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Abstract. Even though a few architectures exist to support the difficult ontolo-
gy matching task, it happens often they are not reconfigurable (or just a little) 
related to both ontology features and applications needs. 

We introduce GENOMA, an architecture supporting development of Ontol-
ogy Matching (OM) tools with the aims to reuse, possibly, existing modules 
each of them dealing with a specific task/subtasks of the OM process. In 
GENOMA flexibility and extendibility are considered mandatory features along 
with the ability to parallelize and distribute the processing load on different sys-
tems. Thanks to a dedicated graphical user interface, GENOMA can be used by 
expert users, as well as novice, that can validate the resulting architecture. 

We highlight as main features of developed architecture: 
 

• to select, combine and set different parameters 
• to evaluate the matching tool applied to big size ontologies 
• efficiency of the OM tool 
• automatic balancing of the processing load on different systems 

Keywords: Ontology matching · Evaluation · Architecture 

1 Introduction 

As a matter of fact ontology development became a very frequent task for either ex-
pert or novice users. Ontologies can be written using different standards: among oth-
ers, the most frequently used is RDF1 (Resource Description Framework) together 
with its two extensions: RDFS2 (RDF Scheme), and OWL3(Web Ontology Lan-
guage). In creating a new ontology generally two possible approaches are adopted:  

1. starting from a shared vocabulary (as the FOAF4 ontology when describing peo-
ple-related terms) and then adding the new domain specific data  

2. defining everything from scratch.  

Consequently, using more than one ontology in a new task can be extremely difficult, 
since different resources5 (identified by different lexicalizations) of distinct ontologies 
                                                           
1 http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ 
2 http://www.w3.org/TR/2014/REC-rdf-schema-20140225/ 
3 http://www.w3.org/TR/2004/REC-owl-ref-20040210/ 
4 http://www.foaf-project.org/ 
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can be used to identify the same concept. While humans naturally deal with such an 
ambiguity and try to understand the similarity between these resources, systems cannot 
easily do the same. This means that even when using a formal representation for an 
ontology (with a given serialization), the richness of the natural language is still an 
issue!  

In this paper, we present GENOMA, an architecture that helps in the development 
of Ontology Matching (O.M.) systems, which are tools that infer different types of 
similarities among two or more ontologies.  By first, we introduce the most relevant 
tools for O.M., we compare them thus providing a motivation for our architecture 
(section 2). In the following section 3, and in its subsections, we introduce our new 
architecture, describing its main features. Finally, with section 4, we provide a small 
summary of what we achieved with our research activity. Description of Ontology 
Matching instances is not the objective of this paper. 

2 Ontology Matching Tools: An Overview 

Ontology Matching is the branch of the Ontology Engineering that aims in finding 
similarities between resources of two or more ontologies. It tries not just to find simi-
larities between pair of resources, but also to align ontologies and then to merge them 
in a new ontology, which is composed of all resources, found in the input ones. While 
to recognize similarities between ontologies several techniques and algorithms have 
been defined, the basic process [1] is always the same: the input to the framework 
consists in two or more ontologies from which, using a matcher (that can be com-
posed of a single module or be built on top of several minor modules), it is produced 
an alignment matrix. The matcher(s) can be configured using specific parameters as 
well as some external linguistic resources (such as WordNet6, for example). The re-
sulting alignment matrix is NxM (where N is the number of resources of the first on-
tology, M is the number of the resources of the second ontology) and contains the 
similarity values between these resources. Aij is the similarity value obtained from a 
particular algorithm between the i-resource of the first ontology and the j-resource of 
the second ontology.  

Main differences among existing O.M. tools are:  

• the size of the ontologies they are able to manage; 
• the formal language in which the ontologies should be written (mostly RDF and 

one of its serialization, such as RDF/XML or N-Triples); 
• which resources they are able to compare (classes, instances, properties, …); 
• the natural languages in which the two ontologies should be written (or if they are 

able to compare ontologies written in different languages); 
• The cardinality of the output alignment for each resource it returns (1:1 or n:m); 

                                                                                                                                           
5 In this paper, we use the term resources to refer to any element inside an ontology (classes, 

instances or properties) unless otherwise specified 
6 http://wordnet.princeton.edu/ 
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• open source or proprietary (a common problem when dealing with any software 
tools); 

• if they use external data or not (this can affect their license as well); 
• adoption of just syntactic matching or also some sort of semantic matching  

approach; 

To have more details on the possible features of the matching process, please refer to 
[2], in our paper we are interested in discussing just how to combine them in a unified 
architecture and in evaluating the similarity metrics used in the matching tool. The 
ideas behind the similarity value are that:  

• each resource has the maximum similarity value with itself;  
• each similarity value is greater than or equal to zero (since normally they are nor-

malized values, they are between 0 and 1); 
• considering the same two resources, the similarity vales remains the same irrespec-

tive of which ontology is considered as the first one in the comparison. 
 
