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Abstract. Research in Computational Linguistics (CL) has been grow-
ing rapidly in recent years in terms of novel scientific challenges and
commercial application opportunities. This is due to the fact that a very
large part of the Web content is textual and written in many languages. A
part from linguistic resources (e.g., WordNet), the research trend is mov-
ing towards the automatic extraction of semantic information from large
corpora to support on-line understanding of textual data. An example
of direct outcome is represented by common-sense semantic resources.
The main example is ConceptNet, the final result of the Open Mind
Common Sense project developed by MIT, which collected unstructured
common-sense knowledge by asking people to contribute over the Web.
In spite of being promising for its size and broad semantic coverage,
few applications appeared in the literature so far, due to a number of
issues such as inconsistency and sparseness. In this paper, we present
the results of the application of this type of knowledge in two different
(supervised and unsupervised) scenarios: the computation of semantic
similarity (the keystone of most Computational Linguistics tasks), and
the automatic identification of word meanings (Word Sense Induction)
in simple syntactic structures.

1 Introduction

Recent Computational Linguistics advances are fully oriented towards the auto-
matic extraction of semantic information through big and multilingual data anal-
yses, since semantics help tasks such as disambiguation, summarization, entail-
ment, question answering, and so forth. This explains the fortunate and growing
area of semantic resources, often constructed with automatic approaches, when
manual building of ontologies is not feasible on large scale. Semantic informa-
tion extraction is currently approached by distributional analysis of linguistic
items over specific contexts [1] or by starting from seeds and patterns to build
ontologies from scratch [2]. In some cases, linguistic items are substituted by
super-senses (i.e., top-level hypernyms) [3].

In recent years, the need and the opportunity of automatically extracting
semantic information has been answered by Big Data. This led to the construc-
tion of very large semantic resources, such as ConceptNet [4], i.e., a semantic
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graph that has been directly created from collection of unstructured common-
sense knowledge asked to people contributing over the Web. In contrast with
linguistic resources such as WordNet [5], ConceptNet contains semantic infor-
mation that are more related to common-sense facts. For this reason, it has a
wider spectrum of semantic relationships though a much more sparse coverage.
For instance, among the more unusual types of relationships (24 in total), it
contains semantic relations like “ObstructedBy” (i.e., referring to what would
prevent it from happening), “ and CausesDesire” (i.e., what does it make you
want to do). In addition, it also has classic relationships such as “is a” and
“part of ” as in other linguistic resources.

ConceptNet is a resource based on common-sense rather than linguistic
knowledge and it contains much more function-based information (e.g., all the
actions a concept can be associated with) contained in even complex syntactic
structures. While it has been recognized as a very promising type of knowl-
edge for many computational tasks, it is not significantly used yet due to its
complexity. More in detail, ConceptNet has the following main problems:

1. Specificity. It contains very specific semantic information (e.g., <
knowledge − CapableOf − openhumanmind >) that are difficult to inte-
grate in automated tasks;

2. Completeness. It is not complete (due to the methodology used to build it),
since semantic features are arbitrarly associated to only few of all the possible
relevant concepts (e.g., ConceptNet contains < jazz−IsA−styleofmusic >)
but not < rock − IsA− styleofmusic >);

3. Correctness. It contains pragmatics statements which are not semantically
correct, e.g., < cat−Antonym− dog >;

4. Relativity. It has semantic features such as < dog−HasProperty−small >,
which is not always true.

This paper presents an application of ConceptNet (as common-sense knowl-
edge) in two different scenarios: the computation of similarity scores at word-level
(one of the key task in Computational Linguistics) and the identification of the
different meanings that can be associated with words in sentences. Although the
tasks are of different type (supervised and unsupervised respectively), they are
based on the same idea of replacing words with ConceptNet semantic informa-
tion, to measure whether this knowledge has the potential to serve computational
tasks even without any particular approach for data alignment, noise removal,
semantic information propagation, etc.

