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Abstract. Tactical level decisions in pedestrian simulation are related
to the choice of a route to follow in an environment comprising several
rooms connected by gateways. Agents are supposed to be aware of the
environmental structure, but they should also be aware of the level of
congestion, at least for the gateways that are immediately in sight. This
paper presents the tactical level component of a hybrid agent architecture
in which these decisions are enacted at the operational level by mean of a
floor-field based model, in a discrete simulation approach. The described
model allows the agent taking decisions based on a static a-priori knowl-
edge of the environment and dynamic perceivable information on the
current level of crowdedness of visible path alternatives.
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1 Introduction

Simulation is one of the most successful areas of application of agent-based
approaches: models and techniques employed by researchers in different disci-
plines are not necessarily in line with the most current results in the computer
science and engineering (see, e.g., [2]), and yet the area still presents interesting
opportunities for agent research and computer science in general. Pedestrians
and crowds simulation is an example of this situation: both the automated anal-
ysis and the synthesis of pedestrian and crowd behavior, as well as attempts to
integrate these complementary and activities [13], present open challenges and
potential developments in a smart environment perspective [11].

Modeling human decision making activities and actions is an extremely chal-
lenging goal, even if we only consider choices about walking behavior: different
types of decisions are taken at different levels of abstraction: [12]1 provides a well-
known scheme to model the pedestrian dynamics, describing 3 levels of behavior:
(i) Strategic level, managing abstract plans and final objectives motivating the
overall decision to move (e.g. “I am going to the University today to follow my

1 A similar classification can be found in vehicular traffic modeling from [10].
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courses and meet my friend Paul”); (ii) Tactical level, constructing sequences
of activities to achieve the defined objectives (e.g. “I’ll take the 7:15 AM train
from station X, get off at Y and then walk to the Department, then . . . ”); (iii)
Operational level, physically executing the defined plans (i.e. creating a precise
walking trajectory, such as a sequence of occupied cells and related simulation
turn in a discrete simulation).

Most of the literature has been focused on the reproduction of the physics
of the system, so on the lowest level: this is partly due to the fact that data
on the fundamental diagram achieved with different set of experiments and in
different environment settings (see, e.g[15]) supports a robust validation of the
models. Relevant recent works, such as [7] and [14], start exploring the implica-
tions of tactical level decisions during evacuation. In particular, [7] modifies the
floor-field Cellular Automata approach for considering pedestrian choices not
based on the shortest distance criterion but considering the impact of conges-
tion on travel time. [14] explores the implications of four strategies for the route
choice management, given by the combination of applying the shortest or quick-
est path, with a local (i.e., minimize time to vacate the room) or global (i.e.,
minimize overall travel time) strategy. The global shortest path is calculated
with the well-known Floyd-Warshall algorithm, implying computational times
that can become an issue by having a large number of nodes or by considering
special features in the simulated population (i.e. portion of the path where the
cost differs from an agent to another). The work in this paper will propose an
alternative and efficient approach to find a global path, where each agent will be
able to consider additional costs in sub-paths without adding particular weight
to the computation.

We must emphasize the fact that the measure of success and validity of a
model is not the optimality with respect to some cost function, as in robotics, but
the plausibility, the similarity of results to data acquired by means of observations
or experiments. Putting together tactical and operational level decisions in a
comprehensive framework, preserving and extending the validity that, thanks to
recent extensive observations and analyses (see, e.g., [4]), can be achieved at the
operational level, represents an urgent and significant open challenge.

The following Sect. will present the adaptive tactical level part of the model
whereas its experimental application in benchmark scenarios showing the ade-
quacy in providing adaptiveness to the contextual situation will be given in
Section 3. Conclusions and future developments will end the paper.

2 A Model for Tactical Level of Pedestrians

The model described in this paper provides an approach to deal with tactical
choices of agents in pedestrian simulation systems. For sake of space, the descrip-
tion of the operational level components of the model is omitted and it can be
found in [1].
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2.1 A Cognitive Representation of the Environment for Static
Tactical Choices

The framework that enables agents performing choices on their plans implies a
graph-like, topological, representation of the walkable space, whose construction
is defined in [6] and only briefly reported in this section. This model allows
agents to perform a static path planning, since dynamical information such as
congestion is not considered in the graph. These additional elements will be
considered in the extension that is presented in the next section and represent
the innovative part of this paper.

