Marco Gavanelli
Evelina Lamma
Fabrizio Riguzzi (Eds.)

Al*IA 2015
Advances in
Artificial Intelligence

XIVth International Conference
of the Italian Association for Artificial Intelligence
Ferrara, Italy, September 23-25, 2015, Proceedings

LNAI 9336

@ Springer

Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbriicken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbriicken, Germany

9336

More information about this series at http://www.springer.com/series/1244

Marco Gavanelli - Evelina Lamma
Fabrizio Riguzzi (Eds.)

AI*IA 2015
Advances 1n Artificial
Intelligence

XIVth International Conference
of the Italian Association for Artificial Intelligence

Ferrara, Italy, September 23-25, 2015
Proceedings

@ Springer

Editors

Marco Gavanelli Fabrizio Riguzzi

Dipartimento di Ingegneria Dipartimento di Matematica e Informatica
Universita di Ferrara Universita di Ferrara

Ferrara Ferrara

Italy Italy

Evelina Lamma
Dipartimento di Ingegneria
Universita di Ferrara

Ferrara

Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence

ISBN 978-3-319-24308-5 ISBN 978-3-319-24309-2 (eBook)

DOI 10.1007/978-3-319-24309-2

Library of Congress Control Number: 2015950944
LNCS Sublibrary: SL7 — Atrtificial Intelligence

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(Www.springer.com)

Preface

This book collects the contributions accepted for AI*IA 2015, the 14th Conference
of the Italian Association for Artificial Intelligence, held in Ferrara, Italy, September
23-25, 2015. The conference is organized by AI*IA (the Italian Association for
Artificial Intelligence) and it is held every other year.

The Program Committee (PC) received 44 valid submissions. Each paper was
carefully reviewed by at least three members of the PC, who selected the 35 papers that
are presented in these proceedings.

Following the 2013 edition of the conference, we adopted a “social” model: the
papers were made available to conference participants in advance, each paper was
shortly presented at the conference and was assigned a time slot and a reserved table
where the authors were available for discussing their work with the interested audience.
In this way, we aim at fostering discussion and facilitating idea exchange, community
creation, and collaboration.

AT*IA 2015 featured exciting keynotes by Laurent Perron, Technical Leader of the
Operations Research Team at Google; Kristian Kersting, Head of the Statistical
Relational Activity Mining Group, Fraunhofer IAIS, Technical University of Dort-
mund; Oren Etzioni, Director of the Allen Institute for Artificial Intelligence; and
Kevin Warwick, Deputy Vice Chancellor (Research) at Coventry University.

The program of the conference also included six workshops: the First Workshop on
Artificial Intelligence and Design (AIDE 2015), the Second Workshop on Artificial
Intelligence and Robotics (AIRO 2015), the Sixth Italian Workshop on Planning and
Scheduling (IPS 2015), the First Workshop on Intelligent Techniques at Libraries and
Archives (IT@LIA 2015), the Fourth Italian Workshop on Machine Learning and Data
Mining (MLDM.it 2015), and the 22nd RCRA International Workshop on Experimental
Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA
2015), plus a doctoral consortium.

The chairs wish to thank the Program Committee members and the anonymous
reviewers for their careful work in the selection of the best papers; the chairs of the
workshops and of the doctoral consortium for organizing the respective events, as well
as Flena Bellodi, Giuseppe Cota, Andrea Peano, and Riccardo Zese for their help
during the organization of the conference.

July 2015 Marco Gavanelli
Evelina Lamma
Fabrizio Riguzzi

Organization

AI*TA 2015 was organized by AI*IA (Associazione Italiana per I’Intelligenza
Arttificiale), in cooperation with the Departments of Engineering and of Mathematics
and Computer Science of the University of Ferrara (Italy).

Executive Committee

Conference Chairs

Marco Gavanelli Universita di Ferrara, Italy
Evelina Lamma Universita di Ferrara, Italy
Fabrizio Riguzzi Universita di Ferrara, Italy

Doctoral Consortium Chairs

Elena Bellodi Universita di Ferrara, Italy
Alessio Bonfietti Universita di Bologna, Italy

Panel Chair

Piero Poccianti Consorzio Operativo Gruppo MPS, Italy

Program Committee

Matteo Baldoni Universita di Torino, Italy

Stefania Bandini Universita Milano-Bicocca, Italy
Roberto Basili Universita di Roma Tor Vergata, Italy
Nicola Basilico Universita di Milano, Italy

Elena Bellodi Universita di Ferrara, Italy

Federico Bergenti Universita di Parma, Italy

Stefano Bistarelli Universita di Perugia, Italy

Luciana Bordoni ENEA, Italy

Francesco Buccafurri Universita Mediterranea di Reggio Calabria, Italy
Stefano Cagnoni Universita di Parma, Italy

Diego Calvanese Free University of Bozen-Bolzano, Italy
Amedeo Cappelli CNR, Italy

Luigia Carlucci Aiello Sapienza Universita di Roma, Italy
Amedeo Cesta CNR, Italy

Antonio Chella Universita di Palermo, Italy

Carlo Combi Universita di Verona, Italy

Gabriella Cortellessa CNR, Italy

Stefania Costantini Universita di L’Aquila, Italy

VI Organization

Giuseppe De Giacomo
Francesco Donini
Agostino Dovier
Floriana Esposito
Stefano Ferilli

Marco Gavanelli
Nicola Guarino

Luca Iocchi

Evelina Lamma
Nicola Leone

Sapienza Universita di Roma, Italy
CNR, Italy

Universita di Udine, Italy
Universita di Bari, Italy

Universita di Bari, Italy

Universita di Ferrara, Italy

CNR, Italy

Sapienza Universita di Roma, Italy
Universita di Ferrara, Italy
Universita della Calabria, Italy

Chendong Li Dell, USA
Francesca Alessandra Lisi Universita di Bari, Italy
Bernardo Magnini FBK, Italy

Sara Manzoni
Alberto Martelli
Paola Mello

Alessio Micheli
Alfredo Milani
Michela Milano
Stefania Montani
Alessandro Moschitti
Roberto Navigli
Angelo Oddi
Andrea Omicini
Maria Teresa Pazienza
Roberto Pirrone
Piero Poccianti

Gian Luca Pozzato
Luca Pulina

Daniele P. Radicioni
Francesco Ricca
Fabrizio Riguzzi
Andrea Roli
Salvatore Ruggieri
Fabio Sartori

Ken Satoh

Andrea Schaerf

Universita Milano-Bicocca, Italy
Universita di Torino, Italy

Universita di Bologna, Italy

Universita di Pisa, Italy

Universita di Perugia, Italy

Universita di Bologna, Italy

Universita del Piemonte Orientale, Italy
Universita di Trento, Italy

Sapienza Universita di Roma, Italy
CNR, Italy

Universita di Bologna, Italy

Universita di Roma Tor Vergata, Italy
Universita di Palermo, Italy

Consorzio Operativo Gruppo MPS, Italy
Universita di Torino, Italy

Universita di Sassari, Italy

Universita di Torino, Italy

Universita della Calabria, Italy
Universita di Ferrara, Italy

Universita di Bologna, Italy

Universita di Pisa, Italy

Universita Milano-Bicocca, Italy
National Institute of Informatics and Sokendai, Japan
Universita di Udine, Italy

Floriano Scioscia
Giovanni Semeraro
Roberto Serra
Francesca Toni

Politecnico di Bari, Italy
Universita di Bari, Italy

Universita di Modena e Reggio Emilia, Italy

Imperial College, UK

Pietro Torasso
Eloisa Vargiu
Marco Villani
Giuseppe Vizzari

Universita di Torino, Italy

Barcelona Digital Technology Center, Spain
Universita di Modena e Reggio Emilia, Italy
Universita Milano-Bicocca, Italy

Additional Reviewers

Bacciu, Davide
Barlacchi, Gianni

Basile, Pierpaolo
Bellandi, Andrea
Benotto, Giulia

Bloisi, Domenico Daniele
Cauteruccio, Francesco
D’Amato, Claudia

Dal Palu, Alessandro

Sponsoring Institutions

De Benedictis, Riccardo
Degeler, Viktoriya
Franzoni, Valentina
Furletti, Barbara

Fusca, Davide
Gallicchio, Claudio
Georgievski, Ilche
Lieto, Antonio

Manna, Marco

Organization IX

Mencar, Corrado
Patti, Viviana
Poggioni, Valentina
Portinale, Luigi
Sato, Taisuke
Takahashi, Kazuko
Tesconi, Maurizio

AT*IA 2015 was partially funded by the Artificial Intelligence Journal, by the
Departments of Engineering and of Mathematics and Computer Science of the
University of Ferrara, by the Istituto Nazionale di Alta Matematica “F. Severi” -
Gruppo Nazionale per il Calcolo Scientifico, by Dario Flaccovio Editore, and by the
Italian Association for Artificial Intelligence.

Contents

Swarm Intelligence and Genetic Algorithms

Collective Self-Awareness and Self-Expression for Efficient Network
Exploration
Michele Amoretti and Stefano Cagnoni

Swarm-Based Controller for Traffic Lights Management
Federico Caselli, Alessio Bonfietti, and Michela Milano

Path Relinking for a Constrained Simulation-Optimization Team
Scheduling Problem Arising in Hydroinformatics
Maddalena Nonato and Andrea Peano

Dynamical Properties of Artificially Evolved Boolean Network Robots
Andrea Roli, Marco Villani, Roberto Serra, Stefano Benedettini,
Carlo Pinciroli, and Mauro Birattari

Adaptive Tactical Decisions in Pedestrian Simulation: A Hybrid Agent
Approach.
Luca Crociani, Andrea Piazzoni, Giuseppe Vizzari, and Stefania Bandini

Computer Vision

Using Stochastic Optimization to Improve the Detection of Small
Checkerboards
Hamid Hassannejad, Guido Matrella, Monica Mordonini,
and Stefano Cagnoni

Multi Agent Systems

Empowering Agent Coordination with Social Engagement.
Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati,
and Roberto Micalizio

Anticipatory Coordination in Socio-Technical Knowledge-Intensive
Environments: Behavioural Implicit Communication in MoK
Stefano Mariani and Andrea Omicini

A Kinetic Study of Opinion Dynamics in Multi-agent Systems.
Stefania Monica and Federico Bergenti

XII Contents

Cooperating with Trusted Parties Would Make Life Easier. 128
Pasquale Caianiello, Stefania Costantini, Giovanni De Gasperis,
and Subhasis Thakur

Agent Based Simulation of Incentive Mechanisms
on Photovoltaic Adoption. 136
Valerio Iachini, Andrea Borghesi, and Michela Milano

Knowledge Representation and Reasoning

Feature-Based Modelling and Information Systems for Engineering. 151
Emilio M. Sanfilippo and Stefano Borgo

A Multi-engine Theorem Prover for a Description Logic of Typicality. 164
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato,
and Luca Violanti

Advances in Multi-engine ASP Solving. 179
Marco Maratea, Luca Pulina, and Francesco Ricca

Defeasible Logic Programming in Satisfiability Modulo CHR. 191
Francesco Santini

Abstract Solvers for Quantified Boolean Formulas and their Applications. . .. 205
Remi Brochenin and Marco Maratea

Machine Learning

Learning Accurate Cutset Networks by Exploiting Decomposability 221
Nicola Di Mauro, Antonio Vergari, and Floriana Esposito

Common-Sense Knowledge for Natural Language Understanding:
Experiments in Unsupervised and Supervised Settings. 233
Luigi Di Caro, Alice Ruggeri, Loredana Cupi, and Guido Boella

An Al Application to Integrated Tourism Planning 246
Francesca Alessandra Lisi and Floriana Esposito

Testing a Learn-Verify-Repair Approach for Safe Human-Robot Interaction 260
Shashank Pathak, Luca Pulina, and Armando Tacchella

An Approach to Predicate Invention Based on Statistical
Relational Model. 274
Stefano Ferilli and Giuseppe Fatiguso

Empowered Negative Specialization in Inductive Logic Programming 288
Stefano Ferilli, Andrea Pazienza, and Floriana Esposito

Contents

Semantic Web

GENOMA: GENeric Ontology Matching Architecture.

Roberto Enea, Maria Teresa Pazienza, and Andrea Turbati

Open Data Integration Using SPARQL and SPIN: A Case Study for the

Tourism Domain.

Antonino Lo Bue and Alberto Machi

Natural Language

Bootstrapping Large Scale Polarity Lexicons through Advanced

Distributional Methods. e

Giuseppe Castellucci, Danilo Croce, and Roberto Basili

Using Semantic Models for Robust Natural Language Human Robot

Interaction e

Emanuele Bastianelli, Danilo Croce, Roberto Basili, and Daniele Nardi

Automatic Identification and Disambiguation of Concepts and Named

Entities in the Multilingual Wikipedia

Federico Scozzafava, Alessandro Raganato, Andrea Moro,
and Roberto Navigli

A Logic-Based Approach to Named-Entity Disambiguation in the Web of

Data . .. e

Silvia Giannini, Simona Colucci, Francesco M. Donini,
and Eugenio Di Sciascio

Scheduling, Planning, and Robotics

Efficient Power-Aware Resource Constrained Scheduling and Execution

for Planetary Rovers

Daniel Diaz, Amedeo Cesta, Angelo Oddi, Riccardo Rasconi,
and Maria Dolores Rodriguez-Moreno

Graph-Based Task Libraries for Robots: Generalization and

Autocompletion

Steven D. Klee, Guglielmo Gemignani, Daniele Nardi,
and Manuela Veloso

Enriching a Temporal Planner with Resources and a Hierarchy-Based

Heuristico e

Alessandro Umbrico, Andrea Orlandini, and Marta Cialdea Mayer

Integrating Logic and Constraint Reasoning in a Timeline-Based Planner. . . .

Riccardo De Benedictis and Amedeo Cesta

XIII

X1V Contents

ASCoL: A Tool for Improving Automatic Planning Domain Model
ACQUISTHON. . . o v o e e e e e e
Rabia Jilani, Andrew Crampton, Diane Kitchin, and Mauro Vallati

Approaching Qualitative Spatial Reasoning About Distances and Directions
in Robotics.
Guglielmo Gemignani, Roberto Capobianco, and Daniele Nardi

COACHES Cooperative Autonomous Robots in Complex and Human

Populated Environments.
Luca locchi, M.T. Lazaro, Laurent Jeanpierre, Abdel-1llah Mouaddib,
Esra Erdem, and Hichem Sahli

Author Index e

Swarm Intelligence and Genetic
Algorithms

Collective Self-Awareness and Self-Expression
for Efficient Network Exploration

Michele Amoretti®) and Stefano Cagnoni

Department of Information Engineering, Universita degli Studi di Parma,
Parma, Italy
{michele.amoretti,stefano.cagnoni}@unipr.it

Abstract. Message broadcasting and topology discovery are classical
problems for distributed systems, both of which are related to the con-
cept of network exploration. Typical decentralized approaches assume
that network nodes are provided with traditional routing tables. In this
paper we propose a novel network exploration approach based on col-
lective self-awareness and self-expression, resulting from the simultane-
ous application of two strategies, namely hierarchy and recursion, which
imply the adoption of unusual routing tables. We show how the proposed
approach may provide distributed systems with improved efficiency and
scalability, with respect to traditional approaches.

Keywords: Collective self-awareness - Collective self-expression -
Hierarchy and recursion - Network exploration

1 Introduction

Network exploration is the bottom line of several problems for distributed sys-
tems, i.e., systems consisting of multiple autonomous nodes that communicate
through a network. Example of such problems are message broadcasting [1,2]
and topology discovery [3,4]. Centralized solutions are not scalable and highly
inefficient. Thus, decentralized approaches are usually adopted, assuming that
network nodes are provided with traditional routing tables — i.e., data tables
that list the routes to particular network destinations and, in some cases, metrics
associated to those routes.

In this paper we propose a novel network exploration approach based on
collective self-awareness and self-expression [5], resulting from the simultaneous
application of two strategies, namely hierarchy and recursion, which imply the
adoption of unusual routing tables. With respect to traditional approaches, the
one we propose may provide distributed systems with improved efficiency and
scalability.

The paper is organized as follows. In Section 2, related work on network explo-
ration and self-aware computing is discussed. In Section 3, the concepts of col-
lective self-awareness and self-expression are summarized, with particular focus
on their implementation based on hierarchy and recursion (HR). In Section 4,

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 3-16, 2015.
DOI: 10.1007/978-3-319-24309-2_1

4 M. Amoretti and S. Cagnoni

our HR-based network exploration algorithm is illustrated. In Section 5, simu-
lation results are presented and discussed. The last section concludes the paper
presenting future research lines. As an appendix, a short survey on conscious-
ness, self-Awareness and self-Expression in psychology and cognitive science is
proposed.

2 Related Work

Network exploration is a necessary task in several contexts. Among others,
multiple-message broadcasting is particularly important for wireless sensor net-
works (WSNs), since it is a basic operation in many applications, such as updat-
ing of routing tables and several kinds of data aggregation functions in WSNs.
Classical Flooding (CF) is the simplest way of implementing multi-hop broad-
cast: when a node receives a broadcast packet for the first time, it forwards the
packet to its neighbors (duplicates are detected and dropped). However, CF can
be very costly in terms of wasted bandwidth, and also inefficient, because of
broadcast storms that may be generated by concomitant packet retransmissions
[6]. Considering also that in Low power and Lossy Networks (LLNs) nodes are
extremely energy-constrained, a finite message budget is a realistic assumption
[1]. The optimal solution consists of building a minimum Connected Dominating
Set (CDS), defined as the minimum set of relays that guarantees network connec-
tivity. However, finding a minimum CDS is known as an NP-hard problem [7] to
which several authors proposed distributed approximate solutions. Recently, the
IETF ROLL working group standardized RPL, the routing protocol for LLNs
[8], and also proposed Multicast Protocol for Low power and Lossy Networks
(MPL), a forwarding mechanism for LLN networks [9]. Later, La et al. [10] have
introduced Beacon-based Forwarding Tree (BFT), an energy-efficient multi-hop
broadcasting scheme that achieves performance similar to MPL, although it fits
better the case of nodes with low radio duty cycling! MAC layers of the type
of beacon-enabled IEEE 802.15.4. More generally, Yu et al. [2] have proposed a
distributed algorithm for multiple-message broadcasting in unstructured wireless
networks under a global interference model, as well as a lower bound for ran-
domized distributed multiple-message broadcast algorithms under the assumed
network model.

Another domain where network exploration plays a prominent role is topol-
ogy discovery. Several authors have proposed agent-oriented approaches based
on learning [3,11,12]. Agents explore the network to i) acquire information,
on their own, about visited nodes (first-hand knowledge); ii) collect informa-
tion from other agents, by means of direct or implicit communication. Not using
agents, Li et al. [4] have recently proposed an IPv6 network router-level topology
discovery method, combining the topology information obtained by traceroute
and OSPF [13].

All the aforementioned network exploration strategies assume that network
nodes are provided with traditional routing tables. Our approach, instead,

! Radio duty cycling is the proportion between the periods nodes are on and off.

Collective Self-Awareness and Self-Expression 5

implies the adoption of unusual routing tables. Before introducing them, we
need to recall some background concepts.

Self-aware computing systems and applications proactively maintain infor-
mation about their own environments and internal states [14]. In detail, self-
expression refers to i) goal revision and ii) self-adaptive behavior, which derives
from reasoning about the knowledge associated with the system’s self-awareness.

According to Faniyi et al. [14], a self-aware node “possesses information
about its internal state and has sufficient knowledge of its environment to deter-
mine how it is perceived by other parts of the system.” Self-awareness produces
behavioral models of the node. Self-expression encompasses goal revision and
self-adaptive behavior deriving from reasoning about such models. The same
authors [14] have also developed a computational translation of the layered self-
awareness model proposed by psychologist Neisser [15] (a short survey on con-
sciousness, self-awareness and self-expression in psychology and cognitive sci-
ence is proposed at the end of this paper). From the bottom up to the top of the
stack, there are five levels of self-awareness, with increasing complexity: stimulus
awareness, interaction awareness, time awareness, goal awareness and meta-self-
awareness. This latter layer is the node’s awareness of its own self-awareness
capabilities (or its lack). The conceptual framework is illustrated in Figure 1.
Self-awareness implies processing information collected from the internal and
external sensors of the node. Data provided by the internal sensors contribute to
private self-awareness construction. Information about the node’s interactions
with the physical environment and other nodes, instead, contributes to public
self-awareness construction.

Node
Internal External
Sensors Sensors
Self-Awareness ittt .
Stimulus v A
P |Interaction|«
[Time | H H
Goal :

i Other Nodes
Meta-Self-
Awareness
Self-Expression

Fig. 1. Representation of a self-aware and self-expressive node, according to the models
defined by Faniyi et al. [14].

Physical
Environment

—
'
AN

External . N\)i
Actuators e eaea s B

Internal
Actuators

Our recent contribution to self-aware computing is the definition of collec-
tive self-awareness and self-expression [5], which is the baseline for the network

6 M. Amoretti and S. Cagnoni

exploration approach we present in this paper. In the following section, we illus-
trate the main principles of collective self-awareness and self-expression.

3 Collective Self-Awareness and Self-expression

According to Mitchell [16], complex systems are dynamic systems composed
of interconnected parts that, as a whole, exhibit properties that could not
be inferred from the properties of the individual parts. Ant colonies, immune
systems and humans are examples of complex systems, where collective self-
awareness is an emergent effect [14].

In computing/networking systems, the adaptive mechanisms that can be
implemented within a single node coincide with self-expression, if they are based
on the node’s self-awareness capabilities. What about self-awareness and self-
expression of a distributed system as a whole? Can actual global self-awareness
be achieved only by providing the distributed system with a centralized omni-
scient monitor? Luckily, the answer is no.

A computing node exhibits self-expression if it is able to assert its behavior
upon either itself or other nodes, the relevance of such a behavior being propor-
tional to a notion of authority in the network [14]. The behavior of the node is
affected by its state, context, goals and constraints.

Self-expression for ensembles of cooperating computational entities is the
ability to deploy run-time changes of the coordination pattern, according to
Cabri et al. [17]. In other words, the distributed system expresses itself (mean-
ing that it still does what it is supposed to do) independently of unexpected
situations and, to accomplish this, it can modify its original internal organiza-
tion. For example, suppose that each component of a distributed system knows
three different collaborative approaches to complete a given task: master-slave,
peer-to-peer and swarm. Self-expression here is seen as the capability to collab-
oratively select the most suitable strategy.

In our view, self-expression for ensembles is the assertion of collective self-
adaptive behavior, based on collective self-awareness. As in global self-awareness,
achieving collective self-expression in a distributed system that lacks centralized
control appears to be a difficult task.

3.1 Hierarchy and Recursion

We claim that both self-expression and self-awareness, for ensembles of cooper-
ating computational entities, can be achieved by the simultaneous application
of two strategies, namely hierarchy and recursion. Hierarchy is the categoriza-
tion of a group of nodes according to their capability or status. Recursion is the
repeated use of a single, flexible functional unit for different capabilities over
different scopes of a distributed system.

A possible implementation of this principle is recursive networking, developed
to describe multi-layer virtual networks that embed networks as nodes inside
other networks. In the last decade, recursive networking has evolved to become

Collective Self-Awareness and Self-Expression 7

a possible architecture for the future Internet [18]. In particular, it is a prominent
approach to designing quantum networks [19].

Moreover, in the context of Content-Centric Networking (CCN) [20], an
emerging approach which is particularly promising to face the scalability issues
that the Internet of Things is raising, there is room for both static and dynamic
hierarchies.

For example, consider the network illustrated in Figure 2. The routing table
at node 4.2 contains information on how to reach any other node in the network.
For scalability purposes, the table has more precise information about nearby
destinations (node 4.4 and node 4.7), and vague information about more remote
destinations (NET9), obtained using hierarchy and recursion. Routing tables are
initialized and updated with information exchanged between directly attached
neighbors.

DESTINATION ROUTE
4.4 (direct)

A7 4.7 (direct)
NET1 1.5

_________ NET4 (local)

NET1) 6.1

JUCRTTRS — ST NET6

Fig. 2. Hierarchy and recursion: the routing table at node 4.2 contains information on
how to reach any other node in the network.

By means of hierarchy and recursion, global self-awareness is available at
every node and enables global self-expression. In the network example, packets
are forwarded according to routing tables. Forwarding too many packets to the
same neighbor may cause congestion on that node. Having a feedback about
such a negative effect of the forwarding node’s behavior (i.e., having local self-
awareness) may lead to a modification of that behavior, supported by the routing
table (which is a way of building global self-awareness). Namely, an alternative
destination for packets may be chosen. This local self-expression process may
also trigger a routing table update. On the other hand, a routing table update

8 M. Amoretti and S. Cagnoni

may also derive from the exchange of routing information with known nodes.
The simultaneous and collaborative update of HR-based routing tables, which
may also take into account the possibility of changing hierarchies, is actually a
global self-expression process.

More precisely, the networking example in Figure 2 (and further developed
in the subsequent sections) fits the conceptual framework in the following way:

— stimuli-awareness: the network is stimuli-aware, meaning that nodes know
how to manage messages;

— interaction-awareness: nodes and subnets interact by exchanging messages
and control information, i.e., routing table updates; they are interaction-
aware, meaning that they can distinguish between other nodes and subnets;

— time-awareness: the network has knowledge of past events or likely future
ones, like in learning-based routing;

— goal-awareness: the HR approach enforces the global goal of high efficiency
(e.g., simplifying the search for the shortest path towards a specific desti-
nation); goal-awareness is thus implicit in how routing tables are populated
and updated;

— meta-self-awareness: a way to implement it is to concurrently apply different
routing strategies, choosing the best one at runtime.

4 HR-based Network Exploration

Let us consider a network consisting of N nodes and S subnetworks. We are
interested in evaluating the approximate number of forwardings needed by a
probe message to propagate through the whole graph. The probe message is
generated by a random node, which sends it to one of its neighbors. Then it
is forwarded to another neighbor, and so on. A node that receives the probe
message is marked as “visited”.

The simplest search strategy is the Random Walk (RW), where the next hop
is randomly selected among the node’s neighbors. Even if the network is recursive
and hierarchical, such features are not exploited by RW. As a consequence, RW
is quite expensive, in terms of probe message propagations needed to explore the
whole network — even if the network topology has good features, such as scale
invariance [21].

Another simple strategy is Classical Flooding (CF) (see also Section 2), where
every probe message received by a node is forwarded to all the neighbors of the
node. To avoid network congestion, probe messages are always associated to
a Time To Live (TTL), which is the maximum number of times they can be
forwarded. The main advantage of CF is that, if a packet can be delivered, it
will actually be (probably multiple times). However, CF can be very costly in
terms of wasted bandwidth and also inefficient, as it may originate broadcast
storms [6].

Our HR-based network exploration approach takes subnetworks into account
and exploits collective self-awareness. Every node is member of a subnetwork
NETs (s € {1,..,S}) and has an identifier Noden (n € N) which is unique within

Collective Self-Awareness and Self-Expression 9

that network. The name of the generic node is denoted as NETs.Noden. A node
may have neighbors that are members of other subnetworks. For example, the
routing table illustrated in Figure 2 allows NET4.Node2 to forward messages
i) to other nodes of NET4 that are directly reachable, ii) to NET1 and NET6
through directly reachable nodes that belong to those subnetworks, and iii) to
NET9 through NET6. Importantly, the size of the routing table is O(.5).

The neighbor to whom the probe is forwarded belongs to the same subnet-
work of the sender. If all neighbors of the same subnetwork have been already
visited, the probe is forwarded to one neighbor from another subnetwork, exclud-
ing the previous hop. If there is only one neighbor belonging to other subnetworks
and it is the previous hop, then the neighbor that grants access to the longest
route is chosen. The flowchart of the HR-based network exploration approach is
shown in Figure 3.

Select the only possible
node in 2

Select random node in ¥ IRERIERS R0 [9
selected node

Select node in 2 that
grants access to the
longest route

Select random node in O,

keeping out /.1

Fig. 3. HR-based network exploration approach. D is the set of neighbors of the con-
sidered peer (D = |D|). Y is the set of neighbors belonging to the same subnetwork of
the considered peer (Y = |Y|), that have not been visited yet. O is the set of neighbors
that belong to other subnetworks (O = |O]). h—1 denotes the previous hop.

5 Performance Evaluation

To evaluate the proposed HR-based network exploration algorithm, we adopted
the general-purpose discrete event simulation environment called DEUS? [22,23],
whose purpose is to facilitate the simulation of highly dynamic overlay networks,
with several hundred thousands nodes, on a single machine — without the need
to simulate also lower network layers (whose effect can be taken into account,

2 DEUS project homepage: https://github.com/dsg-unipr/deus/

https://github.com/dsg-unipr/deus/

10 M. Amoretti and S. Cagnoni

in any case, when defining the virtual time scheduling of message propagation
events).

To simplify the configuration of the routing tables in simulation, we consider
the (sub-optimal) scenario in which every node knows which subnetworks can be
reached through its direct neighbors. No further knowledge is necessary, when S
is of the same order of magnitude as the mean node degree (k) of the network.
Instead, for large networks, with S > (k), further knowledge — provided by
neighbors of neighbors (of neighbors etc.) — is necessary to build meaningful
collective self-awareness.

We take into account two network topologies, characterized by different
statistics for the node degree, that is the number of links starting from a node.
The node degree of a network is described in terms of probability mass function
(PMF) P(k) = P{node degree = k}.

The first network topology we consider is scale-free, meaning that its PMF
decays according to a power law, i.e., a polynomial relationship that exhibits
the property of scale invariance (i.e., P(bk) = b*P(k), Va,b € R), such as:

Plk)=ck™™ Vk=0,.,N—1

where 7 > 1 (otherwise P(k) would not be normalizable) and ¢ is a normal-
ization factor. In simulation, we have used the widely known generative model
proposed by Barabdsi and Albert (called BA model) [24], which constructs scale-
free networks with 7 ~ 3. The BA model is based on two ingredients: growth
and preferential attachment. Every node which is added connects to m existing
nodes, selected with probability proportional to their node degree. The resulting
PMF is
P(k) ~2m*k™% Vk>m
and the mean node degree is (k) = 2m. The average path length is

In N
Upa=imn

The second network topology we consider is a purely random one, described
by the well-known model defined by Erdés and Rényi (ER model). Networks
based on the ER model have N vertices, each connected to an average of (k) = «
nodes. The presence or absence of a link between two vertices is independent of
the presence or absence of any other link, thus each link can be considered to be
present with independent probability p. It is trivial to show that

@
N -1

If nodes are independent, the node degree distribution of the network is binomial:

P = (", - py

which, for large values of N, converges to the Poisson distribution

p:

ake=

P(k) = i with a = (k) = o2

Collective Self-Awareness and Self-Expression 11

The average path length (i.e., the expected value of the shortest path length

between node pairs) is
I N InN
Ner =~ 1 —

Scale-free and ER are the extremes of the range of meaningful network topolo-
gies, as they represent the presence of strong hubs and the total lack of hubs,
respectively. It has been recently shown that the degree distribution of the Inter-
net is the composition of the contributions of two classes of connections [25]:
the provider-customer connections introduce a scale-free distribution, while the
peering connections can be modeled using a Weibull distribution. A large contri-
bution to the deviation from the scale-free distribution is given by the Internet
Exchange Points (IXPs), that are physical infrastructures which allow ASs to
exchange Internet traffic, usually by means of mutual peering agreements, lead-
ing to lower costs (and, sometimes, lower latency) than in upstream provider-
customer connections. Since IXP introduce a high number of peering relation-
ships, the higher the number of connections identified as crossing IXPs, the larger
the deviation of the degree from the scale-free distribution. The structural prop-
erties of the Internet AS-level (Autonomous System level) topology graph can
be discovered by means of the concept of community, which is informally defined
as “an unusually densely connected set of ASes” [26]. The task of detecting com-
munities in a graph is very hard for at least two reasons: firstly, because there
is no formal definition of a community and, secondly, because most algorithms
are computationally demanding and cannot be applied to dense graphs.

Our simulations compared the HR, RW and CF network exploration strate-
gies, with networks consisting of N = 1000 nodes, and either S = 20 or S = 100
subnetworks. With the BA topology, when m = 5 and m = 20, the mean node
degree is (k) = 10 and (k) = 40, respectively. To have the same (k) values for
the ER topology, we set a = 10 and « = 40. The virtual time VT of the sim-
ulation is represented on the x axis. Before VT = 3000, the network is grown
and configured — i.e., routing tables are filled after N = 1000 nodes have been
created and connected. Then, at VI' = 3000 the probe message is generated and
forwarded at every virtual time step. Regarding the CF strategy, TTL = 4 is
necessary to explore the whole network in all the scenarios we consider (which
are characterized by (I)gr,a=10 ~ 3, () ER,a=10 =~ 2 and ([)pa = 3.6, respec-
tively). Indeed, when the topology is ER with o = 10, CF with TTL = 3 reaches
69% of the nodes only.

In Figure 4, the fraction of visited nodes (averaged over 25 simulation runs)
is reported on the y axis. As the presence of subnetworks does not affect RW and
CF, just one curve is plotted for these cases. Conversely, subnetwork awareness
plays a fundamental role in HR. From the results we obtained, it is clear that
CF allows to explore the whole network much faster than RW and HR. However,
CF produces a large burst of probe message forwardings (see numy in Table 1),
to complete the exploration of the network. Instead, HR and RW require fewer
messages to achieve the same result (albeit more slowly). In general, HR and
RW have to be preferred, with respect to CF. Then, it is also clear that HR
outperforms RW. Indeed, for the topologies under consideration, the HR-based

12 M. Amoretti and S. Cagnoni

1

0.9
e 08
3
S 07
3 06
k2
S 05 m=5
o 04 ,M=5 —o— -
o HR 20 subnets m=5 —x—
g 03 HR 100 subnets, m=5 —=— 7]
o 02 CF,m=20 —+ |
- RW, m=20 —<—
0.1 HR 20 subnets, m=20 —e— _
HR 100 subnets m= 20 %
0=
3000 3500 4000 4500 5000 5500 6000 6500 7000
VT
(a) BA topology
1
0.9
8 08
3
S 07
8 06
2 05
S 04 RW, 0=10
o HR 20 subnets, 0=10 —*—
5 0.3 HR 100 subnets, 0=10 —&—
g CF,0=40 —=— |
w 0.2 RW, 0=40 —v—
0.1 HR 20 subnets, =40 —e—
0 | HR 100 subnets a_40 %

3000 3500 4000 4500 5000 5500 6000 6500 7000
VT

(b) ER topology

Fig. 4. Fraction of visited nodes when the network topology is BA or ER.

algorithm requires about 4000 message propagations to visit the whole network.
With the same amount of propagations, instead, RW visits only 90% of the net-
work. The difference is more evident when the topology is BA, because using HR,
the probe message is forced to visit every hub (i.e., one of the most connected
nodes) just once, while with RW the probe message visits hubs very frequently.

Collective Self-Awareness and Self-Expression 13

On the other hand, since neither RW nor HR exploit hubs conveniently, perfor-
mance is better with the ER topology (where node degree values are more fairly
distributed).

Table 1. No-HR vs HR: number of probe message forwardings until the network has
been fully explored.

| Strategy[Topology [S Hnumf

CF BA, m =5 [n.a.[[24-10°
RW BA, m=5 |n.a.[>4-103
HR BA, m=5 (20 ||4-103
HR BA, m =5 (1004 - 103
CF BA, m = 20|n.a.[|12 - 10®
RW BA, m = 20|n.a.||> 4 - 103
HR BA, m =20(20 ||3-103
HR BA, m = 20|100|(3 - 10®
CF ER, o = 10 [n.a.[[15- 107
RW ER, o =10 |n.a.|[> 4 - 103
HR ER, a =10 (20 [|3-10°
HR ER, a =10 [100||3 - 103
CF ER, o =40 |n.a.||11 - 10°
RW ER, o =40 |n.a.||> 4 - 103
HR ER, o =40 |20 |[2.5-10°
HR ER, o = 40 |100](3 - 10®

6 Conclusions

Collective self-awareness and self-expression, based on the simultaneous applica-
tion of hierarchy and recursion, make it possible to design efficient and scalable
network exploration strategies, with limited extra cost in terms of design com-
plexity.

Other than network exploration, message routing and distributed comput-
ing, also distributed sensing, mapping and geo-localization systems may benefit
from collective self-awareness and self-expression. The networking and comput-
ing research communities have already started studying HR-based strategies,
but a lot of work still needs to be done. In our opinion, it will be particularly
important to find novel strategies for the efficient maintenance of HR-enabling
information.

14 M. Amoretti and S. Cagnoni

Consciousness, Self-Awareness and Self-Expression in
Psychology and Cognitive Science

Psychology as a scientific discipline started in the second half of the nineteenth
century. Almost immediately, the notion of consciousness became central. In
1905, Freud separated the unconscious, the preconscious and the conscious.
Since then, several other levels of consciousness have been defined and exam-
ined. In 1934, Mead proposed the distinction between focusing attention out-
ward toward the environment (consciousness), and inward toward the self (self-
awareness). Self-awareness represents a complex multidimensional phenomenon
that comprises various self-domains and corollaries. A very clear and compre-
hensive survey on this topic has been recently published by Morin [15]. Duval
and Wicklund defined self-awareness as the capacity of becoming the object of
one’s own attention [27]. In this state one actively identifies, processes, and
stores information about the self. The layered self-awareness model proposed
by Neisser [28] is particularly appealing to computer engineers. Indeed, a com-
putational interpretation of that model (illustrated in this paper) has been
recently developed by Faniyi et al. [14]. The lowest level of self-awareness,
denoted as ecological self, concerns the reactions to stimuli. The highest level,
denoted as conceptual self, represents the most advanced form of self-awareness,
where the organism is capable of constructing and reasoning about an abstract
symbolic representation of itself. Eventually, the conceptual self may allow the
organism to become aware of its own self-awareness capabilities (i.e., meta-self-
awareness). Self-expression, in social psychology literature, is a notion that
is closely associated with a multitude of positive concepts, such as freedom,
creativity, style, courage, self-assurance. Fundamentally, self-expression is the
assertion of one’s personal characteristics.

References

1. Bertier, M., Kermarrec, A.-M., Tan, G.: Message-efficient byzantine fault-tolerant
broadcast in a multi-hop wireless sensor network. In: IEEE Int’.] Conference on
Distributed Computing Systems (ICDCS), Genoa, Italy (2010)

2. Yu, D., Hua, Q.-S., Wang, Y., Yu, J., Lau, F.C.M.: Efficient distributed multiple-
message broadcasting in unstructured wireless networks. In: IEEE INFOCOM,
Turin, Italy (2013)

3. Khazaei, H., Misic, J., Misic, V.B.: Mobile software agents for wireless network
mapping and dynamic routing. In: IEEE Int’.1 Conference on Distributed Com-
puting Systems (ICDCS) Workshops, Genoa, Italy (2010)

4. Li, M., Yang, J., An, C., Li, C., Li, F.: IPv6 network topology discovery method
based on novel graph mapping algorithms. In: IEEE Symposium on Computers
and Communications (ISCC), Split, Croatia (2013)

5. Amoretti, M., Cagnoni, S.: Toward Collective Self-Awareness and Self-Expression
in Distributed Systems. IEEE Computer 48(7), 29-36 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Collective Self-Awareness and Self-Expression 15

Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The broadcast storm problem in mobile Ad
hoc networks. In: ACM MobiCom, Seattle, WA, USA (1999)

Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco (1978)

Winter, T., et al.: RPL: IPv6 routing protocol for low power and lossy networks.
In: RFC 6550, IETF, March 2012

Hui, J., Kelsey, R.: Multicast protocol for low power and lossy networks (MPL).
In: Work in Progress draft-ietf-roll-trickle-mcast-11, IETF, November 2014

La, C.-A., Varga, L.-O., Heusse, M., Duda, A.: Energy-efficient multi-hop broad-
casting in low power and lossy networks. In: 17th ACM Int’.1 Conference on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2014),
Montreal, Canada (2014)

Kramer, K.H., Minar, N., Maes, P.: Cooporative mobile agents for dynamic network
routing. ACM SIGMOBILE Mobile Computing and Communications Review 3,
12-16 (1999)

Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping algo-
rithm. In: IEEE Int’.1 Conference on Communications (ICC), Beijing, China (2008)
Shaikh, A., Goyal, M., Greenberg, A., Rajan, R., Ramakrishnan, K.K.: An OSPF
Topology Server: Design and Evaluation. IEEE Journal of Selected Areas in Com-
munications 20(4), 746-755 (2002)

Faniyi, F., Lewis, P.R., Bahsoon, R., Yao, X.: Architecting self-aware software
systems. In: IEEE/IFTP WICSA 2014, pp. 91-94

Morin, A.: Self-Awareness Part 1: Definition, Measures, Effects, Functions, and
Antecedents. Social and Personality Psychology Compass 5(10), 807-823 (2011)
Mitchell, M.: Complex systems: network thinking. Artificial Intelligence 170(18),
1194-1212 (2006)

Cabri, G., Capodieci, N., Cesari, L., De Nicola, R., Pugliese, R., Tiezzi, F.,
Zambonelli, F.: Self-expression and dynamic attribute-based ensembles in SCEL.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802,
pp. 147-163. Springer, Heidelberg (2014)

Touch, J., Baldine, I., Dutta, R., Ford, B., Finn, G., Jordan, S., Massey, D.,
Matta, A., Papadopoulos, C., Reiher, P., Rouskas, G.: A dynamic recursive unified
internet design (DRUID). Computer Networks 55(4), 919-935 (2011)

Van Meter, R.: Quantum networking and internetworking. In: IEEE Network,
July/August 2012

Jacobson, V., Smetters, D.K., Thornton, J., Plass, M.F., Briggs, N.H.,
Braynard, R.L.: Networking named content. In: ACM CoNEXT, Rome, Italy
(2009)

Amoretti, M.: A Modeling Framework for Unstructured Supernode Networks.
IEEE Communications Letters 16(10), 1707-1710 (2012)

Amoretti, M., Agosti, M., Zanichelli, F.: DEUS: a discrete event universal simu-
lator. In: 2nd ICST/ACM Int’.1 Conference on Simulation Tools and Techniques
(SIMUTools 2009), Roma, Italy, March 2009

Amoretti, M., Picone, M., Zanichelli, F., Ferrari, G.: Simulating mobile and dis-
tributed systems with DEUS and ns-3. In: Int’.] Conference on High Performance
Computing and Simulation 2013, Helsinki, Finland, July 2013

Barabasi, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science
286(5439), 509-512 (1999)

16

25.

26.

27.

28.

M. Amoretti and S. Cagnoni

Siganos, G., Faloutsos, M., Krishnamurthy, S., He, Y.: Lord of the links: a frame-
work for discovering missing links in the Internet topology. IEEE/ACM Transac-
tions on Networking 17(2), 391-404 (2009)

Gregori, E., Lenzini, L., Orsini, C.: k-dense Communities in the Internet AS-Level
Topology Graph. Computer Networks 57(1) (2013)

Duval, S., Wicklund, A.: A Theory of Objective Self Awareness. Academic Press
(1972)

Neisser, U.: The roots of self-knowledge: perceiving self, it, and thou. In: Snodgrass,
J.G., Thompson, R.L. (eds.) The Self Across Psychology: Self-Recognition, Self-
Awareness, and the Self-Concept. Academy of Sciences, New York

Swarm-Based Controller
for Traffic Lights Management

Federico Caselli, Alessio Bonfietti®™), and Michela Milano

DISI, University of Bologna, Bologna, Italy
alessio.bonfietti@unibo.it

Abstract. This paper presents a Traffic Lights control system, inspired
by Swarm intelligence methodologies, in which every intersection con-
troller makes independent decisions to pursue common goals and is able
to improve the global traffic performance. The solution is low cost and
widely applicable to different urban scenarios. This work is developed
within the COLOMBO european project. Control methods are divided
into macroscopic and microscopic control levels: the former reacts to
macroscopic key figures such as mean congestion length and mean traffic
density and acts on the choice of the signal program or the development
of the frame signal program; the latter includes changes at short notice
based on changes in the traffic flow: they include methods for signal
program adaptation and development. The developed system has been
widely tested on synthetic benchmarks with promising results.

1 Introduction

Vehicular traffic is among the main plagues of modern cities. The ever increasing
number of vehicles, both private and public, sets new challenges in the road
network related to traffic optimization. This does not only mean to improve
the traffic flow but also aims at reducing pollution and costs of the monitoring
infrastructures [1].

Currently, the most common way to sense vehicular traffic is through the
use of road deployed sensors. The most common sensor used is the inductive
loop, whose installation and maintenance is expensive. To lower installation
costs, approaches for traffic management based on V2X vehicular communication
technology have started to be investigated. Unfortunately the V2X approaches
mainly rely on message exchange between vehicles (V2V), requiring a high pen-
etration rate of equipped vehicles (meaning a high number of V2X enabled vehi-
cles over the total vehicle population) to achieve the desired goals.

One of the objectives of COLOMBO is the design and the development of an
innovative, robust! and low cost? traffic light control system inspired by swarm
intelligence methodologies (see [2]). Swarm intelligence is a discipline that studies
natural and artificial systems composed of a large number of (typically identical
or very similar) individuals called agents, which coordinate with decentralized

! COLOMBO system can work with very low penetration rates (see Section 5).
2 Based on V2X technology.
© Springer International Publishing Switzerland 2015

M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 17-30, 2015.
DOI: 10.1007/978-3-319-24309-2_2

18 F. Caselli et al.

control and self-organization. Recent research results [3][4] have shown that the
principles underlying many natural swarm intelligence systems can be exploited
to engineer artificial swarm intelligence systems that show many desirable prop-
erties and leads to effective solutions.

Following the principles of Complex Adaptive Systems (CAS), we conjecture
that a smart and planned global traffic flow could emerge as the result of local
decisions, automatically made by local controllers, executing simple policies in
an emergent fashion. Emergent systems are very common in nature and colonies
of social insects are one of the most interesting examples for our purposes. Every
traffic light controller is a simple agent that controls one or more intersections
and operates independently of all other controllers. It relies only on local infor-
mation coming from the lanes that form the controlled intersection, which are
distinguished between incoming and outgoing lanes. This principle is taken from
autonomous agents theory, where each agent relies only on local information
since there is no central coordination, either by choice or by force.

Following these principles, our system offers unlimited scalability, adaptabil-
ity to traffic conditions and maximizes road network capabilities, while totally
removing at the same time the costs associated to the control center and to the
communication infrastructure required in conventional systems.

Our system is based on [5] which is inspired by two academic works: [6]
presents local policies able to reach global traffic control through emergence.
This is not enough for our purposes, since every policy is thought for a specific
traffic density; [7] discusses a mechanism able to choose among different local
policies with respect to traffic density, but executes non-reactive policies. Taking
into account this work, we developed a control system composed of two levels,
with different policies to handle multiple traffic situations in real-time and a high-
level policy that selects between them. The system has been extensively tested
and compared to a traditional static approach (called static) and to a dynamic
approach based on inductive loops detections (called actuated). Results show
that our approach is viable, even in case of low penetration rates.

The rest of the paper is structured as follows: Section 2 presents the related
works. Section 3 illustrates the key ideas of the proposed system, which is detailed
in Section 4. Then Section 5 presents a wide evaluation of our system. Section 6
concludes pointing out some interesting future development.

2 Related Works

Far from being exhaustive, given the large amount of literature in the field, in the
following we present a rapid selection of works which we consider more similar to
ours; for a comprehensive survey of existing efforts in the field we refer interested
readers to [8].

Urban traffic control systems can be roughly divided into three major cate-
gories: centralized, decentralized and fully distributed systems.

— Centralized systems present a unified control center that collects data from
the sensors scattered through the city. They have complete knowledge of the

Swarm-Based Controller for Traffic Lights Management 19

controlled network, which is used to create the traffic plan. These systems
can also be overridden by traffic experts, if it is necessary. Different solu-
tions basically differ in the evaluation of the control strategy and inherit in
some way from the TRANSYT off-line optimization model [9]; for example,
SCOOT [10] is a largely deployed centralized solution.

— Decentralized systems present more than one decision-making entity and a
master entity that coordinates them. This is the approach adopted by these
two systems currently in production: SCATS [11] and UTOPIA [12].

— Fully distributed systems do not have any centralized controller that coor-
dinates or generates traffic plans: every single intersection controller is an
independent agent that takes its own decision and it is influenced only by its
neighborhood. This is an innovative approach without evidence of large scale
deployment. Many proposals about distributed solutions exist: they may be
agent-based, as in [13], where an agent is in charge of handling the traffic
lights in the controlled intersection and performs actions with regard to the
local traffic status only, while in other cases the information coming from
surrounding agents is also taken into account [14].

Static optimization is not able to adapt to changing needs in traffic. Instead, cen-
tralized solutions are able to reach good performances, but are really expensive:
they need a unified control center that needs to be connected to every sensor in
the network and to every traffic light controller. A system like this one requires
high initial installation and maintenance costs. Also, centralized systems do not
scale well when used to control big road networks. A partial solution to the scal-
ing problem is given by decentralized system, since they do not require a central
controller. Distributed approaches would be simpler and would scale better, but
problems may arise for the communication part of these systems. [15] and [16]
present this problem in relation to MARL (Multi Agent Reinforcement Learn-
ing), which has communication needs that grow exponentially with the number of
agents. Communication requires also mutual knowledge, thus reconfiguration of
neighboring agents is needed when the topology of the network changes: MARL
has no centralized controller but still has high costs due to the communication
part.

As previously stated our system is based on [5]. Our controller has enhanced
[5] in several key aspects, such as:

— robustness: our system is robust to incomplete traffic information (i.e. dif-
ferent penetration rate), while [5] requires full knowledge.

— dispersion: our system takes into account the non homogeneity of the traffic
flows over different lanes of the intersection.

— reliability: the representation of the actual traffic condition is based on the
average speed instead of the number of V2X equipped vehicles. In fact, we
see that the speed is more robust w.r.t. to changes in the penetration rate.

20 F. Caselli et al.

3 The Concept

Swarm intelligence systems make use of natural metaphors and share a common
principle: they present a multitude of simple agents that may be unaware of
the system they are part of. Typically, the interactions between the agents are
based on alterations of the surrounding environment: this is a form of indirect
coordination called stigmergy [2].

Our self-organizing system is made up of different independent traffic light
controllers. Every controller works in a continuous loop like the one represented
in Figure 1. Data about the status of the traffic is acquired by the sensors,
translated into pheromone values and used as input for the stimulus functions.
These stimuli are particular functions used to probabilistically determine which
policy is the most appropriate to handle the current sensed traffic conditions.
The policies are simple rules specifically defined to cope with different traffic
conditions. The system also receives feedback from the traffic itself, rewarding
or penalizing the choices it takes.

Our proposal abandons the traditional static approach: as implied before, the
system decides when it is time to switch to the next phase on the basis of the
sensed traffic conditions and not necessarily according to a clock. This makes
our system able to react to changes in the traffic density both on the input and
on the output lanes of the controlled junction. Communication with the neigh-
boring traffic light controllers is done indirectly through stigmergy exploiting
the natural metaphor of the pheromone and without explicit knowledge of the
existence of other controllers.

The reason why we chose to forgo a centralized control is that it would be
computationally too expensive and difficult to optimize. A centralized system
would also need to predict the traffic behavior, which is known to be a hard task
since the traffic is a complex system. Moreover, a decentralized system capable of
self-organization is simpler to implement and is more reactive to rapidly varying
conditions.

" Policy -
>

. Policy

: ! Traffic
~.Selection_~ Execution
N e
N

A 4
v

~
Vs

~

i \ A
Evaluation Data < Sensor
Elaboration |~ Data

Fig. 1. Traffic lights execution loop.

Swarm-Based Controller for Traffic Lights Management 21

4 Description of the System

Our system is structured in two levels called microscopic and macroscopic. The
former takes short-term decisions like which lanes should receive green and for
how long the green light should be kept while the latter takes more higher-
level decisions, like what is the criteria that should be used at low-level. Both
judgments are done on the basis of the current traffic conditions.

4.1 Chains

The traditional static execution of a traffic light plan is a continuous loop
between phases giving green to a particular set of directions, followed by yel-
low lights, red lights to all directions and then another green phase to allow
traffic transit from a different set of directions. This is done in a static way,
which means that green could be kept to lanes even after all waiting vehicles
have left or given to lanes with no cars waiting for it. Our idea is that this
decision should be taken on-line on the basis of the current traffic conditions.
The best moment when this decision can be taken is during the so-called all-red
phase, which is the phase needed when red is given to all the directions because
of safety constraints.

The whole signal sequence can be split in different sub-sequences called
chains, as shown in Figure 2. The first phase of a chain is called target phase
and it gives green to a set of lanes identified as target lanes. The last phase of a
chain, which gives red to all the lanes, is called commit phase. When the com-
mit phase is reached, we probabilistically decide if the microscopic level policy

Chain
Selection

(Possible) Paolicy Selection

Fig. 2. Chain selection and execution. The letters denote different lanes.

22 F. Caselli et al.

should be changed and, in that case, we proceed by probabilistically selecting
it on the basis of the current traffic status. This concludes the selection of the
chains. The criteria we use for the selection depends both on the average speed
of cars in the incoming lanes in the intersection and on how long these vehicles
have been waiting.

Phases are also distinguished between decisional and transient. The former
can have their duration varied between a minimum and a maximum duration
time while the latter must be executed for a predetermined amount of time.
Transient phases are needed because in some conditions it is not possible to
extend a phase. This happens when we have a yellow light phase, whose duration
is decided by regulations. The duration of a decisional phase is determined by
the logic of the currently selected microscopic level policy.

4.2 Macroscopic Level “Swarm” Policy

The goal of the macroscopic level policy, named Swarm, is to decide the most
appropriate microscopic level policy according to the actual sensed traffic con-
ditions. Since there is some uncertainty in measuring the traffic, e.g. which sit-
uations should be interpreted as “high” traffic and which ones should be “low”,
we rely on the natural metaphor of the pheromone.

Pheromone Levels. Measuring the traffic is a hard tasks since there are numer-
ous variables that must be considered, e.g. the number of lanes, the geometry of
the intersection and the vehicles’ paths. A good measure should also be insen-
sitive to sudden short spikes and be able to react rapidly to more persistent
changes. Our idea is to use the natural metaphor of the pheromone to abstract
the traffic.

Natural pheromone is an olfactory trail left by some animals. For example,
ants leave a pheromone trail from their nest to a source of food along the shortest
path between these two points. Pheromone has two interesting characteristics.
The first one is that it is additive, so the more ants walk along the same path, the
higher the value of the pheromone is. The second characteristic is that pheromone
also evaporates over time, this is why ants are able to determine which is the
shortest path from their nest to the food: if there are two paths, the shortest
one will obviously covered in less time so less pheromone will evaporate than on
the other path.

In our implementation, pheromone is proportional to the difference between
the maximum allowed speed on a lane and the average speed of the sensed
vehicles, limited to 0. This way, the faster the cars, the smaller the values of
pheromone, and vice-versa. This approach ignores the number of cars and it is
supported by the speed-density relation of the fundamental diagram of traffic
flow [17], which simply says that the number of cars does not count as long as
the traffic is flowing freely.

We calculate an average value of the pheromone on the incoming lanes (i.e.
©in), the ones that enter the controlled intersection, and another average value

Swarm-Based Controller for Traffic Lights Management 23

of the pheromone on the outgoing lanes (i.e. Yout), which are the ones that come
from the controlled junction.

Note that, averaging the pheromone value, the system cannot be aware of
the non homogeneity of traffic density. To avoid this potential drawback we
introduce a new pheromone level (i.e. @gsp in) proportional to the dispersion of
the information of the traffic over the incoming lanes. This allows the selection of
microscopic policies working better either for homogeneous or non homogeneous
traffic conditions. These three pheromone values serve as input for the stimulus
functions.

Stimulus Function. The stimulus functions, or stimuli, are functions associ-
ated with the microscopic level policies used to probabilistically determine which
policy is more appropriate according to the current traffic conditions. They map
their associated policy in a @in X Qout X Pdsp in sSpace. This mapping is deter-
mined experimentally or via automatic parameter tuning and is used by the
Swarm policy to probabilistically select the proper policy given the pheromone
on the incoming lanes (;,), the pheromone on the outgoing lanes (¢ou:) and
the pheromone dispersion over the incoming lanes (@asp in)-

The idea behind the stimulus function is that the more desirable the asso-
ciated policy the higher the stimulus should be, given the current pheromone
values.

The shape used for the stimulus function is obtained by considering the
maximum value of a family of Gaussians. The use of more than one function
allows the definition of multiple areas in the pheromone space (i.e. different
traffic conditions) where the policy performs best, centering each Gaussian on
a different area. As stated before, the parameters defining the shape of the
Gaussians are computed off-line via ad-hoc experiments or automatic parameter
tuning. The same policy can perform well in different traffic conditions depending
on the characteristics of the controlled intersection, so the associated stimulus
function may have different parameters for different agents.

The stimulus function must be normalized over its domain. This formulation
makes the stimulus function similar to a probability density function, which is
important since it expresses the level of specialization of a policy: we want high
stimuli in the neighborhood of specialization and a rapid decrease outside it.
Figure 3 plots the Gaussians of the stimulus functions for each policy considering
only a single function to improve the readability (see Section 4.2 for details).

Fig. 3. Stimulus functions of the microscopic level policies. From left to right: Phase,
Platoon, Marching and Congestion.

24 F. Caselli et al.

Policy Selection. The choice of the policy occurs after the evaluation of the
stimulus functions in a probabilistic selection fashion. The probability P(i,j) of
the i-th agent to choose the j-th policy for its intersection is determined by the
following equations:

. Ty,j(si5)
P(i,j) = =21~ (1)
> To,(si5)
T _ st
0.0(5i5) = o (2)
i T Vi

Note that the stimulus functions s; ; are not taken into account directly in the
calculation of the probability P(i, 7). 0; ; is the sensitivity threshold above which
the i-th agent adopts the j-th policy. The sensitivity threshold 6; ; represents the
level of sensitivity of the agent to the adoption of that policy. This threshold is
variable in time, decreasing if a policy is selected in a stable way, and increasing
in time as a policy is not selected. This is called reinforcement because as a
policy is selected and found to be working well, it is learned and its probability
to be selected again (stable policy) increases. At the same time, even a policy
that has a nearly-zero stimulus function will always have a non-zero probability
to be selected, because the threshold cannot go above a maximum 6,,,, value,
as well as a policy that is stably selected for a long time will not be reinforced
too much, as the threshold cannot go below a minimum 6,,;, value. These two
values are also bounded: 0 < 0,55, < Omae < 1.

The new policy is selected in a probabilistic way: the higher the stimulus
function for a policy, the higher the probability that policy will be selected.
According to the model given by [18], at each step in simulation, the pheromone
levels of the controlled incoming and outgoing lanes are updated and at the end
of a commit phase the Swarm selects a new microscopic level policy for execu-
tion. The event of selecting another policy is also probabilistic, with probability
0 < pchange < 1. It is clear that if pcpange = 1 the process of policy selection
occurs every time a commit phase is reached, making the agent highly suscep-
tible to traffic density variations. This probability should be sufficiently low to
mitigate the indecision of the agent and to guarantee its reactivity at the same
time.

4.3 Microscopic Level Policies

Microscopic level policies take short-term decisions. Usually, they operate on a
base sequence of stages and apply variations to this base sequence. The most
common decisions taken by an adaptive policy concern the duration of the green
phase for different lanes, or including/excluding parts of the whole base sequence.

However, most traffic-dependent policies will always cycle the signal sequence
in a pre-fixed order. We have already presented the concept of chains in Section
2 and we mentioned the existence of some particular phases called decisional.
The duration of those phases changes according to the logic of the currently
selected microscopic level policy. We are now going to present the implemented

Swarm-Based Controller for Traffic Lights Management 25

microscopic level policies®. Most of them make use of a so-called traffic threshold
as one of the conditions used to end a decisional phase. This is a simple threshold
applied to the same indicator we use to determine which chain should be selected.

Phase Policy. This policy will terminate the current chain as soon as another
one has reached the traffic threshold, respecting the minimum duration con-
straint of the decisional phases. In case no other chain wants to be activated, i.e.
there is no traffic opposing the current green directions, the current decisional
phase is kept indefinitely, regardless of its maximum phase duration.

bool canRelease(int elapsed , bool thresholdPassed ,
const MSPhaseDefinition* stage, int vehicleCount){
if (elapsed >= stage—>minDuration)
return thresholdPassed;
return false; }

This policy is adequate in medium-low traffic situations, where this early
termination will not make the traffic lights switch too often.

Platoon Policy. This policy will try to let all the vehicles in the current green
directions pass the intersection before releasing the green light. It is similar to
Phase: as before, a chain is executed in respect of every minimum duration of
the decisional phases and until there is another one above the traffic threshold.
We also have a third condition: the decisional phase must be executed for its
maximum duration time or there must be no other vehicle incoming from the
allowed directions.

bool canRelease(int elapsed, bool thresholdPassed ,
const MSPhaseDefinition* stage, int vehicleCount){
if (elapsed >= stage—>minDuration)
if (thresholdPassed)
return ((vehicleCount = 0) ||
(elapsed >= stage—>maxDuration));
return false; }

This behavior allows the creation of platoons of vehicles, which is positive
since it helps to handle the traffic. In intense traffic situations, each decisional
phase would be executed for the maximum allowed time, so its definition has a
great impact on the performance of the system.

Marching Policy. This policy is adequate when the traffic looks too intense
from all directions to take any on-line decision regarding only the incoming lanes.
In this case, there are two possible approaches: either use a static duration for
decisional stages or consider also the outgoing lanes, not allowing traffic to lanes
that are too heavily loaded. This second case may suggest a different, more
complex, way to select the chain to execute.

3 These policies were presented in [5].

26 F. Caselli et al.

bool canRelease(int elapsed , bool thresholdPassed ,
const MSPhaseDefinitionx stage, int vehicleCount) {
return (elapsed >= stage—>duration); }

Congestion Policy. This policy is used when the outgoing lanes are saturated
and there may be vehicles waiting inside the intersection. In order to avoid grid-
locks, all input lanes are inhibited, i.e. the current executing chain is terminated
following the pre-defined plan to the commit phase, then no other chain is acti-
vated until the congestion has been solved. In doing this, every decisional phase
is executed only for their minimum duration time.

As soon as the outgoing lanes are emptying, the pheromone levels will drop
allowing Swarm to select another microscopic level policy. This will also enable
again the chain selection.

Decay Threshold. With very low penetration rate configurations some of the
microscopic level policies may reach a deadlock situation in which there is no
chain change. This issue arises whenever the system can not detect any existing
vehicles (due to the low penetration rate) on a lane served with red light. The
unseen vehicles may wait for green light for a long period of time.

We solved this issue introducing a dynamic traffic threshold, called
decayThreshold, working as a trigger for the chain selector. The threshold is
based upon an exponential decay; it decreases at a rate proportional to its cur-
rent value following the equation:

N(t) = Ny exp T (3)

where N(t) is the quantity at time ¢ and Ny is the initial quantity, that for our
setup was 1. The exponential value %’5 is a parameter and should be tuned. This
threshold is used in condition that, if satisfied, triggers a chain change.

if (random > (1 — decayThreshold))

The control is probabilistic. It randomly chooses a number between [0, 1] and
it checks the condition. In this way the triggering time is always different, even
though it is influenced by the exponential decay value.

5 Evaluation

Several traffic simulators exist in the literature [19]; in COLOMBO we imple-
mented and tested the system inside the microscopic traffic simulator SUMO
[20]. The aim of this experimental section is to evaluate the performance of the
proposed system, comparing the algorithm with a static and a fully-actuated
approach (both implemented in SUMO). We also investigated how our method
performs for different penetration rates of equipped vehicles.

Swarm-Based Controller for Traffic Lights Management 27

The experiments are run on the penetration ratios of 100%, 50%, 25%, 10%,
5%, 2.5% and 1%. These different configurations are obtained not by modifying
the number of simulated cars, which would provide unrealistic results, but by
assigning to the shadow cars* a special SUMO type which allows the simulation
of all vehicles but considers only the normal cars when calculating the input
information used by the Swarm controller.

We developed a synthetic scenario, composed by 16 traffic lights arranged
on 4 by 4 grid, built with the aim to simulate critical traffic conditions. The
four central traffic lights are controlled by the Swarm policy while the others
use an actuated policy. The structure of each traffic light is based on the Ger-
man “Richtlinie fiir Lichtsignalanlagen” (Guidelines for traffic light systems), or
RiLSA for short [21]. Simulation have been run using different penetration ratios
and measuring how the average waiting time of the vehicles varies (lower values
mean better results).

The evaluation scenario is a 4 by 4 grid composed by four horizontal streets
and four vertical streets, forming sixteen intersections. The distance between
two consecutive neighboring crossing is about 500m. Every street is defined as a
single lane, which splits into two lanes near each intersection. The outer traffic
lights are used to regulate the traffic flow for the Swarm controlled junctions.
This structure gives a good approximation of a real world scenario where the
controlled traffic lights are placed in an urban context. The Swarm controllers
use the same configuration, however the control of each intersection is indepen-
dent from the others. The configuration is obtained through off-line automatic
parameter tuning executed for every penetration ratio on a simplified road net-
work composed of a single cross-like RiLLSA intersection controlled by a Swarm
agent with actuated traffic lights at each lane.

