
A Multi-engine Theorem Prover
for a Description Logic of Typicality

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3,
Gian Luca Pozzato2(B), and Luca Violanti4

1 DISIT - Universitá Piemonte Orientale - Alessandria, Alessandria, Italy
laura.giordano@unipmn.it

2 Dipartimento Informatica - Universitá di Torino, Torino, Italy
{valentina.gliozzi,gianluca.pozzato}@unito.it

3 Aix Marseille Université - ENSAM, Université de Toulon, LSIS UMR 7296,
Toulon, France

nicola.olivetti@univ-amu.fr
4 NCR Edinburgh - United Kingdom, Edinburgh, UK

luca.violanti@gmail.com

Abstract. We describe DysToPic, a theorem prover for the preferen-
tial Description Logic ALC +Tmin.This is a nonmonotonic extension of
standard ALC based on a typicality operator T, which enjoys a prefer-
ential semantics. DysToPic is a multi-engine Prolog implementation of a
labelled, two-phase tableaux calculus for ALC + Tmin whose basic idea
is that of performing these two phases by different machines. The per-
formances of DysToPic are promising, and significantly better than the
ones of its predecessor PreDeLo 1.0 recently introduced.

1 Introduction

Recently, a large amount of work has been done in order to extend the basic
formalism of Description Logics (for short, DLs) with nonmonotonic reasoning
features [1,3–5,7–9,16,17,19,21,22]; the purpose of these extensions is that of
allowing reasoning about prototypical properties of individuals or classes of indi-
viduals. The most well known semantics for nonmonotonic reasoning have been
used to the purpose, from default logic [1], to Circumscription [3], to Lifschitz’s
nonmonotonic logic MKNF [7,21], to preferential reasoning [4,9,16], to rational
closure [5,6].

In this work we focus on the simple but powerful nonmonotonic extension of
DLs proposed in [10,15,16]. In this approach “typical” or “normal” properties
can be directly specified by means of a “typicality” operator T enriching the
underlying DL; the idea is that, given a concept C, the operator T singles out
the typical instances of C. In this formalism, one can express properties holding
for all the elements belonging to the extension of C with standard inclusions
C � D, as well as properties holding only for the “most normal” elements of C
with inclusions of the form T(C) � D. The typicality operator T is essentially
characterized by the core properties of nonmonotonic reasoning axiomatized by
c© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AI*IA 2015, LNAI 9336, pp. 164–178, 2015.
DOI: 10.1007/978-3-319-24309-2 13

A Multi-engine Theorem Prover for a Description Logic 165

either preferential logic [18] or rational logic [20]. In these logics one can consis-
tently express defeasible inclusions and exceptions such as “normally, newborns
have a high level of hematocrit, whereas typical newborns who are affected by
neonatal anemia have a low hematocrit”:

T(Newborn) � HighHematocrit
T(Newborn � ∃HasNeonatalDisease.Anemia) � LowHematocrit
HighHematocrit � LowHematocrit � ⊥.

In order to perform useful inferences, in [16] we have introduced a nonmonotonic
extension of ALC plus T based on a minimal model semantics. Intuitively, the
idea is to restrict our consideration to models that maximize typical instances
of a concept: more in detail, we introduce a preference relation among ALC
plus T models, then we define a minimal entailment restricted to models that
are minimal with respect to such preference relation. The resulting logic, called
ALC+Tmin, supports typicality assumptions, so that if one knows that Giuseppe
is a newborn, one can nonmonotonically assume that he is also a typical newborn
and therefore that he has a high level of hematocrit. As an example, for a TBox
specified by the inclusions above, in ALC + Tmin we can infer that:

1. TBox |=ALC+Tmin T(Newborn � Bald) � HighHematocrit
2. TBox ∪ {Newborn(Lino)} |=ALC+Tmin HighHematocrit(Lino)
3. TBox ∪ {Newborn(Lino), ∃HasNeonatalDisease.Anemia(Lino)} |=ALC+Tmin

LowHematocrit(Lino)
4. TBox ∪ {Newborn(Lino),Bald(Lino)} |=ALC+TminHighHematocrit(Lino)
5. TBox ∪ {∃HasBrother . Newborn(Luciano)} |=ALC+Tmin

HasBrother . HighHematocrit(Luciano)

In 1 and 4, it can be seen that ALC + Tmin captures a form of irrelevance:
being a bald newborn is irrelevant with respect to the level of hematocrit,
therefore the logic allows to conclude a general property T(Newborn � Bald) �
HighHematocrit , as well as the fact that the newborn Lino has a high level of
hematocrit also in case we further know that he is bald. In 3, it can be seen
that ALC + Tmin, in case of conflict, allows to give preference to more specific
information: Lino is a newborn, but he is affected by neonatal anemia, therefore
the logic allows to conclude that he has a low level of hematocrit. Minimal con-
sequence applies also to individuals not explicitly named in the ABox as well,
without any ad-hoc mechanism, as shown in 5, where defeasible inferences are
applied to the newborn brother of Luciano.

