Enriching a Temporal Planner with Resources
and a Hierarchy-Based Heuristic

Alessandro Umbrico’ ™), Andrea Orlandini?, and Marta Cialdea Mayer'

! Dipartimento di Ingegneria, Universita degli Studi Roma Tre, Roma, Italy
alessandro.umbrico@uniroma3.it
2 Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle
Ricerche, Roma, Italy

Abstract. A key enabling feature to deploy a plan-based application
for solving real world problems is the capability to integrate Planning
and Scheduling (P&S) in the solving approach. Flexible Timeline-based
Planning has been successfully applied in several real contexts to solve
P&S problems. In this regard, we developed the Eztensible Planning and
Scheduling Library (EPSL) aiming at supporting the design of P&S appli-
cations. This paper describes some recent advancements in extending the
EPpsL framework by introducing the capability to reason about different
types of “components”, i.e., state variables and renewable resources, and
allowing a tight integration of Planning and Scheduling techniques. More-
over, we present a domain independent heuristic function supporting the
solving process by exploiting the hierarchical structure of the set of time-
lines making up the flexible plan. Some empirical results are reported to
show the feasibility of deploying an EPSL-based P&S application in a
real-world manufacturing case study.

1 Introduction

The Timeline-based planning approach has been successfully applied in several
real world scenarios, especially in space like contexts [1-3]. Besides these appli-
cations, several timeline-based Planning and Scheduling (P&S) systems have
been deployed to define domain specific applications, see for example EUROPA
[4], IXTET [5], APSI-TRF [6]. However, despite their practical success, these
systems usually entails the development of applications closely connected to the
specific domain they are made for. As a consequence, it is not straightforward
to adapt these applications to domains requiring different solving capabilities
and thus, it is often necessary to define new solvers somehow loosing “past
experiences”. To address the above issue, a research initiative has been started
to develop a domain independent Fxtensible Planning and Scheduling Library
(EpsL) [7]. EPSL aims at defining a modular and extensible software environ-
ment to support the development of timeline-based applications. The structure
of EpPSL allows to preserve “past experiences” by providing a set of ready-to-use
algorithms, strategies and heuristics that can be combined together. In this way,
it is possible to develop/evaluate several solving configurations in order to find
the one which best fits the features of the particular domain to be addressed.

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT¥IA 2015, LNAI 9336, pp. 410-423, 2015.
DOI: 10.1007/978-3-319-24309-2_31

Enriching a Temporal Planner with Resources 411

In this paper two enhancements of the EPSL framework are presented. First,
the possibility to model and manage renewable resources is introduced in the
framework. Briefly, a renewable resource is a shared component having a lim-
ited capacity, that is however not consumed by the processes using it: when it
is released, it returns to its full capacity. Examples of renewable resources are
the memory of a software device or a machine that can process a limited num-
ber of pieces at a time. Renewable resources allow the planning framework to
model more realistic domains. Secondly, a domain independent heuristic func-
tion is defined exploiting the structure of the timelines and the dependencies
among them induced by the rules constraining the domain. Such a structure
conveys important information that can be used to improve the performances of
the planner. It is worth pointing out that domains modeled following a hierar-
chical approach often exhibit this kind of structure of the system components.
An experimental evaluation on problem domains derived from a real-world man-
ufacturing context are finally presented to assess the deployment of the above
mentioned heuristic.

2 Timeline-Based Planning in a Nutshell

Timeline-based planning has been introduced in early 90s [1] and several for-
malizations have been proposed for this approach [8-10]. The timeline-based
approach takes inspiration from control theory. It models a complex domain by
identifying a set of relevant features that must be controlled over time. Domain
features are modeled by means of state variables, a set of rules that “locally”
constrains the temporal evolutions of related features and describing the allowed
sequence of values/states a feature can assume over time. Domain features are
further constrained by means of synchronization rules, i.e. a set of “global”
constraints that allow one to coordinate different features in order to obtain
consistent behaviors of the overall system. A timeline-based planner uses these
rules (called domain theory) to build timelines for domain features. A timeline
is a sequence of valued temporal intervals, called tokens, each of which specifies
the value assumed by the state variable in that interval. So, a timeline describes
the temporal evolution/behavior of the related feature over time. The start and
end points of the tokens making up a flexible timeline are temporal intervals
instead of exact time points [8]. A flexible timeline represents an envelope of
possible evolutions of the associated feature that can be exploited by an execu-
tive system for a robust online execution of the plan [11,12]. Flexible Timeline-
based Planning usually follows a partial order planning approach starting from a
set of partially defined timelines (i.e. the initial planning problem) and building
(if possible) a set of completely instantiated timelines (i.e. a solution plan) within
a given temporal horizon.