Each traffic light controller implements two chains: one that gives green to
the south-north and north-south directions and a second one that gives green
to the perpendicular directions. Each chain has two green decisional phases: one
gives green to the straight, right and left turn directions with by a minimum
duration of 10s, a maximum duration of 50s and a default duration of 31s; the
other is dedicated to the left turns direction only with a minimum duration of
2s, a maximum duration of 20s and a default duration of 6s. Each chain also has
a yellow transient phase of 4s and finally a red commit phase of 4s.

We adopted a traffic generator to create different simulations. Each simula-
tion consists in traffic flows which resembles the traffic patterns as occurring in
the real-world by taking into account different realistic daily load curves. The
average vehicles per hour of the flows obtained is about 4500v /h.

Figure 4 depicts the performance of the different configurations. For each
simulated configuration (x-axis) the figure shows the mean waiting steps (y-
axis) obtained by averaging 100 different simulations. Table 1 reports the values
outlined in the figure.

4 The vehicles that do not have to be considered on a set penetration ratio. E.g. In a
simulation with 20% penetration ratio the shadow vehicles will be the 80%.

28 F. Caselli et al.

90 86.02 85.55 86.30 85.82 86.19

Table 1. Average waiting steps.

Configuration Wait steps

Static 86.02

Actuated 100% p.r. 64.97

Swarm 100% p.r. 63.39

f - | Swarm 50% p.r. 67.66
Static Actuated Swarm Swarm Swarm Swarm Swarm 5% Swarm Swarm 1% Swarm 25% p.r. 79.45

100% P.r. 100% P.r. 50% Pr. 25%Por. 10% Pur. Pur. 2.5% Pur. Pr. Swarm 10% pAI'. 85.55

Swarm 5% p.r. 86.30

Swarm 2.5% p.r. 85.82

Fig. 4. Average waiting steps for the different con- Swarm 1% p.. 86.19

figurations.

It is worth mentioning that only our proposal is affected by the low pene-
tration rate of equipped vehicles, since the actuated system relies on inductive
loops and the static approach does not sense cars.

At full knowledge our system is slightly better than the actuated approach
and it outperforms the static one. Note also that the Swarm algorithm is com-
parable with the actuated even with 50% penetration rate (which means that
our system detects only half of the vehicles).

With very low penetration rates (10% or lower) our system is comparable
with the static one. It is finally interesting to highlight that our system perfor-
mance with very low penetration rates does not degrade with the decrease of
the penetration rate.

6 Conclusions

This paper presented a Swarm-based Traffic Lights control system in which
every intersection controller makes independent decisions to pursue common
goals and is able to improve global traffic performance. This solution is low cost
and widely applicable to different urban scenarios. This work is developed within
the COLOMBO european project.

The promising results presented in Section 5 show that the proposed app-
roach performance is comparable to more sophisticated systems, like the fully-
actuated one (which has full knowledge using the inductive loops detectors).
Moreover the experiments showed that the system performance does not degrade
depending on the percentage of detectable vehicles.

As future work we plan to (1) adapt the system to include interactions with
pedestrians and public transportation and (2) test it on real world scenarios.

References

1. Chen, Y., Richard Yu, F., Zhou, B.: Improving throughput in highway transporta-
tion systems by entry control and virtual queue. In: Proceedings of the Third ACM
International Symposium on Design and Analysis of Intelligent Vehicular Networks
and Applications, DIVANet 2013, pp. 9-14. ACM, New York (2013)

11.

12.

13.

14.

15.

16.

17.

18.

Swarm-Based Controller for Traffic Lights Management 29

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to
artificial systems, vol. 1. Oxford University Press (1999)

Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Principles and applications of
swarm intelligence for adaptive routing in telecommunications networks. Swarm
Intelligence 4(3), 173-198 (2010)

Ferrante, E., Sun, W., Turgut, A.E., Dorigo, M., Birattari, M., Wenseleers, T.: Self-
organized flocking with conflicting goal directions. In: Proceedings of the European
Conference on Complex Systems 2012, pp. 607-613. Springer (2013)

Slager, G., Milano, M.: Urban traffic control system using self-organization. In: 13th
International IEEE Conference on Intelligent Transportation Systems, pp. 255-260
(2010)

Gershenson, C.: Self-organizing traffic lights (2004). arXiv preprint nlin/0411066
de Oliveira, D., Ferreira Jr, P.R., Bazzan, A.L.C., Kliigl, F.: A swarm-based app-
roach for selection of signal plans in Urban scenarios. In: Dorigo, M., Birattari, M.,
Blum, C., Gambardella, L.M., Mondada, F., Stiitzle, T. (eds.) ANTS 2004. LNCS,
vol. 3172, pp. 416-417. Springer, Heidelberg (2004)

Seredynski, M., Arnould, G., Khadraoui, D.: The emerging applications of intel-
ligent vehicular networks for traffic efficiency. In: Proceedings of the Third ACM
International Symposium on Design and Analysis of Intelligent Vehicular Networks
and Applications, DIVANet 2013, pp. 101-108. ACM, New York (2013)
Robertson, D.I.: Transyt: a traffic network study tool (1969)

. Robertson, D.I.; David Bretherton, R.: Optimizing networks of traffic signals in

real time: The scoot method. IEEE Transactions on Vehicular Technology 40(1)
(1991)

Sims, A.G.: The sydney coordinated adaptive traffic system. In: Engineering Foun-
dation Conference on Research Directions in Computer Control of Urban Traffic
Systems, 1979, Pacific Grove, California, USA (1979)

Peek Traffic. Utopia/spot-technical reference manual. Peek Traffic, Amersfoort, The
Netherlands, Tech. Rep (2002)

Priemer, C., Friedrich, B.: A decentralized adaptive traffic signal control using
v2i communication data. In: 12th International IEEE Conference on Intelligent
Transportation Systems, ITSC 2009, pp. 1-6. IEEE (2009)

Mizuno, K., Fukui, Y., Nishihara, S.: Urban traffic signal control based on dis-
tributed constraint satisfaction. In: Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual, pp. 65-65. IEEE (2008)

Bazzan, A.L.C.: Opportunities for multiagent systems and multiagent reinforce-
ment learning in traffic control. Autonomous Agents and Multi-Agent Systems
18(3), 342-375 (2009)

Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 38(2), 156-172 (2008)

Greenshields, B.D., Channing, W.S., Miller, H.H., et al: A study of traffic capac-
ity. In: Highway research board proceedings, vol. 1935. National Research Council
(USA). Highway Research Board (1935)

Theraulaz, G., Bonabeau, E., Denuebourg, J.N.: Response threshold reinforce-
ments and division of labour in insect societies. Proceedings of the Royal Society
of London. Series B: Biological Sciences 265(1393), 327-332 (1998)

http://arxiv.org/abs/nlin/0411066

30

19.

20.

21.

F. Caselli et al.

Shafiee, K., Lee, J.B., Leung, V.C.M., Chow, G.: Modeling and simulation of vehic-
ular networks. In: Proceedings of the First ACM International Symposium on
Design and Analysis of Intelligent Vehicular Networks and Applications, DIVANet
2011, pp. 77-86. ACM, New York (2011)

Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and
applications of SUMO - Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements 5(3&4), 128-138 (2012)

FGSV Verlag Forschungsgesellschaft fuer Strassen-und Verkehrswesen. RiLSA -
Richtlinien fur Lichtsignalanlagen - Lichtzeichenanlagen fur den Strassenverkehr.
FGSV (1999)

Path Relinking for a Constrained
Simulation-Optimization Team Scheduling
Problem Arising in Hydroinformatics

Maddalena Nonato and Andrea Peano™)
Engineering Department, University of Ferrara,
Via Saragat 1, 44121 Ferrara, Italy
{maddalena.nonato,andrea.peano}@unife.it

Abstract. We apply Path Relinking to a real life constrained optimiza-
tion problem concerning the scheduling of technicians due to activate on
site devices located on a water distribution network in case of a contam-
ination event, in order to reduce the amount of consumed contaminated
water. Teams travel on the road network when moving from one device to
the next, as in the Multiple Traveling Salesperson Problem. The objec-
tive, however, is not minimizing travel time but the minimization of con-
sumed contaminated water. This is computed through a computationally
demanding simulation given the devices activation times. We propose
alternative Path Relinking search strategies exploiting time-based and
precedence-based neighborhoods, and evaluate the improvement gained
by coupling Path Relinking with state of the art, previously developed,
hybrid Genetic Algorithms. Experimental results on a real network are
provided to support the efficacy of the methodology.

Keywords: Scheduling - Neighborhood search - Simulation-optimization

1 Introduction

Hydroinformatics is a new, promising, interdisciplinary research field arising at
the junction of Hydraulic Engineering and Computer Science, in which complex
decision problems related to water management applications are modelled and
solved by way of quantitative solution tools developed within well assessed com-
puter science methodological paradigms, such as Constrained Programming on
Finite Domain and Mathematical Programming Optimization. Several such exam-
ples can be found in the literature which exploit the network based problem struc-
ture, taking advantage of solution methodologies already developed for trans-
portation and communication networks, as earlier pointed out by Simonis in a
seminal work [34]. Among the most recent contributions, let us mention: the design
of the expansion of a Water Distribution System (WDS) combining global search
techniques with local search [5], the optimal location on the WDS of water quality
sensors in order to early detect water contamination exploiting integer program-
ming based location models [27] and objective function sub-modularity [23], the

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 31-44, 2015.
DOI: 10.1007/978-3-319-24309-2_3

32 M. Nonato and A. Peano

optimal scheduling of devices controlling field irrigation [20] to meet farmers irriga-
tion time demands, the optimal location of isolation valves on the pipes of a WDS to
minimize service disruption in case of maintenance operations [7] and [9], and the
scheduling of devices activation as a countermeasure to contamination events [10],
which is the problem we deal with in this paper.

In all cases, the feasible solutions have to meet complex technological require-
ments which are modelled by the constraints of the optimization problem, while
the objective function describes how the hydraulic system reacts to certain val-
ues of the parameters, which are the model variables. Quite often, the system
reaction can not be encoded by analytical closed formulas but it is the result of
a computational demanding simulation process, which poses a challenge to the
development of a solution methodologies able to scale efficiently and tackle real
life instances.

In this paper we deal with the last mentioned problem, namely computing
the optimal activation time of a set of devices located on the WDS. In case of
a contamination event, the devices activation times alter water flow, influence
how contaminant spreads in the network, and determine at which concentration
contaminant reaches demand nodes where drinking water is consumed by the
users. An optimal schedule is a set of activation times which minimizes the vol-
ume of consumed contaminated water. A feasible schedule is a set of activation
times according to which the teams of technicians, due to manually activate the
devices on site, can reach the selected device on time, travelling on the street
network when moving from a device to the next. Previous approaches [2], [10],
and [11] already improved the state of the art in hydroinformatics [18], where
schedules were computed by hand: Genetic Algorithms (GAs) can compute bet-
ter schedules automatically [28]. Hereby, we build upon previous contributions,
and we show how solution approaches for such complicated real life problems
can largely benefit from the integration of different search paradigms.

In the rest of the paper, first we introduce the problem and recall the solution
strategy based on hybrid GA developed so far, pointing out at some deficiencies.
Then, we describe a neighbourhood based search strategy, so called Path Relink-
ing (PR) originally proposed by Glover [16], which intensifies the search within
a section of the feasible region to which a set of high quality solutions belong.
We present how to use PR in our problem, compare two different neighbour-
hood structures to build the search path connecting two solutions, and asses the
efficacy of the approach by experimental results computed on real data for the
WDS of a medium size city in Italy, showing how by enhancing our GA with a
post optimization PR phase can improve the approach robustness and partially
mend the present flaws.

2 Problem Description

WDSs are essential components of our daily life as they bring clean, safe drink-
ing water to customers every day. At the same time, WDSs are among the most
vulnerable infrastructures, highly exposed to the risk of contamination by chem-
ical and biological agents, either accidental or intentional. A WDS is a complex

Path Relinking for a Team Scheduling Problem 33

arrangement of interconnected pipes, pumps, tanks, hydrants and valves, whose
large planimetric extent (a small city network may reach 200km and a thousand
of pipes and nodes) and sparse topology prevent full surveillance. Therefore mon-
itoring is the only viable alternative. In practice, a set of water quality sensors
is located on the WDS to test water safety in real time, looking for the pres-
ence of potential contaminants [27]. Their location is strategically determined
so that a contamination event is detected as soon as possible, based on a set of
contamination scenarios.

Contaminant quickly spreads through the network and population alerting
strategies may not entirely ward off users’ water consumption. When the net-
work is fully districted, the sector where the alarm is raised can be seamlessly
disconnected from the rest of the network, but this is rarely the case. In gen-
eral, despite of the hazard, water supply can not be completely cut off. The
shut down of the entire system would disrupt those security related functions
that rely on continuous water supply, such as fire police service or water based
cooling systems at large, production intensive, industrial facilities. Therefore,
beside population warning procedures, countermeasures devoted to divert the
contaminant flow away from high demand concentration sectors must be set up,
aiming at mitigating population harm.

An effective way of altering water flow is by activating some of the devices
which are part of the system, namely by closing isolation valves and opening
hydrants, in order to achieve contaminant isolation, containment, and flushing.
In particular, opening hydrants can expel contaminated water, while contami-
nated pipes can be isolated by closing their isolation valves. Due to the highly
non linear functional dependencies that link water flow and the time at which a
given device is operated, the global effect of a schedule, i.e., the vector of activa-
tion times for the selected devices, can not be decomposed into the sum of the
effects of the activation of each individual device, nor the effect of a local change
in the schedule can be anticipated. On the contrary, the only way to evaluate
the volume of consumed contaminated water due to a schedule is by a compu-
tationally intensive simulation. In other words, we are optimizing a black box
function and solving a so called simulation-optimization problem [3]. The cho-
sen simulation package is EPANET [32], a discrete event-based simulator which
represents the state of the art in Hydraulic Engineering. EPANET is given a
schedule, the description of the hydraulic network, the expected water demand,
and a contamination scenario, and it yields the volume of contaminated con-
sumed water (we speak of contamination when concentration level is above the
danger threshold of 0.3mg/ml that causes human death if ingested). Simulation
is computationally intensive and it is the bottleneck of any solution approach.

In our case study, each simulation call takes on average 5", which poses a limit
on the number of function evaluation calls, despite of the fact that the problem
is solved offline; this fact influences the choice of the search strategy, as discussed
in [11]. Moreover, there is no a priori information on what a good schedule should
look like, and common sense inspired criteria such as “the sooner the better” lead
to low quality solutions. In conclusion, there is no way to distinguish between a

34 M. Nonato and A. Peano

good and a bad schedule without simulation.

So far, it concerns the objective function of our simulation optimization problem.
Regarding the solution feasibility, a schedule ¢* is feasible provided that there
is an assignment of the n devices to the m teams available and, for each team,
its devices can be sequenced so that if device j follows device i the difference
between the respective activation times in the schedule is equal to 75, i.e., the
travelling time on the street network from the location of device 7 to the location
of device j. All teams gather at the mobilization point at a given time after the
alarm is raised (according to the protocol) and conventionally the departure
time is set to 0. This maps the feasible region of our problem into the one of a
well known optimization problem, the open m-Travelling Salesman Problem [4]
(mTSP), providing a graph representation of our problem where the mobilization
point is the depot, each device is a client node of the graph and each team visits
the assigned devices travelling along a route starting from the depot.

All these features motivated our choice of a Genetic Algorithm (GA)
hybridized with a Mixed Integer Linear Programming solver which encapsulates
the feasibility constraints within the cross over operators, as described in detail
in [11]. In that paper, several computational experiments were carried out to cal-
ibrate population size and number of generations for a single GA run. Moreover,
we verified the poor quality of the solutions obtained according to heuristic
criteria, such as minimum makespan or minimizing the sum of the activation
times. Besides, neighbourhood based local search were tested and proved to be
not competitive given the limited number of solution evaluations allowed, since
the search trajectory remains confined not far from the starting point. On the
contrary, the literature confirms that in such cases population based heuristics,
which carry on a broader search and are able to explore a wider part of the
feasible region, are able to provide better results.

Although we could improve by far and large the best solutions available for
our case study, that solution approach has a typical GA flaw, that is, it con-
verges to a local optimum which depends on the starting population. However,
the differences among different solutions quality varies depending on the con-
tamination scenario. Since the number of function evaluations is limited, in this
study we address the question concerning what is the best way of exploiting the
computational resources we are allowed, and if there is a way to take advantage
of the knowledge of a set of different, high quality solutions.

In the next section we describe how PR can provide a pattern search that
fulfils these expectations.

3 Intensification by Path Relinking

As mentioned, in this application GAs often yield high quality solutions that
depend on the initial population: this is due to the existence of several local
optima. These different solutions identify a promising subregion of the feasible
space, which is worth further inspection, according to some exploration strategy.
Classical Local Search transforms a solution gradually: at each step it moves

Path Relinking for a Team Scheduling Problem 35

from a solution to an improving one in the current neighbourhood, driven by
the objective function. In our case, the search goes from one local optimum to
another, by gradually making the current solution more similar to the final one.
This search is not guided by the objective function, but rather by a distance
criterion, and quite often a better solution is found along this search trajectory.
This philosophy lies at the heart of an intensification technique named PR [16].

Working on a reference set (rs) composed of several solutions, PR first selects
from rs an initial reference (r) and a guiding (often called target) (g) solution,
then it iterates valid moves to transform step by step r into g. Figure 1 shows a
graphical representation of the transformation of r into g, differing initially on
4 elements; so 3 intermediate solutions are selected, namely r!, 2, and 3. This
procedure allows for the exploration of the path between two good solutions,
according to the hypothesis that a better one can be found among the feasible
solutions in the middle.

Legend
reference solution
initial solution
possible move
selected move
guiding solution

O w0 e

Fig. 1. Graphical representation of Path Relinking

Since PR builds a new solution starting from the features of two elite solu-
tions, it can be also seen as an evolutionary algorithm, in which randomness
is substituted by a deterministic search strategy that draws the possible path
between two feasible solutions.

The building blocks of a Path Relinking algorithm are:

— the reference set and its construction;
— the reference and the target solutions and their selection;
— the path between two solutions, i.e., the neighbourhood structure.

Several variants and generalizations of PR are possible, which are elegantly dis-
cussed in [17], such as truncating the search on a path to resume it on another
(either new or existing) path of the same g — r couple, or different policies for
choosing the move in the current neighbourhood rather than moving on the best
one. In this work we adopt this last classical strategy since we prefer to spend
the limited number of solution evaluations to explore the “best” path between
different r — g pairs rather than several paths between the same r — g pair.

In our case, the bunch of best populations given by some GA runs provides
naturally the dataset the reference set can be built up from, the target g can be
easily selected as the best solution in rs; and the reference r has to be selected
properly through quality and diversity criteria, as Section 3.1 reports.

36 M. Nonato and A. Peano

3.1 Selection of Reference Candidates

As stated before, the reference set can be built up from the final populations of
the GAs. In particular, diversity from the target beside quality should be taken
into account, since the number of inspected solutions grows with the distance
to the target; thus, different metrics can be combined together to filter properly
the initial dataset.

The distance between two solutions can be evaluated considering the routes
of the teams as well as the activation times. Despite in the former studies the
diversity is measured on the graph representation of the routing problems [21,29-
31,35], in this case the preferred way is to measure the diversity over the time
representation. In fact the graph representations of the solution would introduce
a huge amount of redundancy [6], this means that the same vector of activation
times can be mapped into different trees that may differ a lot wrt the metrics
defined for graph representations.

The metrics here proposed for the time representation are the Hamming

distance
Nieo

h(g,?‘) = Z d; (1)

where g; (r;) is the activation time of device ¢ in solution g (r) and d; = 1 if
g; # r; while d; = 0 otherwise, and the euclidean distance

Naew

Z (9i —1i)? (2)

=1

between two vectors of activation times g and r. The former gives a measure
about how many elements differ in the vectors, whereas the latter measures how
much the vectors differ in terms of activation times. In order to prevent the
inclusion of too similar vectors in rs, two thresholds 4 and ~ are defined: given
the target g a solution r is included only if h(g,r) > 5 and e(g,r) > 7.

As far as the quality of the reference set, a proper metric is to consider only
solutions having quality within a certain percentage distance § from the target’s
one, i.e., % < 4 holds for any r € rs.

Finally, the choice of 3, 7, and § is really important, even more whenever
the number of evaluations is limited. In fact, in this case excluding a promising
solution may affect hugely the effectiveness of the approach.

3.2 A Path Relinking Based on Sequences

Path Relinking for routing problems works on symbolic representations of routes,
in which any route is expressed by an ordered set of visited customers [21,30,
35]. For 3 vehicles vy,v2, and vs, and 7 customers, namely ¢y, ..., cr, a feasible
solution assigns a route to each vehicle, e.g., v1 = {c1, ¢}, va = {c3,ca}, v3 =
{¢s, c6, c7}. Equal solutions visit the customers along same routes. To transform

Path Relinking for a Team Scheduling Problem 37

a solution into a different one, every customer should be relocated into the right
position of the right route. In Path Relinking for routing problems, this is done
iteratively by relocating one customer at each step.

The same representation can be used in this mTSP variant. Since the routes
have no names, the order of the devices within the routes is the valuable infor-
mation; moreover, in a route any device precedes only one other, thus the order
of activation within the routes can be stated by listing the devices’ predecessors,
ie., a list of tuples “(hp, hs)” meaning that the device h, precedes hs in the
solution. For example, in the solutions in Figure 2, 3 teams work overall on 7
hydraulic devices, namely 1,...,7; the initial solution r and the guiding g can
be represented by the following predecessor lists:

P = {(dv 3)7 (dv 4)7 (dv 6)7 (17 5)’ (47 7)7 (67 1)» (77 2)}7

Py ={(d;3),(d,4),(d,6),(1,7),(3,5), (4,1),(5,2)}.

In general, two solutions a and b are equal iff P, = P,; whereas, whenever two
solutions differ, the predecessors of a that are not in b are P,_, = P,\ P,N P, vice
versa for bis Py_, = P, \ P, N P,. Moreover, the cardinality card(P,_;) measures
the distance of a from b, and vice versa being card(P,—y) = card(P,—,). For
example, for r and g we have that P,_, = {(1,5),(4,7),(6,1),(7,2)}, Py—r =
{(1,7),(3,5),(4,1),(5,2)}; so, the distance between r and g is 4.

To get closer to b starting from the configuration of a, at least one device
hs | (hp, hs) € Py_q should be relocated after its predecessor hy, in b; in this sense,
the set P,_, contains the possible moves to transform a into b. For example,
(5,2) € P,_, means that the device 2 needs to be relocated right after 5, making
r more similar and closer to g. This means that the neighbourhood of r with
respect to g is the set of solutions N (r, g) = {r, | card(Py_, \ Py_,,) = 1}. In
other words, the neighbourhood of r with respect to g is the set of solutions r,,
obtained by relocating 1 device in r according with P,_,.

At the k-th iteration, PR has to choose which device hy | (hs, hy) € PF_ is
relocated, in order to move to r*1. To make this choice it evaluates by EPANET
every 78 € N* and moves to the one with the lowest volume; this solution
becomes the reference of the next step, and it is called 7*+1.

Every time a device has been relocated after its new predecessor their link
becomes permanent and no further moves can break it. Thus, whenever a device
is chosen to be relocated after another one, it carries the following chain of fixed
edges along with it; this prevents the current choice to destroy the previous ones.
To implement this behaviour the procedure should be enriched with a memory,
which stores the previous moves.

Figure 2 shows a possible path from r to g consisting of 4 intermediate steps.
Table 1 reports at any step the values of P,_,, the chosen move to r**1 and the
fixed edges, for the example in Figure 2. The first move transforms the initial
solution into r! by relocating 2 after 5; this edge is now fixed and this move is
stored into the memory, represented by a the dashed box. The second move from
r! to r? relocates the chain 5 — 2 after 3. Then 7 is relocated after 1 achieving

38 M. Nonato and A. Peano

r3. Finally 1 is relocated together with its fixed successor 7 after 4. The target
is finally reached.

d d d d d
TN
?%3?%3??\?\64\3\64? -
I I 1
1 7 17 1 7.5 11 151 1 5 :l\ﬁxededge
S) Y KA (7 A (R
5 2 51 \@m 2] 72

Fig. 2. Feasible References and Target solutions for 7 devices differing on 4 predeces-
sors

Table 1. Iterations of the PR algorithm for the example in Figure 2

k rt Pig_r move fixed edges

0 r {(1,7),(3,5),(4,1),(5,2)} (5,2) {

1t {(1,7),(3,5),(4,1)} (3,5) {(5,2)}

27° {(1,7),(4,1),} (1,7) {(5,2),(3,5)}

377 {(4,1)} (4,1 {(5,2),(3,5),(1,7}
49 {} {(5,2),(3,5),(1,7), (4,1)}

Recall that in this real application only solutions with 3 routes are considered
to be feasible. So we exclude from P* the moves that vary the number of routes,
i.e., moves that either empty a route or add a new route.

This version of PR moves at most Ny, times and calls EPANET at most
M times. Sometimes the procedure visits the same solution twice or
more, in such a case the solution would be evaluated by EPANET more times,
wasting precious computing resources. For this reason the solving architecture is
enriched with a cache, which stores the explored solutions and allows for saving
a call to EPANET. It is worth noting that the procedure may explore the entire
path between initial and guiding before the maximum number of EPANET calls
expires. In such a case, the procedure selects another reference, and iterates over
it. The algorithm continues until it reaches the maximum number of EPANET
calls or reference solutions.

From now, we refer to this version as the “routing” PR (PRr).

3.3 The Time Based Variant

Another representation for the mTSP encodes a solution as a vector of activation
times [11]. Given the feasible solutions r and g, the indexes of the differing

Path Relinking for a Team Scheduling Problem 39

elements is given by I,_, = {i | 7, # ¢;}. If 7 equals g then I,_, = (. To
transform r into g iteratively, at each step £ one element in I,._, should be fixed
to its value in g. This decreases by one the distance between 7* and g. Let * be
the reference vector at the k-th step, I* = rk_g, and let Fk = r—g \ I* be the
set of indexes that have been already fixed. The next solution r**! in the path

between r and g is obtained by keeping r’;‘H = gy for all f € F* and fixing the

new element 77 = g; for one i € I*.

If the remaining elements of r*+1 were the same as in r (or 7*) the resulting
vector could not correspond to a feasible schedule. So, these elements are chosen
by solving a constrained optimisation problem whose constraints depict a mTSP,
the elements in F*¥ U {i} are fixed, whereas the other (non-fixed) elements are
the actual integer variables of the program; the objective is to optimise these
variables, so that their values are as close as possible to the ones in r. To do
that, the program minimizes the Euclidean distance of the non-fixed elements
from r [11], i.e., given i € I*:

dist(r®,r) = Z |r§“+1 —rjl (3)
JeI\{i}

Notice that a feasible vector always exists, being g a feasible solution of the
program. The neighbourhood of 7* is then defined as follows:

NFE = {7k card(I® \ T"*1) = 1, minimizes (3)}.

The procedure explores every solution by varying the index i € I*, and for
each i it calls the optimiser to compute a new feasible vector, finally it evaluates
the solution by calling EPANET. The solution in N* having the lowest volume
is selected to be the reference solution for the next step. Figure 3 shows, on a
graph with 7 devices, how routes change when an additional element becomes
fixed; e.g., in r® the activation time “(26)”, which was (20) in 7®, has been fixed,

(14) 19)

(27)
VAN

A/(m) (14— (28)

A device with non-fixed time A device with fixed time (+) activation time

[C25)AN

Fig. 3. Feasible routes and activation times for the solution 7, r°, 7%, and g¢

and the related device is now visited by another route. The minimization of
dist(r%, r) also transforms (28) in r° into (29) in 7%, by changing the route of
the concerned device; this new activation time is clearly very close to (27) in r.

40 M. Nonato and A. Peano

The constrained optimisation program minimizing (3) can be stated by any
declarative paradigm, such as Constraint Programming [8], Constraint Logic
Programming [22], Answer Set Programming [15,24], Mixed Integer Linear Pro-
gramming [26]; so some suitable solvers are: Gecode [14], ECLiPSe [33], DLV [25],
Clasp [12,13], SCIP [1], Gurobi [19].

Since the number of feasible moves decreases at each iteration of at least one
unit, the maximum number of EPANET calls is again w Also this
PR uses a cache to store the explored solution, so it ends up whenever either no
more EPANET calls are available, or rs is empty.

Notice how this technique integrates MILP, hydraulic simulators, and PR
into the solving architecture; thus, we will refer to it as the “hybrid” PR (PRh).

3.4 Computational Results

The experiments were performed on the Ferrara’s hydraulic network, which sup-
plies drinking water to about 120,000 inhabitants. 20 contamination scenarios
(A...T) were tested. Basing on the techniques proposed in [18], 3 teams of tech-
nicians were considered to be available to operate on 13 hydraulic devices, namely
7 valves and 6 hydrants. The hydraulic simulator we used was EPANET [32],
and takes about 5 seconds to evaluate a schedule of the selected devices on each
contamination scenario. Even though EPANET is open-source, the simulation
procedures and the network specifications are sensitive data for hydraulic engi-
neers and can not be disclosed.

Genetic Algorithms proposed in [11] were allowed a maximum of 500
EPANET calls, and the population was sized to 20 individuals. These values
were calibrated in previous works, and the GAs typically converge within the
500 EPANET calls. As mentioned, we observed that the final solution depends
on the initial population as the GA gets stuck on different local optima, so par-
allel small sized independent GAs explore the search space better than one big
sized GA. In this study, Path Relinking is tested to explore the region enclosing
such solutions.

The hypothesis tested hereby is whether either PRr or PRh may improve
the best solution starting from the final populations of 10 independent GAs; in
other words, the reference set was built up from the 10 final populations. The
two PRs were compared to an additional independent GA run, to be considered a
strengthening run of the same first 10. In this way all the approaches are directly
comparable. PRr, PRh, and the additional GA were equipped with 500 EPANET
calls each; the total amount of calls is then 5500 for any configuration. To weaken
the randomness, the tests were repeated 10 times on each contamination scenario.
To disambiguate, these runs are considered to be global, wrt the 10 local GA
runs. So we denote the best of the c-th trial of 10 GAs as s, while the global
optimum is defined as s* = min.{s}}. The constrained model minimizing (3)
was implemented in Mixed Integer Linear Programming and solved by Gurobi;
its solving time was negligible.

Table 2 reports the best volumes computed by the different approaches for
each scenario. The additional GA (+1 GA) never improves s*; this is quite

Path Relinking for a Team Scheduling Problem 41

Table 2. The Table reports for each scenario and in this order: the averaged volume
of contaminated water in litres (1), the ratio between variance and averaged volume,
and the best volume (1) for 10 independent global runs of 10 GA; it also reports for 10
independent global runs of +1 GA, PRr and PRh: the best volume (1), the number of
improvements, the averaged improvement in [; last row reports the average of some of
these columns; min(best), maz(impr.4), and maz(impr.ave) are highlighted in bold.

10 GA +1 GA PRr PRh

scen | (sorting key) impr. impr. impr.
ave ... best (s¥)| best ave| best ave| best ave

l ave l l : l l : l l s l

A | 6,022 004 6,000 | 6,000 0 05,997 8 9 | 6000 7 9
B | 710 010 7,170 | 7,170 0 O | 7,170 1 2 | 7,156 5 14
C |10,868 1.51 10,672 |10,672 0 O (10,569 3 49 | 10,623 7 47
D |11,229 1.16 11,021 {11,021 0 O | 11,021 O O |10,993 7 44
E 12,732 0.21 12,698 {12,698 1 5 |12,698 1 4 |[12,698 3 15
F |13,938 0.76 13,793 13,793 1 2 13,624 4 69 | 13,723 7 44
G |15,841 0.22 15,758 [15,758 0 0 | 15,758 4 29 | 15,692 8 57
H |16,991 2.44 16,571 | 16,571 1 3 |15,708 7 207| 16,351 9 137
I |20,792 7.21 20,122 |20,122 0 0 (20,122 2 50| 20,122 5 22
J 122,273 0.39 22,164 [22,164 0 0 |22,164 2 8 |22,105 9 85
K |25,138 0.56 25,043 (25,043 0 0 (25,043 2 21 | 25,043 7 68
L |35,067 1.00 34,662 |34,662 0 0 |34,662 4 136| 34,536 7 120
M |36,706 0.52 36,706 |36,706 0 0 36,706 1 2 |36,706 5 103
N |40,121 4.74 39,230 | 39,230 1 21 |39,230 4 121| 39,128 10 215
O |42,019 1.68 41,595 (41,5950 0 (41,5950 0 |41,595 6 79
P [44,470 0.34 44,286 |44,286 1 10|44,286 0 0 |44,188 2 13
Q |46,452 1.11 46,175 | 46,175 1 2 |46,175 0 0 | 46,144 8 137
R]52,531 1.47 52,210 | 52,210 1 15| 52,210 3 57 | 52,205 5 77
S |77,397 0.16 77,232 | 77,232 0 0 |77,232 2 21 |76,999 6 123
T 144,622 0.07 144,409 {144,409 1 8 |144,409 2 24 {144,350 8 82
ave | 03 3 38| 7 176

expected because the additional GA follows the same exploration pattern as any
other GA. Anyway, for 8 scenarios, for one ¢ of 10 the additional GA improves
si. On average PRr improves s} 3 times out of 10, while PRh does it 7 times.
For 5 scenarios out of 20 neither PRr nor PRh were able to improve s*; in 4
scenarios (A,C,F, and H), PRr outperforms PRh in terms of global best (s*), and
only for one of these scenarios PRh was not able to improve s*. On the contrary,
in 11 scenarios PRh improves s* whereas PRr doesn’t. Only in scenario A PRr
improves s more times than PRh. Moreover, PRh on average improves the s
twice as many times as PRr (see last row), decreasing the volume of contaminated
water than double the PRr (76 vs 38).

Notice that, the higher is the averaged volume the higher is the outperform-
ing rate of PRh wrt +1 GA and PRr. In fact, from the scenario M onwards,

42 M. Nonato and A. Peano

PRh outperforms the others in terms of global best (s*), averaged number of
improvements and averaged improvement in volume.

The variance of s;, whose normalization over the average is given by >°=
in Table 2, is not correlated to number of improvements the PRs may achieve.
In fact, PR is able to improve s* even for scenarios whose variance is low; this
happens mostly when distant local optima have similar quality. Also, since PR’s
exploration capability grows with the distance between r and g, PR should
be always coupled to strengthen parallel Genetic Algorithms, even when low
variance would suggest that no further improvement is possible.

Finally, despite of the fact that PRh is generally better performing than
PRr, there is not a real dominance (A,C,F,H), which suggests to integrate both
techniques in future works.

4 Conclusions

Genetic Algorithms are used to optimise the scheduling of operations in case of
contamination events in Water Distribution Systems [11]; the final populations
may contain distant solutions both in terms of similarity and quality. A local
search paradigm can improve the solutions by exploiting the knowledge about
these local optima.

Two Path Relinking (PR) variants have been developed and tested for a
real life hydraulic network, namely the Ferrara’s one, to optimise the scheduling
of 3 technicians teams over a set of 13 among valves and hydrants, with the
aim of reacting to contamination events and minimizing the volume of contami-
nated water consumed by the users. 20 contamination scenarios were simulated
and tested. The hydraulic simulator EPANET was used to compute the vol-
ume given a scheduling of the devices; since EPANET takes about 5 seconds to
evaluate each solution, we tackled with a computationally intensive consuming
simulation-optimisation problem.

A PR was developed to optimise the routes of the teams and was named PRr.
The other was developed to design directly the activation times of the devices; it
was named PRh, from hybrid, because it exploits solvers for constrained optimi-
sation programs to compute feasible times; a Mixed Integer Linear Programming
implementation was used in this specific case. The two PRs proved to be very
effective in improving solutions’ quality starting from the final populations of
parallel Genetic Algorithms. In the future, more sophisticated PR variants will
be tested, e.g., truncated PR, greedy randomized adaptative PR, and others.

Acknowledgments. We thank Stefano Alvisi and Marco Franchini for assistance with
the hydraulic simulator and the instance they developed, and for the fruitful discussions
about the hydraulic engineering.

References

1. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1), 1-41 (2009). http://mpc.zib.de/index.php/MPC/
article/view/4

http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Path Relinking for a Team Scheduling Problem 43

Alvisi, S., Franchini, M., Gavanelli, M., Nonato, M.: Near-optimal scheduling of
device activation in water distribution systems to reduce the impact of a contam-
ination event. Journal of Hydroinformatics 14(2), 345-365 (2012)

April, J., Glover, F., Kelly, J.P., Laguna, M.: Simulation-based optimization:
practical introduction to simulation optimization. In: Proceedings of the 35th
Conference on Winter Simulation: Driving Innovation, WSC 2003, pp. 71-78. Win-
ter Simulation Conference (2003)

Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209-219 (2006)

Bent, R., Coffrin, C., Judi, D., McPherson, T., van Hentenryck, P.: Water distri-
bution expansion planning with decomposition. In: 14th Water Distribution Sys-
tems Analysis Conference, WDSA 2012, 2427 September 2012 in Adelaide, South
Australia, p. 305. Engineers Australia (2012)

Carter, A.E., Ragsdale, C.T.: A new approach to solving the multiple traveling
salesperson problem using genetic algorithms. European Journal of Operational
Research 175(1), 246-257 (2006)

Cattafi, M., Gavanelli, M., Nonato, M., Alvisi, S., Franchini, M.: Optimal place-
ment of valves in a water distribution network with CLP(FD). Theory and Practice
of Logic Programming 11(4-5), 731-747 (2011)

Frithwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer
(2003)

Gavanelli, M., Nonato, M., Peano, A.: An ASP approach for the valves positioning
optimization in a water distribution system. Journal of Logic and Computation
(2013, in press). doi:10.1093/logcom /ext065

Gavanelli, M., Nonato, M., Peano, A., Alvisi, S., Franchini, M.: Genetic algorithms
for scheduling devices operation in a water distribution system in response to
contamination events. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS,
vol. 7245, pp. 124-135. Springer, Heidelberg (2012)

Gavanelli, M., Nonato, M., Peano, A., Alvisi, S., Franchini, M.: Scheduling coun-
termeasures to contamination events by genetic algorithms. Al Communications
28(2), 259-282 (2015)

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T.,
Schneider, M.: Potassco: The Potsdam Answer Set Solving Collection. AI Com-
munications 24(2), 107-124 (2011)

Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187—188, 52-89 (2012)

Gecode Team. Gecode: Generic constraint development environment (2006).
http://www.gecode.org

Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.)
Handbook of Knowledge Representation, chap. 7, pp. 285—-316. Elsevier Science
(2008)

Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 39, 653-684 (2000)

Gongalves, J.F., de Magalhdes Mendes, J.J., Resende, M.G.C.: A hybrid genetic
algorithm for the job shop scheduling problem. European Journal of Operational
Research 167(1), 77-95 (2005)

Guidorzi, M., Franchini, M., Alvisi, S.: A multi-objective approach for detecting
and responding to accidental and intentional contamination events in water distri-
bution systems. Urban Water 6(2), 115-135 (2009)

Gurobi Optimization, Inc., Gurobi optimizer reference manual (2014). http://www.
gurobi.com

http://dx.doi.org/10.1093/logcom/ext065
http://www.gecode.org
http://www.gurobi.com
http://www.gurobi.com

44

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

M. Nonato and A. Peano

Haq, Z.U., Anwar, A.A.: Trrigation scheduling with genetic algorithms. Journal of
Irrigation and Drainage Engineering 136(10), 704-714 (2010)

Ho, S., Gendreau, M.: Path relinking for the vehicle routing problem. Journal of
Heuristics 12(1-2), 55-72 (2006)

Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programmig 19(20), 503-581 (1994)

Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., Faloutsos, C.: Efficient sen-
sor placement optimization for securing large water distribution networks. Journal
of Water Resources Planning and Management 134(6), 516-526 (2008)

Leone, N.: Logic programming and nonmonotonic reasoning: from theory to sys-
tems and applications. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 1-1. Springer, Heidelberg (2007)

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (TOCL) 7(3), 499-562 (2006)

Martin, R.: Large Scale Linear and Integer Optimization: A Unified Approach.
Springer, US (1999)

Murray, R., Hart, W., Phillips, C., Berry, J., Boman, E., Carr, R., Riesen, L.A.,
Watson, J.-P., Haxton, T., Herrmann, J., Janke, R., Gray, G., Taxon, T., Uber, J.,
Morley, K.: US environmental protection agency uses operations research to reduce
contamination risks in drinking water. Interfaces 39(1), 57-68 (2009)

Peano, A.: Solving Real-Life Hydroinformatics Problems with Operations Research
and Artificial Intelligence. PhD thesis, University of Ferrara (2015)

Prins, C., Prodhon, C., Calvo, R.: Solving the capacitated location-routing problem
by a grasp complemented by a learning process and a path relinking. 40R 4(3),
221-238 (2006)

Rahimi-Vahed, A., Crainic, T., Gendreau, M., Rei, W.: A path relinking algorithm
for a multi-depot periodic vehicle routing problem. Journal of Heuristics 19(3),
497-524 (2013)

Reghioui, M., Prins, C., Labadi, N.: GRASP with path relinking for the capacitated
arc routing problem with time windows. In: Giacobini, M. (ed.) EvoWorkshops
2007. LNCS, vol. 4448, pp. 722-731. Springer, Heidelberg (2007)

Rossman, L.A.: EPANET 2 users manual. National Risk Management Research
Laboratory, Office of research and development, U.S. Environmental Protection
Agency, USA (2000)

Schimpf, J., Shen, K.: Ecl'ps® - from LP to CLP. TPLP 12(1-2), 127-156 (2012)

Simonis, H.: Constraint applications in networks. Handbook of constraint program-
ming 2, 875-903 (2006)

Sorensen, K., Schittekat, P.: Statistical analysis of distance-based path relinking
for the capacitated vehicle routing problem. Computers & Operations Research
40(12), 3197-3205 (2013)

Dynamical Properties of Artificially Evolved
Boolean Network Robots

Andrea Roli' ™), Marco Villani?, Roberto Serra?, Stefano Benedettini’,
Carlo Pinciroli®, and Mauro Birattari*

! Department of Computer Science and Engineering,
Alma Mater Studiorum Universita di Bologna, Bologna, Italy
andrea.roli@unibo.it
2 Department of Physics, Informatics and Mathematics,
Universita di Modena e Reggio Emilia & European Centre for Living Technology,
Venice, Italy
3 MIST, Ecole Polytechnique de Montreal, Montreal, Canada
4 IRIDIA-CoDE, Université libre de Bruxelles, Brussel, Belgium

Abstract. In this work we investigate the dynamical properties of the
Boolean networks (BN) that control a robot performing a composite
task. Initially, the robot must perform phototaxis, i.e. move towards a
light source located in the environment; upon perceiving a sharp sound,
the robot must switch to antiphototaxis, i.e. move away from the light
source. The network controlling the robot is subject to an adaptive walk
and the process is subdivided in two sequential phases: in the first phase,
the learning feedback is an evaluation of the robot’s performance in
achieving only phototaxis; in the second phase, the learning feedback
is composed of a performance measure accounting for both phototaxis
and antiphototaxis. In this way, it is possible to study the properties of
the evolution of the robot when its behaviour is adapted to a new oper-
ational requirement. We analyse the trajectories followed by the BNs in
the state space and find that the best performing BNs (i.e. those able
to maintaining the previous learned behaviour while adapting to the
new task) are characterised by generalisation capabilities and the emer-
gence of simple behaviours that are dynamically combined to attain the
global task. In addition, we also observe a further remarkable property:
the complexity of the best performing BNs increases during evolution.
This result may provide useful indications for improving the automatic
design of robot controllers and it may also help shed light on the relation
and interplay among robustness, evolvability and complexity in evolving
systems.

1 Introduction

Genetic regulatory networks (GRNs) model the interaction and dynamics
among genes. From an engineering and computer science perspective, GRNs are
extremely interesting because they are capable of producing complex behaviours,
notwithstanding the compactness of their description. Cellular systems are also

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 45-57, 2015.
DOI: 10.1007/978-3-319-24309-2_4

46 A. Roli et al.

both robust and adaptive, i.e. they can maintain their basic functions in spite
of damages and noise, and they are able to adapt to new environmental con-
ditions. Such a complex behaviour can be interpreted from an artificial system
design’s viewpoint, suggesting the possibility of achieving robust and adaptive
behaviours in agents, robots, and group of robots, by exploiting the properties
of GRN models.

Among the most studied models for GRNs, are Boolean networks (BNs), first
introduced by Kauffman [11]. A BN is a discrete-time discrete-state dynamical
system whose state is a N-tuple in {0,1}", (x1,...,2x). The state is updated
according to the composition of N Boolean functions f;i(z;,, ..., iy,), where K;
is the number of inputs of node 4, which is associated to Boolean variable x;.
Each function f; governs the update of variable x; and depends upon the values
of variables x;,, ..., ;. . Most works on BNs deal with so-called autonomous
networks, i.e. systems that evolve in time without input from the external—at
most, only the initial state may be extrenally imposed. Usually, BNs are subject
to a deterministic, synchronous and parallel node update, even if other update
schemes are possible [28]. In the synchronous and deterministic update scheme,
every state has a unique successor and the trajectory is composed of a transient
and a state cycle (possibly a fixed point, i.e. a cycle of length 1).

BNs have received considerable attention in the community of complex sys-
tem science. Works in complex systems biology show that BNs provide powerful
model for cellular dynamics [26,29], cellular differentiation [25,31] and inter-
actions among cells and environment [24]. A specific dynamical regime at the
boundaries between order and chaos, called the critical regime, is of notable
interest. Critical networks enjoy important properties, such as the capability of
optimally balancing evolvability and robustness [1] and maximising the average
mutual information among nodes [21]. Hence the conjecture that living cells, and
living systems in general, are critical [17].

In recent works, it has been shown that such kind of BNs can be used to
control robots [6,22,23]. In this case, the BN evolution in time also depends on
the values of some “input” nodes which are set depending on the robot’s sensor
readings. The BN is trained by means of a learning algorithm that manipulates
the Boolean functions. The algorithm employs as learning feedback a measure of
the performance of the BN-controlled robot (in the following, BN-robot) on the
task to perform. The effectiveness of this approach was demonstrated through
experiments on both simulated and real robots.

In this contribution, we outline some results on the analysis of the BN-robot’s
dynamics along the learning process. We analyse the trajectories followed by
the BN-robot in the space of BN states and compute significant features, such
as state number and frequency of state occurrence in sample trajectories. In
addition, we compute the number of fized points, i.e. BN states repeated as long
as the BN inputs do not change. The number of fixed points is an indicator of
the generalisation capabilities of the system, as they represent simple functional
building blocks of the type while <condition> do <action>, which compose
the overall system dynamics. Moreover, we estimate the statistical complexity of

Dynamical Properties of Artificially Evolved Boolean Network Robots 47

the system by means of a complexity measure called the LMC complexity [15].
The dynamics of a complex system is neither totally disordered (as an ideal
gas at equilibrium), nor perfectly ordered (as a crystal); therefore we expect
that a measure of the distance of a system from these two conditions should
have very high values when the system exhibits complex behaviours. While we
are of course aware of the fact that there is no general agreement on an all-
encompassing definition of a measure of complexity, LMC seems particularly
interesting in this case, as it will be discussed in Section 3.

We found that the successful performing BN-robots, which show the capabil-
ity of attaining the learned behaviours also in spite of noise and perturbations
(robustness) while adapting to new tasks to perform (evolvability), are charac-
terised by both number of fixed points and LMC complexity higher than those
of unsuccessful ones. These preliminary results may provide useful indications
for improving the automatic design of robot controllers and may help shed light
on the relation and interplay among robustness, evolvability and complexity in
evolving systems.

The structure of the paper is as follows. After a summary of the experimental
setting in Section 2, we discuss the main results of the analysis of the dynamics
of the BNs controlling the robot in Section 3 and we conclude with a discussion
and an outlook to future work in Section 4.

2 Experimental Setting

In this experiment, we control an e-puck robot [16] by means of a BN. The
values of a set of network nodes (BN input nodes) are imposed by the robot’s
sensor readings, and the values of another set of nodes (BN output nodes) are
observed and used to encode the signals for maneuvering the robot’s actuators.
The BN controlling the robot is subject to synchronous and parallel update. As
described in the following, the Boolean functions are set by a search process,
whilst the topology of networks is set at random.! The sensors consists of four
light sensors and one sound sensor, while the actuators correspond to right and
left wheel speed controllers. The Boolean values of the output nodes are sent
to wheel actuators after a preprocessing consisting in a moving average, so as
to feed the motors with signals in the range [0,1]. The robot is placed in a
random position and with random orientation in a squared arena, with one
light source in a corner. The BN-robot must accomplish the following task:
initially, it must perform phototaxis, that is, move towards the light source;
upon perceiving a sharp sound, the BN-robot must switch to antiphototaxis,
that is, move away from the light source.? The robot is trained in simulation by
means of an adaptive walk: the process starts from a randomly generated BN, it
iteratively mutates its functions and keeps only the changes that either improve
the BN-robot’s performance or do not decrease it. Mutation is implemented by

! The choice for a random topology is not a limitation, as discussed in [22].
2 A video of a typical run of a best performing BN-robot is available at https://www.
youtube.com/watch?v=6ZF9Ijpwkds8.

https://www.youtube.com/watch?v=6ZF9Ijpwkd8
https://www.youtube.com/watch?v=6ZF9Ijpwkd8

48 A. Roli et al.

randomly choosing a node and an entry in its Boolean function truth table and
flipping it. The algorithm is therefore a stochastic descent in the space of Boolean
functions. 3 Advanced search strategies can of course be devised so as to attain a
higher performance; nevertheless, this subject is beyond the scope of this paper.

The BN-robot is trained in two sequential phases. In the first phase, the
learning feedback is an evaluation of the robot’s performance in achieving only
phototaxis. In the second phase, the learning feedback is composed of a perfor-
mance measure accounting for both phototaxis and antiphototaxis. In this way,
we can study the properties of the evolution of the BN-robot when its behaviour
has to be adapted to a new operational requirement. We define the performance
of a BN-robot as a function of an error E € [0,1]. The smaller is the error, the
better is the robot performance. The error function is given by a weighted sum
of phototaxis and antiphototaxis errors: at each time step t € {1,...,T}, the
robot is rewarded if it is moving in the correct direction with respect to the light.
Let t. be the time instant at which the clap is performed. The error function F
is defined as follows:

t T

E—afl- ZE) 4 (1o q) (1 Zistest ™),

te T—t.
where:

1 if the robot goes towards to the light at step 4

Vie{l,...,tc}, 51:{

0 otherwise

1 if the robot moves away from the light at step

Vie {t.+1,...,T}, s; =)
{ ! {O otherwise

In the first phase of the training is o = 1, whilst in the second phase « is set
to 0.5 so as to take into account both phototaxis and antiphototaxis.

One hundred independent runs of the entire training process were executed,*
starting from 100 initial BNs generated at random (with 20 nodes, 3 inputs per
node and no self-connections).

During the training process BN-robots are subject to random perturbations,
S0 as to train them also for operating in noisy environments. Along the train-
ing process we tested the BN-robot and collected statistics on the BN states
traversed.

The experiments in simulation have been run by means of the open source
simulator ARGoS [19].

3 Analysis of BN Dynamics

A significant fraction of the training experiments—about 30%—leads to a suc-
cessful BN-robot, i.e. a robot able to perform both phototaxis and antiphototaxis

3 Details can be found in [22].
4 The experiments reported in [22] were re-run so as to have a greater number of
replicas.

Dynamical Properties of Artificially Evolved Boolean Network Robots 49

and to switch between the first and the second behaviour when it perceives a
sharp sound signal. The unsuccessful BN-robots are either able to perform photo-
taxis only or not even that task. In the successful cases, the phototaxis capability
acquired by the BN-robot in the first training phase is maintained while also the
antiphototaxis behaviour is learned. Whence these systems have the possibility
of successfully balancing robustness and evolvability.®

A question may rise at to what extent topology affects the results: after visual
inspection of a sample of the BNs we discover that topology has an impact only
in pathological cases, such as complete disconnection of all sensors or actuators.
Notably, one of the best performing BNs has a topology in which the South
light sensor is disconnected, which means that the network was anyway able to
integrate this piece of information.

We studied the properties of the BN trajectories as they control the robot
during its actions. The BN that controls a robot is coupled with the environ-
ment, as some of its nodes are forced to values imposed by the sensors and some
of its outputs control the robot actuators (the wheels in this case). As a con-
sequence, the network itself is embodied and its dynamics must be studied in
the operational setting in which the robot is functioning, characterised by a spe-
cific sensors—actuators loop mediated by the environment. Therefore, we studied
the dynamics of such BNs by means of the properties of their trajectories in
the state space collected during robot runs. More precisely, for each BN-robot
we run the robot starting from 1000 different initial conditions and recorded
the sequence of BN states the network traverses during the run. This collection
of state sequences is then merged into a graph whose vertices are the network
states traversed by the BN and the edges the observed transitions between two
states (see a typical trajectory graph in Figure 1). Moreover, the frequency of
occurrence of states in the trajectories is recorded. This information is used
to compute several features of the BN dynamics, which will be detailed in the
following. The statistics that will be shown are computed by subdividing the
BN-robots into three classes: BN-robots able to attain correctly the task (both
class, about 30/100), BN-robots able to perform phototaxis only (pt class, about
60/100) and totally failing robots (none class, about 10/100).

3.1 Number of States

The number of unique states in the collection of trajectories—i.e. the number of
different states in the set collecting all the states in the sampled trajectories—
is an indicator of the size of the state space the BN dynamics occupies, as it
represents the portion of state space actually explored by the BN. The smaller
this size, the greater the generalisation capability of the network. Indeed, a large
number of unique states denotes BN trajectories that do not overlap, which in
turn means that the network has simply learned collections of successful exam-
ples. Conversely, a small number of unique states denotes trajectories that share

5 We use the terms robustness and evolvability with the same meaning as in the work
by Aldana et al. [1]

50 A. Roli et al.

Fig. 1. Typical trajectory graph of a BN-robot. Transitions between nodes occur either
for internal network state update or caused by input change. Node labels—not relevant
for this context—denote the encoded binary state of the network.

a large fraction of transitions, which is a property of a system that was able to
generate a compact model of the world.

Dynamical Properties of Artificially Evolved Boolean Network Robots 51

300 350 400 450
| | | |
\

250
|

Number of states

200
|

150
|

— both

--- pt
- -—°= none

100

T T
1 100 10000
Iterations (log)

Fig. 2. Average number of different states in the trajectory collections as a function
of learning algorithm’s iteration. Averages are taken across three different behaviour
classes: both class < successful BN-robots, pt class <~ BN-robots able to perform
phototaxis only, none class < failing BN-robots.

In Figure 2 the average number of states in the trajectory collection for
each class of robots is plotted along the training phase. The dashed vertical
line denotes iteration 5000 at which the objective function was changed so as to
include also the evaluation on the antiphototaxis behaviour. We observe that the
successful BN-robots are characterised by a decreasing number of unique states
up to iteration 5000, when the BN is forced to accomplish a more complex
behaviour and the number of states starts to increase, meaning that the training
process is still acting so as to adapt the BN-robot to achieve the compound task.
BN-robots able to perform phototaxis only show a similar but far less marked
pattern, whilst—as expected—worse BN-robots show no tendency to generalise.

3.2 Number of Fixed Points

Some states in BN-robot trajectories are repeated until a change occurs in the
input. With slight abuse of term, we call these states fized points. These states
represent simple functional building blocks of the type while <condition> do
<action> (e.g. “turn right until the light input changes”) which are combined
to achieve a global behaviour. The emergence of fixed points reveals that the
BN is able to extract regularities in the environment and to classify them.

The curves in Figure 3 show that the average number of fixed points in the
successful BN-robots increases with training and it consistently increases when
the more complex task has to be learned. Instead, the BN-robots of the other

52 A. Roli et al.

2 94 — hboth

--- pt
-—-- none

Number of fixed points
7

T T
1 100 10000
Iterations (log)

Fig. 3. Average number of fixed points as a function of learning algorithm’s iteration.
Averages are taken across three different behaviour classes: both class < successful BN-
robots, pt class <~ BN-robots able to perform phototaxis only, none class « failing
BN-robots.

two classes maintain approximately the same number of fixed points along the
training.

3.3 Statistical Complexity

An analysis of the trajectories of a system may also be focused to capture a
further notable dynamical property, which is usually called statistical complez-
ity [3,7,8,15,20,27]. This quantity is aimed at estimating to what extent a sys-
tem works at the edge of order and disorder, i.e. in critical regime. Critical
regimes may provide an optimal trade-off between reliability and flexibility, i.e.
they make the system able to react consistently with the inputs and, at the same
time, capable to provide a sufficiently large number of possible outcomes. This
conjecture has been introduced with the expression “computation at the edge of
chaos” [4,13,18] and it is supported by results on different computational models
such as e-machines [30], cellular automata [9], and neural networks of different
kinds [2,12,14].

A system that does not change in time (i.e. in the ordered regime), as well
as a system characterised by random behaviour (i.e. in the disordered regime)
should be evaluated with low complexity. High complexity is expected to char-
acterise systems in the critical regime accomplishing non trivial tasks. Several
measures have been proposed [20] to account for statistical complezity (SC), i.e.,
the algorithmic complexity of a program that reproduces the statistical proper-

Dynamical Properties of Artificially Evolved Boolean Network Robots 53

Entropy

— both

--- pt
o - "—°- none

T T
1 100 10000
Iterations (log)

Fig. 4. Entropy of the BN controller as a function of the learning algorithm’s iteration.
Averages are taken across three different behaviour classes: both class < successful BN-
robots, pt class «» BN-robots able to perform phototaxis only, none class < failing
BN-robots.

ties of a system. In this light, the SC of both a constant and a random sequence
is low.

Among various measures of SC, we have chosen a simple yet effective one,
which is called LMC complexity, by the name of its inventors [15]. The idea is
rather simple: if we want the SC of a system to be high in intermediate regions
between order and disorder, we can define it as the product of a measure that
increases with disorder and another which decreases with it. The first measure
is the Shannon entropy, computed over the frequency of the states traversed by
the BN-robot. If the BN-robot traverses states x € X with probabilities P(x)
estimated by means of their frequencies, the entropy is defined as:

HX)=- Z P(z) logP(z)
zeX

In the definition of H(X) we assume 0 log0 = 0.

The second measure contributing to SC is disequilibrium:

2
D(X)=)_ (P(x) —)1(|)
zeX
The disequilibrium estimates the extent to which a system exhibits patterns
far from equidistribution. For example, if the trajectory of a system is composed
of only few of the possible states (e.g., a short cyclic attractor), then it has a
high disequilibrium.

54 A. Roli et al.

* 7| — both

- pt
-=:- none

o
-

0.8

0.6
I

0.4

Disequilibrium

0.2
I

0.0

T T
1 100 10000
Iterations (log)

Fig. 5. Disequilibrium of the BN controller as a function of the learning algorithm’s
iteration. Averages are taken across three different behaviour classes: both class <
successful BN-robots, pt class «» BN-robots able to perform phototaxis only, none
class < failing BN-robots.

Finally, the LMC complexity is defined as:

O(X) = H(X) - D(X)

A high entropy means that the sequences of states in the BN trajectories are
highly diversified. Conversely, a high disequilibrium among the states charac-
terises trajectories mostly composed of the repetition of few states. It is conjec-
tured that a complex system operates in a dynamical regime such that a balance
between these two quantities is achieved [15].

It is quite informing to separately observe the three measures, namely
entropy, disequilibrium and complexity. In Figure 4 the entropy of BN con-
trollers is shown along the adaptive process. As in previous graphs, the average
value for the three performance classes is plotted. Notably, the entropy of well
performing BN-robots decreases up to the fitness function change, providing
evidence that the adaptive process is successfully achieving generalisation of the
task. At iteration 5000, when the fitness function is change so as to include also
antiphototaxis, the entropy starts to increase as the BN is adapting to the new
task to be accomplished. The reason for this increase has to be ascribed to the
adaptive process which does not seem to be completed for all the best performing
BNs at the 10000th iteration. The entropy of BN robots that do not perform the
complete task shows instead a different behaviour, as it just slightly decreases
in the case of BN-robots performing phototaxis only, while it even increases for
the worst performing BN-robots.

Dynamical Properties of Artificially Evolved Boolean Network Robots 55

5 | —— both

--- pt
-—-- none

©
o

Complexity
0.6 07

0.5

0.4

T T
1 100 10000
Iterations (log)

Fig. 6. Complexity of the BN controller as a function of the learning algorithm’s itera-
tion. Averages are taken across three different behaviour classes: both class < successful
BN-robots, pt class <~ BN-robots able to perform phototaxis only, none class « failing
BN-robots.

Disequilibrium shows a complementary behaviour with respect to entropy,
as illustrated by Figure 5. Finally, as shown in Figure 6, the complexity of the
successful BN-robots increases steadily during the training process, whilst it is
almost constant for the unsuccessful ones. This result supports the conjecture
that complexity characterises systems that perform non-trivial tasks [4,15]. Nev-
ertheless, this point deserves further investigations, especially to be compared
with previous work on similar subjects [5,10] in which the relation between fit-
ness and complexity is addressed.

4 Conclusion and Future Work

The main finding of the analysis of the trajectories of BN-robots is that the
networks that optimally balance robustness and evolvability are characterised
by generalisation capability and high statistical complexity of their trajectories.
Even if preliminary, these results suggest that also artificial systems that has to
cope with changing environments may have an advantage in enjoying the same
properties. In the settings in which this hypothesis turned out to hold, additional
information for both training and analysing these systems would be available.
In particular, the evaluation of features such as fixed points and complexity may
be profitably incorporated into the objective function of the adaptive process,
with the goal of guiding it towards high performing networks.

Conversely, experiments on simple artificial systems provide a controlled envi-
ronment for studying general properties of living systems. The use of BNs and

56 A. Roli et al.

their trajectories make it possible to link results in digital worlds with biological
ones, as these models have been proven to capture relevant biological phenom-
ena.

The results presented in this paper concern preliminary experiments on the
subject, which may be further investigated in several directions. The robust-
ness of the results against changes in the search strategy and input and output
encoding should be assessed.

In the next future, we plan to investigate the relation between complexity
measures and performance of BN-robots in noisy and varying environments.
First of all, this is expected to provide guidelines for the automatic design of
truly adaptive robotic systems; furthermore, we aim at contributing elucidate
the elusive interplay among complexity, robustness and evolvability.

Acknowledgments. We thank the anonymous referees who carefully read the paper
and provided pertinent and valuable suggestions for preparing this final version.

