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Abstract. In recent years, data mining techniques have been used to
identify different types of financial frauds. In some cases, the fraud
domain of interest contains data with missing values. In financial state-
ment fraud detection, instances which contain missing values are usually
discarded from the analysis. This may lead to crucial information loss.
Imputation is a technique to estimate missing values and is an alter-
native to case-wise deletion. In this paper, a study on the effectiveness
of imputation is taken using financial statement fraud data. Also, the
measure of similarity to the ground truth is examined using five distance
metrics.
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1 Introduction

Financial statement fraud (FSF) is a deliberate and wrongful act carried out
by public or private companies using materially misleading financial statements
that may cause monetary damage to investors, creditors and the economy. The
two most prominent examples of financial statement fraud are Enron Broadband
and Worldcom. In these two cases, wronged investors and the financial market
suffered as a result of this type of fraud. The collapse of Enron alone caused a
$70 billion market capitalization loss. The Worldcom scandal, caused by alleged
FSF, is the biggest bankruptcy in United States history [13]. In this light, the
application domain of financial statement fraud detection has attracted a keen
interest.

Public companies are required to issue audited financial statements at least
once a year. This requirement is to allow for standardized comparability between
companies. Financial statements contain information about the financial posi-
tion, performance and cash flows of a company [10]. The statements also inform
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readers about related party transactions. In practice, financial statement fraud
(FSF) might involve [16]: the manipulation of financial records; intentional omis-
sion of events, transactions, accounts, or other significant information from which
financial statements are prepared; or misapplication of accounting principles,
policies, and procedures used to measure, recognize, report, and disclose busi-
ness transactions.

Missing data, in general, is a common feature in many practical applica-
tions. In some cases, the data in FSF domain may contain missing values. Two
approaches are taken when encountered with missing values: exclusion of all
instances with missing values (casewise deletion) or an estimation of values for all
missing items (imputation). Data can be missing completely at random (MCAR),
missing at random (MAR) or missing not at random (MNAR) [14].

In this paper, the objective is to investigate the use of imputation techniques
using authentic financial fraud data. Seven imputation techniques are investi-
gated in order to test the significance of imputation. Imputed values will be
evaluated via distance metric scores to attain a measure of similarity to known
values (‘ground truth’). The remainder of this paper is structured as follows.
Section 2 reviews related research. Section 3 provides a brief description of the
methodology. Sections 4 and 5 describe the sample data, experimental setup and
details the results thereof. Finally, Section 6 presents the conclusion.

2 Related Work

In this section, a brief description of the impact of imputation in the finance
domain follows.

Sorjamaa et al. [15] present a combination of Self-Organizing Maps (SOM) to
treat missing values using corporate finance data. The study used data involv-
ing approximately 6000 companies listed on either the Paris or London Stock
Exchange during the period 1999-2006. The authors concluded that using a
combination of SOMs (instead of the traditional SOM imputation) yields bet-
ter performance based on test error. Additional imputation schemes were not
considered in this study to benchmark performance.

The use of multiple imputation (MI) on the consumer’s choice between debit
and credit cards is presented by King [9]. The dataset used in the experiment
was from the 1998 Survey of Consumer Finances. The results suggest that the
persistence of debit cards is due to the fact that even households that use credit
cards without borrowing do not view credit as a substitute for debit. A limitation
of the experiment was using only 5 imputed datasets for MI. Increasing the
number of datasets used could have lead to a reduction in bias.

Fogarty [5] analyzed the importance of utilizing imputation to enhance credit
score cards. The focus of this study was treating reject inference as a missing data
problem. The data used was collected from a large German consumer finance
company and includes ‘accepts’ and ‘rejects’ from the businesses application
data and an associated credit performance variable from the behavioral data.
The author concluded that model-based MI is an enhancement over traditional
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missing data approaches to reject inference. The effect of imputation was not
tested against a benchmark dataset.

An interesting imputation approach on credit scoring data is presented by
Paleologo et al. [11]. The authors’ aim was to build and validate robust credit
models on Italian company credit request data. Missing values were replaced with
either the minimum or maximum value from the corresponding feature. There
was no attempt to utilize standard imputation techniques to check predictive
performance.

In light of the literature reviewed, the importance of imputing financial data
has been highlighted. Imputation seems to be a viable option instead of case-wise
deletion. Hence in this study, an investigation of several imputation methods
using financial statement fraud data is undertaken. The similarity between a
ground truth and imputed data will be computed using distance metrics.