In this work we focus on theorem proving for nonmonotonic extensions of
DLs. We introduce DysToPic, a theorem prover for ALC + Tmin. DysToPic
implements the labelled tableaux calculus for this logic introduced in [16] per-
forming a two-phase computation: in the first phase, candidate models falsifying
a given query are generated (complete open branches); in the second phase the
minimality of candidate models is checked by means of an auxiliary tableau con-
struction. DysToPic is a multi-engine theorem prover, whose basic idea is that
the two phases of the calculus are performed by different machines: a “master”

166 L. Giordano et al.

machine M , called the employer, executes the first phase of the tableaux cal-
culus, whereas other computers are used to perform the second phase on open
branches detected by M . When M finds an open branch, it invokes the second
phase on the calculus on a different “slave” machine, called worker, S1, while M
goes on performing the first phase on other branches, rather than waiting for the
result of S1. When another open branch is detected, then another machine S2 is
involved in the procedure in order to perform the second phase of the calculus
on that branch. In this way, the second phase is performed simultaneously on
different branches, leading to a significant increase of the performance.

Labelled tableaux calculi are implemented in Prolog, following the line of
the predecessor PreDeLo 1.0, introduced in [14]: DysToPic is inspired by the
methodology introduced by the system leanTAP [2], even if it does not fit its
style in a rigorous manner. The basic idea is that each axiom or rule of the
tableaux calculus is implemented by a Prolog clause of the program: the resulting
code is therefore simple and compact.

In general, the literature contains very few proof methods for nonmonotonic
extensions of DLs. We provide some experimental results to show that the per-
formances of DysToPic are promising, in particular comparing them to the ones
of PreDeLo 1.0. DysToPic is available for free download at:

http://www.di.unito.it/∼pozzato/theoremprovers.html

2 The Logic ALC + Tmin

The logic ALC + Tmin is obtained by adding to ALC the typicality operator
T [10,15]. The intuitive idea is that T(C) selects the typical instances of a
concept C. We can therefore distinguish between the properties that hold for
all instances of concept C (C � D), and those that only hold for the normal or
typical instances of C (T(C) � D).

The language L is defined by distinguishing concepts and extended concepts.
Given an alphabet C of concept names, R of role names, and O of individual
constants, A ∈ C and � are concepts of L; if C,D ∈ L and R ∈ R, then C �
D,C �D,¬C,∀R.C,∃R.C are concepts of L. If C is a concept, then C and T(C)
are extended concepts, and all the boolean combinations of extended concepts are
extended concepts of L. A KB is a pair (TBox,ABox). TBox contains inclusion
relations (subsumptions) C � D, where C is an extended concept of the form
either C ′ or T(C ′), and D ∈ L is a concept. ABox contains expressions of the
form C(a) and R(a, b), where C ∈ L is an extended concept, R ∈ R, and a, b ∈ O.

In order to provide a semantics to the operator T, we extend the definition
of a model used in the “standard” Description logic ALC. The idea is that the
operator T is characterized by a set of postulates that are essentially a refor-
mulation of the Kraus, Lehmann and Magidor’s axioms of preferential logic P
[18]. Intuitively, the assertion T(C) � D corresponds to the conditional assertion
C |∼ D of P. T has therefore all the “core” properties of nonmonotonic reasoning
as it is axiomatized by P. The idea is that there is a global preference relation

http://www.di.unito.it/~pozzato/theoremprovers.html

A Multi-engine Theorem Prover for a Description Logic 167

among individuals, in the sense that x < y means that x is “more normal” than
y, and that the typical members of a concept C are the minimal elements of C
with respect to this relation. In this framework, an element x ∈ Δ is a typical
instance of some concept C if x ∈ CI and there is no element in CI more typical
than x. The typicality preference relation is partial.

Definition 1. Given an irreflexive and transitive relation < over Δ and S ⊆ Δ,
we define Min<(S) = {x : x ∈ S and �y ∈ S s.t. y < x}. We say that < is
well-founded if and only if, for all S ⊆ Δ, for all x ∈ S, either x ∈ Min<(S) or
∃y ∈ Min<(S) such that y < x.

Definition 2. A model of ALC + Tmin is any structure 〈Δ,<, I〉, where: Δ is
the domain; I is the extension function that maps each extended concept C to
CI ⊆ Δ, and each role R to a RI ⊆ Δ × Δ; < is an irreflexive, transitive and
well-founded (Definition 1) relation over Δ. I is defined in the usual way (as for
ALC) and, in addition, (T(C))I = Min<(CI).

Given a model M of Definition 2, I can be extended so that it assigns to each
individual a of O a distinct element aI of the domain Δ (unique name assump-
tion). We say that M satisfies an inclusion C � D if CI ⊆ DI , and that M
satisfies C(a) if aI ∈ CI and R(a, b) if (aI , bI) ∈ RI . Moreover, M satisfies TBox
if it satisfies all its inclusions, and M satisfies ABox if it satisfies all its formulas.
M satisfies a KB (TBox,ABox), if it satisfies both TBox and ABox.

The semantics of the typicality operator can be specified by modal logic.
The interpretation of T can be split into two parts: for any x of the domain Δ,
x ∈ (T(C))I just in case (i) x ∈ CI , and (ii) there is no y ∈ CI such that y < x.
Condition (ii) can be represented by means of an additional modality �, whose
semantics is given by the preference relation < interpreted as an accessibility
relation. The interpretation of � in M is as follows: (�C)I = {x ∈ Δ | for every
y ∈ Δ, if y < x then y ∈ CI}. We immediately get that x ∈ (T(C))I if and only
if x ∈ (C � �¬C)I .

Even if the typicality operator T itself is nonmonotonic (i.e. T(C) � E does
not imply T(C � D) � E), what is inferred from a KB can still be inferred
from any KB’ with KB ⊆ KB’. In order to perform nonmonotonic inferences,
in [16] we have strengthened the above semantics by restricting entailment to
a class of minimal (or preferred) models. Intuitively, the idea is to restrict our
consideration to models that minimize the non-typical instances of a concept.

