
Designing an Unobtrusive Analytics Framework
for Monitoring Java Applications

Sampo Suonsyrjä(B) and Tommi Mikkonen

Department of Pervasive Computing, Tampere University of Technology,
Korkeakoulunkatu 10, 33720 Tampere, Finland
{sampo.suonsyrja,tommi.mikkonen}@tut.fi

Abstract. In software development, attention has recently been placed
on understanding users and their interactions with systems. User studies,
practices such as A/B testing, and frameworks such as Google Analytics
that gather data on production use have become common approaches in
particular in the context of the Web, where it is easy to perform frequent
updates as new needs emerge. However, when considering installable
desktop applications, the situation gets more complex. While analytics
facilities are still needed, they should address business logic, not generic
traffic as is the case with many web sites. Moreover, analytics should be
unobtrusive, and not have a high impact on the evolution of the actual
application; thus, analytics should be treated as an add-on, as the target
system may already exist. Finally, the instrumentation of features that
are observed should be easy and flexible, but the provided mechanisms
should be expressive enough for many use cases. In this paper, we exam-
ine different alternatives for implementing such monitoring mechanisms,
and report results from an experiment with Vaadin, a web framework
based on Java and Google Web Toolkit, GWT.

1 Introduction

The introduction of Agile methods [6] caused a paradigm shift in the develop-
ment of software systems: instead of starting with a set of requirements that
are all of the same value, software developers began to embrace a model where
systems are first built with only a set of key features to be later extended into a
more complete form. As more and more experience regarding the use of the sys-
tem is gathered, developers write new versions of the system which satisfy user
needs better. In fact, one can even claim that the core of iterative development
is the ability to learn in each increment, which leads to improved products.

In the process of creating the software in the above fashion, input from users
of the system can play a crucial role, given that adequate mechanisms for collect-
ing the input are available. The most traditional way is to design questionnaires
or other studies that the end users answer to guide the development, but in
particular in the field of web systems, also more sophisticated forms of gather-
ing information exist regarding users and the way the system is being used. For
instance A/B testing, where different sets of users use a slightly different ver-
sion of the software, helps in deciding between two ways to provide similar or the
c© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 160–175, 2015.
DOI: 10.1007/978-3-319-24285-9 11



Designing an Unobtrusive Analytics Framework 161

same features. Moreover, analytics frameworks such as Google Analytics provide
detailed understanding regarding how users interact with the system to perform
more complicated tasks. In general, the ability to gather all this information is
opening new possibilities for developers, because even the slightest deviations in
user behavior can be tracked and reacted upon.

Although the field of web systems can nowadays be seen to have an edge in
collecting post-deployment data, the same need is increasing in other contexts as
well, as evidenced by [8]. In this paper, we investigate techniques for monitoring
application-level user activity, as well as an option to extend the techniques to
cover installable desktop applications, too.

The goal is to track actions at the level of user interface widgets, such as
buttons, sliders, and text fields for instance. The work is based on using Java
web framework Vaadin [5], where applications are first composed with Java, and
then compiled into a form that can be deployed to the web, with the parts of
the application that form the user interface being compiled with Google Web
Toolkit [12]. As the concrete implementation mechanism for introducing ana-
lytics facilities, we experiment using aspect-oriented techniques [4] to bind an
existing design to an external data analytics framework.

The rest of this paper is structured as follows. In Sect. 2, we introduce motiva-
tion and background of the study. In Sect. 3, we introduce our research questions.
In Sect. 4, we describe our demonstrator application and how it has been con-
structed. In Sect. 5, we provide details of our implementation: showing how data
is gathered in an unobtrusive fashion and describing the design of our analytics
framework. In Sect. 6, we provide an extended discussion regarding our findings.
Finally, in Sect. 7, we draw final conclusions.

2 Background

Analytics is used by businesses of all type to better understand customers. Dur-
ing the recent years, also software engineers and software engineering organiza-
tions have understood the opportunity to use more data for making constantly
better decisions, but as even sporting teams have improved their performance
with the help of analytics, the uses for analytics seem to be fairly general [1].

2.1 Software Analytics

Pachidi et al. [11] have developed the Usage Mining Method that enables con-
ducting classification analyses, user profilings and clickstream analyses on logged
operation data. Such data is beneficial for program understanding and reengi-
neering [3]. In addition, as the size and complexity of software systems continue
to grow, decision making is becoming even more difficult in the future and thus
new solutions such as the use of analytics data are needed [2].

