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Abstract. Big data clustering has become an important challenge in
data mining. Indeed, Big data are often characterized by a huge volume
and a variety of attributes namely, numerical and categorical. To deal
with these challenges, we propose the parallel k-prototypes method which
is based on the Map-Reduce model. This method is able to perform
efficient groupings on large-scale and mixed type of data. Experiments
realized on huge data sets show the performance of the proposed method
in clustering large-scale of mixed data.
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1 Introduction

Given the exponential growth and availability of data collected from different
resources, analyzing these data has become an important challenge referred to as
Big data analysis. Big data usually refer to three mains characteristics also called
the three Vs [4] which are respectively Volume, Variety and Velocity. Volume
refers to the increased quantity of generated data. Variety indicates the many
different data types and formats in which data is produced. Velocity refers to
the speed at which data should be analyzed. Analyzing Big data usually requires
powerful methods and tools since traditional ones are not suitable for processing
large and heterogeneous amount of data. For example, existing methods which
are used to organize data into groups of similar objects, fail to deal with large-
scale of data. The fail is explained by the high computational costs of the existing
clustering methods which require unrealistic time to build the grouping.

To obviate this problem, several parallel clustering methods [1,2,6,8,10,11,
15] have been proposed in the literature. Most of these methods use the Map-
Reduce [3], which is a parallel programming model to process large-scale data
sets. For example, Zaho et al. [15] have proposed a parallel k-means based on
Map-Reduce. This method first computes locally the centers of clusters in the
map phase. Then, the reduce phase updates the global centers. Kim et al. [8] have
introduced an implementation of DBSCAN method using Map-Reduce model.
This method first partitions the data to find the clusters in each partition via
map phase. Then, it merges the clusters from every partition in reduce phase.
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Recently, a parallel implementation of fuzzy c-means clustering algorithm using
Map-Reduce model is presented in [11]. The proposed method consists in two
Map-Reduce jobs. The first one calculates the centroid matrix, and the second
one is devoted to generate the membership matrix.

The later discussed methods offer for users an efficient analysis of a huge
amount of data through a Map-Reduce model. Nevertheless, these methods can
not handle different types of data and are limited to only numerical attributes.
Since Big data are also characterized by the variety of attributes’ type, including
numerical and categorical attributes, we focus our study on the challenge of
clustering large amount of mixed data. We propose in this paper the parallel
k-prototypes method called PKP, which is based on the Map-Reduce model to
cluster large-scale of mixed data. To the best of our knowledge, this is the first
work that deals with numerical and categorical large amount of data.

The rest of this paper is organized as follows: Section 2 presents some exist-
ing clustering methods for mixed data, with an emphasis on the k-prototypes
method. Then, Section 3 describes the Map-Reduce model while Section 4
describes our proposed method. After that, Section 5 presents experiments that
we have realized to evaluate the performance of the proposed method. Finally,
we conclude this paper in Section 6.

2 Clustering Methods for Mixed Data

Clustering is an important task in data mining that aims to organize data into
groups of similar observations. Given that data are often described by different
types of attributes such as, numerical and categorical, a pre-processing step is
usually required to transform data into a single type since most of proposed
clustering methods deal with only numerical or categorical attributes. However,
few clustering methods have been proposed to deal with mixed types of data.
For instance, Li and Biswas [9] introduced the Similarity-Based Agglomerative
Clustering called SBAC, which is a hierarchical agglomerative algorithm for
mixed data. Huang [7] proposed k-prototypes method which integrates k-means
and k-modes methods to cluster numerical and categorical data. Ji et al. [5]
proposed an improved k-prototypes to deal with mixed type of data. This method
introduced the concept of the distributed centroid for representing the prototype
of categorical attributes in a cluster. Among the later discussed methods, k-
prototypes remains the most popular method to deal with mixed data because
of its efficiency [5]. In the following, we present the k-prototypes method.

