
© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AI*IA 2015, LNAI 9336, pp. 303–315, 2015.
DOI: 10.1007/978-3-319-24309-2_23

GENOMA: GENeric Ontology Matching Architecture

Roberto Enea, Maria Teresa Pazienza, and Andrea Turbati()

DII, ART Group, University of Rome, Tor Vergata, Rome, Italy
roberto.enea@gmail.com, {pazienza,turbati}@info.uniroma2.it

Abstract. Even though a few architectures exist to support the difficult ontolo-
gy matching task, it happens often they are not reconfigurable (or just a little)
related to both ontology features and applications needs.

We introduce GENOMA, an architecture supporting development of Ontol-
ogy Matching (OM) tools with the aims to reuse, possibly, existing modules
each of them dealing with a specific task/subtasks of the OM process. In
GENOMA flexibility and extendibility are considered mandatory features along
with the ability to parallelize and distribute the processing load on different sys-
tems. Thanks to a dedicated graphical user interface, GENOMA can be used by
expert users, as well as novice, that can validate the resulting architecture.

We highlight as main features of developed architecture:

• to select, combine and set different parameters
• to evaluate the matching tool applied to big size ontologies
• efficiency of the OM tool
• automatic balancing of the processing load on different systems

Keywords: Ontology matching · Evaluation · Architecture

1 Introduction

As a matter of fact ontology development became a very frequent task for either ex-
pert or novice users. Ontologies can be written using different standards: among oth-
ers, the most frequently used is RDF1 (Resource Description Framework) together
with its two extensions: RDFS2 (RDF Scheme), and OWL3(Web Ontology Lan-
guage). In creating a new ontology generally two possible approaches are adopted:

1. starting from a shared vocabulary (as the FOAF4 ontology when describing peo-
ple-related terms) and then adding the new domain specific data

2. defining everything from scratch.

Consequently, using more than one ontology in a new task can be extremely difficult,
since different resources5 (identified by different lexicalizations) of distinct ontologies

1 http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
2 http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
3 http://www.w3.org/TR/2004/REC-owl-ref-20040210/
4 http://www.foaf-project.org/

304 R. Enea et al.

can be used to identify the same concept. While humans naturally deal with such an
ambiguity and try to understand the similarity between these resources, systems cannot
easily do the same. This means that even when using a formal representation for an
ontology (with a given serialization), the richness of the natural language is still an
issue!

In this paper, we present GENOMA, an architecture that helps in the development
of Ontology Matching (O.M.) systems, which are tools that infer different types of
similarities among two or more ontologies. By first, we introduce the most relevant
tools for O.M., we compare them thus providing a motivation for our architecture
(section 2). In the following section 3, and in its subsections, we introduce our new
architecture, describing its main features. Finally, with section 4, we provide a small
summary of what we achieved with our research activity. Description of Ontology
Matching instances is not the objective of this paper.

2 Ontology Matching Tools: An Overview

Ontology Matching is the branch of the Ontology Engineering that aims in finding
similarities between resources of two or more ontologies. It tries not just to find simi-
larities between pair of resources, but also to align ontologies and then to merge them
in a new ontology, which is composed of all resources, found in the input ones. While
to recognize similarities between ontologies several techniques and algorithms have
been defined, the basic process [1] is always the same: the input to the framework
consists in two or more ontologies from which, using a matcher (that can be com-
posed of a single module or be built on top of several minor modules), it is produced
an alignment matrix. The matcher(s) can be configured using specific parameters as
well as some external linguistic resources (such as WordNet6, for example). The re-
sulting alignment matrix is NxM (where N is the number of resources of the first on-
tology, M is the number of the resources of the second ontology) and contains the
similarity values between these resources. Aij is the similarity value obtained from a
particular algorithm between the i-resource of the first ontology and the j-resource of
the second ontology.

