexity of a tableau proof for classical propositional logic, with the add-on of
having to check for the application of all default rules. Definitely, tighter com-
plexity bounds for default proofs are worthy of study. Moreover, insofar as its
use is concerned, a machine implementation of the proof calculus that we have
presented is a sought after feature. More interestingly, matters related to the
development of strategies for systematizing default tableau proofs and proper-
ties of default tableau proofs must be investigated. An interesting direction for
further research also concerns an exploration of some of the variants of Reiter’s
original presentation of default reasoning and how well our tableaux based proof
calculus adapts to them. We view the latter as a first step towards an an ab-
stract definition of default tableaux proof calculi, i.e., one that is independent
of the underlying logical system. Additionally, the current presentation of the
default tableau method sets the basis for a systematic construction of a model
theory for a given default theory presentation as a fibred class of mathematical
structures that happen to be models for theory presentations in the underlying
logical language, where fibres are determined by the extensions constructed in
each of the branches of the tableau. However, these are just some preliminary
thoughts which have to be developed further.
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Abstract. There is a bundled variant, BCTL*, of the branching time lo-
gic CTL* which allows reasoning about models with fairness constraints
on the possible futures. However, the stronger branching logic ATL*,
which is well suited to reasoning about multi-agent systems, has no
bundled variant. Schedulers, humans and so on may also exhibit “fair”
behaviour that only manifests in the limit, motivating a similar variant
of ATL*. In this paper we (1) show how to define a non-trivial Bundled
variant of ATL* (BATL*); (2) Present a 2EXPTIME tableau for BATL*
(so showing BATL* is 2EXPTIME-complete); (3) prove the correctness
of the tableau; and (4) provide an implementation that can decide simple
formulas for BATL* and another “non-local” variant NL-BCTL* that is
well suited to verifying rewrite rules for ATL*.

1 Introduction

Alternating Tree Logic (ATL*) was introduced by Alur, Henzinger and Kup-
ferman [1]. ATL* allows reasoning about interactions of strategies followed by
agents and coalitions of agents. This makes ATL* a natural fit for applications in
reasoning about games and specifications for reactive systems. There is a known
tableau for the more restricted ATL+ logic [2], and a draft tableau for ATL* [3].
The use of bundled variants of CTL* to represent fairness was motivated in [4].
However, there is no existing formalism for an extenstion of this bundled logic to
the more expressive ATL* syntax, let alone a tableau for such a bundled ATL*.

There are significant differences between this paper and [3]. This paper will
focus on adapting ATL* to be able to reason about fair strategies (and to a
lesser extent, rewrite rules), while [3] focusses on the original ATL*. This paper
will present a 2EXPTIME tableau, while [3] presents a 3EXPTIME tableau.
This paper extends the approach of tableaux based on “hues” and “colours”
such as [5,6], instead of extending ATL+ tableaux such as [2]. This tableau
explicitly identifies types of paths that leave from states, and reasons about the
formulas true on those paths. This makes our tableau in some sense closer to the
automaton [7] than the tableau for ATL*, as the automaton approach explicitly
reasons about formulas true on particular witnessing strategies. By contrast, the
tableau for ATL* [3] primarily reasons the truth of formulas at states.

An alternate approach to deciding CTL* is the hybrid approach of [8]. This ap-
proach gains some advantages of tableaux while maintaining the optimal (doubly
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exponential running time) of the automaton based approaches. This approach
does not tend to be as fast a pure tableau based approaches at showing a formula
is satisfiable. While there is no obvious reason why the hybrid approach could
not be adapted to BCTL* and BATL*, such an adaptation could not do better
than the doubly exponential running time of the existing BCTL* tableau or the
BATL* tableau we will present in this paper.

There is an existing Bundled variant (BCTL*) of Full Computation Tree Logic
(CTL*). In BCTL* we can have models that have a fairness constraint on the
allowed paths, for example: “It is always possible that a fair coin will show tails at
the next flip, but it will not show heads forever”. This is represented in BCTL* by
a “bundle” of allowable futures. In CTL* (see for example [9]) and ATL* require
the set of possible futures to be limit closed, disallowing any sort of fairness
constraint on the allowable futures in the model. We may want to reason about
fairness properties in ATL* too. For example, we may want to reason about a
cryptographic system that interacts with a fair random number generator. These
properties may be more naturally expressed in a bundled variant where fairness
properties can be included in the model [4]. For more examples, see Section 3.
More motivation of bundles and fairness can be found in [4].

Simply adding a bundle of allowable paths to ATL* would not provide an ob-
vious semantics. The basic issue is that if two agents were to choose a particular
strategy then it may not be clear which agent has to “back down” to ensure an
allowed path is chosen. This ambiguity does not occur in bundled variants of
CTL* as CTL* can be thought of as the restriction of ATL* to a single agent.

In a multi-agent logic we need to consider which agent is responsible for
ensuring that fairness properties are preserved. For example, consider the case
where we want to reason about two agents that use a black box negotiation
protocol where at each step, each of the agents might vote “yes” or “no” but
eventually they will agree. This could be represented by limiting the paths in
ATL* to a bundle which includes only paths where an agreement is eventually
reached. However, this bundle would have paths in which the first agent always
votes “no”, so it would be possible for agent 1 to always vote “no”. Likewise it
would be possible for agent 2 to always vote “yes”, and so it would be ambiguous
which agent had to back down. We will specify BATL* as having models that
assign sets of allowable strategies to each agent to avoid this ambiguity.

While it may be possible to adapt the 3EXPTIME tableau of [3] to BATL*,
the 2EXPTIME hue/colour based tableau for BCTL* is a more natural fit.
The hue/colour approach requires an explicit limit closure rule to avoid the
bundled semantics, simply omitting this rule results in the bundled semantics.
The tableau presented in [3] lacks a separate limit closure rule to omit. Thus
extending the 2EXPTIME BCTL* tableau to produce a 2EXPTIME tableau for
BATL* is a natural approach. This also presents a step towards showing that
the hue/colour CTL* tableau [6] can be adapted to ATL*.

Although the primary focus of this paper is BATL*, the techniques in this pa-
per could be trivially adapted to reason about a non-local variant of BATL*. Note
that substitution is not a valid inference rule for BATL* or ATL*. For example,
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although 〈〈1〉〉 p ∧ 〈〈1〉〉 ¬p is unsatisfiable, 〈〈1〉〉 �q ∧ 〈〈1〉〉 ¬ �q is satisfiable. This
leads to some potentially undesirable properties (see for example [10]). In logics
with substitution, theorems of the form “α iff β” can be thought of as rewrite rules,
and so theorem provers naturally double as verifiers for rewrite rules. It is possible
to construct a non-local variant NL-BATL* that has substitution. For those who
are interested in verification of rewrite rules, see [11], which shows NL-BCTL* can
be used to verify rewrite rules for BCTL* and CTL*; likewise NL-BATL* could be
used to verify rewrite rules for BATL* and ATL*.

The BCTL* tableau was modified to CTL* by unwinding the tableau into
a tree and limiting uplinks to ones that are non-contradictory in the CTL* se-
mantics (in addition to the more forgiving BCTL* semantics). We get complete-
ness due to the bounded model property of CTL*; we know that if we have not
found a model within some number of unwindings there is no model to be found.
It seems feasible to extend this approach to BATL*, though the computational
complexity would not be optimal for ATL*, unlike BATL*.

In Section 2 we will define BATL* using sets of futures as our strategies. In
Section 3 we will present some examples of specifications in BATL*. In Section
4 we present a tableau for BATL*. In Section 5 we show that the tableau will
halt in time and space doubly exponential in the length of its input, and is
correct; that is will succeed iff φ is satisfiable. See [12] for discussion of an
OCaml implementation including benchmarks.

2 Bundles and BATL*

An ATL* model is a concurrent game structure. This forms part of a BATL*
model so we will define concurrent games structures now.

Definition 1. A concurrent game structure is a tuple cgs = (k,Q,Π, π, d, δ)
such that:
k: Is the number of players/agents, (the set of players Σ = {1, . . . , k}, k ≥ 1);
Q is the non-empty finite set of states (sometimes called worlds)
Π is a set of atomic propositions (observables);
π is the labeling of states, π(q) ⊆ Π for q ∈ Q;
da(q) ≥ 1 is number of moves available to player a at state q
δ(q, j1, . . . , jk) ∈ Q is the next state if each player i = 1, . . . , k
chooses move ji in state q.

We may also write δ(q, j1, . . . , jk) as δ(q, T ) where T is a k-tuple of integers
(j1, . . . , jk) that we will call an “action profile”.

A CGS can also be represented as a diagram (as in Figure 1).
In ATL* the formula 〈〈A〉〉α means the coalition of agents A can ensure some

property α. This is true roughly when agents in A can choose moves such that
regardless of others’ moves, for all resulting futures will satisfy α. The exact
semantics of ATL* depends on what types of strategies are allowed.

We will now define bundled concurrent games structures that will form the
models of BATL* formulas. We will define futures in terms of infinitely long
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Fig. 1. Example of a Concurrent Game Structure (CGS)

“fullpaths”. In BATL* we will define strategies as sets of fullpaths. The intuition
is that picking a strategy is equivalent to preventing those otherwise possible
futures where you do not follow the strategy, and so we can define strategies
as sets of possible fullpaths. If a set of agents pick a set of strategies, they
limit the possible futures to only futures in the intersection of those strategies.
Agents ensure β iff they can pick strategies where any future that does not have
β has been prevented by at least one of the agents. In this interpretation, a
set of agents {i, j, . . . , k} has a strategy to ensure β iff we can pick strategies
Y = {Yi, Yj , . . . , Yk} for each agent such that all fullpaths θ in the intersection
of Y satisfy β. For those familiar with the definition of fullpaths from CTL* and
BCTL*, note that we have extended the definition to include not just states but
also action profiles.

Definition 2. A bundled concurrent game structure (BCGS) is a tuple M =
(k,Q,Π, π, d, δ, B, Z) such that:

1. (k,Q,Π, π, d, δ) is a concurrent game structure.
2. B is a set of suffix and fusion closed fullpaths (called a bundle), where:

(a) a sequenceσ of tuples (w0, T0), (w1, T1), . . . is called a fullpath if w0, w1, . . .
are states in Q; T0, T1, . . . are action profiles and for all i ≥ 0 we have
wi+1 = δ (wi, Ti). For each i, by σw

i we denote wi and by σT
i we denote

Ti, and by σ&
i we denote the tuple (wi, Ti). By σ≤i we denote the finite

path σ&
0 , . . . , σ

&
i , and by σ≥i we denote the fullpath σ&

i , σ
&
i+1, . . .;

(b) we say that a set of fullpaths B is suffix closed if for all σ ∈ B we also
have σ≥1 ∈ B;

(c) We say a set of fullpaths B is fusion closed if for any σ, θ ∈ B and
i, j ≥ 0 such that σw

i = θwj we have σ≤i−1 · θ≥j ∈ B (we use “·” to
represent concatenation);

3. Z is a relation (called a strategy relation) between agents (integers) and
strategies, where:
(a) if (i, I) ∈ Z then I is an i-strategy where we call a set of fullpaths I an

i-strategy (or strategy for agent i) if for all n ≥ 0:
i. if (w0, T0), (w1, T1), . . .,(wn, Tn), . . . is in I, then for any action pro-

file T ′
n which specifies the same action for agent i as T ′

n, then there
also exists some sequence of action profiles T ′

n+1, . . . such that:

(w0, T0), (w1, T1), . . . , (wn−1, T n−1), (wn, T ′
n), (wn+1, T ′

n+1) . . . ∈ I
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ii. if σ, θ ∈ I then σw
0 = θw0 ,

iii. if σ, θ ∈ I and n = 0 or σ≤n−1 = θ≤n−1, then σT
n = θTn .

(b) All fullpaths in the strategy are also in the bundle, that is: for all (i, I) ∈
Z if σ ∈ I then σ ∈ B;

(c) conversely we also require that if there is a fullpath σ in the bundle B
we also require that there exists (i, I) ∈ Z such that σ ∈ I;

(d) Z is strategy-suffix-closed, that is if (i, I) ∈ Z and σ ∈ I, then there exists
a (i, I ′) ∈ Z such that I ′ = {θ≥1 : θ≤0 = σ≤0 ∧ θ ∈ I} (It can be shown
by induction that (i, In) ∈ Z where In = {θ≥n+1 : θ≤n = σ≤n ∧ θ ∈ I}.)

(e) Z is strategy-fusion-closed. That is, if (i, I) , (i, J) ∈ Z are in Z, σ ∈ I,
the fullpaths in J start at σw

n for some n > 0 then (i, I ′) ∈ Z where

I ′ = {θ : θ ∈ I ∧ (θ≤n−1 �= σ≤n−1)} ∪ {σ≤n−1 · θ : θ ∈ J}
(f) Given a set of strategies for distinct agents the intersection of those

strategies is non-empty. For example, the intersection of any i-strategy
with a j-strategy is non-empty, because different agents can pick whichever
strategies they likewithout causing a contradiction.That is, for any function
f ⊆ Z the intersection of the range of f is non-empty.

Lemma 1. If M = (k,Q,Π, π, d, δ, B, Z) is a BCGS and f ⊆ Z is a function
then the set of fullpaths

⋂
i f (i) contains exactly one fullpath.

Proof. From part 3f above we know that
⋂

i f (i) is non-empty. Consider σ, θ ∈⋂
i f (i). From part 3(a)ii we see that σw

0 = θw0 . From part 3(a)iii, and the fact
that f assigns a strategy to all agents, we see that σT

0 = θT0 . Thus σw
1 = θw1 =

δ
(
σw
0 , σ

T
0

)
. Using induction we can show that for all i, we have σw

i = θwi and
σT
i = θTi . Thus σ = θ. �

We now define the semantics of BATL*. The 〈〈〉〉 operator is defined in terms
of i-strategies. The other operators are as one would expect from similar logics
such as ATL*, CTL*, LTL etc.

Definition 3. Where p varies over Π the set of variables (or atoms/atomic pro-
positions), A varies over all sets of agents, we define CTL* formulas according
to the following abstract syntax:

φ := p | ¬φ | (φ ∧ φ) | (φUφ) |Nφ | 〈〈A〉〉φ .

Having defined the syntax we now formally define the semantics.

Definition 4. We define the semantics of BATL* as follows:

M,σ |= p iff σw
0 ∈ π(p), for any p ∈ Π

M,σ |= ¬α iff M,σ �|= α
M, σ |= α ∧ β iff M,σ |= α and M,σ |= β
M, σ |= �α iff M,σ≥1 |= α
M, σ |= αUβ iff there is some i ≥ 0 such that M,σ≥i |= β

and for each j, if 0 ≤ j < i then M,σ≥j |= α
M, σ |= 〈〈∅〉〉α iff ∃f ⊆ Z ∀θ ∈ B we have:

θw0 = σw
0 and M, θ � α

M, σ |= 〈〈A〉〉α iff ∃f ⊆ Z ∀θ ∈
⋂

i∈A f (i) we have:
θw0 = σw

0 and M, θ � α
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Note that 〈〈∅〉〉 is just a special case of 〈〈A〉〉. As B is the bundle of all allowable
fullpaths, we can think ofB as being the intersection of zero sets. The ¬, ∧, �, U
and 〈〈∅〉〉 operators are equivalent to the familiar “not”, “and”, “next”, “until”
and “all paths” operators from CTL and CTL*.

Definition 5. We say that a BATL* formula φ is satisfiable iff there exists a
BCGS M and fullpath σ through M such that M,σ � φ.

Although the primary focus of this paper is BATL*, we will show how to define
a non-local variant NL-BATL*.

Definition 6. NL-BATL* is the same as BATL* except that: π is a labeling of
the bundle, π(q) ⊆ B; and M,σ |= p iff σ0 ∈ π(p), for any p ∈ Π.

3 Examples

In this section we will use some common abbreviations: we define the abbrevi-
ations “false” ⊥ ≡ (p ∧ ¬p), “true” � ≡ ¬⊥, “or” φ∨ψ ≡ ¬ (¬φ ∧ ¬ψ), “finally”
♦φ ≡ (�Uφ), “globally”/always φ ≡ ¬♦¬φ, “exists a path” Eφ ≡ ¬〈〈∅〉〉 ¬φ,
“implies” φ → ψ ≡ (¬φ ∨ ψ) and “iff” φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ). We will
also often write 〈〈{a, . . . , b}〉〉 as 〈〈a, . . . , b〉〉.

Example 1. In this example, agent 1 represents a fair coin. We represent this by
the following formulas:

– 〈〈1〉〉 �h: Agent 1 could reveal a head at the next flip.
– 〈〈1〉〉 �¬h Likewise, Agent 1 could also not reveal a head, that is reveal tails.
– 〈〈∅〉〉 ♦h: In all futures Agent 1 will reveal heads infinitely often.
– 〈〈∅〉〉 ♦¬h: In all futures Agent 1 will reveal tails infinitely often.

To ensure these formulas are true everywhere in the model we can require that
they are true along all fullpaths 〈〈∅〉〉 and at all times in the future . This gives
us the specification:

〈〈∅〉〉 (〈〈1〉〉 �h ∧ 〈〈1〉〉 �¬h ∧ 〈〈∅〉〉 ♦h ∧ 〈〈∅〉〉 ♦¬h)

If we assume there are no agents that are not mentioned in the formula, then
there is only the one agent. (B)ATL* with only one agent can be thought of
as a (B)CTL* formula. For example, we can feed AG(EXh&EX-h&AGFh&AGF-h)

into the online BCTL* applet [13]. The applet finds a model for the formula
showing that it is satisfiable in the bundled semantics. By contrast the online
ATL* tableau [3] webpage1 it reports that it is unsatisfiable. This is because the
limit closure property of ATL* and CTL* does not allow fairness contraints in
the model itself, unlike BATL* and BCTL*.

We now consider an example that is not trivially reducible to BCTL*.

1 Their input syntax is a little different, so we used << >>G([[ ]]Xh/\[[
]]X~h/\<< >>GFh/\<< >>GF~h) instead. The URL of their online ATL* tableau
is: http://atila.ibisc.univ-evry.fr/tableau_ATL_star/

http://atila.ibisc.univ-evry.fr/tableau_ATL_star/


28 J. McCabe-Dansted and M. Reynolds

Example 2. Consider a human playing against a computer at a tic-tac-toe tour-
nament. The first player to win a match wins the tournament. Each player is
capable of playing each match perfectly, forcing the match to be a tie, and re-
quiring another tie-breaking match.

– h → 〈〈∅〉〉 h ∧ ¬c: If the human won, the human will always have won and
the computer has not won.

– c → 〈〈∅〉〉 c∧¬h: If the computer won, the computer will always have won
and the human has not won.

– ¬c → 〈〈1〉〉 �¬c: If the computer has not yet won the human has a strategy
to stop the computer winning the tournament after the next game.

– ¬h → 〈〈2〉〉 �¬h: If the human has not yet won the computer has a strategy
to stop the human winning the tournament after the next game.

As in the previous example we can require that these formulas hold everywhere
using 〈〈∅〉〉 . We can deduce that the human has a strategy to prevent the com-
puter winning within 2 steps. The human simply plays perfectly, and then plays
perfectly again. Similarly the human can prevent the computer from winning
within n matches, for any n. As these specifications are symmetric with regard
to the agents we can similarly deduce that the computer can prevent the human
for winning within n matches, for any n.

Under standard unbundled semantics we could deduce that the human has
a strategy to prevent the computer from ever winning. However, even if the
human’s patience is unbounded it may not be infinite. In which case the human
may not be able to follow an ω-strategy. The computer then may have a strategy
for winning (〈〈2〉〉Fc): play perfectly forever and rely on the human forfeiting
eventually. This interpretation is compatible under the bundled semantics.

Example 3. There is a legacy piece of equipment that is still in working order
(w). At any point it is possible to maintain the equipment in working order.
Thus there is a strategy for the engineer to keep it working at the next step
(〈〈1〉〉 �w). This is true everywhere in the model (〈〈∅〉〉 〈〈1〉〉 �w). However,
the expense increases the older the equipment is, so it is not feasible to keep it
running forever (¬ 〈〈1〉〉 w).

4 A Tableau for BATL*

The major new idea in this tableau is that agents form coalitions to “veto”
particular futures. We interpret the formula 〈〈A〉〉φ as (1) “The agents A can
form a coalition to veto any future where φ does not hold from now”.

In general we can reason about the truth of a modal logic formula considering
only a “closure set” of subformulas and their negations. We extend this idea
slightly, such that when 〈〈A〉〉φ occurs in the closure set, we also include special
formulas VA, vĀ representing respectively “strongly vetoed by the coalition A”
and “weakly vetoed by the co-coalition of agents not in A” in the closure set.
The size of the closure set remains linear in the length of the input formula.
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We can now characterize a fullpath by a set of formulas (we call a hue) it
satisfies. Each hue is a subset of the closure set. We likewise characterize states
by sets of hues describing the types of fullpaths leaving from that state. These
sets of hues are called colours. Hues and colours are from the tableau for BCTL*
[5], and we present our tableau for BATL* in a similar way. However, to handle
formulas of the form 〈〈A〉〉ψ we use new relation R〈〈A〉〉 representing a zero-time
transition representing the agents forming a coalition (in this case, to ensure ψ).
Likewise for formulas of the form ¬〈〈A〉〉ψ we use new relation R¬〈〈Ā〉〉 repres-

enting forming a co-coalition.
It was traditional for tableaux to begin with a single node containing the root

formula and then add children to that node. However, the original tableau for
BCTL* [5] did not include such rules, but rather began with all nodes possible.
It is known that such tableaux can be adapted to traditional rooted tableau, and
that this adaptation is an important optimization [14]; however, for conciseness
we will not define rules for adding nodes, but will follow the approach of the
original BCTL* tableau. Constructing such an adaptation is more-or-less trivial,
and any such adaptation would be expected to improve performance. However,
to get the full benefit of the translation some thought would be required as to
how to minimise the increase in the branching degree of the tableau resulting
from having to choose which hues to veto.

We will now define the tableau.

Definition 7. For any pair of formulas (φ, ψ), we say that φ ≤ ψ iff φ is a
subformula of ψ.

Definition 8. The closure clφ of the formula φ is defined as the smallest set
that satisfies the following three requirements:

1. for all ψ ≤ φ: ψ ∈ clφ.
2. for all ψ ≤ φ: ¬ψ ∈ clφ or there exists α such that ψ = ¬α.
3. For all 〈〈A〉〉ψ ∈ clφ, where A �= ∅ we have VA ∈ clφ.

(Likewise, for all ¬〈〈A〉〉ψ ∈ clφ, where Ā �= ∅ we have vĀ ∈ clφ.)

Definition 9. We say that h ⊆ clφ is Maximally Propositionally Consistent
with respect to clφ iff for all α, β ∈ h:

(M1) if β = ¬α then β ∈ h iff α /∈ h;
(M2) if α ∧ β ∈ clφ then (α ∧ β) ∈ h ↔ (α ∈ h and β ∈ h).

A hue is roughly speaking a set of formulas that could hold along a single fullpath.
We do not use the term atom as that is also used for atomic propositions.

Definition 10. [Hue] A set h ⊆ clφ is a hue for φ iff

(H1) h is Maximally Propositionally Consistent with respect to clφ;
(H2) if αUβ ∈ h then α ∈ h or β ∈ h;
(H3) if ¬ (αUβ) ∈ h then β /∈ h; and
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(H4) if 〈〈∅〉〉α ∈ h then α ∈ h.
(Likewise, if ¬ 〈〈Σ〉〉α ∈ h then α /∈ h.)

Let Hφ be the set of hues of φ.
From the semantics of BCTL*, we see that for each σ ∈ B, h(σ) is a hue.

Definition 11. [rX ] The temporal successor relation rX on hues below is defined
as follows: for all hues h, g put (h, g) in rX iff the following conditions are
satisfied:

(R1) �α ∈ h implies α ∈ g;
(R2) ¬ �α ∈ h implies α /∈ g;
(R3) αUβ ∈ h and β /∈ h implies αUβ ∈ g; and
(R4) ¬(αUβ) ∈ h and α ∈ h implies ¬(αUβ) ∈ g.
(R5) For each formula of the form VA in clφ, VA ∈ h ⇐⇒ VA ∈ g.
(R6) For each formula of the form vA in clφ, vA ∈ h ⇐⇒ vA ∈ g.

Definition 12. [rA] For all pairs of hues a, b, we put (a, b) in rA iff the following
condition holds for all formulas α and sets of agents A:

(A1) 〈〈A〉〉α ∈ h iff 〈〈A〉〉α ∈ g
(A2) For every atom p, we have p ∈ h iff p ∈ g

Note that (A2) is the locality condition. We would exclude this to get the non-
local semantics where atoms are true along paths rather than at states [11]. The
rA relation is used to specify which pairs of hues can exist in the same “colour”;
a colour represents a set of hues for fullpaths which could start at the same state.

Definition 13. A set of hues C is a colour of φ iff

(C1) for all h, g ∈ C we have (h, g) ∈ rA; and
(C2) if h ∈ C and 〈〈A〉〉α ∈ h then there is g ∈ C such that α ∈ g.
(C3) There exists a hue h ∈ C which does not contain any vetos.
(C4) Every pair of set of agents A and A′ is distinct if there exist hues h,

g such that
1. VA ∈ h or vA ∈ h; and,
2. VA′ ∈ g or vA′ ∈ g.

(C5) If every agent appears in some strong veto in some hue in the colour,
then there remains only one non-vetoed hue in the colour.

Let Cφ be the colours of φ. We define a successor relation on Cφ as follows:

Definition 14. [RX ] We define a temporal successor function RX on colours
as follows: for all C,D ∈ Cφ, put (C,D) ∈ RX iff for all g ∈ D there exists
h ∈ C such that (h, g) ∈ rX .

Finally, we define relations to represent agents forming coalitions. The idea is
that if a coalition forms to veto some hues, then this will not have any effect on
ATL* formulas, only vetos; agents not in the coalition will maintain their vetos;
agents in the coalition will have to abandon existing strategies/vetos/coalitions;
and by forming a coalition they may be able to (strongly) veto some hues.
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Definition 15. [R〈〈A〉〉] For each collection of agents A ⊆ Σ we define a relation
R〈〈A〉〉 from colours to colours such that (C,D) ∈ R〈〈A〉〉 iff:

1. where r is a relation on hues r such that hrh′ iff
(a) h and h′ differ only on veto formulas; and
(b) if A′ is disjoint from A then VA′ ∈ h ⇐⇒ VA′ ∈ h′.
(c) if A′ is disjoint from A then vA′ ∈ h ⇐⇒ vA′ ∈ h′; and
(d) if A′ is not disjoint from A then

i. if VA′ ∈ h′ then A = A′.
ii. vA′ /∈ h′

2. for all g ∈ D there exists h ∈ C such that (h, g) ∈ r; and
3. for all h ∈ C there exists g ∈ D such that (h, g) ∈ r.

We will now define a relation for negated 〈〈〉〉 formulas. These represent things
a coalition A of agents cannot ensure. Thus instead of adding strong vetos to
represent things that won’t happen, we add weak vetos which represent things
the co-coalition Ā can prevent A from ensuring. This difference means weak
and strong vetos do not compose the same way. Say for example there are three
agents. Agents 1 and 2 secretly pick ‘heads’ or ‘tails’, and agent 3 announces
whether those choices match. By choosing at random Agent 1 could prevent
Agent 3 from having a strategy to make a correct announcement. Likewise Agent
2 could prevent Agent 3 from having a strategy to intentionally make an incorrect
announcement. However, the announcement must be either correct or incorrect.

Definitions 15 and 16 are similar, but note the differences in both 1(c) and
1(d). Since weak vetos do not compose, 1(c) of Definition 16 eliminates all weak
existing vetos before adding ones from the new coalition. Definition 15 part 1(d)
ensured that forming a coalition would not add weak vetos, Definition 16 part
1(d) instead insures that forming a co-coalition cannot add strong vetos.

Definition 16. [R¬〈〈Ā〉〉] For each collection of agents A ⊆ Σ we define a rela-

tion R¬〈〈Ā〉〉 from colours to colours such that (C,D) ∈ R¬〈〈Ā〉〉 iff:

1. where r is a relation on hues r such that hrh′ iff
(a) h and h′ differ only on veto formulas; and
(b) if A′ is disjoint from A then VA′ ∈ h ⇐⇒ VA′ ∈ h′.
(c) vA′ /∈ h for all sets of agents A′ �= A; and
(d) if A′ is not disjoint from A then VA′ /∈ h

2. for all g ∈ D there exists h ∈ C such that (h, g) ∈ r; and
3. for all h ∈ C there exists g ∈ D such that (h, g) ∈ r.

4.1 Pruning the Tableau

We use the same pruning technique for eventualities as in [5]. Initially, we let the
set S′ of unpruned colours equal Cφ. We say that a 2-tuple (C, c) is an instance
for α iff C ∈ S′, c is a hue, α is a formula and α ∈ c ∈ C. We iteratively remove
colours from S′ according to the following rules until no more colours can be
removed:
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1. Remove C from S′ if we cannot find temporal successors for every non-vetoed
hue in C. That is, we remove C from S′ if there exists a hue c in C such
that there is no veto atom in c but for every D ∈ S′

(a) (C,D) /∈ RX , or
(b) for every d ∈ D, the pair (c, d) /∈ rX .

2. An instance (C, c) is directly fulfilled for αUβ iff β ∈ c. Initially, an instance
is fulfilled iff it is directly fulfilled; we iteratively mark (C, c) as fulfilled iff
there exists a fulfilled instance (D, d) such that (C,D) ∈ RX and (c, d) ∈ rX .
We finish when we can no longer mark instances as fulfilled. Finally, for all
instances (C, c) that are not fulfilled, we remove C from S′.

3. Remove C from S′ if we cannot form a coalition to satisfy every 〈〈A〉〉 formula.
That is remove C

(a) if there is a formula of the form 〈〈A〉〉ψ ∈ h ∈ C but for every D ∈ S′,
(C,D) /∈ R〈〈A〉〉 or, there exists a hue h in D such that neither VA nor ψ
is in h.

(b) Likewise, remove C if there is a formula of the form ¬
〈〈
Ā
〉〉
ψ ∈ h ∈ C

but for every D ∈ S′, (C,D) /∈ R¬〈〈Ā〉〉 or there exists a hue h in D such

that vA /∈ h ∧ ψ ∈ h.

We say that the tableau succeeds if there exists a non-vetoed hue h and colour
C such that φ ∈ h ∈ C ∈ S′.

5 Completeness

Here we will show that if there is a model M of a formula φ then the tableau
will halt and succeed on φ. Firstly we show that the tableau halts in an amount
of time doubly exponential in the input.

Lemma 2. The running time and space requirement of the tableau are doubly
exponential in |φ|, where φ is the input formula.

Proof. We can show that our tableau is at worst doubly exponential, in the same
way that it was shown that the BCTL* tableau [5] was double exponential: we
see that the size of the closure set clφ of φ is linear in the length of φ. Likewise
we see that the number of hues is singly exponential in |clφ|, and the number
of colours is singly exponential in the number of hues. We only add a colour
once and prune it at most once (this tableau does not require, for example,
backtracking). The time taken to prune a colour is polynomial in the number
of colours. Thus this tableau requires at most a doubly exponential time (and
space) to run. �
Since even CTL* [15,16,17,18] and BCTL* are 2EXPTIME-complete, it is clear
that our tableau cannot be faster than that. Thus the worst case perform-
ance of this tableau is doubly exponential in the length of the input. Given
that we are deciding a 2EXPTIME-complete problem in doubly exponential
time, our tableau is optimal with respect to the worst case running time. Note
that this tableau takes doubly exponential time to decide formulas of the form
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φ = (p ∧ ¬p) ∧ ψ, even though such formulas could be “decided” by always
returning “unsatisfiable”. This is because this tableau constructs all possible
colours before beginning the pruning phase. To get better performance on typ-
ical problems, an optimised version could construct hues and colours as only
required, by building a tree shaped tableau rooted at a node representing φ (see
for example [14]).

Assume there is a model M = (k,Q,Π, π, d, δ, Z) of the formula φ. That is,
there exists a fullpath σ through M such that M,σ � φ. Our proof will centre
around showing that we can build a tableau from the model, and that no colour
of the tableau would be pruned. Note that the colours of our tableau do not just
represent states (as in members) but also the state of execution of the strategies
of the agents. We will now define a “join” of these two types of state.

Definition 17. We can extend a state in the model by joining it with inform-
ation about strategies agents will take. We call a 5-tuple J = (An,Ac,C, f, w)
a Join if: An = {A0, . . . ,An} is a partition of a subset of Σ, Ac ⊆ Σ, such
that A0, . . . ,An,Ac are all mutually disjoint, f ⊆ Z is a function from agents to
strategies starting at w ∈ Q, and C is a set of fullpaths starting at w, such that for
every function f ′ from agents to strategies there exists a fullpath σ ∈

⋂
i/∈Ac

f ′(i)
such that σ /∈ C.

We call An the set of coalitions, Ac the co-coalition (or co-strategic agents).
We interpret C as being a set of fullpaths that could be weakly vetoed by the
co-strategic agents Ac. We call f the strategy function and w the current state.

Given that Joins (informally) represent the state of execution of strategies,
we may represent how state changes after certain events occur. In particular we
will define Jσ≤n which can be interpreted as the Join that J will evolve into if
the partial path σ≤n occurs.

Definition 18. For any integer n, Join J and fullpath σ ∈ B, we let Jσ≤n =(
An,Ac,C

′, f ′, σw
n+1

)
where a fullpath θ is in C′ iff σ≤n · θ is in C, and a fullpath

θ is in f ′ (i) iff σ≤n · θ is in f (i).
It is easy to show that Jσ≤n is a Join when f (i) �= ∅ for all i.

Definition 19. We define a function h, such that given any fullpath σ and Join
J = (An,Ac,C, f, σ

w
0 ):

h (J, σ) = {α : α ∈ clφ and σ � α}∪
{VA : A ∈ An ∧ ∃i ∈ A : σ /∈ f (i)}∪
{vA : σ ∈ C}

We likewise define a function from Joins starting at σw
0 to sets of sets of

formulas:

ρ(J) = {h(J, θ) : θ ∈ B and θw0 = σw
0 } .

It is easy to show that h (J, σ) is a hue and ρ(J) is a colour. For example, we
now show that ρ(J) satisfies (C3).
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Lemma 3. There is no Join J such that all hues h ∈ ρ (J) have been vetoed.

Proof. There exists some Join J such that ρ(J) = C. By definition of a Join, for
every function f ′ from agents to strategies there exists a fullpath satisfying (1)
σ ∈

⋂
i/∈Ac

f ′(i) and (2) σ /∈ C. We see h (J, σ) ∈ ρ(J) = C, from (1) we see that
h (J, σ) does not contain any strong vetos, and from (2) we see that h (J, σ) does
not contain any weak vetos. Thus h (J, σ) has not been vetoed. �
Since we started with a model of φ, it is clear from Definition 19 that if the
tableau halts with this set of colours (or a superset), there will be a colour that
contains φ, and so the tableau succeeds. We now want to show that none of these
colours will be pruned from the tableau.

Definition 20. We define a set of colours S from the model such that for any
colour C we have C ∈ S iff there is a Join J such that ρ (J) = C.

Lemma 4. The tableau will not prune any colour in S.

Proof. By way of contradiction say that some such colour(s) are pruned. Let C
be the first such pruned colour, and J = (An,Ac,C, f, w) be a Join such that
ρ (J) = C.

There are three pruning rules given in Section 4.1; prune if (1) there are no
temporal successors; (2) there are unfulfilled eventualities; and (3) the agents
cannot form a (co-)coalition.

Say that C was pruned due to (1). Thus some non-vetoed hue h in C does
not have a temporal successor h′ ∈ D ∈ S for any D such that (C,D) ∈ RX .

We see that as h ∈ C we have a fullpath σ such that h (J, σ) = h. Consider
Jσ≤0 = (An,Ac,C

′, f ′, σw
1 ). We see that (ρ (J) , ρ (Jσ≤0)) ∈ RX and also that

(h (J, σ) , h (Jσ≤0 , σ≥1)) ∈ rX . That is, h has a temporal successor. Hence C was
not pruned due to (1).

Say that C was pruned due to (2). Then there is some αUβ ∈ h ∈ C
such that we cannot find an occurrence of β that fulfils the eventuality αUβ.
Clearly β /∈ h, as β would directly fulfill αUβ. We see that there is a full-
path σ such that σ0 = w and h(J, σ) = h. Since αUβ ∈ h(J, σ) we see that
M,σ � αUβ. Hence there exists j such that M,σ≥j � β and for all i < j
we have M,σ≥i � α. We see that β ∈ h(Jσ≤j−1 , σ≥j), and so the instance(
ρ (Jσ≤j−1 , σ≥j) , h(J

σ≤j−1 , σw
j )

)
is directly fulfilled. It follows that the previous

instance
(
ρ (Jσ≤j−2 , σ≥j−1) , h(J

σ≤j−2 , σw
j−1)

)
would be marked fulfilled by the

pruning algorithm, and we see from induction that (ρ (Jσ≤0 , σ≥1) , h(J
σ≤0 , σw

1 ))
and (ρ (J, σ) , h(J, σw

1 )) would be marked fulfilled. This contradicts our assump-
tion that C was pruned by pruning rule (2).

Say that C was pruned due to (3a). Then there is a formula of the form
〈〈A〉〉ψ ∈ h ∈ C but for every D ∈ S′, (C,D) /∈ R〈〈A〉〉 or there exists a hue
d ∈ D such that neither ψ nor VA is in d. Since 〈〈A〉〉ψ ∈ h ∈ C we see that
there is a fullpath σ starting at w such that M,σ � 〈〈A〉〉ψ. From the semantics
of the 〈〈〉〉 operator in BATL* we see that there is a function g ∈ Z from agents
in A to bundled-strategies such that for all θ in

⋂
i∈A g (A) we have M, θ |= ψ.
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Now consider a Join J ′ = (Am ∪ A,A′
c,C

′, f ′, w) where: (A′
c,C

′) = (Ac,C) if A
and Ac are disjoint, (A′

c,C
′) = (∅, ∅) otherwise, and for any set of agents B we

have

B ∈ Am ⇐⇒ B ∈ An ∧ B ∩ A = ∅
f ′ (i) = g(i) for i ∈ A
f ′ (i) = f (i) for i /∈ A .

We see that for every σ ∈ B we have (h (J, σ) , h (J ′, σ)) in the relation r on
hues defined in Definition 15 of R〈〈A〉〉. Hence we see that (ρ (J,w) , ρ (J ′, w)) ∈
R〈〈A〉〉. Since f ′ (i) = g(i) for i ∈ A and for all θ in

⋂
i∈A g (A) we have M, θ |= ψ

it trivially follows that for all θ in
⋂

i∈A f ′ (A) we have M, θ |= ψ. Thus for all
θ ∈ B starting at w we see that ψ ∈ h (J ′, σ) or VA ∈ h (J ′, σ). It follows that
all hues h in ρ (J ′, σ) contain either VA or ψ. Since ρ (J ′, σ) ∈ S and S ⊆ S′

(because no member of S has been pruned yet), we see that C was not pruned
due to rule (3a).

Say that C was pruned due to (3b). That is, C was removed because there was
a formula of the form ¬

〈〈
Ā
〉〉
ψ ∈ h ∈ C but for every D ∈ S′, (C,D) /∈ R¬〈〈Ā〉〉

or there exists a hue h in D such that neither vA nor ¬ψ is in h. Consider a
J ′ = (Am,A,C′, f, w) where: for any set of agents B we have:

B ∈ Am ⇐⇒ B ∈ An ∧ B ∩ A = ∅
θ ∈ C′ ⇐⇒ M, θ ⇐⇒ θ � ψ .

We will now show that J ′ is a join. From the definition of h and ρ we see
that there is a fullpath σ ∈ B starting at w such that M,σ � ¬

〈〈
Ā
〉〉
ψ. Hence

M,σ �
〈〈
Ā
〉〉
ψ. Thus there does not exist any function f ∈ Z such that for all

fullpaths θ ∈
⋂

i/∈A f ′ (i) we have M, θ � ψ. In other words, for all functions
f ∈ Z there exists a fullpath θ ∈

⋂
i/∈A f ′ (i) for which M, θ � ψ, and so θ /∈ C′.

The only other requirement for J ′ to be a join is that the set A and the sets Am

be non-overlapping, which is clearly satisfied. Thus J ′ is a join.
We see that (ρ (J) , ρ (J ′)) ∈ R¬〈〈Ā〉〉 and every hue in ρ (J ′) has either ¬ψ or

vA. Thus C = ρ (J) was not pruned due to rule (3b).
Thus C was not pruned. By contradiction no colour in S was pruned. �

Theorem 1. The tableau succeeds if φ is satisfiable.

Proof. We see that if φ is satisfied by the model M , then there exists a fullpath
σ such that M,σ � φ. We see that φ ∈ h (J, σ) (for any join J extending the
state σw

0 ), and h (J, σ) ∈ ρ (J) ∈ S. Since none of the colours in S were pruned,
ρ (J) remains. Since φ ∈ h (J, σ) ∈ ρ (J), the tableau succeeds. �
It can also be shown that we can construct a model for φ from a tableau, and
thus the tableau is sound. Together these results demonstrate that the tableau
is correct, that is it will succeed iff φ is satisfiable.

Theorem 2. Given a tableau, we can construct a model that satisfies φ.
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Proof. [Sketch] The worlds/states of our model are based on a tree-unwinding
of the tableau. The major idea here that is not required for (B)CTL* is that of
strategies and co-strategies, as with the ATL+ tableau [2]. Acting strategic-
ally means choosing to ensure that something will happen while acting co-
strategically means behaving unpredictably so others cannot ensure something.

As with the ATL+ tableau we will define m to be the number of strategies,
and l to be the number of co-strategies, and give each agent m+ l choices. For
the BATL* tableau we need actions corresponding to weak vetos (in addition
too explicit strategy formulas): Consider some colour C. Say that there are
m1 distinct 〈〈A〉〉 formulas. Then we let m = m1 + 1. Say that there are l1
¬〈〈A〉〉 formulas, l2 distinct weak vetos, and l3 hues in the colour, then we let
l = l1+ l2+ l3. Each agent has m+ l actions. The first m actions are “strategic”
actions. Action 0 means no change in strategy.

We choose the bundles such that all bundled strategies end in all agents pick-
ing action 0. When all agents pick 0 we choose paths through the structure such
that all eventualities are fulfilled, and choose successors on that basis. Otherwise
we pick a successor C′ for a colour C as follows: (1) C′ starts as C; (2) For each
A if all agents in A choose an action corresponding to a 〈〈A〉〉ψ formula replace
C′ with C′′ where (C,C′′) ∈ R〈〈A〉〉 and all hues of C′′ contain ψ or VA; (3)
similar for co-strategic actions but we pick the modulus of co-strategic actions
so that even one agent acting unpredictably random ensures which co-strategy
is also random. (4) We again use the modulus of the co-strategic actions to pick
a non-vetoed hue. For more details see [12]. �
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Abstract. Our interest in this paper are semantic tableau approaches
closely related to bottom-up model generation methods. Using equality-
based blocking techniques these can be used to decide logics representable
in first-order logic that have the finite model property. Many common
modal and description logics have these properties and can therefore be
decided in this way. This paper integrates congruence closure, which
is probably the most powerful and efficient way to realise reasoning
with ground equations, into a modal tableau system with equality-based
blocking. The system is described for an extension of modal logic K
characterised by frames in which the accessibility relation is transitive
and every world has a distinct immediate predecessor. We show the sys-
tem is sound and complete, and discuss how various forms of blocking
such as ancestor blocking can be realised in this setting. Though the in-
vestigation is focussed on a particular modal logic, the modal logic was
chosen to show the most salient ideas and techniques for the results to
be generalised to other tableau calculi and other logics.

1 Introduction

Tableau systems provide a natural and powerful form of reasoning widely used for
non-classical logics, especially modal, description, and hybrid logics. In this paper
the focus is on semantic tableau systems closely related to bottom-up model
generation methods [4]. Using unrestricted blocking [20], which is an equality-
based blocking technique, these can decide logics with the finite model property,
representable in first-order logic [21,22]. Many common modal and description
logics have these properties and can therefore be decided using semantic tableau
systems with equality-based blocking.

For many common modal and description logics there are ways to avoid the
explicit use of equality in the tableau system [10,2]. For more expressive logics,
with nominals as in hybrid modal logics and description logics (nominals are
distinguished propositional variables that hold at exactly one world), it becomes
harder to avoid the explicit handling of equality (though not impossible [11]).
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For modal logics where the binary relations satisfy frame conditions expressible
as first-order formulae with equality, explicit handling of equations is the easi-
est and sometimes the only known way to perform equality reasoning. Single-
valuedness of a relation is an example of a frame condition expressed using
equality. Another example is the following

∀x∃y∀z
(
R(y, x) ∧ x �≈ y ∧

(
(R(y, z) ∧ R(z, x)) → (z ≈ x ∨ z ≈ y)

))
,(1)

where ≈ denotes equality. This formula states that in the relation R every world
has a distinct immediate predecessor. Provision for explicit equality reasoning is
also necessary for tableau systems with equality-based blocking.

In semantic tableau systems explicit equality handling has been realised in a
variety of ways. Using standard equality rules is conceptually easiest and most
general, and is often used [6,8,20]. This approach leads to a combinatorial ex-
plosion of derived formulae to ensure all elements in the same equivalence class
have the same information content. Many of these formulae are unneeded and
fewer formulae are derived when using paramodulation-style rules, where the
central idea is replacement of equals by equals [5,8]. Ordered rewriting presents
a further refinement and is significantly more efficient because equations are ori-
ented by an ordering and then used to simplify the formulae. Ordered rewriting
is used, e.g., in a semantic tableau system of [16] for the description logic SHOI.
Different equality reasoning methods have also been integrated into non-ground
tableau and related approaches, e.g. [5,8,9].

In this paper we require efficient handling of ground equations. For this pur-
pose congruence closure algorithms provide probably the most efficient algo-
rithms [18]. The Nelson-Oppen congruence closure method [17] has been
incorporated with Smullyan-type tableau system for first-order logic by [13].
Congruence closure algorithms have also been very successfully combined with
the DPLL approach and are standardly integrated in SMT-solvers as theory
reasoners for the theory of equations with uninterpreted function symbols [19].

The motivation of the present work is to combine congruence closure with
semantic tableau systems for modal, description, and hybrid logics. Since it
presents a general framework in which many existing congruence closure algo-
rithms can be described (and in order to achieve more generality), we combine
the abstract congruence closure system of [3] with our semantic tableau system.
Our ultimate goal is to provide a general framework with general soundness and
completeness results for developing and studying equality reasoning and blocking
in semantic tableau systems. The tableau system we consider has been obtained
in the tableau synthesis framework of [21], but in this framework equality is
accommodated by the standard equality rules. In this paper we show how these
can be replaced by abstract congruence closure rules.

The most closely related work is the aforementioned [13], because the flavour
of the tableau systems we are concerned with is similar to that of Smullyan-type
tableau systems for first-order logic. The key difference is the way in which we
use the congruence closure algorithm: In [13], the congruence closure component
is essentially a black box that is queried to check entailed equalities. In contrast,
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we use the convergent term rewrite system produced by the abstract congruence
closure algorithm also systematically to normalise the remaining tableau formu-
lae. This means that duplication of formulae is avoided and that restrictions of
the search space that depend on normalisation can be applied easily. In addition,
we show that the ideas are not limited to a fixed set of the well-known tableau
rules for first-order logic, but can be combined with special-purpose tableau
systems of other logics having other kinds of tableau rules. Also related is [16]
and the implementation of equality reasoning in MetTeL-generated tableau
provers [25], where ordered rewriting is used. This work does however not have
the same level of generality as abstract congruence closure, and no soundness
and completeness proofs are given.

Another important difference to [13], and many modal, description, and hybrid
logic tableau systems, is the use of Skolem terms to represent witnesses, instead
of constants. Skolem terms have significant advantages, especially when blocking
is used and/or explicit equality reasoning is needed [16]. They provide a conve-
nient and general-purpose technical device to keep track of existential quantifier
dependencies between witnesses. In conjunction with rewriting or congruence
closure fewer inferences need to be performed since, when rewriting a term, all
occurrences of the term, also in the dependency information, are rewritten. As
an example consider the labelled formulae s1 : ¬�φ and s2 : ¬�φ, from which we
can derive f¬�φ(s1) : ¬φ and f¬�φ(s2) : ¬φ, where f¬�φ is the Skolem function
associated with the modal formula ¬�φ. If we later obtain the equation s1 ≈ s2,
then the witnesses f¬�φ(s1) and f¬�φ(s2) also become semantically equal. If we
turn the equation s1 ≈ s2 into a rewrite rule s1 → s2 and use it for destructive
replacement of labels, then even the formulae f¬�φ(s1) : ¬φ and f¬�φ(s2) : ¬φ
become identical, so that one copy is deleted and is no longer available for tableau
expansions. Without Skolem terms other forms of bookkeeping are needed and
may require reapplication of witness-creating rules which is not needed in our
setting. In the tableau synthesis framework more generality is achieved because
Skolem terms allow the encoding of arbitrary first-order properties as tableau
rules [21], including properties such as (1), which otherwise presents difficulties.

These advantages of Skolem terms carry over to tableau systems with congru-
ence closure. Skolem terms however tend to clutter derivations when the nesting
is deep, which is inconvenient when manually writing derivations. The present
work does in a sense solve this problem, because in tableau systems with con-
gruence closure the Skolem terms are abstracted away and hidden in the rewrite
rules, thus resulting in more easily consumable presentations of the derivations.
We also see how properties such as (1) can be encoded as tableau rules by using
constants and dispersing the Skolem terms into the equational component.

Though the investigation is focussed on a particular modal logic, the logic
was chosen to show the most salient ideas and techniques for the results to be
generalised to tableau systems for other logics, including those obtainable by
tableau synthesis. A presentation in its full generality would have obscured the
main ideas.
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(cl)
s : φ, s : ¬φ

⊥ (⊥)
s : ⊥
⊥ (¬¬) s : ¬¬φ

s : φ

Basic tableau rules:

(α)
s : ¬(φ1 ∨ . . . ∨ φk)

s : ∼φ1, . . . , s : ∼φk
(β)

s : φ ∨ Ψ

s : φ s : Ψ

(�)
s : �φ, R(s, t)

t : φ
(¬�) s : ¬�φ

R(s, f¬�φ(s)), f¬�φ(s) : ∼φ

(ub)
s ≈ t s �≈ t

(rfl)
s �≈ s

⊥ (sym)
s ≈ t

t ≈ s
(prm)

s ≈ t, G[s]

G[t]

Paramodulation equality rules:

(tr)
R(s, t), R(t, u)

R(s, u)

Theory tableau rules:

(dp1)
R(g(s), s)

(dp2)
s ≈ g(s)

⊥ (dp3)
R(g(s), t), R(t, s)

t ≈ s t ≈ g(s)

Fig. 1. Tableau calculus Tab(ub) for K(tr,dp). Ψ denotes a disjunction (with at least
one disjunct). ∼ denotes complementation, i.e., ∼ψ = φ if ψ = ¬φ, and ∼ψ = ¬ψ,
otherwise. G denotes any tableau formula. G[s] means s occurs as a subterm in G, and
G[t] denotes the formula obtained by replacing one occurrence of s with t.

The paper is structured as follows. To illustrate the main ideas of combining
the abstract congruence closure system of [3] with semantic tableau systems,
we consider a semantic tableau system for an extension of basic modal logic K
characterised by frames in which the accessibility relation is transitive and where
the frame condition (1) above holds. The logic, called K(tr,dp), and its tableau
system are introduced in Section 2. In Section 3 we show how congruence closure
can be integrated into this system. We show soundness and completeness of the
system in Sections 4 and 5, and describe in Section 6 how various forms of
blocking, including ancestor blocking, can be realised. All proofs are omitted
but can be found in [23].

2 Modal Logic K(tr,dp) and a Tableau System for It

We give a semantic definition of modal logic K(tr,dp). K(tr,dp) is the propo-
sitional normal modal logic characterised by the class of relational structures
(frames) (W,R), where W is a non-empty set and R is a binary relation defined
over W , which is transitive and satisfies (1) as an additional frame condition.
W represents the set of possible worlds and R is the accessibility relation over
which the semantics of the necessitation operator � and the possibility opera-
tor � are defined.
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Let Tab(ub) be the tableau system given by the rules in Figure 1. The rules
operate on formulae of the form ⊥, s : φ, R(s, t), s ≈ t, s �≈ t, where φ is a modal
formula, and s and t are the labels interpreted as worlds in Kripke models.
We refer to these formulae as the tableau formulae in K(tr,dp). The labels s
and t are terms of a freely generated term algebra over a signature Σ of constants
(denoted by a, b, . . .) and unary function symbols fψ and g for modal formulae ψ.
The Skolem functions fψ and g provide a technical device to uniquely name the
witnesses created in the rule (¬�) for the diamond formulae (the ¬�φ-formulae)
and the rule (dp1) for the distinct predecessor property (1).

The (ub) rule is the unrestricted blocking rule, which will ensure the tableau
system terminates for all finitely satisfiable formulae and constructs a finite
model. More restricted forms of blocking are described in Section 6.

The frame conditions in the definition of K(tr,dp) were chosen so that the
incorporation of congruence closure (in the next section) into the corresponding
tableau rules exhibits as many different interesting aspects as possible. Transi-
tivity is a common frame condition and the transitivity rule (tr) a well-known
rule. Frame condition (1) is used as an example in [24] to illustrate tableau rule
refinement techniques. The corresponding rules (dp1), (dp2) and (dp3) are in-
structive because they contain an equality predicate and Skolem terms in premise
positions, which are important, more difficult cases for the combination with
congruence closure.

Tableau systems are best suited for applications where models need to be
found for satisfiable formulae. Given a formula φ, a semantic tableau system
attempts to construct a model that realises the formula. The start state of the
derivation is then the set N0 = {a : φ}, where a denotes a fresh constant in Σ; it
represents the initial world of the model to be constructed (if this is possible). If
in every branch of the derivation ⊥ was derived then no model can exist and φ is
unsatisfiable. Else, there will be a (possibly infinite) branch from which a model
can be read off in the limit. E.g., for the formula �
 ∧ ��p the following model
may be constructed (there are others).

R(g(a), g(a)), R(g(a), a), R(a, g(a)), R(a, a), a : p

Without the unrestricted blocking rule (ub) an infinite model is constructed.
We say a tableau calculus is sound when for a satisfiable set of tableau for-

mulae any fully expanded tableau derivation has an open branch. A tableau
derivation is fully expanded if all branches are either closed, or open and fully
expanded. A tableau calculus is refutationally complete if for any unsatisfiable
set of tableau formulae there is a closed tableau derivation. A tableau calculus is
constructively complete, if for every open fully expanded branch a model exists,
that can be read off from the branch.

By Tab we denote the calculus without the unrestricted blocking rule. The
rules in Tab and Tab(ub) are the ones obtained by tableau synthesis and rule
refinement [21,24] from the semantic definition of K(tr,dp), except we use
paramodulation-style rules instead of the standard equality rules. With the ap-
propriate adaptations of the proofs in [21,24] for this, it follows that:
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Theorem 1. The tableau calculi Tab and Tab(ub) are sound and constructively
complete for testing satisfiability of formulae (or sets of tableau formulae) in
K(tr,dp). They are also refutationally complete.

3 Modal Tableau System with Congruence Closure

Congruence closure algorithms provide an efficient way to perform reasoning
with ground equations and can be combined with DPLL algorithms, but also
with tableau systems as we show in this section. A congruence closure algorithm
transforms an arbitrary set of ground equations into an equivalent confluent and
terminating ground rewrite system.1 Checking whether two terms are semanti-
cally equivalent with respect to the original set of equations amounts to checking
whether the normal forms of the two terms with respect to the rewrite system
coincide. For efficiency reasons, it is useful to construct the rewrite system over a
signature extended by a set of new constants symbols and to restrict to a specific
form of flat rewrite rules.

Let K be a set of constant symbols (denoted by c, d, . . . ) disjoint from Σ. A
D-rule with respect to Σ and K is a rewrite rule of the form h(c1, . . . , ck) → c,
where h ∈ Σ, k ≥ 0, and ci, c ∈ K . A C-rule is a rewrite rule of the form c → c′,
where c, c′ ∈ K .

In order to guarantee termination of the set of rewrite rules, we assume that 
is an arbitrary total and well-founded ordering on Σ ∪K with the property that
f  c for every f ∈ Σ and c ∈ K . We can extend  to an ordering T on
arbitrary terms by defining T as the Knuth-Bendix ordering with precedence 
and weight 1 for every function or constant symbol. The ordering T is total
and well-founded on ground terms over Σ∪K (even if Σ and/or K are infinite);
moreover c  c′ implies c T c′ for c, c′ ∈ K , and t T c whenever c ∈ K and t
contains a symbol from Σ. These properties ensure that t T t′ holds for all
generated rules t → t′, and hence, that the set of rules terminates.

The inference rules in Figures 2 and 3 combine the tableau rules of the pre-
vious section with the abstract congruence closure rules of [3]. The integration
is defined to be as modular as possible, to limit any problematic interactions
and present a clean separation between the modal tableau formulae and the
congruence closure rules. Let the calculus be named Tab(ub,cc).

A tableau state is a pair N �E of a set N of tableau formulae and a set E of
D- and C-rules. E denotes the rewrite system being built. The inference rules
have the general form:

N �E

N1 �E1 . . . Nk �Ek
(ρ)

with k ≥ 1. In general, the inference process constructs a derivation tree in which
the nodes are tableau states. A branch B in a tableau derivation is a sequence
of pairs N0�E0, N1�E1, . . . , Ni �Ei, . . ., where N0�E0 is the start state, and

1 We refer to [1] for standard notions and notations in term rewriting.
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(cl)
N, c : φ, c : ¬φ � E

⊥ � E
(⊥)

N, c : ⊥ � E

⊥ � E
(¬¬) N, c : ¬¬φ � E

N, c : φ � E

Basic tableau rules:

(α)
N, c : ¬(φ1 ∨ . . . ∨ φk) � E

N, c : ∼φ1, . . . , c : ∼φk � E
(β)

N, c : φ ∨ Ψ � E

N, c : φ � E N, c : Ψ � E

(�)
N, c : �φ, R(c, d) � E

N, c : �φ, R(c, d), d : φ � E

(¬�) N, c : ¬�φ � E

N, R(c, d), d : ∼φ � E, f¬�φ(c) → d
provided c is in E-normal form;
d is a new constant

(ub)
N � E

N, c ≈ d � E N, c �≈ d � E
provided c and d are distinct constants in
E-normal form

(tr)
N, R(c, d), R(d, d′) � E

N, R(c, d), R(d, d′), R(c, d′) � E

Theory tableau rules:

(dp1)
N � E

N, R(d, c) � E, g(c) → d
provided c is in E-normal form;
d is a new constant

(dp2)
N � E, g(c) → d

⊥ � E, g(c) → d
provided c is the E-normal form of d

(dp3)
N, R(d, c′), R(c′, c) � E, g(c) → d′

N, R(d, c′), R(c′, c), c′ ≈ c � E, g(c) → d′

N, R(d, c′), R(c′, c), c′ ≈ d � E, g(c) → d′

provided d is the

E-normal form of d′

Fig. 2. Adapted tableau rules incorporating congruence closure.

each subsequent state Ni�Ei is obtained from Ni−1�Ei−1 by the application
of an inference rule. A branch is regarded as closed, as soon as ⊥ is derived in
an Ni. A branch is open when it is not closed.

The start state N0 �E0 is obtained by a preprocessing stage from the given
set N of tableau formulae involving the exhaustive application of this rule

N [t] � E
N [c] � E, t → c

provided c is new and t → c is a D-ruleExtension:

and the Simplification rule in Figure 3. Thus, N0 is the flattened version of N
and E0 is the set of D-rules and C-rules defining all subterms occurring in N . If
the Simplification rule is given precedence over the Extension rule there will be
maximal sharing.

The inference rules in Figure 2 are adaptations of the basic tableau rules and
the theory rules in Figure 1 to tableau formulae in normalised form. The rules
manipulate the tableau formulae as before, one important difference though is
the way witnesses are created. In the (¬�)-rule the Skolem term f¬�φ(c) is
created and added to the rewrite system in the new D-rule f¬�φ(c) → d, which
defines it by a new constant d from K . On the left-hand side d represents the
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(id)
N, s �≈ s � E

⊥ � E

Equality theory propagation rule:

Simplification:
N [t] � E, t → c

N [c] � E, t → c

Congruence closure tableau rules:

Orientation:
N, t ≈ c � E

N � E, t → c
provided t �T c

Deletion:
N, t ≈ t � E

N � E

Deduction:
N � E, t → c, t → d

N, c ≈ d � E, t → d
provided c �T d

Collapse:
N � E, s[c] → c′, c → d

N � E, s[d] → c′, c → d
provided c is a proper
subterm of s

Fig. 3. Congruence closure rules for equality reasoning.

newly created successor in the derived tableau formulae R(c, d) and d : ∼φ.
The other basic tableau rules and the transitivity rule do not affect the rewrite
system E, and are obvious adaptations from the rules in the previous system.

The (dp1)-rule is the other witness creating rule in the calculus and is adapted
in the same way as the (¬�)-rule. That is, a new D-rule is added that defines the
new Skolem term g(c) and its representative d in K . The rules (dp2) and (dp3)
have Skolem terms in premise position. Because in the adapted tableau system
Skolem terms can occur only in D-rules in the rewrite system the adaptations to
normalised form involve look-ups in the rewrite system, see the third and fourth
rules in Figure 2.

The paramodulation rules in Tab(ub) are replaced by the congruence closure
rules listed in Figure 3. Their purpose is to build a rewrite system, normalise
the tableau formulae via Simplification and Deletion, propagate derived equa-
tions via Deduction, and perform theory propagation steps. The only theory
propagation rule is the (id) rule.

The congruence closure rules are based on the abstract congruence closure
framework of [3]. We have added the requirement that c T d to the Deduction
rule in order to ensure that t → c is eliminated by the rule, and not t →
d which is the smaller of the two. The Extension rule is not included since
exhaustive extension and simplification is performed at the outset. This means
only constants occur in N0 of the start state and the rules are defined in such
a way that no non-constant terms are introduced to the tableau formula part
during the derivation. We note that if the optional Composition rule

N � E, t → c, c → d
N � E, t → d, c → d

Composition:
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is made a mandatory rule, then the side-conditions of rule (dp2) and rule (dp3)
can be simplified respectively to c = d and d = d′, because then, in general, both
sides of the rewrite rules are maximally reduced.

We assume fairness for the construction of a derivation. This is important if
branches can be infinite. The construction is fair if, when an inference is possible
forever, then it is performed eventually.

Theorem 2. The calculus Tab(ub,cc) is sound and constructively complete for
testing satisfiability of sets of tableau formulae in K(tr,dp). It is also refuta-
tionally complete.

Formal proofs are given in the next two sections.

4 Semantics and Soundness

We define the semantics of formulae in Tab(ub,cc)-rules by an interpretation
I = (U.·I), where U is a non-empty set and ·I is the interpretation function
mapping terms (labels) to elements in U , propositional variables to subsets of U ,
≈ to the identity relation over U , and R to a relation over U that is transitive
and satisfies property (1). The meaning of modal formulae in I is defined with
respect to the structure M = (U,RI, v), where v is the restriction of ·I to
propositional variables. v defines the valuation of propositional variables and M
is a Kripke structure. Satisfiability of modal formulae in M is now defined as
usual by:

M, x |= p iff x ∈ v(p) M, x �|= ⊥ M, x |= ¬φ iff M, x �|= φ

M, x |= φ1 ∨ . . . ∨ φk iff M, x |= φi for some i, 1 ≤ i ≤ k

M, x |= �φ iff for all y, (x, y) ∈ RI implies M, y |= φ

Satisfiability in I of tableau formulae and rewrite rules is defined by:

I |= s : φ iff M, sI |= φ I |= R(s, t) iff (sI , tI) ∈ RI

I |= s ≈ t iff sI = tI I |= s → t iff sI = tI I |= s �≈ t iff sI �= tI

It is not difficult to show that each of Tab(ub,cc)-rule is sound, i.e., when each
of the formulae in the premise N �E of a rule (ρ) is true in an interpretation I
then all of the formulae in one of the conclusions Ni �Ei are true in I.

It immediately follows that Tab(ub,cc) is sound, i.e., for any set N of tableau
formulae for K(tr,dp), there is an open, fully expanded branch in some deriva-
tion constructed using Tab(ub,cc). In fact, an open, fully expanded branch is
found in any Tab(ub,cc)-derivation, since the calculus is proof confluent.
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5 Completeness

In this section we prove that the calculus Tab(ub,cc) is constructively complete.
We need a condition that ensures that the tableau rules (and in particular the

theory rules) do not interfere with the congruence closure rules. Accordingly we
call a tableau rule

N �E

N1 �E1 . . . Nk �Ek

admissible, if for every i ≤ k, either Ni = ⊥, or the following conditions all hold:

(i) E ⊆ Ei,
(ii) {s ≈ t | s ≈ t ∈ N} ⊆ Ni,
(iii) Ei \ E consists only of D-rules, and
(iv) all terms that occur in Ni \N are constants in K .

This means that admissible tableau rules retain all positive equational formulae,
the only rules introduced during an inference step are D-rules and only constants
from K are introduced. It is easy to check that the basic tableau rules and the
theory rules are admissible.

For an open branch B = N0�E0, N1�E1, . . . , Ni�Ei, . . . we define the set of
all rules and equations on the branch by E∞ =

⋃
i≥0 Ei∪{s ≈ t | s ≈ t ∈ Ni} and

the set of persistent rules and equations on the branch by E∗ =
⋃

i≥0

⋂
j≥i(Ej ∪

{s ≈ t | s ≈ t ∈ Nj}). (If B is finite, then E∗ equals Ei ∪ {s ≈ t | s ≈ t ∈ Ni},
where Ni �Ei is the last node of B.)

To discuss the properties of E∞ and E∗, we have to extend the ordering T

to an ordering on equations and rewrite rules. We define the ordering E on
equations and rewrite rules by mapping every equation s ≈ t to the multiset
{s, s, t, t}, every rewrite rule s → t to the multiset {s, t}, and by comparing the
resulting multisets using the multiset extension of T .

If E is a set of equations and rewrite rules and s and t are terms over Σ ∪K ,
we write s ∼E t if the equation s ≈ t is logically entailed by the equations and
rewrite rules in E (where we do not distinguish between equations and rewrite
rules). If E is a confluent and terminating set of rewrite rules, we write s↓E for
the E-normal form of s. Similarly we use the notation F↓E and N↓E for the
normalisation of a formula F or of a set N of formulae with respect to E.

Lemma 1. Let all basic and theory tableau rules be admissible. Let B be an open
branch that is fully expanded with respect to the congruence closure rules. Then,
E∞ and E∗ have the following properties:

(i) All equations in E∞ have the form c ≈ d with c, d ∈ K, and all rewrite
rules in E∞ are C-rules or D-rules.

(ii) E∗ does not contain any equations, that is, E∗ =
⋃

i≥0

⋂
j≥i Ej.

(iii)
⋃

i≥0 Ei and E∗ are terminating.
(iv) E∗ is confluent.
(v) If a term u is reducible by a rewrite rule in E∞, then it is reducible by E∗.
(vi) If u ∼Ei v, then u ∼Ei+1 v.
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(vii) u ∼E∞ v if and only if u ∼E∗ v if and only if u↓E∗ = v↓E∗.

(viii) If u ∼Ei v, then u ∼E∗ v.

The limit of a branch is defined to be the tuple N∞ �E∗ with N∞ =
⋃

i≥0 Ni↓E∗ .
Let FB denote the set of all tableau formulae and rules on B, i.e., FB =⋃
i≥0(Ni ∪Ei). And, let TB denote the set of all terms occurring in a branch B,

i.e., TB = {s | s is a term over Σ ∪K occurring in FB}.
For the rest of the section we assume B denotes any open, fully expanded

branch in a Tab(ub,cc)-derivation.

Lemma 2. Formulae and terms have the following properties.

(i) If s : φ ∈ FB then s↓E∗ : φ ∈ N∞.
(ii) If R(s, t) ∈ FB then R(s↓E∗ , t↓E∗) ∈ N∞.
(iii) If s ≈ t ∈ FB then s↓E∗ ≈ t↓E∗ ∈ N∞.

(iv) If s �≈ t ∈ FB then s↓E∗ �≈ t↓E∗ ∈ N∞.

Lemma 3. N∞ has the following properties.

(i) Let F be a formula of the form R(s, t), s �≈ t (where s �= t), s : �φ, s : p or
s : ¬p. Then, F ∈ N∞ implies there is an index i such that for all j ≥ i,
F ∈ Nj.

(ii) a. If s : ¬¬φ ∈ N∞, then there is an index i and an s′ ∈ TB such that
s′ : ¬¬φ ∈ Ni, s

′ : φ ∈ Ni+1, and s′↓E∗ = s.

b. If s : ¬(φ1 ∨ . . . ∨ φk) ∈ N∞, then there is an index i and an s′ ∈ TB
such that s′ : ¬(φ1 ∨ . . . ∨ φk) ∈ Ni, {s′ : ∼φ1, . . . , s′ : ∼φk} ⊆ Ni+1,
and s′↓E∗ = s.

c. If s : φ1 ∨ . . . ∨ φk ∈ N∞, then there is an index i, an l with 1 ≤ l ≤ k
and an s′ ∈ TB such that s′ : φ1 ∨ . . . ∨ φk ∈ Ni, s

′ : φl ∈ Ni+1, and
s′↓E∗ = s.

d. If s : ¬�φ ∈ N∞, then there is an index i, a d ∈ K and an s′ ∈ TB such
that s′ : ¬�φ ∈ Ni, {R(s′, d), d : ∼φ} ⊆ Ni+1, f¬�φ(s

′) → d ∈ Ei+1,
and s′↓E∗ = s.

Properties (i) and (ii) can be combined to show N∞ is a kind of Hintikka set:

Lemma 4. (i) If s : ¬¬φ ∈ N∞ then s : φ ∈ N∞.
(ii) If s : ¬(φ1 ∨ . . . ∨ φk) ∈ N∞ then {s : ∼φ1, . . . , s : ∼φk} ⊆ N∞.
(iii) If s : φ1 ∨ . . . ∨ φk ∈ N∞ then s : φl ∈ N∞ for some l, 1 ≤ l ≤ k.
(iv) If s : ¬�φ ∈ N∞ then {R(s, d), d : ∼φ} ⊆ N∞ for some d such that

f¬�φ(s) ∼E∗ d.
(v) If s : �φ ∈ N∞ and R(s, t) ∈ N∞ then t : φ ∈ FB and t : φ ∈ N∞.

Lemma 5. If {R(c, d), R(d, d′)} ⊆ N∞ then R(c, d′) ∈ N∞.

Next we show any open, fully expanded branch B induces a certain canon-
ical interpretation, denoted by I(B). We define I(B) to be the interpretation
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(UI(B), ·I(B)) with UI(B) = {s↓E∗ | s ∈ TB} and ·I(B) the homomorphic exten-
sion of the following.

sI(B) = s↓E∗ if s ∈ TB pI(B) = {s↓E∗ | s : p ∈ FB}
RI(B) = {(s↓E∗ , t↓E∗) | R(s, t) ∈ FB} ≈I(B) = {(s↓E∗ , s↓E∗) | s ∈ TB}

UI(B) is not empty, since every input set is non-empty and contains at least
one term. We have that:

x ∈ (¬φ)I(B) iff x ∈ UI(B) \φI(B)

x ∈ (φ1 ∨ . . . ∨ φk)
I(B) iff x ∈ φ

I(B)
1 ∪ . . . ∪ φ

I(B)
k

x ∈ (�φ)I(B) iff for all y ∈ UI(B) if (x, y) ∈ RI(B) then y ∈ φI(B)

and

I(B) |= s : φ iff s↓E∗ ∈ φI(B) I(B) |= s ≈ t iff (s↓E∗ , t↓E∗) ∈ ≈I(B)

I(B) |= R(s, t) iff (s↓E∗ , t↓E∗) ∈ RI(B) I(B) |= s �≈ t iff (s↓E∗ , t↓E∗) �∈ ≈I(B).

I(B) is thus an interpretation. Our aim now is to show I(B) is a K(tr,dp)-
model for each tableau formula on an open, fully expanded branch B.

Lemma 6. (i) If R(s, t) ∈ FB then (s↓E∗ , t↓E∗) ∈ RI(B).

(ii) If (s↓E∗ , t) ∈ RI(B) and s : �φ ∈ FB then t : φ ∈ FB.

Lemma 7. If s : φ ∈ FB then s↓E∗ ∈ φI(B).

Lemma 6(i) and Lemma 7 imply that every tableau formula of the form R(s, t)
and s : φ occurring on an open, fully expanded branch B is reflected in I(B),
i.e., holds in I(B). Next we show that all equations and inequations on B are
reflected in I(B).

Lemma 8. (i) If s ≈ t ∈ FB or s → t ∈ FB then (s↓E∗ , t↓E∗) ∈ ≈I(B).

(ii) If s �≈ t ∈ FB then (s↓E∗ , t↓E∗) �∈ ≈I(B).

It remains to show:

Lemma 9. (i) If (x, y) ∈ RI(B) and (y, z) ∈ RI(B) then (x, z) ∈ RI(B).
(ii) RI(B) satisfies the frame condition (1).

Finally, we can conclude:

Lemma 10. The interpretation I(B) is a K(tr,dp)-model for each tableau for-
mula on the branch B.

Consequently, if for a finite set of tableau formulae an open, fully expanded
branch B can be constructed, then the input set is satisfiable, because the canon-
ical interpretation I(B) is a K(tr,dp)-model. This means the tableau calculus
Tab(ub,cc) is constructively complete, from which it immediately follows that it
is also refutationally complete. This completes the proof of Theorem 2.
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Table 1. Side-conditions for restricted forms of blocking. τ (s) = {ψ | s : ψ ∈ Ni},
where Ni denotes the set of tableau formulae in the current state.

Name Suffix Restriction

ancestor s is a proper subterm of t
predecessor t = fψ(s) for some ψ, or t = g(s)
equality τ (s) = τ (t)
subset τ (s) ⊆ τ (t)
noS {s, t} �⊆ S, where S is a finite set of terms
exists s : �ψ, t : �ψ
δ∗ the leading symbol of t is a function symbol and

occurs in the rules (i.e., fφ and g)

6 Ancestor Blocking and Other Forms of Blocking

For many modal, description and hybrid logics that have the finite model prop-
erty, termination of a tableau calculus can be enforced by using blocking. The
unrestricted blocking rule (ub) (in Fig. 1) permits to introduce a case analysis
for arbitrary pairs of terms s and t that are identified and merged. It is obvious
that this rule can also be used together with congruence closure, see Fig. 2; in
fact, since any relevant term is represented by some constant in K in E-normal
form, it is sufficient to consider such constants. For many modal logics, however,
more restricted forms of blocking are sufficient to guarantee termination. The
question is how these restrictions can be checked in our setting.

Common restricted forms of blocking are equality (or subset) predecessor
blocking, equality (or subset) ancestor blocking, anywhere blocking, dynamic
blocking, pair-wise blocking and pattern-based blocking (c.f., e.g. [2,12]). These
can be emulated by imposing restrictions on the application of the (ub) rule and
using appropriate search strategies [15,16,14]. Table 1 gives examples of some
restrictions that may sensibly be imposed on the (ub)-rule in tableau systems
without congruence closure. Restricting the application of the (ub)-rule by the
ancestor condition is what is known as sound ancestor blocking, restricting it by
both the ancestor and the equality conditions is what is known as sound ancestor
equality blocking [15]. In this way each combination of conditions in the table
defines a blocking rule. The (ub-noS)-rule excludes the terms in S (a fixed, finite
set of terms) from involvement in any blocking steps. If S is taken to be the set
of terms occurring in the initially given set of tableau formulae, then blocking
is applied only to terms created during the inference process. An alternative
way of achieving this is to use the (ub-δ∗)-rule. If this rule is applied eagerly
immediately after the application of a witness-creating rule, then this emulates
the use of the (δ∗)-rule of [7]. E.g., the (δ∗)-version of the (¬�)-rule is:

s : ¬�φ
R(s, t0), t0 : ∼φ . . . R(s, tn), tn : ∼φ R(s, f¬�φ(s)), f¬�φ(s) : ∼φ

,

where t0, . . . , tn are all the terms occurring in the current state.
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The rules for tableau systems combined with congruence closure correspond-
ing to these restricted forms of blocking are appropriate restrictions of the (ub)-
rule in Figure 2. In all cases the adaptation is routine.

We only consider the adaptation for the case of ancestor blocking explicitly.
In our framework, the only terms that occur in the left-hand side N of a tableau
state N �E are constants from K . The syntactical subterm test must therefore
be replaced by checking whether some terms represented by these constants are
subterms of each other. The following lemma shows how this property can be
tested efficiently. We assume that the Deduction rule and Collapse rule have
been applied exhaustively, so that E is left-reduced (that is, no left-hand side of
a rewrite rule is a subterm of the left-hand side of another rewrite rule); moreover
we know that E is terminating by construction.

Lemma 11. Let E be a set of C- and D-rules that is terminating and left-
reduced. Let GE = (V , E) be a directed graph, such that the vertex set V equals K ,
and such that there is an edge from c to c′ in E whenever E contains a D-rule
h(. . . , c′, . . . ) → c or a C-rule c′ → c. Let cs and ct be two distinct constants
in K in E-normal form. Then, the following two properties are equivalent:

(i) There exist terms s and t such that s is a proper subterm of t, and cs and ct
are the E-normal forms of s and t.

(ii) cs is reachable from ct in GE.

The adapted ancestor blocking rule is:

(ub-ancestor)
N � E

N, cs ≈ ct � E N, cs �≈ ct � E

provided cs and ct are distinct constants from K in E-normal form; N does
not contain an inequation cs �≈ ct; and cs is reachable from ct in GE .

Computing the set of all reachable vertices in a directed graph for some given
initial node can be done in linear time, for instance by using breadth-first search.
To find an arbitrary pair cs, ct that satisfies all the side conditions of the ancestor
blocking rule, we could naively repeat breadth-first search for each potential
initial node and test the remaining properties for every pair until we find a pair
that satisfies all properties. This gives a quadratic time algorithm.

Lemma 11 shows that every pair of terms s, t such that s is a subterm of t cor-
responds to a pair of constants cs, ct in E-normal form such that cs is reachable
from ct in GE , and vice versa. This correspondence, however, is not one-to-one.
In general, several pairs of terms are mapped to the same pair of constants, so
that the number of constant pairs that could be considered in a tableau deriva-
tion is usually smaller than the number of term pairs.

We note that for the logicK(tr,dp) it would not make sense to use predecessor
blocking.
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7 Conclusion

This paper has presented an abstract semantic tableau system with abstract
ways of handling both blocking and equality. The focus has been on showing
how the abstract congruence closure system of [3] can be combined with a se-
mantic tableau system for a modal logic. In contrast to earlier work, we use
a “white box” integration, so that the abstract congruence closure is not only
used to check entailed equalities, but also to normalise tableau formulae, so that
logically equivalent formulae are eliminated. The particular modal tableau sys-
tem was chosen to illustrate the most important ideas of integrating congruence
closure so that the integration can be extended to other tableau systems for
other modal, description, and hybrid logics. We believe the case study is gen-
eral enough to work out how to combine congruence closure with Smullyan-type
tableau rules for first-order logic, or incorporate it into bottom-up model genera-
tion and hypertableau methods. The ideas are also applicable in tableau systems
obtained in the tableau synthesis framework of [21]. The only case that we have
not considered is tableau rules with inequalities in premise position; for first-
order representable logics this is without loss of generality, because equivalent
tableau systems always exist without such occurrences. It remains to generalise
the proofs for all these cases, which will be future work.
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Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods,
pp. 297–396. Kluwer (1999)



Modal Tableau Systems with Blocking and Congruence Closure 53

11. Kaminski, M.: Incremental Decision Procedures for Modal Logics with Nominals
and Eventualities. PhD thesis, Universität des Saarlandes, Germany (2012)

12. Kaminski, M., Smolka, G.: Hybrid tableaux for the difference modality. Electronic
Notes in Theoretical Computer Science 231, 241–257 (2009)
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Abstract. We study the spatiotemporal logic that results by combin-
ing the propositional temporal logic (PTL) with a qualitative spatial
constraint language, namely, the L1 logic, and present a first semantic
tableau method that given a L1 formula φ systematically searches for a
model for φ. Our approach builds on Wolper’s tableau method for PTL,
while the ideas provided can be carried to other tableau methods for PTL
as well. Further, we investigate the implication of the constraint proper-
ties of compactness and patchwork in spatiotemporal reasoning. We use
these properties to strengthen results regarding the complexity of the
satisfiability problem in L1, by replacing the stricter global consistency
property used in literature and generalizing to more qualitative spatial
constraint languages. Finally, the obtained strengthened results allow us
to prove the correctness of our tableau method for L1.

1 Introduction

Time and space are fundamental cognitive concepts that have been the focus of
study in many scientific disciplines, including Artificial Intelligence and, in par-
ticular, Knowledge Representation. Knowledge Representation has been quite
successful in dealing with the concepts of time and space, and has developed
formalisms that range from temporal and spatial databases [17], to quantitative
models developed in computational geometry [13] and qualitative constraint lan-
guages and logical theories developed in qualitative reasoning [20].

Towards constraint-based qualitative spatiotemporal reasoning, most of the
work has relied on formalisms based on the propositional (linear) temporal logic
(PTL), and the qualitative spatial constraint language RCC-8 [20,19]. PTL [9]
is the well known temporal logic comprising operators U (until), � (next point
in time), � (always), and � (eventually) over various flows in time, such as
〈N, <〉. RCC-8 is a fragment of the Region Connection Calculus (RCC) [14] and
is used to describe regions that are non-empty regular subsets of some topo-
logical space by stating their topological relations to each other. The topologi-
cal relations comprise relations DC (disconnected), EC (externally connected),
EQ (equal), PO (partially overlapping), TPP (tangential proper part), TPPi
(tangential proper part inverse), NTPP (non-tangential proper part), NTPPi
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(non-tangential proper part inverse). These 8 relations are depicted in [14, Fig. 4].
One of the most important of such formalisms is the ST −

1 logic [5]. For example,
one can have the following statement using that formalism: �TPP (X,Y ), which
translates to “eventually region X will be a tangential proper part of region Y ”.

In this paper, we consider a generalization of the ST −
1 logic, denoted by L1,

which is the product of the combination of PTL [9] with any qualitative spa-
tial constraint language, such as RCC-8 [14], Cardinal Direction Algebra (CDA)
[4,10], and Block Algebra (BA) [7], and make the following contributions: (i) we
show that satisfiability checking of a L1 formula is PSPACE-complete if the
qualitative spatial constraint language considered has the constraint properties
of compactness and patchwork [11] for atomic networks, thus, strengthening pre-
vious related results that required atomic networks to be globally consistent [2,3],
and (ii) we present a first semantic tableau method that given a L1 formula φ
systematically searches for a model for φ. This method builds on the tableau
method for PTL of Wolper [18], and makes use of our strengthened results to en-
sure soundness and completeness. It is important to note, that Wolper’s method
serves as the basis to illustrate our line of reasoning, and that the techniques
presented can be carried to other more efficient tableau methods for PTL as well.

As opposed to the ST −
1 logic [5], L1 does not rely on the semantics or a

particular interpretation of the qualitative spatial constraint language used, but
rather on constraint properties, namely, compactness and patchwork [11]. These
properties have been found to hold for RCC-8, Cardinal Direction Algebra (CDA),
Block Algebra (BA), and their derivatives [8].

The organization of the paper is as follows. In Section 2 we recall the definition
of a qualitative spatial constraint language, along with the properties of com-
pactness, patchwork, and global consistency. Section 3 introduces the L1 logic,
and in Section 4 we explain its implication with compactness and patchwork. In
Section 5 we present our tableau method for checking the satisfiability of a L1

formula. In Section 6 we conclude and give directions for future work.

2 Preliminaries

A (binary) qualitative temporal or spatial constraint language [16] is based on a
finite set B of jointly exhaustive and pairwise disjoint (JEPD) relations defined
on a domain D, called the set of base relations. The base relations of set B of a
particular qualitative constraint language can be used to represent the definite
knowledge between any two entities with respect to the given level of granularity.
B contains the identity relation Id, and is closed under the inverse operation (−1).
Indefinite knowledge can be specified by disjunctions of possible base relations,
and is represented by the set containing them. Hence, 2B represents the total
set of relations. 2B is equipped with the usual set-theoretic operations (union
and intersection), the inverse operation, and the weak composition operation
denoted by � [16]. A network from any qualitative spatial constraint language,
such as RCC-8 [14], Cardinal Direction Algebra (CDA) [4,10], or Block Algebra
(BA) [7], can be formulated as a qualitative constraint network (QCN) as follows
(a RCC-8 example of which is shown in Figure 1).
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Definition 1. A QCN is a tuple (V,C) where V is a non-empty finite set of
variables and C is a mapping that associates a relation C(v, v′) ∈ 2B with each
pair (v, v′) of V × V . Mapping C is such that C(v, v) = {Id} and C(v, v′) =
(C(v′, v))−1 for every v, v′ ∈ V .

If b is a base relation, {b} is a singleton relation. An atomic QCN is a QCN
where each constraint is a singleton relation. Note that we always regard a QCN
as a complete network. Given two QCNs N = (V,C) and N ′ = (V ′, C′), N ∪N ′

denotes the QCN N ′′ = (V ′′, C′′), where V ′′ = V ∪ V ′, C′′(u, v) = C′′(v, u) = B
for all (u, v) ∈ (V \ V ′) × (V ′ \ V ), C′′(u, v) = C(u, v) ∩ C′(u, v) for every
u, v ∈ V ∩V ′, C′′(u, v) = C(u, v) for every u, v ∈ V \V ′, and C′′(u, v) = C′(u, v)
for every u, v ∈ V ′ \ V . Given a QCN N = (V,C) and u, v ∈ V , C(u, v) will be
also denoted by N [u, v].

We can interpret any QCN N = (V,C) using a structure of the form MS =
(D, α), where α is a mapping that associates an element of D with each element of
V . For the case of RCC-8 for example, if T is some topological space [12], letR(T )
denote the set of all non-empty regular closed subsets in T . Then, the domain
D of RCC-8 is the set R(T ), which can be infinite. A structure MS = (D, α) is
a model for a QCN N = (V,C), also called a solution, if mapping α can yield
a spatial configuration where the relations between the spatial variables can be
described by C. We say that a QCN is satisfiable, if there exists a model for it.
A partial solution for N on V ′ ⊆ V is the mapping α restricted to V ′.

Checking the satisfiability of a RCC-8, CDA, or BA network is NP-complete
in the general case [15,10,7]. However, there exist large maximal tractable sub-
classes of RCC-8, CDA, and BA, which allow for practical and efficient reasoning.
In particular, checking the satisfiability of a QCN (V,C) of RCC-8, CDA, or BA
comprising only relations from one of its maximal tractable subclasses containing
all singleton relations and the universal relation B, can be done in O(|V |3) time
using the �-consistency algorithm (also called algebraic closure), that iteratively
performs the following operation until a fixed point C is reached: ∀v, v′, v′′ ∈ V ,
C(v, v′) ← C(v, v′) ∩ (C(v, v′′) � C(v′′, v′)) [16].
Let us recall the definition of global consistency.

Definition 2. A QCN N = (V,C) is globally consistent if and only if, for any
V ′ ⊂ V , every partial solution on V ′ can be extended to a partial solution on
V ′ ∪ {v} ⊆ V , for any v ∈ V \ V ′.

We now recall the definitions of the constraint properties of patchwork and
compactness in the context of qualitative reasoning and give an example of how
the former properties combined are less strict than global consistency alone. (To
be precise, [11] introduced patchwork for atomic QCNs, and [8] generalized it
also for non-atomic ones).

Definition 3 ([8,11]). A qualitative temporal or spatial constraint language has
patchwork, if for any finite satisfiable constraint networks N = (V,C) and N ′ =
(V ′, C′) defined in this language where for any u, v ∈ V ∩ V ′ we have that
C(u, v) = C′(u, v), the constraint network N ∪N ′ is satisfiable.
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Fig. 1. RCC-8 configurations

In light of patchwork, which concerns finite networks, compactness ensures
satisfiability of an infinite sequence of finite satisfiable extensions of a network.

Definition 4 ([8]). A qualitative temporal or spatial constraint language has
compactness, if any infinite set of constraints defined in this language is satisfi-
able whenever all its finite subsets are satisfiable.

Intuitively, patchwork ensures that the combination of two satisfiable con-
straint networks that agree on their common part, i.e., on the constraints be-
tween their common variables, continues to be satisfiable, while compactness al-
lows for defining satisfiable networks of infinite size. Global consistency implies
patchwork, but the opposite is not true. Even though RCC-8 has patchwork [8],
it does not have global consistency [16].

Example 1. Let us consider the spatial configuration shown in Figure 1(a). Re-
gion y is a doughnut, and region x is externally connected to it, by occupying its
hole. Further, region z is externally connected to region y. For RCC-8 we know
that the constraint network {EC(x, y), EC(y, z), EC(x, z)} is satisfiable as it is
�-consistent. However, the valuation of region variables x and y is such that it
is impossible to extend it with a valuation of region variable z so that EC(x, z)
may hold. Patchwork allows us to disregard any partial valuations and focus on
the satisfiability of the network. Then, we can consider a valuation that respects
the constraint network. Such a valuation is, for example, the one presented in
Figure 1(b) along with its atomic QCN on the right.

3 The L1 Spatiotemporal Logic

In general, a spatial QCN, as described in Section 2, constitutes a static spatial
configuration in some domain, over a set of spatial variables V . To be able to
describe a spatial configuration that changes over time, we can combine PTL [9]
with a qualitative spatial constraint language in a unique formalism. The domain
D of a QCN will always remain the same, but the spatial variables in it may
spatially change with the passing time (e.g., in shape, size, or orientation). We
can interpret formulas of such a spatiotemporal formalism using a spatiotemporal
structure defined as follows.

Definition 5. A ST-structure is a tuple MST = (D,N, α), where α is a mapping
that associates elements of D with a set of spatial variables V at a point of time
i ∈ N, i.e., α : N → (V → D). Thus, α(i) denotes the set of elements of D that
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are associated with the set of spatial variables V at point of time i. By extending
notation, α(v, i), where v ∈ V , denotes the element of D that is associated with
spatial variable v at point of time i.

For example, in the case of RCC-8, α would be a mapping associating an
element of R(T ) with each spatial region variable at a point of time i ∈ N. The
set of atomic propositions AP in the case of standalone PTL [9] is replaced by the
set of base relations B of the qualitative spatial constraint language considered.
We will refer to such a spatiotemporal formula over B as a L0 formula. Thus,
the set of L0 formulas over B is inductively defined as follows: if P ∈ B then P
is a L0 formula, and if ψ and φ are L0 formulas then ¬φ, φ ∨ ψ, �φ, �φ, �φ,
and φU ψ are L0 formulas.

A simple example of a L0 formula is �NTPP (Athens, Greece), stating that
Athens will always be located in Greece. To increase the expressiveness of the
L0 logic we can allow the application of operator � to spatial variables, i.e.,
we can have the following statement in RCC-8: �EQ(Greece, �Greece), which
translates to “Greece will never change its borders”. We call the enriched logic
the L1 logic.

Definition 6. Given a L1 formula φ over B, we write 〈MST, i〉 |= φ for the fact
that MST satisfies φ at point of time i, with i ∈ N (or formula φ is true in MST

at point of time i). The semantics is then defined as follows:
– 〈MST, i〉 |= P (�nv,�mv′) iff the relation that holds between α(v, i+ n) and

α(v′, i+m) is the relation P , with P ∈ B
– 〈MST, i〉 |= ¬φ iff 〈MST, i〉 �|= φ
– 〈MST, i〉 |= φ ∨ ψ iff 〈MST, i〉 |= φ or 〈MST, i〉 |= ψ
– 〈MST, i〉 |= φU ψ if there exists a k ∈ N such that i ≤ k, 〈MST, k〉 |= ψ, and

for all j ∈ N, if i ≤ j and j < k then 〈MST, j〉 |= φ

Formulas of the form �φ and �φ are abbreviations for �U φ and ¬(�U ¬φ)
respectively. A structure MST = (D,N, α), for which 〈MST, 0〉 |= φ, is a model
for φ. It follows that a L1 formula φ is satisfiable if there exists a model for
it. Note that a formula of the form �kP (�lv,�mv′) is equivalent to formula
P (�l+kv,�m+kv′). The size of P (�l+kv, �m+kv′) is then defined to be equal to
max{l + k,m+ k}. Like in [2], we define the size of any L1 formula φ, denoted
by |φ|, inductively as follows: P (�lv,�mv′) = max{l,m}; |¬φ| = |φ|; |φ ∨ ψ| =
|φU ψ| = max{|φ|, |ψ|}. The size of a set of L1 formulas χ = {φ, ψ, . . .}, will be
the maximum size among its formulas, i.e., |χ| = max{|φ|, |ψ|, . . .}. The number
of occurrences of symbols in a L1 formula φ will be denoted by length(φ).

4 Revisiting the Satisfiability Problem in L1

In this section, we revisit a result regarding the satisfiability of L1 formulas in
a ST-structure, using patchwork and compactness. These properties strengthen
previous results, in that we do not longer need to restrict atomic QCNs to being
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Fig. 2. A countably infinite sequence of satisfiable atomic QCNs that agree on their
common part

globally consistent as in [2,3], but we can consider atomic QCNs that have com-
pactness and patchwork. As explained in Section 2, compactness and patchwork
combined are less strict than global consistency alone.

Given a L1 formula φ, Balbiani and Condotta in [2] show that the satisfiability
of formula φ can be checked by characterizing a particular infinite sequence of
finite satisfiable atomic QCNs representing an infinite consistent valuation of φ.
Each of the QCNs of such a sequence represents a set of spatial constraints in
a fixed-width window of time. The set of spatial constraints at point of time i,
is given by the i-th QCN in the infinite sequence, and shares spatial constraints
with the next QCN. Moreover, in such a sequence, there exists a point of time
after which the corresponding QCNs replicate the same set of spatial constraints.
The global consistency property is then used for the following two tasks:
(i) to prove that by considering all the QCNs of the aforementioned sequence

we obtain a consistent set of constraints;
(ii) to prove that in such an infinite sequence, a sub-sequence which begins and

ends with two QCNs representing the same set of spatial constraints can
be reduced to just considering the first QCN.

In the sequel, we formally show that tasks (i) and (ii) can be performed using
the properties of patchwork and compactness instead. As a consequence, we can
generalize a result regarding the satisfiability of a L1 formula φ to a larger class
of calculi than the previously considered in literature. We now introduce the two
aforementioned tasks in the form of two propositions.

Proposition 1. Let V = {v0, . . . , vn} be a set of variables, w ≥ 0 an integer,
and S = (N0 = (V0, C0), N1 = (V1, C1), . . .) a countably infinite sequence of
satisfiable atomic QCNs, as shown in Figure 2, such that:
– for each i ≥ 0, Vi is defined by the set of variables {v00,. . .,v0n,. . .,vw0 ,. . .,vwn },
– for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all k, k′ ∈ {1, . . . , w},

Ci(v
k
m, vk

′
m′) = Ci+1(v

k−1
m , vk

′−1
m′ ).

We have that if the constraint language considered has compactness and patch-
work for atomic QCNs, then S defines a consistent set of qualitative constraints.

Proof. Given Ni, we rename its set of variables to {vi0,. . .,vin,. . .,vw+i
0 ,. . .,vw+i

n }.
Then, by patchwork we can assert that for each integer k ≥ 0,

⋃
k≥i≥0 Ni is

a consistent set of qualitative constraints. Suppose though, that
⋃

i≥0 Ni is an
inconsistent set. By compactness we know that there exists an integer k′ ≥ 0
for which

⋃
k′≥i≥0 Ni is inconsistent. This is a contradiction. Thus, S defines a

consistent set of qualitative constraints. ��
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· · ·
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· · ·=
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Fig. 3. A countably infinite sequence of satisfiable atomic QCNs that contains a sub-
sequence which begins and ends with two QCNs representing the same set of spatial
constraints; we can reduce the sub-sequence to just considering the first QCN and patch
it with the QCN following the sub-sequence

The second proposition follows.

Proposition 2. Let V = {v0, . . . , vn} be a set of variables, w ≥ 0, t > t′ ≥ 0
three integers, and S = (N0 = (V0, C0), N1 = (V1, C1), . . .) a countably infinite
sequence of satisfiable atomic QCNs, as shown in Figure 3, such that:
– for each i ≥ 0, Vi is defined by the set of variables {v00,. . .,v0n,. . .,vw0 ,. . .,vwn },
– for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all k, k′ ∈ {1, . . . , w},

Ci(v
k
m, vk

′
m′) = Ci+1(v

k−1
m , vk

′−1
m′ ),

– for all m,m′ ∈ {0, . . . , n} and all k, k′ ∈ {0, . . . , w}, Ct′(v
k
m, vk

′
m′) = Ct(v

k
m,

vk
′

m′).
Let S ′ = (N ′

0 = (V ′
0 , C

′
0),N ′

1 = (V ′
1 , C

′
1), . . .) be the infinite sequence defined by:

– for all i ∈ {0, . . . , t′}, N ′
i = Ni,

– for all i > t′, V ′
i = Vi, and for all m,m′ ∈ {0, . . . , n} and all k, k′ ∈

{0, . . . , w}, C′
i(v

k
m, vk

′
m′) = Ci+(t−t′)(v

k
m, vk

′
m′).

We have that if the constraint language considered has compactness and patch-
work for atomic QCNs, then S ′ defines a consistent set of qualitative constraints.

Proof. We have Ni which is a satisfiable QCN for all i ≥ 0. From this, we can
deduce that N ′

i is a satisfiable QCN for all i ≥ 0. By Proposition 1 we can deduce
that S ′ defines a consistent set of qualitative constraints. ��

We now can obtain the following result:

Theorem 1. Checking the satisfiability of a L1 formula φ in a ST-structure
is PSPACE-complete in length(φ) if the qualitative spatial constraint language
considered has compactness and patchwork for atomic QCNs.

Proof. (Sketch) Consider the approach in [2] where a proof of PSPACE-comple-
teness is given for a logic that considers qualitative constraint languages for
which satisfiable atomic QCNs are globally consistent (see Theorem 1 in [2]). To
be able to replace the use of global consistency with the use of patchwork and
compactness, we need to use Propositions 1 and 2 in the proofs of Lemmas 3 and
4 in [2]. The interested reader can verify that the aforementioned proofs make use
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of global consistency to perform exactly the tasks described by Propositions 1
and 2. Since these propositions build on compactness and patchwork, we can
prove PSPACE-completeness using these properties instead. ��

Theorem 1 allows us to consider more calculi than the ones considered in
literature for which the combination with PTL yields PSPACE-completeness.
Due to the lack of global consistency for RCC-8 [16], in [5] the authors restrict
themselves to a very particular domain interpretation of RCC-8 to prove that the
ST −

1 logic is PSPACE-complete. As already noted in Section 1, the ST −
1 logic is

the L1 logic when the considered qualitative constraint language is RCC-8. L1

does not rely on the semantics of the qualitative constraint language used, but
rather on the constraint properties of compactness and patchwork [11]. Therefore,
L1 is by default able to consider all calculi that have these properties, such as
RCC-8 [14], Cardinal Direction Algebra (CDA) [4,10], Block Algebra (BA) [7],
and even Interval Algebra (IA) [1] when viewed as a spatial calculus. The most
notable languages that have patchwork and compactness are listed in [8].

5 Semantic Tableau for L1

In this section, we present a semantic tableau method that given a L1 formula
φ systematically searches for a model for φ. The method builds on the tableau
method for PTL of Wolper [18], and makes use of the results of Section 4 to
ensure soundness and completeness.

5.1 Rules for Constructing a Semantic Tableau

The decomposition rules of the temporal operators are based on the following
identities, which are called eventualities (where � abbreviates ¬�¬):
– �φ ≡ φ ∨ ��φ
– φ U ψ ≡ ψ ∨ (φ ∧ �(φ U ψ))

Note that decomposing eventualities can lead to an infinite tableau. However, we
will construct a finite tableau by identifying nodes that are labeled by the same
set of formulas, thus, ensuring that infinite periodicity will not exist. To test a
L1 formula φ for satisfiability, we will construct a directed graph. Each node n
of the graph will be labeled by a set of formulas, and initially the graph will
contain a single node, labeled by {φ}. Similarly to Wolper [18], we distinguish
between elementary and non-elementary formulas:

Definition 7. A L1 formula is elementary if its main connective is � (viz.,�-formula), or if it corresponds to a base relation P ∈ B.

