
 123

LN
BI

P
23

0

25th International Workshop on Software Measurement
and 10th International Conference on Software Process
and Product Measurement, IWSM-Mensura 2015
Kraków, Poland, October 5–7, 2015, Proceedings

Software
Measurement

Andrzej Kobylinski
Beata Czarnacka-Chrobot
Jarosław Swierczek (Eds.)

Lecture Notes
in Business Information Processing 230

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Andrzej Kobyliński • Beata Czarnacka-Chrobot
Jarosław Świerczek (Eds.)

Software
Measurement
25th International Workshop on Software Measurement
and 10th International Conference on Software Process
and Product Measurement, IWSM-Mensura 2015
Kraków, Poland, October 5–7, 2015
Proceedings

123

Editors
Andrzej Kobyliński
Institute of Information Systems and
Digital Economy

Warsaw School of Economics
Warsaw
Poland

Beata Czarnacka-Chrobot
Institute of Information Systems
and Digital Economy

Warsaw School of Economics
Warsaw
Poland

Jarosław Świerczek
Polish Software Measurement Association
Warsaw
Poland

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-24284-2 ISBN 978-3-319-24285-9 (eBook)
DOI 10.1007/978-3-319-24285-9

Library of Congress Control Number: 2015948855

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The pressure for more efficient software development and maintenance processes,
delivering appropriate quality software within a certain budget and time frame, is
constantly increasing. Software measurement is a key tool in helping to manage and to
control software development and maintenance projects. Measurement is essential to
any engineering activity, by increasing the scientific and technical knowledge for both
the practice of software development and maintenance and for empirical research in
software technology. For this reason, there appeared a need to organize a forum where
new ideas from the world of academic research on software measurement could meet
up with practical improvements from industry.

The IWSM Mensura conference is the result of the joining of forces of the Inter-
national Workshop on Software Measurement (IWSM) and the International Confer-
ence on Software Process and Product Measurement (Mensura).

The International Workshop on Software Measurement (IWSM) has a long tradition
that started at the beginning of the 1990s with a small working group in Germany with
Prof. Reiner Dumke, Prof. Horst Zuse, and Christof Ebert. In the late 1990s, Prof. Alain
Abran with his team from the University of Québec joined in. From the beginning,
IWSM was organized in various German cities, and later, until 2006, IWSM alternated
between the Montréal area in Canada and German cities (e.g., Magdeburg, Berlin,
Regensburg, Mannheim, Königs Wusterhausen, and Potsdam).

Independent of the IWSM workshop, the International Conference on Software
Process and Product Measurement (Mensura) was founded in 2006 by Prof.
Juan J. Cuadrado Gallego from the University of Alcalá (Spain). The first meeting was
held in Cádiz.

To foster research, practice, and exchange of experiences and best practices both
conferences joined forces and held a joint conference on the Island of Mallorca (2007).
Since then, both conferences have acted as a combined conference and the event is now
traveling around the world: Munich (Germany, 2008), Amsterdam (Netherlands, 2009),
Stuttgart (Germany, 2010), Nara (Japan, 2011), Assisi (Italy, 2012), Ankara (Turkey,
2013), and Rotterdam (Netherlands, 2014). This year, IWSM Mensura was organized
in Cracow (Poland) by the Polish Software Measurement Association and the Warsaw
School of Economics (SGH), the oldest and most prestigious Polish university of
economics and business. This year, two anniversaries coincided: it was the 25th IWSM
and the 10th Mensura and the 9th joint conference IWSM Mensura.

This year, the IWSM Mensura conference attracted 32 submissions from 25
countries from all continents. They were rigorously reviewed by 68 members of the
Program Committee representing 26 countries. As a result, 13 full papers, presenting
novel research and industrial results, written by authors originating from 17 countries
were selected for publication in this volume.

Apart from the main conference, satellite events, i.e., workshops, sponsors’ pre-
sentations, and a poster session, took place during the conference.

We would like to thank everyone who contributed to the IWSM Mensura confer-
ence. First of all we thank the authors for being ready to present their research, we
appreciate the invaluable contribution of the members of the Program Committee, and
we thank all the members of the local organization team for their help in the organi-
zation of the conference. We acknowledge the EasyChair development team for pro-
viding a convenient tool for organizing the process of reviewing and selecting the best
papers and the Springer publishing team for their collaboration. Last but not least, we
thank the Steering Committee and we hope that the IWSMMensura 2015 conference in
Cracow will be a memorable link in the IWSM Mensura conference series.

July 2015 Andrzej Kobyliński
Beata Czarnacka-Chrobot

Jarosław Świerczek

VI Preface

Conference Organization

General Chair

Andrzej Kobyliński Warsaw School of Economics, Poland

Program Co-chairs

Beata Czarnacka-Chrobot Warsaw School of Economics, Poland
Jarosław Świerczek Polish Software Measurement Association, Poland

Program Committee

Silvia Abrahao Universitat Politècnica de València, Spain
Alain Abran ÉTS, University of Quebec, Canada
Mauricio Aguiar TI Metricas, Brazil
Pierre Almén ImproveIT, Sweden
Rafa Al-Qutaish ÉTS, University of Quebec, Canada
Tiago Alves Microsoft, Portugal
Sousuke Amasaki Okayama Prefectural University, Japan
Lefteris Angelis Aristotle University of Thessaloniki, Greece
Luigi Buglione ÉTS, University of Quebec, Canada and Engineering.

IT, Italy
Manfred Bundschuh DASMA, Germany
Tom Cagley David Consulting Group, USA
Ramiro Carballo Spain
Laila Cheikhi ENSIAS, Morocco
Marcus Ciolkowski QAware GmbH, Germany
Beata Czarnacka-Chrobot Warsaw School of Economics, Poland
Maya Daneva NESMA, Netherlands
Ton Dekkers NESMA, Netherlands
Onur Demirörs ODTÜ, Turkey
Jean-Marc Desharnais ÉTS, University of Quebec, Canada
Reiner Dumke University of Magdeburg, Germany
Christof Ebert Vector Consulting, Germany
Thomas Fehlmann Euro Project Office AG, Switzerland
Filomena Ferrucci Università di Salerno, Italy
Dan Galorath Galorath, USA
Çigdem Gencel Free University of Bolzano-Bozen, Italy
Marcela Genero University of Castilla-La Mancha, Spain
Naji Habra PReCISE Research Center University of Namur,

Belgium

Harold van Heeringen Sogeti Nederland B.V., Netherlands
Emilio Insfran Universitat Politècnica de València, Spain
Jens Bæk Jørgensen Mjølner Informatics A/S, Denmark
Alpay Karagöz Innova IT Solutions, Turkey
Andrzej Kobyliński Warsaw School of Economics, Poland
Eberhard Kranich Euro Project Office AG, Germany
Rob Kusters Technische Universiteit Eindhoven, Netherlands
Luigi Lavazza Università degli Studi dell'Insubria, Italy
Jean-Louis Letouzey Inspearit, France
Mathias Lother Robert Bosch GmbH, Germany
Beatriz Marín Universidad Diego Portales, Chile
Roberto Meli DPO, Italy
Arlene Minkiewicz PRICE Systems, LLC, UK
Eduardo Miranda Carnegie Mellon University, USA
Yoshiki Mitani Japan
Akito Monden NAIST, Japan
Maurizio Morisio Politecnico di Torino, Italy
Makoto Nonaka Tokyo University, Japan
Rory O’Connor Dublin City University & Lero-ISERC, Ireland
Olga Ormandjieva Concordia University, Canada
Kai Petersen Blekinge Institute of Technology/Ericsson AB, Sweden
Keith Phalp Bournemouth University, UK
Geert Poels Ghent University, Belgium
Grzegorz Poręcki Polish Software Measurement Association, Poland
Nicolas Porta Daimler TSS, Germany
Rudolf Ramler Software Competence Center Hagenberg GmbH,

Austria
Gabriela Robiolo Universidad Austral, Argentina
Andreas Schmietendorf Berlin School of Economics and Law and

Otto-von-Guericke-Universität Magdeburg,
Germany

Asma Sellami ISIMS, Tunisia
Martin Shepperd Brunel University, UK
Miroslaw Staron University of Goetheborg, Sweden
Charles Symons COSMIC, UK
Jarosław Świerczek Polish Software Measurement Association, Poland
Ayça Tarhan Hacettepe University, Turkey
Sylvie Trudel Université du Québec à Montréal, Canada
Francisco Valdés Souto SPINGERE, Mexico
Monica Villavicencio ESPOL, Ecuador
Frank Vogelezang NESMA, Netherlands
Stefan Wagner University of Stuttgart, Germany
Dietmar Winkler Vienna University of Technology, Austria
Chris Woodward Chris Woodward Associates Ltd., UK