Given a KB, we consider a finite set LT of concepts: these are the concepts
whose non-typical instances we want to minimize. We assume that the set LT

contains at least all concepts C such that T(C) occurs in the KB or in the query
F , where a query F is either an assertion C(a) or an inclusion relation C � D.
As we have just said, x ∈ CI is typical for C if x ∈ (�¬C)I . Minimizing the non-
typical instances of C therefore means to minimize the objects falsifying �¬C
for C ∈ LT. Hence, for a model M = 〈Δ,<, I〉, we define M�−

LT
= {(x,¬�¬C) |

x
∈ (�¬C)I , with x ∈ Δ,C ∈ LT}.

Definition 3 (Preferred and Minimal Models). Given a model M = 〈Δ,
<, I〉 of a knowledge base KB, and a model M′ = 〈Δ′, <′, I ′〉 of KB, we say

168 L. Giordano et al.

that M is preferred to M′ w.r.t. LT, and we write M <LT
M′, if (i) Δ = Δ′,

(ii) M�−
LT

⊂ M′�−
LT

, (iii) aI = aI′
for all a ∈ O. M is a minimal model for KB

(w.r.t. LT) if it is a model of KB and there is no other model M′ of KB such
that M′ <LT

M.

Definition 4 (Minimal Entailment in ALC+Tmin). A query F is minimally
entailed in ALC +Tmin by KB with respect to LT if F is satisfied in all models
of KB that are minimal with respect to LT. We write KB |=ALC+Tmin

F .

As an example, consider the TBox of the Introduction. We have that TBox
∪ {Kid(daniel)} |=ALC+Tmin

ChocolateEater(daniel), since danielI ∈ (Kid �
�¬Kid)I for all minimal models M = 〈Δ <, I〉 of the TBox. In contrast, by the
nonmonotonic character of minimal entailment, we have TBox ∪ {Kid(daniel),
∃HasIntolerance.Lactose(daniel)} |=ALC+Tmin

¬ChocolateEater(daniel).

3 A Tableau Calculus for ALC + Tmin

In this section we recall the tableau calculus TABALC+T
min for deciding whether

a query F is minimally entailed from a KB in ALC + Tmin introduced in [16].
The calculus performs a two-phase computation: in the first phase, a tableau
calculus, called TABALC+T

PH1 , simply verifies whether KB ∪ {¬F} is satisfiable in
a model of Definition 2, building candidate models; in the second phase another
tableau calculus, called TABALC+T

PH2 , checks whether the candidate models found
in the first phase are minimal models of KB, i.e. for each open branch of the
first phase, TABALC+T

PH2 tries to build a model of KB which is preferred to the
candidate model w.r.t. Definition 3. The whole procedure is formally defined at
the end of this section (Definition 5).

TABALC+T
min tries to build an open branch representing a minimal model

satisfying KB ∪ {¬F}, where ¬F is the negation of the query F and is defined
as follows: if F = C(a), then ¬F = (¬C)(a); if F = C � D, then ¬F =
(C � ¬D)(x), where x does not occur in KB. TABALC+T

min makes use of labels,
denoted with x, y, z, . . . , representing individuals either named in the ABox or
implicitly expressed by existential restrictions. These labels occur in constraints,
that can have the form x

R−→ y or y < x or x : C, where x, y are labels, R is a
role and C is a concept of ALC + Tmin or has the form �¬D or ¬�¬D.

3.1 The Tableaux Calculus TABALC+T
PH1

A tableau of TABALC+T
PH1 is a tree whose nodes are pairs 〈S | U〉. S is a set

of constraints, whereas U contains formulas of the form C � DL, representing
inclusion relations C � D of the TBox. L is a list of labels, used in order to
ensure the termination of the tableau calculus. A branch is a sequence of nodes
〈S1 | U1〉, 〈S2 | U2〉, . . . , 〈Sn | Un〉 . . . , where each node 〈Si | Ui〉 is obtained
from its immediate predecessor 〈Si−1 | Ui−1〉 by applying a rule of TABALC+T

PH1 ,

A Multi-engine Theorem Prover for a Description Logic 169

(Clash)
S, x : C, x : ¬C | U

S, x : ∀R.C, x
R−→ y, y : C | U

S, x : ∀R.C, x
R−→ y | U

(−)
S, x : ¬ ¬C | U

S, x : ∃R.C | U

S, x : ¬C D | U,C DL,x

S | U,C DL

(∃+)

(∀+)

S, x : ¬¬C | U
(¬) (T+)S, x : T(C) | U (T−)

S, x : ¬T(C) | U

S, x : ∃R.C, x
R−→ y, y : C | U

if y : C Sif x occurs in S and x L

S, x : ¬ ¬C, y < x, y : C, y : ¬C,SM
x→y | U . . .S, x : ¬ ¬C, v1 < x, v1 : C, v1 : ¬C,SM

x→v1 | U S, x : ¬ ¬C, vn < x, vn : C, vn : ¬C,SM
x→vn | U

S, x : ∃R.C, x
R−→ v1, v1 : C | U S, x : ∃R.C, x

R−→ v2, v2 : C | U S, x : ∃R.C, x
R−→ vn, vn : C | U. . .

