
Graph-Based Task Libraries for Robots:
Generalization and Autocompletion

Steven D. Klee1, Guglielmo Gemignani2(B), Daniele Nardi2,
and Manuela Veloso1

1 Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213, USA
{sdklee,veloso}@cmu.edu

2 Department of Computer, Control, and Management Engineering
“Antonio Ruberti”, Sapienza University of Rome, Rome, Italy

{gemignani,nardi}@dis.uniroma1.it

Abstract. In this paper, we consider an autonomous robot that persists
over time performing tasks and the problem of providing one additional
task to the robot’s task library. We present an approach to generalize
tasks, represented as parameterized graphs with sequences, conditionals,
and looping constructs of sensing and actuation primitives. Our approach
performs graph-structure task generalization, while maintaining task exe-
cutability and parameter value distributions. We present an algorithm
that, given the initial steps of a new task, proposes an autocompletion
based on a recognized past similar task. Our generalization and auto-
completion contributions are effective on different real robots. We show
concrete examples of the robot primitives and task graphs, as well as
results, with Baxter. In experiments with multiple tasks, we show a sig-
nificant reduction in the number of new task steps to be provided.

1 Introduction

Different mechanisms enable robots to perform tasks, including directly program-
ming the task steps; providing actions, state, goals or rewards, and a planning
algorithm to generate tasks or policies; and instructing the tasks themselves in
some representation. In this work, we consider tasks that are explicitly provided
and represented in a graph-based task representation in terms of the robot’s
sensing and actuation capabilities as parameterized primitives.

We address the problem of efficiently giving an additional task to a robot that
has a task library of previously acquired tasks. We note that just by looking at
a robot, one does not know the tasks the robot has already acquired and can
perform. The new task may be a repetition, or a different instantiation, or be
composed of parts of other known tasks. Our goal is to enable the robot to recog-
nize when the new task is similar to a past task in its library, given some initial
steps of the new task. Furthermore, the robot recommends autocompletions of

S.D. Klee and G. Gemignani—The first two authors have contributed equally to this
paper.

c© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AI*IA 2015, LNAI 9336, pp. 397–409, 2015.
DOI: 10.1007/978-3-319-24309-2 30



398 S.D. Klee et al.

the remaining parts of the recognized task. The robot recommendations include
proposed parameter instantiations based on the distribution of the previously
seen instantiated tasks.

The contributions of the work consist of the introduction of the graph-based
generalized task representation; the approach to determine task similarity in
order to generate a library of generalized tasks; and the algorithm for recognition
of the initial steps of an incrementally provided task, and for proposing a task
completion. The task and the generalized tasks are represented as a graph-based
structure of robot action primitives, conditionals, and loops.

For generalizing graph-based tasks, and since the general problem of finding
labeled subgraph isomorphisms is NP-hard, our approach includes performing
subtree mining in a unique spanning tree representation for each graph. The
tree patterns, which are executable by the robot and frequent, are added to the
library. The saved patterns are generalized over their parameters, while keeping
the distribution of values of the parameters of the corresponding instantiated
task graphs. The library is then composed of the repeated parts of the given
graph-based generalized tasks.

When a new task is given to the robot, the robot uses the library of general-
ized tasks to propose the next steps with parameters sampled from its distribu-
tion, performing task autocompletion. The robot performs the proposed comple-
tions, which are accepted as a match to the new task or rejected. The process
resembles the autocompletion provided by search engines, upon entering initial
items of a search. The task autocompletion in our robots can incrementally pro-
pose a different task completion as the new task is defined. The result is that
not all the steps of the new task need to be provided, and the effort of giving a
new task to the robot is reduced.

Our complete generalization and autocompletion contributions are effective
in different real robots, including a 2-arm manipulator (Baxter), and a mobile
wheeled robot. In the paper, we focus on the illustrations of the robot primitives
and task graphs, and results with Baxter. Our approach is general to task-based
agents and aims at enabling the desired long-term deployment of robots that
accumulate experience.

This introduction section is followed by an overview of related work, sampling
the extensive past work on task learning from experience, highlighting our app-
roach for its graph-based generalized representation, and for its relevance and
application to autonomous agents. We then introduce the technical components
of our approach, present results, and conclude the paper with a review of the
contributions and hints of future work.