Then, the construction of the graph proceeds by using the following decom-
position rules which map each non-elementary formula φ into a set of sets of
formulas:
– ¬P (�nv,�mv′) → {{P ′(�nv,�mv′)} | P ′ ∈ B \ {P}}
– ¬¬φ → {{φ}}
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– ¬ � φ → {{�¬φ}}
– φ ∧ ψ → {{φ, ψ}}
– ¬(φ ∧ ψ) → {{¬φ}, {¬ψ}}
– �φ → {{φ}, {��φ}}
– ¬�φ → {{¬φ,¬ � �φ}}
– φ U ψ → {{ψ}, {φ,�(φ U ψ)}}
– ¬(φ U ψ) → {¬ψ,¬φ ∨ ¬ � (φ U ψ)}
During the construction, we mark formulas to which a decomposition rule has

been applied to avoid decomposing the same formula twice. If ψ is a formula,
ψ∗ denotes ψ marked.

5.2 Systematic Construction of a Semantic Tableau

A tableau T can be seen as a directed graph where each of its nodes n is labeled
with a set of formulas T (n). The root node is labeled with the singleton set {φ}
for the L1 formula φ whose satisfiability we wish to check. The children of the
nodes are obtained by applying the rules presented in Section 5.1.

Given a set of L1 formulas χ over the set of variables {x0, . . . , xl}, we denote
by expandV ars(χ) the set {�0x0,. . .,�0xl,. . .,�|χ|x0,. . .,�|χ|xl}. We first define
a translation of a node of a tableau to a QCN.

Definition 8. Let n be a node of a tableau T for a L1 formula φ, and {x0, . . . ,
xl} the set of variables in φ. Then, N (n) will denote the QCN = (V,C), where

V = {v00, . . ., v0l , . . ., v
|φ|
0 , . . ., v

|φ|
l }, and C(vkm, vk

′
m′) = {P (�kxm,�k′

xm′)} if

P (�kxm,�k′
xm′) ∈ T (n), and C(vkm, vk

′
m′) = (B if vkm �= vk

′
m′ else {Id}) other-

wise, ∀ m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈ {0, . . . , |φ|}.

Let us also define the notions of a state and a pre-state, which we will be
referring to a lot in what follows.

Definition 9. A node n that contains only elementary and marked formulas
and for which we have that N (n) is atomic is called a state, and a node m that
is either the root node or the direct child node of a state (which leaps to the next
point of time) is called a pre-state.

We give a definition of eventuality fulfillment that will be of use later on.

Definition 10. Let T be a tableau, and π a path in T defined from nodes n1,
n2, . . ., nj. Any eventuallity �ε2 or ε1 U ε2 ∈ T (ni), with 1 ≤ i ≤ j, is fulfilled
in π if there exists k, with i ≤ k ≤ j, such that ε2 ∈ T (nk).

We now present Clotho, an algorithm that constructs a semantic tableau T
for a given formula φ, as shown in Algorithm 1. At any given point of time,
we construct all the possible atomic QCNs comprising base relations that ex-
tend from the given point of time to a future point of time. This is achieved
by repeatedly applying the decomposition rules to a node comprising unmarked
non-elementary formulas (lines 4 to 9), and sequentially populating a node com-
prising only elementary and marked formulas with the universal relation B (lines
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Algorithm 1. Clotho(φ)

in : A L1 formula φ.
output : A semantic tableau T for φ.

1 begin
2 create root node {φ} and mark it unprocessed;
3 while ∃ unprocessed node n do
4 if T (n) contains an unmarked non-elementary formula ψ then
5 mark node n processed;
6 foreach γ ∈ Γ , where Γ is the result of applying a decomposition

rule to ψ do
7 create a child node m;
8 T (m) ← (T (n)− {ψ}) ∪ γ ∪ {ψ∗};
9 mark node m unprocessed;

10 else if T (n) contains only elementary and marked formulas then
11 mark node n processed;
12 filling ← ∅;
13 foreach u, v ∈ expandV ars(φ) do
14 if � P (u, v) ∈ T (n) then
15 filling ← filling ∪ {B(u, v)};
16 if filling �= ∅ then
17 create a child node m;
18 T (m) ← T (n) ∪ filling;
19 mark node m unprocessed;

20 else if T (n) contains �-formulas then
21 create a child node m;
22 T (m) ← {ψ | � ψ ∈ T (n)};
23 T (m) ← T (m) ∪ {P (�i−1u,�j−1v) | P (�iu,�jv) ∈ T (n) if

i, j ≥ 1};
24 mark node m unprocessed;

10 to 19) so that it may lead to a state. The universal relation B is only intro-
duced on a pair of variables, if there does not exist any base relation on that same
pair. The universal relation B, as well as any other relation r ∈ 2B, is essentially
the disjunction of base relations, as noted in Section 2. In particular, B is the
disjunction of all the base relations of a given qualitative constraint language. As
such, by decomposing B into base relations using the disjunctive tableau rule,
this approach allows us to obtain one or more nodes harboring atomic QCNs
for a given point of time (viz., states), that represent a set of atomic spatial
constraints in a fixed-width window of time. Once we have obtained our atomic
QCNs for a given point of time, and assuming that the states that harbor them
contain �-formulas, we can leap to the next point of time and create pre-states,
including all the atomic spatial constraints of the aforementioned QCNs that
extend from the new point of time to a future point of time (lines 20 to 24). This
can be seen as making a +1 time shift and maintaining all possible knowledge
offered by previous states that extends from the new point of time to a future
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Algorithm 2. Atropos(T )

in : A semantic tableau T .
output : True or False.

1 begin
2 do
3 flag ← False;
4 if there is a node n such that N (n) is an unsatisfiable QCN then
5 eliminate node n; flag ← True;

6 if all the children of a node n have been eliminated then
7 eliminate node n; flag ← True;

8 if a node n is a pre-state and not Lachesis(T , n) then
9 eliminate node n; flag ← True;

10 while flag ;
11 if � node n ∈ T then return False else return True;

Function Lachesis(T , n)

in : A semantic tableau T , and a node n.
output : True or False.

1 begin
2 foreach eventuality ε ∈ T (n) do
3 if ε is not fulfilled in any path π = 〈n, . . .〉 then return False;

4 return True;

point of time. It is important to note that when we create a child node m of a
node n (lines 7, 17, and 21), we only create a new node if there does not already
exist a node in the graph labeled by T (m). Otherwise, we just create an arc
from node n to the existing node.

Lemma 1. Let T be a tableau for a L1 formula φ that has resulted after the
application of algorithm Clotho. Then, T is finite. Actually, if φ is over a set of
l variables, then T has at most O(|B|l2·(|φ|+1)3 · 2length(φ)) nodes.

To decide the satisfiability of a L1 formula φ using the tableau that is gener-
ated by Clotho, we have to eliminate unsatisfiable nodes inductively, until a fixed
point is reached. We present Atropos, an algorithm that achieves this goal, shown
in Algorithm 2. If the root node is eliminated after the application of Atropos,
we call the tableau closed, and open otherwise. Note that function Lachesis es-
sentially searches for a path from a given pre-state to a node that fulfills an
eventuality of the pre-state, as defined in Definition 10.

Example 2. Let us consider formula φ = {EQ(x, y), PO(�x, �y), TPP (x,�x),
TPP (y,�y), TPP (x,�y), �DC(x, y)}. (For simplicity we assume that the de-
composition rule for ∧ has already been applied and resulted in the current
set form for formula φ.) The tableau obtained by the application of algorithms
Clotho and Atropos for this formula is shown in Figure 4. Horizontal dotted lines
distinguish between different points in time, thus, our tableau extends over three
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⎧
⎪⎨

⎪⎩

EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),
TPP (y, ◦y), TPP (x, ◦y), �DC(x, y)

⎫
⎪⎬

⎪⎭

φ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�DC(x, y)∗
EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),
TPP (y, ◦y), TPP (x, ◦y),B(y, ◦x)

◦ � DC(x, y)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

�DC(x, y)∗,B(y, ◦x)∗
. . . ,DC(y, ◦x), . . .

⎫
⎪⎬

⎪⎭
· · ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�DC(x, y)∗,B(y, ◦x)∗
EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),

TPP (y, ◦y), TPP (x, ◦y),TPP(y, ◦x)
◦ � DC(x, y)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�DC(x, y)∗
EQ(x, y), PO(◦x, ◦y), TPP (x, ◦x),

TPP (y, ◦y), TPP (x, ◦y), ◦ � DC(x,y)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

�DC(x, y)∗
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⎫
⎪⎬

⎪⎭

{

PO(x,y), �DC(x, y)
}

⎧
⎪⎨

⎪⎩

�DC(x, y)∗
PO(x, y),DC(x,y)

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

�DC(x, y)∗
PO(x, y), ◦ � DC(x,y)

⎫
⎪⎬

⎪⎭

{

�DC(x, y)
}

⎧
⎪⎨

⎪⎩

�DC(x, y)∗
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⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩
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⎫
⎪⎬

⎪⎭
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Fig. 4. A L1 formula and its simplified tableau

points of time. The root node is 1, the states are 5 to 12, 14, 15, 17, and 18, and
the pre-states are 1, 13, and 16. By decomposing the initial formula using the
tableau rules and populating it with universal relations where appropriate, we
reach states 5 to 12, each one of which harbors a set of base relations that corre-
spond to an atomic QCN. (Inverse relations are not shown to save space.) These
atomic QCNs represent a set of atomic spatial constraints in a fixed-width win-
dow of time. After leaping to the next point of time and, consequently, obtaining
pre-state 13, we include all the atomic spatial constraints of the aforementioned
QCNs that extend from the new point of time to a future point of time. In this
particular case, the atomic spatial constraints of interest narrow down to the sin-
gle atomic constraint PO(�x,�y), common for all states 5 to 12. Of course, since
we are now at the next point of time, the constraint is rewritten to PO(x, y).
Again, we apply the rules and reach states 14 and 15, each one of which harbors
an atomic QCN. We continue repeating the process until all our child nodes are
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labeled by sets of formulas already met in nodes of the tableau. In this case, the
unique child node of state 18 would be labeled by the set of formulas of node 16,
thus, we create an arc from 18 to 16. After having constructed our tableau, we
delete unsatisfiable nodes 2, 5 to 11, and 14 using the �-consistency operation on
QCNs N (2), N (5) to N (11), and N (14) respectively. Inconsistencies stemming
from nodes 2 and 14 are apparent, as there exist different base relations on a
same pair of variables, whereas inconsistencies in nodes 5 to 11 stem from the
fact that relation TPP (y,�x) is inferred by �-consistency, which contradicts
with the base relation that is defined on variables y and �x in states 5 to 11.
Formula φ is satisfiable, as the tableau is open, and a model can be constructed
out of the sequence of states 12,15,17 which contains a self loop on 17 as rela-
tion DC(x, y) repeats itself. These states harbor satisfiable atomic QCNs that
completely agree on their common part due to our construction. In particular,
we have the sequence N (12)→N (15)→N (17) � that satisfies the prerequisites
of Proposition 2, hence, satisfiability is met.

5.3 Soundness and Completeness of Our Semantic Tableau Method

In this section, we prove that the tableau method as defined by algorithms
Clotho and Atropos is sound and complete for checking the satisfiability of a L1

formula φ.

Theorem 2 (Soundness). If φ has a closed tableau, then φ is unsatisfiable.

Proof. Let T be a closed tableau for φ, that has resulted after the application
of algorithms Clotho and Atropos. We prove by induction that if a node n is
eliminated, then T (n) is an unsatisfiable set of formulas. We distinguish three
scenarios:
(i) a node n is eliminated because N (n) is an unsatisfiable QCN (lines 4 to 5

in Atropos), thus, T (n) is an unsatisfiable set of formulas; unsatisfiability
of N (n) can de detected by use of �-consistency, which also disallows the
conjunction of two or more base relations to be defined on a same pair
of variables (base relations are jointly exhaustive and pairwise disjoint as
noted in Section 2).

(ii) a node n is eliminated because all of its child nodes are unsatisfiable and
have been eliminated (lines 6 to 7 in Atropos). Child nodes can be created
in the following three cases:
(a) the decomposition rule ψ → Γ , where ψ ∈ T (n), is applied and a child

node is created for each γ ∈ Γ (lines 4 to 9 in Clotho); we have that ψ
is satisfiable iff ∃γ ∈ Γ that is satisfiable.

(b) implicit knowledge in the parent node n is made explicit in the child
node m through the introduction of the universal relation B (lines 10
to 19 in Clotho); by Definition 8 we have that N (n) = N (m), thus,
N (n) is satisfiable iff N (m) is satisfiable, and the same holds for the
set of formulas T (n) and T (m).

(c) node n is a state and generates pre-state m with T (m) = {ψ | � ψ ∈
T (n)} ∪ {P (�i−1u,�j−1v) | P (�iu,�jv) ∈ T (n) if i, j ≥ 1} (lines
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20 to 24 in Clotho); clearly, T (n) is a satisfiable set of formulas iff
{ψ | � ψ ∈ T (n)} is a satisfiable set of formulas and iff N (m) is
satisfiable.

(iii) a node n is eliminated if it contains an eventuality that is not fulfilled in
any path in the tableau (lines 8 to 9 in Atropos); since any model will
correspond to a path in the tableau, we have that T (n) is an unsatisfiable
set of formulas. ��

Let us obtain a proposition that denotes that two successive states in a path
of an open tableau harbor QCNs that completely agree on their common part.

Proposition 3. Let π be a path going through an open tableau T for a L1 for-
mula φ that has resulted after the application of algorithms Clotho and Atropos,
st and st+1 two states of π belonging to points of time t and t + 1 respectively,
and {x0, . . . , xl} the set of variables in φ. Then we have that N (st)[v

k
m, vk

′
m′ ] =

N (st+1)[v
k−1
m , vk

′−1
m′ ] ∀ m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈ {1, . . . , |φ|}.

Proof. State st at point of time t is followed by a pre-state p at point of time t+1
in path π, whose set of base relations is {P (�i−1u,�j−1v) | P (�iu,�jv) ∈ T (st)
if i, j ≥ 1} ∪ {P (�iu,�jv) | �P (�iu,�jv) ∈ T (st)} by construction of our
tableau (lines 20 to 24 in Clotho). The set of base relations of T (p) is carried
over, possibly enriched, to state st+1 at point of time t + 1. As such, let us
assume that there exists an additional base relation b(�i−1u,�j−1v) in the set
of base relations of st+1, with i, j ∈ {1, . . . , |φ|}, such that b(�iu,�jv) �∈ T (st).
In this case, N (st+1) is a QCN with two base relations defined on a same pair
of variables. This QCN would have been deleted by the application of Atropos as
specified also in the proof of Theorem 2. Thus, state st+1 could not have been
in path π, resulting in a contradiction. Therefore, we have that N (st)[v

k
m, vk

′
m′ ]

= N (st+1)[v
k−1
m , vk

′−1
m′ ] ∀ m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈ {1, . . . , |φ|}, and, as

such, N (st) and N (st+1) completely agree on their common part. ��

Theorem 3 (Completeness). If φ has an open tableau, then φ is satisfiable.

Proof. Let T be an open tableau for φ, that has resulted after the application
of algorithms Clotho and Atropos. We need to show that there exists a path of
nodes π which defines a model for φ. We distinguish two scenarios:
(i) if no eventualities need to be fulfilled, path π can be simply a path starting

from the root node and going through the tableau, defining a sequence of
states s0,s1,. . .,st, with t ∈ N, and, consequently, yielding a sequence of
QCNs as follows:

N (s0) → N (s1) . . . → N (st)

The sequence of QCNs is such that for all states si and si+1, with i ∈
{0, . . . , t− 1}, along with a set of variables {x0, . . . , xl} in φ, we have that

N (si)[v
k
m, vk

′
m′ ] = N (si+1)[v

k−1
m , vk

′−1
m′ ] ∀ m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈

{1, . . . , |φ|} by Proposition 3. Thus, the sequence of QCNs corresponds to
the sequence shown in Figure 2, satisfies the prerequisites of Proposition 1,
and is therefore satisfiable.
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(ii) if eventualities need to be fulfilled, we show how we can construct a path π
that fulfills all eventualities as follows. For each pre-state p ∈ T containing
an eventuality, we must find a path πp = 〈p, . . .〉 starting from p, such
that all the eventualities contained in p are fulfilled in πp. We fulfill all
the eventualities of p, one by one, as follows. For a selected eventuality
ε ∈ T (p), it is possible to find a path πp = 〈p, . . . , p′〉 in which ε is fulfilled
and whose last node is a pre-state p′, as otherwise the node would have
been deleted by the application of Atropos. By construction of our tableau,
p′ will also contain the rest of the eventualities that need to be fulfilled
(they are carried over from p to p′), and it follows that we can extend path
πp to fulfill a second one, and so on, until all the eventualities of p are
fulfilled. By linking together all paths πp ∀ pre-states p ∈ T , we can obtain
a path π starting from the initial node and going through the tableau,
defining a sequence of states s0,s1,. . .,st−1, with t ∈ N, with a final loop
between state st−1 and a state st′ , with 0 ≤ t′ ≤ t− 1. The loop exists due
to the fact that at point of time t − 1 there exists a node n, whose child
node m is such that T (m) = T (o), where o is a node at point of time t′.
In particular, we can view a sequence of QCNs as follows:

N (s0) → N (s1) . . . → N (st′) . . . → N (st−1)

The sequence of QCNs is such that for all states si and si+1, with i ∈
{0, . . . , t − 2}, along with a set of variables {x0, . . . , xl} in φ, we have

that N (si)[v
k
m, vk

′
m′ ] = N (si+1)[v

k−1
m , vk

′−1
m′ ] ∀ m,m′ ∈ {0, . . . , l} and ∀

k, k′ ∈ {1, . . . , |φ|} by Proposition 3. Further, if we were to extend path
π, we would obtain a state st with N (st)[v

k
m, vk

′
m′ ] = N (st′)[v

k
m, vk

′
m′ ] ∀

m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈ {0, . . . , |φ|} (i.e., st replicates the same set
of spatial constraints with st′ , hence, the loop). Thus, the sequence of QCNs
corresponds to the sequence shown in Figure 3, satisfies the prerequisites
of Proposition 2, and is therefore satisfiable. ��

6 Conclusion

In this paper, we considered a generalized qualitative spatiotemporal formalism,
namely, the L1 logic, which is the product of the combination of PTL with any
qualitative spatial constraint language, such as RCC-8, Cardinal Direction Alge-
bra, and Block Algebra. We showed that satisfiability checking of a L1 formula
is PSPACE-complete if the constraint language considered has the properties of
compactness and patchwork for atomic networks, thus, strengthening previous
results that required atomic networks to be globally consistent and, consequently,
generalizing to a larger class of calculi. Further, we presented a first semantic
tableau method, that given a L1 formula φ systematically searches for a model
for φ. The method presented builds on the tableau method for PTL of Wolper
and makes use of our strengthened results to ensure its soundness and complete-
ness, while the ideas provided can be carried to other tableau methods for PTL
as well, such as the systematic semantic tableaux for PTL presented in [6].
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Efficient Algorithms

for Bounded Rigid E -Unification�
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Abstract. Rigid E -unification is the problem of unifying two expres-
sions modulo a set of equations, with the assumption that every variable
denotes exactly one term (rigid semantics). This form of unification was
originally developed as an approach to integrate equational reasoning
in tableau-like proof procedures, and studied extensively in the late 80s
and 90s. However, the fact that simultaneous rigid E -unification is un-
decidable has limited the practical relevance of the method, and to the
best of our knowledge there is no tableau-based theorem prover that uses
rigid E -unification. We recently introduced a new decidable variant of
(simultaneous) rigid E -unification, bounded rigid E -unification (BREU),
in which variables only represent terms from finite domains, and used it
to define a first-order logic calculus. In this paper, we study the problem
of computing solutions of (individual or simultaneous) BREU problems.
Two new unification procedures for BREU are introduced, and compared
theoretically and experimentally.

1 Introduction

The integration of efficient equality reasoning in tableaux and sequent calculi
is a long-standing challenge, and has led to a wealth of theoretically intriguing,
yet surprisingly few practically satisfying solutions. Among others, a family of
approaches related to the (undecidable) problem of computing simultaneous rigid
E-unifiers [7] have been developed, by utilising incomplete unification procedures
in such a way that an overall complete first-order calculus is obtained. To the
best of our knowledge, however, none of those procedures has led to competitive
theorem provers.

We recently introduced simultaneous bounded rigid E-unification (BREU) [2],
a new version of rigid E -unification that is bounded in the sense that variables
only represent terms from finite domains, thus preserving decidability even for
simultaneous E -unification problems. As demonstrated in [2], BREU can be used
to design sound and complete calculi for first-order logic with equality, and to
implement theorem provers that compare favourably to state-of-the-art tableau
provers in terms of performance on problems with equality. In this paper we
introduce two new unification algorithms for BREU problems.
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1.1 Background and Motivating Example

We start by illustrating our approach using an example from [3,2]:

φ = ∃x, y, u, v.
(
(a �≈ b ∨ g(x, u, v) ≈ g(y, f(c), f(d))) ∧
(c �≈ d ∨ g(u, x, y) ≈ g(v, f(a), f(b)))

)

For sake of presentation, the formula is flattened to ensure that every literal
contains at most one function symbol (for more details, see [2]):

φ′ = ∀z1, z2, z3, z4.
(
f(a) �≈ z1 ∨ f(b) �≈ z2 ∨ f(c) �≈ z3 ∨ f(d) �≈ z4 ∨

∃x, y, u, v. ∀z5, z6, z7, z8.

⎛

⎝
g(x, u, v) �≈ z5 ∨ g(y, z3, z4) �≈ z6 ∨
g(u, x, y) �≈ z7 ∨ g(v, z1, z2) �≈ z8 ∨
((a �≈ b ∨ z5 ≈ z6) ∧ (c �≈ d ∨ z7 ≈ z8))

⎞

⎠

⎞

⎠

To show that φ′ is valid, a Gentzen-style proof (or, equivalently, a tableau)
can be constructed, using free variables for x, y, u, v:

A
. . . , g(X,U, V ) ≈ o5, a ≈ b � o5 ≈ o6

B
. . . , g(U,X, Y ) ≈ o7, c ≈ d � o7 ≈ o8

...

f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4 � ∃x, y, u, v. ∀z5, z6, z7, z8. . . . (∗)
...

� ∀z1, z2, z3, z4. . . .
To finish this proof, both A and B need to be closed by applying further

rules, and substituting concrete terms for the variables. In our bounded setting,
we restrict the terms considered for instantiation of X,Y, U, V to the symbols
that were in scope when the variables were introduced (at (∗) in the proof): X
ranges over constants {o1, o2, o3, o4}, Y over {o1, o2, o3, o4, X}, and so on. Since
the problem is flat, those sets contain representatives of all existing ground terms
at point (∗) in the proof. We can observe that the proof can be concluded by
applying the substitution σb = {X 	→ o1, Y 	→ o2, U 	→ o3, V 	→ o4}.

It has long been observed that this restricted instantiation strategy gives rise
to a complete calculus for first-order logic with equality. The strategy was first in-
troduced as dummy instantiation in the seminal work of Kanger [8] (in 1963, i.e.,
even before the introduction of unification), and later studied under the names
subterm instantiation and minus-normalisation [4,5]; the relationship to general
Simultaneous Rigid E -unification (SREU) was observed in [3]. The present pa-
per addresses the topic of solving a problem using the restricted strategy in an
efficient way and makes the following main contributions:

– we define congruence tables and present an eager procedure for solving BREU
using a SAT encoding (Sect. 4);

– we define complemented congruence closure, a procedure for abstract reason-
ing over sets of equivalence relations, and present a lazy solving procedure
utilising this method (Sect. 5 and 6);

– we give an experimental comparison between the two methods (Sect. 7).
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Further Related Work. For a general overview of research on equality handling
in sequent calculi and related systems, as well as on SREU, we refer the reader
to the detailed handbook chapter [4]. To the best of our knowledge, we are the
first to develop algorithms for the BREU problem.

2 Preliminaries

We assume familiarity with classical first-order logic and Gentzen-style calculi
(see e.g., [6]). Given countably infinite sets C of constants (denoted by c, d, . . . ),
Vb of bound variables (written x, y, . . . ), and V of free variables (denoted by
X,Y, . . . ), as well as a finite set F of fixed-arity function symbols (written
f, g, . . .), the syntactic categories of formulae φ and terms t are defined by

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t ≈ t , t ::= c || x || X || f(t, . . . , t) .

Note that we distinguish between constants and zero-ary functions for reasons
that will become apparent later. We generally assume that bound variables x
only occur underneath quantifiers ∀x or ∃x. Semantics of terms and formulae
without free variables is defined as is common.

We call constants and (free or bound) variables atomic terms, and all other
terms compound terms. A flat equation is an equation between atomic terms, or
an equation of the form f(t1, . . . , tn) ≈ t0, where t0, . . . , tn are atomic terms. A
congruence pair is a pair of two flat equations (f(ā) ≈ b, f(ā′) ≈ b′) with b �= b′.

A substitution is a mapping of variables to terms, s.t. all but finitely many
variables are mapped to themselves. Symbols σ, θ, . . . denote substitutions, and
we use post-fix notation φσ or tσ to denote application of substitutions. An
atomic substitution is a substitution that maps variables only to atomic terms.
An atomic substitution is idempotent if σ ◦ σ = σ. We write u[r] do denote that
r is a sub-expression of a term or formula u, and u[s] for the term or formula
obtained by replacing the sub-expression r with s.

Definition 1 ([11]). The replacement relation →E induced by a set of equa-
tions E is defined by: u[l] → u[r] if l ≈ r ∈ E. The relation ↔∗

E represents the
reflexive, symmetric, and transitive closure of →E.

2.1 Congruence Closure

We characterise the concept of congruence closure (CC) [9,1] as fixed-point com-
putation over equivalence relations between symbols. Let S ⊆ C ∪ V denote a
finite set of constants and variables. The equivalence closure ClEq(R) of a binary
relation R ⊆ S2 is the smallest equivalence relation (ER) containing R.

Let further E be a finite set of flat equations over S (and arbitrary functions
from F ). Without loss of generality, we assume that every equation in E con-
tains a function symbol; equations a ≈ b between constants or variables can
be rewritten to f() ≈ a, f() ≈ b by introducing a fresh zero-ary function f .
The congruence closure CCE(R) of a relation R ⊆ S2 with respect to E is
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the smallest ER that is consistent with the equations E, and defined as a least
fixed-point over binary relations as follows:

CC 1
E(R) = ClEq

(
R ∪ {(b, b′) | ∃ f(ā) ≈ b, f(ā′) ≈ b′ ∈ E with (ā, ā′) ∈ R}

)

CCE(R) = μX ⊆ S2. CC 1
E(R ∪X)

where we write (ā, ā′) ∈ R for the inclusion {(a1, a′1), (a2, a′2), . . . , (an, a′n)} ⊆ R,
provided ā = (a1, . . . , an) and ā′ = (a′1, . . . , a

′
n).

2.2 The Bounded Rigid E-Unification Problem

Bounded rigid E -unification is a restriction of rigid E -unification in the sense
that solutions are required to be atomic substitutions s.t. variables are only
mapped to smaller atomic terms according to some given partial ordering �.
This order takes over the role of an occurs-check of regular unification.

Definition 2 (BREU). A bounded rigid E -unification (BREU) problem is a
triple U = (�, E, e), with � being a partial order over atomic terms s.t. for all
variables X the set {s | s � X} is finite; E is a finite set of flat formulae; and
e = s ≈ t is an equation between atomic terms (the target equation). An atomic
substitution σ is called a bounded rigid E -unifier of s and t if sσ ↔∗

Eσ tσ and
Xσ � X for all variables X.

Definition 3 (Simultaneous BREU). A simultaneous bounded rigid E -uni-
fication problem is a pair (�, (Ei, ei)

n
i=1) s.t. each triple (�, Ei, ei) is a bounded

rigid E-unification problem. A substitution σ is a simultaneous bounded rigid
E -unifier if it is a bounded rigid E-unifier for each problem (�, Ei, ei).

A solution to a simultaneous BREU problem can be used in a calculus to close
all branches in a proof tree. While SREU is undecidable in the general case,
simultaneous BREU is decidable, in fact it is NP-complete [2]; the existence of
bounded rigid E -unifiers can be decided in non-deterministic polynomial time,
since it can be verified in polynomial time that a substition σ is a solution
of a (possibly simultaneous) BREU problem. Hardness follows from the fact
that propositional satisfiability can be reduced to BREU. Also, a number of
generalisations are possible, but can be reduced to BREU as in Def. 2.

Example 4. We revisit the example introduced in Sect. 1.1, which can be cap-
tured as the following simultaneous BREU problem (�, {(E1, e1), (E2, e2)}):

E1 = E ∪ {a ≈ b}, e1 = o5 ≈ o6, E2 = E ∪ {c ≈ d}, e2 = o7 ≈ o8,

E =

{
f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4,
g(X,U, V ) ≈ o5, g(Y, o3, o4) ≈ o6, g(U,X, Y ) ≈ o7, g(V, o1, o2) ≈ o8

}

with a ≺ b ≺ c ≺ d ≺ o1 ≺ o2 ≺ o3 ≺ o4 ≺ X≺ Y ≺ U≺ V ≺ o5 ≺ o6 ≺ o7 ≺ o8.
A unifier to this problem is sufficient to close all goals of the tree up to

equational reasoning; one solution is σ = {X 	→ o1, Y 	→ o2, U 	→ o3, V 	→ o4}.
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Input: BREU problem B = (�, E, s ≈ t)
1. while candidates remains do
2. σ ← new candidate // Guessing
3. ER ← CCE{(X,Xσ) | X ∈ S ∩ V } // Congruence Closure
4. if (s, t) ∈ ER then // Verifying
5. return σ
6. end if
7. end while
8. return UNSAT

Algorithm 1. Generic search procedure for BREU

3 Solving Bounded Rigid E-Unification

Suppose B = (�, E, e) is a BREU problem, and S ⊆ V ∪C the set of all atomic
terms occurring in B (“relevant terms”). On a high level, our procedures for
solving BREU problems consist of three steps: Guessing a candidate substitu-
tion; using Congruence Closure to calculate the corresponding equivalence
relation; and Verifying that the target equation is satisfied by this relation
(see Alg. 1). This schema derives from the basic observation that sσ ↔∗

Eσ tσ if
and only if (s, t) ∈ CCE{(X,Xσ) | X ∈ S ∩ V }, provided that σ is an idempo-
tent substitution [11]. Since an E -unifier σ with Xσ � X for all X ∈ V can be
normalised to an idempotent E -unifier, search can be restricted to the latter.

This paper introduces two different methods of performing these steps; an
eager encoding of the problem into SAT that encodes the entire procedure as a
SAT-problem, and a lazy encoding that uses SAT to generate candidate solutions.
Common to both methods is the representation of the candidate substitution.

3.1 Candidate Representation

We introduce a bijection Ind : S → {1, . . . , |S|}, s.t. for each s, t ∈ S we have
s � t ⇒ Ind(s) ≤ Ind(t); the mapping Ind will be used for the remainder of the
paper. We also introduce a pseudo-integer variable1 vs for each s ∈ S, together
with a SAT-constraint restricting the domains:

∧

c∈S∩C

vc = Ind(c) ∧
∧

X∈S∩V

∨

t∈S
t�X

(
vX = Ind(t) ∧ vt = Ind(t)

)
(Sat Domain)

Any idempotent substitution σ satisfying Xσ � X for the variables X ∈ V
(as in Def. 2) can be represented by vX = Ind(Xσ), and thus gives rise to a
SAT model of the domain constraint; and vice versa. A search procedure over
the models is thus sufficient for solving the Guessing step of Alg. 1. The Sat
Domain constraint will be used in both methods presented in this paper.

1 A pseudo-integer variable is a bit-wise representation of an integer in the range
{1, . . . , n} by introducing �log n� Boolean variables.
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4 Eager Encoding of Bounded Rigid E-Unification

In this section we describe how to eagerly encode a (simultaneous) BREU prob-
lem into SAT based on the procedure shown in Alg. 1. We note that a fairly
intricate encoding is necessary to accommodate the combination of variables,
constants, and congruence reasoning. For instance, the classical Ackermann re-
duction can be used to encode congruence closure and constants, but is not
applicable in the presence of both variables and constants.

4.1 Congruence Tables

A congruence table is a table where each column represents a union-find data
structure in a step of the congruence closure procedure, and each row corre-
sponds to an atomic term, the “representative” for each step. The initial column
is defined by a substitution while every internal column is constrained by its
previous column modulo the given set of equations. From the final column of
the table, an equivalence relation, equal to the congruence closure of the given
substitution modulo the given equations, can be extracted.

Definition 5. Suppose E is a set of flat equations, each containing exactly one
function symbol, and σ is a substitution s.t. Xσ � X for all X ∈ V . As before, let
S = {t1, . . . , tm} ⊆ C∪V be the relevant terms, and Ind(ti) = i (i ∈ {1, . . . ,m}).

Then a congruence table T of size n for E and σ is a list of column vectors
[c̄1, . . . c̄n], with c̄i ∈ {1, . . . , |S|}m, where c̄1 = (Ind(t1σ), . . . , Ind(tmσ)) and for
each pair of consecutive vectors c̄i and c̄i+1 and each j ∈ {1, . . . ,m}:

1. if c̄i(j)
2 �= j then c̄i+1(j) = c̄i+1(c̄i(j)).

2. if c̄i(j) = j then:

(a) c̄i+1(j) = c̄i+1(k) if k < j, and there are equations f(a1, . . . , al) ≈ b,
f(a′1, . . . , a

′
l) ≈ b′ ∈ E s.t. c̄i(Ind(b)) = j and c̄i(Ind(b

′)) = k, and
furthermore c̄i(Ind(ah)) = c̄i(Ind(a

′
h)) for all h ∈ {1, . . . , l}.

(b) c̄i+1(j) = j if no such pair of equations exists.

To illustrate the definition, observe first that all entries of the first vector
point upwards, i.e., c̄1(j) ≤ j for j ∈ {1, . . . ,m} (due to the definition of Ind in
Sect. 3.1), and define a union-find forest. The rules relating consecutive vectors
(union-find data structures) to each other in Def. 5 correspond to three different
cases: (1) defines path shortening, stating that each term can point directly
to its representative term; (2a) states that if the arguments of two function
applications are equal, the results must also be equal, and enables merging of
the two equivalence classes s.t. the new representative is the smaller term; and
(2b) states that if no such merging is possible, a term retains its identity value.
All definitions are acyclic because the property c̄i(j) ≤ j is preserved in all
columns i (see Lem. 8 below).

2 We write c̄(j) for the jth component of a vector c̄.
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a o1 o2 o3 o4

b X Y U V

o5 o6

o7 o8

σ σ σ σ➁

➂

➂ ➃

Fig. 1. Equivalence classes of different columns of Table 1

Example 6. Consider the simultaneous BREU problem and unifier σ introduced
in Example 4. Table 1 shows a complete congruence table of size 4 for E1 (the
left branch) and σ; for sake of presentation, the table contains symbols t rather
than their index Ind(t), and in each column bold font indicates modified entries.
The represented union-find forests are shown in Fig. 1, in which each edge is
annotated with number of the column in which the edge was introduced. We
can see that the fourth column defines an equivalence relation partitioning ER
of the set of relevant terms S into seven sets. More importantly, under this
equivalence relation the two terms in the target equation e1 = o5 ≈ER o6 are
equal, implying that the substitution is a unifier to this sub-problem.

Definition 7. A congruence table T = [c̄1, . . . , c̄n] of size n is complete if for
every table T ′ = [c̄′1, . . . c̄

′
n+1] of size n+1, if c̄1 = c̄′1, . . . , c̄n = c̄′n then c′n+1 = c′n.

Intuitively, a congruence table T is complete, if every additional column added
would be identical to the last one.

Lemma 8. For every congruence table T = [c̄1, . . . , c̄n] of size n
∀i ∈ {1, . . . , n− 1}. ∀j ∈ {1, . . . , |c̄i|}. c̄i+1(j) ≤ c̄i(j).

S 1 2 3 4
a a a a a
b b a a a
o1 o1 o1 o1 o1
o2 o2 o2 o1 o1
o3 o3 o3 o3 o3
o4 o4 o4 o4 o4
X o1 o1 o1 o1
Y o2 o2 o1 o1
U o3 o3 o3 o3
V o4 o4 o4 o4
o5 o5 o5 o5 o5
o6 o6 o6 o6 o5

o7 o7 o7 o7 o7
o8 o8 o8 o8 o8

Table 1.

Lem. 8 states that when observing a certain index of vectors
of a congruence table, e.g., c̄1(2), c̄2(2), . . . , the values are non-
increasing. Therefore, given a set of relevant terms S, there is
an upper bound b s.t. all congruence tables, with vectors of
length |S|, with size n ≥ b will be complete.

Observe that every vector c̄ in a congruence ta-
ble of size n defines an equivalence relation ER(c̄) =
ClEq{(Ind−1(j), Ind−1(c̄(j))) | j ∈ {1, . . . ,m}}. Furthermore,
considering a congruence table T of size n for a set of equations
E and a substitution σ, the vectors c̄1, . . . c̄n ∈ T represent in-
termediate and final step of congruence closure over E and σ.
This leads to the following lemma:

Lemma 9. Given a complete congruence table T of size n
for equations E and substitution σ, it holds that ER(c̄n) =
CCE{(t, tσ) | t ∈ S}.

If a BREU problem B = (�, E, s ≈ t) has an E -unifier σ,
then (s, t) ∈ CCE{(t′, t′σ) | t′ ∈ S}. Therefore, with Lem. 8 and Lem. 9, it is
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only necessary to consider the congruence tables of a large enough size for every
substitution to find a solution, and if none of them represents a solving substitu-
tion, the given BREU problem is unsatisfiable. This leads to the construction of
a SAT model that encodes all possible congruence table of a certain size. How-
ever, this upper bound will in general be very pessimistic, so we introduce an
iterative procedure that replaces this upper bound by checking an incompletion
constraint.

4.2 Modeling Congruence Tables Using SAT

In the remainder of this section we present the variables (the congruence matrix
and the active congruence pairs) as well as the constraints introduced to model
congruence tables for a given BREU problem B = (�, E, e) using SAT.

Congruence Matrix. The congruence matrix M ∈ {1, . . . ,m}m×n is a matrix
of pseudo-integer variables with m rows and n columns, corresponding to the
vectors [c̄1, . . . c̄n] in Def. 5. We write M i

j for the cell in row j and column i.
Intuitively, the matrix represents congruence tables of size n for a set of relevant
symbols S with |S| = m, and cell M i

j represents the entry c̄i(j).

Active Congruence Pairs. The set of congruence pairs is the set CP = {(f(ā) ≈
b, f(ā′) ≈ b′) ∈ E2}. For each column i > 1 in the congruence matrix, there is
also a set {vicp | cp ∈ CP} of auxiliary Boolean variables that indicate the active
congruence pairs cp = (f(a1, . . . , ak) ≈ b, f(a′1, . . . , a′k) ≈ b′), constrained by:

vicp ⇔ M i−1
Ind(a1)

= M i−1
Ind(a′

1)
∧ · · · ∧M i−1

Ind(ak)
= M i−1

Ind(a′
k)

∧M i−1
Ind(b) > M i−1

Ind(b′)

(Table CP)
Intuitively, if some vicp is true, the congruence pair cp represents two equations
in which the arguments are equal in the equivalence relation of column i − 1,
but the results are different.

Initial Column. In the initial column, we constrain each cell M1
j to be consistent

with the variables vs introduced in Sect. 3.1 to represent solution candidates:
∧

t∈S

M1
Ind(t) = vt (Table Init)

Internal Column. In the internal columns with index i > 1, each cell must obey
the following constraints, for every j ∈ {1, . . . ,m}:

∨

k∈{1,...,j−1}
(M i−1

j = k ∧M i
j = M i

k) ∨ (Table Int)

M i−1
j = j ∧

⎛

⎜
⎜
⎜
⎝

∧
cp∈CP (¬vicp ∨M i−1

Ind(b) ��= j) ∧M i
j = j

∨
∨

cp∈CP

(
vicp ∧M i−1

Ind(b) = j ∧
∨

k∈{1,...,j−1}(M
i−1
Ind(b′) = k ∧M i

j = M i
k)
)

⎞

⎟
⎟
⎟
⎠

with cp = (f(ā) ≈ b, f(ā′) ≈ b′). The topmost constraint models condition (1)
while the bottom constraint models condition (2) in Def. 5.



78 P. Backeman and P. Rümmer

Input: BREU problem B = (�, E, s ≈ t)
1. Add initial table constraint (Sat Domain, Table CP, Init, Int, Goal)
2. while ¬solver.isSat() do
3. Remove goal constraint (Sat Goal)
4. Add incompletion constraint (Table Incomp)
5. if ¬solver.isSat() then
6. return UNSAT
7. else
8. Remove incompletion constraint (Table Incomp)
9. Add internal column and goal constraints (Table Int, Goal)
10. end if
11. end while
12. return SAT

Algorithm 2. Search procedure for the table encoding of a BREU problem

Goal Constraint. The final constraint asserts that the two rows corresponding
to the two terms in the target equation contain the same atomic term in the
final column.

Mn
Ind(s) = Mn

Ind(t) (Table Goal)

where the target equations is e = s ≈ t and the table has n columns.

4.3 Eager Procedure

Our eager procedure (outlined in Alg. 2) creates constraints for an initial table,
and then in an iterative fashion adds columns until either a solution is found,
or an incompletion constraint is not satisfied. Incompletion constraints make it
unnecessary to provide an a-priori upper bound on the size of constructed tables,
and instead check whether some congruence pair can be used to merge further
equivalence classes in the last column:

∨

cp∈CP

vn+1
cp (Table Incomp)

To handle a simultaneous BREU problem B = (�, (Ei, ei)
n
i=1), one table is

created for each sub-problem (�, Ei, ei), s.t. the variables xt are shared. However,
for many simultaneous BREU problems only a few of sub-problems are required
to prove unsatisfiability. Therefore we use an iterative approach, where initially
there is only a table for the first sub-problem. Once the constraints of the first
table could be satisfied, the encoding is extended in an iterative fashion with
tables for the other sub-problems, until either all tables are satisfied, or a subset
of complete but unsatisfiable tables has been found.

5 Complemented Congruence Closure

The congruence closure algorithm (Sect. 2) efficiently decides entailment be-
tween ground equations, and can therefore be used to check (in polynomial time)
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whether a given substitution σ is a solution to a BREU problem: σ translates
to the equivalence relation {(a, b) ∈ S2 | aσ = bσ} over the symbols S ⊆ C ∪ V
occurring in the problem, and can be completed to the smallest ER solving the
BREU equations via CC.

As main building block for the lazy BREU algorithm introduced in the next
section, we defined a generalised version of CC that can be applied to whole
sets of relations over S, in a manner similar to abstract interpretation (the new
algorithm can indeed be identified as an abstract domain for CC, within the
framework of abstract interpretation, but the details are beyond the scope of
this paper). This notion of complemented congruence closure (CCC) can also be
used as an optimisation for the SAT-based algorithm in Sect. 4, since it can often
quickly rule out the existence of solutions to a BREU problem (Example 12).

CCC reasons about disequalities that are preserved by CC: while CC is defined
as a least fixed-point over relations R ⊆ S2 representing equalities between sym-
bols (constants or variables), CCC corresponds to the computation of greatest
fixed-points over relations D ⊆ S2 representing disequalities between symbols.
The definition of CCC is similar in shape to the one of CC in Sect. 2.1; as before,
we assume that E is a finite set of flat equations over S in which each equation
contains exactly one function symbol.

C 3,1
E (D) =

{

(c, c′) ∈ D | c �= c′, and for all f(ā) ≈ b, f(ā′) ≈ b′ ∈ E
it holds that D ∩ ClEq{(ā, ā′), (b, c), (b′, c′)} �= ∅

}

C 3
E (D) = νX ⊆ S2. C 3,1

E (D ∩X)

The one-step function C 3,1
E removes all pairs (c, c′) (representing disequalities

c �≈ c′) from the relation D that can no longer be maintained, i.e., if there are
equations f(ā) ≈ b and f(ā′) ≈ b′ s.t. in some ER (consistent with the disequal-
ities D) it is the case that ā ≈ ā′, b ≈ c, and b′ ≈ c′. This criterion is expressed
by checking whether the equivalence closure ClEq{(ā, ā′), (b, c), (b′, c′)} has some
elements in common with the relation D representing assumed disequalities. The
function C 3,1

E is clearly monotonic, and can therefore be used to define C 3
E as

a greatest fixed-point over the complete lattice of binary relations; C 3
E itself is

then also monotonic.

5.1 Properties of Complemented Congruence Closure

In this and later sections, we write RC = S2 \ R for the complement of a
relation over S. Most importantly, we can show that CC and CCC yield the
same result when starting from equivalence relations, illustrating that CCC is a
strict generalisation of CC:

Theorem 10. Suppose R ⊆ S2 is an ER. Then CCE(R)C = C 3
E (RC).

For arbitrary relations R, congruence closure CCE(R) will be an ER, whereas
the result C 3

E (RC)C in general is not; consider in particular the case E = ∅, in
which CCE will not have any effect beyond removing pairs (c, c) from a relation.
This implies that the assumption of R being an ER is essential in the theorem.
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Sets C 3
E (D) for relations D whose complement is not an ER can be used to

approximate the effect of CC, and in particular summarise the effect of applying
CC to whole families of relations:

Corollary 11. Suppose R ⊆ S2 is an ER, and D ⊆ S2 a relation s.t. R∩D = ∅.
Then CCE(R) ∩C 3

E (D) = ∅.
Example 12. Consider S = {c, d, e,X}, equations E = {f(X) ≈ X, f(c) ≈ d},
and the equivalence relation R = ClEq{(X, c)} that identifies X and c and keeps
the other symbols distinct. CC on this input will also identify X and d, and thus
c and d, but keep e in a separate class: CCE(R) = ClEq{(X, c), (X, d)}.

The complement is RC = {(c, d), (d, e), (c, e), (X, d), (X, e)}↔, where we write
A↔ = A∪A−1 for the symmetric closure of a relation. CCC on RC will remove
(X, d) from the relation, since ClEq{(X, c), (X,X), (d, d)} is disjoint from RC ,
and similarly (c, d): C 3

E (RC) = {(d, e), (c, e), (X, e)}↔ = CCE(R)C .
Consider now the BREU problem B = (�, E, c ≈ e) with c ≺ d ≺ e ≺ X .

Note that every substitution σ with Xσ � X preserves the disequalities

D = {(c, d), (d, e), (c, e)}↔ =
⋂

σ a substitution
∀X∈V. Xσ�X

{(a, b) ∈ S2 | aσ �= bσ}.

As before, CCC will remove (c, d) from D; but CCC will keep (c, e), because
both ClEq{(X, c), (X, c), (d, e)} and ClEq{(X, c), (X, e), (d, c)} overlap with D,
and similarly (d, e): C 3

E (D) = {(d, e), (c, e)}↔. This shows that c and e are not
E -unifiable, and neither are d and e.

6 Lazily Solving Bounded Rigid E-Unification

When dealing with large simultaneous BREU problems, e.g., containing many
parallel problems as well as many equations, just constructing a monolithic
SAT model (possibly containing much redundancy) as in Sect. 4 can be time-
consuming, even if the subsequent solving might be fast. Our second algorithm
for solving BREU problems works in the style of lazy SMT solving: starting from
a compact SAT encoding that coarsely over-approximates the BREU problem,
additional constraints are successively added, until eventually a correct E -unifier
is derived, or the encoding becomes unsatisfiable. Following Alg. 1, the overall
idea is to repeatedly generate candidate solutions σ, check whether the candidate
is a genuine solution, and otherwise generate a blocking constraint that excludes
(at least) this solution from the search space.

Overall Procedure. Consider a simultaneous BREU problem (�, (Ei, ei)
n
i=1). The

overall procedure is shown in Alg. 3, and based on the three steps described in
Sect. 3, but directly solving simultaneous BREU problems. The algorithm uses
an underlying solver process for reasoning incrementally about the SAT encod-
ing. The Guessing step is implemented using the Sat Domain constraints from
Sect. 3.1 (line 1). When a candidate solution σ has been found, congruence clo-
sure is used to verify that σ solves each sub-problem (�, Ei, ei) (line 4), executing
the Congruence Closure and Verifying steps in Alg. 1.
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1. Add domain constraints (Sat Domain)
2. while solver .isSat() do
3. σ ← solver .model
4. if σ solves all sub-problems then
5. return σ
6. else
7. Let (�, E, e) be an unsolved sub-problem
8. D ← {(s, t) ∈ S2 | sσ = tσ}
9. D′ ← minimise(D, (�, E, e))
10. Add blocking constraint

∨{vs = vt | (s, t) ∈ D′}
11. end if
12. end while
13. return UNSAT

Algorithm 3. Lazy search procedure for a simultaneous BREU problem.

Input: Disequality set D
Input: BREU problem (�, E, s ≈ t) with (s, t) ∈ C 3

E (D)
1. Compute set BaseD for � // by construction, BaseD ⊆ D
2. for dq ∈ D\BaseD do
3. D′ ← C 3

E (D\{dq})
4. if (s, t) ∈ C 3

E (D′) then
5. D ← D′ ∪ BaseD
6. end if
7. end for
8. return D

Algorithm 4. Minimisation of disequality sets

Blocking constraints. Given a candidate σ that violates (�, Ei, si ≈ ti), a block-
ing constraint for σ is a formula φ over the solution variables {vt | t ∈ S}
introduced in Sect. 3.1 with the property that 1. φ evaluates to false for the
assignment {vt 	→ Ind(tσ) | t ∈ S}, and 2. φ evaluates to true for all genuine E -
unifiers σ′ and assignments {vt 	→ Ind(tσ′) | t ∈ S}. In other words, φ excludes
the incorrect solution σ, but it does not rule out any correct E -unifiers. The
most straightforward blocking constraint excludes the incorrect candidate σ:

∨

X∈S∩V

vX �= Ind(Xσ) (1)

This constraint leads to a correct procedure, but is inefficient since it does not
generalise from the observed conflict (in SMT terminology), and does not exclude
any candidates other than σ. More efficient blocking constraints can be defined
by using the concept of complemented congruence closure. For this, observe that
(1) can equivalently be expressed in terms of disequalities implied by σ:

∨

(s,t)∈D

vs = vt, D = {(s, t) ∈ S2 | sσ �= tσ} (2)
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Table 2. Execution of the lazy algorithm

Candidate σ (E1, e1) (E2, e2) Minimised set D′

1: X �→ X,Y �→ Y,U �→ U, V �→ V ✗ (✗) {(Y, o4), (V, o4)} ∪ BaseD
2: X �→ X,Y �→ Y,U �→ U ,V �→ o4 ✗ (✗) {(Y, o4), (U, o3)} ∪ BaseD
3: X �→ X,Y �→ o4,U �→ U ,V �→ V ✗ (✗) {(U, o4), (V, o4)} ∪ BaseD
4: X �→ X,Y �→ o4, U �→ U ,V �→ o4 ✗ (✗) {(U, o4), (U, o3)} ∪ BaseD
5: X �→ X,Y �→ o4,U �→ o3,V �→ o4 ✗ (✗) {(X,Y ), (Y, a), (Y, b), (Y, o1),

(Y, o2), (U, o4)} ∪ BaseD
6:X �→ o4,Y �→ o4, U �→ o3, V �→ o4 ✓ ✗ {(X, o2), (Y, o2)} ∪ BaseD
7:X �→ o2, Y �→ o1,U �→ o3, V �→ o4 ✓ ✗ {(Y, o2), (V, o2)} ∪ BaseD
8:X �→ o1, Y �→ o2,U �→ o3, V �→ o4 ✓ ✓ —

Indeed, in order to satisfy (1), one of the disequalities in D has to be violated
(since σ′ �= σ implies Xσ′ = t for some variable X and some t ∈ S \ {Xσ}); and
vice versa, (2) can only be satisfied by substitutions σ′ different from σ.

To obtain stronger blocking constraints, we consider subsets of D in (2), but
ensure that only constraints are generated that do not exclude E -unifiers of the
sub-problem (�, Ei, si ≈ ti), and therefore also preserve solutions of the overall
problem (�, (Ei, ei)

n
i=1). This is the case for all constraints defined as follows:

∨

(s,t)∈D′
vs = vt, (Lazy BC)

where D′ ⊆ {(s, t) ∈ S2 | sσ �= tσ} such that (si, ti) ∈ C 3
Ei
(D′).

The condition (si, ti) ∈ C 3
Ei
(D′) expresses that D′ is a set of disequalities that

prevents si and ti from being unified. Suppose σ′ is a solution candidate vio-
lating Lazy BC, which by construction implies R ∩ D′ = ∅ for R = {(s, t) ∈
S2 | sσ′ = tσ′}. By Corollary 11, we then have CCEi(R) ∩ C 3

Ei
(D′) = ∅, and

therefore (si, ti) �= CCEi(R), so that σ′ cannot be an E -unifier of (�, Ei, si ≈ ti).
The constraint Lazy BC is implemented in lines 8–10 in Alg. 3.

Minimisation. Greedy systematic minimisation of disequality sets D is described
in Alg. 4, which successively attempts to remove elements dp from D, but pre-
serving (s, t) ∈ C 3

E (D). Certain disequalities sσ �= tσ are known to hold under
any substitution σ, and are handled using a special set BaseD and kept in D:

BaseD =
⋂

σ a substitution
∀X∈V. Xσ�X

{(a, b) ∈ S2 | aσ �= bσ}

BaseD can easily be derived from �. Elimination of disequalities from BaseD
is not helpful, since such disequalities are already implied by the Sat Domain
constraint; at the same time, they are useful as input for CCC.

Example 13. We consider again (�, {(E1, e1), (E2, e2)}) from Example 4, which
is solved by the run of Alg. 3 shown in Table 2. Note that various executions
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Table 3. Comparison of the two BREU procedures. All experiments were done on an
AMD Opteron 2220 SE machine, running 64-bit Linux, heap space limited to 1.5GB.

SAT UNSAT T/O (SAT) T/O (UNSAT)

Table 3769 2854 0 3
Lazy 3727 2845 45 9

exist, since the sets D′ and the candidates σ are not uniquely determined.
Sets D′ directly translate to blocking constraints, for instance {(Y, o4), (V, o4)}∪
BaseD is encoded as vY = vo4 ∨ vV = vo4 ∨ · · · . In iterations 1–5, the sub-
problem (�, E1, e1) is violated, and used to generate blocking constraints; in
6–7, (�, E2, e2) is used. It can be observed that the algorithm is able to derive
very concise blocking constraints, and quickly focuses on interesting assignments.

7 Experiments

We implemented both procedures as described in Sect. 4 and Sect. 6 and in-
tegrated them into the ePrincess theorem prover (based on [10]) using the
calculus presented in [2].3 The Sat4j solver was used to reason about the propo-
sitional encoding used in the procedures. To measure the performance of the two
methods, we used randomly selected benchmarks from TPTP v.6.1.0 to generate
BREU problems: when constructing a proof for a TPTP problem, ePrincess
repeatedly extracts and attempts to solve BREU problems in order to close the
constructed proof. ePrincess was instrumented to output and collected those
BREU problems, so that altogether 6626 instances were in the end available for
benchmarking. Those 6626 BREU problems were then separately processed by
the Table and Lazy procedure, with a timeout of 60s.

3 Found at http://user.it.uu.se/~petba168/breu/

http://user.it.uu.se/~petba168/breu/
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7.1 Results and Discussion

The two procedures can handle most of the BREU problems generated. Table 3
tells us that the table procedure can solve all but three, while the lazy time-
outs on slightly above 50. However, the three problems which the table method
could not handle where all solved by the lazy method. The fact that almost
all BREU problems could be solved indicates the efficiency of the two BREU
procedures, but also that the BREU problems generated by ePrincess are not
excessively large (which can be considered a strength of the calculus implemented
by ePrincess [2]).

The cactus plot in Fig. 2 shows the distribution of runtime needed by either
procedure to solve the BREU problems. It can be observed that more than half of
the problems can be solved in less than 0.1s, and most of the problems in less than
1s. Fig. 3 shows that increasing complexity of BREU problems (�, (Ei, ei)

n
i=1),

measured in terms of the maximum number of equations in any BREU sub-
problem (Ei, ei), also leads to increased solving time. The graph illustrates that
the lazy procedure is more sensitive to this form of complexity than the table
procedure. The high runtime for equation count > 35 corresponds to timeouts.
In contrast, we found that neither procedure is very sensitive to the number of
sub-problems that a BREU problem consists of.

From Fig. 2 and Fig. 3, it can be seen that the table procedure is on average
a bit faster than the lazy procedure. The scatter plot in Fig. 4 gives a more
detailed comparison of runtime, and shows that the correlation of runtime of
the procedures is in fact quite weak, but there is a slight trend towards shorter
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runtime of the table method. Note that this is a comparison between procedures
for solving BREU problems, for an evaluation of the overall performance of
ePrincess on TPTP problems we refer the reader to [2].

On average, the lazy procedure produces 4.3 blocking clauses before finding
an E -unifier, or proving that no unifier exists. The major bottleneck of the lazy
method lies in the minimisation step of blocking constraints. The procedure
spends most of its time in this part, and could be improved by creating a more
efficient algorithm for CCC. For the table method, most of the runtime is spent
in SAT solving, in particular in calls concluding with UNSAT.

8 Conclusion

In this paper we have presented two different procedures for solving the BREU
problem. Both of them are shown to be efficient and usable in an automated
theorem proving environment. Apart from further improving the proposed pro-
cedures, in future work we plan to consider the combination of BREU with other
theories, in particular arithmetic.

Acknowledgements. We thank the anonymous referees for helpful feedback.
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Abstract. We propose an extension of a tableau-based calculus to deal
with linear arithmetic. This extension consists of a smooth integration
of arithmetic deductive rules to the basic tableau rules, so that there
is a natural interleaving between arithmetic and regular analytic rules.
The arithmetic rules rely on the general simplex algorithm to compute
solutions for systems over rationals, as well as on the branch and bound
method to deal with integer systems. We also describe our implementa-
tion in the framework of Zenon, an automated theorem prover that is
able to deal with first order logic with equality. This implementation has
been provided with a backend verifier that relies on the Coq proof assis-
tant, and which can verify the validity of the generated arithmetic proofs.
Finally, we present some experimental results over the arithmetic cate-
gory of the TPTP library, and problems of program verification coming
from the benchmark provided by the BWare project.

Keywords: Tableaux, Linear Arithmetic, General Simplex Algorithm,
Branch and Bound Method, Proof Checking, Zenon, Coq.

1 Introduction

Program analysis and verification often involve to verify arithmetic constraints.
For example, this is the case when verifying loop invariants over imperative
programs. In general, these arithmetic constraints are not very complex, but
they lie in more complex first order formulas where pure first order logic and
arithmetic are actually mixed. To deal with this kind of formulas, we propose, in
this paper, to integrate arithmetic reasoning with a tableau-based proof search
method. Regarding the nature of arithmetic reasoning, we consider the linear
fragment, also known as Presburger arithmetic (where we only consider the
addition operation and equality), which is weaker than Peano arithmetic but
has the advantage to be decidable. There exist several decision procedures for
linear arithmetic, and we chose to rely on the general simplex algorithm [6] (i.e.
the usual simplex algorithm but without considering the optimization problem)
to compute solutions for problems over rationals, as well as on the branch and
bound method to deal with integer problems.

� This work is supported by the BWare project [9,17] (ANR-12-INSE-0010) funded by
the INS programme of the French National Research Agency (ANR).
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This work is motivated by needs that arose in the framework of the BWare
project [9,17]. This project aims to provide a mechanized framework to support
the automated verification of proof obligations coming from the development
of industrial applications using the B method [1] and requiring high integrity.
The methodology used in this project consists in building a generic platform of
verification relying on different automated theorem provers, such as first order
provers and SMT (Satisfiability Modulo Theories) solvers. Among the considered
provers, there is Zenon [5], which is an automated theorem prover for classical
first order logic with equality, and which is based on the tableau method. As
Zenon is not able to deal with arithmetic, which may be required when verifying
some proof obligations (involving mainly integer arithmetic in the benchmark
of BWare), this is why we proposed to develop an extension of this tool to
arithmetic, which will be described in this paper. This extension modifies not
only the proof search rules of the prover, but also the backend as Zenon is able
to produce proofs checkable by external tools, such as Coq [18] for instance.
This backend is part of the objectives of the BWare project, which requires the
verification tools to produce proof objects that are to be checked independently.

To extend Zenon to arithmetic, the idea is to add new specific rules, which
are completely orthogonal to the other usual analytic rules of tableaux, and
which use the computations performed by the simplex procedure as oracles.
These rules are intended to deal with arithmetic formulas that are universally
quantified. As for arithmetic formulas that are existentially quantified, no new
rule is needed, but the instantiation mechanism has to be modified in order to
call the simplex procedure to find instantiations. However, these instantiations
must help us close all the branches of the proof search tree and not only a part
of them (this is not unsound but does not help us find a proof). To do so, we
introduce a notion of arithmetic constraint tree, which is a tree labeled with
sets of arithmetic formulas, and which is built from the proof search tree. From
this arithmetic constraint tree, a set of formulas is selected in order to cover the
tree, i.e. it is sufficient to find a solution for this set of formulas (its negation to
be more precise) to get a solution that closes the arithmetic constraint tree and
therefore the proof search tree. It should be noted that our extension is able to
deal with pure universal or existential arithmetic formulas, i.e. we do not consider
alternation of universal and existential quantifiers and the variables occurring
in an arithmetic formula must be of the same nature (either Skolem symbols or
free variables). It should also be noted that as Zenon deals with equality, the
arithmetic reasoning can be naturally combined with the equational reasoning
involving both uninterpreted functions and predicates.

This paper is organized as follows: in Secs. 2 and 3, we first introduce respec-
tively the proof search method of Zenon and the general simplex algorithm, as
well as the branch and bound method; we then present, in Secs. 4 and 5, the
arithmetic rules for Zenon and describe how the instantiation has to be modified
to handle arithmetic; finally, in Sec. 6, we provide an overview of our implemen-
tation and the experimental results obtained on the benchmarks provided by the
TPTP library and the BWare project, and propose some related work in Sec. 7.
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2 The Zenon Automated Theorem Prover

The Zenon automated theorem prover relies on a tableau-based proof search
method for classical first order logic with equality. The proof search rules of
Zenon are described in detail in [5] and summarized in Fig. 1 (for the sake of
simplification, we have omitted the unfolding and extension rules), where ε is
Hilbert’s operator (ε(x).P (x) means some x that satisfies P (x), and is considered
as a term), capital letters are used for metavariables, and Rr, Rs, Rt, and Rts are
respectively reflexive, symmetric, transitive, and transitive-symmetric relations
(the corresponding rules also apply to the equality in particular). As hinted by
the use of Hilbert’s operator, the δ-rules are handled by means of ε-terms rather
than using Skolemization. What we call here metavariables are often named
free variables in the tableau-related literature; they are not used as variables as
they are never substituted. The proof search rules are applied with the normal
tableau method: starting from the negation of the goal, apply the rules in a
top-down fashion to build a tree. When all branches are closed (i.e. end with an
application of a closure rule), the tree is closed, and this closed tree is a proof of
the goal. Note that this algorithm is applied in strict depth-first order: we close
the current branch before starting work on another branch. Moreover, we work
in a non-destructive way: working on one branch will never change the formulas
of any other branch. We divide these rules into five distinct classes to be used for
a more efficient proof search. This extends the usual sets of rules dealing with
α, β, δ, γ-formulas and closure (�) with the specific rules of Zenon. We list below
the five sets of rules and their elements:

α α¬∨, α∧, α¬⇒, α¬¬, ¬refl
β β∨, β¬∧, β⇒, β⇔, β¬⇔, pred, fun, sym, trans∗
δ δ∃, δ¬∀
γ γ∀M , γ¬∃M , γ∀inst, γ¬∃inst
� �	, �⊥, �, �r, �s

where “trans∗” gathers all the transitivity rules.
To deal with arithmetic formulas, we use the ability of Zenon to perform typed

proof search, which relies on a polymorphic type system. To simplify, we do not
consider types in our presentation of Zenon and its extension to arithmetic, as
they tend to make the presentation uselessly heavy since, in our case, types are
actually just used to distinguish arithmetic formulas from the other ones.

3 The Simplex and the Branch and Bound Methods

We define linear arithmetic expressions as expressions built using addition and
multiplication by numeric constants, while subtraction is seen as syntactic sugar
for addition with multiplication by a negative constant. An arithmetic formula is
a comparison of two linear arithmetic expressions, for example 2x+1 < 7− 1

2y.
We consider 5 comparison operators, i.e. =, <, >, ≤, and ≥1. An arbitrary
1 We use the notation e �= e′ as syntactic sugar for ¬(e = e′).
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Closure and Cut Rules

⊥ �⊥�
¬� �¬��

cut
P | ¬P

¬Rr(t, t) �r�
P ¬P ��

Rs(a, b) ¬Rs(b, a) �s�
Analytic Rules

¬¬P α¬¬
P

P ⇔ Q
β⇔¬P,¬Q | P,Q

¬(P ⇔ Q)
β¬⇔¬P,Q | P,¬Q

P ∧Q
α∧

P,Q

¬(P ∨Q)
α¬∨¬P,¬Q

¬(P ⇒ Q)
α¬⇒

P,¬Q
P ∨Q

β∨
P | Q

¬(P ∧Q)
β¬∧¬P | ¬Q

P ⇒ Q
β⇒¬P | Q

∃x.P (x)
δ∃

P (ε(x).P (x))

¬∀x.P (x)
δ¬∀¬P (ε(x).¬P (x))

γ-Rules

∀x.P (x)
γ∀M

P (X)

¬∃x.P (x)
γ¬∃M¬P (X)

∀x.P (x)
γ∀inst

P (t)

¬∃x.P (x)
γ¬∃inst¬P (t)

Relational Rules

P (t1, . . . , tn) ¬P (s1, . . . , sn) pred
t1 �= s1 | . . . | tn �= sn

f(t1, . . . , tn) �= f(s1, . . . , sn)
fun

t1 �= s1 | . . . | tn �= sn

Rs(s, t) ¬Rs(u, v) sym
t �= u | s �= v

¬Rr(s, t) ¬refl
s �= t

Rt(s, t) ¬Rt(u, v)
trans

u �= s,¬Rt(u, s) | t �= v,¬Rt(t, v)

Rts(s, t) ¬Rts(u, v) transsym
v �= s,¬Rts(v, s) | t �= u,¬Rts(t, u)

s = t ¬Rt(u, v) transeq
u �= s,¬Rt(u, s) | ¬Rt(u, s),¬Rt(t, v) | t �= v,¬Rt(t, v)

s = t ¬Rts(u, v) transeqsym
v �= s,¬Rts(v, s) | ¬Rts(v, s),¬Rts(t, u) | t �= u,¬Rts(t, u)

Fig. 1. Proof Search Rules of Zenon
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comparison operator distinct from the equality may be noted ��, and its negation
��, with the following correspondence: < ≡ ≥, ≤ ≡ >, > ≡ ≤, and ≥ ≡ <.

In the following, arithmetic expressions can involve integers, rationals, or re-
als2. However, we do not consider mixed problems, and assume that a given
problem only involves one numeric type (either integers, rationals, or reals).

As a solving method, we consider the general simplex, as described in [13],
which is a variant of the simplex algorithm, designed to solve the satisfiability
problem on linear systems, rather than the optimization of a given objective
function under a system of constraints.

The general simplex accepts only two forms of constraints: equations of the
form v =

∑
i aixi, with ai ∈ Q, and bounds on variables li ≤ v ≤ ui, with

li, ui ∈ Q ∪ {−∞,+∞}. A system that contains only formulas of either form
is said to be in general form. This representation does not restrict expressivity,
given that any linear system can be translated into this representation. To do
so, two transformations are required:

1. Any equality e = e′, where neither e nor e′ is a variable, is replaced by
e ≤ e′ ∧ e′ ≤ e;

2. Any comparison e �� e′ is rewritten as f �� k, where f is a non-empty sum of
variables with coefficients3, and k a numeric constant, s.t. e−e′ = f−k. The
comparison can then be replaced by x = f ∧ x �� k, with x a fresh variable.

This transformation into general forms allows us to get an interesting property
of the system: all variables on the left-hand side of equalities do not appear on
the right-hand side of equalities. In the following, we suppose that all general
forms satisfy this property, i.e we only consider general forms that come from
the application of the process described above to a linear system.

The simplex method performs a series of pivot operations over the system4,
and stores the result in an internal state. This internal state allows the algorithm
to be incremental, i.e we can easily add new equalities and bounds to this state,
and get a new state that we can try to solve. When the given system is satisfiable,
the simplex algorithm returns its new state together with a solution, and it is
straightforward to check that it is a correct solution of the linear system. When
the algorithm meets an unsatisfiable system S, it returns an equality x =

∑
i aiyi,

which is implied by the equalities in S, s.t. the following properties hold5:

– There exists l (resp. u) s.t. x ≥ l ∈ S (resp. x ≤ u ∈ S);
– There exist numeric constants li, ui s.t. for all i, if ai > 0, then yi ≤ ui ∈ S

(resp. yi ≥ li ∈ S), and if ai < 0, then y ≥ li ∈ S (resp. yi ≤ ui ∈ S);

2 For reals, numeric constants are represented as arbitrary precision rationals.
3 If f is the empty sum, then the comparison is either trivially false, in which case the

system if unsatisfiable, or a tautology, in which case it is useless.
4 The termination of the simplex method is ensured using Bland’s rule (see [11]).
5 The new state of the simplex is of no use in this case, as if a system is unsatisfiable,

then adding new equalities or bounds will not change anything to its satisfiability.
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–
∑

ai>0 aiui +
∑

ai<0 aili < l (resp. u <
∑

ai>0 aili +
∑

ai<0 aiui), resulting
in a contradiction, since l ≤ x =

∑
i aiyi ≤

∑
ai>0 aiui +

∑
ai<0 aili (resp.∑

ai>0 aili +
∑

ai<0 aiui ≤
∑

i aiyi = x ≤ u) should hold according to S.

In order to deal with integer systems, we adopt a branch and bound strategy.
An integer linear system can be seen as a rational system where all variables are
required to have an integer value. For this reason, we can accept rational coef-
ficients in the system: given a constraint with rational coefficients, we multiply
it by the least common multiple of the denominators of the coefficients in order
to get an equivalent constraint with only integer coefficients. Given an integer
system S, we call relaxed system of S, noted relaxed(S), the system S without
the condition that the variables must have an integer assignment.

Given a system S, the branch and bound algorithm works as follows:

– If relaxed(S) is unsatisfiable (as a rational system), then return false;
– If the system has a rational solution then:

• If all the variables have an integer assignment, then return true;
• If a non-integer value v is assigned to an integer variable x, then call

the branch and bound twice with the two systems S ∪ {x ≤ �v�} and
S ∪ {x ≥ �v�+ 1}, and return the disjunction of the two returned values.

Unfortunately, this algorithm is not complete: if we consider the system
1 ≤ 3x + 3y ≤ 2, the branch and bound algorithm will loop. More generally,
the branch and bound will not terminate on unsatisfiable integer systems with
unbounded rational solutions (but no integer solution). However, if the system
is satisfiable, then a solution will be found by the algorithm, provided that we
use a breadth-first search.

To ensure termination, we can use global bounds, as found in [14]. Given an
m×n rational matrix A = (ai), a vector b ∈ Qm, and the set of rational solutions
P = {x ∈ Q | Ax ≤ b}, if the set of integer solutions S = P ∩ Zn is non-empty,
then there exists an integer solution x ∈ S s.t. |xj | ≤ ωA,b for all 1 ≤ j ≤ n,

with ωA,b = (2n′2θ)
n′

, where n′ = max(n,m) and θ = maxij(|aij |).

4 Arithmetic Proof Search Rules

In this section, we present the arithmetic proof search rules for Zenon, which
rely on the simplex and branch and bound methods, and discuss the soundness
and completeness of these rules.

4.1 Rules

The arithmetic proof search rules for Zenon are summarized in Fig. 2. These rules
do not use global bounds because in practice, these bounds grow too quickly to
be useful on non-trivial systems. Among these rules, there are two rules, i.e.
Branch and Simplex-Lin, which need parameters and therefore require the proof
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Constant Rules

k �� k′
Const�

k = k′
Const�

where k and k′

are numeric constants

Normalization Rules

e = e′ Eq
e ≤ e′, e′ ≤ e

e �= e′
Neq

e < e′ | e > e′
¬e �� e′ Neg
e �� e′

e < f
Int-Lt

e ≤ f − 1

e > f
Int-Gt

e ≥ f + 1

where e and f
are integer expressions

Simplex Rules

e �� c Var
s freshs = e, s �� c

Branch
x an integer variable, k ∈ Zx ≤ k | x ≥ k + 1

e1 = 0, . . . , en = 0 Simplex-Lin
∀i, ai ∈ Q

∑n
i=1 aiei = 0

x ≤ k, x ≥ k′ Conflict
k < k′ numeric constants�

{xj ≤ uj | j ∈ N+}, {xj ≥ lj | j ∈ N−}, x =
∑

j∈N+∪N− ajxj
Leq

x ≤ ∑
j∈N+ ajuj +

∑
j∈N− ajlj

{xj ≥ lj | j ∈ N+}, {xj ≤ uj | j ∈ N−}, x =
∑

j∈N+∪N− ajxj
Geq

x ≥ ∑
j∈N+ aj lj +

∑
j∈N− ajuj

where aj > 0, if j ∈ N+, and aj < 0, if j ∈ N−

Fig. 2. Proof Search Rules for Arithmetic

search method to choose these parameters. In the following, we describe how
Zenon relies on the branch and bound method to make use of these rules.

Each time Zenon processes a new formula, there are two cases. Either the
formula is a bound on a variable, in which case it is simply added to the current
simplex state. Or it is not, and the rule Var can be applied so that a new
variable is generated, and the resulting constraints (which are in general form)
can be added to the current simplex state. For every addition to the simplex
state, Zenon tries to solve the system of the simplex state. If this yields an
unsatisfiable statement, then the explanation is translated into proof search rules
and introduced in the proof search tree, effectively closing the current branch.
Thanks to the fact that the simplex is incremental, we have a persistent simplex
state, which allows us to keep all the work previously done up to a point when
the proof search tree branches.

When the simplex algorithm returns an unsatisfiability explanation of the
form x =

∑
i aiyi, we use three proof nodes to close the current branch. First,

we use the Simplex-Lin rule to introduce the formula x −
∑

i aiyi = 0. We can
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¬∀u ∈ Z.∀v ∈ Z.∀w ∈ Z.2u+ v + w = 10 ∧ u+ 2v + w = 10 ⇒ w �= 0
δ¬∀¬∀v ∈ Z.∀w ∈ Z.2ε0 + v + w = 10 ∧ ε0 + 2v +w = 10 ⇒ w �= 0

δ¬∀¬∀w ∈ Z.2ε0 + ε1 + w = 10 ∧ ε0 + 2ε1 +w = 10 ⇒ w �= 0
δ¬∀¬(2ε0 + ε1 + ε2 = 10 ∧ ε0 + 2ε1 + ε2 = 10 ⇒ ε2 �= 0)

β¬⇒
2ε0 + ε1 + ε2 = 10 ∧ ε0 + 2ε1 + ε2 = 10,¬¬ε2 = 0

α∧
2ε0 + ε1 + ε2 = 10, ε0 + 2ε1 + ε2 = 10

α¬¬
ε2 = 0 Eq

2ε0 + ε1 + ε2 ≤ 10, 2ε0 + ε1 + ε2 ≥ 10
Var

a = 2ε0 + ε1 + ε2, a ≤ 10
Var

b = 2ε0 + ε1 + ε2, b ≥ 10
Eq

ε0 + 2ε1 + ε2 ≤ 10, ε0 + 2ε1 + ε2 ≥ 10
Var

c = ε0 + 2ε1 + ε2, c ≤ 10
Var

d = ε0 + 2ε1 + ε2, d ≥ 10
Eq

ε2 ≤ 0, ε2 ≥ 0
Branch

ε1 ≤ 3
Simplex-Lin

a = 2d − 3ε1 − ε2 Geq
a ≥ 11

Conflict�

ε1 ≥ 4
Simplex-Lin

c = 1
2
b+ 3

2
ε1 +

1
2
ε2

Geq
c ≥ 11

Conflict�
where:
ε0 = ε(u).¬∀v ∈ Z.∀w ∈ Z.2u+ v + w = 10 ∧ u+ 2v + w = 10 ⇒ w �= 0
ε1 = ε(v).¬∀w ∈ Z.2ε0 + v + w = 10 ∧ ε0 + 2v +w = 10 ⇒ w �= 0
ε2 = ε(w).¬(2ε0 + ε1 + w = 10 ∧ ε0 + 2ε1 + w = 10 ⇒ w �= 0)

Fig. 3. Proof of Problem ARI178=1

then use either the Leq or Geq rules to deduce a new bound on x using the
equality x =

∑
i aiyi (which is equivalent to x−

∑
i aiyi = 0 using some simple

rewrite rules; see the next paragraph). Finally, we use the Conflict rule to close
the tree, since the simplex guarantees that the newly deduced bound will be in
direct conflict with a pre-existing bound of x. For integer systems, the branch and
bound strategy returns a tree where nodes are split cases on integer variables,
i.e. choices of the form x ≤ k ∨ x ≥ k + 1 (see Sec. 3), and leaves are usual
simplex explanations. This structure can be easily translated into proof search
rules using the Branch rule and the explanation in three steps for the simplex.

It should be noted that the equalities involved in the premises of the arith-
metic proof search rules are either of the form e = 0, where e is an expression
(see the Simplex-Lin rule), or of the form x = e, where x is a variable and e an
expression (see the Leq and Geq rules). This means that the equalities of the
premises must be seen modulo rewriting over a ring structure, which mainly con-
sists in factorizing multiplicative coefficients of expressions (usually variables),
computing the result of constant expressions, and moving an expression from
one side of a comparison to the other side. In order to keep a compact proof
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search tree, these steps of rewriting are not included in the tree (but should be
considered when producing a proof object to be checked by an external tool).

As an example of proof with these rules, let us consider the following formula,
which comes from the ARI178=1 problem of the ARI category (which is the
arithmetic category) of the TPTP library [16]:

∀u ∈ Z.∀v ∈ Z.∀w ∈ Z.2u+ v + w = 10 ∧ u+ 2v + w = 10 ⇒ w �= 0

Using the proof search rules of Fig. 2, we can obtain the proof of Fig. 3, where
the parameters for the Branch rule come from the application of the branch and
bound algorithm (see Sec. 3).

4.2 Soundness

Provided their side conditions are met, the rules presented in Fig. 2 are sound
for integer, rational, and real arithmetic. The proof is trivial for all the rules,
except for the following rules, which perform more complicated operations:

– Simplex-Lin, which introduces a linear combination of equalities;
– Conflict, which uses transitivity of orders, e.g. a ≤ x ∧ x < b ⇒ a < b, and

applies the comparison of ground numeric constants;
– Leq and Geq, for which we need the compatibility of addition and multipli-

cation with orders, e.g. x ≤ a ∧ y ≥ b ⇒ 2x− y ≤ 2a− b.

4.3 Completeness

The set of rules of Fig. 2 is complete for the satisfiability of rational and real
linear arithmetic systems, but not for integer systems since we do not use global
bounds (which ensure the termination of the branch and bound algorithm).

Completeness for rational arithmetic comes from the termination and sound-
ness of the simplex algorithm. For real arithmetic, since most of the input lan-
guages for automated theorem provers only allow real numeric constants to be
rationals6, we can consider the restriction of a real system S to the rationals and
try to solve it with the simplex method, which appears to be complete in this
particular case. In fact, there are two possibilities: either the simplex finds a ra-
tional solution, then it is also a real solution; or the simplex finds the real system
to be unsatisfiable, then we can build a proof search tree using our rules (which
are sound for real arithmetic), which proves that the real system is unsatisfiable.

Using simplex optimizations such as Gomory’s cuts [12], which reduce the
search space, would require to complicate the explanation procedure, i.e the
procedure that translates an unsatisfiable result from the simplex into a proof
search tree. It might also require to add new arithmetic rules in order to keep
the proof search tree as simple as possible. This is why no optimization of the
simplex has been considered yet.
6 We therefore represent real numeric constants using arbitrary precision rationals.
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5 Arithmetic Instantiation Mechanism

In order to find instantiations leading to contradictions, we try to find instanti-
ations that satisfy a selected set of formulas. To do so, we introduce arithmetic
constraint trees and the notion of counter-example for these trees.

5.1 Arithmetic Constraint Trees

Arithmetic constraint trees (referred to as trees in the following) and the notion
of counter-example for these trees are defined as follows:

Definition 1 (Arithmetic Constraint Trees). An arithmetic constraint tree
is a tree whose nodes and leaves are labeled with sets of arithmetic formulas.

Definition 2 (Cover of Nodes of a Tree). Given a tree T , and a set of
formula E, the set of nodes of T covered by E is the least set of nodes N s.t. for
all n ∈ N , either label(n) ∩ E �= ∅, where label(n) is the set of formulas labeling
the node n, or all children of N are covered by E.

Definition 3 (Cover of a Tree). A set of formulas E is said to cover a tree
T iff the root of T belongs to the set of nodes covered by E.

Definition 4 (Counter-Example of a Tree). A counter-example of a tree T
is an assignment of the metavariables of T s.t. there exists a set of formulas E
that covers T and s.t. all the negation of the formulas of E are satisfied.

In order to find a counter-example of an arithmetic constraint tree T , we
simply need to solve the negation of a system (a set of formulas) that covers T .
To do so, we enumerate a sufficient set of systems that covers T and try to solve
each of them until we find a counter-example. We can enumerate a sufficient set
of covering sets with the following formula:

cover(T ) = {{f} | f ∈ label(T )} ∪ {
⋃

1≤i≤n

si | si ∈ cover(T [i])}

where label(T ) is the label of the root of T , and T [i] the i-th children of the
root of T . This set is sufficient in the sense that any cover set of a tree T must
be a superset of at least one set in cover(T ).

5.2 Interleaving with Zenon

In Zenon, a proof search tree can be seen as a tree labeled with sets of formulas.
To use this tree to find instantiations, we first have to allow Zenon to return a
tree with open branches in the case where it did not find any contradiction. We
then filter all the formulas in the tree, and keep only the arithmetic constraints
to build an arithmetic constraint tree. Finally, we try to find a counter-example
of this tree, and once found, we can prove the initial formula by using the γ∀inst
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Open Proof Search Tree

¬∃x ∈ Z.(x ≥ 0 ∨ x ≥ 1) ∧ (x ≥ −5 ∧ x ≤ 0)
γ¬∃M¬((X ≥ 0 ∨X ≥ 1) ∧ (X ≥ −5 ∧X ≤ 0))

β¬∧¬((X ≥ 0 ∨X ≥ 1))
α¬∨¬(X ≥ 0),¬(X ≥ 1)
Neg(≥)

X < 0
Int-Lt

X ≤ −1∗
Neg(≥)

X < 1
Int-Lt

X ≤ 0∗

¬(X ≥ −5 ∧X ≤ 0)
β¬∧¬(X ≥ −5)

Neg(≥)
X < −5

Int-Lt
X ≤ −6∗

¬(X ≤ 0)
Neg(≤)

X > 0
Int-Gt

X ≥ 1∗

Arithmetic Constraint Tree

[]

[X ≤ −1†;X ≤ 0] []

[X ≤ −6†] [X ≥ 1†]

Closed Proof Search Tree

¬∃x ∈ Z.(x ≥ 0 ∨ x ≥ 1) ∧ (x ≥ −5 ∧ x ≤ 0)
γ¬∃Inst¬((0 ≥ 0 ∨ 0 ≥ 1) ∧ (0 ≥ −5 ∧ 0 ≤ 0))

β¬∧¬((0 ≥ 0 ∨ 0 ≥ 1))
α¬∨¬(0 ≥ 0),¬(0 ≥ 1)
Neg(≥)

0 < 0
Const�

¬(0 ≥ −5 ∧ 0 ≤ 0)
β¬∧¬(0 ≥ −5)

Neg(≥)
0 < −5

Const�

¬(0 ≤ 0)
Neg(≤)

0 > 0
Const�

Fig. 4. Proof of Formula 1

and γ¬∃inst rules (see Fig. 1) to instantiate the metavariables with the values of
the counter-example. Let us illustrate this mechanism with an example:

∃x ∈ Z.(x ≥ 0 ∨ x ≥ 1) ∧ (x ≥ −5 ∧ x ≤ 0) (1)

To prove this formula, we first consider its negation, then decompose it using
the proof search rules to obtain the open proof search tree of Fig. 4. From this
tree, we can get the arithmetic constraint tree of Fig. 4 by keeping the formulas
of the open proof search tree that are labeled with “*”, and by collapsing the
empty nodes. During the enumeration of covering sets, we reach the set S that
contains the formulas that are labeled with “†” in the arithmetic constraint tree.
We can then solve the system that is formed by the negation of the formulas in
S, and which yields the counter-example X �→ 0. Finally, we can produce the
closed proof search tree of Fig. 4 by instantiating X by 0.

With this mechanism, Zenon alternates between regular proof search with the
usual proof search rules, and arithmetic solving over open proof search trees to
get counter-examples that provide instantiations to close the proof search trees.
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This approach is sound as instantiations cannot introduce inconsistencies. This
approach is also complete for the validity of purely existential arithmetic formu-
las, where all the variables are existentially quantified7. Given such a formula, if
the negation of this formula is unsatisfiable, then there exists a substitution σ of
the variables s.t. the resulting ground formula is unsatisfiable. Since the formula
is ground, it means that after applying the propositional proof search rules, we
have a tree T s.t. there is an unsatisfiable comparison of numeric constants in
each branch of the proof search tree. The substitution σ is a counter-example
of T , with a covering set E s.t. each comparison e �� f ∈ E is absurd after
substitution by σ. Our enumeration of potential covering sets is s.t. there exists
E ′ ∈ cover(T ) s.t. E ′ ⊆ E . This means that there is a counter-example σ′ of T ,
with the covering set E ′ s.t. it also closes all branches after substitution, and
σ′ will be found during the proof search since the branch and bound always
terminates when there exists a solution.

5.3 Limitations of the Simplex Method

The main limitation of the simplex method is that it is not able to perform ab-
stract computations, i.e. it is only able to handle numeric constants. For instance,
if we want to prove the formula ∃x ∈ Q.x ≤ a, where a is a rational constant, we
cannot feed the simplex with the formula X ≤ a, where X is the metavariable
corresponding to the existential variable x, because in this context, X and a are
fundamentally different: we cannot change the value of a, while we can choose
the value of X , but the simplex is not able to make this difference. By extension,
this prevents us from dealing with formulas containing both metavariables and
ε-terms, and therefore with formulas involving alternations of quantifiers.

6 Experimental Results and Proof Certification

We have implemented our extension of Zenon to arithmetic according to what is
described in Secs. 4 and 5, using arbitrary precision rationals through the Zarith
OCaml library8, and we have performed some tests using problems from the ARI
category (i.e. the arithmetic category) of the TPTP library [16]. We consider
500 problems of this category that only involve linear arithmetic. These tests
have been run on an Intel Xeon E5-2660 v2 2.20GHz computer, with a timeout
of 60 s and a memory limit of 2 GiB. The results are summarized in Tab. 1,
where Zenon extended to arithmetic9 is compared to two first order automated
theorem provers able to deal with arithmetic and the TPTP input formats, i.e.
Princess casc-2014-07-04 [15] and Beagle 0.9 (2/7/2014) [4]. The execution time
for a prover is the sum of the user and system times taken by the prover, i.e the
total CPU time used by the process and its children. It may differ from the real
7 This approach also handles formulas that are negations of purely universal arithmetic

formulas, where all the variables are universally quantified.
8 See: https://forge.ocamlcore.org/projects/zarith/.
9 Available at: https://www.rocq.inria.fr/deducteam/ZenonArith/.

https://forge.ocamlcore.org/projects/zarith/
https://www.rocq.inria.fr/deducteam/ZenonArith/
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Table 1. Experimental Results over the ARI Category of TPTP

Prover Proofs Rate Total (1)

Time (s)
Average (1)

Time (s)
Total (2)

Time (s)
Average (2)

Time (s)
Zenon (arith.) 459 92% 23.33 0.05 23.08 0.05
Princess 491 98% 2129.20 4.34 2048.20 4.52
Beagle 495 99% 678.62 1.37 596.53 1.32

time for provers that use more than one thread, which is the case of Princess and
Beagle. The total and average times labeled with “(1)” are computed w.r.t. all the
problems, i.e. 500 problems. The total time for a given prover only considers the
set of problems that the tool succeeds in proving, i.e. the problems over which
the prover reaches the timeout are not included in the total time. The average
time is computed as the total time divided by the number of proved problems.
The total and average times labeled with “(2)” are computed w.r.t. the problems
that are proved by all the tools, i.e. 453 problems.

As can be observed, Zenon is able to prove less problems than Princess and
Beagle, but it is noticeably faster over the problems that it succeeds in proving,
while proving a reasonable amount of problems. This trend can be seen in Fig. 5,
which presents the cumulative times of the provers according to the numbers of
proved problems. To obtain the curve for each prover, we consider its run times
over all the problems that it proves, sort these times in increasing order, and
then plot the cumulative sum of these times. The speed of Zenon is confirmed by
the times computed w.r.t. the problems that are proved by all the tools (labeled
with “(2)” in Tab. 1). These times show that the time difference between Zenon
and the other provers is not due to the other provers taking more time over the
problems that are not proved by Zenon, but rather because Zenon is typically
faster over the problems that are proved by all the tools.

If we exclude the problems involving alternation of quantifiers, the typical
problems not proved by Zenon actually make use of uninterpreted functions. This
is due to the lack of exchange of information between the arithmetic extension
and the rest of the proof search rules (the equality rules in particular). In fact,
the non-trivial arithmetic proof search rules are only applied when the simplex
detects an unsatisfiable system, which prevents the propagation of potentially
relevant information to other parts of the proof search algorithm.

In the framework of the BWare project [9,17], this extension of Zenon to arith-
metic has been integrated to another extension of Zenon, called Zenon Modulo [8],
which extends Zenon to deduction modulo [10]. Zenon Modulo extended to arith-
metic has been benchmarked over a set of 12,876 proof obligations coming from
the development of industrial applications using the B method [1] and requiring
high integrity. It has allowed us to go from 10,340 proved problems (without
the extension to arithmetic) to 12,281 proved problems (with the extension to
arithmetic), and obtain an increase of almost 20%. This shows that our imple-
mentation is scalable, and effective for program verification in particular.
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Fig. 5. Cumulative Times according to the Numbers of Proved Problems

Zenon is a certifying automated theorem prover in the sense that it is able to
produce proofs checkable by external tools, such as Coq [18] for example. This
Coq backend has been extended to support the addition of the arithmetic proof
search rules. The main challenge was to translate the implicit rewriting steps
that are performed over the arithmetic formulas in the proof search rules. Using
this extended backend, all the proofs found by Zenon for the problems of the
ARI category have been successfully produced by Zenon and checked by Coq.

7 Related Work

The closest work from our approach is probably the one of the Princess auto-
mated theorem prover, which integrates the Omega test [15] with a tableau-based
proof search method. Compared to our work, Princess offers a complete procedure
for integer problems involving purely universal and purely existential formulas.
In our case, we do not ensure this property in the case of purely universal formu-
las, as we do not use global bounds, which appear to be ineffective in practice.
Moreover, Princess proposes a better integration of arithmetic with the other
proof search rules, as it is able to deal with uninterpreted predicates (and also
with uninterpreted functions by extension). However, compared to Princess, we
provide a more efficient implementation (as pointed out by the experimental
results of Sec. 6), which is partly due to the fact that the simplex method is
more efficient than the Omega test in practice. But the main difference is that
our approach is proof producing along the lines of what is proposed in [2], which
allows us to increase the level of confidence in our implementation.
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Arithmetic is also the area of expertise of SMT solvers. A large part of them,
such as CVC4 [3] or Z3 [7], proposes linear (and also non-linear for some of
them) arithmetic as a built-in theory, as well as very efficient implementations.
Compared to SMT solvers, we offer a better support for the first order layer of
arithmetic problems, as SMT solvers relies on pattern-matching (controlled by
a system of triggers) rather than unification to deal with instantiation, which is
not complete in general. In addition, our experimental results (see Sec. 6) let us
hope that our implementation could compete, in terms of time, with some of the
most efficient SMT solvers, even though no experiment has been realized yet.
Finally, as mentioned previously, our implementation is able to produce proofs,
which is not the case of most SMT solvers.

8 Conclusion

In this paper, we have proposed an extension of the Zenon tableau-based first
order automated theorem prover to linear arithmetic. This extension relies on
the general simplex algorithm to deal with rational systems, as well as on the
branch and bound method to deal with integer systems. This extension has been
implemented, and this implementation appears to be quite efficient compared to
similar first order automated theorem provers, as pointed out by the experimen-
tal results over arithmetic problems coming from the TPTP library, and even
though it is able to prove less problems than these other provers. As shown by
the tests over the benchmark of the BWare project, this implementation also
appears to be scalable. In addition, this implementation includes an extension of
the Coq backend of Zenon as well, which allows us to produce Coq proofs from
arithmetic automated proofs.

As future work, we plan to investigate the introduction of Gomory’s cuts [12],
which reduce the search space, and which appear to be very effective in combi-
nation with the branch and bound method (called the branch and cut method in
this case), even though we think that it would require to complicate the expla-
nation procedure. We also aim to realize a better integration of arithmetic with
the other parts of the proof search method, in particular to deal with arithmetic
formulas involving uninterpreted functions and predicates, even though our im-
plementation is already able to prove difficult problems in this domain (see the
problem ARI619=2 with a TPTP ranking of 0.7810 for example). Finally, we
would like to consider mixed problems (involving expressions of distinct arith-
metic types) and non-linear arithmetic, which would allow us to deal with all
the problems of the arithmetic category of TPTP (i.e. 557 problems).

10 It means that at least 78% of the tested automated theorem provers fail in proving
the considered problem.
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Abstract. Many tableaux provers that follow Stickel’s Prolog Technol-
ogy and lean have been relying on the Prolog compiler for an efficient
term representation and the implementation of unification. In particu-
lar, this is the case for leanCoP, the only tableaux prover that regularly
takes part in the CASC, the yearly ATP competition. On the other hand,
the most efficient superposition provers are typically written in low-level
languages, reckoning that the efficiency factor is significant.

In this paper we discuss low-level representations for first-order
tableaux theorem proving and present the Bare Metal Tableaux Prover,
a C implementation of the exact calculus used in the leanCoP theorem
prover with its cut semantics. The data structures are designed in such a
way that the prove function does not need to allocate any memory. The
code is less elegant than the Prolog code, albeit concise and readable.
We also measure the constant factor that a high-level programming lan-
guage incurs: the low-level implementation performs 18 times more in-
ferences per second on an average TPTP CNF problem. We also discuss
the implementation improvements which could be enabled by complete
access to the internal data structures, such as direct manipulation of
backtracking points.

1 Introduction

Connection tableaux is a well-studied calculus for automating first-order classical
logic proofs. An implementation of this calculus, the leanCoP [10] theorem prover,
achieves noteworthy performance while keeping the code compact. Since 2007
leanCoP 2.0 [9] has been regularly taking part in the CASC yearly ATP compe-
tition, typically performing average in the first-order theorems category [14,15].

leanCoP is implemented in Prolog and relies on the Prolog engine to implement
terms, syntactic equality checking, unification, and backtracking efficiently (a
number of Prolog compilers and interpreters are supported). The implementation
follows the lean approach: clauses are stored in the Prolog database to make use
of Prolog’s indexing. On the one hand, this allows for elegant and very concise
code: the main prove function of leanCoP needs only about 20 lines of code.
On the other hand, the optimizations possible in the implementation might be
limited by what can be realized in an elegant way in Prolog. This is in sharp
contrast with the provers that typically win the first-order division of CASC [15]:
They are either entirely implemented in low-level languages, such as C in case
of E-Prover [13], C++ in case of Vampire [6], or include an efficient low-level
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core, such as a SAT-solver used inside iProver [5]. Even if some of the low-level
implementations perform worse than leanCoP, the low-level implementations of
the best performing provers suggest, that the constant factor implied by the
choice of the programming language may be significant.

To evaluate this factor, we reimplemented the core of the leanCoP theorem
prover, together with its cut semantics, in C. Starting our experiment, we ex-
pected the Prolog compilers to optimize the code very well, consequently we
were not sure that a low-level implementation would be faster. Already with a
simple implementation, we observed a significant improvement w.r.t. the number
of performed inferences per second. This made us experiment with the low-level
implementation further: We used a memory-efficient representation of terms and
clauses. We added perfect sharing of terms and clauses. We used the Robinson’s
unification algorithm [12] with simple repetition checking, as is was shown to
be most effective for first-order theorem proving in practice [2]. We made sure
all functions satisfy the requirements of sibling-call optimization (a restriction
of tail-call optimization supported by most C compilers) and made sure that no
memory is allocated throughout the core proving process.

The C equivalent of the Prolog prove function is much less elegant, however
it is significantly more efficient: We have modified the low-level implementation
and the Prolog implementation of the leanCoP calculus, to ensure that they cre-
ate the same matrix for the same CNF problems and confirmed that the two
implementations perform precisely the same inferences on the same problems.
For connection tableaux proofs, the code produced by an optimizing C com-
piler can perform 18 times more inferences per second than that produced by a
Prolog compiler. The imperative implementation also enables optimizations and
modifications to the algorithm that are not easily possible in Prolog.

The rest of the paper is structured as follows: In section 2 we present leanCoP
and its calculus. In section 3 we discuss the choices made in the implementation
of our Bare Metal Tableaux Prover and present the code of the core loop. In
section 4 we evaluate the implementation and compare it with a Prolog imple-
mentation on a large subset of TPTP. Finally in section 5 we discuss modifi-
cations and optimizations to the algorithm that are enabled by an imperative
implementation and conclude.

2 leanCoP and Restricted Backtracking

leanCoP implements a clause connection tableaux calculus [7,10] presented in
Fig. 1. The Reduction rule connects a literal on the current path with the com-
plement of the literal to solve. The Extension rule performs a clausal extension
step unifying one of the newly attached literals with the complement of the lit-
eral to solve. The basic calculus is additionally extended by a lemma rule, that
allows to solve a literal that is identical to a previously solved one.

In the following, we will shortly explain the Prolog implementation of the
calculus in leanCoP and explain restricted backtracking. The prove function,
presented in Fig. 2, takes as the first argument the clause to prove. If the clause
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{}, M, Path
Axiom

C, M, {}
M

Start where C ∈ M,C is positive

C, M, Path ∪ {L2}
C ∪ {L1}, M, Path ∪ {L2}

Reduction where σ(L1) = σ(L2)

C2 \ {L2}, M, Path ∪ {L1} C, M, Path

C ∪ {L1}, M, Path
Extension where

σ(L1) = σ(L2),
σ is rigid,

C1 ∈ M,L2 ∈ C2,
C2 is a copy of C1

with variables renamed

Fig. 1. The clause connection calculus used in leanCoP.

is empty, the proof succeeds (line 1). Otherwise the clause is split into the first
literal Lit and the rest of the clause Cla. The algorithm first checks for regularity
(line 5). Next, one of the three cases needs to be fulfilled: either the literal Lit is
among the already covered lemmas (line 7), or its complement – NegLit – unifies
with a literal on the path (line 9), or NegLit unifies with one of the literals in the
matrix1 and the rest of the unifying clause is recursively provable (lines 13–16).
If any of the above three alternatives is successful, we still need to continue with
the rest of the clause, which is done by a recursive call to prove (line 19).

An important part of the algorithm implemented by leanCoP is the restriction
of the search space by the means of a Prolog cut (line 18). Cut is a Prolog
built-in predicate that always succeeds, but cannot be backtracked. The most
successful strategy in leanCoP uses cut after the application of lemma, reduction,
and extension rules. This restricts the backtracking, allowing for significantly
increased number of successfully solved TPTP problems [9]. However, as the
strategies that involve cut introduce incompleteness, they are typically used in
combination with complete strategies.

3 Low-Level Implementation

We have implemented an equivalent of the Prolog prove predicate in C in-
cluding all the necessary prerequisites: CNF literals, clauses, syntactic equality
checking, unification, and Prolog backtracking. In this section we discuss these
components. The low-level implementation does not include a TPTP problem
parser and the preparation of the matrix, as these typically are not costly in
comparison with the proving process. The matrix and an initial clause are the
arguments to the C prove function. In our implementation these are prepared
by the higher-level code originating from HOL Light [4].

1 leanCoP stores an association table between toplevel predicates and the rests of the
clauses. It is referred to as matrix.
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1 prove([],_,_,_,_,[]).

2
3 prove([Lit|Cla],Path,PathLim,Lem,Set,Proof) :-

4 Proof=[[[NegLit|Cla1]|Proof1]|Proof2],

5 \+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),

6 (-NegLit=Lit;-Lit=NegLit) ->

7 ( member(LitL,Lem), Lit==LitL, Cla1=[], Proof1=[]

8 ;

9 member(NegL,Path), unify_with_occurs_check(NegL,NegLit),

10 Cla1=[], Proof1=[]

11 ;

12 lit(NegLit,NegL,Cla1,Grnd1),

13 unify_with_occurs_check(NegL,NegLit),

14 ( Grnd1=g -> ���� ; ������(Path,K), K<PathLim -> ���� ;

15 \+ pathlim -> 	

���(pathlim), �	�� ),

16 prove(Cla1,[Lit|Path],PathLim,Lem,Set,Proof1)

17 ),

18 ( member(cut,Set) -> ! ; ���� ),

19 prove(Cla,Path,PathLim,[Lit|Lem],Set,Proof2).