S, x : C D | U
(+) (−)

S, x : ¬(C D) | U
(+)

S, x : C D | U

(−)
S, x : ¬(C D) | U

y new
if z ≺ x s.t. z ≡S,x:¬ ¬C x and u s.t. {u < x, u : C, u : ¬C,SM

x→u} ⊆ S

∀vi occurring in S, x = vi

if ∃z ≺ x s.t. z ≡S,x:∃R.C x and ∃u s.t. x R−→ u ∈ S and u : C ∈ S

y new

S, x : ¬ ¬C | US, x : ¬C | U

S | U
(cut)

x occurs in S

if x : ¬ ¬C S and x : ¬C S
C ∈ LT

S, x : ¬¬C, x : C | U
x : C Sif

S, x : C D, x : C, x : D | U

S, x : ¬(C D), x : ¬C | U S, x : ¬(C D), x : ¬D | U

S, x : C D, x : C | U S, x : C D, x : D | U S, x : ¬(C D), x : ¬C, x : ¬D | U

S, x : T(C), x : C, x : ¬C | U S, x : ¬T(C), x : ¬C | U S, x : ¬T(C), x : ¬ ¬C | U

{x : C, x : D} Sif

if x : ¬C S x : ¬D Sand

if andx : C S x : D S {x : ¬C, x : ¬D} Sif

x : ¬ ¬C Sif x : ¬C S and{x : C, x : ¬C} Sif

∀vi occurring in S

S, x : ¬ | U S, x : ⊥ | U
(Clash)⊥(Clash)

()

Fig. 1. The calculus TABALC+T
PH1 . x ≡S y denotes that x and y label the same concepts

in S. We define SM
x→y = {y : ¬C, y : �¬C | x : �¬C ∈ S}.

having 〈Si−1 | Ui−1〉 as the premise and 〈Si | Ui〉 as one of its conclusions. A
branch is closed if one of its nodes is an instance of a (Clash) axiom, otherwise
it is open. A tableau is closed if all its branches are closed.

The rules of TABALC+T
PH1 are presented in Fig. 1. Rules (∃+) and (�−) are

called dynamic since they can introduce a new variable in their conclusions.
The other rules are called static. We do not need any extra rule for the positive
occurrences of �, since these are taken into account by the computation of SM

x→y

of (�−). The (cut) rule ensures that, given any concept C ∈ LT, an open branch
built by TABALC+T

PH1 contains either x : �¬C or x : ¬�¬C for each label x: this
is needed in order to allow TABALC+T

PH2 to check the minimality of the model
corresponding to the open branch. As mentioned above, given a node 〈S | U〉,
each formula C � D in U is equipped with the list L of labels to which the rule
(�) has already been applied. This avoids multiple applications of such rule to
the same subsumption by using the same label.

In order to check the satisfiability of a KB, we build its corresponding con-
straint system 〈S | U〉, and we check its satisfiability. Given KB=(TBox,ABox),
its corresponding constraint system 〈S | U〉 is defined as follows: S = {a : C |
C(a) ∈ ABox} ∪ {a R−→ b | R(a, b) ∈ ABox}; U = {C � D∅ | C � D ∈ TBox}.
KB is satisfiable if and only if its corresponding constraint system 〈S | U〉 is sat-
isfiable. In order to verify the satisfiability of KB ∪ {¬F}, we use TABALC+T

PH1

to check the satisfiability of the constraint system 〈S | U〉 obtained by adding
the constraint corresponding to ¬F to S′, where 〈S′ | U〉 is the corresponding
constraint system of KB. To this purpose, the rules of the calculus TABALC+T

PH1

are applied until either a contradiction is generated (clash) or a model satisfying
〈S | U〉 can be obtained.

170 L. Giordano et al.

(∃+)
. . .

(−)
. . .

(Clash)
S, x : C, x : ¬C | U | K

(Clash)∅ (Clash) −
S | U | ∅ S, x : ¬ ¬C | U | K

S | U,C DL | K
S, x : ¬C D | U,C DL,x | K

S, x : ¬ ¬C | U | K,x : ¬ ¬C

S, x : ∃R.C | U | K

S, x
R−→ v1, v1 : C | U | K S, x

R−→ v2, v2 : C | U | K S, x
R−→ vn, vn : C | U | K

x ∈ D(B)

If ∃u ∈ D(B) s.t. x R−→ u ∈ S and u : C ∈ S. ∀vi ∈ D(B)

∀vi ∈ D(B), x = vi

and x L

(T+)

(T−)

(cut)

if x : ¬ ¬C S and x : ¬C S
C ∈ LT

S, x : ¬C | U | K S, x : ¬ ¬C | U | K

S | U | K

S, x : ¬T(C) | U | K

S, x : ¬C | U | K S, x : ¬ ¬C | U | K S, x : ∀R.C, x
R−→ y, y : C | U | K

S, x : ∀R.C, x
R−→ y | U | K

S, x : T(C) | U | K
S, x : C, x : ¬C | U | K

(∀+)

if y : C S

x ∈ D(B)

S, v1 : C, v1 : ¬C,SM
x→v1 , x : ¬ ¬C | U | K S, v2 : C, v2 : ¬C,SM

x→v2
, x : ¬ ¬C | U | K S, vn : C, vn : ¬C,SM

x→vn , x : ¬ ¬C | U | K

if x : ¬ ¬C B
−

S, x : ⊥ | U | K S, x : ¬ | U | K
(Clash)⊥ (Clash)

()

if u s.t. {u : C, u : ¬C,SM
x→u} ⊆ S

Fig. 2. The calculus TABALC+T
PH2 . To save space, we omit rules for �, �, ¬.