Once these three properties are upheld, the similarity value can be computed using 
any kind of techniques: string-based, language-based, structure-based, scheme-based, 
extensional-based, relational-based, probabilistic-based and semantic-based. 

Let us introduce what are considered the state of the art Ontology Matching (OM) 
tools in order to better understand some of the existing solution for this task. 

2.1 Cupid 

Cupid [3] is scheme-based OM tool. It was developed in the context of a collaboration 
of the University of Washington, the Microsoft Research and the University of Leip-
zig. It implements an algorithm, which uses both a linguistic matcher (using an exter-
nal thesauri) and a structure-based matcher. Input ontologies are considered as graphs. 
The implemented algorithm is divided in three steps. By first, it uses the linguistic 
matcher to computer the similarities values considering the external thesauri. Then it 
adopts a structure-based matcher to obtain the similarities values. Finally, it combines 
the values obtained in previous phases using a weighted sum and then it produces the 
alignment matrix. 

2.2 COMA and COMA++ 

COMA [4] (Combination of Matching Algorithm) adopt a parallel approach in using 
matchers. It was developed at the University of Leipzig and it is composed of an ex-
tendible library of matchers, a framework which can be used to combine the matchers 
in a single algorithm and a platform for the evaluation of the results. COMA is pro-
vided with six elementary matchers, five hybrid matchers and one matcher that uses 
the other matchers. Most of these matchers are string-based and linguistic, supporting 
external resources. COMA, offers a more flexible architecture than Cupid and considers 
the user feedback. 
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COMA++ [5] is the newer version of COMA that introduces an optimization in  
reusing the alignment, a better implementation of the base matchers and a user interface. 

2.3 iMAP 

iMap [6] can be considered as an atypical Ontology Matching tools, since it works on 
scheme matching and not on what is normally defined as an ontology. This means that 
iMap tries to find complex matches in scheme, such as “our-price = price * (1 + tax-
rate)”7 or it is able to discover that the field address should be matched with the field 
street and the field number. The tool iMAP deals with the problem of matching as a 
search problem in a, possibly, enormous space. Its modules are called searchers, and 
they work in parallel, each one searching for a specific pattern. For example, a 
searcher analyzes only string fields, while another focuses on fields containing integers. 
The operations each searcher performs, depend on the data type they are looking for. 

The algorithm implemented in iMAP is divided in three distinct phases:  

3. All the searchers, which are working in parallel, return their results, which are the 
candidate for the next step. Since the number of returned results could be extreme-
ly large, a bean search [7] approach is adopted. 

4. For each attribute of the target scheme, all the candidates of the first scheme are 
considered and only the ones with specific characteristics are retained.  

5. Results of the previous steps are put inside a similarity matrix using the Similarity 
Estimator Module. This matrix is composed of the couples [target attribute, candi-
date attributes]. Then the requested alignment is extracted from a filtered version 
of this matrix. 

2.4 GLUE 

GLUE [8], developed by the Washington University uses machine learning tech-
niques to discover similarities one-to-one between two distinct taxonomies. The ma-
chine learning algorithm used, can be divided into three steps:  

1. It learns the join distribution function of the classes of the two taxonomies. It uses 
two modules implementing the following base techniques: content learning (based 
on Bayes Learning) and name learning (similar to the first one). A meta-matcher 
performs a linear combination of the results of the other two modules. The weights 
for the linear combination are decided by the user.  

2. The system computes the similarity between pair of classes adopting a joint dis-
tributed function provided by the user. From this, a similarity matrix is produced.  

3. The alignment between the two taxonomies is obtained by applying several filter-
ing operations.  

GLUE is the evolution of a previous tool, LSD [9]. 

                                                           
7 http://pages.cs.wisc.edu/~anhai/projects/schema-matching.html 
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2.5 Falcon-AO 

Falcon-AO [10] was developed by the China Southeast University. It adopt a divide-
et-impera approach to perform the matching between two ontologies written in RDFS 
or OWL. It was designed to manage large ontologies (thousands of resources) using 
partitioning techniques. The algorithm identifies three phases: 

1. It divides the ontologies into smaller structures to take advantages of the hierarchy, 
through the use of the property rdf:subClassOf, and the use of the agglomerative 
clustering algorithm ROCK [11].  

