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Abstract. The rising interest around tractable Probabilistic Graphical
Models is due to the guarantees on inference feasibility they provide.
Among them, Cutset Networks (CNets) have recently been introduced
as models embedding Pearl’s cutset conditioning algorithm in the form of
weighted probabilistic model trees with tree-structured models as leaves.
Learning the structure of CNets has been tackled as a greedy search
leveraging heuristics from decision tree learning. Even if efficient, the
learned models are far from being accurate in terms of likelihood. Here,
we exploit the decomposable score of CNets to learn their structure and
parameters by directly maximizing the likelihood, including the BIC cri-
terion and informative priors on smoothing parameters. In addition, we
show how to create mixtures of CNets by adopting a well known bag-
ging method from the discriminative framework as an effective and cheap
alternative to the classical EM. We compare our algorithms against the
original variants on a set of standard benchmarks for graphical model
structure learning, empirically proving our claims.

1 Introduction

Probabilistic Graphical Models (PGMs) [8] provide a powerful formalism to
model and reason about rich and structured domains. They capture the con-
ditional independence assumptions among random variables into a graph based
representation, sometimes called network (as in Bayesian Networks). Answering
inference queries in PGMs often results in computing the probability of observing
some evidence according the provided graphical structure. However, in general,
to compute exact inference is a NP-Hard problem, and also some approximate
inference routines are intractable in practice [19].

The pursuit for exact and efficient inference procedures led to the recently
growing interest in the AI community around tractable PGMs. In exchange for
inference tractability guarantees, they are less expressive, in the sense that they
cannot possibly capture all the conditional probabilistic independences in the
data. Tractable PGMs encompass tree-structured models, like those learned by
the classical Chow-Liu algorithm [3] or by introducing latent variables [2], or
even a bound on the treewidth of the model [1]; Bayesian and Markov Networks
compiled into Arithmetic Circuits (ACs) [11,12]; and Sum-Product Networks
(SPNs) [15] as deep architectures encoding probability distributions by layering
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hidden variables as mixtures of independent components. As the expressiveness
of these models increases, the complexity of learning their parameters and struc-
ture from data increases as well; as a matter of fact the overall performances
degrade as data grows in size.

Cutset Networks (CNets) have been introduced recently in [17] as tractable
PGMs with the aim of making learning efficient and scalable. They are weighted
probabilistic model trees in the form of OR-trees having tree-structured models
as leaves, and non-negative weights on inner edges, resulting into an architecture
embedding Pearl’s conditioning algorithm [14]. Inner nodes, i.e., conditioning
OR nodes, are associated to random variables and outgoing branches represent
conditioning on the values for those variables domains.

In [17], well known decision tree learning algorithms are leveraged to build
a Cutset Network from data. In a nutshell, iteratively, training instances are
split conditioning on the values of the best variable chosen as to maximize the
reduction in an approximation of the joint entropy over all variables. While
the computation of such a heuristic is cheap, it is not principled in a genera-
tive framework where model accuracy is measured as the scored data likelihood.
The need to directly estimate the data likelihood is shown when a form of tree
post pruning is introduced in [17] as a way to alleviate overfitting. Competi-
tive results against state-of-the-art tractable PGM structure learners [13,18] are
achieved when introducing mixtures of Cutset Networks via the Expectation
Maximization algorithm (EM).

In this work we introduce a more principled way to learn Cutset Networks.
We reformulate the search in the structure space as an optimization task directly
maximizing data likelihood in a Bayesian framework. Regularization is achieved
through the introduction of the Bayesian Information Criterion (BIC) in the like-
lihood score and by informative Dirichlet Priors on counting parameters while
learning tree-structured models. Therefore, we avoid overfitting without adopt-
ing costly techniques like post pruning as in [17]. The direct optimization of
the CNet likelihood has been obtained by exploiting its decomposability, leading
to a tractable evaluation of the models during learning by limiting computa-
tions only on portions of data. We then introduce a very simple yet effective
way to learn mixtures of Cutset Networks by exploiting bagging [6], opposed to
the classical generative use of EM. We empirically verified the gain in terms of
likelihood for the learned models with this new proposed approach against the
original algorithm variants proposed in [17], with and without pruning, and MT,
a solid competitor learning mixtures of trees as proposed in [13], on 18 datasets
commonly used as benchmarks for graphical models structure learning.

