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Abstract. In this paper we rephrase the problem of opinion formation
from a physical viewpoint. We consider a multi-agent system where each
agent is associated with an opinion and interacts with any other agent.
Interpreting the agents as the molecules of a gas, we model the opinion
evolution according to a kinetic model based on the analysis of interac-
tions among agents. From a microscopic description of each interaction
between pairs of agents, we derive the stationary profiles under given
assumption. Results show that, depending on the average opinion and
on the model parameters, different profiles can be found, with different
properties. Each stationary profile is characterized by the presence of one
or two maxima.

1 Introduction

This paper describes a model for opinion formation in multi-agent systems. Many
kinds of approaches have been investigated in the literature to study opinion
evolution among agents based, e.g., on graph theory [1], cellular automata [2],
and thermodynamics [3]. Recently, social interactions in multi-agent systems
have been described according to microscopic models based on kinetic theory.
Typically, kinetic theory is used to derive macroscopic properties of gases by
analyzing the details of the collisions of the molecules [4]. Similarly, from the
description of the details of each interaction between pairs of agents, the global
opinion can be described from a macroscopic point of view [5].

The research interest related to the application of kinetic approaches to the
description of multi-agent systems gave birth to new disciplines, namely econo-
physics and sociophysics [6]. Econophysics deals with the description of the evo-
lution of market economy and wealth distribution in a society [7]. Sociophysics,
instead, aims at characterizing the evolution of social features, such as opinion,
in a society [8]. These disciplines are based on the fact that the formalism that
describes the interactions between molecules in a gas can be adapted to describe
the effects of interactions between agents. In particular, the kinetic framework
can be used to outline agent-based cooperation models, such as that in [9], to
study large scale systems, such as those in [10], and to model wireless sensor
networks (see, e.g., [11]).

c© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AI*IA 2015, LNAI 9336, pp. 116–127, 2015.
DOI: 10.1007/978-3-319-24309-2 9



A Kinetic Study of Opinion Dynamics in Multi-agent Systems 117

In this paper we focus on studying the opinion evolution in a multi-agent
system on the basis of a kinetic formulation. Under the assumption that each
agent is associated with an opinion v ∈ I ⊆ R, we investigate how the opinion
of the considered system changes on the basis of given rules that describe the
effects of single interactions. The model that we consider is introduced in [12].
In particular, we assume that each agent can interact with any other agent in
the system and that the opinion of each changes due to two different reasons,
namely compromise and diffusion [13]. Compromise is related to the fact that,
as a consequence of an interaction, an agent can be persuaded to change its
opinion in favour of that of the interacting agent. This phenomenon is modeled
as a deterministic process. Diffusion is instead modeled as a random process and
it is related to the fact that agents can change their opinions autonomously.

The paper is organized as follows. Section 2 describes the considered kinetic
model from an analytical viewpoint. Section 3 derives explicit formulas for the
stationary profiles in a specific case. Section 4 shows simulation results for dif-
ferent values of the parameters of the model. Section 5 concludes the paper.

2 Kinetic Model of Opinion Formation

Sociophysics is based on the idea that the same laws that describe the interac-
tions among molecules can be generalized to describe the effects of social interac-
tions among agents. As a matter of fact, while molecules are typically associated
with their velocities, agents can be associated with an attribute which represents
one of its characteristics that can be, for instance, its opinion. In the following,
we associate to each agent a parameter v defined in the interval I = [−1, 1].
According to such an assumption, ±1 represent extremal opinions, while 0 cor-
respond to the middle point of the interval of interest I.