VIII Conference Organization

Organization Committee

Grzegorz Poręcki Polish Software Measurement Association, Poland
Bogumiła Różyńska Polish Software Measurement Association, Poland

IWSM Mensura Steering Committee

Alain Abran École de Technologie Supérieure – ETS, Université du
Québec, Montréal, Canada

Onur Demirörs Graduate School of Informatics, Middle East Technical
University, Ankara, Turkey

Sponsors

Conference Organization IX

Contents

A Suite of Rules for Developing and Evaluating Software Quality Models . . . 1
Anas Bassam AL-Badareen, Jean-Marc Desharnais, and Alain Abran

The Effects of Duration-Based Moving Windows with Estimation
by Analogy . 14

Sousuke Amasaki and Chris Lokan

Software or Service? That’s the Question! . 30
Luigi Buglione, Alain Abran, Christiane Gresse von Wangenheim,
Fergal Mc Caffery, and Jean Carlo Rossa Hauck

A Process to Improve the Accuracy of MkII FP to COSMIC Size
Conversions: Insights into the COSMIC Method Design Assumptions 46

Aveek Dasgupta, Cigdem Gencel, and Charles Symons

Applying Manufacturing Performance Figures to Measure Software
Development Excellence . 62

Andreas Deuter and Hans-Jürgen Koch

Quantitative Functional Change Impact Analysis in Activity Diagrams:
A COSMIC-Based Approach . 78

Mariem Haoues, Asma Sellami, Hanêne Ben-Abdallah,
and Nourchène Elleuch Ben Ayed

Application of Function Points and Data Mining Techniques for Software
Estimation - A Combined Approach . 96

Przemysław Pospieszny, Beata Czarnacka-Chrobot,
and Andrzej Kobyliński

Functional Size Measurement for Processor Load Estimation in AUTOSAR . . . 114
Hassan Soubra, Alain Abran, and Mehdi Sehit

Selecting the Right Visualization of Indicators and Measures – Dashboard
Selection Model . 130

Miroslaw Staron, Kent Niesel, and Wilhelm Meding

Measurement-as-a-Service – A New Way of Organizing Measurement
Programs in Large Software Development Companies 144

Miroslaw Staron and Wilhelm Meding

http://dx.doi.org/10.1007/978-3-319-24285-9_1
http://dx.doi.org/10.1007/978-3-319-24285-9_2
http://dx.doi.org/10.1007/978-3-319-24285-9_2
http://dx.doi.org/10.1007/978-3-319-24285-9_3
http://dx.doi.org/10.1007/978-3-319-24285-9_4
http://dx.doi.org/10.1007/978-3-319-24285-9_4
http://dx.doi.org/10.1007/978-3-319-24285-9_5
http://dx.doi.org/10.1007/978-3-319-24285-9_5
http://dx.doi.org/10.1007/978-3-319-24285-9_6
http://dx.doi.org/10.1007/978-3-319-24285-9_6
http://dx.doi.org/10.1007/978-3-319-24285-9_7
http://dx.doi.org/10.1007/978-3-319-24285-9_7
http://dx.doi.org/10.1007/978-3-319-24285-9_8
http://dx.doi.org/10.1007/978-3-319-24285-9_9
http://dx.doi.org/10.1007/978-3-319-24285-9_9
http://dx.doi.org/10.1007/978-3-319-24285-9_10
http://dx.doi.org/10.1007/978-3-319-24285-9_10

Designing an Unobtrusive Analytics Framework for Monitoring
Java Applications . 160

Sampo Suonsyrjä and Tommi Mikkonen

A Functional Software Measurement Approach to Bridge the Gap Between
Problem and Solution Domains. 176

Erdir Ungan and Onur Demirörs

Improving the COSMIC Approximate Sizing Using the Fuzzy Logic
EPCU Model . 192

Francisco Valdés Souto and Alain Abran

Author Index . 209

XII Contents

http://dx.doi.org/10.1007/978-3-319-24285-9_11
http://dx.doi.org/10.1007/978-3-319-24285-9_11
http://dx.doi.org/10.1007/978-3-319-24285-9_11
http://dx.doi.org/10.1007/978-3-319-24285-9_11
http://dx.doi.org/10.1007/978-3-319-24285-9_11
http://dx.doi.org/10.1007/978-3-319-24285-9_11

A Suite of Rules for Developing and Evaluating
Software Quality Models

Anas Bassam AL-Badareen1(&), Jean-Marc Desharnais2,
and Alain Abran2

1 Jerash University, Jerash, Jordan
anas_badareen@hotmail.com

2 École de Technologie Supérieure, Montreal, Canada
{jean-marc.desharnais,alain.abran}@etsmtl.ca

Abstract. Software quality has become a critical and essential aspect in the
success of many software companies and products. Since 1970, a number of
software quality models have been proposed to evaluate the quality of general
and specific domains of software products. These models suffer from the
ambiguity of relationships among quality characteristics, sub characteristics
and quality measures: there is no clear definition, rule or procedure on how the
quality sub characteristics are derived from the main characteristics, how the
quality measures could be identified and associated with quality characteristics
and sub characteristics and how those could be validated. This study proposes a
set of rules for the development and evaluation of software quality models.

Keywords: Software quality � Quality measures � Quality models � Model
rules

1 Introduction

In the last few decades, the use of software products and software-intensive computer
systems to perform a wide variety of business and personal functions has increased
significantly [1]. High quality software and systems are essential to provide value and
avoid any negative consequences that may occur. This is required to achieve personal
satisfaction, business success, and human safety [1]. Therefore, quality is considered as
one of the main assets that enhance the competitive global position for organizations
[2]. To ensure that software quality has been achieved, measuring it is essential.
However, for measuring adequately software quality it is necessary to have a sound
quality model.

1.1 Software Quality Evaluation

Software quality represents the capability of software product to satisfy stated and
implied needs when used under specified conditions [3]. Several methods are available
for evaluating the quality of a software product, such as expert review, software
measurement, and quality models [4].

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 1–13, 2015.
DOI: 10.1007/978-3-319-24285-9_1

A number of software quality models have been proposed to measure and control
software products. A quality model is a set of characteristics, sub characteristics,
quality measures, quality measure elements and relationships between them [3]. It aims
to facilitate an objective communication between project managers and technical
personnel regarding the quality objectives [5]. The quality characteristics and sub
characteristics could represent either the users’ views or technical personnel views
depending of the quality measures chosen. Quality measures could be associated
directly with quality characteristics or sub characteristics (see Fig. 1). Each quality
characteristic or sub characteristic could be measured by identifying a set of base and
derived measures to cover it, respectively referred to as quality measure elements
(QME) and quality measures within ISO 25020 (see Fig. 1). Each base measure is
measured independently and then some of these base measures are combined com-
putationally to arrive at a derived measure which may next be combined again along
with a corresponding quality characteristic or sub characteristic [1].

1.2 Software Quality Models

Research in software quality has been going on since the 1970s, when software
development techniques started to be perceived as an engineering discipline [6].
McCall’s model [7] is one of the oldest software quality models [8] that was developed
to improve the quality of the software products and to make them measurable. Other
models such as that of Boehm’s [9], Murine’s [10], or Azuma’s [11] are derived from
it. These derived models added new characteristics, redefined existing characteristics or
redefined the relationships between the quality characteristics (characteristics, sub
characteristics, quality measures).

According to Ortega [2], the best-known software quality models in chronological
order of appearance are: McCall’s [7], Boehm’s [9], FURPS [12], ISO 9126-1 [13] and
Dromey’s [14], in addition to the new model of ISO 25010 [1] derived from ISO 9126.

Software Product Quality

Characteristics

Sub-characteristics

composed of

composed of

related

related

Quality measures

Quality measure elements

generates

Adapted from ISO/IEC 25000

Fig. 1. Adaptation of the ISO 25000 software product quality measurement reference model

2 A.B. AL-Badareen et al.

However, ISO standards models of software quality did not eliminate the debate on
quality models definitions and these models suffer from a lack of rationale in con-
sidering the quality characteristics and the relationships between them [6, 15, 16].

2 Problems Related to Software Quality Models

Several quality models have been proposed in order to evaluate general and specific
types of software products [17]. For instance, many models were developed to evaluate
the same types of software products. For example, Alvaro [18], Sharma [19] and
Upadhyay [20] developed models for evaluating Component Based Software (CB), and
Sung [21], Samoladas [22] and del Bianco [23] developed models for evaluating Open
Source Software (OSS). Moreover, several comparisons have been made between same
models and the same quality characteristics but with different outcomes: such as,
Rawashdeh [24], Hamada [25], and Haiguang [26] who made comparisons between
McCall’s, Boehm’s, and ISO 9126 models.