Main differences among existing O.M. tools are:

• the size of the ontologies they are able to manage;
• the formal language in which the ontologies should be written (mostly RDF and

one of its serialization, such as RDF/XML or N-Triples);
• which resources they are able to compare (classes, instances, properties, …);
• the natural languages in which the two ontologies should be written (or if they are

able to compare ontologies written in different languages);
• The cardinality of the output alignment for each resource it returns (1:1 or n:m);

5 In this paper, we use the term resources to refer to any element inside an ontology (classes,

instances or properties) unless otherwise specified
6 http://wordnet.princeton.edu/

 GENOMA: GENeric Ontology Matching Architecture 305

• open source or proprietary (a common problem when dealing with any software
tools);

• if they use external data or not (this can affect their license as well);
• adoption of just syntactic matching or also some sort of semantic matching

approach;

To have more details on the possible features of the matching process, please refer to
[2], in our paper we are interested in discussing just how to combine them in a unified
architecture and in evaluating the similarity metrics used in the matching tool. The
ideas behind the similarity value are that:

• each resource has the maximum similarity value with itself;
• each similarity value is greater than or equal to zero (since normally they are nor-

malized values, they are between 0 and 1);
• considering the same two resources, the similarity vales remains the same irrespec-

tive of which ontology is considered as the first one in the comparison.

Once these three properties are upheld, the similarity value can be computed using
any kind of techniques: string-based, language-based, structure-based, scheme-based,
extensional-based, relational-based, probabilistic-based and semantic-based.

Let us introduce what are considered the state of the art Ontology Matching (OM)
tools in order to better understand some of the existing solution for this task.

2.1 Cupid

Cupid [3] is scheme-based OM tool. It was developed in the context of a collaboration
of the University of Washington, the Microsoft Research and the University of Leip-
zig. It implements an algorithm, which uses both a linguistic matcher (using an exter-
nal thesauri) and a structure-based matcher. Input ontologies are considered as graphs.
The implemented algorithm is divided in three steps. By first, it uses the linguistic
matcher to computer the similarities values considering the external thesauri. Then it
adopts a structure-based matcher to obtain the similarities values. Finally, it combines
the values obtained in previous phases using a weighted sum and then it produces the
alignment matrix.

2.2 COMA and COMA++

COMA [4] (Combination of Matching Algorithm) adopt a parallel approach in using
matchers. It was developed at the University of Leipzig and it is composed of an ex-
tendible library of matchers, a framework which can be used to combine the matchers
in a single algorithm and a platform for the evaluation of the results. COMA is pro-
vided with six elementary matchers, five hybrid matchers and one matcher that uses
the other matchers. Most of these matchers are string-based and linguistic, supporting
external resources. COMA, offers a more flexible architecture than Cupid and considers
the user feedback.

306 R. Enea et al.

COMA++ [5] is the newer version of COMA that introduces an optimization in
reusing the alignment, a better implementation of the base matchers and a user interface.

2.3 iMAP

iMap [6] can be considered as an atypical Ontology Matching tools, since it works on
scheme matching and not on what is normally defined as an ontology. This means that
iMap tries to find complex matches in scheme, such as “our-price = price * (1 + tax-
rate)”7 or it is able to discover that the field address should be matched with the field
street and the field number. The tool iMAP deals with the problem of matching as a
search problem in a, possibly, enormous space. Its modules are called searchers, and
they work in parallel, each one searching for a specific pattern. For example, a
searcher analyzes only string fields, while another focuses on fields containing integers.
The operations each searcher performs, depend on the data type they are looking for.

The algorithm implemented in iMAP is divided in three distinct phases:

3. All the searchers, which are working in parallel, return their results, which are the
candidate for the next step. Since the number of returned results could be extreme-
ly large, a bean search [7] approach is adopted.

4. For each attribute of the target scheme, all the candidates of the first scheme are
considered and only the ones with specific characteristics are retained.

5. Results of the previous steps are put inside a similarity matrix using the Similarity
Estimator Module. This matrix is composed of the couples [target attribute, candi-
date attributes]. Then the requested alignment is extracted from a filtered version
of this matrix.

2.4 GLUE

GLUE [8], developed by the Washington University uses machine learning tech-
niques to discover similarities one-to-one between two distinct taxonomies. The ma-
chine learning algorithm used, can be divided into three steps:

1. It learns the join distribution function of the classes of the two taxonomies. It uses
two modules implementing the following base techniques: content learning (based
on Bayes Learning) and name learning (similar to the first one). A meta-matcher
performs a linear combination of the results of the other two modules. The weights
for the linear combination are decided by the user.

2. The system computes the similarity between pair of classes adopting a joint dis-
tributed function provided by the user. From this, a similarity matrix is produced.