2 Related Work

Accumulating and reusing tasks has been widely studied in multiple contexts,
including variations of case-based planning [4,9,11,22], macro learning [7], and
chunk learning at different levels of granularity [1,5,13,14,16]. Tasks, seen as
plans, are solved and generated by algorithms that benefit from accumulated



Graph-Based Task Libraries for Robots: Generalization and Autocompletion 399

experience to significantly reduce the solving effort. Such methods learn based
on explanations captured from the dependencies in actions, producing sequen-
tial representations. Our approach does not depend on an automated problem
solver, as users could be providing the tasks. We represents tasks as graph-based
structures with sequences, conditionals, and looping constructs. Generalization
and autocompletion use task structures instead of domain-based dependencies.

Multiple techniques address the problem of a robot learning from demon-
stration [3]. Approaches focus on teaching a single tasks, using varying repre-
sentations. Tasks have been represented as acyclic graphs composed of nodes
representing finite state machines [21] without loops or variables. More recently,
complex tasks are represented as Instruction Graphs [15], which only handle
instantiated tasks, or Petri Net Plans [8], which support parameterized tasks
defined by a user. We introduce Generalized Instruction Graphs, parameterized
tasks that are automatically generated from instantiated tasks. Tasks have also
been represented as policies that determine state-action mappings [2,6,17,20].

Tasks have been generalized from multiple examples, where each example cor-
responds to exactly one past task, and the user specifies the generalized class [18].
Our algorithm generalizes and finds parts of tasks patterns that share any graph
structure beyond dependency structure [11,22].

To represent conditionals and loops, many task representations are graph-
based. Therefore, generalization from examples requires finding common sub-
graphs between different tasks. The problem of finding labeled subgraph isomor-
phisms is NP-Hard [12]. However, the problem becomes tractable on trees. To
solve it, multiple algorithms have been proposed for mining common frequent
subtrees from a set of trees [10]. One, Treeminer, uses equivalence class based
extensions to effectively discover frequently embedded subtrees [24]. Instead,
GASTON divides the frequent subgraph mining process into path mining, then
subtree mining, and finally subgraph mining [19]. We use SLEUTH, an open-
source frequent subtree miner, able to efficiently mine frequent, unordered or
ordered, embedded or induced subtrees in a library of labeled trees [23]. SLEUTH
uses scope-lists to compute the support of the subtrees, while adopting a class-
based extension mechanism for candidate generation. Our mined tree patterns
are further filtered out to capture executable and parameterized task graphs.

3 Approach

We consider a robot with modular primitives that represent its action and sensing
capabilities. We assume the robot has a library of common tasks, where each
task is composed of these primitives. Our goal is to identify common frequent
subtasks and generalize over them with limited user assistance. In this section,
we first give a brief overview of the graph-based task representation used in this
work. Then, we present an in-depth description of the generalization and task
autocompletion algorithms.



400 S.D. Klee et al.

3.1 Instruction Graphs

The task representation we use is based on Instruction Graphs (IG) [15]. In the
IG representation, vertices contain robot-primitives, and edges represent possible
transitions between vertices. Mathematically, an Instruction Graph is a graph
G = 〈V,E〉 where each vertex v is a tuple:

v = 〈id , InstructionType,Action〉
where the Action is itself a tuple:

Action = 〈f, P 〉
where f is a function, with parameters P. The function f represents the action
and sensing primitives that the agent can perform. We introduce parameter
types related to their purpose on the robot. For instance, on a manipulator, the
function set arm angle has parameters of type Arm and Angle, with valid values
of {left,right} and [0, 2π] respectively. The primitives and parameter types are
robot-specific.

Each Instruction Graph is executed starting from an initial vertex, until a
termination condition is reached. During execution, the InstructionType of the
vertex describes how the robot should interpret the output of the function f in
order to transition to the next vertex. The IG framework defines the following
types:

– Do and DoUntil : Used for open-loop and closed-loop actuation primitives.
The output of f is ignored as there is only one out-edge. For simplificty, we
refer to both of these types as Actions.

– Conditionals: Used for sensing actions. The output of f is interpreted as a
boolean value used to transition to one of two children.