3 Methodology

3.1 Imputation

The imputation of missing values can be broadly split into two categories: sta-
tistical and machine learning based imputation. Statistical imputation includes
methods such as mean imputation, hot-deck and multiple imputation meth-
ods based on regression and the expectation maximization (EM) algorithm [6].
Machine learning approaches for imputing missing values create a predictive
model to estimate missing values. These methods model the missing data estima-
tion based on the available information in the data. For example, if the observed
dataset contains some useful information for predicting the missing values, the
imputation procedure can utilize this information and maintain a high precision.
This section gives a description of both statistical and machine learning based
imputation methods.

Mean imputation is one of the simplest methods to estimate missing values.
Consider a matrix X containing a full data set. Suppose that the value xijbelongs
to the kth class Ck and it is missing. Mean imputation replaces xij with x̄ij =∑

i:xij∈Ck

xij

nk
, where nk represents the number of non-missing values in the jth

feature of the kth class.
In kNN imputation [8], missing cases are imputed using values calculated

from corresponding k-nearest neighbors. The nearest neighbor of an arbitrary
missing value is calculated by minimizing a distance function. The most com-
monly used distance function is the Euclidean distance between two instances y
and z as d(y, z) =

√∑
i∈D(xyi − xzi)2 , where D is a subset of the matrix X

containing all instances without any missing values. Once k-nearest neighbors
are computed, the mean (or mode) of the neighbors is imputed to replace the
missing value.

Principal Component Analysis (PCA) imputation involves replacing missing
values with estimates based on a PCA model. Suppose that the columns of
matrix X are denoted by d-dimensional vectors y1, y2, · · · , yn. PCA imputation
assumes that these vectors can be modeled as yj ≈ Wzj + m, where W is a



536 S.O. Moepya et al.

d × c matrix, zj are the c-dimensional vectors of principal components and m is
a bias vector. This imputation method iterates and converges to a threshold by
minimizing the error C =

∑n
j=1 ‖yj − Wzj − m‖2.

The Expectation-Maximization (EM) is an iterative procedure that com-
putes the maximum likelihood estimator (MLE) when only a subset of the data
is available. Let X = (X1,X2, · · · ,Xn) be a sample with conditional density
fx|Θ(x|θ) given Θ = θ. Assume that X has missing variables Z1, Z2, · · · , Zn−k

and observed variables Y1, Y2, · · · , Yk. The log-likelihood of the observed data
Y is

lobs(θ;Y ) = log
∫

fX|Θ(Y, z|θ)vz(dz). (1)

To maximize lobs with respect to θ, the E-step and M-step routines are used.
The E-step finds the conditional expectation of the missing values given observed
values and current estimates of parameters. The second step, the M step, consists
of finding maximum likelihood parameters as though the missing values were
filled in [12]. The procedure iterates until convergence.

Singular Value Thresholding (SVT) [3] is a technique that has been used
in Exact Matrix Completion (MC). The SVT algorithm solves the following
problem:

min
X∈C

τ‖X‖∗ +
1
2
‖X‖2F , s.t. AI(X) = AI(M), (2)

where τ ≥ 0 and the first and second norms are the nuclear and Frobenius norms
respectively. M is an approximately low rank matrix. In the above equation, A
is the standard matrix completion linear map where A : Rn1×n2 → R

k. SVT is
comprised of following two iterative steps:

{
Xt = Dt(A∗

I(yt−1))
yt = yt−1 − δ(AI(Xt) − b). (3)

In the above equation, the shrinkage operator Dτ , also know as the soft-
thresholding operator, is denoted as Dτ = UΣτV T where U and V are matrices
with orthonormal columns and Στ = diag(max {σi − τ, 0}) with {σi}min{n1,n2}

i=1

corresponding to the singular values of the decomposed matrix. The step size of
the iterative algorithmic process is given by δ.

Random Forests (RF), introduced by Breiman [1], is an extension of a
machine learning technique named bagging which uses Classification and Regres-
sion Trees (CART) to classify data samples. Imputation via RF begins by imput-
ing predictor means in place of the missing values. A RF is subsequently built on
the data using roughly imputed values (numeric missing values are re-imputed
as the weighted average of the non-missing values in that column). This process
is repeated several times and the average of the re-imputed values is selected as
the final imputation.

A brief explanation of Singular Value Decomposition (SVD) imputation fol-
lows. Consider the SVD of a matrix X ∈ R

n1×n2 of rank r. In this instance,
X = UΣV , U and V are n1 × r and n2 × r orthogonal matrices respectively
and Σ = diag({σi}1≤i≤r). The σis are known as the positive singular values.
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SVD imputation begins by replacing all missing values with some suited value
(mean or random). The SVD is computed and missing values replaced with their
prediction according to SVD decomposition. The process is repeated until the
imputed missing data fall below some threshold.