References

1. Aldana, M., Balleza, E., Kauffman, S., Resendiz, O.: Robustness and evolvability
in genetic regulatory networks. Journal of Theoretical Biology 245, 433-448 (2007)

2. Bertschinger, N., Natschlager, T.: Real-time computation at the edge of chaos in
recurrent neural networks. Neural Computation 16, 1413-1436 (2004)

3. Crutchfield, J.: The calculi of emergence: Computation, dynamics, and induction.
Physica D 75, 11-54 (1994)

4. Crutchfield, J., Young, K.: Computation at the onset of chaos. In: Complexity,
Entropy, and Physics of Information. Addison Wesley (1990)

5. Edlund, J., Chaumont, N., Hintze, A., Koch, C., Tononi, G., Adami, C.: Integrated
information increases with fitness in the evolution of animats. PLOS Computa-
tional Biology 7(10), ¢1002236:1-e1002236:13 (2011)

6. Garattoni, L., Roli, A., Amaducci, M., Pinciroli, C., Birattari, M.: Boolean network
robotics as an intermediate step in the synthesis of finite state machines for robot
control. In: Lid, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances
in Artificial Life, ECAL 2013, pp. 372-378. The MIT Press (2013)

7. Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total
information. Complexity 2(1), 44-52 (1996)

8. Grassberger, P.: Randomness, information, and complexity, August 2012.
arXiv:1208.3459

9. Hordijk, W.: The EvCA project: A brief history. Complexity 18, 15-19 (2013)

10. Joshi, N.,; Tononi, G., Koch, C.: The minimal complexity of adapting agents
increases with fitness. PLOS Computational Biology 9(7), €1003111:1-e1003111:10
(2013)

11. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, UK (1993)

12. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at crit-
icality. Nature Physics 2, 348-351 (2006)

13. Langton, C.: Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D 42, 12-37 (1990)

http://arxiv.org/abs/1208.3459

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

Dynamical Properties of Artificially Evolved Boolean Network Robots 57

Legenstein, R., Maass, W.: Edge of chaos and prediction of computational perfor-
mance for neural circuit models. Neural Networks 20, 323-334 (2007)
Lopez-Ruiz, R., Mancini, H., Calbet, X.: A statistical measure of complexity.
Physics Letters A 209, 321-326 (1995)

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Gongalves, P., Torres, P., Alves, C. (eds.) Proceedings
of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1,
pp. 59-65 (2009)

Nykter, M., Price, N., Aldana, M., Ramsey, S., Kauffman, S., Hood, L., Yli-Harja,
O., Shmulevich, I.: Gene expression dynamics in the macrophage exhibit criticality.
In: Proceedings of the National Academy of Sciences, USA, vol. 105, pp. 1897-1900
(2008)

Packard, N.: Adaptation toward the edge of chaos. In: Dynamic Patterns in Com-
plex Systems, pp. 293-301 (1988)

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella,
L., Dorigo, M.: ARGoS: a modular, multi-engine simulator for heterogeneous
swarm robotics. Swarm Intelligence 6(4), 271-295 (2012)

Prokopenko, M., Boschetti, F., Ryan, A.: An information-theoretic primer on com-
plexity, self-organization, and emergence. Complexity 15(1), 11-28 (2008)
Ribeiro, A., Kauffman, S., Lloyd-Price, J., Samuelsson, B., Socolar, J.: Mutual
information in random Boolean models of regulatory networks. Physical Review E
77, 011901:1-011901:10 (2008)

Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of boolean
network robots. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekart, A.,
Esparcia-Alcézar, A.l., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J.,
Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 43-52.
Springer, Heidelberg (2011)

Roli, A., Villani, M., Serra, R., Garattoni, L., Pinciroli, C., Birattari, M.: Identifi-
cation of dynamical structures in artificial brains: an analysis of boolean network
controlled robots. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.)
AT*TA 2013. LNCS, vol. 8249, pp. 324-335. Springer, Heidelberg (2013)

Serra, R., Villani, M.: Modelling bacterial degradation of organic compounds with
genetic networks. Journal of Theoretical Biology 189(1), 107-119 (1997)

Serra, R., Villani, M., Barbieri, A., Kauffman, S., Colacci, A.: On the dynamics of
random Boolean networks subject to noise: Attractors, ergodic sets and cell types.
Journal of Theoretical Biology 265(2), 185-193 (2010)

Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical prop-
erties of gene expression data in knock-out experiments. Journal of Theoretical
Biology 227, 149-157 (2004)

Shalizi, C.: Methods and techniques of complex systems science: An overview,
March 2006. arXiv:nlin/0307015

Shmulevich, 1., Dougherty, E.: Probabilistic Boolean Networks: The Modeling and
Control of Gene Regulatory Networks. STAM, Philadelphia (2009)

Shmulevich, I., Kauffman, S., Aldana, M.: Eukaryotic cells are dynamically ordered
or critical but not chaotic. PNAS 102, 13439-13444 (2005)

Strogatz, S.: Nonlinear dynamics and chaos. Perseus Books Publishing (1994)
Villani, M., Serra, R.: On the dynamical properties of a model of cell differentiation.
EURASIP Journal on Bioinformatics and Systems Biology 4, 1-8 (2013)

http://arxiv.org/abs/nlin/0307015

Adaptive Tactical Decisions in Pedestrian
Simulation: A Hybrid Agent Approach

Luca Crociani, Andrea Piazzoni, Giuseppe Vizzari®?, and Stefania Bandini

CSATI - Complex Systems & Artificial Intelligence Research Center, University
of Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy
{luca.crociani,giuseppe.vizzari,stefania.bandini}@disco.unimib.it,
andrea.piazzoni@campus.unimib.it

Abstract. Tactical level decisions in pedestrian simulation are related
to the choice of a route to follow in an environment comprising several
rooms connected by gateways. Agents are supposed to be aware of the
environmental structure, but they should also be aware of the level of
congestion, at least for the gateways that are immediately in sight. This
paper presents the tactical level component of a hybrid agent architecture
in which these decisions are enacted at the operational level by mean of a
floor-field based model, in a discrete simulation approach. The described
model allows the agent taking decisions based on a static a-priori knowl-
edge of the environment and dynamic perceivable information on the
current level of crowdedness of visible path alternatives.

Keywords: Pedestrian simulation - Tactical level -+ Hybrid agents

1 Introduction

Simulation is one of the most successful areas of application of agent-based
approaches: models and techniques employed by researchers in different disci-
plines are not necessarily in line with the most current results in the computer
science and engineering (see, e.g., [2]), and yet the area still presents interesting
opportunities for agent research and computer science in general. Pedestrians
and crowds simulation is an example of this situation: both the automated anal-
ysis and the synthesis of pedestrian and crowd behavior, as well as attempts to
integrate these complementary and activities [13], present open challenges and
potential developments in a smart environment perspective [11].

Modeling human decision making activities and actions is an extremely chal-
lenging goal, even if we only consider choices about walking behavior: different
types of decisions are taken at different levels of abstraction: [12]! provides a well-
known scheme to model the pedestrian dynamics, describing 3 levels of behavior:
(i) Strategic level, managing abstract plans and final objectives motivating the
overall decision to move (e.g. “I am going to the University today to follow my

! A similar classification can be found in vehicular traffic modeling from [10].

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT¥IA 2015, LNAI 9336, pp. 58-71, 2015.
DOI: 10.1007/978-3-319-24309-2_5

Adaptive Tactical Decisions in Pedestrian Simulation 59

courses and meet my friend Paul”); (ii) Tactical level, constructing sequences
of activities to achieve the defined objectives (e.g. “I'll take the 7:15 AM train
from station X, get off at Y and then walk to the Department, then ...”); (iii)
Operational level, physically executing the defined plans (i.e. creating a precise
walking trajectory, such as a sequence of occupied cells and related simulation
turn in a discrete simulation).

Most of the literature has been focused on the reproduction of the physics
of the system, so on the lowest level: this is partly due to the fact that data
on the fundamental diagram achieved with different set of experiments and in
different environment settings (see, e.g[15]) supports a robust validation of the
models. Relevant recent works, such as [7] and [14], start exploring the implica-
tions of tactical level decisions during evacuation. In particular, [7] modifies the
floor-field Cellular Automata approach for considering pedestrian choices not
based on the shortest distance criterion but considering the impact of conges-
tion on travel time. [14] explores the implications of four strategies for the route
choice management, given by the combination of applying the shortest or quick-
est path, with a local (i.e., minimize time to vacate the room) or global (i.e.,
minimize overall travel time) strategy. The global shortest path is calculated
with the well-known Floyd-Warshall algorithm, implying computational times
that can become an issue by having a large number of nodes or by considering
special features in the simulated population (i.e. portion of the path where the
cost differs from an agent to another). The work in this paper will propose an
alternative and efficient approach to find a global path, where each agent will be
able to consider additional costs in sub-paths without adding particular weight
to the computation.

We must emphasize the fact that the measure of success and validity of a
model is not the optimality with respect to some cost function, as in robotics, but
the plausibility, the similarity of results to data acquired by means of observations
or experiments. Putting together tactical and operational level decisions in a
comprehensive framework, preserving and extending the validity that, thanks to
recent extensive observations and analyses (see, e.g., [4]), can be achieved at the
operational level, represents an urgent and significant open challenge.

The following Sect. will present the adaptive tactical level part of the model
whereas its experimental application in benchmark scenarios showing the ade-
quacy in providing adaptiveness to the contextual situation will be given in
Section 3. Conclusions and future developments will end the paper.

2 A Model for Tactical Level of Pedestrians

The model described in this paper provides an approach to deal with tactical
choices of agents in pedestrian simulation systems. For sake of space, the descrip-
tion of the operational level components of the model is omitted and it can be
found in [1].

60 L. Crociani et al.

2.1 A Cognitive Representation of the Environment for Static
Tactical Choices

The framework that enables agents performing choices on their plans implies a
graph-like, topological, representation of the walkable space, whose construction
is defined in [6] and only briefly reported in this section. This model allows
agents to perform a static path planning, since dynamical information such as
congestion is not considered in the graph. These additional elements will be
considered in the extension that is presented in the next section and represent
the innovative part of this paper.

The environment abstraction identifies regions (e.g. a room) as node of the
labeled graph and openings (e.g. a door) as edges. This form of cognitive map
is computed starting from the information of the simulation scenario, provided
by the user and necessarily containing: (i) the description of the walkable space,
that is, the size of the simulated environment and the positions of obstacles and
walls; (ii) the position of final destinations (i.e. exits) and intermediate targets
(e.g. a ticket machine); (iii) borders of the logical regions of the environment
that, together with the obstacles, will define them. Approaches to automatically
configure a graph representation of the space, without any additional information
by the user, have been already proposed in the literature (e.g. [9]), but they are
not leading to a cognitively logical description, i.e., a topological map.

The cognitive map is defined as a graph CM = (V,€) generated with a
procedure included to the floor field diffusion, starting from the statements that
each user-defined opening generates a floor field from its cells and spread only
in the regions that it connects, and that each region has a flag indicating its
properties among its cells. The floor fields diffusion procedure iteratively adds
to CM the couple of nodes found in the diffusion (preventing duplicates) and
respectively labeled with the region and edge identifiers. Each final destination,
different from the normal openings since it is located in only one region, will
compose an edge linking the region to a special node describing the external
universe. Intermediate targets will be mapped as attributes of their region’s
node.

To allow the calculation of the paths tree, that will be described in the follow-
ing section, functions Op(p) and Dist(w;,ws) are introduced describing respec-
tively: the set of openings accessible from the region p and the distance between
two openings linking the same arbitrary region. Since, in general, an opening is
associated to a set of cells associated, the value of the floor field in the center
cell of wy,ws will be used for the computation of the distance among them.

2.2 Modeling Adaptive Tactical Decisions with A Paths Tree

To enhance the route choice and enable dynamical, adaptive, decisions of the
agents in a efficient way, a new data structure has been introduced, containing
information about the cost of plausible paths towards the exit from each region
of the scenario.

Adaptive Tactical Decisions in Pedestrian Simulation 61

The well-known Floyd-Warshall algorithm, in fact, can solve the problem
but it introduces issues in computational time: the introduction of dynamical
elements in the paths cost computation (i.e. congested paths) implies a re-
computation of the cost matrix underlying the algorithm every step. More in
details, the penalty of a congested path is a subjective element for the agents,
since they are walking with different desired velocities, thus the calculation cost
increases also with the number of agents.

The approach proposed here implies an off-line calculation of the data-
structure that we called paths tree, but is computationally efficient during the
simulation and provides to the agents direct information about the travel times
describing each path.

The Paths Tree. We define the Paths Tree as a tree data-structure containing
the set of plausible paths towards a destination, that will be its root.

A path is defined as a finite sequence of openings X — Y — ... — Z where
the last element represents the final destination. It is easy to understand that
not every sequence of openings represents a path that is walkable by an agent.

First, a walkable path must be a sequence of consecutive oriented openings
in the physical space: an opening E connects two regions R; and Rs, can be
formally defined as F = Ry, Ra; (R1, E, R2) and (R, E, Ry) are the oriented
representations of E. Consecutive openings E; and Fs are such that (R;, E, R;)
and (Rj, EQ, Rk)

In addition to this constraint, a valid walkable path must lead to a universe
region (i.e. towards a final target). In particular, an agent will consider only valid
paths towards its goal, starting from the region where the agent is located.

An important element in the definition of the adopted approach is the
expected travel time associated to given path p:

Definition 1. Let p a path, T(p) is the function which return the expected travel
time from the first opening to the destination.

Dist(opening;, opening; 1)
T(p)—_ > specd (1)
i€[1,]p|—1]
We consider that a plausible path must be loop-free: by assuming the aim
to minimize the time to reach the destination, a plan passing through a certain
opening more than once would be not plausible. This will not imply that an agent
cannot go through a certain opening more than once during the simulation, and
that this could actually happen only with a change of the agent plan, due for
instance to an unexpected congestion perceived in a point of the planned path.
Should only convex regions be present in the simulated space, we could easily
achieve the set of plausible paths by extending previous constraint and consider
not plausible a path passing twice in the same region. However, since the defi-
nition of region describes also rooms, concave regions must be considered. Some
paths may, thus, imply to pass through another region and then return to the
first one to reduce the length of the path.

62 L. Crociani et al.

Fig. 1. In the left, a concave region can imply the plausibility of a path crossing it twice,
but its identification is not elementary: only the path represented by the continuous
line is plausible. All the correct paths for this environment are shown on the right.
Inside r2 the choice between the two openings is determined by the level of congestion
on ol.

As we can see by the Figure 1, on the left, both paths start from r;, go
through 75, and then return to . However, only the path represented by the
continuous line is plausible. To support the definition of the constraint that

identifies the correct paths, the concept of sub-path and a minimality rule must
be defined.

Definition 2 (Sub-path). Let p a path, a sub-path p' of p is a sub-sequence
of oriented openings denoted as p’ C P which respects the order of appearance
for the openings in p, but the orientation of openings in p' can differ from the
orientation in p. p’ must be a valid path.

The reason of the orientation change can be explained with the example in
Fig. 1 in the right: given the path p = (r1,02,r2) — (r2,01,r1) — end, the path
p' = (r2,02,r1) — end is a valid path and is considered as a sub-path of p, with
a different orientation of 02. In addition, given the path p; = (rq,09,71) — end,
the path ps = (r1,02,72) — (r2,01,71) — end is as well a minimal path if and
only if the travel time of ps is less than p;. It is easy to understand that this
situation can emerge only if r1 is concave. As we can see, the starting region of
the two paths is different, but the key element of the rule is the position of the
opening os. If this rule is verified in the center position of the opening os, this
path will be a considerable path by the agents surrounding 02 in r1.

In Figure 1, on the right, the correct paths for this example environment are
shown. An agent located in r2 can reach r1 and then the destination D using
both of the opening considering the congestion in the environment at the time
of planning. An agent located in r1 can go directly to the exit or chose the path
02 — 0l — D, according to its starting position.

Definition 3 (Minimal Path). p is a minimal path if and only if it is a valid
path and Vp' C p: S(p') = S(p) A D(p') = D(p) = T(p') > T(p)

Adaptive Tactical Decisions in Pedestrian Simulation 63

The verification of this rule is a sufficient condition for the opening loop
constraint and it solves the problem on the region loop constraint independently
from the configuration of the environment (i.e. convex or concave regions).

Given this constraint on path minimality, which we consider an indication
of plausibility, the complete set of minimal paths towards a destination can be
built. It must be noted that an arbitrary path, through the notion of sub-paths,
represents a set of paths itself: an agent, in fact, could select a sub-path of a
larger minimal path. So a minimal representation of the set is a tree-like structure
defined as:

Definition 4 (Paths Tree). Given a set of minimal paths towards a desti-
nation, the Paths-Tree is a tree where the root represents the final destination
and a branch from every node to the root describes a minimal path, crossing a
set of openings (other nodes) and region (edges). Each node is associated to an
attribute describing the expected travel time to the destination.

An Algorithm to Compute the Paths Tree. The proposed algorithm con-
structs the Paths Tree recursively, starting from a path containing only the
destination and adding nodes if and only if the generated path respects the
definition of minimality.

Formally the Paths Tree is defined as PT = (N, E) where N is the set of
nodes and E the set of edges. Each node n € N is defined as a triple (id, o0, 7)
where id € N is the id of the node, 0 € O is the name of the opening and 7 € R
is the expected travel time for the path described by the branch. Each edge e € E
is defined as a triple (p, ¢,r) where p € O is the id of the parent, ¢ € O is the id
of the child and r € R is the region connecting the child node to its parent. To
allow a fast access to the nodes describing a path that can be undertaken from
a certain region, we added a structure called M that maps each region r in the
list of edges e : (p,c,r) € E (for every c).

Given a destination D = (r,, universe), the paths tree computation is defined
with the following procedures.

Algorithm 1. Paths tree computation

1: add (0, D,0) to N

2: add 0 to M(rg]

3: Vs € O ShortestPath[s] « oo

4: ExpandRegion(0, D, 0, Ry, ShortestPath)

With the first line, the set IV of nodes is initialized with the destination of
all paths in the tree, marking it with the id 0 and expected travel time 0. In the
third row the set of ShortestPath is initialized. This will be used to track, for
each branch, the expected travel time for the shortest sub-path, given a start
opening s. FxpandRegion is the core element of the algorithm, describing the

64 L. Crociani et al.

Algorithm 2. ExpandRegion

Require: input parameters (parentld, parentName,
parentTime, RegionToExpand, Shortest Path)

1: expandList «— ()

2: opList = Op(RegionToExpand) \ parentName
3: for o € opList do

4: 1 = parentTime + W

5. if CheckMinimality(ShortestPath,o,7) == True then
6: add (id,0,7) to N

T add (parentld,id,r) to E

8: ShortestPathlo] «— T

9: nextRegion = o\ r
10: add id to M [nextRegion|
11: add (id, o, T, nextRegion) to expandList
12: end if
13: end for

14: for el € expandList do
15: ExzpandRegion(el, ShortestPath)
16: end for

recursive function which adds new nodes and verifies the condition of minimality.
The procedure is described by Alg. 2.

In line 2 a list of openings candidates is computed, containing possible exten-
sions of the path represented by parentld. Selecting all the openings present in
this region (except for the one labeled as parent Name) will ensure that all paths
eventually created respect the validity constraint.

At this point, the minimality constraint 3 has to be verified for each candi-
date, by means of the function CheckMinimality explained by Alg. 3. Since this
test requires the expected travel time of the new path, this has to be computed
before. A failure in this test means that the examined path — created by adding
a child to the node parentld — will not be minimal. Otherwise, the opening can
be added and the extension procedure can recursively continue.

In line 6, id is a new and unique value to identify the node, which represents
a path starting from the opening o and with expected travel time 7; line 7 is the
creation of the edge from the parent to the new node. In line 8, ShortestPath|o]
is updated with the new discovered value 7. in line 9 the opening is examined
as a couple of region, selecting the one not considered now. In fact, the element
nextRegion represents the region where is possible to undertake the new path.
In line 10 the id of the starting opening is added to M [nextRegion], i.e., the list
of the paths which can be undertaken from nextRegion. In line 11 the node with
his parameter is added to the list of the next expansions, which take place in line
13-14. This passage has to be done to ensure the correct update of Shortest Path.

To understand how the constraint of minimality is verified, two basic concepts
of the procedure need to be clarified. Firstly, the tree describes a set of paths
towards a unique destination, therefore given an arbitrary node n, the path
described by the parent of n is a subpath with a different starting node and

Adaptive Tactical Decisions in Pedestrian Simulation 65

Algorithm 3. CheckMinimality

Require: input parameter (ShortestPath, o, T)
if ShortestPathlo] > 7 then
return True
else
return False
end if

leading to the same destination. Furthermore, the expansion procedure implies
that once reached a node of depth [, all the nodes of its path having depth [— k,
k > 0 have been already expanded with all child nodes generating other minimal
paths.

Note that the variable Shortest Path is particularly important since, given p
the current path in evaluation, it describes the minimum expected travel time to
reach the destination (i.e. the root of the tree) from each opening already evalu-
ated in previous expansions of the branch. Thus, if 7 is less than Shortest Path[o],
the minimality constraint 3 is respected.

Congestion Evaluation. The explained approach of the paths tree provides
information on travel times implied by each path towards a destination. By only
using this information, the choice of the agents would be still static, essentially
describing the shortest path. This could lead to an increase of the experienced
travel times, since congestion may emerge without being considered.

For the evaluation of congestion, we provide an approach that estimates,
for each agent, the additional time deriving by passing through a jam. The
calculation considers two main aspects: the size of the possibly arisen congestion
around an opening; the average speed of the agents inside the congested area.
Since the measurement of the average speed depends on the underlying model
that describes the physical space and movement of the agents, we will just clarify
that the speed is estimated through the adoption of an additional grid counting
the recent blocks (i.e. when agents maintain positions at the end of the step
although desired to move) in the surrounding area of each opening. The average
number of blocks influences the probability to move into the area per step, thus
the speed of the agents. For the size of the area, our approach is to define a
minimum radius of the area and (i) increase it when the average speed becomes
too low or (ii) reduce it when it returns normal.

As we can see in Figure 2, the presence of an obstacle in the room is well
managed by using floor field while defining the area for a given radius. If a many
agents try to go through the same opening at the same time, a congestion will
arise, reducing the average speed and increasing the size of the monitored area
until included agents are no more involved in blocks.

During this measurement the average speed value for each radius is stored.
Values for sizes smaller than the size of the area will be used by the agents
inside it, as will be explained in the next section. Two function are introduced

66 L. Crociani et al.

0]0
31421411 4(204(314

4.2[3:813:¢] 3431343842 |5.404.4
5.24.8l4.4 44852 [5.84.84.

Fig. 2. Examples of surroundings of different sizes, for two configurations of the envi-
ronment.

for the calculation: size(0): return the size of the congestion around the opening,
averageSpeed(o, s): return the average speed estimated in the area of size s
around the opening o.

Agents Dynamic Path Choice. At this point we have defined which informa-
tion an agent will use to make its decision: (i) the Paths Tree, computed before
the simulation, will be used as a list of possible path choice; (ii) the position of
the agent, will be used to adjust the expected travel time considering the distance
between the agent and the first opening of a path: d(a, 0); (iii) the information
about congestion around each opening, computed during the simulation, will be
used to estimate the delay introduced by each opening in the path.

The agent, who knows in which region R, he is located, can access the Paths
Tree using the structure M[R;]. The structure returns a list of nodes, each
representing the starting opening for each path. At this point the agent can
compute the expected travel time to reach each starting opening and add it to
the travel time 7 of the path.

To consider congestion, the agent has to estimate the delay introduced by
each opening in a path, by firstly obtaining the size of the jammed area.

) _) size(o) if d(a,0) > i(x)
siza(0) = {d(a,o) otherwise @

At this point, the agent can suppose that for the length of the area it will travel

at the average speed around the opening.

1 1
averageSpeed(o) speed,

),0) (3)

delay(o) = max(sizeq(0)(

If the agent is slower than the average speed around an opening, the delay will
be lower than 0. In this case it is assumed that the delay is 0, implying that the
congestion will not increase his speed.

Adaptive Tactical Decisions in Pedestrian Simulation 67

At this point the agent can estimate the delay introduced by all openings.

pathDelay(p) = Z delay(o) (4)
ocp

We can consider that agents only have access to delay information about
openings that are present in the area it is located into, whereas the delay is
considered zero (in an optimistic hypothesis) in openings that are far from its
perception.

d(a, 5(p))

Ti = thDel 5
ime(p) = T, + speed, + pathDelay, (p) (5)
Where:
— Tp : the expected travel time of the path p
- % : the expected time to reach S(p) from the position of the agent

— pathDelay,(p) : the estimation of the delay introduced by each opening in
the path, based on the memory of the agent (which may or may not be
updated for each opening).

3 Applications with an Experimental Scenario

In order to show the potential and the possibility to fine tune the proposed
approach, the evacuation in a hypothetical scenario has been simulated with a
consistent incoming flow of people. A graphical representation of the environment
and flow configuration is depicted in Fig. 3(a): it illustrates a sample situation in
which two flows of pedestrians enter an area with six exits, distributed among 3
equal rooms, at a rate of 10 pedestrians per second. An important peculiarity is
the slightly asymmetrical configuration of the environment, that causes shorter
distances towards the three southern exits. This is reflected by the illustrated
paths tree in Fig. 3(b) where, to give an example, the paths starting from o4 and
05 and leading out through 02 take a little more time than the ones going out
by using o7. This variation significantly affected the results of the simulations,
here shown with cumulative mean density maps [5]? in Fig. 4.

In particular, the results of two simulations in which different approaches
have been implemented for the dynamic estimation of the path traveling times
by the agents are shown. In the first approach, shown in the top row, all the
agents perceived the same congestion time for the openings that they can detect
during the simulation (i.e. the travel time corrected considering the path delay
discussed in the previous section). In the second approach, instead, a random
error of £10% has been added to the overall calculation of the traveling time

2 These heat maps describe the mean local density value in each cell. It is calculated
in a time window of 50 steps where, at each step, only values of occupied cells are
collected.

68 L. Crociani et al.

Outside

N O | N o 2 N 3

— I —
— 1 West 04 Central- 05 East «—

—) e 7 EEE— —
Outside

entralRoom

Fig. 3. The experimental scenario (a) and the associated paths tree (b).

Time(p) in order to consider the fact that pedestrians do not have an ezact
estimation of distances and delays caused by perceived congestion, in a more
commonsense spatial reasoning framework [3].

By comparing the results it is possible to notice that, counter—intuitively, the
insertion of the random perturbation caused an optimization of the flows in this
overcrowded scenario. In the firsts 100 steps of the simulations, the dynamics for
the two approaches is similar and described by the missed usage of the central
room, since the distance between the northern and southern exits is quite small.
The less precise calculation causes the agents to start using the central room and
associated exits earlier than in the precise delay estimation case, in particular,
around 130th step vs 150th step in the first scenario, generating lower level of
densities and, thus, higher outgoing flow rates. Moreover, this error balances
the attractiveness of middle southern and northern exits that are more evenly
adopted than in the precise calculation approach (as shown in Fig. 4 (b) and
(e)), leading not only to a more efficient but especially more plausible space
utilization.

Adaptive Tactical Decisions in Pedestrian Simulation 69
= 55

5
4.5

\

3
. 15

1
0.5

6

TG
4.5
4
3.5
3
2.5
2
1.5 1
1
0.5
0

a) step 150-200, w/o RE

5.5 5.5
v Vi s
4.5 4.5
4 4
35 35
3 3
2.5 2.5
2 2
15 15
1 1
0.5 0.5
0 0

(d) step 150-200, with RE) step 300-350, with RE (f) step 450-500, with RE

Fig. 4. The test scenario respectively without and with a random perturbation of the
agent estimated travel time.

4 Conclusions

The paper has presented a hybrid agent architecture for modeling tactical level
decisions in pedestrian simulations. The agents make decisions based on a static
a-priori knowledge of the environment and dynamic perceivable information on
the current level of congestion of visible path alternatives. The model was exper-
imented in a sample scenario showing the adequacy in providing adaptiveness to
the contextual situation while preserving a plausible overall pedestrian dynamic:
congestion is detected and, when possible, longer trajectories are adopted grant-
ing overall shorter travel times. The actual validity of this approach must still
be proven, both in evacuations and other kinds of situations: this represents an
open challenge, since there are no comprehensive data sets on human tactical

70

L. Crociani et al.

level decisions and automatic acquisition of this kind of data from video cameras
is still a challenging task [8].

Acknowledgments. This work was partly supported by the ALIAS project (“Higher
education and internationalization for the Ageing Society”), funded by Fondazione
CARIPLO.

References

10.

11.

. Bandini, S., Crociani, L., Vizzari, G.: Heterogeneous speed profiles in discrete mod-

els for pedestrian simulation. In: Proceedings of the 93rd Transportation Research
Board Annual Meeting (2014). http://arxiv.org/abs/1401.8132

Bandini, S., Manzoni, S., Vizzari, G.: Agent based modeling and simulation: An
informatics perspective. Journal of Artificial Societies and Social Simulation 12(4),
4 (2009)

Bandini, S., Mosca, A., Palmonari, M.: Common-sense spatial reasoning for infor-
mation correlation in pervasive computing. Applied Artificial Intelligence 21(4&5),
405-425 (2007). doi:10.1080,/08839510701252676

Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomput-
ing 100, 127-133 (2013). http://www.sciencedirect.com/science/article/pii/
S0925231212003189

Castle, C.J.E., Waterson, N.P., Pellissier, E., Bail, S.: A comparison of grid-
based and continuous space pedestrian modelling software: analysis of two uk
train stations. In: Peacock, R.D., Kuligowski, E.D., Averill, J.D. (eds.) Pedes-
trian and Evacuation Dynamics, pp. 433-446. Springer, US (2011). doi:10.1007/
978-1-4419-9725-8_39

Crociani, L., Invernizzi, A., Vizzari, G.: A hybrid agent architecture for enabling
tactical level decisions in floor field approaches. Transportation Research Procedia
2, 618-623 (2014)

Guo, R.Y., Huang, H.J.: Route choice in pedestrian evacuation: formulated using a
potential field. Journal of Statistical Mechanics: Theory and Experiment 2011(04),
P04018 (2011)

Khan, S.D., Vizzari, G., Bandini, S.: Identifying sources and sinks and detecting
dominant motion patterns in crowds. Transportation Research Procedia 2, 195-200
(2014). http://www.sciencedirect.com/science/article/pii/S2352146514000660,
the Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22-24
October 2014, Delft, The Netherlands

Kretz, T., Bonisch, C., Vortisch, P.: Comparison of various methods for the
calculation of the distance potential field. In: Klingsch, W.W.F., Rogsch, C.,
Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics
2008, pp. 335-346. Springer, Heidelberg (2010). doi:10.1007/978-3-642-04504-2_29
Michon, J.A.: A critical view of driver behavior models: what do we know, what
should we do? In: Evans, L., Schwing, R.C. (eds.) Human Behavior and Traffic
Safety, pp. 485-524. Springer, US (1985). doi:10.1007/978-1-4613-2173-6_19
Pianini, D., Viroli, M., Zambonelli, F., Ferscha, A.: HPC from a self-organisation
perspective: the case of crowd steering at the urban scale. In: International
Conference on High Performance Computing and Simulation, HPCS 2014, Bologna,
Ttaly, 21-25 July, 2014, pp. 460-467. IEEE (2014). doi:10.1109/HPCSim..6903721

http://arxiv.org/abs/1401.8132
http://dx.doi.org/10.1080/08839510701252676
http://www.sciencedirect.com/science/article/pii/S0925231212003189
http://www.sciencedirect.com/science/article/pii/S0925231212003189
http://dx.doi.org/10.1007/978-1-4419-9725-8_39
http://dx.doi.org/10.1007/978-1-4419-9725-8_39
http://www.sciencedirect.com/science/article/pii/S2352146514000660
http://dx.doi.org/10.1007/978-3-642-04504-2_29
http://dx.doi.org/10.1007/978-1-4613-2173-6_19
http://dx.doi.org/10.1109/HPCSim..6903721

12.

13.

14.

15.

Adaptive Tactical Decisions in Pedestrian Simulation 71

Schadschneider, A., Klingsch, W., Klipfel, H., Kretz, T., Rogsch, C.,
Seyfried, A.: Evacuation dynamics: empirical results, modeling and applica-
tions. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science,
pp. 3142-3176. Springer (2009)

Vizzari, G., Bandini, S.: Studying pedestrian and crowd dynamics through inte-
grated analysis and synthesis. IEEE Intelligent Systems 28(5), 56-60 (2013).
doi:10.1109/MIS.2013.135

Wagoum, A.U.K., Seyfried, A., Holl, S.: Modelling dynamic route choice of pedes-
trians to assess the criticality of building evacuation. Advances in Complex Systems
15(07), 15 (2012)

Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in
pedestrian fundamental diagrams of straight corridors and t-junctions. Jour-
nal of Statistical Mechanics: Theory and Experiment 2011(06), P06004 (2011).
http://stacks.iop.org/1742-5468/2011/i=06 /a=P06004

http://dx.doi.org/10.1109/MIS.2013.135
http://stacks.iop.org/1742-5468/2011/i=06/a=P06004

Computer Vision

Using Stochastic Optimization to Improve
the Detection of Small Checkerboards

Hamid Hassannejad, Guido Matrella, Monica Mordonini,
and Stefano Cagnoni®™

Dipartimento di Ingegneria dell’Informazione,
Universita degli Studi di Parma, Parma, Italy
{hamid.hassannejad,guido.matrella,monica.mordonini,
stefano.cagnoni}@unipr.it

Abstract. The popularity of mobile devices has fostered the emergence
of plenty of new services, most of which rely on the use of their cameras.
Among these, diet monitoring based on computer vision can be of partic-
ular interest. However, estimation of the amount of food portrayed in an
image requires a size reference. A small checkerboard is a simple pattern
which can be effectively used to that end. Unfortunately, most existing
off-the-shelf checkerboard detection algorithms have problems detecting
small patterns since they are used in tasks such as camera calibration,
which require that the pattern cover most of the image area. This work
presents a stochastic model-based approach, which relies on Differential
Evolution (DE), to detecting small checkerboards. In the method we pro-
pose the checkerboard pattern is first roughly located within the image
using DE. Then, the region detected in the first step is cropped in order
to meet the requirements of off-the-shelf algorithms for checkerboard
detection and let them work at their best. Experimental results show
that, doing so, it is possible to achieve not only a significant increase of
detection accuracy but also a relevant reduction of processing time.

Keywords: Checkerboard detection - Model-based object detection -
Differential evolution - Size reference

1 Introduction

Apps for mobile devices that record and analyze food intake are becoming more
and more popular. However, they often rely on a mostly manual procedure which
compels users to record meals, enter data about the food type and, above all, per-
sonally estimate the food amount. This last task can be particularly troublesome,
error-prone, and user-dependent, while being, at the same time, the most critical
for meeting the apps’ goals. Therefore, many efforts are being made to make the
procedure faster, easier and more precise by automating it. In particular, many
researchers are trying to use food images, possibly taken by mobile devices, to
automatically extract information [3,4,17]. The main tasks that are being auto-
mated are the recognition of food type and the estimation of its amount from
one or more images.

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 75-86, 2015.
DOI: 10.1007/978-3-319-24309-2_6

76 H. Hassannejad et al.

Food volume estimation is the most direct approach to calculating calories or
nutrients of food intake, once the food type is known. Volume can be estimated
from images using different image analysis procedures, but only up to a scale
factor, if the picture is not taken in controlled conditions (i.e., at a certain
distance, from a certain angle, etc.). Therefore, in many studies, an object of
known size is used as reference. In [1,7], for instance, the user is required to
put her/his finger besides the dish. Later, the finger is detected and used as
reference. In this approach, the variation of finger pose and of the environmental
conditions in which the picture is taken introduces new problems. In [5], a specific
pattern of known size printed on a card is used as reference, showing how such
a standardized reference can improve the accuracy of volume estimation. Many
studies have followed this idea using a checkerboard as reference [8-10,16,17].
In some of these studies, like [8-10], the checkerboard is also used as reference
for colors.

The regular structure of checkerboards and the existence of effective algo-
rithms to detect them are some of the good reasons for choosing such patterns
over other options. Nevertheless, off-the-shelf checkerboard detection algorithms
are usually designed to be a step in camera-calibration or pose-detection algo-
rithms and are usually tuned for specific situations like: flat checkerboards, a
large single checkerboard, etc. In fact, checkerboards which are used as size ref-
erences usually consist of few squares and occupy a relatively small portion of the
image, since they need to appear aside the main object which is to be detected
and measured. This situation makes it difficult for ‘standard‘ checkerboard detec-
tors to be as effective as within the settings for which they have been originally
designed. Thus, in other applications, different algorithms, or modified versions
of the most popular ones, are needed. For example, [11] introduces a method to
detect checkerboards in blurred or distorted images and [13] a method to detect
checkerboards on non-planar surfaces.

Two popular algorithms for checkerboard detection are provided by OpenCV
and Matlab. The OpenCV algorithm, which is available through the findChess-
boardCorners() function, is based on using a graph of connected quads, while the
Matlab algorithm, which is available in the Computer Vision System Toolbox
through the detectCheckerboardPoints function, analyses selected corner pat-
terns to detect a checkerboard. Both algorithms have problems in detecting
small checkerboards. Figure 1 shows three examples in which both algorithms
fail. In the case of food intake monitoring, missing the checkerboard in an image
would cost the user the trouble of taking another image of the food and, even so,
there would not be any guarantee that, under the same conditions, the algorithm
would work with the new image.

In this paper we introduce a pre-processing step which improves the effective-
ness of the checkerboard detectors provided by Matlab and OpenCV (hereafter,
referred as basic methods). The main idea is to roughly locate the image region
where the checkerboard is located and then accurately detect the pattern by
running one of the two basic methods on such a region, cropped to allow the

DE-Based Improvement of Small Checkerboards’ Detection 7

Fig. 1. Above: typical images used for camera calibration. Below: Examples of images
where checkerboards are used as size reference for food volume estimation, on which
both OpenCV and Matlab functions for detecting checkerboards fail to detect the
pattern.

algorithm to operate in conditions which are closer to the ones for which it has
been designed.

To locate the checkerboard, we use the same approach as [14] and [15]. Fol-
lowing that method, a hypothesis of checkerboard location can be evaluated by
rigidly transforming a model of the checkerboard and then projecting it onto
the image according to a perspective transform. The likelihood of the hypothe-
sis is evaluated using a similarity measure between the projection of the model
onto the image and the actual content of the corresponding image region. This
procedure allows one to turn object detection into an optimization problem, in
which the parameters to be tuned are the coefficients of the rigid transforma-
tion and of the projection. Using such a similarity measure as target function,
a meta-heuristic is then used to generate hypotheses, until similarity reaches a
predefined value, which means that the checkerboard has been located. In this
work, Differential Evolution (DE) [12] is employed for optimization. One of the
advantages over other model-based approaches is that this approach does not
need any preliminary preprocessing of the image (like color segmentation) or
projection of many points [15].

2 Locating Objects in an Image

The procedure we adopted estimates the pose of an object based on a 3D model
and can be utilized with any projection system and any general object model. In
this case the model is obtained by sampling the different parts of the object to
be detected, obtaining a set of 3D points which describe its shape. Then, once
an object pose has been hypothesized, the points are projected onto the image

78 H. Hassannejad et al.

plane according to a transformation which maps points in the camera reference
frame onto the image, and are then matched to the actual image content. The
likelihood of the detection is evaluated using a similarity measure based on pixel
intensity.

This generally-applicable object detection algorithm therefore includes the
following steps:

1. Consider a set of key points, of known coordinates with respect to a general
model of the object to detect.

2. Hypothesize a pose for the object, then apply the corresponding rototrans-
lation transform to the points which represent it and project them onto the
image.

3. Verify that the pixel intensities of the points in the set match those which
can be observed in the image region where they have been projected, to
assess the presence of the object.

In our case, the model of the object (a checkerboard) consists of 73 key points
(Figure 2), corresponding to the center, edges and corners of each square.

Fig. 2. Key points are evaluated in five steps to compute the similarity degree between
the projected model and the image.

After locating the checkerboard in the image with a degree of confidence
above a pre-set threshold which the similarity function must reach, the region
thus identified is cropped and the basic methods to detect checkerboard corners
are applied to the resulting image.

3 Differential Evolution

Problems which involve global optimization over continuous spaces are ubiqui-
tous in real life. Any design problem can be virtually considered an optimization
problem, which is often multi-objective and constrained. In general, the task is to
optimize certain properties of a system by pertinently choosing some parameters
which describe its behaviour and are represented, for convenience, as a vector.
Among the many available metaheuristics for solving continuous optimization
problems, Differential Evolution [12] is a relatively simple evolutionary method.
It iteratively tries to improve the solution to a problem with respect to a given

DE-Based Improvement of Small Checkerboards’ Detection 79

measure of quality, using principles which may be referred back to both swarm
intelligence and evolutionary computation methods. In DE, first, a random set
of solutions (population) is generated. Then, in turn, the solutions are evaluated
by the fitness function and new solutions are generated for the next “genera-
tion”. Such new individuals are created by combining members of the current
population. Every individual acts as a parent vector corresponding to which a
donor vector is created. In the basic version of DE, the donor vector V; for the
it" parent (X;) is generated by combining three random and distinct individ-
uals X1, X,2 and X,3, according to the following rule (mutation of difference
vectors):

Vi=X1+ F(Xr2 - Xr?))

where F (scale factor) is a parameter that strongly influences DE’s performances
and typically lies in the interval [0.4, 1]. Recently, several other mutation strate-
gies have been designed for DE, experimenting with different base vectors and
different numbers of vectors to generate perturbations. For example, the method
explained above is called DE /rand/1, which means that the first element of the
donor vector equation X, is randomly chosen and only one difference vector (in
our case X2 — X,3) is added. After mutation, every parent-donor pair generates
a child (U;), called trial vector, by means of a crossover operation.

U . — Vi if (rand;; < C, or j = jrand)
J X;,; otherwise

As described in the above equation, the j** component/dimension of the 7**
donor vector is obtained by means of uniform (binomial) crossover, where rand;_;
is a random number drawn from a uniform distribution in the range [0, 1], C,
is the crossover rate, and j,.qnq is a randomly selected dimension. The newly-
generated individual Uj; is evaluated by comparing its fitness to its parent’s. The
best survives and will be part of the next generation.

There are several reasons for researchers to consider DE as an attractive
optimization tool: DE is simple and straightforward to implement, and exhibits
much better performance in comparison with several other methods on problems
onto which many real-world problems can be mapped. Moreover, the number of
control parameters in DE is very small, and its space complexity is low [2].

One of the main characteristics of DE, common to most meta-heuristics, is
its stochastic nature. If it fails to find the checkerboard in a run, it is always
possible for it to succeed in another run. A restart strategy in case of failure is
allowed, on the one hand, by DE’s simple formulation and, on the other hand,
by its intrinsically parallel nature, which makes it possible to implement the
algorithm very efficiently. This ability to explore the solution space effectively
and globally, even away from the region where, a priori, the solution is most likely
to be found, is something that is missing in the basic methods and offers the
DE-based method higher performance in the presence of exceptions or outliers;
this is obviously compensated, in principle, by lower repeatability and accuracy
upon success. However, as shown by the results we report in Section 5, within
this problem, the advantages strongly overcome such drawbacks.

80 H. Hassannejad et al.

4 Fitness Function

Let f : ®™ — R be the fitness function (cost function) which must be maximized
(minimized). The function takes a candidate solution in the form of a vector as
argument and produces a real number as output. The goal of global optimization
algorithms like DE is to find a solution s such that f(s) >= f(c) (f(s) <= f(c)
for a minimization problem) for all possible values of ¢ in the search-space, i.e.,
s is the global maximum (minimum).

In this work the input argument of the fitness function is a 6-parameter
vector:

V: [x7y7z705’/877:|

These parameters represent the pose of the object with respect to the camera.
The first three parameters represent a translation in the 3D coordinate system
while the other three represent rotations around the coordinate system axes.
These parameters are the coefficients of the transformation which matches the
world coordinate system to the camera coordinate system (see Figure 3).

Fig. 3. Camera coordinate system (green,left) and world coordinate system (blue,
right). The input vector of the fitness functions represents the transformation (transla-
tion and rotation) which matches the world coordinate system to the camera coordinate
system.

The fitness function calculates the degree of similarity between the re-
projected model and the image. To do so, 73 key points are used to describe
the checkerboard model, as shown in figure 2. The similarity degree is calculated
in five steps, in each of which a different subset of points is matched to the
content of the image region onto which they are projected, generating a score
which is proportional to the matching degree. The following step is taken only
if at least a certain degree of similarity has been obtained in the previous one,
otherwise the hypothesized pose is rejected and a low fitness value is returned.

DE-Based Improvement of Small Checkerboards’ Detection 81

In fact, during these procedure a checkerboard model is grown gradually and
compared with the re-projected points step by step. Algorithm 1 presents the
pseudo-code of the procedure. The thresholds are defined based on the impor-
tance of the step and they have been tuned empirically. A perfect match will
produce a score of 54, however any score higher than 45 can be considered to
represent an acceptable match for the purposes of this work.

Algorithm 1. Fitness Function

function FITNESSFUNCTION(PoseVector)
Calculate Rotation (R) & Translation (T) matrices from PoseVector

Score «— Score + FirstLevelCenterCheck([R, T1)
if Score > 6 then
Score «— Score + SecondLevelCenterCheck([R, T)
end if
if Score > 20 & the center is black then
Score «— Score + PoseCheck([R, T1])
end if
if Score > 23 then
Score «— Score + EdgesCheck([R, T1)
Score — Score 4+ verticesCheck([R, T))
end if
return Score

end function

5 Experimental Results

We used an implementation of DE with binomial crossover and a population
of 60 individuals, with scale factor F and crossover rate set to 0.6 and 0.8,
respectively. Each run of DE lasted for 1000 generations on every image, unless
a fitness value greater than 45 was obtained before. If lower fitness value had
been returned, DE was restarted from scratch with a new population. For every
image, DE was allowed to run up to six times before the detection was aborted.

The algorithm has been tested over four sets of images, for a total of 451
images. The images in each set are taken by a different mobile device and in
different environments, as shown by figures 1 and 4. Motorola Moto-G, Samsung
Galaxy Note 1, and Samsung Galaxy S3 smartphones were used to take the pic-
tures. In the case of Samsung Galaxy S3, since the images at standard resolution
produced worse results using both basic detection algorithms, a scaled version
of the images was tested as well. The fourth set therefore contains the images
in the third set scaled by a factor of 0.5. Figure 4 shows some examples of the
located checkerboards.

82 H. Hassannejad et al.

original image

Fig. 4. The same images of Figure 1, where checkerboards have been correctly located
(image regions marked on the card).

DE-Based Improvement of Small Checkerboards’ Detection

Table 1. Results of the DE-based checkerboard locating algorithm.

83

Motorola MotoG 179 176 (98.32%) | 143 (79.99%) 1.34

Samsung Galaxy Note 1 12 12 (100%) 11 (91.67%) 1.25

Samsung Galaxy S3 130 128 (98.46%) | 123 (94.61%) 1.2

Samsung Galaxy S3 130 127 (97.70%) | 125 (96.15%) 1.13
scaled (0.5)

Total 451 443 (98.22%) | 402 (89.14%) 1.23

A PC was used to perform the tests. It was equipped with an Intel Core i7
@2.80 GHz CPU, 6 GB RAM, and Windows 7 64-bit.

Table 1 reports the results of the algorithm in locating checkerboards. In
more than 98% of cases the checkerboard was correctly located. In 89% of cases
it was found within the first DE run; on average, DE needed to be repeated 1.23
times for each image before the match was found.

After the DE-based algorithm had located the checkerboard, the basic meth-
ods were applied. Table 2 and Table 3 show the results of a comparison between
the new approach and the basic methods alone. As can be observed, there was a
noticeable improvement in both speed and performance of the algorithms when
they were applied to the images pre-processed by DE. In fact, the harder the
problem for them, the longer the basic algorithms run. In the case of OpenCV,
the introduction of the DE-based method reduced the total processing time
(including pre-processing) by more than 20%, whereas the number of correctly
detected checkerboards increased by more than 41%. Using the Matlab algo-
rithm, the introduction of the DE-based method reduced the total processing
time (including pre-processing) up to 38% while the number of detected checker-

Table 2. Results of checkerboard corner detection using the OpenCV algorithm.

Camera Number of Method Accuracy Time
Images (%) (ms)
OpenCV algorithm|118 (65.92%)|3368393
Motorola MotoG 179 with Preprocessing|133 (74.30%) (2652066
Improvement 12.71% 21.3%
OpenCV algorithm |4 (33.33%) |258969
Samsung Galaxy Note 1 12 with Preprocessing |7 (58.33%) [206385
Improvement | 75% 20.31%
OpenCV algorithm |24 (18.46%) 16276198
Samsung Galaxy S3 130 with Preprocessing |51 (39.23%) (12904769
Improvement 112.5% 20.61%
Samsung Galaxy S3 OpenCV algorithm |94 (72.30%) (909017
scaled (0.5) 130 with Preprocessing [101 (77.69%)|744299
Improvement |7.44% 18.12%

84 H. Hassannejad et al.

Table 3. Results of checkerboard corner detection using the Matlab algorithm.

Camera Number of Method Accuracy Time
Images (%) (ms)
Matlab algorithm 159 (88.82%) (1267700
Motorola MotoG 179 |with Preprocessing|171 (95.53%) |303183
Improvement | 7.54% 76.09%

Matlab algorithm |11 (91.67%) |25412
Samsung Galaxy Note 2 12 with Preprocessing|12 (100%) 33209

Improvement | 9.09% -30.68%
Matlab algorithm |91 (70%) 626590
Samsung Galaxy S3 130 with Preprocessing|105 (80.77%) (614923
Improvement 15.38% 1.87%
Samsung Galaxy S3 Matlab algorithm [121 (93.08%) |195250
scaled (0.5) 130 |with Preprocessing|129 (99.23%))|137695
Improvement [6.61% 29.48%
160 1416
120
Z
E ../" ¥ Comer Detection
:c:_o 80 ¥ Processing Time
40
0 T)

OpenCV Matlab

Fig. 5. Reduction of processing time and increase of detection rate after adding the
DE-based pre-processing step.

boards increased by about 10%. Image set 2 was the only one where an increase
in processing time was measured. This anomaly could be due to the high success
rate of the basic methods alone with such pictures and to the small number
of pictures in such a set, which makes the performance estimation less reliable.
Figure 5 shows a summary of the results.

6 Conclusions and Future Work

The algorithm we propose can improve automatic detection of small checker-
boards in images by adding a pre-processing step to existing checkerboard detec-
tion algorithms. In the pre-processing step the region where the checkerboard is

DE-Based Improvement of Small Checkerboards’ Detection 85

expected to be located is determined by employing DE to optimize a projection
transform by which a model of the checkerboard to detect is matched to the
image content.

Experimental results showed that this approach significantly improves the
performances of the algorithms provided by Matlab and OpenCV, as regards
both processing time and successful detection rate of small checkerboards.

A small checkerboard, printed on a PVC card, is a proper measurement ref-
erence for many applications in which such a pattern is expected to occupy only
a small region in the image. Therefore, this algorithm could be a valuable asset
in automatic size-estimation applications and, in particular, for food amount
estimation.

Even if we chose off-the-shelf algorithms as references for performance eval-
uation, the DE-based procedure we propose can improve the performance of
even more sophisticated checkerboard detection algorithms which, as most such
algorithms do, expect the checkerboard to be either the only object in the scene
or to be of larger or, at least, pre-set size. In fact, the main effect of DE-based
pre-processing is to make such algorithms substantially scale-invariant.

In rather sporadic cases, a symmetric checkerboard as the one used in this
work may cause inconsistent pose detections. The procedure we described is
applicable to any pattern, so an asymmetric checkerboard could be used in
applications in which the accuracy of DE-based object location is more critical.
Finally, taking into consideration the intrinsic parallel nature of DE, parallelizing
the algorithm on GPU or any other massively parallel architecture using plat-
forms like CUDA or OpenCL could be considered to further reduce processing
time [6].

Acknowledgments. This work is partially funded by EU within the “Heli-
copter” Project (a H2020 Ambient Assisted Living Joint Project). The authors
would like to thank, in particular, the project partner METEDA s.r.1.

References

1. Almaghrabi, R., Villalobos, G., Pouladzadeh, P., Shirmohammadi, S.: A novel
method for measuring nutrition intake based on food image. In: 2012 IEEE
International Instrumentation and Measurement Technology Conference (I2MTC),
pp. 366-370, May 2012

2. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation 15(1), 4-31 (2011)

3. Kitamura, K., Yamasaki, T., Aizawa, K.: Foodlog: capture, analysis and retrieval
of personal food images via web. In: Proceedings of the ACM Multimedia 2009
Workshop on Multimedia for Cooking and Eating Activities, pp. 23-30. ACM
(2009)

4. Kong, F., Tan, J.: Dietcam: Automatic dietary assessment with mobile camera
phones. Pervasive and Mobile Computing 8(1), 147-163 (2012)

5. Martin, C.K., Kaya, S., Gunturk, B.K.: Quantification of food intake using food
image analysis. In: Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBC 2009, pp. 6869-6872. IEEE (2009)

86

10.

11.

12.

13.

14.

15.

16.

17.

H. Hassannejad et al.

Nashed, Y.S., Ugolotti, R., Mesejo, P., Cagnoni, S.: Libcudaoptimize: an open
source library of GPU-based metaheuristics. In: Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Computation, pp. 117-124.
ACM (2012)

Pouladzadeh, P., Villalobos, G., Almaghrabi, R., Shirmohammadi, S.: A novel SVM
based food recognition method for calorie measurement applications. In: ICME
Workshops, pp. 495-498 (2012)

Puri, M., Zhu, Z., Yu, Q., Divakaran, A., Sawhney, H.: Recognition and volume
estimation of food intake using a mobile device. In: 2009 Workshop on Applications
of Computer Vision (WACV), pp. 1-8. IEEE (2009)

Rahman, M.H., Li, Q., Pickering, M., Frater, M., Kerr, D., Bouchey, C., Delp, E.:
Food volume estimation in a mobile phone based dietary assessment system. In:
2012 Eighth International Conference on Signal Image Technology and Internet
Based Systems (SITIS), pp. 988-995. IEEE (2012)

Rahmana, M.H., Pickering, M.R., Kerr, D., Boushey, C.J., Delp, E.J.: A new tex-
ture feature for improved food recognition accuracy in a mobile phone based dietary
assessment system. In: 2012 IEEE International Conference on Multimedia and
Expo Workshops (ICMEW), pp. 418-423. IEEE (2012)

Rufli, M., Scaramuzza, D., Siegwart, R.: Automatic detection of checkerboards on
blurred and distorted images. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2008, pp. 3121-3126. IEEE (2008)

Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme
for global optimization over continuous spaces, vol. 3. ICSI, Berkeley (1995)

Sun, W., Yang, X., Xiao, S., Hu, W.: Robust checkerboard recognition for efficient
nonplanar geometry registration in projector-camera systems. In: Proceedings of
the 5th ACM/IEEE International Workshop on Projector camera systems, p. 2.
ACM (2008)

Ugolotti, R., Nashed, Y.S.G., Cagnoni, S.: Real-time GPU based road sign detec-
tion and classification. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia,
G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 153-162. Springer,
Heidelberg (2012)

Ugolotti, R., Nashed, Y.S., Mesejo, P., Ivekovi¢, S., Mussi, L., Cagnoni, S.: Particle
swarm optimization and differential evolution for model-based object detection.
Applied Soft Computing 13(6), 3092-3105 (2013)

Weiss, R., Stumbo, P.J., Divakaran, A.: Automatic food documentation and vol-
ume computation using digital imaging and electronic transmission. Journal of the
American Dietetic Association 110(1), 42-44 (2010)

Zhu, F., Bosch, M., Woo, 1., Kim, S., Boushey, C.J., Ebert, D.S., Delp, E.J.: The
use of mobile devices in aiding dietary assessment and evaluation. IEEE Journal
of Selected Topics in Signal Processing 4(4), 756766 (2010)

Multi Agent Systems

Empowering Agent Coordination
with Social Engagement

Matteo Baldoni®™, Cristina Baroglio, Federico Capuzzimati,
and Roberto Micalizio

Dipartimento di Informatica, Universita degli Studi di Torino,
c.so Svizzera 185, 10149 Torino, Italy
{matteo.baldoni,cristina.baroglio,federico.capuzzimati,
roberto.micalizio}@unito.it

Abstract. Agent coordination based on Activity Theory postulates that
agents control their own behavior from the outside by using and creat-
ing artifacts through which they interact. Based on this conception, we
envisage social engagements as first-class resources that agents exploit
in their deliberative cycle (as well as beliefs, goals, intentions), and pro-
pose to realize them as artifacts that agents create and manipulate along
the interaction, and that drive the interaction itself. Consequently, agents
will base their reasoning on their social engagement, instead of relying on
event occurrence alone. Placing social engagement at the center of coor-
dination promotes agent decoupling and also the decoupling of the agent
specifications from the specification of their coordination. The paper also
discusses JaCaMo+, a framework that implements this proposal.

Keywords: Social engagement - Commitments - Agents and artifacts -
Agent programming + Implementation

1 Introduction

We propose an agent programming approach that is inspired by, and extends,
the environment programming methodology proposed in [18]. In this methodol-
ogy, the environment is seen as a programmable part of the (multiagent) system.
The methodology takes advantage of the A&A meta-model [17,23] that, having
its roots in the Activity Theory [13], extends the agent paradigm with the arti-
fact primitive abstraction. An artifact is a computational, programmable system
resource, that can be manipulated by agents.

In this context, programming a Multiagent System (MAS) consists of two
main activities: (1) programming the agents as autonomous software entities
designed to accomplish user-defined goals; and (2) programming the environment
(i-e., the artifacts) that provide agents with those functionalities they can exploit
while performing their own activities. In other words, the environment where the
agents operate is thought of as a set of artifacts, where each artifact is a resource,
or tool, that is made available to the agents. Indeed, the framework is much more
powerful as it allows agents not only to access and use artifacts, but also to create
new artifacts, to adapt them, and even to link two (or more) artifacts.

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 89-101, 2015.
DOI: 10.1007/978-3-319-24309-2_7

90 M. Baldoni et al.

An artifact provides the agents using it with a set of operations and a set of
observable properties. Operations are computational processes that are executed
inside the artifact itself, and that can be triggered by agents or other artifacts.
Observable properties are state variables that are observable by all those agents
using, or focusing on, the artifact. Of course, observable properties can change
over time as a result of the operations occurred inside the artifact. It must
be noticed that, although artifacts are substantially a coordination mechanism,
direct communication between agents is still possible in the framework proposed
by Ricci et al. [18]

The Coordination by Social Engagement (CoSE) programming approach pro-
posed in this paper is a characterization of the A&A meta-model that aims at
further simplifying the design and programming of MASs. First of all, in CoSE
agents are not allowed to communicate directly, not even via message exchange;
agent interaction can occur only by way of artifacts (as postulated by Activ-
ity Theory [13]). In addition, CoSE better characterizes the content of artifact
observable properties. These properties are not only (shared) state variables,
but are also, and more importantly, social relationships. Namely, structures that
explicitly represent the dependencies existing between any two agents that inter-
act through a same artifact.

In this paper we show how the programming of interacting agents can be sys-
tematically approached by relying on the explicit representation of the agents’
social engagement. The basic idea is that when agents can directly handle
social relationships as resources, the coding phase can be organized in a pre-
cise sequence of steps. Specifically, we focus on social relationships that can be
captured as social commitments [19]. The advantages are both on the software
engineering perspective (decoupling of code), and on the modeling perspective
(agents may consider truly social dependencies, and thus other agents, in their
deliberative cycle).

2 Coordination via Social Engagement

We consider social relationships that can be represented as social commitments
[19]. A commitment C(z, y, s,u) captures that agent x (debtor) commits to agent
y (creditor) to bring about the consequent condition w when the antecedent con-
dition s holds. Antecedent and consequent conditions are conjunctions or dis-
junctions of events and commitments. Commitments have a life cycle. We adopt
the commitments life cycle proposed in [21]. Briefly, a commitment is Null right
before being created; Active when it is created. Active has two substates: Condi-
tional (as long as the antecedent condition did not occur), and Detached (when
the antecedent condition occurred). In the latter case, the debtor is now engaged in
the consequent condition of the commitment. An Active commitment can become:
Pending if suspended; Satisfied, if the engagement is accomplished; Expired, if it
will not be necessary to accomplish the consequent condition; Terminated if the
commitment is canceled when Conditional or released when Active; and finally,
Violated when its antecedent has been satisfied, but its consequent will be for-
ever false, or it is canceled when Detached (the debtor will be considered liable

Empowering Agent Coordination with Social Engagement 91

for the violation). As usual, commitments are manipulated by the commitment
operations create (an agent creates a commitment toward someone), cancel (a
debtor withdraws an own commitment), release (an agent withdraws a commit-
ment of which it is the creditor), assign (a new creditor is specified by the previous
one), delegate (a new debtor is specified by the previous one), discharge (conse-
quent condition u holds). Since debtors are expected to behave so as to satisfy
their engagements, commitments create social expectations on the agents’ behav-
iors [9]. Moreover, since we implement commitments as observable properties of
an artifact, they can be used by agents in their practical reasoning together with
beliefs, intentions, and goals for taking into account other agents and the condi-
tions the latter committed to have achieved.

Programming a MAS in our setting requires, as in the environment pro-
gramming methodology, to program both agents and artifacts. CoSE provides a
commitment-driven methodology for programming agents.

Artifacts. We consider artifacts that include commitments among their observ-
able properties; whenever this happens, we say that the artifact has a social state.
Thus, an artifact Art is formally represented as a tuple (S, O, R, p), where:

1. S is a social state, namely, a set of state variables and social relationships
represented as commitments;

2. O is a set of artifact operations made available to the agents focusing on
the artifact; each operation op in O has a social meaning: The execution of
op creates a new social relationship (i.e., creates a new commitment), or it
makes an existing social relationship evolve (i.e., the state of a commitment
changes). In other words, whenever an artifact operation is executed, the
artifact social state changes not only because some state variables change
their values, but also because some social relationships evolve (e.g., new
commitments are created, or existing commitments are detached/satisfied).
Along the line discussed in [2], we say that the type 7 of an operation op,
op : T, is given by the set {c1,...,¢c,} of commitments that are created by
the execution of op.

3. R is a set of role names exposed by the artifact: an agent which intends to
use the artifact must enact one the roles it exposes.

4. p: R — 29 is a function mapping role names to subset of operations in O;
for each r € R, p(r) denotes the subset of operations that an agent playing
role 7 can legally perform on the artifact.

Since operations are typed, and since roles map to operations, we can asso-
ciate each role r € Art.R with a type. Formally, a role r € Art.R has a type T,
r: 7, such that

T = U Tis
op; €p(r)|opi:T;

namely, the type of a role is the union of all the types of the operations that are
associated with that role.

92 M. Baldoni et al.

Agents. For the purposes of this paper, an agent Ag can be abstracted as a triple
(X, B,G); where X is the agent internal state, inspectable by Ag only, and B
is a set {b1,...,by} of behaviors, each of which enables Ag to perform a given
activity. In other terms, each behavior represents a piece of software that the
designer foresees in the agent specification phase, and, then, the programmer
actually implements in the development phase. Also behaviors can be associated
with types. According to [2], a behavior b has type 7, denoted as b : 7, where 7 is,
as before, a set of commitments {cy, ¢, ..., c,}. A behavior b of type 7 is capable
of satisfying the commitments in the type. [2] also pointed out how the usage of
typed behaviors enables a dynamic type-checking of agents, guaranteeing that an
agent can only enact roles for which it can satisfy all the involved commitments.
Finally, G is a set of goals assigned to the agent.

CoSE Methodology. Programming an agent Ag, thus, comes down to imple-
menting the set of its behaviors. To this aim, the CoSE methodology suggests a
programmer the following steps. Let Env be a programming environment con-
sisting of a set {Arty,..., Art,} of artifacts, let G be a set {g1,...,gx} of goals
assigned to Ag, and let B be the initial (possibly empty) set of behaviors of Ag.
For each goal g; € G:

1. If g; can be obtained by Ag without the need of interacting with other agents,
then, program the behavior b for achieving g; and add b to B;

2. Otherwise, Ag needs to interact with other agents. To this aim, select a
suitable artifact Art; in Enwv. This choice is made by relying on the artifact
roles and operations. Specifically, the following matches are considered:

(a) Jop € Art;.O whose social meaning is create(C(z,y, g;,p)). Intuitively,
an agent playing the role x offers to have the consequent condition p
achieved if some other agent, playing role y, will have g; achieved. Thus,
if Ag will play the role z, by performing op it will become the debtor of
a conditional commitment, created in the social state Art;.S. If another
agent, playing role y, will bring about the antecedent g; (i.e., the goal Ag
is interested in), Ag will be engaged in bringing about the consequent.

(b) C(Ad',y,q,9:) € Art;.S and Jop € Art;.O, with social meaning de-
tach(C(Ag’, v, ¢, g;))- Intuitively, the social state Art;.S already contains
an offer by agent Ag’, and if Ag plays role y, then, by performing op, it
will accept that offer. Thus, by achieving the antecedent condition ¢, Ag
will bind the other agent to bring about g;.

3. Once a suitable artifact Art; has been selected, the programmer has to iden-
tify the role(s) in Art;.R agent Ag could play during its execution. Such a
step is partially based on the set of operations that have been previously
recognized as useful for achieving g;. Note, however, that function p just
maps roles to subsets of operations, but it does not induce a partition on
Art;.O; that is, given any two roles r1 and 72 in R, p(r1)Np(r2) is not neces-
sarily empty. Therefore, once the programmer has identified the operations
Ag needs for achieving g;, the programmer has to select, among all roles in
Art;.R enabling such operations, a role r that better than others fits her/his
needs. Let Roles be such a set of selected role(s) in Art;.

Empowering Agent Coordination with Social Engagement 93

4. For each role r € Roles, let r be of type 7={c1,...,cn}. Then, for each
commitment ¢; € 7, program a behavior b agent Ag assumes whenever a
state change occurs on ¢;, and add b in B.

Following these steps, the programmer will implement an agent incrementally, by
considering one goal at a time, and by focusing on subproblems (i.e., behaviors),
that either directly or via interaction will be programmed to obtain the goal at
hand.

CoSE enjoys the following properties:

— Agent-to-Agent Decoupling: Since agents can only interact through artifacts,
the separation between agents is even more neat than in the direct message
exchange case. The exchange of messages, in fact, assumes that the two
agents (the sender and the receiver) share a common language. In CoSE it
is only required that agents are capable of using artifact operations. The
advantage is to promote agent openness and heterogeneity.

— Agent-Logic-to-Coordination-Logic Decoupling: Programming an agent just
requires the designer to consider two main aspects: (1) the domain-dependent
process for reaching the goal the agent is devised for, and (2) the behavior
of the agent as a response to changes in the social states of the artifacts
the agent is focusing on. The coordination logic is no longer part of the
agent; rather, the coordination logic is only implemented within the artifact.
Among the main advantages, code verification, i.e. the interaction logic is
programmed just in one precise portion of the system and verified once only,
and Code Maintainability, i.e. the interaction logic is not spread across the
agents, changes to the interaction logic just involve the artifact, while agents
do not need to change.

