
Character sums and arithmetic combinatorics
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Abstract In this survey we review some old and new results on character sums
and their applications to various problems in analytic number theory, e.g., smallest
quadratic nonresidues, Dirichlet L-function, Linnik’s problem. We also discuss
open problems in this area. Some of the techniques involved belong to arithmetic
combinatorics. One may hope for these methods to lead to further progress.
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A function � W Z=qZ ! fz 2 C W jzj D 1g [ f0g is a multiplicative character
mod q if it satisfies the properties that �.mn/ D �.m/�.n/, and �.n/ D 0 if
gcd.n; q/ 6D 1: We are interested in bounding non-trivially the character sum of �

over an interval of length H � q. More precisely, we want to study the following
problem.

Problem 1. Assuming � is non-principal and q � 0, how small H D H.q/ can be
such that

ˇ
ˇ
ˇ

aCHX

nDaC1

�.n/
ˇ
ˇ
ˇ < H1�� ‹ (1)

In 1918, Polya and Vinogradov (Theorem 12.5 in [27]) had the estimate for
H � p

q log q.

Theorem 1 (Polya-Vinogradov). Let � be a non-principal Dirichlet character
mod q. Then

ˇ
ˇ
ˇ

aCHX

mDaC1

�.m/
ˇ
ˇ
ˇ < Cq

1
2 .log q/:
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Forty four years later Burgess [5] improved Polya and Vinogradov’s result to
H > q

1
4 C", first for prime moduli, then for cube-free moduli.

Theorem 2 (Burgess). For " > 0 there exists ı > 0 such that if H > p
1
4 C"; then

ˇ
ˇ
ˇ

aCHX

mDaC1

�.m/
ˇ
ˇ
ˇ � p�ıH:

Using sieving, there is the following

Corollary 1. The smallest quadratic nonresidue mod p is at most p
1

4
p

e
C"

.

At present time, Burgess’ estimate is still the best. Davenport and Lewis
generalized it to higher dimensions by replacing the interval by a box B � Fpn :

Let f!1; : : : ; !ng be an arbitrary basis for Fpn over Fp. Then for any x 2 Fpn ,
there is a unique representation of x in terms of the basis.

x D x1!1 C � � � C xn!n

A box B � Fpn is a set such that for each j, the coefficients xj form an interval.

B D
n nX

jD1

xj!j W xj 2 Œaj C 1; aj C Hj�; 8i
o

D
nY

jD1

Œaj C 1; aj C Hj�:

(2)

Davenport and Lewis had the following non-trivial estimate for character sums
over boxes. (See [6, 28] for work on special boxes.)

Theorem 3. [12, Theorem 2] Let Hj D H for j D 1; : : : ; n, with

H > p
n

2.nC1/ Cı for some ı > 0 (3)

and let p > p.ı/. Then, with B defined as above

ˇ
ˇ
X

x2B

�.x/
ˇ
ˇ < .p�ı1H/n;

where ı1 D ı1.ı/ > 0.

For n D 1 (i.e., Fq D Fp) this is Burgess’ result. But as n increases, the exponent
in (3) tends to 1

2
.
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Motivated by the work of Burgess and Davenport-Lewis, we obtained the
following estimates on incomplete character sums. Our result improves Theorem
DL for n > 4 [7, 8] and is also uniform in n.

Theorem 4. Let � be a non-trivial multiplicative character of Fpn , and let " > 0 be
given. If

B D
nY

jD1

Œaj C 1; aj C Hj�

is a box satisfying

n
…
jD1

Hj > p. 2
5 C"/n;

then for p > p."/

ˇ
ˇ
ˇ

X

x2B

�.x/
ˇ
ˇ
ˇ �n p� "2

4 jBj;

unless n is even and �jF2 is principal, where F2 is the subfield of size pn=2, in which
case

ˇ
ˇ
ˇ

X

x2B

�.x/
ˇ
ˇ
ˇ � max

�

ˇ
ˇB \ �F2

ˇ
ˇ C On.p� "2

4 jBj/:

The proof of Theorem 4 used ingredients and techniques from sum–product
theory, specially multiplicative energy. Theorem 4 was improved by Konyagin [30]
for regular boxes.