2.1 A Hierarchical Modeling Approach

This section is devoted to briefly present a general methodology, often used
when modeling a domain in the timeline-based style. This approach generates a

412 A. Umbrico et al.

structure in the model which can be exploited during the solving process. The
essential of the methodology is a decomposition analysis (like in [13,14]), aiming
at identifying the “relevant” features (system’s components) that independently
evolve over time. A generic component is then described by a set of activities
to carry out and the logical states the system can assume coupled with related
timing and causal constraints, i.e. temporal durations as well as allowed state
transitions. This approach results in a hierarchical model of the domain, with
higher level components abstracting away from the internal structure of the
system to be controlled. While deepening the analysis into details, the concrete
features of the system are represented.

The modeling approach described here usually identifies three relevant classes
of components [15]: (i) functional, (ii) primitive and (iii) external components.
A functional component provides a logical view of the system as a whole in
terms of what the system can do notwithstanding its internal composition.
It models the high-level functionalities the system is able to perform. A primitive
component provides a logical view of a particular element composing the sys-
tem. Usually, values of such a component correspond to concrete states/actions
the related element is able to assume/execute in the environment. Finally, an
external component provides a logical view of elements whose behaviors are not
under the control of the system but affect the execution of its functionalities.
They model conditions that must hold in order to successfully perform internal
activities. In addition to the description of single state variables, their behav-
iors are to be further constrained by specifying inter-components causal and
temporal requirements (called synchronization rules in the timeline-based app-
roach) allowing the system to coordinate its sub-elements while safely realizing
complex tasks. In this regard, following a hierarchical approach, such rules map
the high-level functionalities of the system into a set of activities on primitive
and/or external components enforcing operational constraints that guarantee
the proper functioning of the overall system and its elements. Namely, synchro-
nizations allow to specify how the high-level functionalities, modeled by means of
functional components, are related to the primitive and external components of
the domain. The synchronization rules of the domain often reflect the hierarchy
of the system components: the values of a higher level (more abstract) state vari-
able are constrained to occur while suitable values are assumed by corresponding
lower level ones, modeling its more concrete counterparts.

3 The Extensible Planning and Scheduling Library

EPsL is a layered framework built on top of APSI-TRF!, it aims at defining
a flexible software environment for supporting the design and development of
timeline-based applications. The key point of EPSL flexibility is its interpreta-
tion of a planner as a “modular” solver which combines together several elements

! Apsi-TRF is a software framework developed for the European Space Agency by
the Planning and Scheduling Technology Laboratory at CNR (in Rome, Italy) for
supporting the design and deployment of timeline-based P&S applications.

Enriching a Temporal Planner with Resources 413

to carry out its solving process. The main components of the EPSL architec-
ture are the following. The Modeling layer provides EPSL with timeline-based
representation capabilities. It allows to model a planning domain in terms of
timelines, state variables, synchronizations and to represent flexible plans. The
Microkernel layer is the key element which provides the framework with the
needed flexibility to “dynamically” extend the framework with new elements.
It is responsible to manage the lifecycle of the solving process and the elements
composing the application instances (i.e. the planners). The Search layer and
the Heuristics layer are the elements responsible for managing strategies and
heuristics a planner can use during the solving process to support the search.
The Engine layer is the element responsible for managing the portfolio of algo-
rithms, called resolvers, available. Resolvers characterize the expressiveness of
EpsL-defined planners. Namely they define what a planner can actually do to
solve problems. Finally the Application layer is the top-most element which
carries out the solving process and finds a solution if any.

3.1 The Epsl Solving Procedure

The solving procedure of a generic EPSL-based planner is described in
Algorithm 1. It consists in a plan refinement procedure which iteratively refines
a plan 7 by detecting and solving conditions, called flaws, that affect the com-
pleteness and/or consistency of . EPSL instantiates the planner solving process
over the tuple (P,S,H,E) where P is the specification of a timeline-based prob-
lem to solve, § is the search strategy the planner uses to expand the search
space, H is the heuristic function the planner uses to select the most promising
flaw to solve, and £ is a set of resolvers the planner uses to detect flaws of the
plan and compute their solutions.