2 Background and Related Work

Word Sense Disambiguation (WSD) [6] is maybe the most crucial Natural Lan-
guage Processing task, since its aim is to capture the correct meaning to be
associated to a word in a specific context. This allows to interpret the cor-
rect sense of a word, in order to understand how similar is with respect to
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other words. This permits a set of comparisions between texts, which is use-
ful for many computational tasks such as Information Retrieval, Named Entity
Recognition, Question Answering, and so forth. Generally speaking, systems are
usually asked to compute similarity scores between pieces of texts at different
granularity (word, sentence, discourse) [7].

In order to evaluate the similarity between texts, semantic resources are often
used to consider a larger semantic basis to make more accurate comparisons.
While linguistic resources such as WordNet and VerbNet constitute a highly-
precise source of information, they often cover very few semantic relations usually
focusing on taxonomic relations. Common-sense knowledge, on the other side,
represents a much larger set of semantic features, which, however, is affected by
noise and lack of completness.

If we consider the objects, agents and actions as terms in text sentences, we
can try to extract their meaning and semantic constraints by using the idea of
affordances [8]. The affordances of an object can be seen as the set of function-
alities that it naturally communicates to the agents through its shape, size, and
other phisical characteristics.

For instance, let us think to the sentence “The squirrel climbs the tree”.
In this case, we need to know what kind of subject “squirrel” is to figure out
(and visually imagine) how the action will be performed. Let us now consider
the sentence “The elephant climbs the tree”. Even if there is no change in the
grammatical structure of the sentence, the agent of the action creates some
semantic problem. In fact, in order to climb a tree, the subject needs to fit to
our mental model of “something that can climb a tree”. In addition, this also
depends on the mental model of “tree”. Moreover, different agents can be both
correct subjects of an action whilst they may produce different meanings in terms
of how the action can be performed. A study of these language dynamics can be
of help for many NLP tasks, e.g., Part-Of-Speech tagging as well as more complex
operations such as dependency parsing and semantic relation extraction. Some
of these concepts are latently studied in different disciplines related to statistics.
Distributional Semantics (DS) [9] represents a class of statistical and linguistic
analysis of text corpora that tries to estimate the validity of connections between
subjects, verbs, and objects by means of statistical sources of significance.

3 A Large Common-sense Knowledge: ConceptNet

The Open Mind Common Sense1 project developed by MIT collected unstruc-
tured common-sense knowledge by asking people to contribute over the Web.
In this paper, we started focusing on ConceptNet [4], that is a semantic graph
that has been directly created from it. In contrast with linguistic resources like
WordNet [5], ConceptNet contains semantic information that are more related
to common-sense facts.

1 http://commons.media.mit.edu/

http://commons.media.mit.edu/
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Table 1. Some of the existing relations in ConceptNet, with example sentences in
English.

Relation Example sentence

IsA NP is a kind of NP.
LocatedNear You are likely to find NP near NP.
UsedFor NP is used for VP.
DefinedAs NP is defined as NP.
HasA NP has NP.
HasProperty NP is AP.
CapableOf NP can VP.
ReceivesAction NP can be VP.
HasPrerequisite NP—VP requires NP—VP.
MotivatedByGoal You would VP because you want VP.
MadeOf NP is made of NP.
... ...

For this reason, it has a wider spectrum of semantic relationships though a
much more sparse coverage. For instance, among the more unusual types of rela-
tionships (24 in total), it contains information like “ObstructedBy” (i.e., referring
to what would prevent it from happening), “and CausesDesire” (i.e., what does
it make you want to do). In addition, it also has classic relationships like “is a”
and “part of ” as in most linguistic resources (see Table 1). ConceptNet is a
resource based on common-sense rather than linguistic knowledge since it con-
tains much more function-based information (e.g., all the actions a concept can
be associated with) contained in even complex syntactic structures.