The rules of TABALC+T
PH1 are applied with the following standard strategy : 1.

apply a rule to a label x only if no rule is applicable to a label y such that y ≺ x
(where y ≺ x says that label x has been introduced in the tableaux later than
y); 2. apply dynamic rules only if no static rule is applicable.

Theorem 1. Given LT, KB |=ALC+Tmin
F if and only if there is no open

branch B in the tableau built by TABALC+T
PH1 for the constraint system corre-

sponding to KB ∪ {¬F} such that the model represented by B is a minimal
model of KB.

Thanks to the side conditions on the application of the rules and the blocking
machinery adopted by the dynamic ones, in [16] it has been shown that any
tableau generated by TABALC+T

PH1 for 〈S | U〉 is finite.

3.2 The Tableaux Calculus TABALC+T
PH2

Let us now introduce the calculus TABALC+T
PH2 which checks whether each open

branch B built by TABALC+T
PH1 represents a minimal model of the KB.

Given an open branch B of a tableau built from TABALC+T
PH1 , let D(B) be the

set of labels occurring in B. Moreover, let B�−
be the set of formulas x : ¬�¬C

occurring in B, that is to say B�−
= {x : ¬�¬C | x : ¬�¬C occurs in B}.

A tableau of TABALC+T
PH2 is a tree whose nodes are tuples of the form 〈S | U |

K〉, where S and U are defined as in TABALC+T
PH1 , whereas K contains formulas

of the form x : ¬�¬C, with C ∈ LT. The basic idea of TABALC+T
PH2 is as follows.

Given an open branch B built by TABALC+T
PH1 and corresponding to a model

MB of KB ∪ {¬F}, TABALC+T
PH2 checks whether MB is a minimal model of KB

by trying to build a model of KB which is preferred to MB. To this purpose,
it keeps track (in K) of the negated box formulas used in B (B�−

) in order
to check whether it is possible to build a model of KB containing less negated

A Multi-engine Theorem Prover for a Description Logic 171

box formulas. The rules of TABALC+T
PH2 are shown in Figure 2. The tableau built

by TABALC+T
PH2 closes if it is not possible to build a model smaller than MB, it

remains open otherwise. Since by Definition 3 two models can be compared only if
they have the same domain, TABALC+T

PH2 tries to build an open branch containing
all the labels appearing in B, i.e. those in D(B). To this aim, the dynamic rules
use labels in D(B) instead of introducing new ones in their conclusions. The rule
(�) is applied to all the labels of D(B) (and not only to those appearing in the
branch). The rule (�−) is applied to a node 〈S, x : ¬�¬C | U | K,x : ¬�¬C〉,
that is to say when the negated box formula x : ¬�¬C also belongs to the open
branch B. Also in this case, the rule introduces a branch on the choice of the
individual vi ∈ D(B) to be used in the conclusion. In case a tableau node has the
form 〈S, x : ¬�¬C | U | K〉, and x : ¬�¬C
∈ B�−

, then TABALC+T
PH2 detects

a clash, called (Clash)�− : this corresponds to the situation where x : ¬�¬C
does not belong to B, while the model corresponding to the branch being built
contains x : ¬�¬C, and hence is not preferred to the model represented by B.
The calculus TABALC+T

PH2 also contains the clash condition (Clash)∅. Since each
application of (�−) removes the negated box formulas x : ¬�¬C from the set
K, when K is empty all the negated boxed formulas occurring in B also belong
to the current branch. In this case, the model built by TABALC+T

PH2 satisfies the
same set of x : ¬�¬C (for all individuals) as B and, thus, it is not preferred to
the one represented by B.

Let KB be a knowledge base whose corresponding constraint system is 〈S |
U〉. Let F be a query and let S′ be the set of constraints obtained by adding to
S the constraint corresponding to ¬F . TABALC+T

PH2 is sound and complete in the
following sense: an open branch B built by TABALC+T

PH1 for 〈S′ | U〉 is satisfiable
in a minimal model of KB iff the tableau in TABALC+T

PH2 for 〈S | U | B�−〉 is
closed. The termination of TABALC+T

PH2 is ensured by the fact that dynamic rules
make use of labels belonging to D(B), which is finite, rather than introducing
“new” labels in the tableau. Also, it is possible to show that the problem of
verifying that a branch B represents a minimal model for KB in TABALC+T

PH2 is
in NP in the size of B. The overall procedure TABALC+T

min is defined as follows:

Definition 5. Let KB be a knowledge base whose corresponding constraint sys-
tem is 〈S | U〉. Let F be a query and let S′ be the set of constraints obtained
by adding to S the constraint corresponding to ¬F . The calculus TABALC+T

min

checks whether a query F can be minimally entailed from a KB by means of the
following procedure:

– the calculus TABALC+T
PH1 is applied to 〈S′ | U〉;

– if, for each branch B built by TABALC+T
PH1 , either: (i) B is closed or (ii) the

tableau built by the calculus TABALC+T
PH2 for 〈S | U | B�−〉 is open, then the

procedure says YES else the procedure says NO

In [16] we have shown that TABALC+T
min is a sound and complete decision proce-

dure for verifying if KB |=LT

ALC+Tmin
F , and that the problem is in co-NExpNP.