2 Background

We define D = {ξ1, . . . , ξM} as a set of M i.i.d. instances over the discrete
variables X = {X1, . . . , Xn}, whose domains are the sets Val(Xi) = {xj

i}ki
j=1, i =

1, . . . , n. We refer to the value assumed by an instance ξm in correspondence of
a particular variable Xi as ξm[Xi].
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2.1 Tree-Structured Models

A directed tree-structured model [13] is a Bayesian Network in which each variable
has at most one parent. Therefore, the joint probability distribution over X
represented by such models can be written in the form of a factorization as:

P (X) =
n∏

i=1

P (Xi|Pai) (1)

where Pai stands for the parent variable of Xi, if present. From Eq. 1 it follows
immediately that inference for complete or marginal queries has complexity lin-
ear in the number of variables, hence the tractability of tree-structured models.

One classic result in learning tree-structured models is that presented by
Chow and Liu in [3], where they prove that maximizing the Mutual Information
(MI) among random variables in X leads to the best tree, in an information-
theoretic sense, approximating the underlying probability distribution of D in
terms of the Kullback-Leibler divergence.

Algorithm 1. LearnCLTree(D, X, α)
1: Input: a set of instances D over a set of features X; α smoothing parameter
2: Output: 〈T , θ〉, a tree T with parameters θ encoding a pdf over X
3: M ← 0|X|×|X|
4: for each Xu, Xv ∈ X do
5: Mu,v ← estimateMutualInformation(Xu, Xv, D, α)

6: T ← maximumSpanningTree(M)
7: T ← traverseTree(T )
8: θ ← computeFactors(D, T )
9: return 〈T , θ〉

Algorithm 1 shows a sketch of the learning process. Firstly, for each pair
of variables in X, their MI is estimated from D, optionally by introducing a
smoothing factor α (line 5); then a maximum spanning tree is built on the
weighted graph induced by the MI as an adjacency matrix (line 6). Rooting
the tree in a randomly chosen variable and traversing it leads to the learned
Bayesian Network (lines 7-9). In the following we will refer to tree-structured
models simply as CLtrees.

CLtrees have been widely employed in AI, both as efficient approximations
in density estimation tasks and as the building blocks of more expressive and
yet tractable PGMs. A very simple and accurate algorithm to learn mixtures of
CLtrees is MT, as presented in [13]. MT learns a distribution of the form: Q(x) =∑k

i=1 λiTi(x), where the tree distributions Ti, are the mixture components and
λi ≥ 0, such that

∑k
i=1 λi = 1, are their coefficients. In [13], the best components

and weights are the (local) likelihood maxima learned by EM, with k being a
parameter fixed in advance.
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2.2 Cutset Networks

As introduced in [17], Cutset Networks (CNets) are a hybrid of rooted OR trees
and CLtrees, with OR nodes as internal nodes and CLtrees as leaves. Each node
in an OR tree is labeled by a variable Xi, and each edge emanating from it
represents the conditioning of Xi by a value xj

i ∈ V al(Xi), weighted by the
probability wi,j of conditioning the variable Xi to the value xj

i .
Formally, a cutset network is a pair 〈G,γ〉, where G = O ∪ {T1, . . . , TL} is

composed of the rooted OR tree, O, plus the leaf CLtrees Tl, and γ = w ∪
{θ1, . . . ,θL} corresponds to the parameters w of the OR tree and θl of the
CLTrees. The scope of a CNet G (resp. a CLtree Tl), denoted as scope(G) (resp.
scope(Tl)), is the set of random variables that appear in it. A CNet may be
defined recursively as follows.

Definition 1 (Cutset network). Given X be a set of discrete variables, a
Cutset Network is defined as follows:

1. a CLtree, with scope X, is a CNet;
2. given Xi ∈ X a variable with |V al(Xi)| = k, graphically conditioned in an

OR node, a weighted disjunction of k CNets Gi with same scope X\i is a
CNet, where all weights wi,j, j = 1, . . . , k, sum up to one, and X\i denotes
the set X minus the variable Xi.
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Fig. 1. Example of a binary CNet model. Internal nodes on variables Xi are OR nodes,
while leaf nodes are CLtrees encoding a direct graphical model.