Kinetic theory relies on the definition of a function f(v, t) which represents
the density of opinion v at time t and which is defined for each opinion v ∈ I
and for each time t ≥ 0. Since f(v, t) is a density function, the following equality
needs to hold ∫

I

f(v, t)dv = 1. (1)

In order to describe the opinion evolution using a kinetic approach, we assume
that the function f(v, t) evolves on the basis of the Boltzmann equation. In
particular, we consider the following formulation of the Boltzmann equation

∂f

∂t
= Q(f, f)(v, t) (2)

where ∂f
∂t represents the temporal evolution of the distribution function and Q

is the collisional operator which takes into account the effects of interactions. In
order to derive an explicit formula for the collisional operator Q, the details of
the binary interactions need to be described. In the considered model, the post-
interaction opinions of two interacting agents are obtained by adding to their
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pre-interaction opinions a contribution related to compromise and a contribution
related to diffusion, according to the following formula

{
v′ = v + γC(|v|)(w − v) + η∗D(|v|)
w′ = w + γC(|w|)(v − w) + ηD(|w|). (3)

where the pair (v′, w′) denotes the post-interaction opinions of the two agents,
whose pre-interaction opinions were (v, w). In (3) the second terms on the right
hand side of the two equations are related to compromise, according to the
parameter γ, which is defined in (0, 1

2 ), and the function C(·); the third terms
are related to diffusion, through the random variables η and η∗ and the function
D(·). The functions C(·) and D(·), which describe the impact of compromise
and diffusion, respectively, depend on the absolute value of the opinion, namely
they are symmetrical with respect to the middle point of I. Moreover, we assume
that both functions are not increasing with respect to the absolute value of the
opinion, coherently with the fact that, typically, extremal opinions are more
difficult to change. Finally, we assume that

0 ≤ C(|v|),D(|v|) ≤ 1 ∀v ∈ I.

From (3), since both γ and C(·) are positive, the contribution of compromise
is positive each time an agent interacts with another agent whose opinion value is
greater while it is negative otherwise. Hence, the idea of compromise is respected,
since the difference between the opinions of the two agents is reduced after the
considered interaction if the diffusion term is neglected.

The contribution of diffusion, instead, can be either positive or negative
depending on the value of the random variables η and η∗. In the following,
we assume that such random variables have the same statistics. In particular,
we assume that their average value is 0 and their variance is σ2, namely

∫
ηϑ(η)dη =

∫
η∗ϑ(η∗)dη∗ = 0

∫
η2ϑ(η)dη =

∫
η2

∗ϑ(η∗)dη∗ = σ2.

(4)

where ϑ(·) is the probability density function. In order to take into account the
effects of diffusion we need to define the transition rate

W (v, w, v′, w′) = ϑ(η)ϑ(η∗)χI(v′)χI(w′) (5)

where χI is the indicator function relative to the set I (equal to 1 if its argument
belong to I, and to 0 otherwise) and it is meant to make sure that the post-
interaction opinions are in I.

Under these assumptions, the explicit expression of the collisional operator
Q defined in (2) can be finally written as

Q(f, f) =
∫
B2

∫
I

[′
W

1
J

f(′v)f(′w) − Wf(v)f(w)
]
dwdηdη∗
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where B is the support of ϑ, ′v and ′w are the pre-interaction variables which
lead to v and w, respectively, ′W is the transition rate relative to the 4−uple
(′v,′ w, v, w) and J is the Jacobian of the transformation of (′v,′ w) in (v, w) [12].

Instead of solving (2) we consider its weak form. In functional analysis, the
weak form of a differential equation is obtained by multiplying both sides of
the considered equation by a test function φ(v), namely a smooth function with
compact support, and then integrating the obtained equation with respect to v.
The weak form of the Boltzmann equation can be derived from (2) and, using a
proper change of variable in the integral, it can be written as

d
dt

∫
I

f(w, t)φ(v)dv =
∫
B2

∫
I2

Wf(v)f(w)(φ(v′) − φ(v))dvdwdηdη∗ (6)

If we consider φ(v) = 1 in (6) then the following equation is obtained

d
dt

∫
I

f(v, t)dv = 0 (7)

which says that the number of agents is constant. This property is analogous to
mass conservation of the molecules in a gas.