A key difference in the methods of developing and evaluating software quality
models is the decomposition of the quality characteristics. The decomposition of the
quality characteristics is conducted and evaluated in a subjective manner, based on
different perspectives. Indeed, there is a lack of clear definitions for criteria decom-
position [15] and most software quality models depend on taxonomic, hierarchical
decomposition, and are not following guidelines, which can be arbitrary [16, 27–29].
Therefore, software quality models suffer from a lack of rationale for the relationships
between quality characteristics and how the lowest levels properties are composed into
an overall assessment of higher level quality characteristics [16].

Unclear decomposition of quality characteristics makes locating their sub charac-
teristics and properties difficult, which leads to redundancy in the quality characteristics
and overlapping between quality properties [15]. Consequently, Hofman [6] concludes
that there is no commonly accepted model for software quality, and therefore, software
engineering does not have yet tools to manipulate the quality level for a product.

3 Software Quality Model Components

ISO 25020 [30] presents the main structure of the ISO software quality model and the
relationships between its components (see Fig. 1). The model consists of different
levels: characteristic and sub characteristic in one part, and quality measures related to
sub characteristics and characteristics. In this article we are not evaluating the relation
between the quality measures elements (or base measures) to the quality measures
(derived measures).

Quality characteristics are the top level of a software quality model and are often
considered as the non functional requirements in software development: they are sig-
nificant for both software users and project managers as they make the values of
software quality meaningful and understandable. These characteristics are chosen
during the requirements definition phase, and may be defined according to specific
standards, regulations, or laws, and agreed upon by both the project development team

A Suite of Rules for Developing and Evaluating Software Quality Models 3

and user representatives. The characteristics also address the technical personnel
objectives regarding the quality.

The quality characteristics are decomposed into sub characteristics. The sub
characteristics are independent and eventually measurable by quality measures. The
quality measures could be meaningful to the technical personnel or the project man-
agers and might correspond to more than one characteristic. It is necessary to know the
quality measures used to facilitate an objective communication between project man-
agers and technical personnel, and between the software development team and soft-
ware users regarding the quality objective.

Therefore, to measure the quality characteristic or sub characteristic, it is necessary
to identify a collection of quality measures that together aim to cover the characteristic
or sub characteristic and obtain data for each quality measures. For information, these
quality measures are calculated by applying a measurement function that is derived
from quality measures elements (ISO/IEC 25021) [31] or base measures1 [32].

The hierarchical decomposition of the quality model provides a convenient
breakdown of product quality. The relationships identified among the components of
the quality model are used to map the values of the low level components (quality
measures) into high level components (quality characteristics) in order to present
quantitatively the software quality. Therefore, any problem in these relations may lead
to a misrepresentation of the quantification, which will cause a miscommunication
between technical personnel, project managers and users [16]. Consequently, rules for
mapping the quantification from the low level components (quality measures) into
higher level components (characteristics) of the software quality model have to be
defined.

4 Quality Characteristics Construction

The selected quality characteristics represent the requirements defined and agreed upon
by the project stakeholders. These characteristics are defined according to certain
conditions as follows:

1. The characteristic represents the requirements needed by at least one of the project
stakeholders.

2. The characteristic is understandable and meaningful for each of the project
stakeholders.

3. The characteristic is not part of, or required in, any other quality characteristic; it is
only required directly by the stakeholders.

4. There are no two characteristics or more intended to achieve the same requirements
regarding the software quality.

5. Two or more characteristics can be shared in some sub characteristics or quality
measures.

1 The quality measures are the equivalent of derived measures and the quality measure elements are
equivalent of base measures within ISO 15939.

4 A.B. AL-Badareen et al.

The quality characteristics are broad and cannot be measured directly. These
characteristics are generally decomposed into sub characteristics. The sub character-
istics (or characteristics) are related to quality measures in order to be able to measure
the software product during the development life cycle objectively. A quality measure
can be a candidate to measure more than one sub characteristic. Figure 2 illustrates the
process of decomposing quality characteristics.

The first step of decomposing the quality characteristic or sub characteristic is to
identify its type. The quality characteristics or sub characteristics can be classified into
two main types based on their objectives: task-based and state-based characteristics.

In the context of this article, the task-based characteristics represent the ability to
perform a specific process under certain conditions, such as software maintainability
and usability. For example, software maintainability represents the ability of modifying
a software product after its delivery, and software usability represents the ability of
performing specific tasks using the software product.

In the context of this article, the state-based characteristics represent the behavior of
the software product when performing a certain task under specific conditions. For
example, fault tolerance represents the state of the software product when failure occurs
regarding the ability to work, and the efficiency represents the state of the software
product when performing a specific task regarding the speed and the resource usage.

(*) Also quality measures
and QME in ISO 25000

F

T

Task based State based

Derived and base
measures (*)

Property to quantify
(attribute)

Characteristics
type

Quality
Characteristics

Perform a specific process
under certain condition

Behavior of the product

Fig. 2. The process of characteristic decomposition

A Suite of Rules for Developing and Evaluating Software Quality Models 5

4.1 Task-Based Characteristic

In a task-based characteristic, the task represented by the characteristic is decomposed
into several sub tasks. For example, the maintainability characteristic aims to evaluate
the degree of performing the maintenance process. The maintenance process consists of
four main sub tasks: system understanding, analyzing, modifying and testing. The total
degrees of measuring the ability to achieve these sub tasks are the ability to perform the
main task, which is the maintenance task.

The process F is a specific task (process) in the software and is represented by the
characteristic F`, which is the ability to perform the task Ab(F) = F`. The task F consists
of several sub processes/tasks, A, B, C and D, whereas the ability to achieve these tasks
is represented by A`, B`, C` and D` respectively. Therefore, the ability to achieve the
main task (F) is the ability to achieve its sub tasks A, B, C and D, which can formally be
expressed as follows:

F = {A, B, C, D}
With Ab(F) = F`, Ab(A) = A`, Ab(B) = B`, Ab(C) = C`, Ab(D) = D`.
Then Ab(F) = Ab(A) & Ab(B) & Ab(C) & Ab(D),
Where, F` = A` & B` & C` & D`,
Ab(F) = A` & B` & C` & D`

4.2 State-Based Characteristic

In state-based characteristic, the different states of the system regarding a certain view
are combined into one set. For example, regarding the reliability, fault tolerance rep-
resents the state of the software product when a certain failure occurs, and the
recoverability represents the state of the software product after the failure occurs.
Portability is a degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other operational or
usage environment to another [1]. In the portability, coexistence represents the
behavior of the software when the software environment is changed, and the adapt-
ability represents the state of the software when the hardware environment is changed.

5 Rules of Software Quality Models

Software quality models aim to achieve two main objectives: evaluate the software
product and make the evaluation results meaningful for the technical personnel, project
managers, and software users. Therefore, the models of software quality are evaluated
from two points of view: the ability to measure the software product accurately and
exhaustively (Product Evaluation), and the ability to represent the measured values
meaningfully (Quality Presentation).

6 A.B. AL-Badareen et al.

5.1 Product Evaluation

Here, product evaluation is conducted at the different levels in the software quality
model: quality measures, sub characteristics and characteristics. This process allows
quantifying characteristics, sub characteristics and quality measures, which is the result
of the actual values of the quality measure elements (QMEs) in Fig. 1. The quality of
this process is affected by the suitability of the QMEs to the quality measures, and the
suitability and accuracy of the quality measures to the quality characteristics and sub
characteristics.

There is another criterion for measuring a quality model, the model coverage. This
criterion shows whether the model includes all quality characteristics required to
measure the software product. In general, the number of software characteristics
measured in the software product is positively related with the accuracy of the quality
representation.
Proposition 1

(a) The highest number of quality characteristics that are considered in a software
product, may result with accurate representation of the quality of a software
product.

(b) The highest number of sub characteristics that are considered in quality char-
acteristic, may result with a more accurate representation of the quality
characteristic.

(c) The highest number of quality measures that are considered in sub characteristic,
may result with a more accurate representation of the sub characteristic.

Let QM denote a quality model, QCi, 1 ≤ i ≤ n denotes a characteristic of the
model, and n is the number of the characteristics in the model.

For a quality model QM = {QC1… QCn}, n = |QM|, where QC is a quality char-
acteristic in the model.

For specific software products, the number of software characteristics does not
always truly represent the model coverage. That is, software products are different in
their characteristics, and not all characteristics exist in every software product.
Therefore, for a specific software product, the model coverage measures only the
suitable characteristics for a software product.

For a specific software product, the highest number of suitable characteristics
considered may result with more representation of the quality of the software product.

For a quality characteristic, the highest number of suitable sub characteristics
considered may result with more representation of the quality characteristics.

For a sub characteristic, the highest number of suitable quality measures considered
may result with more representation of the sub characteristics.