Theorem 5. [30] Let � be a non-trivial multiplicative character of Fpn , and let B
be given as in (2) with

Hj D H > p
1
4 C�; 8j:

Then
ˇ
ˇ
ˇ

X

x2B

�.x/
ˇ
ˇ
ˇ �n p�ıjBj;

where ı D ı.�/ > 0.

Problem 2. Obtain a non-trivial estimate on
P

x2B �.x/, assuming jBj > q1=4C"

and B not ‘essentially’ contained in a multiplicative translate of a subfield.



408 M.-C. Chang

As in [12] (see p. 131), Theorem 4 has the following application to the
distribution of primitive roots of Fpn .

Corollary 2. Let B � Fpn be as in Theorem 4 and satisfying max�

ˇ
ˇB \ �F2

ˇ
ˇ < p�"jBj

if n even. The number of primitive roots of Fpn belonging to B is

'.pn � 1/

pn � 1
jBj.1 C o.p�� 0

//;

where � 0 D � 0."/ > 0 and assuming n � log log p.

The proof of Corollary 2 is by combining character sums estimate with the
following.

�.pn � 1/

pn � 1

�

1 C
X

djpn�1
d>1

�.d/

�.d/

X

ord.�/Dd

�.x/

�

D
(

1 if x is primitive,

0 otherwise.

We also generalize Burgess’s inequality in a slightly different direction.

Theorem 6. Let P be a proper d-dimensional generalized arithmetic progression
in Fp with

jPj > p
2
5 C"; some " > 0

If � is a non-principal multiplicative character of Fp, we have

ˇ
ˇ
ˇ

X

x2P
�.x/

ˇ
ˇ
ˇ < p�� jPj;

where � D �."; d/ > 0 and assuming p > p."; d/.

Remark 6.1. The exponent 2
5

< 1
2

does not depend on d.

Remark 6.2. Similar results hold for Fpn with worse exponent.

Using Freiman’s theorem, sum–product, and character sums, we obtained the
following.

Corollary 3. Given C > 0 and " > 0, there is a constant 	 D 	.C; "/ and a
positive integer k < k.C; "/ such that if A � Fp satisfies

(i) jAj > p2=5C"

(ii) jA C Aj < CjAj.
Then we have

jAkj > 	p;

where Ak D A � � � A is the k-fold product set of A.
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There is also the study of multi-linear character sums.
Let .Lj/1�j�n be n independent linear forms in n variables over Fp, and

let � be a non-principal multiplicative character mod p. Denote a box by
B D Qn

iD1 Œai; ai C H�: We are interested in the following non-trivial estimates

ˇ
ˇ
ˇ
ˇ

X

x2B

�
� nY

jD1

Lj.x/
�
ˇ
ˇ
ˇ
ˇ

< p�ıHn: (4)

Theorem 7 (Burgess). Assume

H > p
1
2 � 1

2.nC1/ C"
: (5)

Then (4) holds.

For n D 1, condition (5) is the well-known Burgess assumption H > p
1
4 C" for

character sum bound. For n D 2, it is H > p
1
3 C". We generalized the Burgess

assumption to any dimension. (See [4].)

Theorem 8 (Bourgain-Chang). Assume

H > p
1
4 C"; for any n:

Then (4) holds.

The theorem above has application to character sums of polynomials.

Theorem 9. Let f .x1; : : : ; xd/ be a homogeneous polynomial of degree d and split
over Fp, and let B D Qd

iD1Œai; ai C H� � F
d
p be a box of length H with

H D p
1
4 C":

Then
ˇ
ˇ
ˇ

X

x2B

�.f .x//
ˇ
ˇ
ˇ < p�ıHd:

This improves Gillett’s condition H > p
d

2.dC1/ C"
:

Coming back to Problem 1, for special moduli, the condition on H in Burgess’
theorem can be improved. One can proved (1) for much smaller intervals. There are
two classical results, based on quite different arguments by Graham–Ringrose ([27],
Corollary 12.15) and Iwaniec ([27], Theorem 12.16).