172 L. Giordano et al.

4 Design of DysToPic

In this section we present DysToPic, a multi-engine theorem prover for reasoning
in ALC + Tmin. DysToPic is a SICStus Prolog implementation of the tableaux
calculus TABALC+T

min introduced in the previous section, wrapped by a Java
interface which relies on the Java RMI APIs for the distribution of the compu-
tation. The system is designed for scalability and based on a “worker/employer”
paradigm: the computational burden for the “employer” can be spread among
an arbitrarily high number of “workers” which operate in complete autonomy,
so that they can be either deployed on a single machine or on a computer grid.

The basic idea underlying DysToPic is as follows: there is no need for the
first phase of the calculus to wait for the result of one elaboration of the second
phase on an open branch, before generating another candidate branch. Indeed,
in order to prove whether a query F entails from a KB, the first phase can be
executed on a machine; every time that a branch remains open after the first
phase, the execution of the second phase for this branch can be performed in
parallel, on a different machine. Meanwhile, the main machine (worker), instead
of waiting for the termination of the second phase on that branch, can carry on
with the computation of the first phase (potentially generating other branches).
If a branch remains open in the second phase, then F is not minimally entailed
from KB (we have found a counterexample), so the computation process can be
interrupted early.

4.1 The Whole Architecture

In order to describe the architecture of DysToPic we refer to the worker -employer
metaphor. The system is characterized by: (i) a single employer, which is in
charge of verifying the query and yielding the final result. It also implements the
first phase of the calculus and uses TABALC+T

PH1 to generate branches: the ones
that it cannot close (representing candidate models of KB ∪{¬F}), it passes to a
worker ; (ii) an unlimited number of workers, which use TABALC+T

PH2 to evaluate
the models generated by the employer ; (iii) a repository, which stores all the
answers coming from the workers. A schema of the architecture of DysToPic is
shown in Figure 3.

First, each worker registers to the employer. When checking whether KB
|=ALC+Tmin

F , the employer executes TABALC+T
PH1 . If the employer needs to

check whether an open branch generated by the first phase represents a minimal
model of the KB, then it delegates the execution of the second phase to one of
the registered workers, and consequently proceeds with its computation on other
branches generated in the first phase. When a worker terminates its execution,
it reports its result to the repository.

If every branch has been processed and each worker has answered affirma-
tively, i.e. each tableaux built in the second phase by TABALC+T

PH2 is open, the
employer can conclude that KB |=ALC+Tmin

F . Otherwise, the employer can

A Multi-engine Theorem Prover for a Description Logic 173

Fig. 3. The architecture of DysToPic.

conclude the proof as soon as the first negative answer comes into the repos-
itory, since (at least) a worker found a closed tableaux in TABALC+T

PH2 for an
open branch (candidate model) generated by the employer, in this case we have
that KB
|=ALC+Tmin

F . It is worth noticing that the employer has to keep a
continuous dialogue with the repository.

The library se.sics.jasper is used in order to combine Java and SICStus
Prolog to decouple the two phases of the calculus. In detail, the employer handles
the query in Employer.java, a piece of Java code which presents it to alct1.pl,
the Prolog core implementing TABALC+T

PH1 . Every time that an open branch is
generated, alct1.pl invokes Phase1RMIStub.java, another piece of Java code
which will send it to the correct worker. Workers will then have to process the
open branches with TABALC+T

PH2 , which is implemented in alct2.pl.
Concurrency is the main goal of our implementation, since we want the execu-

tion of the first phase of the calculus to be independent from the second one. Java
natively supports concurrency via multithreading. The employer uses a separate
thread (implemented in Phase1Thread.java) to perform the current invocation
of TABALC+T

PH1 on a query, while its main thread polls the repository waiting
for termination (the procedure can be stopped when the first counterexample is
found, even if not all of the branches have been explored). During the execution
of TABALC+T

PH1 , every time that the employer wants to ask a worker to verify
a branch, a new thread is spawned. The worker itself makes use of threads: its
main thread simply enqueues each request coming from the employer and spawns
a new thread which performs TABALC+T

PH2 .

4.2 The Implementation of the Tableaux Calculus

Concerning the implementation of the tableaux calculus TABALC+T
min , each

machine of the system runs a SICStus Prolog implementation which is strongly
related to the implementation of the calculus given by PreDeLo 1.0, introduced
in [14]. The implementation is inspired by the “lean” methodology of leanTAP,

174 L. Giordano et al.

even if it does not follow its style in a rigorous manner. The program comprises
a set of clauses, each one implementing a rule or axiom of the tableau calculus.
The proof search is provided for free by the mere depth-first search mechanism
of Prolog, without any additional mechanism.

DysToPic comprises two main predicates, called prove and prove phase2,
implementing, respectively, the first and the second phase of the tableau calculus.

Phase 1: The prove Predicate. Concerning the first phase of the calculus,
executed by the employer, DysToPic represents a tableaux node 〈S | U〉 with
two Prolog lists: S and U. Elements of S are either pairs [X, F], representing
formulas of the form x : F , or triples of the form either [X,R,Y] or [X,<,Y],
representing either roles x

R−→ y or the preference relation x < y, respectively.
Elements of U are pairs of the form [[C inc D],L], representing C � DL ∈ U
described in Section 3.1.

The calculus TABALC+T
min are implemented by a top-level predicate

prove(+ABox,+TBox,[+X,+F],-Tree).

