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Abstract. Nowadays, information security is based on ciphers and cryp-
tographic systems. What evaluates the quality of such security measures
is cryptanalysis. This paper presents a new cryptanalysis attack aimed
at a ciphertext generated with the use of the SDES (Simplified Data
Encryption Standard). The attack was carried out with a modified ver-
sion of the BPSO (Binary Particle Swarm Optimization) algorithm. A
well-adjusted version of this method can have a positive effect on the
quality of the results obtained in a given period of time.
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1 Introduction

Security based on authentication is not sufficient these days. Intercepting any
sensitive data may happen even during the process of developing computer sys-
tems. In these cases, cryptography is becoming more and more popular. In par-
ticular, this field deals with ciphering and deciphering information, but it also
designs complex cryptographic systems assuring safe data access [6]. Its main
objective is not to obscure the existence of the message, but to transform it in
such a way that it can only be read by its sender and intended recipients [12].
Cryptography is closely related to cryptanalysis, a field of study which is about
deciphering ciphertexts without knowing the right deciphering key [5]. It is also
used in the process of finding bugs in existing cryptographic systems to increase
and upgrade their level of security [1]. Cryptanalysis processes are not the fastest
ones, their operation time is very long. In order to optimize the time of these
operations, one of the optimization techniques called BPSO was used.
Techniques based on artificial intelligence are more commonly used in the
field of computer security. Over recent years, many publications on the applica-
tion of various evolutionary techniques such as Tabu Search, evolutionary algo-
rithms or Simulated Annealing in cryptanalysis, have been presented. In 1998
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Andrew John Clark [2] presented the results of his research on the cryptanalysis
of classic ciphers with the use of evolutionary algorithms. The results were not
accurate every time, though in most cases it was possible to read the decrypted
message. Poonan Garg in [4] presented an interesting attack carried out using
a memetic algorithm on a ciphertext generated with the SDES, which had very
good results. Nalini and Raghavendra presented in their article [10] a cryptanal-
ysis attack using PSO with grouping against the modification of DES, devel-
oped by the authors themselves. Techniques based on evolutionary algorithms
are gaining more interest in the field of computer security. It leads to many
successes, yet there are still numerous problems to be discussed [1]. The next
chapter of this paper presents the specification of the SDES used to generate
a ciphertext that will be subjected to the attack. The third chapter contains
the basic information on PSO and BPSO algorithms and their modifications
for the purpose of cryptanalysis. The next chapter concerns the experiments,
observations and the results of decrypting the ciphertext using the developed
attack and comparison between proposed attack and the simple random walk
algorithm. The last chapter contains conclusions and further plans.

2 Simplified Data Encryption Standard

The SDES is a simplified version of a well-known Data Encryption Standard
(DES). Tt was designed in 1996 by Edward Schaefer for general academic pur-
poses [11]. SDES is a symmetric cipher, that is, the same key is used to encrypt
and decrypt information [12]. It is a block cipher. The length of a single encrypted
message block equals 8 bits and the data is encrypted by a 10-bit key [11]. The
SDES operates on strings of bits instead of normal characters. The decryp-
tion process uses the same encrypting algorithm but the subkeys are provided
in reverse order. SDES is a two-round algorithm, based on two basic operations:
combination done with permutations and dispersion [9]. The block diagram of the
encryption is shown in Fig. 1.
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Plaintext > IP > fx > SW | fkx > I1P~! > Ciphertext

Fig. 1. Encryption with the use of SDES

The first round is preceeded by the initial permutation IP [11]. The bits of
a message are relocated with the use of an appropriate, determined shift table.
The second bit is put to the first position, the sixth one to the second etc.
A moved string is then divided into two equal 4-bit parts (L - left and R - right),
and the fi, function, known as the round function, is executed:
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fre,(Liy Ri) = (Li—1 @ f(Ri—1, K;), Ri—1), (1)

where:
fK, - round function,
L/R - left/right part of the binary (input) string,
K, - round key,
f - deciphering function,
1 - round’s ID.

The process of swapping the right part to the left is executed by the SW
function (swap). Then the second round begins. This time the SW function
is omitted. At the end, the result is put through the final IP~! permutation,
which is the opposite of the initial permutation IP [9]. In this way, an 8-bit
block of ciphertext is generated. The operation is repeated until the plaintext is
encrypted. The register of all essential permutations looks as follows:

IP =[26314857]
Pl0 =[ 35274101986 |
P8 =[6374851009 ]
E =[41232341]
P, =[2431]
IP1=[41357286 |

2.1 Generating Subkeys

In order to properly calculate the value of the fj, function, it is necessary to
generate the subkeys. For every round, the key is modified with such opera-
tions as reduction, shifting and permutation [11], the aim of which is to generate
an auxiliary key. At the beginning, the encryption key is subjected to the given
permutation P10. A received string is divided into two 5-bits parts. A single
cyclical shift to the left is performed on each of them. The shifted parts are
concatenated in a binary string. The final string is subjected to the PS8, per-
mutation, thereby generating the K; subkey. The K5 subkey is the result of
an auxiliary, double, cyclical shift at the stage of dividing the encryption key.
A received string is also compressed with the P8 permutation.