Kristjansson and van der Schuur have formulated the concept Software Oper-
ation Knowledge [9]. They describe that to consist of knowledge of in-the-field



162 S. Suonsyrjä and T. Mikkonen

performance, quality and usage of software, and knowledge of end-user experi-
ence and end-user feedback. The researchers continue with stating how software
vendors have a great interest in acquiring such knowledge, but that the system-
atic practice of gathering, analyzing and acting on such knowledge is still limited.
Correspondingly, this kind of in-the-field knowledge could benefit usability stud-
ies as the lack of long-term data collection is considered as one of the challenges
in measuring usability [7].

In general, it is possible to collect usage metrics by executing software appli-
cations, but this usually requires some sort of modifications to the source code
of the target application. There are a few exceptions however. For example, the
Patina system [10] uses Microsoft Active Accessibility API to collect accessibility
data, and thus no altering of the source code is needed. The system creates a
so-called heatmap, which visualizes the content and location of the user interface
controls visible in the application. As a drawback, supporting the accessibility
API usually requires some extra work from the application developers and so
the coverage of the accessibility API can vary.

As for concrete implementations, one of the most commonly used analysis
frameworks is Google Analytics (http://www.google.com/analytics/), which is
presently being used by an increasing number of web sites. With it, the devel-
opers of a web site can track traffic of a monitored web site and view it in a
form that is easy to interpret. The data provides information regarding visitors,
their geographical locations, the time they remain on the site, what is the path
that users take on the web site, and so on. Since the system operates in the
Web, its operation can rely on web protocols that reveal these properties. For a
generic desktop application, however, these facilities are not immediately avail-
able. Moreover, when considering installable applications, data to be collected
is often application specific, not web traffic related as is the case with Google
Analytics. However, the popularity of Google Analytics demonstrates that there
is an increasing interest regarding user data, which can be made available in an
unobtrusive fashion.

2.2 Aspect-Oriented Programming

Aspect-oriented software development provides means for capturing cross-cutting
concerns and modularizing them as manageable units [4]. Tackling the issue of
tangled code, aspect-oriented programming languages such as AspectJ provide
means to insert additional operations to a target program in an unobtrusive
fashion with a new construct, so-called aspect. Aspects in turn provide increased
opportunities for advanced modularity.

At the implementation level, an AspectJ aspect always includes at least two
parts: a pointcut and an advice, both of which are code snippets. The pointcut
is used to describe the point where the execution of the target program is paused
for inserting the additional code programmed in the advice part. Figure 1 pro-
vides a simple aspect code that introduces a simple logging facility that records
the parameters and the return value of a method call. In this aspect, the point-
cut is defined to take effect around the defined function of our example class,

http://www.google.com/analytics/


Designing an Unobtrusive Analytics Framework 163

MyClass::MyFunc. The Logger aspect takes effect as the function is called, and
the aspect code is executed both before and after actually executing the original
method in a fashion where its execution is not affected. The operations that are
being executed before and after running the method can be arbitrary; however
for the purposes of software analytics, these include data collection operations.

aspect Logger {

pointcut loggedFunction = call("void MyClass::MyFunc(...)");

advice loggedFunction:around() {

// Log call and method parameters

tjp->Proceed(); // Run MyClass::MyFunc

// Log results

}

}

Fig. 1. A sample aspect.

3 Research Questions

The research questions we formed to evaluate our usage data collection and
analysis framework are the following.

RQ1: To What Extent can a Data Collecting Feature be Implemented
Without Compromising the Evolution of the Target Program? As a
starting point for our research, we have taken a view where the design and
evolution of the target system, in other words the program from which usage
data is to be collected, must remain as independent from data collection and
analysis as possible. High priority of this independence is motivated by the fact
that in the end analytics data leads to changes in the target program. Therefore,
it is crucial that the target program can be under constant change and these
data can still be collected from it. This leads to the selection of implementation
techniques that are as unobtrusive as possible.

As the evolution of the target program results in data being collected from
different versions of the target program, the approach used for collecting data
has to ensure that these data are still comparable between the different versions.
Thus, not only do we want to find out specific types of data that can be collected
with our framework, but also if the data is adequate enough to be compared
between different versions of the target program. Finally, as we aim at designing a
data collection framework that is independent of the underlying target program,
we also introduce an option to reuse the development effort invested in the
framework in different setups, including desktop applications as well as web
systems built using Java.