3.2 Distance Metrics

In a formal sense, distance can be defined as follows. A distance is a function d
with non-negative real values, defined on the Cartesian product X × X of a set
X. It is termed a metric on X if ∀ x, y, z ∈ X it has the following properties:

1. d(x, y) = 0 ⇐⇒ x = y ;
2. d(x, y) + d(y, z) ≥ d(x, z); and
3. d(x, y) = d(y, x).

Property 1 asserts that if two points x and y have a zero distance then they
must be identical. The second property is the well known triangle inequality and
states, given three distinct points x, y and z, the sum of two sides xy and yz
will always be greater than or equal to side xz. The last property states that the
distance measure is symmetrical.

Table 1. Distance/Similarity Metrics

Lorentzian d(x, y) =
∑n

i=1 ln(1 + |xi − yi|)

Minowski d(x, y) = p
√∑n

i=1 |xi − yi|p

Dice d(x, y) =
∑n

i=1(xi−yi)
2

∑n
i=1 x2

i+
∑n

i=1 y2
i

Squared Euclidean d(x, y) =
∑n

i=1(xi − yi)
2

Motyka d(x, y) =
∑n

i=1 max(xi,yi)∑n
i=1(xi+yi)

Table 1 presents the definition of five distance metrics used in this exper-
iment. The above similarity metrics each represent five of the eight types of
similarity families. The data that will be used is not suitable for the Squared-
chord, Shannon’s entropy and combination families since it contains negative
real values. The following section presents the results of the experimentation.

4 Data Description and Experimental Setup

4.1 Data

The dataset used in this experiment was obtained from INET BFA, one of the
leading providers of financial data in South Africa. The data comprises publicly
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Table 2. Summary statistics of the selected variables in the data

Variable Min 1st Quartile Median Mean 3rd Quartile Max

Assets-to-Capital Employed -26.120 1.060 1.240 1.612 1.60 224.30
Book Value per Share -966810 79 418 22279 1610 49596137
Cash flow per Share -7198 8 84 3177 396 5159700
Current Ratio 0.010 1.00 1.410 3.283 2.251 726.130
Debt to Assets 0.0 0.270 0.4800 0.8804 0.680 1103.00
Debt to Equity -182.370 0.350 0.820 2.516 1.730 760.940
Earnings per Share -460338.5 2.3 44.5 391.6 218.2 825937.7
Inflation adjusted Profit per Share -9232 1 43 2858 239 4898104
Inflation adjusted Return on Equity -87472.97 3.11 13.45 -55.60 23.37 17063.16
Net Asset Value per Share -373040 60 405 29438 1817 66658914
Quick Ratio 0.01 0.730 1.050 2.949 1.720 726.130
Retention Rate -7204.35 57.67 89.39 70.97 100.00 5214.29
Return on Equity -13600.00 4.045 14.830 -3.549 25.420 17063.160
Return on Capital Employed -13600.00 1.500 8.700 -0.551 17.415 6767.330

listed companies on the Johannesburg Stock Exchange (JSE) between years 2003
and 2013. The different sectors for the listed companies on the JSE are: Basic
Materials; Consumer Goods; Consumer Services; Financial; Health Care; Indus-
trial; Oil and Gas; Technology; Telecommunications and Utilities. In the data,
123 (out of 3043) companies were known to have received a qualified financial
report by an accredited auditor.

Each of the variables in Table 2 represent an aspect of measuring company
performance. For example, the ‘Quick Ratio’ captures the amount of liquid assets
per unit current liability. This ratio is a measure of how quickly a company can
pay back its short-term debt. ‘Earnings per share’ (EPS) is a common metric for
company valuation. It is a representation of a company’s earnings, net of taxes
and preferred stock dividends, that is allocated to each common stock. The other
ratios fall into either the profitability, solvency or leverage category.

4.2 Experimental Setup

The experiments for this paper were conducted on a Intel(R) Core (TM) i5-
3337U CPU @ 1.80 GHz with 6 GB memory. The implementation for algorithms
are performed using the following R packages: ‘imputation’1 ‘Amelia’ [7], ‘ran-
domForest’ [2] and ‘yaImpute’ [4].