2.2 fg, and f Functions

The fx, function is executed by the Feistal network (Fig. 2). The right part of
the string is automatically moved to the left side. The left part is subjected to
the addition modulo 2 with the result of the ciphering function f, the arguments
of which are the K; subkey and the right part of the string of R;_;.

The function f is the right ciphering algorithm. A flow chart illustrating its
performance is shown in (Fig. 3). At the beginning, the expanding permutation
E is executed. To increase the coefficient of the avalanche effect, two new settings
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Fig. 2. Feistal function fx; Fig. 3. Deciphering function f

from the determined permutation F [12] are assigned to every bit. The right part
of the string is expanded from 4 to 8 bits. In this way, it is possible to perform
the additional modulo 2 with the given K; subkey. The received string is divided
into two equal parts. The left one is moved to the S-Block S;, whereas the right
one to S3. Each block is a specially designed 4x4 matrix of the elements from
the set 0, 1, 2, 3 written in the binary system [11]. The S-Blocks are the only
non-linear element of majority of block ciphers [12,14]. The 4-bit strings of data
are the input. They are converted into 2-bit output. The first and last bit of
each substring represents the number of a row, whereas the second and third bit
represents the number of a column. The S-Blocks are presented below. The two
chosen digits are concatenated with each other. The result is finally subjected
to the P4 permutation.

01 00 11 10 00 01 10 11
S; = 11 10 01 00 Sy — 10 00 01 11
00 10 01 11}” 11 00 01 00
11 01 11 10 10 01 00 11

3 Particle Swarm Optimization

The PSO was first presented in 1995 by Kennedy and Eberhart [7]. The authors
were inspired by the behavior of animals in troops. They attempted to simulate
the behavior of a school of fish moving in a precise and specific manner. In
case of danger, the behavior of an individual has a dramatic impact on the
behavior of the whole population. Another example of their inspiration is a bevy
of birds searching for food. When one of the birds finds a good source of food, the
whole bevy moves in this direction. Similarly to evolutionary algorithms, a single
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individual is represented by a particle, whereas the population is a swarm [3].
The particles are dispersed within a multidimensional space of solutions in order
to find the global extreme. They move according to their own experience or
the one of other, neighboring particles [3]. Every individual is characterized by

the speed vector ‘_/') and the position vector X [7]. Initially, the particles are
randomly placed in the space. In each iteration, the value of the adjustment
function is calculated for every particle. During this operation, so far the best
adjustment of a given Pppgr particle and so far the best adjustment among all
of the particles of the swarm G gggr are determined. Then, for every individual,
a new value of the speed vector (the below formula) is calculated and the particle
is moved to a new position:

— — — — — —
V(t"' 1) =V+4ar - (XPBEST - X) +care (XGBEST - X)a (2)

Whe§:
V' - current speed vector,
c1, Cco - positive acceleration constants,
r1, 72 - random numbers from [0, 1],
)_5 - current particle position vector,
)_(>PB wer - best position of the particle so far,
?GBEST - best position among all the particles so far,
t - iteration of the algorithm.

In the case where the speed value ‘—/(t + 1) is greater than the established
acceptable particle speed Vasax, the following formula applies:

V(t+1) = Varax. (3)

3.1 Binary Particle Swarm Optimization

In 1997 Kennedy and Eberhart developed a modified version of the PSO, ded-
icated to problems characterized by a binary space of solutions, i.e. BPSO [3§].
Every element of the vector is represented by binary values, namely X; ; € {0, 1}.
Changing the position of a particle is reduced to negation of bits of particular
indexes [3]. One of the most important changes concerning BPSO is an update

of the X position vector, which is determined with the formula [3]:

?i,j(t“" 1) = {(1) if 73 (t) < Sig(‘—/i,j(t +1)), ()

otherwise

where:
r3 - random numbers from [0, 1],
sig - sigmoidal function,
1 - particle index,
J - position in the speed / position vector,
t - iteration of the algorithm.
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The sigmoidal function value can be calculated using the following for-
mula [3]:

1

- sig(V)elo,1]. 5
o s eb )

sig(V i5(1))