164 S. Suonsyrjä and T. Mikkonen

RQ2: What Types of Data can be Collected with the Given Approach?
As with any technology, there are restrictions regarding the data that can be
collected. In this paper, we are interested in interactions between the user and
the application, and therefore we focus on data that is associated with user
interactions only. Thus, interactions with e.g. external actors or machines are
beyond our scope in this paper.

RQ3: How to Connect the Data Collecting Feature with an Analysis
Framework? Being able to record data from a user interface is only a beginning
in the way towards understanding how an application is being used. Therefore,
it is necessary to load the resulting usage data to an analysis system, which can
then be used to further process the data into a meaningful form.

4 Demonstrator Application

To answer the above research questions, we next describe a demonstrator appli-
cation. First, we introduce the platform on top of which the system is built. Then,
we describe the application. Finally, we show how manual instrumentation could
be carried out for this application.

4.1 Vaadin Web Framework

Vaadin [5] is an open source framework that is used for developing Rich Internet
Applications (RIA). Vaadin applications are written using Java, and they are
transformed into AJAX applications with the facilities of Google Web Toolkit
(GWT) [12]. The architecture of the system is illustrated in Fig. 2.

Vaadin applications are implemented similarly to Java Standard Edition
desktop applications, with all the functionality written using Java. However,
instead of using the usual Java UI libraries like AWT, SWT, or Swing, a specific
set of Vaadin UI components is used. These components can be compiled into
a form that is runnable inside the browser, following the development process
of GWT. This process is illustrated in Fig. 3. In addition, new custom made UI
components can be implemented when needed to create systems with different
kinds of look-and-feel.

4.2 Demonstration Application

To evaluate the designed framework for usage data collection, we selected a
Vaadin application, which is fully functional and already developed yet simple
enough to be the first test application. The source code is available for download
at https://github.com/vaadin/dashboard-demo, and a working demo is located
at http://demo.vaadin.com/dashboard.

The target application, called QuickTickets Dashboard Demo, demonstrates
how the Vaadin framework can be used to create a simple dashboard web applica-
tion. The main dashboard view is initialized as an object of DashboardView class.

https://github.com/vaadin/dashboard-demo
http://demo.vaadin.com/dashboard


Designing an Unobtrusive Analytics Framework 165

Fig. 2. Vaadin architecture. Image adapted from [5]

Fig. 3. GWT process of compiling Java to HTML and JavaScript [12]

During the initialization, several objects of HorizontalLayout class are instan-
tiated and pushed to the view with an addComponent method. These include
components such as a toolbar and several rows. Buttons are added correspond-
ingly to these layout components in the same manner. In Fig. 4, we demon-
strate the initialization of a dashboard object on code level along with a toolbar
(a horizontalLayout object) and a notify button.

In the following, we demonstrate how collecting usage data works by focusing
on buttons that can be pressed by users. While this obviously does not cover all
the dimensions of software operation knowledge, this restriction simplifies the
presentation to a form that is concrete enough to demonstrate at a detailed level
how data collection works.



166 S. Suonsyrjä and T. Mikkonen

public DashboardView() {

HorizontalLayout top = new HorizontalLayout();

addComponent(top);

Button notify = new Button(’2’);

Notify.addClickListener(

new ClickListener(){

...

});

top.addComponent(notify);

};

Fig. 4. Initialization of a dashboard object.

4.3 Manual Method as a Motivation

To show how the proposed automatic data collection feature simplifies develop-
ers’ tasks, we first provide a manual implementation of the same function. To
this end, we inserted data collecting features manually ourselves to specific places
in the original source code of the target application. Thus, this approach is an
intrusive one as it essentially changes the source code of the target application,
which is built by someone else.

First, we developed a class called DataLogger.java. This class was used for
two important tasks. On one hand, it included public method logButtonClick
and on the other hand it stored these button clicks to a SQL type of a container.
Button and ClickEvent objects were used as parameters for the method. It
draws information about the button and its context and then stores it to the
aforementioned temporary container. This information could be of course stored
in some other way as well, but for our study case this was not seen important.
However, some storing options are discussed in the future work section. This class
itself was then included in the same java package with the target applications
source code files. Up until this point the target applications source code was not
altered.

