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Abstract. In this work we investigate the dynamical properties of the
Boolean networks (BN) that control a robot performing a composite
task. Initially, the robot must perform phototaxis, i.e. move towards a
light source located in the environment; upon perceiving a sharp sound,
the robot must switch to antiphototaxis, i.e. move away from the light
source. The network controlling the robot is subject to an adaptive walk
and the process is subdivided in two sequential phases: in the first phase,
the learning feedback is an evaluation of the robot’s performance in
achieving only phototaxis; in the second phase, the learning feedback
is composed of a performance measure accounting for both phototaxis
and antiphototaxis. In this way, it is possible to study the properties of
the evolution of the robot when its behaviour is adapted to a new oper-
ational requirement. We analyse the trajectories followed by the BNs in
the state space and find that the best performing BNs (i.e. those able
to maintaining the previous learned behaviour while adapting to the
new task) are characterised by generalisation capabilities and the emer-
gence of simple behaviours that are dynamically combined to attain the
global task. In addition, we also observe a further remarkable property:
the complexity of the best performing BNs increases during evolution.
This result may provide useful indications for improving the automatic
design of robot controllers and it may also help shed light on the relation
and interplay among robustness, evolvability and complexity in evolving
systems.

1 Introduction

Genetic regulatory networks (GRNs) model the interaction and dynamics
among genes. From an engineering and computer science perspective, GRNs are
extremely interesting because they are capable of producing complex behaviours,
notwithstanding the compactness of their description. Cellular systems are also
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both robust and adaptive, i.e. they can maintain their basic functions in spite
of damages and noise, and they are able to adapt to new environmental con-
ditions. Such a complex behaviour can be interpreted from an artificial system
design’s viewpoint, suggesting the possibility of achieving robust and adaptive
behaviours in agents, robots, and group of robots, by exploiting the properties
of GRN models.

Among the most studied models for GRNs, are Boolean networks (BNs), first
introduced by Kauffman [11]. A BN is a discrete-time discrete-state dynamical
system whose state is a N -tuple in {0, 1}N , (x1, . . . , xN ). The state is updated
according to the composition of N Boolean functions fi(xi1 , . . . , xiKi

), where Ki

is the number of inputs of node i, which is associated to Boolean variable xi.
Each function fi governs the update of variable xi and depends upon the values
of variables xi1 , . . . , xiKi

. Most works on BNs deal with so-called autonomous
networks, i.e. systems that evolve in time without input from the external—at
most, only the initial state may be extrenally imposed. Usually, BNs are subject
to a deterministic, synchronous and parallel node update, even if other update
schemes are possible [28]. In the synchronous and deterministic update scheme,
every state has a unique successor and the trajectory is composed of a transient
and a state cycle (possibly a fixed point, i.e. a cycle of length 1).

BNs have received considerable attention in the community of complex sys-
tem science. Works in complex systems biology show that BNs provide powerful
model for cellular dynamics [26,29], cellular differentiation [25,31] and inter-
actions among cells and environment [24]. A specific dynamical regime at the
boundaries between order and chaos, called the critical regime, is of notable
interest. Critical networks enjoy important properties, such as the capability of
optimally balancing evolvability and robustness [1] and maximising the average
mutual information among nodes [21]. Hence the conjecture that living cells, and
living systems in general, are critical [17].

In recent works, it has been shown that such kind of BNs can be used to
control robots [6,22,23]. In this case, the BN evolution in time also depends on
the values of some “input” nodes which are set depending on the robot’s sensor
readings. The BN is trained by means of a learning algorithm that manipulates
the Boolean functions. The algorithm employs as learning feedback a measure of
the performance of the BN-controlled robot (in the following, BN-robot) on the
task to perform. The effectiveness of this approach was demonstrated through
experiments on both simulated and real robots.