Fig. 2. The prove function of leanCoP.

Term Representation. In order to achieve an efficient low-level algorithm, we
start with a term representation with full sharing. As we do not use discrim-
ination trees, flatterms were not considered. Each term consists of a tag and
an array of pointers to term arguments. The tag stores a 32-bit signed integer
and the length of the argument array. Negative tags represent functions and
constants, while positive ones represent variables. Terms are transmitted to the
low-level implementation bottom-up. The chosen term representation is similar
to that of Prolog implementations [17,1] or E-prover [13]2.

As we want to preserve full sharing also in the presence of renaming, we intro-
duce term offsets. Each first-order literal or clause will store its term arguments
together with an integer offset, which represents a value that is implicitly added
to all the variables in the literal or clause. All algorithms that operate on terms,
literals, and clauses will need to compute variable offsets. We also implement
full sharing for clauses: each clause is a reference to an array of literals, together
with the position in this array. As literals are solved, only the position and offset
are changed, no clause copies are required.

Global Substitution. One of the differentiating features of connection tableaux
proof search algorithmsis the fact, that a single global substitution suffices.
As unification produces new variable assignments, these are added to the global
substitution. Similarly, when backtracking, a certain number of most recent

2 In E-Prover it is the negative indices rather than positive ones that represent vari-
ables. We chose to use positive ones for variables, since they can directly be used as
indices in the substitution array.
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assignments is removed. We represent the global substitution in a way, that
allows all substitution operations (addition of an assignment, lookup, and re-
tracting a most recent assignment) in constant time. To do so, we use an array
and a stack (the stack is implemented as an array and an integer). The array
stores pairs of terms and integer offsets and represents the actual substitution.
The stack remembers the variables (integers) that have been assigned most re-
cently. In order to add an assignment to the substitution, the array is updated
and the assigned variable is added to the stack. To backtrack the assignment,
the most most recent index is popped from the stack and this assignment is
removed from the array.

Equality and Unification. Checking the equality of terms with offsets under
the substitution is straightforward: A helper stack stores pairs of terms (together
with offsets) that need to be checked for equality. When a pair of terms is popped
from the stack, the encountered variables are resolved in the substitution. If the
two are applications of the same function symbol, the pointers to the arguments
are pushed on the stack.

In a similar way we implement Robinson’s unification algorithm [12] for terms
with offsets. It is known to perform very well for practical first-order theorem
proving [2]. The offsets allow our single implementation to cover both unification
with and without renaming.

Prolog Backtracking. To implement the semantics of Prolog backtracking we
use two stacks. We call these stacks alternatives and promises. The alternatives
stack keeps all the possible backtracking points, while the promises stack keeps
the information about the calls to prove that need to be done after our current
one is successful. We improve on the idea of using two stacks which we presented
before [4] by making the code tail-recursive and ensuring that no memory needs
to be allocated.

Each alternative entry stores a tuple consisting of a pointer to a clause, the
number of entries on the path, the number of lemmas, the number of substitu-
tion entries, the number of promises, and the actual number of the alternative
matrix entry. To represent the path, lemmas, and substitution it suffices to store
an integer that represents the size of each respective stack. Storing an alternative
consists of storing the current pointers and numbers to the stack of alternatives
and can be done in constant time. Whenever the current goal fails, we pop an
alternative from the stack, change the state to match that saved in the alterna-
tive entry and call the prove function. In order to restore the state, apart from
changing the integer variables, the path, lemmas, and substitution need to be
restored. In case of the path and the lemmas, it is enough to update the stack
size: no array updates are needed. In case of the substitution, the given number
of most recent entries need to be removed from the array. Since each entry in
the substitution array needed to be added in constant time, the whole operation
of switching to an alternative can be done in constant amortized time.

Each promise entry keeps a tuple consisting of a clause, path, lemmas, new
lemma, and the number of alternatives. Once again the path, lemmas, and alter-
natives can be stored as single integers. As the goal succeeds, when switching to
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the next promised goal, we also need to realize the cut after an extension step.
This is done by forgetting a number of most recent alternatives and can be done
by updating the size of the alternatives stack to the stored one.

1 ��� prove() {

2 �� (cl_start == cl_len) ������ try_promise();

3 ��� (��� i = cl_start; i < cl_len; ++i)

4 ��� (��� j = 0; j < path_len; ++j)

5 �� (lit_eq(path[j], cl[i], cl_off))

6 ������ try_alternative();

7 ��� (��� i = 0; i < lem_len; ++i)

8 �� (lit_eq(lem[i], cl[cl_start], cl_off)) {

9 cl_start++;

10 ������ prove();

11 }

12 ������ reduce(path_len - 1);

13 }

14 ��� reduce(��� n) {

15 ��� (; n >= 0; --n) {

16 �� (neg_unify(path[n].t,path[n].o, cl[cl_start], cl_off)) {

17 cl_start++;

18 ������ prove();

19 }

20 }

21 ������ extend(0);

22 }

23 ��� extend(��� i) {

24 ��� pred = negate(cl[cl_start]->f);

25 ��� (; i < db_len[pred]; ++i) {

26 
����� db_entry dbe = db[pred][i];

27 �� (path_len >= path_lim && dbe.vars > 0) ��������;

28 �� (lit_unify(cl[cl_start], cl_off, dbe.lit1, sub_off)) {

29 store_alternative(true, i+1, old_sub);

30 store_promise();

31 path[path_len].t = cl[cl_start];

32 path[path_len++].o = cl_off;

33 cl = dbe.rest;

34 cl_start = 0;

35 cl_len = dbe.rest_len;

36 cl_off = sub_off;

37 sub_off += dbe.vars;

38 ������ prove();

39 }

40 }

41 ������ try_alternative();

42 }

Fig. 3. The core of the C implementation consists of three functions: prove checks
regularity and lemmas, while reduce and extend implement the corresponding rules.
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Core ����� Function. The code of the core prove loop (equivalent of the Pro-
log prove function) is presented in Fig. 3. The backtracking mechanism needs to
be able to switch back to three different parts of the function (checking for reg-
ularity, reduction, and extension steps). Thus, we implement the prove function
as three functions that call each other recursively: prove, extend, and reduce.
Sibling call optimization implemented by modern C compilers produces code
that does not allocate stack frames. The three functions return a boolean, that
indicates whether the proposition was proved, if so the proof can be inspected
in the global arrays.

The prove function first checks if the clause is empty (line 2). If so, we can
proceed with the promises. Next, if there is the same literal in the clause and on
the path we continue with an alternative (lines 3–6). Finally, if there is a lemma
that matches the current literal, we continue with the rest of the clause (lines
7–11) otherwise we continue to the reduce function (line 12).

The reduce function takes a starting position in the path as an argument.
It tests all the literals on the path starting at the given position for unification
with the negated literal. If successful, we continue by a recursive call to the prove
function with the rest of the clause, additionally storing a backtracking point
(lines 17–19). The backtracking point stores the information that it should call
reduce with the index of the next literal on the path. If no path literal unifies,
we proceed to the extend function (line 22).

The extend function iterates over all matrix entries matching the negated
predicate symbol, starting entry given as the argument (lines 25–40). It first
checks for iterative deepening termination condition if the clause is non-ground
(line 27). Next it tries to unify the literal with the matrix clause. If successful,
it stores a backtracking point in the alternatives and the rest of the clause as a
promise (lines 29–30) and continues with the rest of the matrix clause. Renaming
of the clause is performed by changing the offset value. If extend did not find a
clause that would unify with the literal, we backtrack to an alternative.

4 Evaluation

To compare the efficiency of the low-level implementation with a Prolog one, we
made sure that the implementations start with the same CNF. As leanCoP’s Pro-
log parser can only parse FOF problems, and only those which contain at most
one conjecture, we selected all the CNF problems in TPTP version 6.0.0 that
contain precisely one conjecture and transformed them to FOF using tptp4X.
Additionally, to make sure the order of the equality axioms is the same, we
used tptp4X to include the equality axioms, and changed the name of the equal-
ity predicate. We modified the source code of leanCoP 2.1 in two ways: only one
strategy is selected and literals in clauses are not reordered. We chose to focus on
the [cut, conj, nodef] strategy. The evaluations have been done on a server
with 48 AMD Opteron 6174 2.2 GHz CPUs, 320 GB RAM and 0.5 MB L2 cache
per CPU. Each ATP problem is assigned a single core. In an initial evaluation
we tested SWI-Prolog version 6.6.6 against ECLiPSe 5.10. With the former being
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Table 1. Number of inferences (in millions) and maximum depth (non-ground path
length limit) reached by the two implementations in 60 seconds averaged over each
TPTP category with at least 50 problems and averaged over all TPTP problems.
Only the problems for which cut does not yield a proof are considered. The full
version of the table with all individual problems and all categories is available at:
http://cl-informatik.uibk.ac.at/users/cek/tableaux15/

TPTP Number of inferences Maximum depth number of
Category low-level Prolog ratio low-level Prolog ratio problems

ALG 7.54 0.25 29.57 11.13 9.38 1.19 55
BOO 7.06 0.57 12.38 28.29 22.54 1.26 100
COL 8.80 0.76 11.64 26.13 20.16 1.30 119
GEO 14.90 0.38 39.38 6.83 5.65 1.21 118
GRP 10.85 0.78 13.94 19.59 16.67 1.18 593
LAT 3.80 0.51 7.39 27.58 23.57 1.17 259
LCL 6.01 0.43 13.96 155.60 88.97 1.75 454
NUM 17.73 0.14 127.60 13.95 8.73 1.60 94
RNG 12.55 0.89 14.13 19.07 16.28 1.17 76
SET 13.91 0.20 68.50 7.22 6.04 1.19 260
SWW 16.67 0.74 22.60 11.08 9.21 1.20 71

all 9.84 0.54 18.37 39.39 25.93 1.52 2936

able to solve 2 more of the problems, we focus on it in all further evaluations in
the paper. Similarly we compared GCC 4.9 against Clang 3.5, again with a small
advantage of the former.

We patched both implementations to increase an inference counter at every
extension step and print the number of inferences and the maximum path length
at every iterative deepening step. We show the average numbers of inferences for
all the problems that were not solved in 60 seconds by either of the implementa-
tions in Table 1 averaged by TPTP category and globally. We focus on the non
solved problems, as for the solved ones the numbers of inferences and the depth
of the proofs are same. For a small number of problems in geometry (GEO001-4,
GEO002-4) the numbers of inferences are the same for the two implementations,
however in the majority of problems, the low-level implementation is able to per-
form significantly more inferences, with the biggest difference for GRP015-1: the
low-level code can perform 31 million inferences, while the Prolog code can do
only 3,341 inferences. This directly corresponds to reaching a higher maximum
path length in the iterative deepening: the low-level implementation can reach
a path length that is on average 52% longer than the Prolog one.

A different way in which the performance of the two implementation can be
compared, is to directly look at the numbers of solved problems. This is done
in Table 2, the low-level version solved 37 new TPTP problems, which is 5.6%
more than the Prolog one.

http://cl-informatik.uibk.ac.at/users/cek/tableaux15/
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Table 2. Numbers of problems solved by the two implementations in 60 seconds.

Implementation Theorems Unique

low-level 693 37
Prolog 656 0

5 Conclusion

We implemented the core of the leanCoP theorem prover, together with its cut
semantics, in C. We optimized the representations of terms and substitution, as
well as the algorithms of equality checking and unification in the implementation.
We evaluated the efficiency of the generated C code against the Prolog code on
on a large subset of TPTP CNF problems. We were surprised by the difference:
The low-level implementation can on average perform 18 times more inferences
per second than the Prolog one. This corresponds to 5.6% more TPTP problems
solved by a single strategy.

The C implementation is reasonably concise, totalling 350 lines of code. This
includes 42 LoC in the core prove function, 61 LoC implementing Prolog back-
tracking, and 172 LoC for the shared terms, clauses, and unification. The C im-
plementation together with the high-level parsing code and the complete statis-
tics are available at:

http://cl-informatik.uibk.ac.at/~cek/tableaux15.

The use of imperative data structures allows random access. This means further
optimizations and experiments are possible, that would be hard to achieve in
Prolog, such as:

– backtracking points can be introduced only when needed (for example if a
unification returns a non-empty substitution, or if it is more general than a
previous one);

– the path can be traversed in the opposite direction, changing the introduced
alternatives;

– reordering of literals in clauses, as done by randoCoP [11], can be done
completely in place.

– cut can remove a different number of backtracking points, than that specified
by the semantics of the Prolog cut, which could give rise to half-cut or double-
cut strategies;

Other future work ideas involve the integration of some of the advanced strate-
gies for tableaux proving, such as those implemented in Setheo [8], or combining
our implementation with fast low-level machine learning algorithms [3] for inter-
nal proof guidance [16].
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Abstract. The basic preferential conditional logic PCL, initially proposed by
Burgess, finds an interest in the formalisation of both counterfactual and plausi-
ble reasoning, since it is at the same time more general than Lewis’ systems for
counterfactuals and it contains as a fragment the KLM preferential logic P for
default reasoning. This logic is characterised by Kripke models equipped with
a ternary relational semantics that represents a comparative similarity/normality
assessment between worlds, relativised to each world. It is first shown that its
semantics can be equivalently specified in terms of neighbourhood models. On
the basis of this alternative semantics, a new labelled calculus is given that makes
use of both world and neighbourhood labels. It is shown that the calculus enjoys
syntactic cut elimination and that, by adding suitable termination conditions, it
provides a decision procedure.

1 Introduction

Conditional logics have been studied since the 60’s motivated by philosophical rea-
sons, with seminal works due to Lewis, Nute, Stalnaker, Chellas, Pollock and Burgess,
among others.1 In all cases, the aim is to represent a kind of hypothetical implication
A > B different from classical material implication, but also from other non-classical
implications, like the intuitionistic one. There are two kinds of interpretation of a condi-
tional A > B: the first is hypothetical/counterfactual: “If A were the case then B would
be the case”. The second is prototypical: “Typically (normally) if A then B”, or in
other words “B holds in most normal/typical cases in which A holds”. The applications
of conditional logics to computer science, more specifically to artificial intelligence
and knowledge representation, have followed these two interpretations: the hypotheti-
cal/counterfactual interpretation has lead to study the relation of conditional logics with
the notion of belief change (with the crucial issue of the Ramsey Test), the prototypical
interpretation has found an interest in the formalisation of default and non-monotonic
reasoning (the well-known KLM systems) and has some relation with probabilistic rea-
soning. The range of conditional logics is however much more extensive and this brief
account does not even touch the variety of conditional logics that have been studied in
the literature in other contexts such as deontic and causal reasoning.

1 Cf. [11], [22], [23], [3], [20], [2].
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The semantics of conditional logics is defined in terms of various kinds of possible-
world models, all of them comprising a notion of preference, comparative similarity
or choice among worlds: intuitively, a conditional A > B is true at a world x if B
is true in all the worlds most normal/similar/close to x in which A is true. There are
however different ways to formalise this notion of comparison/preference on worlds.
Moreover, one may either assume that a most similar/close world to a given one always
exists, or not: the first option is known as the controversial Limit Assumption, accepted
for instance by Stalnaker but rejected by Lewis. For this reason, in contrast with the
situation in standard modal logic, there is no unique semantics for conditional logics.

In this paper we consider the basic conditional logic PCL (Preferential Conditional
Logic) defined by preferential models. In these models, every world x is associated with
a set of accessible worlds Wx and a preference relation y ≤x z on this set; the intuition is
that this relation assesses the relative normality/similarity of a pair of y, z with respect to
x. A conditional A > B is true at x if either there are no accessible A-worlds (i.e. worlds
where A is true) or for each accessible A-world u there is an accessible world y at least
as normal as u and no worlds at least as normal as y satisfy A∧¬B. This definition works
no matter whether ≤x-minimal worlds exist or not, making the aforementioned Limit
Assumption superfluous. The logic PCL generalises Lewis’ basic logic of counterfactu-
als, characterised by preferential models where the relation is connected (or equivalent
sphere models). Moreover, its flat fragment corresponds to the preferential logic P of
non-monotonic reasoning proposed by Kraus, Lehmann and Magidor [9]. Stronger log-
ics, as those of the Lewis’ family, can be obtained by assuming further properties of the
preference relation. An axiomatisation of PCL (and the respective completeness proof)
has been originally presented by Burgess in [2], where the system is called S, and alter-
native completeness proofs are presented in [8] and in [6]. In particular, in the former a
finite model property for PCL is proved, establishing also PSPACE complexity.

In sharp contrast with the simplicity of its Hilbert axiomatisation, the proof theory
of PCL is largely unexplored and it is the object of this paper. Recent work on proof
systems for other conditional logics includes [18], [19], [10], [1], but as far as we know
only few systems are known for PCL: a labelled tableaux calculus has been given in [6]
that makes use of pseudo-modalities indexed on worlds and of an explicit preference
relation in the syntax, with termination obtained by relatively complex blocking con-
ditions. Indexed modalities are used also in [16] where a labelled calculus for Lewis’
logic VC (strictly stronger than PCL) is proposed: the calculus is based on the prefer-
ence relations ≤x (considered as a ternary relations) and does not presuppose the limit
assumption; it has good structural properties, first of all admissibility of contraction and
cut, and termination is obtained by blocking conditions. An optimal unlabelled sequent
calculus for PCL is presented in [21]: the calculus is obtained by closing one step rules
by all possible cuts and by adding a specific rule for PCL; the resulting system is un-
doubtedly significant, but the rules have a highly combinatorial nature and are overly
complicated.2

In this paper we take a different approach based on a reformulation of the semantics
in terms of neighbourhood models. Neihghbourhood semantics has been successfully

2 In particular, a non-trivial calculation (although a polynomial algorithm) is needed to obtain
one backward instance of the (S)-rule for a given sequent.
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employed to analyse non-normal modal logics whose semantics cannot be defined in
terms of ordinary relational Kripke models. In these models every world x is associated
with a (possibly empty) set of neighbourhoods I(x) and each a ∈ I(x) is just an arbitrary
(non-empty) set of worlds. The intuition is that each neighbourhood a ∈ I(x) represents
a state of information/knwowledge/affair to be taken into account to evaluate the truth of
modal formulas in world x. Our starting point is a semantical characterisation of PCL
in terms of Weak Neighbourhood Models (WNM). It can be shown on the one hand that
each preferential model gives rise to a WNM and on the other hand that PCL is sound
with respect to the WNM. Thus, since PCL is complete with respect to preferential
models (as mentioned above), we obtain that it is also sound and complete with respect
to WNM. Thus WNM can be considered as an ‘official’ semantics for this logic. This
result is not unexpected: there is a known duality between partial orders and so-called
Alexandrov topologies, so that the neighbourhood models can be built by associating
to each world a topology of this kind, with the neighbourhoods being the open sets;
for conditional logics this duality is studied in detail in [12]. However, the topological
semantics of [12] imposes some closure conditions on the neighbourhoods (namely
closure under arbitrary unions and non-empty intersections) that are not required by
the logic and that we do not assume. That is why we call our neighbourhood models
“weak”. As remarked above, WNM suffices and provides a ‘lightweight’ semantics
for PCL.

Building on WNM, we define a labelled sequent calculus for PCL. The calculus
makes use of both world and neighbourhood labels to encode the relevant features of
the semantics into the syntax. In particular, the calculus makes use of a new operator |
for capturing the neighbourhood semantics that involves both world and neighbourhood
labels and contains rules for handling neighbourhood inclusion. The obtained calculus
is standard in the sense that each connective is handled exactly by dual Left and Right
rules, both justified through a clear meaning explanation that respects the general guide-
lines of inferentialism. In addition to simplicity and modularity, the calculus features
good proof-theoretical properties such as height-preserving invertibility and admissi-
bility of contraction and cut. We further show that the calculus can be made terminating
by a simple (non-redundancy) restriction on rule application and by a small change of
the rules, thereby obtaining a decision procedure for PCL. No complex blocking con-
ditions are needed. We also prove semantic completeness of the calculus: from a failed
proof of a formula it is possible to extract a finite WNM countermodel, built directly
from a suitable branch of the attempted proof. The last result provides a constructive
proof of the finite model property of PCL with respect to the WNM semantics.

Full proofs can be found in http://www.helsinki.fi/˜negri/pclnstc.pdf.

2 The Logic PCL

The language of Preferential Conditional Logic PCL is generated from a set Atm of
propositional atoms and Boolean connectives plus the special connective > (condi-
tional) by the following BNF:

A := P ∈ Atm | ⊥ | ¬B | B ∧ C | B ∨ C | B ⊃ C | B > C

http://www.helsinki.fi/~negri/pclnstc.pdf
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PCL is axiomatised by the following set of axioms and rules:
(Class) Any axiomatization of classical propositional logic

(R-And) (A > B) ∧ (A > C) ⊃ (A > (B∧ C)) (ID) A > A
(CSO) ((A > B) ∧ (B > A)) (CA) ((A > C) ∧ (B > C))
⊃ ((A > C) ⊃ (B > C)) ⊃ ((A ∨ B) > C)

(ModPon)
A A ⊃ B

B
(RCEA)

A ⊃⊂ B
(A > C) ⊃⊂ (B > C)

(RCK)
A ⊃ B

(C > A) ⊃ (C > B)
Some quick comments on the axioms: (Class), (R-And), (ModPon), (RCEA), (RCK)

form the axiomatisation of the minimal normal conditional logic CK. The remaining
ones (ID), (CSO), (CA) are specific of PCL. (CSO) is equivalent to the pair of well-
known axioms of cumulative monotony (CM) and restricted transitivity (RT):

(CM) ((A > B)∧ (A > C)) ⊃ ((A∧ B) > C) (RT) ((A > B)∧ ((A∧ B) > C)) ⊃ (A > C)

these are usually assumed in conditional logics for non-monotonic reasoning (such as
KLM systems). Axiom (CA) allows a kind a of reasoning by cases in conditional logics.

The standard semantics of PCL is defined in terms of preferential models that we
define next.

Definition 1
A preferential model M has the form (W, {Wx}x∈W , {≤x}x∈W , [ ]), where W is a non-empty
set whose elements are called worlds and

– For every x in W, Wx is a subset of W;
– For every x in W, ≤x is a binary reflexive and transitive relation in Wx;
– For every (atomic) formula P in Atm, [P] is a subset of W.

Truth conditions of formulas are defined in the usual way in the Boolean cases:

[A∧ B] = [A]∩ [B], [A∨ B] = [A]∪ [B], [¬A] = W − [A], [A ⊃ B] = (W − [A])∪ [B].

For conditional formulas we have:

(∗) x ∈ [A > B] iff ∀u ∈ Wx if u ∈ [A] then there is y such that y ≤x u, y ∈ [A], and for
all z, if z ≤x y then z ∈ [A ⊃ B].

We say that a formula A is valid in a model M if [A] = W.

The truth definition of a conditional is more complicated than it could be: it takes into
account the fact that minimal ≤x worlds in [A] do not neccesarily exist, as the relation
≤x (or more precisely its strict version) is not assumed to be well-founded. If we make
this assumption, called Limit Assumption, the truth condition of a conditional can be
greatly simplified as follows:

(∗∗) x ∈ [A > B] iff Minx(A) ⊆ [B]
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where Minx(A) = {y ∈ Wx ∩ [A] | ∀z ∈ Wx ∩ [A](z ≤x y → y ≤x z)}. The Limit
Assumption just asserts that if [A] ∩ Wx � ∅ then Minx(A) � ∅. It is easy to show
that for models satisfying the limit assumption the truths conditions (∗) and (∗∗) for
conditionals are equivalent. Moreover, on finite models the limit assumption is given
for free. Finally, the preferential semantics enjoys the finite model property, thus the
Limit Assumption is irrelevant for the validity of formulas. All in all to sum up the
results known in the literature [2], [8], [6], we have:

Theorem 1. A formula is a theorem of PCL iff it is valid in the class of preferential
models (with or without Limit Assumption).

The preferential semantics is not the only possible one. We introduce an alternative
semantics, in the spirit of a neighbourhood or topological semantics. This semantics
abstracts away from the comparison relation of the preferential semantics.

Definition 2. A weak neighbourhood model (WNM) M has the form (W, I, [ ]), where
W � ∅, [ ] : Atm −→ Pow(W) is the propositional evaluation, and I : W −→
Pow(Pow(W)). We denote the elements of I(x) by α, β.... We assume that for each
α ∈ I(x), α � ∅. The truth definition for Boolean connectives is the same as in pref-
erential models, and for the conditional operator we have

x ∈ [A > B] iff
∀α ∈ I(x) if α ∩ [A] � ∅ then there is β ∈ I(x) such that β ⊆ α, β ∩ [A] � ∅ and
β ⊆ [A ⊃ B].

We say that a formula is valid in a WNM M if [A] = W.

No matter what kind is a model M, we use the notation M, x |= A to indicate that in
M it holds x ∈ [A]; when M is clear from the context, we simply write x |= A. Moreover,
given a WNM M and α ∈ I(x), we use the following notation:

α |=∀ A if α ⊆ [A], i.e. ∀y ∈ α y |= A
α |=∃ A if α ∩ [A] � ∅, i.e. ∃y ∈ α such that y |= A

Observe that with this notation, the truth condition for > becomes:

(1) x |= A > B iff ∀α ∈ I(x) if α |=∃ A then there is β ∈ I(x) such that β ⊆ α and
β |=∀ A ⊃ B.

By the definition, weak neighbourhood models are faithful to Lewis’ intuition of the
conditional as a variably strict implication. Moreover, the above truth conditions of >
can be seen as a crucial weakening, needed for counterfactuals, of the most obvious
definition of strict implication in neighbourhood models eg: x |= A ⇒ B iff ∀α ∈
I(x), α |=∀ A ⊃ B.

Our aim is to prove that they provide an adequate semantics for PCL, that is, PCL
is sound and complete with respect to this semantics. For completeness we rely on
the fact that preferential models give rise to WNM in a canonical way, by taking as
neighbourhoods the downward closed sets with respect to the partial order.
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Proposition 1. For any preferential model M = (W, {Wx}x∈W , {≤x}x∈W , [ ]) there is
neighbourhood model Mne = (W, I, [ ]) such that for every x ∈ W and every formula A
we have:

M, x |= A iff Mne, x |= A

Proof. Given M as in the statement, we define Mne = (W, I, [ ]) by letting
I(x) ≡ {S ⊆ Wx : S is downward closed wrt. ≤x and S � ∅}.

The claim is proved by mutual induction on the complexity of formulas (defined in
the standard way). The base of induction holds by definition; the inductive case easily
goes through in the Boolean cases, thus let us concentrate on the case of >. We use the
notation z ↓≤x for {u ∈ Wx | u ≤x z}.

Suppose first that M, x |= A > B, let α ∈ I(x) such that α |=∃ A. Thus for some
y ∈ α, we have Mne, y |= A, and by induction hypothesis, we have M, y |= A. But then
by hypotehsis we have that there exists z ≤x y such that M, z |= A and for every u ≤x z,
we have M, u |= A ⊃ B. Let β = z ↓≤x , we have that β ∈ I(x), β ⊆ α (since z ≤x y and
y ∈ α) and β |=∀ A ⊃ B; thus Mne, x |= A > B.

Conversely, suppose that Mne, x |= A > B. Let y ∈ Wx such that M, y |= A, by
induction hypothesis, Mne, y |= A; let α = y ↓≤x , then we have that α |=∃ A. Thus by
hypothesis there is β ∈ I(x), with β ⊆ α such that β |=∃ A and β |=∀ A ⊃ B. Thus for
some z ∈ β, Mn, z |= A, whence M, z |= A by induction hypothesis. Let u ≤x z, we have
u ∈ β (as it is downward closed), thus we have Mne, u |= A ⊃ B, so that M, u |= A ⊃ B
by induction hypothesis. This implies M, x |= A > B.

The converse proposition can also be proved by assuming that the neighbourhoods I(x)
are closed with respect to non-empty intersections. In this case we can define a prefer-
ential model Mpref from a WNM M by stipulating

Wx ≡ ⋃{α ∈ I(x)} for any x ∈ W and y ≤x z iff ∀γ ∈ I(x)(z ∈ γ→ y ∈ γ).
and then we can prove that the set of valid formulas in the two models is the same.3

However, for our purpose of showing the adequacy of the WNM semantics for PCL it
is not necessary, and we have:

Theorem 2. A formula is a theorem of PCL iff it is valid in the class of Weak Neigh-
bourhood Models.

Proof. (If) direction: first we show that if a formula A is valid in the class of WNM, then
it is valid in the class of preferential models and then we conclude by theorem 1. Let a
formula A be valid in WNM and let M be a preferential model, as in proposition 1 we
build a WNM, Mne, then by hypothesis A is valid in Mne, and by the same proposition
it is also valid in M.

(Only if) direction: this is proved by checking that all PCL axioms and rules are valid
in WNM models. As an example we show the case of (CSO) and (CA), the others are
easy and left to the reader. For (CSO) let M be WNM, suppose that (i) x |= A > B, (ii)
x |= B > A and (iii ) x |= A > C, suppose α ∈ I(x), by (i) we get that there is β ∈ I(x),
with β ⊆ α such that β |=∃ A and β |=∀ A ⊃ B, thus also β |=∃ B, whence by (ii) there

3 This correspondence is known as the duality between partial orders and Alexandrov topologies
and for conditional logic is considered in [12].
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is γ ∈ I(x) with γ ⊆ β such that γ |=∃ B and γ |=∀ B ⊃ A, thus also γ |=∃ A, whence by
(iii), there is δ ∈ I(x), with δ ⊆ γ such that δ |=∃ A and δ |=∀ A ⊃ C, but we also have
δ |=∀ B ⊃ A, whence δ |=∀ B ⊃ C, since δ ⊆ α we are done.

For (CA), let M be WNM, and suppose that (i) x |= A > C, (ii) x |= B > C, let α ∈ I(x)
and suppose that α |=∃ A ∨ B: suppose that α |=∃ A then by (i) there is β ∈ I(x), with
β ⊆ α such that β |=∃ A and β |=∀ A ⊃ C, thus also β |=∃ A ∨ B. If β |=∀ ¬B then
β |=∀ B ⊃ C, whence also β |=∀ (A ∨ B) ⊃ C and we are done; if β |=∃ B, then by (ii)
there is γ ∈ I(x) with γ ⊆ β such that γ |=∃ B and γ |=∀ B ⊃ C, thus also γ |=∃ A ∨ B,
but since γ ⊆ β, we get γ |=∀ A ⊃ C as well, whence γ |=∀ (A∨ B) ⊃ C and we are done
again. The other case when α |=∃ B is symmetric and left to the reader.

In the next section we give a labelled calculus for PCL based on Weak Neighbour-
hood Models.

3 A Labelled Sequent Calculus

The rules of labelled calculi are obtained by a translation of the semantic conditions,
taking into account some further adjustments to obtain good structural properties. How-
ever, unlike in labelled systems defined in terms of a standard Kripke semantics, here
the explanation of the conditional is given in terms of a neighbourhood semantics. The
quantifier alternation implicit in the semantical explanation is rendered through the in-
troduction of new primitives, each with its own rules in terms of the earlier one in
the order of generalization. The idea is to unfold all the semantic clauses “outside in”,
starting from the outermost condition until the standard syntactic entities of Kripke se-
mantics (forcing of a formula at a world) are reached. So we start with the clauses for
the “global conditional”, i.e.

x : A > B ≡ ∀a(a ∈ I(x) & a
∃
� A→ x �a A|B)

and proceed to those for the “local conditional”

x �a A|B ≡ ∃c(c ∈ I(x) & c ⊆ a & c
∃
� A & c

∀
� A ⊃ B)

and finally to the “local forcing conditions”

a
∀
� A ≡ ∀x(x ∈ a→ x � A) and a

∃
� A ≡ ∃x(x ∈ a & x � A)

The calculus, which we shall denote by G3CL, is obtained as an extension of the propo-
sitional part of the calculus G3K of [13], so we omit below the propositional rules
(including L⊥); the contexts Γ, Δ are multisets:

Initial sequents

x : P, Γ ⇒ Δ, x : P

Rules for local forcing

x ∈ a, Γ ⇒ Δ, x : A

Γ ⇒ Δ, a ∀� A
R
∀
� (x fresh)

x ∈ a, x : A, a
∀
� A, Γ ⇒ Δ

x ∈ a, a
∀
� A, Γ ⇒ Δ L

∀
�
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x ∈ a, Γ ⇒ Δ, x : A, a
∃
� A

x ∈ a, Γ ⇒ Δ, a ∃� A
R
∃
�

x ∈ a, x : A, Γ ⇒ Δ
a
∃
� A, Γ ⇒ Δ

L
∃
� (x fresh)

Rules for the conditional

a ∈ I(x), a
∃
� A, Γ ⇒ Δ, x �a A|B

Γ ⇒ Δ, x : A > B
R > (a fresh)

a ∈ I(x), x : A > B, Γ ⇒ Δ, a ∃� A x �a A|B, a ∈ I(x), x : A > B, Γ ⇒ Δ
a ∈ I(x), x : A > B, Γ ⇒ Δ L >

c ∈ I(x), c⊆a, Γ⇒Δ, x �a A|B, c ∃� A c ∈ I(x), c⊆ a, Γ⇒Δ, x �a A|B, c ∀� A ⊃ B
c ∈ I(x), c ⊆ a, Γ ⇒ Δ, x �a A|B RC

c ∈ I(x), c ⊆ a, c
∃
� A, c

∀
� A ⊃ B, Γ ⇒ Δ

x �a A|B, Γ ⇒ Δ LC(c fresh)

Rules for inclusion4:

a ⊆ a, Γ ⇒ Δ
Γ ⇒ Δ Ref

c ⊆ a, c ⊆ b, b ⊆ a, Γ ⇒ Δ
c ⊆ b, b ⊆ a, Γ ⇒ Δ Trans

x ∈ a, a ⊆ b, x ∈ b, Γ ⇒ Δ
x ∈ a, a ⊆ b, Γ ⇒ Δ L ⊆

Before launching into full generality, we give an example of a derivation in the cal-
culus to get an idea of how the system works:

Example 1. We show a derivation (found by root-first application of the rules of the
calculus) of the sequent x : A > P, x : A > Q ⇒ x : A > P ∧ Q:

4 Observe that the right rule for inclusion
x ∈ a, Γ ⇒ Δ, x ∈ b
Γ ⇒ Δ, a ⊆ b

R ⊆ (x fresh) is not needed be-

cause in the logical rules inclusion atoms are never active in the right-hand side of sequents.
In other words, root-first proof search of purely logical sequents does not introduce inclusion
atoms in the succedent. This simplification of the calculus is made possible by the use of a rule
such as RC. The rule has two premisses rather than four, as would result as a direct translation
of the semantic truth condition for x �a A|B, that would bring atomic formulas of the form
a ∈ I(x) and c ⊆ a in the right-hand side; at the same time this move makes initial sequents
for such atomic formulas superfluous. This simplification is analogous to the one for rule L�
of basic modal logic from one to two premisses (cf. [13]).
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. . . , d
∃
� A ⇒ d

∃
� A, . . .

. . . , d ⊆ c, y ∈ c, y ∈ d, y : A ⊃ Q, y : A ⊃ P, d
∀
� A ⊃ Q, c

∀
� A ⊃ P ⇒ y : A ⊃ P ∧ Q

. . . , d ⊆ c, y ∈ c, y ∈ d, d
∀
� A ⊃ Q, c

∀
� A ⊃ P ⇒ y : A ⊃ P ∧ Q

L
∀
� (twice)

. . . , d ⊆ c, y ∈ d, d
∀
� A ⊃ Q, c

∀
� A ⊃ P ⇒ y : A ⊃ P ∧ Q

L ⊆

. . . , d ⊆ c, d
∀
� A ⊃ Q, c

∀
� A ⊃ P⇒ d

∀
� A ⊃ P ∧ Q

R
∀
�

d ⊆ a, d ∈ I(x), d ⊆ c, d
∃
� A, d

∀
� A ⊃ Q, c ∈ I(x), c ⊆ a, c

∃
� A, c

∀
� A ⊃ P, a ∈ I(x), a

∃
� A, x : A > P, x : A > Q ⇒ x �a A|P ∧ Q

RC

d ∈ I(x), d ⊆ c, d
∃
� A, d

∀
� A ⊃ Q, c ∈ I(x), c ⊆ a, c

∃
� A, c

∀
� A ⊃ P, a ∈ I(x), a

∃
� A, x : A > P, x : A > Q⇒ x �a A|P ∧ Q

Trans

x �a A|Q, c ∈ I(x), c ⊆ a, c
∃
� A, c

∀
� A ⊃ P, a ∈ I(x), a

∃
� A, x : A > P, x : A > Q⇒ x �a A|P ∧ Q

LC

c ∈ I(x), c ⊆ a, c
∃
� A, c

∀
� A ⊃ P, a ∈ I(x), a

∃
� A, x : A > P, x : A > Q⇒ x �a A|P ∧ Q

L >

x �a A|P, a ∈ I(x), a
∃
� A, x : A > P, x : A > Q⇒ x �a A|P ∧ Q

LC

a ∈ I(x), a
∃
� A, x : A > P, x : A > Q⇒ x �a A|P ∧ Q

L >

x : A > P, x : A > Q⇒ x : A > P ∧ Q
R >

here the derivable left premisses of both applications of L > have been omitted to

save space and the topsequents are easily derivable (by
∃
� and the propositional rules

respectively).

For the soundness of G3LC with respect to WNM we need the following:

Definition 3. Given a set S of world labels x and a set of N of neighbourhood labels a,
and a weak neighbourhood model M = (W, I, [ ]), an S N-realisation (ρ, σ) is a pair of
functions mapping each x ∈ S into ρ(x) ∈ W and mapping each a ∈ N into σ(a) ∈ I(w)
for some w ∈ W. We introduce the notion “M satisfies a sequent formula F under an
S realisation (ρ, σ)” and denote it by M |=ρ,σ F, where we assume that the labels in F
occurs in S , N. The definition is by cases on the form of F:

– M |=ρ,σ a ∈ I(x) if σ(a) ∈ I(ρ(x))
– M |=ρ,σ a ⊆ b if σ(a) ⊆ σ(b)
– M |=ρ,σ x : A if ρ(x) |= A

– M |=ρ,σ a
∃
� A if σ(a) |=∃ A

– M |=ρ,σ a
∀
� A if σ(a) |=∀ A

– M |=ρ,σ x �a A|B if σ(a) ∈ ρ(x) and for some β ⊆ σ(a) β |=∃ A and β |=∀ A ⊃ B

Given a sequent Γ ⇒ Δ, let S , N be the sets of world and neighbourhood labels occur-
ring in Γ ∪ Δ, and let (ρ, σ) be an S N-realisation, we define: M |=ρ,σ Γ ⇒ Δ if either
M �|=ρ,σ F for some formula F ∈ Γ or M |=ρ,σ G for some formula G ∈ Δ. We further
define M-validity by

M |= Γ ⇒ Δ iff M |=ρ,σ Γ ⇒ Δ for every S N-realisation (ρ, σ)

We finally say that a sequent Γ ⇒ Δ is valid if M |= Γ ⇒ Δ for every neighbourhood
model M.

We assume that the forcing relation extends the one of classical logic. We have:
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Theorem 3. If Γ ⇒ Δ is derivable in G3CL then it is valid in the class of Weak Neigh-
bourhood models.

The proof of admissibility of the structural rules in G3CL follows the pattern
presented in [15], section 11.4, but with some important non-trivial extra burden caused
by the layering of rules for the conditional, as we shall see. Likewise, some preliminary
results are needed, namely height-preserving admissibility of substitution (in short, hp-
substitution) and height-preserving invertibility (in short, hp-invertibility) of the rules.
We recall that the height of a derivation is its height as a tree, i.e. the length of its longest
branch, and that �n denotes derivability with derivation height bounded by n in a given
system.

In many proofs we shall use an induction on formula weight, and finding the right
definition of weight that takes into account all the constraints that we need for the induc-
tion to work is a subtle task. The following definition is found alongside the proofs of
the structural properties, but for expository reasons it is here anticipated. Observe that
the definition extends the usual definition of weight from (pure) formulas to labelled

fomulas and local forcing relations, namely, to all formulas of the form x : A, a
∀
� A,

a
∃
� A, x �a A|B.

Definition 4. The label of formulas of the form x : A and x �a A|B is x. The label of

formulas of the form a
∀
� A, a

∃
� A is a. The label of a formula F will be denoted by

l(F ). The pure part of a labelled formula F is the part without the label and without
the forcing relation, either local (�a) or worldwise (:) and will be denoted by p(F ).

The weight of a labelled formula F is given by the pair (w(p(F )), w(l(F ))) where

– For all worlds labels x and all neighbourhood labels a, w(x) = 0 and w(a) = 1.
– w(P) = w(⊥) = 1,

w(A ◦ B) = w(A) + w(B) + 1 for ◦ conjunction, disjunction, or implication,
w(A|B) = w(A) + w(B) + 2,
w(A > B) = w(A) + w(B) + 3.

Weights of labelled formulas are ordered lexicographically.

From the definition of weight it is clear that the weight gets decreased if we move from
a formula labelled by a neighbourhood label to the same formula labelled by a world
label, or if we move (regardless the label) to a formula with a pure part of strictly smaller
weight.

In our system, in addition to world labels, we have neighbourhood labels. The latter
are subject to similar conditions, such as the conditions of being fresh in certain rules,
as the world labels. Consequently, we shall need properties of hp-substitution in our
analysis. Before stating and proving the properties, we observe that the definition of
substitution of labels given in [13] can be extended in an obvious way – that need not
be pedantically detailed here – to all the formulas of our language and to neighbourhood
labels. We shall have, for example:

x : A > B(y/x) ≡ y : A > B and x �a A|B(b/a) ≡ x �b A|B.
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Our calculus enjoys the property of hp-admissibility of substitution both of world and
neighbourhood labels, that is:

Proposition 2. 1. If �n Γ ⇒ Δ, then �n Γ(y/x)⇒ Δ(y/x);
2. If �n Γ ⇒ Δ, then �n Γ(b/a)⇒ Δ(b/a).

By a straightforward induction we can also prove:

Proposition 3. The rules of left and right weakening are hp-admissible in G3CL.

Hp-invertibility of the rules of a sequent calculus means that for every rule of the
form Γ′⇒Δ′

Γ⇒Δ , if �n Γ ⇒ Δ then �n Γ
′ ⇒ Δ′, and for every rule of the form Γ′⇒Δ′ Γ′′⇒Δ′′

Γ⇒Δ
if �n Γ ⇒ Δ then �n Γ

′ ⇒ Δ′ and �n Γ
′′ ⇒ Δ′′. We have:

Proposition 4. All the rules of G3CL are hp-invertible.

The rules of contraction of G3CL have the following form, where φ is either a “re-
lational” atom of the form a ∈ I(x) or x ∈ a or a labelled formula of the form x : A,

a
∀
� A, a

∃
� A or x �a A|B:

φ, φ, Γ ⇒ Δ
φ, Γ ⇒ Δ LC

Γ ⇒ Δ, φ, φ
Γ ⇒ Δ, φ RC

Since relational atoms never appear on the right, the corresponding right contraction
rules will no be needed. We do not need to give different names for these rules since we
can prove that all of them are hp-admissible:

Theorem 4. The rules of left and right contraction are hp-admissible in G3CL.

Theorem 5. Cut is admissible in G3CL.

Proof. By double induction, with primary induction on the weight of the cut formula
and subinduction on the sum of the heights of the derivations of the premisses of cut.
The cases in which the premisses of cut are either initial sequents or obtained through
the rules for &, ∨, or ⊃ follow the treatment of Theorem 11.9 of [15]. For the cases in
which the cut formula is a side formula in at least one rule used to derive the premisses
of cut, the cut reduction is dealt with in the usual way by permutation of cut, with
possibly an application of hp-substitution to avoid a clash with the fresh variable in
rules with variable condition. In all such cases the cut height is reduced.

The only cases we shall treat in detail on those with cut formula principal in both

premisses of cut and of the form a
∀
� A, a

∃
� A or x �a A|B, x : A > B. We thus have the

following cases:

1. The cut formula is a
∀
� A, principal in both premisses of cut. We have a derivation

of the form
D

y ∈ a, Γ ⇒ Δ, y : A

Γ ⇒ Δ, a ∀� A
R
∀
�

x : A, x ∈ a, a
∀
� A, Γ′ ⇒ Δ′

x ∈ a, a
∀
� A, Γ′ ⇒ Δ′ L

∀
�

x ∈ a, Γ, Γ′ ⇒ Δ, Δ′ Cut
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This is converted into the following derivation:

D(x/y)
x ∈ a, Γ ⇒ Δ, x : A

Γ ⇒ Δ, a ∀� A x : A, x ∈ a, a
∀
� A, Γ′ ⇒ Δ′

x : A, x ∈ a, Γ, Γ′ ⇒ Δ, Δ′ Cut1

x ∈ a, x ∈ a, Γ, Γ, Γ′ ⇒ Δ, Δ, Δ′ Cut2

x ∈ a, Γ, Γ′ ⇒ Δ, Δ′ Ctr∗

Here D(x/y) denotes the result of application of hp-substitution to D, using the fact
that y is a fresh variable; compared to the original cut, Cut1 is a cut of reduced height,
Cut2 is one of reduced size of cut formula, and Ctr∗ denote repreated applications of
(hp-)admissible contraction steps.

2. The cut formula is a
∃
� A, principal in both premisses of cut. The cut is reduced in

a way similar to the one in the case above.
3. The cut formula is x �a A|B, principal in both premisses of cut. We have the

derivation

c ∈ I(x), c ⊆ a, Γ ⇒ Δ, x �a A|B, c ∃� A c ∈ I(x), c ⊆ a, Γ ⇒ Δ, x �a A|B, c ∀� A ⊃ B

c ∈ I(x), c ⊆ a, Γ ⇒ Δ, x �a A|B RC

D
d ∈ I(x), d ⊆ a, d

∃
� A, d

∀
� A ⊃ B, Γ′ ⇒ Δ′

x �a A|B, Γ′ ⇒ Δ′ LC

c ∈ I(x), c ⊆ a, Γ, Γ′ ⇒ Δ, Δ′ Cut

The transformed derivation is obtained as follows: First we have the derivationD2

c ∈ I(x), c ⊆ a, Γ ⇒ Δ, x �a A|B, c ∃� A x �a A|B, Γ′ ⇒ Δ′

c ∈ I(x), c ⊆ a, Γ, Γ′ ⇒ Δ, Δ′ , c ∃� A
Cut1

D(c/d)

c ∈ I(x), c ⊆ a, c
∃
� A, c

∀
� A ⊃ B, Γ′ ⇒ Δ′

c ∈ I(x)2 , c ⊆ a2, c
∀
� A ⊃ B, Γ, Γ′2 ⇒ Δ, Δ′2

Cut2

where the upper cut Cut1 is of reduced height and Cut2 of reduced weight. Second, we
have the following derivationD3 which uses a cut or reduced height:

c ∈ I(x), c ⊆ a, Γ ⇒ Δ, c ∀� A ⊃ B, x �a A|B x �a A|B, Γ′ ⇒ Δ′
c ∈ I(x), c ⊆ a, Γ, Γ′ ⇒ Δ, Δ′, c ∀� A ⊃ B

Cut2

A cut (of reduced weight) of the conclusion ofD2 with that ofD3 gives the sequent

c ∈ I(x)3, c ⊆ a3, Γ2, Γ′3 ⇒ Δ2, Δ′3

from which the conclusion of the original derivation is obtained though (hp-)admissible
steps of contraction.

4. The cut formula is x : A > B, principal in both premisses of cut.

D
b ∈ I(x), b

∃
� A, Γ ⇒ Δ, x �b A|B

Γ ⇒ Δ, x : A > B
R >

a ∈ I(x), x : A > B, Γ′ ⇒ Δ′ , a ∃� A x �a A|B,a ∈ I(x), x : A > B, Γ′ ⇒ Δ′
a ∈ I(x), x : A > B, Γ′ ⇒ Δ′ L >

a ∈ I(x), Γ, Γ′ ⇒ Δ, Δ′ Cut
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The cut is converted into four cuts of reduced height or weight of cut formula as follows:
First we have the derivation (call itD2)

Γ ⇒ Δ, x : A > B a ∈ I(x), x : A > B, Γ, Γ′ ⇒ Δ, Δ′, a ∃� A

a ∈ I(x), Γ, Γ′ ⇒ Δ, Δ′, a ∃� A
Cut1

D(a/b)

a ∈ I(x), a
∃
� A, Γ ⇒ Δ, x �a A|B

a ∈ I(x)2 , Γ2, Γ′ ⇒ Δ2, Δ′, x �a A|B Cut2

where Cut1 is of reduced cut height and Cut2 of reduced weight of cut formula. Second
we have the derivation (call it D3) obtained from the given one with reduced weight of
cut formula:

Γ ⇒ Δ, x : A > B x �a A|B, a ∈ I(x), x : A > B, Γ′ ⇒ Δ′
a ∈ I(x), x �a A|B, Γ, Γ′ ⇒ Δ, Δ′ Cut3

Finally the two conclusions of D2 and D3 are used as premisses of a fourth cut (of
reduced weight) to obtain the sequent

a ∈ I(x)3, Γ3, Γ′2 ⇒ Δ3, Δ′2

and the original conclusion is obtained though applications of (hp-)admissible contrac-
tion steps.

To ensure the consequences of cut elimination we observe another crucial property
of our system. We say that a labelled system has the subterm property if every world or
neighbourhood variable occurring in any derivation is either an eigenvariable or occurs
in the conclusion.5 By inspection of the rules of G3CL, we have:

Proposition 5. Every derivation in G3CL satisfies the subterm property.

4 Completeness and Termination

The calculus G3CL is not terminating as unrestricted root-first proof search may give

rise to indefinetely growing branches. Consider rules L
∀
� and R

∃
�. Root-first repeated

applications of those rules on the same pair of principal formulas is a priori possible
and it would be desirable, to restrict the search space, to show that they need to be
applied only once on a given pair of matching principal formulas.6 In fact, we have:

Lemma 1. In G3CL rules L
∃
� and R

∃
� need to be applied only once on the same pair

of principal formulas.

5 This property, restricted to world variables, is called analyticity in [4].
6 This desirable property is analogous to the property for basic modal systems established for

rules L� and R� in Lemma 6.3 and 6.4 [13].
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The avoidance of indefinitely applicable rules covered by the above lemma is not the
only case of restrictions that can be imposed to the calculus. Consider the following
example:

a ∈ I(x), a
∃
� P, x : P > Q⇒ a

∃
� P, x �a P|R

. . .⇒ c
∃
� P, x �a P|R

.

.

.

.

d ∈ I(x), d ⊆ c, d
∃
� P, d

∀
� P ⊃ Q, c ∈ I(x), c ⊆ a, c

∃
� P, c

∀
� P ⊃ Q, a ∈ I(x), a

∃
� P, x : P > Q ⇒ x �a P|R

x �c P|Q, c ∈ I(x), c ⊆ a, c
∃
� P, c

∀
� P ⊃ Q, a ∈ I(x), a

∃
� P, x : P > Q⇒ x �a P|R

LC

c ∈ I(x), c ⊆ a, c
∃
� P, c

∀
� P ⊃ Q, a ∈ I(x), a

∃
� P, x : P > Q⇒ x �a P|R

L >

x �a P|Q, a ∈ I(x), a
∃
� P, x : P > Q⇒ x �a P|R

LC

a ∈ I(x), a
∃
� P, x : P > Q ⇒ x �a P|R

L >

x : P > Q⇒ x : P > R
R >

We can see in this special case how the proof search can be truncated, and then gen-
eralize the argument through a suitable definition of saturated branch; this will then be
strengthened to a proof that in proof search saturated branches can always be obtained
in a finite number of steps.

Without loss of generality we can assume that a derivation of a given sequent is of
minimal height. Let D be the derivation of the upper rightmost sequent, and assume it
has height n. Then by hp-substitution we get a derivationD(c/d) of the same height of
the sequent

c ∈ I(x), c ⊆ c, c
∃
� P, c

∀
� P ⊃ Q, c ∈ I(x), c ⊆ a, c

∃
� P, c

∀
� P ⊃ Q, a ∈ I(x), a

∃
� P, x : P > Q⇒ x �a P|R

and by hp-contraction we obtain a derivation of height n of the sequent

c ∈ I(x), c ⊆ c, c
∃
� P, c

∀
� P ⊃ Q, c ∈ I(x), c ⊆ a, a ∈ I(x), a

∃
� P, x : P > Q⇒ x �a P|R

and therefore, by a step of reflexivity, of height n + 1 of

c ∈ I(x), c
∃
� P, c

∀
� P ⊃ Q, c ∈ I(x), c ⊆ a, a ∈ I(x), a

∃
� P, x : P > Q⇒ x �a P|R

Observe however that this is the same as the sequent that was obtained in the attempted derivation
in n + 2 steps, thus contradicting the assumption of minimality.

A saturated sequent is obtained by applying all the available rules with the exception of rules
application that would produce a redundancy such as a loop or a duplication of already existing
formulas modulo a suitable substitution of labels. There are two ways to treat uniformly the case
of redundancies arising from loops ad those ones arising from duplications: one is to write all
the rules in a cumulative style, i.e. by always copying the principal formulas of each rules in the
premisses, a choice pursued in [5]; another is to consider branches rather than sequents, as in [14].
Here we follow the latter choice, and indicate ↓Γ (↓Δ) the union of the antecedents (succedents)
in the branch from the end-sequent up to Γ ⇒ Δ.

Definition 5. We say that a branch in a proof search from the endsequent up to a sequent Γ ⇒ Δ
is saturated if the following conditions hold:

(Init) There is no x : P in Γ
⋂
Δ.

(L⊥) There is no x ∈ ⊥ in Γ.
(Ref) If a is in Γ, Δ, then a ⊆ a is in Γ.
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(Trans) If a ⊆ b and b ⊆ c are in Γ, then a ⊆ c is in Γ.
(L∧) If x : A ∧ B is in ↓Γ, then x : A and x : B are in ↓Γ.
(R∧) If x : A ∧ B is in ↓Δ, then either x : A or x : B is in ↓Δ.
(L∨) If x : A ∨ B is in ↓Γ, then either x : A or x : B is in ↓Δ.
(R∨) If x : A ∨ B is in ↓Δ, then x : A and x : B are in ↓Γ.
(L⊃) If x : A ⊃ B is in ↓Γ, then either x : A is in ↓Δ or x : B is in ↓Γ.
(R⊃) If x : A ⊃ B is in ↓Δ, then x : A is in ↓Γ and x : B is in ↓Δ.

(R
∀
�) If a

∀
� A is in ↓Δ, then for some x there is x ∈ a in Γ and x : A in ↓Δ.

(L
∀
�) If x ∈ a and a

∀
� A and are in Γ, then x : A is in ↓Γ.

(R
∃
�) If x ∈ a is in Γ and a

∃
� A is in Δ, then x : A is in ↓Δ.

(L
∃
�) If a

∃
� A is in ↓Γ, then for some x there is x ∈ a in Γ and x : A is in ↓Γ.

(R>) If x : A > B is in ↓Δ, then there is a such that a ∈ I(x) is in Γ, a
∃
� A is in ↓Γ, and x �a A|B

is in ↓Δ.

(L>) If a ∈ I(x) and x : A > B are in Γ, then either a
∃
� A is in ↓Δ or x �a A|B is in ↓Γ.

(RC) If c ∈ I(x) and c ⊆ a are in Γ and x �a A|B is in ↓Δ, then either c
∃
� A or c

∀
� A ⊃ B is in ↓Δ.

(LC) If x �a A|B is in ↓Γ, then for some c in I(x), we have c ⊆ a in Γ and c
∃
� A, c

∀
� A ⊃ B in ↓Γ.

(L⊆) If x ∈ a and a ⊆ b are in Γ, then x ∈ b is in Γ.

Given a root sequent ⇒ x : A we build backwards a branch by application of the rules; the
branch is a sequence of sequents Γi ⇒ Δi where Γ0 ⇒ Δ0 ≡ ⇒ x : A and each Γi+1 ⇒ Δi+1 is
obtained by application of a rule R to Γi ⇒ Δi.

To obtain a terminating proof search we modify (slightly) the calculus as follows:

– We replace the rule L> by the following rule:

a ∈ I(x), x : A > B, Γ ⇒ Δ, a ∃� A a
∃
� A, x �a A|B,a ∈ I(x), x : A > B, Γ ⇒ Δ

a ∈ I(x), x : A > B, Γ ⇒ Δ L′ >

– We add the rule Mon∀
b ⊆ a, b

∀
� A, a

∀
� A, Γ ⇒ Δ

b ⊆ a, a
∀
� A, Γ ⇒ Δ

Mon∀

and we consider the respective saturation conditions:

(L>′) If a ∈ I(x) and x : A > B are in Γ, then either a
∃
� A is in ↓Δ or a

∃
� A and x �a A|B are in

↓Γ.

(Mon∀) If b ⊆ a, a
∀
� A are in Γ, then b

∀
� A is in Γ.

We also distinguish between dynamic rules, i.e. rules that, root-first, introduce new world or
neighbourhood labels, and static rules, those that operate only on the given labels. Moreover we
consider the following strategy of application of the rules:

1. No rule can be applied to an initial sequent,
2. Static rules are applied before dynamic rules,
3. R> is applied before LC,
4. A rule R cannot be applied to Γi ⇒ Δi if ↓ Γi and/or ↓ Δi satisfy the saturation condition

associated to R.
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Proposition 6. Any branch Γ0 ⇒ Δ0, . . . , Γi ⇒ Δi, Γi+1 ⇒ Δi+1, . . . of a derivation built in
accordance with the strategy, with Γ0 ⇒ Δ0 ≡ ⇒ x0 : A, is finite.

Proof. Consider any branch of any derivation of ⇒ x0 : A. If the branch contains an initial
sequent, this sequent is the last one and the branch is finite. If the branch does not contain an
initial sequent, we observe the following facts: any label (world or neighbourhood) appears in the
right part of a sequent of the derivation only if it appears also in the left part (with the possible
exception of x0 if the branch contains only the root sequent ⇒ x0 : A). Observe also that given
any sequent Γi ⇒ Δi occurring in a derivation branch, if a ∈ I(x), y ∈ a, b ∈ I(y), u ∈ b all belong
to ↓ Γi, then we can assume, in virtue of the variable conditions in dynamic rules, that none of
b ∈ I(x), u ∈ a, a ∈ I(y) is in ↓Γi and moreover if g ∈ I(x), h ∈ I(x) are in ↓Γi, and neither g ⊆ h,
nor h ⊆ g are in ↓Γi, then there is no u such that u ∈ g and u ∈ h are both in ↓Γi. These remarks
are aimed at preparing the following: given a branch Γ0 ⇒ Δ0, . . . , Γi ⇒ Δi, Γi+1 ⇒ Δi+1, . . ., let
↓Γ and ↓Δ be the unions of all the Γi and Δi respectively; let us define the relation:

a ≺ x if a ∈ I(x) is in ↓Γ and y ≺ b if y ∈ b is in ↓Γ
Fact: Then the relation ≺ does not contain cycles, has a tree-like structure with root x0, and the
length of any ≺-chain is bounded by the 2d(A) where d(A) is degree of the formula A in the root
sequent ⇒ x0 : A, that is the maximum level of nesting of > in A, defined as usual: d(P) = 0
if P ∈ Atm, d(¬C) = d(C), d(C#D) = max{d(C), d(D)} with # ∈ {∧,∨,⊃} and d(C > D) =
max{d(C), d(D)} + 1.

The last claim of Fact can be proved formally as follows: for any u occurring in ↓Γ we define
d(u) = max{d(C) | u : C ∈↓Γ∪ ↓Δ}.

By induction on d(u) we show that the length of any chain beginning with u (downwards) has
length ≤ 2d(u). If d(u) = 0, then the claim is obvious, since there are no chains beginning with
u of length > 0. If d(u) > 0 consider any chain beginning with u of length > 0, the chain will

contain a neighbour a ∈ I(u) as immediate successor of u; observe that for all formulas a
∀
� G

or a
∃
� G in ↓ Γ∪ ↓ Δ it holds d(G) < d(u) as G = E or G = E ⊃ F, for some E > F such that

u : E > F ∈↓ Γ∪ ↓ Δ with d(E > F) ≤ d(u). If the chain goes on further with a successor of a,
it will be one y ∈ a, but all formulas y : D in ↓ Γ∪ ↓ Δ may only be subformulas of a formula

G, such that a
∀
� G or a

∃
� G are in ↓Γ∪ ↓ Δ. Thus d(y) < d(u), and by inductive hypothesis all

chains beginning with y have length ≤ 2d(y). Thus the chain beginning with u will have length
≤ 2d(y) + 2 ≤ 2(d(u) − 1) + 2 = 2d(u).

Our purpose is to show that ↓Γ, ↓Δ are indeed finite. Since the labels can be attached only to
subformulas of the initial A in ⇒ x0 : A (that are finitely many), we are left to show that the ≺
relation forms a finite tree. But we have just proved that every ≺-chain is finite, thus it is sufficient
to show that every node in this tree has a finite number of immediate successors, and then we
obtain the desired conclusion. In other words we must show that:

1. for each a occurring ↓Γ, the set {u | u ∈ a ∈↓Γ} is finite.
2. for each x occurring in ↓Γ ∪ {x0}, the set {a | a ∈ I(x) ∈↓Γ} is finite.

Let us consider 1: take a label a occurring in some Γi; worlds u can be added to a (i.e. u ∈ a will

appear in some Γk with k > i) only because of the application of a the rule (L
∃
�) to some a

∃
� C in

Γ j or (R
∀
�) to a

∀
� D in Δ j, j ≥ i. But there is only a finite number of such formulas, and they are

treated only once, so the result follows.
Let us consider 2: take a label x occurring in some Γi. A neighbour a can be added to I(x)
(meaning that a ∈ I(x) will appear in some Γk with k > i) only because of rule R> applied to
some x : C > D in Δi or because of rule LC applied to some x �b E|F with b ∈ I(x) also in Γi.
In the former case we note that the the number of formulas x : C > D in Δi if finite and each
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is treated only once, by the saturation restriction. Thus only finitely many neighbours b will be
added to I(x).

The latter case is slightly more complicated: each x �b E|F is generated by a formula x : E >
F, with b ∈ I(x) also in Γi by an application of rule L′ >, taking the right premisse of this rule. The
formulas x : E > F are finitely many, say x : E1 > F1 , . . . , x : Ek > Fk . Thus in the worst case, for
a given b ∈ I(x) in Γi, all k formulas x �b E1 |F1, . . . , x �b Ek |Fk will appear in some Γ j for some
j > i. Suppose next that LC is applied first for some l to x �b El |Fl, to keep the indexing easy we

let l = 1, this will generate a new neighbour d, introducing d ∈ I(x), d ⊆ b, d
∃
� E1 and d

∀
� E1 ⊃

F1. The static rule L′ > can be applied again to d, generating in the worst case (it corresponds
to taking always the right premiss) x �d E1 |F1, . . . , x �d Ek |Fk . Let us denote by Γp ⇒ Δp the
sequent further up in the branch containing x �d E1 |F1, . . . , x �d Ek |Fk ; by saturation we have

that d ∈ I(x), d ⊆ d, d
∃
� E1 , d

∀
� E1 ⊃ F1 are in ↓ Γp, thus LC cannot be applied to x �d E1 |F1

and only k − 1 applications of LC are possible, namely to x �d E2 |F2 , . . . , x �d Ek |Fk .
Suppose next, to keep the indexing simple, that LC is applied then to x �d E2 |F2, then it

will add a new e with e ∈ I(x), e ⊆ d, e
∃
� E2 and e

∀
� E2 ⊃ F2. Again, the rule L′ > can

be applied, and in the worst case it will add x �e E1 |F1, . . . , x �e Ek |Fk . But here the new

version L′ >, becomes significant: also e
∃
� E1, . . . , e

∃
� Ek will be added to the (antecedent)

of the sequent containing x �e E1 |F1, . . . , x �e Ek |Fk . Moreover by saturation with respect to

Mon∀, the antecedent e
∀
� E1 ⊃ F1 will be added, as well as e ⊆ e. Thus at this point, by

saturation restriction, LC cannot be applied neither to x �e E2 |F2, nor to x �e E1 |F1, and only
(k-2) applications are possible.

A simple generalisation of the previous argument shows that after any application of LC which
generates new subneighbours d of a given neighbour b, the number of applications of LC to
each d strictly decreases, whence the number of further neighbours which can be subsequently
generated: if there are x �b E1 |F1, . . . , x �b Ek |Fk they will produce at most k d1, . . . , dk ⊆ b,
but each dl can produce at most k − 1 e1, . . . , ek−1 ⊆ dl, and each em can produce at most k − 2
g1, . . . , gk−2 ⊆ em, and so on. Thus the process must terminate and there will be a sequent Γq ⇒ Δq

such that ↓Γq is saturated with respect to all x �a Ej |Fj , for all a such that a ∈ I(x) is in ↓Γq, and
this shows that {a | a ∈ I(x) ∈↓Γ} is finite.

The following is an easy consequence.

Theorem 6. Any proof search for ⇒ x : A is finite. Moreover every branch either contains an
initial sequent or is saturated.

Proof. By the previous proposition every branch is finite; let us consider any branch Γ0 ⇒ Δ0,
. . . , Γm ⇒ Δm. The branch ends with Γm ⇒ Δm, no rule is applicable to it, thus, trivially, either
Γm ⇒ Δm is an initial sequent or the branch is saturated, otherwise some rule would be applicable
to Γm ⇒ Δm.

Observe that the number of labelled formulas in a saturated branch may be exponential in the
size of the root sequent. For this reason, our calculus is not optimal, since the complexity of PCL
is PSPACE [8].

As mentioned in the introduction, [21] give a (very complicated) optimal calculus. Beyond the
technicality of the calculus, the essential ingredient, which goes back to Lehmann, is to restrict
the semantics to linearly ordered preferential models. This restriction preserves soundness for
flat sequent with at most one positive conditional on the right (after propositional unravelling),
whereas for (flat) sequents with several positive conditionals on the right one has to consider
“multi-linear” models as defined in [7]. Then one can study a calculus matching this strengthened
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semantics. This idea is developed also in [7] where an optimal calculus for KLM logic P, the
flat version of PCL is given. We conjecture that a similar idea can be adopted for PCL based
on WNM semantics: we should first restrict the semantics to a special type of neighbourhood
models, show that the restriction preserves soundness and then develop a calculus with respect
the sharpened semantics, with the hope of obtaining an optimal one. All of this will be object of
future research.

The following lemma shows how to define finite countermodels from saturated branches:

Lemma 2. For any saturated branch leading to a sequent Γ ⇒ Δ there exists a (finite) coun-
termodel M to Γ ⇒ Δ, which makes all the formulas in ↓ Γ true and all the formulas in ↓ Δ
false.

Proof. Define the countermodelM ≡ (W,N, I,�) as follows:

1. The set W of worlds consists of all the world labels in Γ;
2. The set N of neighbourhood consists of all the neighbourhood labels in Γ;
3. For each x in W, the set of neighbourood I(x) consists of all the a in N such that a ∈ I(x)

is Γ;
4. For each a in N, a consists of all the y in W such that y ∈ a in is Γ;
5. The valuation is defined on atomic formulas by x � P if x : P in Γ and is extended to arbitrary

labelled formulas following the clauses of neighbourhood semantics for conditional logic (cf.
beginning of Section 3).

Next we can prove the following (cf. Definition 3: here ρ and σ are the identity maps, and we
leave them unwritten):

1. If A is in ↓Γ, thenM |= A.
2. If A is in ↓Δ, thenM |=/ A.

The two claims are proved simultaneously by cases/induction on the weight of A (cf. Def. 4):
(a) If A is a formula of the form a ∈ I(x), x ∈ a, a ⊆ b, claim 1. holds by definition ofM and

claim 2. is empty.
(b) If A is a labelled atomic formula x : P, the claims hold by definition of � and by the

saturation clause Init no inconsistency arises. If A is⊥, it holds by definition of the forcing relation
that it is never forced, and therefore 2. holds, whereas 1. holds by the saturation clause for L⊥.
If A is a conjunction, or a disjunction, or an implication, the claim holds by the corresponding
saturation clauses and inductive hypothesis on smaller formulas.

(c) If a
∃
� A is in ↓Γ, by the saturation clause (L

∃
�), for some x there is x ∈ a in Γ and x : A is

in ↓Γ. ThenM |= x ∈ a by (a) and by IHM |= x : A, thereforeM |= a
∃
� A. If a

∃
� A is in ↓Δ,

then it is in Δ because such formulas are always copied to the premisses in the right-hand side of
sequents. Consider an arbitrary world x in a. Then by definition ofM we have x ∈ a in Γ and

thus by the saturation clause (R
∃
�) we also have x : A is in ↓ Δ. By IH we haveM |=/ x : A and

thereforeM |=/ a
∃
� A. The proof for formulas of the form a

∀
� A is similar.

(d) If x �a A|B is in ↓Γ, then by saturation for some c in I(x), we have c ⊆ a in Γ and c
∃
� A,

c
∀
� A ⊃ B in ↓ Γ. By IH this givesM |= c

∃
� A, c

∀
� A ⊃ B and by definition ofM we obtain

M |= x �a A|B.
If x �a A|B is in ↓Δ, consider an arbitrary c in I(x) with c ⊆ a in the model. By definition of

M we have that c ∈ I(x) and c ⊆ a are in Γ, and therefore by saturation clause (RC) we obtain

then either c
∃
� A or c

∀
� A ⊃ B is in ↓Δ. By IH we have that eitherM |=/ c

∃
� A orM |=/ c

∀
� A ⊃ B.

Overall, this means thatM |=/ x �a A|B.
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(e) If x : A > B is in ↓Γ, then because of the form of the rules of the calculus it actually is in
Γ; let a be a in I(x) in the model. Then a ∈ I(x) and x : A > B are in Γ and the saturation clause

(L>) applies, giving that either a
∃
� A is in ↓Δ or x �a A|B is in ↓Γ. By IH we that have that either

M |=/ a
∃
� A orM |= x �a A|B. It follows thatM |= x : A > B.

If x : A > B is in ↓ Δ, then by (R>) there is a such that a ∈ I(x) is in Γ, a
∃
� is in ↓ Γ, and

x �a A|B is in ↓Δ. By IH we obtainM |= a
∃
� andM |=/ x �a A|B, and thereforeM |=/ x : A > B.

We are ready to prove the completeness of the calculus.

Theorem 7. If A is valid then there is a derivation of⇒ x : A, for any label x.

Proof. By Theorem 6 for every A there is (a finite procedure that leads to) either a derivation for
⇒ x : A or to a saturated branch. By the above lemma a saturated branch gives a countermodel
of A. It follows that if A is valid it has to be derivable.

The proof of the above theorem shows not only the completeness of the calculus, but more
specifically that for any unprovable formula the calculus provides a finite countermodel. Given
the soundness of the calculus, as a by product we obtain a constructive proof of the finite model
property for this logic.

5 Conclusions

In this paper we have given a labelled sequent calculus for the basic preferential conditional logic
PCL. The calculus stems from a new semantics for this logic in terms of Weak Neighborhood
Systems, a semantics of independent interest. The calculus has good proof-theoretical proper-
ties, such as admissibility of cut and contraction. Completeness follows from the cut-elimination
theorem and derivations of the axioms and rules of PCL and is also shown by a direct proof
search/countermodel construction. The calculus can be made terminating by adopting a suitable
search strategy and by slightly changing the rules. In comparison with other proposals such as
[6] and [16], no complex blocking conditions are necessary to ensure termination. The calculus
however is not optimal as the size of a derivation branch may grow exponentially. We shall study
how to refine it in order to obtain an optimal calculus; as briefly discussed in the previous section,
a sharper semantical analysis of PCL might be needed to this purpose.

In future research, we also intend to extend the Weak Neighbourhood Semantics and find
corresponding calculi for the main extensions of PCL.
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Abstract. We introduce the framework of linear nested sequent calculi
by restricting nested sequents to linear structures. We show the close
connection between this framework and that of 2-sequents, and provide
linear nested sequent calculi for a number of modal logics as well as for
intuitionistic logic. Furthermore, we explore connections to backwards
proof search for sequent calculi and to the hypersequent framework, in-
cluding a reinterpretation of various hypersequent calculi for modal logic
S5 in the linear nested sequent framework.

1 Introduction

One of the major enterprises in proof theory of modal logics is the development of
generalisations of the sequent framework permitting the formulation of analytic
calculi for large classes of modal logics in a satisfactory way. Apart from cut
admissibility, among the main desiderata for such calculi are separate left and
right introduction rules for the modal connectives, and that calculi for extensions
of the base logic should be obtained by a modular addition of rules to the base
calculus [27,21]. This was realised e.g. in the framework of nested sequents resp.
tree-hypersequents [3,20] and the related framework of labelled sequents [18].

However, from a philosophical and computational point of view it is inter-
esting to find the simplest generalisation of the sequent framework permitting
good calculi for such classes of logics, i.e., to establish just how much additional
structure is needed for capturing these logics. A reasonably simple extension of
the sequent framework, that of 2-sequents, was introduced by Masini to capture
modal logic KD and several constructive modal logics [15,16,14]. The resulting
calculi satisfy many of the desiderata such as separate left and right introduction
rules for �, a direct formula translation for every structure, cut elimination and
the subformula property. For the constructive logics the calculi also serve as a
stepping stone towards natural deduction systems and Curry-Howard-style cor-
respondences [14]. Despite these advantages, the framework of 2-sequents seems
not to have attracted the attention it deserves. One reason might have been that
it seems not to have been clear how to adapt the original calculus for KD to
other modal logics based on classical propositional logic, notably basic modal
logic K, see e.g. [27, Sec.2.2] or [21, p.55].

� Supported by FWF project START Y544-N23 and the European Union’s Hori-
zon 2020 programme under the Marie Sk�lodowska-Curie grant agreement No 660047.

c© Springer International Publishing Switzerland 2015
H. De Nivelle (Ed.): TABLEAUX 2015, LNAI 9323, pp. 135–150, 2015.
DOI: 10.1007/978-3-319-24312-2_10



136 B. Lellmann

In the following we connect this framework with that of nested sequents by
making precise the idea that 2-sequents can be seen as linear nested sequents,
i.e., nested sequents in linear instead of tree shape (Sec. 3). This observation
suggests linear adaptations of standard nested sequent calculi for various modal
logics (Sec. 4.1), thus answering the question on how to extend the 2-sequent
framework to other logics and demonstrating that these logics do not require the
full machinery of nested sequents. Of course the full nested sequent framework
might still capture more modal logics, and it seems to provide better modular-
ity for logics including the axiom 5 [13]. We also obtain linear nested sequent
calculi for propositional and first-order intuitionistic logic from the calculi in [7]
(Sec. 4.2). In all these cases the established completeness proofs for the full nested
calculi use the tree structure of nested sequents and hence fail in the linear set-
ting. However, we obtain quick completeness proofs by exploiting connections
to standard sequent calculi. A fortiori, this also shows completeness for the full
nested calculi.

Another successful generalisation of the sequent framework is that of hyper-
sequents, permitting e.g. several calculi for modal logic S5. The observation that
hypersequents have the same structure as linear nested sequents suggests inves-
tigations into the relation between the two frameworks, in particular a reinter-
pretation of hypersequent calculi for S5 in terms of linear nested sequents, and
the construction of hypersequent calculi from linear nested calculi (Sec. 5).

Relation to other frameworks. By the translations in [6,8] the linear nested frame-
work induces corresponding restrictions in the frameworks of prefixed tableaux and
labelled sequents. E.g., we obtain completeness results for calculi using what could
be called labelled line sequents, i.e., labelled sequents [18] where the relational
atoms spell out the structure of a line (compare [8]). Since cut elimination for la-
belled sequents does not preserve this property, these are non-trivial results. An
analogue of linear nested sequents in the unlabelled tableaux framework has been
considered in [5] under the name of path-hypertableau for intermediate logics.

2 Preliminaries: Nested Sequents and 2-Sequents

As usual, modal formulae are built from variables p, q, . . . using the propositional
connectives ⊥,∧,∨,→ and the (unary) modal connective � with the standard
conventions for omitting parentheses. We write � for ⊥ → ⊥, abbreviate A →
⊥ to ¬A and write ♦A for ¬�¬A. Modal logic K is axiomatised by classical
propositional logic, the axiom K and the rule Nec, and we also consider extensions
of K with axioms from Fig. 1. Theoremhood in a logic L is written |=L. For more
on modal logics see [2]. We consider extensions of the sequent framework, where
a sequent is a tuple of multisets of formulae, written Γ ⇒ Δ, and interpreted as∧
Γ →

∨
Δ, see e.g. [26]. We write Γ ∪Δ or Γ,Δ for multiset sum and Γ ⊆ Δ

for multiset inclusion (respecting multiplicities) and denote the empty multiset
with ∅. For C one of the calculi below we write �C for derivability in C. We write
N for the set {1, 2, 3, . . .} of natural numbers.
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K �(A → B) → (�A → �B) Nec � A/ � �A

D �A → ♦A T �A → A 4 �A → ��A 5 ♦�A → �A B A → �♦A

Fig. 1. Axioms for modal logics

S{Γ ⇒ Δ, [Σ,A ⇒ Δ]}
S{Γ,�A ⇒ Δ, [Σ ⇒ Π ]} �L

S{Γ ⇒ Δ, [ ⇒ A]}
S{Γ ⇒ Δ,�A} �R

S{Γ ⇒ Δ, [A ⇒ ]}
S{Γ,�A ⇒ Δ} d

S{Γ,A ⇒ Δ}
S{Γ,�A ⇒ Δ} t

S{Γ ⇒ Δ, [Σ,�A ⇒ Π ]}
S{Γ,�A ⇒ Δ, [Σ ⇒ Π ]} 4

Fig. 2. Nested sequent rules

2.1 Nested Sequents / Tree-Hypersequents

One of the most popular recent extensions of the original sequent framework is
that of nested sequents or tree-hypersequents. Partly, the current interest in this
formalism was sparked by [3,20] which contain analytic calculi for a number of
modal logics. The main idea of the framework is to replace a sequent with a tree
of sequents, thus intuitively capturing the tree structure of Kripke models for
modal logic. The basic concepts (in slightly adapted notation) are the following.

Definition 1. The set NS of nested sequents is given by:

1. if Γ ⇒ Δ is a sequent then Γ ⇒ Δ ∈ NS
2. if Γ ⇒ Δ is a sequent and Σi ⇒ Πi ∈ NS for 1 ≤ i ≤ n, then Γ ⇒

Δ, [Σ1 ⇒ Π1] , . . . , [Σn ⇒ Πn] ∈ NS.

The interpretation of a nested sequent is given by

1. ι(Γ ⇒ Δ) =
∧
Γ →

∨
Δ if Γ ⇒ Δ is a sequent

2. ι(Γ ⇒ Δ, [Σ1 ⇒ Π1] , . . . , [Σn ⇒ Πn]) =
∧
Γ →

∨
Δ ∨

∨n
i=1 �(ι(Σi ⇒ Πi))

if Γ ⇒ Δ is a sequent and Σi ⇒ Πi ∈ NS for i ≤ n.

As usual, empty conjuntions and disjunctions are interpreted as � resp. ⊥.
Thus the structural connective [·] of nested sequents is interpreted by the logical
connective �. Fig. 2 shows the basic logical rules �L and �R for modal logic
K and some rules for extensions [21]. Following [3] we write S{.} to signify that
the rules can be applied in a context, i.e., at an arbitrary node of the nested
sequent. The propositional part of the system consists of the standard sequent
rules for each node in the nested sequent. This framework captures all logics of
the modal cube in a cut-free and modular way [3,20,21,13].

2.2 2-Sequents

While nested sequents have a tree structure, the basic data structure (modulo
notation) in the framework of 2-sequents [15] is that of an infinite list of sequents
which are eventually empty. Intuitively, instead of the whole tree structure of a
Kripke model, 2-sequents capture the path from the root to a given state.
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(Γi)i<n

Γn

Γn+1, A
G

⇒ H

(Γi)i<n

Γn,�A
Γn+1

G

⇒ H

� ⇒

G ⇒
(Δi)i<n

Δn

A
ε

G ⇒
(Δi)i<n

Δn,�A
ε

⇒ �

A maximum of the premiss

G ⇒
(Δi)i<n

Δn, A
H

G ⇒
(Δi)i<n

Δn, B
H

G ⇒
(Δi)i<n

Δn, A ∧ B
H

⇒ ∧

Fig. 3. The modal 2-sequent rules and the conjunction rule of C-2SC

Definition 2 ([15]). A 2-sequence is an infinite list (Γi)i∈N of multisets of
formulae with Γk = ∅ for some n ∈ N and all k ≥ n. We write ε for the list
(∅)i∈N and Σ : (Γi)i∈N for the list (Δi)i∈N with Δ1 = Σ and Δi+1 = Γi for i ∈ N.
A 2-sequent is a pair G ⇒ H of 2-sequences G and H. Its interpretation ι is:

1. ι(ε ⇒ ε) = � → ⊥; and
2. ι(Γ : ε ⇒ Δ : ε) =

∧
Γ →

∨
Δ if Γ ∪Δ �= ∅; and

3. ι(Γ : G ⇒ Δ : H) =
∧
Γ →

∨
Δ ∨�ι(G ⇒ H) if G �= ε and H �= ε.

Masini’s original formulation of 2-sequents used lists instead of multisets of
formulae, but in presence of the exchange rule the two formulations are clearly
equivalent. Obviously a 2-sequent (Γi)i∈N ⇒ (Δi)i∈N can also be seen as the
infinite list (Γi ⇒ Δi)i∈N of sequents, where the head is interpreted in the
current world, the tail is interpreted under a box and the empty part of the list
is dropped.

The depth of a 2-sequence (Γi)i∈N is defined as �(Γi)i∈N := min{i : i ≥ 0, ∀k >
i : Γk = ∅} and the depth of a 2-sequent G ⇒ H is �(G ⇒ H) := max{�G, �H}.
The level of an occurrence of a formula A in (Γi)i∈N ⇒ (Δi)i∈N is the i such
that Γi ∪Δi contains this occurrence. An occurrence of a formula A is maximal
in G ⇒ H if its level is �(G ⇒ H) and it is the maximum in G ⇒ H if it is the
unique maximal formula in G ⇒ H. The 2-sequent calculus C-2SC for the logic
KD from [15] uses the modal rules in Fig. 3, with 2-sequences written in a top-
down way. The propositional rules again are the local versions of the standard
sequent rules for classical logic, i.e., they act only on one component Γi ⇒ Δi

of the list. In contrast to Masini’s original treatment, here we adopt the context-
sharing versions of the rules, exemplified by the conjunction right rule in Fig. 3.
As usual, in presence of the structural rules the two versions are equivalent.

3 Linear Nested Sequents for KD

The basic data structure of 2-sequents might be that of eventually empty infinite
lists, but as the empty part is not interpreted, they can be formulated equivalently
in terms of finite lists. But a finite list of sequents is essentially a nested sequent
where the tree structure is restricted to the linear structure of a single branch.
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Definition 3. The set LNS of linear nested sequents is given recursively by:

1. if Γ ⇒ Δ is a sequent, then Γ ⇒ Δ ∈ LNS;
2. if Γ ⇒ Δ is a sequent and G ∈ LNS, then Γ ⇒ Δ//G ∈ LNS.

The modal formula interpretation ι� of a linear nested sequent is given by:

1. if Γ ⇒ Δ is a sequent, then ι�(Γ ⇒ Δ) =
∧
Γ →

∨
Δ

2. ι�(Γ ⇒ Δ//G) =
∧
Γ →

∨
Δ ∨� ι�(G).

The sequents in a linear sequent are its components. As in the full nested setting,
we use the notation S{Γ ⇒ Δ} for G// Γ ⇒ Δ//H where G,H ∈ LNS or empty
to denote a context. E.g., G// Γ ⇒ Δ would be the context above with empty H.

The correspondences between 2-sequents and linear nested sequents are given
by the following translations. To take care of the fact that the empty part of a
2-sequent is not interpreted while an empty component in a linear nested sequent
is always interpreted we include a marker for the end of the linear nested sequent.

Definition 4. The translations τ and π from LNS to 2-sequents and vice versa
are given by:

τ .1. if Γ ⇒ Δ is a sequent, then τ(Γ ⇒ Δ) = Γ : ε ⇒ (Δ,⊥) : ε
τ .2. if Γ ⇒ Δ is a sequent and G ∈ LNS with τ(G) = G ⇒ H, then τ(Γ ⇒

Δ//G) = Γ : G ⇒ Δ : H.
π.1. π(Γ : ε ⇒ Δ : ε) = Γ ⇒ Δ
π.2. π(Γ : G ⇒ Δ : H) = Γ ⇒ Δ// π(G ⇒ H) for G �= ε and H �= ε.

By induction on the structure of linear nested sequents resp. 2-sequents it is
straightforward to see that the results of the translations indeed are 2-sequents
resp. linear nested sequents, and that the interpretations of the original struc-
tures and their translations are the same (modulo equivalence of � → ⊥ and ⊥).
The rule set LNSKD obtained by rewriting the 2-sequent rules for KD in linear
nested sequents notation is given in Fig. 4 (not all propositional rules shown).
The rule d captures the case of rule � ⇒ where the formula A is the maximum
of the premiss. But these are exactly the linear versions of the standard nested
sequent rules for KD from Fig. 2. In order to see that the marker introduced
in the translation does not influence derivability, we first obtain the following
lemma using Weakening and easy inductions on the depth of the derivations.

Lemma 5. 1. �LNSKD
S{Γ ⇒ Δ} iff �LNSKD S{Γ ⇒ Δ,⊥}

2. �C-2SC G ⇒ (Δi)i≤n : Δ : H iff �C-2SC G ⇒ (Δi)i≤n : (Δ,⊥) : H ��

Proposition 6. If G ∈ LNS and G ⇒ H is a 2-sequent, then we have: �LNSKD
G

iff �C-2SC τ(G) and �C-2SC G ⇒ H iff �LNSKD π(G ⇒ H).

Proof. The “⇐” directions follow from the “⇒” directions using Lem. 5. The
latter are both shown by induction on the depth of the derivations. For the first
statement the only non-trivial cases are if the last rule in the derivation of G was



140 B. Lellmann

S{Γ ⇒ Δ}
S{Γ,Σ ⇒ Π,Δ} W

S{Γ,A,A ⇒ Δ}
S{Γ,A ⇒ Δ} ICL

S{Γ ⇒ A,A,Δ}
S{Γ ⇒ A,Δ} ICR

S{Γ,A ⇒ A,Δ} init
S{Γ,A,B ⇒ Δ}
S{Γ,A ∧B ⇒ Δ} ∧L

S{Γ ⇒ A,Δ} S{Γ ⇒ B,Δ}
S{Γ ⇒ A ∧ B,Δ} ∧R

G// Γ ⇒ Δ// ⇒ A

G// Γ ⇒ Δ,�A
�R

S{Γ ⇒ Δ//Σ,A ⇒ Π}
S{Γ,�A ⇒ Δ//Σ ⇒ Π} �L

G// Γ ⇒ Δ//A ⇒
G// Γ,�A ⇒ Δ

d

Fig. 4. The linear nested sequent calculus LNSKD for KD

one of �R or d. In these cases after using the induction hypothesis we use Lem. 5
to delete the marker ⊥, apply the corresponding 2-sequent rule and add a new
marker using Lem. 5 . For the second statement the only interesting case is if the
last applied rule was � ⇒. Depending on whether the rule was applied to the
maximum of the premiss or not we apply the corresponding rule d or �L. ��

Thus by the results in [15] we immediately obtain cut-free completeness of
the calculus LNSKD (and hence also its full nested version) for modal logic KD.
This connection suggests to construct 2-sequent calculi for other modal logics
as well by restricting the established nested sequent rules to the linear setting
and formulating the calculi using 2-sequents. E.g., since the rule d is not present
in the nested calculus for modal logic K, in the 2-sequent setting we would
impose the restriction on the rule � ⇒ that the formula A is not the maximum
in the premiss. However, cut-free completeness is not immediate, since the cut
elimination proofs for the nested calculi use the tree structure, and hence do not
transfer to the linear setting easily. While instead we could adapt Masini’s cut
elimination proof for C-2SC, below we use a much more straightforward method.
As the fact that the empty part of a 2-sequent is not interpreted is a slight
technical disadvantage for logics not containing KD, from now on we work in the
linear nested setting.

4 Connections to Sequent Calculi

While Masini’s calculus for KD has some philosophical advantages, there is also
a well known sequent calculus for this logic. The connection between the two
calculi is given by the observation that linear nested sequents, being lists of
sequents, have the same data structure as histories in a backwards proof search
procedure for a sequent calculus, with the nesting representing the transitions
from conclusion to premisses for non-invertible rules. We use this simple idea to
give quick completeness proofs for a number of linear nested calculi for modal
logics as well as for the linear version of a nested calculus for intuitionistic logic.

4.1 Other Modal Logics

To make the connection to backwards proof search for sequent calculi clearer, we
consider modifications of the linear versions of the rules from Fig. 2 according
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G// Γ ⇒ �A,Δ// ⇒ A

G// Γ ⇒ �A,Δ
�k

R

S{Γ,�A ⇒ Δ//Σ,A ⇒ Π}
S{Γ,�A ⇒ Δ//Σ ⇒ Π} �k

L

G// Γ,�A ⇒ Δ//A ⇒
G// Γ,�A ⇒ Δ

dk
S{Γ,�A,A ⇒ Δ}
S{Γ,�A ⇒ Δ} tk

S{Γ,�A ⇒ Δ//Σ,�A ⇒ Π}
S{Γ,�A ⇒ Δ//Σ ⇒ Π} 4k

S{Γ ⇒ �A,Δ//Σ ⇒ �A,Π}
S{Γ ⇒ �A,Δ//Σ ⇒ Π} 5k

Fig. 5. Modal linear nested sequent rules in their Kleene’d versions

to Kleene’s method for the G3-calculi [9], i.e., we copy the principal formula into
the premiss. The resulting rules are shown in Fig. 5, with 5k motivated directly
by sequent rules and not normally considered in nested sequents. The calculus
LNSK contains the accordingly Kleene’d propositional rules, the structural rules
W, ICL, ICR (Fig. 4) and the rules �k

R,�k
L. For a set A ⊆ {D,T, 4, 5} of modal

axioms the calculus LNSK+A is obtained from LNSK by adding the corresponding
rules, e.g., the calculus LNSK+{T,4} is LNSK with the additional rules tk and 4k.
We only consider cases where 5 never occurs without 4, and thus also write 45
instead of 4, 5. Soundness of the calculi without 5k follows immediately from
the corresponding results for the full nested calculi. For calculi with 5k we use
that axiom 5 corresponds to the frame property ∀xyz(xRy ∧ xRz → yRz) of
Euclideanness [2] to establish the lemma below, and induction on the derivation.

Lemma 7. The rule 5k preserves validity in Euclidean frames w.r.t. ι�.

Proof. If the negation
∧
Γ1∧¬

∨
Δ1∧♦(. . . (

∧
Γn∧♦¬A∧¬

∨
Δn∧♦(

∧
Γn+1∧

¬
∨
Δn+1 ∨ ¬ι�(H))) . . . ) of the interpretation of the conclusion is satisfied in

a Euclidean frame, there are worlds w1, . . . , wn+1 with wiRwi+1 such that wi �∧
Γi ∧ ¬

∨
Δi and wn � ♦¬A. Thus for a w with wnRw we have w � ¬A. By

Euclideanness we also have wn+1Rw and hence wn+1 �
∧
Γn+1∧♦¬A∧¬

∨
Δn+1

and the negation of the interpretation of the premiss is satisfied in w1. ��

The completeness proof then simulates the rules of the sequent calculi from
Fig. 6 in the rightmost component. E.g., the sequent rule for K is translated into
the derivation steps below right (with double lines for multiple rule applications).

Γ ⇒ A
�Γ ⇒ �A

k �
G//�Γ ⇒ �A//Γ ⇒ A

G//�Γ ⇒ �A// ⇒ A
�k

L

G//�Γ ⇒ �A
�k

R

(1)

Of course this does not take into account the formula interpretation of nested
sequents. But as we are only interested in the theorems of the logic this is enough.
Thus, intuitively, while linear nested sequents capture branches of the search tree
(i.e., histories), full nested sequents also capture its existential choices.

Theorem 8. For A ⊆ {D,T, 4} or A ∈ {{4, 5}, {4, 5, d}} the calculus LNSK+A
is complete for K+A, i.e., for all formulae B: if |=K+A B then �LNSK+A ⇒ B.
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Γ ⇒ A

�Γ ⇒ �A
k

Γ,A ⇒
�Γ,�A ⇒ d

Γ,�A,A ⇒ Δ

Γ,�A ⇒ Δ
t

�Γ,Δ ⇒ A

�Γ,�Δ ⇒ �A
4

Γ,�Σ ⇒ A,�Π

�Γ,�Σ ⇒ �A,�Π
45 where ∅ �= Π

Γ,�Σ ⇒ Δ,�Π

�Γ,�Σ ⇒ �Δ,�Π
45d where |Δ| ≤ 1

Fig. 6. Standard modal sequent rules

Proof. We translate a sequent derivationD bottom-up into a linear nested deriva-
tion as follows. If we have constructed a derivation tree with G// Γ ⇒ Δ at a
leaf, and the last rule in the subderivation of D ending in the corresponding
sequent Γ ⇒ Δ was one of k, d or 4, we add some steps above the leaf of the
nested sequent derivation, giving a new leaf corresponding to the premiss of the
sequent rule. For k the steps are as in (1) above, for 45 they are

Γ,�Σ ⇒ A,�Π

�Γ,�Σ ⇒ �A,�Π
45 �

G//�Γ,�Σ ⇒ �A,�Π//Γ,�Σ ⇒ A,�Π

G//�Γ,�Σ ⇒ �A,�Π//�Σ ⇒ A,�Π
�k

L

G//�Γ,�Σ ⇒ �A,�Π// ⇒ A
4k, 5k

G//�Γ,�Σ ⇒ �A,�Π
�k

R

The transformations for the sequent rules d, 4, and 45d are similar, those for the
propositional rules and t straightforward. Completeness then follows from the
result for the standard sequent calculi, see e.g. [27] for references. ��

The proof above even shows a slightly stronger statement, namely that it is
enough to apply the logical rules only to the rightmost sequent.

Definition 9. The end-component of G// Γ ⇒ Δ ∈ LNS is the component Γ ⇒
Δ. For LNSL one of the calculi above, its end-variant LNS∗L adds the restriction
that the end-component of the conclusion must be active to every rule.

Corollary 10. Let A ⊆ {D,T, 4} or A ∈ {{45}, {d, 45}}. Then the end-variant
LNS∗K+A of the calculus LNSK+A is sound and complete for the logic K+A. ��

This might also be shown by permuting rules, as done in [15, Prop. 2] for C-2SC,
where derivations in the end-variant are called leveled. However, the proof above
seems to make the connection to sequent calculi clearer. Of course this result also
carries over to the full nested sequent calculi. This method also yields complete-
ness for variants of the calculi formulated using the rules in Fig. 7. For a set A ⊆
{d, t, 4, 45} we write Ȧ for the set with the rules ṙ instead of r. The rules 4̇ and
4̇5 differ from the standard nested sequent treatment [3,13], where the structural
variant of 4 is taken to be rule 4̄ of Fig. 7 (which is derivable using 4̇).

Proposition 11. Let A ⊆ {d, t, 4} or A ∈ {{45}, {d, 45}}. Then the calculus
LNSK+Ȧ and its end-variant LNS∗

K+Ȧ are (cut-free) complete for K +A.



Linear Nested Sequents, 2-Sequents and Hypersequents 143

G// ⇒
G ḋ

S{Γ ⇒ Δ//Σ ⇒ Π}
S{Γ,Σ ⇒ Δ,Π} ṫ

G//H
G// ⇒ //H 4̄

S{�Γ,Σ ⇒ Π}
S{�Γ ⇒ //Σ ⇒ Π} 4̇

S{�Γ,Σ ⇒ �Δ,Π}
S{�Γ ⇒ �Δ//Σ ⇒ Π} 4̇5

Fig. 7. The structural variants of the modal rules

Proof. As above, we simulate a derivation in the corresponding sequent calculus.
The rules t and 45 are simulated by

G//�A ⇒ // Γ,�A,A ⇒ Δ

G//�A ⇒ // Γ,�A ⇒ Δ
�k

L

G// Γ,�A,�A ⇒ Δ
ṫ

G// Γ,�A ⇒ Δ
ICL

G//�Γ,Σ ⇒ �Δ,A

G//�Γ,�Σ ⇒ �Δ,�A//Σ ⇒ A
4̇5

G//�Γ,�Σ ⇒ �Δ,�A
�k

L,�k
R

The other rules are similar, e.g., in the case of 45d we replace �R above by ḋ. ��

Hence we obtain modular calculi for logics with axioms from the sets {d, t, 4}
resp. {d, 4, (4∧ 5)}. As the logical rules absorb the structural rules it is not sur-
prising that the latter are admissible. They are made admissible in the structural
variants if the rules ṫ, 4̇ and 4̇5 are replaced with the following rules (call the
resulting rule sets Ȧk).

S{Γ ⇒ Δ//Γ ⇒ Δ}
S{Γ ⇒ Δ}

S{�Γ,Σ ⇒ Π}
S{�Γ,Ω ⇒ Θ//Σ ⇒ Π}

S{�Γ,Σ ⇒ �Δ,Π}
S{�Γ,Ω ⇒ �Δ,Θ//Σ ⇒ Π}

Lemma 12. For A ⊆ {d, t, 4, 45} The rules W of weakening and ICL, ICR of
contraction are admissible in LNSK+A and LNSK+Ȧk without these rules.

Proof. Standard by induction on the depth of the derivation. ��

4.2 Intuitionistic Logic

The same idea can be used to show completeness for the linear versions of the
nested calculi for propositional and (full) first-order intuitionistic logic from [7].
The language is defined as usual using the propositional connectives ⊥,∧,∨,→
and the quantifiers ∀ and ∃. Following [7] to avoid clashes of variables we make
use of a denumerable set a, b, . . . of special variables called parameters which only
occur in derivations, but not in their conclusions. (Intuitionistic) linear nested
sequents then are linear nested sequents built from formulae of this language. In
the absence of modalities we reinterpret the nesting in terms of implication.

Definition 13. The intuitionistic formula translation ιInt for LNS is given by

1. if Γ ⇒ Δ is a sequent, then ιInt(Γ ⇒ Δ) =
∧
Γ →

∨
Δ

2. ιInt(Γ ⇒ Δ//G) =
∧
Γ → (

∨
Δ ∨ (ιInt(G))).
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S{Γ,A → B ⇒ A,Δ} S{Γ,A → B,B ⇒ Δ}
S{Γ,A → B ⇒ Δ} →L

G// Γ ⇒ A → B,Δ//A ⇒ B

G// Γ ⇒ A → B,Δ
→R

S{Γ,A ⇒ A,Δ} init
S{Γ,A ⇒ Δ//Σ,A ⇒ Π}
S{Γ,A ⇒ Δ//Σ ⇒ Π} Lift

G// Γ, ∀xA(x),A(a) ⇒ Δ//H
G// Γ, ∀xA(x) ⇒ Δ//H ∀L

a does not occur in H

G// Γ ⇒ ∀xA(x),Δ// ⇒ A(a)

G// Γ ⇒ ∀xA(x),Δ
∀R

a not in conclusion

S{Γ,∃xA(x),A(a) ⇒ Δ}
S{Γ,∃xA(x) ⇒ Δ} ∃L

a not in conclusion

G// Γ ⇒ A(a),∃xA(x),Δ//H
G// Γ ⇒ ∃xA(x),Δ//H ∃R

a does not occur in H

Fig. 8. Some representative rules of LNSInt

The calculus LNSInt contains the linear (and multiset) versions of the rules of
the calculus for first-order intuitionistic logic from [7] and the structural rules
(Fig. 8). In the linear setting the variable condition on ∀L and ∃R is simplified
to the parameter a not occurring to the right of the active component. The
completeness proof is based on the multi-succedent sequent calculus m-G3i [26].

Theorem 14. The calculus LNSInt is complete for first-order intuitionistic logic.

Proof. We convert a derivation D in m-G3i bottom-up into a derivation in LNSInt.
To ensure the variable conditions in ∃L, ∀R are satisfied we first rename parame-
ters in D such that no parameter occurs between the end-sequent and an applica-
tion of ∃L or ∀R where the same parameter is eliminated. The →R rule converts
thus:

Γ,A ⇒ B

Γ ⇒ A → B,Δ
�

G// Γ ⇒ A → B,Δ// Γ,A ⇒ B

G// Γ ⇒ A → B,Δ//A ⇒ B
Lift

G// Γ ⇒ A → B,Δ
→R

The other propositional rules are straightforward. For the quantifier rules we
also need to verify that the variable condition holds. For ∀R, the conversion is

Γ ⇒ A(a)

Γ ⇒ ∀xA(x), Δ ∀R �
G// Γ ⇒ ∀xA(x), Δ// Γ ⇒ A(a)

G// Γ ⇒ ∀xA(x), Δ// ⇒ A(a)
Lift

G// Γ ⇒ ∀xA(x), Δ ∀R

Since after the initial renaming the parameter a does not occur below the appli-
cation of ∀R on the left, it does not occur in G, and the variable condition for
the linear nested ∀R rule is satisfied. The other quantifier rules are translated
directly, where for ∀L and ∃R the variable condition is satisfied trivially. ��

Again the proof yields completeness of the end-variant LNS∗Int of the calculus.