In the unobtrusive part, the whole source code of the target application was
then searched through to find each and every place where a new button was
instantiated and added to the UI as seen in Fig. 4. As with every button there
was also an instantiation of its ClickListener, we always inserted a call to our
logEvent method within this instantiation. In Fig. 5, we provide a code snippet
that elaborates how this implementation was done.

Clearly, we only used one intrusive insertion to the application, the call to
method Logger.logEvent. However, even with this simple application, there
were a total of 33 of this kind of button instantiations in the target application, all
of which had to be extended with a similar call to our data logging method. While
33 insertions can be implemented once quite fast, the devil is in the complexity
that most likely starts to build up when such implementation process is repeated
for a while. Especially in a case where the target application is developed by a
different person than the one implementing the usage data logging features, there



Designing an Unobtrusive Analytics Framework 167

final Button signin = new Button("Sign In");

signin.addClickListener(

new ClickListener() {

public void buttonClick(ClickEvent e) {

Logger.logEvent(signinEvent, e);

...

}

}

);

Fig. 5. Manual implementation of data collection.

is always the risk of forgetting to add these logging features to all the necessary
places. Furthermore, even if a special script was developed to insert the logging
features automatically to specific places, one would have to be very careful in
developing such a script. Although this should reduce the risk of forgetting to
log a button at all, any possible extra calls to the data logging methods would
then again distort the data and its reliability as button clicks could be recorded
not just once but twice or trice and so on.

In the regard of data comparability the manual approach, qualities depend
greatly on the specific implementation. In this case study, our implementation
gathered data only straight from the context of the target application. This
included data types such as buttons caption, session id, and URI fragment.
Although having all the data coming from the Vaadin frameworks context creates
quite a reliable starting point for a further usage data analysis, target application
evolution and changes in for example buttons captions might lead to inconsis-
tencies in collected usage data.

In what comes to the flexibility of the manual approach and usefulness of the
data it collects, we saw this approach performing understandably well. Making
the application log new kinds of data types was as easy as making it log the first
types of data. Of course in a case with a larger-scale application this might take
more than a blink of an eye. However, the point in the flexibility criterion is to
evaluate if the approach is able to collect also new kinds of data and the manual
approach certainly has that as an advantage. Similarly, it collects just the types
of data one wants and thus these data should be as useful as any.

5 Data Collection and Analysis Framework

To support usage data collection, we designed a framework where several already
existing techniques and tools are used (Fig. 6). These key components are:

– AspectJ is used for creating an unobtrusive monitoring mechanism for the
target application.

– Fluentd (www.fluentd.org) is used as the mechanism for unified data collec-
tion.

www.fluentd.org


168 S. Suonsyrjä and T. Mikkonen

– Elasticsearch (www.elasticsearch.org/overview/elasticsearch) is used as a real-
time storage for flexible searches.

– Kibana (www.elasticsearch.org/overview/kibana) is used for creating real-
time visualizations and analytics.

This stack that combines Fluentd, Elasticsearch, and Kibana can be considered
as an open source alternative to Splunk (www.splunk.com) log management
software.

Fig. 6. The designed framework for unobtrusive analytics.

5.1 Aspect-Oriented Usage Monitoring

The aspect-oriented approach to inserting additional features into existing appli-
cations is unobtrusive by nature. As already mentioned, we demonstrate this
facility by focusing on buttons. To this end, we wish to intervene in the exe-
cution every time a button is being added to a UI component (see Fig. 4 in
Subsect. 4.2). To attach a pointcut and a logging advice to such call, aspect
AddComponentListener was created as shown in Fig. 7.

In this aspect, pointcut called addComponentCall defines that each time
method addComponent is called with a button as its parameter, the execution

www.elasticsearch.org/overview/elasticsearch
www.elasticsearch.org/overview/kibana
www.splunk.com


Designing an Unobtrusive Analytics Framework 169

public aspect AddComponentListener {

// Button clicks are stored in this container.

DataLogger dataCollector = new DataLogger();

// To be executed when a button is added to the layout.

pointcut addComponentCall(Button b):

call(* *.addComponent(*)) && args(bb);

// To be executed after a button has been added to layout.

after(final Button b):

addComponentCall(b) {

// Clicks are listened to with a basic Vaadin ClickListener.

b.addClickListener(

new Button.ClickListener() {

public void click(ClickEvent e) {

dataCollector.logEvent(b, e);

}

});

}

}

Fig. 7. Data collector aspect, its pointcut and advice.