– K-prototypes method

Given a data set X containing n data objects described by mr numerical
attributes and mc categorical attributes, the aim of k-prototypes [7] is to find k
groupings where the following objective function is minimized:

J =
k∑

l=1

n∑

i=1

pild(xi, Ql), (1)
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Where pil ∈ {0, 1} is a binary variable indicating the membership of data object
xi in cluster l, Ql is the prototype of the cluster l and d(xi, Ql) is the dissimilarity
measure which is defined as follows:

d(xi, Ql) =
mr∑

r=1

(xir − qlr)2 + γl

mc∑

c=1

δ(xic, qlc), (2)

Here xir represents the values of numeric attributes and xic represents the values
of categorical attributes for each data object xi. Ql = {ql1, . . . qlm} represents
the cluster centers for cluster l, where qlr is the mean of numeric attribute r and
cluster l, qlc is the most common value (mode) for categorical attributes c and
cluster l. For categorical attributes, δ(p,q)=0 for p ≡ q and δ(p, q) = 1 for p �= q.
γl is a weight for categorical attributes for each cluster l. The main algorithm of
k-prototypes method is described in Algorithm 1.1.

Algorithm 1.1. k-prototypes method
Data: Data set X={x1 . . . xn}; number of clusters k

Result: Cluster centers Q={Q1 . . . Qk};

begin
Choose k cluster centers from X
repeat

Compute distance between data objects and cluster centers using Equation
2
Update the cluster centers Q (Save the previous cluster centers as Q∧ to
analyze the convergence)

until Q∧ = Q;

end

Although the interesting results shown by the k-prototypes method with
small and medium mixed data sets, it fails to deal with large-scale data sets
(from millions of instances) [13]. Since, it is necessary to compute the distance
between each data object to each center, in each iteration. Here, the distance
computation is the time consuming step, especially when the size of data sets
increases highly. To overcome this weakness, we propose the parallel k-prototypes
method which is based on the Map-Reduce model to handle large-scale of mixed
data. We present in the following section the Map-Reduce model.

3 Map-Reduce Model

Map-Reduce [3] is a parallel programming model designed to process large-scale
data sets among cluster nodes (i.e machines). It is characterized by the fact
that the user is oblivious of the details about the data storage, distribution and
replication. This model specifies the computation as two functions namely, map
and reduce. Each one has < key/value > pairs as input and output. The map
function takes each < key/value > pair and generates a set of intermediate
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Fig. 1. Map-Reduce flowchart

< key/value > pairs. Then, shuffle phase is devoted to merge all the values
associated with the same intermediate key as a list. The reduce function takes
this list as input for creating the final values. Fig. 1. illustrates the flowchart of
the Map-Reduce model. In a Map-Reduce job, all map and reduce functions are
executed in parallel way. All map (resp. reduce) functions are independently run
by mapper (resp. reducer) node. The inputs and outputs of a Map-Reduce job
are stored in an associated distributed file system that is accessible from any
machine of the cluster nodes. The implementation of the Map-Reduce model is
available in Hadoop1. Hadoop provides a distributed file system named Hadoop
Distributed File System, (HDFS) that stores data on the nodes.

4 Parallel k-Prototypes Based on Map-Reduce

To offer for users the possibility to perform clustering of mixed type of large-scale
data, we propose the parallel k-prototypes method based on the Map-Reduce
model (PKP). As stated before, the most intensive calculation to occur in the
k-prototypes method is the calculation of distances, which decreases its perfor-
mance when dealing with large data sets. Indeed, the distance computations
between one object with the cluster centers is independent to the distance com-
putations between another object with the corresponding cluster centers. Thus,
the distance computation between different objects and cluster centers can be
executed in parallel. In each iteration, the new cluster centers, which are used
in the next iteration, should be updated. Hence, this operation will be executed
serially.