Algorithm 1. solve(P,S,H, &)

1: // initialize search

2: 7 « Initial Plan (P)

3: fringe — 0

4: // check if plan is complete and flaw-free
5: while ~IsSolution (w) do

6: @ «— DetectFlaws(r, E)

g // check the set of flaws

if & # (then

: // select the most promising flaw to solve
10: ¢ — SelectFlaw (P, H)
11: // call resolver to detect flaws and compute solutions
12: for resv € £ do
13: nodes «— HandleFlaw (¢, resv)
14: // expand the search with possible plan refinements
15: fringe «— Enqueue (nodes, S)
16: // check fringe
17: if fringe = () then
18: // unsolvable flaws
19: return Failure
20: // go on with search - backtracking point
21: 7w « GetPlan (Dequeue (fringe))

22: // get solution plan
23: return w

414 A. Umbrico et al.

The plan 7 is initialized on the problem description P (row 2) and then the
procedure iteratively refines the plan until a solution or a failure is detected
(rows 5-21). Plan refinement consists in detecting flaws and compute their solu-
tions by means of resolvers £ (rows 6-15). Given a set of flaws @ of the plan, the
most promising flaw ¢ to solve is selected according to heuristic H (row 10) and
then resolvers compute possible solutions. Each solution represents a possible
refinement of the current plan so a new branch of the search space is created for
each of them and the resulting node is added to the fringe according to S (row
15). The search goes on until a plan with no flaws is found, i.e. a solution plan
(row 5). However if the fringe is empty (rows 17-19) this means that there are
unsolvable flaws in the plan, then the procedure returns a failure.

Algorithm 1 depicts a standard search procedure. It is important to point out
that the particular set of resolvers £, the strategy S and the heuristic H used can
strongly affect the behavior and the performance of the solving process. Resolvers
are the architectural elements allowing a planner instance to actually build the
plan. A resolver encapsulates the logic for detecting and solving specific type of
flaws. The greater is the number of available resolvers the greater is the number
of flaw types an EPSL-based planner can handle. The set of available resolvers
determine the “expressiveness” of the framework, i.e. the type of problems EPsL
can solve. Broadly speaking a flaw represents a particular condition to solve
for building a consistent and complete plan. It is possible to identify two main
classes of flaws: (i) goals, flaws affecting the completion of a plan; (ii) threats,
flaws affecting the consistency of a plan.

At any iteration of Algorithm 1 the refinement procedure detects the flaws of
the current plan (row 6) and selects the most “promising” flaw to solve accord-
ing to the heuristic H (row 10). Flaw selection is not a backtracking point of
the search but it can strongly affect the performance of the solving procedure. A
“good” choice of the next flaw to solve, indeed, can prune the search space by cut-
ting off branches that would not bring to solutions. The heuristic H encapsulates
the policy used by the planner to analyze and select plan flaws. In this regards
EpPsL framework allows an application designer either to develop a heuristic
exploiting some domain-specific knowledge of the domain or develop a domain-
independent heuristic to address different domains.

These elements represent the main flexibility features of the framework. Here
is where users can focus their development efforts in order to customize EPSL-
based applications for the particular problem to address. As a matter of fact EPSL
architecture allows to easily extend the solving capabilities of the framework by
integrating new implementations of the elements described above.

3.2 Integrating Resources

One of the contribution of the paper is the introduction of renewable resources
to extend EPSL modeling capabilities. A renewable resource is a shared element
of the domain needed during the execution of an action but is not consumed.
The resource maximum capacity C limits the number of activities that can con-
currently require the resource. The access to the resource must be properly

Enriching a Temporal Planner with Resources 415

managed in order to satisfy its capacity constraint. Namely the amount of
resource requirements of concurrent activities must not exceed the resource
capacity C. EPSL has been extended with the introduction of a new component
type for modeling renewable resources. A component of this type specifies the
capacity C of the resource, and requirement activities are temporally qualified
by means of tokens specifying the used amount of the resource. The consump-
tion profile of the resource is constituted by the set of tokens making use of it.
Obviously, the total amount of resource used by overlapping tokens must not
exceed its maximal capacity.