Figure 1 reports a CNet model for binary valued variables, where the internal
nodes denote a conditioning on a variable (i.e., an OR node), while the leaves
correspond to the CLtrees of the model. Note that each node in the model
corresponds to a root of a sub-CNet Gi or to a CLtree Tj , thus the recursive
definition of a CNnet model.

The log-likelihood function of a CNet may be decomposed as follows.
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Proposition 1 (CNet log-likelihood decomposition). Given a CNet 〈G,γ〉
over variables X and a set of instances D, its log-likelihood �D(〈G,γ〉) can be
computed as follows:

�D(〈G,γ〉) =
∑

ξ∈D

∑

i=1,...,n

log P (ξ[Xi]|ξ[Pai]) (2)

when G corresponds to a CLtree. While, in the case of a OR tree rooted on the
variable Xi, with |V al(Xi)| = k, the log-likelihood is:

�D(〈G,γ〉) =
∑

j=1,...,k

Mj log wi,j + �Dj
(〈Gj ,γGj

〉) (3)

where for each j = 1, . . . , k, Gj is the CNet involved in the disjunction with
parameters γGj

, and Dj is a slice of the dataset D obtained as Dj = {ξ ∈ D :
ξ[Xi] = xj

i}, Mj = |Dj | corresponds to the number of instances in Dj, and
�Dj

(〈Gj ,γGj
〉) denotes the log-likelihood of the sub-CNet Gj on the slice Dj.

Proof. For Equation (2):

�D(〈G,γ〉) =
∑

ξ∈D
log

∏

i=1,...,n

P (ξ[Xi]|ξ[Pai]) =
∑

ξ∈D

∑

i=1,...,n

log P (ξ[Xi]|ξ[Pai])

While, for Equation (3):

�D(〈G,γ〉) =
∑

ξ∈D
log wi,ξ[Xi] + log P (〈Gξ[Xi],γGξ[Xi]

〉)

=
∑

j=1,...,k

Mj log wi,j +
∑

ξ∈Dj

log P (〈Gj ,γGj
〉)

=
∑

j=1,...,k

Mj log wi,j + �Dj
(〈Gj ,γGj

〉) �

Structure Learning. The algorithm to learn CNet structures proposed in [17]
performs a greedy top-down search in the OR-trees space. It recursively tries to
partition D into the instance subsets {Dj = {ξ ∈ D : ξ[Xs] = xj

s}}|V al(Xs)|
j=1 over

the current scope X\s by selecting heuristically the best variable Xs maximizing
a reformulation of the information gain in a generative context:

Xs = argmax
Xi∈X

⎛

⎝ĤD(X) −
∑

xj
i ∈V al(Xi)

|Dj |
|D| ĤDj

(X\i)

⎞

⎠

where ĤDj
(X) = − 1

|X|
∑

Xi∈X

∑
xj

i ∈V al(Xi)
PDj

(xi
i) log PDj

(xj
i ) is the average

entropy over the single variables in the current scope, limited to the subset Dj ,
which is introduced as a way to approximate the computation of the joint entropy
over the current scope.
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Found Xs, the algorithm creates a corresponding inner node Cs whose chil-
dren will be the nodes {Cj}ks

j=1 returned by recursive calls on the instance subsets
{Dj}ks

j=1, with ks = |V al(Xs)|. The weights {wsj}ks
j=1 are estimated as the pro-

portion of instances falling into each partition. As reported in [17], termination
can be achieved when for the current partition D the number of instances falls
under a tunable parameter m, or when the total entropy is less than a thresh-
old λ. In this case a leaf node is added as a CLtree learned on the current
instance partition over the current scope according to Algorithm 1. To cope
with the risk of overfitting, always in [17], post-pruning based on a validation
set is introduced in the form of reduced error pruning [16]. Leveraging this deci-
sion tree technique, after a CNet is fully grown, by advancing bottom-up, leaves
are pruned and inner nodes without children replaced with a CLtree, if the net-
work validation data likelihood after this operation is higher than that scored by
the unpruned network. Following experimental evidence, it appears clear that
a search step directly guided by the data likelihood, in this case the pruning
stage, is crucial for the accuracy of the learned models; otherwise representing
very poor local optima in the terms of likelihood. However, as the same authors
report, the additional cost of growing a full network and then traversing it while
reevaluating inner nodes, is demanding.