As shown in Fig. 2., the proposed method mainly consists into three func-
tions: map function which performs the assignment of each data object to the
nearest cluster, combine function which is based on calculating the local clus-
ter centers, and reduce function which is devoted to compute the new cluster
centers.
1 http://hadoop.apache.org/

http://hadoop.apache.org/
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Fig. 2. Parallel k-prototypes method based on Map-Reduce

Suppose an input mixed data set stored in HDFS as sequence file of
< key/value > pairs, each of which represents a data object in the data set.
The key is an index in bytes and the value represents the data object values.
The input data set is composed by h blocks that are accessible from any machine
of the cluster nodes. First, the PKP partitions input data set into m splits (i.e
Splitj . . . Splitm) where m is a user-defined parameter and 1≤ j≤m. Each Splitj
is associated to map task j. We can mention that this partitioning process is per-
formed sequentially means that the map task j corresponds to the Splitj data
chunk of h/m blocks. Then, the PKP creates a centers variable that contains
the centers of the cluster, which is stored in HDFS.

4.1 Map Function

When each mapper receives the associated split, it first calculates the distance
between each data object and the cluster centers using Equation 2. Given this
information, the mapper then assigns the data object to its corresponding nearest
cluster. Finally, the map function outputs the intermediate key and value pairs
which are composed respectively of the nearest cluster index and the data object
values.

Let Compute-Distance(xi,centerj) be a function which returns the distance
between data object xi and centerj . The map function is outlined in Algo-
rithm 1.2.

4.2 Combine Function

In this function, we combine the intermediate data produced from each map task,
in order to reduce the amount of data transferred across to the reducers. To this
end, we compute a partial information about the cluster centers denoted by the
local cluster centers. First, we sum the values of the numerical attributes of the
data objects assigned to the same cluster. Second, we compute the frequencies
of different values of categorical attributes relative to the data objects for each
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Algorithm 1.2. Map function
Data: < key/value >; where key: position and value: data object values, centers

Result: < key1/value1 >; where key1: nearest cluster index and value1: data object
values

begin
minDis← 0
index← 0
xi ← value
foreach centerj ∈ centers do

dis= Compute-Distance(xi, centerj)

if dis < minDis then
minDis ← dis
index ← j

key1 ← index
value1 ← xi

end

cluster. Third, we record the number of data objects assigned in the same cluster.
As each combine function finishes its processing, the intermediate data which
consists into the local cluster centers, are forwarded to a single reduce task.

Let Dom[j]=
{
a1
j , a

2
j , . . . a

t
j

}
be the domain of categorical attribute j. Let

Sumi[j] be the sum of values of numeric attribute j for the data objects assigned
in cluster i, Freqi[j, ak

j ] be the frequency of value ak of categorical attribute j for
the data objects assigned in cluster i, and Numi be the number of data objects
of cluster i. The combine function is outlined in Algorithm 1.3.

4.3 Reduce Function

In this function, the local cluster centers are merged in order to compute the new
cluster centers. So, we first sum the numeric values and the total number of data
objects assigned to the same cluster. Then, we compute the global frequencies for
different values of categorical attributes relative to the data objects. Given these
information, we can compute both the mean and mode value of the new center.
Once the new centers are obtained, the PKP moves to the next iteration until
the convergence. It is important to mention that the convergence is achieved
when the cluster centers become stable for two consecutive iterations.

Let Newcenteri be the new center values of the cluster i and Highest-
Freq(Freq[j,.]) be a function which returns the most common value (i.e mode) of
the categorical attribute j from Freq[j,.] variable. The reduce function is outlined
in Algorithm 1.4.

5 Experiments and Results

In this section, we evaluate the performance of PKP using speedup and scaleup
measures [14]. We run the experiments on the Amazon Elastic MapReduce
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Algorithm 1.3. Combine function
Data: < key/V >; where key: cluster index and V: list of data objects assigned in

the same cluster
Result: < key1/value1 >; where key1: cluster index and value1: local cluster center

begin
Sumkey ← ∅
Freqkey ← ∅
Numkey ← 0
while V.HasNext() do

% Get a data object
xi ← V.next()
for j ← 1 . . .mr do

Sumkey[j] ← Sumkey[j] + xij

for j ← mr + 1 . . .mc do
for k ← 1 . . . t do

if xij = ak then
Freqkey[j, a

k
j ] ← Freqkey[j, a

k
j ] + 1

Numkey ← Numkey + 1

key1 ← key
value1 ← Sumkey ∪ Freqkey ∪ Numkey

end

(Amazon EMR)2 which is a web service for processing huge amounts of data
by exploiting the parallelism on a cluster of machines, each of which has single
core 2.6 GHz cores and 1 GB of memory.