Corollary 15. The calculus LNS∗Int is complete for intuitionistic logic. ��
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While soundness follows from soundness of the full nested calculus of [7], there
no formula interpretation is considered. However, using Kripke-semantics (see op.
cit.) it is not hard to check that all the rules preserve soundness under ιInt.

Theorem 16. The rules of LNSInt preserve validity in intuitionistic Kripke-
frames w.r.t. the formula interpretation ιInt.

Proof. For the rules ∨L,∧R and →R this is trivial. For the remaining rules we
construct a world falsifying the interpretation of a premiss from a world falsifying
the interpretation of the conclusion. E.g., for Lift, suppose that the interpretation∧
Γ1 →

∨
Δ1 ∨ (. . . (

∧
Γn ∧A →

∨
Δn ∨ (

∧
Γn+1 ∧A →

∨
Δn+1 ∨ ιInt(H))) . . . )

of its conclusion does not hold in world w in an intuitionistic Kripke-frame. Then
there are worlds w ≤ w1 ≤ · · · ≤ wn ≤ wn+1 with wi �

∧
Γi and wi ��

∨
Δi

such that wn � A and wn+1 �� ιInt(H). By monotonicity we have wn+1 � A, and
thus the formula interpretation of the premiss is falsified in w.

For the quantifier rules ∀L and ∃R we use that the domains are expanding. E.g.,
if the interpretation

∧
Γ1 →

∨
Δ1∨ (. . . (

∧
Γn, ∀xA(x) →

∨
Δn∨ ιInt(H)) . . . ) of

the conclusion of ∀L does not hold at world w in an intuitionistic Kripke-frame,
there are worlds w ≤ w1 ≤ · · · ≤ wn ≤ wn+1 with wi �

∧
Γi and wi �� Δi

for i ≤ n as well as wn � ∀xA(x) and wn+1 �� ιInt(H). Since the domains are
expanding, if at a world v with v ≤ w the parameter a is interpreted by an
element a of the domain of v, then a is in the domain of wn as well and a is
interpreted by a in wn. Hence wn � A(a) and the interpretation of the premiss
of ∀L is falsified at w. If a is not interpreted in a predecessor of wn we interpret
it at wn arbitrarily. In this case by the variable condition it does not occur in
ιInt(H), and so this interpretation is legal. Soundness of ∃R is shown similarly.

For ∀R we use that a formula ∀xA(x) is falsified in a world w if the fresh
parameter a can be interpreted in a successor of w in a way that A(a) is falsified
there. In particular, ∀xA(x) is falsified in w iff the implication � → A(a) for a
fresh parameter a is falsified in w. The reasoning for ∃L is similar but easier. ��

Restricting these proofs to the propositional level obviously also shows sound-
ness and completeness of the restrictions LNSpInt and LNS∗pInt of LNSInt resp.
LNS∗Int to the propositional rules w.r.t. propositional intuitionistic logic .

5 Hypersequents

Another rather successful proof-theoretic framework extending the sequent frame-
work is that of hypersequent calculi, introduced independently in [17,22,1] to
obtain cut-free calculi for modal logic S5 (and other logics). The fundamental
data structure of hypersequent calculi is the same as for LNS: A hypersequent
is a finite list of sequents, written Γ1 ⇒ Δ1 | · · · | Γn ⇒ Δn. However, the
formula interpretation for hypersequents is usually taken as some form of dis-
junction, in contrast to the nested interpretation of linear nested sequents. E.g.,
for modal logics the above hypersequent is interpreted as

∨
i≤n �(

∧
Γi →

∨
Δi),

in the intuitionistic setting as
∨

i≤n(
∧
Γi →

∨
Δi). This interpretation moti-

vates the external structural rules which allow to reorder the components, add
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S{Γ ⇒ Δ//Σ ⇒ Π}
S{Σ ⇒ Π//Γ ⇒ Δ} EEX

G//H
G// Γ ⇒ Δ//H EW

S{Γ ⇒ Δ//Γ ⇒ Δ}
S{Γ ⇒ Δ} EC

Fig. 9. External structural rules in the linear nested setting

new components or remove duplicates, mirroring the corresponding properties
of disjunction. Disregarding the formula interpretation linear nested sequents
thus could be called substructural or non-commutative hypersequents, and hy-
persequents could be called linear nested sequents with the additional external
structural rules of exchange EEX, weakening EW and contraction EC shown in
Fig. 9.

5.1 Modal Logic S5

We first consider the modal setting. Comparing the external structural rules
with the linear nested rules above it can be seen that the rules EW and EC are
interderivable (using internal structural rules) with the structural variants 4̄ and
ṫ of the transitivity and reflexivity rules. E.g., EW and EC are derivable via

G//H
G// ⇒ //H 4̄

G// Γ ⇒ Δ//H W
and

G// Γ ⇒ Δ//Γ ⇒ Δ//H
G// Γ, Γ ⇒ Δ,Δ//H ṫ

G// Γ ⇒ Δ//H Con

This might explain why most modal hypersequent calculi in the literature con-
cern extensions of S4. Probably the most-investigated modal logic in the hy-
persequent framework is modal logic S5 [17,22,1,24,19,11,10]. Before analysing
some of these calculi in terms of linear nested sequents we note that the external
exchange rule, present in all of them, is sound under the nested interpretation
as well.

Lemma 17. The rule EEX preserves S5-validity under the interpretation ι�.

Proof. Using transitivity and symmetry of the accessibility relation in S5-models
it is straightforward to check that if a world in such a model satisfies the negation∧
Γ1 ∧ ¬

∨
Δ1 ∧ ♦(. . .♦(∧Γn ∧ ¬

∨
Δn ∧ ♦(

∧
Γn+1 ∧ ¬

∨
Δn+1 ∧ ♦ι�(H))) . . . )

of the formula translation of the conclusion of EEX, it also satisfies the negation∧
Γ1 ∧ ¬

∨
Δ1 ∧ ♦(. . .♦(∧Γn+1 ∧ ¬

∨
Δn+1 ∧ ♦(

∧
Γn ∧ ¬

∨
Δn ∧ ♦ι�(H))) . . . )

of the formula interpretation of the premiss. ��

A simple approach to obtaining a linear nested sequent calculus for S5 then
would be to extend the calculus LNSK+45 for modal logic K45 with all the lin-
ear nested rules which are sound for S5 and hope to obtain completeness. This
amounts to extending LNSK+45 with t and its structural variant ṫ (i.e., exter-
nal contraction) as well as external exchange EEX (external weakening EW is
derivable using 4̇5). But the rule 4̇5 is exactly Avron’s modalised splitting rule
MS, so we obtain (the weak version of) his calculus from [1]. Completeness thus
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follows from the completeness results for the hypersequent calculus given there.
Replacing the rule 4̇5 with the rule 4̇ yields essentially Kurokawa’s system for
S5 from [10], apart from the fact that there the standard sequent right rule for
� from S4 is used. Completeness of this calculus can be seen by showing that
the latter rule is derivable, or alternatively by showing that it can derive all the
rules from the system HRKT{5n : n ∈ N} from [12, Cor. 4.7].

Dropping the rules 4̇5 resp. 4̇ and the logical rule t altogether and keeping only
the external structural rules EEX, ṫ and 4̄ yields essentially Restall’s second calcu-
lus from [24]. In Restall’s calculus external weakening with an empty sequent is
not allowed, but clearly in terms of derivability of one-component hypersequents
the two systems are equivalent. The external structural rules ṫ and 4̄ then are
exchanged by Poggiolesi in [19] for the logical rule tk and the (still invertible)
un-Kleene’d rule �R (Fig. 4) instead of �k

R. Finally, rewriting set-based rules
to multisets, the calculus constructed from the frame condition of universality
using Lahav’s general method [11] is the calculus obtained by adding external
exchange and the structural rules absorbing variant of 4̄ to the direct translation
of backwards proof search in a sequent calculus for KT with the rules

G//�Γ ⇒ �A//Γ ⇒ A

G//�Γ ⇒ �A

S{Γ,�Σ ⇒ Δ//Γ,�Σ,Σ ⇒ Δ}
S{Γ,�Σ ⇒ Δ}

and a version of �L which allows to treat multiple formulae at once:

S{Γ,�Σ ⇒ Δ//Ω,Σ ⇒ Θ}
S{Γ,�Σ ⇒ Δ//Ω ⇒ Θ}

It is straightforward to check that these rules are equivalent to Restall’s rules
together with tk. Again, from the completeness proofs given for the hypersequent
calculi we obtain quick completeness proofs for the linear nested sequent calculi.

5.2 Classical Logic

Going the other direction, we can construct a hypersequent calculus from a linear
nested sequent calculus by adding the external exchange rule to the calculus for
intuitionistic logic from Sec. 4.2. Since this makes excluded middle derivable via

A ⇒ ⊥//A ⇒ A,A → ⊥
A ⇒ ⊥// ⇒ A,A → ⊥ Lift

⇒ A,A → ⊥//A ⇒ ⊥ EEX

⇒ A ∨ (A → ⊥)
→R,∨R

it should not come as a surprise that this gives a calculus for classical logic.
Soundness of the rules is checked by routine methods, while for completeness
again we make use of the completeness result for a standard sequent calculus.

Lemma 18. The rules of LNSInt+EEX preserve validity of the interpretation of
the linear nested sequents in classical logic. ��
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Theorem 19. The calculus LNSInt+EEX is (cut-free) complete for classical logic.

Proof. By showing that if a sequent Γ ⇒ Δ is derivable in the calculus G3
of [9], then it is derivable in LNSInt+EEX. For this from a derivation D in G3 we
construct bottom-up a derivation in LNSInt+EEX such that every rule application
inD corresponds to a linear subderivation inD′ and every formula in a conclusion
of a rule application in D corresponds to exactly one formula in the conclusion of
the corresponding subderivation. The interesting cases are if the last applied rule
in D was →R or ∀R. In the former case we perform the following transformation:

Γ,A ⇒ B,A → B,Δ

Γ ⇒ A → B,Δ
→R �

G//H//Σ ⇒ A → B,Π//A ⇒ B

G//H//Σ ⇒ A → B,Π
→R

G//Σ ⇒ A → B,Π//H EEX

where the correspondence between formulae extends in the natural way to the
premisses of rules resp. subderivations. For ∀R the transformation is similar, and
for the other propositional rules the transformations are the obvious ones.

For the initial sequents we use Lift, distinguishing cases according to where
the principal formulae occur in the nested sequent. The most involved case is:

Γ,A ⇒ A,Δ
init �

S{G//Ω,A ⇒ Θ//Σ,A ⇒ A,Π} init

S{G//Ω,A ⇒ Θ//Σ ⇒ A,Π} Lift

S{Σ ⇒ A,Π//G//Ω,A ⇒ Θ} EEX

The remaining cases are similar but easier. ��

The interest of this result lies not so much in the fact that there is (yet another)
calculus for classical logic, but in the fact that it is obtained from a calculus for
intuitionistic logic just by adding a structural rule. In this respect intuitionistic
logic could also be seen as a substructural logic obtained by deleting the external
exchange rule from the calculus for classical logic. The propositional fragment
of the resulting calculus is similar to the hypersequent calculus for classical
logic from [4, Rem. 6]. However, since the calculus given there extends a single-
conclusion hypersequent calculus for intuitionistic logic, the rules are slightly
different, most notably the implication right rule. A similar approach purely on
the sequent level was explored in [25,23], where a calculus for intuitionistic logic
is obtained from one for classical logic by dropping the internal exchange rule.

6 Conclusion

The presented linear nested sequent calculi show that to capture extensions
of K with arbitrary sets of axioms from d, t, 4, (4 ∧ 5) in a proof-theoretically
satisfying way it is sufficient to generalise the sequent framework to lists of
sequents instead of trees, thus providing a slightly simpler formalism than that
of nested sequents. In particular, in these calculi all connectives have separate
left and right rules. Since linear nested sequents are essentially 2-sequents, this
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might support Masini’s idea of the 2-sequent calculus as “a proof theory of
modalities” [15]. Furthermore, we obtained linear nested calculi for intuitionistic
and classical logic differing only in one structural rule and thus satisfying what
has been called Došen’s Principle in [27]. These results raise a whole array of
open questions for future work, such as: finding a general method for syntactic
cut elimination, possibly following [15]; the construction of linear nested calculi
for more challenging modal logics such as extensions of K with axiom B or
intuitionistic modal logics; more generally, the construction of linear nested rules
from axioms to capture e.g. intermediate logics such as Bdk; or finding limitative
results stating that a given logic cannot be captured by structural rules in the
linear nested setting.

Acknowledgements. I would like to thank Agata Ciabattoni, Roman Kuznets
and Revantha Ramanayake for support and countless discussions on this subject.
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R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 470–484. Springer, Heidelberg (2009)

26. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in The-
oretical Computer Science, vol. 43. Cambridge University Press (2000)

27. Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F.
(eds.) Handbook of Philosophical Logic, vol, vol. 8, Springer (2002)



 
 
 
 
 
 
 
 
 
 
 
 

Resolution 
  



Disproving Using the Inverse Method by

Iterative Refinement of Finite Approximations

Taus Brock-Nannestad and Kaustuv Chaudhuri
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Abstract. In first-order logic, forward search using a complete strategy
such as the inverse method can get stuck deriving larger and larger con-
sequence sets when the goal query is unprovable. This is the case even in
trivial theories where backward search strategies such as tableaux meth-
ods will fail finitely. We propose a general mechanism for bounding the
consequence sets by means of finite approximations of infinite types. If the
inverse method also implements forward subsumption and globalization,
then the search space under this approximation is finite. We therefore ob-
tain a type-directed iterative refinement algorithm for disproving queries.

The method has been implemented for intuitionistic first-order logic,
and we discuss its performance on a variety of problems.

1 Introduction

In classical first-order logic, searching for a proof or for a refutation amounts to
the same thing due to the symmetry induced by an involutive negation. Classical
theorem provers are therefore just as good at disproving a false conjecture as
proving a true conjecture: the same search strategy applies to either case. How-
ever, for non-classical logics such as intuitionistic predicate logic, proof-search
and refutation are drastically different. For proving, the search procedure simply
has to explore enough of the search space to find the proof—completeness is
not essential—but for refutations the procedure has to exhaustively search the
entire space of derivations to make sure that no proof exists. Since search spaces
are generally infinite for undecidable logics such as intuitionistic first-order logic,
this kind of exhaustive exploration is challenging. The general technique is to
use a complete search procedure, where the proof of this completeness is external
to the logic in question, and then run the search algorithm to failure.

The inverse method [9] has proven to be one of the best search methods for
both proof search and the above kind of refutation by failure [14], at least on
the problems drawn from the ILTP benchmark suite [15]. The inverse method,
like its classical cousins resolution [2] and superposition [1], has many desir-
able properties that make proof search efficient, particularly the proof-reuse and
variable-locality that is intrinsic to forward search methods. The most powerful
tool in the inverse method is subsumption, which discards any newly derived fact
that is simply an instance of a fact derived earlier. It is subsumption that makes
the inverse method saturating even for infinite search spaces.

c© Springer International Publishing Switzerland 2015
H. De Nivelle (Ed.): TABLEAUX 2015, LNAI 9323, pp. 153–168, 2015.
DOI: 10.1007/978-3-319-24312-2_11
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In this paper we are interested in refuting unprovable conjectures in intuition-
istic first-order logic. Unfortunately, even for simple instances of such conjectures,
the inverse method tends to run forever. Indeed, every run of the inverse method
can have one of three possible outcomes, of which only the first two are desirable:

1. Search finds a proof of the end-sequent.
2. Search saturates with no proof of the end-sequent.
3. Search continues indefinitely, neither finding a proof nor saturating.

As an illustration of this third possibility, consider the following simple axioms,
which characterize the even natural numbers:

E(z). ∀x.E(x) ⊃ E(s(s(x))).

In the focused version of the inverse method [4,14], the above axioms would be
transformed into the following synthetic inference rules.

· −→ E(z)

· −→ E(x)

· −→ E(s(s(x)))

Here, the x in the second rule signifies that this rule may match any instan-
tiation of this variable. In contrast to this, the z in the first rule is a ground
constant term. Now, given the (unprovable) goal of showing that 3 is even, i.e.
· −→ E(s(s(s(z)))), the above rules can be combined to produce sequents of the
following form:

· −→ E(s(s(z))), · −→ E(s(s(s(s(z))))), · −→ E(s(s(s(s(s(s(z))))))), . . .

and so on. At no point do we prove the desired goal, of course, but neither do we
saturate. Indeed, if we were to run this example through the Imogen prover [13],
which currently solves the largest fragment of the first-order ILTP problems,
we would observe the looping behavior until all available memory is exhausted.
Moreover, this example does not stress any of the technological aspects of the
inverse method implementation such as the term-indexing, subsumption check-
ing, or ordering heuristics; an implementation lacking any sophistication would
perform no worse than the most sophisticated of implementations.

In this paper, we show (in Secs. 4 and 5) how to adapt the inverse method
(sketched in Sec. 2) in such a way the core proof search procedure always termi-
nates with one of the following outcomes:

1. Saturation without proof – in which case the conjecture is not provable.
2. Discovery of a sound proof – in which case the conjecture is provable.
3. Discovery of an unsound proof.

The third outcome is interesting. A priori it would seem that an “unsound proof”
is completely useless, as it neither proves the goal nor disproves the existence of a
valid proof. In fact there is useful information to be extracted from such proofs. As
we shall see in Sec. 6, the exact nature of the unsoundness can be used to automat-
ically refine our conjecture in such a way that if we rerun our proof search it is now
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guaranteed to avoid proofs that use that particular instance of unsound reasoning.
Of course, this process of refinement may need to be be repeated indefinitely, and
because of undecidability, it may never terminate with a sound proof or saturate
without proof. Each round of the procedure, however, is guaranteed to terminate,
and for problems like the one above we do eventually find a refutation.

2 Background: Forward Search Using the Inverse Method

We begin with a quick sketch of the inverse method for first-order intuitionistic
logic. A comprehensive description of the inverse method, including its history
and its applicability to a variety of logics, can be found in [9]. In this work
we will use a focused and polarized version of the method based on the design
explained in more detail in [4,13,14]. Focusing and polarities are greatly beneficial
for exploiting the technique outlined in this paper to the fullest, but they are
not essential; moreover, they are now standard and well-documented concepts
of structural proof theory [6,10].

Our language consists of standard first-order terms (written s, t, . . . ) and for-
mulas (written A,B, . . . ) that are built with the following grammar:

s, t, . . . ::= x | f(t1, . . . , tn)
A,B, . . . ::= p(t1, . . . , tn) | A ⊃ B | A ∧B | � | A ∨ B | ⊥ | ∀x.A | ∃x.A

Here, f, g, . . . ranges over function symbols, p, q, . . . over predicate symbols, and
x, y, . . . over variables. We will use P,Q, . . . to denote atomic formulas, i.e., for-
mulas of the form p(t1, . . . , tn). We assume that function and predicate symbols
are simply typed, and that all well-formed formulas are also well-typed. This in
turn uniquely determines a type for all variables. For the time being, we omit
these types from the depictions of formulas and terms; we will revisit them in
Sec. 4. Following standard practice, we omit parentheses for nullary predicate
and function symbols. Specific concrete function and predicate symbols will be
written in a monospaced font. For a function symbol f , we write fn(t) to stand
for t if n = 0 and for f(fn−1(t)) if n > 0. For intuitionistic logic, the above col-
lection of formula constructors has the property that no connective is definable
in terms of the others. On the other hand, negation ¬A is defined to be A ⊃ ⊥,
and equivalence A ≡ B as (A ⊃ B) ∧ (B ⊃ A).

Provability of sequents will be given in terms of a forward version of Gentzen’s
sequent calculus LJ, which we call FJ. An FJ sequent is of the form Γ −→ γ where
Γ , called the context, is a multiset of formulas and γ, called the conclusion, is
either · or a formula. The rules of FJ are depicted in Figure 1.

Definition 1 (Notational Conventions in Figure 1)

– In the ∨L rule: γ1 ∪ γ2 =

⎧
⎪⎨

⎪⎩

γ1 if γ2 = ·
γ2 if γ1 = ·
C if γ1 = γ2 = C.

The rule is inapplicable if γ1 and γ2 are different formulas.
– In the ⊃R rule, we assume that Γ \{A}� Γ or γ = B.
– In the ∀R{x}and ∃L{x} rules, the variable x is not free in the conclusion.
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[
Γ, P −→ γ

uL

Γ, P ′ −→ γ

Γ −→ P
uR

Γ −→ P ′

]

init
P −→ P

Γ,A,A −→ γ
factor

Γ,A −→ γ

Γ1 −→ A Γ2 −→ B
∧R

Γ1, Γ2 −→ A ∧B

Γ,A −→ γ
∧L1

Γ,A ∧B −→ γ

Γ,B −→ γ
∧L2

Γ,A ∧B −→ γ
�R· −→ �

Γ −→ γ
⊃R

Γ\{A} −→ A ⊃ B

Γ1 −→ A Γ2, B −→ γ
⊃L

Γ1, Γ2, A ⊃ B −→ γ

Γ1, A −→ γ1 Γ2, B −→ γ2 ∨L

Γ1, Γ2, A ∨B −→ γ1 ∪ γ2

Γ −→ A
∨R1

Γ −→ A ∨B

Γ −→ B
∨R2

Γ −→ A ∨B
⊥L⊥ −→ ·

Γ −→ A
∀R{x}

Γ −→ ∀x.A
Γ, [t/x]A −→ γ

∀L

Γ,∀x.A −→ γ

Γ −→ [t/x]A
∃R

Γ −→ ∃x.A
Γ,A −→ γ

∃L{x}
Γ,∃x.A −→ γ

Fig. 1. FJ, a forward sequent calculus for intuitionistic first-order logic. Note the con-
ventions in Defn. 1. The uL and uR rules are not part of FJ and will be explained in
Sec. 5.

The distinguishing feature of FJ is that every element of Γ is necessary in the
proof of Γ −→ γ, i.e., this calculus actually encodes a strict or relevant logic.
Full intuitionistic truth is then recovered by means of subsumption.

Definition 2 (Substitutions). A substitution θ is a finite mapping from vari-
ables to terms such that no variable in its domain occurs among the terms in its
range.1 For any variable x, we write x[θ] to stand for x if x /∈ dom(θ), and for
θ(x) otherwise. Given a syntactic construct X (term, formula, sequent, etc.), we
write X [θ] for the result of replacing every free variable x in X by x[θ], avoiding
capture by α-varying X if needed.

Definition 3 (Subsumption). The sequent Γ1 −→ γ1 subsumes Γ2 −→ γ2
iff there is a substitution θ such that Γ1[θ] ⊆ Γ2 and γ1[θ] ⊆ γ2, where ⊆ is
interpreted as set-inclusion, i.e., Γ1 ⊆ Γ2 iff for every A ∈ Γ1 also A ∈ Γ2. This
notion is naturally generalized to sets of sequents.

Definition 4 (Derivability). The sequent Γ0 −→ γ0 is derivable if there is an
FJ derivation of Γ −→ γ (for some Γ and γ) that subsumes Γ0 −→ γ0.

Note that this calculus is cut-free, and hence enjoys a subformula property: ev-
ery sequent in a derivation is built out of (signed) subformulas of the end-sequent.
The inverse method makes use of this property of the forward calculus by follow-
ing the “recipe” outlined in [9]. In rough outline, ground sequents are lifted to
sequents with free term variables, and identity of terms and formulas is replaced
by unification and considering the most general common instance, computed

1 In other words, substitutions are idempotent.
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using most general unifiers (mgus). Here are three particular but characteristic
examples of lifted rules:

Γ,A,A′ −→ γ
θ = mgu(A,A′)

factor
(Γ,A −→ γ)[θ]

Γ1 −→ A′ Γ2 −→ B′

θ = mgu(A′ ∧B′, A ∧B)
∧R

(Γ1, Γ2 −→ A ∧B)[θ]

Γ −→ A′

θ = mgu(A′, A)
∃R

(Γ −→ ∃x.A)[θ]

The subformula property allows all the lifted rules to be further specialized to
the signed subformulas of an end-sequent, which we denote by Γ0 −→ γ0 in the
rest of this paper. Specifically, the principal formulas in each case (the unprimed
formulas in the example rules above) are freely occurring signed subformulas of
the end-sequent. In particular, the initial sequents produced by init correspond
to the atomic formulas that occur both positively and negatively signed in the
end-sequent. We say that these initial sequents and specialized inference rules
are based on the end-sequent.

Search begins from an initial set of support (SOS) consisting of the initial
sequents based on the end-sequent. Then, in each iteration of the inner loop, a
sequent is selected from the SOS and moved into the active set; each specialized
rule based on the end-sequent is then applied in such a way that at least one
of its premises is the selected sequent and the other premises are drawn from
the active set. Every conclusion of these rule applications is then tested for
subsumption against all the sequents derived earlier; any new sequents that
are not subsumed are inserted back into the SOS.2 As long as the selection of
sequents from the SOS is fair—every sequent is eventually selected—the search
method is complete, i.e., it will eventually derive a sequent that subsumes the
end-sequent if it is provable. This core prover loop is essentially unchanged from
the days of the Otter resolution prover, and is therefore often called the Otter
loop. When the SOS becomes empty without the end-sequent being subsumed,
we say that search has saturated, which in turn means that the end-sequent
is refuted—not derivable—and hence the end-sequent does not denote a true
formula of intuitionistic first-order logic.

We make two modifications to the standard Otter loop. First, we apply the
factor rule eagerly on every computed sequent, storing each intermediate result
(if not subsumed) in the SOS, until factor is longer applicable. Thus, we never
need to consider applying factor to any selected sequent. Second, we add the
following rule, which is easily seen to be admissible:

Γ,A′ −→ γ A ∈ Γ0 θ = match(A′, A)
global

(Γ −→ γ)[θ]

Here, we write match(A′, A) to stand for the most general substitution θ for
which A′[θ] = A. The effect of this rule is to treat every element of Γ0 as implicitly

2 This is sometimes called forward subsumption to distinguish it from the opposite
operation: deleting an earlier sequent from the SOS and active sets if it is subsumed
by a newly derived sequent, known as back-subsumption. While this is critical for
performance, back-subsumption is not essential for this paper, so we will use “sub-
sumption” in this paper to mean forward subsumption.
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present in the context of every derived sequent. In fact, we will consider this rule
as implicitly applied to the principal formula of every computed sequent, which
is sometimes called globalization [4,14].

3 Guaranteeing Termination – Informally

Our aim in this paper is to build a variant of the inverse method where the Otter
loop for any end-sequent terminates, either by producing a proof or by saturating.
In broad terms, our method is based on building an over-approximation of the
set of derivable sequents from the initial sequents based on the end-sequent.
Importantly, we retain completeness by this over-approximation, so our method
can be validly used to refute goals. Indeed, we will sacrifice soundness to obtain
this over-approximation.

In our particular case, the over-approximation comes in the form of weaken-
ing the end-sequent that the specialized rules are based on. It is immediate that
if Γ −→ A is derivable, then Γ, Γ ′ −→ A is as well, and hence if we succeed
in refuting the latter sequent, then the former sequent cannot be derivable. In
backward search procedures, reasoning from end-sequent upwards to the initial
sequents, applying weakening is generally bad for performance: it can only cre-
ate more backtrack points for the prover. For forward search, however, there
is no backtracking; indeed, having more assumptions in the basis can produce
initial sequents that subsume (and hence filter out) sequents that may otherwise
end up in the SOS. Because subsumption is used in such a key fashion, it is
perhaps instructive to think of it in terms of the following intuition: a variable
subsumes all instances of said variable. Thus, if x is a variable, then the sequent
Γ, E(s(x)) −→ · subsumes, e.g., Γ, Γ ′, E(s(x)) −→ · and Γ, E(s(s(z))) −→ A.

To see a concrete illustration of this approach, let us revisit the example from
the introduction. We will modify the end-sequent by adding the assumption, P4,
that all numbers greater than four are even, so we base the initial sequents and
specialized rules on:

∀x.E(s4(x))
︸ ︷︷ ︸

P4

, E(z), ∀x.E(x) ⊃ E(s2(x))
︸ ︷︷ ︸

Γ0

−→ E(s3(z)).

For the sake of simplicity, this assumption is slightly weaker than the ones we
use in the rest of the paper. The full method we propose would rather add the
assumption “if there exists an even number greater than four, then all numbers
greater than four are even.”

As explained earlier, these hypotheses are used to specialize the inference rules.
In the presence of specialization, focusing, and globalization, we effectively have
only the following derived (or synthetic) inference rules:

· −→ E(s4(x)) · −→ E(z)

· −→ E(y)

· −→ E(s2(y))

The first two rules actually give rise to two (lifted) sequents. If the first of these
sequents is applied to the third rule, we obtain · −→ E(s6(x)), which is subsumed
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by the first sequent. If we try the second of the above sequents with the third
rule, we obtain, successively, the sequents · −→ E(s2(z)) and · −→ E(s4(z));
the former fits the premise of no other rule and the latter is subsumed by the
first sequent. We have then exhausted all possibilities for combining the above
rules, so search terminates without finding a proof of P4, Γ0 −→ E(s3(z)). By
completeness it now follows that this sequent was not derivable in the first place,
so neither was Γ0 −→ E(s3(z)).

This result may seem somewhat surprising. By adding more hypotheses—
which one would näıvely assume just leads to more sequents being derivable—we
are actually able to drastically decrease the size of the search space. Why did this
happen, and how did we discover this particular weakening of the end-sequent?
We shall explain this in the next two sections by showing how the forward search
space can be guaranteed to be finite.

4 Cofinite Covers

As already mentioned in Sec. 2, we will assume that our function and predicate
symbols have simple types. To every function symbol, we associate a type which
we will write as T1×· · ·×Tn → T , and to every predicate symbol, we will associate
a type written as T1×· · ·×Tn → o, where n is the arity of the function or predicate,
and Ti is the type of the ith argument of the function or predicate. We use o for
the “type” of formulas. For constant function symbols, we elide the arrow. In the
following we will only consider terms and atoms that are well-formed i.e., all terms
occurring in these must obey the typing discipline. We also assume that all types
are inhabited, as uninhabited types are never needed in a proof.

As an example, consider the following signature which defines types for the
natural numbers, lists of numbers, and an append predicate:

z : nat. s : nat → nat. nil : list.

cons : nat× list → list. append : list× list× list → o.

A benefit of this representation is that nonsensical terms such as s(nil) are not
possible to construct. Note that by collapsing all types into a single type, we get
a system that is essentially equivalent to ordinary untyped first-order logic. If we
do have types at our disposal, however, the efficiency of our approach is greatly
improved. For many untyped problems, it is possible to infer nontrivial typing
information from the given formulas, e.g. using the method presented in [8].

The main construction of this section is a form of case analysis on terms, where
we allow splitting a single occurrence of a variable of a given type T into all
possible function symbols with codomain T . To fully describe this operation, we
would therefore need to keep track of which variables occur where, and what the
types of these variables are. In our case, however, all variables may be assumed to
be distinct, and we may therefore use the following more parsimonious notation
in our presentation of the splitting procedure:
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Definition 5 (Free terms and atoms). The free terms and free atoms are
generated by the following grammar.

t̄ ::= T | f〈t̄1, . . . , t̄n〉 P̄ ::= P 〈t̄1, . . . , t̄n〉

The formation of free terms and atoms should respect the types, thus f〈t1, . . . , tn〉
and P 〈t1, . . . , tn〉 are well-formed if and only if for all 0 ≤ i ≤ n, ti is a well-
formed free term of type Ti. For the purposes of this definition, T is considered
a well-formed free term of type T .

Intuitively, a free atom should be interpreted as representing any instantia-
tion of the base types present in the atom. In other words, the free atom
append〈cons〈nat, list〉, list, list〉 should be seen as representing the atomic
formula append(cons(n, l1), l2, l3) for any n of type nat and l1, l2, l3 of type list.

More formally, we define the following relationship between terms, atoms and
their free counterparts.

Definition 6 (Instance of free term/atom). A term t is said to be an in-
stance of a free term t̄ if one of the following holds:

1. t̄ = T , and t is a term with type T , or
2. t̄ = f〈t̄1, . . . , t̄n〉, t = f(t1, . . . , tn) and for 1 ≤ i ≤ n, ti is an instance of t̄i.

The atom P (t1, . . . , tn) is said to be an instance of the free atom P 〈t̄1, . . . , t̄n〉 if
for all 1 ≤ i ≤ n, ti is an instance of the free term t̄i.

The main goal will be showing that for every predicate symbol P we can find a
suitable collection ΓP of free atoms such that all but finitely many instances of
P are instances of some free atom in ΓP .

To express this more formally, we first introduce the concept of linear contexts:

Definition 7 (Linear context in free term/atom). The following grammar
defines the notion of a free term or atom with a specific chosen subterm

t̄[−] ::= � | f〈t̄1, . . . , t̄i[−], . . . , t̄n〉
P̄ [−] ::= P 〈t̄1, . . . , t̄i[−], . . . , t̄n〉

With linear contexts there is a natural notion of substitution, defined by the fol-
lowing equations:

�[t̄ ] = t̄

f〈t̄1, . . . , t̄i[−], . . . , t̄n〉[t̄ ] = f〈t̄1, . . . , t̄i[−][t̄ ], . . . , t̄n〉
P 〈t̄1, . . . , t̄i[−], . . . , t̄n〉[t̄ ] = P 〈t̄1, . . . , t̄i[−][t̄ ], . . . , t̄n〉

Definition 8 (Free instance of function/predicate). For any function sym-
bol f with type T1 × · · · × Tn → T , we define the free instance of f to be the free
term f〈T1, . . . , Tn〉. We let ϕ denote the function that maps a function symbol to
its free instance. Similarly, for any predicate symbol P with type T1×· · ·×Tn → o
we define its free instance to be ϕ(P ) = P 〈T1, . . . , Tn〉.
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Note that any instance of a predicate P is also an instance of ϕ(P ).
Based on the above definition, we can now present a notion of coverage, relat-

ing a free atom to a set of free atoms with the same instances. First, we define
the set of splitting candidates :

Definition 9 (Splitting candidates). The set SC(T ) for a type T is given by

SC(T ) = {f | f : T1 × · · · × Tn → T }

Definition 10 (Coverage). We say that Γ̄ covers P̄ , if Γ̄ � P̄ holds, where
this judgment is defined using the following inference rules

imm
P̄ � P̄

∀f ∈ SC(T ). Γ̄f � P̄ [ϕ(f)]
split⊎

f∈SC(T )

Γ̄f � P̄ [T ]

Here, the second rule has a varying number of premises depending on the type
T . The � signifies that the contexts in the premises are combined using multiset
union to form the context in the conclusion.

Note that by construction, any instance of P̄ [ϕ(f)] is an instance of P̄ [T ].

Definition 11 (Ground cover). If a free atom P̄ contains only function sym-
bols, we say that it is a ground cover. In this case, there is exactly one ground
atom P such that P is an instance of P̄ .

As an example of the above definitions, consider a unary predicate P over nat.
In this case, we can derive

P 〈z〉, P 〈s〈z〉〉, P 〈s〈s〈nat〉〉〉� P 〈nat〉,

and among the three covering free atoms, the first two are ground covers.

Remark 12. If a type T has only finitely many inhabitants, it is never necessary
to split on this type. It is therefore possible to extend the above definition to
include free atoms that contain only function symbols or finite types without
changing the properties of these covers.

We may now define formally the notion of a set of free atoms that cover all but
finitely many ground instances of a predicate.

Definition 13 (Cofinite cover). We say that Γ̄ is a cofinite cover for P̄ if
Γ̄ , Γ̄ ′�P̄ where Γ̄ ′ contains only ground covers, and Γ̄ contains no ground covers.
We write this as Γ̄ � P̄ .

Note that as our goal is to cover all but finitely many ground instances, we may
as well discard all instances that happen to have a ground cover.

As an example, we have P 〈s〈s〈nat〉〉〉 � P 〈nat〉. Any ground instance of P :
nat → o is of the form P (sn(z)) for some n, and all but P (z) and P (s(z)) are
instances of P 〈s〈s〈nat〉〉〉.
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5 Termination

We are now in a position to explain the uL and uR rules from Figure 1. First
of all, we will assume there is a fixed finite set of free atoms Γ̄ . The only side-
condition on the uL/uR rule is now that whenever it is applied, both P and P ′

must be instances of the same free atom P̄ ∈ Γ̄ . For the uR rule, this has the
following effect: during forward proof search, the rule only gets applied if we
manage to prove Γ −→ P where P is an instance of P̄ . If Γ −→ P is never
derived, then the rule never becomes active, and thus does not influence proof
search. If on the other hand the rule becomes active, we can now immediately
derive Γ −→ P ′ for all instances P ′ of P̄ . In a sense, the free atoms act as
sentinels that watch over an infinite set of instances. If the sentinel becomes
active, it immediately subsumes any instances inside the set it is watching over.
As we will show in this section, as long as these sentinels form a cofinite cover,
proof search is guaranteed to terminate. Of course, extending the FJ calculus
with this unfamiliar construct may seem a bit complicated, but as we shall see
in Sec. 7, the complexity is in fact only skin deep, as the behavior of these rules
can be implemented in terms of the usual rules of the calculus.

Definition 14 (Augmented sequents). We say that a sequent Γ −→ A is
augmented with Γ̄ if Γ̄ = Γ̄P1 , . . . , Γ̄Pn , where P1, . . . , Pn are all the predicate
symbols occurring in Γ and A, and Γ̄Pi � ϕ(Pi) for all 1 ≤ i ≤ n.

Note that any sequent Γ −→ A can be turned into an augmented sequent by
letting Γ̄ consist of ϕ(P ) for all predicate symbols P occurring in Γ and A.

Theorem 15 (Termination). The inverse method is terminating for the end-
sequent Γ0 −→ γ0 augmented with Γ̄0; that is to say, the iterated consequences
of all initial sequents based on this end-sequent is a finite set.

Proof (sketch). It is sufficient to show that only finitely many distinct collections
of atoms may be derived before the set of iterated consequences of the initial
sequents is saturated. Every lifted inference rule is of the form:

Γ1 −→ A1 · · · Γn −→ An {Ψ}
Γ −→ A

for which the variables in Ψ can be instantiated with any terms. Note, however,
that because Γ̄0 is a cofinite cover, all but finitely many instances of this rule will
have a conclusion that is immediately subsumed, either by an instance of the
uL or uR rule, or by a previously derived sequent. It therefore follows that each
inference rule is applied only finitely many times. Since there are only finitely
many subformulas of the end-sequent, this guarantees that the consequences of
the initial sequents are finite. �

6 Refinement

As we have now shown, augmenting sequents with cofinite covers for each pred-
icate symbol ensures that the inverse method with subsumption terminates on
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all queries. Moreover, we can trivially turn a sequent into an augmented sequent
by adding free atoms of the form ϕ(P ) for every predicate symbol P . This is tan-
tamount to saying that all predicates are true for all ground instances, which is
almost certain to result in an unsound proof that relies on some ground instance
of a free atom. The main goal of this section, then, is to show that if an un-
sound proof is found, then we can always refine our cofinite cover to additionally
exclude the instance that lead to this unsoundness.

We start with a few necessary lemmas.

Lemma 16 (Covers refine). If Γ̄ � P̄ then any instance P of some P̄ ′ ∈ Γ̄ is
an instance of P̄ .

Lemma 17 (Strictness). If Γ̄ � P̄ and P is an instance of P̄ , then there is
exactly one P̄ ′ ∈ Γ̄ such that P is an instance of P̄ ′.

Lemma 18 (Ground coverage). If P is a ground instance of P̄ , there exists
a Γ̄ such that Γ̄ � P̄ , and P is an instance of a ground cover P̄ ′ ∈ Γ̄ .

By iterating the above lemma, we get the following easy corollary.

Corollary 19. For any set Γ of ground instances of a predicate P , there exists
a Γ̄ such that Γ̄ � P̄ and every P ′ ∈ Γ has a ground cover in Γ̄ . �
Lemma 20 (Refinement). For any set Γ of ground instances of a predicate
P there exists a cofinite cover Γ̄ � P̄ such that no P ′ ∈ Γ is an instance of some
P̄ ′ ∈ Γ̄ .

Proof. From the previous corollary, it follows that we may find a Γ̄ such that
Γ̄ �P̄ , and every P ′ ∈ Γ has a ground cover in Γ̄ . Let Γ̄ ′ be the subset of ground
covers in Γ̄ . It is now immediate that Γ̄ \ Γ̄ ′ � P̄ . �

Remark 21. Note that simply doing case splitting and discarding ground cov-
ers does not necessarily result in a minimal cofinite cover. Consider a binary
predicate P over nat for which we wish to exclude P (s(z), s(z)). By the above
procedure, we could get e.g. the following cofinite cover:

P 〈z, s〈nat〉〉, P 〈s〈nat〉, z〉, P 〈s〈s〈nat〉〉, s〈nat〉〉, P 〈s〈z〉, s〈s〈nat〉〉〉,

which excludes exactly the atoms P (z, z) and P (s(z), s(z)). Note however, that
the following would also work as a cofinite cover, and additionally exclude
P (z, s(z)) and P (s(z), z):

P 〈nat, s〈s〈nat〉〉, P 〈s〈s〈nat〉〉, nat〉.

This is more of an implementation detail, however, as the specifics of which
cofinite cover is chosen makes no difference with regard to saturation.

Theorem 22 (Refinement of sequents). Given a proof of Γ −→ A aug-
mented with Γ̄ it is possible to check whether this proof is also a valid proof of
Γ −→ A. If the proof is not valid, it is possible to refine the set Γ̄ into Γ̄ ′ such
that the derivation is not a valid proof of the sequent Γ −→ A augmented with
Γ̄ ′.
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Proof. From the inference rules, it follows that the only way the elements of Γ̄
interact with derivations is through the uL and uR rules. It therefore follows that
if no instances of these rules appear in the proof, then the proof is in fact a valid
proof even in the absence of Γ̄ . If, on the other hand, some P̄ ∈ Γ̄ is used in the
proof, it must be in the form of a uL or uR rule, e.g.

Γ ′′ −→ P
uR

Γ ′′ −→ P ′

In this case, we may use Lemma 20 to get a new set Γ̄ ′
P , for which P is not an

instance of any P̄ ′′ ∈ Γ̄ ′
P , and replace Γ̄P with Γ̄ ′

P , putting Γ̄ ′ = Γ̄ \ {Γ̄P } ∪ Γ̄ ′
P .

This precludes P from being used as the premise of the above uR rule in a proof
of Γ −→ A augmented with Γ̄ ′. �

With these two theorems in place, we may now perform our proof search as
follows. To find a proof of Γ −→ A, first augment it with a suitable Γ̄ . Use the
inverse method to search for a proof of this sequent. If it terminates without
proof, Γ −→ A is unprovable. If it terminates with a sound proof, Γ −→ A is
provable. If it terminates with an unsound proof, refine Γ̄ into Γ̄ ′, and repeat
with Γ̄ ′ in place of Γ̄ .

7 Implementation

While the description of the inverse method in the previous section used free
terms and free atoms, and required a means of building the full proofs, in an
actual implementation we dispense with them entirely. Indeed, we need very
little beyond the ordinary inverse method for first-order intuitionistic logic, and
these alterations are explained below.

Recall that when defining free atoms we suggested that one should consider
the types T occurring in a free atom P̄ as representing all instances of that type.
This suggests that one may interpret T as a universally quantified variable. More
formally, we have the following definition:

Definition 23. The judgment Ψ � t̄ �→ t represents a mapping from free terms
to terms in a context Ψ of typed eigenvariables. It is defined by the following
inference rules

x : T � T �→ x

Ψ1 � t̄1 �→ t1 · · · Ψn � t̄n �→ tn

Ψ1, . . . , Ψn � γ〈t̄1, . . . , t̄n〉 �→ γ(t1, . . . , tn)

where γ is either a function or predicate symbol. We furthermore require that all
variables occurring in Ψ are distinct.

Note that up to renaming of the variables in Ψ , the derivation of the judgment
Ψ � t̄ �→ t is unique for any given t̄, hence the above defines a function from free
atoms to atoms in a context of eigenvariables.

We may now define the interpretation of free atoms as follows
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Definition 24. Let αL, αR be functions defined by the following equations:

αL(P̄ ) = ((∀Ψ.P ) ⊃ ⊥) ⊃ ((∃Ψ.P ) ⊃ ⊥) where Ψ � P̄ �→ P

αR(P̄ ) = (∃Ψ.P ) ⊃ (∀Ψ.P ) where Ψ � P̄ �→ P

We define the function α on covers as α(Γ̄ ) = αL(Γ̄ ), αR(Γ̄ ). Note that this maps
covers to contexts in FJ.

Theorem 25 (Equivalence). The following methods are equivalent, in the
sense that they are both terminating for the same choice of Γ and A:

– the polarized and focused inverse method for the end-sequent Γ −→ A aug-
mented with Γ̄ and using the uL and uR rules; and

– the polarized and focused inverse method for the end-sequent Γ, α(Γ̄ ) −→ A
without using the uL and uR rules.

Proof. It is sufficient to show that for every free atom P̄ ∈ Γ̄ , the synthetic infer-
ence rule that arises from focusing on α(P̄ ) corresponds exactly to an instance of
the uL or uR rules. As we assume all atoms have negative polarity, the focusing
phase and synthetic inference rules have the following forms for the uR rule:

···
Γ −→ ψ(P )

∃R
...

Γ −→ ∃Ψ.P

init
ψ′(P ) −→ ψ′(P )

∀L
...

∀Ψ.P −→ ψ′(P )
⊃L

Γ, (∃Ψ.P ) ⊃ (∀Ψ.P ) −→ ψ′(P )

···
Γ −→ ψ(P )

{Ψ}
Γ, (∃Ψ.P ) ⊃ (∀Ψ.P ) −→ ψ′(P )

where ψ and ψ′ are substitutions that instantiate all variables in Ψ . This exactly
matches the uR rule. The case for the uL rule is similar. �

Despite this rather pleasing equivalence, there is a major implementation hurdle:
if the α(Γ̄ ) assumptions were in the end-sequent, then they would be globalized,
meaning that they would be deleted in the specialized left rules for these hy-
potheses. This is always sound because the assumptions in the end-sequent may
be assumed to be implicilty present in every forward sequent, so the deletion is
just a variant of the factor rule. However, this would mean that the only way
to access the corresponding instances of uL and uR, which is necessary for the
refinement procedure, would be to keep the full derivations around during search.
This is an insurmountable cost in the forward direction because of the memory
pressure caused by conjunctive non-determinism. Indeed, it even induces a sig-
nificant time overhead for the search loop as every forward inference requires
copying the full premise. (Recall that every lifted forward sequent stands for all
its instances, and it may well be that incompatible instances of the same sequent
are needed in different parts of a derivation.)

Our approach to this is not to globalize the α(Γ̄ ) assumption, but to instead
keep them around in the constructed sequents. It is then immediately obvious
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Table 1. Results of testing Mætning on non-propositional, non-equality SYN problems
from the ILTP.

ILTP Status #Problems Refuted <1s Refuted <60s Timeout

Open 93 20 0 73
Non-theorem 56 48 0 8

when a sequent is unsound: since forward sequents have only relevant hypotheses,
we merely have to see that a α(P̄ ) (for some P ) occurs among them. However,
this induces two new kinks: (1) different selections of unsound assumptions may
counteract subsumption, even though the corresponding derivations with uL and
uR would be fine, and (2) if the instantiation terms were kept in addition to the
unsound assumptions, then they may violate the eigenvariable check for the ∀R
and ∃L rules. To solve this, we use a more relaxed subsumption relation.

Definition 26 (Relaxed Subsumption). The sequent Γ0, α(Γ̄
′
0) −→ γ0 sub-

sumes Γ1, α(Γ̄
′
1) −→ γ1 iff Γ0 −→ γ0 subsumes Γ1 −→ γ1.

It is clear that this relation coincides with ordinary subsumption on sound se-
quents, i.e., sequents that contain no instances of α(P̄ ). It is also equivalent to
the globalized version, which would always have deleted the unsound hypotheses,
so by Theorems 25 and 15 it retains its termination properties.

As mentioned above, keeping entire proofs around is quite costly. On the other
hand, we would like the prover to be able to construct an actual sequent calculus
proof if it manages to derive a sequent that subsumes the goal. To facilitate this,
we instead store a proof skeleton for each derived sequent. This skeleton keeps
track of which rules appear in the corresponding proof tree, and in what order,
but not what the principal formulas were.

To ensure soundness, we reconstruct the full proof based on the proof skeleton
by using it to direct a simple backtracking search. This is done using an OCaml
implementation of the Foundational Proof Certificates [7] approach.

We have implemented a polarized and focused inverse method prover with
support the relaxed subsumption (and hence free atoms) described above. This
prover, called Mætning, is available from the following URL.

https://github.com/chaudhuri/maetning

From the ILTP [15], we tested the prover on every problem marked “Open” or
“Non-theorem” from the SYN category which was not propositional, and did not
contain any equality. A timeout of 1 minute was used. The results can be seen in
Table 1. It should be noted that the vast majority of these are already refutable
without the addition of cofinite covers, hence an inverse method prover such as
Imogen should succeed in refuting them as well. On the other hand, even simple
examples such as the one in the introduction fail to be refutable by Imogen. In
short, anything Imogen refutes is also refuted by Mætning, but the converse is
not true. The results may be found at the aforementioned URL.



Disproving Using the Inverse Method by Iterative Refinement 167

8 Related Work

Our approach is similar in many respects to that of Lynch et al. [11,3]. In [3],
the authors present a combination of a superposition-based system and SMT
solver that uses so-called “speculative inferences” to keep the search space finite,
at a possible loss of soundness. One major difference is that our approach can
be straightforwardly applied to nonclassical logics that can be implemented in
the inverse method. Moreover, if our method terminates with an unsound proof,
this unsoundness can be used to automatically and intelligently refine the proof
search to ensure that the same proof isn’t discovered again.

Another similar approach is McCune’s Mace [12]. Given a set of first-order
formulas, Mace attempts to find a model satisfying these formulas by an ex-
haustive search of all ground instances for a given domain size. If no model is
found, the domain size is increased, yielding an iterative deepening algorithm.
However, the deepening process is “blind” in the sense that a failure at a certain
depth is not itself informative.

The closest related work to the present paper is on dynamic polarity assign-
ment [5] in the inverse method. The main goal of that paper is similar – to use
the inverse method to perform proof search in such a way that forward reasoning
is guaranteed to terminate. There are, however, substantial differences: the input
in [5] is a collection of Horn clauses that is assumed to be both mode-correct and
terminating on all well-moded queries. In constrast, our method does not require
anything apart from the presence of forward subsumption. On the other hand, any
solution found through dynamic polarity assignment is guaranteed to be sound,
whereas with our approach, a separate check of soundness is required; furthermore,
that procedure runs exactly once, whereaswemay need to iterate with refinements.

9 Conclusion and Future Work

In this paper, we have shown how having more hypotheses available can turn
a proof search procedure that doesn’t necessarily terminate into one that is
guaranteed to terminate. Furthermore, we have shown that this guarantee can be
achieved without any changes to the core theorem proving procedure. Although
our primary focus in this paper was intuitionistic first-order logic, we expect
that it should be possible to generalize the results of this paper to many other
logics with first-order quantification. The method we have presented is simple,
relying on the use of forward subsumption to cull the search space down to a
finite subset of derivable sequents.

Currently, the implementation does not provide a certificate witnessing the
nonprovability of a given goal. For refutations, one could in principle simply
output the final, saturated database of sequents. Checking the validity of this
refutation would then consist of running a simplified version of the Otter loop,
checking that in no case is it possible to derive a sequent that is not immediately
subsumed. Such a certificate could be quite big, however, and it might therefore
be useful to investigate whether the database can be used to construct other
witnesses of non-provability, for instance Kripke countermodels.
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Ultimately, the power of this approach stems from the use of subsumption in
the inverse method. It would be interesting to see if a similar approach works
for the more traditional top-down proof search as well.
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Abstract. In this paper we introduce a calculus based on ordered res-
olution for Coalition Logic (CL), improving our previous approach based
on unrefined resolution, and discuss the problems associated with impos-
ing an ordering refinement in the context of CL. The calculus operates
on ‘coalition problems’, a normal form for CL where we use coalition
vectors that can represent choices made by agents explicitly, and the
inference rules of the calculus provide the basis for a decision proced-
ure for the satisfiability problem in CL. We give correctness, termination
and complexity results for our calculus. We also present experimental
results for an implementation of the calculus and show that it outper-
forms a tableau-based decision procedure for Alternating-Time Temporal
Logic (ATL) on two classes of benchmark formulae for CL.

1 Introduction

Coalition Logic CL was introduced by Pauly [18] as a logic for reasoning about
what groups of agents can bring about by collective action. CL is a multi-modal
logic with modal operators of the form [A], where A is a set of agents. The
formula [A]ϕ, where A is a set of agents and ϕ is a formula, can be read as the
coalition of agents A can bring about ϕ or the coalition of agents A is effective
for ϕ or the coalition of agents A has a strategy to achieve ϕ. Applications of
Coalition Logic include the verification of properties of voting procedures and
reasoning about strategic games [18].

Coalition Logic is closely related to Alternating-Time Temporal Logic ATL
[1], a multi-modal logic with coalition quantifiers 〈〈A〉〉, where A is again a set
of agents, and temporal operators � (“next”), � (“always”) and U (“until”),
that extends propositional logic with formulae of the form 〈〈A〉〉�ϕ, 〈〈A〉〉�ϕ and
〈〈A〉〉ϕU ψ. CL is equivalent to the next-time fragment of ATL [9], where [A]ϕ
translates into 〈〈A〉〉�ϕ (read as the coalition A can ensure ϕ at the next moment
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in time). The satisfiability problems for ATL and CL are EXPTIME-complete
[23] and PSPACE-complete [18], respectively.

Methods for tackling the satisfiability problem for these logics include two
tableau-based methods for ATL [23,11], two automata-based methods [7,10] for
ATL, and one tableau-based method for CL [12]. An implementation of the two-
phase tableau calculus by Goranko and Shkatov for ATL [11] exists in the form of
TATL [6]. A first resolution-based method for CL, RESCL, consisting of a normal
form transformation and a resolution calculus, was presented in [16] and shown
to be sound, complete and terminating. In particular, the completeness of RESCL
is shown relative to the tableau calculus for ATL in [11]. If a CL formula ϕ is
unsatisfiable, the corresponding tableau is closed. In the completeness proof for
RESCL it is shown that deletions that produce the closed tableau correspond
to applications of the resolution inference rules of RESCL that in turn produce
a refutation of ϕ. A prototype implementation of RESCL in the programming
language Prolog exists in the form of CLProver [17].

In this paper we revisit the calculus RESCL for CL and its implementation.
RESCL is based on unrefined propositional resolution. It is natural from a the-
oretical perspective, as well as vital for practical applications, to consider the
question whether refinements of propositional resolution carry over to RESCL. In
this paper we focus on an ordering refinement, one of the most commonly used
refinements of resolution for both non-classical logics [13,14,25] and classical lo-
gic [4]. First, we discuss why the naive use of an ordering to restrict inferences
in RESCL leads to incompleteness. Second, we introduce a new normal form for
CL that via so-called coalition vectors represent choices made by agents expli-
citly. This new normal form allows us to devise the calculus RES�CL, a sound and
complete ordered resolution calculus for CL. Finally, we provide an experimental
evaluation and comparison of CLProver++, an implementation of RES�CL in C++,
with CLProver and TATL.

The paper is organised as follows. In the next section, we present the syntax
and semantics of CL. In Section 3, we introduce the normal form transformation
for CL and the resolution calculus RES�CL. Section 4 motivates our approach to
ordered resolution for CL, defines the new normal form for CL, and describes
the calculus RES�CL. Section 5 briefly describes CLProver++ and presents the
evaluation and comparison with other theorem provers for CL. Conclusions and
future work are given in Section 6.

2 Coalition Logic

Let Σ ⊂ N be a non-empty, finite set of agents andΠ = {p, q, . . . , p1, q1, . . .} be a
non-empty, finite or countably infinite set of propositional symbols. A coalition
A is a finite subset of Σ. Formulae in CL are constructed from propositional
symbols using Boolean operators and the coalition modalities [A] and 〈A〉.

Definition 1. The set WFFCL of CL formulae is inductively defined as follows.
– all propositional symbols in Π are CL formulae;
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– if ϕ and ψ are CL formulae, then so are ¬ϕ (negation) and (ϕ → ψ) (impli-
cation);

– if ϕi, 1 ≤ i ≤ n, n ∈ N0, are CL formula, then so are (ϕ1 ∧ . . . ∧ ϕn)
(conjunction), also written

∧n
i=1 ϕi, and (ϕ1 ∨ . . . ∨ ϕn) (disjunction), also

written
∨n

i=1 ϕi; and
– if A ⊆ Σ is a finite set of agents and ϕ is a CL formula, then so are [A]ϕ

(positive coalition formula) and 〈A〉ϕ (negative coalition formula).

Parentheses will be omitted if the reading is not ambiguous. We consider the
conjunction and disjunction operators to be associative and commutative, that
is, we do not distinguish between, for example, (p ∨ (q ∨ r)), ((r ∨ p) ∨ q) and

(q ∨ r ∨ p). The formula
∨0

i=1 ϕi is called the empty disjunction, also denoted

by false, while
∧0

i=1 ϕi is called the empty conjunction, also denoted by true.
When enumerating a specific set of agents, we often omit the curly brackets.
For example, we write [1, 2]ϕ instead of [{1, 2}]ϕ, for a formula ϕ. A coalition
formula is either a positive or a negative coalition formula. In the following, we
use “formula(e)” and “well-formed formula(e)” interchangeably.

Definition 2. A literal is either p or ¬p, for p ∈ Π. For a literal l of the form
¬p, where p is a propositional symbol, ¬l denotes p; for a literal l of the form p,
¬l denotes ¬p. The literals l and ¬l are called complementary literals.

We use Concurrent Game Structures (CGSs) [1,11] for describing the semantics
of ATL. Also, the semantics given here uses rooted models, that is, models with
a distinguished state where a formula has to be satisfied. Concurrent Game
Structures yield the same set of validities as Multiplayer Game Models (MGMs)
[9] that were originally used by Pauly [18] to define the semantics of Coalition
Logic.

Definition 3. A Concurrent Game Frame (CGF) over Σ with root s0 is a tuple
F = (Σ,S, s0, d, δ), where

– Σ is a finite non-empty set of agents;
– S is a non-empty set of states, with a distinguished state s0;
– d : Σ×S −→ N+

0 , where the natural number d(a, s) ≥ 1 represents the number
of moves that the agent a has at the state s. Every move for agent a at the
state s is identified by a number between 0 and d(a, s) − 1. Let D(a, s) =
{0, . . . , d(a, s) − 1} be the set of all moves available to agent a at s. For a
tuple σ we use σ(n) to refer to the n-th element of σ. For a state s, a move
vector σ is a k-tuple (σ(1), . . . , σ(k)), where k = |Σ|, such that 0 ≤ σ(a) ≤
d(a, s)− 1, for all a ∈ Σ. Intuitively, σ(a) represents a move of agent a in s.
Let D(s) = Πa∈ΣD(a, s) be the set of all move vectors at s. We denote by σ
an arbitrary member of D(s).

– δ is a transition function that assigns to every s ∈ S and every σ ∈ D(s) a
state δ(s, σ) ∈ S that results from s if every agent a ∈ Σ plays move σ(a).

Given a CGF F = (Σ,S, s0, d, δ) with s, s′ ∈ S, we say that s′ is a successor
of s (an s-successor) if s′ = δ(s, σ), for some σ ∈ D(s).
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Definition 4. Let |Σ| = k and let A ⊆ Σ be a coalition. An A-move σA at
s ∈ S is a k-tuple such that σA(a) ∈ D(a, s) for every a ∈ A and σA(a′) = ∗
(i.e. an arbitrary move) for every a′ ∈ A. We denote by D(A, s) the set of all
A-moves at state s.

Definition 5. A move vector σ extends an A-move σA, denoted by σA � σ or
σ � σA, if σ(a) = σA(a) for every a ∈ A.

Given a coalition A ⊆ Σ, an A-move σA ∈ D(A, s), and a Σ \ A-move
σΣ\A ∈ D(Σ \ A, s), we denote by σA � σΣ\A the unique σ ∈ D(s) such that
both σA � σ and σΣ\A � σ.

Definition 6. A Concurrent Game Model (CGM) over Σ and Π with root s0
is a tuple M = (F , Π, π), where F = (Σ,S, s0, d, δ) is a CGF; Π is the set of
propositional symbols; and π : S −→ 2Π is a valuation function.

Definition 7. Let M = (Σ,S, s0, d, δ,Π, π) be a CGM with s ∈ S. The satis-
faction relation, denoted by |=, is inductively defined as follows.

– 〈M, s〉 |= p iff p ∈ π(s), for all p ∈ Π;
– 〈M, s〉 |= ¬ϕ iff 〈M, s〉 |= ϕ;
– 〈M, s〉 |= (ϕ → ψ) iff 〈M, s〉 |= ϕ implies 〈M, s〉 |= ψ;
– 〈M, s〉 |=

∧n
i=1 ϕi iff 〈M, s〉 |= ϕi for all i, 1 ≤ i ≤ n;

– 〈M, s〉 |=
∨n

i=1 ϕi iff 〈M, s〉 |= ϕi for some i, 1 ≤ i ≤ n;
– 〈M, s〉 |= [A]ϕ iff there exists an A-move σA ∈ D(A, s) s.t.

for all σ ∈ D(s) σA � σ implies 〈M, δ(s, σ)〉 |= ϕ;

– 〈M, s〉 |= 〈A〉ϕ iff for all A-moves σA ∈ D(A, s)
exists σ ∈ D(s) s.t. σA � σ and 〈M, δ(s, σ)〉 |= ϕ.

Definition 8. Let M be a CGM. A CL formula ϕ is satisfied at the state s in
M if 〈M, s〉 |= ϕ and ϕ is satisfiable in M, denoted by M |= ϕ, if 〈M, s0〉 |= ϕ.
A finite set Φ ⊂ WFFCL is satisfiable in a state s in M, denoted by 〈M, s〉 |= Φ,
if for all ϕi ∈ Φ, 0 ≤ i ≤ n, 〈M, s〉 |= ϕi, and Φ is satisfiable in M, denoted by
M |= Φ, if 〈M, s0〉 |= Φ.

As discussed in [11,18,23] three different notions of satisfiability emerge from the
relation between the set of agents occurring in a formula and the set of agents in
the language. It turns out that all those notions of satisfiability can be reduced
to tight satisfiability [23]. We denote by Σϕ ⊆ Σ, the set of agents occurring in
a well-formed formula ϕ or the set {a} for some arbitrary agent a ∈ Σ if the set
of agents occurring in ϕ is empty. If Φ is a set of well-formed formulae, ΣΦ ⊆ Σ
denotes

⋃
ϕ∈ΦΣϕ.

Definition 9 (Tight satisfiability). A CL formula ϕ is satisfiable if there is
a Concurrent Game Model M = (Σϕ,S, s0, d, δ,Π, π) such that 〈M, s0〉 |= ϕ. A
finite set Φ of CL formulae is satisfiable, if there is a CGM M over ΣΦ and Π
with root s0 such that 〈M, s0〉 |= Φ.
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3 Unrefined Resolution for CL

The resolution method presented in [16] proceeds by translating a CL formula
ϕ that is to be tested for (un)satisfiability into a clausal normal form C, a coali-
tion problem in Divided Separated Normal Form for Coalition Logic (DSNFCL),
to which then resolution-based inference rules are applied. The application of
these rules always terminates, either resulting in a coalition problem C′ that is
evidently contradictory or, otherwise, satisfiable. The formula ϕ is satisfiable iff
C′ is satisfiable.

Definition 10. A coalition problem is a tuple (I,U ,N ), where I, the set of
initial formulae, is a finite set of propositional formulae; U , the set of global for-
mulae, is a finite set of formulae in WFFCL; and N , the set of coalition formulae,
is a finite set of coalition formulae, i.e. those formulae in which a coalition mod-
ality occurs.

The semantics of coalition problems assumes that initial formulae hold at the
initial state; and that global and coalition formulae hold at every state of a
model. Formally, the semantics of coalition problems is defined as follows.

Definition 11. Given a coalition problem C = (I,U ,N ), we denote by ΣC
the set of agents ΣU∪N . If C = (I,U ,N ) is a coalition problem and M =
(ΣC ,S, s0, d, δ,Π, π) is a CGM, then M |= C if, and only if, 〈M, s0〉 |= I and
〈M, s〉 |= U ∪N , for all s ∈ S. We say that C = (I,U ,N ) is satisfiable, if there
is a model M such that M |= C.

In order to apply the resolution method, we further require that formulae within
each of those sets are in clausal form.

Definition 12. A coalition problem in DSNFCL is a coalition problem (I,U ,N )
such that I, the set of initial clauses, and U , the set of global clauses, are
finite sets of propositional clauses

∨n
j=1 lj, and N , the set of coalition clauses,

is a finite set of formulae in WFFCL of the form
∧m

i=1 l
′
i → [A]

∨n
j=1 lj (positive

coalition clauses) or
∧m

i=1 l
′
i → 〈A〉

∨n
j=1 lj (negative coalition clauses), where

m,n ≥ 0 and l′i, lj, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, are literals such that within
every conjunction and every disjunction literals are pairwise different.

Definition 13. A coalition problem in unit DSNFCL (I,U ,N ) is a coalition
problem in DSNFCL such that coalition clauses in N have the following forms
(where p is a propositional symbol):

positive coalition clauses
∧m

i=1 l
′
i → [A]p

negative coalition clauses
∧m

i=1 l
′
i → 〈A〉p

The transformation of a CL formula ϕ into a coalition problem in DSNFCL or
unit DSNFCL uses a set of rewrite rules that transforms ϕ into negation normal
form, removes propositionally redundant subformulae, and uses renaming [19]
in order to bring coalition problems closer to DSNFCL. For a description of the
transformation rules and proofs of the following theorem see [16,25].
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IRES1 C ∨ l ∈ I
D ∨ ¬l ∈ I ∪ U
C ∨D ∈ I

GRES1 C ∨ l ∈ U
D ∨ ¬l ∈ U
C ∨D ∈ U

CRES1
A∩ B = ∅

P → [A](C ∨ l) ∈ N
Q → [B](D ∨ ¬l) ∈ N

P ∧Q → [A ∪ B](C ∨D) ∈ N

CRES2 C ∨ l ∈ U
Q → [A](D ∨ ¬l) ∈ N
Q → [A](C ∨D) ∈ N

CRES3
A ⊆ B

P → [A](C ∨ l) ∈ N
Q → 〈B〉(D ∨ ¬l) ∈ N

P ∧Q → 〈B \ A〉(C ∨D) ∈ N

CRES4 C ∨ l ∈ U
Q → 〈A〉(D ∨ ¬l) ∈ N
Q → 〈A〉(C ∨D) ∈ N

RW1
∧n

i=1 li → [A]false ∈ N∨n
i=1 ¬li ∈ U

RW2
∧n

i=1 li → 〈A〉false ∈ N∨n
i=1 ¬li ∈ U

where (I,U ,N ) is a coalition problem in DSNFCL; P , Q are conjunctions of literals; C,
D are disjunctions of literals; l, li are literals; and A,B ⊆ Σ are coalitions.

Fig. 1. Resolution Calculus RESCL

Theorem 1 (Preservation of satisfiability). Let ϕ be a WFFCL. Then we
can compute in polynomial time a coalition problem C in DSNFCL or a coalition
problem C′ in unit DSNFCL such that C and C′ are satisfiable iff ϕ is satisfiable.

The resolution calculus RESCL, introduced in [16], consists of the inference rules
shown in Figure 1.

Theorem 2 (Soundness, Completeness, Termination). Let C be a coali-
tion problem in unit DSNFCL. Then any derivation from C by RESCL terminates
and there is a refutation for C using the inference rules IRES1, GRES1, CRES1–
4, and RW1–2 iff C is unsatisfiable.

This corrects the completeness result stated in [16] which claims completeness
of RESCL for coalition problems in DSNFCL instead of unit DSNFCL

1.

4 Ordered Resolution for CL

Ordering refinements are a commonly used approach to reducing the search space
of resolution for classical propositional and first-order logic. They are utilised by
all state-of-the-art resolution-based theorem provers for first-order logic, includ-
ing E [21], SPASS [24], and Vampire [15]. Ordering refinements have also been
used in the context of hybrid, modal and temporal logics including H(@) [3],
PLTL [14] and CTL [25].

An atom ordering is a well-founded and total ordering � on the set Π . The
ordering � is extended to literals such that for each p ∈ Π , ¬p � p, and for each

1 Proofs for all results in this paper can be found in
http://cgi.csc.liv.ac.uk/~ullrich/publications/Tableaux2015proofs.pdf .

http://cgi.csc.liv.ac.uk/~ullrich/publications/Tableaux2015proofs.pdf
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q ∈ Π such that q � p then q � ¬p and ¬q � ¬p. A literal l is maximal with
respect to a propositional disjunction C iff for every literal l′ in C, l′ � l.

We could use the ordering � to restrict the applicability of the rules IRES1,
GRES1, CRES1 to CRES4 so that a rule is only applicable if and only if the
literal l in C∨ l is maximal with respect C and the literal ¬l in D∨¬l is maximal
with respect to D. One would normally expect that the calculus we obtain by
way of this restriction is complete for any ordering, see, for example [4,13,14,25].

However, it turns out that such a restriction would render our calculus incom-
plete. Consider the following example, a coalition problem corresponding to the
unsatisfiable CL formula [1](p ∧ ¬p):

1. t0 [I]
2. ¬t1 ∨ p [U ]

3. ¬t1 ∨ ¬p [U ]
4. t0 → [1]t1 [N ]

Assume that the ordering on propositional symbols is t0 � t1 � p. Then the
only inferences possible are the following:

5. t0 → [1]p [N , CRES2, 2, 4, t1] 6. t0 → [1]¬p [N , CRES2, 3, 4, t1]

A resolution inference using CRES1 with Clauses (5) and (6) as premises is
not possible as the sets of agents in the two clauses is not disjoint. Using the
unrefined calculus RESCL or using a different ordering, namely, p � t1 � t0 allows
us to construct a refutation for this example:

5’. ¬t1 [U , GRES1, 2, 3, p]
6’. t0 → [1]false [N , CRES2, 4,5’, t1]

7’. ¬t0 [U , RW1, 6’]
8’. false [U , IRES1, 1,7’, t0]

Note that if we were to use other refinements of resolution that are not con-
sequence complete to restrict the applicability of the rules of RESCL, then this
would also result in an incomplete calculus. For example, instead of an ordering
refinement, we could use a selection function [4] to restrict inferences on clauses
(2) and (3) to the negative literal ¬t1. Then again the only clauses immediately
derivable from the clauses (1) to (4) are the clauses (5) and (6), with no further
inferences being possible.

The incompleteness of a naive ordering refinement of RESCL is related to the
fact that a derived clause does not accurately reflect the constraints on the
agents’ moves inherited from the premises of a resolution inference. In order
to overcome this problem we need a better representation of these constraints,
essentially we need to skolemize implicitly existentially quantified variables in
coalition modalities. To this end we introduce Vector Coalition Logic incorpor-
ating the notions of coalition vector and use these vectors to replace coalition
modalities in coalition clauses.

Definition 14. Let |Σ| = k. A coalition vector #»c is a k-tuple (m1, . . . ,mk)
such that for every a, 1 ≤ a ≤ k, #»c [a] = ma, the component with index a, is
either an integer number not equal to zero or the symbol ∗ and for every a, a′,
1 ≤ a < a′ ≤ k, if #»c [a] < 0 and #»c [a′] < 0 then #»c [a] = #»c [a′].

A coalition vector #»c is negative if #»c [a] < 0 for some a, 1 ≤ a ≤ k. Otherwise,
#»c is positive. We denote by #»c + that #»c is positive and by #»c − that #»c is negative.
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For example, givenΣ = {1, . . . , 6}, #»c 1 = (1, ∗, ∗, 3, 1, ∗), #»c 2 = (∗,−2, ∗, 3, ∗,−2),
and #»c 3 = (1,−2, ∗, 3, ∗,−2) are coalition vectors, #»c 1 is positive, while #»c 2 and
#»c 3 are negative.

Definition 15. The set WFFVCL of Vector Coalition Logic (VCL) formulae is
inductively defined as follows.
– if p is a propositional symbol in Π, then p and ¬p are VCL formulae;
– if ϕ is a propositional formula and ψ is a VCL formula, then (ϕ → ψ) is a

VCL formula;
– if ϕi, 1 ≤ i ≤ n, n ∈ N0, are VCL formula, then so are (ϕ1 ∧ . . . ∧ ϕn), also

written
∧n

i=1 ϕi, and (ϕ1 ∨ . . . ∨ ϕn), also written
∨n

i=1 ϕi; and
– if #»c is a coalition vector and ϕ is a VCL formula, then so is #»c ϕ.

Note that negation is restricted to propositional symbols. In particular, we do
not allow formulae of the form ¬ #»c ϕ. Since such formulae do not occur in our
normal form, this is not a restriction for our purposes.

In order to define the semantics of WFFVCL formulae we can reuse Concur-
rent Game Frames, but need to extend Concurrent Game Models with choice
functions that give meaning to coalition vectors.

Definition 16. A Concurrent Game Model with Choice Functions (CGMCF)
is a tuple M = (F , Π, π, F+, F−), where

– F = (Σ,S, s0, d, δ) is a CGF;
– Π is the set of propositional symbols;
– π : S −→ 2Π is a valuation function;
– F+ = {f i | i ∈ N} is a set of functions such that f i : S × Σ −→ N and

f i(s, a) ∈ D(a, s) for every i ∈ N, a ∈ Σ, and s ∈ S;
– F− = {gin | i, n ∈ N and n ≤ |Σ|} is a set of functions such that gin : S ×Σ ×

Nn −→ N and gin(s, a, (m1, . . . ,mn)) ∈ D(a, s) for every i ∈ N, a ∈ Σ, s ∈ S,
(m1, . . . ,mn) ∈ Nn.

Definition 17. Let M = (F , Π, π, F+, F−) be a CGMCF and let s be a state
in S. Let #»c be a coalition vector where {a | 1 ≤ a ≤ |Σ| ∧ ( #»c [a] > 0 ∨ #»c [a] =
∗)} = {a1, . . . , an} with a1 < · · · < an. A move vector σ instantiates the coalition
vector #»c at state s, denoted by #»c � σ, if:
– σ(a′) = f

#»c [a′](s, a′) for each a′, 1 ≤ a′ ≤ |Σ| and #»c [a′] > 0,

– σ(a) = g
| #»c [a]|
n (s, a, (σ(a1), . . . , σ(an))) for each a, 1 ≤ a ≤ |Σ| and #»c [a] < 0.

The intuition underlying Definition 17 is the following. A coalition vector such
as, for example, (1,−2, ∗, 3, ∗,−2), indicates that agents 1 and 4 are committed
to moves m1 and m4 that depend only on the state s they are currently in and
are determined by the choice functions f1 and f3: m1 = f1(s, 1) and m4 =
f3(s, 4), respectively. Agents 3 and 5 will perform arbitrary moves m3 and m5

of their choice in s. Finally, agents 2 and 6 will choose their moves m2 and
m6 in reaction to the moves of all the other four agents and their moves are

determined by the choice function g
|−2|
4 = g24 : m2 = g24(s, 2, (m1,m3,m4,m5))

and m6 = g24(s, 6, (m1,m3,m4,m5)), respectively.
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Definition 18. Let M = (F , Π, π, F+, F−) be a CGMCF with s ∈ S. The
satisfaction relation |= between M, s and VCL formulae is inductively defined
as follows.

– 〈M, s〉 |= p iff p ∈ π(s), for all p ∈ Π;
– 〈M, s〉 |= ¬ϕ iff 〈M, s〉 |= ϕ;
– 〈M, s〉 |= (ϕ → ψ) iff 〈M, s〉 |= ϕ implies 〈M, s〉 |= ψ;
– 〈M, s〉 |=

∧n
i=1 ϕi iff 〈M, s〉 |= ϕi for all i, 1 ≤ i ≤ n;

– 〈M, s〉 |=
∨n

i=1 ϕi iff 〈M, s〉 |= ϕi for some i, 1 ≤ i ≤ n;
– 〈M, s〉 |= #»c ϕ iff for all σ ∈ D(s), #»c � σ implies 〈M, δ(s, σ)〉 |= ϕ.

The notions of satisfiability of a VCL formula and a set of VCL formulae are
defined as in Definitions 8 and 9 but with respect to CGMCF’s instead of CGM’s.

We can now present a normal form for Coalition Logic using VCL formulae:

Definition 19. A coalition problem in DSNFVCL is a tuple (I,U ,N ) where I is
a set of initial clauses, U is a set of global clauses, and N , the set of coalition
clauses, consists of VCL formulae of the form

∧m
i=1 l

′
i → #»c

∨n
j=1 lj where m,n ≥

0 and l′i, lj, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, are literals such that within every
conjunction and every disjunction literals are pairwise different, and #»c is a
coalition vector.

The notion of satisfiability of a coalition problem in DSNFVCL is defined as in
Definition 11 but with respect to CGMCF’s instead of CGM’s.

Given a coalition problem C in DSNFCL we can obtain a coalition problem in
DSNFVCL by exhaustive application of the following two rewrite rules:

τ[A] (I,U ,N ∪ {t → [A]ψ}) ⇒[ ] (I,U ,N ∪ {t → #»c i
Aψ})

where ψ is a disjunction of literals, i is a natural number not occurring
as an index of some coalition vector in N , and #»c i

A is a coalition vector
such that #»c i

A(a) = i for every a ∈ A and #»c i
A(a

′) = ∗ for every a′ ∈ A.

τ〈A〉 (I,U ,N ∪ {t → 〈A〉ψ}) ⇒〈 〉 (I,U ,N ∪ {t → #»c −i
A ψ})

where ψ is a disjunction of literals, i is a natural number not occurring
as an index of some coalition vector in N , and #»c −i

A is a coalition vector
such that #»c −i

A (a′) = −i for every a′ ∈ A and #»c −i
A (a) = ∗ for every

a ∈ A.

Theorem 3. Let C be a coalition problem in DSNFCL and let C′ be obtained by
exhaustively applying the rewrite rules τ[A] and τ〈A〉 to C. Then C′ is a coalition
problem in DSNFVCL and C′ is satisfiable if and only if C is satisfiable.

Before we can present the inference rules for coalition problems in DSNFVCL, we
need to define when two coalition vectors are ‘unifiable’. To this end we introduce
the notion of a merge of two coalition vectors.

Definition 20. Let #»c 1 and #»c 2 be two coalition vectors of length n. The coalition
vector #»c 2 is an instance of #»c 1 and #»c 1 is more general than #»c 2, written

#»c 1 �
#»c 2, if #»c 2[i] =

#»c 1[i] for every i, 1 ≤ i ≤ n, with #»c 1[i] = ∗. We say that a
coalition vector #»c 3 is a common instance of #»c 1 and #»c 2 if #»c 3 is an instance
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IRES1
C ∨ l ∈ I
D ∨ ¬l ∈ I ∪ U
C ∨D ∈ I

GRES1
C ∨ l ∈ U
D ∨ ¬l ∈ U
C ∨D ∈ U

VRES1
P → #»c 1(C ∨ l) ∈ N
Q → #»c 2(D ∨ ¬l) ∈ N

P ∧Q → #»c 1↓ #»c 2(C ∨D) ∈ N
VRES2

C ∨ l ∈ U
Q → #»c (D ∨ ¬l) ∈ N
Q → #»c (C ∨D) ∈ N

RW

∧n
i=1 li → #»c false ∈ N

∨n
i=1 ¬li ∈ U

where (I,U ,N ) is a coalition problem in DSNFCL; P , Q are conjunctions of literals;
C, D are disjunctions of literals; l, li are literals; #»c , #»c 1,

#»c 2 are coalition vectors; in
VRES1, #»c 1 and #»c 2 are mergeable; and in IRES1, GRES1, VRES1 and VRES2, l is
maximal with respect to C and ¬l is maximal with respect to D.

Fig. 2. Resolution Calculus RES�
CL

of both #»c 1 and #»c 2. A coalition vector #»c 3 is a merge of #»c 1 and #»c 2 if #»c 3 is a
common instance of #»c 1 and #»c 2, and for any common instance #»c 4 of #»c 1 and
#»c 2 we have #»c 3 � #»c 4. If there exists a merge for two coalition vectors #»c 1 and
#»c 2 then we say that #»c 1 and #»c 2 are mergeable. We denote the merge of #»c 1 and
#»c 2 by #»c 1↓ #»c 2 and write #»c 1↓ #»c 2 = undef if #»c 1 and #»c 2 are not mergeable.

For example, the merge of #»c 1 = (1, ∗, ∗, 3, 1, ∗), #»c 2 = (∗,−2, ∗, 3, ∗,−2) is #»c 4 =
(1,−2, ∗, 3, 1,−2), while #»c 1 and #»c 5 = (1, ∗, ∗, 4, 1, ∗) are not mergeable nor are
#»c 2 and #»c 6 = (−5, ∗, ∗, 3, ∗, ∗).
Remark 1. Let #»c 1 and

#»c 2 be two coalition vectors. If there is a common instance
#»c 3 of #»c 1 and #»c 2 then there exists a merge of #»c 1 and #»c 2.

The resolution calculus RES�CL, where � is an atom ordering, consists of the
inference rules shown in Figure 2. Note that VRES1 and VRES2 in RES�CL, just
as CRES1 to CRES4 in RESCL, do not allow to resolve on literals on the left-hand
side of an implication in a coalition clause.

Definition 21. A derivation from a coalition problem C in DSNFVCL by RES�CL
is a sequence C0, C1, C2, . . . of coalition problems in DSNFVCL such that C0 = C,
Ci = (Ii,Ui,Ni), and Ci+1 is either

– (Ii ∪ {E},Ui,Ni), where E is a conclusion of IRES1;
– (Ii,Ui ∪ {E},Ni), where E is a conclusion of GRES1 or RW; or
– (Ii,Ui,Ni ∪ {E}), where E is a conclusion of VRES1 or VRES2.

A refutation of C0 by RES�CL is a derivation C0, . . . , Cn = (In,Un,Nn) from C0
by RES�CL such that false ∈ In ∪ Un.

We return to our previous example on page 175. The corresponding coalition
problem in DSNFVCL consist of the following clauses:

1. t0 [I]
2. ¬t1 ∨ p [U ]

3. ¬t1 ∨ ¬p [U ]
4. t0 → (1)t1 [N ]
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Note that the number 1 in the vector (1) does not refer to agent 1, but to
a specific move by agent 1. Assume again that the ordering on propositional
symbols is t0 � t1 � p. Then a refutation using RES�CL proceeds as follows:

5. t0 → (1)p [N , VRES2, 2, 4, t1]
6. t0 → (1)¬p [N , VRES2, 3, 4, t1]
7. t0 → (1)false [N , VRES1, 5, 6, p]

8. ¬t0 [U , RW, 7]
9. false [I, IRES1, 1, 8, t0]

The derivation of Clause (7) is the crucial step as it takes advantage of the fact
that (1)p and (1)¬p can be resolved by RES�CL while [1]p and [1]¬p cannot be
resolved by RESCL.
Soundness. Soundness of the inference rules of RES�CL is shown model-theoretic-
ally: For each rule we show that if the premises of an application of the rule have
a model M, then M is also a model for the conclusion of that application.

Theorem 4 (Soundness of RES�CL). Let C be a coalition problem in DSNFVCL.
Let C′ be the coalition problem in DSNFVCL obtained from C by applying any
of the inference rules IRES1, GRES1, VRES1, VRES2 and RW to C. If C is
satisfiable, then C′ is satisfiable.

Termination. Consider a derivation from the coalition problem C. The set of
propositional symbols ΠC occurring in C is finite and the inference rules do not
introduce new propositional symbols, so the number of possible literals is finite.
We keep propositional conjunctions and disjunction in simplified form, so there
are only finitely many that may occur in any clause. Also, in C only a finite set
IC ⊂ Z of numbers occurs in coalition vectors and all coalition vectors in C have
the same length, say, k. Then the number of coalition vectors that may occur
in a derivation is bounded by (|IC |+ 1)k. Thus, only a finite number of clauses
can be expressed (modulo simplification). So, at some point either we derive a
contradiction or no new clauses can be generated.

Theorem 5. Let C = (I,U ,N ) be a coalition problem in DSNFVCL. Then any
derivation from C by RES�CL terminates.

Completeness. In our completeness proof for RES�CL we show that a refutation
of a CL formula ϕ by Goranko and Shkatov’s tableau procedure TATL for ATL [11]
can be used to guide the construction of a refutation of the coalition problem Cϕ
corresponding to ϕ by RES�CL. The tableau procedure proceeds in two phases, a
construction phase in which a graph structure for ϕ is build, and an elimination
phase in which parts of the graph that cannot be used to create a CGM for ϕ
are deleted. The formula ϕ is satisfiable iff at the end of the elimination phase a
non-empty graph with a node containing ϕ remains. In the proof, we first define
a mapping trCϕ of coalition problems in DSNFVCL to ATL formulae. Second,
we show that if in the graph G constructed for trCϕ(C) by TATL there is an
elimination step possible, then we can derive from C a coalition problem C′ by
RES�CL such that the graph G′ constructed for trCϕ(C′) by TATL is a sub-graph
of G. By induction we can then show that if a sequence of elimination steps by
TATL produces an empty graph, then the corresponding derivation by RES�CL is
a refutation of Cϕ.
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Theorem 6. Let ϕ ∈ WFFCL and C = (I,U ,N ) be the corresponding coalition
problem in DSNFVCL. If ϕ is unsatisfiable then there is a refutation of C by RES�CL.

Complexity. The satisfiability problem for CL is PSPACE-complete [18]. How-
ever, since coalitions problems allow to state succinctly that global and coalition
clauses hold in all states of a model, the satisfiability problem for coalition prob-
lems in unit DSNFCL, DSNFCL, and DSNFVCL is EXPTIME-hard [16].

As we have argued above, the number of distinct initial, universal and coali-
tion problems that can be formed over the set of propositions ΠC occurring in
a coalition problem C in DSNFVCL and set of numbers IC occurring in coalition
vectors in C, is exponential in the size of ΠC and IC , and therefore also expo-
nential in the size of C. Each inference step by RES�CL requires polynomial time
in the size of the clause set. Overall, this implies a decision procedure based on
RES�CL is in EXPTIME.

Theorem 7. The complexity of a RESCL based decision procedure for the satis-
fiability problem in CL is EXPTIME.

5 Implementation and Evaluation

CLProver++ [8] is a C++ implementation of the resolution based calculus RES�CL
described in Section 4. CLProver++ also implements unit propagation, pure lit-
eral elimination, tautology elimination, forward subsumption and backward sub-
sumption. Feature vector indexing, a non-perfect indexing method first intro-
duced by Schultz in [20], is used to store coalition problems and to retrieve a
superset of candidates for subsumption or resolution efficiently. When selecting
the next clause as main premise for resolution inferences, CLProver++ will choose
the smallest clause in a coalition problem and will prefer universal clauses over
initial clauses over coalition clauses of the same length.

To evaluate the performance of CLProver++ we will compare it with CLProver
and TATL (September 2014 version). CLProver [17] is a prototype implementation
in SWI-Prolog of the calculus RESCL. It also implements forward subsumption
but uses no heuristics to guide the search for a refutation. TATL [6] is an imple-
mentation in OCaml of the two-phase tableau calculus by Goranko and Shkatov
for ATL. Note that the construction phase for CL is the same as for ATL (there
is no additional overhead) and the additional elimination rule required for ATL
in the elimination phase does not need to be engaged for CL.

While a limited number of coalition logic formulae can be found in the literat-
ure [18], they prove to be insufficiently challenging to evaluate the performance
of decision procedures for coalition logic.

We therefore use randomly generated CL formulae for that purpose, in par-
ticular, we have devised two classes of benchmark formulae2, B1 and B2. B1

consists of randomly generated formulae without any particular structure con-
taining at most 5 propositional symbols and at most 2 agents. A feature of these

2 Available at http://cgi.csc.liv.ac.uk/~ullrich/CLProver++/

http://cgi.csc.liv.ac.uk/~ullrich/CLProver++/
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Fig. 3. Performance of CLProver, CLProver++, and TATL on B1.

formulae is their relatively high modal depth. For lengths3 L between 100 and
1200, in steps of 100, we have generated 100 such formulae. B2 consists of ran-
domly generated formulae in conjunctive normal form where half the conjuncts
are unary disjunctions and half are binary disjunctions, and each disjunct is of
the form [A](l1 ∨ l2) or ¬[A](l1 ∨ l2), written (¬)[A](l1 ∨ l2), with l1 and l2 being
random propositional literals over 5 propositional symbols, A is a random subset
of {1, 2}, and the probability of a disjunct or propositional literal being negative
is 0.5:

(¬)[A1
1](l

1
1 ∨ l12) ∧ ((¬)[A2

1](l
2
1 ∨ l22) ∨ (¬)[A2

2](l
2
3 ∨ l24))

∧ . . .∧ (¬)[AL−1
1 ](lL−1

1 ∨ lL−1
2 ) ∧ ((¬)[AL

1 ](l
L
1 ∨ lL2 ) ∨ (¬)[AL

2 ](l
L
3 ∨ lL4 )).

For numbers L of conjuncts between 2 and 24, in steps of 2, we have again
generated 100 such formulae.

For both classes, the number of agents and propositional variables were chosen
to allow all provers to solve most of the formulae involved while also not being
trivial for all provers. The particular structure of the formulae in B2 was chosen
for the same reasons.

Figures 3 and 4 show the performance of the three provers on B1 and B2,
respectively, measured on PCs with Intel i7-2600 CPU @ 3.40GHz and 16GB
main memory. The labels on the x-axis take the form ‘s nS|mU’ where s is the
length or number of conjuncts of the formulae (their size), n is the number of
satisfiable formulae andm is the number of unsatisfiable formulae among the 100
formulae of size s. For B1 we also indicate by ‘kD’ the average modal depth k
of formulae. For each formula ϕ we have measured the time it took each of the
provers to solve ϕ, stopping the execution of a prover after 1000 CPU seconds
The time to transform a formula into a coalition problem is not included, but
is negligible. The figures show the total number of CPU seconds it took each
prover to attempt or solve the 100 formulae of size s.

3 The length of a CL formula ϕ is the number of occurrences of propositional symbols,
propositional logical operators, and modal operators in ϕ.
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Fig. 4. Performance of CLProver, CLProver++, and TATL on B2.

We can see that almost all formulae in B1 are satisfiable, independent of the
value of L. We can also see that CLProver++ performs better than TATL for
L < 800, but falls behind for values of L ≥ 800. This is because formulae in B1

contain numerous occurrences of the five propositional symbols at various dif-
ferent modal depths. In Coalition Logic, just as in basic modal logic, the truth
values of propositional symbols occurring at different modal depths are inde-
pendent of each other, something that TATL takes advantage of. In contrast, the
transformation to DSNFCL ‘flattens’ formulae, leading to unnecessary inferences
by CLProver++ and CLProver. It is possible to pre-process CL formulae using the
‘layered modal translation’ technique by Areces et al. [2, Definition 4.1] which
replaces a propositional symbol p occurring at modal depth n by a new, unique
propositional symbol pn. If we do so for B1 formulae before transformation to
DSNFCL, the performance of CLProver++ improves dramatically, to near zero
time, as indicated by the data for ‘CLProver++ (layered modal translation)’ in
Figure 3. CLProver also shows a considerable improvement while, as one would
expect, TATL shows no improvement, as indicated by the data for ‘CLProver
(layered modal translation)’ and ‘TATL (layered mod. trans.)’, respectively.

Regarding B2, we see the expected decline in the proportion of satisfiable
formulae as the number L of conjuncts in the formulae increases. This class
proves to be very easy for CLProver++ while CLProver and TATL take increasingly
more time to solve formulae as L increases and the number of formulae that can
be solved within the time limit drops sharply. The runtime of TATL appears
to be dominated by the time required for the construction phase and pre-state
deletion phase, meaning satisfiable formulae are on average not solved faster than
unsatisfiable formulae of the same size. On more challenging formulae than those
in B1 and B2, CLProver++ is, as expected, considerably faster on unsatisfiable
formulae than on satisfiable formulae. In contrast, CLProver has no heuristics to
guide its search for a refutation, so, just as for TATL, unsatisfiable formulae are
not solved significantly faster than satisfiable formulae of the same size.

It is clear from Figures 3 and 4 that CLProver++ performs much better than
CLProver. To understand the contribution made by the ordering refinement,
we look at the number of inferences performed by each of the two provers on
formulae from B2 in unit DSNFCL solved by both provers when using the same
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Inferences by
Size Solved CLProver CLProver++ Ratio

2 100 1335 176 7.6
4 100 9475 969 9.8
6 100 39220 2046 19.2
8 100 169707 3357 50.6

10 100 394952 4824 81.9
12 100 1835089 6746 272.0

Inferences by
Size Solved CLProver CLProver++ Ratio

14 98 2519336 8766 287.4
16 93 5098117 10300 495.0
18 64 4299430 9145 470.1
20 29 1743043 4788 364.0
22 30 1879064 6173 304.4
24 16 1008285 3749 269.0

Fig. 5. Total number of inferences by CLProver and CLProver++ on B2.

function to select the next clause for resolution inferences. The difference in the
number of inferences performed by CLProver and CLProver++ is independent of
the differences between DSNFCL and DSNFVCL, the different programming lan-
guages used for the implementation of the provers, the different data structures
they use to store clauses, and, as far as this is possible, their heuristics for se-
lecting clauses. Figure 5 shows that, on average, CLProver++ performs 220 times
fewer inferences than CLProver.

6 Conclusion and Future Work

We have described a calculus RES�CL based on ordered resolution for Coalition
Logic and sketched proofs of its soundness and completeness. We have also shown
that any derivation by RES�CL terminates. The prover CLProver++ provides an
implementation of RES�CL. Our evaluation of CLProver++ indicates that the or-
dering refinement improves performance by several orders of magnitude com-
pared to unrefined resolution as implemented in CLProver. Our evaluation also
shows that similar improvements can be gained by optimising the normal form
transformation that is used to obtain coalition problems from CL formulae.

Our work on Coalition Logic is a first step towards the development of resolu-
tion calculi for more expressive logics for reasoning about the strategic abilities of
coalitions of agents. A wide variety of such logics can be found in the literature,
starting with Alternating-Time Temporal Logic ATL. The notion of coalition
vectors that we have introduced in this paper are closely related to the notion
of k-actions in Coalition Action Logic [5] and to the notion of commitment
functions in ATLES [22]. We believe that the combination of the techniques de-
veloped in this paper with the techniques for temporal logics with eventualities
provide a good basis for the development of effective calculi for logics such as
ATL, Coalition Action Logic and ATLES.
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set according to the modal depth at which clauses occur. We show that the cal-
culus is complete for the logics being considered. We also show that the calculus
can be combined with other strategies. In particular, we discuss the completeness
of combining modal layering and negative resolution. In addition, we present an
incompleteness result for modal layering together with ordered resolution.

Keywords: Automated reasoning, normal modal logics, resolution method.

1 Introduction

Automatic theorem-proving for the multimodal basic modal logic Kn has attracted the
interest of researchers as this logic is able to express non-trivial problems in Artificial
Intelligence and other areas. For instance, it is well-known that the description logic
ALC, which has been applied to terminological representation, is a syntactic variant of
Kn [20]. Problems in Quantified Boolean Propositional Logic, which is a very active
area in the SAT community, can also be translated into Kn.

The reasoning tasks in Kn are far from trivial. Given a formula ϕ , the local sat-
isfiability problem consists of showing that there is a world in a model that satisfies
ϕ . A formula ϕ is globally satisfiable if there is a model such that all worlds in this
model satisfy ϕ . Given a set of formulae Γ and a formula ϕ , the local satisfiability of
ϕ under the global constraints Γ consists of showing that there is a model that glob-
ally satisfies the formulae in Γ and that there is a world in this model that satisfies ϕ .
The local satisfiability problem for the multimodal case is PSPACE-complete [9]. The
global satisfiability and the local satisfiability under global constraints problems for Kn

are EXPTIME-complete [24].
Several proof methods and tools for reasoning in Kn exist, either in the form of meth-

ods applied direct to the modal language or obtained by translation into more expressive
languages (First-Order Logic, for instance). Translation-based methods benefit not only
from the existence of available theorem-provers, therefore not requiring big effort for
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implementation, but strategies available for the object language can be almost imme-
diately applied to the translated problem [11]. This is not the case for direct methods,
where strategies need to be adapted to deal with the underlying normal forms and in-
ference rules. In this paper, we propose a resolution-based proof method for Kn and
investigate the completeness of strategies for such method.

The calculus presented here borrows from previous work in several aspects. Firstly,
it requires a translation into a more expressive modal language, where labels are used
to express semantic properties of a formula. Secondly, it makes use of labelled resolu-
tion in order to avoid unnecessary applications of the inference rules. For instance, in
the unrestricted resolution method for Kn [16], the translation of ♦a ♦a p∧�a ¬p into
the normal form results in the set {start ⇒ t0, t0 ⇒ ♦a t1, t1 ⇒ ♦a p, t0 ⇒ �a ¬p}. The
application of resolution to clauses t1 ⇒ ♦a p and t0 ⇒ �a ¬p is not desirable, as as
♦a p and �a ¬p occur at different modal levels and are not, in fact, contradictory. The
translation into the normal form given here leads to the direct implementation of the
layered modal heuristic given in [2]. However, in [2] the modal levels are hard-coded in
the names of the translated propositional symbols, which requires the implementation
of unification, making the application of both local and global reasoning more diffi-
cult. Besides, our approach might effectively lead to a good partition of the clause set,
restricting the application of the inference rules to (possibly) smaller sets, which can
improve the performance of reasoners [22].

In [1], a labelled non-clausal resolution-based proof method for ALC is given. For-
mulae are labelled by either constants a, which corresponds to names of worlds in a
model, or by pairs (a,b) representing the relation between two worlds named by a and
b, respectively. Our calculus is similar, but labels correspond to modal levels instead of
worlds. Having worlds as labels might require repeated applications of global reasoning
for worlds at the same modal level. Labelled resolution is also used in e.g. [8], where
(sets of) labels express the semantic constraints in multi-valued logics. We have chosen
to keep the labels simple as unification only requires a simple check. However, by ex-
tending the labels to sets, the calculus can be easily adapted to deal with the satisfiability
problem for other interesting modal logics (e.g. graded modalities).

The paper is organised as follows. Section 2 presents the language of Kn. The normal
form and the modal-layered based calculus are presented in Sections 3 and 4. Correct-
ness is proved in Section 5. In Section 6, we show that the application of the calculus
can be restricted to negative resolution. Ordering refinements, discussed in Section 7,
are shown to be incomplete for the particular calculus given here.

2 Language

The set WFFKn
of well-formed formulae of the logic Kn is constructed from a denumer-

able set of propositional symbols, P = {p,q, p′,q′, p1,q1, . . .}, the negation symbol ¬,
the conjunction symbol ∧, the propositional constant true, and the unary connective �a
for each index a in a finite, fixed set An = {1, . . . ,n}, n ∈ N.

Definition 1. The set of well-formed formulae, WFFKn
, is the least set such that p ∈ P

and true are in WFFKn
; if ϕ and ψ are in WFFKn

, then so are ¬ϕ , (ϕ ∧ψ), and �a ϕ
for each a ∈ An.
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When n = 1, we often omit the index, that is, �ϕ stands for �1 ϕ . A literal is either a
propositional symbol or its negation; the set of literals is denoted by L. We denote by
¬l the complement of the literal l ∈ L, that is, ¬l denotes ¬p if l is the propositional
symbol p, and ¬l denotes p if l is the literal ¬p. A modal literal is either �a l or ¬�a l,
where l ∈ L and a ∈ An. The modal depth of a formula is recursively defined as follows:

Definition 2. Let ϕ ,ψ ∈ WFFKn
be well-formed formulae. We define mdepth :

WFFKn
−→N as mdepth(p) = 0, for p ∈ P; mdepth(¬ϕ) =mdepth(ϕ); mdepth(ϕ ∧

ψ) =max(mdepth(ϕ),mdepth(ψ)); and mdepth(�a ϕ) = 1+mdepth(ϕ).

The modal level of a subformula is given relative to its position in the syntactic tree.

Definition 3. Let ϕ ,ϕ ′ be well-formed formulae. Let Σ be the alphabet {1,2, .} and
Σ∗ the set of all finite sequences over Σ . Denote by ε the empty sequence over Σ .
Let τ : WFFKn

×Σ∗ ×N−→P(WFFKn
×Σ∗ ×N) be the partial function inductively

defined as follows (where λ ∈ Σ∗, ml ∈ N):

– τ(p,λ ,ml) = {(p,λ ,ml)}, for p ∈ P;
– τ(¬ϕ ,λ ,ml) = {(¬ϕ ,λ ,ml)}∪ τ(ϕ ,λ .1,ml);
– τ(�a ϕ ,λ ,ml) = {(�a ϕ ,λ ,ml)}∪ τ(ϕ ,λ .1,ml+ 1);
– τ(ϕ ∧ϕ ′,λ ,ml) = {(ϕ ∧ϕ ′,λ ,ml)}∪ τ(ϕ ,λ .1,ml)∪ τ(ϕ ′,λ .2,ml).