Fig. 8. Insertion of an additional click listener with an aspect.

can be cut for the corresponding advice part. This part will then define an
additional click listener. This is shown in Fig. 8.

Finally, a remark must be made regarding the degree of unobtrusiveness of
the approach. While the effect of AspectJ code is unobtrusive to the underlying
target program, tooling is affected by AspectJ. To begin with, for the build
process, a dependency to AspectJ must be inserted to the target application’s
project file. Additionally, the AspectJ tools must be included in the used IDE,
in our case Eclipse.



170 S. Suonsyrjä and T. Mikkonen

5.2 Collecting Data with Fluentd

Fluentd was implemented in quite a similar fashion as the AspectJ for monitoring
features. However, wherein AspectJ was used for unobtrusively monitoring the
usage, Fluentd was used for collecting usage data from the usage points defined
with AspectJ. Thus, the core idea of Fluentd is to be the unifying layer between
different types of log inputs and outputs. This is illustrated in Fig. 9, in which a
box is a component and the arrows describe the data flow.

Fig. 9. Architecture of Fluentd and its plugins. Image adapted from [fluentd.org/
architecture]

Figure 9 illustrates the architecture of Fluentd. Its various plugins for data
input make it easier to unify the logging layer of an application or even an
application ecosystem. There are a number of different input plugins available
for several programming languages. In this study, we obviously used an input
plugin for Java applications. However, Fluentd supports inputs not only from
different language applications but also from entirely different kinds of inputs.
These include for example access and error logs from web servers and system logs.

The concrete implementation of Fluentd into the target application required
that a Fluentd dependency was inserted into the source code of the target appli-
cation. This was done similarly as with the AspectJ facilities. Additionally, we
installed and ran Fluentd on the same machine with the target application. As
these requirements are met, the Fluentd process is able to receive the inputs
described in Fig. 10. As described with the usage monitoring aspect in Fig. 7,
logButtonClick method is called whenever a button is clicked.

Similar to the input plugins of Fluentd, its plugins for storing data stan-
dardize that front. Depending on the use case, data can be stored in different
formats for archiving and analysis, for example. In this study, we used Fluentd
for parsing the usage data into JSON and then forwarding them for analysis in
Elasticsearch. As seen in Fig. 10, there were different types of usage data related
to a button click, its context, and the button itself. These data were first stored
in a temporary Java Hashmap object but then forwarded to Fluentd for its
filtering, buffering, and rerouting processes.

http://fluentd.org/architecture
http://fluentd.org/architecture


Designing an Unobtrusive Analytics Framework 171

public class DataLogger {

private static FluentLogger LOG =

FluentLogger.getLogger("button.click");

public void logButtonClick(Button b, ClickEvent event){

Map<String, Object> data = new HashMap<String, Object>();

data.put("Uri Fragment", Page.getCurrent().getUriFragment());

data.put("Page", Page.getCurrent().toString());

data.put("Button Caption", b.getCaption());

data.put("Button ID", b.getId());

...

data.put("Click X", event.getClientX());

data.put("Click Y", event.getClientY());

LOG.log("click", data);

}

}

Fig. 10. Collecting data from a Java application with Fluentd.

5.3 Elasticsearch and Kibana

In our study setup, we used Fluentd and Elasticsearch on the same localhost.
Fluentd sent the collected usage data to Elasticsearch, which stored them into
its document oriented database without any pre-configurations. As the data
was already formatted in JSON, the field names were already there. This in
combination with the full-text search abilities made analyzing facilities easily
accessible. In addition, Elasticsearch supports real-time access to exploring the
stored data.

However, Elasticsearch is only storing the data and making it searchable.
Therefore, Kibana was used as a dashboard for displaying the data from Elas-
ticsearch. Through this dashboard, one can make queries and then visualize the
results in various different forms. An example visualization is shown in Fig. 11.
In the visualization there is a pie chart illustrating how many times a specific
button has been clicked.

6 Discussion

To discuss our findings, we next revisit our research questions one by one. In
addition, we will also provide some directions for future research.

6.1 Research Questions Revisited

Based on our experiences with the proposed framework, we revisit the paper’s
questions as follows.



172 S. Suonsyrjä and T. Mikkonen

Fig. 11. Screenshot of a Kibana visualization.