3 JaCaMo+: Programming Coordination with Social
Relationships

JaCaMo+ builds on the seminal work [1] and on JaCaMo [6], a platform inte-
grating Jason (as an agent programming language), CArtAgO (as a realization
of the A&A meta-model), and Moise (as a support to the realization of orga-
nizations). A MAS realized in JaCaMo is a Moise agent organization, which
involves a set of Jason agents, all working in CArtAgO environments. CArtAgO
environments can be designed and programmed as a dynamic set of shared arti-
facts, possibly distributed among various nodes of a network, that are collected
into workspaces. By focusing on an artifact, an agent registers to be notified
of events that are generated inside the artifact; e.g., when other agents execute
some action.

Jason [7] implements in Java, and extends, the agent programming language
AgentSpeak(L). Jason agents are characterized by a BDI architecture: Each of
them has (1) its belief base, which is a set of ground (first-order) atomic formulas;
and (2) its set of plans (plan library). It is possible to specify two types of goals:

94 M. Baldoni et al.

achievement goals (atomic formulas prefixed by the ‘! operator) and test goals
(prefixed by ‘?’). Agents can reason on their beliefs/goals and react to events,
amounting either to belief changes (occurred by sensing their environment) or
to goal changes. Each plan has a triggering event (an event that causes its
activation), which can either be the addition or the deletion of some belief or
goal. The syntax is inherently declarative. In JaCaMo, the beliefs of Jason agents
can also change due to operations performed by some agent of the MAS on the
CArtAgO environment, whose consequences are automatically propagated.

JaCaMo+ extends JaCaMo along different directions. In particular,
JaCaMo+ reifies the social relationships (commitments) as resources that are
available to the interacting agents. This was obtained by enriching CArtAgO
artifacts with an explicit representation of commitments and of commitment-
based interaction protocols. In this way, JaCaMo+ seamlessly integrates Jason
BDI agents with social commitments. The resulting class of artifacts reifies the
execution of commitment-based protocols, including the social state, and enables
Jason agents to be notified about the social events, and to perform practical rea-
soning about social expectations thanks to commitments: Agents expect that the
commitment debtors behave so as to satisfy the corresponding consequent con-
ditions, and use such information to decide about their own behavior and goals.

A protocol artifact is a JaCaMo+ artifact that implements a commitment-
based protocol, structured into a set of roles, which can manipulate the protocol
social state. By enacting a role, an agent receives “social powers”, whose exe-
cution has public social consequences, expressed in terms of commitments. A
JaCaMo+ agent, focusing on a protocol artifact, has access to the social state of
the artifact. The implementation, actually, maps the social state onto a portion
of the belief base each such agent has: any change occurred in the artifact’s social
state is instantaneously propagated to the belief bases of all the focusing agents.
Agents are, thereby, constantly aligned with the social state.

An agent playing a role can only execute the protocol actions that are asso-
ciated with such a, otherwise the artifact raises an exception that is notified
to the violator. When a protocol action is executed, the social state is updated
accordingly by adding new commitments, or by modifying the state of exist-
ing commitments. The artifact is responsible for maintaining the social state
up-to-date, following action execution and the commitment life cycle.

JaCaMo+ allows specifying Jason plans, whose triggering events involve
social relationships; i.e., commitments. In JaCaMo+, a commitment is repre-
sented as a term cc(debtor, creditor, antecedent, consequent, status) where
debtor and creditor identify the involved agents, while antecedent and conse-
quent are the commitment conditions. As a difference with standard commit-
ment notation, we explicitly represent a commitment state by means of the
Status parameter. Commitments can be used inside a plan context or body. Dif-
ferently than beliefs, commitment assertion/deletion can only occur through the
artifact, as a consequence of a change of the social state. For example, this is
the case that deals with commitment addition:

+cc(debtor, creditor, antecedent, consequent, status) : (context) «— (body).

Empowering Agent Coordination with Social Engagement 95

The plan is triggered when a commitment that unifies with the one specified
in the plan head appears in the social state. The syntax is the standard for Jason
plans. Debtor and creditor are to be substituted by the proper role names. The
plan may be aimed at achieving a change of the commitment status (e.g., the
debtor will try to bring about the consequent and satisfy the commitment), or
at allowing the agent to do something as a reaction (e.g., collecting informa-
tion). Similar schemata can be defined to tackle commitment deletion and the
addition (deletion) of social facts. JaCaMo+ allows using commitments also in
contexts and plans as test goals 7cc(. ..), or achievement goals lcc(. ..). Addition
or deletion of such goals can, as well, be managed by plans. For example:

+lee(debtor, creditor, antecedent, consequent, status) : {context) < (body).

The plan is triggered when the agent creates an achievement goal concerning
a commitment. Consequently, the agent will act upon the artifact so as to create
the desired social relationship. After the execution of the plan, the commitment
cc(debtor, creditor, antecedent, consequent, status) will hold in the social state,
and will be projected onto the belief bases of each agent focusing on the artifact.

4 CoSE Methodology in Action

We explain the impact of our proposals by comparing the JaCaMo implemen-
tation [18] of Dijkstra’s Dining Philosophers, with an implementation obtained
via the CoSE methodology in JaCaMo+. The problem involves two roles and,
thus, two kinds of agents: waiter, which is in charge of initializing the artifact,
and philosopher. (We omit waiter because trivial and not interactive.)

In the JaCaMo implementation, coordination is obtained by relying on a
CArtAgO artifact. Goal start initializes information about the philosopher’s
forks, and starts the main loop (thinking and then eating).

1 !start.

2 +!start <— .my_name(Me);

3 in("philo_init" ,Me, Left ,Right);

4 +my_left_fork (Left); +my_right_fork (Right);

5 !'living .

6 +!living <— !thinking;

7 leating;

8 Il'living .

9 +leating <— l!acquireRes; l!eat; !releaseRes.

10 +lacquireRes: my_left_fork(Left) & my_right_fork (Right)
11 <— in("ticket");

12 in("fork",Left); in("fork",Right).

13 +!releaseRes: my_left_fork(Left) & my_right_fork (Right)
14 <— out("fork",Left); out("fork", Right);

15 out("ticket").

16 +!thinking <— .my_name(Me); println(Me," thinking").
17 +!leat <— .my_name(Me); println(Me," eating").

Listing 1.1. The philosopher in JaCaMo [18].

Eating requires using the artifact for gaining forks and also a ticket that is
used for avoiding deadlocks. Each agent implements the coordination policy in
its plans, through the artifact operations in and out, as it directly manages

96 M. Baldoni et al.

the acquisition and release of forks (and tickets). So, even though Agent-to-
Agent decoupling is achieved, there is no clear separation of concerns between
the agent programming and the artifact programming for what concerns the
coordination logic; consequently, there is a tight coupling between the agents
and the artifacts that allow their interaction. This hinders the specification of
an agent programming methodology independent of that of the artifacts.

A first improvement to this solution (still in JaCaMo) could be placing the
coordination logic inside the artifact; this could be achieved by: (1) moving the
calls of in and out inside new higher level operations (in the following, askForks
and returnForks respectively); and (2) introducing an observable property avail-
ableForks that is notified in the agent’s belief base when forks are available:

1 +leating: my_left_fork (Left) & my_right_fork (Right)

2 <— askForks(Left, Right).

3 +availableForks (Left, Right) <— !eat; returnForks(Left, Right).
This second solution, though improved, is still not completely satisfactory. The
relation between askForks and availableForks (the latter is a consequence of the
former), that is fundamental to the programmer, is hidden inside the artifact.
The agent invokes askForks (a service, at all respects) and, when forks are avail-
able, the artifact tells the agent through the observable property availableForks.
Observable properties are signals, the agent is programmed to react to signals.
Indeed, the plan corresponding to availableForks is activated as a reaction to
the creation of the corresponding belief: The relation, that ties the plan to the
event that activates it, is causal, but since it is not expressed explicitly, the agent
is not enabled to perform any kind of reasoning. Also in this second solution,
thus, such a relation depends on the coordination logic that is contained in the
artifact. Once again, the lack of separation of concerns is troublesome for the
specification of an agent programming methodology independent of artifacts.

1 /+ Initial goals x/

2 lcounter (0).

3 /* Plans =/

4 !start.

5 +!start: true

6 <— focusWhenAvailable("philoArtifact");

7 enact ("philosopher").

8 +enacted (Id,"philosopher" , Role_Id)

9 <— +enactment_id (Role_Id);

10 .my_name (Me);

11 in("philo_init" ,Me, Left ,Right);

12 +my_left_fork (Left);

13 +my_right_fork (Right);

14 I''living .

15 +!living: counter (C)

16 <— !thinking;

17 leating .

18 +leating: my_left_fork(Left) & my_right_fork (Right) & counter (C)
19 <— .my-name(Me); ?7enactment_id(Role_Id);

20 askForks (Left , Right, C).

21 +cc(My-Role_.Id, "philosopher", available (Left,Right,C),
22 returnForks (Left ,Right ,C),"DETACHED")

23 : enactment_id (My_Role_.Id) & my_left_fork (Left) &
24 my_right_fork (Right) & counter (C)

25 <— leat(Left, Right, C);

26 returnForks (Left , Right, C).

27 +cc(My_-Role_.Id, "philosopher", available (Left,Right,C),
28 returnForks (Left ,Right ,C), "SATISFIED")

Empowering Agent Coordination with Social Engagement 97

29 : enactment_id (My_Role_.Id) & my_left_fork (Left)

30 <— 7?counter(C); —Fcounter(C+1); !living.

31 +!leat (Left, Right, C): my_left_fork(Left) & my_right_fork (Right)
32 & available (Left, Right, C) & counter (C)

33 <— .my-name(Me); ?enactment_id (Role_Id).

34 println (Me, " ", Role.Id, " eating").

35 +!thinking: counter (C)

36 <— .my-name(Me); ?enactment_id(Role_Id);

37 println (Me, " ", Role.Id, " thinking, time " ,C).

Listing 1.2. The philosopher agent program in JaCaMo+.

In JaCaMo+, instead (Listing 1.2), coordination relies on social engagement. The
agent program is built by exploiting the CoSE methodology. As in the JaCaMo
solution, we suppose our agent has a !living main cycle (In. 15) that alternates
the goals !thinking and leating. Coordination is needed just for eating: to this
aim, forks must be available. Hence, we consider an environment that contains at
least one artifact which satisfies one of the cases of step (2) in the methodology.
Suppose case (a) is satisfied by an artifact exposing a role philosopher, which
is empowered with an operation askForks, that will let the agent on stand-
by until forks are available and, then, will create a commitment to return the
assigned forks. The agent who executes the operation is the debtor of such a
commitment, any other philosopher is the creditor. The antecedent condition
is that forks are available and the consequent is that forks will be returned.
Note that fork assignment is decided by way of a coordination policy that is
implemented in the artifact.

Now, we need to program the agent behavior in occurrence of the state
changes of such a commitment; indeed, only state changes that are meaningful to
the aims of the agent are to be tackled. In our case, only Detached and Satisfied
are meaningful. When the commitment is detached, the agent eats and then
executes returnForks, thus satisfying its commitment. When the commitment is
satisfied, the agent can re-start its main cycle (living).

In this case, askForks is not a mere service by the artifact; it creates a social
engagement, whose debtor is the requesting philosopher, and the creditor is the
whole class of philosophers. This is done by the commitment C(My_Role_Id,
“philosopher”, available(Left, Right,C), returnForks(Left,Right,C)). The agent is
requested to include one or more behaviors for managing such a commitment
and, in particular, for managing the case in which it is Detached. This is pos-
sible because askForks and the event +cc(My_Role_Id , “philosopher” | avail-
able(Left,Right,C), returnForks(Left,Right,C), “DETACHED”)! are tied by the
social meaning of the operation in an explicit way, and this information is avail-
able to the programmer, who does not need to know the coordination logic
that is implemented inside the artifact. Knowing the social meanings of arti-
fact operations is sufficient for coordinating with others correctly. The connec-
tion between the event “commitment detached” and the associated plan is not
only causal, but rather the plan has the aim of satisfying the consequent condi-
tion of the commitment (returnForks). Once again, there is not need of know-
ing or using logics that are internal to the artifact. Thus, we achieve not only

! Meaning that a belief of type cc(...) was added to the agent’s belief base.

98 M. Baldoni et al.

Agent-to-Agent decoupling, but also a real Agent-Logic-to-Coordination-Logic
Decoupling. Social meanings are the key element that enables the definition of
an agent programming methodology.

5 Discussion and Conclusions

CoSE extends environments by realizing Engestrom’s activity systems, rather
than mere artifacts. Citing [13, page31], activity systems extend the classical
triadic model (subject, object, and mediating artifact) in that the outcome is
no longer momentary (situational), but consists of new, objectified meanings
and relatively lasting patterns of interaction. In our case, objectified meanings
are supplied by reified commitments, and all interactions are driven by such
meanings instead than by the events (signs or signals), that are “physically”
executed by the agents. Reified commitments also specify expected behaviors in
terms of what is to be achieved rather than how.

The introduction of a commitment-based shared semantics of events allows
for the design of software that meets many software engineering principles. First
of all, abstraction: a failure to separate behavior (i.e., what) from implementation
(i.e., how) is a common cause of unnecessary coupling among the components
in a system. The what-level is tackled, in our proposal, by working at the level
of commitments, and this is the only information that matters for carrying on
an interaction/coordination. An agent who takes on a commitment assumes the
responsibility that something will occur. Now then, who will make it occur, and
which steps will bring to the outcome, are left to the how-level of single agent
programming. Such steps may depend on the context, accommodating emerging
opportunities, or managing specific difficulties. In other words, it is generally not
necessary to impose any strict causal chain in signal generation.

Indeed, CoSE facilitates a separation of concerns between agent program-
ming and the programming of agent coordination: As social relationships
abstract the actual events upon which agents should coordinate, programmers
can consider the programming of agents and the programming of coordination
artifacts as two distinct problems. Programmers can define an agent’s behavior
on the sole basis of the semantics of social relationships, rather than on low-level
events. Focusing on artifacts, programmers focuses on how the occurrence of an
event changes the states of a set of social relations. Since social relationships
are more abstract than events, the decoupling brings along further beneficial
properties like modularity and reuse.

The generality principle calls for the development of software that is free
from unnatural restrictions and limitations. This is precisely what is achieved
by an approach that focuses on what rather than on how and that relies on a
declarative, rather than on a procedural, representation. The incremental devel-
opment principle advocates the incremental realization of software; e.g., one case
at a time. Our proposal meets this requirement in that agent software can be
developed by tackling one commitment at a time, or even one commitment state
change at a time. A carefully planned incremental development process can also
simplify the management of changes in requirements.

Empowering Agent Coordination with Social Engagement 99

Concerning agent-based design, many proposals are found in the literature.
Briefly, SODA [15] is an agent-oriented methodology for the analysis and design
of agent-based systems, adopting a layering principle and a tabular representa-
tion. It focuses on inter-agent issues, like the engineering of societies and envi-
ronment for MAS, and relies on a meta-model that includes both agents and
artifacts. However, SODA does not foresee social engagements nor it provides
an agent programming methodology. GAIA [24] is a methodology for developing
a MAS as an organization, not for programming agents. The 2CL Methodology
[5] is an extension of [12]. It supports the design of commitment-based business
protocols that include temporal constraints, and allows the verification of prop-
erties. As such, it could be used for helping the realization of artifacts, although
the methodology is general and not oriented to this specific abstraction.

Social engagements are at the basis also of organization-oriented program-
ming, of which JaCaMo is a prominent example. Recently, [25] proposed a
JaCaMo extension that introduces Interaction Components to encode—in an
automaton-like shape—protocols, where transitions are associated with (undi-
rected) obligations. Such protocols provide guidelines of how organizational goals
should be achieved. However, organization-driven guidelines are but a kind of
interaction. We claim that when guidelines are missing, interaction should be
supported based on the fundamental notions of goal and engagement. So, our
proposal complements [25], and more in general organizational and normative
approaches [10,11,14,16], in this respect. Social commitments [19], differently
from obligations, are taken by agents as a result of internal deliberative processes,
and can be directly manipulated by the agents, In addition, [22] shows how goals
and commitments are strongly interrelated. Commitments are, thus, evidence of
the agents’ capacity to take responsibilities autonomously. Citing Singh [20], an
agent would become a debtor of a commitment based on the agent’s own com-
munications: either by directly saying something or having another agent com-
municate something in conjunction with a prior communication of the debtor.
That is, there is a causal path from the establishment of a commitment to prior
communications by the debtor of that commitment. Such causal relationships are
at the heart of the CoSE methodology. By contrast, obligations can result from
a deliberative process which is outside the agent; this is the case of the inter-
action component in [25]. For a detailed discussion of the differences between
obligations and commitments see [3].

Consequently, our proposal differs deeply also from proposals like [8], which
also account for a social dimension of the MAS. That work, for instance, presents
the SOPL language, that allows including, in each of the agents’ programs,
states of affairs that the agent tolerates (even though they are not explicit goals
of its own), and rules to reason about the other agents’ mental states (social
conditions). Social conditions comprise possible evolutions depending on how
other agents behave, they can vary from agent to agent, and are used by the agent
in the process of deciding how to act. Nevertheless, mental states are private to
the agents and the absence of a semantics of actions based on mutual agreement
makes speculations about the others’ behavior fragile, because expectations do

100 M. Baldoni et al.

not base upon explicit engagements. From a software engineering perspective,
then, since evolutions of interactions are encoded in the very agent programs, the
proposal does not support the decoupling of agents from the interaction logic.

Future work will concern tackling the formal notions of social context and of
enactment of a protocol in a social context introduced in [4], as well as further
exploring the use of typing systems, along the lines of [2].

Acknowledgments. This work was partially supported by the Accountable Trustwor-
thy Organizations and Systems (AThOS) project, funded by Universita degli Studi di
Torino and Compagnia di San Paolo (CSP 2014).

References

1. Baldoni, M., Baroglio, C., Capuzzimati, F.: A Commitment-based Infrastructure
for Programming Socio-Technical Systems. ACM Transactions on Internet Tech-
nology, Special Issue on Foundations of Social Computing 14(4), 23:1-23:23 (2014)

2. Baldoni, M., Baroglio, C., Capuzzimati, F.: Typing multi-agent systems via com-
mitments. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS,
vol. 8758, pp. 388-405. Springer, Heidelberg (2014)

3. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Leveraging commitments
and goals in agent interaction. In: Ancona, D., Maratea, M., Mascardi, V. (eds.)
Proc. of XXX Italian Conference on Computational Logic, CILC (2015)

4. Baldoni, M., Baroglio, C., Chopra, A.K., Singh, M.P.: Composing and verify-
ing commitment-based multiagent protocols. In: Wooldridge, M., Yang, Q. (eds.)
Proc. of 24th International Joint Conference on Artificial Intelligence, IJCAT 2015,
Buenos Aires, Argentina, July 25-31, 2015

5. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., Capuzzimati, F.: Engineering
commitment-based business protocols with the 2CL methodology. JAAMAS 28(4),
519-557 (2014)

6. Boissier, O., Bordini, R.H., Hbner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747-761
(2013)

7. Bordini, R.H., Fred Hiibner, J., Wooldridge, M.: Programming Multi-Agent Sys-
tems in AgentSpeak Using Jason. John Wiley & Sons (2007)

8. Buccafurri, F., Caminiti, G.: Logic programming with social features. Theory and
Practice of Logic Programming (TPLP) 8(5-6), 643-690 (2008)

9. Conte, R., Castelfranchi, C., Dignum, F.P.M.: Autonomous norm acceptance. In:
Papadimitriou, C., Singh, M.P., Miiller, J.P. (eds.) ATAL 1998. LNCS (LNAI),
vol. 1555, pp. 99-112. Springer, Heidelberg (1999)

10. Criado, N., Argente, E., Noriega, P., Botti,: Reasoning about norms under uncer-
tainty in dynamic environments. International Journal of Approximate Reasoning
(2014)

11. Dastani, M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.A.M.: Normative multi-
agent programs and their logics. In: Normative Multi-Agent Systems, 15.03. -
20.03.2009. Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, Germany, vol. 09121 (2009)

12. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for modeling
and evolving cross-organizational business processes. ACM Trans. Softw. Eng.
Methodol. 19(2) (2009)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Empowering Agent Coordination with Social Engagement 101

Engestrom, Y., Miettinen, R., Punaméki, R.-L. (eds.): Perspectives on Activity
Theory. Cambridge University Press, Cambridge (1999)

Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
AAMAS, vol. 1, pp. 177-184. IFAAMAS (2009)

Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: a roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49-62. Springer, Heidelberg (2006)

Okouya, D., Fornara, N., Colombetti, M.: An infrastructure for the design and
development of open interaction systems. In: Winikoff, M. (ed.) EMAS 2013.
LNCS, vol. 8245, pp. 215-234. Springer, Heidelberg (2013)

Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A& A meta-model for multi-agent
systems. JAAMAS 17(3), 432-456 (2008)

Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent sys-
tems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems
23(2), 158-192 (2011)

Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Intell.
Law 7(1), 97-113 (1999)

Singh, M.P.: Commitments in multiagent systems some controversies, some
prospects. In: Paglieri, F., Tummolini, L., Falcone, R., Miceli, M. (eds.) The Goals
of Cognition. Essays in Honor of Cristiano Castelfranchi, vol. 31, pp. 601-626.
College Publications, London (2011)

Telang, P.R., Singh, M.P., Yorke-Smith, N.: Relating goal and commitment seman-
tics. In: Dennis, L., Boissier, O., Bordini, R.H. (eds.) ProMAS 2011. LNCS, vol.
7217, pp. 22-37. Springer, Heidelberg (2012)

Telang, P.R., Yorke-Smith, N., Singh, M.P.: Relating goal and commitment seman-
tics. In: Dennis, L., Boissier, O., Bordini, R.H. (eds.) Programming Multi-Agent
Systems. LNCS, vol. 7212, pp. 22-37. Springer, Heidelberg (2012)

Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. JAAMAS 14(1), 5-30 (2007)

Zambonelli, F.; Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317-370 (2003)
Zatelli, M.R., Hiibner, J.F.: The interaction as an integration component for the
JaCaMo platform. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.) EMAS 2014.
LNCS, vol. 8758, pp. 431-450. Springer, Heidelberg (2014)

Anticipatory Coordination in Socio-Technical
Knowledge-Intensive Environments: Behavioural
Implicit Communication in MoK

Stefano Mariani® and Andrea Omicini

DISI, Alma Mater Studiorum—Universita di Bologna, Bologna, Italy
{s.mariani,andrea.omicini}@unibo.it

Abstract. Some of the most peculiar traits of socio-technical KIE
(knowledge-intensive environments) — such as unpredictability of agents’
behaviour, ever-growing amount of information to manage, fast-paced
production/consumption — tangle coordination of information, by affect-
ing, e.g., reachability by knowledge prosumers and manageability by the
IT infrastructure. Here, we propose a novel approach to coordination in
KIE, by extending the MoK model for knowledge self-organisation with
key concepts from the cognitive theory of BIC (behavioural implicit com-
munication).

1 Introduction

Socio-technical systems (STS) arise when cognitive and social interaction are
mediated by information technology, rather than by the natural world alone [18]:
in other words, any system in which the infrastructure enabling and constraining
interaction is technological, but the evolution of the system is driven by social
and cognitive interactions, is a STS. By definition, STS are heavily interaction-
centred, so they need proper coordination mechanisms at the infrastructure level
to harness the intricacies of run-time dependencies between the agents (either
software or human) participating the system [8]. However, designing effective
coordination is made complex by, at least, two aspects of STS:

unpredictability — By definition, STS have “humans-in-the-loop”, and,
whereas software behaviour is programmable and predictable, human’s one is
not. Accordingly, the coordination infrastructure may only draw the bound-
aries within which user behaviour can stretch, by defining the set of admis-
sible actions and interactions at users’ disposal.

scale — STS are typically physically-distributed open systems, often large-scale
ones, connecting an ever-increasing number of people, devices, data. Hence,
the coordination infrastructure of STS should exploit decentralised coordi-
nation mechanisms to be able to scale in/out upon need.

In addition, STS are often deployed within knowledge-intensive environments
(KIE), that is, workplaces in which sustainability of the organisation long-term
goals is influenced by (if not even dependant on) the evolution of knowledge

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 102-115, 2015.
DOI: 10.1007/978-3-319-24309-2_8

Behavioural Implicit Communication in Mo% 103

embodied within the organisation itself [1]. The fact that knowledge is an organ-
ised combination of data, procedures, and operations, continuously interacting
and evolving driven by human users’ practice and (learnt) experience [1], moti-
vates why, usually, KIE are computationally supported by STS. Therefore, KIE,
too, call for suitable coordination mechanisms, whose development is far from
trivial, mostly due to the following key aspects of KIE:

size — KIE store a massive amount of raw data (knowledge-intensive in space),
aggregated information, reification of procedures and best-practices, and the
like. The coordination infrastructure should then minimise the overhead of
additional information needed for coordination-related functional and non-
functional requirements, by relying as much as possible on the information
already in the KIE.

pace — Likewise, data within KIE is produced and consumed at a fast pace
(knowledge-intensive in time): when the system features a huge number
of users, an ever-increasing computational load is inevitably charged on
the underlying coordination infrastructure. Hence, coordination mechanisms
adopted to organise information should be as simple and efficient as possible.

In order to tackle the issues above, coordination models and technologies draw
inspiration from distributed collective intelligence phenomena in natural systems,
looking for self-organising and adaptive coordination mechanisms—as witnessed,
e.g., by [9,11,15,16,19]. Similarly, in this paper we focus on the “social layer”
of STS, looking for novel coordination approaches inspired by the latest cog-
nitive and social sciences research results. In particular, we take as a reference
the Molecules of Knowledge (MoX) coordination model for knowledge self-
organisation in KIE [11], and extend it toward the notion of anticipatory coor-
dination — as an efficient form of collective intelligence arising by emergence
from a number of distributed non-intelligent agents —, according to the theory
of behavioural implicit communication (BIC) [3].

Accordingly, the remainder of the paper is structured as follows: Section 2
summarises BIC and recaps the key features of MoX; Section 3 presents the
main contribution of the paper, that is, the BIC-oriented extension of MoK
supporting anticipatory coordination; Section 4 reports on an early validation of
the model; finally, Section 5 provides for concluding remarks and further works.

2 Background

2.1 Behavioural Implicit Communication

Behavioural implicit communication (BIC) is a form of implicit interaction with
no specialised signal conveying the message, since the message is the practical
behaviour itself [3]. This presupposes advanced observation capabilities: partic-
ipants should be able to observe others’ actions, as well as to mind-read the
intentions behind them. Mind-reading enables the process of signification, that
is, the ability to ascribe goals and intentions to actions and their effects (traces),

104 S. Mariani and A. Omicini

or, in other words, meanings to signs. In turn, signification enables anticipatory
coordination, that is, the ability to foresee possible interferences/opportunities
so as to adapt accordingly, or, at least, to plan suitable coordinated actions [2].

The crucial point of BIC is that it applies to human beings, to both cogni-
tive and non-cognitive agents, and to computational environments as well [17].
This paves the way towards the notion of smart environments, that is, pro-active,
intelligent working environments able to autonomously and spontaneously adapt
their behaviour according to users’ interactions [3]—which is, not by chance, the
very notion of anticipatory coordination. Also, smart environments enable BIC
based on the observation of traces of actions, too. Trace-based communication
is related to the notion of stigmergy, introduced in the biological study of social
insects [6] to explain the coordination of termites building their nest without
exchanging messages—another form of distributed collective intelligence. Adopt-
ing the perspective taken in [3], stigmergy is communication via environment
modifications which are not specialised signals: so, stigmergy can be interpreted
as a special form of BIC, where the addressee does not directly perceive the
behaviour, but just other post-hoc traces and outcomes of it.

In [14], an abstract model for smart environments, supporting BIC in the
context of multi-agent systems (MAS), defines two types of environment:

c-env — A common environment, where agents can observe only the state of
the environment, not the actions of their peers. A trace is modelled as a part
of the environment, instead of as a product of other agents. c-env enables
agents to modify environment state while keeping track of such changes.

s-env — A shared environment, as an enhanced c-env enabling different forms of
observability of actions, and awareness of this observability—by the agents,
and by the environment itself as well.

Accordingly, three fundamental features are required for a computational envi-
ronment to fully support BIC-based coordination, closely related to observation,
mind-reading, and signification abilities [14]: (i) observability of (human / soft-
ware) agent actions, and of their traces as well, should be an intrinsic property
of the environment; (ii) agents and the environment should be able to under-
stand actions and their traces, possibly inferring intentions and goals motivating
them—regardless of whether they are intelligent enough to perform true reason-
ing, or merely programmed to react properly; (i) agents and the environment
should also be able to understand the effects of their activity on other agents,
so as to exploit the opportunity to obtain a desired reaction.

Section 3 describes how such requirements can be met in the specific case of
a MoX-coordinated socio-technical KIE, and how MoK compartments [11] can
be extended to support the notions of c-env and s-enw.

2.2 The Molecules of Knowledge Model

Molecules of Knowledge (MoX) is a coordination model promoting self-
organisation of information [11]. Drawing inspiration from biochemical tuple

Behavioural Implicit Communication in Mo% 105

spaces [15] and stigmergic coordination [12], MoK pursues two main goals: (7)
self-aggregation of information into more complex heaps, possibly reifying useful
knowledge previously hidden; (i) diffusion of information toward the interested
agents, that is, those agents needing it to achieve their goals. The Mo%X model
is built around the following abstractions:

seeds — The sources of information. Seeds continuously and spontaneously
inject atoms (data chunks) into compartments (tuple-based repositories).
compartments — The repositories of information. Compartments are the com-
putational and topological abstraction of Mo%X, (i) defining the notions of
locality and neighborhood, (i) responsible for storing atoms, molecules and
enzymes, and (74) in charge of reactions scheduling and execution.
catalysts — The information prosumers (consumer + producer). Catalysts are
the agents willing to exploit information living within the MoK system for
their own purposes. As a side effect of their activity, catalysts influence
the way in which information spontaneously aggregate and diffuse within
compartments — in one word, evolves — driven by MoK reactions.
atoms — The atomic unit of information. Continuously injected into compart-
ments by seeds, atoms are subject to MoK reactions and agents actions.
molecules — The composite unit of information. Molecules are the reification
of similarities between atoms, spontaneously tied together by MoK reactions.
enzymes — The reification of catalysts’ actions. Enzymes are automatically
produced by the compartment within which the action is being done, then
exploited by MoK reactions to influence information evolution.
reactions — The “laws of nature” driving information evolution. Reactions are
the coordination laws dictating how information evolves, and how catalysts
may influence such process. MoK features five reactions!:
— ingjection extracts atoms from seeds and puts them into compartments
— aggregation ties together semantically related atoms into molecules, or
molecules into other molecules
— diffusion moves atoms and molecules between neighboring compartments
— decay destroys atoms and molecules as time passes by
— reinforcement consumes enzymes to increase concentration of atoms and
molecules (relevance w.r.t. others in the same compartment)

A MoX-coordinated system is thus a network of Mo% compartments (tuple-
space-like information repositories), in which MoK seeds (sources of informa-
tion) continuously and spontaneously inject MoK atoms (information pieces).
MoK atoms may then aggregate (into molecules, more complex information
chunks), diffuse, being reinforced, decay. Such autonomous and decentralised
processes are driven by MoK reactions (coordination laws) and influenced by
MoK enzymes (reification of user actions), transparently released by MoX cat-
alysts (users, either human or software agents) while performing their activities.
MoK reactions are scheduled by MoK compartments according to Gillespie’s
chemical dynamics simulation algorithm [5], so as to promote chemical-inspired
self-organisation based on locality, situatedness, and stochasticity [11].

! In [11] reactions were four; injection was added in [10].

106 S. Mariani and A. Omicini

3 Towards Anticipatory Coordination

In this section, the Molecules of Knowledge model is extended toward anticipa-
tory coordination, by borrowing BIC concepts [3]. In particular, Subsection 3.1
extends the notion of compartment according to the definition of smart environ-
ments provided in [14], while Subsection 3.2 extends the definition of enzymes
and introduces the trace abstraction into the MoK model. In addition, Subsec-
tion 3.3 proposes a set of actions that catalysts may use to interact with a MoK
system, along with their impact on enzymes and traces generation.

3.1 MoK Compartments as Shared Smart Environments

MoK compartments may play the role of smart environments, since they model
locality in MoK, and also constitute MoK computational environment. Neigh-
bourhoods are another topological abstraction, defined in MoK as the set of
compartments connected by some infrastructural relationship—in the simplest
case, physical spatial proximity or direct (“l1-hop”) network reachability. Since
neighbourhoods, too, define a notion of locality and computational environment
— being MoK diffusion reaction explicitly bound to neighbouring compartments
— they can be regarded as smart environments, too. Recursively, the characteri-
sation of smart environment can be extended to the network of compartments—
therefore, to the whole MoK -coordinated system.

According to [11], the only sort of smart environment enabled in Mo%X is
c-env, mapped upon a compartment, because: (i) a n : 1 relationship is assumed
between compartments and catalysts—no sharing of working environments is
supported; (i) enzymes are visible only to MoK reactions; (i) enzymes cannot
diffuse, thus neighbourhoods cannot perceive them [11]. So, MoK does not sup-
port s-enwv since there is no observable action reification in shared environments.
Also, support to c-env is limited to compartments — not neighbourhoods — since
enzymes cannot diffuse. Hence, an extension of the notions of compartment and
enzyme is needed to enable s-env and improve support to c-env:

— each compartment no longer belongs to a single catalyst

— enzymes are: (i) diversified to resemble the epistemic nature of the action
they reify; (%) made observable to users sharing the compartment they live
in; (4ii) no longer consumed by reinforcement reaction, but now subject to
decay; (iv) now generating traces through a deposit reaction

— traces are introduced as the MoXK abstraction resembling (side) effects of
actions; as such, traces are: (3) different in kind, according to their father
enzyme; (ii) observable only by MoK reactions; (7ii) subject to diffusion,
decay and to an enzyme-dependant perturbation reaction—movel in MoK

This enables full support to the notions of s-env and c-env in MoK, and makes
it possible to match the three requirements for anticipatory coordination men-
tioned in Subsection 2.1.

Now, compartments represent s-env, as the shared working environment
where catalysts’ actions are made observable to others, and to the environment

Behavioural Implicit Communication in Mo% 107

itself. Also, neighbourhoods represent c-env, where action traces may diffuse,
becoming part of the environment as they participate MoK reactions. Observ-
ability is now an intrinsic environment property, since compartments enable
observability by design. Also, actions may be observed either directly or via their
traces (their effects), making it easier to infer goals, as well as to understand how
actions affect peers—in particular, when epistemic actions are concerned.

3.2 Enzymes and Traces as BIC Enablers

In [11], traces, along with both perturbation and deposit reactions, are missing,
whereas enzymes and reinforcement reaction are formalised as follows:

enzyme(mol). enzyme(mol’) + mol. Jreinf, moley1
where subscript ¢ denotes concentration, and mol, mol’ are supposed to match
according to some matching criteria—e.g., LINDA matching [4] or OWL sub-
sumption [7]. Traces, perturbation reaction, and deposit reaction are defined
below, while enzymes and reinforcement are re-defined accordingly:

enzyme(species, s, mol)¢
enzyme(species, s, mol') + mol. Ireind, enzyme(species, s, mol') + molc4s
trace(enzyme, p, mol).
trace(enzyme, p, mol’) + mol. rerts egec (p, trace, mol)

Tdep .
enzyme —— enzyme + trace(enzyme, p[species|, mol)

where species defines the epistemic nature of the action, s is the strength of rein-
forcement, p is the perturbation the trace wants to perform, and .ezec starts
execution of perturbation p—mnotice, p is implicitly defined by species, as high-
lighted by notation p[species]. Also, decay reaction is extended to enzymes and
traces, whereas diffusion to traces solely. Thus, in the extended version of MoK :

— enzymes belong to a certain species, reflecting the epistemic nature of
actions, and determine the perturbation action performed by generated
traces; enzymes also provide a bounded feedback (strength s)

— reinforcement reaction no longer consumes enzymes, which now decay

traces belong to enzymes—defining (through species) perturbation action p

— perturbation reaction consumes a trace and the related molecule, then trig-
gers execution of the perturbation action

— deposit reaction generates traces from enzymes, without consuming them

The role played by enzymes and traces in anticipatory coordination is then fun-
damental: they are the abstractions supporting observation of catalysts’ actions
by both other users and by the environment. In addition, reinforcement and per-
turbation reactions are the mechanisms enabling mind-reading and signification
on the environment side. Reinforcement is meant to influence relevance of the
information users manipulate during their workflows, according to the nature
and frequency of their actions, so as to better support them in pursuing their

108 S. Mariani and A. Omicini

goals. Enzymes cannot participate in diffusion reaction because the actions they
reify are situated, that is, happen at a precise time as well as in a precise space
(the compartment). Mind-reading and signification are supported by assuming
that users manipulating a given corpus of information are interested in that
information more than other. Perturbation is meant to influence relevance, loca-
tion, content, namely any domain-specific trait of information, in response to
users’ actions and according to their nature (enzymes’ species), with the goal of
easing and optimising users’ workflows.

Thus, traces are free to wander in the network of MoK compartments looking
for a chance to apply their perturbation action, actually enabling the environ-
ment not only to perceive users’ action traces, but also to exploit them for the
profit of the coordination process—promoting the distributed collective intelli-
gence leading to anticipatory coordination. Mind-reading and signification are
supported by assuming that every user action may be interpreted by the envi-
ronment without the need to directly estimate users’ intentions and goals, but
inferring them from the characteristics of the business domain within which the
MoK -coordinated socio-technical KIE is deployed.

3.3 Tacit Messages to Steer Anticipatory Coordination

Based on a survey of heterogeneous socio-technical KIE — such as Facebook,
Twitter, Mendeley and Storify — we devised the most common actions provided
to users: here we discuss the BIC tacit messages they could convey, and the kind
of perturbation actions that could be designed accordingly.

Tacit messages are proposed in [3] to describe the kind of messages a practical
action (and its traces) may implicitly send to the observers:

1. presence — “Agent X is here”. Since an action (trace) is observable in
shared compartments (neighbourhoods), any agent therein becomes aware
of X existence and location—Ilikewise for the environment.

2. intention — “X plans to do action b”. If the agents’ workflow determines
that action b follows action a, peers (as well as the environment) observing
X doing a may assume X next intention to be “do b”. Accordingly, the
environment may decide to undertake anticipatory coordination actions eas-
ing/hindering action b—e.g. because action b is computationally expensive.

3. ability — “X is able to do a;=1,...,". Assuming actions a;—;, .., € A have
similar pre-conditions, agents (and the environment) observing X doing a;
may infer X is also able to do a;,. Accordingly, the environment may further
(no longer) support such pre-conditions, enabling (prohibiting) actions € A.

4. opportunities — “[e1, ..., ey] is the set of pre-conditions for doing a”. Agents
observing X doing a may infer that [eq, ..., e,] hold, thus, they may take the
opportunity to do a immediately. The environment in turn, making similar
observations, may act as seen for tacit message 3.

5. accomplishment — “X achieved S”. If S is the state of affairs reachable as a
consequence of doing action a, agents observing X doing a may infer that X
is now in state S. Since the environment too can make a similar inference,
it may anticipate X next intentions from, e.g., its estimated state S.

Behavioural Implicit Communication in Mo% 109

6. goal — “X has goal ¢g”. By observing X doing action a, peers of X may
infer X’s goal to be g, e.g. because action A is part of a workflow aimed
at achieving g—likewise for the environment. Accordingly, the environment
may act similarly to what seen for tacit message 2.

7. result — “Result r is available”. If peer agents know that action a brings
result r, whenever agent X does a they can expect result r» to be soon
available—in case action a completes successfully. The environment in turn,
may start planning coordination actions involving result r, e.g., synchroni-
sation of parallel activities for agents waiting for 7.

Since agents can undertake the above described inferences, MoX compart-
ments actually act as BIC-based enablers of distributed collective intelligence
phenomena—e.g., anticipatory coordination emerging due to agent interaction.

The above categorisation is general enough to suit several different appli-
cation domains and practical actions. In the case of socio-technical KIE, we
identified a set of fairly-common actions, in spite of the diversity in scope of the
software platforms—e.g. Facebook vs. Mendeley:

— quote/share — re-publishing or mentioning someone else’s information can
convey, e.g., tacit messages 1, 3, 5. If X shares Y’s information through action
a, every other agent observing a becomes aware of existence and location of
both X and Y (1). The fact that X is sharing information I from source S
lets X’s peers infer X can manipulate S (3). If X shared I with Z, Z may
infer, e.g., that X expects Z to somehow use it (5).

— like/favourite — marking as relevant a piece of information can convey,
e.g., tacit messages 1,4. If the socio-technical platform lets X be aware of
Y marking information I as relevant, X may infer that Y exists (1). If Y
marks as relevant I belonging to X, X may infer that Y is interested in her
work, perhaps seeking for collaborations (4).

— follow — subscribing for updates regarding some piece of information or
some user can convey tacit messages 2, 4. Since X manifested interest in Y'’s
work through subscription, ¥ may infer X intention to use it somehow (2).
Accordingly, Y may infer the opportunity for, e.g., collaboration (4).

— search — performing a search query to retrieve information can convey, e.g.,
tacit messages 1,2,4—notice however, which assumptions to make about a
search action heavily depends on which search criteria are supported. If X
search query is observable by peer agents, they can infer X existence and
location (1). Also, they can infer X goal to acquire knowledge related to its
search query (2). Finally, along the same line, they can take the chance to
provide matching information (4).

Accordingly, perturbation actions may range from sending discovery messages
informing agents about the presence and location of another (1), to establishing
privileged communication channels so as to ease collaborations (4); from under-
taking coordination actions enabling/forbidding some interaction protocol (2, 3,
6), to proactively notifying users about availability of novel information (4, 7).

110 S. Mariani and A. Omicini

4 Experiment

In the following we simulate a citizen journalism scenario, where users share a
MoK -coordinated IT platform for retrieving and publishing news stories. Users
have personal/shared devices (smartphones, tablets, pcs, workstations) running
the MoK middleware, which they use to search the IT platform for relevant
information. Searches can spread up to a logical neighbourhood of the searched
compartment — for a number of reasons: limiting bandwidth consumption, boost-
ing security, optimising information location, etc. —, including those of colleagues
interested in stories belonging to similar topics. User searches leave traces that
the MoK middleware exploits to attract similar information, actually enacting
anticipatory coordination.

Fig. 1, 2a-2b demonstrate how the emergent collective intelligence phenom-
ena enabling anticipatory coordination is effectively supported by suitable BIC-
inspired abstractions and mechanisms. The coordination infrastructure does not
know in advance the effectiveness of its coordination activities in supporting
users’ workflows: it can only try to react to users’ activities at its best, accord-
ing to its own interpretation of users’ goals. This is exactly what anticipatory
coordination is: the infrastructure tries to foresee the user coordination needs
even before users do, with the aim of satisfying them at best.

Fig. 1a shows the initial configuration: information molecules (coloured dots)
are randomly scattered throughout the grid (black squares)—light-blue little
squares represent links between compartments, allowing diffusion. Fig. 1b high-
lights two compartments in which enzymes (coloured flags) have just been
released, thus traces begin to spawn and diffuse (coloured arrows): green enzymes
in the bottom-left one, cyan enzymes in the top-right one?. Fig. 1c demonstrates
that the expected clusters appear: red molecules (brought by green traces’ per-
turbation action) have the highest concentration in the bottom-left (highlighted)
compartment, likewise magenta molecules (brought by cyan traces) in the top-
right one. Fig. 1d-1f demonstrate that clusters are transient: they last as long
as users’ action effects (enzymes and traces) last. In fact, besides new clus-
ters appearing (magenta molecules, top-left and yellow molecules, bottom-right),
the previous ones either disappear (magenta cluster, top-right) or are replaced
(orange cluster, bottom-left). This adaptiveness feature is confirmed by Fig. 2a-
2b, plotting the oscillatory trend of clustered (“still”) molecules and traces. Also,
Fig. 1d-1f highlight other desirable features of Mo%K, stemming from its biochem-
ical inspiration and BIC, respectively: locality and situatedness (of both compu-
tations and interactions). In fact, as neighbouring compartments can influence
each other through diffusion, they can also act independently by, e.g., aggregat-
ing different molecules.

As alast note, we remark how the extended MoK model deals with the typical
issues of socio-technical KIE highlighted in Section 1. In terms of unpredictability,

2 Colours represent semantic differences for different matches: red molecules
match green enzymes/traces, orange molecules match lime enzymes/traces, yel-
low molecules match turquoise enzymes/traces, magenta molecules match cyan
enzymes/traces, pink molecules match sky blue enzymes/traces.

Behavioural Implicit Communication in MoK 111

Fig. 1. Self-organising, adaptive anticipatory coordination. Whereas data is initially
randomly scattered across workspaces (a), as soon as users interact (b) clusters appear
by emergence thanks to BIC-driven self-organisation (c, d). Whenever new actions
are performed by catalysts, the MoK infrastructure adaptively re-organises the spatial
configuration of molecules (e) so as to better tackle the new coordination needs (f).

112 S. Mariani and A. Omicini

still molecules

traces
325

molecules

\ N
@ / 7 / 0 [I | ‘\wv,.:J \‘\.,__\;
o

o time 1120 1120

(a) (b)

Fig. 2. On the left, concentration of still molecules over time. Still molecules represent
molecules currently in the right compartment—the one storing matching enzymes. The
oscillatory trend is due to periodic injection of enzymes (thus traces) which clears the
“still” state of molecules. The different colours correspond to the different molecules.
On the right, concentration of traces over time. Traces move molecules to the right
compartment—the one storing matching enzymes. The oscillatory trend is due to decay
of traces over time. The different colours correspond to the different traces.

MoK anticipates user coordination needs, not based on future behaviour pre-
diction, but rather on present actions and its mind-reading and signification
abilities. In terms of scale, MoK reactions act only locally, thus self-organisation
exploits local information only. In terms of size, MoK decay helps mitigating
the issue by destroying information and meta-data as time passes; furthermore,
the overhead brought by MoK BIC-based extension is minimal, since it exploits
only information already in the system. In terms of pace, whereas reactions exe-
cution and BIC-related mechanisms are rather efficient — mostly due to their
local nature — there is a fundamental issue still to be addressed in MoXK: the
semantic similarity measure (47,4 in [11]). On the one hand, an accurate mea-
sure likely leads to more meaningful clusters; on the other hand, it often requires
more expensive computations. Thus, a tradeoff is needed—our efforts for further
developments of MoK are also devoted to investigate this issue.

Technical details of the experiment are as follows®: 100 MoK compartments
are networked in a grid (4 neighbours per compartment, except border)—see
Fig. 1; 2500 molecules, split in 5 non-overlapping semantic categories (repre-
senting matching with different enzymes), are uniformly sampled then randomly
scattered in the grid—statistically, 500 molecules per category; 250 enzymes,
split in the same categories, are generated in 5 random compartments; enzymes’
categories are uniformly sampled in batches consisting of 50 enzymes each, so
that generated enzymes of a given category are always multiple of 50; enzymes
are generated periodically (every 250 time steps) and subject to decay; 2 traces

3 Simulation tool used is NetLogo 5.0.5, available from http://ccl.northwestern.edu/
netlogo/. Videos of the simulations are available on YouTube (https://youtu.be/
8ibkXdukTfk). Source code of the simulations are to be released as a NetLogo model,
available from http://ccl.northwestern.edu/netlogo/models/community//.

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
https://youtu.be/8ibkXdukTfk
https://youtu.be/8ibkXdukTfk
http://ccl.northwestern.edu/netlogo/models/community/

Behavioural Implicit Communication in MoK 113

per enzyme are generated, coherently with enzymes’ category and according to
the same time interval; traces too are subject to decay, although at a lower rate
w.r.t. enzymes—due to their different purpose: representing long-term effects of
actions for the former, reifying situated actions for the latter.

The simulations proceed as follows: molecules randomly diffuse among neigh-
bouring compartments; enzymes reify a search action which successfully collects
a set of molecules from the local compartment; enzymes stand still in the com-
partment where the action took place until decay, generating traces; traces, rep-
resenting tacit message 2, randomly diffuse among neighbouring compartments
until either (i) decay or (ii) find a matching molecule to apply their perturbation
action to; the perturbation action makes the involved molecule diffuse toward
the compartment where the trace’s father enzyme belong.

5 Conclusion and Further Work

In this paper we propose a novel approach to coordination in socio-technical
KIE. In particular, we extend the Molecules of Knowledge model [11] to sup-
port the notion of anticipatory coordination [3]. To this end, concepts from the
cognitive theory of BIC are brought within the MoK model both by extending
existing abstractions — compartments and enzymes — and by introducing new
abstractions and mechanisms—traces, deposit reaction and perturbation action.
To evaluate our proposal, we simulate how to obtain intelligent spatial distribu-
tion of information with Mo%, based solely on user interaction, as an example
of distributed collective intelligence—in particular, anticipatory coordination.

Although our experiment focusses on one specific pattern of anticipatory
coordination, we believe that the results achieved are more than encourag-
ing, thus deserve further investigation. In particular, simulations of other MoK
behaviours — e.g., re-arrange the network of compartments so as to reflect the
current collaborations among catalysts — are actually in progress, and will help
further validating both the extended MoK model, and the practice of applying
BIC theory to coordination in socio-technical KIE.

Furthermore, our efforts are currently devoted to fully implement and run a
MoK coordinated system on a large-scale scenario—e.g. the one here simulated.
In fact, although a prototype implementation of MoK exists, such a large-scale
deployment has not been achieved, yet. As far as implementation is concerned,
special care will be paid to the semantic similarity measure. In our experience,
ontology-based semantic matching is rather unfeasible, except for basic relation-
ships only, e.g., subsumption alone. On the contrary, purely syntactical matching
has too low expressiveness. Viable tradeoffs may be usage of wildcards, e.g. as
in Java regular expressions*, or of synonymy relationships only (hyperonymy for
“is-a” relationships, meronymy fort “part-of”, etc.), e.g., as done in [13] using
WordNet®.

* http://docs.oracle.com /javase/tutorial /essential /regex/
5 http://wordnet.princeton.edu

http://docs.oracle.com/javase/tutorial/essential/regex/
http://wordnet.princeton.edu

114

S. Mariani and A. Omicini

References

10.

11.

12.

13.

14.

15.

. Bhatt, G.D.: Knowledge management in organizations: Examining the interaction

between technologies, techniques, and people. Journal of Knowledge Management
5(1), 68-75 (2001)

Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelligence
103(1-2), 157-182 (1998)

Castelfranchi, C., Pezzullo, G., Tummolini, L.: Behavioral implicit communica-
tion (BIC): Communicating with smart environments via our practical behavior
and its traces. International Journal of Ambient Computing and Intelligence 2(1),
1-12 (2010)

Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80-112 (1985)

Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340-2361 (1977)

Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez
Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux
6(1), 41-80 (1959)

Horrocks, I.: OWL: a description logic based ontology language. In: Gabbrielli, M.,
Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 1-4. Springer, Heidelberg (2005)
Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26(1), 87-119 (1994)

Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The TOTA approach. ACM Transactions on Software Engineering and
Methodology (TOSEM) 18(4), July 2009

Mariani, S.: Parameter engineering vs. parameter tuning: the case of biochemical
coordination in MoK. In: Baldoni, M., Baroglio, C., Bergenti, F., Garro, A. (eds.)
CEUR Workshop Proceedings of the From Objects to Agents, vol. 1099, pp. 16-23.
Sun SITE Central Europe, RWTH Aachen University, Turin, December 2-3, 2013
Mariani, S., Omicini, A.: Molecules of knowledge: self-organisation in knowledge-
intensive environments. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.)
IDC 2012. SCI, vol. 446, pp. 17-22. Springer, Heidelberg (2012)

Van Dyke Parunak, H.: A survey of environments and mechanisms for human-
human stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) EAMAS
2005. LNCS (LNAI), vol. 3830, pp. 163-186. Springer, Heidelberg (2006)

Pianini, D.; Virruso, S., Menezes, R., Omicini, A., Viroli, M.: Self organization in
coordination systems using a WordNet-based ontology. In: Gupta, 1., Hassas, S.,
Jerome, R. (eds.) 4th IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2010), pp. 114-123. IEEE CS, Budapest (2010)
Tummolini, L., Castelfranchi, C., Ricci, A., Viroli, M., Omicini, A.: “Exhibition-
ists” and “Voyeurs” do it better: a shared environment for flexible coordination
with tacit messages. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.)
E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 215-231. Springer, Heidelberg (2005)
Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 143-162. Springer, Heidelberg (2009)

16.

17.

18.

19.

Behavioural Implicit Communication in MoK 115

Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination
model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION
2012. LNCS, vol. 7274, pp. 212-229. Springer, Heidelberg (2012)

Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5-30
(2007)

Whitworth, B.: Socio-technical systems. Encyclopedia of human computer inter-
action, 533-541 (2006)

Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Di Marzo, G.,
Risoldi, M., Tchao, A.E., Dobson, S., Stevenson, G., Ye, Y., Nardini, E., Omicini,
A., Montagna, S., Viroli, M., Ferscha, A., Maschek, S., Wally, B.: Self-aware per-
vasive service ecosystems. Procedia Computer Science 7, 197-199 (2011)

A Kinetic Study of Opinion Dynamics
in Multi-agent Systems

Stefania Monica®™) and Federico Bergenti

Dipartimento di Matematica e Informatica, Universita degli Studi di Parma,
Parco Area delle Scienze 53/A, 43124 Parma, Italy
{stefania.monica,federico.bergenti}@unipr.it

Abstract. In this paper we rephrase the problem of opinion formation
from a physical viewpoint. We consider a multi-agent system where each
agent is associated with an opinion and interacts with any other agent.
Interpreting the agents as the molecules of a gas, we model the opinion
evolution according to a kinetic model based on the analysis of interac-
tions among agents. From a microscopic description of each interaction
between pairs of agents, we derive the stationary profiles under given
assumption. Results show that, depending on the average opinion and
on the model parameters, different profiles can be found, with different
properties. Each stationary profile is characterized by the presence of one
or two maxima.

1 Introduction

This paper describes a model for opinion formation in multi-agent systems. Many
kinds of approaches have been investigated in the literature to study opinion
evolution among agents based, e.g., on graph theory [1], cellular automata [2],
and thermodynamics [3]. Recently, social interactions in multi-agent systems
have been described according to microscopic models based on kinetic theory.
Typically, kinetic theory is used to derive macroscopic properties of gases by
analyzing the details of the collisions of the molecules [4]. Similarly, from the
description of the details of each interaction between pairs of agents, the global
opinion can be described from a macroscopic point of view [5].

The research interest related to the application of kinetic approaches to the
description of multi-agent systems gave birth to new disciplines, namely econo-
physics and sociophysics [6]. Econophysics deals with the description of the evo-
lution of market economy and wealth distribution in a society [7]. Sociophysics,
instead, aims at characterizing the evolution of social features, such as opinion,
in a society [8]. These disciplines are based on the fact that the formalism that
describes the interactions between molecules in a gas can be adapted to describe
the effects of interactions between agents. In particular, the kinetic framework
can be used to outline agent-based cooperation models, such as that in [9], to
study large scale systems, such as those in [10], and to model wireless sensor
networks (see, e.g., [11]).

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*¥IA 2015, LNAI 9336, pp. 116-127, 2015.
DOI: 10.1007/978-3-319-24309-2_9

A Kinetic Study of Opinion Dynamics in Multi-agent Systems 117

In this paper we focus on studying the opinion evolution in a multi-agent
system on the basis of a kinetic formulation. Under the assumption that each
agent is associated with an opinion v € I C R, we investigate how the opinion
of the considered system changes on the basis of given rules that describe the
effects of single interactions. The model that we consider is introduced in [12].
In particular, we assume that each agent can interact with any other agent in
the system and that the opinion of each changes due to two different reasons,
namely compromise and diffusion [13]. Compromise is related to the fact that,
as a consequence of an interaction, an agent can be persuaded to change its
opinion in favour of that of the interacting agent. This phenomenon is modeled
as a deterministic process. Diffusion is instead modeled as a random process and
it is related to the fact that agents can change their opinions autonomously.

The paper is organized as follows. Section 2 describes the considered kinetic
model from an analytical viewpoint. Section 3 derives explicit formulas for the
stationary profiles in a specific case. Section 4 shows simulation results for dif-
ferent values of the parameters of the model. Section 5 concludes the paper.

2 Kinetic Model of Opinion Formation

Sociophysics is based on the idea that the same laws that describe the interac-
tions among molecules can be generalized to describe the effects of social interac-
tions among agents. As a matter of fact, while molecules are typically associated
with their velocities, agents can be associated with an attribute which represents
one of its characteristics that can be, for instance, its opinion. In the following,
we associate to each agent a parameter v defined in the interval I = [—1,1].
According to such an assumption, +1 represent extremal opinions, while 0 cor-
respond to the middle point of the interval of interest I.

Kinetic theory relies on the definition of a function f(v,t) which represents
the density of opinion v at time ¢ and which is defined for each opinion v € I
and for each time ¢ > 0. Since f(v,t) is a density function, the following equality
needs to hold

/If(v,t)dv =1 (1)

In order to describe the opinion evolution using a kinetic approach, we assume
that the function f(v,t) evolves on the basis of the Boltzmann equation. In
particular, we consider the following formulation of the Boltzmann equation

of
= Q. (.) 2)
where %{ represents the temporal evolution of the distribution function and Q

is the collisional operator which takes into account the effects of interactions. In
order to derive an explicit formula for the collisional operator Q, the details of
the binary interactions need to be described. In the considered model, the post-
interaction opinions of two interacting agents are obtained by adding to their

118 S. Monica and F. Bergenti

pre-interaction opinions a contribution related to compromise and a contribution
related to diffusion, according to the following formula

v' =0+ 5C(|v])(w = v) + n.D(Jv]) 3)
w' = w+yC(Jw])(v —w) +nD(|wl).

where the pair (v/,w’) denotes the post-interaction opinions of the two agents,
whose pre-interaction opinions were (v,w). In (3) the second terms on the right
hand side of the two equations are related to compromise, according to the
parameter -y, which is defined in (0, %), and the function C(-); the third terms
are related to diffusion, through the random variables n and 7, and the function
D(-). The functions C(-) and D(-), which describe the impact of compromise
and diffusion, respectively, depend on the absolute value of the opinion, namely
they are symmetrical with respect to the middle point of I. Moreover, we assume
that both functions are not increasing with respect to the absolute value of the
opinion, coherently with the fact that, typically, extremal opinions are more
difficult to change. Finally, we assume that

0<C(lv),D(v|) <1 Yo e l.

From (3), since both v and C(-) are positive, the contribution of compromise
is positive each time an agent interacts with another agent whose opinion value is
greater while it is negative otherwise. Hence, the idea of compromise is respected,
since the difference between the opinions of the two agents is reduced after the
considered interaction if the diffusion term is neglected.

The contribution of diffusion, instead, can be either positive or negative
depending on the value of the random variables n and 7,. In the following,
we assume that such random variables have the same statistics. In particular,
we assume that their average value is 0 and their variance is 02, namely

/nﬂ(n)dn = /n*ﬁ(n*)dm =0

2 2 2)

/?7 J(n)dn = /71*19(?7*)0177* =0

where 9(-) is the probability density function. In order to take into account the
effects of diffusion we need to define the transition rate

W(v,w,v',w') = d(m)d(n.)xr(v)xr(w') ()

where x7 is the indicator function relative to the set I (equal to 1 if its argument
belong to I, and to 0 otherwise) and it is meant to make sure that the post-
interaction opinions are in I.

Under these assumptions, the explicit expression of the collisional operator
Q defined in (2) can be finally written as

Q1) = [[(W3 001C0) = W))] dudnd.

A Kinetic Study of Opinion Dynamics in Multi-agent Systems 119

where B is the support of ¥, ‘v and 'w are the pre-interaction variables which
lead to v and w, respectively, ‘W is the transition rate relative to the 4—uple
("v, w,v,w) and J is the Jacobian of the transformation of (‘v,’ w) in (v, w) [12].

Instead of solving (2) we consider its weak form. In functional analysis, the
weak form of a differential equation is obtained by multiplying both sides of
the considered equation by a test function ¢(v), namely a smooth function with
compact support, and then integrating the obtained equation with respect to v.
The weak form of the Boltzmann equation can be derived from (2) and, using a
proper change of variable in the integral, it can be written as

G [wnoeae= [[wiwsw)ew) - sw)duudidn @)

If we consider ¢(v) =1 in (6) then the following equation is obtained

= / o t)do =0 (7)

which says that the number of agents is constant. This property is analogous to
mass conservation of the molecules in a gas.
Considering ¢(v) = v as a test function in (6) and recalling (3) we obtain

d

G | wmao = [Wi rtw)e(uw = odududns, N

+ [[wiosmD(edududns.
BQ 12

Defining the average value of the opinion at time ¢ as

_ / Fw,) dv)
I

the left hand side of (8) corresponds to the derivative @(t) of the average opinion.
The first integral in the right hand side of (8) can be written as

/f \v|dv/vf o — /f C(Jo])vdv. (10)

The second integral in (8) is 0 because the average value of ¥ is 0, according to
(4). Therefore, from (8) and (10) it can be obtained that the variation of the
average opinion u can be written as

_7/f c(lo)) dv/vf)dv — /f C(Jo)vdv. (11)

Observe that if C' is constant then (10) is 0 for symmetry and (11) becomes

at) =0 (12)

120 S. Monica and F. Bergenti

i.e., the average opinion is conserved, namely u(t) = u(0). This property corre-
sponds to the conservation of momentum.

We are interested in studying the behaviour of the distribution function
f(v,t) for large values of the time ¢t and to derive, eventually, stationary profiles.
In order to simplify notation we first define a new temporal variable 7

T=nt (13)

where v is the coeflicient related to compromise which appear in (3). Assuming
that v ~ 0, namely that each interaction causes small opinion exchange,

g(U’T) = f(v7t) (14)

describes the asymptotic behaviour of f(v,t). The weak form of a Fokker-Planck
equation can be derived by substituting f(v,t) with g(v,7) in (6) and using a
Taylor series expansion of ¢(v) around v in (6) [12]:

2 D) + (v~ o) (15)
where

A=c2/y. (16)

We are now interested in studying stationary solutions g, of (15), which
satisfy

dgc

dr

In next section we analyze these solutions for different values of A.

— 0. (17)

3 Stationary Behaviour of Opinion Distribution

In this section we derive some stationary profiles for the opinion density g. Such
profiles are defined as solutions of (17) and, therefore, they depend on parameters
u and X\ and on the choice of the diffusion function.

In the remaining of the paper, we assume that the compromise function
C(|v]) is constant and equal to 1. As observed in Section 2, this choice leads to
a constant value of the average opinion, which is denoted as u in the following.
We consider the following distribution function

D(lvl) =1 -* (18)

which is a non increasing function of |v|, as discussed at the beginning of the
previous section. According to this assumption, the effects of the interactions
between pairs of agents described in (3) are

{v’=v+v(w—v)+n(1—v2) (19)

W' = w4y —w) + (1 - w?)

A Kinetic Study of Opinion Dynamics in Multi-agent Systems 121

In order to guarantee that the post-interaction opinions still belong to the inter-
val of interest I we need to define the support B of the distribution function ¥(-)
of n and 7. Considering the first equation in (19), we can conclude that

| < (1 =7)vl+7+nl(1—v?)

from which it can be derived that if || < M = 11+;\Z| then |v'| < 1. Analogous
considerations hold for |w’| when taking into account the second equation of (19).
Since the minimum value of M is obtained in correspondence of the maximum
values of |v'| and ~y, namely when |v| = 1 and v ~ 1/2, then it can be concluded
that if |n| < i, then |v’| < 1 independently of the pre-interaction opinion v. The
same holds for |w’|, therefore from now on we assume that B = (—1/4,1/4).
We are now interested in finding the stationary solutions, namely the functions

which satisfy (17). From (15) the stationary solutions satisfy
A0
22 (1
2 Ov ((

where u is the average opinion (which is constant) and C' is a constant. Observe

that the constant C' must be 0. As a matter of fact, by integrating (20) one
obtains

—v*)’g) + (v —u)g=C (20)

;\/1;21 %((1—02)29) —I—/vjl(v—u)g:C(112—|—v1). (21)

From the previous equation, if v1 — 1 and vo — 1 then the first integral is 0 for
symmetry and the second integral can be written as

/vgdv—u/gdv:u—u:O.
I I

It can then be concluded from (21) that C = 0.
Using classical analysis in (20), one obtains
4 4v 2(u —v)
A . 22
g 1702+A(17v2)2 (22)
The left hand side of the previous equation is the derivative of log g. Integrating
the right hand side of (22) leads to an explicit expression of log g, and, therefore,
of g. The first added on the right hand side of (22) can be written as

d
T (—2log(1 —v?)) (23)
Concerning the remaining terms in (22), first observe that
2u 1 d [u 14w uv
—_—————=— | =1 . 24
A (1—02)2 dv <2/\ Og(lv)—’—)\(lv?)) (24)

Moreover one can calculate

v 1 1 1 o 1d /1 N 1
AMl—v2)2 22\ (1+v)2 (1-0)2) 2Xdv \14+v 1-v
(25)
__1d 1
o xdvl —o?