Considering φ(v) = v as a test function in (6) and recalling (3) we obtain

d
dt

∫
I

f(w, t)vdv = γ

∫
B2

∫
I2

Wf(v)f(w)C(|v|)(w − v)dvdwdηdη∗

+
∫
B2

∫
I2

Wf(v)f(w)ηD(|v|)dvdwdηdη∗
(8)

Defining the average value of the opinion at time t as

u(t) =
∫

I

f(w, t)v dv (9)

the left hand side of (8) corresponds to the derivative u̇(t) of the average opinion.
The first integral in the right hand side of (8) can be written as

γ

∫
I

f(v)C(|v|)dv

∫
I

vf(v)dv − γ

∫
I

f(v)C(|v|)vdv. (10)

The second integral in (8) is 0 because the average value of ϑ is 0, according to
(4). Therefore, from (8) and (10) it can be obtained that the variation of the
average opinion u can be written as

u̇(t) = γ

∫
I

f(v)C(|v|)dv

∫
I

vf(v)dv − γ

∫
I

f(v)C(|v|)vdv. (11)

Observe that if C is constant then (10) is 0 for symmetry and (11) becomes

u̇(t) = 0 (12)
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i.e., the average opinion is conserved, namely u(t) = u(0). This property corre-
sponds to the conservation of momentum.

We are interested in studying the behaviour of the distribution function
f(v, t) for large values of the time t and to derive, eventually, stationary profiles.
In order to simplify notation we first define a new temporal variable τ

τ = γt (13)

where γ is the coefficient related to compromise which appear in (3). Assuming
that γ � 0, namely that each interaction causes small opinion exchange,

g(v, τ) = f(v, t) (14)

describes the asymptotic behaviour of f(v, t). The weak form of a Fokker-Planck
equation can be derived by substituting f(v, t) with g(v, τ) in (6) and using a
Taylor series expansion of φ(v) around v in (6) [12]:

dg

dτ
=

λ

2
∂2

∂v2
(D(|v|)2g) +

∂

∂v
((v − u)g) (15)

where
λ = σ2/γ. (16)

We are now interested in studying stationary solutions g∞ of (15), which
satisfy

dg∞
dτ

= 0. (17)

In next section we analyze these solutions for different values of λ.

3 Stationary Behaviour of Opinion Distribution

In this section we derive some stationary profiles for the opinion density g. Such
profiles are defined as solutions of (17) and, therefore, they depend on parameters
u and λ and on the choice of the diffusion function.

In the remaining of the paper, we assume that the compromise function
C(|v|) is constant and equal to 1. As observed in Section 2, this choice leads to
a constant value of the average opinion, which is denoted as u in the following.
We consider the following distribution function

D(|v|) = 1 − v2 (18)

which is a non increasing function of |v|, as discussed at the beginning of the
previous section. According to this assumption, the effects of the interactions
between pairs of agents described in (3) are

{
v′ = v + γ(w − v) + η(1 − v2)

w′ = w + γ(v − w) + η∗(1 − w2)
(19)
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In order to guarantee that the post-interaction opinions still belong to the inter-
val of interest I we need to define the support B of the distribution function ϑ(·)
of η and η∗. Considering the first equation in (19), we can conclude that

|v′| ≤ (1 − γ)|v| + γ + |η|(1 − v2)

from which it can be derived that if |η| ≤ M = 1−γ
1+|v| then |v′| ≤ 1. Analogous

considerations hold for |w′| when taking into account the second equation of (19).
Since the minimum value of M is obtained in correspondence of the maximum
values of |v′| and γ, namely when |v| = 1 and γ � 1/2, then it can be concluded
that if |η| ≤ 1

4 , then |v′| ≤ 1 independently of the pre-interaction opinion v. The
same holds for |w′|, therefore from now on we assume that B = (−1/4, 1/4) .
We are now interested in finding the stationary solutions, namely the functions
which satisfy (17). From (15) the stationary solutions satisfy

λ

2
∂

∂v

(
(1 − v2)2g

)
+ (v − u)g = C (20)

where u is the average opinion (which is constant) and C is a constant. Observe
that the constant C must be 0. As a matter of fact, by integrating (20) one
obtains

λ

2

∫ v2

−v1

∂

∂v

(
(1 − v2)2g

)
+

∫ v2

−v1

(v − u)g = C(v2 + v1). (21)

From the previous equation, if v1 → 1 and v2 → 1 then the first integral is 0 for
symmetry and the second integral can be written as∫

I

vgdv − u

∫
I

gdv = u − u = 0.

