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Abstract. Message broadcasting and topology discovery are classical
problems for distributed systems, both of which are related to the con-
cept of network exploration. Typical decentralized approaches assume
that network nodes are provided with traditional routing tables. In this
paper we propose a novel network exploration approach based on col-
lective self-awareness and self-expression, resulting from the simultane-
ous application of two strategies, namely hierarchy and recursion, which
imply the adoption of unusual routing tables. We show how the proposed
approach may provide distributed systems with improved efficiency and
scalability, with respect to traditional approaches.
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1 Introduction

Network exploration is the bottom line of several problems for distributed sys-
tems, i.e., systems consisting of multiple autonomous nodes that communicate
through a network. Example of such problems are message broadcasting [1,2]
and topology discovery [3,4]. Centralized solutions are not scalable and highly
inefficient. Thus, decentralized approaches are usually adopted, assuming that
network nodes are provided with traditional routing tables — i.e., data tables
that list the routes to particular network destinations and, in some cases, metrics
associated to those routes.

In this paper we propose a novel network exploration approach based on
collective self-awareness and self-expression [5], resulting from the simultaneous
application of two strategies, namely hierarchy and recursion, which imply the
adoption of unusual routing tables. With respect to traditional approaches, the
one we propose may provide distributed systems with improved efficiency and
scalability.

The paper is organized as follows. In Section 2, related work on network explo-
ration and self-aware computing is discussed. In Section 3, the concepts of col-
lective self-awareness and self-expression are summarized, with particular focus
on their implementation based on hierarchy and recursion (HR). In Section 4,
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our HR-based network exploration algorithm is illustrated. In Section 5, simu-
lation results are presented and discussed. The last section concludes the paper
presenting future research lines. As an appendix, a short survey on conscious-
ness, self-Awareness and self-Expression in psychology and cognitive science is
proposed.

2 Related Work

Network exploration is a necessary task in several contexts. Among others,
multiple-message broadcasting is particularly important for wireless sensor net-
works (WSNs), since it is a basic operation in many applications, such as updat-
ing of routing tables and several kinds of data aggregation functions in WSNs.
Classical Flooding (CF) is the simplest way of implementing multi-hop broad-
cast: when a node receives a broadcast packet for the first time, it forwards the
packet to its neighbors (duplicates are detected and dropped). However, CF can
be very costly in terms of wasted bandwidth, and also inefficient, because of
broadcast storms that may be generated by concomitant packet retransmissions
[6]. Considering also that in Low power and Lossy Networks (LLNs) nodes are
extremely energy-constrained, a finite message budget is a realistic assumption
[1]. The optimal solution consists of building a minimum Connected Dominating
Set (CDS), defined as the minimum set of relays that guarantees network connec-
tivity. However, finding a minimum CDS is known as an NP-hard problem [7] to
which several authors proposed distributed approximate solutions. Recently, the
IETF ROLL working group standardized RPL, the routing protocol for LLNs
[8], and also proposed Multicast Protocol for Low power and Lossy Networks
(MPL), a forwarding mechanism for LLN networks [9]. Later, La et al. [10] have
introduced Beacon-based Forwarding Tree (BFT), an energy-efficient multi-hop
broadcasting scheme that achieves performance similar to MPL, although it fits
better the case of nodes with low radio duty cycling1 MAC layers of the type
of beacon-enabled IEEE 802.15.4. More generally, Yu et al. [2] have proposed a
distributed algorithm for multiple-message broadcasting in unstructured wireless
networks under a global interference model, as well as a lower bound for ran-
domized distributed multiple-message broadcast algorithms under the assumed
network model.

Another domain where network exploration plays a prominent role is topol-
ogy discovery. Several authors have proposed agent-oriented approaches based
on learning [3,11,12]. Agents explore the network to i) acquire information,
on their own, about visited nodes (first-hand knowledge); ii) collect informa-
tion from other agents, by means of direct or implicit communication. Not using
agents, Li et al. [4] have recently proposed an IPv6 network router-level topology
discovery method, combining the topology information obtained by traceroute
and OSPF [13].

All the aforementioned network exploration strategies assume that network
nodes are provided with traditional routing tables. Our approach, instead,
1 Radio duty cycling is the proportion between the periods nodes are on and off.
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implies the adoption of unusual routing tables. Before introducing them, we
need to recall some background concepts.

Self-aware computing systems and applications proactively maintain infor-
mation about their own environments and internal states [14]. In detail, self-
expression refers to i) goal revision and ii) self-adaptive behavior, which derives
from reasoning about the knowledge associated with the system’s self-awareness.