This predicate succeeds if and only if the query x : F is minimally entailed from
the KB represented by TBox and ABox. When the predicate succeeds, then the
output term Tree matches a Prolog term representing the closed tableaux found
by the prover. The top-level predicate prove/4 invokes a second-level one:

prove(+S,+U,+Lt,+Labels,+ABOX,-Tree)

having 6 arguments. In detail, S corresponds to ABox enriched by the negation
of the query x : F , whereas Lt is a list corresponding to the set of concepts
LT. Labels is the set of labels belonging to the current branch, whereas ABOX is
used to store the initial ABox (i.e. without the negation of the query) in order
to eventually invoke the second phase on it, in order to look for minimal models
of the initial KB.

Each clause of the prove/6 predicate implements an axiom or rule of the
calculus TABALC+T

PH1 . To search a closed tableaux for 〈S | U〉, DysToPic proceeds
as follows. First of all, if 〈S | U〉 is a clash, the goal will succeed immediately
by using one of the clauses implementing axioms. As an example, the following
clause implements (Clash):

prove(S,U,_,_,_,tree(clash)):-

member([X,C],S),member([X, neg C],S),!.

If 〈S | U〉 is not an instance of the axioms, then the first applicable rule will
be chosen, e.g. if S contains an intersection [X,C and D], then the clause imple-
menting the (�+) rule will be chosen, and DysToPic will be recursively invoked
on its unique conclusion. DysToPic proceeds in a similar way for the other rules.
The ordering of the clauses is such that the application of the dynamic rules is
postponed as much as possible: this implements the strategy ensuring the ter-
mination of the calculus described in the previous section. As an example, the
clause implementing (T+) is as follows:

A Multi-engine Theorem Prover for a Description Logic 175

1. prove(S,U,Lt,Labels,ABOX,tree(...,Tree)):-member([X,ti C],S),

2. (\+(member([X,C],S)); \+(member([X, box neg C],S))),!,

3. prove([[X,C]|[[X, box neg C]|S]],U,Lt,Labels,ABOX,Tree),!.

In line 1, the standard Prolog predicate member is used in order to find a formula
of the form x : T(C) in the list S. In line 2, the side conditions on the applicability
of such a rule are checked: the rule can be applied if either x : C or x : �¬C
do not belong to S. In line 3 DysToPic is recursively invoked on the unique
conclusion of the rule, in which x : C and x : �¬C are added to the list S. The
last clause of prove is:

prove(...) :- ... , jasper_call(JVM,

method(’employer/Phase1RMIStub’, ’solveViaRMI’, [static]),...,

solve_via_rmi(NextWorkerName, ’toplevelphase2(...)’)),!.

invoked when no other clauses are applicable. In this case, the branch built by the
employer represents a model for the initial set of formulas, then toplevelphase2
is invoked on a worker in order to check whether such a model is minimal.

Phase 2: The prove phase2 Predicate. Given an open branch built by the
first phase, the predicate toplevelphase2 is invoked on a worker. It first applies
an optimization preventing useless applications of (�), then it invokes the pred-
icate

prove phase2(+S,+U,+Lt,+K,+Bb,+Db).

S and U contain the initial KB (without the query), whereas K, Bb and Db are
Prolog lists representing K, B�−

and D(B) as described in Section 3.2. Lt is as
for prove/6. Also in this case, each clause of prove phase2 implements an axiom
or rule of the calculus TABALC+T

PH2 . To search for a closed tableaux, DysToPic
first checks whether the current node 〈S | U | K〉 is a clash. otherwise the first
applicable rule will be chosen, and DysToPic will be recursively invoked on its
conclusions. As an example, the clause implementing (T+) is as follows:

prove_phase2(S,U,Lt,K,Bb,Db) :- select([X,ti C],S,S1),

prove_phase2([[X,C]|[[X,box neg C]|S1]],U,Lt,K,Bb,Db),!.

Notice that, according to the calculus TABALC+T
PH2 , the principal formula to which

the rule is applied is removed from the current node: to this aim, the SICStus
Prolog predicate select is used rather than member.

4.3 Performance Testing of DysToPic

We have made an attempt to show how DysToPic performs, especially in com-
parison with its predecessor PreDeLo 1.0. The performances of DysToPic are
promising. We have tested both the provers by running SICStus Prolog 4.1.1
on Ubuntu 14.04.1 64 bit machines. Concerning DysToPic, we have tested it on

176 L. Giordano et al.

4 machines, namely: 1. a desktop PC with an Intel Core i5-3570K CPU (3.4-
3.8GHz, 4 cores, 4 threads, 8GB RAM); 2. a desktop PC with an Intel Pentium
G2030 CPU (3.0GHz, 2 cores, 2 threads, 4GB RAM); 3. a Lenovo X220 laptop
with an Intel Core i7-2640M CPU (2.8-3.5GHz, 2 cores, 4 threads, 8GB RAM);
4. a Lenovo X230 laptop with an Intel Core i7-3520M CPU (2.9-3.6GHz, 2 cores,
4 threads, 8GB RAM).