First, for the modulus q, we set up the following notations for the largest prime
divisor P of q, and the core k of q.

P D max
pjq

p and k D
Y

pjq
p:
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Theorem 10. [18] Let � be a primitive character of modulus q � 3 with q square
free. Then, for

N D jIj � q
4p

log log q C P9

we have
ˇ
ˇ
ˇ

X

n2I

�.n/
ˇ
ˇ
ˇ � Ne�p

log q:

The purpose of the work of Graham and Ringrose is to study the following least
quadratic nonresidue problem.

Problem 3. Let p be a prime, and let n.p/ be the least quadratic nonresidue mod p.
Find a lower bound on n.p/.

Independent of Burgess’ result n.p/ � p
1

4
p

e
C"

, Friedlander [14] and Salié
[35] showed that n.p/ D 
.log p/, i.e., there are infinitely many p such that
n.p/ > c log p for some absolute constant c. By assuming the Generalized Riemann
Hypothesis, in 1971 Montgomery [33] proved that n.p/ D 
.log p log log p/:

Using Theorem 10, Graham and Ringrose showed that n.p/ D 
.log p log log log p/

unconditionally.
In 1974, Iwaniec [26] proved the following theorem by generalizing Postnikov’s

theorem [34].

Theorem 11. [34] Let � be a primitive character of modulus q, 2 − q. Then, for

k100 < N < N0 � 2N (6)

we have
ˇ
ˇ
ˇ

X

N<n�N0

�.n/
ˇ
ˇ
ˇ � Cs.log s/2

N
1� c

s2 log s ;

where s D log q
log N :

Theorem 11 is good for q powerful. A related problem is about the digital aspects
of the primes. Let x < N D 2n. Write

x D x0 C 2x1 C 22x2 C � � � C 2n�1xn�1 with x0; x1; � � � ; xn�1 2 f0; 1g:

For A � f1; � � � ; ng, given f˛j 2 f0; 1ggj2A, one expects

ˇ
ˇfp D x < N W xj D ˛j; 8j 2 Agˇˇ 	 N

log N
2

�jAj
:



Character sums and arithmetic combinatorics 411

Problem 4. How large can A be?

For related work, see Sierpinski [39], Harman–Katai [22], Bourgain [3].
Theorem 10 is for q with small prime factors (smooth moduli), for which one

assumes

log N � logP C log qp
log log q

: (7)

On the other hand, Theorem 11 is for q with small core. Condition (6) implies that

log N � log k: (8)

If fix k, to get non-trivial result, in Theorem 11, one needs to assume

log N � log k C .log q/
3
4 C�: (9)

Both are special cases of the following theorem in [11].
Denote

K D log q

log k
:

Theorem 12. Assume N satisfies

q > N > P103

and

log N > .log q/
9
10 C 103 log 2K

log log q
log k : (10)

Let � be a primitive multiplicative character modulo q and I an interval of size N.
Then

ˇ
ˇ
ˇ

X

x2I

�.x/
ˇ
ˇ
ˇ � Ne�.log N/3=5

: (11)

Remark 12.1. In the same spirit as assumptions (7) and (9), assumption (10) can
be replaced by the stronger and friendlier assumption.

log N � logP C log q

log log q
: (12)

(The second term of condition (12) is clearly bigger than either term of (10).)
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Remark 12.2. This result is completely general and gives bounds for very short
character sums as soon as logP is small compared with log q.

Remark 12.3. To compare Theorem 12 with Theorem 10, we note also that
condition (12) gives a better result than (7). Moreover, condition (7) is restricted
to square free q. As for comparing Theorem 12 with Theorem 11, we let k be square
free and q D km, where m is large but not too large. More precisely, we assume
log m D o.log log k/. Theorem 11 certainly requires that log N > C log k while
condition (10) in Theorem 12 becomes log N > .m log k/

9
10 C C log m

log log q log k, which
is clearly better.

Remark 12.4. We did not try to optimize the power of log q in the first term in (10)
nor the saving in (11).