A Suite of Rules for Developing and Evaluating Software Quality Models 7

Proposition 2

(a) The highest number of suitable quality characteristics considered in a software
product, may result with more accurate representation of the quality of software
product.

(b) The highest number of suitable sub characteristics considered in a quality
characteristic, may result with more accurate representation of the quality
characteristic.

(c) The highest number of suitable quality measures considered in a sub charac-
teristic, may result with more accurate representation of the sub characteristic.

For a quality model QM = {QC1… QCn} and software product P = {PC1 … PCm},
where QM is a quality model, QC a quality characteristic considered in the model, P a
software product, and PC a characteristic of software product.

The coverage of the Quality Model (QM) is only the number of characteristics
considered in the model and which exist in the software product. This is represented
graphically using a Venn diagram as shown in Fig. 3.

Fig. 3. The model coverage based on Venn diagram

8 A.B. AL-Badareen et al.

The characteristics which are included in the quality model and which do not exist
in the software product represent the extra characteristics in the model, EC(QM) = QM\P.
The characteristics which exist in the software product and are not considered in the
quality model represent the missing characteristics, MC(QM) = P\QM. The coverage of
the model is only represented by the number of quality characteristics which exist in the
software product and are considered in the quality model.

5.2 Quality Presentation

Every quality characteristic represents a set of sub characteristics and every sub
characteristic may use a set of quality measures. The quality characteristics within each
set are combined based on objectives. For example, the sub characteristics of the same
set intend to evaluate the sub tasks of one task or present different states of the software
product under specific conditions (depending of the objectives). While the root of the
set (quality characteristic) presents the ability to achieve the main task represent the
total state of the software product under specific conditions.

Example 1. Software maintenance is a process of modifying a software product.
The maintenance process requires to understand the software product, to analyze the
software product to identify where the modification should be done, to develop the
intended modification and to test the software product to verify whether the modifi-
cation was made properly without any side effects. The maintenance task consists of the
four sub tasks: understanding, analyzing, modifying and testing. The ability to perform
these sub tasks is understandability, analyzability, modifiability and testability
respectively. Therefore, the ability to perform the maintenance task (maintainability) is
the ability to perform its sub tasks (understandability, analyzability, modifiability and
testability).

Example 2. The reliability characteristic represents the state of the software product
when a failure occurred. Software recoverability represents the state of the software
product after the failure occurred and fault tolerance represents the state of the
software product during the failure.

Proposition 3

(a) The group of quality characteristics within the same set (quality model) must
fulfill the conditions of the set.

(b) The group of sub characteristics within the same set (quality characteristic) must
fulfill the conditions of the set.

(c) The group of quality measures within the same set (sub characteristic) must fulfill
the conditions of the set.

The quality model is a set of quality characteristics, each quality characteristic is a
set of quality sub characteristics and each quality sub characteristic is a set of quality
measures. Let QM, QC, QSC and QMS denote a quality model, quality characteristic,

A Suite of Rules for Developing and Evaluating Software Quality Models 9

quality sub characteristic and quality measure respectively. This proposition can be
formalized as follows:

• QM = {QC1…..QCn}, for each QC�QM intends to achieve x, where x is the
rules/objective of the set (Quality Model), where QCm 62 QCn and QCm \QCn �;

• QC = {QSC1… QSCn}, for each QSC�QC intends to achieve x, where x is the
rules/objective of the set (Quality Characteristic), where QSCm 62 QSCn and
QSCm \QSCn �;

• QSC = {QMS1… QMSn}, for each QMS 2 QSC intends to achieve x, where x is the
rules/objective of the set(Quality Sub Characteristic), where QMSm 6¼ QMSn

The elements/subsets of the same set must fulfill the same conditions regarding the
set, but none of these elements/subsets is part of other elements/subsets of the same set.
This will result in an inappropriate representation of the element/subset.

Example 3. As presented in Example 1, a modification is a sub task of a maintenance
task, and therefore, the modifiability is a sub characteristic of the maintainability
characteristic. However, the modifiability cannot be at the same level with the main-
tainability. Also the maintainability will not be completely represented by missing one
of its sub characteristics (modifiability).

Proposition 4

a) For a set of quality characteristics, none of these characteristics is a part of
measurement for other characteristic.

b) For a set of sub characteristics, none of these sub characteristics is a part of
measurement for other sub characteristic.

c) For a set of quality measures, none of these measures is a part of measurement for
other quality measure.

• QM = {QC1…..QCn}, for each QC�QM, QCm 62 QCn, QCm \QCn �; and
FðQCmÞ 6¼ QCn

FðQCmÞ is the rule of the quality characteristic QCm

• QC = {QSC1… QSCn}, for each QSC�QC, QSCm 62 QSCn, QSCm \QSCn �; and
FðQSCmÞ 6¼ QSCn

FðQSCmÞ is the rule of the quality sub characteristic QSCm

• QSC = {QMS1… QMSn}, for each QMS 2 QSC, QMSm 6¼ QMSn and
FðQMSmÞ 6¼ QMSn
FðQMSmÞ is the rule of the quality measureQMSm

Example 4. Let a quality model QM consists of some quality characteristics A, B and
C; the quality characteristic A consists of some sub characteristics D, E and F, and the
sub characteristic D consists of some quality measures G, H and I.

QC = {A, B, C}, A = {D, E, F}, D = {G, H, I}.

10 A.B. AL-Badareen et al.

The following are the candidate relationships between the quality characteristics, sub
characteristics and quality measures within the quality model:

1. New characteristic (X) is added to the model, and it is defined as sub characteristic
of D and sub of A at the same time. The problem occurs when the characteristic is
represented twice in the set A, which results in an invalid relation.
A = {D, E, F, X}, D = {G, H, I, X}, then
A = {G, H, I, X, E, F, X}, Invalid

2. The quality measure G is removed from sub characteristic D and retained in
characteristic A. Characteristic A will not be affected as the required sub char-
acteristics and measures are the same, but sub characteristic D misses one of its
quality measures, and consequently, the sub characteristic D is not completely
covered.
D = {H, I} and A = {D, E, F, G}, Invalid

3. The quality measure G is removed from the quality characteristic A, and retained in
sub characteristic D. The quality characteristic A will not be affected, as it consists
of the same sub characteristics and quality measures. The sub characteristic D is
not missing any of its values and it will completely represent its meaning.
D = {G, H, I}, A = {D, E, F} ⇒ {G, H, I, E, F}, Valid

4. A new sub characteristic X is required in both quality characteristics B and C. The
quality characteristics B and C are at the same level within the same set QM;
therefore B\C = X, Valid

6 Conclusions and Future Research

Since the first model of software quality (i.e., McCall’s 1977) up until recently when
the ISO 25010 model was released, software quality lacks a commonly accepted model
or evaluation method. Software quality models were developed and evaluated based on
different perspectives. The methods of developing and evaluating software quality
models share a common problem, even though these models are used to develop and
evaluate software quality models from different perspectives. They suffer from the
ambiguity of decomposing quality characteristics and defining their relationships.
There is no clear definition of how the quality sub characteristics and properties are
derived from the main quality characteristics and how they can be validated. Software
quality models have been developed in subjective manner, which make them debatable.

This study, has proposed a suite of rules for developing and evaluating software
quality models. The defined rules allow developing clear, reasonable and testable
software quality models. Moreover, the rules allow evaluating the attributes of software
quality models.

As part of future research, it is also possible to propose a suite of quality measures
for evaluating software quality models. It is suggested that a product evaluation collects
the base measures for the number of quality characteristics that are required to be
measured in the software product and included in the quality model. It is also possible
to evaluate the quality aggregation (and correspondingly the presentation of the eval-
uation into a single aggregated number). The quality aggregation is the process of

A Suite of Rules for Developing and Evaluating Software Quality Models 11

aggregating the actual values of the quality measures at the lower level of the model to
the higher level (i.e., the quality characteristics level).

References

1. ISO/IEC: ISO/IEC 25010 Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models. International
Organization for Standardization, Geneva, Switzerland (2014)

2. Ortega, M., Pérez, M., Rojas, T.: Construction of a systemic quality model for evaluating a
software product. Softw. Qual. J. 11, 219–242 (2003)

3. ISO/IEC: Systems and software engineering —Systems and software Quality Requirements
and Evaluation (SQuaRE) — Guide to SQuaRE. ISO/IEC FDIS 25000. International
Organization for Standardization, Switzerland (2013)

4. Behkamal, B., Kahani, M., Akbari, M.K.: Customizing ISO 9126 quality model for
evaluation of B2B applications. Inf. Softw. Technol. 51, 599–609 (2009)

5. IEEE: IEEE standard for a software quality metrics methodology. IEEE Std 1061–1998
(R2009). The Institute of Electrical and Electronics Engineers, Inc, New York, USA (2009)

6. Hofman, R.: Behavioral economics in software quality engineering. Empir. Softw. Eng. 16,
278–293 (2011)

7. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in software quality. Rome Air
Development Center, Air Force Systems Command, Griffiss Air Force Base (1977)

8. Pfleeger, S.L.: Software Engineering: Theory and Practice. Prentice Hall, Upper Saddle
River (2001)

9. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J., Merrit, M.J.:
Characteristics of Software Quality, 1st edn. North-Holland, Elsevier Science Ltd (1978)

10. Murine, G., Carpenter, C.: Measuring software product quality. Qual. Prog. 7, 16–20 (1984)
11. Azuma, M.: Software quality assurance. Vortragsmanuskript zum Vortrag 12 (1987)
12. Grady, R.B., Caswell, D.L.: Software Metrics: Establishing a Company-Wide Program.