3 dCSN: Decomposability Based CNets Learning

Here, we propose the dCSN algorithm that exploits a different approach from
that in [17]: we avoid decision tree heuristics and instead choose the best variable
directly maximizing the data log-likelihood. By exploiting the recursive Defini-
tion 1, we grow a CNet top-down, allowing further expansion, i.e. the substitution
of a CLtree with an OR node, only if it improves the structure log-likelihood,
since it is clear to see that maximizing the second term in Equation 3, results in
maximizing the global score. In detail, we start with a single CLtree, for vari-
ables X, learned from D and we check whether there is a decomposition, i.e.
an OR node applied on as many CLtrees as the values of the best variable Xi,
providing a better log-likelihood than that scored by the initial tree. If such a
decomposition exists, than the decomposition process is recursively applied to
the sub-slices Di, testing each leaf for a possible substitution. A sketch of the
process is shown in Algorithm 2.

In this principled learning framework we do not need to employ post-pruning
techniques while we can embed a regularization term in the structure score
used in the decomposition process. To penalize complex structures we adopt
the Bayesian Information Criterion BIC, we now show how to derive it in our
framework and what are its properties. Using another criterion like the BDe [7]
could be possible. Following [4], the BIC score of a CNet 〈G,γ〉 on data D is
defined as: scoreBIC(〈G,γ〉) = log PD(〈G,γ〉) − log M

2 Dim(G), where Dim(G) is
the model dimension, i.e., the number of independent parameters used for the
structure representation G, and M is the size of the dataset D. Here, we set
Dim(G) to the number OG of OR nodes appearing in G.
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Given G and G′ be two CNets, where G′ has been obtained from G substituting
a leaf tree by adding a new sub-CNet rooted in an OR node, then:

scoreBIC(〈G′,γ′〉) − scoreBIC(〈G,γ〉) =

�D(〈G′,γ′〉) − �D(〈G,γ〉) − log M

2
(Dim(G′) − Dim(G)) =

�D(〈G′,γ′〉) − �D(〈G,γ〉) − log M

2
, (4)

since Dim(G′)−Dim(G) = OG′ −OG = (OG +1)−OG = 1. Hence, G′ is accepted
when �D(〈G′,γ′〉) − �D(〈G,γ〉) > log M

2 . This means that a leaf node may be
decomposed (or, a new OR node may be added), when the improvement on the
global loglikelihood is greater than log M

2 .
The decomposability property of the log-likelihood of a CNet can lead to

similar results for the BIC score.

Proposition 2 (CNet BIC score decomposition). Given a CNet 〈G,γ〉,
over variables X and instances D, made up of {Tl}L

l=1 CLtrees, a decomposition
of a tree Tl, having scope Xl ⊂ X, with parameters θl, with a sub-CNet Gi rooted
in a OR node associated to the variable Xi ∈ Xl with parameters γi, leading to
a new CNet 〈G′,γ′〉, is accepted iff:

�Dl
(〈Gi,γi〉) − �Dl

(〈Tl,θl〉) >
log M

2
. (5)

where M = |D|, and Dl is the subset of D containing only instances associated
to the tree Tl.

Proof. Each leaf tree node Tl, l ∈ {1, . . . , L} is reachable from the root through
the path x

ji1
i1

, x
ji2
i2

, . . . , x
jiP
iP

of length P where 〈i1, . . . , iP 〉 is the sequence of
indices for the random variables X\l = X \ Xl found in the path. Instances

reaching the tree Tl form the set Dl = {ξ ∈ D : ξ[Xip
] = x

jip

ip
,∀p = 1, . . . , P},

that is, for each random variable Xip
in the path, they take the conditioned

branch according to their value for Xip
.

If �Dl
(〈Tl,θl〉) indicates the local log-likelihood of Tl with respect to Di, then

its contribution to the global log-likelihood �D(〈G,γ〉) corresponds to:
(

Ml

P∑

p=1

log wip,jip

)
+ �Dl

(〈Tl,θl〉), (6)

where Ml = |Dl|. If we decompose the tree Tl into a sub-CNet Gi, using the
CNet log-likelihood decomposition as reported in Equation 3, then the global
contribution reported in Equation 6 becomes:

(
Ml

P∑

p=1

log wip,jip

)
+ �Dl

(〈Gi,γi〉), (7)

We have that scoreBIC(〈G′,γ′〉)−scoreBIC(〈G,γ〉) = �Dl
(〈Gi,γi〉)−�Dl

(〈Tl,θl〉)−
log M

2 . �
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Again, instead of recomputing the likelihood on the complete dataset D, due to
the decomposability of the likelihood, we can evaluate only the local improve-
ment. Moreover, the decomposition of Tl is independent from all other Tj , j 	= l
being their local contributions to the global log-likelihood independent. Hence,
it is not significant the order we choose to decompose leaf nodes.