122 S. Monica and F. Bergenti

Finally, using (23), (24), and (25), equation (22) can be written as

d d U 14w uv — 1
—1 = — |—2log(1 — v?) + —1
dvw o8 9(v) dv { og(l —v7) + 2 0g<1—v> Jr)\(1—1)2)}

and, therefore,

1+v\ > uv — 1
_ 2\—2
log g(v) =log(1l —v*)™= + log (1 —v) + N1 =02 + oy z- (26)

where a,,) is a constant depending on the average opinion « and on the value
of A. Taking the exponential of (26) the following expression for the stationary
solution is derived

() = eun(1 0 A0 e () (D

where ¢, » must be determined in order to satisfy

/ goolw) = 1. (25)
I

Observe that if u = 0, then g (v) is an even function.

In order to see if the stationary profile is characterized by maxima and/or
minima, we now aim at studying the derivative of go. From (22) the derivative
of go, can be written as

4)\0(1—02)+2(u—v)> (29)

! _
goo(v) - gOO(U) ()\(1 _ U2)2
and, therefore,
W) =0 <<= go(v)=0 V 4+ (2-4\)v—-2u=0. (30)

From (27), goo(v) = 0 if and only if v = £1, namely in the extremes of the
considered interval I. Hence, we are interested in finding the solutions of the
second condition in (30), namely the solutions of

1 U
3 — —1Jv——=0. 1
v+ < o) LY 0 (31)
Observe that equation (31) is a polynomial equation of degree 3 and therefore

it always admits at least one real solution.
If u = 0, namely if the average opinion is the middle point of I, (31) becomes

vg—l—(;}\—l)v:() (32)

and in this case the solutions are

—0 1oL (33)
U1 = V2,3 = I\

A Kinetic Study of Opinion Dynamics in Multi-agent Systems 123

Observe that if A < % the only real root of (32) is v; = 0 and its multiplicity is
lif A< % while it is 3 if A = % In these cases, v; is a maximum point. If A > %,
instead, equation (32) admits three real roots. In this last case, vy is a point of
minimum while vy and v3 are points of maximum.

If w # 0 the solution of (31) requires the use of Cardano’s formula for the

solution of polynomial equations of degree 3, according to which

vl—i/ngx/ZJri/g\/Z (34)
is a real root of (31), where

2 3 1
a=L4 p=<—1) g=—o (35)

‘ 3

2 2\ 2

~J

If A <0 then equation (31) has three real roots, which, besides vy, are

V1 1
1)2#3:—3:&5\/—419—31)%. (36)

Hence, if A < 0, the stationary profile go, has three singular points. If A = 0,
then from (34) it can be concluded that v; has the following simplified expression

v = 2{’} 7%

Substituting this result in (36) one obtains that —4p — 3v? = 0 and, therefore,
vy = vz = —v1/2, namely equation (31) has three real roots, two of which are
coincident. In the case with A = 0 the singular points of g, are two and one of
them is also an inflection point. Finally, if A > 0 then equation (31) has v; as
the only real root, hence g, has only one singular point.

From (35), the value of A can be expressed as a function of A and u as

27u2A + 2(1 — 2))3

A= 432)3

(37)

Since, from (16), A is defined as the ratio between two positive quantities,
one can conclude that

2 (1-2x\°
A<0<:>u2<M(>\):/\< 3) (38)
Since u € I, then 0 < u? < 1 and, therefore, if M()\) > 1 the inequality on the
right hand side of (38) is satisfied for all the values of u, while if M (\) < 0 the
previous inequality is never satisfied. It can be shown that

M(/\)<0<:>/\<% MAN>1 < \>2. (39)

124 S. Monica and F. Bergenti

Hence, the following considerations hold:

— if 0 < A < 3 then the condition u? < M(A) is never satisfied and, therefore,
A > 0 and the stationary profile g, has only one singular point

— if A > 2 then the condition u? < M()) is satisfied for all the values of the
average opinion u and, therefore, A < 0 and the stationary profile g, has
three singular points

— if % < X < 2, the number of stationary points of g, depends on the value of
the average opinion u.

4 Numerical Results

In this section, various stationary profiles for different values of v and A\ are
shown. We start by considering u = 0 so that the average opinion corresponds
to the middle point of I. In this case, the stationary profile g, is an even function.

In Fig. 1, the stationary profiles g (v) are shown for various values of A,
namely A = 1/4 (blue line), A = 1/2 (red line), A = 1 (green line), and A = 3
(black line). Fig. 1 shows that if A = 1/4, then goo(v) has only one maximum
(corresponding to u = 0), in agreement with (33). If A = 1/2, then v = 0 is
the only stationary point of go,(v), but in this case the multiplicity of v = 0
as a solution of (32) is 3. Observe that the value of the maximum is smaller
compared to that relative to A = 1/4. If A > 1/2, according to (33), the function
Joo(v) admits three stationary points. In particular, Fig. 1 shows that if A = 1
there is a minimum in correspondence of v = 0 and two maxima in v = £1/ V2.
In this case, the value of the two maxima is similar to that of the maximum
obtained with A = 1/2. Fig. 1 also shows the stationary profile go(v) when
A = 3. In this case, the two points of maximum are closer to the extremes of
the interval I where the opinion is defined and the values of the maxima are
approximately the double of those relative to A = 1. The value of the minimum

ket u=1/4 *

— =12 o i N
=t u=3/4

— =3

goo()

Fig. 1. The stationary profiles g relative
to the average opinion u = 0 are shown for
A = 1/4 (blue line), A = 1/2 (red line),
A =1 (green line), A = 3 (black line).

Fig. 2. The stationary profiles goc relative
to the value A = 1/4 are shown for u =
1/4 (yellow line), u = 1/2 (green line),
u = 3/4 (violet line).

A Kinetic Study of Opinion Dynamics in Multi-agent Systems 125

u=1/9 = i
u=1/2 = [
u=3/4 %

Fig. 3. The stationary profiles g relative Fig. 4. The stationary profiles goo relative

to the value A = 3/4 are shown for v = to the value A = 1 are shown for u =1/4
1/9 (yellow line), u = 1/2 (green line), (yellow line), v = 1/2 (green line), u =
u = 3/4 (violet line). 3/4 (violet line).

corresponding to 0, instead, is nearly halved with respect to the previous case.
Fig. 1 shows that, if u = 0, small values of), corresponding to o2 < 1/27,
namely to small contributes of diffusion in (3), lead to stationary profiles where
opinions are near the middle of I. At the opposite, an increase of the value of A
corresponds to stationary profiles where the agents are divided into two groups.
As) increases, the two points of maximum get closer to the extremes of I and
the corresponding value of the maxima increases, showing that if the contribute
of diffusion is greater than that of compromise extremal opinions tend to prevail.

From now on, we consider values of u different from 0. For symmetry reasons,
we only focus on positive values of u. First, we set A = 1/4. According to (39)
and (38), in this case A < 0 regardless of the value of the average opinion and,
therefore, the stationary profile go.(v) always has one stationary point, namely
a maximum point. Fig. 2 shows the stationary profiles for u = 1/4 (yellow line),
u = 1/2 (green line), and v = 3/4 (violet line). The maxima are marked with
a black asterisk. From Fig. 2 it can be observed that as the average opinion
increases the value of the corresponding maximum also increases, in agreement
with the idea that if the average opinion gets closer to 1 (namely, to one of the
extremes of the interval I') the opinions of all agents tend to be more concentrated
near the value of u.

We now set A = 3/4. According to (39) and (38), in this case: A < 0 if
lul <1/9; A=0if ju| =1/9; A > 0 if |u| > 1/9. Fig. 3 shows the stationary
profiles for u = 1/9 (yellow line), u = 1/2 (green line), u = 3/4 (violet line), and
the stationary points are marked with a black asterisk. As expected, if u =1/9
the function g (v) has two stationary point, namely a point of maximum in v;
and an inflection point in vy = v3 = —v1/2. Greater values of u, instead, lead to
a unique stationary point, namely a point of maximum.

In Fig. 4 the stationary profiles for A = 1 and for the average opinions u = 1/4
(vellow line), v = 1/2 (green line), u = 3/4 (violet line) are shown. If A = 1 then:

A< 0if Ju| < /2/27; A=0if Ju| =+/2/27; A > 0 if |u| > /2/27. Therefore,

126 S. Monica and F. Bergenti

u=1/4 u=1/4 T
—u=1/2 1. —u=12 |
u=3/4

Fig. 5. The stationary profiles g relative Fig. 6. The stationary profiles g relative

to the value A = 3/2 are shown for u = to the value A = 3 are shown for u =1/4
1/4 (yellow line), u = 1/2 (green line), (yellow line), u = 1/2 (green line), u =
u = 3/4 (violet line). 3/4 (violet line).

the function g..(v) has three stationary points if w = 1/4, while it has only a
stationary point if u = 1/2 and v = 3/4.

Fig. 5 shows the stationary profiles go.(v) for A = 3/2. In this case: A < 0 if
lul < v/24/9; A= 0if |u| = v/24/9; A > 0 if [u| > v/24/9. We consider the same
values of u as in the previous case and, since v/24/9 ~ 0.61, it is expected that
if u=1/4 and u = 1/2 the function g.,(v) has three stationary points while if
u = 3/4 the stationary profile only admits a point of maximum. These results
are confirmed in Fig. 5 where goo(v) is shown for v = 1/4 (yellow line), u = 1/2
(green line), and u = 3/4 (violet line).

Finally, Fig. 6 shows the stationary profiles g, (v) for A = 3 and u = 1/4
(vellow line), u = 1/2 (green line), u = 3/4 (violet line). According to (39) and
(38), in this case A < 0 for all the possible values of the average opinion u, and,
therefore, go.(v) always has three stationary points.

5 Conclusions

In this paper the temporal evolution of opinion in a multi-agent system is inves-
tigated through a kinetic approach. More precisely, we studied the asymptotic
behaviour of the opinion distribution on the basis of a model inspired from the
molecules interactions in a gas. Assuming that the opinion of each agent can
change because of two reasons, namely compromise and diffusion, stationary
profiles with different characteristics can be derived as the parameters of the
model change. For a particular choice of the compromise function and of the
diffusion function, we showed that the asymptotic distribution is characterized
by one, two, or three stationary points, depending on the average opinion and
on the parameters of the model.

Further analysis on this subject, which also involves simulation results, is
currently under investigation. In particular, we are interested in adopting the
kinetic framework in scenarios that could use general-purpose industrial strength

A Kinetic Study of Opinion Dynamics in Multi-agent Systems 127

technology (see, e.g., [14,15]) and in modeling wireless sensor networks for
localization purposes (see, e.g., [16,17]).

References

10.

11.

12.

13.

14.

15.

16.

17.

Tsang, A., Larson, K.: Opinion dynamics of skeptical agents. In: Proceedings of
13th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2014), Paris, France, May 2014

Monica, S., Bergenti, F.: A stochastic model of self-stabilizing cellular automata
for consensus formation. In: Proceedings of 15th Workshop “Dagli Oggetti agli
Agenti” (WOA 2014), Catania, Italy, September 2014

Schweitzer, F., Holyst, J.: Modelling collective opinion formation by means of active
brownian particles. European Physical Journal B 15 (2000)

Groppi, M., Monica, S., Spiga, G.: A kinetic ellipsoidal BGK model for a binary
gas mixture. EPL: Europhysics Letter 96, December 2011

Weidlich, W.: Sociodynamics: A Systematic Approach to Mathematical Modelling
in the Social Sciences. Harwood Academic Publisher, Amsterdam (2000)
Chakraborti, B.K., Chakrabarti, A., Chatterjee, A.: Econophysics and Socio-
physics: Trends and Perspectives. Wiley, Berlin (2006)

Slanina, F.: Inelastically scattering particles and wealth distribution in an open
economy. Physical Review E 69, 46-102 (2004)

Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Interna-
tional Journal of Modern Physics C 11, 1157-1166 (2000)

Bergenti, F., Poggi, A., Somacher, M.: A collaborative platform for fixed and mobile
networks. Communications of the ACM 45(11), 39-44 (2002)

Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management
with WANTS. In: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 231-246. Elsevier, 2015

Monica, S., Ferrari, G.: Accurate indoor localization with UWB wireless sen-
sor networks. In: Proceedings of the 23rd IEEE International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE
2014), Parma, Italy, pp. 287—289, June 2014

Toscani, G.: Kinetic models of opinion formation. Communications in Mathemat-
ical Sciences 4, 481-496 (2006)

Ben-Naim, E.: Opinion dynamics: Rise and fall of political parties. Europhysics
Letters 69, 671-677 (2005)

Bergenti, F., Caire, G., Gotta, D.: Agents on the move: JADE for android devices.
In: Proceedings of 15th Workshop “Dagli Oggetti agli Agenti” (WOA 2014), Cata-
nia, Italy, September 2014

Bergenti, F., Caire, G., Gotta, D.: Agent-based social gaming with AMUSE. In:
Procs. 5th Int’l Conf. Ambient Systems, Networks and Technologies (ANT: 2014)
and 4th Int’l Conf. Sustainable Energy Information Technology (SEIT 2014), ser.
Procedia Computer Science, pp. 914-919. Elsevier (2014)

Monica, S., Ferrari, G.: An experimental model for UWB distance measurements
and its application to localization problems. In: Proceedings of the IEEE Interna-
tional Conference on Ultra Wide Band (ICUWB 2014), Paris, France, pp. 297-302,
September 2014

Monica, S., Ferrari, G.: Swarm intelligent approaches to auto-localization of nodes
in static UWB networks. Applied Soft Computing 25, 426-434 (2014)

Cooperating with Trusted Parties Would Make
Life Easier

Pasquale Caianiello, Stefania Costantini, Giovanni De Gasperis®9,
and Subhasis Thakur

Dipartimento di Ingegneria e Scienze Dell’Informazione e Matematica,

Universitd Degli Studi Dell’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy

{pasquale.caianiello,stefania.costantini,giovanni.degasperis,
subhasis.thakur}@univaq.it

Abstract. We experimentally analyze the performance of a heteroge-
neous population of agents playing the Iterated Prisoner’s Dilemma with
a possible prior commitment ad a posterior punishment for defection.
We argue that the presence of agents with a probabilistic strategy that
depends on trust and reputation enforces a better performance of typi-
cally cooperative agents.

1 Introduction

This paper deals with cooperation enforcement in the Prisoner’s Dilemma (PD)
game. Though the PD is a non-cooperative game, in several application fields,
ranging from biology to social sciences to multi-agent systems (MAS), it has
become the leading paradigm to model and discuss cooperative behavior. In one-
shot Prisoner’s Dilemma, two players simultaneously decide to either cooperate
(C) or defect (D). If both play C, they get more than if both play D, otherwise
in case one defects and the other cooperates, then the defector gets the highest
payoff, while the cooperator gets the lowest. Consequently, rational choice would
imply that it is safer for each player to defect, even though both would get a
better payoff in case of cooperation. The situation were both players do not coop-
erate is the Nash equilibrium of the PD game. Several approaches for promoting
cooperation have been proposed, some introducing for instance voluntary rather
than compulsory participation [1] with punishment for non cooperating agents,
some others introducing prior commitments and possibly posterior punishment
for non cooperation [2]. The main aspect to consider is that both a-priori negoti-
ation for reaching a commitment and a-posteriori administration of punishment
have costs.

As a matter of fact, negotiation and punishment are complementary in
the way they try to induce cooperation: prior commitments function better
with “compliant” agents, and punishments with “free riders” which pursue
their momentarily best interest. Commitment definition and formation has been
extensively studied (cf. [3] and the references therein) and both mechanisms
have been considered in the field of software agents and multi agent systems
© Springer International Publishing Switzerland 2015

M. Gavanelli et al. (Eds.): AT*¥IA 2015, LNAI 9336, pp. 128-135, 2015.
DOI: 10.1007/978-3-319-24309-2_10

Cooperating with Trusted Parties Would Make Life Easier 129

(MAS) where commitment are usefully employed in many fields that include
inter-agent communication. Prior commitment, though costly, may be applied
on a probabilistic basis [4]. Recent studies (see, e.g. [5]) discuss the conditions
when a strategy that combines the two mechanisms is better than either strat-
egy by itself in a MAS. It has been advocated in more general terms [6] that
the tendency to making prior agreements rather than just requiring a posteri-
ori compensations emerges from a variety of examples in biological and social
contexts, thus suggesting that this behavior could have been shaped by natural
selection, and, therefore, “good agreements make good friends” [6].

In this paper, we cope with the Iterated Prisoner’s Dilemma, where players
engage in Prisoner’s Dilemma repeatedly and change their strategy according to
a shared indicator built upon previous actions of all involved agents. We assume
the implicit existence of a game manager that provides payments for game pay-
outs and collects punishment fines. In such a research setting, both a-priori
commitments and a-posteriori punishment for defeating commitments have been
used in the existing literature in support of “apology” (see [7,8]). We propose
to use forms of public trust evaluation as indicators for implementing strategies
eventually leading to more successful course of actions. In particular, we argue
that long term gain would result from effective commitment reached with trusted
parties, where trust evaluation evolves dynamically with game repetitions. We
provide results of computational simulations showing that the adoption of trust
evaluation (cf. [9,10] and the reference therein for a discussion about the notion
of trust and of trust-update mechanisms) enforces a higher final gain for agents
playing the iterated PD.

1.1 Game Theory Basic Notions

Game theory is a study of strategic decision making involving cooperative and
non-cooperative agents. This paper falls into the field of non-cooperative game
theory as we study how a group selfish agents make decisions that maximize
their respective utility. Nash equilibrium is a way to model the equilibrium of
such decision making process. In this paper agents decisions are based on the
evaluations of the opponent, by means of trust and reputation. While in coop-
erative game theory we study how a group of agents can decide on the rules of
cooperation using their respective share of the utility gained from such cooper-
ation, we argue that the evaluation of trust and reputation may be a viable way
to promote cooperation as concepts from both cooperative and non-cooperative
game theory may be used together in the study of multi-agent decision making.

2 Model and Methods

As we are addressing the question of commitment in the Prisoner Dilemma,
we consider the scenario where the game is played in several iterated rounds
among a non homogeneous population of different agents. In each round two
players are selected at random with uniform probability to play a one-shot game.

130 P. Caianiello et al.

Before making their choice (C or D), either player may simultaneously propose a
commitment to cooperation which the other player may accept or deny. If both
players propose, then commitment is established; if only one proposes, then com-
mitment is established only if the other accepts; finally if either does not accept
or neither proposes then no commitment is established. Commitment proposal
has a cost € that is shared in equal parts if the commitment is established. On
the other end, if no commitment is established, the entire cost is charged only
to the proposing player, if there is one.

After the commitment proposal/accepting preliminary move, the players
make their simultaneous choice C or D, they get their resulting payoff and,
if either agent plays D in a round when a commitment was established, it will
have to pay a penalty ¢ to the deceived opponent. In Fig. 1 we show the payoff
matrix where ' > R > P > S.

¢ D

RR S,T
C

TS PP
D

Fig. 1. Payoff matrix

We present simulation results by computing agents cumulative wealth
obtained as a net outcome from rounds payoff, commitment, and penalty pay-
ments.

2.1 Players Typologies and Profiling

The two-moves version of the prisoner dilemma game allows the definition of
typical agents with deterministic behaviors. We consider a population of several
different playing agents of two major classes as described in Fig. 2. Agents in
the first class behave according to a strategy that does not change over time, the
names associated to their behavior are already established in related literature,
[5]. We describe them with minor differences and some new entries, in particular
the BASTARD agent who always tries to establish a commitment but afterwards
always deceives, and the SCHIZO agent, who always tries to establish a commit-
ment but afterwards behaves inconsistently by playing D when the commitment
is established and plays C when there is no commitment.

Among the all theoretically possible agent behaviors, the only missing is the
one that never proposes or accepts and then plays C anyway. In fact although
it seems that there are 2% possible deterministic behaviors , it should be noted
if an agent proposes, then according to the game rules it will always accept. So
no player can always propose and never accept.

In the bottom lines of Fig. 2 we describe a class of agents whose strategy is
probabilistic an depends on the global profiling of their opponent represented as
trustworthiness 6 measuring the agent’s disposition to comply to commitment,

Cooperating with Trusted Parties Would Make Life Easier 131

and reputation p, measuring the agent’s willingness to play C role. Such profiling
is globally updated at each round with the simple reinforcement rule z(t) :=
z(t —1) 4+ Az that increases (or decreases) their trustworthiness and reputation,
x is 6 or p, by a fraction A of what they miss to get to the maximum (or
minimum):

+a(1 — 0) if commit and play C
Al = < —adb if commit and play D

0 «f no commit

) +a(l —p) if play C
r —ap if play D

where 0 < « < 1 and drives the rate of change of § and p during subsequent
rounds.

The class of agents with probabilistic behavior that we consider include:
RANDOM who in any game and with an opponent just flips a coin to decide what
to do, and the others, but DIPLOMAT, play C with probability that is equal to
the opponent reputation p if no commitment is established, and modulate their
moves in establishing commitment with a probabilistic choice depending on the
opponent profiling. In particular TRUSCoop who decides whether to establish
a commitment with a probability 6, always plays C if a commitment is estab-
lished; TRUST who proposes a commitment with probability 6, never accepts
commitments and plays C with probability 6 if a commitment is established;

name propose accept coop on coop on no
commit commit
C always always always always
D never never irrelevant never
COMP always always always never
FAKE never always never never
FREE never always always never
BASTARD always always never never
SCHIZO always always never always
RANDOM P=1/2 P=1/2 P=1/2 P=1/2
TRUST CooP P=0 P=0 always P=p
TRUST P=0 always P=0 P=p
REP Only never never P=p P=p
DIPLOMAT always always P=0%p P=p

Fig. 2. The probability P of playing C for agents in the simulation, yellow are pure
deterministic agents, orange are probabilistic.

132 P. Caianiello et al.

REPonly who never commits, and DIPLOMAT who always tries to establish a
commitment and, when it is established than plays D with a probability that is
equal to the product of # and p, and otherwise plays D when the commitment
is not established.

We stress the fact that in the present work we deliberately kept "adaptive”
agents strategies simply depend on the global profiling of agents trustworthiness
and reputation, in order to gain a preliminary insight on possible outcomes where
trust and reputation are involved in agents decisions. Obviously more complex
adaptive strategies taking into account different aspects of agents behavior may
be conceived of, and will be the object of sequel work.

T=20 S=-10 R=10 P=0 el=5 d1=15

—cC
— D
— Comp
— Fake
Bast
— Free
— Schizo
Rept ____|-- Random|
"""""""""" T -- Trustc
-- TrustT
-~ Reput
Diplo

a

HrKLL
Schizo

0.00 Lt T e .]

/ LM

500 1000 1500 2000 2500 3000

T=20 S=-10 R=10 P=0 el=5 d1=15

Comp
Fake
Bast
Free
Schizo
Random!|
TrustC
TrustT []
Reput [

Bast
D NSNS e e 8 e SO e |

M

~0.05|

~0.10|

500 1000 1500 2000 2500 3000 3500

Fig. 3. Trend of agents relative wealth in two different simulations with same param-
eters values.

Cooperating with Trusted Parties Would Make Life Easier 133
3 Simulation Results

We have performed a number of experiments that we show and discuss below.
The outcome is that the introduction of trust and reputation increases the level
of cooperation while decreasing the cost for both single agents and overall MAS.
Each simulation is initialized with a random population of 1000 agents chosen
with uniform probability among the 12 agent described in Fig 2. Each simulation
is run for 10000 rounds where two players are chosen at random uniformly in
the population.

3.1 Agents Performance

In Fig. 3 we plot the relative agents wealth in two different simulations, with
the same choice of € and § and other parameters. We noticed that different runs
of the simulation with same parameters do lead to somewhat different results in
agents relative performance. That, in fact, it’s due to the complexity of the game
that we are simulating and testifies for a dependency of the final result on the
initial random choices. Chance and luck do play a role in the Iterated Prisoner
Dilemma.

‘I"=20 S=-‘10 R=10 I"=0 971=0‘ d1=‘0 ‘I"=20 S=-‘10 R=10 I"=0 ?1=5‘ d1=‘1

20000 20000

15000 + i i 15000

10000 10000

Capitalized wealth
@ -Gle o
jsl [3
O®@ @O
Capitalized wealth

i O O @

5 © 8
9 §]
5000 g g & g 3 5000 3 b +
€]
o 608 5 g
0 0
C D COMP FAKE BAST FREE SCHIZORANDTRUSTCTRUST REP DIPLO C D COMP FAKE BAST FREE SCHIZORANDTRUSTCTRUST REP DIPLO

20000 '|"=zo 5:.‘10 R=10 |‘>=0 971:2‘ d1=‘4 20000 . T‘=20 S=»1‘U R=10 P‘=0 e‘1=1‘d1=‘10

15000 ; 15000 ° g
e g
s tH L4 Py s 8 H [}
K] 8 8 FH [] 8 g
2 10000 ' g = 10000 8 .
8 . i 8 K o é '
E] 2 g
5000 % g g @ 5000 % E .
0 0
(‘: I‘) CO‘MP FAKE BA‘ST FREE SCH‘IZORA;‘IDTRU‘STCTR[‘JST REP DH"LO (‘: l‘) CO‘MP FAKE BA‘ST FREE SCH‘IZORA;\IDTRU‘STCTRL‘JST REP DIP‘LO
Agent Class Agent Class

Fig. 4. Simulation results for different choice values of the commitment cost € (el) and
penalty 6 (d1).

134 P. Caianiello et al.

To overcome this problem in order to arrive at more definite relative eval-
uation of agents performance we decided to get a better idea by looking at
ten different simulations and look at the cluster of final results that the agents
obtained. In Fig. 4 we report about the final wealth obtained when running ten
simulations of the game with different values of € and ¢, as obtained in the sim-
ulations and presented in order of increasing values of the ratio §/e. As we see
there is a definite best performance of the DIPLOMAT, except for high values
of § when the DIPLOMAT performance suffers for its probabilistic choice, and
consistently cooperative agents as C and COMP perform better. Notice that
SCHIZO does have an appeal in almost any situations.

3.2 Agents Wealth vs Commitment Cost and Punishment

In order to appreciate the possible influence of the chosen values of € and §, in
Fig. 5 we plot the average wealth obtained by all the agents of the same type
against a few chosen values of € and § plotted for increasing d/e

We argue that a combination of the commitment cost plus violator’s pun-
ishment with a trust mechanism, where involved agents are keener to pay com-
mitment cost if dealing with trusted agents, should result in better agents per-
formance. Moreover, the fact that the population includes different types of
agents, many of which behave according to a probabilistic strategy depending
on trust and reputation, also modifies relative performance of agents with a fixed
behavior.

Diplo

; e | e

| FAKE | == FREE

A X CX] wa)) wn X X] .10

Fig. 5. Agents average wealth for choice values of € (el) and § (d1) plotted for increasing
(€,9)

Cooperating with Trusted Parties Would Make Life Easier 135

4 Concluding Remarks

In this paper, we have advocated trust evaluation to promote cooperation in the
Iterated Prisoner’s Dilemma with prior commitment, and performed simulations
with a mixed population of deterministic and probabilistic agents whose move
depends on a simple profiling of opponents trustworthiness and reputation. The
experimental results suggest that some probabilistic agents relying on trustwor-
thiness and reputation perform consistently better, though their performance
decreases for high values of the ratio of punishment over commitment costs in
favor of more consistent typically cooperative agents. We can argue that, on the
one end trust and reputation provide a solid playground for agents to achieve
a better payoff in cooperation games, on the other a reasonable penalty for
defecting commitments could promote cooperation.

References

1. Hauert, C., Szabd, G.: Prisoner’s dilemma and public goods games in different
geometries: Compulsory versus voluntary interactions. Complexity 8(4), 31-38
(2003)

2. Pereira, L.M., Santos, F.C., et al.: The emergence of commitments and coop-
eration. In: Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems, vol. 1, pp. 559-566. International Foundation
for Autonomous Agents and Multiagent Systems (2012)

3. Singh, M.P.: Commitments in multiagent systems: some history, some confusions,
some controversies, some prospects. In: Paglieri, F., Tummolini, L., Falcone, R.,
Miceli, M. (eds.) The Goals of Cognition: Essays in Honor of Cristiano Castel-
franchi, pp. 601-626. College Publications, London (2012)

4. Chen, X., Szolnoki, A., Perc, M.: Probabilistic sharing solves the problem of costly
punishment. New Journal of Physics 16(8) (2014)

5. Han, T.A., Lenaerts, T.: The efficient interaction of costly punishment and com-
mitment. In: Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015,
pp. 1657-1658 (2015)

6. Han, T.A., Pereira, L.M., Santos, F.C., LenaertsJ, T.: Good agreements make
good friends. Scientififc Reports 3 (2013). (Online, Open-Access)

7. Han, T.A., Pereira, L.M., Santos, F.C., LenaertsJ, T.: Why is it so hard to say
sorry? evolution of apology with commitments in the iterated prisoner’s dilemma.
In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, August 3-9, 2013, IJCAI/AAAI
(2013)

8. Okamoto, K., Matsumura, S.: The evolution of punishment and apology: an iter-
ated prisoner’s dilemma model. Evolutionary Ecology 14(8), 703720 (2000)

9. Castelfranchi, C., Falcone, R.: Trust theory: A socio-cognitive and computational
model, vol. 18. John Wiley & Sons (2010)

10. Wang, Y., Singh, M.P.: Formal trust model for multiagent systems. In:
Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pp. 1551-1556 (2007)

Agent Based Simulation of Incentive
Mechanisms on Photovoltaic Adoption

Valerio Iachini, Andrea Borghesi®), and Michela Milano

DISI, University of Bologna, Bologna, Italy
valerio.iachini@gmail.com, {andrea.borghesi3,michela.milano}@unibo.it

Abstract. Sustainable energy policies are becoming of paramount
importance for our future, shaping the environment around us, under-
pinning economic growth, and increasingly affecting the geopolitical con-
siderations of governments world-wide. Renewable energy diffusion and
energy efficiency measures are key for obtaining a transition toward low
carbon energy systems.

A number of policy instruments have been devised to foster such a
transition: feed-in-tariffs, tax exemptions, fiscal incentives, grants. The
impact of such schemes on the actual adoption of renewable energy
sources is affected by a number of economic and social factors.

In this paper, we propose a novel approach to model the diffusion
of residential PV systems and assess the impact of incentives. We model
the diffusion’s environment using an agent-based model and we study
the emergent, global behaviour emerging from the interactions among
the agents. While economic factors are easily modelled, social ones are
much more difficult to extract and assess. For this reason, in the model we
have inserted a large number of social parameters that have been auto-
matically tuned on the basis of past data. The Emilia-Romagna region
of Ttaly has been used as a case study for our approach.

1 Introduction

Energy policies affect and are affected by a number of interconnected social,
economical and environmental aspects. The transition toward a sustainable and
low-carbon economy should be fostered by governments worldwide. Energy effi-
ciency measures and renewable energy sources are two key enablers for such
a transition. For this reason a number of policy instruments have been imple-
mented to push stakeholders toward virtuous energy-aware behaviour: feed-in
tarifs, tax exemption, investment grants, fiscal incentives. Stakeholders involved
in energy policies have conflicting interests that should be taken into account to
understand and forecast the impact of energy policy instruments.

We propose here the design and assessment of a predictive model that takes
into account both economic and social drivers pushing stakeholders (households
in particular) toward the adoption of photovoltaic plants. A large portion of the
total installed PV power, in fact, comes from photovoltaic panels installed by
private citizens and enterprises. For this reason, policy makers cannot directly
© Springer International Publishing Switzerland 2015

M. Gavanelli et al. (Eds.): AT*¥IA 2015, LNAI 9336, pp. 136-148, 2015.
DOI: 10.1007/978-3-319-24309-2_11

Agent Based Simulation of Incentive Mechanisms on Photovoltaic Adoption 137

decide on the total photovoltaic power installed, but they have to foster the PV
power generation through indirect means, usually in the form of incentives to
the PV energy (i.e. feed-in-tariffs for the electricity generated by PV systems).

We propose an agent-based model[5,9,17] (ABM) that simulates the behavior
of single households and government entities (micro-level) in order to evaluate
and explain emergent phenomena (macro-level). We tackled the challenge of
reproducing the household’s decisions to install a PV system for their houses. We
take into account both economic aspects (return on investment, income, interest
on loans), territorial aspects (position, roof width, population distribution) and
social aspects (imitation, network effect on knowledge diffusion). Since it is very
difficult to a priori calibrate these parameters, we employ automatic parameter
tuning techniques to tune these social aspects to meet an emerging behaviour
that is taken from past data. Past data concern policy instruments present in
the past and photovoltaic adoption!.

2 Related Works

Many scholars have tried to model the diffusion of innovations. Their works had
evidenced that the diffusion of innovation is a social process. Many proposed
models are ABMs, where the agents are connected to form a small-world net-
work. The information exchanged between entities in the network influences the
diffusion of the innovation. In this direction [1] implemented a threshold model
based on the so called “bandwagon effect”. In this model the increase of the
number of adopters generates new information about the innovation, which in
turn produces high pressure on people who have not yet adopted the innovation.
An important factor in this process is the estimation of the profitability of the
innovation made by potential adopters. Since potential adopters may be unsure
about the correctness of their profitability assessment, other people who have
already adopted the innovation could influence their decision. The authors of
[1] express the bandwagon assessment of innovation of a potential adopter as a
function that involves the evaluation of profitability of the new technology and
the amount of information received regarding the innovation, weighted by the
amount of “trust” placed on such information.

Another approach used to predict the diffusion of an innovation has been
proposed by [4]. In this model the price and the performance of the innovation
influence people decisions. The potential adopter knows the price of innovation
but he ignores its performance. The performance is based on the perception that
the potential adopter has of the innovation. Over time, potential adopters receive
information about the performance by word-of-mouth from other adopters and
consequently the uncertainty about the innovation potential is reduced. The dif-
fusion of residential PV systems could be modeled using the previously described
models. The innovation is the PV technology and potential adopters are the
households: models estimate the benefits deriving from the adoption of a PV
system and a household decides whether to install or not a PV system.

! Data are available (in Ttalian) on http://www.gse.it

http://www.gse.it

138 V. Iachini et al.

The authors of [18] proposed a two level threshold agent-based model that is
specifically aimed at estimating the diffusion of PV systems. In this model agents
represent households that choose whether or not to install a PV system. The low
level component simulates electric consumption for each agent and provides the
payback time of the investment. The high level component models the behaviour
of agents toward PV adoption. Four factors affect the decision: payback period,
household income, neighbourhood and advertisement. The adoption of a PV
system by a household is determined by its “desire level”, computed as the linear
combination of the four factors. If the desire level of the household exceeds the
threshold the household installs a PV system. [10] has proposed an ABM inspired
by the work of [18]: the household’s decision is again a linear combination of four
factors but in the latter work these factors are weighted differently according to
the social class of the household. Moreover in the [10] model agents are connected
to form a small-world network in such a way that those who are in the same
social class are more likely to be linked together.

Another factor that we may consider is the geographical location of buildings.
[12] proposed a model that uses a geographic information system (GIS) along
with an ABM to study the diffusion of PV systems. Including the real topology
of the area under consideration allows to analyse the effects of solar exposure
and population density on diffusion of PV systems. Agents who have a similar
opinion on technology could influence each other.

3 The Simulated Model

Our model simulates the behaviour of households in presence of different incen-
tive mechanisms, to predict the diffusion of PV systems. We focused mainly
on families living in the Emilia-Romagna region (and especially considering the
2007-2013 period), but the process described below is valid for any region or
country. In [3] [2] we proposed a preliminary agent-based model to simulate the
impact of national and regional incentives on the installation of PV panels in
the Emilia-Romagna region. The model we discuss in this paper largely improves
the previous version, especially in the social interactions among the agents; our
work was partially inspired by related works cited in Section 2, in particular by
[10]. The simulation model was developed in Netlogo [15].

We define two kinds of agents: the households and the region. The households
make the decision whether or not to install a PV system. Each household is
described by a set of attributes: age class, education level, income, family size,
consumption, roof area, budget, geographical coordinates and social class. We
use these attributes to define the household behaviour and to build the social
network. The region agent regulates the regional incentive; it defines the type of
incentive offered, the amount of available budget and who is eligible to obtain
the incentive. The regional incentives are provided by the region on top on the
national ones given by the Italian government during the considered timespan,
i.e. a feed-in tariff (see [3] for a detailed survey on the incentives).

The simulator is structured into two phases: 1) the configuration phase and
2) the evolution phase. In the configuration phase, the simulator sets up the

Agent Based Simulation of Incentive Mechanisms on Photovoltaic Adoption 139

virtual environment and creates the agent-based model. Firstly, it places the
agents on the virtual environment recreating the actual population density. WE
have used data on the buildings of the Emilia-Romagna region to obtain the
positions and roof areas of houses. The simulator uses this information to assign
a building and a roof to each household. Then the simulator builds the social
network taking into account the physical distance between the household and
the proximity between their attributes. The social network determines how the
information about PV systems is exchanged.

In the evolution phase the simulator runs the model, recreating the behaviour
of agents and updating the virtual environment. A simulation consists of a
sequence of steps with a time frame of six months. The PV adoption by each
household/agent is affected by the payback period of the investment, environ-
mental sensitivity, the household’s income and the communications with other
households. We express these factor using a combination of four functions (which
we refer to as utility function) to determine the “desire level” of a household. If
the desire level exceeds a threshold the household installs the PV system.

3.1 Configuration Phase

In the configuration phase the simulator initializes the virtual world creating the
starting conditions. The simulator loads the dataset containing the household’s
descriptions and places the families in the virtual world following the actual
density distribution. The geographical coordinates and roof areas are obtained
by associating each family to a building: buildings are sorted by their roof size
and families with the highest income and the largest number of members are
assigned to the biggest ones.

We acquired the buildings by analysing the Ersi shape-files provided by
Emilia-Romagna region®. Those shape-files contain a polygon for each building
detected by the region. Since our model requires only the positions of buildings
and the areas of the roofs, it was necessary to process these files to extract the
relevant information. We used QGIS [11], a free and open source Geographic
Information System (GIS), to manipulate these shape-files and calculate the
position and size of the houses.

Each household is described by a vector of attributes: age class, education
level, income, family size, energy consumption and social class. The distribution
of each attribute is obtained by analysing the Survey on Household Income
and Wealth (SHIW) provided by Bank of Italy®. In addition each household
establishes a budget for purchasing a PV system. The key idea is that to different
household income classes correspond different spending powers. If a family has
an income around the mean, the family will expect to pay the average PV system
price. Conversely, if the family income is lower or higher than the average, the
family will aim to spend less or more for a PV system.

2 http://dati.emilia-romagna.it
3 https://www.bancaditalia.it /statistiche /indcamp /bilfait /

http://dati.emilia-romagna.it
https://www.bancaditalia.it/statistiche/indcamp/bilfait/

140 V. Iachini et al.

To assign an income to each family we used a linear regression model based
on a set of explanatory variables extracted from the data provided in SHIW, i.e.
the number of earners and members of the family, age class, etc.

The Social Network. During the configuration phase the simulator initializes
also the social network: for each family, a list of friends is provided. Since the
families are geographically distributed on the region we use the extended version
of the rank-based model proposed by [8] to get the small-world properties. In
such a model the probability that a link between node uw and node v exists
is proportional to a ranking function which depends both on the geographical
proximity of the nodes (physical neighbours) and on the attribute proximity of
the nodes (how the nodes are similar w.r.t. their attributes). After we build a
network using the extended rank-based method, we randomize it to add long-
range links. These links drastically reduce the average path length because they
connect distant parts of the network. The randomization process takes every
edge and rewires it with an empirically obtained probability p.

Social Classes. An innovation has a very high price at the beginning due to
the high costs of production. However the price decreases over time because
of technological improvements, especially those in the production phase, that
make manufacturing more efficient. Indeed, many technologies follow an S-shape
curve that relates the investments made by the company with the performance
of the technology [13][14]. In the first stage the performance improvement is
slow because the technology still needs to be fully understood. Afterwards,
as researchers and producers obtain a better knowledge of the technology, the
improvement accelerates. However, when the technology reaches its natural limit
of performance, the improvements tend to slow down.

Similarly the diffusion of innovations follows an S-curve. In the initial stage,
the adoption is slow because the technology is poorly understood. When the
knowledge about the technology has spread, the innovation enters the mass mar-
ket and the rate of adoption increases. Finally the adoption rate decreases when
the market has been fully saturated. [13] identifies five categories of different
adopters: 1) innovators, 2) early adopters, 3) early majority, 4) late majority
and 5) laggards. In Figure 1 the five different classes of adopters considered in
order to model the technology adoption rate are shown (bell-shaped curve); in
the Figure we also report the S-shaped curve which represents the innovation
diffusion. During the configuration phase we adopt the model of [13] to group the
households into social classes. Households that belong to the same social class
have similar characteristics and behaviours. Since the utility function models the
households’ behaviours, the social class is reflected in different sets of weights
which combine the four factors.

We consider each family as a point in three-dimensional space: age class, edu-
cation level and income. We use the K-means clustering technique to subdivide
these points in five social classes. The K-means is a prototype-based technique
that attempts to find a user-specified number of clusters (k). Each cluster C;
with ¢ = 1, ..,k is represented by its prototype c¢;, defined as the centroid of the

Agent Based Simulation of Incentive Mechanisms on Photovoltaic Adoption 141

100
75
=
Q
=~
@
50
o
Q
@
R
25
\ 0
Innovators Early Early Late Laggards
2.5 % Adopters Majority Majority 16 %
13.5% 34 % 34 %

Fig.1. Adopters Classes, source: http://en.wikipedia.org/wiki/Diffusion_of_innova-
tions

group of points. The K-means algorithm attempts to minimise the total intra-
cluster variance, repositioning the centroid at every step until the centroids do
not change. It starts with a random set of centroids ¢y, ..,c; and then assigns
each point = to the nearest centroid. After that, it calculates the new centroids
by averaging the points in a cluster. The results of the clustering are shown in
Figure 2. The five different colors in the figure represent the five different clus-
ters identified on the base of the three parameters considered (age class, AGE,
education level, EDL, and income, INC).

It is difficult to evaluate the goodness of a clustering because we do not know
the class labels to be used as a reference. When the ground truth is unknown
unsupervised techniques can be used to evaluate the clustering; these methods
measure the goodness of a clustering structure without using external informa-
tion. A common unsupervised method is the silhouette coefficient that relates
the cohesion of a cluster with the separation between clusters [16]. The silhouette
coefficient is defined for each sample 7 and it is composed of two scores: 1) the
cohesion a(7), the mean distance between the sample ¢ and all other points in the
same cluster; 2) the separation b(i), the mean distance between the sample ¢ and
all other points in the next nearest cluster. The value of the silhouette coefficient
can vary between -1 and 1. If the value is negative, the sample 7 is closer to the
objects of another cluster than other objects of its cluster. Samples with a large
s(4) (almost 1) are very well clustered. An overall measure of the goodness of
a cluster can be obtained by computing the average silhouette coefficient of all

142 V. Iachini et al.

Result

PP Q@f

10

’

A

Y PP |ii;§
e AT
S s

Fig. 2. Clustering Results

samples. Using K-means clustering we get a silhouette coefficient of 0.35, which
is not an optimal value, but it is good enough for our purposes.

3.2 Evolution Phase

In the evolution phase the simulator recreates the behaviour of households for
a period from the first half of 2007 to the second half of 2036; actually the PV
systems are installed only during the 2007-2013 period but we have also to take
into account the long lifetime of PV panels and the incentive durations. In each
semester (from 2007 to 2013) households proceed to evaluate the adoption of
PV system; in the remaining part of the simulation (from 2014 onwards) no new
panels are installed. As previously mentioned the desire level for adoption of a PV
system is estimated through the utility function described in the configuration
phase that every agent computes according to its own characteristics. we remind
that the utility function takes into account the income of the family, the payback
period, the environmental benefits and the relationships with other families.
These factors are weighted differently depending on the social group of the family.
The weights for each group are determined by calibrating the model on real data
over the 2007-2013 period.

The estimation of the ROE considers costs and gains for a 20 years period,
which is the estimated lifetime of a PV system. We calculate the cash flow for
each year as the difference between total earnings and total expenditure related
to the PV. The expenses that are taken into consideration are the cost of the
system, the maintenance costs and the loan interests. The sources of income
are the electricity bill savings due to the self-consumption and sales to the grid
operator. The national and regional incentives affect the gains and the expenses
in different ways: for example earnings are related to the Italian national feed-

Agent Based Simulation of Incentive Mechanisms on Photovoltaic Adoption 143

in tariff and expenditures are influenced by the initial cost (modified by the
investment grants offered by the regions) and loan interests (a target of several
incentive mechanisms). A household solves the optimization problem to find the
size of the system that provides the highest ROE.

We assume that families get advice from PV installers and they become
well-informed about their options. Thus households install the PV system that
maximise their reward in terms of production and saving.

The Utility Function. The core of our model is the utility function, or desire
level, which is responsible for the agent decision to invest in a PV panel or not.
The function is defined by the following equation:

U(v) = wpp(clsy)upp(v) + Whudget (Cl5y) ubudget (V)

+ Weno (€lsy) Ueny (V) + Weom (€lSy)Ucom (V)

where cls, is the class of agent v. The equation is a linear combination of four
factors: the household payback time (up,(v)), the household budget (upydget(v)),
the neighbourhood influence (ucom (v)) and the environmental benefit of invest-
ing in a PV system (teny(v)). These four factors are multiplied by four different
weights Wy, (clsy), Whudget(€lSy)s Weom (€lSy) and Weny(cls,), which depend on
the class of the agent. The proper calibration of these parameters is a crucial
aspect and it will be discussed in Section 4.

The partial utility u,,(v) estimates the expected payback period pp of an
agent v. As the function value range is between 0 and 1, we map the actual
payback period which could range between zero and twenty years to the range
[0,1]; we subtract the min(pp) considered, namely one year, and then divide the
value obtained by max(pp) — min(pp), where maz(pp) is 21 years, because 20
years is the expected useful life for PV systems. According to [10] we compute
Upp(v) as:

upp(v) = 721 ;ﬁpw)

where pp(v) is the payback period for the initial investment. The payback period
requires the net present value (NPV) of the PV system: when the NPV value
turns from negative to positive a household recovers from its initial investment.
The NPV computation is based on the yearly cash flows. The regional and
national incentives act on the payback utility factor because they reduce the
payback period.

The household budget upyaget (v) is given by:

/ Vequity

Ubudget (U) = eVbudget

where Vegquity is the initial investment obtained by subtracting any incentives
that affect the PV panel installation price; vpuage: is the budget available to the
agent.

The tUeny(v) captures the sensitivity toward the environmental benefits
related to the adoption of a PV system. It is calculated as the oil saved - clearly

144 V. Iachini et al.

correlated to the amount of COy produced - thanks to the PV panel. We use
the conversion factor from MWh of energy to TOE (Tonne of Oil Equivalent)
provided by the Italian Regulatory Authority for Electricity and Gas*. The eco-
logical benefits are expressed as:

1

e0ilnotconsumed —Otlconsumed

Uenv (U) -

Finally the partial utility wcom (v) describes how the social interaction affects
the agents behaviour. The neighbourhood of an agent is defined by the nodes it
shares a link with. The communication factor is calculated as follows:

1
B 1+ B%L'u,totLv,adopter

Ucom (V)

with L, ¢ the total number of links of agent v and Ly qdopter the number of
links shared with adopters.

4 Model Calibration

A critical aspect of our simulator is the correct calibration of the model parame-
ters, since they have a great influence on the final outcome; a commonly known
weak point of agent-based models is exactly the difficulty to find good parame-
ters. The solution we chose to employ is to devise an automated fine-tuning pro-
cess which allowed us to test numerous combinations of parameters and select
those which provide better results. Our goal is to obtain a simulator able to
reproduce the impact that real incentive strategies (along with economic and
social aspects) have had on the PV adoption in the ER region; hence we use
the real data from the period 2007-2013 to calibrate our model.Real data are
taken from the GSE website that records every PV plant along with its power
and geographical position. In practice we want to obtain a good fit between the
observed trend of PV power installation and the simulated one.

The parameters we need to fine-tune are the weights of the utility func-
tion: wpp(clsy), Woudget (€lSy), Weom (€lSy) and weny(clsy). We chose to employ a
Genetic Algorithm (GA) [6] to find the configuration of utility function weights
which better fit the Emilia-Romagna PV power installation curve. In our model
the parameters are correlated, i.e. if we increase the communication factor the
remaining ones are necessarily affected, since the sum of all the weights is always
equal to one (linear combination). Moreover since the choice is influenced also
by the social interaction with the neighbours there is also a dependency among
the weights of the different social classes: if we change the weights for the util-
ity function of a node this may change the number of installed PV panels in
the neighbourhood; this in turn would produce consequences on the whole net-
work. To summarize, every slight change in the weights of each agent could have

4 A TOE is defined as the amount of energy released by burning one tonne of oil, or
0.187 TOE for each MWh produced.

Agent Based Simulation of Incentive Mechanisms on Photovoltaic Adoption 145

extremely great impacts on the final outcome and in such circumstances genetic
algorithms have been proved to be very effective.

We defined a new set of parameters, a;,b;,¢; Vi = 0,..,N — 1, where N
is the number of clusters. Each parameter is a real number in the range [0,1];
the utility function weights are computed as a linear combination of these new
parameters. The following equations define such relations:

(cls)
(cls) = (1 — weudget (cls))bets
Weny (cls) = (1 — (Wpudget (cls) + wpp(cls)))cers
(cls) =1 — (Woudget (cls) + wpp(cls) + Weny(cls))

The genetic algorithm starts generating a random initial population of parame-
ters configurations (also called “individuals”). Then it proceeds to evaluate the
entire population by running the model. After the evaluation phase, the GA
selects the next generation of individuals. We use a strategy called tournament
selection [7], which selects k individuals from the actual population using n tour-
naments of j individuals. Each tournament is composed of j random individuals
and the individual with the highest fitness is selected for the next population.

Before the next evaluation the GA applies crossover and mutation on the
offspring. The crossover randomly selects two individuals and generates one or
more children from them. We use one-point crossover where a single crossover
point on both parents’ configuration is selected. The crossover method selects a
random value from the two parents and then produces a new configuration by
swapping the values beyond the crossover point. Finally the mutation randomly
selects one individual and alters one or more values. The evolution process is
repeated for 400 times.

4.1 Results

In Figure 3 we show the results of the fine-tuned simulator. We used a model
composed by 2000 agents; each simulations requires around 20 seconds with a
2.40GHz Intel Pentium DualCore CPU €2220 with a 2GB RAM. The genetic
algorithm uses a population of 50 individuals and the overall time required to
calibrate the machine is around 40 hours.

The Figure shows the observed photovoltaic power installation trend in the
Emilia-Romagna Region in the considered timespan (solid line) and the trend
obtained through our fine-tuned simulator (dotted line). The year is displayed
in the x-axis while the y-axis tells the yearly PV power growth in percentage.
The figure clearly reveals that the installed PV power predicted by the agent-
based model correctly follows the real trend. Both curves indicates that after
an initial slow diffusion phase in the first years (2007-2009) there is a peak in
the power capacity in 2011 - possibly due to the combination of high level of
national incentives and more widespread knowledge of the technology (see [2] for
more insight on the correlation between national incentives and PV diffusion in

146 V. Iachini et al.

ER). The summed square of residuals (SSE) of our forecast w.r.t. the real data
is equal to 8.56 and the R-squared is 0.984, a very good value. There is still a not
entirely negligible gap between the simulated results and the real data but we
are currently working to refine the model; we are confident that better results
could also be achieved through a more accurate fine-tuning of the model.

30 T T T T
- - Observed data : :
— Simulated data

25

20

15

10

Power capacity growth rate [%]

0 | L L i i
2007 2008 2009 2010 2011 2012 2013

Fig. 3. Model Calibration Results

5 Conclusions

In this paper we proposed an agent-based model to simulate the diffusion of
photovoltaic systems with the goal to assist policy makers in their decisions.
With this model it is also possible to study the impact that different incentive
mechanisms can have on the overall amount of PV power installed. Due to the
difficult nature of the problem and especially since a key factor is given by the
extremely complex nature of social interactions, an agent-based model was a
natural way to cope with this problem. The main advantage of such type of
model is the possibility to define the behaviour of each agent at a micro-level
and observe the emergent trends at macro-level.

The agents in our model are the households which decide whether install a
PV panel on their roof or not. The decision is taken w.r.t. to four factors: 1)
economic sustainability, 2) economic return, 3) social interaction and 4) environ-
mental benefits. How much these four factors influence the final decision (their
weights) is the subject of another problem we considered in this paper. To under-
stand which were the best weights we used a Genetic Algorithm, employing as

Agent Based Simulation of Incentive Mechanisms on Photovoltaic Adoption 147

a training set the data of the photovoltaic power installed in Emilia-Romagna
region in the period 2007-2013.

The fine-tuning of the parameters provided us with a model able to correctly
predicts the trend of the installed PV power within an acceptable margin of
error. It is nevertheless possible to achieve even better results and this is a
research direction we are currently exploring. Along with the model refinements
other future research include the development of different parameters calibration
techniques and experiments with others data sets. Future works will also try to
scale-up the number of agents in the model to get closer to the real number
of households in the Emilia-Romagna region (a few millions). We also plan to
study more in detail the impact of the incentives on the overall PV installed
power, integrating these results within a complete framework capable to aid
policy makers in each phase of the decision process.

Acknowledgment. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n. 288147.

References

1. Abrahamson, E., Rosenkopf, L.: Social network effects on the extent of innovation
diffusion: A computer simulation. Organization Science 8(3), 289-309 (1997)
2. Borghesi, A., Milano, M.: Multi-agent simulator of incentive influence on PV
adoption. In: 2014 International Conference on Renewable Energy Research and
Application (ICRERA), pp. 556-560, October 2014
3. Borghesi, A., Milano, M., Gavanelli, M., Woods, T.: Simulation of incentive mech-
anisms for renewable energy policies. In: ECMS2013: Proceedings of the European
Conference on Modeling and Simulation (2013)
4. Chatterjee, R.A., Eliashberg, J.: The innovation diffusion process in a hetero-
geneous population: A micromodeling approach. Management Science 36(9),
1057-1079 (1990)
Gilbert, N.: Computational Social Science. SAGE (2010)
6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
7. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. Foundations of genetic algorithms 1, 69-93 (1991)
8. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. Proceedings of the National Academy of Sciences of
the United States of America 102(33), 11623-11628 (2005)
9. Matthews, R., Gilbert, N., Roach, A., Polhill, G., Gotts, N.: Agent-based land-use
models: a review of applications. Landscape Ecology 22(10) (2007)
10. Palmer, J., Sorda, G., Madlener, R.: Modeling the diffusion of residential photo-
voltaic systems in Italy: An agent-based simulation (2013)

11. QGIS Development Team. QGIS Geographic Information System. Open Source
Geospatial Foundation (2009)

12. Robinson, S.A., Stringer, M., Rai, V., Tondon, A.: GIS-integrated agent-based
model of residential solar PV diffusion. In: 32nd USAEE/IAEE North American
Conference, pp. 28-31 (2013)

o

148

13.

14.

15.

16.

17.

18.

V. Iachini et al.

Rogers, E.M.: Diffusion of preventive innovations. Addictive Behaviors 27(6),
989-993 (2002)

Schilling, M.A., Izzo, F.: Gestione dell’innovazione. Collana di istruzione scien-
tifica. Serie di discipline aziendali. McGraw-Hill Education (2013)

Sklar, E.: NetLogo, a multi-agent simulation environment. Artificial Life 13(3),
303-311 (2011)

Tan, P.-N., Steinbach, M., Kumar, V., et al.: Introduction to data mining, vol. 1.
Pearson Addison Wesley, Boston (2006)

Troitzsch, K.G., Mueller, U., Gilbert, G.N., Doran, J.: Social science microsimu-
lation. J. Artificial Societies and Social Simulation 2(1) (1999)

Zhao, J., Mazhari, E., Celik, N., Son, Y.-J.: Hybrid agent-based simulation for
policy evaluation of solar power generation systems. Simulation Modelling Prac-
tice and Theory 19(10), 2189-2205 (2011)

Knowledge Representation
and Reasoning

Feature-Based Modelling and Information
Systems for Engineering

Emilio M. Sanfilippo!2®) and Stefano Borgo!

! Laboratory for Applied Ontology (LOA-ISTC),
National Council of Research (CNR), via Alla Cascata 56/C, Povo,
38123 Trento, Italy
sanfilippo@loa.istc.cnr.it
2 Ph.D. School in ICT, University of Trento, Trento, Italy

Abstract. We use methods based on ontology engineering to individu-
ate the shortcomings of feature-based modelling approaches in product
lifecycle data management, and propose an alternative view.

Our aim is to contribute to the development of information systems
for the integrated management of product lifecycle knowledge. In par-
ticular, we are looking for suitable approaches to model the variety of
engineering features as used in intensive knowledge-based product devel-
opment tasks, in particular dealing with manufacturing and engineering
design.

Keywords: Feature - Manufacturing - Ontology engineering - Design

1 Introduction

Product development is a knowledge intensive task in which several teams inter-
act at different times and from distributed geographic places by using hetero-
geneous computer modelling systems [1]. In order to be machine-processable
and cognitively transparent to software agents and to the variety of stakehold-
ers, product knowledge has to be represented in computational languages, with
formal semantics, and driven by experts’ conceptualisations.

Traditional computer-based technologies for product data modelling, like
Computer-Aided Design (CAD) systems, as well as conceptual and data mod-
els for engineering are mainly focused on geometric specifications of product
knowledge. Nowadays, however, experts need to represent and share qualitative
knowledge about the product at hand, that is, knowledge concerning the engi-
neering intents, like functional and material knowledge as well as constraints on
machining tools, product management and costs [2]. The quest to add qualitative
knowledge into quantitative product models led in the 1970s to the development
of feature-based product modelling approaches and technologies [3].

Much of the research work in this area has been focused on the development
of algorithms for the automatic detection of features in design models to allow
the integration of CADs with downstream applications like Computer-Aided

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 151-163, 2015.
DOI: 10.1007/978-3-319-24309-2_12

152 E.M. Sanfilippo and S. Borgo

Manufacturing (CAM) and Computer-Aided Process Planning (CAPP) systems.
This has stimulated the development of Artificial Intelligence-based methods,
among which knowledge-based expert systems for the automatic generation of
manufacturing process plans from a set of input constraints [4].

Despite the amount of work, the use of feature-based technologies is ham-
pered by the lack of a robust methodology for feature representation. Ontology
engineering approaches are being actively exploited for product development
purposes but even in this case the lack of a shared framework has lead to a num-
ber of disconnected and application-based ontologies that deal with feature-based
applications in very different ways. Today’s engineering ontologies concentrate on
formal representations of the concepts for specific application requirements with-
out attempting a deep characterisation of their meaning according to experts’
conceptualisations, i.e., giving up to cross-community interoperability.

We aim to fill this gap. The development of information systems is a complex
engineering process and the task we are concerned with, namely the formalisation
of a broadly applicable knowledge base framework for CAD/CAM integrated
systems, requires to systematically analyse the concepts at stake, and that of
feature foremost, before moving into application concerns.

The paper is organised as follows. In Section 2 we provide a quick overview of
feature concepts as used today in product modelling. The state of art of feature
models in engineering is given in Section 3. The problems in existing feature-
based modelling approaches are discussed in Section 4. The ontological analysis
and formal representation of the notion of feature are described in Section 5 and
Section 6, respectively; Section 7 adds an example.

2 Features for Product Modelling

Feature-based systems have represented an evolution of computer-based geo-
metric modelling approaches since the 1970s, and are nowadays the prevalent
approach for computer-aided product development. These systems provide sup-
port for product data modelling behind the specification of geometric constraints
by managing product lifecycle information required during the different stages of
product development [5]. In particular, features are used to represent and reason
over multiple quantitative and qualitative aspects of product lifecycle, spanning
from geometry to e.g. functional information, manufacturability constraints, pro-
duction costs and material tolerances. Feature-based approaches have stimulated
the development of expert systems for engineering design and manufacturing
purposes, as well as concurrent and collaborative modelling environments for
different product development tasks [6].

Historically, much of the work in the area of feature-based modelling focused
on the so-called geometric features, namely shapes recurrently used in engineer-
ing projects like counter bore, slot, chamfer and rib. This focus broadened over
the years leading to the introduction of qualitative feature information typi-
cally based on specific requirements, e.g., non-geometrical information needed for
design applications, manufacturing process planning or mechanical stress analy-
sis [3]. As a consequence of this variety, feature-based models and terminologies

Feature-Based Modelling and Information Systems for Engineering 153

tend to be driven by application concerns, that is, the information attached to
the identified feature is tuned to either the product lifecycle phases at stake, or
to the application domain in which their use is considered [7].

Consider, for instance, the manufacturing and the engineering design
domains. In manufacturing one of the main application concerns of the feature-
based approaches is the creation of process plans according to design specifica-
tions [8]. In CAPP applications, the design model of the part under consideration
is analysed to find the most appropriate solution for its manufacturing. In these
systems, machining method, tool access direction, workpiece set up constraints,
among other information, is attached to geometric features, giving rise to the
so-called manufacturing feature [4,9]. These are understood as portion of mate-
rial to be removed (subtractive feature), or added (additive features) to obtain
the desired final geometry. For instance, a hole feature is the volume removed
by a drilling cutter [9]; if the cutter penetrates the material frame, resulting in a
set of circularly connected inner boundaries, the feature is a through hole; if the
cutter does not penetrate the frame leaving a base face, the feature is a blind hole
[10]. In the case of engineering design, among other feature types, the so-called
functional features are particularly used to merge information on a geometrical
shape with details concerning its purpose(s) and expected behaviour(s) within a
certain product [11]. A pocket, for example, is a functional feature when it has
the function to allow a certain assembly constraint to hold.

Other research communities broaden the meaning of feature in other direc-
tions, for instance, aiming to merge shape information with product’s character-
istics and sub-assemblies. Groover [12, p.634] defines product features as “the
characteristics of a product that result from design”. Similarly, Brown [11] con-
siders features as things like product’s colour, mass, portions of surfaces, etc.

In the area of civil engineering, Nepal et al. [13] take features to be “mean-
ingful real world entities to which one can associate construction-specific infor-
mation” [13, p.13]. Along the same lines, in mechanical engineering, Anjum and
colleagues [14] consider physical items like metal components (e.g. screws) as
features for assembly purposes.

3 Features in Engineering Models

Several initiatives focus on the development of feature specifications (data mod-
elling standards, computational ontologies, taxonomies) for disparate applica-
tions within the product lifecycle information modelling.

The ISO standard Automation systems and integration—Product data repre-
sentation and exchange, commonly known as STEP (ISO10303) [15] is considered
the most relevant effort towards the standardisation of product data across the
entire product life-cycle. Within STEP, AP224 is an application protocol dedi-
cated to feature-based product modelling. It specifies recurrent shapes used in
manufacturing scenarios. At the core of the AP224 is the concept of manufac-
turing feature, meant as volume of material to be removed and that results from
machining. STEP provides a classification of several feature types, which are
employed in various research projects and modelling systems [16].

154 E.M. Sanfilippo and S. Borgo

Ma and colleagues [6] proposed to look at features as general modelling ele-
ments resulting from the aggregation of geometric and non-geometric parame-
ters. Their purpose is to provide a layout for feature data specifications in the
form of a schema specifying the type of the data to be included for feature rep-
resentation. The key advantage of their approach is to provide a general and
adaptable method for feature data specification, by which the commonalities
and differences between different representations can be checked while remain-
ing independent from specific application domains.

Different research communities have proposed to use computational ontolo-
gies for feature-based product knowledge representation and data sharing
between CAD systems, to facilitate the integration of CADs with downstream
applications like CAM and CAPP systems, as well as to provide formal tools for
feature recognition and manufacturing verification. For example, the Core Prod-
uct Model (CPM) ontology represent an engineered product as the aggregation
of form, function and feature, where the latter is meant as “a subset of the form
of an object that has some function assigned to it” [2]. The CPM is reused across
different research projects. Dartigues et al. [17] extend it to the integration of
CAD/CAPP systems. Their Feature Ontology is formalised in KIF.

The Common Design-Feature Ontology (CDFQO) is an OWL ontology for
feature-based CAD models exchange [18]. Feature classes are extracted from
CAD systems like Catia V5, Pro/Engineering, SolidWorks and classified into a
taxonomy.

The Manufacturing Core Ontology (MCCO) was presented by researchers
at Loughborough University [14] as a common semantic foundation for mod-
elling and sharing manufacturing knowledge. The concept of feature, meant as
“a distinctive attribute or aspect of something” plays a key role within MCCO,
because manufacturing operations and tools information is attached to the part
to be manufactured with respect to its geometric features. The ontology is spec-
ified in Common Logic.