The EpPsL framework has been extended with the introduction of a dedicated
resolver for detecting and solving flaws concerning the management of renew-
able resources. The resolver must schedule requirement tokens by detecting and
solving peaks on the resource consumption profile. A peak is detected every
time the total amount of resource required by a set of (temporally) overlapping
tokens is higher then the capacity C. The peak is resolved by posting precedence
constraints between particular subsets of activities, called Minimal Critical Sets
(MCSs). A subset of activities of a peak is an MCS if a precedence constraint
between any pair of these activities removes the peak. The resolver has been
implemented by adapting to timelines the algorithms described in [16].

3.3 Integrating Heuristics

The flaw selection heuristic H is the element supporting the flaw selection step
(row 10) of the plan refinement procedure. At any iteration of Algorithm 1 the
planner must select the next flaw to refine the plan. If no heuristic is given, all
the flaws detected are “equivalent” and the planner can only make a random
choice. Namely there is no information characterizing the importance of the
flaws. However, the flaws of a plan can often have dependencies: solving a flaw can
solve or simplify the solution of other related flaws. Therefore it is important to
make “good” choices in order to reduce the number of refinement steps needed to
build the plan. Bad choices, indeed, may bring to an inefficient solving procedure.
A flaw selection heuristic H provides a criterion the planner can use to identify
the most relevant to handle.

The Hierarchical Flaw-selection Heuristic (HFH) is an evaluation criterion
relying on the hierarchical structure of timeline-based plans. Timelines may be
related one to the other by synchronization rules. Given two timelines A and
B, a synchronization S4 g from timeline A to timeline B, typically implies a
dependency of B from A. Namely, the presence of some token on the timeline
B is due to the need of synchronizing with some other token on the timeline A.
Therefore, analyzing synchronization rules it is possible to build a dependency
graph (DG) of the timelines. Figure 1 shows a set of timelines with synchro-
nization rules (the arrows connecting the timelines) and the resulting DG where
nodes are timelines and edges are synchronization rules. A hierarchy describing
relationships among timelines can be extracted from the obtained DG. An edge
from a node A to a node B in the DG represents a dependency between the
two corresponding timelines. Thus the hierarchical level of the timeline A is not

416 A. Umbrico et al.

lower than the hierarchical level of B; if moreover no path connects B to A,
A is at a higher level in the hierarchy, i.e. it is more independent than B. If
a timeline A depends from B and vice-versa (i.e. A and B are contained in a
looping path in the DG), then A and B have the same hierarchical level, and
they are said to be hierarchically equivalent. In general, if the DG has a root, i.e.
a node with only outgoing edges, it represents the most independent timeline of
the hierarchy. For instance, the hierarchy extracted from the DG in Figure 1 is
A< B < Cand B < D, while C' and D are hierarchically equivalent, so A is
the most independent timeline while C' and D are the less independent ones.
Usually, the DG resulting from a plan-

ning domain built by applying the mod- Limeline

eling approach described in section 2.1 Tmeline B

generates a non-flat hierarchy (sometimes

even an acyclic graph) that can be suc- M

cessfully exploited by the HFH. Obviously, E—

if a domain has no hierarchical structure,

then the HFH heuristic gives no meaning- @ DEPENDENCY
ful contribution. The hierarchy feature of GRAPH

a flaw corresponds to the “independence” Sas 3 Sep b
level of the timeline it belongs to. The A) Sec Soc
idea is to exploit this hierarchy and select Sac ’ Sco
first flaws belonging to the most indepen- €

dent timeline. The underlying assumption
is that the flaws influence is related to
the corresponding timeline independence
level. Consequently if “independent” flaws are solved first, i.e. flaws detected on
one of the topmost timelines in the hierarchy, then we have a good probabil-
ity to “automatically” solve or reduce the possible solutions of the “dependent”
flaws. Flaw-level reasoning allows the solving process to integrate planning and
scheduling steps. This means that at any point in the solving process the planner
can make a planning choice by selecting a goal to solve, or a scheduling choice
by selecting a scheduling threat to solve, and so on. Similarly to timelines we
can give a “structure” to the solving process by assigning a priority to solving
steps. Namely we define the type feature of flaws and select flaws according to
their type. For example we can decide to solve first goals and then scheduling
threats in order to force the solving process to take planning decisions before
scheduling ones. In addition to the above features we can also specify the degree
feature of a flaw which characterizes the criticality of a flaw. Similarly to the fail
first principle in constraint satisfaction problems, the degree of a flaw is a mea-
sure of the number of solutions available to solve it. The lower is that degree,
the higher is the criticality of the flaw, i.e. few options to solve the flaw. We
use this feature to assign an higher priority to flaws with less possible solutions
(i.e. more difficult to solve).