Bayesian Parameter Smoothing. As regards the learning of the CLtrees
parameters we adopted a Bayesian approach. To learn the structure of a
CLtree T from data D with parameters θ, the Bayesian approach employs
as a scoring function the posterior probability of the graph given the data:
P (θ|D) ≈ P (D|θ)P (θ). The marginal P (D|θ) can be expressed in closed form
when using the Dirichlet prior over the model parameters θXi|Pai

, the only dis-
tribution that ensures likelihood equivalence, i.e., the hyper-parameters αXi|Pai

of the Dirichlet prior can be expressed as αXi,Pai
= αqXi,Pai

, where q is a prior
distribution over X, and α, the so called equivalent sample size (ESS), is a pos-
itive constant independent of i. In this Bayesian approach with the Dirichlet
prior, the regularized parameter estimates are:

θxi|Pai
≈ EP (θxi|Pai

|D,T )[θxi|Pai
] =

Mxi,Pai
+ αxi|Pai

MPai
+ αPai

, (8)

where Mz is the number of entries in a dataset Dz having the set of variables Z
instantiated to z. As pointed out in [4], we can use a different Dirichlet prior for
each distribution of Xi given a particular value of its parents, leading to choose
the regularized parameter estimates as:

θ̂Xi|Pai
=

M · P (Pai)P (Xi|Pai)
M · P (Pai) + αXi|Pai

+
αXi|Pai

θ0(Xi|Pai)
M · P (Pai) + αXi|Pai

,

where θ0(Xi|Pai) is the prior estimate of P (Xi|Pai) and αXi|Pai
is the confidence

associated with that prior.
In the case of uniform priors, the estimates correspond to the additive of

Laplace smoothing. A reasonable choice uses the marginal probability of Xi

in the data as the prior probability. This choice is based on the assumption
that most conditional probabilities are close to the observed marginal. Thus,
we can set θ0(Xi|Pai) = PD(Xi). With fixed αxi|Pai

= α, we have: θ̂Xi|Pai
=

Mxi,Pai
+αPD(Xi)

MPai
+α .

Algorithm 2 reports the pseudocode of dCSN. The dCSN algorithm starts
by learning a single CLTree on the whole dataset D (line 4), and then calls the
decomposition procedure on this tree (line 6). The input parameters δ and σ are
used for regularization in order to avoid overfitting. σ, resp. δ, is the minimum
number of instances, resp. of features, in a slice required to try a decomposition.

Given a CLtree, Algorithm 3 tries to decompose it in a sub-CNet. The aim of
dCSN is to attempt to extend the model by replacing one of the CLtree leaf nodes
with a new CNet on the same variables. In particular, the decompose procedure
checks for each variable Xi on the slice D (line 5), whether the OR decomposition
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Algorithm 2. dCSN(D, X, αf , δ, σ)

1: Input: a set of instances D over a set of features X; αf ∈ [0, 1]: ESS factor; δ
minimum number of instances to decompose, σ minimum number of features to
decompose

2: Output: a CNet 〈G, γ〉 encoding a pdf over X learned from D
3: α ← αf |D|
4: 〈T , θ〉 ← LearnCLTree(D,X, α)
5: w ← ∅
6: 〈G, γ〉 ← decompose(D,X, α, T , θ, w, δ, σ)

associated to that variable (a new CNet) has a log-likelihood better than that of
the input CLtree (line 16). If a better decomposition is found, it then recursively
(line 21) tries to decompose the sub-CLtrees of the newly introduced CNet. In
dCSN α is set to αf |D|, where αf ∈ [0, 1] is an input parameter. When we
proceed with the decomposition on the slices, α is proportionally reduced, in the
procedure decompose, to the number of instances in the slices. In particular, if
we initially assume that there are α = αf |D| fictitious instances for computing
the priors, then we should assume that a proportion α|Di|/|D| falls into the slice
Di, in order to make the priors in Di consistent with those in D.