According to Faniyi et al. [14], a self-aware node “possesses information
about its internal state and has sufficient knowledge of its environment to deter-
mine how it is perceived by other parts of the system.” Self-awareness produces
behavioral models of the node. Self-expression encompasses goal revision and
self-adaptive behavior deriving from reasoning about such models. The same
authors [14] have also developed a computational translation of the layered self-
awareness model proposed by psychologist Neisser [15] (a short survey on con-
sciousness, self-awareness and self-expression in psychology and cognitive sci-
ence is proposed at the end of this paper). From the bottom up to the top of the
stack, there are five levels of self-awareness, with increasing complexity: stimulus
awareness, interaction awareness, time awareness, goal awareness and meta-self-
awareness. This latter layer is the node’s awareness of its own self-awareness
capabilities (or its lack). The conceptual framework is illustrated in Figure 1.
Self-awareness implies processing information collected from the internal and
external sensors of the node. Data provided by the internal sensors contribute to
private self-awareness construction. Information about the node’s interactions
with the physical environment and other nodes, instead, contributes to public
self-awareness construction.

Fig. 1. Representation of a self-aware and self-expressive node, according to the models
defined by Faniyi et al. [14].

Our recent contribution to self-aware computing is the definition of collec-
tive self-awareness and self-expression [5], which is the baseline for the network
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exploration approach we present in this paper. In the following section, we illus-
trate the main principles of collective self-awareness and self-expression.

3 Collective Self-Awareness and Self-expression

According to Mitchell [16], complex systems are dynamic systems composed
of interconnected parts that, as a whole, exhibit properties that could not
be inferred from the properties of the individual parts. Ant colonies, immune
systems and humans are examples of complex systems, where collective self-
awareness is an emergent effect [14].

In computing/networking systems, the adaptive mechanisms that can be
implemented within a single node coincide with self-expression, if they are based
on the node’s self-awareness capabilities. What about self-awareness and self-
expression of a distributed system as a whole? Can actual global self-awareness
be achieved only by providing the distributed system with a centralized omni-
scient monitor? Luckily, the answer is no.

A computing node exhibits self-expression if it is able to assert its behavior
upon either itself or other nodes, the relevance of such a behavior being propor-
tional to a notion of authority in the network [14]. The behavior of the node is
affected by its state, context, goals and constraints.

Self-expression for ensembles of cooperating computational entities is the
ability to deploy run-time changes of the coordination pattern, according to
Cabri et al. [17]. In other words, the distributed system expresses itself (mean-
ing that it still does what it is supposed to do) independently of unexpected
situations and, to accomplish this, it can modify its original internal organiza-
tion. For example, suppose that each component of a distributed system knows
three different collaborative approaches to complete a given task: master-slave,
peer-to-peer and swarm. Self-expression here is seen as the capability to collab-
oratively select the most suitable strategy.

In our view, self-expression for ensembles is the assertion of collective self-
adaptive behavior, based on collective self-awareness. As in global self-awareness,
achieving collective self-expression in a distributed system that lacks centralized
control appears to be a difficult task.

3.1 Hierarchy and Recursion

We claim that both self-expression and self-awareness, for ensembles of cooper-
ating computational entities, can be achieved by the simultaneous application
of two strategies, namely hierarchy and recursion. Hierarchy is the categoriza-
tion of a group of nodes according to their capability or status. Recursion is the
repeated use of a single, flexible functional unit for different capabilities over
different scopes of a distributed system.

A possible implementation of this principle is recursive networking, developed
to describe multi-layer virtual networks that embed networks as nodes inside
other networks. In the last decade, recursive networking has evolved to become
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a possible architecture for the future Internet [18]. In particular, it is a prominent
approach to designing quantum networks [19].

Moreover, in the context of Content-Centric Networking (CCN) [20], an
emerging approach which is particularly promising to face the scalability issues
that the Internet of Things is raising, there is room for both static and dynamic
hierarchies.

For example, consider the network illustrated in Figure 2. The routing table
at node 4.2 contains information on how to reach any other node in the network.
For scalability purposes, the table has more precise information about nearby
destinations (node 4.4 and node 4.7), and vague information about more remote
destinations (NET9), obtained using hierarchy and recursion. Routing tables are
initialized and updated with information exchanged between directly attached
neighbors.