The environment abstraction identifies regions (e.g. a room) as node of the
labeled graph and openings (e.g. a door) as edges. This form of cognitive map
is computed starting from the information of the simulation scenario, provided
by the user and necessarily containing: (i) the description of the walkable space,
that is, the size of the simulated environment and the positions of obstacles and
walls; (ii) the position of final destinations (i.e. exits) and intermediate targets
(e.g. a ticket machine); (iii) borders of the logical regions of the environment
that, together with the obstacles, will define them. Approaches to automatically
configure a graph representation of the space, without any additional information
by the user, have been already proposed in the literature (e.g. [9]), but they are
not leading to a cognitively logical description, i.e., a topological map.

The cognitive map is defined as a graph CM = (V, E) generated with a
procedure included to the floor field diffusion, starting from the statements that
each user-defined opening generates a floor field from its cells and spread only
in the regions that it connects, and that each region has a flag indicating its
properties among its cells. The floor fields diffusion procedure iteratively adds
to CM the couple of nodes found in the diffusion (preventing duplicates) and
respectively labeled with the region and edge identifiers. Each final destination,
different from the normal openings since it is located in only one region, will
compose an edge linking the region to a special node describing the external
universe. Intermediate targets will be mapped as attributes of their region’s
node.

To allow the calculation of the paths tree, that will be described in the follow-
ing section, functions Op(ρ) and Dist(ω1, ω2) are introduced describing respec-
tively: the set of openings accessible from the region ρ and the distance between
two openings linking the same arbitrary region. Since, in general, an opening is
associated to a set of cells associated, the value of the floor field in the center
cell of ω1, ω2 will be used for the computation of the distance among them.

2.2 Modeling Adaptive Tactical Decisions with A Paths Tree

To enhance the route choice and enable dynamical, adaptive, decisions of the
agents in a efficient way, a new data structure has been introduced, containing
information about the cost of plausible paths towards the exit from each region
of the scenario.
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The well-known Floyd-Warshall algorithm, in fact, can solve the problem
but it introduces issues in computational time: the introduction of dynamical
elements in the paths cost computation (i.e. congested paths) implies a re-
computation of the cost matrix underlying the algorithm every step. More in
details, the penalty of a congested path is a subjective element for the agents,
since they are walking with different desired velocities, thus the calculation cost
increases also with the number of agents.

The approach proposed here implies an off-line calculation of the data-
structure that we called paths tree, but is computationally efficient during the
simulation and provides to the agents direct information about the travel times
describing each path.

The Paths Tree. We define the Paths Tree as a tree data-structure containing
the set of plausible paths towards a destination, that will be its root.

A path is defined as a finite sequence of openings X → Y → . . . → Z where
the last element represents the final destination. It is easy to understand that
not every sequence of openings represents a path that is walkable by an agent.

First, a walkable path must be a sequence of consecutive oriented openings
in the physical space: an opening E connects two regions R1 and R2, can be
formally defined as E = R1, R2; (R1, E,R2) and (R2, E,R1) are the oriented
representations of E. Consecutive openings E1 and E2 are such that (Ri, E1, Rj)
and (Rj , E2, Rk).

In addition to this constraint, a valid walkable path must lead to a universe
region (i.e. towards a final target). In particular, an agent will consider only valid
paths towards its goal, starting from the region where the agent is located.

An important element in the definition of the adopted approach is the
expected travel time associated to given path p:

Definition 1. Let p a path, T(p) is the function which return the expected travel
time from the first opening to the destination.

T (p) =
∑

i∈[1,|p|−1]

Dist(openingi, openingi+1)
speed

(1)

We consider that a plausible path must be loop-free: by assuming the aim
to minimize the time to reach the destination, a plan passing through a certain
opening more than once would be not plausible. This will not imply that an agent
cannot go through a certain opening more than once during the simulation, and
that this could actually happen only with a change of the agent plan, due for
instance to an unexpected congestion perceived in a point of the planned path.

Should only convex regions be present in the simulated space, we could easily
achieve the set of plausible paths by extending previous constraint and consider
not plausible a path passing twice in the same region. However, since the defi-
nition of region describes also rooms, concave regions must be considered. Some
paths may, thus, imply to pass through another region and then return to the
first one to reduce the length of the path.
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Fig. 1. In the left, a concave region can imply the plausibility of a path crossing it twice,
but its identification is not elementary: only the path represented by the continuous
line is plausible. All the correct paths for this environment are shown on the right.
Inside r2 the choice between the two openings is determined by the level of congestion
on o1.

As we can see by the Figure 1, on the left, both paths start from r1, go
through r2, and then return to r1. However, only the path represented by the
continuous line is plausible. To support the definition of the constraint that
identifies the correct paths, the concept of sub-path and a minimality rule must
be defined.