The impact of imputation will be tested by running a Monte Carlo (MC)
simulation (with 100 trails) as follows. In every MC trail:

1. Create 6 levels of missingness randomly from the ‘ground truth’ dataset
using 1%, 2%, 5%, 10%, 15% and 20% as missing proportion;

2. Impute missing values on each missingness level using SVD, kNN, PCA,
SVT, Mean, EM and RF imputation;

3. Compute the distance between the imputed values and the corresponding
‘ground truth’ values using the 5 distance/similarity measures (given in pre-
vious Section)

1 This package has been now been archived in CRAN repository.
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Once the Monte Carlo simulation is complete, compute the mean and standard
deviations of the distances (from the ‘ground truth’) to evaluate the performance
of the imputation techniques. The distances are evaluated using the five distance
metrics.

The imputation schemes have parameters that needed to be selected. It was
decided not to stray too far from the default parameter settings for the imputa-
tion methods. For PCA imputation: max iterations was set to 1000, number of
principal components was set to 2 and a 1e − 06 threshold. The rank approxi-
mation, r, was set the value 3 for SVD imputation. The Random Forest default
parameters are as follows: ntree = 300 and iter = 5, these are the number of
trees and iterations respectively. The default tolerance value for the EM impu-
tation is 1e − 04, and the value k = 3 was selected for kNN imputation.

5 Results

In this section, the results of the Monte Carlo simulation are presented. An
analysis of the performance of the distance metrics will be undertaken.

Normalized distances of the 7 imputation methods using Lorentzian and Squared
Euclidean distance

Table 3. Lorentzian

Method 1% 2% 5% 10% 15% 20%

EM 0.523 0.548 0.667 0.524 0.487 0.448
kNN 0.453 0.400 0.494 0.438 0.520 0.395

Mean 0.412 0.418 0.545 0.648 0.594 0.673
PCA 0.409 0.382 0.345 0.441 0.493 0.509
RF 0.486 0.399 0.437 0.491 0.560 0.533
SVD 0.256 0.345 0.294 0.405 0.504 0.536
SVT 0.445 0.412 0.457 0.492 0.550 0.412

Table 4. Squared Euclidean

Method 1% 2% 5% 10% 15% 20%

EM 0.018 0.023 0.015 0.037 0.043 0.049

kNN 0.019 0.035 0.067 0.168 0.191 0.277
Mean 0.017 0.032 0.050 0.147 0.165 0.239
PCA 0.025 0.039 0.069 0.165 0.201 0.285
RF 0.017 0.032 0.050 0.147 0.165 0.239
SVD 0.017 0.032 0.050 0.147 0.166 0.236
SVT 0.017 0.032 0.050 0.147 0.165 0.239

Table 3 presents the Lorentzian distance for each of the seven imputation
techniques. Each column in the table represents the six levels of missingness
that was randomly generated during the Monte Carlo simulation. Smaller values
represent closer similarity to the ground truth. In this case, it can be seen that
SVD imputation has the lowest normalized average distance for missingness
levels ≤ 10%. For missingness above 10%, EM imputation and kNN produce the
lowest average normalized distance with a score of 0.487 and 0.395 respectively.
For all levels of missingness, Figure 1a shows a different imputation scheme
attains the lowest standard deviation over the 100 Monte Carlo trails for the
Lorentzia distance metric.

The Squared Euclidean distance results are presented in Table 4. At the 1%
level of missingness, there is a four-way tie between the Mean, RF, SVD and SVT
each achieving an average normalized distance of 0.17. For missingness greater
than 1%, EM produced the lowest average distance values. These values seem
to be substantially lower than distances of other imputation techniques, i.e., at
the 20% missingness level EM achieves 0.049 and all other schemes have values
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(a) Lorentzian (b) Squared Euclidean

Fig. 1. Normalized standard deviation distances of the 7 imputation methods using
Lorentzian and Squared Euclidean distance

greater than 0.2. Figure 1b shows that the minimum average standard deviation,
for all levels of missingness, is produced by EM.