It can then be concluded from (21) that C = 0.
Using classical analysis in (20), one obtains

g′

g
=

4v

1 − v2
+

2(u − v)
λ(1 − v2)2

. (22)

The left hand side of the previous equation is the derivative of log g. Integrating
the right hand side of (22) leads to an explicit expression of log g, and, therefore,
of g. The first added on the right hand side of (22) can be written as

d
dv

(−2 log(1 − v2)
)

(23)

Concerning the remaining terms in (22), first observe that

2u

λ

1
(1 − v2)2

=
d
dv

(
u

2λ
log

(
1 + v

1 − v

)
+

uv

λ(1 − v2)

)
. (24)

Moreover one can calculate

− 2v

λ(1 − v2)2
=

1
2λ

(
1

(1 + v)2
− 1

(1 − v)2

)
= − 1

2λ

d
dv

(
1

1 + v
+

1
1 − v

)

= − 1
λ

d
dv

1
1 − v2

.

(25)
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Finally, using (23), (24), and (25), equation (22) can be written as

d
dv

log g(v) =
d
dv

[
−2 log(1 − v2) +

u

2λ
log

(
1 + v

1 − v

)
+

uv − 1
λ(1 − v2)

]

and, therefore,

log g(v) = log(1 − v2)−2 + log
(

1 + v

1 − v

) u
2λ

+
uv − 1

λ(1 − v2)
+ αu,λ. (26)

where αu,λ is a constant depending on the average opinion u and on the value
of λ. Taking the exponential of (26) the following expression for the stationary
solution is derived

g∞(v) = cu,λ(1 + v)−2+ u
2λ (1 − v)−2− u

2λ exp
(

uv − 1
λ(1 − v2)

)
(27)

where cu,λ must be determined in order to satisfy
∫

I

g∞(w) = 1. (28)

Observe that if u = 0, then g∞(v) is an even function.
In order to see if the stationary profile is characterized by maxima and/or

minima, we now aim at studying the derivative of g∞. From (22) the derivative
of g∞ can be written as

g′
∞(v) = g∞(v)

(
4λv(1 − v2) + 2(u − v)

λ(1 − v2)2

)
(29)

and, therefore,

g′
∞(v) = 0 ⇐⇒ g∞(v) = 0 ∨ 4λv3 + (2 − 4λ) v − 2u = 0. (30)

From (27), g∞(v) = 0 if and only if v = ±1, namely in the extremes of the
considered interval I. Hence, we are interested in finding the solutions of the
second condition in (30), namely the solutions of

v3 +
(

1
2λ

− 1
)

v − u

2λ
= 0. (31)

Observe that equation (31) is a polynomial equation of degree 3 and therefore
it always admits at least one real solution.

If u = 0, namely if the average opinion is the middle point of I, (31) becomes

v3 +
(

1
2λ

− 1
)

v = 0 (32)

and in this case the solutions are

v1 = 0 v2,3 = ±
√

1 − 1
2λ

(33)
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Observe that if λ ≤ 1
2 the only real root of (32) is v1 = 0 and its multiplicity is

1 if λ < 1
2 while it is 3 if λ = 1

2 . In these cases, v1 is a maximum point. If λ > 1
2 ,

instead, equation (32) admits three real roots. In this last case, v1 is a point of
minimum while v2 and v3 are points of maximum.

If u �= 0 the solution of (31) requires the use of Cardano’s formula for the
solution of polynomial equations of degree 3, according to which

v1 = 3

√
−q

2
+

√
Δ + 3

√
−q

2
−

√
Δ (34)

is a real root of (31), where

Δ =
q2

4
+

p3

27
p =

(
1
2λ

− 1
)

q = − u

2λ
(35)

If Δ ≤ 0 then equation (31) has three real roots, which, besides v1, are

v2,3 = −v1
2

± 1
2

√
−4p − 3v2

1 . (36)

Hence, if Δ < 0, the stationary profile g∞ has three singular points. If Δ = 0,
then from (34) it can be concluded that v1 has the following simplified expression

v1 = 2 3

√
−q

2
.