The Hierarchical Flaw-selection Heuristic (HFH) we have defined, combines
together all the features described of the flaw in order to make the “best” choice

Fig. 1. A Dependency Graph example
based on synchronizations.

Enriching a Temporal Planner with Resources 417

for selecting the next flaw to solve during the solving process. Given a set of flaws
@ detected on a current plan 7, HFH selects the best flaw to solve by applying a
pipeline of filters that evaluate flaws according by considering the above features
as follows:

@0 (m) I (1) L @2(n) L B3(n) — 6% € B3 ()

Every filter of the pipeline (f, f; and f;) filters plan flaws by taking into one
of flaw feature described. Thus, the initial set of plan flaws @°(7) is filtered by
applying the filter fj, which returns the subset of flaws ®!(r) C ®°(r) belonging
to the most independent timelines. If no hierarchical structure can be found
among domain timelines, then the filter f;, returns the initial set of flaws @!(7) =
@O(r), i.e. flaws are equivalent w.r.t. hierarchy feature. The filter f; filters the
set of flaws @!(7) by taking into account the type feature of the flaws, e.g. f;
returns the subset of flaws containing only goals ®2(7) C ! (7). Finally the filter
fa filters the set of flaws @2 () by taking into account the degree feature of flaws
and returns the final set #*(w) C &2(w). The final set of flaws &3(7) C @%(7)
which results from the application of the pipeline, represents equivalent choices
w.r.t. the heuristic point of view. Therefore HFH chooses the next flaw to solve
¢* by randomly selecting a flaw from the final set @3(7) the next flaw to solve
is randomly selected from the final set ¢* € &3 ().

4 Applying Flexible Timeline-based Planning to a
Manufacturing Case Study

As a running example, let us consider a pilot plant from the on-going research
project Generic Evolutionary Control Knowledge-based mOdule (GECKO): a
manufacturing system for Printed Circuit Boards (PCB) recycling [17]. The
objective of the system is to analyze defective PCBs, automatically diagnose
their faults and, depending on the gravity of the malfunctions, attempt an auto-
matic repair of the PCBs or send them directly to shredding. The pilot plant
contains 6 working machines that are connected by means of a Reconfigurable
Transportation System (RTS), composed of mechatronic components, i.e., trans-
portation modules. Figure 2(a) provides a picture of a transportation module.
Each module combines three transportation units. The units may be unidirec-
tional and bidirectional units; specifically the bidirectional units enable the lat-
eral movement (i.e., cross-transfers) between two transportation modules. Thus,
each transportation module can support two main (straight) transfer services
and one-to-many cross-transfer services. Figure 2(b) depicts two possible config-
urations.

Configuration 1 supports the forward (F) and backward (B) transfer capa-
bilities as well as the left (LC1) and right (RC1) cross transfer capabilities.
Configuration 2 extends Configuration 1 by integrating a further bidirectional
transportation unit with cross transfer capabilities LC2 and RC2. The maximum
number of bidirectional units within a module is limited just by its straight length

418 A. Umbrico et al.

CONFIGURATION 1

CONFIGURATION 2

Fig. 2. (a) A transportation module; (b) Their transfer services.

(three, in this particular case). The transportation modules can be connected
back to back to form a set of different conveyor layouts. The manufacturing
process requires PCBs to be loaded on a fixturing system (pallet) in order to
be transported and processed by the machines. The transportation system is to
move one or more pallets and each pallet can be either empty or loaded with a
PCB to be processed. Transportation modules control systems have to cooperate
in order to define the paths the pallets have to follow to reach their destinations.

The description of the distributed architecture and some experimental results
regarding the feasibility of the distributed approach w.r.t. the part routing prob-
lem can be found in [18,19]. Transportation Modules (TMs) rely on P&S tech-
nology to synthesize activities for supporting the work flow within the shop floor.
Each TM agent is endowed with a Timeline-based planner (build on top of EpsL
framework) to build plans for the transportation task.