– Loops: Used for looping structures. The output of f is interpreted as a boolean
value, and actions inside of the loop are repeated while the condition is true.

Additionally, we use a Reference InstructionType for specifying hierarchical
tasks.

– References: Used to execute Instruction Graphs inside of others. The output
of f is interpreted as a reference to the other task.

Figure 1 shows an example node with id 4, InstructionType Action, func-
tion set arm angle, and parameters left and π. For a more detailed overview
of Instruction Graphs, we refer the reader to [15]. However, the generalization
algorithms we discuss can be applied to other graph-like representations [8,21].

3.2 Generalizing Tasks

In this section we describe our algorithm to extract generalized tasks from a
library of Instruction Graphs. We define a general task as a Generalized Instruc-
tion Graph (GIG). In a GIG, the parameters of some actions are ungrounded.



Graph-Based Task Libraries for Robots: Generalization and Autocompletion 401

Fig. 1. Example of Instruction Graph node with id 4, InstructionType Action, function
set arm angle, and parameters left and π.

In such cases, we know the type of these ungrounded parameters, but not their
value. So, for each parameter we associate a distribution over all known valid
groundings. For instance, in the case of a grounded parameter, the distribution
always returns the grounded value. Formally, a GIG is also a graph GIG = 〈V,E〉
where each vertex v is a tuple:

v = 〈id , InstructionType,GeneralAction〉

GeneralAction = 〈f, P, Φ〉
where φi ∈ Φ is a distribution over groundings of the parameter pi ∈ P .

These distributions are learned during task generalization and are used to
propose initial parameters during task autocompletion. A GIG can be instanti-
ated as an IG by grounding all of the uninstantiated parameters. This process
consists of replacing any unspecified pi with an actual value.

Our approach generates a library of GIGs from a library of IGs, as shown in
Algorithm 1. The general problem of finding labeled subgraph isomorphisms is
NP-Hard. However our problem can be reformulated into the problem of finding
common labeled subtrees in a forest of trees. To this end, we create a tree
representation of each IG. As the first step, we define a mapping from IGs to
Trees (T):

toTree : IG → T

and its corresponding inverse:

toIG : T → IG

The function toTree computes a labeled spanning tree of an input Instruction
Graph (line 3). Specifically, toTree creates a spanning tree rooted at the initial
vertex of the input IG, by performing a depth first search and by removing back
edges in a deterministic manner. This ensures that instances of the same GIG
map to the same spanning tree.

Each node in the tree is labeled with the InstructionType and function f of
the corresponding node in the IG. In this label, we do not include the parameters
because we eventually want to generalize over them.

Next, we use a labeled frequent tree mining algorithm to find frequently
occurring tree patterns (line 5). A frequently occurring tree pattern is a subtree
that appears more than a threshold σ, called the support. A tree-mining algo-
rithm ftm takes as input a set of trees and the support. As output, it provides
a mapping from each tree pattern to the subset of trees that contain it. Then,
since each tree pattern is associated to a set of trees and each tree corresponds



402 S.D. Klee et al.

Algorithm 1. Task Generalization
1: procedure generalizeTasks(IGs, σ, L)
2: // IG library is converted to trees
3: IGTrees ← {toTree(g) | g ∈ IGs}
4: // Tree patterns are found by a tree mining algorithm
5: tp ← ftm(IGTrees, σ)
6: // Mapping from tree patterns to IGs is created
7: igp ← {〈p, toIG(T )〉 | 〈p, T 〉 ∈ tp}
8: // Filters remove unwanted tree patterns
9: igp ← filter not exec(igp)

10: igp ← filter by length(igp, L)
11: // Tree patterns of full tasks are reintroduced
12: igp ← add full igs(IGs, igp)
13: // Vertices and edges of the GIGs are constructed
14: gigs ← create ugigs(IGs, igp)
15: // Parameters and distributions are computed
16: gigs ← parametrize(IGs, igp, gigs)
17: return gigs
18: end procedure

to a specific IG, we can create a mapping directly from tree patterns to IGs
(line 7). We denote this mapping as IGP.