2. It compares the clusters, obtained in the previous step, focusing on the anchors, 
which are linked resources, obtained using string-based comparison. More anchors 
there are between two clusters, more similar those clusters are assumed to be. Only 
clusters with a number of anchors over a specific threshold are considered possible 
candidate.  

3. Two matchers, one linguistic and the other structural, are adopted to generate the 
similarities matrices; then these matrices are aggregated into the resulting align-
ment matrix. If the linguistic matcher is able to obtain good results alone, the struc-
tural one, which is more complex, is not used.  

2.6 ASMOV 

ASMOV [12], Automated Semantic Mapping of Ontologies with Verification, was 
developed during a collaboration between Infotech Software and the University of 
Miami. It receives two ontologies and an optional alignment and returns a many-to-
many alignment among the resources of the two ontologies, mainly classes and prop-
erties. It uses an iterative process. In its main phase, after a preprocessing step, it uses 
lexical, structural and extensional matchers to calculate, iteratively, the similarity 
between pairs of resources that are then aggregated in a weighted mean. It uses also 
external resources, such as WordNet and UMLS8. Then, it verifies the consistency of 
the proposed alignments, using five pattern typologies, which can generate inconsist-
encies. Its main application is the integration of bioinformatics data. 

2.7 O.M. Tools Comparison and Motivation for an O.M. Architecture 

In the previous sections, we have roughly sketched a few existing O.M. tools and 
architectures. Table 1 summarizes these features (according to the ones specified in 
the beginning of Section 2). 

Apart from these features, Falcon offers the possibility to set the values for some 
parameters, and only COMA++ offers the possibility to decide which matchers to use, 
without deciding how they can communicate each other and no one even suggests the 
possibility to deploy his tool on a distributed environment. 

 

                                                           
8  http://www.nlm.nih.gov/research/umls/ 
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Table 1. O.M. tools characteristics 

 Falcon ASMOV Cupid iMap GLUE COMA++ 

Specific for big 
ontologies 

Yes No No No No No 

Input RDF/RDFS/ 
OWL 

OWL XML XML, DB 
Schemas 

XML, DB 
Schemas 

RDF/RDFS/ 
OWL 

Resources 
matched 

Classes + 
Properties + 

Instances 

Classes + 
Properties 

XML  
Elements 

XML, DB 
schema 

Elements 

XML,  
DB schema 
Elements 

Classes +  
Properties 

Specific 
Natural  

languages 

No English English No No English 

Output  
alignment 

1:1 m:n 1:1 1:1 1:1 1:1 

Open source Yes No No No No Yes 

Linguistic 
resources 

No WordNet WordNet No No WordNet 

Type of 
matching 

Linguistic 
Structural 

Linguistic 
Structural 

Extensional 

Linguistic 
Structural 

Parallel searcher 
+ similarity 
estimator 

Statistical 
Approach, 
Machine 
learning 

Linguistic 

 
After analyzing previous O.M. tools, it emerges that there is no tool that is always 

better than the others, it depends on several factors. Then there is no architecture that 
can be classified as the best one or a matching techniques which is always correct. 
Each time is left to the application developers the decision on what match-
er/architecture to choose. And it is not an easy task! That’s why we decided to devel-
op a new generic architecture, helping experts or even beginners, to try different com-
binations and decide which one is the best given a specific application context. An-
other important feature of our novel architecture is the possibility either to reuse exist-
ing matchers, or to develop new ones, always in the context of our architecture. This 
feature can appear normal nowadays in a context in which extendibility is a core pe-
culiarity of almost any tool or system. Generally, in the scientific environment, the 
developed tools are close systems (sometimes they are even proprietary one or open 
one, but their code is too complex and not sufficiently explained to be easily under-
stood and extended).  

A strong requirement for our architecture is the development of an easy user inter-
face to help users to assemble the matcher in any way they want to. Finally, since 
ontologies are becoming bigger and bigger, our architecture should be able to scale 
out by being deployed on several machine to avoid performance issues. 
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3 Gen.O.M.A.  