4.1 The Gecko Timeline-Based Model

Figure 3 shows the timeline-based model of a generic transportation module (TM)
of the GECKO case study. The timeline-based model has been defined by applying
the modeling approach described in 2.1. Namely, a functional state variable
Channel represents the high level transporting tasks of a TM. Each value of the
Channel state variable models a particular transportation task indicating the
corresponding input and output port of the module. For instance, Channel F_B
models the task of transporting a pallet from port-F to port-B w.r.t. Figure 2(b).

The Change-Over component is a primitive state variable which models the
set of internal configurations the transportation module can assume for exchang-
ing pallets with other modules. Namely configurations identify the internal paths
a pallet can follow to traverse the module. For instance, CO_F_B in Figure 3 rep-
resents the configuration needed for transporting a pallet from port F to port B.
The Energy-Consumption element in Figure 3 is a renewable resource component

Enriching a Temporal Planner with Resources 419

/ Channel_F_B N
/ N
/ Channel

\ S e \
/ ¥ Channel_R1_L3)1 l_lj—l_ ‘\‘
[Cidle s i \
L & S 1
N~ ¢ Channel_B_F VA / '

A
A
1
1
1
TN [
FUNCTIONAL " __.=" \ 3
- \ CO_R1L1 !
\ CO_R3L3 i
A
1 1
\ CO_FB ,,'
Available) Not \ A i
“ "\ Available v Change-Over . !
Neighbor-F \ 9 Changing Vi
i /
Neighbor-8 Neighbor-L H s
eighbor Neighbor-& eighbor J prmwimve L

EXTERNAL

-
=

Fig. 3. Timeline-based model for a full instantiated TM

which models the energy consumption profile of a TM of the plant. A system
requirement entails that the instant energy consumption of TMs cannot exceed
a predefined limit for the physical device. This requirement is modeled by means
of synchronization rules between the functional state variable and the renewable
resource. These rules specify the energy consumption estimate for each functional
activity of the module. For example, the maximum instant energy consumption
allowed is 10 units, that Channel_F_B activity consumes 9 units of energy during
its execution, Channel_.L1_R1, Channel_.L2_R2, Channel L3-R3 consume 3 units
of energy during their execution and so on. Therefore the planner must schedule
functional activities satisfying the energy consumption constraint.

A set of external state variables complete the domain by modeling possible
states of TM’s neighbor modules. Neighbors are modeled by means of external
state variables because they are not under the control of the module. Namely, the
TM cannot decide the state of its neighbors. However it is important to monitor
their status because a TM must cooperate with them in order to successfully
carry out its tasks. For instance the TM must cooperate with Neighbor_F and
Neighbor_B to successfully perform a Channel F_B task. Therefore Neighbor_F
and Neighbor_B must be Awvailable during task “execution”.

Finally a set of synchronization rules specify how a TM implements its chan-
nel tasks (see the dotted arrows in Figure 3). According to the modeling app-
roach described in 2.1, the synchronization specification follows a hierarchical
decomposition. In this way they allow to specify a set of operative constraints
(e.g. temporal constraints) describing the sequence of internal configurations
and “external” conditions needed to safely perform channel tasks. For instance,

a synchronization rule for the Channel_F_B task requires that the module must

be set in configuration CO_F_B and that neighbor F and neighbor B must be
Awailable during the “execution” of the task.

420 A. Umbrico et al.

4.2 Experimental Evaluation

We have defined a set of timeline-based planning domain variants for the GECKO
case study in order to evaluate EPSL solving capabilities. In particular we have
modelled a generic TM in the plant considering several configurations in order to
define scenarios of growing complexity. We have assumed that module’s neighbor
agents are always available and vary the number of cross transfers composing
the module: (i) simple is the configuration with no cross transfers; (ii) single is
the configuration with only one cross transfer; (iii) double is the configuration
with two cross transfer; (iv) full is the configuration with three cross trans-
fers (the maximum allowed w.r.t. the plant in our case study 4). The higher is
the number of available cross transfers, the higher the number of elements and
constraints the planner has to deal with at solving time. Moreover, we defined
several EPSL-based planners by varying the heuristic function applied during the
solving process: (i) The HFH planner uses HFH; (ii) The TFS planner uses a
heuristic based only on the Hy; feature; (iii) The T'LF'S planner uses a heuristic
based only on the H ¢, feature; (iv) The DFS planner uses a heuristic based only
on the Hyq feature; (v) The RFS planner uses no heuristics at all, i.e. it makes
a random selection of the best flaw to solve.