4 Supervised Experiment: Semantic Similarity

From a computational perspective, being words ambiguous, the disambiguation
process (i.e., Word Sense Disambiguation) is one of the most studied tasks in
Computational Linguistics. To make an example, the term count can mean many
things like nobleman or sum. Using contextual information, it is often possible
to make a choice. Again, this choice is done by means of comparisons among
contexts, that are still made of words. In other terms, we may state that the
computational part of almost all computational linguistics research is about the
calculus of matching scores between linguistic items, i.e., words similarity.

4.1 Description of the Experiment

The experiment starts from the transformation of a word-word-score similarity
dataset into a context-based dataset in which the words are replaced by sets
of semantic information taken from ConceptNet. The aim is to understand if
common-sense knowledge may represent a useful basis for capturing the similar-
ity between words, and if it may outperform systems based on linguistic resources
such as WordNet.
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4.2 Data

We used the dataset SimLex-999 [10] that contains one thousand word pairs that
were manually annotated with similarity scores. The inter-annotation agreement
is 0.67 (Spearman correlation). We leveraged ConceptNet to retrieve the seman-
tic information associated to the words of each pair, then keeping the simple
intersection2. Then, we applied the same approach with the semantic informa-
tion in WordNet. Note that we did not make any disambiguation of the words,
so we used all the semantic data of all the possible senses of the words contained
in the similarity dataset.

4.3 Running Example

Let us consider the pair rice-bean. ConceptNet returns the following set of seman-
tic information for the term rice:

[hasproperty-edible, isa-starch, memberof-oryza, atlocation-refrigerator,
usedfor-survival, atlocation-atgrocerystore, isa-food, isa-domesticate-
plant, relatedto-grain, madeof-sake, isa-grain, isa-traditionally,
receivesaction-eatfromdish, isa-often, receivesaction-cook, relatedto-
kimchi, atlocation-pantry, atlocation-ricecrisp, relatedto-sidedish,
atlocation-supermarket, receivesaction-stir, isa-staplefoodinorient,
hasproperty-cookbeforeitbeeat, madeof-ricegrain, partof-cultivaterice,
receivesaction-eat, derivedfrom-rice, isa-cereal, relatedto-white,
hasproperty-white, hascontext-cook, relatedto-whitegrain, relatedto-
food]

Then, the semantic information for the word bean are:

[usedfor-fillbeanbagchair, atlocation-infield, atlocation-can, usedfor-
nutrition, usedfor-cook, atlocation-atgrocerystore, memberof-
leguminosae, usedfor-makefurniture, usedfor-grow, atlocation-foodstore,
isa-legume, usedfor-count, isa-domesticateplant, hasproperty-
easytogrow, partof-bean, atlocation-cookpot, isa-vegetableorperson-
brain, atlocation-beansoup, atlocation-soup, atlocation-pantry,
usedfor-plant, isa-vegetable, atlocation-container, usedfor-supplyprotein,
atlocation-jar, usedfor-useasmarker, atlocation-field, derivedfrom-
beanball, usedfor-shootfrompeashooter, atlocation-coffee, usedfor-fillbag,
receivesaction-grindinthis, usedfor-beanandgarlicsauce, atlocation-
beancan, usedfor-makebeanbag, usedfor-eat]

Finally, the intersection produces the following set (semantic intersection):

[atlocation-atgrocerystore, isa-domesticateplant, atlocation-pantry]

Then, for each non-empty intersection, we created one instance of the type:
2 In future works we will study more advanced types of matching.
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<semantic intersection>, <similarity score>

and compute a standard term-document matrix, where the term is a seman-
tic term within the set of semantic intersections and the document dimension
represents the instances (i.e., the word pairs) of the original dataset. After this
preprocessing phase, the score attribute is discretized into two bins:

– non-similar class - range in the dataset [0, 5]
– similar class - range in the dataset [5.1, 10]

4.4 Results

The splitting of the data into two clusters allowed us to experiment a classic
supervised classification system, where a Machine Learning tool (a Support Vec-
tor Machine, in our case) has been used to learn a binary model for automatically
classifying similar and non-similar word pairs. The result of the experiment is
shown in Table 2. Noticeably, the classifier based on ConceptNet data has been
able to reach a quite good accuracy (65.38% of correctly classified word pairs),
considering that the inter-annotation agreement of the original data is only 0.67
(Spearman correlation). The use of WordNet produced a total F-measure of
0.582 (0.723 for the non-similar class and only 0.143 for the similar class). This
demonstrates the potentiality of the semantic information contained in Concept-
Net even if not structured and disambiguated as in WordNet.