3. The alignment between the two taxonomies is obtained by applying several filter-
ing operations.

GLUE is the evolution of a previous tool, LSD [9].

7 http://pages.cs.wisc.edu/~anhai/projects/schema-matching.html

 GENOMA: GENeric Ontology Matching Architecture 307

2.5 Falcon-AO

Falcon-AO [10] was developed by the China Southeast University. It adopt a divide-
et-impera approach to perform the matching between two ontologies written in RDFS
or OWL. It was designed to manage large ontologies (thousands of resources) using
partitioning techniques. The algorithm identifies three phases:

1. It divides the ontologies into smaller structures to take advantages of the hierarchy,
through the use of the property rdf:subClassOf, and the use of the agglomerative
clustering algorithm ROCK [11].

2. It compares the clusters, obtained in the previous step, focusing on the anchors,
which are linked resources, obtained using string-based comparison. More anchors
there are between two clusters, more similar those clusters are assumed to be. Only
clusters with a number of anchors over a specific threshold are considered possible
candidate.

3. Two matchers, one linguistic and the other structural, are adopted to generate the
similarities matrices; then these matrices are aggregated into the resulting align-
ment matrix. If the linguistic matcher is able to obtain good results alone, the struc-
tural one, which is more complex, is not used.

2.6 ASMOV

ASMOV [12], Automated Semantic Mapping of Ontologies with Verification, was
developed during a collaboration between Infotech Software and the University of
Miami. It receives two ontologies and an optional alignment and returns a many-to-
many alignment among the resources of the two ontologies, mainly classes and prop-
erties. It uses an iterative process. In its main phase, after a preprocessing step, it uses
lexical, structural and extensional matchers to calculate, iteratively, the similarity
between pairs of resources that are then aggregated in a weighted mean. It uses also
external resources, such as WordNet and UMLS8. Then, it verifies the consistency of
the proposed alignments, using five pattern typologies, which can generate inconsist-
encies. Its main application is the integration of bioinformatics data.

2.7 O.M. Tools Comparison and Motivation for an O.M. Architecture

In the previous sections, we have roughly sketched a few existing O.M. tools and
architectures. Table 1 summarizes these features (according to the ones specified in
the beginning of Section 2).

Apart from these features, Falcon offers the possibility to set the values for some
parameters, and only COMA++ offers the possibility to decide which matchers to use,
without deciding how they can communicate each other and no one even suggests the
possibility to deploy his tool on a distributed environment.

8 http://www.nlm.nih.gov/research/umls/

308 R. Enea et al.

Table 1. O.M. tools characteristics

 Falcon ASMOV Cupid iMap GLUE COMA++

Specific for big
ontologies

Yes No No No No No

Input RDF/RDFS/
OWL

OWL XML XML, DB
Schemas

XML, DB
Schemas

RDF/RDFS/
OWL

Resources
matched

Classes +
Properties +

Instances

Classes +
Properties

XML
Elements

XML, DB
schema

Elements

XML,
DB schema
Elements

Classes +
Properties

Specific
Natural

languages

No English English No No English

Output
alignment

1:1 m:n 1:1 1:1 1:1 1:1

Open source Yes No No No No Yes

Linguistic
resources

No WordNet WordNet No No WordNet

Type of
matching

Linguistic
Structural

Linguistic
Structural

Extensional

Linguistic
Structural

Parallel searcher
+ similarity
estimator

Statistical
Approach,
Machine
learning

Linguistic

After analyzing previous O.M. tools, it emerges that there is no tool that is always

better than the others, it depends on several factors. Then there is no architecture that
can be classified as the best one or a matching techniques which is always correct.
Each time is left to the application developers the decision on what match-
er/architecture to choose. And it is not an easy task! That’s why we decided to devel-
op a new generic architecture, helping experts or even beginners, to try different com-
binations and decide which one is the best given a specific application context. An-
other important feature of our novel architecture is the possibility either to reuse exist-
ing matchers, or to develop new ones, always in the context of our architecture. This
feature can appear normal nowadays in a context in which extendibility is a core pe-
culiarity of almost any tool or system. Generally, in the scientific environment, the
developed tools are close systems (sometimes they are even proprietary one or open
one, but their code is too complex and not sufficiently explained to be easily under-
stood and extended).