Kim et al. [1] proposed a classification and OWL/SWRL formalisation of
assembly features to automatically reason over product knowledge, to reuse
assembly models and to facilitate data sharing across applications. The clas-
sification is enriched with classes about manufacturing processes, products and
materials, among others, so that it can be used to foster CAD/CAM integration.

Recently, Wang and Yu [10] proposed a feature ontology split in two mod-
ules, the STEP Box and the Feature Box. The former consists of a partial OWL
formalization of ISO10303-AP203. The latter is a feature library that describes
features as combinations of the STEP Box elements using OWL axioms and
SWRL rules. The authors show how their system is able to automatically recog-
nise a number of STEP features in design models.

4 Bottlenecks of Feature-Based Modelling Approaches

Despite the amount of work in the engineering community on the formal repre-
sentation of features, as witnessed in the previous two sections, the use of feature-
based approaches and systems is hampered by the lack of a shared and systematic

Feature-Based Modelling and Information Systems for Engineering 155

understanding of what counts as a feature, and the diversity of methodologies
that this situation led to. Overall, we can say that today features are taken to be
macro modelling elements with little machine-processable knowledge attached to
them. This is probably explained by the early success obtained by the formal
representation of form features and, in contrast, the puzzling heterogeneity of
non-morphological information. The lack of a unifying framework for the new
types of information makes integrated features much harder to model and man-
age. Without a solid system for non-morphological features, relevant information
for engineering purposes cannot be shared or even modelled, limiting the devel-
opment of CAD/CAM integrated systems [4].

Additionally, research communities have pointed out from the initial develop-
ment of the feature-based approaches a contrast between the application nature
of the feature-based proposals [3] and the guiding idea that feature models should
serve as means to reliably share and integrate information spanning all the pro-
duction phases, thus independently from application needs [18]. This situation
has led to modelling approaches that treat features as aggregations of geometric
and non-geometric parameters [6] without addressing the basic issue of what
features are supposed to be. As a result, if we assume that geometric elements
and features are different things, due to the kind of knowledge they carry, it
is unclear how to separate them. Assuming they are similar as one would think
working in manufacturing applications, it remains unclear why certain geometric
configurations correspond to one feature and others to several [4,5].

From the ontological perspective, these issues point to lack of understanding
of the entity one is modelling. This concerns the identity and unity criteria that
guide the notion of feature: it is neither clear what a feature is (identity), nor
how a feature can be considered as a whole entity (unity).

Let us consider the following case. The block in Fig. 1 can be considered
from the conceptual design perspective as a single functional feature, because a
functional meaning can be attached to the whole geometry of the piece, which is
e.g. functional for assembly purposes. From the detailed design perspective, one
can consider the geometric feature formed by A and B and bisected by rib C
as a single slot feature, whereas from the machining viewpoint one can consider
two different features, namely A and B. This happens because for machining two
different operations may be required for the realisation of A and B, while these
point to a single morphological element from the design perspective. Addition-
ally, one might want to specify the materials used for the piece, as e.g. A, B and
C realised on wood.

Imagine now to have four models of the block: i) the conceptual design, ii)
the detailed geometry, the iii) the manufacturing and the iv) material models.
Which methodology and criteria should support their integration? We can rely
on a formal representation of the geometry of the features, e.g., by following the
approach proposed by [4]. The geometry would constitute a basic layer upon
which further application- and domain-driven formalisations can be added to
enrich the integrated feature-based model. However, the formal representation of
geometrical entities does not tell us whether A and B constitute a single feature:

156 E.M. Sanfilippo and S. Borgo

unity criteria of physical entities are quite complex and cannot (and should not)
be derived from the choice of a geometrical formalism. Additionally, geometrical
formalism by itself is not suitable to manage qualitative knowledge. For instance,
it cannot support how to attach functional specifications to feature geometry and
topology, or the integration of product morphology to its raw materials.

A mathematical approach to product-related knowledge is well-suited for the
development of algorithmic procedures for feature extraction from CAD models,
but does not suffice to embed qualitative expert’s knowledge into models. From
this perspective, what is needed is a qualitative representation of the elements
used in a engineering system for product modelling, that is, a formal treatment
for engineering concepts, feature above all.

e

Fig. 1. An example of feature adapted from [5]

Previous work about the application of ontology engineering for feature-based
systems has led to the release of multiple ontologies. Nevertheless, research efforts
have focused either on application requirements, or on the logical representation
of the modelling elements at hand. Little attention has been given to the issue
of understanding what features are, how they can be distinguished from pure
geometric entities, how they can be enriched with qualitative knowledge and
how to characterise feature notions in a way that is stable and re-usable across
communities and applications.

5 Classifying Features: An Ontological Viewpoint

From the analysis of the literature two contrasting notions of feature emerge:

F1-feature: Feature as the modelling component of product modelling systems
that supplement quantitative geometric models with qualitative engineering
knowledge. In this view, a feature is a set of information entities added to a
product model for reasoning about the device under design.

F2-feature: Feature as an element of a physical product like a characteristic
(e.g. a quality on a par with color and weight), a physical component (a wall
of a building), or a geometric configuration (a hole, step, chamfer, etc.). In
this view a feature, with its qualifying properties, is related to a physical
product by means of specific relationships, depending on the feature types
(cf. Sect.6).

Feature-Based Modelling and Information Systems for Engineering 157

These two views have been co-existing and exploited in the literature for at least
20 years. In the former case, a feature exists only within the context of a model:
a hole is seen as a helpful, yet abstract, notion that allows a CAD model to
convey a variety of useful information about a concavity in the product like why
it is needed and how it is obtained. Salomons and colleagues [7] had this view in
mind when they stated that a feature is “a carrier of product information that
may aid design or communication between design and manufacturing, or between
other engineering tasks”. In the same years, Shah and Mantyla [3] pointed to the
second view claiming that features are “the generic shapes or characteristics of
a product with which engineers can associate certain attributes and knowledge
useful for reasoning about that product”. Here a feature is a fully fledged entity
of the physical world: a hole is seen as an actual part of the product.

These two perspectives are strictly related: F2-features are the result of man-
ufacturing activities, the very activities that are set with the goal to realise the
features in the sense of F1, i.e., the modelling elements. At the same time the
F1- and F2-features cannot be confused: a CAD model may specify that a hole
feature of the designed part has a diameter of 0,5 cm with a tolerance value of
0,1lmm. Yet, each realisation of the CAD model will have a hole which, while
compliant with the specification, has its own specific diameter within the toler-
ance range. Analogously, a feature is present in a physical product [3] only in the
sense of F2, as it would make no sense to claim that a computer-based modelling
element is a constituent of a material product.

From this perspective, a Fl-feature is an “information aggregate” that sat-
isfies some unity condition for an application purpose, in the sense that various
information models can be aggregated to count as a single whole element. For
instance, the geometry, functional and manufacturing models of the example
in Fig.1, while being three different information models, can also be taken to
represent a unique modelling feature in, e.g., a CAD/CAM integrated system.
A Fl-feature is therefore a whole element that exists only within a (computer-
based) model, and is part of a larger element, typically the product represented
in the model.

At a closer look, a F2-feature may be considered not a feature per se. Rather,
one could claim, it is a feature only within an engineering context. Imagine, for
example, an engineer performing a quality test to verify whether a hole on a
block of wood is within the prescribed tolerance limits. In a weak reading of F2-
features, the hole is seen as a feature during the test activity since it has to be
checked against some given specification. Yet, the hole as such, i.e., outside this
activity, is not a feature. This view suggests that, according to the terminology in
[19], F2-features are anti-rigid entities, i.e., being a F2-feature is a property that
an entity has only within some engineering concern or activity: the particular
slot A of Fig. 1 may stop to be a feature once the product is complete while
remaining the very same slot.

158 E.M. Sanfilippo and S. Borgo

6 Formal Representation

In order to formalise the readings of the F1- and F2-feature notions introduced
in Sect. 5, we now adopt the DOLCE foundational ontology as presented in [20]
(DOLCE-CORE).

Foundational ontologies are formal theories for the specification of general,
upper-level notions, like object, quality, region, which are common to different
modelling scenarios. Differently from domain- and application-driven ontologies,
which are focused on specific modelling tasks, a foundational ontology has a large
scope and can be highly reusable for different purposes. Its notions are based on
the philosophical theories of Formal Ontology, which guarantee solid conceptual
bases to its categories. Furthermore, since a foundational ontology is mainly
aimed at providing a semantic transparent conceptual framework, it requires the
use of a rich axiomatisation; therefore, expressive formal languages are preferred
over computational and tractable ones. There is nowadays a spread consensus
among the scientific community about the impossibility of a unique foundational
ontology for all modelling scenarios, since different research communities do
not often share the same ontological commitments. It is rather favoured the
development of a library of foundational ontologies, including formal mappings
among the different modules to facilitate their comparison.

DOLCE has been explicitly designed with a cognitive-bias aimed at capturing
the ontological categories underlying natural language and common-sense think-
ing. It has been employed in various knowledge representation tasks, from social
roles and organisations, to business process modelling, engineering design and
manufacturing scenarios. Its conceptual framework is limited to particulars, enti-
ties that, differently from properties, exist in time and cannot instantiate them-
selves. Examples of particulars are Maradona, the Pisa tower and the authors of
this paper. Particulars in DOLCE-CORE include object, quality and concept, which
will be shortly introduced. The DOLCE-CORE axioms are indicated by DLn where
n is the axiom number in [20]; we write DLn* for the axioms of DOLCE-CORE
which are only informally given in [20].

In DOLCE-CORE an object (O) has primarily a spatial quality (SQ) identifying
its location (DL1*); I(y, z) is red as “y inheres in 27, and refers to the inherence
relationship holding between a quality and its bearer. A quality (@), among
which SQ, existentially depends on its bearer (DL22), namely it cannot exist
without it. Intensional properties are introduced in the domain of quantification

s (reified) concepts (C) and classification (C'F) is used as a sort of (possibly
intensional) instance-of relation between a concept and the entities satisfying the
properties it describes. CF(z,y,t) holds if y, at the time ¢ in which it is present
(PRE), satisfies the property « (DL18). Then, only concepts can classify other
entities (D17). Concepts are classified in DOLCE-CORE by a finite number of
disjoint spaces, called SP;, (DL2*), whose structure we do not discuss here.

DL1* O(z) — 3y (SQ(y) A I(y,x))

DL22 Q(x) — 3y(I(z,y))
DL18 CF(z,y,t) — PRE(y,t)

Feature-Based Modelling and Information Systems for Engineering 159

DL17 CF(z,y,t) — C(x)
DL2" C(z) < V1, 0y SPi(2)

For the purposes of this work, we concentrate on the DOLCE-CORE concepts (C')
that refer to the “content” of engineering models. In this sense, we distinguish
between what is described by e.g. a CAD model, i.e. the set of properties that
the corresponding physical products have to satisfy (to be considered of a cer-
tain type), from the support (a CAD file, or a piece of paper) in which these
properties are represented (by means of a graphical or verbal language). We call
the latter representational artefact (RA): it has the function of representing var-
ious concepts specified in modelling languages. For instance, by looking at Fig.1
we need to distinguish: (i) its content, i.e., a geometric form with a number of
feature; (ii) the content’s specification in a graphical language, namely the draw-
ing; (iii) the representational artefact, i.e., the specific page when this article is
printed, or the video screen when Fig.1 is digitally visualised.! Clearly, one and
the same concept can be represented in different representational artefacts.

Formally, we introduce RA specialising the object class O (A1). The relation-
ship of representation RPT holds between a representational artefact in RA and
a concept C' at a certain time T (A2). A representational artefact implies the
co-existence of the represented concept (A3). An instance of RA may represent
more than one concept (A4) but in this case there must exist a concept of which
all these are parts (A5).? Informally, this says that a concept can be complex,
e.g., the concept of a car includes the information entities about its components
(frame, engine, seats and so on).

Al RA(z) — O(x)

A2 RPT(x,y,t) — RA(z) ANC(y) ANT(t)

A3 RA(x) N PRE(x,t) — Jy RPT(x,y,t)

A4 RPT(z,y,t) A P(z,y) — RPT(z, z,t)

A5 RA(z) — Fwt(RPT (z,w,t) AVzt(RPT (x,2,t) A P(z,w)))

In the DOLCE-CORE framework concepts have a static nature as they are invari-
ant across time. In design, however, it seems reasonable to allow concepts to
evolve. For instance, the concept of a product under design might change over
time due to customers’ requirements or to the designer’s activity. This can be
modelled by adding a temporal parameter to CF: CF(x,t,y,t') holds if entity
y, as it is at time ¢, satisfies x, as it is at time ¢ (A6). We thus adopt (A6) as a
replacement of axiom (DL18). Additionally, we want to talk about relationships
holding among concepts themselves: CH (z,y,t) says that concept z, as it is at
time t, is characterised by concept y (A7). By (A8), we have that if concept
x classifies entity y and z characterises =, then y is also classified by z. For
instance, if a plank concept is characterised by the concept being rectangular,
the instances of the plank have to be instances of being rectangular.

! In another view, which we do not exploit here, the physical support is the ink on
the paper.
2 We assume that a “reading” of the RA is (explicitly or implicitly) fixed.

160 E.M. Sanfilippo and S. Borgo

A6 CF(z,t,y,t') — C(x) N PRE(x,t) N PRE(y,t)
AT CH(z,y,t) — C(z) AC(y)
A8 CF(x,t,y,t') N\CH(x, z,t) — CF(z,t,y,t)

We can now introduce the class of feature modelling elements, the F1-features,
indicated by F'C (feature concept), as a specialisation of C. In particular, a
feature o implies the existence of a concept y that = characterises (A9). The fea-
tures as product element, the F2-features, form the class PF (physical feature).
Here we concentrate on the strong reading of F2-feature described at the end of
Section 5. That is, we assume that a F2-feature is a feature per se independently
of specific engineering concerns and activities.

FC serves to classify the members of PF. So a feature concept can only
classify physical features (A10), while a physical feature can be an object, a
quality or a DOLCE-feature (A11). Recall that DOLCE-features are physical enti-
ties constantly dependent on other objects, like edges, bumps and holes, see
(A12) where we write DP for the dependence relation. Note that we now have
three distinct notions of feature at play: Fl-features (F'C), F2-features (PF)
and DOLCE-features (F'). The first two are engineering-based notions, the third
is ontological.

A9 FC(z) — Jyt CH(y,x,t)

A10 CF(z,t,y,t') NFC(x) — PF(y)

A1l PF(z) - O(x) VQ(z)V F(x)

A12 F(z) AN PRE(z,t) — Jy(O(y) N PRE(y,t) A DP(x,vy))

Regarding PF features, we need to distinguish three cases. Let x be a physical
feature, then: If x is an object, then there is an object y, not a PF, of which
x is proper part (A13); if x is a quality, then it inheres in an object = (A14); if
x is a DOLCE-feature, then there is an object, which is not a PF', upon which
x depends (A15). (Clearly, there are important interrelations among these cases
but we do not exploit them here.)

A13 PF(x) AO(z) — 3y (O(y) A PP(z,y) A ~PF(y))
Al14 PF(z) AQ(z) — Iy (O(y) AI(z,y))
Al15 PF(z) A F(z) — 3y (O(y) N DP(z,y) A ~PF(y))

As noted in the analysis of the literature, Fl-features (F'C') can be associated to
domain information depending on the modelling lifecycle phase, or to application
scenarios. We provide the formal representation of some application-driven F'C's,
but the same modelling methodology can be used for others.

Form features (F'Cp,) are defined as the elements in F'C' whose instances have
proper parts which satisfy a unity criterion (U), namely they constitute a whole
entity (D2). Material features (FCp) are the elements in F'C' characterised by
some material concept, called Cpsy (D3). Similarly, functional feature (FCpy)
are feature characterised by some functional concept (Crt) (D4).

D2 FCp.(z) = FC(x) AVytt' (CF(x,t,y,t') —
F20(CF (2, t,v,t") A P(v,y,t") ANU(v,t)))

Feature-Based Modelling and Information Systems for Engineering 161

D3 FCui(x) £ FC(x) A yt(Care(y) A CH (x,y,t))
D4 FCpi(x) £ FC(z) A Iyt(Cri(y) A CH(z,y,t))

The formal representation of manufacturing features is about different onto-
logical entities as in this case one has to consider the manufacturing process
required for the feature realisation, possibly together with its sub-processes and
the required machining tools. Therefore, we need to talk about a manufactur-
ing plan, that is, a manufacturing concept (Cass) classifying a manufacturing
process (E). In this case, the classification holds between Cyry and E relatively
to the time of E itself. Also, we have that a physical feature (typically present
at the end of F) depends on an object (O) which participates “passively” in
the process (PC}). Informally, this amounts to say that O is the workpiece,
i.e., it undergoes the manufacturing process. Finally, other objects participate
“actively” in F, e.g., the manufacturing resources employed during the process.
Given these qualifications on the complexity of predicate Ciss, (D5) gives the
general definition for manufacturing features.

D5 FCyy(x) £ FO(z) A Jyt(Cary(y) ACH (x,y,t))

7 Ontology-Based Feature Modelling: An Example

The ontology-based modelling approach introduced in the previous section is
now applied to the formal representation of the features in Fig.1. As noted in
Sect. 4, current approaches presented in the literature do not provide sufficent
support for the integration of multiple qualitative knowledge aspects.

We formalise four different perspectives on the product features, namely the
form, the functional, the material and the manufacturing perspectives. Let f be
the Fl-feature of the product concept cob in Fig. 1, then f classifies the F2-
feature pf of any instance of cob and pf has three parts: the F2-slot feature on
the left (pf1), the F2-slot feature on the right (pfs), both classified by the same
Fl-slot feature (fs), and the F2-rib feature (pf3) classified by the F1-rib feature
(fr)- See formula (f1). We thus have pf as the complex F2-feature relative to
the geometric information of A, B and C in Fig.1.

Since f is also a F1-functional feature, it is characterised by the functionality
concept ¢ft (£2). Similarly, f is characterised by material concept emt (£3) while
the manufacturing perspective is given in (f4). Since f is characterised by cft,
cmt and ecm f, we obtain that its corresponding pf satisfies the functionality, the
material and the manufacturing concepts (T1).

f1 FCp (f)NCH (cob, f,)NCF(f,t,pf , t)ANCF (fs,t,pf1, ')NCF(fs,t,pfa, ')A
CF(fr.t,pfs,t') Apf =pfi +pf2 +pfs

£2 FCp(f) A Crecft) NCH(f,cft,1)

3 FCuri(f) A Crpe(emit) NCH(f, emt,t)

f4 FCuri(f) ANCuyplemf)NCH(f,cmf,t)

162 E.M. Sanfilippo and S. Borgo

T1 From f1, 2, £3, f4 and AS8:
C’F(Cft7 t7pf’ t/) /\ CF(Cmt’ t?pf? t/) /\ CF(Cmf7 t7pf’ t/)

We have just showed the general modelling approach by which qualitative knowl-
edge relevant to Fig. 1 can be specified by means of our theory. A more detailed
formalisation requires to specialise further the relationships across the types of
features and the ontological entities. For example, the overall functionality of pf
may be subdivided across its physical feature parts and, similarly, the internal
structure of the event relative to the manufacturing feature can be used to clarify
how the F2-feature is realised.

8 Conclusion

The development of knowledge-based system for product-lifecycle management is
a challenging task, as it requires the formal representation of detailed engineering
knowledge, as well as the integration of various qualitative knowledge aspects.
As we stressed in the paper, no stable, nor well-founded approach is currently
available for this purpose.

We presented an ontological analysis of feature-based product modelling
notions that is aimed at supporting both product knowledge specification and
qualitative knowledge integration. We concentrated on the classification of fea-
ture notions by distinguishing between modelling elements and real-world enti-
ties, and by investigating their dependencies upon other ontological and engi-
neering notions. In one case, features are meant to embed qualitative knowledge
into product models, while in another they are actual entities on a par with
the associated physical products. From this distinction, we argued that feature
types should be distinguished at the modelling element level. In particular, we
discussed engineering features as objects, as qualities and as DOLCE-features
although it is still unclear whether these categories are exhaustive. In the end,
we showed an approach to formalise and integrate various features qualitative
models following our analysis and provided an example related to design and
manufacturing.

Acknowledgments. This work was partially funded by the VISCOSO project
financed by the Autonomous Province of Trento through the “Team 20117 funding
programme, and the FourByThree project funded by the European Horizon 2020 pro-
gram (grant agreement 637095).

References

1. Kim, K.-Y., Manley, D.G., Yang, H.: Ontology-based assembly design and infor-
mation sharing for collaborative product development. Computer-Aided Design
38, 1233-1250 (2006)

2. Fenves, S., Foufou, S., Bock, C., Sriram, R.D.: CPM: A core model for product
data. Journal of Computing and Information Science in Engineering 8 (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Feature-Based Modelling and Information Systems for Engineering 163

Shah, J., Mantyla, M.: Parametric and Feature Based CAD/CAM. Concepts,
Techniques, Applications. John Wiley and Sons (1995)

Zhou, X., Qiu, Y., Hua, G., Wang, H., Ruan, X.: A feasible approach to the
integration of CAD and CAPP. Computer-Aided Design 39, 324-338 (2007)
Mantyla, M., Nau, D., Shah, J.: Challenges in feature-based manufacturing
research. Communications of the ACM 39(2), 77-85 (1996)

Ma, Y.S., Chen, G., Thimm, G.: Paradigm shift: unified and associative feature-
based concurrent and collaborative engineering. Journal of Intelligent Manufacur-
ing 19, 625-641 (2008)

Salomons, O.W., Houten, F., Kals, H.J.J.: Review of research in feature-based
design. Journal of Manufacturing Systems 12(2), 113-132 (1993)

Amaitik, S.M., Kilic, S.E.: STEP-based feature modeller for computer-aided pro-
cess planning. International Journal of Production Research 43(15), 3087-3101
(2005)

Han, J.H., Pratt, M., Regli, W.C.: Manufacturing feature recognition from solid
models: A status report. IEEE Transactions on Robotics and Automation 16(6),
782-796 (2000)

Wang, Q., Yu, X.: Ontology based automatic feature recognition framework. Com-
puters in Industry 65, 1041-1052 (2014)

Brown, D.C.: Functional, behavioral and structural features. In: ASME 2003
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. American Society of Mechanical Engi-
neers (2003)

Groover, M.P.: Automation, Production Systems, and Computer-integrated Man-
ufacturing. Prentice Hall Press (2007)

Nepal, M.P., Staub-French, S., Pottinger, R., Zhang, J.: Ontology-based feature
modeling for construction information extraction from a building information
model. Journal of Computing in Civil Engineering 27(5), 555-569 (2013)
Anjum, N.A., Harding, J.A., Young, R.I.M., Case, K.: Manufacturability ver-
ification through feature-based ontological product models. Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering Manufac-
ture, 1086-1098 (2012)

ISO, Industrial Automation Systems and Integration - Product Data Rep-
resentation and Exchange. Part 1: Overview and fundamental principles, iso
10303-1:1994(e) ed. (1994)

Amaitik, S.M., Kilic, S.E.: An intelligent process planning system for prismatic
parts using STEP features. International Journal of Advanced Manufacturing
Technology 31, 978-993 (2007)

Dartigues, C., Ghodous, P., Griininger, M., Pallez, D., Sriram, R.: CAD/CAPP
integration using feature ontology. Concurrent Engineering 12(2), 237-249 (2007)
Abdul-Ghafour, S., Ghodous, P., Shariat, B., Perna, E., Khosrowshahi, F.: Seman-
tic interoperability of knowledge in feature-based CAD models. Computer-Aided
Design 56, 45-57 (2014)

Guarino, N., Welty, C.: An overview of ontoclean. In: Staab, S., Studer, R. (eds.)
Handbook on Ontologies, pp. 201-220. Springer-Verlag, Berlin, Heidelberg (2009)
Borgo, S., Masolo, C.: Foundational choices in DOLCE. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. Springer Verlag, Berlin, Heidelberg (2009)

A Multi-engine Theorem Prover
for a Description Logic of Typicality

Laura Giordano!, Valentina Gliozzi2, Nicola Olivetti3,
Gian Luca Pozzato?®) | and Luca Violanti

! DISIT - Universitd Piemonte Orientale - Alessandria, Alessandria, Italy
laura.giordanoQunipmn.it
2 Dipartimento Informatica - Universit4 di Torino, Torino, Italy
{valentina.gliozzi,gianluca.pozzato}@unito.it
3 Aix Marseille Université - ENSAM, Université de Toulon, LSIS UMR. 7296,
Toulon, France
nicola.olivettiQuniv-amu.fr

4 NCR Edinburgh - United Kingdom, Edinburgh, UK

luca.violanti@gmail.com

Abstract. We describe DysToPic, a theorem prover for the preferen-
tial Description Logic ALC 4 T pmirn.This is a nonmonotonic extension of
standard ALC based on a typicality operator T, which enjoys a prefer-
ential semantics. DysToPic is a multi-engine Prolog implementation of a
labelled, two-phase tableaux calculus for ALC + Tynin whose basic idea
is that of performing these two phases by different machines. The per-
formances of DysToPic are promising, and significantly better than the
ones of its predecessor PreDeLo 1.0 recently introduced.

1 Introduction

Recently, a large amount of work has been done in order to extend the basic
formalism of Description Logics (for short, DLs) with nonmonotonic reasoning
features [1,3-5,7-9,16,17,19,21,22]; the purpose of these extensions is that of
allowing reasoning about prototypical properties of individuals or classes of indi-
viduals. The most well known semantics for nonmonotonic reasoning have been
used to the purpose, from default logic [1], to Circumscription [3], to Lifschitz’s
nonmonotonic logic MKNF [7,21], to preferential reasoning [4,9,16], to rational
closure [5,6].

In this work we focus on the simple but powerful nonmonotonic extension of
DLs proposed in [10,15,16]. In this approach “typical” or “normal” properties
can be directly specified by means of a “typicality” operator T enriching the
underlying DL; the idea is that, given a concept C', the operator T singles out
the typical instances of C. In this formalism, one can express properties holding
for all the elements belonging to the extension of C' with standard inclusions
C C D, as well as properties holding only for the “most normal” elements of C'
with inclusions of the form T(C) C D. The typicality operator T is essentially
characterized by the core properties of nonmonotonic reasoning axiomatized by

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 164-178, 2015.
DOI: 10.1007/978-3-319-24309-2_13

A Multi-engine Theorem Prover for a Description Logic 165

either preferential logic [18] or rational logic [20]. In these logics one can consis-
tently express defeasible inclusions and exceptions such as “normally, newborns
have a high level of hematocrit, whereas typical newborns who are affected by
neonatal anemia have a low hematocrit”:

T(Newborn) T HighHematocrit
T (Newborn M IHasNeonatalDisease. Anemia) C LowHematocrit
HighHematocrit 1 LowHematocrit C 1.

In order to perform useful inferences, in [16] we have introduced a nonmonotonic
extension of ALC plus T based on a minimal model semantics. Intuitively, the
idea is to restrict our consideration to models that maximize typical instances
of a concept: more in detail, we introduce a preference relation among ALC
plus T models, then we define a minimal entailment restricted to models that
are minimal with respect to such preference relation. The resulting logic, called
ALC+T,,in, supports typicality assumptions, so that if one knows that Giuseppe
is a newborn, one can nonmonotonically assume that he is also a typical newborn
and therefore that he has a high level of hematocrit. As an example, for a TBox
specified by the inclusions above, in ALC + T,,;, we can infer that:

1. TBox Fuacc+T,,;, T(Newborn M Bald) C HighHematocrit

2. TBox U { Newborn(Lino)} =acc+T,,;,, HighHematocrit(Lino)

3. TBox U {Newborn(Lino),3HasNeonatalDisease. Anemia(Lino)} Eacc+t
LowHematocrit(Lino)

4. TBox U {Newborn(Lino), Bald(Lino)} E=acc+r,,,, HighHematocrit(Lino)

5. TBox U {3HasBrother. Newborn(Luciano)} FE=acc+t
HasBrother. HighHematocrit(Luciano)

min

min

In 1 and 4, it can be seen that ALC + T,,;», captures a form of irrelevance:
being a bald newborn is irrelevant with respect to the level of hematocrit,
therefore the logic allows to conclude a general property T(Newborn M Bald) C
HighHematocrit, as well as the fact that the newborn Lino has a high level of
hematocrit also in case we further know that he is bald. In 3, it can be seen
that ALC + Tuin, in case of conflict, allows to give preference to more specific
information: Lino is a newborn, but he is affected by neonatal anemia, therefore
the logic allows to conclude that he has a low level of hematocrit. Minimal con-
sequence applies also to individuals not explicitly named in the ABox as well,
without any ad-hoc mechanism, as shown in 5, where defeasible inferences are
applied to the newborn brother of Luciano.

In this work we focus on theorem proving for nonmonotonic extensions of
DLs. We introduce DysToPic, a theorem prover for ALC + T,nin. DysToPic
implements the labelled tableaux calculus for this logic introduced in [16] per-
forming a two-phase computation: in the first phase, candidate models falsifying
a given query are generated (complete open branches); in the second phase the
minimality of candidate models is checked by means of an auxiliary tableau con-
struction. DysToPic is a multi-engine theorem prover, whose basic idea is that
the two phases of the calculus are performed by different machines: a “master”

166 L. Giordano et al.

machine M, called the employer, executes the first phase of the tableaux cal-
culus, whereas other computers are used to perform the second phase on open
branches detected by M. When M finds an open branch, it invokes the second
phase on the calculus on a different “slave” machine, called worker, S7, while M
goes on performing the first phase on other branches, rather than waiting for the
result of S1. When another open branch is detected, then another machine S5 is
involved in the procedure in order to perform the second phase of the calculus
on that branch. In this way, the second phase is performed simultaneously on
different branches, leading to a significant increase of the performance.
Labelled tableaux calculi are implemented in Prolog, following the line of
the predecessor PreDeLo 1.0, introduced in [14]: DysToPic is inspired by the

methodology introduced by the system lean TP [2], even if it does not fit its
style in a rigorous manner. The basic idea is that each axiom or rule of the
tableaux calculus is implemented by a Prolog clause of the program: the resulting
code is therefore simple and compact.

In general, the literature contains very few proof methods for nonmonotonic
extensions of DLs. We provide some experimental results to show that the per-
formances of DysToPic are promising, in particular comparing them to the ones
of PreDeLo 1.0. DysToPic is available for free download at:

http://www.di.unito.it/~pozzato/theoremprovers.html

2 The Logic ALC + Tnin

The logic ALC + T,,in is obtained by adding to ALC the typicality operator
T [10,15]. The intuitive idea is that T(C) selects the typical instances of a
concept C. We can therefore distinguish between the properties that hold for
all instances of concept C' (C C D), and those that only hold for the normal or
typical instances of C' (T(C') C D).

The language L is defined by distinguishing concepts and extended concepts.
Given an alphabet C of concept names, R of role names, and O of individual
constants, A € C and T are concepts of L; if C,D € L and R € R, then C' N
D,CUD,~C,VR.C,3AR.C are concepts of L. If C'is a concept, then C' and T(C)
are extended concepts, and all the boolean combinations of extended concepts are
extended concepts of £. A KB is a pair (TBox,ABox). TBox contains inclusion
relations (subsumptions) C' C D, where C is an extended concept of the form
either C’ or T(C"), and D € L is a concept. ABox contains expressions of the
form C'(a) and R(a,b), where C' € L is an extended concept, R € R, and a,b € O.

In order to provide a semantics to the operator T, we extend the definition
of a model used in the “standard” Description logic ALC. The idea is that the
operator T is characterized by a set of postulates that are essentially a refor-
mulation of the Kraus, Lehmann and Magidor’s axioms of preferential logic P
[18]. Intuitively, the assertion T(C) C D corresponds to the conditional assertion
C i~ D of P. T has therefore all the “core” properties of nonmonotonic reasoning
as it is axiomatized by P. The idea is that there is a global preference relation

http://www.di.unito.it/~pozzato/theoremprovers.html

A Multi-engine Theorem Prover for a Description Logic 167

among individuals, in the sense that < y means that x is “more normal” than
y, and that the typical members of a concept C' are the minimal elements of C'
with respect to this relation. In this framework, an element z € A is a typical
instance of some concept C' if x € C! and there is no element in C! more typical
than z. The typicality preference relation is partial.

Definition 1. Given an irreflexive and transitive relation < over A and S C A,
we define Min(S) = {z :x € S and By € S s.t. y < x}. We say that < is
well-founded if and only if, for all S C A, for all x € S, either x € Min(S) or
Jy € Min(S) such thaty < x.

Definition 2. A model of ALC + Tpin is any structure (A, <, I), where: A is
the domain; I is the extension function that maps each extended concept C' to
CT C A, and each role R to a RT C A x A; < is an irreflexive, transitive and
well-founded (Definition 1) relation over A. I is defined in the usual way (as for
ALC) and, in addition, (T(C))! = Min-(CT).

Given a model M of Definition 2, I can be extended so that it assigns to each
individual a of O a distinct element a! of the domain A (unique name assump-
tion). We say that M satisfies an inclusion C' C D if C!T C D', and that M
satisfies C(a) if a’ € O and R(a,b) if (af,b!) € R!. Moreover, M satisfies TBox
if it satisfies all its inclusions, and M satisfies ABox if it satisfies all its formulas.
M satisfies a KB (TBox,ABox), if it satisfies both TBox and ABox.

The semantics of the typicality operator can be specified by modal logic.
The interpretation of T can be split into two parts: for any x of the domain A,
x € (T(C0))! just in case (i) x € C7, and (ii) there is no y € C7 such that y < .
Condition (ii) can be represented by means of an additional modality O, whose
semantics is given by the preference relation < interpreted as an accessibility
relation. The interpretation of [J in M is as follows: (OJC)! = {x € A | for every
y € A, if y < x then y € C'}. We immediately get that € (T(C))! if and only
if z € (CMO-C)L.

Even if the typicality operator T itself is nonmonotonic (i.e. T(C) C E does
not imply T(C M D) C E), what is inferred from a KB can still be inferred
from any KB’ with KB C KB’. In order to perform nonmonotonic inferences,
in [16] we have strengthened the above semantics by restricting entailment to
a class of minimal (or preferred) models. Intuitively, the idea is to restrict our
consideration to models that minimize the non-typical instances of a concept.

Given a KB, we consider a finite set L1 of concepts: these are the concepts
whose non-typical instances we want to minimize. We assume that the set Lt
contains at least all concepts C such that T(C') occurs in the KB or in the query
F, where a query F' is either an assertion C(a) or an inclusion relation C' C D.
As we have just said, z € C! is typical for C if € (O-C). Minimizing the non-
typical instances of C' therefore means to minimize the objects falsifying [J-C'
for C' € L. Hence, for a model M = (A, <, I), we define M%; = {(z,-0-C) |
r ¢ (O0-C), withz € A, C € L1}

Definition 3 (Preferred and Minimal Models). Given a model M = (A,
<,I) of a knowledge base KB, and a model M' = (A", <, I') of KB, we say

168 L. Giordano et al.

that M is preferred to M' w.r.t. Lr, and we write M <p. M', if (i) A=A,
(ii) MZ_ c MEL, (iii) o’ = al’ for alla € ©. M is a minimal model for KB
(w.r.t. Lr) if it is a model of KB and there is no other model M’ of KB such
that M <. M.

Definition 4 (Minimal Entailment in ALC+T,,i,). A query F is minimally
entailed in ALC 4+ T.nin by KB with respect to Lt if F is satisfied in all models
of KB that are minimal with respect to L. We write KB Eaccar,,,, F-

min

As an example, consider the TBox of the Introduction. We have that TBox
U {Kid(daniel)} Earcit,,., ChocolateEater(daniel), since daniel’ € (Kid N
0-Kid)! for all minimal models M = (A <, I) of the TBox. In contrast, by the
nonmonotonic character of minimal entailment, we have TBox U { Kid(daniel),
JHasIntolerance. Lactose(daniel)} =acc+,,:,, - ChocolateEater(daniel).

3 A Tableau Calculus for ALC + T,.in

In this section we recall the tableau calculus TABnAfnC +T for deciding whether
a query F' is minimally entailed from a KB in ALC 4 T,,;, introduced in [16].
The calculus performs a two-phase computation: in the first phase, a tableau
calculus, called 7. ABﬁﬁ(iJrT, simply verifies whether KB U {—F'} is satisfiable in
a model of Definition 2, building candidate models; in the second phase another

tableau calculus, called TAB£§%+T7 checks whether the candidate models found
in the first phase are minimal models of KB, i.e. for each open branch of the
first phase, TABﬁﬁC;T tries to build a model of KB which is preferred to the
candidate model w.r.t. Definition 3. The whole procedure is formally defined at
the end of this section (Definition 5).

TABﬁﬁf +T {ries to build an open branch representing a minimal model
satisfying KB U {—F'}, where —F is the negation of the query F and is defined
as follows: if F' = C(a), then -F = (=C)(a); if F = C C D, then —F =
(C 1 =D)(x), where x does not occur in KB. TABfonC"'T makes use of labels,

denoted with x,vy, z, ..., representing individuals either named in the ABox or
implicitly expressed by existential restrictions. These labels occur in constraints,

that can have the form = — yory < xzorz:C, where x,y are labels, R is a
role and C'is a concept of ALC + T,,;, or has the form (0-D or —[0-D.

3.1 The Tableaux Calculus 7. AB’;‘ﬁcﬁT

A tableau of TAB“}‘,\fﬁJFT is a tree whose nodes are pairs (S | U). S is a set
of constraints, whereas U contains formulas of the form C T DY, representing
inclusion relations C' C D of the TBox. L is a list of labels, used in order to

ensure the termination of the tableau calculus. A branch is a sequence of nodes

(S1 | Uy),(S2 | Ua),...,{(Sp | Uyn)..., where each node (S; | U;) is obtained

from its immediate predecessor (S;_1 | U;—1) by applying a rule of 7. ABﬁf{Cf"T,

A Multi-engine Theorem Prover for a Description Logic 169

(S.a:Coa: =C|U) (S,z: =T |U) (S, L|U) (S.x:~(CND)|U))
(Clash) (Clash)T (Clash) (8.2 ~(CND),z:~C | U) (S.2:~(CND),z:-D|U)
if 2:=C¢S and 2:-D¢gS
(S,z:CND|U) o (S,z:CUD|U) Ut (S,z:=(CUD)|U) w)
(S,z:CNDya:Cox:D|U) (S.e:CUD,x:C|U) (S,z:CUD,x:D|U) (S, :~(CUD),x:~Cyx:~D|U)
if {e:Cz:D} LS if 2:C¢Sand 2:D¢S if{z:~C,x: D}y L S
(S,x:==C|U) =) (S,2:T(C) |U) (T (S, : 2T(C) | U) ()
(S,2:~~C,z:C|U) (S,z:T(C),z:C.z:0-C | U) (S, ~T(C),x: ~C |U) (S,z: ~T(C),z: ~0-C|U)
ifa:C¢s if {z:C2:0-C} ¢S if 2:-C ¢S and :-0-C ¢S
(S1U) S| U,CC DY S,x:VR.Cow 5y | U)
(cut) H—f/L © o — o (")
(S,z:0-C | U) (S, :~0-C | U) (S,@:~CuUD|UCLC D) (S.x:YRCox 5y y:C | U)
ifz:-0-C¢Sandz:0-C¢S if # occurs in S and x & L ify:Cgs
CeLlr
& occurs in S
(S,z:3R.C|U) 3
(S,2:3IRCax 25 yy:C|U) (S,2:3RCox 25 v,00:C1U) (S,2:3RCoax 25 vm,00:CLU) - (S.2: 3RCox o vy, 0, 1 C | U) '

y new
if Bz <2 st 2 =gpapc o and Aust. v 2oueSandu:CeS

Yov; occurring in S

(S,a: -O-C | U} -

(Sox:~0-Chy < w,y: Coy : O-C, S | U) (S,: ~0-Covy < 2,01 : Covg : O=C,SM, | U) -+ (8,2 20=C, v, < 2,0, 1 Cyv, : 00,84, | U)
y new

if #z <z st 2 =sppoc v and Bust. {u < zu: Cou:0-C,8M, }C S

Yo; occurring in S, x # v;

Fig. 1. The calculus TABﬁfﬁ*T. r =g y denotes that x and y label the same concepts
in S. We define S;°., = {y: ~C,y : O-C | z : O~C € S}.

having (S;_1 | Ui—1) as the premise and (S; | U;) as one of its conclusions. A
branch is closed if one of its nodes is an instance of a (Clash) axiom, otherwise
it is open. A tableau is closed if all its branches are closed.

The rules of TAB?@%*‘T are presented in Fig. 1. Rules (3T) and (O7) are
called dynamic since they can introduce a new variable in their conclusions.
The other rules are called static. We do not need any extra rule for the positive
occurrences of [, since these are taken into account by the computation of Si‘/iy
of (O7). The (cut) rule ensures that, given any concept C' € L, an open branch

built by TAB??ICﬁT contains either z : O0-C or x : =[0-C for each label z: this

is needed in order to allow TAB?@C;T to check the minimality of the model

corresponding to the open branch. As mentioned above, given a node (S | U),
each formula C' C D in U is equipped with the list L of labels to which the rule
() has already been applied. This avoids multiple applications of such rule to
the same subsumption by using the same label.

In order to check the satisfiability of a KB, we build its corresponding con-
straint system (S | U), and we check its satisfiability. Given KB=(TBox,ABox),
its corresponding constraint system (S | U) is defined as follows: S = {a : C' |
C(a) € ABox} U {a iy | R(a,b) € ABox}; U = {C C D? | C C D € TBox}.
KB is satisfiable if and only if its corresponding constraint system (S | U) is sat-

isfiable. In order to verify the satisfiability of KB U {—F'}, we use TAB};‘IL_I%‘”'T

to check the satisfiability of the constraint system (S | U) obtained by adding

the constraint corresponding to =F to S’, where (S’ | U) is the corresponding

constraint system of KB. To this purpose, the rules of the calculus TABf,f_Icl‘*'T

are applied until either a contradiction is generated (clash) or a model satisfying
(S| U) can be obtained.

170 L. Giordano et al.

(S,x:Ca:=C|U|K) (Sz:L|U|K) (Sz:-T|U|K) (S|U|®) (Sz:-0-C|U|K) (S,2:T(C) | U| K) -
(Clash) (Clash) . (Clash)+ (Clash)y (Clash)g- (S.z:C,x:0-C|U | I()()
if 1 ~0-C ¢ B~
(S, : =T(C) | U | K)) (S|U,CCD"|K) o) (S,2:YRCx 5y | U | K) "
(S.z:-C|U|K) (S.z:—~0-C | U | K) (S,z:~-CUD|UCCD""|K) (S,2:VR.Cox 25 yy: C|U| K)
zeDB)andx ¢ L ify:C¢S
(S,2:3R.C|U | K) " (S|U|K) (cut)
CU
(Soo Bv,v ClUIK) (Soa 5 vs,00: ClU|K) -+ (S,2 5 v,0,: C | U | K) (S,x:0-C|U|K) (S:-0-C|U|K)
Vo, € D(B) ifa:-0-C¢Sanda:0-C¢gS
zeDB) Celr
(S,2: =0-C | U | K,z : ~0-C) -
(Sov1: Covn :O=C, 82w :=0-C | U | K) (S,v9: Cyup: O-C,SM. 2 s ~0-C | U | K) -+ (Sivn: Coop 1 0=C, 8L, Lo :=0-C | U | K)
it Au st {u: Cou:0-C,8M }C S
Yv; € D(B),z # v;

Fig. 2. The calculus 7. ABﬁf{%*T. To save space, we omit rules for LI, M, —.

The rules of TAB’;‘IE_ICﬁT are applied with the following standard strategy: 1.
apply a rule to a label z only if no rule is applicable to a label y such that y < «
(where y < x says that label z has been introduced in the tableaux later than
y); 2. apply dynamic rules only if no static rule is applicable.

Theorem 1. Giwen L1, KB FEarciT,,,, F if and only if there is no open

branch B in the tableau built by TAB}‘;‘%%JFT for the constraint system corre-
sponding to KB U {—~F} such that the model represented by B is a minimal
model of KB.

Thanks to the side conditions on the application of the rules and the blocking
machinery adopted by the dynamic ones, in [16] it has been shown that any

tableau generated by TABﬁﬁch for (S | U) is finite.

3.2 The Tableaux Calculus TABI"}I&CZ"‘T

Let us now introduce the calculus TAB’IQ‘IE{C;T which checks whether each open

branch B built by TAB?@CI"’T represents a minimal model of the KB.

Given an open branch B of a tableau built from TAB?§01+T, let D(B) be the
set of labels occurring in B. Moreover, let BJ™ be the set of formulas z : =00-C
occurring in B, that is to say BJ9~ = {z : =0-C | : =0-C occurs in B}.

A tableau of TAB“}‘}?ICJT is a tree whose nodes are tuples of the form (S | U |
K), where S and U are defined as in TABﬁﬁcl+T7 whereas K contains formulas
of the form z : =0-C, with C' € L. The basic idea of TAB?IZC;T is as follows.
Given an open branch B built by TAB?@CIJ“T and corresponding to a model

MB of KB U {~F}, TABﬁﬁ%J“T checks whether MB is a minimal model of KB
by trying to build a model of KB which is preferred to M®B. To this purpose,
it keeps track (in K) of the negated box formulas used in B (BY") in order
to check whether it is possible to build a model of KB containing less negated

A Multi-engine Theorem Prover for a Description Logic 171

box formulas. The rules of TAB};‘IL{%‘”‘T are shown in Figure 2. The tableau built

by TAB“IQ‘I%C;T closes if it is not possible to build a model smaller than MB, it
remains open otherwise. Since by Definition 3 two models can be compared only if
they have the same domain, TAB?%%JFT tries to build an open branch containing
all the labels appearing in B, i.e. those in D(B). To this aim, the dynamic rules
use labels in D(B) instead of introducing new ones in their conclusions. The rule
(C) is applied to all the labels of D(B) (and not only to those appearing in the
branch). The rule (O7) is applied to a node (S,z : -0O0-C | U | K,z : -0-C),
that is to say when the negated box formula z : =[J-C also belongs to the open
branch B. Also in this case, the rule introduces a branch on the choice of the
individual v; € D(B) to be used in the conclusion. In case a tableau node has the
form (S,z : ~0-C | U | K), and z : ~0-C ¢ BY" | then TABASSHT detects
a clash, called (Clash)g-: this corresponds to the situation where z : =O0-C
does not belong to B, while the model corresponding to the branch being built
contains x : “[0-C, and hence is not preferred to the model represented by B.
The calculus TABﬁ§g+T also contains the clash condition (Clash)g. Since each
application of (O7) removes the negated box formulas z : =[0-C from the set
K, when K is empty all the negated boxed formulas occurring in B also belong
to the current branch. In this case, the model built by 7. ABﬁﬁ%JFT satisfies the
same set of z : “00-C (for all individuals) as B and, thus, it is not preferred to
the one represented by B.

Let KB be a knowledge base whose corresponding constraint system is (S |
U). Let F be a query and let S’ be the set of constraints obtained by adding to

S the constraint corresponding to —F'. TAB“I‘D‘IL{2+T is sound and complete in the
following sense: an open branch B built by 7. A3ﬁ§01+T for (S| U) is satisfiable

in a minimal model of KB iff the tableau in TABﬁﬁ%JFT for (S| U | BY) is

closed. The termination of TAB“;‘?I%"'T is ensured by the fact that dynamic rules
make use of labels belonging to D(B), which is finite, rather than introducing
“new” labels in the tableau. Also, it is possible to show that the problem of

verifying that a branch B represents a minimal model for KB in TAB?@C;T is

in NP in the size of B. The overall procedure TABAEC +T s defined as follows:

mu

Definition 5. Let KB be a knowledge base whose corresponding constraint sys-

tem is (S | U). Let F be a query and let S’ be the set of constraints obtained

by adding to S the constraint corresponding to —F. The calculus ’TABQ% +T
checks whether a query F can be minimally entailed from a KB by means of the

following procedure:
— the calculus TAB?§01+T is applied to (S" | U);
— if, for each branch B built by TAB?IL_ICI+T, either: (i) B is closed or (ii) the

tableau built by the calculus TAB“P“fIC;T for (S| U | BY") is open, then the
procedure says YES else the procedure says NO

In [16] we have shown that TABASCHT s a sound and complete decision proce-

min

dure for verifying if KB ':ﬁzc"l‘T?nin F, and that the problem is in co-NExp™Y.

172 L. Giordano et al.

4 Design of DysToPic

In this section we present DysToPic, a multi-engine theorem prover for reasoning
in ALC 4+ T,4. DysToPic is a SICStus Prolog implementation of the tableaux

calculus TABflﬁf +T introduced in the previous section, wrapped by a Java
interface which relies on the Java RMI APIs for the distribution of the compu-
tation. The system is designed for scalability and based on a “worker/employer”
paradigm: the computational burden for the “employer” can be spread among
an arbitrarily high number of “workers” which operate in complete autonomy,
so that they can be either deployed on a single machine or on a computer grid.

The basic idea underlying DysToPic is as follows: there is no need for the
first phase of the calculus to wait for the result of one elaboration of the second
phase on an open branch, before generating another candidate branch. Indeed,
in order to prove whether a query F' entails from a KB, the first phase can be
executed on a machine; every time that a branch remains open after the first
phase, the execution of the second phase for this branch can be performed in
parallel, on a different machine. Meanwhile, the main machine (worker), instead
of waiting for the termination of the second phase on that branch, can carry on
with the computation of the first phase (potentially generating other branches).
If a branch remains open in the second phase, then F' is not minimally entailed
from KB (we have found a counterexample), so the computation process can be
interrupted early.

4.1 The Whole Architecture

In order to describe the architecture of DysToPic we refer to the worker-employer
metaphor. The system is characterized by: (i) a single employer, which is in
charge of verifying the query and yielding the final result. It also implements the
first phase of the calculus and uses TAB“P“fICfT to generate branches: the ones

that it cannot close (representing candidate models of KB U{—F'}), it passes to a

worker; (i) an unlimited number of workers, which use TAB?@%*T to evaluate
the models generated by the employer; (iii) a repository, which stores all the
answers coming from the workers. A schema of the architecture of DysToPic is
shown in Figure 3.

First, each worker registers to the employer. When checking whether KB

Eacctr,,,, F, the employer executes TAB?%%*T. If the employer needs to

check whether an open branch generated by the first phase represents a minimal
model of the KB, then it delegates the execution of the second phase to one of
the registered workers, and consequently proceeds with its computation on other
branches generated in the first phase. When a worker terminates its execution,
it reports its result to the repository.

If every branch has been processed and each worker has answered affirma-
tively, i.e. each tableaux built in the second phase by TAB};‘I%C;T is open, the
employer can conclude that KB |=accqT F. Otherwise, the employer can

min

A Multi-engine Theorem Prover for a Description Logic 173

answer 1

worker 1
2
. @ employer answer @
|D !*ﬁ worker 2
. = response
ol v
client @

answer n
worker n

@ I repository

tell 7

Fig. 3. The architecture of DysToPic.

conclude the proof as soon as the first negative answer comes into the repos-

itory, since (at least) a worker found a closed tableaux in TAB“;,‘I%C;T for an

open branch (candidate model) generated by the employer, in this case we have
that KB EarctT,,,,, F. It is worth noticing that the employer has to keep a
continuous dialogue with the repository.

The library se.sics. jasper is used in order to combine Java and SICStus
Prolog to decouple the two phases of the calculus. In detail, the employer handles
the query in Employer. java, a piece of Java code which presents it to alctl.pl,
the Prolog core implementing 7. ABﬁﬁ(iJrT. Every time that an open branch is
generated, alctl.pl invokes PhaselRMIStub. java, another piece of Java code
which will send it to the correct worker. Workers will then have to process the
open branches with TAB?@%“'T, which is implemented in alct2.pl.

Concurrency is the main goal of our implementation, since we want the execu-
tion of the first phase of the calculus to be independent from the second one. Java
natively supports concurrency via multithreading. The employer uses a separate
thread (implemented in PhaselThread. java) to perform the current invocation
of TAB};‘I@CJT on a query, while its main thread polls the repository waiting
for termination (the procedure can be stopped when the first counterexample is
found, even if not all of the branches have been explored). During the execution

of 7. ABﬁﬁ‘iJrT, every time that the employer wants to ask a worker to verify
a branch, a new thread is spawned. The worker itself makes use of threads: its
main thread simply enqueues each request coming from the employer and spawns

a new thread which performs TAB?@C;T.

4.2 The Implementation of the Tableaux Calculus

Concerning the implementation of the tableaux calculus TABAC +T each

machine of the system runs a SICStus Prolog implementation which is strongly
related to the implementation of the calculus given by PreDeLo 1.0, introduced
n [14]. The implementation is inspired by the “lean” methodology of lean T AP,

174 L. Giordano et al.

even if it does not follow its style in a rigorous manner. The program comprises
a set of clauses, each one implementing a rule or axiom of the tableau calculus.
The proof search is provided for free by the mere depth-first search mechanism
of Prolog, without any additional mechanism.

DysToPic comprises two main predicates, called prove and prove_phase2,
implementing, respectively, the first and the second phase of the tableau calculus.

Phase 1: The prove Predicate. Concerning the first phase of the calculus,
executed by the employer, DysToPic represents a tableaux node (S | U) with
two Prolog lists: S and U. Elements of S are either pairs [X, F], representing
formulas of the form x : F, or triples of the form either [X,R,Y] or [X,<,Y],

representing either roles x A, y or the preference relation = < y, respectively.
Elements of U are pairs of the form [[C inc D],L], representing C C D¥ € U
described in Section 3.1.

The calculus TABéff +T are implemented by a top-level predicate

prove (+ABox,+TBox, [+X,+F] ,-Tree) .

This predicate succeeds if and only if the query x : F' is minimally entailed from
the KB represented by TBox and ABox. When the predicate succeeds, then the
output term Tree matches a Prolog term representing the closed tableaux found
by the prover. The top-level predicate prove/4 invokes a second-level one:

prove(+S,+U,+Lt,+Labels,+ABOX,-Tree)

having 6 arguments. In detail, S corresponds to ABox enriched by the negation
of the query z : F, whereas Lt is a list corresponding to the set of concepts
L. Labels is the set of labels belonging to the current branch, whereas ABOX is
used to store the initial ABox (i.e. without the negation of the query) in order
to eventually invoke the second phase on it, in order to look for minimal models
of the initial KB.

Each clause of the prove/6 predicate implements an axiom or rule of the
calculus TAB“;?IC{"T. To search a closed tableaux for (S | U), DysToPic proceeds
as follows. First of all, if (S | U) is a clash, the goal will succeed immediately
by using one of the clauses implementing axioms. As an example, the following
clause implements (Clash):

prove(S,U,_,_,_,tree(clash)):-
member ([X,C],S) ,member ([X, neg C],S),!.

If (S| U) is not an instance of the axioms, then the first applicable rule will
be chosen, e.g. if S contains an intersection [X,C and D], then the clause imple-
menting the (M) rule will be chosen, and DysToPic will be recursively invoked
on its unique conclusion. DysToPic proceeds in a similar way for the other rules.
The ordering of the clauses is such that the application of the dynamic rules is
postponed as much as possible: this implements the strategy ensuring the ter-
mination of the calculus described in the previous section. As an example, the
clause implementing (T) is as follows:

A Multi-engine Theorem Prover for a Description Logic 175

1. prove(S,U,Lt,Labels,ABOX,tree(...,Tree)) :-member ([X,ti C],S),
2. (\+(member ([X,C],S)); \+(member([X, box neg C],S))),!,
3. prove([[X,C]|[[X, box neg C]|S]],U,Lt,Labels,ABOX,Tree),!.

In line 1, the standard Prolog predicate member is used in order to find a formula
of the form z : T(C) in the list S. In line 2, the side conditions on the applicability
of such a rule are checked: the rule can be applied if either z : C or =z : O-C
do not belong to S. In line 3 DysToPic is recursively invoked on the unique
conclusion of the rule, in which x : C' and z : O-C are added to the list S. The
last clause of prove is:

prove(...) :- ... , jasper_call(JVM,
method (’ employer/PhaselRMIStub’, ’solveViaRMI’, [staticl),...,
solve_via_rmi(NextWorkerName, ’toplevelphase2(...)’)),!.

invoked when no other clauses are applicable. In this case, the branch built by the
employer represents a model for the initial set of formulas, then toplevelphase?2
is invoked on a worker in order to check whether such a model is minimal.

Phase 2: The prove_phase2 Predicate. Given an open branch built by the
first phase, the predicate toplevelphase?2 is invoked on a worker. It first applies
an optimization preventing useless applications of (C), then it invokes the pred-
icate

prove_phase2(+S,+U,+Lt,+K,+Bb,+Db).

S and U contain the initial KB (without the query), whereas K, Bb and Db are
Prolog lists representing K, BY~ and D(B) as described in Section 3.2. Lt is as
for prove/6. Also in this case, each clause of prove_phase2 implements an axiom
or rule of the calculus TAB“I‘D‘I%C;T. To search for a closed tableaux, DysToPic
first checks whether the current node (S | U | K) is a clash. otherwise the first
applicable rule will be chosen, and DysToPic will be recursively invoked on its
conclusions. As an example, the clause implementing (T™) is as follows:

prove_phase2(S,U,Lt,K,Bb,Db) :- select([X,ti C],S,S1),
prove_phase2([[X,C] | [[X,box neg C]|S1]],U,Lt,K,Bb,Db),!.

Notice that, according to the calculus TAB’;‘IE{C;T, the principal formula to which
the rule is applied is removed from the current node: to this aim, the SICStus
Prolog predicate select is used rather than member.

4.3 Performance Testing of DysToPic

We have made an attempt to show how DysToPic performs, especially in com-
parison with its predecessor PreDeLo 1.0. The performances of DysToPic are
promising. We have tested both the provers by running SICStus Prolog 4.1.1
on Ubuntu 14.04.1 64 bit machines. Concerning DysToPic, we have tested it on

176 L. Giordano et al.

4 machines, namely: 1. a desktop PC with an Intel Core i5-3570K CPU (3.4-
3.8GHz, 4 cores, 4 threads, 8GB RAM); 2. a desktop PC with an Intel Pentium
G2030 CPU (3.0GHz, 2 cores, 2 threads, 4GB RAM); 3. a Lenovo X220 laptop
with an Intel Core 17-2640M CPU (2.8-3.5GHz, 2 cores, 4 threads, 8GB RAM);
4. a Lenovo X230 laptop with an Intel Core i7-3520M CPU (2.9-3.6GHz, 2 cores,
4 threads, 8GB RAM).

We have performed two kinds of tests. On the one hand, we have randomly
generated KBs with different sizes (from 10 to 100 ABox formulas and TBox
inclusions) as well as different numbers of named individuals: in less than 10
seconds, both the provers DysToPic and PreDeLo 1.0 are able to answer in
more than the 75% of tests. Notice that, as far as we know, it does not exist a
set of acknowledged benchmarks for defeasible DLs. On the other hand, we have
tested the two theorem provers on specific examples. As expected, DysToPic
is better in than the competitor in answering that a query F' is not minimally
entailed from a given KB. Surprisingly enough, its performances are better than
the ones of PreDeLo 1.0 also in case the provers conclude that F follows from
KB, as in the following example:

Ezample 1. Given TBox ={T(Student)"—IncomeTarPayer, WorkingStudent_
Student, T(WorkingStudent) C IncomeTaxPayer} and ABox={Student(mario),
WorkingStudent(mario), Tall(mario), Student(carlo), WorkingStudent(carlo),

Tall(carlo), Student(giuseppe), WorkingStudent(giuseppe), Tall(giuseppe)}, we
have tested both the theorem provers in order to check whether IncomeTaxPayer
(mario) is minimally entailed from KB=(TBox,ABox). This query generates

1090 open branches in TABﬁﬁclJrT, each requiring the execution of TAB??I%JFT.
PreDeLo 1.0 answers in 370 seconds, whereas DysToPic answers in 210 seconds
if only two machines are involved (employer + one worker). If 4 workers are
involved, DysToPic only needs 112 seconds to conclude its computation.

Example 1 witnesses that the advantages obtained by distributing the compu-
tation justify the overhead introduced by the machinery needed for that.

5 Conclusions

We have introduced DysToPic, a multi-engine theorem prover implementing
tableaux calculi for reasoning in ALC+T,,,;,. DysToPic implements a distributed

version of the calculus TABALCHT introduced in [16], exploiting the fact that the

mn
two phases characterizing such a calculus can be computed in parallel. We aim
at extending DysToPic to the lightweight DLs of the DL-Lite and ££ family.
Despite their relatively low expressivity, they are relevant for several applica-
tions. Extensions of ££ and of DL-Lite o, with the typicality operator T have
been proposed in [13], where it has also been shown that minimal entailment is in
1% (for EL*L, if restricted to a specific fragment). Tableaux calculi performing a
Acc+T

two phases computation, similar to 7AB;;, ", have been proposed in [11,12].

A Multi-engine Theorem Prover for a Description Logic 177

Acknowledgments. This research is partially supported by INDAM- GNCS Project
2015 “Logiche descrittive e ragionamento non monotono”. G.L. Pozzato is supported
by the project “ExceptionOWL” (U. di Torino and C. di San Paolo).

References

10.

11.

12.

13.

14.

15.

16.

17.

Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their appli-
cation in treating specificity in terminological def. logic. JAR 15(1), 41-68 (1995)
Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. Journal of Auto-
mated Reasoning (JAR) 15(3), 339-358 (1995)

Bonatti, P., Lutz, C., Wolter, F.: DLs with circumscription. In: KR, pp. 400-410
(2006)

Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: KR,
pp- 476-484. AAAI Press, Sidney, September 2008

Casini, G., Straccia, U.: Rational closure for defeasible description logics. In:
Janhunen, T., Niemel4, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77-90. Springer,
Heidelberg (2010)

Casini, G., Straccia, U.: Defeasible inheritance-based description logics. Journal of
Artificial Intelligence Research 48, 415-473 (2013)

Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM ToCL 3(2), 177-225 (2002)

Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with DLs for the semantic web. In: KR, pp. 141-151 (2004)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description log-
ics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790,
pp. 257-272. Springer, Heidelberg (2007)

Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential exten-
sion of description logics. Fundamenta Informaticae 96, 341-372 (2009)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A tableau calculus for a
nonmonotonic extension of ££*. In: Briinnler, K., Metcalfe, G. (eds.) TABLEAUX
2011. LNCS (LNAI), vol. 6793, pp. 180-195. Springer, Heidelberg (2011)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A tableau calculus for a
nonmonotonic extension of the description logic DL — Lite yr.. In: Pirrone, R.,
Sorbello, F. (eds.) AT*IA 2011. LNCS (LNAI), vol. 6934, pp. 164-176. Springer,
Heidelberg (2011)

Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning abouttypicality
in low complexity DLs: the logics EL T in and DL — Lite.T min. In: IICAT 2011.
pp- 894-899 (2011)

Giordano, L., Gliozzi, V., Jalal, A., Olivetti, N., Pozzato, G.L.: Predelo a theorem
prover for preferential description logics. In: Baldoni, M., Baroglio, C., Boella, G.,
Micalizio, R. (eds.) AT*IA 2013. LNCS(LNAI), vol. 8249, pp. 60-72. Springer,
Heidelberg (2013)

Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential vs rational
description logics: which one for reasoning about typicality? In: ECAI 2010,
pp. 1069-1070 (2010)

Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A NonMonotonic Description
Logic for Reasoning About Typicality. Artificial Intelligence 195, 165202 (2013)
Ke, P., Sattler, U.: Next steps for description logics of minimal knowledge and
negation as failure. In: DL 2008. CEUR, vol. 353 (2008)

178 L. Giordano et al.

18. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44(1-2), 167-207 (1990)

19. Krisnadhi, A.A., Sengupta, K., Hitzler, P.: Local closed world semantics: Keep it
simple, stupid! In: DL 2011. CEUR, vol. 745 (2011)

20. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Arti-
ficial Intelligence 55(1), 1-60 (1992)

21. Motik, B., Rosati, R.: Reconciling DLs and rules. J. ACM 57(5) (2010)

22. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: IJCAI
1993, pp. 676-681 (1993)

Advances in Multi-engine ASP Solving

. = .
Marco Maratea!, Luca Pulina?®), and Francesco Ricca®

! DIBRIS, University degli Studi di Genova, Viale F. Causa 15, 16145 Genova, Italy
marco@dist.unige.it
2 POLCOMING, University degli Studi di Sassari,
Viale Mancini 5, 07100 Sassari, Italy
lpulina@uniss.it
3 Dip. di Matematica ed Informatica, University della Calabria, Via P. Bucci,
87030 Rende, Italy

ricca@mat.unical.it

Abstract. Algorithm selection techniques are known to improve the
performance of systems for several knowledge representation and rea-
soning frameworks.This holds also in the case of Answer Set Program-
ming (ASP), which is a rule-based programming paradigm with roots
in logic programming and non-monotonic reasoning. Indeed, the multi-
engine approach to ASP solving implemented in ME-ASP was particularly
effective on the instances of the third ASP competition. In this paper we
report about the advances we made on ME-ASP in order to deal with the
new standard language ASPCore 2.0, which substantially extends the
previous version of the standard language.An experimental analysis con-
ducted on the Fifth ASP Competition benchmarks and solvers confirms
the effectiveness of our approach also in comparison to rival systems.