Prentice Hall, Upper Saddle River (1987)
13. ISO/IEC: ISO/IEC 9126-1: Software engineering-product quality-part 1: quality model.

International Organization for Standardization, Geneva, Switzerland (2001)
14. Dromey, R.G.: Cornering the Chimera [Software quality]. IEEE Softw. 13, 33–43 (1996)
15. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Software quality models:

purposes, usage scenarios and requirements. In: ICSE 2009 - 7th Workshop on Software
Quality (WoSQ’ 2009), pp. 9–14. IEEE, Vancouver, Canada (2009)

16. Kitchenham, B., Pfleeger, S.L.: Software quality: the elusive target [Special issues section].
IEEE Softw. 13, 12–21 (1996)

17. AL-Badareen, A.B., Selamat, M.H., A. Jabar, M., Din, J., Turaev, S.: Software quality
models: a comparative study. In: Mohamad Zain, J., Wan Mohd, WMb, El-Qawasmeh, E.
(eds.) ICSECS 2011, Part I. CCIS, vol. 179, pp. 46–55. Springer, Heidelberg (2011)

18. Alvaro, A., de Almeida, E.S., Meira, S.L.: A software component quality model: a
preliminary evaluation. In: The 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO-SEAA 2006), vol. 32, pp. 28–37. IEEE,
Cavtat/Dubrovnik, Croatia (2006)

19. Sharma, A., Kumar, R., Grover, P.S.: Estimation of quality for software components – an
empirical approach. SIGSOFT Softw. Eng. Notes 33, 1–10 (2008)

12 A.B. AL-Badareen et al.

20. Upadhyay, N., Despande, B.M., Agrawal, V.P.: Towards a software component quality
model. In: Meghanathan, N., Kaushik, B.K., Nagamalai, D. (eds.) CCSIT 2011, Part I.
CCIS, vol. 131, pp. 398–412. Springer, Heidelberg (2011)

21. Sung, W.J., Kim, J.H., Rhew, S.Y.: A quality model for open source software selection. In:
Sixth International Conference on Advanced Language Processing and Web Information
Technology (ALPIT 2007), pp. 515–519, Henan, China (2007)

22. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS quality model:
measurement based open source software evaluation. In: Russo, B., Damiani, E., Hissam, S.,
Lundell, B., Succi, G. (eds.) Open Source Development, Communities and Quality, vol. 275,
pp. 237–248. Springer, Heidelberg (2008)

23. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of open source software:
the QualiPSo trustworthiness model. In: Boldyreff, C., Crowston, K., Lundell, B.,
Wasserman, A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 199–212. Springer,
Heidelberg (2009)

24. Rawashdeh, A., Matalkah, B.: A new software quality model for evaluating cots
components. J. Comput. Sci. 2, 373–381 (2006)

25. Hamada, A.A., Moustafa, M.N., Shaheen, H.I.: Software quality model analysis program.
In: International Conference on Computer Engineering & Systems (ICCES 2008),
pp. 296–300. IEEE, Cairo, Egypt (2008)

26. Haiguang, F.: Modeling and analysis for educational software quality hierarchy triangle. In:
Seventh International Conference on Web-based Learning (ICWL 2008), pp. 14–18. IEEE,
Jinhua, China (2008)

27. Broy, M., Deissenboeck, F., Pizka, M.: Demystifying maintainability. In: The 2006
International Workshop on Software Quality, pp. 21–26. ACM, Shanghai, China (2006)

28. Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.F.: An activity-based quality
model for maintainability. In: The 23rd IEEE International Conference on Software
Maintenance (ICSM 2007), pp. 184–193. IEEE, Paris, France (2007)

29. Kitchenham, B., Linkman, S., Pasquini, A., Nanni, V.: The SQUID approach to defining a
quality model. Softw. Qual. J. 6, 211–233 (1997)

30. ISO/IEC: Software engineering — Software product Quality Requirements and Evaluation
(SQuaRE) — Measurement reference model and guide. ISO/IEC 25020. International
Organization for Standardization, Switzerland (2007)

31. ISO/IEC: System and software engineering – System and software product Quality
Requirements and Evaluation (SQuaRE) – Quality measure elements. ISO/IEC 25021.
International Organization for Standardization, Switzerland (2011)

32. ISO/IEC: Systems and software engineering — Measurement process. ISO/IEC 15939.
International Organization for Standardization, Switzerland (2007)

A Suite of Rules for Developing and Evaluating Software Quality Models 13

The Effects of Duration-Based Moving Windows
with Estimation by Analogy

Sousuke Amasaki1(B) and Chris Lokan2

1 Okayama Prefectural University, Soja, Okayama, Japan
amasaki@cse.oka-pu.ac.jp

2 School of Engineering and Information Technology, UNSW Canberra,
Canberra, ACT 2600, Australia

c.lokan@adfa.edu.au

Abstract. Context: Recent studies have revealed that estimation accu-
racy can be affected by only using a window of recent projects as training
data for building an effort estimation model. The studies also showed that
the effect and its extent could be affected by effort estimation methods
and windowing policies (fixed size or fixed duration). However, a study
of perhaps the most common situation — using Estimation by Anal-
ogy (EbA) for effort estimation, and only considering as training data
projects completed recently in windows defined by duration — is lacking.
Objective: To investigate the effects on estimation accuracy of using the
fixed-duration windowing policy, particularly in comparison to fixed-size
windows, when using EbA.
Method: Using a single-company ISBSG data set studied previously in
similar research, we examine the effects of using a fixed-duration win-
dowing policy on the accuracy of estimates using EbA. As a preliminary
step, we evaluate the effect of some changes to how we apply EbA itself.
Results: Fixed-duration windows can improve the accuracy of estimates
with EbA. Some window sizes lead to statistically significant improve-
ments. Reinforcing previous research, the effect is smaller and is seen in
a narrower range of window sizes than when fixed-size windows are used.
Conclusions: Fixed-duration windows are helpful with this data set
when using EbA. Variations in the settings for EbA can change the sizes
at which windows are helpful. This suggests the need for reviewing opti-
mal window sizes when adopting a new setting of EbA.

1 Introduction

Accurate effort estimation is an essential key to software project success. Many
studies have sought to improve the accuracy of methods and models for estimat-
ing software development effort.

A software effort estimation model is developed from past project data. Most
studies evaluate the accuracy of software effort estimation models using cross-
validation. This approach uses data from all other projects to estimate the effort
of a given project. For all but the last project, this means that data from projects
that are still in the future are used when estimating the effort for the new project.
c© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 14–29, 2015.
DOI: 10.1007/978-3-319-24285-9 2

The Effects of Duration-Based Moving Windows 15

This makes no sense. Another evaluation approach exploits the reality that soft-
ware projects can be arranged chronologically. It uses data from past projects
as training data to predict new projects. Intuitively, it may also make sense to
use only recent projects as a basis for effort estimation: older projects might
be less representative of an organization’s current practices. Lokan and Mendes
[1] examined whether using only recent projects improves estimation accuracy.
They used a window to limit the size of training data so that an effort estimation
model used only recently finished projects. As projects finish, they replace old
projects in the window. The results supported the advantage of the windowing
approach.

Recent studies also showed the effect and its extent could be affected by
windowing policies [2,3] and effort estimation models [4]. Lokan and Mendes [2,3]
compared two types of window policies: fixed-size and fixed-duration. A fixed-
size window policy determines the window size by the number of projects: the
training set is the last N projects to finish before the target project starts.
A fixed-duration policy determines the window size by calendar months: the
training set is projects whose whole life cycle occurred during the last w months
before the target project starts. They found that estimation accuracy could
improve by using either window policy, but the policies affected the accuracy
differently.

Amasaki and Lokan [4] examined the applicability of the windowing approach
(using fixed-size windows) to Estimation by Analogy (EbA). The previous stud-
ies only used linear regression (LR), EbA and LR are both common approaches
for estimating effort. The results showed difference in accuracy between using
and not using the windowing approach. However, the effect of using a window
was weaker with EbA than with LR.