Gen.O.M.A (Generic Ontology Matching Architecture) or GENOMA is a sort of meta 
architecture which helps in the development of new specific architectures for the ontol-
ogy matching task. In this section by first we introduce the architecture (section 3.1), 
then the provided user interface, which guide the user in the creation of each new archi-
tecture and its validation (section 3.2). Then we describe some of the existing matchers 
modules (section 3.3) and we conclude this section by providing examples of tested and 
validated architectures (section 3.4), by showing their peculiarities and differences. 

3.1 Architecture 

In every matching system, the main problem to overcome is improving system’s 
computational efficiency. This is particularly important when evaluating large ontolo-
gies, which are the ones used in real case matching scenarios. GENOMA9 offers the 
possibility to be executed in a distributed environment; to achieve this feature, it uses 
Java RMI10 (Remote Method Invocation) which enables the execution of each match-
ers on a given server.  

In Fig. 1 we show the architecture adopted by GENOMA. To handle ontologies, 
the OWL ART API11 are adopted. The main component of the ontology matching 
process is the Matching Composer (sometimes called just Composer). This module 
coordinates the whole process. It parses the configuration file, handled by the module 
Configuration, of the selected engine12 (more information about this configuration are 
given in section 3.2), then launches the desired matchers, using the relative parame-
ters (the only mandatory parameters are the 2 ontologies addresses; the parameters 
that are specific to each matcher are optional, since they all have default values). Each 
matcher returns to the Composer its own processed similarity matrix, which is then 
passed to the next matcher, or a notification if an error occurred during ontology pro-
cessing. Once all the desired matchers have completed their task by returning the 
similarity matrix, the Composer produces a detail log and the alignment file, that is an 
xml file, containing the final similarity matrix, filtered using the threshold selected by 
the user before starting the matching process (the Filtered Similarity matrix in Fig. 1). 
A matcher can uses external linguistic resources, for example by adopting Ontoling13 
to access DICT14 and WordNet. 

 
 

                                                           
9  It can be download from: https://bitbucket.org/aturbati/ontology-matching-architecture 
10 https://docs.oracle.com/javase/tutorial/rmi/ 
11  http://art.uniroma2.it/owlart/ 
12An engine is the implementation of a matching architecture produced by the user interface of 

GENOMA. 
13 http://art.uniroma2.it/software/OntoLing/ 
14 www.dict.org 
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Fig. 1. GENOMA architecture 

3.2 User Interface 

To help the user in creating, visualizing and validating an architecture for an O.M. 
tool, GENOMA provides an easy to use and complete User Interface15 (see Fig. 2 and 
hereafter for details). Since the beginning, the user can decide whether to use an al-
ready existing configuration or to create a new architecture, using the provided 
matcher (plus the ones possibly developed by himself).  

When selecting an existing configuration, the user specifies the two ontologies to 
be compared, an optional alignment file (useful when evaluating an O.M. architec-
ture), and the Engine (a file specifying all the information describing a given architec-
ture). Once these information have been provided, the matching process starts. The 
user can monitor the entire process (its status, any error, the log file and the alignment 
file produced by the selected architecture): in fact all these details are stored in a 
MySQL16 DB, to help retrieve them and guarantee their persistency. 

The user interface is even more useful when deciding to assemble a new architec-
ture. The GUI (shown in Fig. 2) provides the user what he needs to create each new 
specific architecture. The user can either save or load a previous created architecture, 
as well as can validate the current architecture (see Section 3.3 to understand the vali-
dation provided by GENOMA). One important feature is the possibility to save the 
current work as an image, to help showing the created architecture or sharing it with 
colleagues to discuss it. 

The creation of the new architecture is completely interactive and mainly mouse 
oriented, to help novices in this delicate task. By selecting the desired matcher, the 
user just need to specify the parameters values (or he can accept the default ones) and  
 

 

                                                           
15The User Interface is deployed as a web application in Tomcat. 
16  www.mysql.com/ 
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Fig. 2. User Interface when creating an architecture 

then link the matchers in several possible deployment configurations (see Section 3.4). 
All this is achieved easily by using a Java applet and just a couple clicks of the mouse17! 

3.3 Provided Base Matchers 

All the elements that can be considered when assembling an architecture in the user 
interface, at the moment, are divided into, three main classes: 

• Structural elements (known as system elements); 
• String-based matchers; 
• Language-based matchers.  

The elements of these classes all are deployed in the same manner. The system ele-
ments are: SimilarityMatrixExtractor (SME), JuctionPoint and AlignmentExtractor. 