Definition 2 (Sub-path). Let p a path, a sub-path p′ of p is a sub-sequence
of oriented openings denoted as p′ ⊂ P which respects the order of appearance
for the openings in p, but the orientation of openings in p′ can differ from the
orientation in p. p′ must be a valid path.

The reason of the orientation change can be explained with the example in
Fig. 1 in the right: given the path p = (r1, o2, r2) → (r2, o1, r1) → end, the path
p′ = (r2, o2, r1) → end is a valid path and is considered as a sub-path of p, with
a different orientation of o2. In addition, given the path p1 = (r2, o2, r1) → end,
the path p2 = (r1, o2, r2) → (r2, o1, r1) → end is as well a minimal path if and
only if the travel time of p2 is less than p1. It is easy to understand that this
situation can emerge only if r1 is concave. As we can see, the starting region of
the two paths is different, but the key element of the rule is the position of the
opening o2. If this rule is verified in the center position of the opening o2, this
path will be a considerable path by the agents surrounding o2 in r1.

In Figure 1, on the right, the correct paths for this example environment are
shown. An agent located in r2 can reach r1 and then the destination D using
both of the opening considering the congestion in the environment at the time
of planning. An agent located in r1 can go directly to the exit or chose the path
o2 → o1 → D, according to its starting position.

Definition 3 (Minimal Path). p is a minimal path if and only if it is a valid
path and ∀p′ ⊂ p : S(p′) = S(p) ∧ D(p′) = D(p) =⇒ T (p′) > T (p)
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The verification of this rule is a sufficient condition for the opening loop
constraint and it solves the problem on the region loop constraint independently
from the configuration of the environment (i.e. convex or concave regions).

Given this constraint on path minimality, which we consider an indication
of plausibility, the complete set of minimal paths towards a destination can be
built. It must be noted that an arbitrary path, through the notion of sub-paths,
represents a set of paths itself: an agent, in fact, could select a sub-path of a
larger minimal path. So a minimal representation of the set is a tree-like structure
defined as:

Definition 4 (Paths Tree). Given a set of minimal paths towards a desti-
nation, the Paths-Tree is a tree where the root represents the final destination
and a branch from every node to the root describes a minimal path, crossing a
set of openings (other nodes) and region (edges). Each node is associated to an
attribute describing the expected travel time to the destination.

An Algorithm to Compute the Paths Tree. The proposed algorithm con-
structs the Paths Tree recursively, starting from a path containing only the
destination and adding nodes if and only if the generated path respects the
definition of minimality.

Formally the Paths Tree is defined as PT = (N,E) where N is the set of
nodes and E the set of edges. Each node n ∈ N is defined as a triple (id, o, τ)
where id ∈ N is the id of the node, o ∈ O is the name of the opening and τ ∈ R

+

is the expected travel time for the path described by the branch. Each edge e ∈ E
is defined as a triple (p, c, r) where p ∈ O is the id of the parent, c ∈ O is the id
of the child and r ∈ R is the region connecting the child node to its parent. To
allow a fast access to the nodes describing a path that can be undertaken from
a certain region, we added a structure called M that maps each region r in the
list of edges e : (p, c, r) ∈ E (for every c).

Given a destination D = (rx,universe), the paths tree computation is defined
with the following procedures.

Algorithm 1. Paths tree computation
1: add (0, D, 0) to N
2: add 0 to M [rx]
3: ∀s ∈ O ShortestPath[s] ← ∞
4: ExpandRegion(0, D, 0, Rx, ShortestPath)

With the first line, the set N of nodes is initialized with the destination of
all paths in the tree, marking it with the id 0 and expected travel time 0. In the
third row the set of ShortestPath is initialized. This will be used to track, for
each branch, the expected travel time for the shortest sub-path, given a start
opening s. ExpandRegion is the core element of the algorithm, describing the
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Algorithm 2. ExpandRegion
Require: input parameters (parentId, parentName,

parentT ime, RegionToExpand, ShortestPath)
1: expandList ← ∅
2: opList = Op(RegionToExpand) \ parentName
3: for o ∈ opList do
4: τ = parentT ime + D(o,parentName)

speed

5: if CheckMinimality(ShortestPath, o, τ) == True then
6: add (id, o, τ) to N
7: add (parentId, id, r) to E
8: ShortestPath[o] ← τ
9: nextRegion = o \ r

10: add id to M [nextRegion]
11: add (id, o, τ, nextRegion) to expandList
12: end if
13: end for
14: for el ∈ expandList do
15: ExpandRegion(el, ShortestPath)
16: end for

recursive function which adds new nodes and verifies the condition of minimality.
The procedure is described by Alg. 2.