A tree mining algorithm will return many tree patterns. In particular, for
any tree pattern, any subtree of it will be returned. This is because each subtree
will have a support at least as large as its parent. Rather than keeping all these
patterns, we focus on storing those that are the most applicable. There are many
possible ways to filter the patterns. We propose several heuristic filters that select
patterns based on their executability, frequency, and usefulness.

– Executable patterns are those that the robot can run.
– Frequent patterns are statistically likely to appear in the future.
– Useful patterns reduce many interactions when correctly proposed.

Each filter is formally defined as a function:

filter : IGP → IGP

We first filter patterns that cannot be executed by the robot. In particular,
we remove patterns with incomplete conditionals and loops (line 9).

Then, there is a tradeoff between highly frequent patterns and highly useful
patterns. Patterns that occur with a large frequency are typically smaller, so
they provide less utility during task autocompletion. Larger patterns provide a
lot of utility, but they are usually very specific and occur rarely.

Less frequent patterns are already filtered out by the tree-mining algorithm
when we provide it a minimum support σ. To optimize for larger patterns that
save more steps during autocompletion, we also remove patterns that are shorter



Graph-Based Task Libraries for Robots: Generalization and Autocompletion 403

than a threshold length L (line 10). This ensures that we do not keep any pattern
that is too small to justify a recommendation to the user.

Finally, since we are dealing with autocompletion for robots, one desirable
feature is to be able to propose entire tasks. Even if a full task has a low sup-
port, or is below the threshold length, there is value in being able to propose
it if a reparameterized copy is being provided to the robot. Consequently, we
reintroduce the tree patterns corresponding to full IGs (line 12).

Even with these filters, we still keep some tree patterns that are complete
subtrees of another pattern. In practice, many of these patterns provide use-
ful task autocompletion suggestions. However, in memory-limited systems, we
suggest also filtering them.

Finally, the algorithm processes the filtered set of tree patterns to create
GIGs by creating vertices and edges from the tree pattern and then parame-
terizing the vertices. First, to create the GIG’s vertices and edges, we copy the
subgraph corresponding to the tree pattern from any of the IGs containing the
pattern (line 14). This gives us a completely unparameterized GIG (uGIG), with
no parameter distributions. Next, we determine which parameters are grounded
in the GIG, and which are left ungrounded. A parameter is instantiated if it
occurs with the same value, with a frequency above a given threshold, in all cor-
responding IGs. Otherwise, the parameter is left ungrounded with an empirical
distribution.

This process is repeated for every subtree pattern not removed by our heuris-
tic filters, creating a library of GIGs (line 16). When this algorithm is run incre-
mentally, this library is unioned with the previous library.

Figures 2a and 2c show example IGs for a task that picks up an object, and
drops it at one of two locations. Figures 2b and 2d depict their corresponding
spanning trees. Finally, Figure 3 shows the general task that is extracted. In
this GIG, the parameters in nodes 3 and 4 are kept instantiated, since they
were shared by the two original IGs. The others parameters instead are left
ungrounded. These parameters have a type id, and a distribution over the land-
mark ids {1, 3}, which were extracted from the IGs in Figure 2.

3.3 Task Autocompletion

We now consider an agent that is provided a task incrementally through a series
of interactions. Each interaction consists of adding a vertex to the graph or
modifying an existing vertex. At any step of this process, the agent knows a
partial task. After each interaction, this partial task is compared against the
library of GIGs to measure task similarity and perform autocompletion.

The algorithm performs this comparison by checking if the end of the partial
task being provided is similar to a GIG (Algorithm 2). Specifically, we keep
a set of candidate proposals, denoted props, that match the final part of the
partial task. When the partial task changes (line 2), we first update this set
to remove any elements that no longer match the task being taught (line 3).
Then, we add new elements for every GIG that starts with the new vertex
(line 4). When a threshold percentage τ of one or more GIGs in this set matches



404 S.D. Klee et al.

Fig. 2. Example of two Instruction Graphs (a, c) converted into their corresponding
spanning trees (b, d). The tree pattern shared between them is circled in red.

the current partial task, the robot proposes the largest GIG and breaks ties
randomly (lines 6 and 7).

When a specific proposal is found, the robot displays a representation of
the GIG and asks for permission to demonstrate the task. Having previously
filtered all the incomplete GIGs, all the proposals can in fact be executed. When
granted permission, the agent demonstrates an instance of the GIG, noting when
a parameter is ungrounded.