Substituting this result in (36) one obtains that −4p − 3v2
1 = 0 and, therefore,

v2 = v3 = −v1/2, namely equation (31) has three real roots, two of which are
coincident. In the case with Δ = 0 the singular points of g∞ are two and one of
them is also an inflection point. Finally, if Δ > 0 then equation (31) has v1 as
the only real root, hence g∞ has only one singular point.

From (35), the value of Δ can be expressed as a function of λ and u as

Δ =
27u2λ + 2(1 − 2λ)3

432λ3
(37)

Since, from (16), λ is defined as the ratio between two positive quantities,
one can conclude that

Δ < 0 ⇐⇒ u2 < M(λ) =
2
λ

(
1 − 2λ

3

)3

. (38)

Since u ∈ I, then 0 ≤ u2 ≤ 1 and, therefore, if M(λ) ≥ 1 the inequality on the
right hand side of (38) is satisfied for all the values of u, while if M(λ) < 0 the
previous inequality is never satisfied. It can be shown that

M(λ) < 0 ⇐⇒ λ <
1
2

M(λ) ≥ 1 ⇐⇒ λ ≥ 2. (39)
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Hence, the following considerations hold:

– if 0 < λ < 1
2 then the condition u2 < M(λ) is never satisfied and, therefore,

Δ > 0 and the stationary profile g∞ has only one singular point
– if λ ≥ 2 then the condition u2 < M(λ) is satisfied for all the values of the

average opinion u and, therefore, Δ < 0 and the stationary profile g∞ has
three singular points

– if 1
2 ≤ λ < 2, the number of stationary points of g∞ depends on the value of

the average opinion u.

4 Numerical Results

In this section, various stationary profiles for different values of u and λ are
shown. We start by considering u = 0 so that the average opinion corresponds
to the middle point of I. In this case, the stationary profile g∞ is an even function.

In Fig. 1, the stationary profiles g∞(v) are shown for various values of λ,
namely λ = 1/4 (blue line), λ = 1/2 (red line), λ = 1 (green line), and λ = 3
(black line). Fig. 1 shows that if λ = 1/4, then g∞(v) has only one maximum
(corresponding to u = 0), in agreement with (33). If λ = 1/2, then v = 0 is
the only stationary point of g∞(v), but in this case the multiplicity of v = 0
as a solution of (32) is 3. Observe that the value of the maximum is smaller
compared to that relative to λ = 1/4. If λ > 1/2, according to (33), the function
g∞(v) admits three stationary points. In particular, Fig. 1 shows that if λ = 1
there is a minimum in correspondence of v = 0 and two maxima in v = ±1/

√
2.

In this case, the value of the two maxima is similar to that of the maximum
obtained with λ = 1/2. Fig. 1 also shows the stationary profile g∞(v) when
λ = 3. In this case, the two points of maximum are closer to the extremes of
the interval I where the opinion is defined and the values of the maxima are
approximately the double of those relative to λ = 1. The value of the minimum
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Fig. 1. The stationary profiles g∞ relative
to the average opinion u = 0 are shown for
λ = 1/4 (blue line), λ = 1/2 (red line),
λ = 1 (green line), λ = 3 (black line).
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Fig. 2. The stationary profiles g∞ relative
to the value λ = 1/4 are shown for u =
1/4 (yellow line), u = 1/2 (green line),
u = 3/4 (violet line).
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Fig. 3. The stationary profiles g∞ relative
to the value λ = 3/4 are shown for u =
1/9 (yellow line), u = 1/2 (green line),
u = 3/4 (violet line).
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Fig. 4. The stationary profiles g∞ relative
to the value λ = 1 are shown for u = 1/4
(yellow line), u = 1/2 (green line), u =
3/4 (violet line).

corresponding to 0, instead, is nearly halved with respect to the previous case.
Fig. 1 shows that, if u = 0, small values of λ, corresponding to σ2 ≤ 1/2γ,
namely to small contributes of diffusion in (3), lead to stationary profiles where
opinions are near the middle of I. At the opposite, an increase of the value of λ
corresponds to stationary profiles where the agents are divided into two groups.
As λ increases, the two points of maximum get closer to the extremes of I and
the corresponding value of the maxima increases, showing that if the contribute
of diffusion is greater than that of compromise extremal opinions tend to prevail.