Algorithm 3. decompose(D, X, α, T ,θ,w, δ, σ)
1: Input: a set of instances D over a set of features X; α: ESS; T : the tree structured

model to decompose and its parameters θ; δ minimum number of instances to
decompose, σ minimum number of features to decompose

2: Output: a CNet encoding a pdf over X learned from D
3: if |D| > δ and |X| > σ then
4: �best ← −∞
5: for Xi ∈ X do
6: Gi ← ∅, wi ← ∅, θi ← ∅, Ci is the OR Node associated to Xi

7: for xj
i ∈ V al(Xi) do

8: Dj ← {ξ ∈ D : ξ[Xs] = xj
s}

9: wij ← |Dj |/|D|
10: 〈Tj , θij〉 ← LearnCLTree(Dj ,X\s, αwij)
11: Gi ← addSubTree(Ci, Tj)
12: wi ← wi ∪ {wij}, θi ← θi ∪ {θij}
13: �i ← �Di(〈Gi, wi ∪ θi〉)
14: if �i > �best and �i > �Di(〈T , θ〉) then
15: �best ← �i, Xbest ← Xi, Gbest ← Gi, θbest ← θi, wbest ← wi

16: if �best − �D(〈T , θ〉) > (log|D|)/2 then
17: substitute T with Gi

18: w ← w ∪ wbest

19: for xj
b ∈ V al(Xbest) do

20: Dj ← {ξ ∈ D : ξ[Xbest] = xj
b}

21: decompose(Dj ,X\best, αwij , Tj , θj , w, δ, σ)
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Table 1. Datasets used and their number of features and instances.

|X| |Ttrain| |Tval| |Ttest| |X| |Ttrain| |Tval| |Ttest|

NLTCS 16 16181 2157 3236 DNA 180 1600 400 1186
MSNBC 17 291326 38843 58265 Kosarek 190 33375 4450 6675

Plants 69 17412 2321 3482 MSWeb 294 29441 3270 5000
Audio 100 15000 2000 3000 Book 500 8700 1159 1739
Jester 100 9000 1000 4116 EachMovie 500 4525 1002 591
Netflix 100 15000 2000 3000 WebKB 839 2803 558 838

Accidents 111 12758 1700 2551 Reuters-52 889 6532 1028 1540
Retail 135 22041 2938 4408 BBC 1058 1670 225 330

Pumsb-star 163 12262 1635 2452 Ad 1556 2461 327 491

Finally, in order to improve the accuracy of the CNet models we adopted
a bagging procedure in order to obtain a mixture of CNets. We draw k boot-
strapped samples Di from the dataset D, sampling |D| instances with replace-
ments, and on each of those we call dCSN, thus leading to k CNets Gi. The
resulting bagged CNet G corresponds to a weighted sum of all the learned CNets
Gi. We set the weights proportional to the likelihood score obtained by each
bootstrapped component. In particular, for each instance ξ ∈ D, the bagged
CNet G would result in the more robust estimation P̂ (ξ : G) =

∑k
i=1 μiP (ξ : Gi),

where μi = �D(〈Gi,γi〉)/
∑k

j=1 �D(〈Gj ,γj〉).

4 Experiments

Since the CNet, and the variant CNetP embedding the pruning on validation,
as reported in [17] are not publicly available, we implemented them as well
as our dCSN and its bagging dCSN-B variant in Python1. We were not able
to reproduce the results of the mixtures learned with EM as showed in [17],
therefore we will just report them (as MCNet). To make the comparison fair in
testing the mixture accuracies, we also extended CNet and CNetP by embedding
mixtures by bagging, leading to versions CNet-B and CNetP-B respectively. We
introduce MT as the last competitor as it is reported to be one of the most
competitive tractable PGM [17,18]; for it we used the implementation available
in the Libra toolkit [9].

We evaluated the proposed algorithms on an array of 18 datasets that are now
standard benchmarks for graphical model structure learners. They have been
introduced in [10] and [5] as binarized versions of datasets from different tasks
like frequent itemset mining, recommendation and classification. Their names
and statistics for their training, validation, test splits are reported in Table 1.

We run both CNet and CNetP with m = 10 and λ = 0.01 fixed to exactly
reproduce the original experiments in [17]. We run CNet-B and CNetP-B by
learning a number of components k ranging from 5 to 40, with a step of 5.