The function τ applied to (ϕ ,ε,0) returns the annotated syntactic tree for ϕ , where
each node is uniquely identified by a subformula, its path order (or its position) in the
tree, and its modal level. For instance, p occurs twice in the formula �a �a (p∧�a p), at
the position 1.1.1 and modal level 2, and also at the position 1.1.2.1 and modal level 3.

Definition 4. Let ϕ be a formula and let τ(ϕ ,ε,0) be its annotated syntactic tree. If
(ϕ ′,λ ′,m′) ∈ τ(ϕ ,ε,0), then mlevel(ϕ ,ϕ ′,λ ) = m′.

If mlevel(ϕ ,ϕ ′,λ ) = m we say that ϕ ′ at the position λ of ϕ occurs at the modal level
m. In the example above, we have that p occurs at the modal levels 2 and 3.

We present the semantics of Kn, as usual, in terms of Kripke structures.

Definition 5. A Kripke model M for n agents over P is given by a tuple
(W,w0,R1, . . . ,Rn,π), where W is a set of possible worlds with a distinguished world
w0 , each Ra is a binary relation on W , and π : W → (P → {true, false}) is a function
which associates to each world w ∈W a truth-assignment to propositional symbols.

We write 〈M,w〉 |= ϕ (resp. 〈M,w〉 �|= ϕ) to say that ϕ is satisfied (resp. not satisfied)
at the world w in the Kripke model M.

Definition 6. Satisfaction of a formula at a given world w of a model M is inductively
defined by:

– 〈M,w〉 |= true;
– 〈M,w〉 |= p if, and only if, π(w)(p) = true, where p ∈ P;
– 〈M,w〉 |= ¬ϕ if, and only if, 〈M,w〉 �|= ϕ;
– 〈M,w〉 |= (ϕ ∧ψ) if, and only if, 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;
– 〈M,w〉 |= �a ϕ if, and only if, for all w′, wRaw′ implies 〈M,w′〉 |= ϕ .
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The formulae false, (ϕ ∨ ψ), (ϕ ⇒ ψ), and ♦a ϕ are introduced as the usual ab-
breviations for ¬true, ¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ), and ¬�a ¬ϕ , respectively. Let M =
(W,w0,R1, . . . ,Rn,π) be a model. For local satisfiability, formulae are interpreted with
respect to the root of M, that is, w0. A formula ϕ is locally satisfied in M, denoted by
M |=L ϕ , if 〈M,w0〉 |= ϕ . The formula ϕ is locally satisfiable if there is a model M such
that 〈M,w0〉 |= ϕ . A formula ϕ is globally satisfied in M, if for all w ∈W , 〈M,w〉 |= ϕ .
A formula ϕ is said to be globally satisfiable if there is a model M such that M globally
satisfies ϕ , denoted by M |=G ϕ . Satisfiability of sets of formulae is defined as usual.

When considering local satisfiability, the following holds (see, for instance, [9]):

Theorem 1. Let ϕ ∈WFFKn
be a formula and M = (W,w0,R1, . . . ,Rn,π) be a model.

M |=L ϕ if and only if there is a tree-like model M′ such that M′ |=L ϕ . Moreover, M′ is
finite and its depth is bounded by mdepth(ϕ).

Given a tree-like model M = (W,w0,R1, . . . ,Rn,π), we denote by depth(w) the
length of a path from w0 to w through the union of the relations in M. The next re-
sult also holds.

Theorem 2. Let ϕ ,ϕ ′ ∈ WFFKn
and M = (W,w0,R1, . . . ,Rn,π) be a tree-like model

such that M |=L ϕ . If (ϕ ′,λ ′,m) ∈ τ(ϕ ,ε,0) and ϕ ′ is satisfied in M, then there is
w ∈ W, with depth(w) = m, such that 〈M,w〉 |= ϕ ′. Moreover, the subtree rooted at w
has height mdepth(ϕ ′).

Theorem 2 is adapted from [2, Proposition 3.2]. The proof is by induction on the struc-
ture of a formula and shows that a subformula ϕ ′ of ϕ is satisfied at a node with distance
m of the root of the tree-like model. As determining the satisfiability of a formula de-
pends only on its subformulae, only the subtrees of height mdepth(ϕ ′) starting at level
m need to be checked. The bound on the height of the subtrees follows from Theorem 1.

The global satisfiability problem for a (first-order definable) modal logic is equiva-
lent to the local satisfiability problem of a logic obtained by adding the universal modal-
ity, �∗ , to the original language [7]. Let K∗

n be the logic obtained by adding �∗ to Kn.
Let M = (W,w0,R1, . . . ,Rn,π) be a tree-like model for Kn. A model M∗ for K∗

n is the
pair (M,R∗), where R∗ =W ×W . A formula �∗ ϕ is locally satisfied at the world w in
the model M∗, written 〈M∗,w〉 |=L �∗ ϕ , if, and only if, for all w′ ∈ W , we have that
〈M∗,w′〉 |= ϕ . Given these definitions, for ϕ in WFFKn

, deciding M |=G ϕ is equivalent
to deciding M∗ |=L �∗ ϕ .

We note that although the full language of K∗
n enjoys the finite model property (it

is satisfied in a model that is exponential in the size of the original formula [24]), it
does not retain the finite tree model property. For instance, �∗ (p ⇒¬�∗ p)∧�∗ (¬p ⇒
¬�∗ ¬p) cannot be satisfied in any finite tree-like structure [14]. The unravelling of
a model M∗ for K∗

n gives rise to an infinite tree-like model which satisfies the same
formulae as M∗.

3 Layered Normal Form

A formula to be tested for local or global satisfiability is first translated into a normal
form called Separated Normal Form with Modal Levels, SNFml . A formula in SNFml
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is a conjunction of clauses labelled by the modal level in which they occur. We write
ml : ϕ to denote that ϕ occurs at the modal level ml ∈ N∪{∗}. By ∗ : ϕ we mean that
ϕ occurs at all modal levels. Formally, let WFFml

Kn
be the set of formulae ml : ϕ such

that ml ∈ N∪{∗} and ϕ ∈WFFKn
. Let M∗ = (W,w0,R1, . . . ,Rn,R∗,π) be a model and

ϕ ∈WFFKn
. Satisfiability of labelled formulae is given by:

– M∗ |=L ml : ϕ if, and only if, for all worlds w ∈ W such that depth(w) = ml, we
have 〈M∗,w〉 |=L ϕ ;

– M∗ |=L ∗ : ϕ if, and only if, M∗ |=L �∗ ϕ .

Note that labels in a formula work as a kind of weak universal operator, allowing us to
talk about formulae that are all satisfied at a given modal level.

Clauses in SNFml are in one of the following forms:

– Literal clause ml :
∨r

b=1 lb
– Positive a-clause ml : l′ ⇒ �a l

– Negative a-clause ml : l′ ⇒ ♦a l

where ml ∈N∪{∗} and l, l′, lb ∈ L. Positive and negative a-clauses are together known
as modal a-clauses; the index a may be omitted if it is clear from the context.

Let ϕ be a formula in the language of Kn. In the following, we assume ϕ is in Nega-
tion Normal Form (NNF), that is, a formula where the operators are restricted to ∧,
∨, �a , ♦a and ¬; also, only propositions are allowed in the scope of negations. The
transformation of a formula ϕ into SNFml is achieved by recursively applying rewriting
and renaming [18]. Let ϕ be a formula and t a propositional symbol not occurring in
ϕ . For local satisfiability, the translation of ϕ is given by 0 : t ∧ρ(0 : t ⇒ ϕ). We refer
to clauses of the form 0 : D, for a disjunction of literals D, as initial clauses. For global
satisfiability, the translation of ϕ is given by ∗ : t ∧ρ(∗ : t ⇒ ϕ) where t is a new propo-
sitional symbol. The translation function ρ : WFFml

Kn
−→WFFml

Kn
is defined as follows

(with ϕ ,ϕ ′ ∈WFFKn
, t ′ is a new propositional symbol, and ∗+ 1 = ∗):

ρ(ml : t ⇒ ϕ ∧ϕ ′) = ρ(ml : t ⇒ ϕ)∧ρ(ml : t ⇒ ϕ ′)
ρ(ml : t ⇒ �a ϕ) = (ml : t ⇒ �a ϕ), if ϕ is a literal

= (ml : t ⇒ �a t ′)∧ρ(ml+ 1 : t ′ ⇒ ϕ), otherwise
ρ(ml : t ⇒ ♦a ϕ) = (ml : t ⇒ ♦a ϕ), if ϕ is a literal

= (ml : t ⇒ ♦a t ′)∧ρ(ml+ 1 : t ′ ⇒ ϕ), otherwise
ρ(ml : t ⇒ ϕ ∨ϕ ′) = (ml : ¬t ∨ϕ ∨ϕ ′), if ϕ ′ is a disjunction of literals

= ρ(ml : t ⇒ ϕ ∨ t ′)∧ρ(ml : t ′ ⇒ ϕ ′), otherwise

As the conjunction operator is commutative, associative, and idempotent, in the fol-
lowing we often refer to a formula in SNFml as a set of clauses. The next lemma shows
that the transformation into SNFml is satisfiability preserving.

Lemma 1. Let ϕ ∈ WFFKn
be a formula and let t be a propositional symbol not oc-

curring in ϕ . Then: (1) ϕ is locally satisfiable if, and only if, 0 : t ∧ ρ(0 : t ⇒ ϕ) is
satisfiable; (2) ϕ is globally satisfiable if, and only if, ∗ : t ∧ρ(∗ : t ⇒ ϕ) is satisfiable.
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Proof. The only if part. For (1), if ϕ is locally satisfiable then there is a model M for Kn

such that M |=L ϕ . Let M∗ be the model obtained from M by only adding the universal
relation R∗. It is easy to check that M∗ also locally satisfies ϕ . From Theorem 2, it
follows that if a subformula of ϕ is satisfied, then it is satisfied at the modal level it
occurs. In particular, we have that M∗ |=L 0 : ϕ . Thus, by induction on the structure of a
formula together with the standard techniques related to renaming of formulae, we can
build a model M′∗ such that M′∗ locally satisfies 0 : t ∧ ρ(0 : t ⇒ ϕ). For (2), if ϕ is
globally satisfiable, then there is a model M for Kn such that M |=G ϕ . Again, taking M∗

as above, we have that M∗ |=L �∗ ϕ [7]. By the definition of satisfiability for labelled
formulae, we have that M∗ |=L ∗ : ϕ . By induction on the structure of a formula, by
adding new literals as needed and properly setting their valuations at every world, we
can build a model M′∗ such that M′∗ |=L ∗ : t ∧ρ(∗ : t ⇒ ϕ).

For the if part, let M∗ be a model such that M∗ |=L ml : t ∧ ρ(ml : t ⇒ ϕ), ml =
0 (resp. ml = ∗). The proof is standard: by ignoring the labels and the valuation of
the propositional symbols not occurring in ϕ , it is easy to check that M∗ |=L ϕ (resp.
M∗ |=L �∗ ϕ). From the results in [7], ϕ is locally (resp. globally) satisfiable. ��

4 Inference Rules

The calculus comprises a set of inference rules for dealing with propositional and modal
reasoning. In the following, we denote by σ the result of unifying the labels in the
premises for each rule. Formally, unification is given by a function σ : P(N∪{∗})−→
N∪{∗}, where σ({ml,∗}) = ml; and σ({ml}) = ml; otherwise, σ is undefined. The
following inference rules can only be applied if the unification of their labels is defined
(where ∗− 1 = ∗). Note that for GEN1 and GEN3, if the modal clauses occur at the
modal level ml, then the literal clause occurs at the next modal level, ml + 1.

[LRES]
ml : D ∨ l

ml′ : D′ ∨ ¬l
σ({ml,ml′}) : D ∨ D′

[MRES]
ml : l1 ⇒ �a l

ml′ : l2 ⇒ ♦a ¬l
σ({ml,ml′}) : ¬l1 ∨ ¬l2

[GEN2]
ml1 : l′1 ⇒ �a l1
ml2 : l′2 ⇒ �a ¬l1
ml3 : l′3 ⇒ ♦a l2

σ({ml1,ml2,ml3}) : ¬l′1 ∨¬l′2 ∨¬l′3

[GEN1]
ml1 : l′1 ⇒ �a ¬l1

...
mlm : l′m ⇒ �a ¬lm

mlm+1 : l′ ⇒ ♦a ¬l
mlm+2 : l1 ∨ . . .∨ lm ∨ l

ml : ¬l′1 ∨ . . .∨¬l′m ∨¬l′

where ml = σ({ml1, . . . ,mlm+1,mlm+2 −1})

[GEN3]
ml1 : l′1 ⇒ �a ¬l1

...
mlm : l′m ⇒ �a ¬lm

mlm+1 : l′ ⇒ ♦a l
mlm+2 : l1 ∨ . . .∨ lm

ml : ¬l′1 ∨ . . .∨¬l′m ∨¬l′

where ml = σ({ml1, . . . ,mlm+1,mlm+2 −1})

Definition 7. Let Φ be a set of clauses in SNFml. A derivation from Φ is a sequence
of sets Φ0,Φi, . . . where Φ0 = Φ and, for each i > 0, Φi+1 = Φi ∪{D}, where D is the
resolvent obtained from Φi by an application of either LRES, MRES, GEN1, GEN2,
or GEN3. We also require that D is in simplified form, D �∈ Φi, and that D is not a
tautology. A refutation for Φ is a derivation Φ0, . . . ,Φk, k ∈ N, where ml : false ∈ Φk,
for ml ∈ N∪{∗}.
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Before presenting correctness results, we show an example.

Example 1. Adapted from [1]. Clauses (1) and (2) say that a person is either female or
male. Clauses (3) and (4), which are not genetically accurate, say that tall people have
children with blond hair. The particular situation of Tom, denoted here by t0, is given in
the following clauses. Clauses (5), (6), and (7) say that Tom’s daughters are tall. Clauses
(8) and (9) say that Tom has a grandchild who is not blond. We want to prove that Tom
has a son, which appears negated in Clause (10). The refutation is given below.

1. ∗ : female∨male
2. ∗ : ¬female∨¬male
3. ∗ : ¬tall∨ t1
4. ∗ : t1 ⇒ �c blond
5. 0 : t0
6. 0 : t0 ⇒ �c t2
7. 1 : ¬t2 ∨¬female∨ tall
8. 0 : t0 ⇒ ♦c t3

9. 1 : t3 ⇒ ♦c ¬blond
10. 0 : t0 ⇒ �c ¬male
11. 1 : ¬t1 ∨¬t3 [MRES,9,4,blond]
12. 1 : ¬tall∨¬t3 [LRES,11,3, t1]
13. 1 : ¬t3 ∨¬t2 ∨¬female [LRES,7,12, tall]
14. 1 : male∨¬t2 ∨¬t3 [LRES,13,1, tall]
15. 0 : ¬t0 [GEN1,10,6,8,14,male, t2, t3]
16. 0 : false [LRES,15,5, t0]

5 Correctness Results

In this section, we provide proofs for termination, soundness, and completeness of the
calculus given in the previous section.

Theorem 3 (Termination). Let Φ be a set of clauses in SNFml. Then, any derivation
from Φ terminates.

Proof. We regard a clause as a set of literals or modal literals. Let PΦ be the set of
propositional symbols occurring in Φ . We define PΦ = {¬p | p ∈ PΦ}, LΦ = PΦ ∪PΦ ,
and LAn

Φ = {�a l,♦a l | l ∈ LΦ and a ∈ An}. As PΦ and An are both finite and because
none of the inference rules add new propositional symbols or new modal literals to the
clause set, we have that P(LΦ ∪LAn

Φ ) is finite and so it is the number of clauses that
can be built from the symbols in PΦ and An. ��

Next, we show that the inference rules are sound.

Lemma 2 (LRES). Let Φ be a set of clauses in SNFml with {ml : D∨ l,ml′ : D′ ∨¬l}⊆
Φ . If Φ is satisfiable and σ({ml,ml′}) is defined, then Φ ∪{σ({ml,ml′}) : D∨D′} is
satisfiable.

Proof. Let M = (W,w0,R1, . . . ,Rn,R∗,π) be a model such that M |= Φ . As ml : D∨
l,ml′ : D′ ∨¬l ∈ Φ , then M |= ml : D∨ l and M |= ml′ : D′ ∨¬l. Note that σ is commuta-
tive. Also, note that σ({∗,ml′}) =ml′. Finally, for σ({ml,ml′}) = ∗, a particular modal
level ml′ is enough to show that the lemma holds. Hence, without loss of generality, as-
sume σ({ml,ml′}) = ml′. As M |= ml′ : D′ ∨¬l, for all w′ ∈ W with depth(w′) = ml′,
then 〈M,w′〉 |= D′ ∨¬l. Similarly, because {ml,ml′} is unifiable, from M |= ml : D∨ l,
for all w′ ∈ W with depth(w′) = ml′, we obtain that 〈M,w′〉 |= D∨ l. It follows that
〈M,w′〉 |= (D∨ l)∧ (D′ ∨¬l), for all w′ ∈ W with depth(w′) = ml′. By soundness of
resolution, 〈M,w′〉 |= D∨D′. As depth(w′) = ml′ = σ({ml,ml′}), we conclude that
M |= σ({ml,ml′}) : D∨D′. ��
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Lemma 3 (MRES). Let Φ be a set of clauses in SNFml with {ml : l1 ⇒ �a l,ml′ : l2 ⇒
♦a ¬l} ⊆ Φ . If Φ is satisfiable and σ({ml,ml′}) is defined, then Φ ∪{σ({ml,ml′}) :
¬l1 ∨¬l2} is satisfiable.

Proof. The proof is similar to that of Lemma 2, as implications can be rewritten as
disjunctions and ♦a ¬l is semantically equivalent to ¬�a l. ��
Lemma 4 (GEN1). Let Φ be a set of clauses in SNFml with {ml1 : l′1 ⇒
�a ¬l1, . . . ,mlm : l′m ⇒ �a ¬lm,mlm+1 : l′ ⇒ ♦a ¬l,mlm+2 : l1 ∨ . . . ∨ lm ∨ l} ⊆ Φ .
If Φ is satisfiable and σ({ml1, . . . ,mlm,mlm+1,mlm+2 − 1}) is defined, then Φ ∪
{σ({ml1, . . . ,mlm,mlm+1,mlm+2 − 1}) : ¬l′1 ∨ . . .∨¬l′m ∨¬l′} is satisfiable.

Proof. Let M = (W,w0,R1, . . . ,Rn,R∗,π) be a model such that M |= Φ . Note that
if ∗ ∈ {ml1, . . . ,mlm,mlm+1,mlm+2 − 1}, then the formula labelled by ∗ holds at ev-
ery world of the model and, therefore, at any modal level. Without loss of gener-
ality, assume σ({ml1, . . . ,mlm,mlm+1,mlm+2 − 1}) = ml, for a particular modal level
ml. If Φ is satisfiable, then M |= (ml : (l′1 ⇒ �a ¬l1) ∧ . . . ∧ (l′m ⇒ �a ¬lm) ∧ (l′ ⇒
♦a ¬l))∧ (ml + 1 : (l1 ∨ . . .∨ lm ∨ l)) and so for all worlds w ∈ W , with depth(w) =
ml, we have that (1) 〈M,w〉 |= (l′1 ⇒ �a ¬l1) ∧ . . . ∧ (l′m ⇒ �a ¬lm) ∧ (l′ ⇒ ♦a ¬l).
If 〈M,w〉 �|= l′, it follows easily that 〈M,w〉 |= ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′ and, therefore,
M |= σ({ml1, . . . ,mlm,mlm+1,mlm+2 − 1}) : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′. The same occurs
if any of the literals l′i , 0 ≤ i ≤ m, is not satisfied at w. We show, by contradic-
tion, that this must be the case. Suppose 〈M,w〉 |= l′1 ∧ . . . ∧ l′m ∧ l′. From this and
from (1), by the semantics of implication, the semantics of the modal operator ♦a ,
and the semantics of the modal operator �a , we have that there is a world w′, with
depth(w′) = depth(w)+1, where ¬l1∧ . . .∧¬lm∧¬l holds. Now, as mlm+2−1 is unifi-
able with {ml1, . . . ,mlm,mlm+1}, for all worlds w′′ with depth(w′′) = depth(w)+1, we
obtain that 〈M,w′′〉 |= l1∨ . . .∨ lm∨ l. In particular, because depth(w′) = depth(w′′), we
obtain that 〈M,w′〉 |= (¬l1 ∧ . . .∧¬lm ∧¬l)∧ (l1 ∨ . . .∨ lm ∨ l). By several applications
of the classical propositional resolution rule, 〈M,w′〉 |= false. This contradicts with the
fact that Φ is satisfiable. Thus, 〈M,w〉 |= ¬l′1 ∨ . . .∨¬l′m ∨¬l′. As depth(w) = ml, we
conclude that M |= σ({ml1, . . . ,mlm,mlm+1,mlm+2 − 1}) : ¬l′1 ∧ . . .∧¬l′m ∧¬l′. ��
Lemma 5 (GEN2). Let Φ be a set of clauses in SNFml with {ml1 : l′1 ⇒�a l1,ml2 : l′2 ⇒
�a ¬l1,ml3 : l′3 ⇒ ♦a l2} ⊆ Φ . If Φ is satisfiable and σ({ml1,ml2,ml3}) is defined, then
Φ ∪{σ({ml1,ml2,ml3}) : ¬l′1 ∨¬l′2 ∨¬l′3} is satisfiable.

Proof. From Lemma 4 by taking Φ such that {ml1 : l′1 ⇒ �a l1,ml2 : l′2 ⇒ �a ¬l1,ml3 :
l′3 ⇒ ♦a l2,∗ : l1 ∨¬l1 ∨¬l2} ⊆ Φ , as l1 ∨¬l1 ∨¬l2 is a tautology. ��
Lemma 6 (GEN3). Let Φ be a set of clauses in SNFml with {ml1 : l′1 ⇒
�a ¬l1, . . . ,mlm : l′m ⇒ �a ¬lm,mlm+1 : l′ ⇒ ♦a l,mlm+2 : l1 ∨ . . . ∨ lm} ⊆ Φ . If
Φ is satisfiable and σ({ml1, . . . ,mlm,mlm+1,mlm+2 − 1}) is defined, then Φ ∪
{σ({ml1, . . . ,mlm,mlm+1,mlm+2 − 1}) : ¬l′1 ∨ . . .∨¬l′m ∨¬l′} is satisfiable.

Proof. The formula mlm+2 : l1 ∨ . . .∨ lm is semantically equivalent to (mlm+2 : l1 ∨ . . .∨
lm ∨ l)∧ (mlm+2 : l1 ∨ . . .∨ lm ∨¬l). The proof follows from Lemma 4 by taking Φ such
that {ml1 : l′1 ⇒ �a ¬l1, . . . ,mlm : l′m ⇒ �a ¬lm,mlm+1 : l′ ⇒ ♦a l,mlm+2 : l1 ∨ . . .∨ lm ∨
¬l} ⊆ Φ . ��
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Theorem 4 (Soundness). Let Φ be a set of clauses in SNFml and Φ0, . . . ,Φk, k ∈ N,
be a derivation for Φ . If Φ is satisfiable, then every Φi, 0 ≤ i ≤ k, is satisfiable.

Proof. From Lemmas 2-6, by induction on the number of sets in a derivation. ��

Completeness is proved by showing that if a set T of clauses in SNFml is unsatis-
fiable, there is a refutation produced by the method presented here. The proof is by
induction on the number of nodes of a graph, known as behaviour graph, built from T .
Intuitively, nodes in the graph correspond to worlds and the set of edges correspond to
the agents accessibility relations in a model. The graph construction is similar to the
construction of a canonical model, followed by filtrations based on the set of clauses,
often used to prove completeness for proof methods in modal logics [6]. Here, we first
construct a graph GG that satisfies the clauses labelled by ∗ and then complete the con-
struction by unfolding GG into a graph G which satisfies all clauses in T . We prove
that an unsatisfiable set of clauses has an empty behaviour graph. In this case, there is a
refutation using the inference rules given in Section 4.

Let T be a set of clauses in SNFml . Let {0, . . . ,m} be the set of labels occurring in T .
Formally, the behaviour graph G for n agents is a tuple G = 〈N0, . . . ,Nm+1,E1, . . . ,En〉,
built from the set of SNFml clauses T , where Ni is a set of nodes for each modal level
0 ≤ i ≤ m+ 1 occurring in T and each Ea is a set of edges labelled by a ∈ An. Every
element of Ni is a set of literals and modal literals occurring in the modal level i in T . We
require that nodes are propositionally consistent sets, i.e. they do not contain a (modal)
literal and its negation. Note that ♦a ϕ is only an abbreviation for ¬�a ¬ϕ . Thus, a set
containing both �a ϕ and ♦a ¬ϕ is not propositionally consistent.

First, we define truth of a formula with respect to a set of literals and modal literals:

Definition 8. Let V be a consistent set of literals and modal literals. Let ϕ , ψ , and
ψ ′ be a Boolean combinations of literals and modal literals. We say that V satisfies ϕ
(written V |= ϕ), if, and only if:

– ϕ ∈V, if ϕ is a literal or a modal literal;
– ϕ is of the form ψ ∧ψ ′ and V |= ψ and V |= ψ ′;
– ϕ is of the form ¬ψ and V does not satisfy ψ (written V �|= ψ).

A maximal consistent set of literals and modal literals contains either a propositional
symbol or its negation; and it contains either a modal literal or its negation. We define
satisfiability of a formula and a set of formulae with respect to a node:

Definition 9. Let V be a maximal consistent set of literals and modal literals, η be a
node in a behaviour graph G such that η consists of the literals and modal literals in
V , ϕ be a Boolean combination of literals and modal literals, and χ = {ϕ1, . . . ,ϕm} be
a finite set of formulae, where each ϕi, 1 ≤ i ≤ m, is a Boolean combination of literals
and modal literals. We say that η satisfies ϕ (written η |= ϕ) if, and only if, V |= ϕ . We
say that η satisfies χ (written η |= χ) if, and only if, η |= ϕ1 ∧ . . .∧ϕm.

The construction of the behaviour graph starts by partitioning a set of clauses T
into two components corresponding to the set of global clauses and the set of local
clauses. Let TG be {∗ : ϕ | ∗ : ϕ ∈ T} and TL = T \ TG. First we construct a graph
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GG = 〈N,E ′
1, . . . ,E

′
n〉, where N is the set of all maximal consistent sets of literals and

modal literals occurring in T , that is, every node contains literals and modal literals that
occur in TG or TL. Delete from N any nodes that do not satisfy D such that the literal
clause ∗ : D is in TG. This ensures that all literal clauses in TG are satisfied at all nodes.
If the set of nodes is empty, then the graph is empty and the literal clauses in TG are un-
satisfiable. Otherwise, the construction proceeds as follows. For all clauses ∗ : l′ ⇒ �a l
(resp. ∗ : l′ ⇒ ♦a l) in TG, delete from N any nodes η such that η |= l′ and η �|=�a l (resp.
η �|= ♦a l). This ensures that all a-clauses in TG are propositionally satisfied at N. We
now construct the sets of edges related to each agent and ensure that any modal literal
occurring in a node is also satisfied. Define E ′

a as N ×N, which ensures that the tautol-
ogy true ⇒ �a true, for all a ∈ An, is satisfied at all nodes. Delete from E ′

a the edges
(η ,η ′) where η |= �a l but η ′ �|= l. This ensures that all clauses of the form ∗ : l′ ⇒ �a l
are now satisfied in GG. Repeatedly delete from GG any nodes η such that η |= ♦a l
and there is no η ′ such that (η ,η ′) ∈ E ′

a and η ′ |= l. This ensures that all clauses of the
form ∗ : l′ ⇒ ♦a l are now satisfied in GG. If GG is not empty, in order to satisfy the
local constraints, given by clauses in TL, we construct the graph G for T as follows.

Let GG = 〈N,E ′
1, . . . ,E

′
n〉 be the non-empty graph for TG constructed as above. Re-

call that {0, . . . ,m} is the set of modal levels occurring as labels in T . The graph
G = 〈N0, . . . ,Nm+1,E1, . . . ,En〉 for T is constructed by the unfolding of GG as follows.
Note that we need to construct the nodes at the level m+1 in order to satisfy the literals
in the scope of modal operators at the level m. First, we construct the set of nodes Nml

for each modal level ml, 0 ≤ ml ≤ m+1. Define N0 = N, Nml = /0, for 0 < ml ≤ m+1,
and Ea = /0, for 0≤ a≤ n. For each η ,η ′ ∈N, if η ∈Nml and (η ,η ′)∈E ′

a for any a∈An,
then add a copy of η ′, named η ′

ml+1, to Nml+1 and make Ea =Ea∪{(η ,η ′
ml+1)}. For the

highest modal level, ml = m+ 1, we also need to make sure that the global constraints
are still satisfied: if η ∈ Nm+1 then we also add copies of all nodes reachable from η , by
any relation E ′

a, and add the corresponding relations to each Ea. Once the construction
has finished, we delete nodes and edges in order to ensure that clauses in T are satisfied.
Delete from Nml any nodes that do not satisfy D for all literal clauses of the form ml : D
in TL. Delete from Nml any nodes that satisfy l′, but do not satisfy �a l (resp. ♦a l), for
any modal clause, ml : l′ ⇒�a l (resp. ml : l′ ⇒ ♦a l). This ensures that all modal clauses
are propositionally satisfied at every node in Nml . Note that, by the construction of GG,
there are no edges from a node which satisfies a modal literal �a l to a node that satisfies
¬l. Because the construction of G only takes copies of those relations, we have that
all positive a-clauses are satisfied by any nodes in G. Next, consider any nodes that do
not satisfy the negative a-clauses in TL or in TG. For each node ηml and for each agent
a ∈ An, if ml : l′ ⇒ ♦a l is in TL or ∗ : l′ ⇒ ♦a l is in TG, ηml |= l′ and there is no a-edge
between ηml and a node at the level ml + 1 that satisfies l, then ηml is deleted. For the
modal level m+1, we also consider the relations within this modal level when applying
the deletion procedure. This ensures that all negative a-clauses are satisfied by nodes
ηml ∈ G at the modal level ml. If N0 is empty, then the graph is empty.

The graph obtained after performing all possible deletions is called reduced be-
haviour graph. We show that a set of clauses is satisfiable if, and only if, the reduced
graph for this set of clauses is non-empty.
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Lemma 7. Let T be a set of clauses. T is satisfiable if, and only if, the reduced be-
haviour graph G constructed from T is non-empty.

Proof. (⇒) Assume that T is a satisfiable set of clauses. If we construct a graph from
T , we generate a node for each maximal consistent set of literals and modal literals in T .
Nodes are deleted only if they do not satisfy the set of literal clauses or the implications
in modal clauses. The a-edges are constructed from each node to every other node, only
deleting edges if the right-hand side of some positive a-clause is not satisfied. Similarly
nodes are deleted if negative a-clauses cannot be satisfied. Hence a globally satisfiable
set of clauses will result in a non-empty graph. If the graph is non-empty, the same
procedure is applied at each modal level, ensuring that deletions are performed only if
nodes and edges do not satisfy the set of clauses at that level. Thus a locally satisfiable
set of clauses will also result in a non-empty graph.

(⇐) Assume that the reduced graph G = 〈N0, . . . ,Nm+1,E1, . . . ,En〉 constructed
from T is non-empty. To show that T is satisfiable we construct a model M from
G. Let ord : Ni → N be a total order on the nodes in Ni. Let wml,ord(η) be the
world named by (ml,ord(η)) for η ∈ Nml and let Wml =

⋃
η∈Nml

{wml,ord(η)}. The

set of worlds W is given by
⋃m+1

i=0 Wi. Let w0 be any of the worlds in W0. The pair
(wml,ord(η),wml′ ,ord(η ′)) is in Ra if and only if (η ,η ′) ∈ Ea. Also, take R∗ =W ×W . Fi-
nally, set π(wml,ord(η))(p) = true if and only if p ∈ η . This completes the construction
of the model M = (W,w0,R1, . . . ,Rn,R∗,π). ��

We now show that the calculus for global and local reasoning in Kn is complete.

Theorem 5. Let T be an unsatisfiable set of clauses in SNFml. Then there is a refutation
for T by applying the resolution rules given in Section 4.

Proof. Given a set of clauses T , construct the reduced behaviour graph as described
above. First assume that the set of literal clauses is unsatisfiable. Thus all initial nodes
will be removed from the reduced graph and the graph becomes empty. From the com-
pleteness of classical resolution there is a series of resolution steps which can be applied
to these clauses which lead to the derivation of false. The same applies within any modal
level. We can mimic these steps by applying the rule LRES to literal clauses and derive
ml : false, for some modal level ml.

If the non-reduced graph is not empty and we have that both (1) ml : l′ ⇒ �a l and
(2) ml′ : l′′ ⇒ ♦a ¬l are in T , then, by construction of the graph, if {ml,ml′} are unifi-
able, then any node in Nσ({ml,ml′}) containing both l′ and l′′ is removed from the graph.
The resolution rule MRES applied to (1) and (2) results in σ({ml,ml′}) : ¬l′ ∨ ¬l′′,
simulating the deletion of nodes at the same modal level that satisfy both l′ and l′′.

Next, if the non-reduced graph is not empty, consider any nodes that do not satisfy
the negative a-clauses in T . For each node ηml ∈ Nml and for each agent a ∈ An, if
ml : l ⇒ ♦a ¬l′ is in T , ηml |= l and there is no a-edge between η and a node that
satisfies ¬l′, then ηml is deleted. We show next what inference rules or what inference
steps correspond to the deletion of ηml .

Let Cηml
a in T be the set of positive a-clauses corresponding to agent a, that is, the

clauses of the form ml : l j ⇒ �a l′j, where l j and l′j are literals, whose left-hand side

are satisfied by ηml . Let Rηml
a be the set of literals in the scope of �a on the right-hand
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side from the clauses in C
ηml
a , that is, if ml : l j ⇒ �a l′j ∈ C

ηml
a , then l′j ∈ R

ηml
a . From the

construction of the graph, for a clause ml : l ⇒ ♦a l′, if ηml |= l but there is no a-edge
to a node containing l′, it means that l′, Rηml

a , and the literal clauses at the level ml + 1
must be contradictory. As l′ alone is not contradictory and because the case where the
literal clauses are contradictory by themselves has been covered above (by applications
of LRES), there are five cases:

1. Assume that Rηml
a itself is contradictory. This means there must be clauses of the

form ml : l1 ⇒ �a l′′,ml : l2 ⇒ �a ¬l′′ ∈ C
η
a , where ηml |= l1 and ηml |= l2. Thus

we can apply GEN2 to these clauses and the negative modal clause ml : l ⇒ ♦a l′

deriving ml : ¬l1 ∨¬l2 ∨¬l. Hence the addition of this resolvent means that ηml

will be deleted as required.

2. Assume that l′ and R
ηml
a is contradictory. Then, Cηml

a in T contains a clause as
ml : l1 ⇒�a ¬l′ where, from the definition ofCηml

a , ηml |= l1. Thus, by an application
of MRES to this clause and ml : l ⇒♦a l′, we derive ml :¬l1∨¬l and ηml is removed
as required.

3. Assume that l′ and the literal clauses at the modal level ml + 1 are contradictory.
By consequence completeness of binary resolution [13], applications of LRES to
the set of literal clauses generates ml + 1 : ¬l′, which can be used together with
ml : l ⇒ ♦a l′ to apply GEN1 and generate ml : ¬l. This resolvent deletes ηml as
required. Note that this is a special case where the set of positive a-clauses in the
premise of GEN1 is empty.

4. Assume that Rηml
a and the literal clauses at the modal level m+1 all contribute to the

contradiction (but not l′), by the results in [13], applications of LRES will generate
the relevant clause to which we can apply GEN3 and delete ηml as required.

5. Assume that l′, Rηml
a and the literal clauses all contribute to the contradiction. Thus,

similarly to the above, applying LRES generates the relevant literal clause to which
GEN1 can be applied. This deletes ηml as required.

Summarising, LRES corresponds to deletions from the graph of nodes related to
contradictions in the set of literal clauses at a particular modal level. The rule MRES
also simulates classical resolution and corresponds to removing from the graph those
nodes related to contradiction within the set of modal literals occurring at the same
modal level. The inference rule GEN1 corresponds to deleting parts of the graph related
to contradictions between the literal in the scope of ♦a , the set of literal clauses, and the
literals in the scope of �a . The resolution rule GEN2 corresponds to deleting parts of the
graph related to contradictions between the literals in the scope of �a . Finally, GEN3
corresponds to deleting parts of the graph related to contradictions between the literals
in the scope of �a and the set of literal clauses. These are all possible combinations of
contradicting sets within a clause set.

If the resulting graph is empty, the set of clauses T is not satisfiable and there is
a resolution proof corresponding to the deletion procedure, as described above. If the
graph is not empty, by Lemma 7, a model for T can be built. ��
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6 Negative Resolution

Negative resolution was introduced in [19] as a refinement for the hyper-resolution
method, which restricts the clauses that are candidates to being resolved. A literal is
said to be negative if it is the negation of a propositional symbol. A clause is said to be
negative if it contains only negative literals. Negative resolution can only be applied if
one of the clauses being resolved is negative. Restricting the calculus given in Section 4
to negative resolution means that at least one of the literal clauses in the premises of
inference rules is a negative clause. As it is, the calculus is not complete for negative
resolution. However, it can be restricted to negative resolution with a small change in
the normal form by allowing only positive literals in the scope of modal operators.
Given a set of clauses in SNFml , we exhaustively apply the following rewriting rules
(where ml ∈ N∪{∗}, t, p ∈ P, and t ′ is a new propositional symbol):

ρ(ml : t ⇒ �a ¬p) = (ml : t ⇒ �a t ′)∧ρ(ml+ 1 : t ′ ⇒ ¬p)
ρ(ml : t ⇒ ♦a ¬p) = (ml : t ⇒ ♦a t ′)∧ρ(ml+ 1 : t ′ ⇒ ¬p)

It can be shown that the resulting set of clauses is satisfiable if, and only if, the original
set of clauses is satisfiable. We call the resulting normal form SNF+

ml . As the resulting
set of clauses is still in SNFml , it follows immediately that the original calculus is termi-
nating, sound, and complete for SNF+

ml . Obviously, clause selection does not have any
impact in soundness and termination. It rests to prove that restricting the application of
the resolution rules to the case where at least one of the clauses is negative is complete.

Theorem 6. Let Φ be a set of clauses in SNF+
ml. If Φ is unsatisfiable, then there is a

refutation from Φ by the negative version of the calculus given in Section 4.

Proof. Under the new normal form, the inference rules MRES and GEN2 cannot be
further applied. However, if there was a set of clauses in SNFml to which MRES (resp.
GEN2) could be applied, then the set of clauses in SNF+

ml contains sets of clauses to
which GEN1 (resp. LRES and GEN3) can be applied. For sets of literal clauses, nega-
tive resolution is a complete strategy [19]. For the case where the literals in the scope of
modal operators contradict with the set of literal clauses (Cases 3, 4, and 5 in the proof
of Theorem 5), the proof follows from the fact that negative resolution is also conse-
quence complete [23]. Thus, the negative version of LRES still produces the negative
clause needed for applying GEN1 and GEN3. ��
Example 2. We show a negative refutation for the set of clauses given in Example 1.
Clauses (9’) and (10’) are introduced in order to obtain a set of clauses in SNF+

ml .
1. ∗ : female∨male
2. ∗ : ¬female∨¬male
3. ∗ : ¬tall∨ t1
4. ∗ : t1 ⇒ �c blond
5. 0 : t0
6. 0 : t0 ⇒ �c t2
7. 1 : ¬t2 ∨¬female∨ tall
8. 0 : t0 ⇒ ♦c t3
9. 1 : t3 ⇒ ♦c t4

9′. 2 : ¬t4 ∨¬blond

10. 0 : t0 ⇒ �c t5
10′ 1 : ¬t5 ∨¬male
11. 1 : ¬t3 ∨¬t1 [GEN1,4,9,9′,b, t4]
12. 1 : ¬t5 ∨ female [LRES,10′,1,male]
13. 1 : ¬t3 ∨¬tall [LRES,11,3, t1]
14. 1 : ¬t3 ∨¬t2 ∨¬female [LRES,7,13, tall]
15. 1 : ¬t5 ∨¬t3 ∨¬t2 [LRES,14,12, female]
16. 0 : ¬t0 [GEN1,10,6,8,15, t5, t2, t3]
17. 0 : false [LRES,5,16, t0]
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7 Ordered Resolution

Ordered resolution is a refinement of resolution where inferences are restricted to max-
imal literals in a clause, with respect to a well-founded ordering on literals. Formally,
let Φ be a set of clauses and PΦ be the set of propositional symbols occurring in Φ . Let
� be a well-founded and total ordering on PΦ . This ordering can be extended to literals
LΦ occurring in Φ by setting ¬p � p and p � ¬q whenever p � q, for all p,q ∈ PΦ . A
literal l is said to be maximal with respect to a clause C∨ l if, and only if, there is no
l′ occurring in C such that l′ � l. In the case of classical binary resolution, the ordering
refinement restricts the application to clauses C∨ l and D∨ l′ where l is maximal with
respect to C and l′ is maximal with respect to D. Ordered resolution is refutational com-
plete [10] and it has been successfully applied as the core strategy for many automated
tools for both classical and modal logics [21,25,26,4,12]. It has also been shown that
classical hyper-resolution is complete under ordering refinements for any ordering on
the set of literals [5]. Restricting resolution by admissible orderings has been proved
complete for hybrid logics as well [3].

We show that the restriction given by ordered resolution cannot be easily applied
to the calculus given in Section 4. Orderings can be used to find contradictions at the
propositional fragment of the language by restricting the application of LRES. How-
ever, the application of the hyper-resolution rules (GEN1, GEN2, and GEN3) require a
consequence complete procedure, so that the relevant literal clauses for applying those
inference rules are generated. As ordered resolution lacks consequence completeness
[15], the resulting restricted calculus is not complete either. Consider the following set
of clauses:

1. 0 : t0
2. 0 : t0 ⇒ �t1

3. 1 : a∨¬t1
4. 1 : b∨¬t1

5. 0 : t0 ⇒ ♦t2
6. 1 : ¬a∨¬b∨¬t2

which is clearly unsatisfiable. The ordering given by t0 � t1 � t2 � a � b does not
allow any inference rule to be applied. Reversing the ordering allows a refutation to
be found for this particular example. One might conjecture that imposing an ordering
where the original literals in a clause are maximal with respect to the literals introduced
by renaming might result in a complete calculus. That is not the case. Consider the next
example where such an ordering has been used. Literals are ordered within each clause,
that is, the rightmost literal is the maximal literal with respect to each clause.

1. 0 : t0 ⇒ ♦t1
2. 0 : t0 ⇒ �t2
3. 1 : ¬t1 ∨ p
4. 1 : t3 ∨¬t2 ∨¬p

5. 1 : ¬t3 ∨¬t1
6. 1 : ¬t2 ∨¬t1 ∨¬p [LRES,4,5, t3]
7. 1 : ¬t2 ∨¬t1 [LRES,6,3, p]

As shown, the negative version of the calculus is able to find a refutation by resolving
Clauses (4) and (5) on the literal t3, producing Clause (6), and by further applying
LRES, obtaining Clause (7) to which GEN1 can be applied. Ordered resolution will not
produce Clause (6) nor a clause that subsumes it. Thus, a refutation is not found.
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8 Conclusion

We have presented a complete calculus based on modal levels for both local and global
reasoning for the multimodal basic propositional modal logic, Kn. We have also shown
that, by a small change in the normal form, negative resolution is complete, reducing the
search space and also reducing the number of inference rules. Finally, we established
that ordered resolution is not complete for the given calculus. Determining an admis-
sible ordering that would make the restricted calculus complete does not seem to be a
trivial task. We conjecture that the use of an appropriate selection function, as given in
[17] in the context of disjunctive modal programs, might lead to a complete calculus.
Other strategies, as those considered in [22], which combines hyper-tableaux and or-
dered resolution to deal with reasoning tasks for Description Logics, are also subject of
future work. The implementation of the calculus given here as well as the experimental
evaluation and performance comparison with other reasoners are current work.
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Abstract. Different theorem provers work within different formalisms
and paradigms, and therefore produce various incompatible proof ob-
jects. Currently there is a big effort to establish foundational proof cer-
tificates (FPC), which would serve as a common “specification language”
for all these formats. Such framework enables the uniform checking of
proof objects from many different theorem provers while relying on a
small and trusted kernel to do so. Checkers is an implementation of a
proof checker using foundational proof certificates. By trusting a small
kernel based on (focused) sequent calculus on the one hand and by sup-
porting FPC specifications in a prolog-like language on the other hand,
it can be used for checking proofs of a wide range of theorem provers.
The focus of this paper is on the output of equational resolution theo-
rem provers and for this end, we specify the paramodulation rule. We
describe the architecture of Checkers and demonstrate how it can be
used to check proof objects by supplying the FPC specification for a
subset of the inferences used by E-prover and checking proofs using these
inferences.

1 Introduction

Many times software development faces the challenge of formal verification. This
task can be accomplished by using a number of methods and available tools.
Among such tools are theorem provers, which, upon proving a statement (auto-
matically or interactively), provide a proof evidence. The problem faced nowa-
days is that such evidence comes in various formats, generally incompatible with
each other. So if one is using a theorem prover, she must blindly trust the evi-
dence provided, as it is not understood by any other system.

ProofCert [7] is a research project whose main goal is to bridge the gap
between proof evidences. By using well-established concepts of proof theory,
ProofCert proposes foundational proof certificates (FPC) as a framework to
specify proof evidence formats. Describing a format in terms of an FPC al-
lows softwares to check proofs in this format, much like a context-free grammar
allows a parser to check the syntactical correctness of a program. The parser in
this case would be a kernel: a small and trusted component that checks a proof
evidence with respect to an FPC specification.

� Funded by the ERC Advanced Grant ProofCert.

c© Springer International Publishing Switzerland 2015
H. De Nivelle (Ed.): TABLEAUX 2015, LNAI 9323, pp. 201–210, 2015.
DOI: 10.1007/978-3-319-24312-2_14



202 Z. Chihani, T. Libal and G. Reis

Checkers is the first implementation of a proof checking software which is
based on FPC’s. It uses an LKF (focused classical logic) kernel and comes with
the FPC specification for paramodulation. It is applied to E-prover’s [11] proof
objects and therefore has also FPC’s for some of the prover’s inferences. Addi-
tionally, it includes a parser that translates E-prover’s proofs into proof certifi-
cates. Checkers is a proof-of-concept implementation validating the feasibility of
applying the ideas of ProofCert to “real life” theorem provers. Its development
provided insights on practical challenges of such systems and clarified the kind
of compromises the provers and the checkers need to deal with. Fortunately,
we have found that proof objects using the TPTP syntax [9] can be straight-
forwardly translated to a proof certificate for checkers. Unfortunately, as far as
we know, no prover uses exactly this syntax, but an approximation of it. We
explain this point further in Section 2.3 and discuss what are the characteristics
required for our tool. We also use a simple and modular architecture which can
be extended with other FPC’s for other inferences and formats.

This paper is organized as follows: Section 2 explains the architecture of the
proof checker software, each of its components in detail and an overview on
the syntax for FPC’s. Section 3 explains the experiments on E-prover’s proof
objects, the challenges faced and the solutions implemented. Section 4 compares
checkers with other proof checking software. Finally, Section 5 concludes the
paper pointing to future work.

2 Checkers

Proof
evidence

Proof
certificate

FPC
specificationParser Kernel(s) yes/

no

Fig. 1. High-level architecture of checkers.

The main components of checkers are depicted in Figure 1. Right now, we
explain only briefly the function of each one and how they relate to each other.
On the next sections we give more details.

Proof Evidence. This is the actual proof we aim to check and the input for
checkers. It is the output of a theorem prover which is supposed to describe a
proof.

Parser. The parser is a software component that translates the proof evidence
into a proof certificate in a format that can be understood by the kernel. Such
translation should be purely syntactical, not performing any logical or semantic
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transformation on the proof evidence. Because of this requirement, it might be
the case that the proof evidence of some provers need to be adapted to give
more (or less) structured information1. The parser in checkers is implemented in
OCaml using ocamlyacc and ocamllex.

Proof Certificate. This file is generated by the parser for a given proof evidence
file. Ideally it contains the same proof as the later, only in a different syntax. In
practice, we are skipping a pre-processing step (clausal normal form transforma-
tion) for simplification purposes, but checking E-prover’s CNF transformation is
trivial as it is the standard deterministic one. Therefore, as of now, checkers will
verify that the proof evidence represents a proof (or refutation) of the clauses
after the input problem is transformed to clausal normal form. We expect to fill
in this gap in the future. The clauses and inferences operating on them are the
content of the proof certificate. The certificate needs to be in a comprehensible
syntax for the kernel. As the kernel is implemented in λProlog [8], the certificate
is composed of a λProlog module (.mod file) and signature (.sig file).

FPC Specification. In contrast to the proof certificate, which is generated for
each proof evidence, an FPC specification corresponds to the proof format of
a theorem prover. Every proof evidence file of the same theorem prover should
be checked with the same FPC specification. The content of these files is a
specification of clerks and experts [3]. These are predicates which will interface
with the kernel and provide directives during proof checking (e.g. which term to
choose for an existential quantifier or which formula to decompose next). The
files are also a λProlog module and signature.

Kernel(s). The kernel is the key component of checkers. It consists of a small
and trustable implementation of the focused sequent calculus for classical logic
(LKF). The choice to implement this component in λProlog is due to the fact that
rules in sequent calculi are straightforwardly encoded in a logic programming
language and proof construction is directly represented by the execution of logic
programs. Inferences in the theorem prover’s system are ultimately translated to
derivations in the kernel’s system, i.e., LKF. The correctness of each inference
is guaranteed by the correctness of the corresponding derivation (adequacy).
A small and trusted kernel increases the confidence that such derivations are
correct.

2.1 Kernels

The kernel is an implementation of the LKF a [4] sequent calculus. The λProlog
language [8] was chosen for the implementation because of its direct support for
λtree syntax, hypothetical reasoning capabilities, typing mechanism and logic-
based module system. It is a logic programming language based on so called

1 In fact, this has already triggered a dialog between us and developers of theorem
provers, including Stephan Schultz, the developer of E-prover.
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hereditary Rasiowa-Harrop formulas (or hRHf) instead of the less expressive
Horn clauses. The LKF a system is obtained by augmenting the LKF system[6]
with a communication protocol. Relying on the focusing behavior, this proto-
col allows the proof certificate to interact with the kernel, providing guiding
information at specific moments. These moments are justified from the focusing
paradigm itself: focused systems organize a proof into invertible phases, where
only reversible rules are used, and focused phases, where a single formula is
selected to be subject to a sequence of potentially non-invertible rules. The ro-
bustness of the kernel is twofold. First, augmenting LKF with this protocol is
soundness-preserving, i.e., the kernel will never accept a falsehood regardless
of how badly (or even maliciously) a proof certificate is written. Second, the
kernel is an inference-based system whose implementations, in presence of back-
tracking and unification, are concise: for each inference rule in LKF a, there is a
hRHf predicate (taking 2 to 4 lines) that is a direct writing of that rule, making
the code highly readable. Some additional basic predicates are added for basic
testing such as list membership. The current implementation of the kernel is
about one hundred lines long. Understanding focusing or background in logic
programming are not required (but particularly helpful) for using this system.

2.2 Semantics of Proof Evidence

One of the main desiderata for the ProofCert project is the ability to check
proof evidence in a wide variety of formats or languages. One way of doing so
is to translate all proof evidence into one language and check that language.
This method, reminiscent of Automath, is used by the proof checker Dedukti [2]
which translates all outputs of provers based on the lambda-cube, as well as
some classical theorem provers, into λΠ-modulo theory. The ProofCert project
takes a different approach. Instead of translating proof evidence from the origi-
nal language L to some other unique language, (thus altering the notion of proof
known to the user), the semantics of the language L are defined in a relational
setting such that the kernel checker can perform any proof evidence written in
that language, much like one can, based on the semantics of a programming
language, define interpreters compatible with that semantics that perform any
programs written in that language. Using a relational instead of a functional
setting allows for various level of details in proof evidence when the kernel is
supplied with proof reconstruction abilities. For instance, a witness for an exis-
tential can be left out of proof evidence and found through unification during
proof checking. A semantics definition for a language L, added to parsed proof
evidence written in that language, yields a proof certificate.

A paramodulation proof, in the sense of Robinson & Wos [10], is a series of
steps where each step introduces a non axiomatic formula from the paramodu-
lation from a second formula into a third formula. These steps may or may not
exactly specify the subterms on which the paramodulation is done. In this base
language, a proof consists of ordered triples of formulas, or of indices of formulas.
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Consider the following example:

1. h(g(g(c))) �= g(g(g(c)))

3. ∀X1.∀X2.h(f(g(X1), X2)) = g(X2)

4. ∀X1.f(X1, g(X1)) = g(X1)

2. ∀X1.h(g(g(X1))) = g(g(g(X1))) (from 3 into 4)

0. false (rewriting on 1 and 2)

This is an arguably reasonable output to request from a paramodulation-
based prover. Indeed, many possible sophisticated strategies and heuristics can
be used by such a tool but if it is, indeed, based on paramodulation, it should
come at close to no cost to output a paramodulation-like proof in a language
that resembles the base language mentioned above. In the case of E-prover, the
output does not always resemble a paramodulation proof and we restricted our
efforts to those E-prover outputs that are paramodulation-like.

2.3 Certificate

As mentioned before, the certificate built from a proof evidence is a λProlog
module [8]. This means it is composed of two files: a module (extension .mod)
and its signature (extension .sig). The module contains one predicate describing
the proof of the following shape:

resProblem Name Clauses Inferences Map.

The resProblem predicate specifies a resolution refutation of an unsatisfiable
set of clauses. Additionally, the module contains predicates of the form inSig

f. for declaring each function symbol f occurring in the proof. The arguments
of resProblem are:

– Name: This is a string representing the name of the problem. It can be any
name chosen by the user and it should be enclosed in double quotes.

– Clauses: This is a list of clauses which are refuted. They are represented
using the pr (for pair) term constructor that takes as arguments an integer
(the index of the clause) and a clause.

– Inferences: The actual inferences of the proof are encoded with the resteps
term constructor. The argument of this constructor is a list of inferences in
the shape inf (id (idx i)) (id (idx j)) k, where inf is an inference
name declared in the FPC and corresponding exactly to an inference used
by E-prover, id is a constructor mapping an index to a clause and k is an
index. The semantics of this constructor is that inference inf is applied to
clauses with indices i and j, resulting in the clause with index k. The order
of such inferences must be the same one as in the proof.

– Map: This is a function map which takes a list of pr terms mapping indices
to clauses. These are all the clauses used in the proof.
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type f i -> i -> i. type c i. type g i -> i. type h i -> i.

Fig. 2. Proof certificate: signature

resProblem "simple" [

(pr 4 (all (X1\ (n ((f X1 (g X1)) == (g X1)))))),

(pr 3 (all (X1\ (all (X2\

(n ((h (f (g X1) X2)) == (g X2 )))))))) ,

(pr 1 (p ((h (g (g c))) == (g (g (g c))))))]

(resteps [pm (id (idx 3)) (id (idx 4)) 2,

rw (id (idx 1)) (id (idx 2)) 0,

cn (id (idx 0)) 0])

(map [

pr 4 (all (X1\ (n ((f X1 (g X1)) == (g X1))))),

pr 3 (all (X1\ (all (X2\

(n ((h (f (g X1) X2)) == (g X2 ))))))) ,

pr 0 f-,

pr 2 (all (X1\ (n ((h (g (g X1))) == (g (g (g X1))))))) ,

pr 1 (p ((h (g (g c))) == (g (g (g c)))))

]).

inSig h.

inSig g.

inSig f.

Fig. 3. Proof certificate: module

The signature file contains simply the type declarations of all the symbols
used in the certificate. Figures 2 and 3 show the signature and module files for
a proof certificate of the paramodulation proof in Section 2.2.

The TPTP format for problems and proofs consists of a set of predicates of
the following shape [9]:

language(name, role, formula, source, useful info).

In the case of proofs, source is a file predicate (in case the formula is obtained
from the input file) or an inference predicate (in case the formula is the result
of applying an inference to other formulas). Most provers do not use exactly such
format though, but some variant of it. One of the reasons for choosing E-prover
for our experiments was because its output in TPTP syntax comes closest to
the formal specitication of the TPTP format2.

Transforming a file with such predicates into a proof certificate in our syntax
is fairly straightforward. One needs simply to collect all the formulas and how
they were derived. If source is file, then the formula is an axiom. If source is
inference, it has the shape:

inference(inference name, inference info, parents).

2 By private communication with Geoff Sutcliffe.
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This means the formula was a result of applying inference name to parents. An
important requirement is that the parents must be names of previously computed
clauses or axioms (as specified in [9]). Unfortunately, a large number of proofs
from E-prover contain nested inferences: the parents are not names of clauses
but other inference predicates. Take the following line coming from an actual
E-prover proof (where F is some formula):

cnf(c_0_6, negated_conjecture, F, inference(rw, [status(thm)],

[inference(rw, [status(thm)], [c_0_3, c_0_4]), c_0_4])).

This line specifies that a rewriting step is done on clauses c 0 3 and c 0 4,
obtaining some intermediate clause c, which is used in another rewriting step
with c 0 4 to obtain c 0 6. Wihtout knowing the intermediate clause, we would
need to perform proof search in order to guess what is derived and how it is used
afterwards. This search might be non-terminating, and therefore, would not be
much different than theorem proving itself. It is admissible for a proof checker
to perform simple and decidable proof search, but anything more complicated
than that will defeat its purpose. For this reason we have decided to work only
with what we call proper proof objects, i.e., those that name all clauses used in
the proofs and list the parents of each inference using these names.

Such requirement should not be considered a drawback of our approach, but
a step in the direction of uniformization. We note that, for the SAT community,
the tracecheck format has a similar requirement. Moreover, the feature of out-
putting the proof with all intermediary steps is in the future plans for E-prover
(as we were informed by its principal developer).

Given a proof in the TPTP syntax, we can build a directed acyclic graph,
from where the proof certificate can be extracted. Since we do not yet have a
checking procedure for the normalization of input formulas (transformation to
clausal normal form), when traversing the graph, whenever a clause resulting
from normalization is encountered, we consider it to be an axiom instead of
searching for its parents.

3 Experiments

A natural set of problems on which to experiment Checkers is the output of
theorem provers on the TPTP library. Since we only support a subset of E-
prover’s inferences, namely paramodulation and rewriting, we restrict this set to
755 unsatisfiable problems of all difficulties and sizes and from different domains
using the TPTP problem finder3 by allowing only proofs having pure equations
with unit equality.

A very interesting experiment would have been to try Checkers on wrong E-
prover refutations of satisfiable clause sets. We could not find, however, such
cases using the problem finder.

In the rest of this section, we describe our attempt of trying to certify E-prover
refutations on the above set of problems. Our experiment consisted of running

3 http://www.cs.miami.edu/~tptp/cgi-bin/TPTP2T

http://www.cs.miami.edu/~tptp/cgi-bin/TPTP2T
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E-prover using a ten-minute timeout, parsing the result using our parser and then
running Checkers on the generated files. The results of this paper were obtained
using Checkers on SHA a754baf and Teyjus on SHA 469c04e.

As can be seen from Fig. 4, Checkers managed to certify all problems which we
managed to parse, but we have managed to parse only a fraction of the produced
proofs. Out of 639 TPTP proofs which were produced by E-prover using our
timeout (giving enough time, E-prover can refute all 755 problems in the set),
we were able to parse only 10 problems into proof certificates which could be
fed to Checkers. The certificates obtained for these problems can be found in
src/tests/eprover and can be checked by running the program. 39 problems
indeed failed because of our missing support for the whole range of E-prover
inferences. But the vast majority failed to be parsed because they contained
nested inferences. As discussed in Section 2.3, such constructions would require
the proof checking software to perform (possibly non-terminating) proof search.

TPTP
problems

filtering E-prover
755

116

639

timed-out

590

39

10

implicit inferences

unsupported inferences

10
prover.sh

Checkers

Fig. 4. Experimenting with Checkers, E-prover and the TPTP library.

4 Related Work

Currently there are several well-established tools for checking proofs, such as
Mizar [5] for mathematical proofs, the EDACC [1] verifier for SAT solvers, LFSC
[12] for SMT solvers and Dedukti for general proofs. Dedukti, being a univer-
sal proof checker (see Section 2.2 for a brief description), is the closest to our
approach. The soundness of of Dedukti depends on the soundness of the transla-
tion into λΠ-terms and on the soundness of the rewriting rules. In general, most
of the proof checkers mentioned above combine formal proof verification with
non-verifiable computation component. This makes these proof checkers more
practical on the one hand, but less trustable on the other. Since Checkers does
not require translations of the theorem, its soundness depends only on that of its
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trusted kernel, making it a relatively trustable solution. The fact that its kernel
is only about 100 lines, compared to about 1500 lines of Dedukti for example, in-
creases even further its trustiness since the kernel can be implemented by various
people and in various programming languages. On the other hand, Checkers can
support computational steps in the form of modules of relational specifications
(FPC), each giving the semantics of certain computations and which can be used
by other FPC to define coarser deduction rules or computations. In this paper
we have presented the FPC for the semantics of the standard paramodulation
rule, which is used by the FPC of E-prover. But, one can provide modules of
general term-rewriting rules as well.

Checkers can also be compared with theorem provers and proof assistants,
such as Coq and Isabelle, which have a trusted kernel for checking their proofs.
In order to use these tools, one has to translate the proofs objects to those
used by these tools and also trust their kernels, which consist of thousands of
lines of code. Therefore, the aim in the community is to use dedicated and more
trusted checkers for certifying even the proofs of these tools, as can be seen by
the translations of both Coq and HOL proofs into the language of Dedukti.

5 Conclusion

In this paper we have described a new tool for proof checking which is based on
a small and trusted kernel and which aims on supporting a wide range of proof
calculi and prover’s outputs. The need for such a tool is growing since theorem
provers are getting more complex and therefore, less trustable. For demonstration
purposes, we have chosen to interface with E-prover, one of the leading theorem
provers. Our choice was mainly based, as we mentioned before, on the fact that,
while still not perfect, E-prover has the best support for TPTP syntax.

The main obstacle is the use of implicit inferences inside the proofs. In order
to overcome that, one must replace these inferences by actual proofs obtained by
search and this search might not terminate. This solution is both contradictory
to the role of proof checkers and impractical due to our attempt to certify proofs
using the sequent calculus.

Checkers supports a modular construct for the definition of the semantics of
proof calculi (see Sec. 2.2). By writing FPC’s, it is possible for implementors of
theorem provers to give the semantics of their proof calculus which is required in
order to complement the proof objects. The FPC for the semantics of E-prover’s
pm and rw inferences (see /src/fpc/resolution/eprover) is a good example
for that as it consists only of a few lines of code. Understanding the FPC’s for
resolution and paramodulation, while not required, can help the implementors
produce better proof objects which might improve proof certification.

The main shortcoming of using Checkers to certify the proofs of a certain
theorem prover lies in the fact that there is no clear definition of what is a
“proper” proof object. We hope that the further development of Checkers for
other proof formats will make it clear how such object should be defined and
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thus help implementors of theorem provers to have some guidelines on what
information proof evidences should contain.

The next step is extending Checkers with other inferences from E-prover as well
as experimenting with other formats. In the future we expect to use Checkers to
certify the proofs generated in the CASC4 competition. As of now, there is no
possibility of checking whether the competitors are producing a valid proof and
we hope that this feature will be greatly appreciated by the community. This
will definitely require an effort on both sides and we wish to collaborate with
theorem prover writers to agree on a proof evidence format that suits both sides.
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Abstract. Classical higher-order logic is suited as a meta-logic in which
a range of other logics can be elegantly embedded. Interactive and au-
tomated theorem provers for higher-order logic are therefore readily ap-
plicable. By employing this approach, the automation of a variety of
ambitious logics has recently been pioneered, including variants of first-
order and higher-order quantified multimodal logics and conditional log-
ics. Moreover, the approach supports the automation of meta-level rea-
soning, and it sheds some new light on meta-theoretical results such
as cut-elimination. Most importantly, however, the approach is relevant
for practice: it has recently been successfully applied in a series of ex-
periments in metaphysics in which higher-order theorem provers have
actually contributed some new knowledge.

In 2008, in a collaboration with Larry Paulson, I have started to study em-
beddings of first-order and higher-order quantified multimodal logics in classical
higher-order logic (HOL) [15,17]. Key motivation has been the automation of
non-classical logics for which no automated theorem provers (ATPs) were avail-
able till then. Together with colleagues and students the approach has since
been further developed and adapted for a range of other non-classical logics
[16,3,10,19,2,12,6,4,20,22,9,8,40]. A recent highlight has been the application of
the approach to a prominent and widely discussed argument in metaphysics:
Kurt Gödel’s ontological argument for the existence of God [14,13]. This work,
conducted jointly with Bruno Woltzenlogel Paleo (TU Vienna, Austria; now
ANU Canberra, Australia), received a media repercussion on a global scale. The
logic embedding approach has been central to this success.

Section 1 outlines the main advantages of the approach, and Section 2 dis-
cusses some key results from our application studies in metaphysics.

1 Advantages of the Logic Embedding Approach

Pragmatics and Convenience. ’Implementing’ an interactive or automated theo-
rem prover is made very simple, even for very challenging quantified non-classical
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logics. The core idea is to introduce the connectives (and meta-level predicates
such as ‘validity’) of the embedded logic as abbreviations of certain lambda terms
in HOL, for example, by encoding Kripke style semantics. Exemplary embed-
dings for various challenging logics have been discussed in the papers referenced
above. Amongst these logics are variants of conditional logic, multimodal logic,
intuitionistic logic, hybrid logic, tense logic, paraconsistent logic, etc. For the
mentioned application in metaphysics it is has been particularly important to
mechanise variants of higher-order modal logics (HOML).

Flexibility. The approach is flexible and supports rapid experimentations with
logic variations. For example, quantifiers for constant, varying and cumulative
domains may be introduced, rigid or non-rigid terms may be considered. More-
over, in order to arrive at particular modal logics such as S4 or S5 from base logic
K, respective Sahlqvist axioms may be postulated. Alternatively (and prefer-
ably), one may simply state the corresponding conditions (like symmetry, reflex-
ivity and transitivity) of the accessibility relation directly in HOL. Analogous
logic axiomatisations are possible for e.g. conditional logics. Moreover, to sup-
port multiple modalities, indexed box operators (the indices being accessibility
relations) can be formalised and different combination schemes are possible. Fur-
thermore, prominent connections between logics can be formalised and exploited.
For example, Fig. 2 in [18] shows how the modal �-operator can be defined in
terms of conditional implication.

Availability. The embedding approach is readily available. Option one is to reuse
and adapt the TPTP THF0 [39] encodings of the various logic embeddings as
provided in our papers (see e.g. Fig.1 in [22]). This turns any THF0-compliant
prover, such as LEO-II [18], Satallax [27] or Nitpick [26], into a reasoner for
the embedded logic. Note that a range of prominent THF0 provers can even
be accessed remotely via Geoff Sutcliffe’s SystemOnTPTP infrastructure [38].
Options two and three are to reuse and adapt our Isabelle [32] and Coq [24]
encodings (see e.g. Sections 4.2 and 4.3 in [22]). This turns these prominent sys-
tems into proof assistants for the embedded logics, and tools like Sledgehammer
[25] can be employed to call external HOL ATPs. In many experiments we have
even employed these three options simultaneously.

Relation to Labelled Deductive Systems. The embedding approach is related
to labelled deductive systems [29], which employ meta-level (world-)labelling
techniques for the modeling and implementation of non-classical proof systems.
In the embedding approach such labels are instead encoded directly in the HOL
logic; no extra-logical annotations are required.

Relation to the Standard Translation. The embedding of modal logics in our ap-
proach is related to the standard relational translation [33]. In fact, (for proposi-
tional modal logics) the approach can be seen as intra-logical formalisation and
implementation of the standard translation in terms of a set of (equational) ax-
ioms or definitions in HOL. However, in our work we have extended the approach
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to various other logics, and, in particular, to support first-order and higher-order
quantification including different domain conditions. Future work could investi-
gate whether the functional translation [34] could provide a suitable alternative
to the current relational core of the approach.

Soundness and Completeness. The embedding approach has been shown sound
and complete for a range of different logics, see e.g. [17,4,14]. The reference
semantics for HOL has been Henkin semantics, that is, the semantics that is
also supported by THF0 compliant higher-order provers [11].

Meta-reasoning. Reasoning about logics and about logic relationships is sup-
ported in the embedding approach. For example, a systematic verification of the
modal logic cube in Isabelle is presented in [9] and Fig. 10 in [22] illustrates the
verification of some meta-level results on description logic ALC (soundness of
the usual ALC tableaux rules and correspondence between ALC and base modal
logic K). Some meta-level results for conditional logics are presented in [4].

Cut-Elimination. At a proof-theoretic level, the approach gives rise to a very
generic (but indirect) cut-elimination result for the embedded logics [5]. This
work combines the soundness and completeness results mentioned above with
the fact that HOL already enjoys cut-elimination for Henkin semantics [7].

Direct Calculi and User Intuition. The approach supports the additional im-
plementation of ‘direct’ proof calculi on top of the respective logic embeddings.
For example, in [23] the implementation of a natural deduction style calculus for
HOML in Coq is presented; the rules of this calculus are modeled as abstract-level
tactics on top of the underlying embedding of HOML in Coq. Human intuitive
proofs are thereby enabled at the interaction layer, and proofs developed at that
level are directly verified by expanding the embedding in HOL. Automation at-
tempts with HOL ATPs can be handled as before. The combination of the direct
approach and the embedding approach thus provides an interesting perspective
for mixed proof developments. Future work could also investigate whether proof
planning [31,28] can be employed to additionally automate the abstract-level
direct proof calculi. Proof assistants in the style of Ωmega [36] could eventually
be adapted for this, and Ωmega’s support for 3-dimensional proof objects might
turn out particularly useful in this context.

2 Results from Recent Applications in Metaphysics

In recent work [14,13] we have applied the embedding approach to investigate
a philosophical argument that has fascinated philosophers and theologians for
about 1000 years: the ontological argument for the existence of God [37].

Our initial focus was on Gödel’s [30] modern version of this argument (which
is in the tradition of the work of Anselm of Canterbury) and on Scott’s [35] mod-
ification. Both employ a second-order modal logic (S5) for which, until now, no
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Fig. 1. Excerpt of LEO-II’s inconsistency proof (for Gödel’s variant of the ontological
argument)

theorem provers were available. In our computer-assisted study of the argument,
the HOL ATPs LEO-II, Satallax and Nitpick have made some interesting obser-
vations [14]; the respective TPTP THF0 formalisation and further information
is available online at http://github.com/FormalTheology/GoedelGod/.

In particular LEO-II was extensively used during the formalisation, and it
was the first prover to fully automate the four steps as described in the notes on
Gödel’s proof by Dana Scott [35]. LEO-II’s result was subsequently confirmed
by Satallax. Interestingly, LEO-II can prove that Gödel’s original axioms [30]
are inconsistent: in these notes definition D2 (An essence of an individual is a
property possessed by it and necessarily implying any of its properties : φ ess . x ↔
φ(x)∧∀ψ[ψ(x) → �∀y(φ(y) → ψ(y))]) is lacking conjunct φ(x), which has been
added by Scott. Gödel’s axioms are consistent only with this conjunct present.
LEO-II’s inconsistency result is new; it has not been reported in philosophy
publications.

http://github.com/FormalTheology/GoedelGod/
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Fig. 2. Reconstruction and verification of LEO-II’s inconsistency argument (for Gödel’s
variant of the ontological argument) in Isabelle

Unfortunately, I have for a long time not been able to extract the key ideas of
LEO-II’s inconsistency proof. This has been due to a combination of aspects, in-
cluding LEO-II’s machine oriented (extensional) resolution calculus, the prover’s
human-unfriendly presentation of the generated proof object (cf. Fig. 1), and
LEO’s complex collaboration with external first-order ATPs, which could not
easily be made fully transparent in the given case.

However, inspired by a discussion with Chad Brown on LEO-II’s proof, we
have recently been able to extract the core argument and reformulated and
verified it as a human friendly, three step inconsistency argument in Isabelle.
This reconstructed, intuitive argument can now even be automated with Metis;
see Fig. 2. There are two core lemmata introduced, which, once they are revealed
and experienced, appear very plausible (“the empty property is an essence of
every individual” and “exemplification of necessary existence is not possible”).

In the meantime, the HOL-ATPs have been successfully employed in further
related experiments in metaphysics [21]. This includes the study and verification
resp. falsification of follow-up papers on Gödel’s work, which try to remedy a
fundamental critique on the argument known as the modal collapse (this was
brought up by Anderson [1]; the HOL ATPs reconfirmed it in our experiments):



218 C. Benzmüller

both, Gödel’s and Scott’s formalisations, imply that ∀φ(φ → �φ) holds, i.e.
contigent truth implies necessary truth.

3 Summary

The embedding approach has many interesting advantages and it provides the
probably most universal theorem proving approach to date that has actually
been implemented and employed.

A key observation from our experiments in metaphysics is that the granularity
levels of the philosophical arguments in the various papers we looked at is already
well matched by today’s automation capabilities of HOL ATPs. In nearly all
cases the HOL ATPs either quickly confirmed the single argumentation steps
or they presented a countermodel. This provides a good motivation for further
application studies (not only) in metaphysics.
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Abstract. Justification logics were introduced by Artemov in 1995 to
provide intuitionistic logic with a classical provability semantics, a prob-
lem originally posed by Gödel. Justification logics are refinements of
modal logics and formally connected to them by so-called realization
theorems. A constructive proof of a realization theorem typically relies
on a cut-free sequent-style proof system for the corresponding modal
logic. A uniform realization theorem for all the modal logics of the so-
called modal cube, i.e., for the extensions of the basic modal logic K with
any subset of the axioms d, t, b, 4, and 5, has been proven using nested
sequents. However, the proof was not modular in that some realization
theorems required postprocessing in the form of translation on the jus-
tification logic side. This translation relied on additional restrictions on
the language of the justification logic in question, thus, narrowing the
scope of realization theorems. We present a fully modular proof of the
realization theorems for the modal cube that is based on modular nested
sequents introduced by Marin and Straßburger.

1 Introduction

Justification logics can be seen as explicit counterparts of modal logics that
replace one modality �, understood as provable or known, etc., by a family
of justification terms representing the underlying reason for the provability or
knowledge, etc. respectively. The formal connection between a modal logic and a
justification logic is provided by a realization theorem, showing that each occur-
rence of modality in a valid modal formula can be realized by some justification
term in such a way that the resulting justification formula is valid, and vice versa.

The first justification logic, the Logic of Proofs LP, was introduced by Arte-
mov [2] as a solution to Gödel’s problem of providing intuitionistic logic with
classical provability semantics. Artemov proved a realization theorem connect-
ing LP with the modal logic of informal provability S4 by means of a cut-free
sequent system for S4.

Justification language enables one to study whether self-referential proofs of
the type t :A(t) are implicitly present in a particular kind of modality [18] or in

� Supported at different stages of research by Austrian Science Fund (FWF) grants:
Lise Meitner M 1770-N25 and START Y 544-N23.

c© Springer International Publishing Switzerland 2015
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Fig. 1. Modal cube

intuitionistic reasoning [22]. Justification logic has also been used in the epistemic
setting to provide the missing formal treatment of justified in Plato’s celebrated
definition of knowledge as justified true belief. In particular, justification language
enables one to analyze in the object language, i.e., on the logical rather than
metalogical level, famous epistemic paradoxes such as Gettier examples showing
the deficiencies of Plato’s definition of knowledge (see an extended discussion of
this and other examples [3]).

For logics lacking a cut-free sequent calculus, constructive proofs of realiza-
tion theorems can be achieved by using more complex sequent-style formalisms,
e.g., hypersequents and nested sequents. In this paper, we focus on realizations
of the 15 modal logics from the modal cube, visualized in Fig. 1 (see [15] for a
detailed explanation of this diagram), i.e., for all extensions of the basic normal
modal logic K with any subset of the axioms d, t, b, 4, and 5. Realization the-
orems for several logics weaker than S4, including the realization of K into the
basic justification logic J, was achieved by Brezhnev [5] using appropriate sequent
calculi. The strongest logic in the cube, S5, which lacks a cut-free sequent repre-
sentation, was realized by Artemov et al. [4] using Mints’s cut-free hypersequent
calculus from [20]. However, several logics from the cube lack even a cut-free
hypersequent representation, which prompted Goetschi and Kuznets [16] to use
cut-free nested sequent calculi introduced by Brünnler [7] to prove realization
for all these 15 modal logics in a uniform way.

Unfortunately, this uniform realization method did not provide a way of real-
izing individual modal principles independently of each other. While for each of
the modal axioms d, t, b, 4, and 5, there is the corresponding justification axiom
and the corresponding nested sequent rule, there are subsets X of these axioms
such that Brünnler’s nested calculus formed from the rules corresponding to the
axioms from X is not complete for the logic K +X and, hence, cannot be used
to prove the realization theorem for K + X . These remaining realization theo-
rems were proved by Goetschi and Kuznets by using additional “postprocessing”:
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namely, by translating operations between justification logics [16]. Thus, their
realization method lacks the desired modularity and also requires to partition
the set of justification constants into countably many strata, an additional level
of complexity one might wish to avoid.

In this paper, we provide a modular and uniform proof of the realization
theorem for all axiomatizations occurring in the modal cube. Our proof makes a
crucial use of the modular nested sequent calculi by Marin and Straßburger [19],
which are complete for each subset X of the five modal axioms. Thereby, no
additional restrictions on the justification language are necessary.

The paper is structured as follows. Section 2 recalls the modal logics of the
modal cube and justification logics realizing them. Section 3 gives a formal def-
inition of realization. Section 4 introduces the modular nested sequent calculi
from [19]. Section 5 supplies notions and auxiliary lemmas used in the proof of
the modular realization theorem, which is presented in Sect. 6.

2 Modal Logic and Justification Logic

2.1 Modal Logic

Modal logic extends propositional logic by modal operators calledmodalities. Let
Prop be a countable set of propositional variables. We use the modal language in
the negation normal form, with negation is restricted to propositional variables:

A ::= p | p | ⊥ | � | (A ∨ A) | (A ∧ A) | �A | ♦A ,

where p ∈ Prop.1 The negation operation A is extended from propositional
variables to all formulas by using De Morgan dualities and double negation
elimination. A ⊃ B is defined as A ∨ B and, by default, is right-associative, as
far as the usual omission of parentheses is concerned.

Definition 1 (Axiom systems for modal logics). The axiom system for
the basic modal logic K is obtained from that for classical propositional logic by
adding the normality axiom k and the necessitation rule nec:

k : �(A ⊃ B) ⊃ (�A ⊃ �B) , nec :
� A

� �A
.2

1 The use of negation normal form here is inherited from [19]. Such calculi can be
easily modified to work with not-atomic negations, see, e.g., [13], but there is a price
to pay. Either one loses (the naive formulation of) the subformula property or the
underlying sequents need to be two-sided as, e.g., in [12].

2 Note that such a rule may not be sound if applied to derivations with local assump-
tions, i.e., with assumptions contingently true rather than universally true. Since
our setting does not require distinguishing global and local assumptions (see [14,
Sect. 3.3] for details), we restrict the necessitation rule to derivations without as-
sumptions. In particular, this guarantees the validity of the Deduction Theorem [17].
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The axiom systems for modal logics of the modal cube are obtained by adding
to the axiom system for K a subset of the following axioms:

d : �⊥ ⊃ ⊥ , t : �A ⊃ A , b : ¬A ⊃ �¬�A ,

4 : �A ⊃ ��A , 5 : ¬�A ⊃ �¬�A .

All the 15 modal logics of the modal cube are depicted in Fig. 1, see also [15].
Since 5 axioms produce 32 possible axiomatizations, some axiomatizations define
the same logic. The name of the logic is typically derived from one of its axiom-
atizations, with the exception of the logic S4, axiomatized, e.g., by t and 4, and
the logic S5, obtained from S4 by adding the axiom 5. We denote an arbitrary
logic from the modal cube by ML.

2.2 Justification Logic

Instead of the modality �, justification logic employs a family of justifica-
tion terms built from justification constants d0, d1, . . . and justification variables
x0, x1, . . . by means of several operations according to the following grammar:

t ::= xi | di | (t · t) | (t+ t) | ! t | ? t | ? t .

The language of justification logic is defined by the following grammar

A ::= p | ⊥ | (A ⊃ A) | t :A ,

where p ∈ Prop. Formulas t : A are read “term t justifies formula A.”

Definition 2 (Axiom systems for justification logics). The axiom system
for the basic justification logic J is obtained from that for classical propositional
logic by adding the axioms app and sum and the axiom necessitation rule AN:

sum : s : A ⊃ (s+ t) : A , t :A ⊃ (s+ t) : A ,

app : s : (A ⊃ B) ⊃ (t : A ⊃ (s · t) : B) , AN :
A is an axiom

cn : . . . : c1 :A
.

The axiom systems for justification logics realizing modal logics of the modal
cube are formed by adding to the axiom system for J a subset of the following
axioms:

jd : t :⊥ ⊃ ⊥ , jt : t : A ⊃ A , jb : A ⊃ ? t : ¬t : ¬A ,

j4 : t :A ⊃ ! t : t : A, j5 : ¬t : A ⊃ ? t : ¬t : A .

The intended meaning of the operations ·, +, !, ?, and ? can be read off these
axioms. For instance, · is the application known from λ-calculus and combinatory
logic and + can be viewed as the monotone concatenation of proofs.

For each combination of axioms added to the axiom system for J, the name of
the corresponding justification logic is formed by writing the capitalized axiom
names and dropping all letters J except for the first one, e.g., the axiom system
for JT4 is that of J with the addition of the axioms jt and j4 (this logic is better
known as the Logic of Proofs LP). Note that the axiom jt subsumes the axiom jd,
meaning that there are only 24 instead of 32 logics obtained this way. We denote
any of these 24 logics by JL.
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3 Realization Theorems

In this section, we define the formal connection between modal and justifica-
tion logics by means of realization theorems. Intuitively, a realization theorem
states that, for a given modal logic ML and justification logic JL, each valid fact
about justifications in JL corresponds to a valid fact about modalities in ML
and vice versa. In other words, JL describes the same kind of validity as ML but
in the language refined with justification terms. Formally, the correspondence is
formulated in terms of the forgetful projection.

Definition 3 (Forgetful projection). The forgetful projection (·)◦ is a func-
tion from the justification language to the modal language defined as follows:

p◦ := p , ⊥◦ := ⊥ , (B1 ⊃ B2)
◦ := B◦

1 ⊃ B◦
2 , (t :B)◦ = �B◦ .

The forgetful projection is extended to sets of justification formulas in the stan-
dard way, i.e., X◦ := {A◦ | A ∈ X}.

Definition 4 (Justification counterparts). For a justification logic JL and
a modal logic ML, we say that JL is a justification counterpart of ML if

JL◦ = ML .

We also say that ML is the forgetful projection of JL, or that JL realizes ML,
or that JL is a realization of ML.

The first realization theorem was proved by Artemov [2]. He established that
the Logic of Proofs LP is a justification counterpart of the modal logic S4, known
to be the modal description of intuitionistic provability.

Theorem 5 (Realization of S4). LP◦ = S4.

Example 6 ([2]). The theorem �p ∨ �q ⊃ �(�p ∨ �q) of S4 can be realized,
for instance, by the theorem x : p ∨ y : q ⊃ (a · !x + b · ! y) : (x : p ∨ y : q) of
LP. Note that this realization has an additional normality property: all negative
occurrences of � are realized by distinct justification variables. It is customary to
prove realization theorems in the stronger formulation requiring that every modal
theorem possess a normal realization derivable in the justification counterpart in
question. In particular, Artemov proved Theorem 5 in this stronger formulation.
All the realization results in this paper presuppose this stronger formulation,
unless stated otherwise.

There are three main methods of proving realization theorems:

– syntactically by induction on a cut-free sequent-style derivation, see [2],
[5], and [10] for sequents, [4] for hypersequents, and [16] for nested sequents;

– semantically using the so-called Model Existence Property [9], [21], [11];
– by embedding a modal logic into another logic with a known realization

theorem and bringing the obtained realization to the requisite form by jus-
tification transformations [16], [8].
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The semantic method is slightly less preferable because it does not ordinarily
provide a constructive realization procedure. Goetschi and Kuznets in [16] have
proved the realization for the whole modal cube by combining the syntactic and
embedding methods. Our goal in this paper is to achieve the same result by the
syntactic method only and in a modular manner.

It should come as no surprise that a justification counterpart JL of a given
modal logic ML is often built by justification axioms similar to the modal axioms
of ML. Indeed, S4 = K+ t+ 4 and LP = J+ jt+ j4. This can, however, lead to a
situation where different axiomatizations of the same modal logic correspond to
axiomatizations of different justification logics: there are 24 justification logics
corresponding to only 15 modal logics of the modal cube. Thus, while the for-
getful projection of a justification logic is unique, a modal logic may have more
than one justification counterpart. In the modal cube, the logic with the most
axiomatizations and, hence, the most justification counterparts is S5 = S4 + 5:
its justification counterparts include JT45, JT5, JTB5, JTB45, JDB5, JDB45,
JDB4, and JTB4 (see [16]).

4 Modular Nested Sequent Calculi

To achieve a fully modular realization theorem, we are using slightly modified
(see Remark 12) modular nested sequents by Marin and Straßburger from [19].
In this section, we give all the necessary definitions for and modifications of their
formalism.

Definition 7 (Nested sequents). A nested sequent is a sequence of formulas
and brackets defined by the following grammar:

Γ ::= ε | Γ,A | Γ, [Γ ] ,

where ε is the empty sequence, and A is a modal formula.

The comma denotes sequence concatenation and plays the role of structural
disjunction, whereas the brackets [·] are called structural box. From now on, by
sequent we mean a nested sequent. Sequents are denoted by uppercase Greek
letters. Nested sequent calculi are an internal formalism, meaning that every
sequent has a formula interpretation.

Definition 8 (Formula interpretation). The corresponding formula of a se-
quent Γ , denoted by Γ is defined as follows:

ε := ⊥; Γ,A :=

{
Γ ∨ A if Γ 	= ε,

A otherwise;
Γ, [Δ] :=

{
Γ ∨�Δ if Γ 	= ε,

�Δ otherwise.

To describe the application of nested rules deeply inside a nested structure,
the concept of context is used.
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Fig. 2. Nested sequent calculus NK for the modal logic K

Fig. 3. Additional logical rules corresponding to the axioms d, t, b, 4, and 5

Definition 9 (Context). A context is a sequent with the symbol hole { } in
place of one of the formulas. Formally,

Γ{ } ::= Δ, { } | [Γ{ }] | Γ{ }, Δ ,

where Δ is a sequent. A sequent Π can be inserted into a context Γ{} by replacing
the hole { } in Γ{ } with Π. The result of such an insertion is denoted Γ{Π}.

Example 10. Let Γ{ } =
[
{ }, [D]

]
and Π = [F ], B. Then Γ{Π} =

[
[F ], B, [D]

]
.

Definition 11 (Nested sequent calculi for the modal cube, [19]). The
rules of Marin–Straßburger’s modular nested sequent calculi are divided into
three groups. The rules of the calculus NK for the basic modal logic K can be found
in Fig. 2. Additional rules used to obtain calculi for the remaining 14 logics of the
modal cube are divided into logical rules in Fig. 3 and structural rules in Fig. 4.

Remark 12. In [19], the calculus NK and its extensions are based on multisets.
However, since sequence-based nested sequents are necessary to use the realiza-
tion method from [16], we modify the system in the same way as Goetschi and
Kuznets did in [16] with Brünnler’s nested sequent calculi from [7]: namely, we
add the exchange rule exch. The only other modification compared to [19] is the
use of the rules 5a�, 5b�, 5c�, 5a[], 5b[], and 5c[] instead of two more compact
but non-local two-hole rules. The possibility to replace such a two-hole rule with
three single-hole rules was first observed by Brünnler [7].

Marin and Straßburger [19] showed that these calculi are complete with re-
spect to the corresponding modal logics in a modular way:
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Γ{[ε]}
Γ{ε} d[]

Γ{[Δ]}
Γ{Δ} t[]

Γ{[Σ, [Δ]]}
Γ{[Σ], Δ} b[]

Γ{[Δ], [Σ]}
Γ{[[Δ], Σ]} 4[]

Γ{[Π, [Δ]]}
Γ{[Π], [Δ]} 5a[]

Γ{[Π, [Δ]], [Σ]}
Γ{[Π], [[Δ], Σ]} 5b[]

Γ{[Π, [Δ], [Σ]]}
Γ{[Π, [[Δ], Σ]]} 5c[]

Fig. 4. Additional structural rules corresponding to the axioms d, t, b, 4, and 5

Theorem 13 (Modular completeness of nested calculi). For a set of ax-
ioms X ⊆ {d, t, b, 4, 5}, we denote by X� the set of corresponding nested rules:
X� := {r� | r ∈ X}, where 5� abbreviates the set of three rules 5a�, 5b�, and 5c�.
The definition of X [] is analogous. For any modal formula A,

K+X � A ⇐⇒ NK+X� +X [] � A .

5 Auxiliary Definitions and Lemmas

Unlike the realization method applied by Artemov to a sequent calculus for S4,
the method developed for nested sequents in [16] requires complex manipulations
with the realizing terms, which necessitates careful bookkeeping and, hence, ad-
ditional notation. In particular, all modalities, structural or otherwise, are anno-
tated with integers, so that it becomes possible to refer to particular occurrences
of modality and to record the realizing term for each occurrence.

5.1 Annotations

Definition 14 (Annotation, proper annotation). Annotated modal formu-
las are defined in the same way as modal formulas, except that each occurrence
of � (♦) must be annotated with an odd (even) natural number.

Annotated sequents (contexts) are defined in the same way as sequents (con-
texts), except that annotated modal formulas are used instead of modal formulas
and that each occurrence of the structural box must be annotated by an odd natu-
ral number. The corresponding formula of an annotated sequent is an annotated
formula defined as in Definition 8, except for the last case, which now reads:

Σ, [Δ]k :=

{
Σ ∨�kΔ if Σ 	= ε,

�kΔ otherwise.

A formula, sequent, or context is called properly annotated if no index occurs
twice in it.

If all indices are erased in an annotated formula A (sequent Δ, context Γ{ }),
the result A′ (Δ′, Γ ′{ }) is called its unannotated version and, vice versa, we
call A (Δ, Γ{ }) an annotated version of A′ (Δ′, Γ ′{ }).
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pr := p (p)r :=¬p (�2k−1A)r := r(2k − 1) : Ar

⊥r :=⊥ �r :=� (♦2lA)r :=¬r(2l) : ¬Ar

(A ∨ B)r :=Ar ∨ Br (A ∧ B)r :=Ar ∧ Br

Fig. 5. Realization of modal formulas

The translation from modal to justification formulas is defined by means of
realization functions that assign realizations to each occurrence of modalities.
Proper realizations have to respect the skolemized structure of modal formulas.

Definition 15 (Pre-realization and realization functions). A pre-realiza-
tion function r is a partial function from natural numbers to justification terms.
A pre-realization function r is called a realization function if r(2l) = xl whenever
r(2l) is defined. If r is defined on all indices occurring in a given annotated
formula A, then r is called a (pre-)realization function on A.

Definition 16. The translation of an annotated formula A under a given pre-
realization function r on A is defined by induction on the construction of A, as
shown in Fig. 5.

In our realization proof, we will use some additional notation:

Definition 17. Let A be an annotated formula and r be a pre-realization func-
tion on A. We define

vars♦(A) := {xk | ♦2k occurs in A} and r � A := r � {i | i occurs in A} .

Here f � S denotes the restriction of f to the set S ∩ dom(f).

5.2 Substitutions

It is easy to see that, due to the schematic nature of their axioms, justification
logics enjoy the Substitution Property: if Γ (x, p) �JL B(x, p) for some justi-
fication variable x and propositional variable p, then for any term t and any
formula F we have Γ (x/t, p/F ) �JL B(x/t, p/F ). The realization method, how-
ever, requires a more precise notation for substitutions of terms for justification
variables and uses some additional standard definitions from term rewriting.

Definition 18 (Substitution). A term substitution, or simply a substitution,
is a total mapping from justification variables to justification terms. It is extended
to all terms in the standard way. For a justification formula A, we denote by Aσ
the result of simultaneous replacement of each term t in A with tσ. The domain
dom(σ) and the variable range vrange(σ) of σ are defined by

dom(σ) := {x | σ(x) 	= x} ,

vrange(σ) :=
{
y |

(
∃x ∈ dom(σ)

)(
y occurs in σ(x)

)}
.
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Definition 19 (Compositions). A substitution σ can be composed with an-
other substitution σ′ or with a pre-realization function r:

(σ′ ◦ σ)(x) := σ(x)σ′ and (σ ◦ r)(n) := r(n)σ .

Definition 20 (Substitution Residence). A substitution σ is said to
– live on an annotated modal formula A if dom(σ) ⊆ vars♦(A),
– live away from A if dom(σ) ∩ vars♦(A) = ∅.

The following lemma is an easy corollary of the given definitions (see also [16]):

Lemma 21. If r is a realization function on an annotated formula A and if a
substitution σ lives away from A, then σ ◦ (r � A) is a realization function on A.

5.3 Internalization

Since in justification logics the modal necessitation rule is replaced with the zero-
premise axiom necessitation rule, which can be treated as an axiom, justification
logics clearly enjoy the Deduction Theorem. One of the fundamental properties
peculiar to justification logics is their ability to internalize their own proofs.
Various aspects of this property are referred to as the Lifting Lemma, the Con-
structive Necessitation, or the Internalization Property. They are easily proved
by induction on the derivation. We use the following form of this property.

Lemma 22 (Internalization). If JL � A1 ⊃ · · · ⊃ An ⊃ B, then there is a
term t(x1, . . . , xn) such that

JL � s1 :A1 ⊃ · · · ⊃ sn :An ⊃ t(s1, . . . , sn) :B

for any terms s1, . . . , sn. In particular, for n = 0, if JL � B, then there exists a
ground3 term t such that JL � t : B.

5.4 Realizable Rules

We now lay the foundation for the realization method: we define what it means
to realize one rule in a given cut-free nested derivation. The complexity of this
definition is due mainly to the necessity to reconcile realizations of the premises
of two-premise rules. The reconciliation mechanism is based on Fitting’s merging
technique from [10]. However, most of the details are described in [16] and will
not be repeated here.

Since realization relies on indices, we first need to define what it means to
annotate nested sequent rules. In defining this, we exploit the fact that all the
rules from Figs. 2–4 are context-preserving, i.e., all changes happen within the
hole while the context, which can be arbitrary, remains unchanged.

3 Containing no justification variables.
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Definition 23 (Annotated rules). Consider an instance of a context-preserv-
ing nested rule with common context Γ ′{ }:

Γ ′{Λ′
1} . . . Γ ′{Λ′

n}
Γ ′{Λ′}

. (1)

Its annotated version has the form

Γ{Λ1} . . . Γ{Λn}
Γ{Λ} , (2)

where
– the sequents Γ{Λ1}, . . . , Γ{Λn}, and Γ{Λ} are properly annotated;
– Γ{ }, Λ1, . . . , Λn, and Λ are annotated versions of Γ ′{ }, Λ′

1, . . . , Λ
′
n, and Λ′

respectively; and
– no index occurs in both Λi and Λj for arbitrary 1 ≤ i < j ≤ n.

Realization functions on annotated formulas were defined in Definition 16. A
realization function on an annotated nested sequent, as well as the properties of
living on/away from an annotated nested sequent, are understood with respect
to its corresponding formula from Definition 14. We are now ready to define
what it means to realize one rule instance in a nested sequent derivation.

Definition 24 (Realizable rule). An instance (1) of a context-preserving rule
with common context Γ ′{ } is called realizable in a justification logic JL if there
exists such an annotated version (2) of it that, for arbitrary realization functions
r1, . . . , rn on the premises Γ{Λ1}, . . . , Γ{Λn} respectively, there exists a realiza-
tion function r on the conclusion Γ{Λ} and a substitution σ that lives on Γ{Λi}
for each i = 1, . . . , n, such that

JL � Γ{Λ1}r1σ ⊃ . . . ⊃ Γ{Λn}rnσ ⊃ Γ{Λ}r .

In particular, for n = 0 it is sufficient that there be a realization function r
on Γ{Λ} such that JL � Γ{Λ}r.

A rule is called realizable in a justification logic JL if all its instances are
realizable in JL.

Goetschi and Kuznets in [16] showed that, in order to prove the realizability
of a rule, it is sufficient to show the realizability of all its shallow instances.

Definition 25 (Shallow rule instance). The shallow version of an instance
(1) of a context-preserving rule is obtained by making the context empty:

Λ′
1 . . . Λ′

n

Λ
.

The method of constructive realization based on nested sequents hinges on
the following theorem:

Theorem 26 (Realization method, [16]). If a modal logic ML is described by
a cut-free nested sequent calculus NML, such that all rules of NML are context-
preserving and all shallow instances of these rules are realizable in a justification
logic JL, then there is a constructive realization of ML into JL.
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5.5 Auxiliary Lemmas

We use the following lemmas to shorten the proofs of realizability for several
shallow rules.

Lemma 27 (Internalized Positive Introspection, [16]). There exist jus-
tification terms t!(x) and pint(x) such that for any term s and any justification
formula A: J5 � pint(s) : (s : A ⊃ t!(s) : s :A).

Lemma 28. There is a term qm(x) such that for any justification formula A
and any term s: JB � ¬A ⊃ qm(s) : ¬s : A.
Proof. Consider the following derivation in JB:

0. p ⊃ ¬¬p propositional tautology
1. x : p ⊃ t1(x) : ¬¬p from 0. by Lemma 22
2. ¬t1(x) : ¬¬p ⊃ ¬x : p from 1. by prop. reasoning
3. ? t1(x) : ¬t1(x) : ¬¬p ⊃ t2(? t1(x)) : ¬x : p from 2. by Lemma 22
4. ¬p ⊃ ? t1(x) : ¬t1(x) : ¬¬p instance of jb
5. ¬p ⊃ t2(? t1(x)) : ¬x : p from 3. and 4. by prop. reasoning

Let qm(x) := t2(? t1(x)). Note that qm(x) depends neither on s nor on A. By
substitution, it follows that JB � ¬A ⊃ qm(s) : ¬s : A. ��

6 Modular Realization Theorem for the Modal Cube

In order to use the realization method from Theorem 26, we need to show that all
shallow instances of all rules from Figs. 2–4 are realizable. For rules in Figs. 2–3,
this has been proved in [16]. Thus, the main contribution of this paper, which
makes the modular realization theorem possible is the proof of realizability for
the rules in Fig. 4. Due to space limitations, we only provide the proofs for select
representative cases.

Lemma 29 (Main lemma).
1. Each shallow instance of ρ ∈ {id,∨,∧, ctr, exch,�, k} is realizable in J.
2. For each ρ ∈ {d, t, b, 4, 5a, 5b, 5c} each shallow instance of ρ♦ and of ρ[] is

realizable in JP, where J5A = J5B = J5C := J5.

Proof. For each rule ρ, we consider its arbitrary shallow instance. Statement 2
for ρ♦ and Statement 1 have been proved in [16]. Statement 2 for ρ[] with
ρ ∈ {d, 4, 5a, 5b} is left for the reader. We give proofs for the remaining 3 rules:

Case ρ = t[]: Let
[Δ′]
Δ′ be an arbitrary shallow instance of t[]. Let [Δ]k be a

properly annotated version of [Δ′]. Then Δ properly annotates Δ′ and [Δ]k
Δ

is

an annotated version of this instance. Let r1 be a realization function on [Δ]k.
For r := r1 and the identity substitution σ, we have

([Δ]k)
r1σ ⊃ Δr = r1(k) :Δ

r1 ⊃ Δr1 ,

which is derivable in JT as an instance of jt.
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Case ρ = b[]: Let
[Σ′, [Δ′]]
[Σ′], Δ′ be an arbitrary shallow instance of b[]. Let

[Σ, [Δ]i]k and [Σ]l, Δ be properly annotated versions of the premise and conclu-

sion respectively. Then
[Σ, [Δ]i]k

[Σ]l, Δ
is an annotated version of this instance. Let

r1 be a realization function on [Σ, [Δ]i]k. The following is a derivation in JB:

0. ¬Δr1 ⊃ qm(r1(i)) : ¬r1(i) :Δr1 by Lemma 28
1. Σr1 ∨ r1(i) :Δ

r1 ⊃ ¬r1(i) :Δr1 ⊃ Σr1 propositional tautology
2. r1(k) :

(
Σr1 ∨ r1(i) :Δ

r1
)

⊃ qm(r1(i)) : ¬r1(i) :Δr1 ⊃
t
(
r1(k), qm(r1(i))

)
:Σr1 from 1. by Lemma 22

3. r1(k) :
(
Σr1 ∨ r1(i) :Δ

r1
)

⊃ from 2. by prop. reasoning

t
(
r1(k), qm(r1(i))

)
:Σr1 ∨ ¬qm(r1(i)) : ¬r1(i) :Δr1

4. ¬qm(r1(i)) : ¬r1(i) :Δr1 ⊃ Δr1 from 0. by prop reasoning
5. r1(k) :

(
Σr1 ∨ r1(i) :Δ

r1
)

⊃ from 3. and 4. by prop. reasoning

t
(
r1(k), qm(r1(i))

)
:Σr1 ∨ Δr1

Thus, for s := t
(
r1(k), qm(r1(i))

)
,

JB � r1(k) :
(
Σr1 ∨ r1(i) :Δ

r1
)

⊃ s :Σr1 ∨Δr1 . (3)

The index l occurs neither in Σ nor in Δ because [Σ]l, Δ is properly annotated.
Hence, r := (r1 � Σ,Δ) ∪ {l �→ s} is a realization on [Σ]l, Δ. For the identity
substitution σ and this r, it follows from (3) that

JB �
(
[Σ, [Δ]i]k

)r1
σ ⊃

(
[Σ]l, Δ

)r
.