Table 2. Classification results in terms of Precision, Recall, and F-measure with Con-
ceptNet (CN) and WordNet (WN). With the use of WordNet, the system achieved
0.582 of total F-measure (0.723 for the non-similar class and only 0.143 for the similar
class), while ConceptNet carried to higher accuracy levels.

Class Prec. (CN) Recall (CN) F (CN) Prec. (WN) Recall (WN) F (WN)

non-similar 0,697 0,475 0,565 0,574 0,978 0,723
similar 0,633 0,815 0,713 0,745 0,079 0,143

weighted total 0,664 0,654 0,643 0,649 0,582 0,467

Note that with ConceptNet, similar word pairs are generally easier to identify
with respect to non-similar ones. On the other side, WordNet resulted to be not
sufficient to generalize over similar word pairs.

5 Unsupervised Experiment: Word Sense Induction

In this section, we present an approach for automatic inducing senses (or mean-
ings) related to the use of short linguistic constructions of the type subject-verb-
object. As in the supervised experiment, we used the same approach, that is to
replace words with the semantic information obtained from a semantic resource
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such as ConceptNet. The previous experiment demonstrated that the use of
common-sense knowledge in this approach may outperform standard resources
such as WordNet.

Instead of focusing on single words (as in the supevised setting), we experi-
mented on a simple sentence-level task. The reason is twofold: 1) subject-verb-
object are easily minable with very simple NLP parsers, and 2) they represent
complete meanings (entire scenes, or actions). A sense is intended as in the well-
known tasks named Word Sense Disambiguation (WSD) [6] and Word Sense
Induction (WSI) [11], i.e., the meaning that a word assumes in a specific con-
text. While WSD focuses on the classification of the meaning of a word among a
given set of possible senses, WSI automatically finds senses as clusters of differ-
ent contexts in which a word appears. Obviously, WSI systems are more complex
to evaluate (as all clustering methods in general), eventhough [12] proposed a
pseudo-word evaluation mechanism which is able to simulate the classic WSD
scenario.

5.1 Description of the Experiment

The experiment is composed by three different phases: (1) the data pre-
processing step with the generation of two transactional databases (transactions
of items, as in the fields of Frequent Itemset Mining and Association Rules [13])
that we also call semantic itemsets; (2) the extraction of frequent, closed, and
diverse itemsets (we will briefly introduce the meaning of all these names in
the next paragraphs); and finally (3) the creation of semantic verb models, that
generalize and automatically induce senses from entire linguistic constructions
at sentence-level.

For a specific input verb v, we parse all the subject-verb-object (SVO) triples
in the dataset3 that have a higher frequency than a set threshold4, taking
into consideration morphological variations of v. Then, for each SVO triple,
we replaced the subject-term and the object-term with the relative semantic
features contained in ConceptNet. Table 3 shows an example of the information
collected in this phase. Then, we associate each semantic information to a unique
id and construct two transactional databases: one for the semantic information
of the subjects, and one for the objects.

Once the transactional databases are built for a specific verb “v”, we use
techniques belonging to the field of Frequent Itemset Mining to extract fre-
quent patterns, i.e, semantic features that frequently co-occur in our transac-
tional databases5.