The following is a mixed character sum version of Theorem 12 (see also [10]).

Theorem 13. [15] Under the assumptions of Theorem 12,

ˇ
ˇ
ˇ

X

x2I

�.x/eif .x/
ˇ
ˇ
ˇ < Ne�p

log N

assuming f .x/ 2 RŒx� of degree at most .log N/c for some c > 0.

Corollary 4. Let T > 0. Assume N satisfies

q > N > P103

and q satisfies

log N > .log qT/
9
10 C 103 log 2K

log log q
log k:

Then for � primitive, we have

ˇ
ˇ
ˇ

X

n2I

�.n/nit
ˇ
ˇ
ˇ < Ne�p

log N for jtj < T:

Following the classical arguments going back to Hadamand, de-la-Vallee-
Poissin, and Landau, the above estimates lead to zero-free regions for the corre-
sponding Dirichlet L-functions. Denote

L.s; �/ D
X

n

�.n/n�s; s D � C it:

Iwaniec [26] obtained the following results.

Theorem 14. [26] Assume jL.s; �/j < M for � > 1 � �; jtj < T2. Then L.s; �/ has
no zeros in the region � > 1 � �

400 log M ; jtj < T, except for possible Siegel zeros.
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Corollary 5. [26] Assume Y and  > 0 satisfy

ˇ
ˇ
X

n�N

�.n/nit
ˇ
ˇ < N1� for N > Y; jtj < T:

Then

� > 1 � c

log Y C 1


log 1


C 1


log log qT
Y

:

From Corollary 4 and Corollary 5, one derives bounds on the Dirichlet
L-function L.s; �/ and zero-free regions the usual way. For a detailed argument,
see, for instance, Lemmas 8–11 in [26]. This leads to the following theorem.

Theorem 15. Let � be a primitive multiplicative character with modulus q. For
T > 0, let

� D c min
� 1

logP ;
log log k

.log k/ log 2K
;

1

.log qT/9=10

�

:

Then the Dirichlet L-function L.s; �/ D P

n �.n/n�s; s D � C it has no zeros in the
region � > 1 � �; jtj < T, except for possible Siegel zeros.

It follows in particular that � log qT ! 1 if logP
log q ! 0.

In certain range of k, this improves Iwaniec’s bound (See [27], Theorem 8.29.)

� D min

�

c
1

.log T/
2
3 .log log T/

1
3

;
1

log k

�

:

A well-known application of zero-free region is to primes in arithmetic progres-
sions. In 1944, Linnik proved the following theorem about the least prime in an
arithmetic progression.

Theorem 16. [31, 32] There exists c such that if .a; q/ D 1, then there is a prime
p < qc such that p 
 a mod q.

For explicit value of c in Theorem 16, Xylouris [40] has the best estimate c D 5:2

by using Heath-Brown [23, 24] (who obtained c D 5:5) proposed improvements.
Theorem 15 gives a lower c for q smooth.

Theorem 17. In Theorem 16, one may take c D 12
5

C �, assuming logP <
log q

log log q :

Estimates on short character sums are also related to Polya–Vinogradov’s theo-
rem. Based on the work of Granville and Soundararajan [19] (which characterizes
when character sums are large), Goldmakher [17] used Theorem 10 to improve
Polya–Vinogradov’s bound on

P

n<x �.n/ and obtained the following.
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Theorem 18. [18] Let � mod q be a primitive character. Then

ˇ
ˇ
ˇ

X

n<x

�.n/
ˇ
ˇ
ˇ � p

q log q
q

log3 q
� 1

log2 q
C logP

log q

� 1
4
:

When q is square free, then

ˇ
ˇ
ˇ

X

�.n/
ˇ
ˇ
ˇ � p

q
log q

.log log q/
1
4

:

Instead of Theorem 10, we use Theorem 17 (and Granville–Soundararajan) and
obtain the following.