1 Introduction

Algorithm selection [36] techniques are known to improve the performance of
solvers for several knowledge representation and reasoning frameworks [24,31,
34,35,37,38,40]. It is well-established in the scientific literature that the usage
of these techniques is very useful to deal with empirically hard problems, in
which there is rarely an overall best algorithm, while it is often the case
that different algorithms perform well on different domains. In order to take
advantage of this behavior, these systems are able to select automatically the
“best” algorithm/solver on the basis of the characteristics of the instance in
input (called features). Algorithm selection techniques proved to be particu-
larly effective [5,25,26,31,38] in the case of solvers for Answer Set Programming
(ASP) [22,23], which is declarative programming paradigm based on logic pro-
gramming and non-monotonic reasoning.

The application of algorithm selection techniques to ASP solving was ignited
by the release of the portfolio solver CLASPFOLIO ver. 1 [20]. This solver ported
to ASP the sATZILLA [40] approach for SAT. Indeed, the main selection tech-
nique of CLASPFOLIO was based on regression, which tries to estimate solving
time to choose the “best” configuration/heuristic of the ASP solver CLASP.

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 179-190, 2015.
DOI: 10.1007/978-3-319-24309-2_14

180 M. Maratea et al.

Later, in [29,30], it was introduced the first multi-engine solver for ASP, called
ME-ASP [31]. ME-ASP ports to ASP an approach applied before to QBF [35].
In particular, ME-ASP exploits inductive techniques based on classification, i.e.,
membership to a class, to choose, on a per instance basis, a solver among a
selection of black-box heterogeneous ASP solvers that participated to the third
ASP Competition [13] and DLV [28], being able to combine the strengths of its
component engines. Other proposals [25,38] employ parameters tuning and/or
design a solvers schedule. CLASPFOLIO ver. 2 [26] is a framework that includes
and can combine several techniques implemented in other ASP solvers based on
algorithm selection techniques.

Among all approaches, the one implemented in ME-ASP seems to be very
effective in ASP, given it outperforms the other solvers on a broad set of bench-
marks encoded in the standard language ASPCore 1.0 [12]. The input language
of ME-ASP was, however, limited to ASPCore 1.0, which is the very basic lan-
guage of the System track of the third ASP Competition [12]. The next editions
of this event [2,10] were based on a substantially extended language, called
ASPCore 2.0 [9], supporting more expressive language features such as aggre-
gates [14], weak constraints [8] and choice rules [39]. Supporting these additional
constructs require a substantial update of the system, including the design of
proper (syntactic) features for classification and an update of the engines, and
of the consequent inductive model.

In this paper we report about the advances we made on ME-ASP in order to
deal with the new standard language ASPCore 2.0. An experimental analysis,
conducted on all domains of the fifth ASP Competition and considering the
solvers that entered the Single Processor category of the competition, confirms
the effectiveness of our approach. In particular, our results show that

e the new features allow to properly classify benchmarks encoded in ASP-
Core 2.0;

e ME-ASP performs better than its component engines, and is able to outper-
form alternative solutions at the state of the art, implemented in CLASPFOLIO
ver. 2.2, on the benchmarks of the fifth ASP Competition [10].

The paper is structured as follows. Section 2 introduces needed preliminaries
on ASP and classification. Section 3 reviews the key ingredients of a multi-engine
approach and explains the choices made in the new version of ME-ASP. Section 4
then presents the results, and the paper ends in Section 5 with some conclusions.

2 Preliminaries

In this section we recall some preliminary notions concerning Answer Set Pro-
gramming and machine learning techniques for algorithm selection.

2.1 Answer Set Programming

In this section we recall Answer Set Programming syntax and semantics. We
refer in particular to the syntax and semantics of the ASPCore 2.0 [9] standard

Advances in Multi-engine ASP Solving 181

specification that has been employed in ASP competitions [2,10] from 2013.
More detailed descriptions and a more formal account of ASP can be found
in [8,17,21,23], whereas a nice introduction to ASP can be found in [6]. Hereafter,
we assume the reader is familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with uppercase letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a variable or a constant. A
standard atom is an expression p(t1,...,t,), where p is a predicate of arity n and
t1,...,tn are terms. An atom p(tl, ..., ty) is ground if ¢1,...,t, are constants.
A ground set is a set of pairs of the form (consts:conj), where consts is a list of
constants and conj is a conjunction of ground standard atoms. A symbolic set
is a set specified syntactically as {Terms; : Conjy;- -+ ;Terms; : Conji}, where
t > 0, and for all ¢ € [1,t], each Terms; is a list of terms such that |Terms;| =
k > 0, and each Conj; is a conjunction of standard atoms. A set term is either a
symbolic set or a ground set. Intuitively, a set term {X :a(X, ¢), p(X); Y :0(Y,m)}
stands for the union of two sets: The first one contains the X-values making the
conjunction a(X, ¢), p(X) true, and the second one contains the Y-values making
the conjunction b(Y,m) true. An aggregate function is of the form f(.S), where
S is a set term, and f is an aggregate function symbol. Basically, aggregate
functions map multisets of constants to a constant. The most common functions
implemented in ASP systems are: #min and #max (undefined for the empty set)
computing minimum and maximum, respectively; #count counting the number
of terms; and #sum the computes the sum of integers. An aggregate atom is of
the form f(S) < T, where f(S) is an aggregate function, < € {<, <,>,>} is a
comparison operator, and 7T is a term called guard. An aggregate atom f(S) < T
is ground if T is a constant and S is a ground set. A rule r has the following
form:

ap | ... | an = by,...,bg,n0t bgi1,...,n0t by,.

where a1, ..., a, are standard atoms, by, ..., b are atoms, bg+1,...,b,, are stan-
dard atoms, and n, k,m > 0. A literal is either a standard atom a or its negation
not a. The disjunction a1 | ... | a, is the head of r, while the conjunction
b1,...,bg,not bgy1, ...,not by, is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules. A rule r is safe if both the
following conditions hold: (i) for each global variable X of r there is a positive
standard atom ¢ in the body of r such that X appears in ¢; (ii) local variables
of r appearing in a symbolic set {Terms:Conj} also appear in Conj.

The ASPCore 2.0 language used in competitions also includes choice rules,
weak constraints and queries. Choice rules [39] are of the form:

{a:l,...,lg} >u:— by,...,bg,n0t bgy1,...,n0t by

182 M. Maratea et al.

where a is a an atom and [y, ...,[; are literals for £ > 0, v is a term, and the
body is defined as for standard rules. Intuitively, a choice rule means that, if the
body of the rule is true, an arbitrary subset of atoms of at least u elements in
the head must be chosen as true. According to the standard specification [9] we
interpret choice rules as a syntactic shortcut for a disjunctive program simulating
this behavior.!

A weak constraint [8] {2 is of the form:

i~ by, .., b, 00t by, ..., 00t by W@ty -+]

where w and [are the weight and level of {2, and tq,--- ,t; are distinguishing
terms. (Intuitively, [w@I,] is read “as weight w at level [for substitution ¢”,
for more details on distinguishing terms see [9]). An ASP program with weak
constraints is I = (P,W), where P is a program and W is a set of weak
constraints. A standard atom, a literal, a rule, a program or a weak constraint
is ground if no variables appear in it.

A query on an ASP program is of the form ¢7, where ¢ is a positive ground
atom.

Semantics. Let P be an ASP program. The Herbrand universe Up and the Her-
brand base Bp of P are defined as usual (see e.g.,[6]). The ground instantiation
Gp of P is the set of all the ground instances of rules of P that can be obtained
by substituting variables with constants from Up.

An interpretation I for P is a subset I of Bp. A ground literal ¢ (resp.,
not /) is true w.r.t. I if £ € I (resp., ¢ ¢ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) with respect to I satisfies
the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all the rules of a program. Given a
ground program G p and an interpretation I, the reduct [16] of Gp w.r.t. I is the
subset GL of G'p obtained by deleting from Gp the rules in which a body literal
is false w.r.t. I. An interpretation I for P is an answer set (or stable model [23])
for P if I is a minimal model (under subset inclusion) of GL (i.e., I is a minimal
model for GL) [16].

Given a program with weak constraints IT = (P, W), the semantics of IT
extends from the basic case defined above. Thus, let G = (Gp,Gw) be the
instantiation of IT; a constraint {2 € Gy is violated by an interpretation I if all
the literals in {2 are true w.r.t. I. An optimum answer set O for II is an answer
set of G p that minimizes the sum of the weights of the violated weak constraints
in Gy as a prioritized way.

! Roughly, choice rules can be seen as a shortcut for a | na < bi,...,bn,e1,...,€m.,
— bi,...,bp,not #count{a: a,e1,...,en} > k. where na is an fresh auxiliary atom
that is projected out of the answer.

Advances in Multi-engine ASP Solving 183

The semantics of queries is given in terms of cautious reasoning. Given a
program P and a query g7, the query is true if ¢ is true in all answer sets of P,
and is false otherwise.

2.2 Classification for Algorithm Selection

In this work we rely on a per-instance selection algorithm that chooses the best
(or a good) algorithm among a pool of available. The selection in our case is of an
ASP solver and is made using a set of features, i.e., numeric values that represent
particular characteristics of a given instance, of a ground ASP program.

In order to make such a selection in an automatic way, we model the prob-
lem using multinomial classification algorithms, i.e., machine learning techniques
that allow automatic classification of a set of instances, given some instance fea-
tures. In more detail, in multinomial classification we are given a set of patterns,
i.e., input vectors X = {z;,...x,} with z, € R™, and a corresponding set of
labels, i.e., output values Y € {1,...,m}, where Y is composed of values repre-
senting the m classes of the multinomial classification problem. In our modeling,
the m classes are m ASP solvers. We think of the labels as generated by some
unknown function f : R™ — {1,...,m} applied to the patterns, i.e., f(z;) = y;
fori € {1,...,k} and y; € {1,...,m}. Given a set of patterns X and a corre-
sponding set of labels Y, the task of a multinomial classifier ¢ is to extrapolate
f given X and Y, i.e., construct ¢ from X and Y so that when we are given
some 2* € X we should ensure that c¢(z*) is equal to f(z*). This task is called
training, and the pair (X,Y) is called the training set.

3 Multi-engine Answer Sets Computation

The key idea at the basis of the application of automated algorithm selection
algorithms can be summarized as follows: There is rarely a best solver to solve
a given combinatorial problem, while it is often the case that different solvers
perform well on different instances. Thus, a method that is able to select a good
algorithm among a pool of available ones can perform much better than a static
choice. In our framework a number of features of the input are measured, and
multinomial classification algorithms are used to learn a selection strategy. More
in details, the design of a multi-engine ASP solver involves the following steps:

1. Design of cheap-to-compute (syntactic) features that are significant for clas-
sifying the instances.
. Fair design of training and test sets.
. Selection of solvers that are representative of the state of the art.
4. Induction of a robust selection strategy by applying a classification algo-
rithm.

wW N

In this section we report the choices we made in the design of the new version
ME-ASP, by instantiating the ingredients we outlined above.

184 M. Maratea et al.

3.1 Features

The design of features is a crucial step of the development: indeed, features must
be able to characterize the instances, but also should be cheap to compute, in the
sense that they can be extracted very efficiently. Indeed, the overhead introduced
by feature computation must be negligible.

The features of ground programs we selected for characterizing our instances
are a super-set of those employed in the earlier version of ME-ASP for dealing
with ASPCore 1.0. The new set includes features for taking into account the new
language constructs of ASPCore 2.0, e.g., number of choice rules, aggregates and
weak constraints.

The new features of ME-ASP are divided into four groups (such a categoriza-
tion is borrowed from [33]):

e Problem size features: number of rules r, number of atoms a, ratios r/a,
(r/a)?, (r/a)® and ratios reciprocal a/r, (a/r)* and (a/r)*;

e Balance features: fraction of unary, binary and ternary rules;

e “Proximity to horn” features: fraction of horn rules;

e ASP specific features: number of true and disjunctive facts, fraction of
normal rules and constraints ¢, number of choice rules, number of aggregates
and number of weak constraints.

This final choice of features, together with some of their combinations (e.g.,
¢/r), amounts to a total of 58 features.

3.2 Dataset

In order to train the classifiers, we have to select a pool of instances for training
purpose, called the training set. The training set must be broad enough to get a
robust model; on the other hand, for reporting a fair analysis, we test the system
on instances belonging to benchmarks not “covered” by the training set.

The benchmarks considered for the experiments correspond to the suite of the
fifth ASP Competition — see [10] for details about the last event. This is a large
and heterogeneous suite of hard benchmarks encoded in ASPCore 2.0, which
was already employed for evaluating the performance of state-of-the-art ASP
solvers. That suite includes planning domains, temporal and spatial scheduling
problems, combinatorial puzzles, graph problems, and a number of application
domains, i.e., databases, information extraction and molecular biology field.?

The considered pool of benchmarks is composed of 26 domains which are
based on both complexity issues and language constructs of ASPCore 2.0. Start-
ing from a total amount of 8572 instances — with instance we refer to the com-
plete input program (i.e., encoding+facts) —, we pragmatically randomly split
the amount of instances in each domain, using 50% of the total amount for train-
ing purpose, and the remaining ones for testing. All the instances were subject
to feature selection after grounding them by using GRINGO (ver. 4) [18].

2 An exhaustive description of the benchmark problems can be found in [11].

Advances in Multi-engine ASP Solving 185

3.3 Solvers Selection

The selection of solvers has the goal of collecting a pool of engines that are both
representative of the state-of-the-art solver (SOTA) and that have “orthogonal”
performance (i.e., cover as much as possible of the set of solved instances, with
minimal overlap on solved instances).

In order to find the set of training set labels, we have run ASP solvers
that entered the Single Processor category of the fifth ASP Competition.
In detail, we have run: CLASP [15], several solvers based on translation®,
i.e., LP2SAT3+GLUCOSE, LP2SAT3+LINGELING [27], LP2BV2+BOOLECTOR [32],
LP2GRAPH [19], LP2MAXSAT+CLASP and LP2NORMAL2+CLASP [7], and some
incarnations of the WASP solver [3,4] (ver. 1, ver. 1.5 and ver. 2, called WASP-1,
WASP-1.5 and WASP-2, respectively). In the following, we give more details for
each solver. CLASP is a native ASP solver relying on conflict-driven nogood learn-
ing, and in this edition includes also the capabilities of CLASPD, an extension
of cLAsP that is able to deal with disjunctive logic programs. The LP2sSAT3*
family employs a translation strategy to SAT and resorts to the SAT solvers
GLUCOSE and LINGELING for computing the answer sets. The translation strat-
egy mentioned includes the normalization of aggregates as well as the encod-
ing of level mappings for non-tight ground programs: LP2BV2+BOOLECTOR
and LP2GRAPH are variants that express the latter in terms of bit-vector
logic or acyclicity checking, respectively, supported by a back-end SMT solver.
LP2MAXSAT+CLASP competes by translating to a Max-SAT problem and solving
with CLASP. LP2NORMALZ2-+CLASP normalizes aggregates and uses CLASP.

WASP is a native ASP solver based on conflict-driven learning, extended with
techniques specifically designed for solving disjunctive logic programs. Unlike
WASP-1, which uses a prototype version of DLV [28] for grounding. WASP-2 relies
on GRINGO and adds techniques for program simplification and further deter-
ministic inferences. WASP-1.5, instead, combines the two solvers by switching
between them depending on whether a logic program is non-HCF or subject to
a query.

In order to choose the engines of ME-ASP, we computed the total amount
of training instances solved by the state-of-the-art solver (SOTA) i.e., given an
instance, the oracle that always fares the best among all the solvers. Looking
at the results of the Fifth ASP Competition, we can see that only four solver
can deal with the whole set of instances, namely CLASP, LP2NORMAL2+CLASP,
WASP1, and wASP1.5. Starting from these results, we look for the minimum
number of solvers such that the total amount of instances solved by the pool
is the closest to the SOTA solver on the training instances. The result of this
procedure allow us to choose as ME-ASP engines three solvers, namely CLASP,
LP2NORMAL2+CLASP, and WASP1. Thus, each pattern of the training set is
labeled with the solver having the best CPU time on the given instance.

3 We have not considered LP2MIP2 given that we did not receive the license of CPLEX
on time.

186 M. Maratea et al.

Table 1. Results of the evaluated solvers. The first column contains the solver names,
and it is followed by two columns, reporting the number of solved instances within the
time limit (column “Solved”), and the sum of their CPU times in seconds (“Time”).

Solver Solved Time
ME-ASP 2378 | 70144.99
CLASP 2253 | 63385.74
LP2NORMALZ2-+CLASP 2198 | 94560.98
CLASPFOLIO 1841 | 75044.14
WASP1.5 1532 | 52478.95
WASP2 1407 | 46939.06
LP2MAXSAT+CLASP 1387 | 82500.12
LP2GRAPH 1344 | 72633.53
LP2SAT3+LINGELING 1334 | 90644.33
WASP1 1313 | 87193.62
LP2SAT3+GLUCOSE 1305 | 73893.54
LP2BV2+BOOLECTOR 1011 | 57498.48

3.4 Classification Algorithm and Training

Concerning the choice of a multinomial classifier, we considered a classifier
able to deal with numerical features and multinomial class labels (the solvers).
According to the study reported in the original paper on multi-engine ASP
solving [29,31], we selected k-Nearest-neighbor, NN in the following. NN is a clas-
sifier yielding the label of the training instance which is closer to the given test
instance, whereby closeness is evaluated using some proximity measure, e.g.,
Euclidean distance, and training instances are stored in order to have fast look-
up, see, e.g., [1]. The NN implementation used in ME-ASP is built on top built
of the ANN library (www.cs.umd.edu/ mount/ANN). In order to test the gen-
eralization performance, we use a technique known as stratified 10-times 10-fold
cross validation to estimate the generalization in terms of accuracy, i.e., the
total amount of correct predictions with respect to the total amount of patterns.
Given a training set (X,Y), we partition X in subsets X; with ¢ € {1,...10}
such that X = Uzlil X; and X; N X; = () whenever i # j; we then train c(;
on the patterns X;y = X \ X; and corresponding labels Y{;). We repeat the
process 10 times, to yield 10 different ¢ and we obtain the global accuracy esti-
mate. To tune the parameter k£ of NN, we repeated the process described above
for k € [1,10],k € N. As a result of cross-validation and parameter tuning, we
choose k = 1, for which we obtained an accuracy greater than 87%.

4 Experiments

We assessed the performance of ME-ASP on the test set, that as described in the
previous section contains the half of the instances of the fifth ASP competition
that were not comprised in the training set used for generating the inductive

Advances in Multi-engine ASP Solving 187

model of ME-ASP. All the experiments run on a cluster of Intel Xeon E3-1245
PCs at 3.30 GHz equipped with 64 bit Ubuntu 12.04, granting 600 seconds of
CPU time and 2GB of memory to each solver.

In Table 1 we report the performance of ME-ASP compared to the one
obtained by the solvers described in Section 3.3. We involved in the analysis
also CLASPFOLIO ver. 2.2 4 for a direct comparison with approaches of algorithm
selection.

As a general comment we note that ME-ASP is the solver that solves in abso-
lute terms more instances than any other alternative considered in our analysis,
which represents the state of the art in ASP solving.

In detail, comparing ME-ASP with its engines, we can see that it solves 125
instances more than CLASP, 155 instances more than LP2NORMAL2+CLASP, and
1065 instances more than wASP1. This outlines that ME-ASP is consistently bet-
ter than the component engines, thus confirming that our algorithm selection
strategy is effective. This proves empirically that the features of ME-ASP are able
to characterize the input programs, and also that the inductive model learned
during training is effective in suggesting a good solver for solving a given instance.
Indeed, ME-ASP run the best solver 80% of the times, while it makes a subop-
timal choice 17% of the times, i.e., it does not predict the best engine, but it
runs a solver able to deal the input instance within the time limit. In fact, the
SOTA solver composed of the engines of ME-ASP is able to solve 2462 instances,
S0 ME-ASP is able to reach — in terms of solved instances — about 97% of the
SOTA solver performance. Regarding the average CPU time per instance, we
report that ME-AsP CPU time is about 5% more than the average CPU time per
instance of the SOTA solver (29.50 and 28.05, respectively). Finally, we report
that feature computation is basically negligible thanks to the selection of cheap-
to-compute features, and remains, in average, within the 0.6% of computation
time, i.e., 0.19 seconds in average.

Concerning the comparison with CLASPFOLIO, which is the only other system
in this comparison that is based on algorithm selection, and represents the state
of the art in algorithm selections for ASP, we note that CLASPFOLIO solves 537
instances less than ME-ASP.

Summing up, ME-ASP outperforms any solver that entered the fifth ASP com-
petition, as well as alternative solvers based on algorithm selection, performing
very efficiently on this benchmark set.

5 Conclusion

In this paper we presented an extension of the multi-engine ASP solving tech-
nique in [31] to deal with the broader set of language features included in the
standard language ASPCore 2.0. We implemented an extended version of the

4 CLASPFOLIO has been run with its default setting, and with CLASP ver. 3 as a back-

end solver. This improved version has been provided by Marius Lindauer, who is
thanked.

188

M. Maratea et al.

ME-ASP solver, which is now able to process powerful constructs such as choice
rules, aggregates, and weak constraints.

An experimental analysis conducted on the fifth ASP Competition bench-

marks and solvers shows that the new version of ME-ASP is very efficient, indeed
it outperforms state-of-the-art systems in terms of number of solved instances.

References

10.

11.

12.

13.

Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine
Learning 6(1), 37-66 (1991)

Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., lanni,
G., Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Piihrer, J.,
Redl, C., Ricca, F., Schneider, P., Schwengerer, M., Spendier, L.K., Wallner, J.P.,
Xiao, G.: The fourth answer set programming competition: preliminary report. In:
Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 42-53. Springer,
Heidelberg (2013)

Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR
2013. LNCS, vol. 8148, pp. 54-66. Springer, Heidelberg (2013)

Alviano, M., Dodaro, C., Ricca, F.: Preliminary report on WASP 2.0. In:
Konieczny, S., Tompits, H. (eds.) Proceedings of the 15th International Work-
shop on Non-Monotonic Reasoning (NMR 2014), pp. 1-5. Vienna, Austria (2014)
Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. Al
Communications - The European Journal on Artificial Intelligence 24(2), 147-164
(2011)

Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, Tempe, Arizona (2003)

Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and
sorting constructions. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS,
vol. 8148, pp. 187-199. Springer, Heidelberg (2013)

. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Con-

straints. IEEE Transactions on Knowledge and Data Engineering 12(5), 845-860
(2000)

Calimeri, F., Faber, W., Gebser, M., lanni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 input language format (since 2013).
https://www.mat.unical.it/aspcomp2013/ASPStandardization

Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth Answer
Set Programming competition. ICLP 2014 Technical Communications - CoRR
abs/1405.3710 (2014). http://arxiv.org/abs/1405.3710

Cabalar, P.: Answer set; Programming? In: Balduccini, M., Son, T.C. (eds.) Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS,
vol. 6565, pp. 334-343. Springer, Heidelberg (2011)

Cabalar, P.: Answer set; Programming? In: Balduccini, M., Son, T.C. (eds.) Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS,
vol. 6565, pp. 334-343. Springer, Heidelberg (2011)

Calimeri, F., lanni, G., Ricca, F., Alviano, M., Bria, A., Catalano, G., Cozza, S.,
Faber, W., Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C.,
Perri, S., Reale, K., Santoro, M.C., Sirianni, M., Terracina, G., Veltri, P.: The
third answer set programming competition: preliminary report of the system

https://www.mat.unical.it/aspcomp2013/ASPStandardization
http://arxiv.org/abs/1405.3710

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Advances in Multi-engine ASP Solving 189

competition track. In: Delgrande, J.P., Faber, W. (eds.) LPNMR, 2011. LNCS,
vol. 6645, pp. 388-403. Springer, Heidelberg (2011)

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions
in disjunctive logic programming: semantics, complexity, and implementation in
DLV. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI) 2003, pp. 847-852. Morgan Kaufmann Publishers, Acapulco,
August 2003

Drescher, C., Gebser, M., Grote, T., Kaufmann, B., Kénig, A., Ostrowski, M.,
Schaub, T.: Conflict-driven disjunctive answer set solving. In: Brewka, G.,
Lang, J. (eds.) Proceedings of the Eleventh International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2008), pp. 422-432. AAAI
Press, Sydney (2008)

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200-212. Springer, Heidelberg (2004)

Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence 175(1), 278-298 (2011).
special Issue: John McCarthy’s Legacy

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + Con-
trol: preliminary report. In: Theory and Practice of Logic Programming - Online-
Supplement: Proc. of 30th International Conference on Logic Programming (ICLP
2014), pp. 1-9. Cambridge University Press (2014)

Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as sat modulo
acyclicity. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the
Twenty-First European Conference on Artificial Intelligence (ECAI 2014). Fron-
tiers in Artificial Intelligence and Applications, vol. 263, pp. 351-356. IOS Press
(2014)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T.,
Ziller, S.: A portfolio solver for answer set programming: preliminary report. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352-357.
Springer, Heidelberg (2011)

Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation - the
A-Prolog perspective. Artificial Intelligence 138(1-2), 3-38 (2002)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Logic Programming: Proceedings Fifth Intl. Conference and Symposium,
pp. 1070-1080. MIT Press, Cambridge (1988)

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365-385 (1991)

Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2),
43-62 (2001)

Hoos, H., Kaminski, R., Schaub, T., Schneider, M.T.: ASPeed: ASP-based solver
scheduling. In: Technical Communications of the 28th International Conference on
Logic Programming (ICLP 2012). LIPIcs, vol. 17, pp. 176-187. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2012)

Hoos, H., Lindauer, M.T., Schaub, T.: Claspfolio 2: Advances in algorithm selec-
tion for answer set programming. TPLP 14(4-5), 569-585 (2014)

Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. Journal of Applied Non-Classical Logics 16, 35-86 (2006)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV System for Knowledge Representation and Reasoning. ACM Transac-
tions on Computational Logic 7(3), 499-562 (2006)

190

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

M. Maratea et al.

Grosan, C., Abraham, A.: Machine learning. In: Grosan, C., Abraham, A. (eds.)
Intelligent Systems. ISRL, vol. 17, pp. 261-268. Springer, Heidelberg (2011)
Maratea, M., Pulina, L., Ricca, F.: The multi-engine ASP solver ME-ASP. In:
del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519,
pp. 484-487. Springer, Heidelberg (2012)

Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-
set programming. TPLP 14(6), 841-868 (2014). http://dx.doi.org/10.1017/
S1471068413000094

Nguyen, M., Janhunen, T., Niemela, I.: Translating answer-set programs into
bit-vector logic. In: Tompits, H., Abreu, S., Oetsch, J., Piihrer, J., Seipel, D.,
Umeda, M., Wolf, A. (eds.) INAP/WLP 2011. LNCS, vol. 7773, pp. 91-109.
Springer, Heidelberg (2013)

Nudelman, E., Leyton-Brown, K., H. Hoos, H., Devkar, A., Shoham, Y.: Under-
standing random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438-452. Springer, Heidelberg (2004)

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Proc. of the
19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)
Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified
boolean formulas. Constraints 14(1), 80-116 (2009)

Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65—118
(1976)

Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proc. of the 22th
AAAI Conference on Artificial Intelligence, pp. 255—260. AAAI Press, Vancouver
(2007)

Silverthorn, B., Lierler, Y., Schneider, M.: Surviving solver sensitivity: an ASP
practitioner’s guide. In: Technical Communications of the 28th International Con-
ference on Logic Programming (ICLP 2012). LIPIcs, vol. 17, pp. 164-175. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

Simons, P.: Extending and Implementing the Stable Model Semantics.
Ph.D. thesis, Helsinki University of Technology, Finland (2000)

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. JAIR 32, 565-606 (2008)

http://dx.doi.org/10.1017/S1471068413000094
http://dx.doi.org/10.1017/S1471068413000094

Defeasible Logic Programming in Satisfiability
Modulo CHR

Francesco Santini®9

Dipartimento di Matematica e Informatica, Universita di Perugia, Perugia, Italy
francesco.santini@dmi.unipg.it

Abstract. We revise some results in Argumentation-based Logic Pro-
gramming under the umbrella of Satisfiability Modulo CHR (SMCHR),
specifically considering Defeasible Logic Programming (DeLP). Strict
and defeasible rules in DelLP can be cast to SMCHR rules, which act
as conflict “disentanglers” and implement the Theory part. At the same
time, we inherit several built-in theory solvers, as SAT, unification, or
linear arithmetic ones, which implement the Satisfiability-modulo part.
Moreover, we show how to deal with possibilistic extensions of DeLP,
i.e., Possibilistic-DeLLP, where certainty scores describing the possibility
of some events are associated with rules.

1 Introduction

This paper links Argumentation-based Logic Programming [9,13,16,20] (ALP)
to Satisfiability Modulo Theories (SMT), with the purpose to have declarative
and a powerful tool to reason in case of conflict, and reach a justifiable conclusion
with a support in Argumentation-based reasoning.

To accomplish such goal, we use Satisfiability Modulo Constraint Handling
Rules (SMCHR) [8], which in turn exploits the declarativeness of a rule-based
language as CHR [11,12], and binds it to SMT. Solving CHR constraints in other
propositional contexts typically relies on some external machinery. For example,
Prolog CHR implementations such as K.U. Leuven CHR system [19] use Prolog’s
default backtracking search to handle disjunction. The execution algorithm for
CHR is based on constraint rewriting and propagation over a global store of
constraints. CHR solvers are incremental: when a new constraint c is asserted,
we check ¢ and the store against the rules in order to find a match. If there
is a match, we fire that rule, possibly generating new constraints in the store.
Otherwise c is simply added to the global store.

In the following, we provide a general overview on how to program constraint-
propagators on top of solvers (as the SAT one), with the purpose to resolve con-
flicts between arguments, e.g., arg A—arg. In general, an unsatisfiable result (i.e.,
the asked goal is not satisfiable) from a solver points to an inconsistency in the
knowledge base: such conflict can be overcome by writing an ad-hoc propagator
to solve it by removing either arg or —arg from the constraint store. This decision
can be taken by considering qualitative/quantitative preference scores associated
© Springer International Publishing Switzerland 2015

M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 191-204, 2015.
DOI: 10.1007/978-3-319-24309-2_15

192 F. Santini

with arguments, which define a total/partial order among arguments. A conflict
resolution-procedure favours the preferred argument between two. In this sense,
an example of naturally weighted frameworks is Possibilistic Defeasible Logic
Programming (P-DeLP) [1], where ALP is mixed with belief scores.

Several different proposals have been crafted to express ALP in ad-hoc logics
and settle such conflicts [9,13,16,20]. One of our goals is to offer the features
of SMCHR and propagators as a general means to resolve them. We take as
an example the Defeasible Logic Programming framework (DeLP) [13] with the
purpose to show how SMCHR can be used to model and solve various reasoning
processes in a particular instance of such logics. For example, we are able 4) to
check the “correctness” of an argument structure (following its definition), ii) to
check if one argument is the counter-argument of another, and i) if it is a proper
or a blocking defeater for it [13]. Then we show that similar considerations hold
for the possibilistic extension of DeLP, i.e., P-DeLP.

To summarise, the main motivations behind this paper are to:

— have a unifying solving framework in which to solve all the ALP proposals [9,
13,16,20], independently developed;

— link constraint-based representation and solving techniques, as the design
of propagators, to help argument-based reasoning in an efficient way. Note
in this work we focus on non-Abstract Argumentation Frameworks [9],
where, on the contrary, Al-based techniques have been already success-
fully applied [6], as SAT [5], constraints [2—4], Answer Set Programming
(ASP) [10];

— design propagators (which collectively implement a “Theory”) on top of
different built-in solvers, and then to check their satisfiability (from this,
“Satisfiability Modulo Theory”). This unlocks the use of weights, which rep-
resent quantitative preferences on arguments, or some additional information
to be taken into account during the reasoning. Efficient underlying solvers,
as the bounds solver or the simplex algorithm (see Sec. 2.2), optimise the
search procedure in case of complex constraints over them. This is clearly
not possible by using boolean solvers only.

The paper derives from the preliminary work in [18], and is organised as
follows: in Sec. 2 we summarise the necessary background-notions to under-
stand SMCHR, its rewriting rules, and underlying solvers. Section 3 shows how
SMCHR can represent strict and defeasible rules, and some reasoning processes
of DeLLP, as checking counter-arguments or defeaters. Such processes can be also
reproduced in case of weighted rules, i.e., in P-DeLLP. Section 4 reports some of
the related works in the literature. Finally, Sec. 5 wraps up the paper and hints
directions for future work.

2 CHR and Satisfiability Modulo CHR

2.1 Constraint Handlng Rules

Constraint Handling Rules (CHR) [11,12] is essentially a committed-choice lan-
guage. A program consists of multi-headed guarded rules that rewrite constraints

Defeasible Logic Programming in Satisfiability Modulo CHR 193

into simpler ones until they are solved. CHR rules define simplification of, and
propagation over, multi-sets of relations interpreted as conjunctions of constraint
atoms. Simplification rewrites constraints to simpler constraints while preserving
logical equivalence (e.g. X < Y)Y < X <=> false). Propagation adds new con-
straints, which are logically redundant but may cause further simplification (e.g.
X <Y,Y < Z==> X < Z). Furthermore, simpagation just mixes the features
of both simplification and propagation, rewriting and adding new constraints at
the same time. Repeatedly applying the rules incrementally solves constraints
(eeg. A< B,B<(C,C< Aleadsto A= BAA=C). In the following we show
the formal syntax of such basic rules: r is the optional unique-name of a rule,
each H (and Hj\H,) is the (multi-) head of a rule, and it consists in a conjunc-
tion of one or more defined constraints indicated by commas (H = hq,...,h,),
G is the guard being a conjunction of built-in atoms, and B the body being a
conjunction of constraints:

— Simplification: [r@] H <=> [G|] B.
— Propagation: [r@] H ==> [G|] B.
— Simpagation: [r@] H, \ H, <=> [GI] B.

The @ symbol assigns a name r to a rule. A constraint (also built-in, as
=) is a predicate of First-order Logic. Rules are tried and (in case) fired in
the order they are written in the program (from top to bottom). For each rule,
one of its head constraints is matched against the last constraint added to the
store. Matching succeeds if the constraint is an instance of the head. If matching
succeeds and the rule has more than one head constraint, the constraint store
is searched for partner constraints that match the other head constraints. A
guard is a precondition on the applicability of a rule: it is basically a test that
either succeeds or fails. If the firing rule is a simplification rule, the matched
constraints are removed from the store and the body of the rule is executed by
adding the constraints in the body. Similarly for firing a simpagation rule, except
that the constraints that match the head-part preceding \ (i.e., Hy) are kept in
the store. A simpagation rule can be seen as a short hand for Hy, H, ==> B,
H,.. If the firing rule is a propagation rule, its body is executed without removing
any constraint. The rule is remembered with the purpose to not fire it again
with the same constraints.

Basically, rules are applied to an initial conjunction of constraints (syntac-
tically, a goal) until exhaustion, i.e., until no more change happens. An initial
goal is called query. The intermediate goals of a computation are stored in the
so-called store. A final goal, to which no more rule is applicable, represents the

reflexivity @ X leq X <=> true.
antisymmetry @ X leq Y, Y leq X <=> X =Y.
transitivity @ X leq Y, Y leq Z ==> X leq Z.
idempotence @ X leq Y \ X leq Y <=> true.

Fig. 1. Four rules that implement a solver for a less-or-equal constraint.

194 F. Santini

answer (or result) of a computation. Figure 1 shows four rules to reason on the
< relation: by posting the goal A < B, B < C,C < A to the store we obtain a
final store containing the result {A = B, A = C'}. The reflexivity rule removes
not useful information from the store.

2.2 Satisfiability Modulo CHR

SMCHR! [7,8] is essentially a Satisability Modulo Theories (SMT) solver where
a theory T is implemented in CHR.

SMCHR follows the theoretical operational-semantics of CHR. No assump-
tions should be made about the ordering of rule applications. The SMCHR sys-
tem also treats deleted constraints differently from CHR. A deleted constraint
stays deleted “forever”, i.e., it is not possible to re-generate a copy of the same
constraint: for instance, a program p(z) <=> p(x) always terminates.

The following list introduces all the solvers that can be plugged into SMCHR
at the time of writing [7,8]:

— eq: an equality solver based on union-find. This solver is complete for for
systems of equality and dis-equality constraints.

— linear: a linear arithmetic solver over the integers based on the simplex algo-
rithm over the rationals. This solver is incomplete if there exists a rational
solution for the given goal.

— bounds: a simple bounds-propagation solver over the integers. This solver is
incomplete.

— dom: a simple solver that interprets the constraint int dom(z,l,u) as an
integer domain/range constraint x € [l..u]. This, in combination with the
bounds solver, forms a Lazy Clause Generation (LCG) finite domain solver.
This solver is incomplete.

— heaps: a heap solver for program reasoning based on some of the ideas from

Separation Logic. This solver is complete.

sat: the boolean satisfiability solver (SAT). This solver is complete and is

always enabled by default.

The SMCHR system assumes that loaded solvers are incomplete (the tool can
be extended with new solvers): an “UNKNOWN?” result indicates that unsat-
isfiability cannot be proven, meaning that either the goal is satisfiable, or that
the solver is incomplete and was unable to prove unsatisfiability. However, if
the user knows that a given solver combination is complete, then the answer
UNKNOWN can be re-interpreted as a “SAT” response. SMCHR returns the
answer “UNSAT” to indicate that the goal is unsatisfiable. Some performance
benefits in using the SAT solver are that it is possible to inherit all the advan-
tages of no-good clause learning, non-chronological back-jumping, and unit prop-
agation during computation [7].

! http://www.comp.nus.edu.sg/~gregory /smchr/

http://www.comp.nus.edu.sg/~gregory/smchr/

Defeasible Logic Programming in Satisfiability Modulo CHR 195

3 DeLP Solved in SMCHR

In this section we choose DeLP [13] among all Argument-based Logic Program-
ming frameworks (see Sec. 4) in order to show how SMCHR propagators can
effectively model such plethora of systems. DeLLP variables are represented with
constraint variables. A DeLP program is a set of i) facts, i) strict rules, and iii)
defeasible rules using ground literals L;.

— Fuacts are ground literals representing atomic information or its strong nega-
tion.

— Strict rules represent non-defeasible rules, and they are represented as Ly «
Ly,...,L,.

— Defeasible rules represent tentative information, in the form of rules like
Lo = Ll,...,Ln.

In words, a defeasible rule is used to represent tentative information that may
be used if nothing could be posed against it. On the contrary, the information
that represents a strict rule, or a fact, is not tentative. A DeLP-program is
denoted by a pair (IT,A) distinguishing a subset IT of facts and (only two in
Fig. 2) strict rules, which represent non-defeasible knowledge, and a subset A
of defeasible rules (eight in Fig. 2). In Fig. 2 we consider the same example
given in [17, Ch.8]. IT U A collect information and reason on three rooms a, b,
and ¢, linking their illumination to the day (working or holiday), to the switch
position (on/off), to the electricity presence (yes/no), and to the time of the day
(day/night): for instance, the first defeasible rule states that “it is reasonable to
believe that if the switch of a room is on, then the lights of that room are on”.
This rule is in A because its conclusion can be defeated in case, for instance,
there is no electricity.

night. switch_on(a).
~day < night. switch_on(b).
~dark(Y') « illuminated(X). switch_on(c).
I .
sunday. ~electricity(b).
deadline. ~electricity(c).

emergency_lights(c).

light_on(X) « switch_on(X).

~lights_on(X) « ~electricity(X).

lights_on(X) «— ~electricity(X), emergency_lights(X).
dark(X) — ~day.

tlluminated (X)) «— ~lights_on(X), ~day.
working_at(X) « illuminated(X).

~working_at(X) «— sunday.

working_at(X) « sunday, deadline.

Fig. 2. II collects DeLP facts and strict rules, while A provides defeasible rules.

196 F. Santini

/% Strict rules =/
night (x) = not day(x);
illuminated (x) = not dark(x);

/+* Defeasible rules x/

switchOn (x) = lightsOn(x);

not electricity (x) = not lightsOn(x);

not electricity (x) A emergencyLights(x) = lightsOn(x);
not day(x) == dark(x);

not day(x) A lightsOn(x) = illuminated (x);
illuminated (x) = workingAt(x);

sunday (x) = not workingAt(x);

sunday (x) A deadline(x) = workingAt(x);

Fig. 3. argcheck.chr: a SMCHR propagator coding the DeLLP example in Fig. 2.

In Fig. 3 we show a possible encoding to SMCHR of the DelLP program in
Fig. 2, where each rule (both in I and A) is encoded in a SMCHR propagation-
rule in Fig. 3. Facts, which represent pieces of indefeasible information (i.e., they
are in IT as well), are not represented through rules, but with the constraints

switchOn(a), switchOn(b), switchOn(c), not electricity(b), not electricity(c),
emergencyLights(c), night(a), night(b), night(c), sunday(a), sunday(b),
sunday(c), deadline(a), deadline(b), deadline(c).

Such set F of constraints (or part of it) can be passed to the SMCHR inter-
preter (in “and”) as part of a global goal. If we ask the entire F we obtain an
UNSAT result, meaning that not all of them can be warranted, i.e., we have
contradictions in our knowledge-base.

A DeLP-query is a ground literal () that a DeLLP program tries to warrant.
Our SMCHR can straightforwardly check it. There are several queries that suc-
ceed with respect to the program in Fig. 3 because they are warranted, e.g.,
illuminated(a) A switchOn(a). File argCheck.chr stores our “Theory” as a set
of propagation rules, and it is shown in Fig. 3. If we call ./smchr --solver
argCheck.chr and we ask the goal @ = illuminated(a) A switchOn(a) then
we obtain UNKNOWN, which, being the default SAT solver complete, can be
reinterpreted as SAT (@ is then warranted). The output of the smchr inter-
preter is shown in Fig. 9, where we can also see the number of generated con-
straints (three: lightsOn(a), not dark(a) and workingAt(a)), and other infor-
mation related to search, as the number of backtracks. Other queries cannot
be warranted instead: for instance Q = switchOn(a) A not lightsOn(a) returns
UNSAT, because switchOn(a) propagates to lightsOn(a), which however con-
flicts with part of @. Indeed, also two contradictory constraint in a query, as
day(a) N not day(a), trivially disagree, and the answer is UNSAT as well.

A derivation using IT only is called a strict derivation, that is only the first
two rules in Fig. 3. A defeasible derivation of a literal @) by using (11, A), denoted
by (IT,A) b @, is a finite sequence of ground literals in form of Ly, Lo, ..., Ly
with L, = @, where i), L; is a fact in IT, or %) there exists a strict or defeasible

Defeasible Logic Programming in Satisfiability Modulo CHR 197

LOAD solver "sat"
LOAD solver "argcheck.chr"

> illuminated(a) /\switchOn(a)
UNKNOWN :

illuminated(a) /\

lightsOn(a) /\

not dark(a) /\

switchOn(a) /\

workingAt (a)

Fig. 4. Output of Fig. 3 with illuminated(a) as input query.

/% Strict rules x/
night (x) = not day(x);
illuminated (x) = not dark(x);

/+* Defeasible rules x/
not electricity (x) = not lightsOn(x) A defeasibleNotLightsOn () ;

/x1x/ defeasibleNotLightsOn(x) A lightsOn(x) = strictLightsOn(x);
/*2%/ defeasibleNotLightsOn (x) A defeasibleLightsOn(x) = false;

Fig.5. A SMCHR program to check the validity of an argument structure (see Def. 1)
by using (II, A), where A = {~lights_on(X) « ~electricity(X)} and II is supposed as
taken from Fig. 2.

rule in (I7, A) with head L; and body By, ..., By and each B is an L; element
of Ly, Loy, ..., L,, with j <i. A derivation is defeasible if at least one defeasible
rule is used. This brings us to define a valid argument structure:

Definition 1 (Argument Structure [13]). Let H be a ground literal, (IT, A)
a DeLP-program, and A C A. The pair (A, H) is an argument structure if:>

1. there exists a defeasible derivation for H from (I, A),
2. there is no defeasible derivation from (II, A) of contradictory literals.

With respect to Fig. 2, if we consider A = {~lights_on(X)
~electricity(X)} and H = ~lights_on(b), we can check if (A, H) is a valid argu-
ment structure by using the SMCHR rules in Fig. 5, which collect all the strict
rules in IT plus A, as required by 2) in Def. 1. If we set as goal all the facts F in
1, ie.,

Q = F = night(a) A night(b) A night(c) A switchOn(a) A switchOn(b)A
switchOn(c) A sunday(a) A sunday(b) A sunday(c) A deadline(a) A deadline(b)A
deadline(c) A not electricity(b) A not electricity(c) A emergencyLights(c)

2 We do not consider here a third property, i.e., that there is no proper subset A’ of
A such that A’ satisfies 1) and 2). This leads to have “not useful” information in
the support (e.g., r in ({r,p,p — q},q)), but we plan to solve it in future work (see
Sec. 5).

198 F. Santini

then the obtained output is UNKNOWN and the six constraints generated in
the store are

defeasibleNotLightsOn(b), defeasible NotLightsOn(c), not day(a), not day(b),
not day(c), strictLightsOn(b).

Having constraint defeasibleNotLightsOn(b) in the store means that we gen-
erated H = ~lights_on(b) by using at least one defeasible rule. Thus, 1) in Def. 1
is satisfied, as well as 2), since a result of UNKNOWN (i.e., SAT because the
solver is complete) means that no contradictory literals have been generated.
Note that the same holds for H = ~lights_on(c), as it can be appreciated from
the same final store of constraints above.

Rule 2 in Fig. 5 is used to have an UNSAT response in case there are two
defeasible derivations leading to the contradiction that lights are on and off at
the same time. Therefore, we use this rule to check property 2) in Def. 1. Rule 1
in Fig. 5 is used to add a constraint (in this case, strictLightsOn(b)) warning that
there is also a strict derivation contradicting our defeasible derivation for b. If we
wish to remove such a conflict, we only need to add the following (simpagation)
rule to Fig. 5, which can remove the constraint defeasibleNotLightsOn(b) from
the store:

strictLightsOn(x) \ defeasibleNotLightsOn(x) <=> strictLightsOn(z);

Now we can turn our attention to model and check counter-arguments and

defeaters in DeLP:

Definition 2 (Counter-Argument [13]). (B, S) is a counter-argument for
(A, H) at literal P, if there exists a sub-argument (C, P) of (A, H) such that P
and S disagree, that is, there exist two contradictory literals that have a strict
derivation from IT U {S, P}.

Consider two valid argument-structures ({illuminated(X) «— ~lights_on(X),
~day, light_on(X) «— switch-on(X)} ,illuminated(b)) and ({dark(X)
~day}, dark(b)). We can accomplish this check by writing a new SMCHR
program with the first two rules of Fig. 3; then we ask a query Q@ = F A
{illuminated(b), dark(b)}, which contains all the facts F' in II in conjunction
with SUP. As answer we get UNSAT, meaning that one is the counter-argument
of the other (obtained by only using strict derivations).

In DeLLP the argument comparison criterion between two arguments is mod-
ular [13]. For this reason, Def. 3 abstracts away from the comparison criterion,
assuming there exists one (denoted by >):

Definition 3 (Proper/Blocking Defeaters [13]). Let (B,S) be a counter-
argument for (A, H) at point P, and (C, P) the disagreement sub-argument. If
(B,S) = (C,P) (i.e., (B,S) is “better” than (C,P)) then (B,S) is a proper
defeater for (A, H). If (B,S) is unrelated by the preference relation to (C, P),
(i.e., (B,SY # (C,P), and (C,P) # (B,S)) then (B,S) is a blocking defeater
for (A, H).

Defeasible Logic Programming in Satisfiability Modulo CHR 199

type night(var of atom, num); type illuminated (var of atom, num); type
dark (var of atom, num);

illuminated(x, y) \ dark(x, z) <= y $> z A r:= (y — z) | not dark(x,
r) A pDefeaterIlluminatedDark (x);
illuminated (x, y) \ dark(x, z) < y $= 2z A r:= (y — z) | mnot dark(x,

r) A bDefeaterIlluminatedDark (x);

Fig. 6. dark A not dark: resolving conflicts with scores.

In SMCHR, preference can be computed and/or constrained in the guard of
a rule, thus allowing us to even represent dynamic preferences, i.e., preferences
that are subject to some conditions, as suggested in [16] or in implemented
systems as GORGIAS [14]. Therefore, in our approach we opt to associate a
score with each argument, and we compute a new numeric result by resolving a
conflict, for instance subtracting the strength of a support from another:

supp(X) A=supp(Y) <=>X >=Y ANZ =X —Y | claim(Z)
supp(X) A —supp(Y) <=> X <Y ANZ:=Y — X | ~claim(Z)

In these two rules, contradictory constraints supp(X) and supp(Y) are the
same argument but with a different preference score. They are removed from the
store through a simplification rule, and the result is the a claim with a different
preference score Z, computed in the guard of the rules. If X > Y ($§ >=in
SMCHR), supp wins over —supp, otherwise the store contains —claim. In both
of the cases, the final preference Z is the difference between X and Y.

If we import such conflict-resolution method in our running-case (Fig. 2), we
can model it via the program in Fig. 6. The type of constraints is defined at the
beginning of Fig. 6 in order to let the program correctly manage operations on
their arguments. We set the query @ to dark(b, 2) A illuminated(b, 3). Hence,
argument lluminated(b) is associated with a preference value equal to 3, and
dark(b) to 2. The program in Fig. 6 states that illuminated(b) propagates to
not dark(b), if the first preference score is greater/equal than the preference
score of dark(b), and the preference of not dark(b) is their difference. The first
rule generates a proper defeater in the store when the preference is strictly better.
If the two scores are the same, the second rule generates a blocking defeater
instead. With our query @, we fire the first rule and we obtain illuminated (b, 3) A
not dark(b, 1) A pDefeaterllluminatedDark(b) in the store.

3.1 A Bridge Towards P-DeLP

Finally, we show how SMCHR and constraints have an impact on weighted
extensions of ALP (see also Sec. 4). Possibilistic Defeasible Logic Programming
(P-DeLP) [1] is an extension of DeLP in which defeasible rules are attached with
weights, belonging to the real unit interval [0..1], in the following discretised to
[0..100] since SMCHR works with integer numbers only. Such score expresses

200 F. Santini

type swl(num); type sw2(num); type sw3(num); type pumpClog(num) ;
type pumpFuel(num); type pumpOil(num); type o0ilOk(num); type fuelOk (num)

;
type engineOk(num); type heat(num); type lowSpeed (num) ;

/* Strict x/
pumpClog(x) == not fuelOk(x);

/* Defeasible x/

swl(x) = x $ <= 60 | pumpFuel(x);

swl(x) = x $> 60 | pumpFuel(60);

pumpFuel(x) = x $ <= 30 | fuelOk(x);

pumpFuel(x) = x $> 30 | fuelOk(30);

sw2(x) = x $<= 80 | pumpOil(x);

sw2(x) = x $> 80 | pumpOil(80);

pumpOil(x) = x $ <= 80 | 0ilOk(x);

pumpQil(x) = x $> 80 | 0ilOk(80);

0ilOk (x) A fuelOk(y) = x $<=y A x $<= 30 | engineOk(x);
0ilOk (x) A fuelOk(y) = y $<= x Ay $<= 30 | engineOk(y);
0ilOk (x) A fuelOk(y) = 30 $<= x A 30 $<=y | engineOk(30);
heat (x) = x $<= 95 | not engineOk(x);

heat (x) = x $> 95 | not engineOk(95);

heat (x) = x $<= 90 | not 0ilOk(x);

heat (x) = x $> 90 | not 0ilOk(x);

lowSpeed (x) A pumpFuel(y) = x $<=y A x $<= 70 | pumpClog(x);
lowSpeed (x) A pumpFuel(y) = y $<= x Ay $<= 70 | pumpClog(y);
lowSpeed (x) A pumpFuel(y) = 70 $<= x A 70 $<=y | pumpClog(70);
sw2(x) = x $<= 80 | lowSpeed(x);

sw2(x) = x $> 80 | lowSpeed(80);

sw3(x) A sw2(y) = x $<=y A x $<= 80 | not lowSpeed(x);
sw3(x) A sw2(y) = y $<= x Ay $<= 80 | not lowSpeed(y);
sw3(x) A sw2(y) = 80 $<= x A 80 $<=y | not lowSpeed(80);
sw3(x) = x $<= 60 | fuelOk(x);

sw3(x) = x $> 60 | fuelOk(80);

Fig. 7. SMCHR rules coding the P-DeLP example in [1].

the relative belief or preference strength of arguments. Each fact p; is associated
with a certainty value that expresses how much the relative fuzzy-statement is
believed in terms of necessity measures. Weights are aggregated in accordance
to (pl A+ Apk — ¢, Q) iff (plv 51)7 ceey (pka ﬁk) with (qv min(aa ﬂl, sy Bk)) Such
computational evaluation can be naturally encoded into SMCHR, as we show in
the following example.

The program in Fig. 7 encodes in SMCHR, an example provided in [1]. We
suppose to have an intelligent agent controlling an engine with three switches
swl, sw2 and sw3. These switches regulate different features of the engine,
such as the pumping system, speed, etc. Figure 7 shows certain and uncertain
knowledge an agent has about how this engine works.

By querying swi (100) we obtain UNKNOWN and fuelOk(30), thus correctly
deriving pumpFuel with a certainty score equal to 0.3, that is the minimum value
among all the constraints in the store: swi(100), pumpFuel(60), and fuelOk(30).

By switching the first two switches on, i.e., sw1(100) A sw2(100), the agent
knows that the engine works with a certainty score equal to 0.3. The result is
UNKNOWN, and the final constraint store is:

Defeasible Logic Programming in Satisfiability Modulo CHR 201

engineOk(30) A fuelOk(30) A lowSpeed(80) A not fuelOk(60) A 0ilOk(80)A
pumpClog(60) A pumpFuel(60) A pumpOil(80) A sw1(100) A sw2(100).

Moreover, the agent knows that fuel is not properly pumped with a certainty
score of 60, and it is pumped properly with a certainty score of 30, at the same
time. By defining two rules similar as the ones in Fig. 6, it is possible to leave
in the store only that fuel is not properly pumped with a certainty of, e.g.,
60 — 30 = 30.

3.2 Using Solvers Different from SAT

With a small example, in this section we would like to justify the use of solvers
different from SAT, and consequently justify why it is interesting to keep the
Theory and the satisfiability as separated, i.e., why to use SMCHR. In the exam-
ple in Fig. 8 we show two arguments supporting different claims, that is claim1
and claim2. If they are in conflict, claim2, belonging to a different agent, is
withdrawn, and claim3 is added, thus reaching a final (consistent) conclusion.
The solution is found by calling ./smchr.macosx --solver ex.chr,bounds:
therefore, we add a (incomplete) bounds solver, in order to bind the solution
variables. The arguments support constraints on the variables, which are object
of negotiation: for instance, int_gt(z,y) imposes x > y, and int_gt_c(z,c) imposes
that = has to be greater than a constant c. These are two examples of several
primitive built-in constraints directly supported by SMCHR. If claim2 supports
that y > d and claim! supports y % ¢, if d > ¢ a conflict arises. This conflict is
resolved by the third rule in Fig. 8: claim?2 is withdrawn from the store and a
new argument claim3 is added, supporting the constraint y > ¢ — 2. A possible
output is shown in Fig. 2.1, using Q = claim1(x,y,5) A claim2(y,9).

type claiml(var of num, var of num, num); type claim2(var of num, num);
type claim3(var, num);

claiml(x, y, ¢) = not int_gt(x, y) A not int_gt_-c(y,c);

claim2(z, d) = int_gt_c(z,d);

claiml(x, y, c¢) \ claim2(z, d) A int_gt_-c(z,d) <= d $>= ¢ A ki= ¢ — 2
| claim3(z,k) A int_gt_c(z,k);

Fig. 8. An example of negotiation using the bounds propagator.

4 Related Work

In this section we revise some of the most important proposals that combine
Argumentation with Logic Programming,.

202 F. Santini

> claimi(x,y,5) /\ claim2(y,9)
UNKNOWN :

y >3 /\

claiml(x,y,5) /\

claim3(y,3) /\

int 1b(y,4) /\

not x >y /\

not y > 5 /\

not int_1b(x,6) /\

not int_1b(y,6)

Fig. 9. A possible output for the program in Fig 8, given Q = claim1(x,y,2) A
claim2(y,9). intlb(y,6) states that 4 is the lower (reachable) bound of y, and
not int_b(z,6) and not int_lb(y,6) are the (unreachable) upper bounds of = and y
respectively.

One of the first attempt for integrating Logic Programming and Argumenta-
tion is [15], where Donald Nute introduces a formalism called Logic for Defeasi-
ble Reasoning (LDR). The proposed language has three different types of rules:
strict, defeasible, and defeaters. Even if LDR is not a defeasible formalism, its
implementation in d-Prolog is enhanced with comparison criteria between rules.

In his seminal work [9] on Abstract Argumentation, Dung shows how that
argumentation can be viewed as a special form of logic programming with nega-
tion as failure, e.g. “a logic program can be seen as a schema to generate argu-
ments”. Then, he introduces a general logic-programming based method to gen-
erate meta-interpreters for argumentation systems.

Two years later, inspired by legal reasoning, Prakken and Sartor [16] present
a semantics (given by a fixed point definition) and a proof theory of a system
for defeasible reasoning, where arguments are expressed in a logic-programming
language with both strong and default negation. Conflicts between arguments
are decided with the help of priorities associated with rules; such priorities can
be defeasibly derived as conclusions within the system.

In [20] the authors formulate a variety of notions of attack for extended logic
programs from combinations of undercuts and rebuts; moreover, they define a
general hierarchy of argumentation semantics, which is parametrised

5 Conclusion

We have presented how a constraint propagator as SMCHR, can be used to pro-
totype different reasoning problems linked to Argumentation-based Logic Pro-
gramming. The use of constraints becomes interesting when resolving conflicts
depends on relations among arguments and/or their preference value, as in P-
DeLP. Such methodology can use different solvers, e.g., sat or bounds. The ideas
in this paper suggest the potentiality of having such a powerful declarative tool,
paving the way for Argumentation-based Constraint Logic Programming.

The future goal is to have an automatised SMCHR-based framework where to
model also dynamic reasoning over argumentation lines (where each argument
structure in a sequence is a defeater of the predecessor), and dialectical trees

Defeasible Logic Programming in Satisfiability Modulo CHR 203

(where each path from the root to a leaf corresponds to a different acceptable
argumentation line). Clearly, arguments can be iteratively added to such tree
during a debate. Some reasoning side-procedures, as checking the minimality of
an argument support, can be programmed on top of SMCHR by, for instance,
embedding SMCHR into an imperative language.

References

10.

11.

12.

13.

14.

15.

Alsinet, T., Chesnevar, C.I., Godo, L., Simari, G.R.: A logic programming frame-
work for possibilistic argumentation: Formalization and logical properties. Fuzzy
Sets and Systems 159(10), 1208-1228 (2008)

Bistarelli, S., Santini, F.: Conarg: a constraint-based computational framework
for argumentation systems. In: Proceedings of the 2011 IEEE 23rd International
Conference on Tools with Artificial Intelligence, ICTAI 2011, pp. 605-612. IEEE
Computer Society (2011)

Bistarelli, S., Santini, F.: Coalitions of arguments: An approach with constraint
programming. Fundam. Inform. 124(4), 383-401 (2013)

Bistarelli, S., Rossi, F., Santini, F.: A first comparison of abstract argumenta-
tion reasoning-tools. In: ECAI 2014-21st European Conference on Artificial Intel-
ligence. FAIA, vol. 263, pp. 969-970. IOS Press (2014)

Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT" solving argumentation prob-
lems using SAT. In: Computational Models of Argument - Proceedings of COMMA
2014. FAIA, vol. 266, pp. 455-456. 10S Press (2014)

Charwat, G., Dvordak, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation: A survey. Artificial Intelli-
gence 220, 28-63 (2015)

Duck, G.J.: SMCHR: Satisfiability modulo constraint handling rules. TPLP
12(4-5), 601-618 (2012)

Duck, G.J.: Satisfiability modulo constraint handling rules (extended abstract). In:
IJCATI 2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (2013)

Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321-358 (1995)

Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument & Computation 1(2), 147-177 (2010)
Frithwirth, T.W.: Theory and practice of constraint handling rules. J. Log. Pro-
gram. 37(1-3), 95-138 (1998)

Frithwirth, T.W.: Constraint Handling Rules, 1st edn. Cambridge University Press,
New York (2009)

Garcia, A.J., Simari, G.R.: Defeasible logic programming: An argumentative app-
roach. Theory Pract. Log. Program. 4(2), 95-138 (2004)

Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous
agents. In: Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2003, pp. 883-890. ACM
(2003)

Nute, D.: Defeasible reasoning: a philosophical analysis in Prolog. In: Aspects of
Artificial Intelligence, pp. 251-288. Springer (1988)

204

16.

17.

18.

19.

20.

F. Santini

Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-Classical Logics 7(1-2), 25-75 (1997)
Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, 1st edn.
Springer Publishing Company, Incorporated (2009)

Santini, F.: Argument-based constraint logic-programming in satisfiability modulo
CHR. In: 12th International Workshop on Argumentation in Multi-Agent Systems.
Informal Proceedings (2015)

Schrijvers, T., Demoen, B.: The K.U. Leuven CHR system: Implementation and
application. In: First Workshop on Constraint Handling Rules: Selected Contribu-
tions, pp. 1-5 (2004)

Schweimeier, R., Schroeder, M.: A parameterised hierarchy of argumentation
semantics for extended logic programming and its application to the well-founded
semantics. Theory Pract. Log. Program. 5(1-2), 207-242 (2005)

Abstract Solvers for Quantified Boolean
Formulas and their Applications

Remi Brochenin®™) and Marco Maratea

DIBRIS, University of Genova, Viale F. Causa 15, Genova, Italy
{remi.brochenin,marco.maratea}@unige.it

Abstract. Abstract solvers are a graph-based representation employed
in many research areas, such as SAT, SMT and ASP, to model, analyze
and compare search algorithms in place of pseudo-code-based representa-
tions. Such an uniform, formal way of presenting the solving algorithms
proved effective for their understanding, for formalizing related formal
properties and also for combining algorithms in order to design new solv-
ing procedures.

In this paper we present abstract solvers for Quantified Boolean For-
mulas (QBFs). They include a direct extension of the abstract solver
describing the DPLL algorithm for SAT, and an alternative formulation
inspired by the two-layers architecture employed for the analysis of dis-
junctive ASP solvers. We finally show how these abstract solvers can be
directly employed for designing solving procedures for reasoning tasks
which can be solved by means of reduction to a QBF.

1 Introduction

Abstract solvers are a relatively new methodology that have been employed
in many research areas, such as Propositional Satisfiability (SAT) [1], Satisfi-
ability Modulo Theories (SMT) [1,2], Answer Set Programming (ASP) [3-5],
and Constraint ASP [6], to model, analyze and compare solving algorithms in
place of pseudo-code-based representations. Abstract solvers are a graph-based
representation, where the states of computation are represented as nodes of a
graph, the solving techniques as arcs between such nodes, the solving process
as a path in the graph and the formal properties of the algorithms are reduced
to related graph’s properties. Such a uniform, mathematically simple yet formal
way of presenting the solving algorithms proved effective for their understand-
ing, for formalizing properties in a clear way and also for combining algorithms
for designing new solutions. However, with the notable exception of the recent
work on disjunctive ASP [5], up to now this methodology has been employed to
solving procedures for reasoning tasks whose complexity is within the first level
of the polynomial hierarchy.

In this paper we present, for the first time, abstract solvers for deciding
the satisfiability of Quantified Boolean Formulas (QBFs) [7], the prototypi-
cal PSPACE-complete problem, thus showing their potential also to analyze
“hard” reasoning tasks. The first abstract solution is an extension of the abstract

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 205-217, 2015.
DOI: 10.1007/978-3-319-24309-2_16

206 R. Brochenin and M. Maratea

solver [1] for describing the DPLL algorithm for SAT [8], enhanced with theory-
specific techniques, modeled as additional arcs in the respective graph. The sec-
ond abstract solver is, instead, based on the two-layers architecture employed for
the analysis of disjunctive ASP solvers, which are characterized by a generating
layer for finding candidate solutions, and a test layer for checking candidates’s
minimality: this second solution employs a “multi-layer” architecture whose
number of layers depend on the quantifiers alternation in the QBF formula. We
also comment on a third viable approach based on compilation into a SAT for-
mula, on which is applied an abstract solver for SAT. For all abstract solutions,
correctness results are formalized by means of related graph’s properties. We
finally show how abstract solvers for QBF's can be directly employed for solving
certain reasoning tasks in other areas such as Answer Set Programming [9] and
Abstract Argumentation and Dialectical frameworks (see, e.g. [10,11]), whose
solutions are obtained by means of reduction to a QBF, thus where an abstract
solver for QBF becomes an abstract solver for the (compiled) respective reason-
ing task.