eGuoHFS emTFS TLFS

o
®
3
[
5 5 o &
s 38 33

B
5]
3
=
S
s

Solving time (in seconds)
Solving time (in seconds)

NM
853
i
[
]
!
]
!
,
&j
5
o® 58

o
3

)/f 7t

g O
4 s & 7 8 9 10 T 3 4 5 6 7 8 9 10

number of goals number of goals

(a) (b)

2

PR e
5 5 o ®
S s 383
Boe e e
5 5 o &
s 8 383

=
5]
]

Solving time (in seconds)
o
5
8

Solving time (in seconds)

N B o ®
S s 383
i
&
N B oo ®
s 8 33

H
~
w
IS
«»
£
<
®
©
5
=1

number of goals number of goals

(c) (d)

Fig. 4. EpsL-based planners performances on: (a) simple configuration; (b) single con-
figuration; (c) double configuration; (d) full configuration

o
S

wl

Enriching a Temporal Planner with Resources 421

The charts in Figure 4 show the solving time trends of the EPSL-based plan-
ners (within a timeout of 180 seconds) w.r.t. the growing dimension of the plan-
ning problem (i.e. a growing number of goals) and the growing complexity of the
module to control (i.e. the number of available cross transfers). The results show
that the HFH planner is dominating other planners on the considered planning
domains. Comparing the TFS planner (the original EPSL planner setting we
used before the introduction of the timeline hierarchy) with the HFS planner,
the deployment of HFH entails a general improvement of performance in terms
of both solving times and scalability of the solving capacity of EPSL framework.
The results concerning the DFS planner and the RFS one are not plotted in
Figure 4 because these planners could not solve but the simpler cases.

It is worth pointing out that the TFS planner outperforms the HFH plan-
ner only in the simple domain, see Figure 4(a). This seems a consequence of
the fact that the TFS planner maintains a “global” vision of the activities to
be performed during the solving process thus reasoning about the overall plan
and taking into account all the timelines together. In the simple domain, the
TM can perform channel tasks only towards two directions (Channel F_B and
Channel_B_F'). Therefore, when building the plan, the planner can more suitably
organize the tasks in order to reduce the number of reconfigurations of the mod-
ule (i.e. change overs). Namely, that planner is able to “group” channel tasks
requiring the same configuration of the module (e.g. scheduling all the Chan-
nel_F_B tasks before Channel_B_F tasks). This allows the planner to reduce the
number of plan decisions simplifying its construction in the simple domain.

Conversely, the HFS planner maintains a “local” vision related to the single
timelines of the domain because it builds one timeline at a time. Therefore, when
that planner must manage the needed reconfiguration of the module (i.e. flaws
on Change Over timeline), its choices are partially constrained by the channel
timeline which has been built before the Change Over timeline following the
timeline hierarchy. As a consequence, the planner is not able to organize tasks
as in the case of TFS but it has to manage a larger number of tokens on the
timeline at this point. However the HF'S planner scales better than the TFS
with the growing complexity of the domain as Figure 4 shows.

5 Conclusions and Future Works

In this paper we have presented some recent advancements in the development
of the EPSL framework. In particular, EPSL has been extended in two different
aspects by introducing: (i) The capability of modeling and reasoning about renew-
able resources; (ii) The HFH heuristic to support the solving process. Finally, some
experimental results have been reported in order to show the feasibility of EPSL-
based planners when deployed to a real world domain. The comparison of EPSL
with different timeline-based P&S systems (e.g. EUROPA), the possibility to fur-
ther extend the framework by integrating different type of resources (i.e., consum-
able resources) and the definition of new heuristics or improving HFH constitute
future works in our research agenda. Moreover, one additional long-term research

422 A. Umbrico et al.

goal is to identify a set of quality metrics to characterize flexible timeline-based
plans and, thus, exploit such metrics in order to generate better plans.

Acknowledgments. Andrea Orlandini is partially supported by the Italian Ministry
for University and Research (MIUR) and CNR under the GECKO Project (Progetto
Bandiera “La Fabbrica del Futuro”).