Case ρ = 5c[]: Let

[
Π ′, [Δ′], [Σ′]

]

[
Π ′, [[Δ′], Σ′]

] be an arbitrary shallow instance of 5c[].

Let
[
Π, [Δ]i, [Σ]j

]
h
and

[
Π, [[Δ]i, Σ]k

]
l
be properly annotated versions of the

premise and conclusion respectively. Then

[
Π, [Δ]i, [Σ]j

]
h[

Π, [[Δ]i, Σ]k
]
l

is an annotated ver-

sion of this instance. Let r1 be a realization function on
[
Π, [Δ]i, [Σ]j

]
h
. The

following is a derivation in J5:

0. Σr1 ⊃ r1(i) :Δ
r1 ∨Σr1 propositional tautology

1. r1(j) :Σ
r1 ⊃ t1(r1(j)) :

(
r1(i) :Δ

r1 ∨Σr1
)

from 0. by Lemma 22

2. pint(r1(i)) :
(
r1(i) :Δ

r1 ⊃ t!(r1(i)) : r1(i) :Δ
r1
)

by Lemma 27

3. r1(i) :Δ
r1 ⊃ r1(i) :Δ

r1 ∨Σr1 propositional tautology
4. t!(r1(i)) : r1(i) :Δ

r1 ⊃ from 3. by Lemma 22
t4(t!(r1(i))) :

(
r1(i) :Δ

r1 ∨Σr1
)

5.
(
r1(i) :Δ

r1 ⊃ t!(r1(i)) : r1(i) :Δ
r1
)

⊃ from 4. by prop. reasoning

r1(i) :Δ
r1 ⊃ t4(t!(r1(i))) :

(
r1(i) :Δ

r1 ∨Σr1
)

6. pint(r1(i)) :
(
r1(i) :Δ

r1 ⊃ t!(r1(i)) : r1(i) :Δ
r1
)

⊃ from 5. by Lem. 22

t5(pint(r1(i))) :
(
r1(i) :Δ

r1 ⊃ t4(t!(r1(i))) :
(
r1(i) :Δ

r1 ∨Σr1
))



234 A. Borg and R. Kuznets

7. t5(pint(r1(i))) :
(
r1(i) :Δ

r1 ⊃ t4(t!(r1(i))) :
(
r1(i) :Δ

r1 ∨Σr1
))

from 2. and 6. by MP

8.
(
r1(i) :Δ

r1 ⊃ t4(t!(r1(i))) :
(
r1(i) :Δ

r1 ∨Σr1
))

⊃
Πr1 ∨ r1(i) :Δ

r1 ∨ r1(j) :Σ
r1 ⊃ Πr1 ∨ s :

(
r1(i) :Δ

r1 ∨Σr1
)
,

where s := t4(t!(r1(i))) + t1(r1(j)) from 1. by prop. reasoning and sum

9. t5(pint(r1(i))) :
(
r1(i) :Δ

r1 ⊃ t4(t!(r1(i))) : (r1(i) :Δ
r1 ∨Σr1)

)
⊃

t6(t5(pint(r1(i)))):
(
Πr1∨r1(i):Δr1∨r1(j):Σr1 ⊃ Πr1∨s:

(
r1(i):Δ

r1∨Σr1
))

from 8. by Lemma 22

10. t6(t5(pint(r1(i)))):
(
Πr1∨r1(i):Δr1∨r1(j):Σr1 ⊃ Πr1∨s:

(
r1(i):Δ

r1∨Σr1
))

from 7. and 9. by MP

11. r1(h) :
(
Πr1 ∨r1(i) :Δ

r1 ∨r1(j) :Σ
r1
)

⊃ t :
(
Πr1 ∨s :

(
r1(i) :Δ

r1 ∨Σr1
))

,

where t := t6
(
t5(pint(r1(i)))

)
· r1(h) from 10. by app and MP

The indices k and l do not occur in any ofΠ , [Δ]i, or Σ because
[
Π, [[Δ]i, Σ]k

]
l
is

properly annotated. Thus, r := (r1 � Π, [Δ]i, Σ)∪ {k �→ s, l �→ t} is a realization
on

[
Π, [[Δ]i, Σ]k

]
l
. For the identity substitution σ and this r, from 11. it follows

J5 �
([

Π, [Δ]i, [Σ]j
]
h

)r1
σ ⊃

([
Π, [[Δ]i, Σ]k

]
l

)r

.

This concludes the proof that all shallow instances of each rule used for a
modular nested sequent calculus for the logics of the modal cube are realizable
into the justification logic containing the justification axiom corresponding to
this rule. ��

It now follows from Theorem 13, Theorem 26, and Lemma 29 that

Theorem 30 (Modular realization theorem). For each possible axiomati-
zation K +X of a modal logic ML from the modal cube, there is a constructive
realization of ML into J + jX using the nested sequent calculus NK ∪X� ∪X []

for ML, where jX := {jρ | ρ ∈ X}.

Proof. Let K+X be an axiomatization ofML. By Theorem 13, NK∪X�∪X [] � A
for each theorem A of ML. It was shown in Lemma 29 that all shallow instances
of each rule from NK∪X� ∪X [] are realizable in a sublogic of J+ jX and, thus,
also in J + jX itself. By Theorem 26, there is a constructive realization of ML
into J+ jX . ��

7 Conclusion

This paper completes the project of finding a uniform, modular, and constructive
realization method for a wide range of modal logics. In this paper, we applied it
to all the logics of the modal cube and all the justification counterparts based
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on their various axiomatizations. We are now confident that this method can be
easily extended to other classical modal logics captured by nested sequent calculi.
The natural challenge is to extend this method to the nested sequent calculi for
intuitionistic modal logics from [19] and for constructive modal logics from [1].
The size of LP-terms constructed for realizing S4 by using sequent calculi was
analyzed in [6]. It would be interesting to compare the size of terms produced
by using nested sequent calculi.

Acknowledgments. The authors would like to thank the anonymous reviewers
for the valuable comments and suggestions on clarifying issues of potential in-
terest to the readers. The authors are indebted to Agata Ciabattoni for making
this research possible.
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Abstract. We address the problem of proof-search in the natural de-
duction calculus for Classical propositional logic. Our aim is to improve
the usual näıve proof-search procedure where introduction rules are ap-
plied upwards and elimination rules downwards. In particular, we intro-
duce Ncr, a variant of the usual natural deduction calculus for Classical
propositional logic, and we show that it can be used as a base for a proof-
search procedure which does not require backtracking nor loop-checking.

1 Introduction

The consensus is that natural deduction calculi [13,16] are not suitable for proof-
search because they lack the “deep symmetries” characterizing sequent calculi
(see e.g. [2,7,8,14,15] for an accurate discussion). This is evidenced by the fact
that this issue has been scarcely investigated in the literature and the main
contributions [14,15] propose proof-search strategies which are highly inefficient.
Thus, it seems that the only effective way to build derivations in natural de-
duction calculi consists in translating tableaux or cut-free sequent proofs. In
this paper we reconsider the problem of proof-search in the natural deduction
calculus for Classical propositional logic (CL) and, starting from the pioneering
ideas in [14,15], we define a proof-search procedure to build CL natural deduction
derivations which has no backtracking points and does not require loop-checking.

We represent natural deduction derivations in sequent style so that at each
node [Γ � A] the open assumptions on which the derivation of A depends are
put in evidence in the context Γ . The strategy to build a derivation of [Γ � A]
presented in [14,15] consists in applying introduction rules (I-rules) reasoning
bottom-up (from the conclusion to the premises) and elimination rules (E-rules)
top-down (from the premises to the conclusion), in order to “close the gap”
between Γ and A. Derivations built in this way are normal according to the
standard definition [16]. This approach can be formalized using the calculus Nc
of Fig. 1, which is the classical counterpart of the intuitionistic natural deduction
calculi of [3,12]. Rules ofNc act on two kinds of judgment, we denote by [Γ � A⇑]
and [Γ � A↓]. A derivation of Nc with root sequent [Γ � A⇑] can be interpreted
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agement” funded by the Italian Ministry of Education, University and Research
(MIUR).
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as a classical normal derivation of [Γ � A] having an I-rule, the classical rule⊥EC

(reductio ad absurdum) or ∨E as root rule (note that ⊥ is a primitive constant,
¬A stands for A → ⊥). A derivation with root sequent [Γ � A ↓] represents a
classical normal derivation of [Γ � A] having the rule Id, ∧Ek or →E as root
rule. The rule↓⇑ (coercion), not present in the usual natural deduction calculus,
is a sort of structural rule which “coerces” deductions in normal form.

UsingNc, the strategy of [14,15] to search for a derivation of [Γ � A] (that is, a
classical normal derivation of A from assumptions Γ ) can be sketched as follows.
We start from the sequent [Γ � A⇑] and we⇑-expand it, by applying bottom-up
the I-rules. In this phase, we get “open proof-trees” (henceforth, we call them
trees) having⇑-sequents as leaves. For each leaf of the kind [Γ � K⇑], we have to
find a derivation of one of the sequents [Γ � K ↓], [¬K,Γ � ⊥↓] and [Γ � A∨B ↓],
so to match one of the rules ↓⇑, ⊥EC and ∨E. To search for a derivation of a
↓-sequent [Γ � K ↓], for every H ∈ Γ we enter a ↓-phase: we↓-expand the axiom
sequent [Γ � H ↓] by applying downwards the rules ∧Ek and → E until we
get a tree with root [Γ � K ↓]. In general, these two expansion steps must be
interleaved. For instance, when in ↓-expansion we apply the rule →E to a tree
with root [Γ � A → B ↓], we get [Γ � B ↓] as new root and [Γ � A⇑] as new leaf.
Thus, to turn the tree into a derivation, we must enter a new⇑-expansion phase
to get a derivation of [Γ � A⇑]. This näıve strategy suffers from the huge search
space. This is due to many factors: firstly, contexts cannot decrease, thus an
assumption might be used more and more times. As a consequence termination
is problematic; in [14,15], it is guaranteed by loop-checking. Secondly, the näıve
strategy has potentially many backtrack points. This is in disagreement with the
proof-search strategies based on standard sequent/tableaux calculi for CL, where
a formula occurrence can be used at most once along a branch, no backtracking
is needed and termination is guaranteed by the fact that at each step at least a
formula is decomposed. The main objective of this paper is to show that we can
recover these nice properties even in natural deduction calculi, provided we add
more structure to the sequents.

To achieve our goal, we exploit some ideas introduced in [6] and some tech-
niques introduced in [4,5] in the context of proof-search for the intuitionistic
sequent calculus G3i [16]. One of the main issue in the calculus Nc is that rule
⊥EC, read bottom-up, introduces a negative formula ¬A in the context. This
fact breaks the (strict) subformula property for Nc. Moreover, since contexts
never decrease, the assumption ¬A can be used many times during proof-search,
and this might generate branches containing infinitely many sequents of the kind
[Γ � A⇑]. To avoid this, we replace the classical rule ⊥EC with the intuitionis-
tic version ⊥EI and we introduce the restart rule of [6] to recover the classical
reductio ad absurdum reasoning. Basically, we simulate rule ⊥EC by storing
some of the formulas obtained in the right-hand side of ⇑-sequents in a set Δ,
we call restart set ; such formulas can be resumed by applying one of the restart
rules Rc and Rp (see Fig. 2). To implement this, an⇑-sequent has now the form
[Γ � A⇑ ; Δ], where Γ is the set of assumptions, A the formula to be proved and
Δ the restart set. The other key point is the management of resources, namely of
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available assumptions. The idea is to follow the LL(Local Linear)-computation
paradigm of [6], in order to control the use of assumptions and avoid redundan-
cies in derivations. In [6] restart and LL-computation are combined to provide
a goal-oriented proof-search strategy for the →-fragment of CL. The extension
to the full language is not immediate; actually, [6] treats the full language via
reduction of formulas to disjunctive normal form. One of the main problems
arises with the application of rules for ∧ elimination. Indeed, let us assume to
apply ∧E0 to ↓-expand a derivation D with root sequent [Γ � A ∧B ↓] so to get
the sequent [Γ � A↓]. The resource B discarded by ∧E0 is lost and, to recover
it, we should rebuild D and apply ∧E1. To avoid this overload, we endow the
↓-sequents with a supplementary resource set Θ, where we store the formulas
discarded by ∧Ek applications, so that they are available as assumptions in suc-
cessive⇑-expansion phases. A ↓-sequent has now the form [Γ ; H � A↓ ; Δ ; Θ],
where Γ , A and Δ have the same meaning seen above, the displayed assumption
H is the head formula (as defined in [16]) and Θ is the resource set. Formulas
in Θ are regained as assumptions in the⇑-premises of rules ∨E and → E. This
leads to the calculus Ncr (Nc with restart) of Fig. 2.

CalculiNc andNcr are presented in Sect. 2; here we show thatNcr-derivations
have a direct translation into Nc, so that Ncr can be viewed as a notational
variant ofNc. In Sect. 4 we formally describe the proof-search procedure outlined
above and we prove its correctness: if a sequent σ is valid, the procedure yields an
Ncr-derivation of σ. To prove this, in Sect. 3 we introduce the calculusRNcr for
classical unprovability, which is the dual of Ncr. We show that, if σ is provable
in RNcr, then σ is not valid; actually, from an RNcr-derivation of σ we can
extract a classical interpretation witnessing the non-validity of σ.

2 The Calculi Nc and Ncr

We consider the languageL based on a denumerable set of propositional variables
V , the connectives ∧, ∨, → and the logical constant ⊥. We assume that ∧
and ∨ bind stronger than →; ¬A stands for A → ⊥. A prime formula [16]
is a formula F ∈ Fp = V ∪ {⊥}; by Fp,∨ we denote the set of prime and
disjunctive formulas. Given a formula H , the set Sf+(H) is the smallest set of
formulas such that: H ∈ Sf+(H); A ∧ B ∈ Sf+(H) implies A ∈ Sf+(H) and
B ∈ Sf+(H); A → B ∈ Sf+(H) implies B ∈ Sf+(H). By Sf+H(H) we denote the
set Sf+(H) \ {H}. For a set of formulas Γ , Sf+(Γ ) =

⋃
C∈ Γ Sf+(C).

We deal with sequent-style natural deduction calculi for (propositional) CL,
where the structure of sequents depends on the calculus at hand. For calculi and
derivations we use the definitions and notations of [16]. Applications of rules of
a calculus C are depicted as trees with sequents as nodes, we call them C-trees.
A C-derivation is a C-tree where every leaf is an axiom sequent, i.e., a sequent
obtained by applying a zero-premise rule of C. A sequent σ is provable in C,
and we write C � σ, if there exists a C-derivation with root sequent σ.
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Fig. 1. The natural deduction calculus Nc

In Fig. 1 we show the natural deduction calculus Nc for CL to build deriva-
tions in normal form. The calculusNc is obtained starting from the intuitionistic
calculi in [3,12] using the classical rule for ⊥ elimination (⊥EC); note that this
rule breaks the (strict) subformula property.

As discussed in the Introduction, Nc is not well-suited for proof-search. We
introduce the calculusNcr which allows for an efficient proof-search strategy not
requiring backtracking nor loop-checking, and we show that its derivations have a
direct translation intoNc. Rules ofNcr are shown in Fig. 2 and act on⇑-sequents
of the kind [Γ � A⇑ ; Δ] and↓-sequents of the kind [Γ ; H � A↓ ; Δ ; Θ], where
A and H are formulas, while Γ , Δ and Θ are (possibly empty) finite sets of
formulas. The logical meaning of a sequent σ is explained by the formula Fm(σ)
defined as follows:

Fm([Γ � A⇑ ; Δ]) =
∧
Γ → A ∨ (

∨
Δ)

Fm([Γ ; H � A↓ ; Δ ; Θ]) = (
∧
Γ ) ∧H → (A ∧ (

∧
Θ)) ∨ (

∨
Δ)

where
∧
∅ = ¬⊥ and

∨
∅ = ⊥. The formula A, called the right formula, is the

formula to be proved, while the set Γ , the context, is a set of assumptions. The
meaning of the formula H (the head formula) and of the sets Δ (restart set)
and Θ (resource set) is connected with the proof-search strategy and is clarified
below. Note that ⊥EI is the intuitionistic rule for ⊥ elimination; to recover the
classical “reductio ad absurdum” reasoning, we introduce restart rules [6]. A
restart rule, applied bottom-up, stores in the restart set Δ the current right
formula F (a prime formula) and resumes a formula from Δ. We split restart
into two rules: Rc (restart with a composite formula) and Rp (restart with a
propositional variable). The latter actually consists in a restart step immediately
followed by↓⇑ (coercion); this forbids infinite loops due to successive applications
of restart which repeatedly swap two propositional variables. As for rule ∨I, we
note that, when applied bottom-up, it retains the leftmost disjunct as right
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Id
[Γ ; H � H ↓ ; Δ ; ]

[ΓH ; H � p↓ ; p, Δ ; Θ] ↓⇑
[H, Γ � p⇑ ; Δ]

[ΓH ; H � ⊥↓ ; F, Δ ; Θ] ⊥EI[H, Γ � F ⇑ ; Δ]

[ΓH ; H � p↓ ; F, p, Δ ; Θ]
Rp

[H, Γ � F ⇑ ; p, Δ]
[Γ � D⇑ ; F, ΔD]

Rc[Γ � F ⇑ ; D, Δ]
D F∈� p

[Γ � A⇑ ; Δ] [Γ � B⇑ ; Δ] ∧I
[Γ � A ∧ B⇑ ; Δ]

[Γ ; H � A0 ∧ A1 ↓ ; Δ ; Θ] ∧Ek[Γ ; H � Ak ↓ ; Δ ; A1−k, Θ]
k ∈ {0, 1}

[Γ � A⇑ ; B, Δ] ∨I
[Γ � A ∨ B⇑ ; Δ]

[ΓH ; H � A ∨ B ↓ ; F, Δ ; Θ] [A, ΓH , Θ � F ⇑ ; Δ] [B, ΓH , Θ � F ⇑ ; Δ] ∨E
[H, Γ � F ⇑ ; Δ]

[A, Γ � B⇑ ; Δ] → I
[Γ � A → B⇑ ; Δ]

[Γ ; H � A → B ↓ ; Δ ; Θ] [Γ, Θ � A⇑ ; Δ] → E
[Γ ; H � B ↓ ; Δ ; Θ]

p ∈ V, F ∈ Fp, ΛA = Λ \ {A}
R⇑ = {Rc, ∧I, ∨I, → I} R↓ = { Id, ∧Ek, →E} R↓⇑ = {↓⇑, ⊥EI, Rp, ∨E}

Fig. 2. The natural deduction calculus Ncr

formula and it stores the rightmost disjunct in the restart set; such a disjunct
can be regained as right formula with a successive application of a restart rule.

We classify the rules as R⇑, R↓ and R↓⇑ (see Fig. 2). Searching for an Ncr-
derivation, we apply rules in R⇑ bottom-up (⇑-expansion) and rules in R↓ top-
down (↓-expansion). The open trees obtained in the expansion phases must be
glued together by applying rules in R↓⇑. The search for a derivation of A from
assumptions Γ starts with an⇑-expansion phase from the sequent [Γ � A⇑ ; ],
with empty restart set. In ⇑-expansions, contexts never decrease and the right
formula is decomposed until we get a sequent σ⇑ = [Γ � F ⇑ ; Δ], with F a prime
formula. At this point, either we continue the⇑-expansion phase by applying the
restart rule Rc, or we try to close σ⇑ by entering a ↓-expansion phase. In the
latter case, we have to non-deterministically choose a closing match 〈H,K,R〉
for σ⇑ according with the following definition (ΓH denotes Γ \ {H}):

– 〈H,K,R〉 is a closing match for σ⇑ = [Γ � F ⇑ ; Δ] iff H ∈ Γ , K ∈ Sf+(H)∩
Fp,∨, R ∈ R↓⇑ and σ↓ = [ΓH ; H � K ↓ ; F,Δ ; Θ] is the leftmost premise of
an application of R having conclusion σ⇑ (Θ is any set of formulas).

Having selected a closing match 〈H,K,R〉 for σ⇑, we start a ↓-expansion phase
from the axiom sequent σid = [ΓH ; H � H ↓ ; F,Δ ; ] with the goal to get a
sequent σ↓ which closes the leaf σ⇑ by an application of R. In σid, the context
ΓH is obtained by deleting H from Γ , the restart set by adding F to Δ, while
the resource set is empty; H behaves like a head formula of natural deduction
calculi [16]. To get σ↓, we have to apply downwards the rules ∧Ek and → E so
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to extract K from H . We apply these rules so that the right formula C and the
resource set Θ of the obtained conclusion satisfy the following invariant:

(Inv↓) C ∈ Sf+(H) and K ∈ Sf+(C) and Θ ⊆ Sf+H(H).

It is easy to check that σid satisfies (Inv↓) and → E applications preserve (Inv↓).
In the case that the sequent to ↓-expand is σ = [Γ ; H � A0 ∧ A1 ↓ ; Δ ; Θ],
we have to select k ∈ {0, 1} such that K ∈ Sf+(Ak) (such a k exists since,
by (Inv↓), it holds that K ∈ Sf+(A0 ∧ A1)); by applying rule ∧Ek to σ, we get
the sequent [Γ ; H � Ak ↓ ; Δ ; A1−k, Θ], which satisfies (Inv↓). Note that, when
→ E is applied to [Γ ; H � A → B ↓ ; Δ ; Θ], the next sequent to ↓-expand is
[Γ ; H � B ↓ ; Δ ; Θ], while the right premise σA = [Γ,Θ � A ⇑ ; Δ] must be
⇑-expanded. In σA the head formula H is no longer available as assumption,
whereas the formulas in Θ (namely, the formulas discarded by ∧Ek applications
during the ↓-expansion phase) can be used. This complies with the LL(Local
Linear)-computation paradigm of [6], which aims at a controlled use of resources.
Whenever rule ∧Ek is applied, we exploit the resource set Θ to store the unused
conjunct. In the rule ∨E the formulas inΘ are added to the contexts of the second
and third premises, while the head formula H is discarded. In a ↓-expansion
phase, the formulas stored in the restart set Δ are never used, they will be
possibly used in successive ⇑-expansions. The proof-search strategy does not
require backtracking nor loop-checking. Differently from Nc, the calculus Ncr
has the (strict) subformula property.

A sequent σ is valid if the formula Fm(σ) is classically valid; a rule R of
Ncr is sound if the validity of all the premises of R implies the validity of its
conclusion. One can easily prove that every rule of Ncr is sound, hence:

Proposition 1 (Soundness of Ncr). If Ncr � σ then σ is valid.

As a special case, Ncr � [ � A ⇑ ; ] implies A ∈ CL. In Sect. 4 we prove
the completeness of Ncr (namely, the converse of Prop. 1). In particular, we
formally define the proof-search procedure outlined above and we show that, if
σ is valid, then the procedure returns an Ncr-derivation with root sequent σ.

We give some examples of Ncr-derivations built according with the above
proof-search procedure1. Sequents are numbered according with the order they
are taken into account during proof-search; σi refers to the sequent with index i
in the displayed derivation.

Example 1. Here we show an Ncr-derivation of the instance p ∨ ¬p of the ex-
cluded middle principle.

1 The derivations and their LATEX rendering have been generated by clnat, an imple-
mentation of our proof-search procedure available at
http://www.dista.uninsubria.it/~ferram/

http://www.dista.uninsubria.it/~ferram/
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[ ; p � p↓ ; ⊥, p ; ]4
Id

[ p � ⊥⇑ ; p ]3
Rp

[ � ¬p⇑ ; p ]2
→ I

[ � p⇑ ; ¬p ]1 Rc

[ � p ∨ ¬p⇑ ; ]0
∨I

Proof-search starts by ⇑-expanding σ0 until σ3 is obtained. Since the sequent
[ ; p � p ↓ ; ⊥, p ; Θ] is a premise of an application of Rp with conclusion σ3,
the triple 〈p, p,Rp〉 is a closing match for σ3. We start a ↓-expansion phase
from the axiom sequent σ4 which immediately yields the premise of the Rp

application required by the closing match and this concludes the construction of
the derivation. We remark that restart rules allow us to store and re-use the right
formula p needed to close the derivation. In Nc, this is obtained by transferring
p on the left by applying the rule ⊥EC so to get the assumption ¬p; using this
as major premise formula of → E, we reacquire p in the right. ♦

Example 2. We consider the formula ((p → q) ∧ ((p → q) → p)) → q used in
Ex. 2.16 of [6] to show that LL-computation without restart is incomplete.

A = B ∧ C B = p → q C = B → p

[ ; A � A↓ ; q ; ]2
Id

[ ; A � B ↓ ; q ; C ]3
∧E0

[ ; C � C ↓ ; p, q ; ]6
Id

[ ; p � p↓ ; p, q ; ]10
Id

[ p � q⇑ ; p, q ]9
Rp

[ � B⇑ ; p, q ]8
→ I

[ ; C � p↓ ; p, q ; ]7
→ E

[C � p⇑ ; q ]5
↓⇑

[ ; A � q↓ ; q ; C ]4
→ E

[A � q⇑ ; ]1
↓⇑

[ � A → q⇑ ; ]0
→ I

To build a derivation, we start by ⇑-expanding σ0 and, after → I application,
we get σ1. Since q ∈ Sf+(A) and σ↓1 = [ ; A � q ↓ ; q ; Θ1] is a premise of ↓⇑
with conclusion σ1, the triple 〈A, q,↓⇑〉 is a closing match for σ1. We start a ↓-
expansion phase from the axiom sequent σ2 with the goal to obtain a sequent of
the kind σ↓1, so to close the leaf σ1 by applying↓⇑. We have to apply one between
∧Ek to decompose the right formula B ∧ C of σ2. According with (Inv↓), since
q ∈ Sf+(B) and q �∈ Sf+(C), we apply ∧E0, which retains B and stores C in
the resource set, and this yields σ3. Now, we continue the ↓-expansion phase
by applying → E to σ3; we get the conclusion σ4 and the premise σ5, which
needs to be ⇑-expanded. We observe that σ4 matches the definition of σ↓1, with
Θ1 = {C}; thus, we end the ↓-expansion phase by an application of ↓⇑. We
have now to ⇑-expand the sequent σ5. Note that in σ5 the assumption A is no
longer available, while the unused subformula C of A (coming from the resource
set of σ3) is. The ⇑-expansion of σ5 immediately ends. Since p ∈ Sf+(C) and

σ↓5 = [ ; C � p ↓ ; p, q ; Θ5] is a premise of an application of ↓⇑ with conclusion
σ5, the triple 〈C, p,↓⇑〉 is a closing match for σ5. We enter a new ↓-expansion
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phase from the axiom sequent σ6. We apply → E and we get the conclusion
σ7 and the premise σ8 to be⇑-expanded. The sequent σ7 matches the definition
of σ↓5 (with empty Θ5), hence we apply ↓⇑ and the ↓-expansion of σ6 ends. We
have now to ⇑-expand σ8. We backward apply → I and we get σ9. We observe
that 〈p, p,Rp〉 is a closing match for σ9, hence we enter a↓-expansion phase from
the axiom sequent σ10. We can immediately apply Rp, and this successfully
concludes the construction of an Ncr-derivation of σ0. ♦
Translation from Ncr into Nc

We inductively define the translation φ fromNcr intoNc. Given a set of formulas
Λ we denote with ¬Λ the set {¬A | A ∈ Λ}. Given an Nc-tree T , by T �Λ� we
denote the Nc-tree obtained by adding all the formulas in Λ to the context of
every sequent occurring in T (if Λ = {A}, we simply write T �A�). Note that, if
T is an Nc-derivation, then T �Λ� is an Nc-derivation as well.

LetD be anNcr-derivation of σ; we define the map φ so to match the following
properties:

(i) If σ = [Γ � A⇑ ; Δ], then φ(D) is an Nc-derivation of [Γ,¬Δ � A⇑].
(ii) If σ = [Γ ; H � A ↓ ; Δ ; Θ] and K ∈ {A} ∪ Θ, then φ(D,K) is an Nc-

derivation of [H,Γ,¬Δ � K ↓].
The key point in the translation is that all formulas in Δ are transferred to the
left by applying rule ⊥EC, so that they can be used at any successive step to
mimic restart rules. The translation function φ is defined by induction on the
structure of D; we only present two relevant cases. Let D be an Ncr-derivation
with root rule Rp:

D0

[ΓH ; H � p↓ ; F, p,Δ ; Θ]D = Rp
[H,Γ � F ⇑ ; p,Δ]

Then φ(D) is (note that {H} ∪ Γ = {H} ∪ ΓH):

Id
[H,Γ,¬F,¬p,¬Δ � ¬p↓]

φ(D0, p)

[H,ΓH ,¬F,¬p,¬Δ � p↓] ↓⇑
[H,Γ,¬F,¬p,¬Δ � p⇑] → E

[H,Γ,¬F,¬p,¬Δ � ⊥↓] ⊥EC
[H,Γ,¬p,¬Δ � F ⇑]

Let D be an Ncr-derivation with root rule → E:
D0

[Γ ; H � A → B ↓ ; Δ ; Θ]

D1

[Γ,Θ � A⇑ ; Δ]D = → E
[Γ ; H � B ↓ ; Δ ; Θ]

Θ = {K1, . . . ,Kn}

For K ∈ Θ, we set φ(D,K) = φ(D0,K). The derivation φ(D, B) is

φ(D0, A → B)

[H,Γ,¬Δ � A → B ↓]
. . .

φ(D0,Ki)

[H,Γ,¬Δ � Ki ↓] . . .

φ(D1)�H�

[H,Γ,Θ,¬Δ � A⇑]
Cut

[H, Γ,¬Δ � A⇑]
→ E

[H,Γ,¬Δ � B ↓]
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Irrσ σ irreducible
[Γ � D⇑ ; F, ΔD]

Rc[Γ � F ⇑ ; D, Δ]
D F∈� p, F ∈ Fp

[Γ � Ak ⇑ ; Δ] ∧Ik[Γ � A0 ∧ A1 ⇑ ; Δ]
[Γ � A⇑ ; B, Δ] ∨I
[Γ � A ∨ B⇑ ; Δ]

[A, Γ � B⇑ ; Δ] → I
[Γ � A → B⇑ ; Δ]

H � A0 ∨ A1 ; Θ [Ak, ΓH , Θ � F ⇑ ; Δ] ∨Ek[H, Γ � F ⇑ ; Δ]
F ∈ Fp, k ∈ {0, 1}

H � A → B ; Θ [ΓH , Θ � A⇑ ; F, Δ] → E
[H, Γ � F ⇑ ; Δ]

F ∈ Fp

Fig. 3. The refutation calculus RNcr

The rule Cut is the cut rule for classical natural deduction, which allows us to
use the derivations φ(D0,Ki) to prove the assumptions K1, . . . ,Kn of φ(D1)�H�;
it is easy to show that Cut can be removed.

3 The Refutation Calculus RNcr

To prove the completeness of Ncr and the correctness of the proof-search strat-
egy defined in Sect. 4, we introduce the calculusRNcr for classical unprovability.
This calculus is dual to Ncr in the following sense: from a failed proof-search of
an Ncr-derivation of σ we can build an RNcr-derivation of σ. Sequents prov-
able in RNcr are not valid, since from an RNcr-derivation of σ we can extract
a classical interpretation falsifying σ (see Lemma 3 below). As a consequence,
we get the completeness of Ncr; indeed, if σ is valid, the proof-search yields
an Ncr-derivation of σ (otherwise, it should output an RNcr-derivation of σ,
which would imply the non-validity of σ).

Let the reduction relation � be the smallest relation defined by the rules:

H � H ; ∅
H � A0 ∧ A1 ; Θ

H � Ak ; A1−k, Θ
k ∈ {0, 1} H � A → B ; Θ

H � B ; Θ

where A, B, H are formulas, and Θ is a (possibly empty) finite set of formulas.
The following properties of � can be easily proved:

Lemma 1

(i) If H � K ; Θ, then K ∈ Sf+(H), Θ ⊆ Sf+H(H) and K ∧ (
∧

Θ) → H is
valid.

(ii) Ncr � [Γ ; H � K ↓ ; Δ ; Θ] implies H � K ; Θ.

Proof. Point (i) follows by induction on the depth of the derivation of H �
K ; Θ. Point (ii) can be proved by induction on the depth of the Ncr-derivation
of [Γ ; H � K ↓ ; Δ ; Θ]. ��
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An⇑-sequent σir = [Γ � F ⇑ ; Δ] is irreducible iff the following conditions hold:

(Irr1) ({F} ∪Δ) ⊆ Fp;
(Irr2) ({⊥, F} ∪Δ) ∩ Sf+(Γ ) = ∅ and A ∨B �∈ Sf+(Γ ), for every A ∨B ∈ L.

In proof-search, when in an⇑-expansion phase we get an irreducible sequent σir,
the phase ends and proof-search fails, since no rule can be applied. As a matter of
fact, by condition (Irr1) no rule of R⇑ can be applied to σir; by condition (Irr2),
σir does not admit any closing match. Irreducible sequents are not valid. Indeed,
let I(σir) = Sf+(Γ ) ∩ V be the interpretation associated with σir. We can prove
that:

Lemma 2. Let σir be an irreducible sequent. Then, I(σir) �|= Fm(σir).

Proof. Let σir = [Γ � F ⇑ ; Δ]. By induction on A and (Irr2), we can show
that A ∈ Sf+(Γ ) implies I(σir) |= A; thus I(σir) |=

∧
Γ . Moreover, by (Irr1)

and (Irr2) we get I(σir) �|= F ∨ (
∨
Δ). Hence I(σir) �|= Fm(σir). ��

Rules of the calculus RNcr are shown in Fig. 3. Rules ∨Ek and →E have,
as premises, a reduction ρ (side condition) and an ⇑-sequent σ; we say that ρ
is a reduction for σ. An RNcr-derivation D consists of a single branch whose
top-most sequent is irreducible; we call it the irreducible sequent of D.

Lemma 3. Let D be an RNcr-derivation and let σir be the irreducible sequent
of D. For every σ occurring in D, I(σir) �|= Fm(σ).

Proof. By induction on the depth d of σ. If d = 0, then σ = σir and the assertion
follows by Lemma 2. Let σ be the conclusion of an application of one of the
rules ∨Ek, →E with side condition ρ and premise σ′. By induction hypothesis
I(σir) �|= Fm(σ′); by Lemma 1(i), we get I(σir) �|= Fm(σ). The other cases easily
follow. ��

Accordingly, from an RNcr-derivation of σ we can extract an interpretation
falsifying σ, namely the interpretation I(σir). This implies that:

Proposition 2 (Soundness of RNcr). If RNcr � σ then σ is not valid.

In the next example we discuss how an RNcr-derivation can be built from a
failed proof-search.

Example 3. Let us search for an Ncr-derivation of the non-valid sequent

σ0 = [ � A∧B → p2∨¬p4⇑ ; ] A = (p1 → p2) → p3 B = p1∧p4 → (p5 → p2)

We start an ⇑-expansion phase from σ0 and, after the application of rules → I
and ∨I, we get the following Ncr-tree T1:

[A ∧B � p2⇑ ; ¬p4]2
[A ∧B � p2 ∨ ¬p4⇑ ; ]1

∨I
[ � A ∧ B → p2 ∨ ¬p4⇑ ; ]0

→ I

Now, we can non-deterministically choose one between the following two cases:
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(C1) continue the⇑-expansion phase by applying Rc (restart from ¬p4).
(C2) Start a ↓-expansion phase from σa = [ ; A ∧B � A ∧B ↓ ; p2,¬p4 ; ]. This

is allowed since 〈A∧B, p2,↓⇑〉 is a closing match for σ2 (p2 ∈ Sf+(A∧B)).

We select (C2) and, as we discuss below, proof-search fails building the following
Ncr-tree T2:

[ ; A ∧B � A ∧B ↓ ; p2,¬p4 ; ]a
Id

[ ; A ∧B � B ↓ ; p2,¬p4 ; A]b
∧E1

[p4, A � ⊥⇑ ; p1, p2]6

[A � ¬p4⇑ ; p1, p2]5
→ I

[A � p1⇑ ; p2,¬p4]4 Rc
. . .

[A � p1 ∧ p4⇑ ; p2,¬p4]3 ∧I
[ ; A ∧B � p5 → p2 ↓ ; p2,¬p4 ; A]c

→ E

By (Inv↓), we apply ∧E1 to σa and we get σb. By applying → E, we get the
conclusion σc and the premise σ3. We defer the↓-expansion of σc and we⇑-expand
σ3. We backward apply the rule ∧I to σ3 and then we continue by⇑-expanding
its leftmost premise σ4 until we get the irreducible sequent σ6. At this point,
the branch cannot be further expanded (no closing match exists for σ6) and
proof-search fails. The crucial point is that we do not need to backtrack and try
the choice (C1); actually, we can exploit the Nc-trees T1 and T2 to build the
RNcr-derivation D of σ0 displayed below:

A ∧B 	 B ; A

[ p4, A � ⊥⇑ ; p1, p2 ]6
Irr

[A � ¬p4⇑ ; p1, p2 ]5
→ I

[A � p1⇑ ; p2,¬p4 ]4 Rc

[A � p1 ∧ p4⇑ ; p2, ¬p4 ]3 ∧I0
[A ∧ B � p2⇑ ; ¬p4 ]2 → E

[A ∧ B � p2 ∨ ¬p4⇑ ; ]1
∨I

[ � A ∧ B → p2 ∨ ¬p4⇑ ; ]0
→ I

A = (p1 → p2) → p3

B = p1 ∧ p4 → (p5 → p2)

I(σ6) = Sf+( {p4, A} ) ∩ V
= { p3, p4 }

The branch σ0, . . . , σ6 of D is obtained by concatenating the branches σ0, σ1, σ2

of T1 and σ3, . . . , σ6 of T2. To link σ2 with σ3, we exploit the Ncr-derivation of
σb contained in T2. By Lemma 1(ii)) we assert that ρ = (A∧B � B ; A) holds;
hence, we can apply →E with premises ρ and σ3 to infer σ2. The interpretation
extracted from D is I(σ6); one can check that, according with Lemma 3, for
every σi in D, I(σ6) falsifies σi. As a consequence, σ0 is not a valid sequent,
hence no Ncr-derivation of σ0 can be built.

Finally, we point out that, if we select (C1) instead of (C2), we eventually get
the following RNcr-derivation:

A ∧B 	 B ; A

σir = [p4, A � p1⇑ ; ⊥, p2]
Irr

[p4, A � p1 ∧ p4⇑ ; ⊥, p2]
∧I0

[p4, A ∧B � ⊥⇑ ; p2]
→ E

[A ∧ B � ¬p4⇑ ; p2]
→ I

[A ∧B � p2⇑ ; ¬p4 ]2 Rc

[A ∧B � p2 ∨ ¬p4⇑ ; ]1
∨I

[ � A ∧B → p2 ∨ ¬p4⇑ ; ]0
→ I I(σir) = { p3, p4 } ♦
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The above example explains the role of reductions in proof-search: if we build
an Ncr-derivation of σ = [Γ ; H � A → B ↓ ; Δ ; Θ] (with H �∈ Γ ) but we fail
to build an Ncr-derivation of σ′ = [Γ,Θ � A⇑ ; Δ], we get an RNcr-derivation
of σ′ and the reduction ρ = (Γ � A → B ; Θ) (see Lemma 1(ii)), thus we can
apply the rule →E of RNcr to ρ and σ′.

4 Proof-Search

Here we formalize the proof-search procedure outlined in previous sections.
Proof-search is performed by the mutually recursive functions UpSearch (Fig. 4)
and DownExp (Fig. 5). In detail:

(P1) Given σ = [Γ � C ⇑ ; Δ], UpSearch(σ) returns either an Ncr-derivation
or anRNcr-derivation of σ. We call σ themain parameter of UpSearch(σ).

(P2) Let D be an Ncr-derivation of σ = [Γ ; H � C ↓ ; Δ ; Θ] such that H �∈
Γ , C ∈ Sf+(H) and Θ ⊆ Sf+H(H), and let K ∈ Sf+(C) ∩ Fp,∨. Then,
DownExp(D,K) returns one of the following values:

(a) an Ncr-derivation of [Γ ; H � K ↓ ; Δ ; Θ′], with Θ ⊆ Θ′ ⊆ Sf+H(H);
(b) a pair 〈ρ, E〉, where ρ is a reduction (H � A → B ; Θ′) such that

Θ ⊆ Θ′, and E is an RNcr-derivation of [Γ,Θ′ � A⇑ ; Δ].
Note that, by Lemma 1(i), Θ′ ⊆ Sf+H(H).

We call the root sequent σ of D the main parameter of DownExp(D,K).

Intuitively, UpSearch(σ) simulates a step of⇑-expansion of σ, DownExp(D, K)

performs a ↓-expansion step of the root sequent σ of D with the goal to extract
K. In both functions, the choice of the step to be executed is determined by the
right formula C of σ. Except for the case at line 33 of UpSearch and the case
at line 3 of DownExp that directly return a derivation, every case of UpSearch

and DownExp corresponds to the application of a rule of the calculus Ncr. One
can easily check that the displayed cases are exhaustive. Some cases overlap
(e.g., the cases concerning C ∈ Fp of UpSearch); if this happens, the procedure
non-deterministically chooses one of the enabled cases.

In UpSearch, if C ∈ Fp and the conditions corresponding to the cases of
rules ↓⇑, ⊥EI, ∨E, Rp, Rc do not hold, then σ is irreducible. The crucial points
are that it is irrelevant which of the enabled cases is selected and no backtrack
is needed (each case returns a result). In Figs. 4 and 5, we use the following
auxiliary functions:

– Let C ∈ {Ncr,RNcr}. Given a sequent σ, a (possibly empty) set of C-
derivations P and a ruleR ofC, Build(C,σ,P,R) constructs theC-derivation
D having root sequent σ, root rule R and the derivations in P as immediate
subderivations of D. BuildId(σ) abbreviates Build(Ncr,σ,∅, Id).

– Let σ be a sequent, D an RNcr-derivation with root a ↓-sequent σ↓, ρ a
reduction for σ↓ and R ∈ {∨Ek,→E}. Build(RNcr,σ,〈ρ,D〉,R) constructs
the RNcr-derivation of σ obtained by applying R with premises ρ and σ↓.
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1 Function UpSearch( σ = [Γ � C⇑ ; Δ] )

2 non-deterministically choose

3 case C ∈ V and there is H ∈ Γ such that C ∈ Sf+(H) // ↓⇑
4 // 〈H,C,↓⇑〉 is a closing match for σ

5 π ← DownExp( BuildId( [ΓH ; H � H ↓ ; C,Δ ; ] ) ,C )

6 if π is an Ncr-der. then return Build(Ncr, σ, {π}, ↓⇑)
7 else return Build(RNcr, σ, π, → E) // π = 〈 (H � A → B ; Θ′) , E 〉
8 case C ∈ Fp and there is H ∈ Γ such that ⊥ ∈ Sf+(H) // ⊥EI

9 // 〈H,⊥,⊥EI〉 is a closing match for σ

10 π ← DownExp( BuildId( [ΓH ; H � H ↓ ; C,Δ ; ] ) ,⊥ )

11 if π is an Ncr-der. then return Build(Ncr, σ, {π}, ⊥EI)

12 else return Build(RNcr, σ, π, → E) // π = 〈 (H � A → B ; Θ′) , E 〉
13 case C ∈ Fp and there is H ∈ Γ such that there is A ∨ B ∈ Sf+(H) // ∨E
14 // 〈H,A ∨ B,∨E〉 is a closing match for σ

15 π ← DownExp( BuildId( [ΓH ; H � H ↓ ; C,Δ ; ] ) ,A ∨ B )

16 if π is an Ncr-derivation of [ΓH ; H � A ∨B ↓ ; C,Δ ; Θ] then

17 ρ ← H � A ∨ B ; Θ

18 D0 ← UpSearch([A, ΓH , Θ � C⇑ ; Δ])

19 if D0 is an RNcr-der. then return Build(RNcr, σ, 〈ρ,D0〉,∨E0)

20 D1 ← UpSearch([B, ΓH , Θ � C⇑ ; Δ])

21 if D1 is an RNcr-der. then return Build(RNcr, σ, 〈ρ,D1〉,∨E1)

22 return Build(Ncr, σ, {π,D0,D1},∨E)

23 else return Build(RNcr, σ, π, → E)// π = 〈 (H � A′ → B′ ; Θ′) , E 〉
24 case C ∈ Fp and there is p ∈ Δ ∩ V and H ∈ Γ such that p ∈ Sf+(H) // Rp

25 // 〈H, p,Rp〉 is a closing match for σ

26 π ← DownExp( BuildId( [ΓH ; H � H ↓ ; C,Δ ; ] ) , p )

27 if π is an Ncr-der. then return Build(Ncr, σ, {π}, Rp)

28 else return Build(RNcr, σ, π, → E) // π = 〈 (H � A → B ; Θ′) , E 〉
29 case C ∈ Fp and there is D ∈ Δ such that D �∈ Fp // Rc

30 D0 ← UpSearch([Γ � D⇑ ; C,ΔD ])

31 if D0 is an Ncr-der. then return Build(Ncr, σ, {D0}, Rc)

32 else return Build(RNcr, σ, {D0}, Rc)

33 case C ∈ Fp and σ is irreducible return Build(RNcr,σ,∅,Irr) // Irr

34 case C = A0 ∧A1 // ∧I
35 D0 ← UpSearch([Γ � A0⇑ ; Δ])

36 if D0 is an RNcr-derivation then return Build(RNcr,σ, {D0}, ∧I0)
37 D1 ← UpSearch([Γ � A1⇑ ; Δ])

38 if D1 is an RNcr-derivation then return Build(RNcr,σ, {D1}, ∧I1)
39 return Build(Ncr,σ, {D0,D1}, ∧I)
40 case C = A ∨ B // ∨I
41 D0 ← UpSearch([Γ � A⇑ ; B,Δ])

42 if D0 is an Ncr-derivation then return Build(Ncr,σ,{D0}, ∨I)
43 else return Build(RNcr,σ,{D0}, ∨I)
44 case C = A → B // → I

45 D0 ← UpSearch([A, Γ � B⇑ ; Δ])

46 if D0 is an Ncr-derivation then return Build(Ncr,σ,{D0}, → I)

47 else return Build(RNcr,σ,{D0}, → I)

48 endFun

Fig. 4. UpSearch
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Note that, whenever Build and BuildId are called, their arguments are correctly
instantiated, so that well-defined C-derivations are built.

To prove the correctness of the proof-search procedure, we must show that (P1)
and (P2) hold. To this aim, we introduce the relation ≺ between sequents. The
size of A, written |A|, is the number of logical connectives occurring in A (for
F ∈ Fp, |F | = 0). Given a sequent σ, the multiset M(σ) associated with σ is
defined as follows (� denotes the multiset union):

M([Γ � A⇑ ; Δ]) = Γ � {A} �Δ M([Γ ; H � A↓ ; Δ ; Θ]) = Γ � {A} �Δ �Θ

Let σ1 and σ2 be sequents; σ1 ≺ σ2 iff one of the following conditions holds:

(1) M(σ1) = M′ �{A}, M(σ2) = M′ �M′′ (with M′ and M′′ possibly empty
multisets) and, for every B ∈ M′′, |B| < |A|;

(2) M(σ1) = M(σ2) and Γ1 ⊂ Γ2 (Γi is the context of σi);

(3) M(σ1) = M(σ2), Γ1 = Γ2 and (Δ1 \ Fp) ⊂ Δ2 (Δi is the restart set of σi).

One can easily prove that ≺ is well-founded. We can prove (P1) and (P2) by
induction on ≺. Let f , f ′ be any of the functions UpSearch and DownExp and
let f(σ) denote an invocation of f with main parameter σ. One can check that,
whenever in the execution of f(σ) we call f ′(σ′), then σ′ ≺ σ and the precon-
ditions stated in (P2) hold; hence, by induction hypothesis, the returned value
is correct. For instance, let us consider the case at lines 3–7 of Fig. 4, treating
rule ↓⇑. The call to DownExp at line 5 has main parameter σ′ = [ΓH ; H � H ↓
; C,Δ ; ]; we show that σ′ ≺ σ. If C ∈ Δ, then M(σ) = M(σ′) � {C} hence,
by (1), σ′ ≺ σ. Let C �∈ Δ. Then, M(σ) = M(σ′) and ΓH ⊂ Γ ; by (2) we
get σ′ ≺ σ. By induction hypothesis, the value π returned by DownExp satis-
fies one between ((P2).a) and ((P2).b). In the former case, an Ncr-derivation
of σ with root rule ↓⇑ is returned at line 6; in the latter case, π is a pair
〈(H � A → B ; Θ′), E〉, and an RNcr-derivation of σ with root rule → E
is returned at line 7. The proof of the other cases is similar. Note that in the re-
cursive call at line 18 (case ∨E) the main parameter is σ′ = [A,ΓH , Θ � C⇑ ; Δ]
with A ∨B ∈ Sf+(H) (see line 13) and Θ ⊆ Sf+H(H) (by the induction hypoth-
esis ((P2).a) on the recursive call at line 15). Thus, for every K ∈ {A} ∪ Θ,
|K| < |H | and, by (1), we get σ′ ≺ σ. In the recursive call at line 30 (case Rc)
the main parameter is σ′ = [Γ � D⇑ ; C,ΔD], with C ∈ Fp, D ∈ Δ and D �∈ Fp

(see line 29). If C ∈ ΔD, then M(σ) = M(σ′) � {C} and σ′ ≺ σ follows by (1).
Otherwise, M(σ) = M(σ′) and ΔD ⊂ Δ hence, by (3), σ′ ≺ σ. The condition
in case ∧Ek of DownExp (line 4) is needed to guarantee that the invariant (Inv↓)
holds. By inspecting all the cases, we conclude:

Proposition 3. The functions UpSearch and DownExp are correct.

To conclude, by (P1) and the soundness of RNcr (Prop. 2), if σ is valid then
UpSearch(σ) returns an Ncr derivation of σ. Hence:

Proposition 4 (Completeness of Ncr). If σ is valid then Ncr � σ.
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1 Function DownExp(D,K )

input : D is an Ncr-derivation of σ = [Γ ; H � C ↓ ; Δ ; Θ] as in (P2)
2 switch C

3 case C ∈ Fp or C = C0 ∨ C1 return D // here C = K

4 case C = A0 ∧A1 and K ∈ Sf+(Ak), with k ∈ {0, 1} // ∧Ek

5 E ← Build(Ncr,[Γ ; H � Ak ↓ ; Δ ; A1−k , Θ], {D},∧Ek)

6 return DownExp(E, K)

7 case C = A → B // → E

8 E ← UpSearch([Γ, Θ � A⇑ ; Δ])

9 if E is an Ncr-derivation then

10 D′ ← Build(Ncr, [Γ ; H � B ↓ ; Δ ; Θ], {D, E},→ E)

11 return DownExp(D′, K)

12 else return 〈 (H � A → B ; Θ) , E 〉
13 endsw

14 endFun

Fig. 5. DownExp

5 Related Work

We have presented the procedure UpSearch to build derivations in Ncr not
requiring backtracking nor loop-checking; the obtained derivations have a direct
translation into normal derivations of Gentzen natural deduction calculus. Using
the terminology of [10], UpSearch is a goal-oriented proof-search strategy which
alternates ⇑ and ↓ expansion (synchronous) phases. Each phase focuses on a
formula and eagerly decomposes it. When in⇑-expansion we get a prime formula,
we can either continue⇑-expansion, restarting from a non-prime formula, or non-
deterministically select a closing match for the sequent at hand, which settles the
next formula to focus on. If we restrict ourselves to the {→,⊥}-fragment of the
language, UpSearch behaves like the goal-oriented proof-search strategy of [6]
(to treat the full language, [6] reduces formulas in disjunctive normal form); in
this case, the resource set is always empty. In the paper we use ¬ as a definite
connective; the use of ¬ as primitive does not significantly affect the treatment.

The idea of performing proof-search in natural deduction calculi using I-rules
bottom-up and E-rules top-down, so to build derivations in normal form, dates
back to [14,15]. In these papers, the strategy is formalized by using the intercala-
tion calculus (IC) as a meta-calculus. Differently from our approach, IC does not
act directly on natural deduction trees. Rules of IC behave like tableaux/sequent-
rules and operate on triples Γ ;Θ?A, representing the sequent [Γ,Θ � A] (formu-
las in Θ are obtained by ∧-elimination and →-elimination of formulas in Γ ); for
a comparison between IC and sequent calculi see the remark in Sect. 3 of [14].
To search for a derivation of A, one has to build a search-tree T starting from
the root τ = ∅; ∅?A, and applying upwards the rules of IC in all possible ways
(termination requires loop-checking). If A is provable, from T one can extract
a sequent-like derivation with root τ which, by applying standard reductions,
can be translated into a natural deduction derivation of A in normal form. The
näıve proof-search strategy described in [14,15] is highly inefficient, due to the
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huge number of backtrack points; moreover, to guarantee termination, one has
to check that a configuration does not occur twice along a branch.

Natural deduction-like calculi have also been employed to implement first-
order theorem provers, see e.g. [1,8,11]. In these systems, the goal is not to pro-
vide derivations in normal form, but to implement reasoning in first-order logic
in natural deduction style. To this aim, the calculi exploit more powerful rules
to introduce and discard assumptions, and the linear Jaśkowski presentation of
derivations [9] is used. Proof-search is performed by exhaustively applying elim-
ination/introduction rules, possibly with the aid of heuristics, and this requires
the inspection of the whole database of available assumptions.

A working implementation of UpSearch named clnat is available at
http://www.dista.uninsubria.it/~ferram/.
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Second-Order Quantifier Elimination
on Relational Monadic Formulas – A Basic

Method and Some Less Expected Applications

Christoph Wernhard

Technische Universität Dresden, Dresden, Germany

Abstract. For relational monadic formulas (the Löwenheim class) sec-
ond-order quantifier elimination, which is closely related to computation
of uniform interpolants, forgetting and projection, always succeeds. The
decidability proof for this class by Behmann from 1922 explicitly pro-
ceeds by elimination with equivalence preserving formula rewriting. We
reconstruct Behmann’s method, relate it to the modern DLS elimination
algorithm and show some applications where the essential monadicity be-
comes apparent only at second sight. In particular, deciding ALCOQH
knowledge bases, elimination in DL-Lite knowledge bases, and the justi-
fication of the success of elimination methods for Sahlqvist formulas.

1 Introduction

A procedure for second-order quantifier elimination takes a second-order formula
as input and yields an equivalent first-order formula in which the quantified pred-
icates do no longer occur, and in which also no new predicates, constants or free
variables are introduced. Obviously, on the basis of classical first-order logic this
is not possible in general. Closely related are uniform interpolation and projec-
tion, where the predicates that are not eliminated are made explicit, forgetting
where elimination of particular ground atoms is possible, and literal forgetting
which can apply to just the predicate occurrences with positive or negative po-
larity. These variants are often also based on a syntactic view, characterized in
terms of the set of consequences of the result formula instead of equivalence.

Second-order quantifier elimination and its variants have many applications
in knowledge processing, including ontology reuse, ontology analysis, logical dif-
ference, information hiding, computation of circumscription, abduction in logic
programming and view-based query processing [20,31,30,15,45,46]. It thus seems
useful to consider as a requirement of knowledge representation languages in ad-
dition to decidability also “eliminability”, that elimination of symbols succeeds.
If eliminating all symbols yields true or false, this implies decidability.

The two main approaches for second-order quantifier elimination with respect
to first-order logic are resolvent generation [19,18] and the direct methods, where
formulas are rewritten into a shape that immediately allows elimination accord-
ing to schematic equivalences such as Ackermann’s Lemma [1,15,18]. In partic-
ular for modal and description logic some dedicated elimination methods have

c© Springer International Publishing Switzerland 2015
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been presented in explicit relation to these two approaches, e.g., [26,12,39], while
several others only in context of the considered special logic, e.g., [24,43,30].

The general characterization of formula classes that allow successful elimi-
nation is not yet thoroughly researched. Some of the mentioned methods and
investigations such as [11] give indications. Further subtle questions arise if not
just the symbols in the result but also further properties – such as belonging
again to the input class – are taken into consideration.

In this paper, we approach that scenario from the viewpoint of a working hy-
pothesis that might be stated as “many applications are actually instances of a
modest subclass of first-order logic that allows elimination and is characterized
by a general criterion.” Consequences in perspective would be that the reducibil-
ity to the modest class provides explanations for the success of elimination, that
possibly interesting boundaries come to light when a feature is really inexpress-
ible in the modest class, that results apply in the context of first-order logic as a
general framework with many well developed techniques and allowing to embed
other logics, and that a modest class could facilitate efficient implementation.

A look back into history highlights the class of relational monadic formulas as
candidate of such a “modest class.” For its variants, we use the following symbols:
MON is the class of relational monadic formulas (also called Löwenheim class),
that is, the class of first-order formulas with nullary and unary predicates, with
individual constants but no other functions and without equality. MON= is MON
with equality. QMON and QMON= are MON and MON=, resp., extended by
second-order quantification upon predicates.

All of these classes are decidable. QMON= admits second-order quantifier
elimination, that is, there is an effective method to compute for a given QMON=

formula F an equivalent MON= formula F ′ in which all predicates are unquan-
tified predicates in F , as well as all constants and free variables are also in F . In
this sense MON= is closed under second-order quantifier elimination, which does
not hold for MON, since elimination applied to a QMON formula might intro-
duce equality. These results have been obtained rather early by Löwenheim [32],
Skolem [41] and Behmann [5]. The first documented use of Entscheidungsproblem
actually seems to be the registration of a talk by Behmann in 1921 [33]. We focus
here on Behmann’s decision procedure for several reasons: It aims at practical
application, operating in a way that appears rather modern by equivalence pre-
serving formula rewriting. It provides a link between the decision problem and
elimination by the reduction of deciding satisfiability to successive elimination
of all predicates. In addition, motivated by earlier works of Ernst Schröder, the
application to elimination problems on their own has been considered.

Behmann’s elimination procedure can be seen as an early instance of the di-
rect methods, where formulas are rewritten until subformulas with predicate
quantification match an elimination schema. In the case of DLS [15] this schema
is Ackermann’s Lemma, a side result of [1]. Actually, Ackermann acknowledged
that Behmann’s paper [5] was at its time the impetus for him to investigate the
elimination problem in depth (letter to Behmann, 29 Oct 1934, [6]). In modern
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expositions of second-order quantifier elimination, e.g., [18], Behmann’s contri-
butions have so far been largely overlooked with exception of historic references
[14,39]. A comprehensive summary of the contributions is given in [47].

The rest of the paper is structured as follows: After fixing notational con-
ventions, we present a restoration of Behmann’s elimination method (Sect. 2)
and properties of second-order logic that will be useful in the sequel (Sect. 3).
In Sect. 4 description logics are considered: It is shown that decidability of
ALCOQH knowledge bases can be polynomially reduced to decidability of re-
lational monadic formulas. With respect to elimination problems, related map-
pings are possible for description logics of the DL-Lite family. Some issues and
subtleties that arise for elimination via such mappings are discussed. In Sect. 5
direct methods with Ackermann’s Lemma are related to monadic techniques.
A flaw in DLS becomes apparent and it is shown that a condition related to
monadicity can serve as explanation for the success of methods based on Acker-
mann’s Lemma. The success of the Sahlqvist-van Benthem substitution method
and of DLS for computing first-order correspondence properties of Sahlqvist for-
mulas can be attributed to that property. Finally, related work is discussed in
Sect. 6 and concluding remarks are provided in Sect. 7.

Notational Conventions. We consider formulas constructed from atoms, con-
stant operators �, ⊥, the unary operator ¬, binary operators ∧,∨ and quan-
tifiers ∀, ∃ with their usual meaning. The scope of quantifiers is understood as
extending as far to the right as possible. A subformula occurrence has in a given
formula positive (negative) polarity if it is in the scope of an even (odd) num-
ber of negations. Negated equality �=, further binary operators →,←,↔, as well
as n-ary versions of ∧ and ∨ can be understood as meta-level notation. The
scope of n-ary operators in prefix notation is the immediate subformula to the
right. Counting quantifiers ∃≥n, where n ≥ 1, express existence of at least n
individuals. Two alternate expansions into first-order logic are as follows: Let
F [x] be a formula in which x possibly occurs free, let x1, . . . , xn be fresh vari-
ables, and let F [xi] denote F [x] with the free occurrences of x replaced by xi.
It then holds that ∃≥nxF [x] ≡ ∃x1 . . . ∃xn

∧
1≤i≤n F [xi] ∧

∧
i<j≤n xi �= xj ≡

∀x1 . . .∀xn−1∃xF [x] ∧
∧

1≤i<n x �= xi. A Boolean combination of basic formulas
is a formula obtained from certain basic formulas and the operators �,⊥,¬,∧,∨.

2 Behmann’s Elimination Method

The core property shown in [5] can be stated as follows:

Proposition 1 (Predicate Elimination for MON=). There is an effective
method to compute from a given predicate p and MON= formula F a formula F ′

such that (1.) F ′ is a MON= formula, (2.) F ′ ≡ ∃pF , (3.) p does not occur in
F ′, (4.) All free variables, constants and predicates in F ′ do occur in F .

The condition that all predicates in F ′ occur there only in polarities in which
they also occur in F could also be added. The proposition implies that second-
order quantifier elimination can be successfully performed for QMON= with the
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following procedure: Replace subformulas of the form ∀pG with ¬∃p¬G and
exhaustively rewrite subformulas of the form ∃pG where G is a MON= formula
(i.e., ∃pG is an innermost second-order quantification) to MON= formulas ac-
cording to Prop. 1. Satisfiability of a QMON= formula F can be decided by
applying this elimination method to

∃p1 . . .∃pn ∃x1 . . . ∃xm ∃c1 . . .∃ck F, (1)
where p1, . . . , pn are all predicates with free occurrences in F , x1, . . . , xm are the
free variables in F and c1, . . . , ck are the constants in F . The result is a MON=

sentence without any predicates and constants but possibly with equality. It can
be transformed to a Boolean combination of basic formulas of the form ∃≥nx�,
which are satisfied by exactly those interpretations whose domain has at least n
members. A Boolean combination of such basic formulas is then either true for
all domain cardinalities with exception of a finite number or false for all domain
cardinalities with exception of a finite number. The respective cardinalities can
be read off easily from a representation in disjunctive normal form with ∃≥nx�
in the role of atoms: each satisfiable conjunction then justifies a series of numbers
with a lower limit or with lower as well as upper limits as domain cardinalities.
For sufficiently large finite and for all infinite domains the value of the sentence
is the same.

We now turn to the proof of Prop. 1 that is, to Behmann’s method for second-
order quantifier elimination by equivalence preserving formula rewriting. We
make here only the characteristic steps of the method precise (see [47] for a more
detailed account). For conversions that can be easily performed by rewriting with
well-known equivalences only the effect is indicated. Some of the equivalences
that are familiar from conversion to prenex form are now applied in the reverse
direction, since in Behmann’s method quantifiers are moved inward as far as
possible, until theirs scopes do no longer overlap. A less common equivalence
that is often applied is:

p(t) ≡ ∀x p(x) ∨ x �= t, (2)
for all constants or variables t different from x; dually p(t) ≡ ∃x p(x) ∧ x = t.
The actual elimination steps are justified by the following equivalence:

Proposition 2 (Basic Elimination Lemma). Let p be a unary predicate and
let F,G be first-order formulas with equality in which p does not occur. Then

∃p (∀xF ∨ p(x)) ∧ (∀xG ∨ ¬p(x)) ≡ ∀xF ∨G.

Formulas F and G in that proposition may contain free occurrences of x, which
are bound by the surrounding ∀x on both sides. The goal of the elimination
method is now to rewrite an input formula ∃pF , where F is a MON= formula,
such that all occurrences of quantification upon p match the left side of Prop. 2.

This is achieved by a conversion such that all subformulas starting with ∃p are
in a normalized form, called here Generalized Eliminationshauptform (Behmann
calls a simpler variant for inputs without equality Eliminationshauptform [main
form for elimination]). The following proposition shows this form and the con-
version from it to applicability of Prop. 2. The counting quantifier ∀<nx is used
there as shorthand for ¬∃≥nx¬:
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Proposition 3 (From Generalized Eliminationshauptform to the Basic
Elimination Lemma). Let p be a unary predicate and let F be the formula

∃p
∧

1≤i≤a (∀x<ai Ai[x] ∨ p(x)) ∧
∧

1≤i≤b (∀x<bi Bi[x] ∨ ¬p(x)) ∧
∧

1≤i≤c (∃x≥ci Ci[x] ∧ p(x)) ∧
∧

1≤i≤d (∃x≥di Di[x] ∧ ¬p(x)),
where a, b, c, d are natural numbers ≥ 0, for the referenced values of i the ai, bi,
ci, di are natural numbers ≥ 1, and the Ai[x], Bi[x], Ci[x], Di[x] are first-order
formulas in which p does not occur. Then F is equivalent to

QG ∧ ∃p (∀xA[x] ∨ p(x)) ∧ (∀xB[x] ∨ ¬p(x)),
where Q is an existential quantifier prefix upon the following fresh variables:
xi1 . . . xi(ai−1), 1 ≤ i ≤ a; yi1 . . . yi(bi−1), 1 ≤ i ≤ b; ui1 . . . uici , 1 ≤ i ≤ c;
vi1 . . . vidi , 1 ≤ i ≤ d, where G =

∧
1≤i≤c, 1≤j≤ci

(Ci[uij ] ∧
∧

j<k≤ci
uij �= uik) ∧∧

1≤i≤d, 1≤j≤di
(Di[vij ] ∧

∧
j<k≤di

vij , �= vik), with Ci[uij ] and Di[vij ] denoting
Ci[x] and Di[x] after replacing all free occurrences of x by uij and vij , respec-
tively, and where

A[x] =
∧

1≤i≤a(Ai[x] ∨
∨

1≤j<ai
x = xij) ∧

∧
1≤i≤c, 1≤j≤ci

x �= uij , and
B[x] =

∧
1≤i≤b(Bi[x] ∨

∨
1≤j<bi

x = yij) ∧
∧

1≤i≤d, 1≤j≤di
x �= vij .

The proof of Prop. 3 makes use of the different ways to expand counting quan-
tifiers shown at the end of Sect. 1, such that for universal as well as existential
counting quantifiers existential variables are produced which can be moved in
front of the existential predicate quantifier. For example, ∀x<ai Ai[x] ∨ p(x) ≡
∃xi1 . . . ∃xi(ai−1)∀x (Ai[x] ∨

∨
1≤j<ai

x = xij) ∨ p(x) and ∃≥cxCi[x] ∧ p(x) ≡
∃ui1 . . . ∃uic

∧
1≤j≤c(Ci[uij ] ∧

∧
j<k≤c uij �= uik) ∧

∧
1≤j≤c(∀xx �= uij ∨ p(x)).

For inputs without equality, the Eliminationshauptform is sufficient:
∃p

∧
1≤i≤a (∀xAi[x] ∨ p(x)) ∧

∧
1≤i≤b (∀xBi[x] ∨ ¬p(x)) ∧

∧
1≤i≤c (∃xCi[x] ∧ p(x)) ∧

∧
1≤i≤d (∃xDi[x] ∧ ¬p(x)), (3)

It is equivalent to
∃u1 . . . ∃uc∃v1 . . . ∃vd

∧
1≤i≤c Ci[ui] ∧

∧
1≤i≤d Di[vi] ∧

∃p ∀x ((
∧

1≤i≤a Ai[x] ∧
∧

1≤i≤c x �= ui) ∨ p(x)) ∧
∀x ((

∧
1≤i≤b Bi[x] ∧

∧
1≤i≤d x �= vi) ∨ ¬p(x)),

(4)

where u1, . . . , uc and v1, . . . , vd are fresh variables. The result of eliminating p
according to Prop. 2 then can be further rewritten to:

(∀x
∧

1≤i≤a Ai[x] ∨
∧

1≤i≤b Bi[x]) ∧
∃u1 . . . ∃uc∃v1 . . .∃vd

∧
1≤i≤c, 1≤j≤d ui �= vj ∧∧

1≤i≤c(Ci[ui] ∧
∧

1≤j≤b Bj [ui]) ∧
∧

1≤i≤d(Di[vi] ∧
∧

1≤j≤a Aj [vi]),

(5)

whereAi[t],Bi[t],Ci[t],Di[t] denoteAi[x],Bi[x],Ci[x],Di[x], respectively,with all
free occurrences of x replaced by t. Equality enters in preparation of the form (3) by
rewriting occurrences of pwith constant argument by (2) and through handling ex-
istential quantifiers in proceeding from (3) to (4). The introduced equality literals
actually either have a constant or two existential variables as arguments, implying
that the simpler variant without dedicated equality handling is sufficient for elim-
ination in formulas ∃p1 . . . ∃pn F where F is a MON formula (Behmann shows a
special translation which is exponential in n for this case).
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The conversion of ∃pF to a form where all subformulas starting with ∃p match
the Generalized Eliminationshauptform of Prop. 3 proceeds in two steps. First
the MON= formula F is converted to a form where the quantifiers of instance
variables are propagated inward such that their scopes do not overlap. We call
such forms here innex as suggested by Behmann.1 Achieving this form requires
potentially expensive rewritings, in particular the distribution of conjunction
over disjunction and vice versa, if this can effect further narrowing of quantifier
scopes. Consider for example: ∀x p(x)∨(q(x)∧∃y r(y)) ≡ ∀x (p(x)∨q(x))∧(p(x)∨
∃y r(y)) ≡ (∀x p(x) ∨ q(x)) ∧ ((∀x p(x)) ∨ (∃y r(y))). In automated reasoning,
forms where quantifiers are propagated inward have also been considered, e.g.
[16,36], but typically just as preprocessing operations, which would preclude the
required expensive operations. In a variant of Behmann’s method by Quine [37],
the innex form is achieved by exhaustively rewriting innermost formulas with
the following equivalence, shown here in dual variants:

∃xF [G] ≡ (G ∨ ∃xF [⊥]) ∧ (¬G ∨ ∃xF [�]), (6)
∀xF [G] ≡ (G ∧ ∀xF [�]) ∨ (¬G ∧ ∀xF [⊥]), (7)

where F [G] is a first-order formula with occurrences of a subformula G in which
x does not occur free and whose free variables are not in scope of a quantifier
within F [G]. Formulas F [�] and F [⊥] denote F [G] with all the occurrences of G
replaced by � or ⊥, respectively. Variant (7) is a generalization of the well-known
propositional Shannon expansion.

In presence of equality, the conversion to innex form introduces counting
quantifiers by rewriting formulas of the form (8) below to either (9) or (10):
Let F [x] be a first-order formula in which variable x possibly occurs free, let
T = {t1, . . . , tn} be an ordered set of n distinct constants or variables which are
different from x and which do not occur in F [x]. Let F [t] denote F [x] with all
free occurrences of x replaced by t. Then:

∃xF [x] ∧
∧

1≤i≤n x �= ti (8)

≡
∨

1≤m≤n((∃≥mxF [x]) ∧ AUX(m)) ∨ ∃≥n+1xF [x] (9)

≡ (∃≥1xF [x]) ∧
∧

1≤m≤n((∃≥m+1xF [x]) ∨ AUX(m)), (10)

where AUX(m) stands for
∧

S⊆T,|S|=m(
∨

t∈S ¬F [t] ∨
∨

ti,tj∈S,i<j ti = tj). For
example: ∃x p(x)∧x �= a∧x �= b ≡ ((∃≥1x p(x))∧¬p(a)∧¬p(b))∨((∃≥2x p(x))∧
(¬p(a) ∨ ¬p(b) ∨ a = b)) ∨ ∃≥3x p(x) ≡ ∃≥1x p(x) ∧ ((∃≥2x p(x)) ∨ (¬p(a) ∧
¬p(b))) ∧ ((∃≥3x p(x)) ∨ ¬p(a) ∨ ¬p(b) ∨ a = b).

The result of the innex conversion with respect to quantifiers upon instance
variables is captured in the following proposition:

Proposition 4 (Counting Quantifier Innex Form for MON= Formulas).
There is an effective method to compute from a given MON= formula F a for-
mula F ′ such that: (1.) F ′ is a Boolean combination of basic formulas of the
form: (a) p, where p is a nullary predicate, (b) p(t), where p is a unary predicate
and t is a constant or an variable, (c) t = s, where each of t, s is a constant or
1 Letter to Church, 30 Jan 1959 [6, Kasten 1, I 11].
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a variable, (d) ∃≥nx
∧

1≤i≤m Li[x], where n ≥ 1, m ≥ 0 and the Li[x] are pair-
wise different and pairwise non-complementary positive or negative literals with
a unary predicate applied to the variable x. (2.) F ′ ≡ F . (3.) All free variables,
constants and predicates in F ′ do occur in F .

If the given formula F is without equality, the allowed basic formulas can be
strengthened by excluding the case t = s (c) and restricting the case (d) to n = 1,
such that the counting quantifier can be considered as standard quantifier.

The second step in converting ∃pF leads from ∃pF ′, where F ′ is a Boolean
combination according to Prop. 4 to a formula where all subformulas starting
with ∃p match the Generalized Eliminationshauptform of Prop. 3. This can be
achieved by first moving negation in F ′ inward followed by replacing formulas
of the form ¬∃≥nx

∧
1≤i≤m Li[x] with ∀<nx

∨
1≤i≤m Li[x], where L denotes the

complement of literal L. Then ∃p is propagated inward with the same technique
that had been applied to first-order quantifiers: ∃p is distributed over disjunction,
conjunctions are reordered such that conjuncts without p can be moved out of
its scope, and – the potentially expensive – distribution of conjunction over
disjunction is applied if that enables further distribution of ∃p over disjunction.

3 Useful Second-Order Properties

The use of transformations that introduce auxiliary definitions, like the Tseitin
and Plaisted-Greenbaum encoding, is common practice to obtain small equi-
satisfiable conjunctive normal forms. Second-order quantification allows to un-
derstand the introduction and elimination of such definitions as equivalence pre-
serving operations, with Ackermann’s Lemma as a special case. The more fine
grained account of semantics (instead of just equi-satisfiability) justifies the ap-
plication of these techniques in elimination tasks. We compile these principles
here for the case where the defined/eliminated predicates are unary.

Unless specially noted, we consider here formulas of first-order logic with
equality. If p does not occur in F , then by Prop. 2 it holds that ∃p ∀x p(x) ↔
F ≡ �. This allows to derive the following proposition:

Proposition 5 (Introduction and Elimination of Definitions). Let p be a
unary predicate, let x be an variable and let G[x] be a formula in which p does not
occur. For a constant or variable t, let G[t] denote G[x] with all free occurrences
of x replaced by t. Let F [G[t1], . . . , G[tn]] be a formula in which p does not occur
and which has n occurrences of subformulas, instantiated with G[t1], . . . , G[tn],
respectively, neither of them in a context where a variable that occurs free in
G[x] is bound. Let F [p(t1), . . . , p(tn)] denote the same formula with the indicated
occurrences G[ti] replaced by p(ti). Then

F [G[t1], . . . , G[tn]] ≡ ∃p (∀x p(x) ↔ G[x]) ∧ F [p(t1), . . . , p(tn)].

Prop. 5 can be applied from left to right to introduce auxiliary predicates p and
from right to left to expand them, by replacing all occurrences of p with their
definientia and then dropping the definition. If p occurs in F [p(t1), . . . , p(tn)]
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just with, say, positive polarity, then ∃p (∀x p(x) ↔ G[x])∧F [p(t1), . . . , p(tn)] ≡
∃p (∀x p(x) → G[x]) ∧ F [p(t1), . . . , p(tn)]. This leads to Ackermann’sLemma [1]:

Proposition 6 (Ackermann’s Lemma). Assume the setting of Prop. 5 and
that all the indicated subformula occurrences in F [G[t1], . . . , G[tn]] (or, equiva-
lently, in F [p(t1), . . . , p(tn)]) have the same polarity P . Then

∃p (∀x p(x) → G[x]) ∧ F [p(t1), . . . , p(tn)] ≡ F [G[t1], . . . , G[tn]], if P is positive.
∃p (∀x p(x) ← G[x]) ∧ F [p(t1), . . . , p(tn)] ≡ F [G[t1], . . . , G[tn]], if P is negative.

The Basic Elimination Lemma Prop. 2 is obviously an instance of Ackermann’s
Lemma. Vice versa, Ackermann’s Lemma can be proven such that the only
elimination step is performed according to Prop. 2.

In [2], a short sequel to [1], Ackermann shows a precondition which allows
to move existential predicate quantification to the right of universal individual
quantification, where the arity of the quantified predicate is reduced:

Proposition 7 (Ackermann’s Quantifier Switching). Let p be a predicate
with arity n+1, where n ≥ 0. Let F = F [p(x, t11, . . . , t1n), . . . , p(x, tm1, . . . , tmn)],
where m ≥ 1, be a formula of second-order logic in which p has the exactly m
indicated occurrences. Assume further that p and x occur only free in F . Let q
be a predicate with arity n that does not occur in F and let F [q(t11, . . . , t1n), . . . ,
q(tm1, . . . , tmn)] denote F with each occurrence p(x, tij , . . . , tij) of p replaced by
q(tij , . . . , tij), for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Under the assumption of the axiom of
choice it then holds that

∃p∀xF [p(x, t11, . . . , t1n), . . . , p(x, tm1, . . . , tmn)]
≡ ∀x∃q F [q(t11, . . . , t1n), . . . , q(tm1, . . . , tmn)].

Ackermann applies this equivalence in [2] to avoid Skolemization and to convert
formulas such that monadic techniques or Ackermann’s Lemma become appli-
cable. Van Benthem [7, p. 211] mentions this equivalence with application from
right to left to achieve prenex form w.r.t. second-order quantifiers.

4 Hidden Monadicity in Description Logics

The second-order properties compiled in Sect. 3 give us a toolkit to convert a
knowledge base (KB), i.e., a TBox combined with an ABox, in the expressive
description logic (DL) ALCOQH (ALC with nominals, qualified number restric-
tions and subroles) to an equi-satisfiable QMON= formula. Given the decidability
of QMON= formulas, this provides a very simple proof of the decidability of the
description logic. It also follows that any method to decide QMON= formulas
provides a decision method for the DL.

It is well-know that for many DLs, including ALCOQH, a KB can be straight-
forwardly translated into a first-order formula (e.g., [38,23]) based on the stan-
dard translation of modal logics (e.g., [8]). We call this representation of a DL KB
its standard first-order translation. It captures not just satisfiability but the full
semantics of the KB. The standard first-order translation can be converted to a
generalized conjunctive normal form, where the role of literals is played by basic
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Table 1. Forms of basic formulas in DL normalizations. The symbols c, d and r match
unary or binary predicates, respectively. Variables are understood literally as shown.

Form Inducing DL construct

1. c(x) atomic concept, ABox assertion
2. ¬c(x) atomic concept
3. ∃y r(x, y) ∧ d(y) qualified existential restriction
4. ∀y¬r(x, y) ∨ d(y) qualified value restriction
5. x = a nominal
6. x �= a nominal, ABox assertion
7. r(x, a) ABox assertion
8. ∀y¬r(x, y) ∨ r(x, y) subrole
9. ∃≥ny r(x, y) ∧ d(y) qualified number restriction

10. ¬(∃≥ny r(x, y) ∧ ¬d(y)) qualified number restriction

formulas of certain forms. A structural normal form conversion, which involves
introduction of auxiliary predicate definitions according to Prop. 5 can prevent
the blow-up through distribution of disjunction over conjunction, can ensure
that variables are introduced only in a limited way and can effect further nor-
malization. If the translation proceeds by expanding equivalences corresponding
to definitional TBox axioms into implications and conversion to negation nor-
mal form, Ackermann’s Lemma (6) is sufficient to justify the introduction of the
auxiliary predicates, corresponding to the Plaisted-Greenbaum encoding. (See
[23] for a thorough presentation of such structure preserving translations of de-
scription logics into specific decidable first-order fragments.) For the standard
first-order translation of an ALCOQH KB this normalization yields an equiv-
alent second-order formula ∃d1 . . . ∃dk ∀xF , where d1, . . . , dk are fresh unary
auxiliary predicates and F is a first-order conjunction of disjunctions of basic
formulas of the forms shown in Table 1.

In the conversion of ABox assertions equivalence (2) is involved. The counting
quantifiers can be considered as abbreviations for formulas as shown at the end
of Sect. 1. The translation ∃d1 . . . ∃dk ∀xF is equi-satisfiable with the following
second-order formula:

∃c1 . . . ∃cn ∃r1 . . . ∃rm ∃d1 . . . ∃dk ∀xF, (11)

where c1, . . . , cn are the unary predicates in F with exception of the d1, . . . , dk
(corresponding to names of atomic concepts in the KB) and r1, . . . , rm are the
binary predicates in F (corresponding to role names in the KB). The predi-
cate quantifiers can be reordered such that ∃r1 . . .∃rm immediately precedes ∀x.
Since all occurrences of r1, . . . , rm in F have x as first argument, by Prop. 7
formula (11) is equivalent to

∃c1 . . .∃cn ∃d1 . . . ∃dk ∀x∃r′1 . . .∃r′m F ′, (12)

where the r′1, . . . , r
′
m are fresh unary predicates and F ′ is obtained from F by

replacing for all i ∈ {1, . . . ,m} all occurrences of the form ri(x, t), where t is
some term, with r′i(t).
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Formula (12) is a QMON= formula. If no number restrictions are involved,
the effort required by this translation is linear in the size of the original KB.
Otherwise, the expansion of the counting quantifiers into first-order logic has to
be taken into account, whose size is linear in the cardinality argument of the
quantifier. The following theorem statement summarizes what has been shown:

Theorem 8 (Reduction of ALCOQH Knowledge Base Satisfiability to
Satisfiability of Relational Monadic Formulas). Under assumption of the
axiom of choice, there is a polynomial time translation from an ALCOQH knowl-
edge base to an equi-satisfiable QMON= sentence. The translation takes time
linear in the size of the standard first-order translation of the knowledge base.

An elimination-based decision procedure may yield requirements on the domain
cardinality. This applies also to translated DL KBs. A simple example is the KB
{� � ∃r.c, � � ∃r.¬c}. We obtain that the KB is only satisfiable for domains
whose cardinality is at least two: ∃c∀x∃r′ (∃y r′(y)∧ c(y))∧ (∃y r′(y)∧¬c(y)) ≡
∃y∃z y �= z ≡ ∃≥2x�. The KB {� � {a}} translates into the equi-satisfiable
∃a∀xa = y (without predicate to eliminate), which can be expressed as ¬∃≥2x�.

The QMON= translation in formula (12) suggests that the decision method
has to proceed by first eliminating the role predicates r′1, . . . , r

′
m, before any of

the concept predicates can be eliminated. One further conversion step can be
applied to relax this by also moving those of the other quantified predicates
that only occur with x as argument in F ′ to the right of ∀x with Prop. 7.
The introduction of auxiliary predicates in the processing of the standard first-
order translation can be arranged such that this applies to all predicates that
correspond to concept names in the input KB (the initial normalization of the
resolution-based elimination method in [26] satisfies an analogous criterion). The
resulting translation is then a QMON= formula of the form

∃d1 . . . ∃dk ∀x∃r′1 . . . ∃r′m ∃c′1 . . . ∃c′n F ′′, (13)

where the c′1, . . . , c
′
n are fresh nullary predicates, and F ′′ is obtained from F ′ in

(12) by replacing for all i ∈ {1, . . . , n} all occurrences of ci(x) with c′i.
As we have seen, elimination of all concept and role predicates can be succes-

sively performed to decide ALCOQH knowledge bases. We now consider actual
elimination problems, where just some predicates should be eliminated. Given is
the standard first-order translation K of a knowledge base and a set {p1, . . . , pn}
of unary predicates that represent concept names in the knowledge base. The
objective is to apply second-order quantifier elimination to

∃p1 . . . pn K. (14)

The normalization with auxiliary predicates described above for deciding satisfi-
ability and further straightforward equivalence preserving conversion then yield
a formula that is equivalent to (14) and has the following form:

S ∧ ∃c1 . . . ∃cl ∃d1, . . . , ∃dk ∀xF, (15)

where the c1, . . . , cl are those unary predicates in F that only occur with x as ar-
gument which includes the p1, . . . , pn, the d1, . . . , dk are all the remaining unary
auxiliary predicates introduced in the normalization, S is a sentence in which
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the binary predicates r1, . . . , rm representing roles in F are the only predicates,
and F is a conjunction of disjunctions of basic formulas as displayed in Table 1.

The S component can in particular be used to express inverse roles by formu-
las like ∀x∀y, ri(x, y) ↔ rj(y, x). Let R[x] be the formula

∧
1≤i≤m (∀y r′i(y) ↔

ri(x, y)). By Prop. 5, formula (15) is then equivalent to
S ∧ ∃c1 . . . ∃cl ∃d1, . . . , ∃dk ∀x ∃r′1 . . . ∃r′m R[x] ∧ F ′, (16)

where, as in formula (12), the r′1, . . . , r
′
m are fresh unary predicates and F ′ is

obtained from F by replacing all occurrences of ri(x, t) with r′i(t). By arguments
analogously to the derivation of formula (13), formula (16) is equivalent to:

S ∧ ∃d1, . . . , ∃dk ∀x∃r′1 . . . ∃r′m R[x] ∧ ∃c′1 . . . ∃c′l F ′′, (17)
where, as in formula (16), the c′1, . . . , c

′
l are fresh nullary predicates and F ′′ is

obtained from F ′ by replacing all occurrences of ci(x) with c′i. Clearly, F ′′ is
a MON= formula, implying that ∃c′1 . . . ∃c′l can be successfully eliminated by
monadic techniques. The ∃r′1 . . . ∃r′m can then be linearly eliminated according
to Prop. 5 by unfolding their definitions in R[x], followed by removing R[x].

If k = 0, that is, there are no ∃di, which is evidently the case if among the
constructs in Table 1 only the limited versions of restriction are permitted, that
is, in lines 3. and 9. of the table only � is allowed in place of d(y) and in line 4.
and 10. only ⊥, then the elimination is now completed. This result is expressed
in the following theorem statement.

Theorem 9 (Monadic Concept Elimination in DLs with Limited Re-
striction). We consider knowledge bases expressed in a description logic that is
like ALCOQH but only allows limited restriction and allows in addition inverse
roles. Under the assumption of the axiom of choice, there is a linear time trans-
lation that converts the standard first-order translation K of such a knowledge
base and a set {p1, . . . , pn} of unary predicates representing concept names in K
to a relational second-order formula that is equivalent to ∃p1 . . .∃pn K and such
that those second-order quantifiers whose argument is not a QMON= formula
can be eliminated linearly by a series of applications of Prop. 5.

With permitting inverse roles but only limited restriction, the description logics
covered by Theorem 9 include the typical representatives of the DL-Lite family
[10]. The theorem can be easily strengthened to allow also the forgetting of roles
whose inverse is not used (more generally: whose corresponding predicates ri do
not occur in the S component of (15)). To achieve this, the definitions of their
corresponding unary predicates r′i have just to be omitted from R[x].

An obvious limit of the translation underlying Theorem 9 is that elimination
of the ∃d1 . . .∃dk in (17) with techniques based on monadicity is blocked: the
argument formula of the ∃di contains with R[x] binary predicates, and Prop. 7
can not be applied to move the di to the right of ∀x (and of R[x]) because
they occur in F ′′ with arguments other than x. So far, a general technique to
overcome this in the monadic setting has not been developed. In particular situ-
ations, elimination of an ∃di might nevertheless be possible after eliminating the
∃c′1 . . . ∃c′k. For example, if all occurrences of di then have x as argument, possi-
bly also after switching names of universal variables in some conjuncts, or after
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introducing additional fresh di predicates (which may lead to non-termination).
Also the inclusion of other elimination techniques seems possible, in particular
of ones that can be considered as simplifications such as elimination in the case
where di occurs just in a single polarity. A further option might be to accept
predicates di in the elimination output if they can be regarded as just encoding
formula structure.

With the approach of elimination in description logics via embedding into
first-order logic, the issue of re-translation of the first-order elimination result
to the source language arises. Further auxiliary unary predicates introduced
according to Prop. 5 might be helpful to encapsulate complex basic formulas that
should not be broken during elimination. A general question is, how to deal with
source languages whose first-order consequences diverge from the consequences
expressible in the language. As we have already seen, eliminating r and c from
{� � ∃r.c, � � ∃r.¬c} yields the first-order consequence ∃≥2x�, which as
such can not be expressed by an ALC KB. If the elimination result should be
combined with another knowledge base, say, {� � {a}}, it does well matter
whether the consequence ∃≥2x� is retained. Related examples, where forgetting
in ALC ontologies yields results with number restrictions that are expressed as
SHQ ontologies, can be found in [27].

5 Direct Methods in View of Monadic Techniques

Direct methods (also called methods following the Ackermann approach) were
introduced with the DLS algorithm [15,22,11] that operates on the basis of first-
order formulas. Its preprocessing step tries to rewrite the input such that all
innermost occurrences of second-order quantifiers allow elimination by Acker-
mann’s Lemma. A comparison of DLS with Behmann’s innex conversion imme-
diately suggests an improvement of DLS: The preprocessing of DLS starts with
conversion to negation normal form and does not include a rule to distribute
disjunction over conjunction. (It does includes a rule to distribute conjunction
over disjunction.) A simple example where DLS fails unnecessarily because no
preprocessing rule is applicable is thus ∃p∀x (p(x) ∧ q(x)) ∨ (¬p(x) ∧ r(x)).

It thus seems that DLS should be enhanced with distributing disjunction over
conjunction or equivalent techniques. In contrast to the original [15] and the
carefully analyzed variant [11] of DLS, related enhancements have been consid-
ered for the implementation [22], but not in a systematic way. A recent direct
method for modal logics [39] has a single rule which covers both required forms
of distribution since it does not operate on negation normal form.

Algorithms based on Ackermann’s Lemma operate by preprocessing the in-
put such that all innermost occurrences of second-order quantifiers are in for-
mulas of the form ∃pF1 ∧ F2, where p occurs in F1 only in positive and in F2

only in negative polarity. This form can always be converted into two alternate
forms where each subformula that starts with ∃p matches the left side of the
first or second variant of Ackermann’s Lemma, respectively. However, this step
might involve the introduction of Skolem functions that have to be replaced
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after eliminating p by existential variables, which is not possible in all cases.
If one of the conjuncts F1 or F2 is a MON= formula, then this rewriting can
be performed without introduction of Skolem functions guaranteeing successful
elimination with Ackermann’s Lemma because there is no need for potentially
failing un-Skolemization. Based on the techniques from Sect. 2, the conversion of
∃pF1 ∧F2 can be achieved as follows for the case where F1 is a MON= formula:
Let k be a fresh nullary predicate. Convert ∃p F1 ∧ k to Behmann’s Generalized
Eliminationshauptform (Prop. 3) without applying rewritings which depend on
the fact that p does not occur in k. Replace all occurrences of k with F2. This
shows the following statement:

Theorem 10 (Applicability of Ackermann’s Lemma on Semi Monadic
Formulas). Consider a formula ∃p F1 ∧ F2 where F1 is a MON= formula in
which p occurs only with positive polarity and F2 is a first-order formula in
which p only occurs with negative polarity. Then ∃p F1 ∧ F2 is equivalent to a
second-order formula in which all occurrences of second order quantifiers are
upon p and are of the form ∃p (∀xF ′

1 → p(x))∧F ′
2 where F ′

1 is a MON= formula
without any occurrence of p and F ′

2 a first-order formula with only negative oc-
currences of p. Moreover, all free variables, constants and predicates in formulas
F ′
1 and F ′

2 occur already in F1 ∧ F2. This statement applies analogously for the
case where p occurs with the respective complementary polarities in F1 and F2.
Successful termination on all elimination tasks that express the computation of
frame correspondence properties of Sahlqvist formulas is a desired and investi-
gated property of elimination methods [21,11,13,39]. The Sahlqvist-van Benthem
substitution algorithm (see e.g. [8]) is a specialized method for that problem,
where an involved substitution step can be considered as elimination with Ack-
ermann’s Lemma. For these applications of Ackermann’s Lemma a match with
the “semi monadic” case, the precondition of Theorem 10, can be established,
such that the success of elimination for Sahlqvist formulas can be attributed in
part to their representability by “semi monadic” formulas (see [48] for details).

6 Related Work

In [26,27,28] methods for uniform interpolation in various expressive DLs are
presented, which are explicitly related to resolution based elimination and Ack-
ermann’s Lemma. They are based on a conjunctive normal form translation
with auxiliary defined concepts analogous to that described in Sect. 4 and op-
erate in two phases, related to the problem of eliminating the ∃di exhibited in
formula (17). In a resolution-based first phase at least all input concepts that
should be forgotten are eliminated. In this phase a finite (but possibly exponen-
tial) number of fresh auxiliary concepts is introduced in a controlled way. This
phase is sufficient to decide the formula. A normalization is preserved such that
in the second phase all the remaining auxiliary concepts can be eliminated either
by Ackermann’s Lemma, or, in case of circular dependency, by a fixpoint gen-
eralization of it [35]. The preserved normalization ensures re-translatability of
the results to fixpoint extensions of the respective DL. Monadic properties have
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not been explicitly considered in these works, but might be implicit in the used
normal form which represents concept and role names by propositional symbols.

In [3] equi-satisfiable translations of variants of DL-Lite into the one-variable
fragment of first-order logic are developed. Elimination problems have not been
considered there. The translation is not systematically derived by using second-
order equivalences. It needs to be investigated, whether its representation of
inverse roles and number restrictions can be transferred to the setting of Sect. 4.
Forgetting and related concepts are investigated for DL-Lite in [25], a specialized
algorithm for concept forgetting in DL-Lite is shown in [43].

Alternative decision methods for MON formulas include resolution: Equipped
with an appropriate ordering and condensation, it decides MON formulas, al-
though the associated Herbrand universe might be infinite due to Skolemization
[17]. A superposition-based decision method for MON= is given in [4]. Deciding
satisfiability for MON and MON= is NEXPTIME-complete, as presented in [9,
Sect. 6.2] along with more fine-grained results. The method of [29] underlying
the upper bound verifies a given interpretation by repeatedly constructing an
innex form with respect to some innermost individual quantifier occurrence and
then replacing the corresponding obtained quantified subformulas with � or ⊥
according to the interpretation. Only atoms present in the input are involved.

Relational monadic formulas have applications in verification: In [40] a deci-
sion method for S1S, applied in the verification of temporal properties, is de-
scribed, which involves conversion to Behmann’s innex form. An OBDD-based
implementation is mentioned there. In [42] techniques to detect whether polyadic
relations correspond to a finite union of Cartesian products and, if this is the
case, decompose them into monadic form are developed.

7 Conclusion

We have restored the historic method by Behmann for second-order quantifier
elimination over a fragment of first-order logic, relational monadic formulas,
where elimination succeeds in general. It has striking similarities with the direct
approach of modern elimination methods, which are based on the more powerful
Ackermann’s Lemma that also applies to formulas with polyadic predicates and
functions, but do not succeed in the general case. We moved on to inspect some
applications of elimination with the conjecture that monadicity might play a role
in their success, in particular with a quantifier switching technique devised by
Ackermann to extend the applicability of methods for monadic formulas and of
the lemma named after him. A review of description logics viewed as embedded
into first-order logic shows that the decision problem for expressive logics such
as ALC can be reduced to the decision problem for relational monadic formu-
las with second-order quantification. While the corresponding elimination of all
role and concept symbols succeeds, the structure of the translation prevents the
elimination of just an arbitrary selection of concept symbols. For elimination in
description logics of the DL-Lite family this provides no obstacle.

The involved transformations are all obtained from the standard relational
first-order translation with equivalence preserving steps that make use of a few
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specific second-order equivalences. This is a clear and safe methodology which
suggests to investigate possibilities of mechanization, for example to detect cases
of eliminability or decidability that are not apparent in the syntactic form.

A further observation was that on a formula that has been separated by a
direct method in preparation for Ackermann’s Lemma the elimination can be
safely performed if one of the separated components is a monadic relational
formula. The application to Sahlqvist formulas provides an instance of this case.
It needs to be investigated whether the observation leads to completeness results
for interesting classes that have not been considered previously.

Another issue for future research is the deeper investigation of methods. In
particular the shown variant of quantifier innexing by Quine resembles methods
of knowledge compilation based on the Shannon expansion [34,44]. For inputs
from particular applications such as translated description logic knowledge bases
it can be observed that they are already in innex from with respect to first-order
quantifiers. A question that arises here is whether known special methods would
be simulated by rewriting-based elimination methods.
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Abstract. The logic V is the basic logic of counterfactuals in the family
of Lewis’ systems. It is characterized by the whole class of so-called sphere
models. We propose a new sequent calculus for this logic. Our calculus
takes as primitive Lewis’ connective of comparative plausibility �: a
formula A � B intuitively means that A is at least as plausible as B.
Our calculus is standard in the sense that each connective is handled
by a finite number of rules with a fixed and finite number of premises.
Moreover our calculus is “internal”, in the sense that each sequent can
be directly translated into a formula of the language. We show that the
calculus provides an optimal decision procedure for the logic V.

1 Introduction

In the recent history of conditional logics the work by Lewis [15] has a prominent
place (among others [5,18,12,10]). He proposed a formalization of conditional log-
ics in order to represent a kind of hypothetical reasoning (if A were the case then
B), that cannot be captured by classical logic with material implication. The
original motivation by Lewis was to formalize counterfactual sentences, i.e. con-
ditionals of the form “if A were the case then B would be the case”, where A
is false. But independently of counterfactual reasoning, conditional logics have
found an interest also in several fields of artificial intelligence and knowledge
representation. Just to mention a few: they have been used to reason about
prototypical properties [7] and to model belief change [10,8]. Moreover, condi-
tional logics can provide an axiomatic foundation of nonmonotonic reasoning
[4,11], here a conditional A ⇒ B is read as “in normal circumstances if A then
B”. Finally, a kind of (multi)-conditional logics [2,3] have been used to formalize
epistemic change in a multi-agent setting and in some kind of epistemic “games”,
here each conditional operator expresses the “conditional beliefs” of an agent.

In this paper we concentrate on the logic V of counterfactual reasoning stud-
ied by Lewis. This logic is characterized by possible world models structured by
a system of spheres. Intuitively, each world is equipped with a set of nested sets
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of worlds: inner sets represent “most plausible worlds” from the point of view
of the given world and worlds belonging only to outer sets represent less plau-
sible worlds. In other words, each sphere represent a degree of plausibility. The
(rough) intuition involving the truth condition of a counterfactual A ⇒ B at a
world x is that B is true at the most plausible worlds where A is true, whenever
there are worlds satisfying A. But Lewis is reluctant to assume that most plau-
sible worlds satisfying A exist (whenever there are A-worlds), for philosophical
reasons. He calls this assumption the Limit Assumption and he formulates his
semantics in more general terms which do need this assumption (see below). The
sphere semantics is the strongest semantics for conditional logics, in the sense
that it characterizes only a subset of relatively strong systems; there are weaker
(and more abstract) semantics such as the selection function semantics which
characterize a wider range of systems [18].

From the point of view of proof-theory and automated deduction, conditional
logics do not have a state of the art comparable with, say, the one of modal logics,
where there are well-established alternative calculi, whose proof-theoretical and
computational properties are well-understood. This is partially due to the lack of
a unifying semantics. Similarly to modal logics and other extensions/alternatives
to classical logics two types of calculi have been studied: external calculi which
make use of labels and relations on them to import the semantics into the syntax,
and internal calculi which stay within the language, so that a “configuration”
(sequent, tableaux node...) can be directly interpreted as a formula of the lan-
guage. Limiting our account to Lewis’ counterfactual logics, some external calculi
have been proposed in [9] which presents modular labeled calculi for preferential
logic PCL and its extensions, including all counterfactual logics considered by
Lewis. An external sequent calculus for Lewis’ logic VC is also presented in [17].
Internal calculi have been proposed by Gent [6] and by de Swart [20] for VC

and neighbours. These calculi manipulate sets of formulas and provide a deci-
sion procedure, although they comprise an infinite set of rules and rules with a
variable number of premises. Finally in [14] the authors provide internal calculi
for Lewis’ conditional logic V and some extensions. Their calculi are formulated
for a language comprising the comparative plausibility connective, the strong
and the weak conditional operator. Both conditional operators can be defined
in terms of the comparative plausibility connective. These calculi are actually
an extension of Gent’s and de Swart’s ones and they comprise an infinite set of
rules with a variable number of premises. We mention also a seminal work by
Lamarre [12] who proposed a tableaux calculus for Lewis’ logic, but it is actually
a model building procedure rather than a calculus made of deductive rules.