A strong requirement for our architecture is the development of an easy user inter-
face to help users to assemble the matcher in any way they want to. Finally, since
ontologies are becoming bigger and bigger, our architecture should be able to scale
out by being deployed on several machine to avoid performance issues.

 GENOMA: GENeric Ontology Matching Architecture 309

3 Gen.O.M.A.

Gen.O.M.A (Generic Ontology Matching Architecture) or GENOMA is a sort of meta
architecture which helps in the development of new specific architectures for the ontol-
ogy matching task. In this section by first we introduce the architecture (section 3.1),
then the provided user interface, which guide the user in the creation of each new archi-
tecture and its validation (section 3.2). Then we describe some of the existing matchers
modules (section 3.3) and we conclude this section by providing examples of tested and
validated architectures (section 3.4), by showing their peculiarities and differences.

3.1 Architecture

In every matching system, the main problem to overcome is improving system’s
computational efficiency. This is particularly important when evaluating large ontolo-
gies, which are the ones used in real case matching scenarios. GENOMA9 offers the
possibility to be executed in a distributed environment; to achieve this feature, it uses
Java RMI10 (Remote Method Invocation) which enables the execution of each match-
ers on a given server.

In Fig. 1 we show the architecture adopted by GENOMA. To handle ontologies,
the OWL ART API11 are adopted. The main component of the ontology matching
process is the Matching Composer (sometimes called just Composer). This module
coordinates the whole process. It parses the configuration file, handled by the module
Configuration, of the selected engine12 (more information about this configuration are
given in section 3.2), then launches the desired matchers, using the relative parame-
ters (the only mandatory parameters are the 2 ontologies addresses; the parameters
that are specific to each matcher are optional, since they all have default values). Each
matcher returns to the Composer its own processed similarity matrix, which is then
passed to the next matcher, or a notification if an error occurred during ontology pro-
cessing. Once all the desired matchers have completed their task by returning the
similarity matrix, the Composer produces a detail log and the alignment file, that is an
xml file, containing the final similarity matrix, filtered using the threshold selected by
the user before starting the matching process (the Filtered Similarity matrix in Fig. 1).
A matcher can uses external linguistic resources, for example by adopting Ontoling13
to access DICT14 and WordNet.

9 It can be download from: https://bitbucket.org/aturbati/ontology-matching-architecture
10 https://docs.oracle.com/javase/tutorial/rmi/
11 http://art.uniroma2.it/owlart/
12An engine is the implementation of a matching architecture produced by the user interface of

GENOMA.
13 http://art.uniroma2.it/software/OntoLing/
14 www.dict.org

310 R. Enea et al.

Fig. 1. GENOMA architecture

3.2 User Interface

To help the user in creating, visualizing and validating an architecture for an O.M.
tool, GENOMA provides an easy to use and complete User Interface15 (see Fig. 2 and
hereafter for details). Since the beginning, the user can decide whether to use an al-
ready existing configuration or to create a new architecture, using the provided
matcher (plus the ones possibly developed by himself).

When selecting an existing configuration, the user specifies the two ontologies to
be compared, an optional alignment file (useful when evaluating an O.M. architec-
ture), and the Engine (a file specifying all the information describing a given architec-
ture). Once these information have been provided, the matching process starts. The
user can monitor the entire process (its status, any error, the log file and the alignment
file produced by the selected architecture): in fact all these details are stored in a
MySQL16 DB, to help retrieve them and guarantee their persistency.

The user interface is even more useful when deciding to assemble a new architec-
ture. The GUI (shown in Fig. 2) provides the user what he needs to create each new
specific architecture. The user can either save or load a previous created architecture,
as well as can validate the current architecture (see Section 3.3 to understand the vali-
dation provided by GENOMA). One important feature is the possibility to save the
current work as an image, to help showing the created architecture or sharing it with
colleagues to discuss it.

The creation of the new architecture is completely interactive and mainly mouse
oriented, to help novices in this delicate task. By selecting the desired matcher, the
user just need to specify the parameters values (or he can accept the default ones) and

15The User Interface is deployed as a web application in Tomcat.
16 www.mysql.com/

 GENOMA: GENeric Ontology Matching Architecture 311

Fig. 2. User Interface when creating an architecture

then link the matchers in several possible deployment configurations (see Section 3.4).
All this is achieved easily by using a Java applet and just a couple clicks of the mouse17!