Fig. 2. Hierarchy and recursion: the routing table at node 4.2 contains information on
how to reach any other node in the network.

By means of hierarchy and recursion, global self-awareness is available at
every node and enables global self-expression. In the network example, packets
are forwarded according to routing tables. Forwarding too many packets to the
same neighbor may cause congestion on that node. Having a feedback about
such a negative effect of the forwarding node’s behavior (i.e., having local self-
awareness) may lead to a modification of that behavior, supported by the routing
table (which is a way of building global self-awareness). Namely, an alternative
destination for packets may be chosen. This local self-expression process may
also trigger a routing table update. On the other hand, a routing table update
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may also derive from the exchange of routing information with known nodes.
The simultaneous and collaborative update of HR-based routing tables, which
may also take into account the possibility of changing hierarchies, is actually a
global self-expression process.

More precisely, the networking example in Figure 2 (and further developed
in the subsequent sections) fits the conceptual framework in the following way:

– stimuli-awareness: the network is stimuli-aware, meaning that nodes know
how to manage messages;

– interaction-awareness: nodes and subnets interact by exchanging messages
and control information, i.e., routing table updates; they are interaction-
aware, meaning that they can distinguish between other nodes and subnets;

– time-awareness: the network has knowledge of past events or likely future
ones, like in learning-based routing;

– goal-awareness: the HR approach enforces the global goal of high efficiency
(e.g., simplifying the search for the shortest path towards a specific desti-
nation); goal-awareness is thus implicit in how routing tables are populated
and updated;

– meta-self-awareness: a way to implement it is to concurrently apply different
routing strategies, choosing the best one at runtime.

4 HR-based Network Exploration

Let us consider a network consisting of N nodes and S subnetworks. We are
interested in evaluating the approximate number of forwardings needed by a
probe message to propagate through the whole graph. The probe message is
generated by a random node, which sends it to one of its neighbors. Then it
is forwarded to another neighbor, and so on. A node that receives the probe
message is marked as “visited”.

The simplest search strategy is the Random Walk (RW), where the next hop
is randomly selected among the node’s neighbors. Even if the network is recursive
and hierarchical, such features are not exploited by RW. As a consequence, RW
is quite expensive, in terms of probe message propagations needed to explore the
whole network — even if the network topology has good features, such as scale
invariance [21].

Another simple strategy is Classical Flooding (CF) (see also Section 2), where
every probe message received by a node is forwarded to all the neighbors of the
node. To avoid network congestion, probe messages are always associated to
a Time To Live (TTL), which is the maximum number of times they can be
forwarded. The main advantage of CF is that, if a packet can be delivered, it
will actually be (probably multiple times). However, CF can be very costly in
terms of wasted bandwidth and also inefficient, as it may originate broadcast
storms [6].

Our HR-based network exploration approach takes subnetworks into account
and exploits collective self-awareness. Every node is member of a subnetwork
NETs (s ∈ {1, .., S}) and has an identifier Noden (n ∈ N) which is unique within
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that network. The name of the generic node is denoted as NETs.Noden. A node
may have neighbors that are members of other subnetworks. For example, the
routing table illustrated in Figure 2 allows NET4.Node2 to forward messages
i) to other nodes of NET4 that are directly reachable, ii) to NET1 and NET6
through directly reachable nodes that belong to those subnetworks, and iii) to
NET9 through NET6. Importantly, the size of the routing table is O(S).

The neighbor to whom the probe is forwarded belongs to the same subnet-
work of the sender. If all neighbors of the same subnetwork have been already
visited, the probe is forwarded to one neighbor from another subnetwork, exclud-
ing the previous hop. If there is only one neighbor belonging to other subnetworks
and it is the previous hop, then the neighbor that grants access to the longest
route is chosen. The flowchart of the HR-based network exploration approach is
shown in Figure 3.

Fig. 3. HR-based network exploration approach. D is the set of neighbors of the con-
sidered peer (D = |D|). Y is the set of neighbors belonging to the same subnetwork of
the considered peer (Y = |Y|), that have not been visited yet. O is the set of neighbors
that belong to other subnetworks (O = |O|). h−1 denotes the previous hop.

5 Performance Evaluation

To evaluate the proposed HR-based network exploration algorithm, we adopted
the general-purpose discrete event simulation environment called DEUS2 [22,23],
whose purpose is to facilitate the simulation of highly dynamic overlay networks,
with several hundred thousands nodes, on a single machine — without the need
to simulate also lower network layers (whose effect can be taken into account,
2 DEUS project homepage: https://github.com/dsg-unipr/deus/

https://github.com/dsg-unipr/deus/
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in any case, when defining the virtual time scheduling of message propagation
events).