3.2 Proposed Attack

The suggested algorithm is based on the chosen-plaintext attack, which is one of
the most popular cryptanalytical methods. This attack is referred to as “Particle
Swarm Attack”. The attacker is in the possession of the ciphertext enciphered
with the SDES and the corresponding plaintext [5,6]. Using these data, the
cryptanalyst tries to guess what the deciphering key is, the aim of which is
to decipher the rest of the intercepted ciphertexts. The algorithm begins with
generating a defined number of particles with the speed equal to 0. The X
position vector is equated with the example of a decryption key. In the initial
iteration the keys are generated randomly. Next, based on the Hamming distance
and according to the formula below, the value of the adjustment function is
calculated:

Fy=H(P,D)=)Y P& D;, (6)
i=1

where:
D; - the character of the deciphered text,
P; - the character of the plaintext,
H - Hamming distance,
n - message length.

Then, the Pggsr and Gpgst values are determined. To do so, the mod-
ification to the classic version of PSO [13] will be applied. Having calculated
the adjustment value for every particle, an auxiliary steering parameter called
statistical probability « is introduced. In most cases, it is represented by a ran-
dom number from [13]. In the proposed attack it will have one constant value.
Then, based on the o and speed vector ‘_/, the particle can update the chosen
fragments of the X position vector in relation to its best so far position Pgggr
or the best position in the Gpggr swarm. It is done according to the following
formula:

1
if (a<V,< (3 + ), thenX; = Pppsr,, (7)
1 — —
if (5(1 +a) <V; < 1), thenX; = GpgsT;- (8)

_
Otherwise, when (0 < V; < «), the original version of the modification
presented in [13], considers the application of the previous position vector.



Cryptanalysis of SDES Using Modified Version 165

In the developed attack, it is suggested to calculate new value of the vector
according to the classic BPSO algorithm:

— — — — — —
Vipt(t+ 1) =Vitar  (Xpgper, —Xi) T 22 (XGpper, — Xi)s  (9)

where:
1 - particle’s index,
J - position in the speed/position vector.

A new value of the position vector is calculated using the eq. 4.

4 Experiments

The aim of the research was to prove that the algorithm presented in this article
is able to find the correct ciphering key for a given ciphertext. The attack was
implemented in C++ and tested on a computer with an Intel i7 processor clocked
at 2.1 GHz. All the tests were performed on one core. The tested ciphertexts
were of various length and were created with randomly generated cipher keys.
The plain texts were written in English. The algorithm is based on the chosen-
plaintext attack. The suggested approach assumes that the ciphering key will be
found without searching every possible combination.

All of the control parameters were extracted in an empirical way. The « coef-
ficient is a floating-point number selected randomly. The ¢; cognitive coefficient
was set at 0.5, the social factor co at 0.8. The Vj; 4x particle speed was adjusted
to the sigmoidal function, to the value 4. The swarm consisted of 20 particles. For
every case, the algorithm run 30 times. The experiments were divided according
to the length of the ciphertexts into 2 rounds (250 and 1000 characters). Max-
imum number of iterations was set to 30. SDES has only 1024 possible keys so
larger amount of iterations is not required.

Table 1 presents the results: the minimum, maximum, median, average and
standard deviation of the values of the adjustment functions of the consecutive
tests, carried out for Particle Swarm and Single Walk algorithms, for 250 char-
acter ciphertexts. In addition, information about the sought after and the best
decryption key found are included.

In the first round, 18 out of 30 ciphertexts were cracked by Particle Swarm
attack. The Random Walk algorithm cracked only 8 ciphertexts. We decided to
compare the guessed keys with the correct ones. In most cases the difference
concerned two bits. Fig. 4 shows a boxplot for a few 250-character ciphertexts
for Particle Swarm attack. We can see the minimum, maximum and median val-
ues for given iterations of the algorithm. The solution is shown in the chart as
a unique value.

Table 2 juxtaposes the results for the 1000 character ciphertexts. In this case
24 ciphertexts were properly deciphered by Particle Swarm oppose to the 10 by
Random Walk algorithm. Similarly to the previous tests, incorrect decryptions
differed by two bits. Fig. 5 shows a box chart for a few 1000-character ciphertexts
for Particle Swarm attack.
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Table 1. F; values for each consecutive 250 character ciphertexts for both attacking