For the following evaluations, we utilize three data sets generated from KDD
CUP 19993 named Data set1, Data set2, Data set3, which are listed in Table 1.

Table 1. The description of data sets

Data set No. of No. of No. of No. of
data objects numerical attributes categorical attributes clusters

Data set1 4 ∗ 106 37 4 23
Data set2 8 ∗ 106 37 4 23
Data set3 16 ∗ 106 37 4 23

To evaluate the speedup, we keep the size of the data set constant and increase
the number of the nodes in the system. Speedup given by the larger system with
m nodes is defined as follows [14]:

Speedup(m) =
T1

Tm
, (3)

2 http://aws.amazon.com/elasticmapreduce/
3 http://kdd.ics.uci.edu/

http://aws.amazon.com/elasticmapreduce/
http://kdd.ics.uci.edu/
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Algorithm 1.4. Reduce function
Data: < key/V >; where key: cluster index and V: list of local cluster centers

Result: < key1/value1 >; where key1: cluster index and value1: new center values

begin
Sumkey ← ∅
Freqkey ← ∅
Numkey ← 0
Newcenterkey ← 0
while V.HasNext() do

% Get a local cluster center
xi ← V.next()
for j ← 1 . . .mr do

Sumkey[j] ← Sumkey[j] + xi.Sumkey[j]

for j ← mr + 1 . . .mc do
for k ← 1 . . . t do

Freqkey[j, a
k
j ] ← Freqkey[j, a

k
j ] + xi.F reqkey[j, a

k
j ]

Numkey ← Numkey + xi.Numkey

for j ← 1 . . .mr do
Newcenterkey[j] ← Sumkey[j]/Numkey

for j ← mr + 1 . . .mc do
Newcenterkey[j] ← Highest-Freq(Freqkey[j,.])

key1 ← key
value1 ← Newcenterkey

end

Where T1 is the execution time on one node and Tm is the execution time on m
nodes. The efficient parallel method gives linear speedup. A system with m times
the number of nodes yields a speedup of m. Meanwhile, linear speedup is difficult
to achieve since the cost of network communication increases with the number of
nodes becomes large. We perform the speedup evaluation on the three data sets.
The number of nodes varied from 1 to 4. Fig. 3.(a) shows the speedup results. As
the size of the data set increases, the speedup of PKP becomes approximately
linear. From Fig. 3.(a), we can conclude that the PKP handles large amount of
mixed types data efficiently.

Scaleup is defined as the ability of a m-times larger system to perform a
m-times larger job in the same execution time [14].

Scaleup(DS,m) =
TDS1

TDSm

, (4)

Where DS is the data set, TDS1 is the execution time for DS on one node and
TDSm

is the execution time for m*DS on m nodes. To show how well PKP can
treat large-scale of mixed data sets when more nodes are available, we have
realized scaleup experiments where we increase the size of the data sets in direct
proportion to the number of machines in the cluster nodes. Roughly speaking,



636 M.A.B. HajKacem et al.

the data sets’ size of 4*106, 8*106 and 16*106 instances are executed on 1,2 and
4 machines respectively. Fig. 3.(b) shows the performance results of the data
sets. Apparently, the PKP scales well when dealing with large-scale of data.
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Fig. 3. Experimental evaluation

6 Conclusion

Since traditional clustering methods can not deal with Big data, there is a need
for scalable solutions. Furthermore, Big data are often characterized by the mixed
type of attributes such as numerical and categorical. This paper have investi-
gated the parallelization of k-prototypes method using Map-Reduce model to
cluster large-scale of mixed data. We have used speedup and scaleup measures
to evaluate the performances of the proposed method. Experimental results on
large data sets show the performance of our method. A proper initialization of k-
prototypes method is crucial for obtaining a good final solution. Thus, it should
be interesting to parallelize the initialization step of k-prototypes using Map-
reduce model, in order to create an initial set of cluster centers that is probably
close to the optimum solution.
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