In line 2 a list of openings candidates is computed, containing possible exten-
sions of the path represented by parentId. Selecting all the openings present in
this region (except for the one labeled as parentName) will ensure that all paths
eventually created respect the validity constraint.

At this point, the minimality constraint 3 has to be verified for each candi-
date, by means of the function CheckMinimality explained by Alg. 3. Since this
test requires the expected travel time of the new path, this has to be computed
before. A failure in this test means that the examined path – created by adding
a child to the node parentId – will not be minimal. Otherwise, the opening can
be added and the extension procedure can recursively continue.

In line 6, id is a new and unique value to identify the node, which represents
a path starting from the opening o and with expected travel time τ ; line 7 is the
creation of the edge from the parent to the new node. In line 8, ShortestPath[o]
is updated with the new discovered value τ . in line 9 the opening is examined
as a couple of region, selecting the one not considered now. In fact, the element
nextRegion represents the region where is possible to undertake the new path.
In line 10 the id of the starting opening is added to M [nextRegion], i.e., the list
of the paths which can be undertaken from nextRegion. In line 11 the node with
his parameter is added to the list of the next expansions, which take place in line
13-14. This passage has to be done to ensure the correct update of ShortestPath.

To understand how the constraint of minimality is verified, two basic concepts
of the procedure need to be clarified. Firstly, the tree describes a set of paths
towards a unique destination, therefore given an arbitrary node n, the path
described by the parent of n is a subpath with a different starting node and
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Algorithm 3. CheckMinimality
Require: input parameter (ShortestPath, o, τ)
1: if ShortestPath[o] > τ then
2: return True
3: else
4: return False
5: end if

leading to the same destination. Furthermore, the expansion procedure implies
that once reached a node of depth l, all the nodes of its path having depth l −k,
k > 0 have been already expanded with all child nodes generating other minimal
paths.

Note that the variable ShortestPath is particularly important since, given p
the current path in evaluation, it describes the minimum expected travel time to
reach the destination (i.e. the root of the tree) from each opening already evalu-
ated in previous expansions of the branch. Thus, if τ is less than ShortestPath[o],
the minimality constraint 3 is respected.

Congestion Evaluation. The explained approach of the paths tree provides
information on travel times implied by each path towards a destination. By only
using this information, the choice of the agents would be still static, essentially
describing the shortest path. This could lead to an increase of the experienced
travel times, since congestion may emerge without being considered.

For the evaluation of congestion, we provide an approach that estimates,
for each agent, the additional time deriving by passing through a jam. The
calculation considers two main aspects: the size of the possibly arisen congestion
around an opening; the average speed of the agents inside the congested area.
Since the measurement of the average speed depends on the underlying model
that describes the physical space and movement of the agents, we will just clarify
that the speed is estimated through the adoption of an additional grid counting
the recent blocks (i.e. when agents maintain positions at the end of the step
although desired to move) in the surrounding area of each opening. The average
number of blocks influences the probability to move into the area per step, thus
the speed of the agents. For the size of the area, our approach is to define a
minimum radius of the area and (i) increase it when the average speed becomes
too low or (ii) reduce it when it returns normal.

As we can see in Figure 2, the presence of an obstacle in the room is well
managed by using floor field while defining the area for a given radius. If a many
agents try to go through the same opening at the same time, a congestion will
arise, reducing the average speed and increasing the size of the monitored area
until included agents are no more involved in blocks.

During this measurement the average speed value for each radius is stored.
Values for sizes smaller than the size of the area will be used by the agents
inside it, as will be explained in the next section. Two function are introduced
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Fig. 2. Examples of surroundings of different sizes, for two configurations of the envi-
ronment.

for the calculation: size(o): return the size of the congestion around the opening,
averageSpeed(o, s): return the average speed estimated in the area of size s
around the opening o.

Agents Dynamic Path Choice. At this point we have defined which informa-
tion an agent will use to make its decision: (i) the Paths Tree, computed before
the simulation, will be used as a list of possible path choice; (ii) the position of
the agent, will be used to adjust the expected travel time considering the distance
between the agent and the first opening of a path: d(a, o); (iii) the information
about congestion around each opening, computed during the simulation, will be
used to estimate the delay introduced by each opening in the path.

The agent, who knows in which region Rx he is located, can access the Paths
Tree using the structure M [Rx]. The structure returns a list of nodes, each
representing the starting opening for each path. At this point the agent can
compute the expected travel time to reach each starting opening and add it to
the travel time τ of the path.