For dCSN we run a grid search in the space formed by αf ∈ {.01, .02, .03, .04,
.05, .06, .08, .1, .15, .2, .3, .4, .5} and δ ∈ {200, 300, 400, 500}; for dCSN-B we set
1 Source code is available at http://www.di.uniba.it/∼ndm/dcsn/.

http://www.di.uniba.it/~ndm/dcsn/
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Table 2. Empirical risk for all algorithms.

CNet CNetP dCSN CNet-B CNetP-B dCSN-B MT MCNet

NLTCS -6.11 -6.06 -6.04 -6.09 -6.02 -6.02 -6.01 -6.00
MSNBC -6.06 -6.05 -6.05 -6.06 -6.04 -6.04 -6.08 -6.04

Plants -13.24 -13.25 -13.35 -12.30 -12.38 -12.21 -12.93 -12.78
Audio -44.58 -42.05 -42.06 -42.09 -40.71 -40.17 -40.14 -39.73
Jester -61.71 -55.56 -55.30 -57.76 -53.17 -52.99 -53.06 -52.57
Netflix -65.61 -58.71 -58.57 -63.08 -57.63 -56.63 -56.71 -56.32

Accidents -30.97 -30.69 -30.17 -30.25 -30.28 -28.99 -29.69 -29.96
Retail -11.07 -10.94 -11.00 -10.99 -10.88 -10.87 -10.84 -10.82

Pumsb-star -24.65 -24.42 -23.83 -24.39 -24.19 -23.32 -23.70 -24.18
DNA -90.48 -87.59 -87.19 -90.66 -86.85 -84.93 -85.57 -85.82

Kosarek -11.19 -11.04 -11.14 -10.97 -10.85 -10.85 -10.62 -10.58
MSWeb -10.07 -10.07 -9.94 -9.95 -9.91 -9.86 -9.82 -9.79

Book -37.62 -37.35 -37.22 -35.88 -35.62 -35.92 -34.69 -33.96
EachMovie -59.19 -58.37 -58.47 -54.22 -54.02 -53.91 -54.51 -51.39

WebKB -162.85 -162.17 -161.16 -156.79 -156.94 -155.20 -157.00 -153.22
Reuters-52 -88.72 -88.55 -88.60 -86.22 -86.89 -85.69 -86.53 -86.11

BBC -262.08 -263.08 -262.08 -252.01 -257.72 -251.14 -259.96 -250.58
Ad -16.92 -16.92 -14.81 -15.94 -16.02 -13.73 -16.01 -16.68

instead αf ∈ {.05, .1} and δ ∈ {100, 200, 300, 400, 500, 1000}, running the algo-
rithm for a number of components k ranging from 5 to 40, with a step of 5. For
both dCSN and dCSN-B we fixed σ = 3. For MT we reproduced the experiment
in [18], setting k from 2 to 30 by steps of 2. For all mixture variants, for each mix-
ture configuration, we selected the best one based on the validation likelihood
score.

In Table 2 is reported the empirical risk, defined as 1/|D|
∑

ξ∈D log P (ξ|G,γ)
averaged over the set of test instances for all the experiments over the listed
datasets. We provide in last column the original scores of MCNet as reported
in [17] as a reference. For all the implemented versions we run a pairwise
Wilcoxon signed rank test to assess the statistical significance of the scores.
In bold are reported the best values, compared to all others, for each dataset.
As we can see dCSN is significantly better than CNet and CNetP on 8 datasets,
and significantly worse than CNet and CNetP on 1 and 3 datasets, respectively.
Considering the bagging version for the mixtures, we see that dCSN-B is signif-
icantly better than CNet-B, CNetP-B and MT on 11, 11, and 10 datasets, and
significantly worse on 1, 1, and 5 datasets, respectively.

5 Conclusions

Here we proposed a new approach to learn the structure of the recently intro-
duced CNets model. We exploited the decomposable score of CNets to learn
their structure and parameters by directly maximizing the likelihood, formulat-
ing a score including the BIC criterion and by introducing informative priors on
smoothing parameters. Moreover, we presented how to create mixtures of CNets
by adopting the bagging method as an alternative to EM. We compared our
algorithm against the original variants on a large set of standard benchmarks
proving the validity of our claims.
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