The Similarity Matrix Extractor is the first element in every architecture created by 
using GENOMA. It can extract the similarity matrix, obtained from another architec-
ture, so it can start the current architecture by using results obtained in the context of a 
previous execution. 

The Junction Point is used to combine two similarity matrices, obtained from the 
parallel processing (see Section 3.4). Its configuration parameter consists in which 
aggregation function to use. The default value is the triangular norm, while other  
value are possible, by expanding its implementation. 

The Alignment Extractor executes the inverse operation of the SME: given a simi-
larity matrix, it generates the alignment. It also apply a filter operation before generat-
ing the alignment in case the user has provided it. 

The other classes, String-based and Language-based matchers, provide the matching 
part in the architecture. The former considers only the words associated to a resource  
(for example thought the property rdfs:label or using the name of the resource itself)  

                                                           
17  Just to see how easy to use it is, interested persons could access it at 

http://artemide.art.uniroma2.it:8080/GenomaWeb-1.0/ 
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Table 2. Matchers list 

Name Symbol Type Matcher  
Functionality 

Number 
of  
edges 

Similarity 
Matrix Ex-
tractor  

System 
Extraction the similarity 
matrix 

0 input  
N output  

Junction 
Point 

 
System 

Aggregation similarity 
matrices 

2 input  
N output  

Alignment 
Extractor 

 
System 

Extraction the alignment 
from the similarity matrix 

1 input  
0 output  

String 
Equality 
Matcher  

String-
based 

Comparing Strings 
1 input  
N output  

SubString 
Compare 
Matcher  

String-
based 

Comparing Substrings 
1 input  
N output  

N-grams 
Compare 
Matcher  

String-
based 

N-grams comparison 
1 input  
N output  

String 
Hamming 
Distance 
Matcher 

 

String-
based 

Hamming distance in the 
comparison 

1 input  
N output  

Synonyms 
Matcher 

 

Language-
based 

Comparison using syno-
nyms 

1 input  
N output  

Cosynonyms 
Matcher 

 

Language-
based 

Comparison using syno-
nyms and then counting 
the number of synonyms 
they have in common 

1 input  
N output  

 
 

threating it as sequence of characters, while the latter performs an analysis based on 
the language used, for example considering synonyms obtained from a linguistic re-
source, such as WordNet. The provided language based matchers, in the current re-
lease, work only on the English language; the use of the framework OntoloLing and 
Linguistic Watermark [13] with the associated resource, DICT, could be used to ana-
lyze other languages as well. 

The system is able to automatically validate each architecture developed by the us-
er, by checking that all the constrains are respected (for example that each architec-
ture starts with a SME, ends with a Alignment Extractors).  

In Table 2, the existing matchers are presented and commented. 
 



 

3.4 Examples of Archit

Matchers can be deployed i
configurations to better und
When the user is defining a
to adopt a parallel or a serie

In Fig. 3, we have an e
StringEquality, in series, wh

When two matchers are i
is passed as input matrix to
second matcher, are the no
matcher has a weight in the
sum of all the local results o

When the matchers are 
them. This component perf
selected during the configur

The easy to learn and c
complex architectures usin
in series and in parallel. Fo
parallel execution of two m
which are then deployed in
more complex architectures
interest. 
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Fig. 3. Matchers in series 

tectures 

in series or in parallel. In this section, we present two b
derstand what is possible to achieve by using GENOM
an architecture, the first decision he has to make is whet
es given two matchers.  
example of two matchers, one SubStringCompare and 
hile in Fig. 4 the same two matchers are deployed in paral
in series, the resulting similarity matrix of the first matc
o the second one. The resulting similarity values, after 
ormalized weighted sum of the two separated values (e
e interval [0, 1]). This means that the result is the weigh
of the single matchers in the series. 

in parallel, a JunctionPoint is needed immediately a
forms the aggregation of each result by using the algorit
ration phase. 
complete user interface enables the construction of m
g the same approach: just by combining several match
r example in Fig. 5 we have an architecture composed o

matchers (a StringHanningDistance and a NgramCompa
n series with another matcher (a SynonymsMatcher). E
s, can be deployed very easily just by selecting matcher

Fig. 4. Matchers in parallel 
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4 Conclusion 

In this article, we have des
deploying and validating c
tools. These architectures c
given a specific domain or 
of experimenting while defi

Several implemented and
possibility to immediately
implementing new matcher

Regarding the deployme
machine or distributed amo
the complexity required by 

Thanks to all these featu
novice) to rapidly define a
modules functionalities by d

Acknowledgements. This res
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