In this paper we tackle the problem of providing a standard proof-theory for
Lewis’ logic V in the form of internal calculi. By “standard” we mean that we
aim to obtain analytic sequent calculi where each connective is handled by a
finite number of rules with a fixed and finite number of premises. As a first
result, we propose a new internal calculus for Lewis’ logic V. This is the most
general logic of Lewis’ family and it is complete with respect to the whole class
of sphere models. Our calculus takes as primitive Lewis’ comparative plausibility
connective �: a formula A � B means, intuitively, that A is at least as plausible
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as B, so that a conditional A ⇒ B can be defined as A is impossible or A∧¬B is
less plausible than A1. In contrast to previous attempts, our calculus comprises
structured sequents containing blocks, where a block is a new syntactic structure
encoding a finite combination of �. In other words, we introduce a new modal
operator (but still definable in the logic) which encodes finite combinations of
�. This is the main ingredient to obtaining a standard and internal calculus for
V. We show a terminating strategy for proof search in the calculus, in particular
that it provides an optimal decision procedure for the logic V: indeed, we show
that provability in IV is in PSpace, matching the known complexity bound for
the logic V.

2 Lewis’ Logic V

We consider a propositional language L generated from a set of propositional
variables Varprop and boolean connectives plus two special connectives � (com-
parative plausibility) and ⇒ (conditional). A formula A � B is read as “A is at
least as plausible as B”. The semantics is defined in terms of sphere models, we
take the definition by Lewis without the limit assumption.

Definition 1. A model M has the form 〈W, $, [ ]〉, where W is a non-empty set
whose elements are called worlds, [ ] : Varprop −→ Pow(W ) is the propositional
evaluation, and $ : W −→ Pow(Pow(W )). We write $x for the value of the
function $ for x ∈ W , and we denote the elements of $x by α, β.... Models have
the following property:

∀α, β ∈ $x α ⊆ β ∨ β ⊆ α.

Truth definitions are the usual ones in the boolean cases; [ ] is extended to the
other connectives as follows:

– x ∈ [A � B] iff ∀α ∈ $x if α ∩ [B] = ∅ then α ∩ [A] = ∅
– x ∈ [A ⇒ B] iff either ∀α ∈ $x α ∩ [A] = ∅ or there is α ∈ $x, such that

α ∩ [A] = ∅ and α ∩ [A ∧ ¬B] = ∅.

The semantic notions, satisfiability and validity are defined as usual. For the
ease of reading we introduce the following conventions: we write x |= A, where
the model is understood instead of x ∈ [A]. Moreover given α ∈ $x, we use the
following notations:

α |=∀ A if α ⊆ [A], i.e. ∀y ∈ α y |= A
α |=∃ A if α ∩ [A] = ∅, i.e. ∃y ∈ α such that y |= A

Observe that with this notation, the truths conditions for � and ⇒ become:

– x |= A � B iff ∀α ∈ $x either α |=∀ ¬B or α |=∃ A
– x |= A ⇒ B iff ∀α ∈ $x either α |=∀ ¬A or there is β ∈ $x, such that β |=∃ A

and β |=∀ A → B.
1 This definition avoids the Limit Assumption, in the sense that it works also for
models where at least a sphere containing A worlds does not necessarily exist.
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It can be observed that the two connectives � and ⇒ are interdefinable, in
particular:

A ⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

Also the � connective can be defined in terms of the conditional ⇒ as follows:

A � B ≡ ((A ∨B) ⇒ ⊥) ∨ ¬((A ∨B) ⇒ ¬A)

The logic V can be axiomatized taking as primitive the conditional operator
⇒ which gives the axiomatization here below [15]:
– classical axioms and rules
– if A ↔ B then (C ⇒ A) ↔ (C ⇒ B) (RCEC)
– if A → B then (C ⇒ A) → (C ⇒ B) (RCK)
– ((A ⇒ B) ∧ (A ⇒ C)) → (A ⇒ B ∧C) (AND)
– A ⇒ A (ID)
– ((A ⇒ B) ∧ (A ⇒ C)) → (A ∧B ⇒ C) (CM)
– (A ∧B ⇒ C) → ((A ⇒ B) → (A ⇒ C)) (RT) 2

– ((A ⇒ B) ∧ ¬(A ⇒ ¬C)) → ((A ∧ C) ⇒ B) (CV)
– ((A ⇒ C) ∧ (B ⇒ C)) → (A ∨B ⇒ C) (OR)

together with the definition of � in terms of ⇒ given above. The flat versions
(i.e. without nested conditionals) of these axioms are part of KLM systems of
nonmonotonic reasoning [11,13].

On the other hand, we can axiomatize V taking as primitive the connective
� and the axioms are the following [15]:
– classical axioms and rules
– if B → (A1 ∨ . . . ∨ An) then (A1 � B) ∨ . . . ∨ (An � B)
– (A � B) ∨ (B � A)
– (A � B) ∧ (B � C) → (A � C)
– A ⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

3 An Internal Sequent Calculus for V

We present IV, a structured calculus for Lewis’ conditional logic introduced in
the previous section. The basic constituent of sequents are blocks of the form:

[A1, . . . , Am � B1, . . . , Bn]

where Ai, Bj are formulas. The interpretation is as follows: x |= [A1, . . . , Am �
B1, . . . , Bn] iff ∀α ∈ $x either α |=∀ ¬Bj for some j, or α |=∃ Ai for some i.
Observe that

[A1, . . . , Am � B1, . . . , Bn] ↔
m∨

i

n∨

j

(Ai � Bj)

2 It is worth noticing that (CM) + (RT) are equivalent (in CK+ID) to the axiom
known as (CSO):

((A ⇒ B) ∧ (B ⇒ A)) → ((A ⇒ C) ↔ (B ⇒ C)) (CSO)
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Therefore a block represents n×m disjunctions of � formulas.
We shall abbreviate multi-sets of formulas in blocks by Σ, Π , so that we shall

write (since the order is irrelevant) [Σ � Π ], [Σ,A � Π ], [Σ � Π,B] and so on.
A sequent Γ is a multi-set G1, . . .Gk, where each Gi is either a formula or a

block. A sequent Γ = G1, . . . Gk, is valid if for every model M = 〈W, $, [ ]〉, for
every world x ∈ W , it holds that x |= G1 ∨ . . . ∨Gk. The calculus IV comprises
the following axiom and rules:

– Standard Axioms (given P ∈ Varprop): (i) Γ,� (ii) Γ,¬⊥ (iii) Γ, P,¬P
– Standard external rules of sequent calculi for boolean connectives

– Specific rules:

Γ, [A � B]
(� +)

Γ, A � B

Γ,¬(A � B), [B,Σ � Π] Γ,¬(A � B), [Σ � Π,A]
(� −)

Γ,¬(A � B), [Σ � Π]

Γ, [⊥ � A],¬(A ∧ ¬B � A)
(⇒ +)

Γ,A ⇒ B

Γ,¬(⊥ � A) Γ, [A ∧ ¬B � A]
(⇒ −)

Γ,¬(A ⇒ B)

Γ, [Σ1 � Π1, Π2], [Σ1, Σ2 � Π2] Γ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1]
(Com)

Γ, [Σ1 � Π1], [Σ2 � Π2]

¬Bi, Σ
(Jump)

Γ, [Σ � B1, . . . , Bn]

Some remarks on the rules: the rule (�+) just introduces the block structure,
showing that � is a generalization of �; (�−) prescribes case analysis and con-
tributes to expanding the blocks; the rules (⇒+) and (⇒−) just apply the defini-
tion of⇒ in terms of �. The communication rule (Com) is directly motivated by
the nesting of spheres, which means a linear order on sphere inclusion; this rule
is very similar to the homonymous one used in hypersequent calculi for handling
truth in linearly ordered structures [1,16].

As usual, given a formula G ∈ L, in order to check whether G is valid we look
for a derivation of G in the calculus IV. Given a sequent Γ , we say that Γ is
derivable in IV if it admits a derivation. A derivation of Γ is a tree where:

– the root is Γ ;

– every leaf is an instance of standard axioms;

– every non-leaf node is (an instance of) the conclusion of a rule having (an
instance of) the premises of the rule as children.

Here below we show some examples of derivations in IV.
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Example 1. A derivation of (P � Q) ∨ (Q � P ).

¬P, P
(Jump)

[P � Q,P ], [P,Q � P ]

¬Q,Q
(Jump)

[Q � Q,P ], [P,Q � Q]
(Com)

[P � Q], [Q � P ]
(�+)

[P � Q], Q � P
(�+)

P � Q,Q � P
(∨+)

(P � Q) ∨ (Q � P )

Example 2. A derivation of an instance of Lewis’ axiom CV.

¬P,P,⊥
(Jump)

. . . , [P,⊥ � P ]

⊥,¬⊥
(Jump)

. . . , [⊥ � P,⊥]

(�−)

(P ∧ Q) ⇒ R,¬(⊥ � P ), [⊥ � P ],¬(P ∧ ¬¬Q � P )

(⇒+)

(P ∧ Q) ⇒ R, P ⇒ ¬Q,¬(⊥ � P )

♣
P ⇒ ¬Q, (P ∧ Q) ⇒ R, [P ∧ ¬R � P ]

(⇒−)

¬(P ⇒ R), P ⇒ ¬Q, (P ∧ Q) ⇒ R

(¬)

¬(P ⇒ R),¬¬(P ⇒ ¬Q), (P ∧ Q) ⇒ R

(∧−)

¬((P ⇒ R) ∧ ¬(P ⇒ ¬Q)), (P ∧ Q) ⇒ R

(→+)

((P ⇒ R) ∧ ¬(P ⇒ ¬Q)) → ((P ∧ Q) ⇒ R)

where ♣ is the following derivation:

We terminate this section by proving the soundness of the calculus IV and by
stating some standard structural properties of it3.

Theorem 1 (Soundness). Given a sequent Γ , if Γ is derivable then it is valid.

Proof. By induction on the height of derivation. For the base case, we have to
consider sequents that are instances of standard axioms. The proof is easy and
left to the reader. For the inductive step, we have to consider all the possible

3 To save space, detailed proofs are given in the accompanying report [19].
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rules ending a derivation. We only show the most interesting cases of (�−) and
(Com).
(�−): the derivation of Γ is ended by an application of (�−) as follows:

(i) Γ ′,¬(A � B), [B,Σ � Π ] (ii) Γ ′,¬(A � B), [Σ � Π,A]
(�−)

Γ ′,¬(A � B), [Σ � Π ]

By inductive hypothesis, (i) and (ii) are valid sequents. By absurd, suppose
that the conclusion is not, that is to say there is a model M = 〈W, $, [ ]〉 and
a world x ∈ W such that (1) x |= Gi, for all Gi ∈ Γ ′, (2) x |= ¬(A � B) and
(3) x |= [Σ � Π ]. From (1), (2) and the fact that (i) is valid, we conclude that
(a) x |= [B,Σ � Π ]. Reasoning in the same way, from (1), (2) and the validity
of (ii), we conclude that (b) x |= [Σ � Π,A]. By the interpretation of a block,
for all α ∈ $x, from (a) we have that either α |=∀ ¬Bj for some Bj ∈ Π or
α |=∃ Ai for some Ai ∈ Σ or (∗) α |=∃ B. Similarly, from (b) we have that either
α |=∀ ¬Bj for some Bj ∈ Π or (∗∗) α |=∀ ¬A or α |=∃ Ai for some Ai ∈ Σ. If
α |=∀ ¬Bj for some Bj ∈ Π , then, by the interpretation of a block, we have that
x |= [Σ � Π ], and this contradicts (3). For the same reason, it cannot be also
the case that α |=∃ Ai for some Ai ∈ Σ. The only case left is when (∗) α |=∃ B
and (∗∗) α |=∀ ¬A. This contradicts (2). Indeed, (2) x |= ¬(A � B) means that
x |= A � B, namely, by the truth condition of �, for all α ∈ $x we have that
either α |=∀ ¬B, and this contradicts (*), or α |=∃ A, and this contradicts (**);
(Com): the derivation of Γ is ended by an application of (Com) as follows:

(i) Γ ′, [Σ1 � Π1,Π2], [Σ1, Σ2 � Π2] (ii) Γ ′, [Σ2 � Π1,Π2], [Σ1, Σ2 � Π1]
(Com)

Γ ′, [Σ1 � Π1], [Σ2 � Π2]

By inductive hypothesis, (i) and (ii) are valid. Suppose the conclusion Γ ′, [Σ1 �
Π1], [Σ2 �Π2] is not, namely there is a model M = 〈W, $, [ ]〉 and a world x ∈ W
such that (1) x |= Gk for all Gk ∈ Γ ′, (2) x |= [Σ1 � Π1] and (3) x |= [Σ2 � Π2].
By the interpretation of blocks, from (2) it follows that there is α ∈ $x such that
α |=∃ Ai, for all Ai ∈ Σ1, and α |=∀ ¬Bj for all Bj ∈ Π1. Similarly, from (3) it
follows that there is β ∈ $x such that β |=∃ Ck, for all Ck ∈ Σ2, and β |=∀ ¬Dl

for all Dl ∈ Π2. By Definition 1, either (*) β ⊆ α or (**) α ⊆ β. (*) If β ⊆ α,
we have also that β |=∃ Ai, for all Ai ∈ Σ1, and β |=∀ ¬Bj for all Bj ∈ Π1. Let
us consider (ii): we have that β |=∃ Ck, for all Ck ∈ Σ2, as well as β |=∀ ¬Bj for
all Bj ∈ Π1 and β |=∀ ¬Dl for all Dl ∈ Π2: by the definition of interpretation
of a block, we have that (4) x |= [Σ2 � Π1, Π2]. Furthermore, since β |=∃ Ai, for
all Ai ∈ Σ1, β |=∃ Ck, for all Ck ∈ Σ2 and β |=∀ ¬Bj for all Bj ∈ Π1, then
we have that (5) x |= [Σ1, Σ2 � Π1]. However, from (1), (4) and (5) we obtain
that (ii) is not valid, against the inductive hypothesis. (**) If α ⊆ β, we reason
analogously. We can observe that also α |=∃ Ck, for all Ck ∈ Σ2, and α |=∀ ¬Dl

for all Dl ∈ Π2. Therefore, we have that (6) x |= [Σ1 � Π1, Π2], since α |=∃ Ai,
for all Ai ∈ Σ1, α |=∀ ¬Bj for all Bj ∈ Π1 and α |=∀ ¬Dl for all Dl ∈ Π2.
Furthermore, (7) x |= [Σ1, Σ2 �Π2] since α |=∃ Ai, for all Ai ∈ Σ1, α |=∃ Ck, for
all Ck ∈ Σ2, and α |=∀ ¬Dl for all Dl ∈ Π2. From (1), (6) and (7) we have that
(ii) is not valid, again against the inductive hypothesis. �
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Proposition 1 (Weakening). Weakening is height-preserving admissible in
the following cases: (1) if Γ is derivable, then Γ, F is derivable where F is
a formula or a block; (2) if Γ, [Σ � Π ] is derivable, so are Γ, [Σ,A � Π ] and
Γ, [Σ � Π,B].

Proposition 2 (Contraction). Contraction is height-preserving admissible in
the following cases: (1) if Γ, [A,A,Σ �Π ] is derivable then Γ, [A,Σ �Π ] is deriv-
able too. (2) if Γ, [Σ � Π,B,B] is derivable then Γ, [Σ � Π,B] is derivable too.
(3) if Γ, F, F is derivable then Γ, F is derivable too, where F is either a formula
or a block.

4 Termination and Completeness

In this section we prove both the termination and the completeness of the calculus.
Both results make use of the notion of saturated sequent : intuitively any sequent
that is obtained by backwards applying the rules “as much as possible”. To get ter-
mination we show that any derivation without redundant applications of the rules
is finite and its leaves are axioms or saturated sequents. Completeness is proved by
induction on the modal degree of a sequent (defined next), by taking advantage of
the fact that backward applications of the rules do not increase the modal degree
of a sequent and eventually reduce it (the (Jump) rule).

Definition 2. The modal degree md of a formula/sequent is defined as follows:

md(P ) = 0
md(A ∗B) = max(md(A),md(B)), for ∗ ∈ {∧,∨,→}
md(¬A) = md(A)
md(A � B) = md(A ⇒ B) = max(md(A),md(B)) + 1
md(Δ) = max{md(A) | A ∈ Δ} for a multi-set Δ
md([Σ � Π ]) = max(md(Σ),md(Γ )) + 1

We can prove the following propositions:

Proposition 3. All rules preserve the modal degree, i.e. the premises of rules
have a modal degree no greater than the one of the respective conclusion.

Proposition 4 (Invertibility). All rules, except (Jump), are height-preserving
invertible: if the conclusion is derivable then the premises must be derivable with
a derivation of no greater height.

Definition 3. A sequent Γ is saturated if it has the form ΓN , Λ, [Σ1 � Π1], . . . ,
[Σn � Πn] where ΓN , Λ are possible empty, n ≥ 0 and:

1. ΓN is a multi-set of negative �-formulas,
2. Λ is a multi-set of literals,
3. for every ¬(A � B) ∈ ΓN and every [Σi � Πi] either B ∈ Σi or A ∈ Πi

4. for every [Σi � Πi] and [Σj � Πj ]: either Σi ⊆ Σj or Σj ⊆ Σi and either
Πi ⊆ Πj or Πj ⊆ Πi.
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We want to prove now that IV terminates, provided we restrict attention to
non-redundant derivations, a notion that we define next. An application of a
rule (R) is redundant if the conclusion can be obtained from one of its premises
by contraction or weakening.

A derivation is non-redundant if (a) it does not contain redundant applications
of the rules, (b) if a sequent is an axiom then it is a leaf of the derivation. As
a consequence of the height-preserving admissibility of contraction (Proposition
2) and of weakening (Proposition 1), if a sequent is derivable then it has a non-
redundant derivation. Thus we can safely restrict proof search to non-redundant
derivations.

In the search of a non-redundant derivation we can assume that the rule:

Γ, [Σ1 � Π1, Π2], [Σ1, Σ2 � Π2] Γ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1]
(Com)

Γ, [Σ1 � Π1], [Σ2 � Π2]

is applied provided it satisfies the following restriction, where inclusions are
intended as set inclusions:

(RestCom) (Σ1 ⊆ Σ2 and Σ2 ⊆ Σ1) or (Π1 ⊆ Π2 and Π2 ⊆ Π1).

Fact 1 If an application of (Com) is non-redundant, then it must respect the
restriction (RestCom).

Proof. We must check that the 4 cases of violation of (RestCom):

1. Σ1 ⊆ Σ2 and Π1 ⊆ Π2 2. Σ1 ⊆ Σ2 and Π2 ⊆ Π1

3. Σ2 ⊆ Σ1 and Π1 ⊆ Π2 4. Σ2 ⊆ Σ1 and Π2 ⊆ Π1

produce a redundant application of (Com).
In cases 2 and 3 the conclusion corresponds to one of the premises. Let us

consider case 2 as an example. Assume that Σ1 ⊆ Σ2 and Π2 ⊆ Π1: the leftmost
premise of (Com) is therefore Γ, [Σ1�Π1, Π2], [Σ1, Σ2�Π2] = Γ, [Σ1�Π1], [Σ2�Π2]
and corresponds to the conclusion. The case 3 is similar and left to the reader.

In cases 1 and 4 both the premises are different from the conclusion, however
we observe that the conclusion can be obtained by weakening from one of the
premises of an application of (Com), which is therefore redundant. Let us con-
sider the case 1, i.e. Σ1 ⊆ Σ2 and Π1 ⊆ Π2. Consider also the rightmost premise
of (Com), namely Γ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1] = (∗) Γ, [Σ2 � Π2], [Σ2 � Π1].
Since Π1 ⊆ Π2, from (∗) we obtain that also (∗∗) Γ, [Σ2 �Π2], [Σ2 �Π2] is deriv-
able by weakening (Proposition 1). Since contraction is admissible, from (∗∗)
we obtain a proof of Γ, [Σ2 � Π2], from which the conclusion of (Com), namely
Γ, [Σ1 �Π1], [Σ2 �Π2], can be obtained by weakening. Therefore, an application
of (Com) would be redundant, since its rightmost premise allows to obtain the
conclusion by weakening and contraction and without (Com). Case 4 is similar
and left to the reader. �

The proposition below states that for any sequent Γ (derivable or not in the
calculus), there is a (non-redundant) derivation tree whose leaves (no matter
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whether they are derivable or not in the calculus) are saturated sequents with
no greater modal degree. In order to prove it, we introduce some complexity
measure of sequents. The aim will be to show that each application of a rule
decreases this measure. Let Γ be of the form:

Δ, [Σ1 � Π1], . . . , [Σn � Πn]

– First we define a complexity measure of formulas:

Cp(A) = 0 if A is either a literal or it has the form ¬(C � D),
Cp(A) = 1 if A has one of the forms C � D,C ⇒ D,¬(C ⇒ D)
Cp(¬¬A) = Cp(A) + 1
Cp(A ∗B) = Cp(A) + Cp(B) + 1, where ∗ is a boolean connective.

Next we let
CP (Γ ) = multi-set {Cp(A) | A ∈ Γ}

– To take care of the application of (�−), we define:

CN(Γ ) = Card({(¬(A � B), [Σ � Π ]) | ¬(A � B), [Σ � Π ] ∈ Γ,B 	∈ Σ,A 	∈ Π})

– To take care of the application of (Com), we proceed as follows. First, for a
multi-set Λ, we still denote by Card(Λ) the cardinality of Λ as a set (or, in
other words, of its support). Next, given Γ = Δ, [Σ1 �Π1], . . . , [Σn �Πn], we
let ΣΓ =

⋃
iΣi and ΠΓ =

⋃
i Πi (set-union), we define:

CC(Γ ) = n ∗ (Card(ΣΓ ) + Card(ΠΓ ))−
n∑

i=1

(Card(Σi) + Card(Πi))

– We finally define the rank of a sequent Γ , rank(Γ ) as the triple

rank(Γ ) = 〈CP (Γ ), CN(Γ ), CC(Γ )〉

taken in lexicographic order, where we consider the multi-set ordering for
CP (Γ ).

Observe that a minimal rank has the form 〈0∗, 0,m〉, where m ≥ 0. We are ready
to prove the following proposition.

Proposition 5. Given a sequent Γ , every branch of any derivation-tree starting
with Γ eventually ends with a saturated sequent with no greater modal degree
than that of Γ . Moreover the set of such saturated sequents for a given derivation
tree is finite.

Proof. By Proposition 3, no rule applied backward augments the modal degree
of a sequent. It can be shown that every (non-redundant) application of a rule
(R) with premises Γi and conclusion Γ reduces the rank of Γ in the sense that
rank(Γi) < rank(Γ ). In order to see this, we note:

– the application of classical propositional rule reduces CP (Γ )
– the application of (�+), (⇒+), (⇒−) rules reduces CP (Γ )
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– the application of (�−) reduces CN(Γ ), without increasing CP (Γ )
– the application of (Com) reduces CC(Γ ), without increasing neither CP (Γ ),

nor CN(Γ ). We first show that an application of (Com) rule reduces CC(Γ ).
Let Γ = Δ, [Σ1 � Π1], [Σ2 � Π2], . . . , [Σn � Πn]. To simplify indexing (since
the order does not matter) suppose that the application of (Com) concerns
the blocks [Σ1 � Π1], [Σ2 � Π2], so that the premises of the application of
(Com) leading to Γ will be:

Γ1 = Δ, [Σ1 � Π1, Π2], [Σ1, Σ2 � Π2], [Σ3 � Π3], . . . , [Σn � Πn]
Γ2 = Δ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1], [Σ3 � Π3], . . . , [Σn � Πn]

Observe that the overall set of formulas in blocks does not change so that,
referring to the above notation:

ΣΓi = ΣΓ and ΠΓi = ΠΓ , for i = 1, 2

Let us abbreviate a = n∗(Card(ΣΓ )+Card(ΠΓ )) and c =
∑n

i=3(Card(Σi)+
Card(Πi)), so that we have:

CC(Γ ) = a− ((Card(Σ1) + Card(Π1)) + (Card(Σ2) + Card(Π2)) + c)
CC(Γ1) = a− ((Card(Σ1) +Card(Π1 ∪Π2)) + (Card(Σ1 ∪Σ2) +Card(Π2)) + c)
CC(Γ2) = a− ((Card(Σ2) +Card(Π1 ∪Π2)) + (Card(Σ1 ∪Σ2) +Card(Π1)) + c)

Obviously CC(Γ1) ≤ CC(Γ ) and CC(Γ2) ≤ CC(Γ ), since Card(Σ1∪Σ2) ≥
Card(Σi) and Card(Π1 ∪ Π2) ≥ Card(Πi), i = 1, 2. But since the appli-
cation of (Com) is non-redundant, it respects the restriction (RestCom)
and therefore either (a) Σ1 ⊆ Σ2 and Σ2 ⊆ Σ1 or (b) Π1 ⊆ Π2 and
Π2 ⊆ Π1. Thus some of the inequalities are strict. In case (a) we get that
Card(Σ1 ∪Σ2) > Card(Σi), i = 1, 2, thus (Card(Σ1 ∪Σ2) + Card(Π2)) >
(Card(Σ2) + Card(Π2)) whence CC(Γ1) < CC(Γ ) and (Card(Σ1 ∪ Σ2) +
Card(Π1)) > (Card(Σ1) + Card(Π1)), whence CC(Γ2) < CC(Γ ). In case
(b) we get that Card(Π1 ∪ Π2) > Card(Πi), i = 1, 2, thus (Card(Σ1) +
Card(Π1 ∪Π2)) > (Card(Σ1) +Card(Π1)), whence CC(Γ1) < CC(Γ ) and
(Card(Σ2)+Card(Π1 ∪Π2)) > (Card(Σ2)+Card(Π2)), whence CC(Γ2) <
CC(Γ ).

We now show the second claim, that an application of (Com) does not in-
crease CN(Γ ): let Γ1 be the leftmost premise of (Com), and ¬(A � B) ∈ Γ1

and consider for instance [Σ1�Π1, Π2]. If B ∈ Π1, Π2 and A ∈ Σ1, obviously
also B ∈ Π1 and since ¬(A � B) ∈ Γ the pair (¬(A � B), [Σ1 � Π1]) will
contribute to CN(Γ ); a similar reasoning applies to the block [Σ1, Σ2 �Π2].
Hence we get that CN(Γ1) ≤ CN(Γ ). The same argument applies to the
rightmost premise.

Thus each branch of every derivation with root Γ has a finite length and ends
with a saturated sequent. Since the derivation is finitary (each rule has at most
two premises) it is also finite, thus the set of saturated sequents as leaves is finite.
This ends the proof. �
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The following theorem shows that the calculus is terminating, whence it pro-
vides a decision procedure for V, assuming restriction to non-redundant deriva-
tions.

Proposition 6. Given a sequent Γ , any non-redundant derivation-tree of Γ is
finite.

Proof. By induction on the modal degree m of Γ . If m = 0 then we rely on
the corresponding property of classical sequent calculus. If m > 0, by the previ-
ous Proposition 5, Γ has a finite derivation tree ending with a set of saturated
sequents Γi. For each Γi either it is an axiom and Γi will be a leaf of the deriva-
tion, or the only applicable rule (by non-redundancy restriction) is (Jump), but
the premise of (Jump) has a smaller modal degree and we apply the induction
hypothesis to the premise of (Jump). �

The above proposition means that for any sequent Γ (derivable or not in the
calculus), there is a derivation tree whose leaves (no matter whether they are
derivable or not in the calculus) are saturated sequents with no greater modal
degree.

The termination result can be strengthened in order to show that the calculus
IV can be used to describe an optimal decision procedure for V, provided we
adopt a specific strategy on the application of the rules. The strategy is the
following:

1. apply propositional rules and (�+), (⇒+) and (⇒−) as much as possible;
2. apply (�−) as much as possible;
3. apply (Com) as much as possible with the restriction (RestCom).

If the last sequent so obtained is not an instance of standard axioms, then it
is saturated: we can then apply the rule (Jump) and then restart from 1. The
completeness of the strategy is justified by the following proposition:

Proposition 7. The rule (Com) permutes over all the other rules, except (Jump).

We are now ready to prove the following theorem.

Theorem 2. Provability in IV is in PSpace.

Proof. Let n be the length of the string representing a sequent Δ. Given any
derivation tree built starting with Δ, we show that the length of each branch is
polynomial in n, and that the size of each sequent occurring in it is polynomial
in n. We proceed by induction on the modal degree of Δ. For the base case,
md(Δ) = 0, that is to say all formulas in Δ are propositional formulas. In this
case we immediately conclude since the above claims hold for the propositional
calculus. For the inductive step, we apply the rules of the calculus IV to build
any branch B until the last sequent of B is an axiom or a saturated sequent.
According to the above strategy, B is built as follows:

- first, propositional rules and (�+), (⇒+), and (⇒−) are applied as much as
possible: since the number of connectives in F is bounded by n, the number
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of applications of these rules is O(n). Since all the rules are analytic, the size
of each sequent is O(n) (see comments below concerning the application of the
(⇒−) rule);
- then, the rule (�−) is applied as much as possible, by considering all combina-
tions of blocks and formulas ¬(A � B): since all possible blocks are O(n) and
all possible formulas ¬(A � B) are O(n), the number of applications of the rule
(�−) is O(n2) and, again, the size of each sequent is polynomial in n;
- the rule (Com) is applied as much as possible with the restriction (RestCom):
as already shown in the proof of Proposition 5, the number of applications of
(Com) is bounded by the measure CC(Γ ) = n ∗ (Card(ΣΓ ) + Card(ΠΓ )) −∑n

i=1(Card(Σi) + Card(Πi)), and is therefore O(n2).

We conclude that B has length polynomial in n and contains sequents whose
sizes are polynomial in n. The last sequent of B is either (i) an instance of a
standard axiom or (ii) saturated. In case (i), we are done. In case (ii), the rule
(Jump) is the only applicable one: let Γ be the sequent of B to which we apply
(backward) the rule (Jump), and let Γ ′ be its premise. Since md(Γ ′) < md(Γ ),
we can apply the inductive hypothesis, to conclude that any branch B’ built in
the derivation starting with Γ ′ is polynomial in n and that each sequent in it has
a polynomial size in n: this immediately follows from the facts that Γ belongs
to the derivation tree having Δ as a root (therefore, its size is polynomial in
n) and that Γ ′ is a subsequent of Γ , then its size is polynomial in n, too. It
is worth noticing that this also holds when the rule (⇒−) is considered: let
Δ contain ¬(A1 ⇒ B1),¬(A2 ⇒ B2), . . . ,¬(Ak ⇒ Bk), in the worst case a
branch contains a block of the form [A1 ∧ ¬B1, A2 ∧ ¬B2, . . . , Ak ∧ ¬Bk, Σ �
A1, A2, . . . , Ak, Π ], whose size could be higher than the one of Δ. However, an
application of (Jump) would lead to a premise, in the worst case, of the form
A1 ∧ ¬B1, A2 ∧ ¬B2, . . . , Ak ∧ ¬Bk, Σ,¬Ai, and backward applications of (∧−)
to formulas A1 ∧¬B1, A2 ∧¬B2, . . . , Ak ∧¬Bk would obviously lead to sequents
whose size is strictly lower than the one of Δ.

We can conclude that the length of the branch obtained by concatenating B
and B’ is polynomial in n and each sequent in it has a polynomial size in n, and
we are done.

In order to prove that a formula F is valid, we try to build a derivation in
IV having F as a root. Let n be the length of the string representing F . By the
argument shown above, given any derivation tree built starting with F , we have
that the length of each branch is polynomial in n, and the size of each sequent
occurring in it is polynomial in n, and this concludes the proof. �

The following proposition is the last ingredient we need for the completeness
proof.

Proposition 8 (Semantic Invertibility). All rules, except (Jump) are se-
mantically invertible: if the conclusion is valid then the premises are also valid.

Theorem 3 (Completeness of the Calculus IV). If Γ is valid then it is
derivable.
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Proof. By induction on the modal degree of Γ . If md(Γ ) = 0 then Γ is just a
multi-set of propositional formulas, and we rely on the completeness of sequent
calculus for classical logic. Suppose now that md(Γ ) > 0, by Proposition 5, Γ
can be derived from a set of saturated sequents Γi of no greater modal degree.
But by Proposition 8 (semantic invertibility) since Γ is valid then also each Γi is
valid. We are left to prove that any saturated and valid sequent Γi is derivable.
To this purpose we prove that if Γi is valid then either (i) it is an axiom or (ii)
there must exist a valid sequent Δ such that Γi is obtained by (Jump) from Δ.
In the first case (i) the result is obvious. In case (ii) we reason as follows: since
md(Δ) < md(Γi) by inductive hypothesis, Δ is derivable in IV, and so is Γi

indeed by the (Jump) rule.
Let us prove that if Γi is valid and saturated and it is not an axiom, then there

exists a valid sequent Δ such that Γi is obtained by (Jump) from Δ. Suppose
that Γi is valid and it is not an axiom. We let Γi = ΓN , Λ, [Σ1�Π1], . . . , [Σn�Πn]
as in Definition 3. Observe that Λ does not contain axioms. By saturation (and
weakening and contraction) we can assume that the blocks in the sequence are
ordered as follows:

– Σ1 ⊇ Σ2 ⊇ . . . Σn

– Π1 ⊆ Π2 ⊆ . . . ⊆ Πn

A quick argument: by saturation blocks are ordered with respect to set-inclusion
for both components Σ and Π , consider them ordered first by decreasing Σ: let
two blocks in the sequence: [Σ �Π ], [Σ′ � Π ′] with Σ′ ⊆ Σ, we can assume that
Π ⊆ Π ′ otherwise it would be Π ′ ⊂ Π , but then any sequent containing both
[Σ � Π ] and [Σ′ � Π ′] is semantically equivalent to a sequent containing only
[Σ � Π ] (syntactically we get rid of [Σ′ � Π ′] by weakening and contraction)4.
Thus we let:

Π1 = B1,1, . . . , B1,k1

Π2 = B1,1, . . . , B1,k1 , B2,1, . . . , B2,k2

. . .
Πn = B1,1, . . . , B1,k1 , . . . , B2,k2 , . . . , Bn,kn

Suppose now for a contradiction that no application of (Jump) leads to a valid
sequent. Thus for each l = 1, . . . , n, and t = 1, . . . , kl, the sequent ¬Bl,t, Σl is
not valid. Starting from l = 1 up to n, there are increasing sequences of models:

M1,1, . . . ,M1,k1 ,
M1,1, . . . ,M1,k1 ,M2,1, . . . ,M2,k2

M1,1, . . . ,M1,k1 , . . . ,M2,k2 , . . . ,Mn,kn

where Ml,t = (Wl,t, $
l,t, [ ]l,t) for l = 1, . . . , n, and t = 1, . . . , kl and some

elements xl,t ∈ Wl,t such that Ml,t, xl,t |= Bl,t and Ml,t, xl,t |= C for all C ∈ Σl.
Observe that if Ml,t, xl,t |= C for all C ∈ Σs and s < t then Ml,t, xl,t |=
4 An alternative argument: Γi must contain a valid subsequent Γ ′

i where the blocks
satisfy the above ordering conditions. Then the proof carry on considering Γ ′

i .
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C for all C ∈ Σt, as Σt ⊆ Σs. We suppose that all models are disjoint and we
define a new model M = 〈W, $, [ ]〉 as follows:

W = (
⋃

l

⋃
t(Wl,t)) ∪ {x} for a new element x [P ] =

⋃
l

⋃
t[P ]l,t if ¬P 	∈ Λ

$z = $l,tz if z ∈ Wl,t for some l, t [P ] =
⋃

l

⋃
t[P ]l,t ∪ {x} if ¬P ∈ Λ

In order to define the evaluation function [ ] we let:

α1 = {x1,1, . . . , x1,k1}
α2 = {x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2}
. . .
αn = {x1, . . . , x1,k1 , x2,1, . . . , x2,k2 , . . . , xn,kn}

We finally let $x = {α1, . . . , αn}. Observe that the “spheres” αl are nested. To
complete the proof we must show that x falsifies Γi in M. In particular we have
to show that:

(1) M, x |= L for every L ∈ Λ
(2) M, x |= [Σl � Πl] for l = 1, . . . , n
(3) M, x |= ¬(A � B) for every ¬(A � B) ∈ ΓN

(1) is obvious by definition: if P ∈ Λ, then ¬P ∈ Λ (otherwise Γi would be an
axiom) and x ∈ [P ], if ¬P ∈ Λ, then x ∈ [P ].

To prove (2), first observe that for z ∈ Wl,t and every formula F , we have
z ∈ [F ] if and only if z ∈ [F ]l,t. This is proved by a straightforward induction on
F . Then we prove (2) by induction on l. For l = 1, we have that, for x1,l ∈ α1, it
holds M, x1,l |= B1,l, whence α1 |=∀ ¬B1,t for t = 1, . . . , k1. On the other hand,
putting Σ1 = C1,1, . . . , C1,r1 , we have, for every u = 1, . . . , r1 and x1,t, t =
1, . . . , k1, that M, x1,t |= C1,u, but this means that α1 |=∃ C1,u for u = 1, . . . , r1.
Thus we get M, x |= [Σ1 � Π1]. For l > 1, since Σl ⊇ Σl−1 and Πl−1 ⊆ Πl, the
argument is the same (using possibly the induction hypothesis).

We consider now (3): let ¬(A � B) ∈ ΓN and let αl ∈ $x. Let us consider
[Σl � Πl], by saturation either A ∈ Πl or B ∈ Σl. For what we have just shown,
in the former case we have αl |=∃ A and in the latter case we have αl |=∀ ¬B.
Thus, for any αl ∈ $x, either αl |=∃ A or αl |=∀ ¬B, whence M, x |= A � B. �

5 Further Research

In future research, we aim at extending our approach to all the other conditional
logics of the Lewis’ family, in particular we aim at focusing on the logics VN,
VT, VW and VC. Actually, for VN, whose sphere models are known as normal
($x = ∅), the extension is straightforward: it is sufficient to add to the calculus
IV the following rule:

Γ, [⊥ ��]
(N)

Γ

Observe that the flat version (i.e. without nested conditionals) of VN is exactly
rational logic R presented in [13]. Thus, as far as we know, our calculus provides
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the first internal calculus for R. The other cases are currently under investiga-
tion.

In [14], ingenious and optimal sequent calculi for the whole family of Lewis’
logics are proposed. The calculus for V contains an infinite set of rules Rn,m

(with n ≥ 1,m ≥ 0) with a variable number of premises:

{¬Bk , A1, . . . , An,D1, . . . , Dm | k ≤ n} ∪ {¬Ck , A1, . . . , An,D1, . . . , Dk−1 | k ≤ m}
Rn,m

Γ,¬(C1 � D1), . . . ,¬(Cm � Dm), A1 � B1, . . . , An � Bn

We wish to study the precise relation between our calculus IV and the one
introduced in [14]. As an example, we show that, in the case n = 1 and m = 1,
the rule

¬B1, A1, D1 ¬C1, A1

R1,1

Γ,¬(C1 � D1), A1 � B1

is derivable in IV as follows:

¬B1, A1, D1

(Jump)
Γ,¬(C1 � D1), [A1, D1 � B1]

¬C1, A1

(Jump)
Γ,¬(C1 � D1), [A1 � B1, C1]

(�−)
Γ,¬(C1 � D1), [A1 � B1]

(�+)
Γ,¬(C1 � D1), A1 � B1

We conjecture that all instances Rn,m, (n ≥ 1,m ≥ 0), are derivable in IV: this
will be subject of further investigation.

Last, in future research we shall provide an efficient implementation of IV.

6 Conclusions

In this paper we begin a proof-theoretical investigation of Lewis’ logics of coun-
terfactuals characterized by the sphere-model semantics. We have presented a
simple, analytic calculus IV for logic V, the most general logic characterized by
the sphere-model semantics. The calculus IV is standard, namely it contains a
finite a number of rules with a fixed number of premises, and internal, in the
sense that each sequent denotes a formula of V. The novel ingredient of IV is that
sequents are structured objects containing blocks, where a block is a structure or
a sort of n-ary modality encoding a finite combination of formulas with the con-
nective �. IV ensures termination, in particular we have shown that provability
is in PSpace, therefore it provides an optimal decision procedure for V.
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Disproving Inductive Entailments in Separation

Logic via Base Pair Approximation
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Abstract. We give a procedure for establishing the invalidity of logi-
cal entailments in the symbolic heap fragment of separation logic with
user-defined inductive predicates, as used in program verification. This
disproof procedure attempts to infer the existence of a countermodel
to an entailment by comparing computable model summaries, a.k.a.
bases (modified from earlier work), of its antecedent and consequent.
Our method is sound and terminating, but necessarily incomplete.

Experiments with the implementation of our disproof procedure indi-
cate that it can correctly identify a substantial proportion of the invalid
entailments that arise in practice, at reasonably low time cost. Accord-
ingly, it can be used, e.g., to improve the output of theorem provers by
returning “no” answers in addition to “yes” and “unknown” answers to
entailment questions, and to speed up proof search or automated theory
exploration by filtering out invalid entailments.

1 Introduction

Separation logic [23] is a well known and relatively popular formalism for Hoare-
style verification of heap-manipulating programs. There are now a number of
analyses and tools based on separation logic that are capable of running on
industrial-scale code (see e.g. [7,14,20]). These tools typically limit the separation
logic assertion language to the so-called symbolic heap fragment [6] in which
only a single fixed restricted inductive predicate, defining linked list segments, is
permitted. This fragment is tractable — for example, logical entailment becomes
polynomial [17] — but the restrictions come at the cost of expressivity: analyses
based on this fragment cannot effectively reason about non-list data structures.

Recently, however, there has been significant research interest in developing
analyses for the fragment of separation logic in which arbitrary user-defined in-
ductive predicates over symbolic heaps are permitted (see e.g. [11,15,21,22]).
This fragment is much more expressive than the simple linked-list fragment,
but is also computationally much harder. In particular, entailment in this frag-
ment is undecidable [3], although satisfiability is decidable [10] and entailment
is decidable when predicates are restricted to have bounded treewidth [19].

In this paper, we focus on the little-considered problem of disproving logical
entailments in the aforementioned fragment. Any proof procedure for entailment
is necessarily incomplete, so the failure of proof search does not tell us whether

c© Springer International Publishing Switzerland 2015
H. De Nivelle (Ed.): TABLEAUX 2015, LNAI 9323, pp. 287–303, 2015.
DOI: 10.1007/978-3-319-24312-2_20
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or not an entailment is valid. A sound disproof procedure would enable us to
receive “no” answers to entailment questions as well as “yes” or “don’t know”
answers. In particular, this has the potential to speed up proof search: we need
not try to prove an entailment that is known to be invalid.

Our approach builds on the decision procedure for satisfiability in [10], which
builds a summary of the models of a symbolic heap called its base. The base of a
symbolic heap A is a finite set of base pairs recording, for each way of building a
model of A, the variables in A that must be allocated on the heap (plus, in this
paper, the “types” of the records they point to), and the equalities and disequal-
ities that must hold. In [10] it is shown that satisfiability of a symbolic heap is
exactly nonemptiness of its base. Here we go further: we attempt to disprove an
entailment A � B by using the bases of A and B to infer the existence of a coun-
termodel without computing it. This approach yields an algorithm for disproof
that is both sound and terminating, but therefore necessarily incomplete.

Our method is partly reminiscent of the disproof method for separation logic
(with fractional permissions [8] but without inductive predicates) in [18], which
attempts to show that the maximum size of any model of A is strictly less than
the minimum size of any model of B. However, this approach does not work
well for our fragment since, if A contains an inductive predicate, its models are
generally of unbounded size.

We have implemented our disproof algorithm in the Cyclist theorem prov-
ing framework [1,13]. Our experimental evaluation indicates that our disproof
method can identify a significant proportion of invalid entailments arising in
three different benchmark suites, and that it is inexpensive on average. Our al-
gorithm might therefore be used to improve both the quality and performance
of automatic theorem provers (and the program analyses relying on them).

The remainder of this paper is structured as follows. Section 2 gives an
overview of our separation logic fragment, and Section 3 briefly reprises the
key concept of base pairs from [10]. In Section 4 we then develop our entailment
disproof method in detail. Section 5 describes the implementation of the disproof
algorithm and our experimental evaluation, and Section 6 concludes.

2 Separation Logic with Inductive Predicates

In this section we present our fragment of separation logic, which restricts the
syntax of formulas to symbolic heaps as introduced in [5,6], but allows arbitrary
user-defined inductive predicates over these, as considered e.g. in [9,10,11].

We often write vector notation to abbreviate tuples, e.g. x for (x1, . . . , xm),
and we write X # Y , where X and Y are sets, as a shorthand for X ∩ Y = ∅.

Syntax. A term is either a variable in the infinite set Var, or the constant nil. We
assume a finite set P1, . . . , Pn of predicate symbols, each with associated arity.

Definition 2.1. Spatial formulas F and pure formulas π are given by:

F ::= emp | x �→ t | Pit | F ∗ F π ::= t = t | t �= t
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where x ranges over variables, t over terms, Pi over predicate symbols and t over
tuples of terms (matching the arity of Pi in Pit). A symbolic heap is given by
∃z. Π : F , where z is a tuple of variables, F is a spatial formula and Π is a
finite set of pure formulas. Whenever one of Π,F is empty, we omit the colon.
We write FV (A) for the set of free variables occurring in a symbolic heap A.

Definition 2.2. An inductive rule set is a finite set of inductive rules, each of
the form A ⇒ Pit, where A is a symbolic heap (called the body of the rule), Pit
is a formula (called its head), and all variables in FV (A) appear in t.

As usual, the inductive rules with Pi in their head should be read as exhaus-
tive, disjunctive clauses of an inductive definition of Pi. To avoid ambiguity, we
write existential quantifiers in the bodies of inductive rules explicitly, rather than
leaving them implicit as is done e.g. in [10].

Semantics. We use a RAM model employing heaps of records. We assume an
infinite set Val of values of which an infinite subset Loc ⊂ Val are addressable
locations ; we insist on at least one non-addressable value nil ∈ Val \ Loc.

A stack is a function s : Var → Val; we extend stacks to terms by setting
s(nil) =def nil , and write s[z �→ v] for the stack defined as s except that s[z �→
v](z) = v. We extend stacks pointwise to act on tuples of terms.

A heap is a partial function h : Loc ⇀fin (Val List) mapping finitely many lo-
cations to records, i.e. arbitrary-length tuples of values; we write dom(h) for the
set of locations on which h is defined, and e for the empty heap that is undefined
everywhere. We write ◦ for composition of domain-disjoint heaps: if h1 and h2

are heaps, then h1 ◦ h2 is the union of h1 and h2 when dom(h1) # dom(h2),
and undefined otherwise. If � ∈ dom(h) then we call |h(�)| (i.e. the length of the
record h(�)) the type of � in h, and we define the footprint fp(h) of a heap h by
{(�, |h(�)|) | � ∈ dom(h)}, i.e. by pairing each location in dom(h) with its type.

Definition 2.3. Given an inductive rule set Φ, the relation s, h |=Φ A for satis-
faction of a symbolic heap A by stack s and heap h is defined by:

s, h |=Φ t1 = t2 ⇔ s(t1) = s(t2)

s, h |=Φ t1 �= t2 ⇔ s(t1) �= s(t2)

s, h |=Φ emp ⇔ h = e

s, h |=Φ x �→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ Pit ⇔ (s(t), h) ∈ �Pi�
Φ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1 and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z �→ v], h |=Φ π for all π ∈ Π
and s[z �→ v], h |=Φ F

where the semantics �Pi�
Φ of the inductive predicate Pi under Φ is defined below.

We say that (s, h) is a model of a symbolic heap A (under Φ) if s, h |=Φ A.

The following definition gives the standard semantics of the inductive pred-
icate symbols P = (P1, . . . , Pn) as the least fixed point of an n-ary monotone
operator constructed from Φ. We write πi for the ith projection on tuples.
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Definition 2.4. For each predicate Pi ∈ P with arity αi say, we define τi =
Pow(Valαi ×Heap) (where Pow(−) is powerset). Next, let Φ be an inductive rule
set, and partition Φ into Φ1, . . . , Φn, where Φi is the set of all inductive rules in
Φ of the form A ⇒ Pix. Letting each Φi be indexed by j, for each inductive rule
Φi,j of the form ∃z. Π : F ⇒ Pix, we define an operator ϕi,j : τ1× . . .× τn → τi:

ϕi,j(Y) =def {(s(x), h) | s, h |=Y Π : F}

where Y ∈ τ1 × . . . τn and |=Y is the satisfaction relation given in Defn. 2.3,
except that �Pi�

Y =def πi(Y). We then define the n-tuple �P�Φ by:

�P�Φ =def μY. (
⋃

j ϕ1,j(Y), . . . ,
⋃

j ϕn,j(Y))

We write �Pi�
Φ as an abbreviation for πi(�P�Φ).

Note that satisfaction of pure formulas depends neither on the heap nor on
the inductive rules; we write s |= Π , where Π is a set of pure formulas, to
mean that s, h |=Φ Π for any heap h and inductive rule set Φ. Indeed, whether
s |= Π depends only on the values s assigns to the variables in FV (Π), which is
finite; when considering such satisfaction questions, we typically consider “partial
stacks”, defined in the obvious way, with finite domain denoted by dom(s).

3 Base Pairs of Symbolic Heaps

In [10] it is shown how to construct a computable “summary” of the models of a
symbolic heap A under any rule set Φ, called its base and written as baseΦ(A).
Each such summary is a set of so-called base pairs, each of which essentially
records a way of constructing models (s, h) of A under Φ, as projected onto the
free variables in A. Each base pair in baseΦ(A) comprises

1. a set X of “typed” variable expressions x : n, where x ∈ FV (A) and n ∈ N,
whose intuitive meaning is that the address s(x) must be allocated with type
(record length) n in h; and

2. a set Π of pure formulas (i.e. (dis)equalities) over FV (A) ∪ {nil} that must
be satisfied by s.

The following example is intended to illustrate the intuition behind our “base
pair” summaries of symbolic heaps.

Example 3.1. Let Φ be the inductive rule set defining the standard predicates
ls and bt, for linked list segments and nil-terminated binary trees respectively:

emp ⇒ lsxx
∃z. x �= nil : x �→ z ∗ ls z y ⇒ lsx y

x = nil : emp ⇒ btx
∃y, z. x �= nil : x �→ (y, z) ∗ bt y ∗ bt z ⇒ btx
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We obtain the following bases for lsx y and btx:

baseΦ(lsx y) = {(∅, {x = y}), ({x : 1}, {x �= nil})}
baseΦ(btx) = {(∅, {x = nil}), ({x : 2}, {x �= nil})}

The intuitive reading of baseΦ(lsx y) is that s, h |=Φ lsx y if and only if either:
(a) s |= x = y and neither s(x) nor s(y) is allocated by h; or (b) s |= x �= nil and
s(x) is allocated with record type 1 in h.

Similarly, the intuitive reading of baseΦ(btx) is that s, h |=Φ btx if and only
if either: (a) s |= x = nil (and therefore s(x) cannot be allocated in h); or (b)
s |= x �= nil and s(x) is allocated with record type 2 in h.

The set baseΦ(A) is always finite, since FV (A) is finite and the maximum
type numeral of any allocated location in a model of A can be shown to be finite
as well. The full details1 of the construction of baseΦ(A) can be found in [10].
However, for the purposes of the present paper, these details are in fact not
especially relevant. The information from [10] that we do however rely on is (a)
the fact that baseΦ(A) is computable, and (b) the precise relationship between
baseΦ(A) and the models of A under Φ. The latter is captured formally by the
following pair of technical results, where we define s(x : n) = (s(x), n), and
extend by pointwise union to sets.

Lemma 3.2 (Soundness [10]). Given a base pair (X,Π) ∈ baseΦ(A), a stack
s such that s |= Π, and a finite “footprint” W ⊂ Loc× N such that W # s(X),
one can construct a heap h such that s, h |=Φ A and W # fp(h).

Lemma 3.3 (Completeness [10]). If s, h |=Φ A, there is a base pair (X,Π) ∈
baseΦ(A) such that s(X) ⊆ fp(h) and s |= Π.

An immediate consequence of Lemmas 3.2 and 3.3, used in [10], is that sat-
isfiability of a symbolic heap A, i.e. the existence of at least one model of A,
exactly corresponds to nonemptiness of baseΦ(A), and is therefore decidable.

4 An Algorithm for Entailment Disproof

In this section, we develop the main contribution of our paper: an algorithm for
disproving entailments in our separation logic fragment.

Definition 4.1. An entailment is given by A � B, where A and B are symbolic
heaps. The entailment A � B is said to be valid if for all stacks s and heaps h it
holds that s, h |=Φ A implies s, h |=Φ B, and invalid otherwise.

Thus, as usual, to disprove (i.e. show invalid) an entailment A � B, we need to
exhibit a countermodel (s, h) such that s, h |=Φ A but s, h �|=Φ B. Unfortunately,

1 In fact, the original construction does not include the record types of allocated
variables in its base pairs, but the required adaptations are quite straightforward.
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this is not straightforward, since the entailment problem for our fragment of
separation logic is undecidable [3].

One naive approach would simply be to generate and test possible counter-
models (s, h) of increasing heap “sizes” (defined in some reasonable way). This
approach has only just become potentially viable at the time of going to press,
following the very recent development of a model checking procedure for our
logic [12]. However, this approach still presents some fairly significant obstacles.
Firstly, the generation of possible counter-models is not simply a matter of blind
enumeration, since the values of stack variables, the addresses of allocated heap
cells and the contents of those cells all range over infinite sets (Val and Loc).
That is to say, there are infinitely many distinct models of a given size, and so
some quotienting over these values is required so as to restrict these models to
finitely many “representative cases”. Secondly, this approach also seems likely
to be quite expensive even in average cases, since the model checking problem
itself, according to [12], is EXPTIME-complete: Many models would be generated
and most of them would inevitably fail to be countermodels (e.g., for the trivial
reason that they do not satisfy A). Finally, any complete enumeration-based
approach will, in general, fail to terminate.

However, the technical lemmas in Section 3 relating the base of a symbolic
heap to its models suggest an alternative way in which we can nevertheless pro-
ceed. Lemma 3.2 tells us that we can construct a model (s, h) of A by choosing
a base pair (X,Π) of A, an s that satisfies Π and a footprint W , disjoint from
s(X), to be “avoided” by the footprint of h. Lemma 3.3 then tells us that if
s, h |=Φ B then we can find a base pair (Y,Θ) of B with which (s, h) is “con-
sistent”, in that s satisfies Θ and the footprint of h covers s(Y ). Thus if we
can construct a model of A with which no base pair of B is consistent, then
this model is a counter-model. We first formulate this idea directly as a simple
two-player game, and then refine this game into an implementable form.

4.1 Disproof via Base Pair Games

In the following, we assume a fixed inductive rule set Φ. We extend the function
FV (−) to base pairs by FV ((X,Π)) =def

⋃
x:n∈X{x} ∪ FV (Π), and then by

pointwise union to sets of base pairs.

Game 1. Given an entailment A � B, we define a simple two-player game as
follows. A move by Player 1 is a tuple ((X,Π), s,W ) obtained by choosing:

– a base pair (X,Π) ∈ baseΦ(A);
– a partial stack s : (FV ((X,Π)) ∪ FV (baseΦ(B))) → Val such that s |= Π ;
– and a finite footprint W ⊂ Loc× N such that W # s(X).

A response by Player 2 to such a move is a base pair (Y,Θ) ∈ baseΦ(B) such
that s |= Θ and W # s(Y ).

A move is said to be a winning move if there is no possible response to it.

As a game, Game 1 is not especially interesting, as any game can be won by
Player 1 either in one move or not at all. Our formulation is for convenience.
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Proposition 4.2. If Player 1 has a winning move for A � B in Game 1 then
A � B is invalid.

Proof. Let ((X,Π), s,W ) be a winning move for A � B. That is, for some base
pair (X,Π) of A we have a partial stack s such that s |= Π and a finite footprint
W with W # s(X). By Lemma 3.2, there exists a heap h such that s, h |=Φ A
and W # fp(h).

Now suppose for contradiction that A � B is valid. Thus, as s, h |=Φ A, we
have s, h |=Φ B. By Lemma 3.3, there exists a base pair (Y,Θ) of B such that
s(Y ) ⊆ fp(h) and s |= Θ. As W # fp(h) and s(Y ) ⊆ fp(h), we have W # s(Y ).
Thus (Y,Θ) is a response to a winning move, contradiction. ��

Our formulation of Game 1 exploits Lemmas 3.2 and 3.3 in a way that is
intended to be maximally general, but it cannot be directly implemented as a
terminating algorithm: Player 1 has to choose a partial stack with finite domain
but infinite codomain, and an arbitrary finite footprint W ⊂ Loc×N. However,
we can reformulate Game 1 so as to entirely obviate the latter difficulty.

Game 2. Given an entailment A � B, a move by Player 1 is a tuple ((X,Π), s)
obtained by choosing:

– a base pair (X,Π) ∈ baseΦ(A), and
– a partial stack s : (FV ((X,Π)) ∪ FV (baseΦ(B))) → Val such that s |= Π .

Given such a move, a response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B) such
that s |= Θ and s(Y ) ⊆ s(X). A winning move is defined as for Game 1.

Lemma 4.3. Player 1 has a winning move for A � B in Game 2 if and only if
she has a winning move for A � B in Game 1.

Proof. (⇐) Let ((X,Π), s,W ) be a winning move for A � B in Game 1. That
is, we have a base pair (X,Π) of A, a partial stack s and a finite footprint W
such that s |= Π and W # s(X); moreover, there is no response to this move.

The required winning move for A � B in Game 2 is then given by ((X,Π), s).
Suppose for contradiction that (Y,Θ) ∈ baseΦ(B) is a response to this move, i.e.,
s |= Θ and s(Y ) ⊆ s(X). As W # s(X) and s(Y ) ⊆ s(X), we have W # s(Y ).
As s |= Θ and W # s(Y ), the base pair (Y,Θ) is a response to the winning move
((X,Π), s,W ) for A � B in Game 1, contradiction.

(⇒) Let ((X,Π), s) be a winning move for A � B in Game 2. That is, we have
a base pair (X,Π) of A and a partial stack s such that s |= Π ; moreover, there
is no response to this move. We claim that ((X,Π), s,W ) is a winning move for
A � B in Game 1, where we choose the finite footprint W ⊂ Loc×N as follows:

W =def

(⋃
(Y,Θ)∈baseΦ(B) s(Y )

)
\ s(X)

Now W # s(X) by construction, so ((X,Π), s,W ) is certainly a valid move in
Game 1. To see that it is a winning move, suppose for contradiction that Player 2
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has a response to this move, that is, a base pair (Y,Θ) of B with s |= Θ and
W # s(Y ). By construction, s(Y ) \ s(X) ⊆ W , so s(Y ) \ s(X) # s(Y ). This
implies s(Y ) \ s(X) = ∅ and thus s(Y ) ⊆ s(X). Thus (Y,Θ) is a response to the
winning move ((X,Π), s) for A � B in Game 2, contradiction. ��

We now give an example of how Game 2 works in practice.

Example 4.4. Let Φ define the linked list predicate ls given in Example 3.1, and
consider the invalid entailment lsx y � ls y x. We have the following bases:

baseΦ(lsx y) = {(∅, {x = y}), ({x : 1}, {x �= nil})}
baseΦ(ls y x) = {(∅, {y = x}), ({y : 1}, {y �= nil})}

Then Player 1 has a winning move in Game 2 by choosing her second base pair
({x : 1}, {x �= nil}) together with any stack s in which s(x) �= nil and s(x) �= s(y).
The first constraint is required to validate Player 1’s move, and the second rules
out both of Player 2’s base pairs as responses: for the first pair s �|= y = x, and
for the second we have s({y : 1}) �⊆ s({x : 1}).

As Example 3.1 suggests, we can refine Game 2 further: instead of a (partial)
stack, Player 1 can simply choose a partition of the stack domain.

Definition 4.5. Let σ be a partition of a set of terms T . Then, for t, t′ ∈ T ,
we write σ |= t = t′ to mean that t and t′ are in the same σ-equivalence class,
and σ |= t �= t′ otherwise. This relation extends conjunctively to sets of pure
formulas over T .

Lemma 4.6. For any partial stack s, we can construct a partition σs of dom(s)∪
{nil} such that, for any set Π of pure formulas with FV (Π) ⊆ dom(s),

s |= Π ⇔ σs |= Π .

Conversely, for any partition σ of a finite set T of terms we can construct a
partial stack sσ such that, for any set Π of pure formulas with FV (Π) ⊆ T ,

sσ |= Π ⇔ σ |= Π .

Proof. For the first part of the lemma, we simply put t and t′ in the same
σ-equivalence class if s(t) = s(t′) and in different classes otherwise. By construc-
tion, for a pure formula of the form t = t′,

s |= t = t′ ⇔ s(t) = s(t′) ⇔ σs |= t = t′ ,

and similarly for formulas of the form t �= t′.
For the second part, we construct sσ simply by mapping terms in the same

σ-equivalence class to the same value in Val, and terms in different classes to
distinct values. This is always possible since the range Val of our stacks is infinite.
Then we just observe that for a pure formula of the form t = t′, we have,

sσ |= t = t′ ⇔ sσ(t) = sσ(t
′) ⇔ σ |= t = t′ ,

and similarly for formulas of the form t �= t′. ��
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Game 3. Given an entailment A � B, a move by Player 1 is a choice of:

– a base pair (X,Π) ∈ baseΦ(A), and
– a partition σ of FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil} such that σ |= Π .

Given such a move, a response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B) such
that σ |= Θ and for any y : n ∈ Y there is x : n ∈ X such that σ |= x = y.

A winning move is defined as for the previous games.

Lemma 4.7. Player 1 has a winning move for A � B in Game 3 if and only if
she has a winning move for A � B in Game 2.

Proof. (⇐) Let ((X,Π), s) be a winning move for A � B in Game 2. That is,
for some base pair (X,Π) of A we have a partial stack s such that s |= Π , and
moreover there is no response to this move.

We claim that ((X,Π), σs) is then a winning move in Game 3, where σs is
the the partition σs of dom(s)∪{nil} given by the first part of Lemma 4.6. Since
s |= Π , the lemma guarantees that σs |= Π , so ((X,Π), σs) is indeed a move. To
see that it is a winning move, suppose for contradiction that (Y,Θ) ∈ baseΦ(B)
is a response to this move, i.e., σs |= Θ and ∃x : n ∈ X. σs |= x = y when-
ever y : n ∈ Y . We claim that (Y,Θ) is then a response to the winning move
((X,Π), s) in Game 2. Since σs |= Θ, we have s |= Θ by the first part of
Lemma 4.6. It just remains to show that s(Y ) ⊆ s(X). Let y : n ∈ Y . By as-
sumption, there exists x : n ∈ X such that σs |= x = y. By Lemma 4.6, we have
s |= x = y, i.e. s(x : n) = s(y : n), and so s(y : n) ∈ s(X). Thus s(Y ) ⊆ s(X),
which completes the case.

(⇒) Let ((X,Π), σ) be a winning move for A � B in Game 3. That is, for some
base pair (X,Π) of A we have a partition σ such that σ |= Π , and moreover
there is no response to this move.

We define a winning move in Game 2 by ((X,Π), sσ), where sσ is the partial
stack constructed from σ by the second part of Lemma 4.6. Since σ |= Π , the
lemma guarantees that sσ |= Π as required. Suppose for contradiction (Y,Θ) ∈
baseΦ(B) is a response to this move, i.e., sσ |= Θ and sσ(Y ) ⊆ sσ(X). We claim
that (Y,Θ) is then a response to the winning move ((X,Π), σ) in Game 3. First,
since sσ |= Θ, we have σ |= Θ by the second part of Lemma 4.6. Now, letting
y : n ∈ Y , we have to show there exists an x : n ∈ X such that σ |= x = y. Since
sσ(Y ) ⊆ sσ(X) and y : n ∈ Y , there exists x : n ∈ X such that sσ(y) = sσ(x),
i.e. sσ |= x = y. By Lemma 4.6, we then have σ |= x = y, as required. ��

Example 4.8. Let Φ define ls and bt from Example 3.1. We have:

baseΦ(lsx nil) = {(∅, {x = nil}), ({x : 1}, {x �= nil})}
baseΦ(btx) = {(∅, {x = nil}), ({x : 2}, {x �= nil})}

Now, both btx � lsx nil and lsx nil � btx are invalid, and Player 1 has a winning
move for both entailments in Game 3 by choosing her second base pair ({x :
i}, {x �= nil}), where i ∈ {1, 2}, together with a partition σ such that σ |= x �= nil.
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Player 2 cannot respond with his first base pair because σ �|= x = nil, nor with
his second because the type of x does not match that in Player 1’s pair.

Theorem 4.9. Games 1, 2 and 3 are all equivalent to each other, and decidable.
That is, for any entailment A � B we can decide which player wins, and this
answer is consistent across all three games.

Proof. Equivalence is an immediate consequence of Lemmas 4.3 and 4.7. For
decidability, it suffices to observe just that Game 3 is decidable for any A � B.
As there are only finitely many base pairs (X,Π) of A and for each of these only
finitely many partitions of the finite set FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil},
there are only finitely many possible moves for Player 1. Moreover, for each such
move there are only finitely many possible responses by Player 2, since baseΦ(B)
is finite. Hence checking whether or not Player 1 has a winning move is simply
a case of checking the finitely many possibilities. ��

It is informative to examine the kinds of entailments our method cannot, in
principle, recognise as invalid. We can only disprove entailments A � B in which
B imposes allocation or (dis)equality requirements on its free variables which
can be violated by models of A. For example, the entailment x �→ nil � emp is
invalid, while x �→ nil � ∃y. y �→ nil is valid, but our base pair approximation
cannot distinguish between the two because neither RHS has any free variables:
we have baseΦ(emp) = baseΦ(∃y. y �→ nil) = {(∅, ∅)}. The base pair construction
also discards information on bounds, such as the number of allocated cells in a
heap; therefore, for example, we cannot distinguish between an even-length list
and an odd-length one.

4.2 Efficiency Considerations

Having established that Game 3 is a sound and terminating algorithm for dis-
proving entailments (Theorem 4.9), we now consider possible ways of improving
its efficiency. First, we give an upper bound for the worst-case runtime.

Proposition 4.10. Checking whether Player 1 has a winning strategy for A � B
in Game 3 can be done in time exponential in the size of A, B and the definitions
of the predicates in the underlying inductive rule set Φ.

Proof. First, the number of base pairs for any symbolic heap is, in the worst
case, exponential in the size of the symbolic heap and its predicate definitions
[10]. Second, the number of partitions σ over FV ((X,Π))∪FV (baseΦ(B))∪{nil}
where (X,Π) ∈ baseΦ(A), is bounded by an exponential in the size of A and B.
Finally, checking whether a base pair (Y,Θ) ∈ baseΦ(B) is a response to a move
((X,Π), σ) can be performed in polynomial time. Thus, searching for a winning
move for Player 1 can take up to exponential time in the size of A, B and the
predicate definitions in Φ. ��

Next, we give some simple results identifying redundant base pairs in our
game instances. If Π and Π ′ are sets of pure formulas we write Π |= Π ′ to mean
that Π � Π ′ is valid, i.e. σ |= Π implies σ |= Π ′ for all partitions σ.
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Definition 4.11. If (X,Π) and (X ′, Π ′) are both base pairs (of some symbolic
heap) then we write (X,Π) � (X ′, Π ′) to mean that Π ′ |= Π and for any x : n ∈
X there is an x′ : n ∈ X ′ such that Π ′ |= x = x′. We write (X,Π) ∼ (X ′, Π ′)
to mean that (X,Π) � (X ′, Π ′) and (X ′, Π ′) � (X,Π).

Clearly ∼ is an equivalence on base pairs, and � is a partial order up to ∼.

Proposition 4.12. The following hold for any entailment A � B in Game 3:

1. Let (X,Π), (X ′, Π ′) ∈ baseΦ(A) with (X,Π) � (X ′, Π ′). If ((X ′, Π ′), σ) is
a winning move then so is ((X,Π), σ).

2. Let (Y,Θ), (Y ′, Θ′) ∈ baseΦ(B) with (Y,Θ) � (Y ′, Θ′). If (Y ′, Θ′) is a re-
sponse to the move ((X,Π), σ) then so is (Y,Θ).

3. Let (X,Π) ∈ baseΦ(A), (Y,Θ) ∈ baseΦ(B) with (Y,Θ) � (X,Π). Then
(Y,Θ) is a response to any move of the form ((X,Π), σ).

Therefore, without loss of generality, we may remove all base pairs from baseΦ(A)
and baseΦ(B) that are not �-minimal, and any ∼-duplicates; and we may also
remove all (X,Π) ∈ baseΦ(A) that are not �-minimal with respect to baseΦ(B).

Proof. 1. First note that σ |= Π ′ and Π ′ |= Π by assumption, so σ |= Π , and
thus ((X,Π), σ) is a valid move. To see that it is a winning move, suppose for
contradiction that (Y,Θ) is a response to it. We show for contradiction that
(Y,Θ) is also a response to ((X ′, Π ′), σ). First, σ |= Θ by assumption. Now
let y : n ∈ Y . By assumption, there is an x : n ∈ X such that σ |= x = y.
As (X,Π) � (X ′, Π ′), there is an x′ : n ∈ X ′ such that Π ′ |= x = x′. As
σ |= Π ′ it follows that σ |= x′ = y, as required.

2. We show that (Y,Θ) is a response to ((X,Π), σ). First, by assumption we
have σ |= Θ′ and Θ′ |= Θ, so σ |= Θ as required. Now let y : n ∈ Y . As
(Y,Θ) � (Y ′, Θ′), there is y′ : n ∈ Y ′ such that Θ′ |= y′ = y, and thus
σ |= y′ = y. By assumption, for any y′ : n ∈ Y ′ there is x : n ∈ X such that
σ |= y′ = x. Thus we have x : n ∈ X such that σ |= x = y, as required.

3. First we have to check that σ |= Θ, which follows from σ |= Π and Π |= Θ.
Now let y : n ∈ Y . Since (Y,Θ) � (X,Π), there is x : n ∈ X such that
Π |= x = y. As σ |= Π by assumption, σ |= x = y, as required. ��

A major source of complexity in Game 3 is the need to consider all possible
partitions of a set of variables (plus nil) for any given base pair of A in order
to obtain all possible moves for Player 1. The number of partitions of a set of
size n is given by the nth Bell number [4], which grows extremely quickly in n.
Fortunately, as our final theorem shows, we may regard certain pairs of terms
as nonequal by default, which can potentially reduce the search space.

Theorem 4.13. Suppose Player 1 has a winning move ((X,Π), σ) for A � B
(in Game 3). Then there is also a winning move of the form ((X,Π), σ′) where
the partition σ′ satisfies the following constraint:

If t, u are distinct terms in FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil}, then σ′ |=
t �= u whenever both of the following hold:



298 J. Brotherston and N. Gorogiannis

1. Π �|= t = u; and

2. for all base pairs (Y,Θ) ∈ baseΦ(B) and disequalities v �= w ∈ Θ, we have
Π |= t = v if and only if Π |= t = w.

Proof. First, for any partition σ over FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil} we
define the set BadEqs(σ) to be the set of all pairs of terms (t, u) such that σ |=
t = u and t, u satisfy the constraints 1 and 2 above. By induction, it then suffices
to show that we can construct a partition σ′ such that ((X,Π), σ′) is a winning
move for Player 1 and BadEqs(σ′) ⊂ BadEqs(σ), provided BadEqs(σ) �= ∅.

Now, letting (t, u) ∈ BadEqs(σ), we write [t]σ for the σ-equivalence class of
t, i.e., {t′ | σ |= t′ = t}. We then define a new partition σ′ obtained from σ by
further dividing [t]σ into the following two subpartitions:

P1 =def {t′ | Π |= t′ = t} and P2 =def [t]σ \ P1

We observe that this is indeed a non-trivial partitioning of [t]σ. On the one
hand, we trivially have t ∈ P1 and, since σ |= Π by assumption, we have t′ ∈ [t]σ
whenever Π |= t′ = t. On the other hand, we have u ∈ P2 because Π �|= u =
t according to constraint 1. Furthermore, we have BadEqs(σ′) ⊂ BadEqs(σ)
because, by construction, (t, u) �∈ BadEqs(σ′) and σ′ differs from σ only in the
subdivision of the equivalence class [t]σ.

Now we require to show that ((X,Π), σ′) is a winning move for Player 1. First,
we have to check that it is a valid move at all, i.e., that σ′ |= Π . We check that
σ′ satisfies each equality and disequality in Π . If v �= w ∈ Π then, since σ |= Π ,
we have σ |= v �= w. By construction of σ′, we clearly then also have σ′ |= v �= w
as required. For v = w ∈ Π , then we have σ |= v = w by assumption and,
by construction of σ′, we also have σ′ |= v = w unless it happens that v ∈ P1

while w ∈ P2 (or w ∈ P1 and v ∈ P2, which is symmetric). In that case, since
v = w ∈ Π we trivially have Π |= v = w, and since v ∈ P1 we have Π |= v = t,
and so Π |= w = t. This means that w ∈ P1, which contradicts w ∈ P2. Thus
indeed we have σ′ |= v = w as required.

It remains to show that ((X,Π), σ′) is indeed a winning move. Suppose for
contradiction that (Y,Θ) is a response to this move. It suffices to show that
(Y,Θ) is then also a response to the original ((X,Π), σ). First we have to show
that σ |= Θ. We check that σ satisfies each equality and disequality in Θ. For
v = w ∈ Θ we have σ′ |= v = w since σ′ |= Θ by assumption. By construction
of σ′, we then clearly have σ |= v = w as required. For v �= w ∈ Θ, we have
σ′ |= v �= w by assumption and, again by construction, we have σ |= v �= w
unless it happens that v ∈ P1 while w ∈ P2 (or vice versa, which is symmetric).
In that case, we have Π |= t = v while Π �|= t = w. This situation is precisely
excluded by constraint 2. Finally, we have to check that for all y : n ∈ Y , there
is an x : n ∈ X with σ |= x = y. Let y : n ∈ Y . By assumption, there is
x : n ∈ X such that σ′ |= x = y. Hence, by construction of σ′, we immediately
have σ |= x = y too. This completes the proof. ��
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5 Experimental Evaluation

Implementation and experimental framework. Our method for checking invalid-
ity, using Game 3 and the optimisations given by Proposition 4.12 and Theo-
rem 4.13, has been implemented in OCaml (openly available at [1]). We used the
theorem prover Cyclist as the basis for our implementation, as it provides fa-
cilities for separation logic entailments with inductive predicates [13], including
a procedure for computing the base pairs of formulas [10].

Finding benchmark entailments that have known validity status (so as to
assess precision), and which are ostensibly relevant to the needs of program
analysis frontends, is challenging. Currently, the main such source of test cases
is the Separation Logic Competition (SL-COMP)[2]. In addition to these bench-
marks, we provide a large new synthetic test suite (LEM) designed to exercise
our disprover over cases that are in some sense “typical”. The three classes of
test cases we consider are as follows:

UDP: This is the class of entailments from SL-COMP that is most relevant to
our logical fragment. It comprises 172 mostly hand-crafted sequents employing
various user-defined inductive predicates representing singly- and doubly-linked
lists, skip lists, trees and other structures. Unfortunately, however, only 20 se-
quents in the UDP set are invalid.

LEM: As invalid sequents are badly under-represented in the UDP benchmarks,
we generated a large synthetic test suite in the following way. First, we took the
inductive predicate definitions from the UDP suite, amounting to 63 distinct
predicates. Then, for every pair of distinct predicates P,Q in this set we form
the sequent Px � Qy where x is a tuple of distinct variables and y is any possible
tuple of variables from xmatching the arity of Q. This yields 818988 entailments,
of which we would expect most to be invalid. Entailments of this kind are typical
of automated theory exploration (see e.g. [16]), where potential lemmas are gen-
erated bottom-up from the definitions of the theory and, if proven valid, added
to a lemma library. Such approaches rely heavily on relatively cheap methods of
filtering out the many invalid “lemmas”.

SLL: Finally, this class, also from SL-COMP, consists of 292 entailments (pro-
duced by program analysis tools, by hand and by random generation) involving
only a single inductive predicate denoting possibly empty, acyclic, singly-linked
list segments. Validity for entailments in this fragment are already known to be
polynomially decidable [17], whereas our procedure is much more general but
incomplete, so we included these benchmarks mainly as a way of checking the
soundness of our procedure.

All tests were performed on an Intel i5-3570 CPU running at 3.4GHz with
8Gb of RAM running Linux and a 60-second time-out.

Soundness. Of all test cases in the UDP and SLL test suites, where the validity
status of test cases has been independently checked, we encountered one apparent
false positive, where an entailment in UDP was disproved by our implementation
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but marked as valid. This entailment is over possibly-empty, acyclic, doubly-
linked list segments, given by the predicate dll defined as follows:

x = z, y = w : emp ⇒ dll(x, y, w, z)
∃u′. x �= z, y �= w : x �→ (u′, w) ∗ dll(u′, y, x, z) ⇒ dll(x, y, w, z)

The entailment which was disproved but marked in UDP as valid is:

x �= w,w �= t, w �= z : w �→ (t, u) ∗ dll(x, u, nil, w) ∗ dll(t, y, w, z) � dll(x, y, nil, z)

In fact, the above entailment is not valid. There is a model of the LHS where
the subformula dll(t, y, w, z) represents a segment of length two (or more), thus
setting y �= nil. At the same time, x can alias z; thus there is a Player 1 move
where y �= nil and x = z. Player 2 cannot respond to this move because the RHS
allows either x = z, y = nil or x �= z, y �= nil. Concrete countermodels are those
that satisfy the following formula.

x = z : x �→ (u, nil) ∗ u �→ (w, x) ∗ w �→ (t, u) ∗ t �→ (y, w) ∗ y �→ (z, t)

This benchmark bug was confirmed and fixed by the SL-COMP maintainers.

Benchmark Count # Invalid Precision Timeouts

UDP 172 20 50% 3%
LEM 818988 ? >97% 0%
SLL 292 120 24% 7%

Fig. 1. Precision and timeouts (>60s) for the UDP, SLL and LEM benchmark classes.

Precision and performance. Figure 1 summarises the experimental results on the
precision and efficiency of our method.

In the UDP suite our method disproves 10 of 20 invalid sequents. The heuristic
timed-out on only 3% of all sequents, analysed nearly 80% of sequents in time
less than 1 millisecond and nearly 95% in fewer than 100 milliseconds.

For the LEM test suite, our method disproved 800667 of 818988 test entail-
ments, or 97.7%. Strictly speaking, this is only a measure of precision if one
assumes our implementation is correct, as these entailments have not been man-
ually checked. However, under such an assumption, the above figure can be taken
as a lower bound to precision on LEM. Indeed, since we expect most entailments
in LEM to be invalid, this figure is likely near the actual precision. No test case
in the LEM suite required more than 30 milliseconds for analysis.

Only 24% of invalid sequents in the SLL set were disproved. A manual in-
spection of the invalid entailments in both SLL and UDP not disproved by our
implementation revealed that, as expected, they fall into the category described
at the end of section 4.1, where the RHS imposes very weak constraints on its
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free variables. Time-outs were observed only on large invalid sequents, compris-
ing 7% of all test cases having 33–109 atomic formulas and 12–20 list predicate
occurrences each. More than 50% of test cases require time less than 1 ms.

Overall, given the very low cost overhead of our disprover, we believe its
precision represents a good value proposition; the LEM performance shows that
this should especially be the case when exploring large spaces of entailments, e.g.
in automated proof search or automated theory exploration. We note that one
would never run a general prover or disprover on SLL entailments in practice,
since the PTIME decision procedure for this fragment is, essentially, optimal.

6 Conclusion and Future Work

Our main contribution in this paper is an algorithm for detecting invalid en-
tailments in the symbolic heap fragment of separation logic with user-defined
inductive predicates. Our method is sound and terminating, but necessarily in-
complete. However, our experiments show that we can identify a non-trivial
proportion of invalid entailments that typically occur in practice. Moreover, our
method is very inexpensive compared to the typically high cost of proof search;
therefore, we believe there is very little reason not to use it.

Our analysis essentially works by comparing the bases of symbolic heaps, as
introduced to check satisfiability in [10]. These bases abstract away a great deal
of information about the precise shape of models, and so there is a fundamental
limitation on the amount of information that can be obtained by comparing
them; unavoidably, there are many invalid entailments that our method fails to
recognise. To improve the precision of our analysis, one might refine the base pair
construction further to retain more information about the shape of underlying
models (while remaining within the bounds of computability), or seek to develop
entirely separate heuristics designed to complement our method.

Another possible line of future work, building on the very recent development
of a model checking procedure for our logic [12], is to explore the possibility of
disproving entailments by directly generating and checking potential counter-
models. However, such an analysis might be significantly more expensive than
the one we present here.

To the best of our knowledge, invalidity questions have been rather less well
studied than validity questions in the separation logic literature to date. We hope
that the present paper will serve to stimulate wider interest in such questions,
and techniques for addressing them.
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Abstract. Dynamic Logic with Traces and Coinduction is a new pro-
gram logic that has an explicit syntactic representation of both programs
and their traces. This allows to prove properties involving programs as
well as traces. Moreover, we use a coinductive semantics which makes it
possible to reason about non-terminating programs and infinite traces,
such as controllers and servers. We develop a sound sequent calculus for
our logic that realizes symbolic execution of the programs under veri-
fication. The calculus has been developed with the goal of automation
in mind. One of the novelties of the calculus is a coinductive invariant
rule for while loops that is able to prove termination as well as non-
termination.

1 Introduction

In this paper we define a new program logic that allows to relate programs and
their traces explicitly, as well as to prove coinductive properties. In a nutshell,
given a program p and a syntactic representation Θ of a set of traces of p, we
build a first-order formula Ψ overΘ, giving rise to a trace modality formula of the
form [[p]]Ψ . Given a possibly infinite trace τ , the semantic judgment τ |= [[p]]Ψ
expresses that any possible trace of p extending τ must be one of the traces
characterized by Ψ .

We support coinductive reasoning, that is, a program p needs not to terminate
and a formula Ψ describes a set of possibly infinite traces. The motivation is that
many practically relevant programs, for example, servers and controllers, are
designed not to terminate. Clearly it is important to express and prove properties
about such programs. Relating (abstract) programs to traces is also possible in
temporal logics such as CTL* [1], but our approach is based on an expressive
first-order dynamic logic [2] over an imperative programming language with
standard datatypes. We aim to specify and verify complex, functional properties
of the target programs. Our long-term goal is to implement the logic presented
here in a verification tool such as KeY [3] that allows highly automated formal
verification of real software.

There are already several extensions of first-order dynamic logic that permit
to reason about temporal properties of programs [4–6] and even about trace
modalities [7–9]. Our work differs from all of these approaches in two impor-
tant aspects: first, we include an explicit syntactic representation of traces in
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our logic. This means that (potentially infinite) traces occur as syntactic entities
inside formulas, not only in the semantics. Second, we use this explicit trace rep-
resentation to enable reasoning about non-terminating programs in coinductive
style. Infinite traces and coinduction allow to express and to prove in a natural
manner properties of programs that are designed not to terminate.

A program logic with explicit traces for coinductive reasoning was introduced
in [10,11], however, in a more abstract setting than here: the assertion language
is partially left open, the proof rules are highly non-determinstic, the notion of
state is implicit.

In the present paper we merge the two lines of research just sketched ( [4–9]
and [10, 11]): we build a program logic that serves as a basis for practical rea-
soning over coinductive traces and proof rules. The main contributions are as
follows: In Sect. 2 we introduce the syntax of Dynamic Logic with Coinductive
Traces (DLTC) and motivate its design. In Sect. 3 we provide a formal semantics
for DLTC and illustrate some of its properties. In Sect. 4 we present a sequent
calculus for DLTC, and discuss soundness and completeness. The proof rules of
DLTC follow the design principle employed in the state-of-art verification system
KeY [3]: program rules are deterministic except for the loop invariant rule and
together realize a symbolic execution engine that can eliminate programs from
trace modality formulas. Also, state changes are recorded by explicit substitu-
tions called updates. There are several new aspects to the calculus: in contrast
to [10,11], we carefully distinguish between state invariants and trace invariants.
This makes coinductive loop invariant reasoning modular and comprehensible.
To the best of our knowledge, we present the first invariant rule for while loops
that allows to prove termination as well as non-termination. In contrast to [3,9],
state updates are applied not only to state formulas, but also to explicit traces.
In Sect. 5 we illustrate how the calculus is used in practice.

In this paper, we focus on a sequential target language, but our ultimate goal
is to reason mechanically about real-life, concurrent programs that are designed
not to terminate. We see the present work as a first step towards extending the
verification tool KeY-ABS [12] for the concurrent modelling language ABS [13]
to coinductive reasoning about complex properties of services. The scope of the
present paper, however, is to lay the foundations.

2 Dynamic Logic with Traces and Coinduction

The verification target is a simple sequential imperative programming language,
whose syntax is specified by the following context-free grammar over well-typed
statements stmt, (boolean) expressions (bexp) exp, and program variables �:

stmt ::= � = exp | stmt;stmt | if bexp then stmt fi | while bexp do stmt od

bexp ::= exp brel exp brel ::= == | < | > | ≤ | ≥
exp ::= exp + exp | exp - exp | exp * exp | exp / exp | � | 0 | 1 | · · ·
� ::= identifier

In Listing. 1.1, we illustrate our syntax with a non-terminating program.
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� = 0; while � ≥ 0 do � = � + 1 od

Listing 1.1. An example

We distinguish carefully between program variables � ∈ PV, and logical (first-
order) variables x ∈ LV. Both may appear in logic terms, but only the latter can
be quantified over and only the former may appear in programs. Var = PV ∪ LV
is the set of all variables. Variables have type integer and are evaluated in IN. We
assume a standard first-order signature with function symbols f and predicate
symbols P (including the arithmetic operators appearing in programs), each
with an arity. The actual signature is unimportant and left out as a parameter
from the following definitions. The syntax of dynamic logic with traces and
coinduction (DLTC) is defined inductively by the following grammars. We start
with terms t, state updates u, and first-order formulas ϕ:

t ::= exp | x | f (t,. . . ,t) | {u} t
| if ( ϕ ) then ( t ) else ( t ) | if ( Ψ ) then ( t ) else ( t )

u ::= � := t | � := t,u

ϕ ::= P(t,. . . ,t) | ¬ ϕ | ϕ ∧ ϕ | ∃x.ϕ | {u} ϕ

x ::= identifier f ::= identifier P ::= identifier | brel

The first three production rules for terms are obvious. The fourth applies
state updates u on terms. State updates can be seen as explicit substitutions
that correspond to a single state transition in a Kripke structure. We need them
to specify states explicitly in traces. The last two rules define conditional terms
where the guard is either a first-order formula ϕ or a trace modality formula
Ψ , as defined below. Hence, formulas can appear inside terms. Atomic state
updates, � := t, specify the value change of a single program variable. These can
be combined into finite update sequences. The rules for first-order formulas are
standard, except that we permit to apply updates on formulas, similar as for
terms. We will freely use logical connectives such as ∨ and → and the truth
constants true, false, which are definable.

Next we introduce an explicit notation for sets of traces Θ. To facilitate rea-
soning about traces, the language for describing traces is carefully designed to
match the target programming language. We chose a minimal trace language
for ease of presentation. If necessary, it can be easily extended. If the target
programming language introduces new concepts this is in general necessary. For
example, if we would add concurrency, an extended notion of trace is required.

Θ ::= � := t | Θ ∗∗ Θ | Θ<ω | Θω | �ϕ� | finite | infinite

The first rule extends the current trace with a single transition corresponding
to an atomic update or an assignment statement. The second rule features the
“chop” operator from [10,11] and divides a trace into two parts, where the first
part ends with the same state with which the second part. This corresponds
to sequential composition, where the second part starts execution in the final
state of the run of the first part. A final state does not exist when running the
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first part diverges—the semantics of the chop operator is carefully crafted to take
non-termination into account. The next two rules add finite and infinite iteration
to traces, corresponding to terminating and non-terminating loops, respectively.
Iteration is not the same as concatenation, but rather of the form Θ ∗∗Θ ∗∗ · · · ,
expressing that the final state of one loop iteration is identical to the first state
in the following round. The next rule lifts state formulas to traces. The intention
is that �ϕ� holds exactly in a trace of length one whose only state satisfies ϕ.
Lifting state formulas makes it possible to express complex functional properties
with traces or to represent the value of a guard expression. Finally, there are
literals that represent any finite or infinite trace.

Example 1. Let � ∈ PV, n ∈ LV. Intuitively, the trace formula Attain(�, n) ≡
finite ∗∗ �� ==n� ∗∗ infinite holds in any infinite trace that contains a state where
the value of � attains the value assigned to n.

There is no trace construct that corresponds to branching. Disjunction and
even quantification over traces can be achieved with trace modality formulas :

Ψ ::= P(t, . . . ,t) where no program variables occur in t
| ¬ Ψ | Ψ ∧ Ψ | ∃x.Ψ
| Θ
| [[ stmt ]] Ψ | {u} Ψ

In the following we use implication Ψ → Φ and universal quantification ∀x.Ψ
as abbreviations for ¬Ψ ∨Φ resp. ¬∃x.¬Ψ . Other standard operators like ∨, ↔
are used in a similar fashion.

In Sect. 3 we will evaluate trace modality formulas Ψ relative to a given trace
τ . As it is undefined in which state in τ a program variable in Ψ is evaluated, we
simply omit them from trace modality formulas which are not trace formulas.
Program variables may, however, occur inside trace formulas, where their posi-
tion defines the state in which they are evaluated. The formula [[stmt]]Ψ expresses
that any possible trace of stmt extending τ must be one of the traces character-
ized by Ψ . To specify that the value of a program variable � occurring in stmt has
the value 42 in the final state one writes [[stmt]] (finite∗∗��==42�), which addition-
ally requires that τ is finite and running stmt from the last state of τ is termi-
nating. With this in mind, the usual partial and total correctness modalities [·]·
and 〈·〉· of dynamic logic [2] can be expressed as [s]ϕ ≡ [[s]](finite → finite∗∗�ϕ�)
and 〈s〉ϕ ≡ [[s]](finite ∗∗ �ϕ�), respectively.

Example 2. We continue Ex. 1 by defining the trace modality formula

Ψ0 ≡ finite → [[p]]∀n.Attain(�, n) (1)

where p is the program from Listing 1.1. Intuitively, it should hold, as it expresses
that in all the infinite traces of p the program variable � attains each n ∈ IN in
some state.
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One might ask why we have both finite and infinite in our trace language
since it is possible to define infinite ≡ ¬finite. Note, however, that our trace
language is not closed with respect to logical connectives. For example, we cannot
write something like Θ ∗∗¬finite. This is intentional, as it simplifies the calculus
and stratifies the definition of traces and trace modality formulas. Finally, we
introduce abbreviations for trace modality formulas: any ≡ True ≡ finite∨ infinite
and none ≡ False ≡ ¬any ≡ ¬True.

3 Semantics

A trace is a potentially infinite non-empty sequence of states σ, where σ : PV →
IN. The syntax of traces is specified by: τ ::= 〈σ〉 | τ � σ.

The equation should be read coinductively, so that a trace may be finite or
infinite. Traces grow to the right, by appending latest states, i.e. τ � σ. This
matches the syntax of updates, where most recent updates are appended to the
right. The angular brackets create a singleton trace from a given state. We define
three functions on traces. The function “last” takes a finite trace and returns its
latest, i.e., right-most, state. Formally,

last(τ) =

{
σ if τ = 〈σ〉
σn if τ = 〈σ0〉 � σ1 � . . . � σn

It is undefined on infinite traces. Given two traces τ and τ ′, both of which may
be finite or infinite, τ · τ ′ denotes their concatenation.1

When reasoning about traces of sequentially composed programs the presen-
tation is simplified a lot by the chop function ∗∗, which can be illustrated by the
following diagram:

r; s
︷ ︸︸ ︷
〈σ0〉 � · · · � σn � σn+1 � · · ·

||
〈σ0〉 � · · · � σn
︸ ︷︷ ︸

∗∗ 〈σn〉 � σn+1 � · · ·
︸ ︷︷ ︸

r s

We want to characterize the traces resulting from sequential composition of
programs r and s. Assume that r has a finite trace with final state σn (below
left). Sequential composition requires the first state of a trace of s to be σn as
well (below right). In the resulting trace of r; s (on top), one of the σn is cut out
(“chopped”), by definition, that is the last state of the trace of r. The formal
definition is as follows:

τ ∗∗ τ ′ =

⎧
⎨

⎩

τ if τ is infinite
τ ′ if τ = 〈σ〉
(〈σ0〉 � σ1 � . . . � σn−1) · τ ′ if τ = 〈σ0〉 � σ1 � . . . � σn

1 When τ is infinite, τ · τ ′ is τ .
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valD,σ,β(� = e) = 〈σ〉 � σ[� �→ valD,σ,β(e)]

valD,σ,β(r; s) =

{
τ ∗∗ (valD,last(τ),β(s)) if τ = valD,σ,β(r) is finite
valD,σ,β(r) otherwise

valD,σ,β(if e then s fi) =

{
valD,σ,β(s) if valD,σ,β(e) = tt
〈σ〉 otherwise

valD,σ,β(while e do s od) =

⎧
⎪⎪⎨

⎪⎪⎩

〈σ〉 if valD,σ,β(e) = ff
τ if valD,σ,β(e) = tt, τ = valD,σ,β(s), τ is infinite
τ ∗∗ (valD,last(τ),β(while e do s od))

if valD,σ,β(e) = tt, τ = valD,σ,β(s), τ is finite

Fig. 1. Program semantics

valD,σ,β(� := t) = λσ′.〈σ′[� �→ valD,σ,β(t)]〉
valD,σ,β(� := t, u) = λσ′.〈σ′′〉 · (valD,σ′′,β(u)(σ

′′)) where σ′′ = σ′[� �→ valD,σ,β(t)]

Fig. 2. Semantics: Updates

With the help of traces we can give a formal semantics to DLTC. The semantic
definitions are presented in the same sequence as the syntactic constructs in
Sect. 2. The semantics of the programming language and the dynamic logic is
given by a valuation function valD,ρ,β , which sends a syntactic construct to its
meaning. It is parameterised over the domainD, as well as the valuation function
β on logical constants and variables. The parameter ρ represents either a state
or a trace. The following coinductive definitions of valD,ρ,β are simultaneous.

We start with programs. Fig. 1 gives their semantics. The semantics of a
program s on an initial state σ is given by the trace which records all the
intermediate states in the run of s from σ. A terminating program run produces
a finite trace and a non-terminating program run produces an infinite trace. A
trace necessarily contains an initial state, hence it is non-empty. Running an
assignment � = e produces a doubleton consisting of the initial state and the
final state. The valuation function valD,σ,β(e) evaluates the expression e in the
state σ. For a sequence r; s, we first run r on the initial state σ. If the resulting
trace τ is finite, then it must have a last state σ′ from which we obtain a trace
of s. The chop operator combines both traces. If r diverges, then τ is infinite,
and we return that as the result, because s is not reached. The semantics of con-
ditional statements is obvious. The semantics of a while statement is obtained
from iterating a sequence of conditional evaluations of the body. If the guard e
evaluates to falsity, then the entire run terminates immediately. If e evaluates
to truth, then the loop body s is run. We have two possible cases. If the run of
s diverges, then we return the infinite trace τ produced by that run. Otherwise,
the trace τ resulting from the run of s is finite, and we continue with the next
iteration from its last state. The definition is coinductive, allowing the body to
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valD,τ,β(� := e) iff τ = 〈σ〉 � σ′ and σ′ = σ[� �→ valD,σ,β(e)]

valD,τ,β(Θ1 ∗∗ Θ2) iff

{
valD,τ,β(infinite) and valD,τ,β(Θ1), or
τ = τ1 ∗∗ τ2 and valD,τ1,β(Θ1) and valD,τ2,β(Θ2)

valD,τ,β(Θ
<ω) iff

⎧
⎨

⎩

τ = 〈σ〉, or
τ = τ1 ∗∗ . . . ∗∗ τn−1 ∗∗ τn for some n and

∀i ≤ n. valD,τi,β(Θ)
valD,τ,β(Θ

ω) iff τ = τ1 ∗∗ τ2 ∗∗ . . . ∗∗ τi ∗∗ . . . and
∀i ≥ 1.(valD,τi,β(finite) and valD,τi,β(Θ))

valD,τ,β(
ϕ�) iff τ = 〈σ〉 and valD,σ,β(ϕ)
valD,τ,β(finite) iff τ is finite

valD,τ,β(infinite) iff τ is infinite

Fig. 3. Semantics: trace formulas

valD,τ,β([[s]]Ψ) iff

{
valD,τ,β(Ψ) τ is infinite
valD,τ∗∗τ ′,β(Ψ) τ is finite and τ ′ = valD,last(τ),β(s)

valD,τ,β({u}Ψ) iff

{
valD,τ,β(Ψ) τ is infinite
valD,τ ·valD,σ,β(u)(σ),β(Ψ) τ is finite and σ = last(τ )

Fig. 4. Semantics: trace modality Formulas

be iterated infinitely, producing a potentially infinite trace like this (assuming
σ(�) = 3):

valD,σ,β(� = 0; while � ≥ 0 do � = �+ 1 od)
= 〈{� �→ 3}〉 � {� �→ 0} � {� �→ 1} � {� �→ 2} � {� �→ 3} � . . .

We define the semantics of updates as functions from states to (finite) traces
in Fig. 2. The meaning of a single update � := t is a function which, given a
state σ′, returns a singleton trace after updating σ′ with the value of t at �. The
meaning of a multiple update is a function which, given a state σ′, returns a
trace, of the same length as the update, containing all the intermediate states
of successively applying the update on σ′.

The evaluation function valD,ρ,β for first-order formulas φ is straightforward.
When ρ is a trace, then φ is evaluated in its final state σ = last(ρ). The function
valD,σ,β is defined exactly as valD,β in standard first-order logic, with the obvious
addition of the base case valD,σ,β(�) = σ(�) when � ∈ PV. A formula [[s]]φ is true
in σ if either valD,σ,β(s) is infinite or else if φ is true in the last state of valD,σ,β(s).
A formula {u}ϕ is true in σ if ϕ is true in the last state of valD,σ,β(u)(σ).
Formally, valD,σ,β({u}ϕ) iff valD,σ′,β(ϕ), where σ′ = valD,σ,β(u)(σ).

Fig. 3 gives the semantics of trace formulas. An update � := e is true in a
doubleton trace 〈σ〉 � σ′, where σ′ is obtained by updating σ at � with the
value of e in σ. The chop Θ1 ∗∗ Θ2 is true in τ , if either τ is infinite and Θ1 is
true in τ , or else τ can be split into τ1 and τ2 such that τ = τ1 ∗∗ τ2 and Θ1

(resp., Θ2) is true in τ1 (resp., τ2). The finite iteration Θ<ω is true in τ , if τ can
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be split into n segments, each of which satisfies Θ.2 The infinite iteration Θω is
true in τ , if τ can be split into infinitely many segments each of which is finite
and satisfies Θ. The singleton formula �ϕ� embeds a state formula ϕ into a trace
formula. It is true of a singleton trace 〈σ〉 containing a state σ which satisfies ϕ.
We note that �ϕ�ω is equivalent to �ϕ�, because 〈σ〉 ∗∗ 〈σ〉 collapses to 〈σ〉. The
trace formula finite (infinite) is true in τ if τ is finite (infinite).

Fig. 4 gives the semantics of trace modality formulas. For space reasons, we
only present dynamic logic operators (first-order operators are defined as usual).
The formula valD,τ,β([[s]]Ψ) is true, whenever Ψ is true in τ and τ is infinite. If τ
is finite then s is executed from its last state. The resulting trace is sequentially
composed with τ , and in that trace Ψ must be true. The semantics of formula
{u}Ψ is similar, only that the extension of τ is based on evaluating u.

Various equivalences and implications hold for state and trace formulas, e.g.,
the chop operator is associative, i.e. for any τ , valD,τ,β(Θ0 ∗∗ (Θ1 ∗∗ Θ2)) iff
valD,τ,β((Θ0 ∗∗ Θ1) ∗∗ Θ2). Also, a finite iteration is equivalent to either zero
iterations or a finite iteration followed by a single iteration, i.e. for any τ ,
valD,τ,β(Θ

<ω) iff valD,τ,β(�true� ∨ (Θ<ω ∗∗Θ)). Such properties give rise to sim-
plification rules, some of which are further discussed in Sect. 4.3 below.