From now on, we consider values of u different from 0. For symmetry reasons,
we only focus on positive values of u. First, we set λ = 1/4. According to (39)
and (38), in this case Δ < 0 regardless of the value of the average opinion and,
therefore, the stationary profile g∞(v) always has one stationary point, namely
a maximum point. Fig. 2 shows the stationary profiles for u = 1/4 (yellow line),
u = 1/2 (green line), and u = 3/4 (violet line). The maxima are marked with
a black asterisk. From Fig. 2 it can be observed that as the average opinion
increases the value of the corresponding maximum also increases, in agreement
with the idea that if the average opinion gets closer to 1 (namely, to one of the
extremes of the interval I) the opinions of all agents tend to be more concentrated
near the value of u.

We now set λ = 3/4. According to (39) and (38), in this case: Δ < 0 if
|u| < 1/9; Δ = 0 if |u| = 1/9; Δ > 0 if |u| > 1/9. Fig. 3 shows the stationary
profiles for u = 1/9 (yellow line), u = 1/2 (green line), u = 3/4 (violet line), and
the stationary points are marked with a black asterisk. As expected, if u = 1/9
the function g∞(v) has two stationary point, namely a point of maximum in v1
and an inflection point in v2 = v3 = −v1/2. Greater values of u, instead, lead to
a unique stationary point, namely a point of maximum.

In Fig. 4 the stationary profiles for λ = 1 and for the average opinions u = 1/4
(yellow line), u = 1/2 (green line), u = 3/4 (violet line) are shown. If λ = 1 then:
Δ < 0 if |u| <

√
2/27; Δ = 0 if |u| =

√
2/27; Δ > 0 if |u| >

√
2/27. Therefore,
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Fig. 5. The stationary profiles g∞ relative
to the value λ = 3/2 are shown for u =
1/4 (yellow line), u = 1/2 (green line),
u = 3/4 (violet line).
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Fig. 6. The stationary profiles g∞ relative
to the value λ = 3 are shown for u = 1/4
(yellow line), u = 1/2 (green line), u =
3/4 (violet line).

the function g∞(v) has three stationary points if u = 1/4, while it has only a
stationary point if u = 1/2 and u = 3/4.

Fig. 5 shows the stationary profiles g∞(v) for λ = 3/2. In this case: Δ < 0 if
|u| <

√
24/9; Δ = 0 if |u| =

√
24/9; Δ > 0 if |u| >

√
24/9. We consider the same

values of u as in the previous case and, since
√

24/9 � 0.61, it is expected that
if u = 1/4 and u = 1/2 the function g∞(v) has three stationary points while if
u = 3/4 the stationary profile only admits a point of maximum. These results
are confirmed in Fig. 5 where g∞(v) is shown for u = 1/4 (yellow line), u = 1/2
(green line), and u = 3/4 (violet line).

Finally, Fig. 6 shows the stationary profiles g∞(v) for λ = 3 and u = 1/4
(yellow line), u = 1/2 (green line), u = 3/4 (violet line). According to (39) and
(38), in this case Δ < 0 for all the possible values of the average opinion u, and,
therefore, g∞(v) always has three stationary points.

5 Conclusions

In this paper the temporal evolution of opinion in a multi-agent system is inves-
tigated through a kinetic approach. More precisely, we studied the asymptotic
behaviour of the opinion distribution on the basis of a model inspired from the
molecules interactions in a gas. Assuming that the opinion of each agent can
change because of two reasons, namely compromise and diffusion, stationary
profiles with different characteristics can be derived as the parameters of the
model change. For a particular choice of the compromise function and of the
diffusion function, we showed that the asymptotic distribution is characterized
by one, two, or three stationary points, depending on the average opinion and
on the parameters of the model.

Further analysis on this subject, which also involves simulation results, is
currently under investigation. In particular, we are interested in adopting the
kinetic framework in scenarios that could use general-purpose industrial strength
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technology (see, e.g., [14,15]) and in modeling wireless sensor networks for
localization purposes (see, e.g., [16,17]).
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