This is done for both the transactional databases (subject and object
databases associated to the verb ’v ’). Since our aim is to capture all the lin-
guistic senses, i.e., the different meanings connectable to the use of a specific
3 More details about the used dataset are illustrated in a next section.
4 In our experiments we considered SVO triples that occur at least 50 times in the

whole ClueWeb09 corpus, in order to remove noisy data.
5 In our experimentation, we used the library called SPMF for finding closed frequent

itemsets6, applying the CHARM algorithm [14].
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Table 3. An example of subject- and object-terms semantic transformation for one
triple of the verb “to learn” (student-learns-math). This represents one row of the two
transactional databases.

Subject-term Subject semantic fea-
tures

Object-term Object semantic fea-
tures

student CapableOf -study,
AtLocation-
at school, IsA-
person, Desires-
learn, PartOf -
class, CapableOf -
read book)

math IsA-subject,
HasProperty-
useful in business,
UsedFor -
model physical world,
...

verb, we also need to obtain itemsets that cover all the items that are found
in frequent itemsets. In other words, we want to extract diverse itemsets, i.e., a
minimal set of frequent and closed itemsets that cover all the frequent items.

In the final phase, once obtained the frequent and diverse itemsets for both
the two transactional databases, we connect all the subject-itemsets with all the
object-itemsets, weighting the connection according to the their co-occurrences
in the same triples of the original dataset.

The semantic verb model constructed for a specific verb “v” is thus a set of
weighted connections between frequent and diverse semantic features belonging
to the subjects of “v” and frequent and diverse semantic features of the objects
of “v”. On the one hand, this is a way to summarize the semantics suggested by
the verb occurrences. On the other hand, it is also a result that can be used to
generate new data by querying existing semantic resources with such semantic
subject- and object-itemsets. Still, this can be done without looking for words
similar to frequent subjects and objects, but by finding new subjects and objects
that, even if not similar in general, have certain semantic information that fill
the specific context.

The resulting models are automatically calculated, and they are very concise,
since in all the large and sparse semantic space only few features are relevant
to certain meanings (headed by the verb). This is also in line with what stated
in [15] where the authors claimed that semantics is actually structured by low-
dimensionality spaces that are covered up in high-dimensional standard vector
spaces.

5.2 Data

We used a dataset of subject-verb-object (SVO) triples generated as part of the
NELL project7. This dataset contains a set of 604 million triples extracted from

7 http://rtw.ml.cmu.edu/resources/svo/

http://rtw.ml.cmu.edu/resources/svo/
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the entire dependency-parsed corpus ClueWeb09 (about 230 billion tokens)8.
The dataset also provides the frequency of each triple in the parsed corpus. The
aim of the evaluation is two-folds: to demonstrate that the proposed approach is
able to induce senses with a better efficacy than a classic word-based strategy,
and to show that the resulting semantic model also drammatically reduces the
dimensionality of the feature space, yet without mixing features.

5.3 Running Example

In order to better explain the whole data flow, we list some steps on an example
verb (to sing). Within the dataset, we extracted 82 different triples (after mor-
phologic and NER normalizations). The cardinality of subjects and objects is
95. The total number of semantic relations retrieved from ConceptNet is 8786.
Then, with a minimum support of 0.05 (i.e., 5%), the output model of our app-
roach is constituted by 4 diverse itemsets for the objects and 24 for the subjects,
with an average itemset cardinality of 18.5 and 12.6 respectively, covering more
than 50% of the semantic features of all the input triples. Thus, the size of the
feature space for modeling the senses of the verb to sing goes from 95 words to
28 (4 + 24) semantic features (clusters of ConceptNet semantic information). In
the next section we show the aggregate results on an extensive set of experiments
using the pseudo-word evaluation proposed by [12].

The original dataset has several issues we needed to solve in order to garan-
tee the significance of the evaluation. In detail, we removed very low-frequency
triples containing mispelled words as well as meaningless sequences of characters
that were not filtered out during the generation of the data. We manually tested
different cutoffs to see the quality of the triples of the top-10 verbs in the corpus,
selecting m = 50 as minimum frequency of the subject-verb-object triples in the
ClueWeb09 corpus.