At the end of the demonstration, the agent asks if the partial task should
be autocompleted with the demonstrated task. If so, the agent asks for specific
values for all of the ungrounded parameters. At this stage, the agent suggests ini-
tial values for each ungrounded parameter pi by sampling from its corresponding
distribution φi.

After all of the parameters are specified, the nodes matching the general task
in the partial task are replaced with one Reference node. When visited, this node
executes the referenced GIG, instantiated with the provided parameters. With
this substitution, the length of the task is reduced.

Figure 4 shows a sample task acquisition for a Baxter manipulator interacting
with a user. After the first command, the robot finds at least one general task
starting with display message. However, none of the GIGs recognized surpass
the similarity-threshold τ . When the third instruction is given to the agent, this
threshold is surpassed, and the autocompletion procedure is started. First, the



Graph-Based Task Libraries for Robots: Generalization and Autocompletion 405

Fig. 3. Example GIG that is extracted from the graphs in Figures 2a and 2c. The
parameters in nodes 3 and 4 are instantiated, since they were shared by the two original
IGs. Instead, the parameters in nodes 1 and 2 are left ungrounded.

Algorithm 2. Task Autocompletion
1: procedure autocomplete(GIGs, ig, props, τ)
2: if hasChanged(ig) then
3: props ← deleteNotMatching(ig, props)
4: props ← addNewMatching(ig, props, GIGs)
5: (best, similarity) ← bestMatch(ig, props)
6: if similarity ≥ τ then
7: propose(best)
8: end if
9: end if

10: end procedure

robot asks permission to perform a demonstration of the general task. After
completing the demonstration, the robot asks if the autocompletion is correct.
If so, it also asks for ungrounded parameters to be specified and suggests values
using each parameter’s distribution.

4 Experiments

Several of our robots can perform generalization and autocompletion, including
a manipulator and a mobile base. In order to demonstrate the value of our
approach, we define two sets of tasks. Intuitively, the first set of tasks represents
a robot that is still acquiring completely new capabilities. Instead, the second
set of tasks represents a robot that is acquiring instances of tasks that it already
knows. More formally, in the first set, Sd no tasks are repeated. They share only
a small fraction of similar components that can be generalized. To show that
generalization takes place, we use a second set, Sr consisting of two repetitions
of each of elements in Sd with different parameters. We see that the algorithm
recognizes and autocompletes the second instance of each task.

An additional benefit of this approach is that we we can keep one common
library for all of our robots. If the robots have different primitives, their tasks are
automatically generalized apart. However, if this share primitives, our approach
can learn subgraphs common to both robots. One concern is that this library



406 S.D. Klee et al.

Example Interaction

U: Open Gripper
R: I will open my gripper.
R: What should I do next?
U: Display message "Hello".
R: Ok, what should I do next?
U: Set your left arm to 80 degrees.
R: I think you are teaching me

something similar to: GIG_14.
R: Can I demonstrate it to you?
U: Yes.
R: First I will display the message "Hello".
R: Then I will set my left arm to 80 degrees.
R: Now I will set my right arm to 90 degrees (open).
R: This is my full suggestion.
R: Would you like to use it?
U: Yes.
[User specifies open parameters]
[User can rename the GIG]

Fig. 4. Sample autocompletion interaction during task acquisition.

could be very large. We have accumulated libraries of up to 10,000 tasks, by
creating parametric variations of a smaller core of tasks. Even on libraries this
large our approach runs in under 4 seconds.

In the rest of this section, we show in detail experiments run on a Baxter
manipulator robot.

4.1 Experiments with Baxter

Baxter has two 7 degree of freedom arms, cameras on both arms, and a mounted
Microsoft Kinect. The robot-primitives on Baxter manipulate the arms, open
their grippers, display messages, and sense landmarks. The frequent subtree
mining algorithm we employ is an open source version of SLEUTH 1.

The tasks that Baxter can perform range from waving to making semaphore
signs to pointing at landmarks. Many of Baxter’s tasks involve picking up an
object and moving it to another location. For instance, Figure 5 shows Baxter
searching for a landmark to see if a location is unobstructed to drop a block.
Without task generalization and autocompletion, a new task must be provided
for each starting location and ending location in Baxter’s workspace. With gen-
eralization and autocompletion, these locations become ungrounded parameters
that can be instantiated with any value.