To simplify the configuration of the routing tables in simulation, we consider
the (sub-optimal) scenario in which every node knows which subnetworks can be
reached through its direct neighbors. No further knowledge is necessary, when S
is of the same order of magnitude as the mean node degree 〈k〉 of the network.
Instead, for large networks, with S � 〈k〉, further knowledge — provided by
neighbors of neighbors (of neighbors etc.) — is necessary to build meaningful
collective self-awareness.

We take into account two network topologies, characterized by different
statistics for the node degree, that is the number of links starting from a node.
The node degree of a network is described in terms of probability mass function
(PMF) P (k) = P{node degree = k}.

The first network topology we consider is scale-free, meaning that its PMF
decays according to a power law, i.e., a polynomial relationship that exhibits
the property of scale invariance (i.e., P (bk) = baP (k), ∀a, b ∈ R), such as:

P (k) = ck−τ ∀k = 0, .., N − 1

where τ > 1 (otherwise P (k) would not be normalizable) and c is a normal-
ization factor. In simulation, we have used the widely known generative model
proposed by Barabási and Albert (called BA model) [24], which constructs scale-
free networks with τ � 3. The BA model is based on two ingredients: growth
and preferential attachment. Every node which is added connects to m existing
nodes, selected with probability proportional to their node degree. The resulting
PMF is

P (k) � 2m2k−3 ∀k > m

and the mean node degree is 〈k〉 = 2m. The average path length is

〈l〉BA � ln N

ln lnN

The second network topology we consider is a purely random one, described
by the well-known model defined by Erdös and Rényi (ER model). Networks
based on the ER model have N vertices, each connected to an average of 〈k〉 = α
nodes. The presence or absence of a link between two vertices is independent of
the presence or absence of any other link, thus each link can be considered to be
present with independent probability p. It is trivial to show that

p =
α

N − 1

If nodes are independent, the node degree distribution of the network is binomial:

P (k) =
(

N − 1
k

)
pk(1 − p)N−1−k

which, for large values of N , converges to the Poisson distribution

P (k) =
αke−α

k!
with α = 〈k〉 = σ2
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The average path length (i.e., the expected value of the shortest path length
between node pairs) is

〈l〉ER � ln N

ln α
Scale-free and ER are the extremes of the range of meaningful network topolo-

gies, as they represent the presence of strong hubs and the total lack of hubs,
respectively. It has been recently shown that the degree distribution of the Inter-
net is the composition of the contributions of two classes of connections [25]:
the provider-customer connections introduce a scale-free distribution, while the
peering connections can be modeled using a Weibull distribution. A large contri-
bution to the deviation from the scale-free distribution is given by the Internet
Exchange Points (IXPs), that are physical infrastructures which allow ASs to
exchange Internet traffic, usually by means of mutual peering agreements, lead-
ing to lower costs (and, sometimes, lower latency) than in upstream provider-
customer connections. Since IXP introduce a high number of peering relation-
ships, the higher the number of connections identified as crossing IXPs, the larger
the deviation of the degree from the scale-free distribution. The structural prop-
erties of the Internet AS-level (Autonomous System level) topology graph can
be discovered by means of the concept of community, which is informally defined
as “an unusually densely connected set of ASes” [26]. The task of detecting com-
munities in a graph is very hard for at least two reasons: firstly, because there
is no formal definition of a community and, secondly, because most algorithms
are computationally demanding and cannot be applied to dense graphs.

Our simulations compared the HR, RW and CF network exploration strate-
gies, with networks consisting of N = 1000 nodes, and either S = 20 or S = 100
subnetworks. With the BA topology, when m = 5 and m = 20, the mean node
degree is 〈k〉 = 10 and 〈k〉 = 40, respectively. To have the same 〈k〉 values for
the ER topology, we set α = 10 and α = 40. The virtual time V T of the sim-
ulation is represented on the x axis. Before V T = 3000, the network is grown
and configured — i.e., routing tables are filled after N = 1000 nodes have been
created and connected. Then, at V T = 3000 the probe message is generated and
forwarded at every virtual time step. Regarding the CF strategy, TTL = 4 is
necessary to explore the whole network in all the scenarios we consider (which
are characterized by 〈l〉ER,α=10 � 3, 〈l〉ER,α=40 � 2 and 〈l〉BA = 3.6, respec-
tively). Indeed, when the topology is ER with α = 10, CF with TTL = 3 reaches
69% of the nodes only.