Then, since the subject and object terms of the triples were not normalized,
we merged all linguistic variations according to their morphological roots. Still,
we integrated a Named Entity Recognition (NER) module to transform proper
names into simple generic semantic classes, like people and organizations9.

5.4 Results

Word Sense Induction systems are usually evaluated by using the pseudo-word
strategy presented in [12]. The process proceeds as follows: first, two random
words are selected, merged, and replaced by a unique token (for instance, the
words dog and apple are replaced by the single pseudo-word dogapple in the
corpus). Then, the WSI system is evaluated in terms of how well it separates
the dogapple-instances into two correct clusters based on their context (as in
a standard Word Sense Disambiguation scenario). In our case, since we use a
large corpus of subject-verb-object instances, we evaluate our approach on verbs,

8 http://lemurproject.org/clueweb09/
9 We used the Stanford NLP toolkit available at http://www-nlp.stanford.edu/

http://lemurproject.org/clueweb09/
http://www-nlp.stanford.edu/
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Table 4. Average feature space cardinality for the three approaches (word-based ww,
semantics-featured sf, semantic-model sm) on 100 random verb pairs within the top-100
frequent verbs.

F. Sp. Size (ww) Min supp. Sem. Loop F. Sp. Size (sf) F. Sp. Size (sm)

145,70 10% 1 4701,65 13,65
147,30 10% 2 2346,25 52,20
147,25 10% 3 1856,85 101,00

F. Sp. Size(ww) Min supp. Sem. Loop F. Sp. Size (sf) F. Sp. Size (sm)

146,90 20% 1 5159,70 4,55
145,10 20% 2 2232,40 14,10
143,50 20% 3 1863,80 41,75

F. Sp. Size (ww) Min supp. Sem. Loop F. Sp. Size (sf) F. Sp. Size (sm)

147,30 30% 1 4604,00 -
149,20 30% 2 2313,85 6,85
149,10 30% 3 1805,75 25,35

defining the context as their subject-object pairs. In particular, we extracted the
top-100 frequent verbs in the dataset. From them, we randomly selected 100
verb pairs and replaced them with their pseudo-word. Some examples of pairs
were take-do, find-give, look-try. On these evaluation data, we compared three
approaches:

ww The ww -approach (word-based) constructs a dataset using subject and
object terms as features.

sf The sf -approach (semantic-featured) constructs a dataset using the Con-
ceptNet semantic information associated to subjects and objects as features,
without mining frequent and diverse patterns from them.

sm The sm-approach (semantic verb model) constructs a dataset using the gen-
erated diverse itemsets as feature space.

For the ww -approach, for each verb pair under evaluation, we build a verb
matrix Mv

I,J where the rows represent the I -triples subject-verb-object containing
the verb v while the columns J = Js

⋃
Jo are the union of subject and object

terms (Js and Jo respectively). For example, the triple Robert-eats-vegetables
becomes an Meat-row <s-person=1, o-vegetable=1> with only two non-zero
features (notice that Robert has been substituted with the feature representing
its associated Named Entity person, whereas vegetables has been linguistically-
normalized to vegetable). The creation of the sf and the sm models is done in
the same way. For the sf -approach we replaced subject and object terms with
their ConceptNet semantic information, while for the sm-approach we replaced
the features of the sf model with the generated diverse itemsets.

In this section we show and discuss the comparison of the three different
models (ww, sf and sm) in terms of dimensionality reduction, classification
accuracy and clustering adherence. We also experimented the usefulness of the
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(a) (b)

Fig. 1. An example sketch of the clustering evaluation results for the ww-approach (left
figure (a)) and the sf - and sm-approach (right figure (b)). Accuracy and precision val-
ues are identical. Recall is superior for ww, in spite of the inability of the clustering
process to separate the instances (almost all instances are in one single cluster). Clus-
tering adherence permits to give light to the better intersection between clusters and
classes obtained with our proposed approaches sf and sm.

recursive usage of ConceptNet. In detail, instead of simply replacing a word w
with its semantic terms < s1, s2, ..., sn >, we continue substituting each si with
< si1, si2, ..., sin >. We call this reiteration semantic loop.