4 Calculus

We present a Gentzen-style sequent calculus for reasoning about trace formulas.
Four kinds of rule sets can be distinguished: (i) program rules, which are respon-
sible to remove programs from trace formulas; (ii) update simplification rules,
which are applied to formulas preceded by an update and compute its weakest
precondition; (iii) rules to reason about validity of trace formulas, and (iv) stan-
dard first-order rules. We focus on the first three categories as the last one is
standard. Even though there is a considerable number of rules, the calculus is
quite modular and amenable to automation. This is because the rules in cate-
gories (i)–(iii) are meant to be applied consecutively, i.e, first those in (i), then
(ii), etc. In addition, many rules are deterministic (e.g., there is exactly one pro-
gram rule for all but one programming construct) and they preserve validity (see
Sect. 4.5). It is not necessary to backtrack in a proof.

4.1 Notation

The syntax for sequents is as usual:

Γ ::= ε | Ψ, Γ seq ::= Γ ⇒ Γ

where Γ is a set of trace modality formulas with ε denoting the empty set. The
left side of a sequent is called antecedent and the right side succedent. A sequent
rule schema is written as

2 We can additionally ask the first n − 1 segments to be finite, without reducing the
expressivity.
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name

premises
︷ ︸︸ ︷
Γ1 ⇒ Δ1 . . . Γn ⇒ Δn

Γ ⇒ Δ︸ ︷︷ ︸
conclusion

where name denotes the rule’s name and Γ, Γi, Δ,Δi, i ∈ {1 . . . n} are schema
variables matching sets of trace modality formulas. The meaning of a sequent
Γ ⇒ Δ with Γ = {Φ1, . . . , Φn}, Δ = {Ψ1, . . . Ψn} is defined as

valD,τ,β(Γ ⇒ Δ) = valD,τ,β((Φ1 ∧ . . . ∧ Φn) → (Ψ1 ∨ . . . ∨ Ψm))

A sequent is valid if valD,τ,β(Γ ⇒ Δ) is true for any domain D, trace τ , and
variable assignment β.

A proof is a tree whose nodes are labeled with sequents. The leaves are called
proof goals. A sequent rule is applicable to a proof if its conclusion matches the
sequent of a proof goal. Applying a sequent rule on a goal g adds n (number
of premises) new nodes as children to g, such that there is exactly one child
for each premise labeled with the premise’s instantiated sequent. Rules with no
premises are called axioms. A goal is closed if any of the last rule applications
on its proof branch where it appears has been an axiom application. A proof is
closed when all its goals are closed. In addition to sequent rules there are rewrite
rules, written as follows:

name ξ � ξ′ (
�
= is used instead of � in case of directed equations)

where ξ, ξ′ are trace modality formulas, trace formulas, state formulas or terms. A
rewrite rule can be applied on any (sub-)formula or (sub-)term that matches the
rule’s left-hand side. Applying a rewrite rule replaces the matched subexpression
by the accordingly instantiated right-hand side.

4.2 Program Rules

The program rules eliminate programs from formulas. The calculus follows the
symbolic execution paradigm, i.e., programs are symbolically executed from left
to right. To achieve this the rules always work on the first statement. For com-
pleteness we need at least one rule for each statement category. One rule per
statement suffices, as our language has only side-effect free expressions, which
do not need to be decomposed. In case of the while loops we provide two rules,
one that unwinds one loop iteration and an invariant rule that comes with built-
in coinduction. We give here only the rule versions for the main formula in the
succedent, but analogous rules for the antecedent exist.

assign
Γ ⇒ {u, � := e}[[r]]Ψ,Δ
Γ ⇒ {u}[[�= e; r]]Ψ,Δ
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Rule assign is applicable on any top level modality (possibly below an update)
whose first statement is an assignment. The assignment is turned into an update
and sequentially composed with a preceding update (if one exists).

ifThen
Γ, {u}(any ∗∗ �e�) ⇒ {u}[[s; r]]Ψ,Δ Γ, {u}(any ∗∗ �¬e�) ⇒ {u}[[r]]Ψ,Δ

Γ ⇒ {u}[[if e then s fi;r]]Ψ,Δ

The rule for the conditional splits the proof into two branches; one for the case
where its guard e evaluates to true (and the conditional’s then-block is executed),
the other for the case where e evaluates to false. Trace modality formulas are
evaluated realtive to a trace. This is reflected in the expressions any ∗∗ �e� and
any∗∗�¬e�, which ensure that the guard is evaluated in the last state of the trace.
In case of an infinite trace the guards in the antecedents of both premises are
trivially true and {u}[[r]]Ψ ≡ {u}[[r; s]]Ψ ≡ Ψ , hence, the two branches coincide.

After a program has been fully symbolically executed, the modality is elimi-
nated by applying the rule

emptyModality
Γ ⇒ {u}Ψ,Δ
Γ ⇒ {u}[[ ]]Ψ,Δ

The most complex program rules implement symbolic execution of loops. Rule

unwind
Γ ⇒ {u}[[if e then (s; while e do s od) fi; r]]Ψ,Δ

Γ ⇒ {u}[[while e do s od; r]]Ψ,Δ

unwinds the loop, encoded as a program transformation capturing the opera-
tional small-step semantics. Whenever a loop is not bound by a fixed number
of iterations, this rule is obviously incomplete. Instead of introducing a separate
coinduction rule, we present a loop invariant rule with built-in coinduction:

whileInv
Γ ⇒ {u}(UpTo ∗∗ 
SInv�),Δ
Round<ω ∗∗ TGuard ⇒ [[s]]

(
(finite → (Round<ω ∗∗ 
SInv�)) ∧ (infinite → RDiv)

)

Round<ω ∗∗ TGuard ∗∗ 
Div� ⇒ [[s]](infinite ∨ finite ∗∗ 
e� ∗∗ 
Div�)
Round<ω ∗∗ TGuard ∗∗ 
¬Div ∧ decr==old� ⇒

[[s]](finite ∗∗ 
decr < old ∧ ¬Div�)
UpTo ∗∗ 
¬Div� ∗∗ Round<ω ∗∗ 
SInv ∧ ¬e� ⇒ [[r]]Ψ
UpTo ∗∗ 
Div� ∗∗ Roundω ∨UpTo ∗∗ 
Div� ∗∗ RDiv ⇒ Ψ

Γ ⇒ {u}[[while e do s od; r]]Ψ,Δ

To instantiate the rule, a number of formulas and expressions must be spec-
ified: trace formula UpTo characterizes the traces to be considered up to ex-
ecuting the loop for the first time. State formula SInv denotes the state loop
invariant, corresponding to invariants known from Hoare-style program logics.
State formula Div characterizes the entry states of the loop under which it does
not terminate, while RDiv is a trace formula describing a non-terminating loop
body. The variant term decr is a natural number term and is strictly decreased
in each loop iteration. Trace formula TGuard := �SInv ∧ e� expresses that the
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state loop invariant and loop condition evaluate to true: they describe the states
just before a loop iteration. Trace formula Round := TGuard ∗∗TInv describes
all traces in which the loop guard holds initially and the whole trace (including
the initial state) satisfy the “shape” described by the trace invariant formula
TInv .

The loop invariant rule combines reasoning about terminating and non-
terminating loops in one single rule. In particular it allows to reason about loops
that diverge for some but not all initial states. To achieve this, the rule splits the
proof into six branches: (i) The first branch shows that the state loop invariant
formula SInv holds initially. (ii) The second branch ensures that both (state and
trace) loop invariant formulas are preserved by the loop body provided that it
terminates. If the loop body s is executed finitely under a trace which describes
a finite number of loop unwindings (Round<ω) and ending in a state satisfying
the state loop invariant and the loop guard then the resulting trace again satis-
fies the trace invariant Round<ω and the state loop invariant. If the execution of
the loop body diverges, the resulting trace is specified by RDiv . (iii) The third
branch states that the diverging formula is correct by requiring that any loop
iteration executed in a diverging state ends in a state which satisfies the loop
condition. (iv) The fourth branch ensures that the variant term is decreased
in each state where the loop terminates. (v) The fifth branch requires to prove
that in case of a terminating loop the postcondition holds after executing the
remaining program, while (vi) the sixth branch requires to show that in case of
non-termination the postcondition holds under the produced infinite trace.

Example 3. We apply whileInv to the loop in Listing 1.1. The conclusion is

finite ⇒ {� := 0}[[while (� ≥ 0) do � = �+ 1 od]]Ψ1 (2)

where Ψ1 ≡ ∀n.Attain(�, n). If the loop body contains no loop itself, it is safe to
set RDiv ≡ �false�. The remaining schema variables are instantiated as follows:

UpTo ≡ finite ∗∗ ��==0�
Round ≡ �� ≥ 0� ∗∗ � := �+ 1

SInv ≡ � ≥ 0
TInv ≡ � := �+ 1

TGuard ≡ �� ≥ 0�
Div ≡ true

The instantiation of UpTo is obvious and we expect that it can be automatically
computed from the antecedent and the current update in most cases. The state
invariant is as it would be in Hoare logic. From it we compute TGuard . The
decreasing term is arbitrary, because the loop does not terminate in any state,
hence Div ≡ true. The new aspect is the trace invariant. We chose a precise
shape given by the state transition that corresponds exactly to the assignment,
but a more abstract trace invariant would also be possible. Finally, Round is
obtained from TGuard and TInv .

4.3 Simplification Rules for Trace Formulas

In Fig. 5 we show a selection of simplification rules. The elimInf rules eliminate
tailing chops which “follow” an already infinite trace. By repeated application of
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elimInf1 Θhd ∗∗ (Θ1 ∗∗ � := e ∗∗Θ2)
ω ∗∗ Θtail � Θhd ∗∗ (Θ1 ∗∗ � := e ∗∗ Θ2)

ω

Θhd, Θ1, Θ2 are optional

elimInf2 Θhd ∗∗ infinite ∗∗Θ2 � Θhd ∗∗ infinite Θhd is optional

elimInf3
Γ ⇒ {u}(Θhd ∗∗ finite ∗∗Θtail),Δ Γ ⇒ {u}(Θhd ∗∗ infinite),Δ

Γ ⇒ {u}(Θhd ∗∗ any ∗∗ Θtail),Δ
Θhd, u are optional (similar for antecedent)

elimFalseRight
Γ ⇒ {u}(Θhd ∧ infinite),Δ

Γ ⇒ {u}(Θhd ∗∗ 
false� ∗∗ Θtl),Δ

elimTrueRight
Γ ⇒ {u}(Θhd ∗∗ Θtl),Δ

Γ ⇒ {u}(Θhd ∗∗ 
true� ∗∗ Θtl),Δ
Θhd, Θtl, u are optional (similar rules for the antecedent)

elimSingleStateRepInf 
ϕ�ω �
= 
ϕ� unwindInfRep Θω �

= Θ ∗∗ Θω

unwindFinRepLeft
Γ, {u}
true� ⇒ Δ Γ, {u}(Θ<ω ∗∗ Θ) ⇒ Δ

Γ, {u}Θ<ω ⇒ Δ

unwindFinRepRight
Γ ⇒ {u}(Θ<ω ∗∗ Θ), {u}
true�, Δ

Γ ⇒ {u}Θ<ω ,Δ
u is optional

Fig. 5. Selection of simplification rules for trace formulas

propagateEqLeft
Γ,Θhd ∗∗ 
�==t� ∗∗ � := e[l/t] ∗∗ Θtl ⇒ Δ

Γ,Θhd ∗∗ 
�==t� ∗∗ � := e ∗∗ Θtl ⇒ Δ
Θhd, Θtl are optional; � does not occur in t (similar for right side)

propagateUpdateEffectLeft
Γ,Θhd ∗∗ � := e ∗∗ 
�==e� ∗∗Θtl ⇒ Δ

Γ,Θhd ∗∗ � := e ∗∗ Θtl ⇒ Δ

captureVariableValueLeft
Γ,∃k.(Θhd ∗∗ 
�==k� ∗∗ � := e ∗∗Θtl) ⇒ Δ

Γ,Θhd ∗∗ � := e ∗∗ Θtl ⇒ Δ

Θhd, Θtl are optional; � does not occur in e (similar for right side)

Fig. 6. Rules relating state information across traces

these rules we ensure that trace formulas describing an infinite trace end either
with an infinite repetition operator ω or with the formula infinite. The other
elimination rules like elimSingleStateRepInf are used to simplify trace formulas.
For finite traces they ensure together with the unwindFinRep rules that the last
chop ends with one of the trace formula finite, �ϕ�, u.

In summary, repeated application of the simplification rules establishes a nor-
mal form that permits syntactic recognition of finite or infinite trace formulas.
This normal form is exploited in the rules for update simplification below.

Besides simplification rules, further rules for reasoning about trace formulas
exist. Some are shown in Fig. 6. They are used to propagate information inside
a trace formula. For instance, captureVariableValueLeft introduces a rigid logi-
cal variable k to remember the value that a program variable � has before an
update.
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{u}(Φ ∧ Ψ)
�
= {u}Φ ∧ {u}Ψ {u}¬Φ �

= ¬{u}Φ {u}
φ� �
= False

{u}P (t1, . . . , tn)
�
= P ({u}t1, . . . , {u}tn)

{u}∃ x.Φ
�
= ∃ x.{u}Φ (x does not occur u) {u, � := e}Φ �

= {u}{� := e}Φ
{� := e}(Θ ∗∗ 
ϕ�) �

= if (finite) then (({� := e}Θ) ∧ (finite ∗∗ 
{� := e}ϕ�)) else (Θ)

{� := e}(Θ ∗∗ � := t)
�
= if (finite) then (Θ ∧ (finite ∗∗ 
({� := e}�) = t�)) else (Θ)

(a) Update application on trace modality formulas

{u, � := e}�′ �
=

{
e , if � = �′

{u}�′ , otherwise

(b) Update application on state formulas

Fig. 7. Selection of update application rules

4.4 Update Application Rules

Exhaustive application of program and trace formula rules results in a recog-
nizably infinite or finite trace modality formula. In the latter case, u or �ϕ� is
the final subexpression. Hence, it is sufficient to provide update rules of trace
modality formulas for those cases. Fig. 7 shows a selection of update application
rules for trace modality formulas and state formulas. For a full set of update
application rules for state formulas, see [14].

Perhaps surprisingly, {u}�ϕ� is evaluated to false. The reason is that the
application of u results in at least a doubleton trace, but �ϕ� can only be true
in a singleton trace. Another interesting observation is the difference between
trace modality formulas {� := e}(Θ ∗∗ �ϕ�) and {� := e}(Θ ∗∗ �′ := t) in case of
finite traces. Application of a single update extends a given trace τ by exactly
one state resulting in τ ′. Because of the semantics of chop and the fact that �ϕ�
does not actually extend a trace, the first formula is evaluated to true if Θ is true
in τ ′ and in its last state ϕ holds. On the other hand, the formula (Θ ∗∗ �′ := t)
describes a trace strictly longer than Θ. This means update application extends
the trace beyond the reach of Θ which, therefore, needs to hold only in τ .

4.5 Soundness and Discussion of Completeness

Theorem 1 (Soundness). All rules preserve validity, i.e., if all premises are
valid, so is the conclusion.

A standard argument yields

Corollary 1. The DLTC calculus is sound: only valid sequents are provable.

Another issue is completeness. As we reason about total correctness of Turing-
complete programs, this is at best a relative notion. In interactive theorem prov-
ing pragmatic completeness (can we prove interesting properties of realistic pro-
grams?) is typically more relevant. Nevertheless, it would be interesting to know
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whether it is possible to prove completeness in the style of [10, 11], relative to
certain oracles. One reason for completeness was in particular that the authors
could escape to the meta-level for reasoning about theories like general prop-
erties (simplifications) of trace formulas. The crucial question will be whether
the rules for propagating state information within trace formulas (Fig. 6) are
sufficiently complete in the sense that we can reason about the concrete value of
a program variable at a given position in a trace formula. In the end this boils
down to the completeness of our update simplification rules. As described in the
previous section, these rules are obviously complete for finite end pieces. For
finite traces the relative completeness should follow directly from the relative
completeness of the JavaDL calculus [3] as in this case our loop invariant rule is
practically identical with their loop invariant rule.

Another issue is whether an explicit coinduction rule is needed in general or
if coinduction can always be reduced to induction, as it is the case in Sect. 5.

5 An Example

We demonstrate how to use the calculus by proving formula (1) (Example 2,
pg. 310). Due to space limitations we just point out the most interesting aspects.

After applying a propositional rule and assign we obtain a subgoal that is the
conclusion in Ex. 3 which also describes the chosen rule instantiation. Since the
program diverges, the fourth and fifth branch can easily be closed. The most
interesting case is the sixth branch whose proof obligation after simplification is

finite ∗∗ ��==0� ∗∗ (�� ≥ 0� ∗∗ � := �+1)ω ⇒ ∀n.(finite ∗∗ �� ==n� ∗∗ infinite) (3)

To prove the universally quantified formula in the succedent one needs induction.
Our calculus contains a standard induction schema for natural numbers. We use
the following induction formula where n is the induction variable:

finite∗∗��==0�∗∗(�� ≥ 0�∗∗� := �+1)ω → finite∗∗��==n�∗∗(�� ≥ 0�∗∗� := �+1)ω

Proving the base and step case pose no problem. We obtain

finite ∗∗ ��==0� ∗∗ (�� ≥ 0� ∗∗ � := �+ 1)ω →
∀n.(finite ∗∗ ��==n� ∗∗ (�� ≥ 0� ∗∗ � := �+ 1)ω)

This is sufficient to prove (3) by weakening.
The example nicely demonstrates the strength of our logic: we are able to

reason about a reachability property which requires arbitrary long traces. This is
possible because our logic soundly incorporates coinductive reasoning of infinite
traces. (Notice that a trace being infinite amounts to a trace being longer than
any arbitrary natural numbers.)

6 Related and Future Work

Most related work was already discussed in the introduction. To characterize
internal by observable behavior is the general concern of abstract semantics of
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programming languages; see for example [15] in the case of Java. Here, we are
not necessarily interested in characterizing the program behavior fully; rather, we
aim to verify a specific property, whereas abstract semantics strives to establish
a meta theorem on semantic equivalence for a given programming language.

Interactive proof assistants such as Coq, Isabelle and Agda support coinduc-
tion and corecursion in the setting of a full-fledged higher-order logic.

In [16] an automatic method is presented to prove non-termination of pro-
grams based on solving constraints over unreachable parts of the state space.

The next obvious step in future work is to implement DLTC and its calculus,
for example, on the basis of KeY [3, 12]. As mentioned in Sect. 4.5 we will
investigate and prove relative completeness of our calculus.

7 Conclusion

We presented DLTC, a program logic that allows us to reason about programs
and explicit, possibly infinite, traces. We also gave a sound sequent calculus for
DLTC that is ready for implementation in a semi-automated theorem prover.
One innovation of the calculus is an invariant rule for while loops that permits to
prove properties of terminating and non-terminating loops at the same time. For
non-termination we cover the case where the guard never becomes false as well
as the case where the loop body may not terminate. Other innovative features of
the calculus include propagation of symbolic states over traces and the capability
to reduce coinductive to inductive statements.

Acknowledgement. The work has been supported by the ERDF funded ICT
R&D national programme project ”Coinduction” and the Estonian Science
Foundation grant no. 9398 and by the EU project FP7-610582 Envisage: En-
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12. Chang Din, C., Bubel, R., Hähnle, R.: KeY-ABS: A deductive verification tool
for the concurrent modelling language ABS. In: Felty, A., Middeldorp, A. (eds.)
CADE-25. LNCS (LNAI), pp. 517–526. Springer, Heidelberg (2015)
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Abstract. Starting with the deontic principles in Mı̄mām. sā texts we
introduce a new deontic logic. We use general proof-theoretic methods to
obtain a cut-free sequent calculus for this logic, resulting in decidability,
complexity results and neighbourhood semantics. The latter is used to
analyse a well known example of conflicting obligations from the Vedas.

1 Introduction

We provide a first bridge between formal logic and the Mı̄mām. sā school of Indian
philosophy. Flourishing between the last centuries BCE and the 20th century,
the main focus of this school is the interpretation of the prescriptive part of
the Indian Sacred Texts (the Vedas). In order to explain “what has to be done”
according to the Vedas, Mı̄mām. sā authors have proposed a rich body of deontic,
hermeneutical and linguistic principles (metarules), called nyāyas, which were
also used to find rational explanations for seemingly contradicting obligations.

Even though the Mı̄mām. sā interpretation of the Vedas has pervaded almost
every other school of Indian philosophy, theology and law, little research has been
done on the nyāyas. Moreover, since not many scholars working on Mı̄mām. sā are
trained in formal logic, and the untranslated texts are inaccessible to logicians,
these deontic principles have not yet been studied using methods of formal logic.

In this paper starting from the deontic nyāyas we define a new logic – basic
Mı̄mām. sā deontic logic (bMDL for short) – that simulates Mı̄mām. sā reasoning.
After introducing the logic as an extension of modal logic S4 with axioms ob-
tained by formalising these principles 1 and providing a cut-free sequent calculus
and neighbourhood-style semantics for it, we use bMDL to reason about a well
known example of seemingly conflicting obligations contained in the Vedas. This
example concerns the malefic sacrifice called Śyena and proved to be a stumbling
block for many Mı̄mām. sā scholars. The solution to this controversy provided by

� Supported by FWF START project Y544-N23, FWF project V400 and EU
H2020-MSCA grant 660047.

1 While some of the nyāyas we consider are listed in the Appendix of [13], we extracted
the remaining ones directly from Mı̄mām. sā texts, see [6].
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the semantics of bMDL turns out to coincide with that of Prabhākara, one of
the chief Mı̄mām. sā authors, which previous approaches failed to make sense of,
e.g., [18]. Our formal analysis relies essentially on the cut-free calculus for bMDL
introduced with the aid of the general method from [16].

Through the paper we refer to the following Mı̄mām. sā texts: the Pūrva Mı̄mām. sā
Sūtra (henceforth PMS, ca. 3rd c. BCE), its commentary, the Śābarabhās. ya
(ŚBh), the main subcommentary, Kumārila’s Tantravārttika (TV).

Related Work. Logic (mainly classical) has already been successfully used to
investigate other schools of Indian thought. In particular for Navya Nyāya formal
analyses have contributed to a fruitful exchange of ideas between disciplines [8],
however, no deontic modalities were considered. A logical analysis of the deontic
aspects of the Talmud, another sacred text, is given in [1]. The deontic logic used
there is based on intuitionistic logic and contains an external mechanism for
resolving conflicts among obligations. Deontic logics similar but not equivalent
to bMDL include Minimal Deontic Logic [9] and extensions of monotone modal
logic with some versions of the D axiom [12,17]. The latter papers also introduce
cut-free sequent calculi, but do not mix alethic and deontic modalities.

2 Extracting a Deontic Logic from Mı̄mām. sā Texts

The use of logic to simulate Mı̄mām. sā ways of reasoning is motivated by their
rigorous theory of inference and attention for possible violations of it. For in-
stance Kumārila, one of the chief Mı̄mām. sā authors, emphasises the fact that
a text is not epistemically reliable if the whole chain of transmission is reliable,
but not its beginning. The classical example is that of “a chain of truthful blind
people transmitting information concerning colours” (TV on PMS 1.3.27).

At this point, the problem amounts to which logic should be adopted. The
simplest logical system for dealing with obligations is Standard Deontic Logic
SDL, that extends classical logic by a unary operator O read as “It is obligatory
that...” satisfying the axioms of modal logic KD [2,7]. Though simple and well
studied, SDL is not suited to deal with conflicting obligations, which are often
present in the Vedas and in Mı̄mām. sā reasoning. A well known example from
the Vedas consists of the following norms concerning the malefic Śyena sacrifice,
which is enjoined in case one desires to harm his enemy, since it kills them:

A. “One should not harm any living being”
B. “One should sacrifice bewitching with the Śyena”

Any reasonable formalisation of the statements A. and B. leads in SDL to a
contradiction. Given that the Mı̄mām. sā authors embraced the principle of non-
contradiction and invested all their efforts in creating a consistent deontic sys-
tem, to provide adequate formalisations of Mı̄mām. sā reasoning a different logic
is needed. To this aim we introduce basic Mı̄mām. sā deontic logic (bMDL) by
extracting its properties directly from Mı̄mām. sā texts.
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The language of bMDL extends that of classical logic with the binary modal
operatorO(·/·) from dyadic deontic logics and the unary modal operator � of S4.
While the latter is used to formalise the auxiliary conditions of general deontic
principles, the former allows us to impose conditions on obligations describing
the situation in which the obligation holds. Hence a formula O(ϕ/ψ) can be read
as “ϕ it is obligatory given ψ”.

The use of the dyadic operator, which is a reasonably standard approach to
avoid the problem with conflicting obligations (see, e.g., [11] and [9]), is also
suggested in the metarule “Each action is prescribed in relation to a responsible
person who is identified because of her desire” (cf. PMS 6.1.1–3).

As described in Sec. 2.1 the properties of the deontic operator O(·/·) of bMDL
(definition below) are directly extracted from the nyāyas.

Definition 1. Basic Mı̄mām. sā deontic logic bMDL extends (any Hilbert system
for) S4 with the following axioms (taken as schemata):

(1) (�(ϕ → ψ) ∧ O(ϕ/θ)) → O(ψ/θ)
(2) �(ψ → ¬ϕ) → ¬(O(ϕ/θ) ∧ O(ψ/θ))
(3) (�((ψ → θ) ∧ (θ → ψ)) ∧ O(ϕ/ψ)) → O(ϕ/θ)

The choice to use classical logic as base system, in contrast to the use of intu-
itionistic logic in Gabbay et al.’s deontic logic of the Talmud [1], is due to various
metarules by Mı̄mām. sā authors implying the legitimacy of the reductio ad absur-
dum argument RAA; these include the following (contained in Jayanta’s book
Nyāyamañjar̄ı): “When there is a contradiction (ϕ and not ϕ), at the denial of
one (alternative), the other is known (to be true)”. Therefore, if we deny ¬ϕ
then ϕ holds, which gives RAA.

2.1 From Mı̄mām. sā nyāyas to Hilbert Axioms

Axiom (1) arises from three different principles, discussed in [6]; among them
the following abstraction of the nyāyas in the Tantrarahasya IV.4.3.3 (see [5])

If the accomplishment of X presupposes the accomplishment of Y, the
obligation to perform X prescribes also Y.

This principle leads to (�(ϕ → ψ)∧O(ϕ/θ)) → O(ψ/θ), where we represent the
accomplishment of X and Y as ϕ and ψ respectively, and we stipulate that the
conditions on the two prescriptions, represented by θ, are the same. Note that
we use the operator �, here as well as in the following axioms, to guarantee that
the correlations between formulae are not accidental.

Axiom (2) arises from the so-called principle of the half-hen, which is imple-
mented in different Mı̄mām. sā contexts (e.g., TV on PMS 1.3.3); an abstract
representation of it is:

Given that purposes Y and Z exclude each other, if one should use item
X for the purpose Y, then it cannot be the case that one should use it
at the same time for the purpose Z.
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This principle stresses the incongruity of enjoining someone to act in
contradiction with himself on some object. The corresponding axiom is
�(ψ → ¬ϕ) → ¬(O(ϕ/θ) ∧ O(ψ/θ)) which guarantees that if ϕ and ψ exclude
each other, then they cannot both be obligatory under the same conditions θ.
Finally, Axiom (3) arises from a discussion (in ŚBh on PMS 6.1.25) on the eligi-
bility to perform sacrifices (see [6]), which can be abstracted as follows:

If conditions X and Y are always equivalent, given the duty to perform
Z under the condition X, the same duty applies under Y.

We formalise this principle as (�((ψ → θ) ∧ (θ → ψ)) ∧ O(ϕ/ψ)) → O(ϕ/θ),
where the conditions X and Y are represented by ψ and θ respectively, and ϕ
represents that the action Z is performed.

While the properties ofO(·/·) are taken fromMı̄mām. sā texts, the same cannot
be done for � because Mı̄mām. sā authors do not conceptualise necessity as sepa-
rate from epistemic certainty. The established choices for a logic for the alethic
necessity operator � are S4 and S5. To keep the system as simple as possible,
and not having found any principle motivating the additional properties of S5,
we have chosen S4.

3 Proof Theory of bMDL

Hilbert systems are convenient ways of defining logics, but are not very useful
for proving theorems in and about the logics (e.g., decidability, consistency).

For this purpose we introduce a cut-free sequent calculus GbMDL for bMDL
and use it to show that, for certain issues, bMDL simulates Mı̄mām. sā ways
of reasoning. As usual, a sequent is a tuple Γ ⇒ Δ of multisets of formulae
interpreted as

∧
Γ →

∨
Δ. To construct GbMDL we use the translation from

axioms to rules and the construction of a cut-free calculus from these rules
from [15,16]. Since the latter is not fully automatic, we provide some details.

First, by [16, Thm. 26], we automatically obtain from Def. 1(1)-(3) the rules

ϕ, ψ ⇒ χ ⇒ ϕ, ψ χ ⇒ ϕ θ ⇒ ξ ξ ⇒ θ

�ϕ,O(ψ/θ) ⇒ O(χ/ξ)
Mon′

ϕ, θ ⇒ ξ ϕ, ξ ⇒ θ ⇒ ϕ, θ, ξ θ, ξ ⇒ ϕ ψ ⇒ χ χ ⇒ ψ

�ϕ,O(ψ/θ) ⇒ O(χ/ξ)
Cg

ϕ, ψ, χ ⇒ ⇒ ϕ, ψ ⇒ ϕ, χ θ ⇒ ξ ξ ⇒ θ

�ϕ,O(ψ/θ),O(χ/ξ) ⇒ D′
2

From these rules we construct a new set of rules saturated under cuts from
which the rules above are derivable. This step is not automatic and amounts
to repeated cutting between rules [16, Def. 7]: given any two rules we obtain a
new rule whose conclusion is the result of a cut on a formula principal in the
conclusions of both rules, and whose premisses contain all possible cuts between
the premisses of the original rules on the variables occurring in this formula.
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Γ� ⇒ ϕ

Γ ⇒ �ϕ,Δ
4

Γ,�ϕ, ϕ ⇒ Δ

Γ,�ϕ ⇒ Δ
T

Γ�, ϕ ⇒ θ Γ�, ψ ⇒ χ Γ�, χ ⇒ ψ

Γ,O(ϕ/ψ) ⇒ O(θ/χ),Δ
Mon

Γ�, ϕ ⇒
Γ,O(ϕ/ψ) ⇒ Δ

D1

Γ�, ϕ, θ ⇒ Γ�, ψ ⇒ χ Γ�, χ ⇒ ψ

Γ,O(ϕ/ψ),O(θ/χ) ⇒ Δ
D2

Fig. 1. The modal rules rules of GbMDL

Γ ⇒ Δ
Γ,Σ ⇒ Δ,Π

W
Γ, ϕ, ϕ ⇒ Δ

Γ, ϕ ⇒ Δ
ConL

Γ ⇒ ϕ,ϕ,Δ

Γ ⇒ ϕ,Δ
ConR

Γ ⇒ ϕ,Δ Σ,ϕ ⇒ Π

Γ,Σ ⇒ Δ,Π
Cut

Fig. 2. The structural rules

We start from the set containing the rules above and those of S4 and first cut
the rules 4 (Fig. 1) with Mon′ and 4 with Cg on the boxed formula to obtain the
rules

Γ�, ψ ⇒ χ θ ⇒ ξ ξ ⇒ θ

Γ,O(ψ/θ) ⇒ O(χ/ξ), Δ

Γ�, θ ⇒ ξ Γ�, ξ ⇒ θ ψ ⇒ χ χ ⇒ ψ

Γ,O(ψ/θ) ⇒ O(χ/ξ), Δ

where Γ� is obtained from Γ by deleting every occurrence of a formula not of
the form �ϕ. Now cutting these two rules in either possible way yields the rule
Mon (Fig. 1), and cutting this and 4 with D′

2 yields D2. We obtain D1 closing
D2 under contraction, i.e., identifying ϕ with θ and ψ with χ and contracting
conclusion and premiss.

The sequent calculus GbMDL consists of the rules in Fig. 1 together with the
standard propositional G3-rules (with principal formulae copied into the pre-
misses) [14] and the standard left rule for the constant⊥. We write �GbMDL

Γ ⇒ Δ
if Γ ⇒ Δ is derivable using these rules. We denote extensions of GbMDL with struc-
tural rules from Fig. 2 by appending their names, collecting ConL and ConR into
Con. E.g., GbMDLConW is GbMDL extended with Contraction and Weakening.

By construction [15,16] we have:

Theorem 1. The rule Cut is admissible in GbMDLConW.

Proof. Using the structural rules the system GbMDLConW is equivalent to the
system GbMDL

′ConW in which the principal formulae of the propositional rules
and the rule T are not copied into the premisses. By construction (and straight-
forward inspection in the non-principal cases) the rules of GbMDL

′ConW satisfy
the general sufficient criteria for cut elimination established in [15,16]. Cut-free
derivations in GbMDL

′ConW are converted into cut-free derivations in GbMDLConW
using the structural rules. ��

The methods in [15,16] now automatically yield also an EXPTIME-complexity
result. However, we consider an explicit proof search procedure for GbMDL which
will be used in Sec. 4. First we establish some preliminary results.
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Lemma 1. The Contraction and Weakening rules are admissible in GbMDL.

Proof. Admissibility of weakening is proved by induction on the depth of the
derivation, while that of contraction follows from the general criteria in [16,
Thm. 16] resp. [15, Thm. 2.5.5] since the rule set GbMDL is contraction closed
and already contains the modified versions of T and the propositional rules. ��

Thus suffices to consider set-based sequents, i.e., tuples of sets of formulae
instead of multisets. The rules of GbMDL are adapted to the set-based setting in
the standard way. Since boxed formulae are always copied into the premisses of
a rule, the proof search procedure needs to include loop checking to avoid infinite
branches in the search tree. We do this using histories, i.e., lists of (set-based)
sequents, where the last element is interpreted as the current sequent:

Definition 2 (Histories). A history H is a finite list [Γ1 ⇒ Δ1; . . . ;Γn ⇒ Δn]
of set-based sequents, where we write lastL(H) (resp. lastR(H)) for Γn (resp.
Δn) and last(H) for lastL(H) ⇒ lastR(H). Given another history H′ = [Σ1 ⇒
Π1; . . . ;Σm ⇒ Πm] with n ≤ m we write H � H′ if for all i ≤ n we have
Γi = Σi and Δi = Πi. Finally, we write H++H′ for the concatenation of the
two histories.

The proof search procedure for GbMDL is given in Algorithm 1, where following
[10] we call the propositional rules together with the rule T the static rules,
Mon, 4,D1,D2 are called transitional rules. The algorithm saturates the current
sequent under backwards applications of the one-premiss static rules, and then
checks whether the result is an initial sequent or could have been derived by a
two-premiss static rule or a dynamic rule. The histories are used to prevent the
procedure from exploring a sequent twice (modulo weakening).

Lemma 2 (Termination). The proof search procedure terminates.

Proof. Given a history H, the number N of different set-based sequents which
can be constructed from subformulae of the sequent last(H) is exponential in the
size of last(H). Hence after at most N -many recursive calls of the procedure the
subroutine rejects every rule application. Furthermore, for every sequent there
are only finitely many possible (backwards) applications of a rule from GbMDL,
so the subroutine is executed only a finite number of times. ��
Proposition 1. �GbMDL

Γ ⇒ Δ iff the procedure accepts [Γ ⇒ Δ].

Proof. If the procedure accepts the input, then we construct a derivation of
Γ ⇒ Δ in GbMDL by following the accepting choices of backwards applications
of the rules, and labelling the nodes in the derivation with the sequents last(H)
for the histories H given as input to the recursive calls of the algorithm.

Conversely, if the set-based sequent Γ ⇒ Δ is derivable in GbMDL, then by
admissibility of Weakening there is a minimal derivation of it, i.e., a derivation
in which no branch contains two set-based sequents Σ ⇒ Π and Ω ⇒ Θ such
that Σ ⇒ Π occurs on the path between Ω ⇒ Θ and the root, and such that
Ω ⊆ Σ and Θ ⊆ Π . By induction on the depth of such a minimal derivation it
can then be seen that the procedure accepts the input [Γ ⇒ Δ]. ��
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Algorithm 1. The proof search procedure for GbMDL

Input: A history H
Output: Is last(H) derivable in GbMDL given the history H?

1 Saturate last(H) under the one-premiss static rules;
2 if last(H) is an initial sequent then
3 accept the history
4 else
5 for every possible application of a two-premiss static rule to last(H) do
6 for every premiss Σ ⇒ Π of this application do
7 recursively call the proof search procedure with input H++[Σ ⇒ Π ];

8 accept the application if each of these calls accepts

9 for every possible application of a transitional rule to last(H) do
10 for every premiss Σ ⇒ Π of this application do
11 if there is an H′ � H with Σ ⊆ lastL(H′) and Π ⊆ lastR(H′) then
12 reject the premiss
13 else
14 call the proof search procedure with input H++[Σ ⇒ Π ];
15 accept the premiss if this call accepts

16 accept the rule application if each of the premisses is accepted

17 accept the history if at least one of the possible applications is accepted

3.1 Inner and Outer Consistency

Having extracted a cut-free calculus from the axioms using the method in [15,16],
soundness and completeness w.r.t. bMDL follow by construction (Thm. 2). By
the subformula property we then obtain the inner consistency of the logic bMDL,
i.e., the fact that ⊥ is not a theorem of the logic. This is one of the most basic
requirements that our logic should satisfy. But since bMDL was introduced with
the purpose of simulating Mı̄mām. sā reasoning, it should also be consistent with
respect to the examples considered by the Mı̄mām. sā authors such as the Śyena
sacrifice, i.e., it should not enable us to derive a contradiction from the formali-
sations of these examples. We capture this in the notion of outer consistency or
consistency in presence of global assumptions. To make this precise we consider
the consequence relation associated with the logic bMDL and the corresponding
relation associated with the calculus GbMDL. Henceforth we denote by A any set
of formulae of bMDL.

Definition 3. The usual notion of derivability of a formula ϕ from a set A of
assumptions in bMDL is denoted by A �bMDL ϕ. Similarly, for a set S of sequents,
a sequent Γ ⇒ Δ is derivable from S in GbMDLCut if there is a derivation of
Γ ⇒ Δ in GbMDL with leaves labelled with initial sequents, zero-premiss rules or
sequents from S. We then write A �bMDL ϕ resp. S �GbMDLCut Γ ⇒ Δ.
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Theorem 2 (Soundness and Completeness). For all sets S of sequents and
sequents Γ ⇒ Δ we have:

S �GbMDLCut Γ ⇒ Δ iff {
∧

Σ →
∨

Π | Σ ⇒ Π ∈ S} �bMDL

∧
Γ →

∨
Δ .

Proof. The corresponding standard results for the propositional calculi transfer
readily to the system bMDL and the Gentzen system G3 with the zero-premiss

rules ⇒ θ
for each modal axiom schema θ of bMDL. The result then follows

from interderivability of these rules with the modal rules from GbMDL [15,16].
As an example, the derivation of the zero-premiss rule for Axiom (2), where α
denotes �(ψ → ¬ϕ) → ¬(O(ϕ/θ) ∧ O(ψ/θ)), is as follows

D1....
�(ψ → ¬ϕ), ψ, ϕ ⇒ �(ψ → ¬ϕ), θ ⇒ θ

ax.
�(ψ → ¬ϕ), θ ⇒ θ

ax.

O(ψ/θ),O(ϕ/θ),O(ϕ/θ) ∧ O(ψ/θ),�(ψ → ¬ϕ)⇒α,¬(O(ϕ/θ) ∧ O(ψ/θ))
D2

⇒ α
prop.

where the double line denotes multiple applications of the propositional rules
and the derivation D1 is

ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ ⇒ ψ
ax.

¬ϕ, ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ ⇒ ϕ
ax.

¬ϕ, ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ ⇒
¬ ⇒

ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ ⇒
→⇒

�(ψ → ¬ϕ), ψ, ϕ ⇒ T

��

Corollary 1. The logic bMDL is consistent, i.e., ⊥ �∈ bMDL. ��

Proof. Follows by Thm. 2.1 and the fact that the rules of GbMDL satisfy the
subformula property. ��

Definition 4. bMDL enjoys outer consistency with respect to A if A ��bMDL ⊥

By Thm. 2 this condition is equivalent to { ⇒ ϕ | ϕ ∈ A} ��GbMDLCut ⇒ ⊥. We
now show that bMDL allows us to consistently formalise the seemingly conflicting
statements of the Śyena sacrifice. The proof uses the proof search procedure given
in Algorithm 1 and the following version of the deduction theorem (see Section
5 for a semantic proof).

Theorem 3. For every sequent Γ ⇒ Δ and set A of formulae the following are
equivalent (writing �A for {�ϕ | ϕ ∈ A} taken as a multiset):

1. { ⇒ ϕ | ϕ ∈ A} �GbMDLCut Γ ⇒ Δ
2. { ⇒ �ϕ | ϕ ∈ A} �GbMDLCut Γ ⇒ Δ
3. �GbMDL

�A, Γ ⇒ Δ.
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Proof. 1 → 2: Easily follows by using the rules T and Cut.
2 → 3: Since every rule in GbMDL copies all boxed formulae in the antecedent

from conclusion to premisses, the result of adding the formulae {�ϕ | ϕ ∈ A}
to the antecedents of every sequent occurring in the derivation of Γ ⇒ Δ from
{�ϕ | ϕ ∈ A} is still a derivation. As this turns every assumption ⇒ �ϕ into
the derivable sequent �A ⇒ �ϕ, the result is a derivation without assumptions.
Statement 3 now follows using Cut Elimination (Thm. 1).

3 → 1: Easily follows by using the rules 4 and Cut. ��
Thus in order to check whether bMDL enjoys outer consistency w.r.t. a set A

of formulae it is sufficient to check that the sequent �A ⇒ ⊥ is not derivable
in GbMDL. Before we formalise the Śyena sacrifice, let us remark that while the
operatorO(·/·) only captures conditional obligations, we would also like to reason
about unconditional obligations, i.e., obligations which always have to be fulfilled.
We formalise such obligations in the standard way by O(·/). A formula O(ϕ/)
then can be read as “it is obligatory that ϕ provided anything is the case”, and
thus models an unconditional obligation. A formalisation of the problematic
situation in the Śyena example (sentences A. and B. in Sec. 2) then is:

1. O(¬hrm/) for “One should not perform violence on any living being”
2. O(sy/des hrm en) for “If you desire to harm your enemy you should perform

the Śyena”
3. hrm en → hrm for “harming the enemy entails harming a living being”
4. sy → hrm en for “performing the Śyena entails harming the enemy”.

with the variables hrm for “performing violence on any living being”, sy for “per-
forming the Śyena sacrifice”, hrm en for “harming your enemy”, and des hrm en

for “desiring to harm your enemy”.

Theorem 4. bMDL enjoys outer consistency w.r.t. the Śyena sacrifice, i.e.:
{
hrm en → hrm, sy → hrm en, O(¬hrm/), O(sy/des hrm en)

}
��bMDL ⊥ .

Proof. By Thm. 2 and Thm. 3 it is sufficient to show that the sequent

�(hrm en → hrm),�(sy → hrm en),�O(¬hrm/),�O(sy/des hrm en) ⇒ ⊥

is not derivable in GbMDL. This is done in the standard way by (a bit tediously)
performing an exhaustive proof search following the procedure in Algorithm 1.

��

4 Semantics of bMDL

The semantics for bMDL is build on the standard semantics for modal logic S4,
i.e., Kripke-frames with transitive and reflexive accessibility relation [2]. The
additional modality O is captured using neighbourhood semantics [4], which we
modify to take into account only accessible worlds. Intuitively, the neighbour-
hood map singles out a set of deontically acceptable sets of accessible worlds for
certain possible situations, i.e., sets of accessible worlds. As usual, if R ⊆ W ×W
is a relation and w ∈ W , we write R[w] for {v ∈ W | wRv}. Also, for a set X
we write Xc for the complement of X (relative to an implicitly given set).
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Definition 5. A Mı̄mām. sā-frame (or briefly: m-frame) is a triple (W,R, η) con-
sisting of a non-empty set W of worlds or states, an accessibility relation
R ⊆ W ×W and a map η : W → P(P(W )× P(W )) such that:

1. R is transitive and reflexive;
2. if (X,Y ) ∈ η(w), then X ⊆ R[w] and Y ⊆ R[w];
3. if (X,Z) ∈ η(w) and X ⊆ Y ⊆ R[w], then also (Y, Z) ∈ η(w);
4. (∅, X) /∈ η(w);
5. if (X,Y ) ∈ η(w), then (Xc ∩R[w], Y ) /∈ η(w).

A Mı̄mām. sā-model (or m-model) is a m-frame with a valuation σ : W →
P(Var).

Intuitively, Condition 1 in Def. 5 corresponds to axioms (4) and (T) of S4,
Condition 2 ensures that only accessible worlds influence the truth of a formula
O(ϕ/ψ) and comes from the rules (Mon) and (Cg), Condition 3 corresponds to
the rule (Mon), while Conditions 4 resp. 5 correspond to (D1) resp. (D2).

Definition 6 (Satisfaction, truth set). Let M = (W,R, η), σ be a m-model.
The truth set �ϕ�M of a formula ϕ in M is defined recursively by

1. �p�M := {w ∈ W | p ∈ η(w)}
2. ��ϕ�M := {w ∈ M | R[w] ⊆ �ϕ�M}
3. �O(ϕ/ψ)�M := {w ∈ W | (�ϕ�M ∩R[w], �ψ�M ∩R[w]) ∈ η(w)}

and the standard clauses for the boolean connectives. We omit the subscript M if
the m-model is clear from the context, and we write M, w � ϕ for w ∈ �ϕ�M. A
formula ϕ is valid in a m-model M if for all worlds w of M we have M, w � ϕ.

Note that in clause 3 we slightly deviate from the standard treatment in that
we restrict the attention to worlds accessible from the current world.

Lemma 3. For all rules of GbMDL we have: if the interpretations of its premisses
are valid in all m-models, then so is the interpretation of its conclusion.

Proof. We show that if the negation of the interpretation of the conclusion is
satisfiable in a m-model, then so is the negation of the interpretation of (at least)
one of the premisses. For 4,T and the propositional rules this is standard.

For the modal rules we only show the case of D2, the other cases being similar.
Assume that for the m-model M = (W,R, η), σ the negation of the conclusion
is satisfied in w ∈ W , i.e., we have M, σ �

∧
Γ ∧ O(ϕ/ψ) ∧ O(θ/χ) . Then

we have (�ϕ� ∩ R[w], �ψ� ∩ R[w]) ∈ η(w) and (�θ� ∩ R[w], �χ� ∩ R[w]) ∈ η(w).
By Cond. 5 in Def. 5 we know that (�ϕ�c ∩ R[w], �ψ� ∩ R[w]) �∈ η(w), hence
�θ�∩R[w] �= �ϕ�c ∩R[w] or �ψ�∩R[w] �= �χ�∩R[w]. If the latter does not hold,
using this and Cond. 3 we have �ϕ�c∩R[w] � �θ�∩R[w] and hence we find a world
v ∈ �ϕ� ∩ �θ� ∩ R[w]. Then with transitivity we obtain M, σ, v �

∧
Γ� ∧ ϕ ∧ θ,

and thus the negation of the first premiss of the rule is satisfiable. Otherwise we
have �ψ�∩ �χ�c ∩R[w] �= ∅ or �χ�∩ �ψ�c ∩R[w] �= ∅ and again using transitivity
we satisfy the negation of the second or the third premiss of the rule. ��
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Corollary 2 (Soundness of GbMDL). For every sequent Γ ⇒ Δ we have: if
�GbMDL

Γ ⇒ Δ, then
∧
Γ →

∨
Δ is valid in all m-models.

Proof. By induction on the depth of the derivation, using Lem. 3. ��

For completeness we show how to construct a countermodel for a given sequent
from a failed proof search for it. For this, fix Γ ⇒ Δ to be a sequent not derivable
in GbMDL. We build a m-model MΓ⇒Δ = (W,R, η), σ from a rejecting run of
Alg. 1 on input [Γ ⇒ Δ], such that

∧
Γ ∧

∧
¬Δ is satisfied in a world of MΓ⇒Δ.

For this, take the set W of worlds to be the set of all histories occurring in
the run of the procedure. To define the accessibility relation we first construct
the intermediate relation R′ by setting HR′H′ iff (at least) one of the following
holds:

1. H � H′; or
2. H′ � H and there is a transitional rule application with conclusion last(H)

and a premiss Σ ⇒ Π of this rule application such that Σ ⊆ lastL(H′) and
Π ⊆ lastR(H′).

Intuitively, in 2. we add the loops which have been detected by the procedure.
The relation R then is defined as the reflexive and transitive closure of R′. To
define the function η we first introduce a syntactic version of the truth set nota-
tion:

|ϕ|W := {H ∈ W | ϕ ∈ lastL(H)}

Now we define η : W → P(P(W )×P(W )) by setting for every history H in W :

η(H) :=

{

(X,Y ) ∈ P(R[H])2 | for some formula O(ϕ/ψ) ∈ lastL(H) :
|ϕ|W ∩R[H] ⊆ X and |ψ|W ∩R[H] = Y

}

.

Finally, we define the valuation σ by setting for every variable p ∈ Var:

σ(p) := |p|W .

Let us write MΓ⇒Δ for the resulting structure (W,R, η). Then we have:

Lemma 4. The structure MΓ⇒Δ, σ is a m-model.

Proof. By construction σ is a valuation, R is a transitive and reflexive relation
on W , and Conditions 2 and 3 of Def. 5 hold for η. To see that Condition 5 holds,
we need to show that if (X,Y ) ∈ η(H) then (Xc ∩R[H], Y ) �∈ η(H). For this we
show that whenever (X,Y ) ∈ η(H) and (Z,W ) ∈ η(H), then Z �= Xc ∩R[H] or
Y �= W . So assume we have such (X,Y ) and (Z,W ) in η(H). By construction
of η there must be formulae O(ϕ/ψ) and O(θ/χ) in lastL(H) such that

– |ϕ|W ∩R[H] ⊆ X and |ψ|W ∩R[H] = Y ; and

– |θ|W ∩R[H] ⊆ Z and |χ|W ∩R[H] = W .
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Since both O(ϕ/ψ) and O(θ/χ) are in lastL(H), the transitional rule D2 can be
applied to last(H). Thus the proof search procedure either used the premisses

lastL(H)
�
, ϕ, θ ⇒ lastL(H)

�
, ψ ⇒ χ lastL(H)

�
, χ ⇒ ψ

of this rule application to create new histories by appending them to H, or it
found a history H′ � H whose last sequent subsumes one of the premisses. In
either case for at least one premissΣ ⇒ Π there is a historyH′ s.t. Σ ⊆ lastL(H′)
and Π ⊆ lastR(H′) and for which proof search fails. Moreover, for this H′ by
construction of R we know that HRH′. Assume that Σ ⇒ Π is the first premiss.
Then ϕ, θ ∈ lastL(H′), and hence H′ ∈ |ϕ|W ∩ |θ|W ∩R[H] and the latter is non-
empty. Then in particular Xc∩R[H] ⊆ (|ϕ|W ∩R[H])c ∩R[H] = (|ϕ|W )c ∩R[H]
is not equal to |θ|W ∩ R[H] = Z. Similarly, if Σ ⇒ Π is one of the remaining
premisses we obtain Y �= W . Thus whenever (X,Y ) ∈ η(H) and (Z,W ) ∈ η(H),
then Z �= Xc ∩R[H] or Y �= W . The reasoning for Cond. 4 is similar. ��
Lemma 5 (Truth Lemma). For every history H ∈ W : (i) If ϕ ∈ lastL(H),
then MΓ⇒Δ, σ,H � ϕ and (ii) if ψ ∈ lastR(H), then MΓ⇒Δ, σ,H � ¬ψ.
Proof. We prove both statements simultaneously by induction on the complexity
of ϕ resp. ψ. The base case and the cases where the main connective of ϕ resp. ψ is
a propositional or � are standard (note that Alg. 1 saturates every sequent under
the static rules, i.e., the propositional rules and T, and that every transitional
rule copies all the boxed formulae in the antecedent into the premisses). If ϕ =
O(θ/χ), then by construction of η we have (|θ|W ∩ R[H], |χ|W ∩ R[H]) ∈ η(H),
and thus MΓ⇒Δ, σ,H � O(θ/χ). Now suppose that ψ = O(ξ/γ). To see that
ψ does not hold in H we show that for no O(δ/β) ∈ lastL(H) we have |δ|W ∩
R[H] ⊆ |ξ|W ∩R[H] and |β|W ∩R[H] = |γ|W ∩R[H] . The result then follows by
construction of η and the definition of truth set. If lastL(H) does not contain any
formula of the form O(δ/β), then η(H) is empty and we are done. Otherwise,
there is such a O(δ/β) and the rule Mon can be applied backwards to last(H).
But then from the failed proof search for at least one of the premisses

lastL(H)
�
, δ ⇒ ξ lastL(H)

�
, γ ⇒ β lastL(H)

�
, β ⇒ γ

we obtain a history H′ with HRH′ whose last sequent subsumes this premiss.
But then as above either |δ|W ∩ R[H] �⊆ |ξ|W ∩ R[H], if it is obtained from the
first premiss, or |β|W ∩R[H] �= |γ|W ∩R[H] otherwise. ��
Theorem 5 (Completeness). For every sequent Γ ⇒ Δ we have: if

∧
Γ →∨

Δ is valid in every m-model, then �GbMDL
Γ ⇒ Δ.

Proof. If ��GbMDL
Γ ⇒ Δ, then by Lem. 2 and Prop. 1 the procedure in Alg. 1

terminates and rejects the input [Γ ⇒ Δ]. Thus by Lem. 4 and 5 we have
MΓ⇒Δ, [Γ ⇒ Δ] �

∧
Γ ∧ ¬

∨
Δ and hence

∧
Γ →

∨
Δ is not m-valid. ��

Since only finitely many histories occur in a run of the proof search procedure,
the constructed model is finite and by standard methods we immediately obtain:

Corollary 3. The logic bMDL has the finite model property and is decidable.
��
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5 Applications to Indology

We show now that despite being reasonably simple, bMDL is strong enough
to derive consequences about topics discussed by Mı̄mām. sā authors (Example
1) and to provide useful insights on the reason why the seemingly conflicting
statements in the Śyena example are not contradictory.

Example 1. Consider the following excerpt: “Since the Veda is for the purpose of
an action, whatever in it does not aim at an action is meaningless and therefore
must be said not to belong to the permanent Veda” (PMS 1.2.1). In other words:
each Vedic prescription should promote an action. Given that no actual action
can have a logical contradiction as an effect, a logical contradiction cannot be
enjoined by an obligation. This can be translated into the formula ¬O(⊥/θ), one
of the forms of axiom D, which is derivable in GbMDL as follows:

⊥ ⇒ ⊥ ⇒
O(⊥/θ) ⇒ ¬O(⊥/θ)

D1

⇒ ¬O(⊥/θ)
⇒ ¬

A Logical Perspective on the Śyena Controversy

In Mı̄mām. sā literature many explanations of the reasons why the sentences A.
and B. in Sec. 2 are not contradictory have been proposed. We show that the
bMDL solution matches the one of Prabhākara, one of the chief Mı̄mām. sā authors,
and makes it formally meaningful.

Consider the sequent in the proof of Thm. 4. Since it is not derivable in GbMDL,
using Algorithm 1 we can construct a model for the formula

�(hrm en → hrm)∧�(sy → hrm en)∧�O(¬hrm/)∧�O(sy/des hrm en) (1)

However, to make the solution clearer, we define below a simpler model M0 =
(W0, R0, η0), σ0 based on Vedic concepts. The domain W0 is {wi | 1 ≤ i ≤ 8},
represented in Fig. 3 by circles. The accessibility relation R0 is universal, i.e.
for any 1 ≤ i, j ≤ 8 it holds that R0(wi, wj); it is not represented in the figure
for better readability. The map η0 is such that η0(wi) = {(X,W0) | X ⊆
W0, {w1, w5} ⊆ X}

⋃
{(Y, {w5, w6, w7, w8}) | Y ⊆ W0, {w4, w8} ⊆ Y }.

The figure represents only the elements of the neighbourhood of w1 that are
relevant to the valuation of our deontic statements. Each element corresponds
to a kind of arrow: solid arrows for the statement about Śyena and dashed ones
for the obligation not to harm anyone. An element of the neighbourhood is a
pair of sets of states, to represent it we draw an arrow from each state belonging
to the second element of the pair to each one belonging to the first element
of the pair. The function σ0 is the valuation of the model and it is such that
σ0(w1) = ∅; σ0(w2) = {hrm}; σ0(w3) = {hrm, hrm en}; σ0(w4) = {hrm, hrm en,
sy}; σ0(w5) = {des hrm en}; σ0(w6) = {hrm, des hrm en}; σ0(w7) = {hrm,
hrm en, des hrm en}; and σ0(w8) = {hrm, hrm en, sy, des hrm en}. Clearly M0

satisfies all the requirements stated in Def. 5.
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w1

w2 hrm

w3 hrm, hrm en

w4 hrm, hrm en, sy

w5

des hrm en

w6hrm, des hrm en

w7hrm, hrm en, des hrm en

w8hrm, hrm en, sy, des hrm en

Fig. 3. The model M0 for the Śyena controversy

The definition of M0 is based on adhikāra ([5], pp.147-155), a central con-
cept in Prabhākara’s analysis of the Vedas, which identifies the addressee of a
prescription through their desire for the results. In the prescription about the
Śyena sacrifice, the adhikāra corresponds to the desire to harm an enemy; the
results correspond to the fact that an enemy is harmed through the performance
of Śyena, and, more generally, to the fact that someone is harmed. Some com-
binations of these facts are impossible if we need to satisfy �(hrm en → hrm)
and �(sy → hrm en), thus all the possibilities are the eight states in the model.
The accessibility relation accounts for the possible changes of subject’s condition.
The neighbourhood of a state encodes the obligations holding for that state, and
given that these obligations are the same for each state, the neighbourhood is
the same too. Thus the arrows show the changes of condition promoted by the
obligations.

We show now that the formula (1) is true in the state w1. First, all its
conjuncts without deontic operators are true in all states. Secondly, the for-
mula �O(¬hrm/) is true in w1 if (�¬hrm�M0 ∩ R0[s], ��M0 ∩ R0[s]) ∈ η0(s)
holds for all s such that R0(w1, s). Given that ({w1, w5},W0) belongs to η0(s)
for all s ∈ W0, the formula O(¬hrm/) is true in all states. For the formula
�O(sy/des hrm en) the valuation is similar. Hence M0 is a model of (1) and,
by Thm. 2 and 3, this provides a semantic proof of Thm. 4.

Among the different solutions for the Śyena controversy, the model M0

matches Prabhākara’s one which can be summarised in his statement: “A pre-
scription regards what has to be done. But it does not say that it has to be done”
(Br.hat̄ı I, p. 38, l. 8f). Indeed in state w1 no conflicting prescriptions are appli-
cable and all obligations are fulfilled. We call this a Vedic state. The existence
of such a state shows that an agent can find a way not to transgress any pre-
scription, and that the Vedic prescriptions do not imply that the Śyena sacrifice
has necessarily to be done. Our model also explains Prabhākara’s claim that the
Vedas do not impel one to perform the malevolent sacrifice Śyena, they only say
that it is obligatory, which was wrongly considered meaningless e.g. in [18].
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Remark 1. Our analysis highlights that Vedic prescriptions are “instructions to
attain desired outcomes” rather than absolute imperatives. A Vedic state pro-
vides a way not to transgress any obligation, but at the same time there are
norms, e.g., the one about Śyena, for those who intend to transgress some obli-
gations, but nonetheless do not want to altogether reject the Vedic principles.
This is explicit in another Mı̄mām. sā author, Veṅkat.anātha, who claims that the
Śyena is the best way to kill one’s enemy if one is determined to transgress
the general prescription not to perform violence. This feature suggests a possi-
ble use of suitable extensions of bMDL to reason about machine ethics, where
indeed choices between actions that should be avoided often arise. Consider a
self-driving vehicle that has no choice but to harm some people. There is no per-
fect solution but, nevertheless, the system should be able to provide instructions
that promote imperfect outcomes in order to avoid the worst-case scenario.

6 Conclusions and Future Work

We defined a novel deontic logic justified by principles elaborated byMı̄mām. sā au-
thors over the last 2,500 years, and used its proof theory and semantics to analyse
a notoriously challenging example. The fruits of this synergy of Logic and Indol-
ogy can be gathered from both sides: The vast body of knowledge constituted by
Mı̄mām. sā texts can provide interesting new stimuli for the logic community, and at
the same time our methods can lead to new tools for the analysis of philosophical
and sacred texts. Our investigation also raises a number of further research direc-
tions, such as (i) a formal analysis of the concept of prohibition as discussed by
Mı̄mām. sā authors. Moreover, (ii) among the about 200 considered2 nyāyas (50 of
which were on deontic principles), some hinted at the need for extending bMDL in
various directions: e.g., the principle “the agent of a duty needs to be the one identi-
fied by a given prescription” (PMS 6.1.1–3) seems to require first-order quantifica-
tion; some metarules that distinguish between different repetitions of the same ac-
tion suggest the introduction of temporal operators; finally the fact that ŚBh 1.1.1
asserts that the Vedas prevail over other authoritative texts suggests the need of a
system to manage conflicts among different authorities, a feature also important
for reasoning about ethical machines [3]. Finally, (iii) while the metarules consid-
ered for bMDL are common to theMı̄mām. sā school, there are additional principles
employed only by specific authors. Their identification and formalisation might
shed light on the strength of the different interpretations of various Mı̄mām. sā au-
thors and, e.g., help arguing for the conjecture that Kumārila’s interpretation is
more explicative than Man.d. ana’s.
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wissenschaft und Geistesgeschichte Indiens. Festgabe Hermann Jacobi zum 75,
Geburtstag, pp. 369–380. Kommissionsverlag F. Klopp, Bonn (1926)

http://hdl.handle.net/10044/1/18059


On Enumerating Query Plans Using

Analytic Tableau

Alexander Hudek, David Toman, and Grant Weddell

Cheriton School of Computer Science
University of Waterloo, Canada

{akhudek,david,gweddell}@uwaterloo.ca

Abstract. We consider how the method of analytic tableau coupled
with interpolant extraction can be adapted to enumerate possible query
plans for a given user query in the context of a first order theory that
defines a relational database schema. In standard analytic tableau cal-
culi, the sub-formula property of proofs limits the variety of interpolants
and consequently of plans that can be generated for the given query. To
overcome this limitation, we present a two-phase adaptation of a tableau
calculus that ensures all plans logically equivalent to the query with re-
spect to the schema, that correctly implement the user query, are indeed
found. We also show how this separation allows us to avoid backtracking
when reasoning about consequences of the schema.

1 Introduction

First order logic (FOL) lies at the heart of a relational database system (RDBMS)
and has had a profound influence on the development of its interface in which
users express queries over a logical design, a domain specific ontological appre-
ciation of relevant data: witness relational algebra and the SQL query language.
Indeed, relational technology is a multi-billion dollar industry, and constitutes
one of the most successful influences of logic in computer science.

In an RDBMS, there is a fundamental and crucial distinction between a logical
design and a physical design. The latter refines the former with mapping rules
that relate logical artifacts to various material capabilities for accessing data.
The contents of various data structures such as records, arrays, files and ordered
indices and the contents of legacy data managed by a separate RDBMS are
examples of such capabilities.

Typically, a user query over a logical design will have a large number of po-
tential query execution plans over a physical design, and it is not uncommon
for these plans to differ by orders of magnitude in their efficiency. It is therefore
imperative that the query optimizer of an RDBMS is able to enumerate possible
plans with reasonable efficiency, a requirement that has become more challenging
with recent trends in information integration: view based query rewriting, on-
tology based data access, main memory databases, and so on. Such trends have
made the relationships between a logical design and the material capabilities for
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ΣLog

�� ��

�� �	

Log Q��� � � � � � � �

Σ = (ΣLog ∪ΣLogPhys) ΣLogPhys (query plan synthesis)

��
�� ��

�� �	

Phys P��� � � � � � � �

Fig. 1. Overview of plan synthesis for FOL queries.

accessing data manifest in a physical design much less straightforward and more
indirect, and have therefore complicated the task of plan enumeration.

In this paper, we address the problem of plan enumeration in the context of a
(function free) FOL theory Σ that serves as a very powerful language for captur-
ing a physical design. Figure 1 summarizes the general problem in the FOL setting.
Here, Q and P correspond, respectively, to a user query and to a query plan that
implements the query. We assume both Q and P are range-restricted formulae in
FOLexpressed over distinct relational signaturesLog andPhys. The former is a col-
lection of predicate symbols that forms part of the logical design for a database, the
set of “tables” visible to the user formulatingQ. The latter is the above-mentioned
collection of predicate symbols (often called access paths) abstracting the material
capabilities for accessing data and ranging from scanning linked lists and navigat-
ing pointers in mainmemory to accessing external data sources [23]. In addition to
Log, a logical design consists of sentences ΣLog over Log that capture constraints
such as keys and other forms of dependencies, view definitions, additional domain
specific constraints, and so on. The physical design, denoted asΣ in the figure, aug-
ments Logwith Phys andΣLog with additional sentencesΣLogPhys over Log ∪ Phys.
The additional sentences establish the mapping relationships between a logical de-
sign and the information sources given by Phys.

In this setting, we consider how the method of analytic tableau can be adapted
to help enumerate possible query plans for a given user query when (1) the
material capabilities for accessing data are given by a subset of the predicate
symbols occurring in Σ, and when (2) both logical design and the mapping
relationships to the access paths are captured by the formulae that comprise Σ.

Our contributions in this paper are fourfold:

1. We introduce a conditional tableau that abstracts reasoning common to all
query plans for a given user query and physical design.

2. We show how the results of the conditional tableau phase compactly sum-
marize the space of possible query plans.

3. We show how alternative query plan candidates can be generated and how
their validity can be determined without any additional tableau reasoning.1

1 Notwithstanding the possible need to incrementally extend the depth of the condi-
tional tableau due to the computational nature of the problem.
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∀n, s1, s2, a1, a2.(Emp(n, s1, a1) ∧ Emp(n, s2, a2) → ((s1 = s2) ∧ (a1 = a2)))
∀n.((∃s, a.Emp(n, s, a)) ↔ (Mgr(n) ∨Wkr(n)))
∀n.(Mgr(n) → ¬Wkr(n))

(a) Logical design: ΣLog

∀n, s.(Sv(n, s) ↔ (∃a.Emp(n, s, a)))
∀n, a.(Av(n, a) ↔ (∃s.Emp(n, s, a)))
∀n.(Nv(n) ↔ Mgr(n))

(b) Physical design: ΣLogPhys

Fig. 2. An employee database.

4. We propose practical heuristics, based on the results of the conditional
tableau, that allow us to consider only reasonable plans, e.g., plans that
do not contain irrelevant symbols, duplicate identical conjuncts, and so on.

In addition, while the proposed method is complete, that is, can enumerate all
valid plans by brute force, our latest work on prototypes demonstrates that
the heuristics introduced in the last part of the paper enable implementations
with an efficiency comparable to existing RDBMS query optimizers. We found
with work on earlier prototypes that alternative approaches based on generating
variant interpolants by backtracking a standard analytic tableau are inexorably
limited by the subformula property of tableau proofs. In particular, the space
of query plans that can be constructed directly as interpolants extracted from
closed tableau is severely limited, often not even covering all plans considered
by standard RDBMSs. We also found that approaches based on backtracking of
(tableau) proofs suffer from performance issues and, in practice, seem to work
only for toy examples. The separation of a tableau reasoning phase from plan
search proposed on this paper solves both of the these issues.

Last, as a side effect of restricting our attention to range restricted formulae
and the associated absorption normal form developed in this paper, the tableau
calculus can be considerably simplified, in particular in the way first-order vari-
ables are handled. The approach is a generalization of a similar idea developed
for the clausal setting [17].

The following example illustrates the overall capabilities of our framework.

Example 1. Consider an application that manages information about employees
Emp(n, s, a) in which n-values identify employees by serving as primary keys of
Emp-tuples, and where s-values and a-values encode an employee’s salary and age.
Each employee n is also either a worker,Wkr(n), or a manager,Mgr(n), but never
both. A logical design ΣLog for this application is given by the FOL theory in
Figure 2(a) in which the underlying signature Log consists of the set of predicate
symbols {Emp,Mgr,Wkr}. Observe that the first sentence is a functional depen-
dency that ensures Emp-tuples are uniquely determined by n-values.

Now assume that a physical design of the data is given by a collection of three
materialized views that constitute an integration of legacy data via the logical
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design [14]. In our framework, this is captured by augmenting the set of logical
predicate symbols Log with a set of three additional physical predicate symbols
Phys = {Sv,Av,Nv} abstracting the material capabilities of three data sources
(Sv and Av can be considered a column-store style representation of employ-
ees), and by augmenting the logical theory ΣLog with the sentences ΣLogPhys in
Figure 2(b).

A user query that “finds distinct salary and age pairs for which some worker
has the combination of the salary and age” (in preparation, say, for some big-data
analysis) can be formulated over Log as follows:

{(s, a) | ∃n.(Emp(n, s, a) ∧Wkr(n))}.
Together with the theory Σ defined in Figure 2, our framework is able to find
the following query plan formulated over Phys for computing this query:

{(s, a) | ∃n.(Sv(n, s) ∧ Av(n, a) ∧ ¬Nv(n))}.
The query plan is then transformed to executable code by substituting access
paths for atomic subformulae and providing (often quite straightforward) tem-
plates implementing the necessary logical operations [23]. Note that all sentences
comprising Σ are required for this derivation, including the functional depen-
dency on Emp. �

Note that for realistic examples our experimental implementation executes hun-
dreds of inferences and generates numerous variant query plans. Hence, due to
space limitations, it will be necessary to use the above simple (and slightly arti-
ficial example) to illustrate facets of how plans are found in our framework. For
much more complex examples see [23].

The paper is organized as follows. After a review of related work, Section 2
provides the necessary background definitions and review. Our main results are
then given in Section 3, beginning with a review of an absorption procedure that
our framework applies to a given physical design Σ. With the assumption that
a user query or the sentences occurring in a physical design are range-restricted,
the procedure ensures the possibility for tableau in which free variables do not
occur. The remaining subsections introduce our framework in which we define
conditional tableau, and in which we define a property linking a conditional
tableau with a query plan. Note that this property can be easily computed and
holds if and only if the query plan is equivalent to some interpolant generated
by some closed tableau over Σ and query Q. The final subsection considers more
practical issues in plan search in which this property can be used to guide the
search for query plans in a bottom-up manner. In Section 4, we discuss issues
beyond the scope of the paper but that must be addressed in any practical
setting.

1.1 Review of Related Work

Query optimization has been a focus of research since the introduction of the
relational model by Codd [7]. However, the approach currently adopted by most
RDBMSs assumes what might be called a standard design in which there is
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always an efficient way of finding a plan for any user query of the form P (x),
where P denotes any predicate over which quantification is permitted, e.g., by
assuming a base file and possibly several associated search indices. In such cases,
finding an acceptable query plan typically reduces to a cost-based optimization
problem [6,13]. However, there are important circumstances in which such an
assumption is no longer valid. The problem of integrating information from mul-
tiple legacy sources and logical designs that manifest a more sophisticated and
independently developed ontological appreciation of an application domain are
important examples. To address this issue, approaches to rewriting user queries
in terms of materialized views (i.e., cached results of earlier user queries) were
developed [15]. Subsequently, Deutsch et al. [9] have developed an approach to
finding plans under constraints formulated as more general forms of FOL depen-
dencies, also based on the chase [2,16].

For first-order queries and constraints, the work of Beth [4] on implicit defin-
ability yields a complete criterion for the existence of a query plan and Craig
interpolation [8] combined with an appropriate proof system, such as the se-
quent calculus [12], can be the basis of a method to synthesize query plans. Note
that interpolation-based techniques are complete if arbitrary interpretations are
considered. If only finite interpretations are allowed, the methods remain sound,
albeit incomplete [10]. Beth definability and interpolation have been considered
for fragments of FOL characterized by description logics [21,22] and for the
guarded fragment of FOL [18]. Our work builds on earlier work that, to the
best of our knowledge, was the first to propose a general framework for finding
query rewritings in FOL and in which a logical design can be defined by arbi-
trary domain independent formulae [5]. Refinements and extensive application
scenarios were presented in [23]. Subsequently, an interpolation-based approach
to query rewriting that accounts for binding patterns within the proof system
itself has been proposed in [3]. However, this approach appears to suffer from the
above-mentioned problems related to backtracking and the subformula property
of tableau proofs.

2 Background and Definitions

We adopt standard definitions of databases, queries, and query answers [1]. This
means that database instances are identified with first-order interpretations of
non-logical symbols, and that query answers are relational instances consisting
of tuples of domain elements that, when used as a finite valuation of the query’s
free variables, make the query true in a given (database) interpretation. We also
assume that FOL formulae that are user queries or that occur in logical and
physical designs satisfy the following syntactic restriction.

Definition 1 (Range-restricted First-order Formulae). Let S be a set of
predicate symbols. The set of range-restricted S-formulae is defined by the fol-
lowing grammar

Q,Q′ ::= R(x̄) | Q ∧Q′ | Q ∧ (x = y) | ∃x.Q | Q ∧ ¬Q′ | Q ∨Q′,
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where R ∈ S and where the last four cases satisfy the following respective con-
ditions: y ∈ Fv(Q), x ∈ Fv(Q), Fv(Q′) ⊆ Fv(Q) and Fv(Q′) = Fv(Q) (union
compatibility).

Note that this still includes the standard relational algebra, the first-order frag-
ment of the SQL query language, as well as a wide variety of database constraints
including so-called algebraic dependencies [1]. Our goal can now be character-
ized in terms of query rewriting: a search for an equivalent formula that only
contains a subset of the non-logical symbols, those symbols that represent the
actual data sources such as materialized views, and therefore range-restricted
queries containing those symbols can be executed [23].

Definition 2 (Query Rewriting under Constraints). Let Log and Phys
denote sets of predicate symbols, Σ be a set of closed (Log∪Phys)-formulae and
Q a Log-formula. A rewriting of Q over Phys and under Σ is a Phys-formula P
such that Σ |= Q ↔ P .

In the following, we denote a query rewriting problem as a triple (Q,Σ,Phys).
Also note that a rewriting may not exist. This happens if Phys does not provide
sufficient material capabilities to determine an answer to Q.

Example 2. The requirement that Σ only contains range-restricted formulae is
necessary. In particular, consider the physical design given by

Σ = {∀x.P (x) ∨R(x), ∀x.¬P (x) ∨ ¬R(x)},
with Log = {P} and Phys = {R}. Then the (only) rewriting of the user query
P (x) is ¬R(x), a formula that is not range-restricted nor equivalent to a range
restricted formula.

On Interpolation. Although the constructions in the remaining parts of the paper
are self-contained, the proof outlines refer, on several occasions, to a tableau-
based interpolation technique outlined in detail in [11]. This technique relies on
(1) introducing biased formulae labeled by L and R, a notation that is reused
in the remainder of this paper, on (2) extending the tableau rules to the biased
formulae, and on (3) adorning these rules with interpolant extraction annota-
tions. For example, for two of the base cases of tableau clashes, the extraction
is defined as follows:

S ∪ {AL,¬AL} → ⊥ and S ∪ {AL,¬AR} → A.

The first case is called an “L-L” clash and the second case an “L-R” clash. Also
note the interpolant is located after the arrow in these rules. This notation is
extended to all inference rules, e.g.,

S ∪ {ϕR
1 } → P1 S ∪ {ϕR

2 } → P2

S ∪ {(ϕ1 ∨ ϕ2)
R} → P1 ∧ P2

(disj-R),

and, in this way, complex interpolants are generated. For details please see [11].
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3 Enumerating Rewritings via Tableau

To generate alternative query rewritings, we employ a modified variant of inter-
polant generation based on tableau refutation proofs [11]: given a query rewriting
problem (Q,Σ,Phys), the Craig theorem [8] can be used to show than a rewriting
exists if and only if

ΣL ∪ΣR ∪ΣLR |= QL → QR,

where ΣL (resp. ΣR) is the set of sentences in which every occurrence of a
non-logical symbol P has been replaced by PL (resp. PR), and where

ΣLR = {∀x̄.PL(x̄) ↔ P (x̄), ∀x̄.PR(x̄) ↔ P (x̄) | P ∈ Phys, x̄ = Fv(P )}.
QL (QR) is the user query in which non-logical symbols are renamed analogously.
This formulation will be presented to a tableau reasoner in a refutation form:
formulas δ over the physical schema Phys such that

ΣL ∪ΣR ∪ΣLR |= QL → δ → QR.

It is immediate that δ is then equivalent to Q under Σ, as required.
Note that the standard approach to interpolation [11] has a simpler definition

of the logical implication problem in which non-logical symbols in Phys are not
renamed in either ΣL or ΣR. Our refinement is a crucial first step in factoring
tableau reasoning shared by alternative query plans for a user query, and is
essential to the notion of a conditional tableau introduced below.

3.1 Absorption

We take absorption as the goal of ensuring that all universal subformulae are of
the form “∀x̄.(R(x̄) → Q)”. Note that Q can be another absorbed formula to
facilitate multiple premises in the absorbed formulae. The utility of absorption
in our method is twofold.

1. In a fashion similar to standard absorptions, unless a positive (ground) in-
stance of R is derived, there is no requirement to explore the above implica-
tion, in particular potential disjunctions in the Q subformula.

2. Also, the normal form defined below guarantees that the instantiation of
universally quantified variables x̄ is completely determined by a matching
positive ground instance of R.

Definition 3 (Absorption Normal Form (ANF)). Formulae in absorption
normal form are given by the grammar

Q ::= R(t̄) | ⊥ | Q ∧Q | Q ∨Q | ∀x̄.R(x̄, t̄) → Q[s̄/x̄],

where R ranges over a set of predicate symbols, x̄ is a tuple of variables, t̄ and
s̄ tuples of ground terms, and [s̄/x̄] a substitution that replaces all s-terms with
x-variables.2

2 We assume that equality is simply an additional predicate symbol constrained by
the standard axioms. A more efficient, paramodulation-style treatment of equality
is an orthogonal issue and is beyond the scope of this paper.
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In addition, all existential quantifiers are Skolemized in a standard way. There
is no real loss of generality in requiring the input to the tableau proof procedure
to be in ANF. In particular, with the exception of the identically true sentence
� (which serves no useful purpose as either a constraint or a query), every
range-restricted formula can be compiled to an ANF formula and, therefore,
so can every range-restricted sentence. We have developed an algorithm that
transforms range-restricted formulae to ANF; the details are straightforward
and are omitted due to space limitations. Hence, without loss of generality, we
assume hereon that all formulae input in our reasoning procedures are in ANF.

Example 3. Consider two range restricted sentences ∀n.(Mgr(n) → ¬Wkr(n))
and ∀n.((∃s, a.Emp(n, s, a)) ↔ (Mgr(n) ∨ Wkr(n))) from our introductory
example. The respective ANF transformations are given as the sentence
∀n.(Mgr(n) → (Wkr(n) → ⊥)) for the former, and as the three
sentences ∀n, s, a.Emp(n, s, a)) → (Mgr(n) ∨ Wkr(n))), ∀n.(Mgr(n) →
Emp(n, sks(n), ska(n)) and ∀n.(Wkr(n) → Emp(n, sks(n), ska(n)) for the latter.

3.2 Conditional Tableau

We now introduce the above-mentioned conditional tableau, a mechanism that
enables us to reason about a physical design Σ and the user query Q in a way
that supports subsequent reasoning-free plan generation.

Definition 4 (Conditional Formulae). Let Phys be a set of (physical) pred-
icate symbols, ϕ a formula in ANF and C a set of ground atoms over Phys. A
conditional formula is an expression of the form ϕ[C]. We call C a condition
(for ϕ).

We consider all ANF formulae to also be conditional formulae with an empty
set of conditions, denoted ϕ[ ]. The conditional formulae allow us to define con-
ditional tableau that are an extension of analytic tableau in which parts of the
inferences are marked to be optional and therefore dependent on whether a
particular physical predicate is used in the ultimate query plan. In this way,
the conditional tableau facilitates schema reasoning for all query plans without
committing to a particular choice of physical predicates, e.g., the choice of which
index to use for a particular relation (and the subsequent need for backtracking
to find alternatives).

Definition 5 (Conditional Tableau Inference Rules). Let S be a set of
conditional formulae and Phys a set of (physical) predicate symbols. We build
a conditional tableau proof tree T for S and Phys by applying the following
inference rules (presented as proof rules):

S ∪ {ϕ[C], ψ[C]}
(ϕ ∧ ψ)[C] ∈ S

(conj)
S ∪ {ϕ[C]} S ∪ {ψ[C]}

(ϕ ∨ ψ)[C] ∈ S
(disj)

S ∪ {(ϕ[t̄/x̄])[C ∪D]}
{R(t̄)[C], (∀x̄.R(x̄) → ϕ)[D]} ⊆ S

(abs)
S ∪ {R(t̄)[R(t̄)]}

S
R ∈ Phys (phys)
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As usual, the inference rules are only applied when their consequent differs from
the antecedent. Also, due to the fact that all formulae in the input to the problem
are in ANF, no free variables will ever appear in the tableau. The inference rules
yield the notion of conditional tableau as follows:

Definition 6 (Conditional Tableau for (Q,Σ,Phys)). Let (Q,Σ,Phys) be a
rewriting problem. A conditional tableau for (Q,Σ,Phys) is a pair of tableau
proof trees (TL, TR) utilizing inference rules in Definition 5, where TL is a
proof tree for ΣL ∪ {QL(ā)} and {PL | P ∈ Phys} and TR is a proof tree
for ΣR ∪ {QR(ā) → ⊥} and {PR | P ∈ Phys} for ā a tuple of distinct constants
replacing the free variables of Q.

The conditional tableau proof tree compactly abstracts a family of standard
analytic tableau proof trees (each of which can be selected for by choosing a set
of conditional atoms).

Example 4. A conditional tableau for our introductory example will contain four
branches, two in TL and two in TR as shown in Figure 3 (in the figure we reuse
the variable names, perhaps primed, as Skolem terms to improve readability, i.e.,
n = skn(s, a), a

′ = ska(n, s), and s′ = sks(n, a)).

Note that, unless the rewriting problem is trivial (i.e., the query is unsatisfi-
able w.r.t. Σ), the conditional tableau will not be closed in the standard sense.
It will, however, provide a guidance to constructing a closed tableau starting
by a top-level tableau constructed solely by using the physical formulae ΣLR,
(see Definition 8 below) and then appending the appropriate proof tree selected
from the conditional tableau by branches of the top-level tableau. The interface
between the branches of the top-level tableau and the conditional tableau is
formalized using the notion of closing set :

Definition 7 (Conditional Tableau Closure). We say that a set of Phys-
literals S closes a conditional tableau proof tree T if there is a mapping θ from
terms in T to terms in S (extended to literals) such that, θ(ā) = ā, θ(t1) = θ(t2)
whenever t1 = t2 and t1, t2 are introduced in the same branch, and for each
branch of T either of the following holds.

1. There is an atom R(t̄)[C], R(t̄) ∈ C, such that θ(C) ∪ {¬R(θ(t̄))} ⊆ S.
2. There is ⊥[C] such that θ(C) ⊆ S.

We call S a closing set for T .

Example 5. The closing sets in our example are {¬AvL(n, a)}, {¬SvL(n, s)}, and
{NvL(n)} for TL and {AvR(n, a), SvR(n, s),¬NvR(n)} for TR.

The mapping θ (not needed in our example) accounts for differences in choices
of Skolem terms in independent branches during the construction of the condi-
tional tableau: it is necessary to be able to construct a plan ∃y.A(x, y)∨B(x, y),
assuming Phys = {A,B}, for the query (∃y1.A(x, y1))∨(∃y2.B(x, y2)). Note that
using θ in Definition 7 is sound since one could have chosen the same term to
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TL :

⊥[NvL(n)]
∣
∣ (abs:∀x.Mgr(x) → (Wkr(x) → ⊥))

MgrL(n)[NvL(n)]
∣
∣ (abs:∀x.Mgr(x) → Nv(x))

NvL(n)[NvL(n)]
∣
∣ (phys)

SvL(n, s)
∣
∣ (abs:∀x, y, z.Emp(x, y, z) → Sv(x, z))

⊥ AvL(n, a)
∣
∣(abs:∀x.Mgr(x) → (Wkr(x) → ⊥))

∣
∣ (abs:∀x, y, z.Emp(x, y, z) → Av(x, y))

MgrL(n) WkrL(n)

\ / (disj)

MgrL(n) ∨ WkrL(n)
∣
∣ (abs:∀x, y, z.Emp(x, y, z) → (Mgr(x) ∨ Wkr(x)))

EmpL(n, a, s),WkrL(n)

TR :

NvR(n)[AvR(n, a),SvR(n, s)] ⊥[AvR(n, a),SvR(n, s)]∣
∣(abs:∀x.Mgr(x) → Nv(x))

∣
∣ (abs: negated user query)

MgrR(n)[AvR(n, a),SvR(n, s)] WkrR(n)[AvR(n, a),SvR(n, s)]
\ / (disj)

MgrR(n)[AvR(n, a),SvR(n, s)] ∨WkrR(n)[AvR(n, a),SvR(n, s)]∣
∣ (abs:∀x, y, z.Emp(x, y, z) → (Mgr(x) ∨ Wkr(x)))

EmpR(n, a, s)[AvR(n, a),SvR(n, s)]∣
∣ (abs: key on Emp)

EmpR(n, a′, s)[SvR(n, s)]∣
∣ (abs:∀x, y.Sv(x, y) → Emp(x, ska(x, y), y))

EmpR(n, a, s′)[AvR(n, a)]∣
∣ (abs:∀x, y.Av(x, y) → Emp(x, y, sks(x, y)))

AvR(n, a)[AvR(n, a)],SvR(n, s)[SvR(n, s)]∣
∣ (phys)

{}

Fig. 3. A conditional tableau.

witness two different existential quantifiers in independent branches during the
construction of the conditional tableau. It is an easy exercise using the definitions
for interpolant extraction in [11] to verify the following.

Lemma 1. Let S be an arbitrary closing set for TL (resp. TR). Then the inter-
polants extracted from TL (resp. TR) are ⊥ (resp. �).

Proof. (sketch) All clashes in the analytic tableau corresponding to TL (resp.
TR) w.r.t. S are “L-L” (resp. “R-R”) or ⊥L (resp. ⊥R) clashes by inspection;
applying conjunctions, disjunctions, or quantifiers ultimately yields ⊥ (resp. �).

3.3 Query Plans

Now we complement the exploration of the conditional tableau with the ac-
tual plan enumeration phase. We first show how, given a query plan candidate,
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a range-restricted formula over Phys, we can test whether this plan is equivalent
to the user query with respect to the database schema.

Definition 8 (Tableau for Query Plans). Let P be a range-restricted for-
mula over Phys. We inductively define two sets LP and RP on the structure of
P , with each consisting in turn of sets of literals, as follows:

P : LP RP

:R(t̄) : {{¬RL(t̄)}} {{RR(t̄)}}
P1 ∧ P2 : LP1 ∪ LP2 {S1 ∪ S2 | S1 ∈ RP1 , S2 ∈ RP2}
P1 ∨ P2 : {S1 ∪ S2 | S1 ∈ LP1 , S2 ∈ LP2} RP1 ∪RP2

¬P1 : {{LL(t̄) | LR(t̄) ∈ S} | S ∈ RP1} {{LR(t̄) | LL(t̄) ∈ S} | S ∈ LP1}
∃x.P1 : LP1[t/x] RP1[t/x]

where t is an appropriate Skolem term, L(t̄) denotes a literal, and R(t̄) is an
atom, both over Phys.

The construction of the fragments P in the above definition must also adhere to
the restrictions imposed on range-restricted formulae such as union compatibility.
The definition short-circuits an explicit construction of a tableau proof that
yields the sought-after plan (or an equivalent formula) by defining the sets of
literals that will be present on open branches of such a tableau. The following
Lemma shows soundness of this construction.

Lemma 2. Let P be a range-restricted formula over Phys. Then there is an
analytic tableau tree TP that uses only formulae in ΣLR ∪ {∀x.trueR(x)} such
that the following holds.

1. Each open branch of TP contains all literals in a set S ∈ LP ∪ RP (when
S ∈ LP , we call such a branch a left branch; otherwise, when S ∈ RP , we
call such a branch a right branch); and

2. The interpolant extracted from this tableau, assuming that further exten-
sions of all left (right) branches interpolate to ⊥ (�, resp.), is logically equiv-
alent to P .

Proof. (sketch) By case analysis. The base case R(t̄) follows immediately from
expanding the formulae ∀x̄.RL(x̄) → R(x̄) and ∀x̄.R(x̄) → RR(x̄) from ΣLR,
thus yielding an “L-R” clash on R(t̄) and two open branches {{¬RL(x̄)}} and
{{RR(x̄)}}.
In the case of a conjunction (resp. disjunction) P1∧P2 (resp. P1∨P2), we simply
attach the tableau for P1 to all open right (resp. left) branches of the tableau
for P2; it is then a trivial but tedious exercise to verify that the claims hold.

In the case of negation ¬P1, the claim holds by observing that applying a NNF-
like procedure, that essentially replaces all L formulae by R formulae and vice
versa, and using the reverse implications in ΣLR to those used in the base case
yields the desired result.

Finally, for existential quantification, we expand the auxiliary tautology ∀x.
trueR(x) using an appropriate term t in the root of the tableau for P1[t/x].
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This arrangement reinstates the quantifier when the interpolant is extracted as
required by the Lemma. Note that applying the negation case to this construction
changes the trueR(x) into trueL(x), which in turn yields a universal quantifier in
the interpolant, as expected.

To link the conditional tableau (TL, TR) with the descriptions (LP , RP ) of open
branches of the plan tableau TP we use the following definition.

Definition 9. We say that (LP , RP ) closes (TL, TR) if S closes TL for all
S ∈ LP and S closes TR for all S ∈ RP , where (TL, TR) is the conditional
tableau for (Q,Σ,Phys).

We illustrate the construction by appeal to our running example:

Example 6. For the desired plan, P = {(s, a) | ∃n.(Sv(n, s)∧Av(n, a)∧¬Nv(n))},
the sets are as follows:

LP = {{¬AvL(n, a)}, {¬SvL(n, a)}, {NvL(n)}},
RP = {{AvR(n, a), SvR(n, a),¬NvR(n)}}.

Note that these match the closing sets of the conditional tableau in Example 5.

Combining conditional tableau with the query plan tableau and utilizing the
results of Lemmas 1 and 2 yields the following.

Theorem 1. Let (Q,Σ,Phys) be a rewriting problem and P a query plan over
Phys. Then P is a plan for Q if (LP , RP ) closes (TL, TR).

Proof. (sketch) The tableau TP constructed for P using Lemma 2 with its open
branches extended by TL and TR is closed (in the standard sense, cf. Lemma 1)
and hence, again by Lemma 2, yields an interpolant equivalent to P .

Since the problem of finding rewritings for first-order queries is recursively enu-
merable (but not recursive), the above theorem yields a method for finding
rewritings using brute force.

Theorem 2 (Completeness). Let (Q,Σ,Phys) be a rewriting problem and P
a query plan for Q. Then there is a conditional tableau (TL, TR) that is closed
by (LP , RP ).

Proof. (sketch) Failure to find such a conditional tableau yields a saturated
(infinite) proof tree from which we can extract a witness interpretation that
satisfies Σ and Q ∧ ¬P or P ∧ ¬Q, depending on whether the failure occurs in
a left or in a right branch of TP .

3.4 Practical Plan Search

We have shown how all plans can be enumerated by a brute force use of condi-
tional tableau. However, not all plans merit any effort, for example, plans with
sub-expressions of the form “A(x) ∧ A(x)”, “A(x) ∨ ¬A(x)”, etc. We now show
how, with conditional tableau, subsequent plan enumeration can be restricted
in a way that can focus the search for query plans in a bottom-up manner that
is based on the computation of minimal closing sets.
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Controlled Conditional Tableau. It is necessary to first regulate the use of the
(phys) inference rule in the conditional tableau proof trees. In particular, observe
that, when a single physical atom R ∈ Phys is used in a hypothetical plan, on
one hand, it will close branches containing R (in TL), and on the other hand, it
will allow exploring the conditional parts of the TR tableau that are conditioned
on R. Otherwise, the conditional parts will remain unexplored since, technically,
they are not part of the actual tableau. The reverse is true when ¬R is used in
such a plan. Hence, one can restrict the use of the (phys) rule as follows:

S ∪ {RL(t̄)[RL(t̄)]}
S

RR(t̄)[C] ∈ TR
S ∪ {RR(t̄)[RR(t̄)]}

S
RL(t̄)[C] ∈ TL

where R(t̄)[C] ∈ T stands for “R(t̄)[C] appears in some branch of T ”. (Indeed,
the conditional tableau illustrated in Figure 3 is also controlled in this way.)

With this restriction, it becomes possible to scan the conditional tableau for
(alternative) minimal closing sets for the conditional tableau (TL, TR). This can
be done by inspecting the branches of the tableau for individual (conditional)
atoms and ⊥, each of which closes a particular branch, and then by computing
minimal closing sets over these sets of atoms.

Bottom-up Plan Search. The minimal closing sets then guide the bottom-up
search for query plans. Intuitively, we restrict the application of a bottom-up
construction of query plans by comparing the sets LP and RP from Definition 8
with the minimal closing sets constructed from the conditional tableau. This
allows us to eliminate plan fragments that cannot ultimately lead to closing the
overall tableau, as required in Definition 9. This idea is formalized as follows.

Definition 10 (Relevant Plan Fragment). Let H be a set of minimal closing
sets for the conditional tableau (TL, TR). We say that a plan P is a relevant plan
fragment (for (TL, TR)) if either of the following holds:

1. For all S ∈ LP ∪RP , there is S′ ∈ H such that S ⊆ S′; or
2. For all S ∈ L¬P ∪R¬P , there is S′ ∈ H such that S ⊆ S′.

In addition, ∃x.P [x/t] is only relevant if, whenever t appears in P and also in a
literal in S and S ⊆ S′ as above, then t does not appear in any literal in S′ − S.

The second item in the above definition allows for plans that are not in negation
normal form and the last condition prevents incorrect application of quantifiers
(applications that would, e.g., break apart join variables). This definition natu-
rally constrains the bottom-up construction of plan fragments by requiring the
resulting fragment be relevant and that its LP and RP sets are distinct from all
its constituent sub-fragments.

Example 7. The relevant plan fragments for our example plan are Sv(n, s),
Av(n, a), Nv(n), ¬Nv(n), Sv(n, s) ∧ Av(n, a), Sv(n, s) ∧ Av(n, a) ∧ ¬Nv(n),
∃x.Sv(x, s) ∧ Av(x, a) ∧ ¬Nv(x), and so on. Examples of plan fragments that are
not relevant are Av(n, a) ∨ Sv(n, s) and ¬(Av(n, a) ∧ Nv(n)).
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Note also that restricting plans to relevant fragments naturally eliminates sub-
formulae constructed from irrelevant symbols, such as tautologies A ∨ ¬A con-
structed from symbols not appearing in the given rewriting problem (but that
must be allowed in Definition 9 for the completeness argument to hold). In addi-
tion, when plans are constructed bottom-up from fragments, additional heuristics
can be used to eliminate unwanted plans, for example,

– when fragments are combined by a conjunction, we disallow combining frag-
ments that contain the same sub-conjunct (such as A ∧B with B ∧C);

– when fragments are combined by a disjunction, we follow a similar heuristic;
moreover, we also allow to equate Skolem terms that belong to different
branches of the conditional tableau to allow sharing variables and quantifiers
(yielding an efficient way to realize the mapping θ in Definition 7);

– terms equated to other terms in the disjunctions above or replaced by quan-
tified variables become forbidden and further conjunctions with fragments
containing such terms are also disallowed.

The above heuristics allow efficient construction of query plans from fragments
and are conditioned solely by the fragments’ LP and RP sets and on how they
compare to the minimal closing sets for the conditional tableau.

Overall, these arrangements allow us to use numerous plan search algorithms
to construct relevant plan fragments ranging from a bottom-up dynamic pro-
gramming style algorithms [20] to A∗ based planning [19], all the while utilizing
cost-based pruning for fragments with the same LP , RP sets.

4 Summary Comments

There are a number of issues relating to query plans beyond the framework
outlined in this paper that must still be addressed in any practical setting, and
that also make it necessary to refine how query plans are characterized.

1. First, so-called binding patterns are often needed in subplans. This happens,
for example, in web-based information sources that disallow any “get all”
client request for non-logical parameters mentioned in a plan due to the
high costs of such requests. Integrating binding patterns (see [23] for formal
definitions) to the proposed framework requires relaxing the definition of
relevant patterns (Definition 10) to allow additional atomic fragments that
provide bindings required by the plan fragments actually needed to close the
tableau.

2. Second, an iterator or bag semantics is necessary to address the computa-
tional overhead of checking for duplicates computed by subplans. Indeed,
our introductory example illustrates this requirement.

3. Third, the issue of variable typing in both user queries and query plans
must be addressed in the ultimate code generated for a query plan in order
to interface with host language code.
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4. And fourth, there also remains a need to compare different query plans in
terms of their execution times according to a cost model. Indeed, it is this cost
model that ultimately drives the plan search phase outlined in Section 3.4.

These issues have been addressed for a plan language that refines the class of
range-restricted FOL formulas by Toman and Weddell [23]. Notably, the authors
introduce syntactic notions of input variables and output variables for formulae
that address the above issues relating to binding patterns and bag semantics, and
that also yield a number of additional benefits. First, logical operators occurring
in plans are given a procedural interpretation. Conjunction is interpreted as
nested loops join for example, and disjunction as concatenation. And second,
one can introduce additional syntax to perform cuts and duplicate elimination.
Both the refined notion of query plans in [23] and extra-logical notions of cost
can be easily adapted to operate in an incremental fashion suited to the above
approach to plan search.

We have implemented our proposed framework in our latest prototype that
also addresses the issues outlined above. To reiterate our introductory comments,
we found that employing the absorption technique is absolutely necessary for per-
formance reasons. Otherwise, solving even the simplest rewriting problems be-
come computationally infeasible. Recall that we also found that standard tableau
interpolation techniques inexorably reduce the space of query plans for a given
query, even with the refinement of having separate physical rules as outlined at
the start of Section 3, and that a complete procedure for finding all possible
plans almost certainly requires the level of indirection between interpolants and
query plans manifest in Definitions 9 and 10.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.
ACM Trans. Database Syst. 4, 297–314 (1979)

3. Benedikt, M., ten Cate, B., Tsamoura, E.: Generating low-cost plans from proofs.
In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 200–211 (2014)

4. Beth, E.W.: On Padoa’s method in the theory of definition. Indagationes Mathe-
maticae 15, 330–339 (1953)

5. Borgida, A., de Bruijn, J., Franconi, E., Seylan, I., Straccia, U., Toman, D., Wed-
dell, G.E.: On finding query rewritings under expressive constraints. In: SEBD, pp.
426–437 (2010)

6. Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS,
pp. 34–43 (1998)

7. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13, 377–387 (1970)

8. Craig, W.: Three uses of the Herbrand-Genzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic 22, 269–285 (1957)



354 A. Hudek, D. Toman and G. Weddell

9. Deutsch, A., Popa, L., Tannen, V.: Physical data independence, constraints, and
optimization with universal plans. In: Proc. International Conference on Very Large
Data Bases, VLDB 1999, pp. 459–470 (1999)

10. Ebbinghaus, H.-D., Flum, J.: Finite model theory, 2nd edn. Perspectives in Math-
ematical Logic. Springer (1999)

11. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Grad-
uate Texts in Computer Science. Springer (1996)

12. Gentzen, G.: Untersuchungen über das logische schließen. I. Mathematische
Zeitschrift 39, 176–210 (1935), doi:10.1007/BF01201353

13. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)
14. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246

(2002)
15. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using

views. In: PODS, pp. 95–104 (1995)
16. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.

ACM Trans. Database Syst. 4, 455–469 (1979)
17. Manthey, R., Bry, F.: A hyperresolution-based proof procedure and its implemen-

tation in prolog. In: GWAI, pp. 221–230 (1987)
18. Marx, M.: Queries determined by views: pack your views. In: PODS, pp. 23–30

(2007)
19. Robinson, N., McIlraith, S.A., Toman, D.: Cost-based query optimization via AI

planning. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 2344–2351 (2014)

20. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, pp. 23–34
(1979)

21. Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies
over dboxes. In: IJCAI, pp. 923–925 (2009)

22. ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description
logics. In: IJCAI, pp. 1099–1106 (2011)

23. Toman, D., Weddell, G.E.: Fundamentals of Physical Design and Query Compi-
lation. Synthesis Lectures on Data Management. Morgan & Claypool Publishers
(2011)



Author Index

Backeman, Peter 70
Benzmüller, Christoph 213
Borg, Annemarie 221
Brock-Nannestad, Taus 153
Brotherston, James 287
Bubel, Richard 307
Bury, Guillaume 86

Cassano, Valent́ın 6
Chaudhuri, Kaustuv 153
Chihani, Zakaria 201
Ciabattoni, Agata 323
Condotta, Jean-François 54

Delahaye, David 86
Din, Crystal Chang 307
Dixon, Clare 169, 185
Dyckhoff, Roy 3

Ferrari, Mauro 237
Fiorentini, Camillo 237
Freschi, Elisa 323

Gainer, Paul 169
Genco, Francesco A. 323
Gorogiannis, Nikos 287
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