We have performed two kinds of tests. On the one hand, we have randomly
generated KBs with different sizes (from 10 to 100 ABox formulas and TBox
inclusions) as well as different numbers of named individuals: in less than 10
seconds, both the provers DysToPic and PreDeLo 1.0 are able to answer in
more than the 75% of tests. Notice that, as far as we know, it does not exist a
set of acknowledged benchmarks for defeasible DLs. On the other hand, we have
tested the two theorem provers on specific examples. As expected, DysToPic
is better in than the competitor in answering that a query F is not minimally
entailed from a given KB. Surprisingly enough, its performances are better than
the ones of PreDeLo 1.0 also in case the provers conclude that F follows from
KB, as in the following example:

Example 1. Given TBox ={T(Student)�¬IncomeTaxPayer ,WorkingStudent�
Student , T(WorkingStudent) � IncomeTaxPayer} and ABox={Student(mario),
WorkingStudent(mario), Tall(mario), Student(carlo), WorkingStudent(carlo),
Tall(carlo), Student(giuseppe), WorkingStudent(giuseppe), Tall(giuseppe)}, we
have tested both the theorem provers in order to check whether IncomeTaxPayer
(mario) is minimally entailed from KB=(TBox,ABox). This query generates
1090 open branches in TABALC+T

PH1 , each requiring the execution of TABALC+T
PH2 .

PreDeLo 1.0 answers in 370 seconds, whereas DysToPic answers in 210 seconds
if only two machines are involved (employer + one worker). If 4 workers are
involved, DysToPic only needs 112 seconds to conclude its computation.

Example 1 witnesses that the advantages obtained by distributing the compu-
tation justify the overhead introduced by the machinery needed for that.

5 Conclusions

We have introduced DysToPic, a multi-engine theorem prover implementing
tableaux calculi for reasoning in ALC+Tmin. DysToPic implements a distributed
version of the calculus TABALC+T

min introduced in [16], exploiting the fact that the
two phases characterizing such a calculus can be computed in parallel. We aim
at extending DysToPic to the lightweight DLs of the DL-Lite and EL family.
Despite their relatively low expressivity, they are relevant for several applica-
tions. Extensions of EL⊥ and of DL-Litecore with the typicality operator T have
been proposed in [13], where it has also been shown that minimal entailment is in
Πp

2 (for EL⊥, if restricted to a specific fragment). Tableaux calculi performing a
two phases computation, similar to TABALC+T

min , have been proposed in [11,12].

A Multi-engine Theorem Prover for a Description Logic 177

Acknowledgments. This research is partially supported by INDAM- GNCS Project
2015 “Logiche descrittive e ragionamento non monotono”. G.L. Pozzato is supported
by the project “ExceptionOWL” (U. di Torino and C. di San Paolo).

References

1. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their appli-
cation in treating specificity in terminological def. logic. JAR 15(1), 41–68 (1995)

2. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. Journal of Auto-
mated Reasoning (JAR) 15(3), 339–358 (1995)

3. Bonatti, P., Lutz, C., Wolter, F.: DLs with circumscription. In: KR, pp. 400–410
(2006)

4. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: KR,
pp. 476–484. AAAI Press, Sidney, September 2008

5. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In:
Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer,
Heidelberg (2010)

6. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. Journal of
Artificial Intelligence Research 48, 415–473 (2013)

7. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM ToCL 3(2), 177–225 (2002)

8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with DLs for the semantic web. In: KR, pp. 141–151 (2004)

9. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description log-
ics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790,
pp. 257–272. Springer, Heidelberg (2007)

10. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential exten-
sion of description logics. Fundamenta Informaticae 96, 341–372 (2009)

11. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A tableau calculus for a
nonmonotonic extension of EL⊥. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX
2011. LNCS (LNAI), vol. 6793, pp. 180–195. Springer, Heidelberg (2011)

12. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A tableau calculus for a
nonmonotonic extension of the description logic DL − Litecore . In: Pirrone, R.,
Sorbello, F. (eds.) AI*IA 2011. LNCS (LNAI), vol. 6934, pp. 164–176. Springer,
Heidelberg (2011)

13. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning abouttypicality
in low complexity DLs: the logics EL⊥Tmin and DL−LitecTmin . In: IJCAI 2011.
pp. 894–899 (2011)

14. Giordano, L., Gliozzi, V., Jalal, A., Olivetti, N., Pozzato, G.L.: Predelo a theorem
prover for preferential description logics. In: Baldoni, M., Baroglio, C., Boella, G.,
Micalizio, R. (eds.) AI*IA 2013. LNCS(LNAI), vol. 8249, pp. 60–72. Springer,
Heidelberg (2013)

15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential vs rational
description logics: which one for reasoning about typicality? In: ECAI 2010,
pp. 1069–1070 (2010)

16. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A NonMonotonic Description
Logic for Reasoning About Typicality. Artificial Intelligence 195, 165–202 (2013)

17. Ke, P., Sattler, U.: Next steps for description logics of minimal knowledge and
negation as failure. In: DL 2008. CEUR, vol. 353 (2008)

178 L. Giordano et al.

18. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44(1–2), 167–207 (1990)

19. Krisnadhi, A.A., Sengupta, K., Hitzler, P.: Local closed world semantics: Keep it
simple, stupid! In: DL 2011. CEUR, vol. 745 (2011)

20. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Arti-
ficial Intelligence 55(1), 1–60 (1992)

21. Motik, B., Rosati, R.: Reconciling DLs and rules. J. ACM 57(5) (2010)
22. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: IJCAI

1993, pp. 676–681 (1993)

	A Multi-engine Theorem Prover for a Description Logic of Typicality
	1 Introduction
	2 The Logic ALC+Tmin
	3 A Tableau Calculus for ALC+Tmin
	3.1 The Tableaux Calculus TABPH 1ALC+T
	3.2 The Tableaux Calculus TABPH 2ALC+T

	4 Design of DysToPic
	4.1 The Whole Architecture
	4.2 The Implementation of the Tableaux Calculus
	4.3 Performance Testing of DysToPic

	5 Conclusions
	References