This paper continues research into the use of windows with EbA. It focuses
primarily on the effect of changing the windowing policy, from fixed size to
fixed duration. This is relevant because arguably fixed-duration windows make
more intuitive sense than fixed-size windows. In practice, we believe that people
considering “windows of recent projects” think naturally in terms of window
duration, not the number of training projects in the window. The use of windows
of different durations with EbA has not previously been studied, but we believe
it is commonly in estimators’ minds.

First we must investigate the effect of changing some details of how we apply
EbA in this paper, to improve its realism compared to [4].

We address the following questions:

RQ1. Is there a difference in the accuracy of estimates between EbA as used in [4]
and EbA based on a more realistic situation, still using fixed-size windows?

RQ2. Is there a difference in the accuracy of estimates with and without windows,
using the revised EbA, and using fixed-duration windows?

RQ3. How do these results compare with results based on fixed-size windows?

16 S. Amasaki and C. Lokan

2 Related Work

Research in software effort estimation models has a long history. However, few
studies evaluated software effort estimation models with consideration of the
chronological order of projects.

Mendes and Lokan [5] compared estimates based on a growing portfolio with
estimates based on leave-one-out cross-validation, using two different data sets.
In both cases, the cross-validation estimates showed significantly superior accu-
racy. With cross-validation, all other projects in the data set — even some that
were still in the future — are used as training data for a given project. Thus, esti-
mates using cross-validation are based on unrealistic information. If estimates
based on unrealistic information are significantly more accurate than estimates
considering chronology (based on realistic information), the implication is that
the apparent accuracy achieved when ignoring chronology does not reflect what
an estimator would achieve in practice.

To the best of our knowledge, Kitchenham et al. [6] first mentioned the use
of moving windows. As a result of an experiment, they argued that old projects
should be removed from the data set as new ones came in so that the size of
the dataset remained constant. MacDonell and Shepperd [7] investigated moving
windows as part of a study of how well data from prior phases in a project could
be used to estimate later phases. They found that accuracy was better when a
moving window of the five most recent projects was used as training data, rather
than using all completed projects as training data.

Lokan and Mendes [1] studied the use of moving windows with linear regres-
sion models (LR) and a single-company dataset from the ISBSG repository.
Training sets were defined to be the N most recently completed projects. They
found that the use of a window could affect accuracy significantly; predictive
accuracy was better with larger windows; some window sizes were ‘sweet spots’.
Later they also investigated the effect on accuracy when using moving windows
of various durations to form training sets on which to base effort estimates [2,3].
They showed that the use of windows based on duration can affect the accuracy
of estimates, but to a lesser extent than windows based on a fixed number of
projects.

Amasaki and Lokan [4] examined the applicability of the windowing approach
to Estimation by Analogy (EbA) in addition to LR. They found ranges of window
sizes for which it was significantly better to use a window, with both regression
and estimation by analogy. The effect of using a window was stronger with
regression. They focused on the effects of the fixed-size windowing approach and
left as future work an investigation for the fixed-duration window approach.

This study builds on both [4] and [3]. It extends [4] by changing details of
EbA to improve the realism in practical use. It also differs from [4] in using
duration as the basis for defining window size. This study also extends [3] by
adopting EbA instead of LR to explore the effects of moving windows.

The Effects of Duration-Based Moving Windows 17

3 Research Method

3.1 Dataset Description

The data set used in this paper is the same one analyzed in [1–4]. This data set
is sourced from Release 10 of the ISBSG Repository. Release 10 contains data
for 4106 projects; however, not all projects provided the chronological data we
needed (i.e. known duration and completion date, from which we could calcu-
late start date), and those that did varied in data quality and definitions. To
form a data set in which all projects provided the necessary data for size, effort
and chronology, defined size and effort similarly, and had high quality data, we
removed projects according to the following criteria:

– The projects are rated by ISBSG as having high data quality (A or B).
– Implementation date and overall project elapsed time are known.
– Size is measured in IFPUG 4.0 or later (because size measured with an older

version is not directly comparable with size measured with IFPUG version 4.0
or later). We also removed projects that measured size with an unspecified
version of function points, and whose completion pre-dated IFPUG version
4.0.

– The size in unadjusted function points is known.
– Development team effort (resource level 1) is known. Our analysis used only

the development team’s effort.
– Normalized effort and recorded effort are equivalent. This should mean that

the reported effort is the actual effort across the whole life cycle.
– The projects are not web projects.

In the remaining set of 909 projects, 231 were all from the same organization
and 678 were from other organizations. We only selected the 231 projects from
the single organization, as we considered that the use of single-company data
was more suitable to answer our research questions than using cross-company
data. Preliminary analysis showed that three projects were extremely influential
and invariably removed from model building, so they were removed from the set.
The final set contained 228 projects.

We do not know the identity of the organization that developed these projects.
Release 10 of the ISBSG database provides data on numerous variables; how-

ever, this number was reduced to a small set that we have found in past analy-
ses with this dataset to have an impact on effort, and which did not suffer
from a large number of missing data values. The remaining variables were size
(measured in unadjusted function points), effort (hours), and four categorical
variables: development type (new development, re-development, enhancement),
primary language type (3GL, 4GL), platform (mainframe, midrange, PC, multi-
platform), and industry sector (banking, insurance, manufacturing, other).

Table 1 shows summary statistics for size (measured in unadjusted function
points), effort, and project delivery rate (PDR). PDR is calculated as effort
divided by size; high project delivery rates indicate low productivity. In [1], the

18 S. Amasaki and C. Lokan

Table 1. Summary statistics for ratio-scaled variables

Variable Mean Median StDev Min Max

Size 496 266 699 10 6294

Effort 4553 2408 6212 62 57749

PDR 16.47 8.75 31.42 0.53 387.10

authors examined the project delivery rate and found it changes across time.
This finding supports the use of a window.

The projects were developed for a variety of industry sectors, where insur-
ance, banking and manufacturing were the most common. Start dates range
from 1994 to 2002, although only 9 started before 1998. 3GLs are used by 86 %
of projects; mainframes account for 40 %, and multi-platform for 55 %; these
percentages for language and platform vary little from year to year. There is
a trend over time towards more enhancement projects and fewer new develop-
ments. Enhancement projects tend to be smaller than new development, so there
is a corresponding trend towards lower size and effort.

This study adopted the same range of window sizes as [3]. The smallest
window size was based on the statistical significance of linear regression with
windowed project data. The largest window size was based on the necessary
number of testing projects for evaluation. The window ranges for the fixed-size
policy is from 20 to 120 projects; those for the fixed-duration policy is 12 to 84
months.

3.2 Modeling Techniques

This study used Estimation by Analogy (EbA) to estimate efforts. EbA is a
model-free method [8] and does not construct a model. Instead, EbA has several
options to be optimized for a specific dataset [9].

In [4], the settings for EbA were as follows:

– Effort and Size were transformed to a natural logarithmic scale.
– The similarity between projects was based on Euclidean distance.
– An estimate was obtained from the arithmetic mean of logarithmic efforts of

similar projects.
– Independent variables were selected with the wrapper approach [10], minimiz-

ing median MRE, on the basis of the whole dataset.

The last setting is unrealistic, in that only for the last project is the whole
data set available. In practice, variables should be selected for each new esti-
mation based on the past project data available at that time. The reason for
doing a single variable selection based on the whole data set in [4] was that
the wrapper approach was computationally expensive. A light weight variable
selection method can resolve this problem. Furthermore, the application of EbA
with these settings can be improved to improve the estimation accuracy.

The Effects of Duration-Based Moving Windows 19

This study mitigated these problems as follows:

– Select independent variables separately for every new project. This improves
realism.

– Select independent variables with Lasso [11], minimizing the mean squared
error. This involves less computation than using the wrapper approach.

– Adopt inverse rank weighted mean (IRWM) [12] to obtain estimates. This
method was a simple method for better estimation.

The number of neighbors k we considered was k = 1, 2, 3, 5, as in [4].

3.3 Effort Estimation on Chronologically-Ordered Projects

This study evaluated the effects of moving windows of several sizes along with
a timeline of projects’ history. The effects were measured by performance com-
parisons between moving windows and a growing portfolio. A growing portfolio
uses all past projects as the training set.

For a window of size w, this evaluation was performed as follows:

1. Sort all projects by start date
2. Find the earliest project p0 for which using that window size could make a

difference to the training set: that is, at least one project that had finished
by the start of p0 was “too old” to be included in the window.

3. For every project pi in chronological sequence (ordered by start date), starting
from p0, form estimates using moving windows and using a growing portfolio.
– For fixed-duration moving windows, the training set is the finished projects

whose whole life cycle had fallen within a window of size w months prior
to the start of pi.