Dimensionality Reduction. As shown in Table 4, the average size of the fea-
ture space is around 146 for the ww-approach, that is the average number of
terms that fill the subject and object slots for the top-100 verbs in the collec-
tion (after normalization). When such terms are replaced by their ConceptNet
semantic information (sf), the feature space becomes much larger. Actually, we
only kept the top-1000 most common terms plus the terms that are as common
as the least common term (i.e. ties are not broken). Note that while the semantic
loop increases, the number of features for sf decreases. This is due to the fact
that also ties on the 1000th term decrease with higher semantic loops, so the
cutoff is able to operate earlier. Finally, the semantic model sm produces a very
reduced feature space, compared to the ww and sf models.

Clustering. we used K-Means (with K=2) on the three models, then matching
the resulting two clusters with the two actual verb1 and verb2 groupings. For
each pair of instances i and j, it can happen one of the following 4 cases:

– i and j are clustered in the same cluster and they belong to the same class
(true positive TP)

– i and j are clustered in the same cluster but they actually belong to different
classes (false positive FP)

– i and j are clustered in different clusters but they actually belong to the
same class (false negative FN)
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Table 5. Average clustering adherence for the three approaches (word-based ww,
semantics-featured sf, semantic-model sm) on 100 random verb pairs within the top-100
frequent verbs.

Clust. Adh. (ww) Min supp. Sem. Loop Clust. Adh. (sf) Clust. Adh. (sm)

7,90% 10% 1 13,57% 21,15%
7,46% 10% 2 15,69% 22,84%
5,71% 10% 3 15,95% 25,65%

Clust. Adh. (ww) Min supp. Sem. Loop Clust. Adh. (sf) Clust. Adh. (sm)

6,78% 20% 1 8,22% 22,38%
7,76% 20% 2 15,92% 24,48%
6,61% 20% 3 20,02% 26,10%

Clust. Adh. (ww) Min supp. Sem. Loop Clust. Adh. (sf) Clust. Adh. (sm)

8,46% 30% 1 11,40% -
7,28% 30% 2 15,52% 22,46%
7,84% 30% 3 19,88% 25,35%

– i and j are clustered in different clusters and they belong to different classes
(true negative TN)

The result of the clustering on the ww-approach is quite worthless in almost
all the cases. In particular, the first cluster uses to contain one or two instances
while the rest of the data remains in the second cluster. Thus, the computation
of standard accuracy values carries to the same problem of the classification case
(standard accuracy values are not meaningful). To overcome this inconvinient,
we propose a novel measure, i.e., the clustering adherence. In words, its aim is
to see how the feature space lets identify some coherent overlapping between
the returned clusters and the actual classes in terms of TF and TN only (only
in Information Retrieval systems FP and FN are actually important as TP and
TN). Figure 1 shows the geometric representation of the measure. TP and TN
form an area of correctness, that can be compared to its maximum value (when
FP and FN are zero). Even if the three approaches have similar accuracy values,
they present different clustering adherence. In particular, the clustering on the
ww-model produces very low TP-TN areas with respect to sf and sm. Table 5
shows the complete results.

6 Conclusions and Future Works

Common-sense knowledge, differently from top-down semantic resources, has the
potential to impact computational tasks thanks to the high number of semantic
relations that is usually unfeasible to create manually. Nevertheless, the com-
plexity in terms of specificity, completeness, correctness, and relativity makes it
difficult to be used in numerous tasks. In this paper, we experimented two uses
of common-sense knowledge in both an unsupervised and a supervised setting,
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by replacing words with the information associated to them in ConceptNet, a
large common-sense semantic resource. The results highlights the power of this
approach even before adequate management of the above-mentioned problematic
common-sense type of semantic data. In future work, we will leverage techniques
for data filtering and compression to improve quality in ConceptNet, evaluating
the impact in main computational tasks.
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