In this contribution, we outline some results on the analysis of the BN-robot’s
dynamics along the learning process. We analyse the trajectories followed by
the BN-robot in the space of BN states and compute significant features, such
as state number and frequency of state occurrence in sample trajectories. In
addition, we compute the number of fixed points, i.e. BN states repeated as long
as the BN inputs do not change. The number of fixed points is an indicator of
the generalisation capabilities of the system, as they represent simple functional
building blocks of the type while <condition> do <action>, which compose
the overall system dynamics. Moreover, we estimate the statistical complexity of



Dynamical Properties of Artificially Evolved Boolean Network Robots 47

the system by means of a complexity measure called the LMC complexity [15].
The dynamics of a complex system is neither totally disordered (as an ideal
gas at equilibrium), nor perfectly ordered (as a crystal); therefore we expect
that a measure of the distance of a system from these two conditions should
have very high values when the system exhibits complex behaviours. While we
are of course aware of the fact that there is no general agreement on an all-
encompassing definition of a measure of complexity, LMC seems particularly
interesting in this case, as it will be discussed in Section 3.

We found that the successful performing BN-robots, which show the capabil-
ity of attaining the learned behaviours also in spite of noise and perturbations
(robustness) while adapting to new tasks to perform (evolvability), are charac-
terised by both number of fixed points and LMC complexity higher than those
of unsuccessful ones. These preliminary results may provide useful indications
for improving the automatic design of robot controllers and may help shed light
on the relation and interplay among robustness, evolvability and complexity in
evolving systems.

The structure of the paper is as follows. After a summary of the experimental
setting in Section 2, we discuss the main results of the analysis of the dynamics
of the BNs controlling the robot in Section 3 and we conclude with a discussion
and an outlook to future work in Section 4.

2 Experimental Setting

In this experiment, we control an e-puck robot [16] by means of a BN. The
values of a set of network nodes (BN input nodes) are imposed by the robot’s
sensor readings, and the values of another set of nodes (BN output nodes) are
observed and used to encode the signals for maneuvering the robot’s actuators.
The BN controlling the robot is subject to synchronous and parallel update. As
described in the following, the Boolean functions are set by a search process,
whilst the topology of networks is set at random.1 The sensors consists of four
light sensors and one sound sensor, while the actuators correspond to right and
left wheel speed controllers. The Boolean values of the output nodes are sent
to wheel actuators after a preprocessing consisting in a moving average, so as
to feed the motors with signals in the range [0,1]. The robot is placed in a
random position and with random orientation in a squared arena, with one
light source in a corner. The BN-robot must accomplish the following task:
initially, it must perform phototaxis, that is, move towards the light source;
upon perceiving a sharp sound, the BN-robot must switch to antiphototaxis,
that is, move away from the light source.2 The robot is trained in simulation by
means of an adaptive walk: the process starts from a randomly generated BN, it
iteratively mutates its functions and keeps only the changes that either improve
the BN-robot’s performance or do not decrease it. Mutation is implemented by
1 The choice for a random topology is not a limitation, as discussed in [22].
2 A video of a typical run of a best performing BN-robot is available at https://www.

youtube.com/watch?v=6ZF9Ijpwkd8.

https://www.youtube.com/watch?v=6ZF9Ijpwkd8
https://www.youtube.com/watch?v=6ZF9Ijpwkd8
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randomly choosing a node and an entry in its Boolean function truth table and
flipping it. The algorithm is therefore a stochastic descent in the space of Boolean
functions. 3 Advanced search strategies can of course be devised so as to attain a
higher performance; nevertheless, this subject is beyond the scope of this paper.

The BN-robot is trained in two sequential phases. In the first phase, the
learning feedback is an evaluation of the robot’s performance in achieving only
phototaxis. In the second phase, the learning feedback is composed of a perfor-
mance measure accounting for both phototaxis and antiphototaxis. In this way,
we can study the properties of the evolution of the BN-robot when its behaviour
has to be adapted to a new operational requirement. We define the performance
of a BN-robot as a function of an error E ∈ [0, 1]. The smaller is the error, the
better is the robot performance. The error function is given by a weighted sum
of phototaxis and antiphototaxis errors: at each time step t ∈ {1, . . . , T}, the
robot is rewarded if it is moving in the correct direction with respect to the light.
Let tc be the time instant at which the clap is performed. The error function E
is defined as follows:

E = α
(
1 −

∑tc
i=1 si
tc

)
+

(
1 − α

)(
1 −

∑T
i=tc+1 si

T − tc

)
,

where:

∀i ∈ {1, . . . , tc}, si =

{
1 if the robot goes towards to the light at step i

0 otherwise

∀i ∈ {tc+1, . . . , T}, si =

{
1 if the robot moves away from the light at step i

0 otherwise

In the first phase of the training is α = 1, whilst in the second phase α is set
to 0.5 so as to take into account both phototaxis and antiphototaxis.

One hundred independent runs of the entire training process were executed,4

starting from 100 initial BNs generated at random (with 20 nodes, 3 inputs per
node and no self-connections).

During the training process BN-robots are subject to random perturbations,
so as to train them also for operating in noisy environments. Along the train-
ing process we tested the BN-robot and collected statistics on the BN states
traversed.

The experiments in simulation have been run by means of the open source
simulator ARGoS [19].

3 Analysis of BN Dynamics

A significant fraction of the training experiments—about 30%—leads to a suc-
cessful BN-robot, i.e. a robot able to perform both phototaxis and antiphototaxis
3 Details can be found in [22].
4 The experiments reported in [22] were re-run so as to have a greater number of

replicas.
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and to switch between the first and the second behaviour when it perceives a
sharp sound signal. The unsuccessful BN-robots are either able to perform photo-
taxis only or not even that task. In the successful cases, the phototaxis capability
acquired by the BN-robot in the first training phase is maintained while also the
antiphototaxis behaviour is learned. Whence these systems have the possibility
of successfully balancing robustness and evolvability.5

A question may rise at to what extent topology affects the results: after visual
inspection of a sample of the BNs we discover that topology has an impact only
in pathological cases, such as complete disconnection of all sensors or actuators.
Notably, one of the best performing BNs has a topology in which the South
light sensor is disconnected, which means that the network was anyway able to
integrate this piece of information.

We studied the properties of the BN trajectories as they control the robot
during its actions. The BN that controls a robot is coupled with the environ-
ment, as some of its nodes are forced to values imposed by the sensors and some
of its outputs control the robot actuators (the wheels in this case). As a con-
sequence, the network itself is embodied and its dynamics must be studied in
the operational setting in which the robot is functioning, characterised by a spe-
cific sensors–actuators loop mediated by the environment. Therefore, we studied
the dynamics of such BNs by means of the properties of their trajectories in
the state space collected during robot runs. More precisely, for each BN-robot
we run the robot starting from 1000 different initial conditions and recorded
the sequence of BN states the network traverses during the run. This collection
of state sequences is then merged into a graph whose vertices are the network
states traversed by the BN and the edges the observed transitions between two
states (see a typical trajectory graph in Figure 1). Moreover, the frequency of
occurrence of states in the trajectories is recorded. This information is used
to compute several features of the BN dynamics, which will be detailed in the
following. The statistics that will be shown are computed by subdividing the
BN-robots into three classes: BN-robots able to attain correctly the task (both
class, about 30/100), BN-robots able to perform phototaxis only (pt class, about
60/100) and totally failing robots (none class, about 10/100).

3.1 Number of States

The number of unique states in the collection of trajectories—i.e. the number of
different states in the set collecting all the states in the sampled trajectories—
is an indicator of the size of the state space the BN dynamics occupies, as it
represents the portion of state space actually explored by the BN. The smaller
this size, the greater the generalisation capability of the network. Indeed, a large
number of unique states denotes BN trajectories that do not overlap, which in
turn means that the network has simply learned collections of successful exam-
ples. Conversely, a small number of unique states denotes trajectories that share

5 We use the terms robustness and evolvability with the same meaning as in the work
by Aldana et al. [1]
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Fig. 1. Typical trajectory graph of a BN-robot. Transitions between nodes occur either
for internal network state update or caused by input change. Node labels—not relevant
for this context—denote the encoded binary state of the network.

a large fraction of transitions, which is a property of a system that was able to
generate a compact model of the world.
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Fig. 2. Average number of different states in the trajectory collections as a function
of learning algorithm’s iteration. Averages are taken across three different behaviour
classes: both class ↔ successful BN-robots, pt class ↔ BN-robots able to perform
phototaxis only, none class ↔ failing BN-robots.