Corollary 6. Let � mod q be a primitive character, and let

M D .log q/
9
10 C .log 2K/

log k

log log k
C logP :

Then
ˇ
ˇ
ˇ

X

n<x

�.n/
ˇ
ˇ
ˇ � p

q
p

log q
p

M
p

log log log q:

When q is square free,

ˇ
ˇ
ˇ

X

n<x

�.n/
ˇ
ˇ
ˇ � p

q
log q

.log log q/
1
2

:

Let f .x1; : : : ; xn/ 2 FqŒx1; : : : ; xn�, q D p` be a polynomial of degree d. We are
interested in bounding the exponential sum

S D
X

x1;:::;xn

ep

�

Tr
�

f .x1; : : : ; xn/
��

(13)

as well as a certain incomplete sums where the variables are restricted to a ‘box’
B � F

n
q. More specifically, we consider various instances of this question where

Deligne type estimates are not applicable, either because f is too singular or the
box B is too small. In their work on Gowers’ norms, Green and Tao [20] obtain non-
trivial bounds in the situation where Fq D Fp and d are fixed and n is large, assuming
that the value of f is not determined by a few polynomials of lower degree.

Problem 5. Obtain quantitative version of the Green–Tao result.

For Problem 5, see the recent result by Forni and Flaminio [13].
Estimates of this type are also particularly relevant to circuit complexity [21].
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Using methods from geometry of numbers, W. Schmidt [36] obtained bounds on
incomplete sums (13) over boxes, but without exploring the effect of large n or `.

Problem 6. Investigate the bounds obtained in [36] when n or ` is large.

It is possible that techniques from arithmetic combinatorics may be relevant.
For n D 1, estimates of this type are obtained in [2].
There are some other problems related to Problem 1.

Problem 7. Let V be a vector subspace of Fpn over Fp, not essentially contained
in a multiplicative translate of a subfield. Under what assumptions on dimFp V can
one obtain non-trivial bounds on

P

x2V �.x/?

The arithmetic combinatorics approach permits to go below the n=2 barrier of
classical methods. We are particularly interested in the situation where p is fixed and
n is large. Assuming � 2 Fpn a generator, one may specify further V D h� j W j 2 Si
with S � f0; 1; : : : ; n�1g. In the special case S D f0; 1; : : : ; mg, V. Shoup [38] used
the Hasse–Weil method to get results for m D O.log n/.

In the paper [8], we also succeeded in improving Karacuba’s result on character
sums of the type

X

x2I

ˇ
ˇ
ˇ

X

y2A

�.x C y/
ˇ
ˇ
ˇ; (14)

where � is a multiplicative character .mod p/, I an interval and A � Fp arbitrary.
This result was important to the recent work [16] on the distribution of quadratic
and higher order residues .mod p/. See also [25].

Further improvement on Karacuba’s result was obtained by X. Shao [37].

Theorem 19. [39] Let q 2 ZC be cube-free and � mod q be non-principal. If
A � Œ1; q� is a union of disjoint intervals I1; : : : ; Is with jAj > q1=4C"s1=2 and
jIjj > q"; .1 � j � s/ for any " > 0, then

P

n2A �.n/ has a non-trivial bound.

One could expect that for ‘most p’ better results are obtainable. However, the
following problem seems still open.

Problem 8. Show that for most p, the largest gap between quadratic residues is
o.p1=4/.

The following interesting character sum questions were highlighted in
Karacuba’s survey [29].

Problem 9. Obtain a non-trivial bound on general sums

X

x2A; y2B

�.x C y/;

when jAj 	 p
p 	 jBj.
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It is well-known that this question is related to the Paley graph conjecture and
also relevant to the theory of ‘extractor’ in computer science [1].

Problem 10. Prove that for p large and a 6D 0 .mod p/

X

1�x<H

�x C a

p

�

ƒ.x/ D o.H/;

when H 	 p
p.

Results of this type were obtained by Vinogadov, for large values of H.

Problem 11. Prove that for large p

min

�

1 � x � p W
�a C x2

p

�

D �1

�

D o.
p

p/

uniformly in 1 � a � p.

In [9], the bound p
1

2
p

e
C"

was obtained, but for a 6D 0 given.
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