In Figure 4, the fraction of visited nodes (averaged over 25 simulation runs)
is reported on the y axis. As the presence of subnetworks does not affect RW and
CF, just one curve is plotted for these cases. Conversely, subnetwork awareness
plays a fundamental role in HR. From the results we obtained, it is clear that
CF allows to explore the whole network much faster than RW and HR. However,
CF produces a large burst of probe message forwardings (see numf in Table 1),
to complete the exploration of the network. Instead, HR and RW require fewer
messages to achieve the same result (albeit more slowly). In general, HR and
RW have to be preferred, with respect to CF. Then, it is also clear that HR
outperforms RW. Indeed, for the topologies under consideration, the HR-based
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Fig. 4. Fraction of visited nodes when the network topology is BA or ER.

algorithm requires about 4000 message propagations to visit the whole network.
With the same amount of propagations, instead, RW visits only 90% of the net-
work. The difference is more evident when the topology is BA, because using HR
the probe message is forced to visit every hub (i.e., one of the most connected
nodes) just once, while with RW the probe message visits hubs very frequently.
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On the other hand, since neither RW nor HR exploit hubs conveniently, perfor-
mance is better with the ER topology (where node degree values are more fairly
distributed).

Table 1. No-HR vs HR: number of probe message forwardings until the network has
been fully explored.

Strategy Topology S numf

CF BA, m = 5 n.a. 24 · 103

RW BA, m = 5 n.a. > 4 · 103

HR BA, m = 5 20 4 · 103

HR BA, m = 5 100 4 · 103

CF BA, m = 20 n.a. 12 · 103

RW BA, m = 20 n.a. > 4 · 103

HR BA, m = 20 20 3 · 103

HR BA, m = 20 100 3 · 103

CF ER, α = 10 n.a. 15 · 103

RW ER, α = 10 n.a. > 4 · 103

HR ER, α = 10 20 3 · 103

HR ER, α = 10 100 3 · 103

CF ER, α = 40 n.a. 11 · 103

RW ER, α = 40 n.a. > 4 · 103

HR ER, α = 40 20 2.5 · 103

HR ER, α = 40 100 3 · 103

6 Conclusions

Collective self-awareness and self-expression, based on the simultaneous applica-
tion of hierarchy and recursion, make it possible to design efficient and scalable
network exploration strategies, with limited extra cost in terms of design com-
plexity.

Other than network exploration, message routing and distributed comput-
ing, also distributed sensing, mapping and geo-localization systems may benefit
from collective self-awareness and self-expression. The networking and comput-
ing research communities have already started studying HR-based strategies,
but a lot of work still needs to be done. In our opinion, it will be particularly
important to find novel strategies for the efficient maintenance of HR-enabling
information.
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Consciousness, Self-Awareness and Self-Expression in
Psychology and Cognitive Science

Psychology as a scientific discipline started in the second half of the nineteenth
century. Almost immediately, the notion of consciousness became central. In
1905, Freud separated the unconscious, the preconscious and the conscious.
Since then, several other levels of consciousness have been defined and exam-
ined. In 1934, Mead proposed the distinction between focusing attention out-
ward toward the environment (consciousness), and inward toward the self (self-
awareness). Self-awareness represents a complex multidimensional phenomenon
that comprises various self-domains and corollaries. A very clear and compre-
hensive survey on this topic has been recently published by Morin [15]. Duval
and Wicklund defined self-awareness as the capacity of becoming the object of
one’s own attention [27]. In this state one actively identifies, processes, and
stores information about the self. The layered self-awareness model proposed
by Neisser [28] is particularly appealing to computer engineers. Indeed, a com-
putational interpretation of that model (illustrated in this paper) has been
recently developed by Faniyi et al. [14]. The lowest level of self-awareness,
denoted as ecological self, concerns the reactions to stimuli. The highest level,
denoted as conceptual self, represents the most advanced form of self-awareness,
where the organism is capable of constructing and reasoning about an abstract
symbolic representation of itself. Eventually, the conceptual self may allow the
organism to become aware of its own self-awareness capabilities (i.e., meta-self-
awareness). Self-expression, in social psychology literature, is a notion that
is closely associated with a multitude of positive concepts, such as freedom,
creativity, style, courage, self-assurance. Fundamentally, self-expression is the
assertion of one’s personal characteristics.
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