In Figure 2 the average number of states in the trajectory collection for
each class of robots is plotted along the training phase. The dashed vertical
line denotes iteration 5000 at which the objective function was changed so as to
include also the evaluation on the antiphototaxis behaviour. We observe that the
successful BN-robots are characterised by a decreasing number of unique states
up to iteration 5000, when the BN is forced to accomplish a more complex
behaviour and the number of states starts to increase, meaning that the training
process is still acting so as to adapt the BN-robot to achieve the compound task.
BN-robots able to perform phototaxis only show a similar but far less marked
pattern, whilst—as expected—worse BN-robots show no tendency to generalise.

3.2 Number of Fixed Points

Some states in BN-robot trajectories are repeated until a change occurs in the
input. With slight abuse of term, we call these states fixed points. These states
represent simple functional building blocks of the type while <condition> do
<action> (e.g. “turn right until the light input changes”) which are combined
to achieve a global behaviour. The emergence of fixed points reveals that the
BN is able to extract regularities in the environment and to classify them.

The curves in Figure 3 show that the average number of fixed points in the
successful BN-robots increases with training and it consistently increases when
the more complex task has to be learned. Instead, the BN-robots of the other
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Fig. 3. Average number of fixed points as a function of learning algorithm’s iteration.
Averages are taken across three different behaviour classes: both class ↔ successful BN-
robots, pt class ↔ BN-robots able to perform phototaxis only, none class ↔ failing
BN-robots.

two classes maintain approximately the same number of fixed points along the
training.

3.3 Statistical Complexity

An analysis of the trajectories of a system may also be focused to capture a
further notable dynamical property, which is usually called statistical complex-
ity [3,7,8,15,20,27]. This quantity is aimed at estimating to what extent a sys-
tem works at the edge of order and disorder, i.e. in critical regime. Critical
regimes may provide an optimal trade-off between reliability and flexibility, i.e.
they make the system able to react consistently with the inputs and, at the same
time, capable to provide a sufficiently large number of possible outcomes. This
conjecture has been introduced with the expression “computation at the edge of
chaos” [4,13,18] and it is supported by results on different computational models
such as ε-machines [30], cellular automata [9], and neural networks of different
kinds [2,12,14].

A system that does not change in time (i.e. in the ordered regime), as well
as a system characterised by random behaviour (i.e. in the disordered regime)
should be evaluated with low complexity. High complexity is expected to char-
acterise systems in the critical regime accomplishing non trivial tasks. Several
measures have been proposed [20] to account for statistical complexity (SC), i.e.,
the algorithmic complexity of a program that reproduces the statistical proper-
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Fig. 4. Entropy of the BN controller as a function of the learning algorithm’s iteration.
Averages are taken across three different behaviour classes: both class ↔ successful BN-
robots, pt class ↔ BN-robots able to perform phototaxis only, none class ↔ failing
BN-robots.

ties of a system. In this light, the SC of both a constant and a random sequence
is low.

Among various measures of SC, we have chosen a simple yet effective one,
which is called LMC complexity, by the name of its inventors [15]. The idea is
rather simple: if we want the SC of a system to be high in intermediate regions
between order and disorder, we can define it as the product of a measure that
increases with disorder and another which decreases with it. The first measure
is the Shannon entropy, computed over the frequency of the states traversed by
the BN-robot. If the BN-robot traverses states x ∈ X with probabilities P (x)
estimated by means of their frequencies, the entropy is defined as:

H(X) = −
∑
x∈X

P (x) logP (x)

In the definition of H(X) we assume 0 log0 = 0.