Normalized distances of the 7 imputation methods using Dice and Manhattan distance

Table 5. Dice

Method 1% 2% 5% 10% 15% 20%

EM 0.526 0.577 0.680 0.541 0.384 0.581
kNN 0.820 0.902 0.908 0.906 0.876 0.940
Mean 0.376 0.508 0.642 0.754 0.801 0.840
PCA 0.312 0.297 0.391 0.391 0.466 0.519
RF 0.265 0.467 0.249 0.526 0.259 0.834
SVD 0.297 0.352 0.420 0.440 0.417 0.448

SVT 0.821 0.766 0.835 0.792 0.649 0.864

Table 6. Manhattan

Method 1% 2% 5% 10% 15% 20%

EM 0.111 0.168 0.121 0.201 0.284 0.212

kNN 0.093 0.130 0.216 0.359 0.370 0.483
Mean 0.065 0.085 0.128 0.241 0.248 0.316
PCA 0.084 0.122 0.186 0.405 0.454 0.446
RF 0.072 0.100 0.163 0.298 0.275 0.390
SVD 0.073 0.108 0.170 0.325 0.346 0.418
SVT 0.068 0.101 0.153 0.283 0.282 0.365

Table 5 shows that RF achieves the lowest normalized average distance for
missigness levels: 1%, 5% and 15%. PCA outperforms all other schemes for miss-
ingness level 2% and 10%. SVD attains the lowest value for the highest missing-
ness level. At 20% missingness, EM, SVD and PCA attain average distances of
lower than 0.6 whilst the other schemes score above 0.8. RF produces the lowest
average standard deviation for most of the missingness levels. This is seen in
Figure 2a where it achieves the least amount of variation in four out of the six
levels using the dice distance metric.

The results for Manhattan distance are given in Table 6. These result bare
some similarity to Table 5, where the similarity measure favors two imputation
schemes. EM and Mean imputation achieve the lowest distance values levels
1%, 2% 15% and 5%, 10% and 20% respectively. Mean has increasing average
distance values as the missingness increases. This is intuitive as the number
of missing values increase, the mean of the remaining values are biased towards
larger values. All imputation schemes exhibit this trend. Figure 2b mirrors results
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(a) Dice (b) Manhattan

Fig. 2. Normalized standard deviation distances of the 7 imputation methods using
Lorentzian and Squared Euclidean distance

in Figure 1b whereby the lowest values are produced by EM for all levels of
missingness. Generally, it is seen that the greater the level of missingness, the
larger the average standard deviation.

Table 7. Normalized distances of the 7
imputation methods using Motyka dis-
tance

Method 1% 2% 5% 10% 15% 20%

EM 0.120 0.850 0.168 0.495 0.901 0.062

kNN 0.659 0.623 0.425 0.507 0.514 0.522
Mean 0.120 0.145 0.186 0.272 0.353 0.407
PCA 0.178 0.276 0.532 0.860 0.428 0.469
RF 0.192 0.195 0.238 0.314 0.384 0.421
SVD 0.216 0.574 0.312 0.330 0.365 0.429
SVT 0.505 0.461 0.787 0.503 0.486 0.502

Fig. 3. Normalized standard deviation dis-
tances of the 7 imputation methods using
Motyka distance

The results given by Table 7 slightly resemble those of Table 6 in that the
lowest average distances are in favor of EM and Mean using the Motyka distance
similarity. The minimum average distance (for EM and Mean) is 0.12 at the 1%
level of missingness. The standard deviations of the Motyka similarity metric
are presented in Figure 3. These values are similar to the Manhattan distance
standard deviations (see Figure 2b) with the exception at the 5% level of miss-
ingness where the lowest standard deviation is produced by SVT. The average
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standard deviations for all levels of missingness are less than 0.14 using EM,
while the maximum for other imputation schemes exceed 0.3 (Mean).

6 Conclusion

In this paper, an investigation of the impact of imputation schemes on financial
data was undertaken. A Monte Carlo simulation was done and randomly gen-
erated missingness (1%-20%) was induced having a ground truth dataset. Five
distance metrics were used in order to measure the imputed datasets from the
ground truth. The results show that using Squared Euclidean, Manhattan and
Motyka similarity measures, EM generally achieves the closest distance to the
benchmark data. Also the standard deviations using those metrics show that
EM obtained the lowest score in general. This work is seen as an initial study.
Future possible extensions include parameter tuning for the imputation schemes.
Another important contribution would be to test whether imputed datasets out-
perform the benchmark with respect to classification accuracy.

Acknowledgments. The current work is being supported by the Department of Sci-
ence and Technology (DST) and Council for Scientific and Industrial Research (CSIR).

References

1. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
2. Breiman, L.: randomforest: Breiman and cutlers random forests for classification

and regression (2006)
3. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix

completion. SIAM Journal on Optimization 20(4), 1956–1982 (2010)
4. Crookston, N.L., Finley, A.O., et al.: yaimpute: An r package for knn imputation.

Journal of Statistical Software 23(10), 1–16 (2008)
5. Fogarty, D.J.: Multiple imputation as a missing data approach to reject inference

on consumer credit scoring. Interstat (2006)
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