– For fixed-size moving windows, the training set is the w projects that fin-
ished most recently prior to the start of pi.

– For the growing portfolio, the training set is all of the projects that had
finished before the start of pi.

4. Evaluate estimation results.

3.4 Performance Measures

Performance measures for effort estimation models are based on the difference
between estimated effort and actual effort. As in previous studies, this study
used MMRE and MMAE [13] for performance evaluation.

To test for statistically significant differences between accuracy measures,
we used the Wilcoxon ranked sign test and set statistical significance level at
α = 0.05. We used the test as is because we focused on the significance of each
window size, not all sizes.

20 S. Amasaki and C. Lokan

Table 2. Accuracy with the modified EbA with k = 5 (growing and fixed-size moving
windows)

Window
size(N)

Testing
projects

Growing
MAE

Window
MAE

p–val. Growing
MRE

Window
MRE

p–val.

20 201 2936 2838 0.36 1.53 1.45 0.06

30 178 2656 2759 0.50 1.46 1.50 0.80

40 165 2582 2785 0.34 1.43 1.54 0.41

50 153 2572 2684 0.89 1.46 1.53 0.83

60 136 2486 2353 0.06 1.54 1.43 0.08

70 126 2341 2142 0.01 1.54 1.39 0.01

80 126 2341 2298 0.29 1.54 1.56 0.32

90 111 2449 2302 0.08 1.56 1.39 0.04

100 88 2501 2504 0.21 1.49 1.62 0.21

110 75 2243 2200 0.06 1.53 1.51 0.11

120 71 2251 2274 0.36 1.52 1.52 0.76

4 Results

4.1 The Effects of Changes in EbA

We begin by comparing estimation accuracy between EbA as used in [4] and
EbA as adopted in this paper. The difference between them is the realism in
practical use.

Table 2 shows the effect of fixed-size windowing with EbA as adopted in
this paper, on mean absolute residuals and mean MRE. Here the number of
neighbors was k = 5, which showed better performance than k = 2, the number
used in [4]. The first column shows window sizes. The 2nd column shows the
total number of projects used as a target project with the corresponding window
size. The 3rd and 4th columns show accuracy measures of the growing portfolio
and the moving windows based on MAE. The 5th column shows the p–value
from statistical tests on accuracy measures based on MAE between the growing
portfolio and the moving windows. The 6th and 7th columns show accuracy
measures of the growing portfolio and the moving windows based on MRE.
The 8th column shows the p–value from statistical tests on accuracy measures
based MRE between the growing portfolio and the moving windows. The results
were computed for every size; the tables only show every 10 sizes, due to space
limitations. This is sufficient to show the essential trends.

Figure 1 shows the difference in mean MAE and mean MRE between the
growing portfolio and moving windows with the modified EbA with k = 5. The
x-axis is the number of projects in the window, and the y-axis is the subtraction
of the accuracy measure value with a growing portfolio from that with moving
windows at the given x-value (expressed in relative percentage terms). Smaller
values of MAE and MRE are better, so the window is advantageous where the

The Effects of Duration-Based Moving Windows 21

20 40 60 80 100 120
Window Size (number of projects)

−10

−5

0

5

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(a) Differences in mean MAE

20 40 60 80 100 120
Window Size (number of projects)

−15

−10

−5

0

5

10

D
iff

er
en

ce
s

in
m

ea
n

M
R

E
(%

)

(b) Differences in mean MRE

Fig. 1. Results with Fixed-size Window, modified EbA with k = 5

line is below 0. Circle points mean a statistically significant difference, in favor
of moving windows.

Figure 1 and Table 2 revealed characteristics of moving windows compared to
the growing portfolio:

– With windows of up to 60 projects, MAE showed no significant preference for
any approach. The line starts below zero and quickly goes above zero (favoring
the growing portfolio), but the difference was not significant as shown in

22 S. Amasaki and C. Lokan

Table 3. Accuracy with EbA as used in [4] (repeated from [4])

Window
size(N)

Testing
projects

Growing
MAE

Window
MAE

p–val. Growing
MRE

Window
MRE

p–val.

20 201 2943 3162 0.19 1.42 2.24 0.32

30 178 2711 2976 0.44 1.41 1.95 0.65

40 165 2623 2923 0.59 1.36 1.83 0.55

50 153 2575 2675 0.76 1.35 2.17 0.88

60 136 2479 2436 0.09 1.48 1.54 0.11

70 126 2305 2243 0.19 1.46 1.37 0.21

80 126 2305 2304 0.60 1.46 1.52 0.58

90 111 2662 2362 0.05 1.66 1.47 0.04

100 88 2735 2584 0.60 1.59 1.46 0.51

110 75 2467 2407 0.52 1.64 1.54 0.39

120 71 2465 2351 0.28 1.61 1.51 0.29

Table 4. Accuracy with the modified EbA with k = 2 (growing and fixed-size moving
windows)

Window
size(N)

Testing
projects

Growing
MAE

Window
MAE

p–val. Growing
MRE

Window
MRE

p–val.

20 201 2891 2918 0.82 1.57 1.48 0.55

30 178 2769 2926 0.66 1.53 1.51 0.57

40 165 2718 2950 0.96 1.51 1.80 0.62

50 153 2682 2872 0.43 1.49 1.86 0.31

60 136 2541 2505 0.18 1.56 1.48 0.26

70 126 2364 2362 0.41 1.58 1.70 0.47

80 126 2364 2479 0.83 1.58 1.65 0.51

90 111 2461 2382 0.33 1.53 1.41 0.19

100 88 2459 2878 0.73 1.37 1.81 0.86

110 75 2216 2702 0.73 1.41 1.92 0.91

120 71 2199 2805 0.17 1.40 1.87 0.16

Fig. 1(a). MRE showed a similar trend, except that moving windows were
sometimes significantly advantageous around small window sizes, as shown in
Fig. 1(b).

– For windows of 60 to 100 projects, moving windows are advantageous in MAE.
There were several window sizes around 60 to 75 projects where the difference
is significant, as shown in Fig. 1(a). The difference in MRE showed a similar
trend, again with a significant advantage around 60 to 75 projects but also at
several sizes around 90 projects.

The Effects of Duration-Based Moving Windows 23

– With windows of 100 projects or more, both measures showed no clear pref-
erence for windows or growing.

In summary, in this data set, moving windows improved estimation accuracy
significantly with windows in the middle of the range of sizes investigated.

Comparing these results to [4], in the previous paper the effects of fixed-size
moving windows were as follows:

– With a window of 20 to 55 projects, all measures were always better using
the growing portfolio though the difference was not statistically significant.

– With a window of 90 or 91 projects, all measures were better using the moving
windows and the difference is statistically significant. Although there were the
only sizes where the difference was statistically significant, these were not just
“lucky” window sizes: at nearly all window sizes from 61 to 120 projects,
average values of all of the accuracy statistics were better with the moving
windows.

Two things have changed between [4] and here: how EbA was applied, and
the choice of the best value for k. To separate the effect of the two changes, we
present two tables. Table 3 repeats the results from [4], for convenience. Table 4
presents an intermediate stage: it shows the accuracy with the modified EbA but
with k held at 2. Thus the difference between Tables 3 and 4 shows the effect of
modifying EbA, and the difference between Tables 4 and 2 shows the subsequent
effect of changing k.

Most of the values in Table 4 are similar to or worse than the corresponding
values in Table 3. This implies that the modification to EbA reduces the accuracy
of the estimates. This may be because variable selection was done once in [4],
using the entire data set; hence insights drawn from the whole data set were
used in variable selection for every project, even early ones in the sequence. Less
information is available for most projects in the modified approach, which could
make the estimates less accurate.

However, most of the values in Table 2 are better than the corresponding
values in Table 3. Increasing k from 2 to 5 more than overcomes the loss of
accuracy in modifying the EbA approach.

Overall, the change in EbA, which is aimed at improving the realism of the
estimation procedure and reducing computation effort, has also improved the
estimation accuracy when combined with a change in k. Estimates are more
accurate on average, and need fewer comparison projects for windows to be
valuable: using the modified approach, windows were significantly better than
the growing approach at windows of around 60 to 75 projects, according to MAE,
and around 60 to 90 according to MRE, instead of 90 projects with the original
method.

Table 2 and Fig. 1 present the best results for this data set, using windows
defined as containing a fixed number of projects. In the next section we perform
a similar experiment, using the same estimation method, but defining windows
as covering fixed numbers of months.

24 S. Amasaki and C. Lokan

Table 5. Accuracy with modified EbA with k = 5 (growing and fixed-duration moving
windows)

Window
size(N)

Testing
projects

Growing
MAE

Window
MAE

p–val. Growing
MRE

Window
MRE

p–val.