References

1. Muscettola, N.: HSTS: integrating planning and scheduling. In: Zweben, M.,
Fox, M.S. (ed.) Intelligent Scheduling. Morgan Kauffmann (1994)

2. Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in inter-
planetary space: theory and practice. In: Proceedings of the Fifth Int. Conf. on Al
Planning and Scheduling. AIPS-00, pp. 177-186 (2000)

3. Cesta, A., Cortellessa, G., Denis, M., Donati, A., Fratini, S., Oddi, A., Policella,
N., Rabenau, E., Schulster, J.: MEXAR2: AI Solves Mission Planner Problems.
IEEE Intelligent Systems 22(4), 12-19 (2007)

4. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P.,
Ong, J., Remolina, E., Smith, T., Smith, D.: EUROPA: a platform for AI planning,
scheduling, constraint programming, and optimization. In: 4th Int. Competition on
Knowledge Engineering for P&S (ICKEPS) (2012)

5. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal plan-
ner. In: Proc. of the International Conference on AI Planning Systems (AIPS),
pp. 61-67 (1994)

6. Cesta, A., Fratini, S.: The timeline representation framework as a planning and
scheduling software development environment. In: Proc. of the 27th Workshop of
the UK Planning and Scheduling Special Interest Group (PlanSIG-08) (2008)

7. Cesta, A., Orlandini, A., Umbrico, A.: Toward a general purpose software envi-
ronment for timeline-based planning. In: 20th RCRA International Workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial
Explosion (2013)

8. Cialdea Mayer, M., Orlandini, A., Umbrico, A.: A formal account of planning with
flexible timelines. In: The 21st International Symposium on Temporal Represen-
tation and Reasoning (TIME), pp. 37-46. IEEE (2014)

9. Cimatti, A., Micheli, A., Roveri, M.: Timelines with temporal uncertainty. In: Proc.
of the 27th AAAI Conference on Artificial Intelligence. AAATI Press (2013)

10. Cialdea Mayer, M., Orlandini, A.: An executable semantics of flexible plans in
terms of timed game automata. In: The 22st International Symposium on Temporal
Representation and Reasoning (TIME). IEEE (to appear 2015)

11. Orlandini, A., Suriano, M., Cesta, A., Finzi, A.: Controller synthesis for safety criti-
cal planning. In: 25th International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 306-313. IEEE (2013)

12. Py, F., Rajan, K., McGann, C.: A systematic agent framework for situated
autonomous systems. In: Proc. of the 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS-10) (2010)

13. Bernardini, S.: Constraint-based Temporal Planning: Issues in Domain Modelling
and Search Control. Ph.D. thesis, Universita degli Studi di Trento (2008)

14. Fratini, S., Pecora, F., Cesta, A.: Unifying Planning and Scheduling as Timelines
in a Component-Based Perspective. Archives of Control Sciences 18(2) (2008)

15.

16.

17.

18.

19.

Enriching a Temporal Planner with Resources 423

Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: An ontology-based domain repre-
sentation for plan-based controllers in a reconfigurable manufacturing system. In:
The 28th International FLAIRS Conference. AAAI (2015)

Cesta, A., Oddi, A., Smith, S.F.: A Constraint-based method for Project Schedul-
ing with Time Windows. Journal of Heuristics 8(1), 109-136 (2002)

Borgo, S., Cesta, A., Orlandini, A., Rasconi, R., Suriano, M., Umbrico, A.: Towards
a cooperative -based control architecture for a reconfigurable manufacturing plant.
In: 19th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2014). IEEE (2014)

Carpanzano, E., Cesta, A., Orlandini, A., Rasconi, R., Valente, A.: Intelligent
dynamic part routing policies in plug&produce reconfigurable transportation sys-
tems. CIRP Annals - Manufacturing Technology 63(1), 425-428 (2014)
Carpanzano, E., Cesta, A., Orlandini, A., Rasconi, R., Suriano, M., Umbrico, A.,
Valente, A.: Design and implementation of a distributed part-routing algorithm
for reconfigurable transportation systems. International Journal of Computer Inte-
grated Manufacturing (2015)

	Enriching a Temporal Planner with Resources and a Hierarchy-Based Heuristic
	1 Introduction
	2 Timeline-Based Planning in a Nutshell
	2.1 A Hierarchical Modeling Approach

	3 The Extensible Planning and Scheduling Library
	3.1 The Epsl Solving Procedure
	3.2 Integrating Resources
	3.3 Integrating Heuristics

	4 Applying Flexible Timeline-based Planning to a Manufacturing Case Study
	4.1 The Gecko Timeline-Based Model
	4.2 Experimental Evaluation

	5 Conclusions and Future Works
	References