RQ1: To What Extent can a Data Collecting Feature be Implemented
Without Compromising the Evolution of the Target Program? Aspect-
oriented approach to inserting additional features is quite unobtrusive by nature,
which is supported by the code snippets. Also in this case, the usage monitoring
facilities were inserted without changing the source code of the target appli-
cation. The only parts which needed some modifications were the dependency
addition to a build file and an insertion of an AspectJ file.

As these modifications were not altering the source code itself, the target
application’s evolution was not compromised nearly as much as with the manual
approach. In this sense, if the target application’s next version was to include
new buttons, the aspect-oriented monitoring would notice them just as they did
with all the rest. Therefore, the approach allows the target application to scale
in that way without any additional efforts needed to include to the additional
buttons as new data collecting points.

However, if the target application was to be changed in the way its buttons
are instantiated, the aspect-oriented monitoring needs to be changed correspond-
ingly. Even in this kind of a case though, the modification to the monitoring
pointcut would most likely have to be done only once.



Designing an Unobtrusive Analytics Framework 173

RQ2: What Types of Data can be Collected with the Given Approach?
With an aspect-oriented monitoring approach, pointcuts could be made on a
vast variety of different points in the execution flow. For instance, we could have
associated the pointcuts with the initialization of objects of a particular class, as
well as any other public method. The same goes for advices, which can contain
almost arbitrary code that is needed for monitoring.

Additionally, aspect-oriented techniques support various different types of
data that can be collected. Software operation knowledge in general includes
information such as in-the-field performance, quality and usage of software, and
knowledge of end-user experience, and end-user feedback, and to some extent
this is necessarily platform-specific. In our case, the Vaadin framework provides
an API to get such data directly from the platform. For instance, there are
straightforward methods to get information on timestamps, URI fragments, but-
ton captions, and so on. With such information, it is possible to gain knowledge
for example about the clickstream a user leaves behind, the average time they
spent on a specific page, or what kind of errors are logged the most.

All in all, the aspect-oriented approach provides us with the same flexibility
in gathering different types of data as the manual approach did. With such
arbitrary data types, the problems of analytics are more about asking the right
questions than getting enough data.

RQ3: How to Connect the Data Collecting Feature with an Analysis
Framework? Although collecting data can be done in most cases in a various
ways, further exploring and analyzing of data might turn out more difficult.
The use of a standardized analysis framework might require the data to be in a
specific format. In this regard, the data logging tool’s ability to unify the data
it collects becomes important. In this study, Fluentd was used for collecting
data, and it also performed the unifying by turning the data into the JSON
format. This again was a format that the data storing solution supported and
the visualization tool had an access to. Thus, the data collection tool’s unifying
feature enabled us to form an end-to-end analytics framework starting from the
usage monitoring and peaking in the visualizations.

In circumstances such as these, general collection frameworks can provide a
way to standardize parts of the logging even if data inputs and outputs varied
from time to time. This becomes especially important when the aim is to combine
data from different kinds of sources such as access, error and application logs.

6.2 Future Work

The work reported in this paper is only the very beginning of research regarding
using aspects as a tool for analyzing user interactions. As already pointed out,
at present we have a mechanism for collecting the data, and next challenge is
to figure out which part of the data is truly meaningful, and how should the
gathered data be used. Some of the directions for future work are listed below.



174 S. Suonsyrjä and T. Mikkonen

Extending the Measurement Point Set. In addition to collecting straightforward
data on user actions, broadening the focus to cover attributes such as in-the-
field performance or end-user feedback can turn out as helpful opportunities for
various different fields. For instance, a short user experience survey could be
injected as an aspect into a specific point of execution flow, an error log could be
sent to developers when a system crashes, or a sorry-note could be shown to the
user in case of system performing under a specified level. Being able to perform
this in a non-intrusive fashion could improve user experience considerably, with
no risk to the future evolution of the system.

Experimenting with Real-Life Apps. Obviously, the feasibility of the above data
collection approaches is domain dependent, and the type of the application as
well as the setup created for testing has an impact on whether or not operations
are offline or real time. Therefore, experimenting the different approaches with
real-life applications and developer needs forms an important part of future work.
Our present strategy is to execute these experiments together with Vaadin and
the associated developer community. In addition, once we reach a maturity level
where the analysis framework can be used in production use, we wish to study
how interaction data that has been automatically collected relates to user studies
executed in more conventional fashion.