3.3 Provided Base Matchers

All the elements that can be considered when assembling an architecture in the user
interface, at the moment, are divided into, three main classes:

• Structural elements (known as system elements);
• String-based matchers;
• Language-based matchers.

The elements of these classes all are deployed in the same manner. The system ele-
ments are: SimilarityMatrixExtractor (SME), JuctionPoint and AlignmentExtractor.

The Similarity Matrix Extractor is the first element in every architecture created by
using GENOMA. It can extract the similarity matrix, obtained from another architec-
ture, so it can start the current architecture by using results obtained in the context of a
previous execution.

The Junction Point is used to combine two similarity matrices, obtained from the
parallel processing (see Section 3.4). Its configuration parameter consists in which
aggregation function to use. The default value is the triangular norm, while other
value are possible, by expanding its implementation.

The Alignment Extractor executes the inverse operation of the SME: given a simi-
larity matrix, it generates the alignment. It also apply a filter operation before generat-
ing the alignment in case the user has provided it.

The other classes, String-based and Language-based matchers, provide the matching
part in the architecture. The former considers only the words associated to a resource
(for example thought the property rdfs:label or using the name of the resource itself)

17 Just to see how easy to use it is, interested persons could access it at

http://artemide.art.uniroma2.it:8080/GenomaWeb-1.0/

312 R. Enea et al.

Table 2. Matchers list

Name Symbol Type Matcher
Functionality

Number
of
edges

Similarity
Matrix Ex-
tractor

System
Extraction the similarity
matrix

0 input
N output

Junction
Point

System

Aggregation similarity
matrices

2 input
N output

Alignment
Extractor

System

Extraction the alignment
from the similarity matrix

1 input
0 output

String
Equality
Matcher

String-
based

Comparing Strings
1 input
N output

SubString
Compare
Matcher

String-
based

Comparing Substrings
1 input
N output

N-grams
Compare
Matcher

String-
based

N-grams comparison
1 input
N output

String
Hamming
Distance
Matcher

String-
based

Hamming distance in the
comparison

1 input
N output

Synonyms
Matcher

Language-
based

Comparison using syno-
nyms

1 input
N output

Cosynonyms
Matcher

Language-
based

Comparison using syno-
nyms and then counting
the number of synonyms
they have in common

1 input
N output

threating it as sequence of characters, while the latter performs an analysis based on
the language used, for example considering synonyms obtained from a linguistic re-
source, such as WordNet. The provided language based matchers, in the current re-
lease, work only on the English language; the use of the framework OntoloLing and
Linguistic Watermark [13] with the associated resource, DICT, could be used to ana-
lyze other languages as well.

The system is able to automatically validate each architecture developed by the us-
er, by checking that all the constrains are respected (for example that each architec-
ture starts with a SME, ends with a Alignment Extractors).

In Table 2, the existing matchers are presented and commented.

3.4 Examples of Archit

Matchers can be deployed i
configurations to better und
When the user is defining a
to adopt a parallel or a serie

In Fig. 3, we have an e
StringEquality, in series, wh

When two matchers are i
is passed as input matrix to
second matcher, are the no
matcher has a weight in the
sum of all the local results o

When the matchers are
them. This component perf
selected during the configur

The easy to learn and c
complex architectures usin
in series and in parallel. Fo
parallel execution of two m
which are then deployed in
more complex architectures
interest.

GENOMA: GENeric Ontology Matching Architecture

Fig. 3. Matchers in series

tectures

in series or in parallel. In this section, we present two b
derstand what is possible to achieve by using GENOM
an architecture, the first decision he has to make is whet
es given two matchers.
example of two matchers, one SubStringCompare and
hile in Fig. 4 the same two matchers are deployed in paral
in series, the resulting similarity matrix of the first matc
o the second one. The resulting similarity values, after
ormalized weighted sum of the two separated values (e
e interval [0, 1]). This means that the result is the weigh
of the single matchers in the series.

in parallel, a JunctionPoint is needed immediately a
forms the aggregation of each result by using the algorit
ration phase.
complete user interface enables the construction of m
g the same approach: just by combining several match
r example in Fig. 5 we have an architecture composed o

matchers (a StringHanningDistance and a NgramCompa
n series with another matcher (a SynonymsMatcher). E
s, can be deployed very easily just by selecting matcher