To sum up, the main contributions of this paper are:

e We present a first abstract solver for QBFs that extends the abstract solver
describing the DPLL algorithm for SAT.

e We present a second abstract solver that employs a multi-layer architecture
whose idea comes from the two-layers architecture of disjunctive ASP solvers.

e We show a third solution, based on compilation to SAT and an abstract
solver for SAT, and correctness results for all mentioned solutions by means
of properties of related graphs.

e We show how the afore-presented abstract solvers can be directly employed
for solving certain reasoning tasks in other fields.

The paper is structured as follows. Section 2 introduces needed preliminaries.
Section 3 then presents the abstract solvers for backtracking-based procedures.
Section 4 shows some applications of the introduced abstract solvers. The paper
then ends with a discussion of related work and some conclusions in Section 5.

2 Formal Background

Syntax and Semantics. Consider a set P of variables (also called atoms). The
symbols | and T denote false and true, respectively. A literal is a variable ag or
its negation @g. ag is the same of ag. A clause is a finite set of literals. A SAT
formula F’ in Conjunctive Normal Form (CNF) is a finite set of clauses.

A QBF formula is an expression F' of the form:

Q0X0Q1X1 o QTLXTLF, (1)

where:

Abstract Solvers for Quantified Boolean Formulas and their Applications 207

e cvery Q; (0 < i < n) is a quantifier, either existential 3 or universal V, and
such that for each 0 < j <n —1, Q; # Qj+1, i.e. we assume an alternation
of quantifiers, and assume that the innermost quantifier is 3;

e Xy,..., X, are variable groups (equivalently seen as sets) which define a
partition of P (i.e. the formula is closed) such that (i) each 0 < i < n
Xi # 0, (i1) U;o<cicn Xi = P, and (iii) for each 0 < 4,5 < n, i # j,
X; N Xj = 0. T

e [is a SAT formula over P.

In (1), QoXoQ1 X1 ... QnX, is the prefix and F’ is the matrix. A level of a literal
[built on a variable b; € X, denoted level(l), is ¢ with 0 < i < n. We assume
the formula has mazx alternations of quantifiers, so max is n. If F'is (1) and [is
a literal [= b; or | = —b; for b; € X;, then F; is the QBF:

e whose matrix is obtained from F' by substituting (¢) b; with T and —b; with
L if Il =b;, and (i) b; with L and —b; with T, otherwise;
e whose prefix is Qo XoQ1X1 ... Qi(X; \ b;) ... QnX,.

The semantics of a QBF F' can be defined recursively as follows:

1. If the prefix is empty, according to the semantics of propositional logic.
2. If Fis 3bF’, b € P, F is satisfiable iff Fy is satisfiable or F.; is satisfiable.
3. If Fis VbF', b € P, F is satisfiable iff both F} and F-, are satisfiable.

Ezample 1. In the QBF (2) below (from [7]), Xo is {a}, X1 is {d}, Xz is {b,c},
Ja¥d3be is the prefix and {{a,d, b}, {d, b}, {b, ¢}, {a,d, ¢}, {d, b,¢}} is the matrix.
Note that (2) is unsatisfiable.

Javd3be{{a, d, b}, {d, b}, {b, ¢}, {a,d, e}, {d, b,c}} 2)

Q-DPLL algorithm. An assignment to a set X of atoms is a function from X to
{L, T}. A set of literals is called consistent if for any literal [it contains it does
not contain /. We identify a consistent set of literals M with an assignment to
At(M): a € M iff a maps to T, and —a € M iff a maps to L.

Q-DPLL is an extension of DPLL algorithm for SAT for determining the sat-
isfiability of a QBF. As DPLL exhaustively explores the space of assignments,
by assigning literals either deterministically or heuristically, to generate classical
models of a propositional formula, also Q-DPLL is a classical backtrack-search
algorithm that exhaustively explores the space of assignments to test the sat-
isfiability of a QBF. The main difference is that, when a literal whose atom is
universally quantified is heuristically chosen, both branches must be explored.

A pseudo-code description of the Q-DPLL algorithm can be found in [7,12].
Solvers implementing this approach are, e.g. EVALUATE [12] and QUBE [13].

Abstract Q-DPLL for SAT. As said before, a QBF without prefix corresponds to
a SAT formula, where all atoms are existentially quantified. Some more prelim-
inaries about abstract solvers and related graphs are needed. A universal literal
is a literal annotated as [Y. An existential literal is a literal annotated as [°.

208 R. Brochenin and M. Maratea

A decision literal is a universal literal or an existential literal. A record is a
string of literals and decision literals. The terminal states are Valid and Unsat.
A state is a record or a terminal state. The initial state is ().

Figure 1 will present the transition rules for the graph describing the Q-
DPLL algorithm, but if we restrict to the rules Unit, Decide, Backtracks, Fail
and Succeed, and considering that all atoms are on the same level, we obtain a
description of the DPLL algorithm for SAT as presented in, e.g. [5]. Given a SAT
formula, Unit adds to the current assignment an unassigned literal in a clause
where all other literals are contradicted. Decide adds to the current assignment
an unassigned literal. Backtracks restores an inconsistent assignment by going
back in the current assignment and flipping the last decision literal. F'ail deter-
mines the formula to be unsatisfiable, i.e. the current assignment is inconsistent
but can not be fixed given that it does not contain any decision literal. Finally
Succeed determines the formula to be satisfiable.

Ezample 2. Below are two possible paths in the graph QBF5, p c{a,b},{a,c}}:

Initial state : 0
Initial state : 0 Decide = q°
Decide = q° Decide = ad
Unit = a7 c Unit =ad’c c
Decide = a’cb’ Backtracks — a’ ¢
Succeed = Valid | Decide = a7 ¢ b?

Succeed — Valid

In order to realistically describe the DPLL algorithm, an ordering must be
given on the application of the rules, such that a transition rule can not be
applied if a rule with higher priority is applicable. In DPLL, the ordering fol-
lows how the rules Unit, Decide, Backtracks, Fail, and Succeed are listed in
Figure 1. Thus, the path in Example 2 at the left corresponds to a possible path
of the DPLL algorithm, while the path at the right does not, given that Decide
is applied when Unit is applicable.

Finally, we say that a graph G wverifies a statement S (e.g. G verifies that F'
is satisfiable) when all the following conditions hold:

1. G is finite and acyclic;

2. Any terminal state in G is either Failstate or Valid;

3. If a state Valid is reachable from the initial state in G then S holds (e.g. F'
is satisfiable);

4. Failstate is reachable from the initial state in G if and only if S does not
hold (e.g. F is not satisfiable).

3 Abstract Solvers for QBFs

In this section we introduce the three abstract solvers for deciding the satisfia-
bility of a QBF mentioned in the introduction.

Abstract Solvers for Quantified Boolean Formulas and their Applications 209

Q-DPLL on a single layer. We show here a description of the Q-DPLL algorithm,
within a single layer of computation. As we already wrote, the Q-DPLL algorithm
is an extension of the DPLL algorithm for SAT. As a consequence, its transition
system updates some of the transition rules for SAT, and introduces further
transition rules to take into account the specific problem. First, unit propagate
can now be applied subject to further specific conditions. Second, the decision
literal must be chosen such that there is no an unassigned literal at a higher level.
Third, there are now two types of backtracking, i.e. through an existentially-
quantified literal, whose value is switched after a contradiction, or through an
universally-quantified literal, whose value is switched after a successful branch.
Finally, monotone rules that take into account situations where only a literal, or
its negation, is in the formula, are also added. In the following, we will formalize
these updates and modular additions.

The graph QBFr has the states as nodes, as defined in the previous section,
and the transitions of Figure 1 as edges.

The rules Unit, Decide and Backtracks extend the ones for SAT in Section 2.
Unit adds to the current assignment an unassigned literal in a clause if all other
assigned literals are contradicted, and all other unassigned literals are universally
quantified. Decide adds to the current assignment an unassigned literal, either
existentially or universally quantified, such that all atoms at lower levels are
assigned. Backtracks restores an inconsistent assignment by going back in the
assignment and flipping the last ezistentially-quantified decision variable.

Specific rules for QBF are Monotonel, Monotone2 and Backtracky. The rule
Monotonel (resp. Monotone2) assigns an existential (resp. universal) literal [,
and [(resp. [) appears in some clause while the opposite does not appear in any
clause. Backtracky is a counterpart of Backtracks: it flips the value of the last
universal literal after finding a complete and consistent assignment. For that, it
goes back in the current assignment and flips the last decision variable that is
universally quantified. Note that this rule is applicable only when all other rules
but Succeed can not be applied, so that it is triggered only when the current
assignment both assigns all the atoms in F' since Decide does not apply and is
consistent since F'ail does not apply. Fail and Succeed are the same as for SAT,
except that Succeed can be triggered only when there is no decision variable
that is universally quantified so that Backtracky is not applicable.

Proposition 1. Given a QBF formula F, the graph QBFg verifies that F is
satisfiable.

Ezample 3. Consider the QBF (2) in Example 1, that we call F'. A possible path
in QBFF is:
Initial state : 0
Decide — 3 Backtracks — aiv
_3=v | Decide = ad

Decide = ad Iy Evb
_3=v onotonel = a
Monotonel =>a>d b
onotone a Backtracky —> a d

3
Backtracky — a~d Unit —udb

Unit —gaid¢ X
— | Fail —> Unsat
Unit —ada| " nsa

210 R. Brochenin and M. Maratea

Rules
[does not occur in L and
for some clause C in the matrix,
Unit L = LI if ¢ [occurs in C' and
each other unassigned literal of C' is universal and
each assigned literal of C' is contradicted
the variable of [is existential and
Monotonel L — LI if ¢ I occurs in some clause C and
[does not occur in any clause C
the variable of [is universal and
Monotone2 L = LI if { 1 occurs in some clause C' and
[does not occur in any clause C
L is consistent and
the variable of [is unassigned and
the quantifier of the variable of [is Q and
for all I’ such that level(l') < level(l)

the variable of I’ is assigned.

Decide L = LI° if

3 /. . .
Backtracks LIL' — LI ; {Ll L' is inconsistent and

17 is the rightmost existential literal
Fail L —> Unsat if{ L is inconsistent and existential free

v/ - .. | no other rule applies except Succeed and
Backtracky LU"L" = L lf{ 1¥ is the rightmost universal literal
Succeed L — Valid if{ no other rule applies

Fig. 1. The transition rules of the Q BFr graph.

Q-DPLL with multiple layers. In the previous sub-section we presented the
abstract solver that describes the Q-DPLL algorithm. Here we present an alter-
native solution that uses and extends the two-layers architecture employed in
abstract solvers for disjunctive ASP [5]. In disjunctive ASP, solvers are mainly
organized in the following way:! there is a “generate” layer that computes can-
didate solutions, and a “test” layer that checks whether it is indeed a solution,
by checking minimality. In QBF, we extend this architecture by considering that
a layer is the solving process “within” the same quantifier level. Within a layer,
a SAT problem is solved, and depending from the past search, the current level,
and the related quantifier type, the search is directed through levels with some
newly added control states. In sum, there is a basic set of transition rules that
corresponds to the rules for SAT (plus monotone rules, that can be used also in
SAT), which are called Core rules, and another set of rules to direct the search.
In the following, we will formalize these concepts.

1 A notable exception is the family of ASP solvers based on translation.

Abstract Solvers for Quantified Boolean Formulas and their Applications 211

Before introducing the related graph, we need some additional definitions. A
stack of records S is a (possibly empty) list of records S = Ly :: Lo :: ... 2 Ly
which we can also write as S = S’ :: Ly, where S’ is a stack of records.

An oracle state Lg g is made of:

— a record L, which accounts for the current assignment computed;
— a stack of records 5, an integer k and a quantifier type Q.

A control state Instr(Lg ,q) is made of:

— the action Instr that led to this state, Instr € {Failure, Success, Cont};

a record L, result of the last computation;

— a stack of records S, results of previous computations;

an integer k equal to the amount of quantifier alternations that precede the

quantifiers currently treated in the last computation;

— a type of quantifier @ in {3,V}, corresponding to the type of the quantifiers
of the last computation.

Control states guide the search through layers. A state is a control state,
an oracle state or a terminal state. Intuitively, the core rules from Unit to
Backtrack, which resemble the ones in the previous sub-section, deal with the
computation within a level. Rules Fail and Succeed, instead, are the rules at
the interface between two layers, going from an oracle to a control state. Result
processing rules, on the other hand, direct the computation according to the
oracle state they are dealing with. In particular, Fail (resp. Succeed) leads to
the actions Failure (resp. Cont) if the assignment can not (resp. can) be suc-
cessfully extended at this level, respectively. In consequence of the application
of one of these rules, Result processing rules can be triggered. A Failure control
state on an existential level triggers Failured and the result is that the action
is unchanged, the level is decremented, the quantifier is changed, and the cur-
rent record L’ becomes the last in the stack. Then, FailureV is immediately
triggered doing similar processing, but leading to an oracle state whose record
is inconsistent (and backtrack will be forced). The rational about this behavior
is that if we had a failure on an existential level, we must also jump over the
previous universal level, because in this branch a solution can not be found. If k
becomes 0 and the stack is empty, we can return Unsat through FailureFinal,
meaning the F' is unsatisfiable. Instead, a Cont control state on an existential
level triggers the rule Continue that brings (i) to an oracle state at the next
level whose assignment is added to the queue, the level is incremented, the quan-
tifier is switched and the current assignment is restarted, or (ii) to a Success
state if the maximum level is reached through FullAssign. Now, Success3 is
triggered and leads to failing level at the upper quantified level, in order to force
a backtrack, or Successd is triggered if the record L at the upper level does
contain decision literals: if this happens, the Success state is maintained at the
upper level, that immediately triggers SuccessV that goes one further level up,
and the search can proceed as before. If a Success is reached at level 0, Valid
can be returned, meaning that F is satisfiable. The graph QBF2p has the states

212 R. Brochenin and M. Maratea

as nodes, the transitions of Figure 2 as edges, and 0y ¢ ¢ as initial state, where
@ is the type of the outermost quantifier.

Proposition 2. Given a QBF formula F, the graph QBF2p verifies that F is
satisfiable.

Note that this graph seems to be more amenable for being the basis for
building new abstract procedures for QBF's, which is one of the main advantage
of this methodology. In fact, we can replace the Core rules with any other set of
rules that solve the same problem (in this case a SAT problem), and add similar
rules as Fail and Succeed that lead to Result processing rules.

Ezample 4. Consider the QBF (2) in Example 1, that we call F. A possible path
in QBF2p is:

Initial state : 0g,0,0 Backtrack = ag 0,3

Decide — 63@,073 Succeed = Cont(ap,0,3)
Succeed = Cont(a g 0.3) Continue = 0a,1v

Continue = 033,y Decide — oy

Decide = daaﬂ,l,v Succeed = C’ont(aaa,l,v)
Succeed = Cont(d 43 1) Continue = 0,.37 23
Continue = @Eg:zgap’a Monotonel — ba;;f :2’3
Monotonel = b5 3=, 5 Succeed = Cont(b,, 33 , 5)
Succeed == Cont(bagzﬂag,a) FullAssign —> Success(ba:ﬂag’a)
FullAssign = Success(b,s, 35, 5) | Success3 — Eala,l,v
Successd - EHLEa,LV Backtrack = da1yv

Backtrack = dga,y Unit = d ba1,v

Unit = dCzE,y Unit = dbba1yv

Unit =dc 553,1,v Fail — Failure(d b ba1v)
Unit = dcbbga,y Failurev = algo,3

Fail —> Failure(d € b by ,) | Fail = Fuailure(alyp,3)
FailureV — Eal@,o,a FailureFinal = Unsat

Solution Based on Variable Elimination. A third solution for solving a QBF is to
rely on an approach which directly follows the semantic of a QBF as presented
in the previous section, thus considering that, given a QBF F', JaF is logically
equivalent to F, V Fg, while VaF is logically equivalent to F,, A Fz. The expansion
of a variable a is obtained by?:

1. adding a variable b’ for each variable b having level(b) < level(a);

2. quantifying each variable b’ in the same way as b and s.t. level(b') = level(b);

3. for each clause C' in the scope of a, adding a new clause C’ obtained from C
by substituting &’ to b; and

4. considering the mentioned clause C' (resp. C’) , those containing @ (resp. a)
are eliminated, while a (resp. @) is eliminated from the other clauses.

2 Optimizations are possible, e.g. Unit, Monotonel and Monotone2 are applicable,
and a concept of “minimal scope” for a variable can be defined (see, e.g. [7]).

Abstract Solvers for Quantified Boolean Formulas and their Applications 213

Core rules
! does not occur in L and
for some clause C' in the matrix,
UnitLs k0 = Lls kg if< l occursin C' and
each other unassigned literal of C' is universal and
each assigned literal of C' is contradicted
the variable of [is existential and
Monotonel Lgs.q = Lls,Q if ¢ 1 occurs in the matrix and
1 does not occur in the matrix
the variable of [is universal and
Monotone2 Lgs . = Lls,Q if ¢ 1 occurs in the matrix and
l does not occur in the matrix
L is consistent and
Decide Ls k. = LiPsk0 if < neither I nor { occur in L and
level(l) = k
3., 5 .. [LIL’ is inconsistent and
Backtrack LEL s kg = Llskq lf{ I? is the rightmost decision literal

Fail Ls ko = Failure(Ls,k,q) if { L is inconsistent and decision free
Succeed Lsk,o = Cont(Lsk,q) if { no other rule applies

Result processing rules for k € {0..maz — 1}

Continue Cont(Ls,k,q) = 0.0 1010
FullAssign Cont(Lg,maz,3) = Success(Ls,maz,3)
FailureV Failure(Ls...v kt+1,v) = L'lsk3
Failured Failure(Ls.../ k+1,3) = Failure(L' s k,v)
FailureFinal Failure(Lg,q) = Unsat
SuccessV Success(Lg... k+1,v) = Success(L's,x,3)
Success3 Success(Lg..17 k+1,3) = L'lskv
if L' contains at least a decision literal
Successd’ Success(Lg..17 k+1,3) = Success(L' s x,v)
if L' is decision-free
SuccessFinal Success(Lg0,q) = Valid

Fig. 2. The transition rules of the QBF2r graph.

In particular, the process of expanding all universally-quantified variables
yields a SAT formula that can be solved with the abstract solver we have seen
in Section 2, e.g. by expanding d in (2) we obtain the following SAT formula:

Jabeb'd {{b, c}, {b,e}, {a,v'}, {b'}, {b,c'}, {a,}}

where, e.g. variables V' and ¢ are added to the prefix (step 1. above) as
existentially quantified (step 2.), {¥/,} is obtained from {b,c} (step 3.) and
{b,¢} is {d,b,¢} deprived of d (step 4.). Formal properties for this approach

214 R. Brochenin and M. Maratea

can be stated by relying on the correctness of variable elimination, and formal
properties on the abstract graph for SAT.

Of course, a formal result similar to Proposition 1 and 2 could be added. But
the correctness of this potential proposition stems directly from the correctness
of variable elimination and of abstract solvers for SAT, that are already proved
in other papers. Hence, stating such a proposition is not necessary.

4 Applications

Several reasoning tasks in other fields have been solved by a translation to a QBF
formula followed by the application of a QBF solver to this formula. Hence, the
abstract solvers we have defined can be used to abstract decision procedures
for these problems. Indeed, the states and the transition rules from which the
transitions are inferred will be identical to those of the graph QBFpr. But this
process will be applied to a specific formula F' that corresponds to the translation
of an instance of the reasoning task to solve. We review here some applications
of the abstract solvers we have defined in previous sections.

We will use the graphs of the type Q@BFr, but these ideas could equivalently
be stated with QBF2r graphs. Also, in the articles describing each of the con-
sidered solvers, where it is possible to find the resulting formulas, the matrix is
not in CNF, and the formulas are not necessarily in prenex from. Hence, they are
not defined exactly as we defined QBF formulas in this article. As a consequence,
each time we define an abstract solver using a formula F' we will use QBFyp(r)-
The function NF' converts a non-prenex non-CNF quantified formula F' to a
QBF formula matching the definition provided in this article, i.e. with prenex
form, all the free variables quantified existentially, and matrix in CNF.?

Answer Set Programming. Answer set programming is a declarative language
representing problems as logic programs, of which solutions are called answer
sets. Determining whether a program has any solution is X¥-complete in the
general case of disjunctive answer set programming. In [9] is defined the quan-
tified formula 7;,(P) for a program P. The formula 7;,(P) is satisfiable if and
only if P has at least one answer set. Then, for any program P, the graph
QBFnF(7,,(p)) verifies that P has at least one answer set.

There is not yet practical ASP solvers built my means of reduction to QBF.
The main obstacle is the encoding, and the fact that the defined encoding is
in non-prenex non-CNF form, and an efficient transformation in prenex CNF is
required. On the other hand, we believe that, once this obstacle is mitigated,
our work can help also in the practical interplay between the encoding and the
engine solver.

3 Also the solvers that implement approaches based on reduction rely on such conver-
sion, given they employ QBF solvers based on the form used in this article.

Abstract Solvers for Quantified Boolean Formulas and their Applications 215

Abstract Argumentation Frameworks. Abstract argumentation frameworks are
directed graphs which are designed to represent conflicting information. Each
vertex of the graph is called an argument. The edges of the graph represent
the way arguments can attack each other. The graphs are studied under varied
semantics for which a set of arguments is a solution; for instance, in general a
set of arguments will have to be conflict-free to be admissible. There are two
main types of decision problems generally studied for each of the semantics:
knowing whether a given argument belongs to at least a solution (i.e. credulous
acceptance), and whether a given argument belongs to all solutions (i.e. skeptical
acceptance). The article [14] defines first order formulas that have free variables,
designed so that the assignments to the free variables that satisfy the formulas
have a strict correspondence to the solutions of an argumentation framework
under a given semantics. For instance, the first order formula PE(A) is defined
in this article and satisfying assignments to its free variables correspond to the
preferred semantics of the argumentation framework A. Obtaining an abstract
procedure from such formulas is possible but would require using the techniques
of [11], as explained below.

Abstract Dialectical Frameworks. Abstract dialectical frameworks are a general-
ization of abstract argumentation frameworks which allow to model more com-
plex interactions between arguments. As a result, decision problems are gen-
erally one level higher in the polynomial hierarchy, up to the third level. We
are here going to rely on the work of Diller et al. [11] which, for an argu-
ment s € S from an abstract dialectical framework (S,C) and a semantics
o € {adm,com,prf,grd,mod, stb}, defines a QBF formula which is satisfiable
if and only if s is skeptically accepted in (S,C) under o semantics. A similar
formula is defined in the case of credulous acceptance.

For instance, we focus on the case of preferred semantics and skeptical accep-
tance. The formula is denoted VS3(E, (S, C) = s%). Note that VS5 refers to a
quantification over all the elements from a set of variables built from S and used
in &pr ¢ (S, C), so that the quantification remains in the first order. Hence, for an
abstract dialectical framework (S,C') and s € S, the procedure of [11] for solv-
ing skeptical acceptance of s in (S,C) under preferred semantics is abstracted
by QBFNF(VS_g(ng(S’C)és@)). Hence QBFNF(VSS(SWf(S’C)jsea)) verifies that s
is skeptically accepted in (S, C) under preferred semantics. Similar graphs can
be defined so as to abstract the procedure for other semantics, and for credulous
acceptance. For instance, credulous acceptance for preferred semantics would be
abstracted by QBFNp(3s,(e,,;(5.0)rs))- I VS3(Eprp (S, C) = 59), the formula
Epr (S, C) is very similar to PE(A) in its function. Using a formula similar to s®
which represents the argument s and a set of variables similar to Ss, one could
define a formula of the form VS3(PE(A) = s¥) so as to abstract a decision pro-
cedure for abstract argumentation frameworks. Assuming we call the obtained
formula pe(A, s), the graph QB F.(4,5) would verify that s is skeptically accepted
in A under preferred semantics.

216 R. Brochenin and M. Maratea

Differently from ASP, efficient approaches based on QBF are implemented
for Abstract Dialectical Frameworks [11]. We believe that, in this case, abstract
solvers can help to more deeply understand the effectiveness of this approach.

5 Related Work and Conclusions

Abstract solvers have been originally employed in [1] first to describe the DPLL
algorithm for SAT, and then by extending this graph to deal with certain SMT
logics which can be solved by means of a lazy (i.e. SAT-based) approach to SMT
solving. Then, abstract solvers have been applied to Answer Set Programming
in several papers. Abstract solvers for backtracking-based ASP solvers for non-
disjunctive ASP programs (whose complexity is within the first level of the
polynomial hierarchy) have been presented in [15], then extended in (i) [3] to
include backjumping and learning techniques, and in (¢) [5] for describing solvers
for disjunctive ASP programs (able to express problems up to the second level of
the polynomial hierarchy). Another contribution in ASP is presented in [4], where
an unifying perspective based on completion (i.e. transforming a logic program
into a propositional formula) on some solvers for non-disjunctive ASP programs
is given. Finally, abstract solvers for Constraint ASP solvers are presented in [6].

In this paper we have presented, for the first time, abstract procedures for
solving reasoning tasks whose complexity is beyond the second level of the
polynomial hierarchy, i.e. the satisfiability of QBF, the prototypical PSPACE-
complete problem. We have finally shown how these abstract solvers can be used
to define abstract procedures for certain reasoning tasks in other fields that can
be solved via a translation to a QBF. Other applications are of course possible,
e.g. to solving conformant and conditional automated planning problems. How-
ever, we do not claim about the efficiency of a new tool built on this basis, given
that it usually also requires many iterations of theoretical analysis, practical
engineering, and domain-specific optimizations to develop efficient systems. Yet,
positive experiences have been already reported for Abstract Dialectial Frame-
works [11] and classical planning [16].

Future research includes adding optimization techniques, like backjumping
and learning, to our abstract solvers. These are two well-known techniques imple-
mented in several solvers: backjumping is the ability to jump over decision lit-
erals that were not directly responsible to the conflict that caused backtracking,
while learning adds information (in terms of, e.g. clauses) to the initial formula
in order to avoid to follow similar paths in order parts of the search. The presence
of two quantifier types enables two different types of transition rules for model-
ing these techniques, that will be anyway added by means of modular addition
of transition rules.

Abstract Solvers for Quantified Boolean Formulas and their Applications 217

References

10.

11.

12.

13.

14.

15.

16.

Leeuwenhoek, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937-977 (2006)

Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. JSAT 3(1-2), 21-46 (2007)

Lierler, Y.: Abstract answer set solvers with backjumping and learning. Theory
and Practice of Logic Programming 11, 135-169 (2011)

Lierler, Y., Truszczynski, M.: Transition systems for model generators - a unifying
approach. Theory and Practice of Logic Programming 11(4-5), 629-646 (2011)
Brochenin, R., Lierler, Y., Maratea, M.: Abstract disjunctive answer set solvers.
In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proc. of ECAI 2014, vol. 263.
Frontiers in Artificial Intelligence and Applications, pp. 165-170. IOS Press (2014)
Lierler, Y.: Relating constraint answer set programming languages and algorithms.
Artificial Intelligence 207, 1-22 (2014)

Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability. Volume 185 of FAIA, pp. 761-780. IOS Press (2009)

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394-397 (1962)

Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks
using quantified boolean formulas. In: Kautz, H.A., Porter, B.W. (eds.) Proc. of
AAAT 2000, pp. 417-422, AAAI Press / The MIT Press (2000)

Arieli, O., Caminada, M.W.A.: A QBF-based formalization of abstract argumen-
tation semantics. Journal of Applied Logic 11(2), 229-252 (2013)

Diller, M., Wallner, J.P., Woltran, S.: Reasoning in abstract dialectical frameworks
using quantified boolean formulas. In: Parsons, S., Oren, N., Reed, C., Cerutti, F.
(eds.) Proc. of COMMA 2014. Volume 266 of FAIA, pp. 241-252, IOS Press (2014)
Cadoli, M., Giovanardi, A., Schaerf, M.. An algorithm to evaluate quanti-
fied boolean formulae. In: Mostow, J., Rich, C. (eds) Proc. of AAAI 1998,
pp. 262-267, AAAI Press / The MIT Press (1998)

Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified boolean formulas. JAIR 26, 371-416 (2006)
Charwat, G., Dvorak, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
Solving Reasoning Problems in Abstract Argumentation - A Survey. Artificial
Intelligence 220, 28-63 (2015)

Lierler, Y.: Abstract answer set solvers. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 377-391. Springer, Heidelberg (2008)
Cashmore, M., Fox, M., Giunchiglia, E.: Partially grounded planning as quantified
boolean formula. In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.)
Proceedings of the Twenty-Third International Conference on Automated Planning
and Scheduling, ICAPS 2013, AAAI (2013)

Machine Learning

Learning Accurate Cutset Networks
by Exploiting Decomposability

Nicola Di Mauro®™), Antonio Vergari, and Floriana Esposito

University of Bari “Aldo Moro”, Bari, Italy
{nicola.dimauro,antonio.vergari,floriana.esposito}@uniba.it

Abstract. The rising interest around tractable Probabilistic Graphical
Models is due to the guarantees on inference feasibility they provide.
Among them, Cutset Networks (CNets) have recently been introduced
as models embedding Pearl’s cutset conditioning algorithm in the form of
weighted probabilistic model trees with tree-structured models as leaves.
Learning the structure of CNets has been tackled as a greedy search
leveraging heuristics from decision tree learning. Even if efficient, the
learned models are far from being accurate in terms of likelihood. Here,
we exploit the decomposable score of CNets to learn their structure and
parameters by directly maximizing the likelihood, including the BIC cri-
terion and informative priors on smoothing parameters. In addition, we
show how to create mixtures of CNets by adopting a well known bag-
ging method from the discriminative framework as an effective and cheap
alternative to the classical EM. We compare our algorithms against the
original variants on a set of standard benchmarks for graphical model
structure learning, empirically proving our claims.

1 Introduction

Probabilistic Graphical Models (PGMs) [8] provide a powerful formalism to
model and reason about rich and structured domains. They capture the con-
ditional independence assumptions among random variables into a graph based
representation, sometimes called network (as in Bayesian Networks). Answering
inference queries in PGMs often results in computing the probability of observing
some evidence according the provided graphical structure. However, in general,
to compute exact inference is a NP-Hard problem, and also some approximate
inference routines are intractable in practice [19].

The pursuit for exact and efficient inference procedures led to the recently
growing interest in the Al community around tractable PGMs. In exchange for
inference tractability guarantees, they are less expressive, in the sense that they
cannot possibly capture all the conditional probabilistic independences in the
data. Tractable PGMs encompass tree-structured models, like those learned by
the classical Chow-Liu algorithm [3] or by introducing latent variables [2], or
even a bound on the treewidth of the model [1]; Bayesian and Markov Networks
compiled into Arithmetic Circuits (ACs) [11,12]; and Sum-Product Networks
(SPNs) [15] as deep architectures encoding probability distributions by layering

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AI*IA 2015, LNAI 9336, pp. 221-232, 2015.
DOI: 10.1007/978-3-319-24309-2_17

222 N. Di Mauro et al.

hidden variables as mixtures of independent components. As the expressiveness
of these models increases, the complexity of learning their parameters and struc-
ture from data increases as well; as a matter of fact the overall performances
degrade as data grows in size.

Cutset Networks (CNets) have been introduced recently in [17] as tractable
PGMs with the aim of making learning efficient and scalable. They are weighted
probabilistic model trees in the form of OR-trees having tree-structured models
as leaves, and non-negative weights on inner edges, resulting into an architecture
embedding Pearl’s conditioning algorithm [14]. Inner nodes, i.e., conditioning
OR nodes, are associated to random variables and outgoing branches represent
conditioning on the values for those variables domains.

In [17], well known decision tree learning algorithms are leveraged to build
a Cutset Network from data. In a nutshell, iteratively, training instances are
split conditioning on the values of the best variable chosen as to maximize the
reduction in an approximation of the joint entropy over all variables. While
the computation of such a heuristic is cheap, it is not principled in a genera-
tive framework where model accuracy is measured as the scored data likelihood.
The need to directly estimate the data likelihood is shown when a form of tree
post pruning is introduced in [17] as a way to alleviate overfitting. Competi-
tive results against state-of-the-art tractable PGM structure learners [13,18] are
achieved when introducing mixtures of Cutset Networks via the Expectation
Maximization algorithm (EM).

In this work we introduce a more principled way to learn Cutset Networks.
We reformulate the search in the structure space as an optimization task directly
maximizing data likelihood in a Bayesian framework. Regularization is achieved
through the introduction of the Bayesian Information Criterion (BIC) in the like-
lihood score and by informative Dirichlet Priors on counting parameters while
learning tree-structured models. Therefore, we avoid overfitting without adopt-
ing costly techniques like post pruning as in [17]. The direct optimization of
the CNet likelihood has been obtained by exploiting its decomposability, leading
to a tractable evaluation of the models during learning by limiting computa-
tions only on portions of data. We then introduce a very simple yet effective
way to learn mixtures of Cutset Networks by exploiting bagging [6], opposed to
the classical generative use of EM. We empirically verified the gain in terms of
likelihood for the learned models with this new proposed approach against the
original algorithm variants proposed in [17], with and without pruning, and MT,
a solid competitor learning mixtures of trees as proposed in [13], on 18 datasets
commonly used as benchmarks for graphical models structure learning.

2 Background

We define D = {&;,...,{n} as a set of M ii.d. instances over the discrete
variables X = {Xj, ..., X, }, whose domains are the sets Val(X;) = {« }?i:l,i =
1,...,n. We refer to the value assumed by an instance &, in correspondence of
a particular variable X; as &,,[X;].

Learning Accurate Cutset Networks by Exploiting Decomposability 223

2.1 Tree-Structured Models

A directed tree-structured model [13] is a Bayesian Network in which each variable
has at most one parent. Therefore, the joint probability distribution over X
represented by such models can be written in the form of a factorization as:

P(X) = [P(X:IPai) (1)

i=1

where Pa; stands for the parent variable of X, if present. From Eq. 1 it follows
immediately that inference for complete or marginal queries has complexity lin-
ear in the number of variables, hence the tractability of tree-structured models.

One classic result in learning tree-structured models is that presented by
Chow and Liu in [3], where they prove that maximizing the Mutual Information
(MI) among random variables in X leads to the best tree, in an information-
theoretic sense, approximating the underlying probability distribution of D in
terms of the Kullback-Leibler divergence.

Algorithm 1. LearnCLTree(D, X, «)

Input: a set of instances D over a set of features X; o smoothing parameter
Output: (7,0), a tree 7 with parameters @ encoding a pdf over X
M — 0px|x|x|
for each X,, X, € X do
M, < estimateMutuallnformation(X., X,, D, «)

T < maximumSpanning Tree(M)
T «— traverseTree(T')

0 — computeFactors(D, T)
return (7,0)

Algorithm 1 shows a sketch of the learning process. Firstly, for each pair
of variables in X, their MI is estimated from D, optionally by introducing a
smoothing factor a (line 5); then a maximum spanning tree is built on the
weighted graph induced by the MI as an adjacency matrix (line 6). Rooting
the tree in a randomly chosen variable and traversing it leads to the learned
Bayesian Network (lines 7-9). In the following we will refer to tree-structured
models simply as CLtrees.

CLtrees have been widely employed in Al, both as efficient approximations
in density estimation tasks and as the building blocks of more expressive and
yet tractable PGMs. A very simple and accurate algorithm to learn mixtures of
CLtrees is MT, as presented in [13]. MT learns a distribution of the form: Q(x) =
Zle Ai7;(x), where the tree distributions 7;, are the mixture components and
A; > 0, such that Ele A; = 1, are their coefficients. In [13], the best components
and weights are the (local) likelihood maxima learned by EM, with k being a
parameter fixed in advance.

224 N. Di Mauro et al.

2.2 Cutset Networks

As introduced in [17], Cutset Networks (CNets) are a hybrid of rooted OR trees
and CLtrees, with OR nodes as internal nodes and CLtrees as leaves. Each node
in an OR tree is labeled by a variable X;, and each edge emanating from it
represents the conditioning of X; by a value x] € Val(X;), weighted by the
probability w; ; of conditioning the variable X; to the value mf .

Formally, a cutset network is a pair (G,~), where G = O U {Ty,..., 71} is
composed of the rooted OR tree, O, plus the leaf CLtrees 7;, and v = w U
{61,...,60} corresponds to the parameters w of the OR tree and 0; of the
CLTrees. The scope of a CNet G (resp. a CLtree 7;), denoted as scope(G) (resp.
scope(7;)), is the set of random variables that appear in it. A CNet may be
defined recursively as follows.

Definition 1 (Cutset network). Given X be a set of discrete variables, a
Cutset Network is defined as follows:

1. a CLtree, with scope X, is a CNet;

2. given X; € X a variable with |Val(X;)| = k, graphically conditioned in an
OR node, a weighted disjunction of k CNets G; with same scope X\; is a
CNet, where all weights w; j, j = 1,...,k, sum up to one, and X\; denotes
the set X minus the variable X;.

Xy —» X,

Xo
X, —> X ’Z% X, ’T4
Xy Xe—> Xy

Fig. 1. Example of a binary CNet model. Internal nodes on variables X; are OR nodes,
while leaf nodes are CLtrees encoding a direct graphical model.

Figure 1 reports a CNet model for binary valued variables, where the internal
nodes denote a conditioning on a variable (i.e., an OR node), while the leaves
correspond to the CLtrees of the model. Note that each node in the model
corresponds to a root of a sub-CNet G; or to a CLtree 7, thus the recursive
definition of a CNnet model.

The log-likelihood function of a CNet may be decomposed as follows.

Learning Accurate Cutset Networks by Exploiting Decomposability 225

Proposition 1 (CNet log-likelihood decomposition). Given a CNet (G,~)
over variables X and a set of instances D, its log-likelihood ¢p({G,~)) can be
computed as follows:

=y Z log P(£[X;]|¢[Pay]) (2)

£eDi=1,.

when G corresponds to a CLtree. While, in the case of a OR tree rooted on the
variable X;, with |Val(X;)| = k, the log-likelihood is:

tp((9,7)) Z M; log w; +€DJ(<gjv’7gj>) (3)

Jj=1,...,k

where for each j = 1,...,k, G; is the CNet involved in the disjunction with
parameters vg , and Dj is a slice of the dataset D obtained as D; = {£eD:

€[X,] = xl}, M; = |Dj| corresponds to the number of instances in Dj, and
tp;({Gj,Yg,)) denotes the log-likelihood of the sub-CNet G; on the slice D;.

Proof. For Equation (2):

=3 log H P(E[X,)[e[Pai)) = Y Z log P(§[X][¢[Pas])

¢eD =1, ¢eDi=1,.

While, for Equation (3):

(p((G,7)) = Y logwigx,) + 1og P((Gerxi]s Yo,)
£eD

Z M;jlogw; ; + Z log P((G.7g,))

j=1,...k ¢eD;

Z Mjlogw; j + {p, ((gj»79j>) u
j=1,...k

Structure Learning. The algorithm to learn CNet structures proposed in [17]
performs a greedy top-down search in the OR-trees space. It recursively tries to
partition D into the instance subsets {D; = {{ € D : {[X] = 5}}‘Val(X I over
the current scope X\, by selecting heuristically the best variable X maximizing
a reformulation of the information gain in a generative context:

X, = argmax | Ap(X) — Z ||D]|| HD (Xys)
XieX ngVal(
where ﬁpj (X) = —ﬁ dox.ex ZngVal(X%) Pp, (%) log Pp, (27) is the average

entropy over the single variables in the current scope, limited to the subset D,
which is introduced as a way to approximate the computation of the joint entropy
over the current scope.

226 N. Di Mauro et al.

Found X, the algorithm creates a corresponding inner node Cs whose chil-
dren will be the nodes {C} }?;1 returned by recursive calls on the instance subsets
{Dj};?;l, with ks = |[Val(Xs)|. The weights {wsj};-“;l are estimated as the pro-
portion of instances falling into each partition. As reported in [17], termination
can be achieved when for the current partition D the number of instances falls
under a tunable parameter m, or when the total entropy is less than a thresh-
old A. In this case a leaf node is added as a CLtree learned on the current
instance partition over the current scope according to Algorithm 1. To cope
with the risk of overfitting, always in [17], post-pruning based on a validation
set is introduced in the form of reduced error pruning [16]. Leveraging this deci-
sion tree technique, after a CNet is fully grown, by advancing bottom-up, leaves
are pruned and inner nodes without children replaced with a CLtree, if the net-
work validation data likelihood after this operation is higher than that scored by
the unpruned network. Following experimental evidence, it appears clear that
a search step directly guided by the data likelihood, in this case the pruning
stage, is crucial for the accuracy of the learned models; otherwise representing
very poor local optima in the terms of likelihood. However, as the same authors
report, the additional cost of growing a full network and then traversing it while
reevaluating inner nodes, is demanding.

3 dCSN: Decomposability Based CNets Learning

Here, we propose the dCSN algorithm that exploits a different approach from
that in [17]: we avoid decision tree heuristics and instead choose the best variable
directly maximizing the data log-likelihood. By exploiting the recursive Defini-
tion 1, we grow a CNet top-down, allowing further expansion, i.e. the substitution
of a CLtree with an OR node, only if it improves the structure log-likelihood,
since it is clear to see that maximizing the second term in Equation 3, results in
maximizing the global score. In detail, we start with a single CLtree, for vari-
ables X, learned from D and we check whether there is a decomposition, i.e.
an OR node applied on as many CLtrees as the values of the best variable X;,
providing a better log-likelihood than that scored by the initial tree. If such a
decomposition exists, than the decomposition process is recursively applied to
the sub-slices D;, testing each leaf for a possible substitution. A sketch of the
process is shown in Algorithm 2.

In this principled learning framework we do not need to employ post-pruning
techniques while we can embed a regularization term in the structure score
used in the decomposition process. To penalize complex structures we adopt
the Bayesian Information Criterion BIC, we now show how to derive it in our
framework and what are its properties. Using another criterion like the BDe [7]
could be possible. Following [4], the BIC score of a CNet (G,~) on data D is
defined as: scorepic({G,~)) = log Po({G,v)) — IO%MDim(g), where Dim(G) is
the model dimension, i.e., the number of independent parameters used for the
structure representation G, and M is the size of the dataset D. Here, we set
Dim(G) to the number Og of OR nodes appearing in G.

Learning Accurate Cutset Networks by Exploiting Decomposability 227

Given G and G’ be two CNets, where G’ has been obtained from G substituting
a leaf tree by adding a new sub-CNet rooted in an OR node, then:

scorepic((G', 7)) — scorepic((G, 7)) =

(oG 7) ~ to((G.7) ~ 2 (Dim(@) ~ Dim(G)) =
(o0 7)) ~ oG) — B ()

since Dim(G’) — Dim(G) = Og: — Og = (Og +1) — Og = 1. Hence, G’ is accepted
when (p((G',7')) — {p((G,7)) > %. This means that a leaf node may be
decomposed (or, a new OR node may be added), when the improvement on the
global loglikelihood is greater than 83

The decomposability property of the log-likelihood of a CNet can lead to
similar results for the BIC score.

Proposition 2 (CNet BIC score decomposition). Given a CNet (G,~),
over variables X and instances D, made up of {’]Z}lel CLtrees, a decomposition
of a tree Tj, having scope X; C X, with parameters 8y, with a sub-CNet G; rooted
in a OR node associated to the variable X; € X; with parameters ~y,, leading to
a new CNet (G',~'), is accepted iff:

log M
=3 5)

where M = |D|, and D is the subset of D containing only instances associated
to the tree 7.

6D1(<giv’7i>) - EDL(<,T17 01>) >

Proof. Each leaf tree node T, 1€ {1,...,L} is reachable from the root through

the path lel,xz;,,xz;P of length P where (i1,...,ip) is the sequence of

indices for the random variables X\; = X \ X; found in the path. Instances
reaching the tree 7; form the set D; = {{ € D : {[X;,] = xZ;”,Vp =1,...,P},
that is, for each random variable X; in the path, they take the conditioned
branch according to their value for X .

If ¢p,({7;,0,)) indicates the local log-likelihood of 7; with respect to D;, then
its contribution to the global log-likelihood ¢p((G,~)) corresponds to:

P

(Mz > log w) + £, ((T0, 01)), (6)
p=1

where M; = |D;|. If we decompose the tree 7; into a sub-CNet G;, using the

CNet log-likelihood decomposition as reported in Equation 3, then the global

contribution reported in Equation 6 becomes:

P

(Mlzlogwip,ﬁp> + Up,((Gis 7)) (7)
p=1

We have that scorepic((G',v')) —scorepic((G, 7)) = €p,((Gi, ;) —tp, ({71, 601)) —

log M
log M. m

228 N. Di Mauro et al.

Again, instead of recomputing the likelihood on the complete dataset D, due to
the decomposability of the likelihood, we can evaluate only the local improve-
ment. Moreover, the decomposition of 7; is independent from all other 7j,j # [
being their local contributions to the global log-likelihood independent. Hence,
it is not significant the order we choose to decompose leaf nodes.

Bayesian Parameter Smoothing. As regards the learning of the CLtrees
parameters we adopted a Bayesian approach. To learn the structure of a
CLtree 7 from data D with parameters @, the Bayesian approach employs
as a scoring function the posterior probability of the graph given the data:
P(0|D) =~ P(D|0)P(0). The marginal P(D|0) can be expressed in closed form
when using the Dirichlet prior over the model parameters 8 x, |p,,, the only dis-
tribution that ensures likelihood equivalence, i.e., the hyper-parameters ax,|pa,
of the Dirichlet prior can be expressed as ax,; pa, = ®gx, Pa;, Where ¢ is a prior
distribution over X, and «, the so called equivalent sample size (ESS), is a pos-
itive constant independent of i. In this Bayesian approach with the Dirichlet
prior, the regularized parameter estimates are:

M;c,i,Pa,i + A, |Pay
MPai + aPai

Oz 1Pa; = Ep(o, pa,1D,7) [0, Pa;:] = (8)
where M, is the number of entries in a dataset D, having the set of variables Z
instantiated to z. As pointed out in [4], we can use a different Dirichlet prior for
each distribution of X; given a particular value of its parents, leading to choose
the regularized parameter estimates as:

M - P(Pa;)P(X;|Pa;) oux,|pa,0°(X;|Pa;)
M - P(Pai) + QU x,|Pa; M - P(Pai) + Qx, |Pa; '

0x,|Pa; =

where BO(XZ- |Pa;) is the prior estimate of P(X;|Pa;) and ax, |pa, is the confidence
associated with that prior.

In the case of uniform priors, the estimates correspond to the additive of
Laplace smoothing. A reasonable choice uses the marginal probability of X;
in the data as the prior probability. This choice is based on the assumption
that most conditional probabilities are close to the observed marginal. Thus,
we can set BO(Xi|Pai) = Pp(X;). With fixed a,pa, = a, we have: éX”pai =
M, pa;+aPp(X;)

Mpa, +a

Algorithm 2 reports the pseudocode of dCSN. The dCSN algorithm starts
by learning a single CLTree on the whole dataset D (line 4), and then calls the
decomposition procedure on this tree (line 6). The input parameters § and o are
used for regularization in order to avoid overfitting. o, resp. ¢, is the minimum
number of instances, resp. of features, in a slice required to try a decomposition.

Given a CLtree, Algorithm 3 tries to decompose it in a sub-CNet. The aim of
dCSN is to attempt to extend the model by replacing one of the CLtree leaf nodes
with a new CNet on the same variables. In particular, the decompose procedure
checks for each variable X; on the slice D (line 5), whether the OR decomposition

Learning Accurate Cutset Networks by Exploiting Decomposability 229

Algorithm 2. dCSN(D, X, ay, 4, o)

1: Input: a set of instances D over a set of features X; ay € [0,1]: ESS factor; §
minimum number of instances to decompose, ¢ minimum number of features to

decompose
2: Output: a CNet (G, ~) encoding a pdf over X learned from D
3: a — ay|D|
4: (T,0) — LearnCLTree(D, X,)
5 w0
6: (G,~) < decompose(D, X, «, 7,0, w,d,0)

associated to that variable (a new CNet) has a log-likelihood better than that of
the input CLtree (line 16). If a better decomposition is found, it then recursively
(line 21) tries to decompose the sub-CLtrees of the newly introduced CNet. In
dCSN « is set to af|D|, where ay € [0,1] is an input parameter. When we
proceed with the decomposition on the slices, « is proportionally reduced, in the
procedure decompose, to the number of instances in the slices. In particular, if
we initially assume that there are o = af|D| fictitious instances for computing
the priors, then we should assume that a proportion «|D;|/|D] falls into the slice
D;, in order to make the priors in D; consistent with those in D.

Algorithm 3. decompose(D, X, o, 7,0,w, d,0)

1: Input: a set of instances D over a set of features X; a: ESS; 7: the tree structured
model to decompose and its parameters @; § minimum number of instances to
decompose, o minimum number of features to decompose

2: Output: a CNet encoding a pdf over X learned from D

3: if |D| > 4 and |X| > o then

4: gbest — —O0

5: for X; € X do

6: Gi+— 0, w; — 0,0; — 0,C; is the OR Node associated to X;
7 for 2 € Val(X;) do

8: Dj — {£€D:¢[Xs) =2}

9: wij «— |Dj|/|D|

10: (Tj,0i5) — LearnCLTree(Dj;, X\, qw;;)

11: Gi < addSubTree(C;, T;)

12: w; — w; U {wij}, 0, —6,U {913}

13: Ui <—fD1(<gz,w1U91>)

14: if £; > lyesy and ¢; > £p, ({7, 0)) then

15: lpest — Ei, Xbest Xi7 Gbest — giy Opest — 91', Whpest < Wi
16: if loest — p((T,0)) > (log|D|)/2 then

17: substitute 7 with G;

18: w — w U Weest

19: for x{) € Val(Xpest) do .
20: D;j — {€ €D : & Xbest] =1}
21: decompose(D;, X\ pest, Qwij, Tj, 05, w, 0, 0)

230 N. Di Mauro et al.

Table 1. Datasets used and their number of features and instances.

[X| [Tirainl |Tvatl |Ttestl X [Tirainl |Tvatl |Ttestl

NLTCS 16 16181 2157 3236 DNA 180 1600 400 1186
MSNBC 17 291326 38843 58265 Kosarek 190 33375 4450 6675
Plants 69 17412 2321 3482 MSWeb 294 29441 3270 5000
Audio 100 15000 2000 3000 Book 500 8700 1159 1739
Jester 100 9000 1000 4116 EachMovie 500 4525 1002 591
Netflix 100 15000 2000 3000 WebKB 839 2803 558 838
Accidents 111 12758 1700 2551 Reuters-52 889 6532 1028 1540
Retail 135 22041 2938 4408 BBC 1058 1670 225 330
Pumsb-star 163 12262 1635 2452 Ad 1556 2461 327 491

Finally, in order to improve the accuracy of the CNet models we adopted
a bagging procedure in order to obtain a mixture of CNets. We draw k& boot-
strapped samples D; from the dataset D, sampling |D| instances with replace-
ments, and on each of those we call dCSN, thus leading to k CNets G;. The
resulting bagged CNet G corresponds to a weighted sum of all the learned CNets
G;. We set the weights proportional to the likelihood score obtained by each
bootstrapped component. In particular, for each instance £ € D, the bagged
CNet G would result in the more robust estimation P(¢ : G) = Zle wiP(:G;),

where p; = p((Gi,v:))/ Z?=1 to((Gj,75))-

4 Experiments

Since the CNet, and the variant CNetP embedding the pruning on validation,
as reported in [17] are not publicly available, we implemented them as well
as our dCSN and its bagging dCSN-B variant in Python!. We were not able
to reproduce the results of the mixtures learned with EM as showed in [17],
therefore we will just report them (as MCNet). To make the comparison fair in
testing the mixture accuracies, we also extended CNet and CNetP by embedding
mixtures by bagging, leading to versions CNet-B and CNetP-B respectively. We
introduce MT as the last competitor as it is reported to be one of the most
competitive tractable PGM [17,18]; for it we used the implementation available
in the Libra toolkit [9].

We evaluated the proposed algorithms on an array of 18 datasets that are now
standard benchmarks for graphical model structure learners. They have been
introduced in [10] and [5] as binarized versions of datasets from different tasks
like frequent itemset mining, recommendation and classification. Their names
and statistics for their training, validation, test splits are reported in Table 1.

We run both CNet and CNetP with m = 10 and A = 0.01 fixed to exactly
reproduce the original experiments in [17]. We run CNet-B and CNetP-B by
learning a number of components k ranging from 5 to 40, with a step of 5.

For dCSN we run a grid search in the space formed by oy € {.01,.02,.03, .04,
.05,.06,.08, .1,.15,.2,.3,.4,.5} and § € {200, 300,400, 500}; for dCSN-B we set

! Source code is available at http://www.di.uniba.it/~ndm/dcsn/.

http://www.di.uniba.it/~ndm/dcsn/

Learning Accurate Cutset Networks by Exploiting Decomposability 231

Table 2. Empirical risk for all algorithms.

CNet CNetP dCSN ‘ CNet-B CNetP-B dCSN-B MT ‘ MCNet
NLTCS -6.11 -6.06 -6.04 -6.09 -6.02 -6.02 -6.01 -6.00
MSNBC -6.06 -6.05 -6.05 -6.06 -6.04 -6.04 -6.08 -6.04

Plants -13.24 -13.25 -13.35 -12.30 -12.38 -12.21 -12.93| -12.78
Audio -44.58 -42.05 -42.06 -42.09 -40.71 -40.17 -40.14| -39.73
Jester -61.71 -55.56 -55.30 -57.76 -53.17 -52.99 -53.06 | -52.57
Netflix -65.61 -58.71 -58.57 -63.08 -57.63 -56.63 -56.71| -56.32
Accidents -30.97 -30.69 -30.17 -30.25 -30.28 -28.99 -29.69| -29.96
Retail -11.07 -10.94 -11.00 -10.99 -10.88 -10.87 -10.84| -10.82
Pumsb-star -24.65 -24.42 -23.83 -24.39 -24.19 -23.32 -23.70| -24.18
DNA -90.48 -87.59 -87.19 -90.66 -86.85 -84.93 -85.57| -85.82
Kosarek -11.19 -11.04 -11.14 -10.97 -10.85 -10.85 -10.62| -10.58
MSWeb -10.07 -10.07 -9.94 -9.95 -9.91 -9.86 -9.82 -9.79
Book -37.62 -37.35 -37.22 -35.88 -35.62 -35.92 -34.69| -33.96
EachMovie -59.19 -58.37 -58.47 -54.22 -54.02 -53.91 -54.51| -51.39
WebKB -162.85 -162.17 -161.16 | -156.79 -156.94 -155.20 -157.00|-153.22
Reuters-52 -88.72 -88.55 -88.60 -86.22 -86.89 -85.69 -86.53| -86.11
BBC -262.08 -263.08 -262.08|-252.01 -257.72 -251.14 -259.96 | -250.58

Ad -16.92 -16.92 -14.81 -15.94 -16.02 -13.73 -16.01| -16.68

instead ay € {.05,.1} and § € {100, 200, 300, 400, 500, 1000}, running the algo-
rithm for a number of components k ranging from 5 to 40, with a step of 5. For
both dCSN and dCSN-B we fixed ¢ = 3. For MT we reproduced the experiment
in [18], setting k from 2 to 30 by steps of 2. For all mixture variants, for each mix-
ture configuration, we selected the best one based on the validation likelihood
score.

In Table 2 is reported the empirical risk, defined as 1/|D| . log P(§|G,)
averaged over the set of test instances for all the experiments over the listed
datasets. We provide in last column the original scores of MCNet as reported
in [17] as a reference. For all the implemented versions we run a pairwise
Wilcoxon signed rank test to assess the statistical significance of the scores.
In bold are reported the best values, compared to all others, for each dataset.
As we can see dCSN is significantly better than CNet and CNetP on 8 datasets,
and significantly worse than CNet and CNetP on 1 and 3 datasets, respectively.
Considering the bagging version for the mixtures, we see that dCSN-B is signif-
icantly better than CNet-B, CNetP-B and MT on 11, 11, and 10 datasets, and
significantly worse on 1, 1, and 5 datasets, respectively.

5 Conclusions

Here we proposed a new approach to learn the structure of the recently intro-
duced CNets model. We exploited the decomposable score of CNets to learn
their structure and parameters by directly maximizing the likelihood, formulat-
ing a score including the BIC criterion and by introducing informative priors on
smoothing parameters. Moreover, we presented how to create mixtures of CNets
by adopting the bagging method as an alternative to EM. We compared our
algorithm against the original variants on a large set of standard benchmarks
proving the validity of our claims.

232 N. Di Mauro et al.

Acknowledgments. This work has been partially founded by the PONO02 00563
3489339 project PUGLIAQSERVICE financed by the Italian Ministry of University
and Research (MIUR).

References

1. Bach, F.R., Jordan, M.I.: Thin junction trees. In: Advances in Neural Information
Processing Systems, vol. 14, pp. 569-576. MIT Press (2001)

2. Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree
graphical models. Journal of Machine Learning Research 12, 1771-1812 (2011)

3. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory 14(3), 462-467 (1968)

4. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2-3), 131-163 (1997)

5. Haaren, J.V., Davis, J.: Markov network structure learning: a randomized feature
generation approach. In: Proceedings of the 26th Conference on Artificial Intelli-
gence. AAAT Press (2012)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2009)

7. Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: the com-
bination of knowledge and statistical data. Machine Learning 20, 197-243 (1995)

8. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

9. Lowd, D., Rooshenas, A.: The Libra Toolkit for Probabilistic Models. CoRR
abs/1504.00110 (2015)

10. Lowd, D., Davis, J.: Learning Markov network structure with decision trees.
In: Proceedings of the 10th IEEE International Conference on Data Mining,
pp. 334-343. IEEE Computer Society Press (2010)

11. Lowd, D., Domingos, P.: Learning arithmetic circuits. CoRR abs/1206.3271 (2012)

12. Lowd, D., Rooshenas, A.: Learning Markov networks with arithmetic circuits. In:
JMLR Workshop Proceedings of the 16th International Conference on Artificial
Intelligence and Statistics, vol. 31, pp. 406-414 (2013)

13. Meila, M., Jordan, M.I.: Learning with mixtures of trees. Journal of Machine Learn-
ing Research 1, 1-48 (2000)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

15. Poon, H., Domingos, P.: Sum-product network: a new deep architecture. In: NIPS
2010 Workshop on Deep Learning and Unsupervised Feature Learning (2011)

16. Quinlan, J.R.: Induction of decision trees. Machine Learning Journal 1(1), 81-106
(1986)

17. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: a simple, tractable, and
scalable approach for improving the accuracy of chow-liu trees. In: Calders, T.,
Esposito, F., Hiillermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part II. LNCS,
vol. 8725, pp. 630-645. Springer, Heidelberg (2014)

18. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indirect
variable interactions. In: JMLR Workshop and Conference Proceedings of the 31st
International Conference on Machine Learning, pp. 710-718 (2014)

19. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2),
273-302 (1996)

Common-Sense Knowledge for Natural
Language Understanding: Experiments
in Unsupervised and Supervised Settings

Luigi Di Caro®™), Alice Ruggeri, Loredana Cupi, and Guido Boella

Department of Computer Science, University of Turin,
Corso Svizzera 185, Torino, Italy
{dicaro,ruggeri,cupi,boella}@di.unito.it

Abstract. Research in Computational Linguistics (CL) has been grow-
ing rapidly in recent years in terms of novel scientific challenges and
commercial application opportunities. This is due to the fact that a very
large part of the Web content is textual and written in many languages. A
part from linguistic resources (e.g., WordNet), the research trend is mov-
ing towards the automatic extraction of semantic information from large
corpora to support on-line understanding of textual data. An example
of direct outcome is represented by common-sense semantic resources.
The main example is ConceptNet, the final result of the Open Mind
Common Sense project developed by MIT, which collected unstructured
common-sense knowledge by asking people to contribute over the Web.
In spite of being promising for its size and broad semantic coverage,
few applications appeared in the literature so far, due to a number of
issues such as inconsistency and sparseness. In this paper, we present
the results of the application of this type of knowledge in two different
(supervised and unsupervised) scenarios: the computation of semantic
similarity (the keystone of most Computational Linguistics tasks), and
the automatic identification of word meanings (Word Sense Induction)
in simple syntactic structures.

1 Introduction

Recent Computational Linguistics advances are fully oriented towards the auto-
matic extraction of semantic information through big and multilingual data anal-
yses, since semantics help tasks such as disambiguation, summarization, entail-
ment, question answering, and so forth. This explains the fortunate and growing
area of semantic resources, often constructed with automatic approaches, when
manual building of ontologies is not feasible on large scale. Semantic informa-
tion extraction is currently approached by distributional analysis of linguistic
items over specific contexts [1] or by starting from seeds and patterns to build
ontologies from scratch [2]. In some cases, linguistic items are substituted by
super-senses (i.e., top-level hypernyms) [3].

In recent years, the need and the opportunity of automatically extracting
semantic information has been answered by Big Data. This led to the construc-
tion of very large semantic resources, such as ConceptNet [4], i.e., a semantic

© Springer International Publishing Switzerland 2015
M. Gavanelli et al. (Eds.): AT*IA 2015, LNAI 9336, pp. 233-245, 2015.
DOI: 10.1007/978-3-319-24309-2_18

234 L. Di Caro et al.

graph that has been directly created from collection of unstructured common-
sense knowledge asked to people contributing over the Web. In contrast with
linguistic resources such as WordNet [5], ConceptNet contains semantic infor-
mation that are more related to common-sense facts. For this reason, it has a
wider spectrum of semantic relationships though a much more sparse coverage.
For instance, among the more unusual types of relationships (24 in total), it
contains semantic relations like “ObstructedBy” (i.e., referring to what would
prevent it from happening), “ and CausesDesire” (i.e., what does it make you
want to do). In addition, it also has classic relationships such as “is_a” and
“part_of” as in other linguistic resources.

ConceptNet is a resource based on common-sense rather than linguistic
knowledge and it contains much more function-based information (e.g., all the
actions a concept can be associated with) contained in even complex syntactic
structures. While it has been recognized as a very promising type of knowl-
edge for many computational tasks, it is not significantly used yet due to its
complexity. More in detail, ConceptNet has the following main problems:

1. Specificity. It contains very specific semantic information (e.g., <
knowledge — CapableO f — openhumanmind >) that are difficult to inte-
grate in automated tasks;

2. Completeness. It is not complete (due to the methodology used to build it),
since semantic features are arbitrarly associated to only few of all the possible
relevant concepts (e.g., ConceptNet contains < jazz—IsA—styleofmusic >)
but not < rock — IsA — styleofmusic >);

3. Correctness. It contains pragmatics statements which are not semantically
correct, e.g., < cat — Antonym — dog >;

4. Relativity. It has semantic features such as < dog— HasProperty — small >,
which is not always true.

This paper presents an application of ConceptNet (as common-sense knowl-
edge) in two different scenarios: the computation of similarity scores at word-level
(one of the key task in Computational Linguistics) and the identification of the
different meanings that can be associated with words in sentences. Although the
tasks are of different type (supervised and unsupervised respectively), they are
based on the same idea of replacing words with ConceptNet semantic informa-
tion, to measure whether this knowledge has the potential to serve computational
tasks even without any particular approach for data alignment, noise removal,
semantic information propagation, etc.

2 Background and Related Work

Word Sense Disambiguation (WSD) [6] is maybe the most crucial Natural Lan-
guage Processing task, since its aim is to capture the correct meaning to be
associated to a word in a specific context. This allows to interpret the cor-
rect sense of a word, in order to understand how similar is with respect to

Common-Sense Knowledge for Natural Language Understanding 235

other words. This permits a set of comparisions between texts, which is use-
ful for many computational tasks such as Information Retrieval, Named Entity
Recognition, Question Answering, and so forth. Generally speaking, systems are
usually asked to compute similarity scores between pieces of texts at different
granularity (word, sentence, discourse) [7].

In order to evaluate the similarity between texts, semantic resources are often
used to consider a larger semantic basis to make more accurate comparisons.
While linguistic resources such as WordNet and VerbNet constitute a highly-
precise source of information, they often cover very few semantic relations usually
focusing on taxonomic relations. Common-sense knowledge, on the other side,
represents a much larger set of semantic features, which, however, is affected by
noise and lack of completness.

If we consider the objects, agents and actions as terms in text sentences, we
can try to extract their meaning and semantic constraints by using the idea of
affordances [8]. The affordances of an object can be seen as the set of function-
alities that it naturally communicates to the agents through its shape, size, and
other phisical characteristics.

For instance, let us think to the sentence “The squirrel climbs the tree”.
In this case, we need to know what kind of subject “squirrel” is to figure out
(and visually imagine) how the action will be performed. Let us now consider
the sentence “The elephant climbs the tree”. Even if there is no change in the
grammatical structure of the sentence, the agent of the action creates some
semantic problem. In fact, in order to climb a tree, the subject needs to fit to
our mental model of “something that can climb a tree”. In addition,