The second measure contributing to SC is disequilibrium:

D(X) =
∑
x∈X

(
P (x) − 1

|X|
)2

The disequilibrium estimates the extent to which a system exhibits patterns
far from equidistribution. For example, if the trajectory of a system is composed
of only few of the possible states (e.g., a short cyclic attractor), then it has a
high disequilibrium.
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Fig. 5. Disequilibrium of the BN controller as a function of the learning algorithm’s
iteration. Averages are taken across three different behaviour classes: both class ↔
successful BN-robots, pt class ↔ BN-robots able to perform phototaxis only, none
class ↔ failing BN-robots.

Finally, the LMC complexity is defined as:

C(X) = H(X) · D(X)

A high entropy means that the sequences of states in the BN trajectories are
highly diversified. Conversely, a high disequilibrium among the states charac-
terises trajectories mostly composed of the repetition of few states. It is conjec-
tured that a complex system operates in a dynamical regime such that a balance
between these two quantities is achieved [15].

It is quite informing to separately observe the three measures, namely
entropy, disequilibrium and complexity. In Figure 4 the entropy of BN con-
trollers is shown along the adaptive process. As in previous graphs, the average
value for the three performance classes is plotted. Notably, the entropy of well
performing BN-robots decreases up to the fitness function change, providing
evidence that the adaptive process is successfully achieving generalisation of the
task. At iteration 5000, when the fitness function is change so as to include also
antiphototaxis, the entropy starts to increase as the BN is adapting to the new
task to be accomplished. The reason for this increase has to be ascribed to the
adaptive process which does not seem to be completed for all the best performing
BNs at the 10000th iteration. The entropy of BN robots that do not perform the
complete task shows instead a different behaviour, as it just slightly decreases
in the case of BN-robots performing phototaxis only, while it even increases for
the worst performing BN-robots.
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Fig. 6. Complexity of the BN controller as a function of the learning algorithm’s itera-
tion. Averages are taken across three different behaviour classes: both class ↔ successful
BN-robots, pt class ↔ BN-robots able to perform phototaxis only, none class ↔ failing
BN-robots.

Disequilibrium shows a complementary behaviour with respect to entropy,
as illustrated by Figure 5. Finally, as shown in Figure 6, the complexity of the
successful BN-robots increases steadily during the training process, whilst it is
almost constant for the unsuccessful ones. This result supports the conjecture
that complexity characterises systems that perform non-trivial tasks [4,15]. Nev-
ertheless, this point deserves further investigations, especially to be compared
with previous work on similar subjects [5,10] in which the relation between fit-
ness and complexity is addressed.

4 Conclusion and Future Work

The main finding of the analysis of the trajectories of BN-robots is that the
networks that optimally balance robustness and evolvability are characterised
by generalisation capability and high statistical complexity of their trajectories.
Even if preliminary, these results suggest that also artificial systems that has to
cope with changing environments may have an advantage in enjoying the same
properties. In the settings in which this hypothesis turned out to hold, additional
information for both training and analysing these systems would be available.
In particular, the evaluation of features such as fixed points and complexity may
be profitably incorporated into the objective function of the adaptive process,
with the goal of guiding it towards high performing networks.

Conversely, experiments on simple artificial systems provide a controlled envi-
ronment for studying general properties of living systems. The use of BNs and
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their trajectories make it possible to link results in digital worlds with biological
ones, as these models have been proven to capture relevant biological phenom-
ena.

The results presented in this paper concern preliminary experiments on the
subject, which may be further investigated in several directions. The robust-
ness of the results against changes in the search strategy and input and output
encoding should be assessed.

In the next future, we plan to investigate the relation between complexity
measures and performance of BN-robots in noisy and varying environments.
First of all, this is expected to provide guidelines for the automatic design of
truly adaptive robotic systems; furthermore, we aim at contributing elucidate
the elusive interplay among complexity, robustness and evolvability.

Acknowledgments. We thank the anonymous referees who carefully read the paper
and provided pertinent and valuable suggestions for preparing this final version.
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