For this experiment, 15 tasks were taught by two users familiar with robots
but not the teaching framework. These tasks ranged from waving in a direction,
to pointing to visual landmarks, to placing blocks at different positions, to per-

1 www.cs.rpi.edu/∼zaki/software/

www.cs.rpi.edu/~zaki/software/


Graph-Based Task Libraries for Robots: Generalization and Autocompletion 407

Fig. 5. Baxter performing an instance of the GIG shown in Figure 3. First, Baxter
picks up the orange block (a); then Baxter checks if a location is unobstructed with
its left arm camera (b); Since the location is unoccupied, Baxter drops the Block. (c);
Finally, Baxter says that it is done (d).

forming a series of semaphore signals to deliver a message. Sd has 15 distinct
tasks and Sr has 30 tasks. The average length of a task in both sets is 9.33 nodes.

4.2 Experimental Results

As we accumulate the library incrementally, the order in which tasks are pro-
vided affects the generalization. To account for this, we ran 1000 trials where we
picked a random ordering to our sets and had a program incrementally provide
them to Baxter. The GIG library was updated after each task was provided.
At the end of every trial, we measured the number of steps saved using auto-
completion compared to providing every step of the task. This measurement
includes steps added due to incorrect autocompletion suggestions. For this par-
ticular experiment, the support was fixed to 2, the minimum GIG length to 2,
and task autocompletes were suggested if τ = 30% of a GIG matched the partial
task.

We compare our results to an near-upper bound on the number of steps saved
by an optimal autocompletion algorithm. For any set of tasks that take n steps
to be provided, and are only proposed once τ percent of a task matches a GIG,
we have:

OPT ≤ (1 − τ) · n

This corresponds to perfectly generalizing every task after τ percent of it has
been acquired. We note that an algorithm could do slightly better by also making
smaller proposals for the first τ percent of each task. For Sd and Sr we have:

OPTd ≤ 92

OPTr ≤ 184

Table 1 reports the result of the experiment. Specifically, in this table we
report the following measures:

– Maximum Steps Saved (%): maximum percentage of steps saved over all
permutations, in comparison to the theoretical upper bound.

– Average Steps Saved (%): average percentage of steps saved over 1000
permutations, in comparison to the theoretical upper bound.



408 S.D. Klee et al.

– Average Partially Autocompleted: average number of tasks that were
partially autocompleted with a GIG.

– Average Completely Autocompleted: average number of tasks that
were completely autocompleted with a GIG.

Table 1. Results obtained for the two sets taught to the Baxter robot.

1st Set (Sd) 2nd Set (Sr)

Max. Steps Saved 70.65% 100%
Avg. Steps Saved 33.44 ± 14% 81.92 ± 7.05%

Part. Autocompleted 4.72 ± 1.56 4.70 ± 1.58
Compl. Autocompleted 0 ± 0 15 ± 0

As expected, Sr benefits the most from the autocompletion method, saving
82% of the steps compared to OPTr. For Sd, the savings compared to OPTd

is 33%. In the former case, the robot can leverage the knowledge of the similar
tasks it already knows. Indeed, our approach meets the theoretical upper bound
when provided tasks from Sr in the optimal ordering. This fact is additionally
underlined by the number of tasks in which the robot suggested any correct
GIG. In particular, on average the robot proposed a correct autocompletion
suggestions for 65% of graphs in the second set, and 30% in the first set.

Also, the 15 IGs added to the second set are all completely autocompleted
from their other similar instance. Furthermore, this happens with a statistically
insignificant change to the effectiveness of the partial autocompletions.

Finally, the size of the GIG library for the first set was 21 and that the size
of the GIG library for the second set was 45. This shows that the heuristic filters
we proposed achieves a good balance between saving steps and library size.

5 Conclusion and Future Work

In this paper, we considered autonomous robots that persist over time and the
problem of providing them additional tasks incrementally. To this end, we con-
tributed an approach to generalize graph-based tasks, and an algorithm that
enables the autocompletion of partially specified tasks.