To consider congestion, the agent has to estimate the delay introduced by
each opening in a path, by firstly obtaining the size of the jammed area.

sizea(o) =

{
size(o) if d(a, o) ≥ i(x)
d(a, o) otherwise

(2)

At this point, the agent can suppose that for the length of the area it will travel
at the average speed around the opening.

delay(o) = max(sizea(o)
( 1
averageSpeed(o)

− 1
speeda

)
, 0) (3)

If the agent is slower than the average speed around an opening, the delay will
be lower than 0. In this case it is assumed that the delay is 0, implying that the
congestion will not increase his speed.
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At this point the agent can estimate the delay introduced by all openings.

pathDelay(p) =
∑

o∈p

delay(o) (4)

We can consider that agents only have access to delay information about
openings that are present in the area it is located into, whereas the delay is
considered zero (in an optimistic hypothesis) in openings that are far from its
perception.

Time(p) = τp +
d(a, S(p))
speeda

+ pathDelaya(p) (5)

Where:

– τp : the expected travel time of the path p

– d(a,S(p)
speeda

: the expected time to reach S(p) from the position of the agent
– pathDelaya(p) : the estimation of the delay introduced by each opening in

the path, based on the memory of the agent (which may or may not be
updated for each opening).

3 Applications with an Experimental Scenario

In order to show the potential and the possibility to fine tune the proposed
approach, the evacuation in a hypothetical scenario has been simulated with a
consistent incoming flow of people. A graphical representation of the environment
and flow configuration is depicted in Fig. 3(a): it illustrates a sample situation in
which two flows of pedestrians enter an area with six exits, distributed among 3
equal rooms, at a rate of 10 pedestrians per second. An important peculiarity is
the slightly asymmetrical configuration of the environment, that causes shorter
distances towards the three southern exits. This is reflected by the illustrated
paths tree in Fig. 3(b) where, to give an example, the paths starting from o4 and
o5 and leading out through o2 take a little more time than the ones going out
by using o7. This variation significantly affected the results of the simulations,
here shown with cumulative mean density maps [5]2 in Fig. 4.

In particular, the results of two simulations in which different approaches
have been implemented for the dynamic estimation of the path traveling times
by the agents are shown. In the first approach, shown in the top row, all the
agents perceived the same congestion time for the openings that they can detect
during the simulation (i.e. the travel time corrected considering the path delay
discussed in the previous section). In the second approach, instead, a random
error of ±10% has been added to the overall calculation of the traveling time

2 These heat maps describe the mean local density value in each cell. It is calculated
in a time window of 50 steps where, at each step, only values of occupied cells are
collected.



68 L. Crociani et al.

(a)

(b)

Fig. 3. The experimental scenario (a) and the associated paths tree (b).

Time(p) in order to consider the fact that pedestrians do not have an exact
estimation of distances and delays caused by perceived congestion, in a more
commonsense spatial reasoning framework [3].

By comparing the results it is possible to notice that, counter–intuitively, the
insertion of the random perturbation caused an optimization of the flows in this
overcrowded scenario. In the firsts 100 steps of the simulations, the dynamics for
the two approaches is similar and described by the missed usage of the central
room, since the distance between the northern and southern exits is quite small.
The less precise calculation causes the agents to start using the central room and
associated exits earlier than in the precise delay estimation case, in particular,
around 130th step vs 150th step in the first scenario, generating lower level of
densities and, thus, higher outgoing flow rates. Moreover, this error balances
the attractiveness of middle southern and northern exits that are more evenly
adopted than in the precise calculation approach (as shown in Fig. 4 (b) and
(e)), leading not only to a more efficient but especially more plausible space
utilization.
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(a) step 150-200, w/o RE (b) step 300-350, w/o RE (c) step 450-500, w/o RE

(d) step 150-200, with RE (e) step 300-350, with RE (f) step 450-500, with RE

Fig. 4. The test scenario respectively without and with a random perturbation of the
agent estimated travel time.

4 Conclusions

The paper has presented a hybrid agent architecture for modeling tactical level
decisions in pedestrian simulations. The agents make decisions based on a static
a-priori knowledge of the environment and dynamic perceivable information on
the current level of congestion of visible path alternatives. The model was exper-
imented in a sample scenario showing the adequacy in providing adaptiveness to
the contextual situation while preserving a plausible overall pedestrian dynamic:
congestion is detected and, when possible, longer trajectories are adopted grant-
ing overall shorter travel times. The actual validity of this approach must still
be proven, both in evacuations and other kinds of situations: this represents an
open challenge, since there are no comprehensive data sets on human tactical
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level decisions and automatic acquisition of this kind of data from video cameras
is still a challenging task [8].
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