Fig. 4. Matchers in parallel

313

base
MA.
ther

one
llel.
cher
the

each
hted

after
thm

more
hers
of a

are),
Even

s of

314 R. Enea et al.

4 Conclusion

In this article, we have des
deploying and validating c
tools. These architectures c
given a specific domain or
of experimenting while defi

Several implemented and
possibility to immediately
implementing new matcher

Regarding the deployme
machine or distributed amo
the complexity required by

Thanks to all these featu
novice) to rapidly define a
modules functionalities by d

Acknowledgements. This res
Grow.

References

1. Euzenat, J., Shvaiko, P.: O
2. Euzenat, J., Shvaiko, P.: O
3. Madhavan, J., Bernstein

Proceedings of the 27th In
CA, USA, pp. 48–58 (200

4. Do, H.-H., Rahm, E.: C
approaches. In: Proceedi
Bases, Hong Kong, China

5. Aumueller, D., Do, H.H.,
COMA ++. In: Proceedin
Management of Data, Bal

Fig. 5. Parallel and series example

scribed GENOMA, an architecture that helps developi
complex and totally customizable O.M. architecture
can be changed at any given time, to find the better
 application needs, leaving the user the complete freed
ining its architecture.
d tested matchers are provided with GENOMA, to give

y test it. Since it is open source and well documen
s, to extend its capability, is possible.

ent of the produced O.M. architecture, it can be on the sa
ong several servers to obtain better performance by shar
this task.

ures, using GENOMA enables every user (either exper
an O.M. architecture, to test it and possibly extends
developing new matchers.

earch has been partially founded by the european project Se

Ontology Matching. Springer (2007)
Ontology Matching. Springer (2013)
, P.A., Rahm, E.: Generic schema matching with Cupid.

nternational Conference on Very Large Data Bases, San Franci
1)

COMA, a system for flexible combination of schema match
ings of the 28th International Conference on Very Large D
a, pp. 610–621 (2002)
, Massmann, S., Rahm, E.: Schema and ontology matching w
ngs of the 2005 ACM SIGMOD International Conference
ltimore, Maryland, pp. 906–908 (2005)

ing,
and
one

dom

the
ted,

ame
ring

rt or
the

ema-

 In:
isco,

hing
Data

with
e on

 GENOMA: GENeric Ontology Matching Architecture 315

6. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: discovering complex
semantic matches between database schemas. In: 23rd International Conference on
Management of Data (SIGMOD), pp. 383–394 (2004)

7. Russell, S.J., Norvig, P.: Artificial Intelligence: a Modern Approach. Pearson Education,
Englewood Cliffs (2003)

8. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies
on the semantic web. In: Proceedings of the 11th International Conference on World Wide
Web, Honolulu, Hawaii, USA, pp. 662–673 (2002)

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: a machine learn-
ing approach. In: Handbook on Ontologies, pp. 173–235. Springer, Berlin (2004)

10. Hu, W., Qu, Y.: Falcon-AO: A practical ontology matching system. Journal of Web
Semantics, 237–239, September 2008

11. Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for categorical
attributes. In: Proceedings of the 15th International Conference on Data Engineering,
Washington, DC, USA, pp. 512–521 (1999)

12. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic
verification. Journal of Web Semantics, 235–251 (2009)

13. Pazienza, M.T., Stellato, A., Turbati, A.: Linguistic watermark 3.0: an RDF framework
and a software library for bridging language and ontologies in the semantic web. In: 5th
Italian Semantic Web Workshop on Semantic Web Applications and Perspectives, (SWAP
2008), FAO-UN, Rome, Italy, December 15–17, 2008

	GENOMA: GENeric Ontology Matching Architecture
	1 Introduction
	2 Ontology Matching Tools: An Overview
	2.1 Cupid
	2.2 COMA and COMA++
	2.3 iMAP
	2.4 GLUE
	2.5 Falcon-AO
	2.6 ASMOV
	2.7 O.M. Tools Comparison and Motivation for an O.M. Architecture

	3 Gen.O.M.A.
	3.1 Architecture
	3.2 User Interface
	3.3 Provided Base Matchers
	3.4 Examples of Architectures

	4 Conclusion
	References