algorithms
ID |Minimum |Median| Maximum|Average Star.lda?rd Correct Obtained Iteration
Deviation Key Key
Particle Swarm Attack
1 0 984 1140 922 251 1000011000 | 1000011000 17
2 0 1021 1325 972 270 0110101101 | 0110101101 3
3 0 957 1388 931 290 1010000100 | 1010000100 12
4 526 940 1202 931 191 000[0]01[1]010{000[1101[0J010 -
5 0 952 1258 916 258 0101001100 | 0101001100 10
6 494 1054 1311 1006 200 |00[0]100[01]00{00[1]100[10J00 -
7 666 904 1266 945 175 110[1]00[0]100|110[0J001]100 -
8 0 1032 1831 983 320 1000001101 | 1000001101 7
9 526 738 1134 785 186 110[1J00[0j011|110[0]001]011 -
10 0 1032 1831 983 320 1011010101 | 1011010101 10
Random Walk Algorithm
1 638 939 1321 965 31525 |10[0]0[0]11000]{10[1I0[1]11000 -
2 731 995 1278 1010 21908 [011[0]101101 | 011[1]101101 -
3 769 1010 1313 1013 22889 |101[0]00[0]100{101[1]00[1]100 -
4 517 1039 1149 987 22151 |000[0]01[1]010{000[1]01[0J010 -
5 0 918 1161 895 50530 | 0101001100 | 0101001100 27
6 590 999 1280 979 30384 |000[1]00[0]100{000[0J00[1]100 -
7 727 987 1240 978 19897 |1[010000110[1]| 1[10000110[0] -
8 0 984 1324 933 86186 | 1000001101 | 1000001101 12
9 646 982 1210 982 20067 |110[1101J011 | 110[0010]011 -
10 0 983 1172 938 62002 | 1011010101 | 1011010101 23
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Fig. 4. The boxplot of a randomly picked 250 character ciphertexts for Particle Swarm

Attack
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Table 2. F values for each consecutive 1000 character ciphertexts for both attacking

algorithms
ID|Minimum |Median| Maximum|Average Starllde.trd Correct Obtained Iteration
Deviation Key Key
Particle Swarm Attack
11 0 4416 5521 3982 1436 0001101101 0001101101 5
12 0 4063 5336 3993 1077 0000111001 0000111001 7
13 347 3240 4541 2772 1456 001[0J10[0J111 | OO1[1]10[A111 -
14 0 3811 5340 3614 1453 1000111100 1000111100 17
15 642 4188 5540 3875 1170 100[0J10[0J010 | 100[1]10[1]010 -
16 0 4554 5522 4062 1404 1010001011 1010001011 12
17 0 4390 5535 4061 1256 1110101000 1110101000 10
18 0 4285 5745 3966 1252 0000110101 0000110101 9
19 0 4103 5086 3777 1106 0001111111 0001111111 5
20 0 4129 4992 3842 1078 1111010000 1111010000 11
Random Walk Algorithm
11| 3007 3845 4816 3874 332190 | 000[1]101101 | 000[0J101101 -
12| 2744 3558 4414 3566 239546 | 000[0]111001 | 000[1]111001 -
13 0 3982 4780 3470 | 1532160 | 0010100111 0010100111 23
14| 2908 4000 5162 4006 372737 | 100011[1]100 | 100011[0J100 -
15| 2942 4021 4899 4057 203871 | [10Jo[oJ10[0JoLio| [0Tjo[LI10[LI0[0j0 -
16 0 4105 4971 3769 | 1245140 | 1010001011 1010001011 21
17| 3184 4193 5073 4179 288314 | 111[0]10[1J000 | 111[1]10[0]000 -
18 0 3994 5531 3591 | 1974630 | 0000110101 0000110101 16
19| 1804 3851 5616 4004 685290 | 000111[1]111 | 000111[0J111 -
20| 2382 4067 4841 3858 419308 | 111[1J010000 | 111[0j010000 -
6000 T T T T T T T T T T
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4000 — % @ -
/)]
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D 3000 -
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2000 ] -
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Fig. 5. The boxplot of a randomly picked 1000 character ciphertexts for Particle Swarm
Attack
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5 Summary

The suggested Particle Swarm cryptanalysis attack allows to obtain satisfying
results in the SDES cipher cryptanalysis. Correct deciphering can be achieved
on the level of up to 80%, depending on the length of the ciphertext.

In the situation when the cryptanalysis attack failed, an interesting corre-
lation between a correct key and the best one found was observed. Mostly, the
non-matching bits were symmetrical to each other, as in the test 11. Undoubt-
edly, it sets out the course for further research in terms of applying modifica-
tions in order to improve the quality of obtained results. Moreover, this method
should be tested for other ciphering algorithms like DES or Blowfish. It should
be remembered that BPSO is one of the possibilities. Another interesting alter-
native is the Discrete PSO, an algorithm, which can perform manage quite well
with such problems.
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