7 Conclusions

Fueled by the opportunities provided by the web and associated tools, analytics
regarding the use of software applications have become a central aspect in soft-
ware development. The rationale is that data regarding the fashion a software
system is used helps in understanding the true needs of end users. This in turn
enables the design of more satisfying software applications, with improved perfor-
mance, simplified interactions, and superior user experience. However, gathering
data on real-life use of applications is sometimes difficult, in particular when con-
sidering installable applications that cannot be easily updated remotely. More-
over, creating practical tools for analysis commonly requires application specific
attention.

In this paper, we are experimenting how analytics facilities similar to web
applications can be introduced to desktop and Rich Internet Applications writ-
ten in Java. To keep the application intact from analytics facilities, we are using
AspectJ as the implementation technique for introducing application-level mon-
itoring, which allows us to hook analytics facilities to user interface events in a
non-intrusive fashion. As for analysis, we are using an already existing tool set,
where open source systems play a key role. The implementation we have created
is concise, and it can be easily generalized to other applications if needed.

Based on our experiences reported in this paper, we find aspects a technique
that is well-suited for creating data extraction features for already existing appli-
cations. In particular, given that the applications follow certain conventions, it
appears to be relatively straightforward to create join points that are easily



Designing an Unobtrusive Analytics Framework 175

repeatable. Since we wish to track user actions, starting with user interface wid-
gets is the natural starting point and almost all user interaction mechanisms
in modern programs follow certain patterns, we believe that the results we have
obtained can be generalized to many other environments, too. Moreover, already
existing analysis tools provide support for filtering, analysing and visualizing
data at real-time.

Acknowledgment. The authors wish to thank Digile Need4Speed program (http://
www.n4s.fi/) for its support for this research.

References

1. Begel, A., Zimmermann, T.: Analyze this! 145 questions for data scientists in soft-
ware engineering. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 12–23. ACM (2014)

2. Buse, R.P., Zimmermann, T.: Information needs for software development analyt-
ics. In: Proceedings of the 34th International Conference on Software Engineering,
pp. 987–996. IEEE Press (2012)

3. El-Ramly, M., Stroulia, E.: Mining software usage data. In: Proceedings of 1st
International Workshop on Mining Software Repositories (MSR 2004), pp. 64–68
(2004)

4. Filman, R., Elrad, T., Clarke, S.: Aspect-Oriented Software Development. Addison-
Wesley Professional, Reading (2004)

5. Grönroos, M.: Book of Vaadin. Uniprint, Turku (2011)
6. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley Longman

Publishing Co. Inc., Boston (2002)
7. Hornbaek, K.: Current practice in measuring usability: challenges to usability stud-

ies and research. Int. J. Hum. Comput. Stud. 64, 79–102 (2006)
8. Juergens, E., Feilkas, M., Herrmannsdoerfer, M., Deissenboeck, F., Vaas, R., Prom-

mer, K.: Feature profiling for evolving systems. In: Proceedings of the 19th Inter-
national Conference on Program Comprehension, pp. 171–180. IEEE (2011)

9. Kristjánsson, B., van der Schuur, H.: A Survey of Tools for Software Opera-
tion Knowledge Acquisition. Department of Information and Computing Sciences,
Utrecht University, Technical report UU-CS-2009-028 (2009)

10. Matejka, J., Grossman, T., Fitzmaurice, G.: Patina: dynamic heatmaps for visu-
alizing application usage. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 3227–3236. ACM, April 2013

11. Pachidi, S., Spruit, M., van de Weerd, I.: Understanding users behavior with soft-
ware operation data mining. Comput. Hum. Behav. 30, 583–594 (2014)

12. Perry, B.W.: Google Web Toolkit for Ajax. OReilly Short Cuts. OReilly (2007)

http://www.n4s.fi/
http://www.n4s.fi/

	Designing an Unobtrusive Analytics Framework for Monitoring Java Applications
	1 Introduction
	2 Background
	2.1 Software Analytics
	2.2 Aspect-Oriented Programming

	3 Research Questions
	4 Demonstrator Application
	4.1 Vaadin Web Framework
	4.2 Demonstration Application
	4.3 Manual Method as a Motivation

	5 Data Collection and Analysis Framework
	5.1 Aspect-Oriented Usage Monitoring
	5.2 Collecting Data with Fluentd
	5.3 Elasticsearch and Kibana

	6 Discussion
	6.1 Research Questions Revisited
	6.2 Future Work

	7 Conclusions
	References