Our generalization and autocompletion algorithms have been successfully
deployed on multiple robots, acquiring large task libraries. Our experiments
report in-detail the effectiveness of our contributions on a Baxter manipulator
robot for two sets of tasks. With both sets, we found a significant reduction in
the number of steps needed for Baxter to acquire the tasks.

In terms of future work, there may be other applicable filters for deciding
which tree patterns should be converted to GIGs. Furthermore, structure-based
generalization is just one way for a robot to express its capabilities. Future
research may look at domain-specific forms of task generalization.

Acknowledgments. This research was partially supported by a research donation
from Google, by NSF award number NSF IIS-1012733 and by the FCT INSIDE ERI
grant. The views and conclusions contained in this document are those of the authors
only.



Graph-Based Task Libraries for Robots: Generalization and Autocompletion 409

References

1. Anderson, J.R., Bothell, D., Lebiere, C., Matessa, M.: An integrated theory of list
memory. Journal of Memory and Language (1998)

2. Argall, B.D., Browning, B., Veloso, M.: Learning robot motion control with demon-
stration and advice-operators. In: IROS (2008)

3. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and autonomous systems (2009)

4. Borrajo, D., Roub́ıčková, A., Serina, I.: Progress in case-based planning. ACM
Computing Surveys (CSUR) 47(2), 35 (2015)

5. Borrajo, D., Veloso, M.: Lazy incremental learning of control knowledge for effi-
ciently obtaining quality plans. In: Lazy Learning (1997)

6. Chernova, S., Veloso, M.: Learning equivalent action choices from demonstration.
In: IROS (2008)

7. Fikes, R.E., Hart, P.E., Nilsson, N.J.: Learning and executing generalized robot
plans. Artificial intelligence (1972)

8. Gemignani, G., Bastianelli, E., Nardi, D.: Teaching robots parametrized executable
plans through spoken interaction. In: Proc. of AAMAS (2015)

9. Hammond, K.J.: Chef: A model of case-based planning. In: AAAI (1986)
10. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.

The Knowledge Engineering Review (2013)
11. Kambhampati, S.: A theory of plan modification. In: AAAI (1990)
12. Kimelfeld, B., Kolaitis, P.G.: The complexity of mining maximal frequent sub-

graphs. In: Proc. of the 32nd Symp. on Principles of Database Systems (2013)
13. Laird, J.E., Rosenbloom, P.S., Newell, A.: Chunking in soar: The anatomy of a

general learning mechanism. Machine learning (1986)
14. Langley, P., McKusick, K.B., Allen, J.A., Iba, W.F., Thompson, K.: A design for

the icarus architecture. ACM SIGART Bulletin (1991)
15. Meriçli, Ç., Klee, S.D., Paparian, J., Veloso, M.: An interactive approach for situ-

ated task specification through verbal instructions. In: Proc. of AAMAS (2014)
16. Minton, S.: Quantitative results concerning the utility of explanation-based learn-

ing. Artificial Intelligence (1990)
17. Ng, A.Y., Russell, S.J., et al.: Algorithms for inverse reinforcement learning. In:

ICML (2000)
18. Nicolescu, M.N., Matarić, M.J.: Natural methods for robot task learning: Instruc-

tive demonstrations, generalization and practice. In: Proc. of AAMAS (2003)
19. Nijssen, S., Kok, J.N.: The gaston tool for frequent subgraph mining. Electronic

Notes in Theoretical Computer Science (2005)
20. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: Proc.

of the 23rd International Conference on Machine Learning (2006)
21. Rybski, P.E., Yoon, K., Stolarz, J., Veloso, M.: Interactive robot task training

through dialog and demonstration. In: Proceedings of the 2th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (2007)

22. Veloso, M.M.: Planning and learning by analogical reasoning. Springer Science &
Business Media (1994)

23. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta
Informaticae (2005)

24. Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applica-
tions. IEEE Transactions on Knowledge and Data Engineering (2005)


	Graph-Based Task Libraries for Robots: Generalization and Autocompletion
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Instruction Graphs
	3.2 Generalizing Tasks
	3.3 Task Autocompletion

	4 Experiments
	4.1 Experiments with Baxter
	4.2 Experimental Results

	5 Conclusion and Future Work
	References