12 165 2582 2757 0.56 1.43 1.49 0.88

18 193 2834 2947 0.83 1.47 1.54 0.80

24 201 2936 2816 0.29 1.53 1.45 0.55

30 202 2940 2866 0.53 1.52 1.39 0.63

36 206 2940 2836 0.81 1.50 1.41 0.63

42 206 2940 2728 0.34 1.50 1.39 0.45

48 206 2940 2787 0.43 1.50 1.42 0.68

54 206 2940 2898 0.44 1.50 1.39 0.52

60 198 2951 2925 0.72 1.54 1.46 0.57

66 184 2776 2726 0.76 1.46 1.41 0.57

72 153 2572 2468 0.09 1.46 1.36 0.05

78 126 2341 2257 0.07 1.54 1.45 0.04

84 80 2461 2364 0.16 1.61 1.55 0.26

4.2 The Effects of Moving Windows of Fixed Duration

Table 5 shows the effect of the fixed-duration windowing, with the modified EbA
with k = 5, on mean absolute residuals and mean MRE. Figure 2 shows the
difference in mean MAE and mean MRE between the growing portfolio and
moving windows. The notation is as same as in Fig. 1, except that the x-axis
is now the window duration in months. The table and the figure reveal the
following:

– With windows of up to 20 months, the growing portfolio was advantageous in
terms of MAE. No difference was statistically significant. The advantage was
not clear in MRE for that range.

– With windows of 20 to 50 months, the lines go down under the zero line
and support the moving windows in terms of average differences in MAE and
MRE. However, statistical tests showed no statistically significant differences.
The lines then go back to close to zero.

– With windows of more than 55 months, moving windows are advantageous
again. There were significant differences between 70 to 80 months, supporting
the moving windows.

In [3], the authors used the same dataset, the same range of window dura-
tions, and linear regression to examine the effects of fixed-duration windows.
Thus the difference between this work and [3] is the use of EbA instead of linear
regression. The observations in [3] were:

The Effects of Duration-Based Moving Windows 25

20 30 40 50 60 70 80
Window Size (calendar months)

−10

−5

0

5

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(a) Differences in mean MAE

20 30 40 50 60 70 80
Window Size (calendar months)

−15

−10

−5

0

5

D
iff

er
en

ce
s

in
m

ea
n

M
R

E
(%

)

(b) Differences in mean MRE

Fig. 2. Results with Fixed-duration Windows, EbA with k = 5

– With windows up to 24 months, the growing portfolio was advantageous.
Statistical tests sometimes supported the growing portfolio.

– With windows between 24 to 50 months, moving windows were advantageous.
There were some window sizes where the difference was statistically significant.

– With larger windows, the difference got smaller, and there was no statistical
difference between the growing portfolio and moving windows.

The observations in [3] and the results in this paper show different trends.
The window durations at which windows are advantageous compared to the
growing portfolio are larger with EbA than with LR, and the range of durations

26 S. Amasaki and C. Lokan

for which windows are advantageous is narrower with EbA than with LR. The
difference in advantageous window sizes and their number between EbA and
LR were reported in [4]. These observations were common between this study
and [4].

5 Discussion

5.1 Answer to RQ1

The first part of this research differs from [4] in that changes were made in
settings for EbA, with the aim of improving realism and reducing computation
effort. Our first research question is whether the change in settings makes a
difference to the estimation accuracy, while still adopting fixed-size windows.

The results are different in three respects. The first difference is a change
in the optimal setting for the best number of neighbors, k. Previously k = 2
was best. The change in estimation method brought a new best setting k = 5.
The second difference is an improvement in estimation accuracy. Comparison
between Tables 2 and 3 show that the modifed EbA with k = 5 has better
estimation accuracy on average. The third difference is a change in the window
sizes at which moving windows are advantageous for estimation accuracy. With
the changes to EbA and the optimal number of neighbors, we see a change of
advantageous window sizes. The result shows a wider range of advantageous
window sizes, and smaller advantageous window sizes.

We thus conclude that the change in estimation method made a difference,
improving the accuracy of estimates.

This result updates [4]. It repeated the same underlying experiment, in which
the key is the use of fixed-size windows and EbA, but with a better method for
applying EbA.

5.2 Answer to RQ2

The second research question is whether the use of fixed-duration windows,
instead of a growing portfolio, makes a difference to estimation accuracy when
the new EbA is adopted.

Figure 2 showed the general trend that when using fixed-duration moving
windows instead of a growing portfolio, the estimation accuracy improved as
the window size increased. The differences are statistically significant at several
surations between 70 to 80 months. The general trend looked similar to that
with LR, as shown in [3], although the window sizes where the moving windows
were significantly advantageous are different.

We thus conclude that fixed-duration windows can make a difference, and
are effective to improve estimation accuracy.

The Effects of Duration-Based Moving Windows 27

5.3 Answer to RQ3

Table 2 and Fig. 1 present the results for this data set, using the modified EbA
method and using windows defined as containing a fixed number of projects.
Table 5 and Fig. 2 present the corresponding results when windows are defined
as having fixed duration instead of containing a fixed number of projects.

From RQ1 and RQ2 we see that both windowing approaches can lead to
significantly better estimation accuracy.

Figure 1 shows that at the window sizes where fixed-size windows lead to
significantly better estimates than the growing portfolio, the improvement in
MAE is around 7–9 % and the improvement in MRE is mostly around 12 %. With
fixed-duration windows, as seen in Fig. 2, significant improvements in MAE are
around 5 % and significant improvements in MRE are around 7–9 %. Thus the
gains are smaller with fixed-duration windows.

With fixed-duration windows, the number of advantageous window sizes is
smaller with EbA than with LR. This was also observed in [4]; this property
was maintained in this study despite the changes to EbA and window policies.
The degree of the improvement was weaker than that obtained with fixed-size
windows. This characteristic was also observed in [3].

These observations imply that the use of fixed-size windows has more impact
on estimation accuracy than the use of fixed-duration windows, at least with
this dataset. The difference of datasets caused the difference of the effects of the
moving windows as shown in [3]. Further study with other datasets is an area
for future work.

5.4 What are the Practical Implications of this Study?

The implications of this study are as follows:
First, moving windows are suggested as an alternative approach to effort

estimation for companies instead of using the whole history of past data. They
have been shown now to be effective with the two most common estimation
methods, LR and EbA. Research is still needed on the use of moving windows
with other estimation methods.

Second, although it is more natural to think in terms of durations of windows
rather than the number of projects in windows, in this data set the fixed-size
window policy is more effective than the fixed-duration window policy. This has
been shown using both LR and EbA. Practitioners may need to change their
thinking, such that how many projects are available from which to learn might
be more important than how recent the projects are.

Third, effective window sizes might be different even among practitioners.
EbA resembles practitioners’ thinking. Changes to how they arrive at an estimate
may change the number of projects they should consider. This can result in a
change to advantageous window sizes. This may partly explain why practitioners
can make different estimates while drawing on the same repository of data about
past projects.

28 S. Amasaki and C. Lokan

6 Threats to Validity

This study has some threats to validity in common with previous studies.
First, we used only one dataset. The dataset is a convenience sample and may

not be representative of software projects in general. Thus, the results may not
be generalized beyond this dataset; this is true of all studies based on convenience
samples. We trust that some potential sources of variation are avoided by the
selection of a single-company dataset. Since the dataset is large and covers several
years, we assume it is a fair representation of this organization’s projects. The
inclusion of the industry sector as an independent variable helps to allow for
variations among sectors in the dataset. Experiments with other datasets are
our major future work.

Second, this study applied EbA in a specific way. EbA has several options
to be optimized for a specific dataset, as shown in [9], and high-quality models
are dataset-driven in nature. Our choice of method might have missed more
accurate or more realistic methods. Based on our past experience building models
manually, we believe that the approach used here is acceptable, and the variable
selection approach is more realistic than previously studied in [4].

7 Conclusions

This paper investigated the effect on the accuracy of effort estimation using EbA,
when moving windows are used to retain only “recent” training data and the
windows are of fixed durations.

The use of fixed-duration windows was able to improve the accuracy of esti-
mates, in terms of both MAE and MRE, compared to the growing portfolio in
which the entire history of training data is retained.

The advantage over a growing portfolio from using fixed-duration windows
was smaller than the advantage from using fixed-size windows. The same was
found in [3], in which LR was used rather than EbA as the estimation approach.

The paper has made these contributions:

– Changes were proposed and evaluated to how EbA was applied in [4], to
improve its realism in practice and to reduce the computational effort. The
changes improved the accuracy of estimates, and the useful window sizes were
smaller so less data needed to be retained.

– Windows based on duration can improve the accuracy of estimation by anal-
ogy. This is useful because estimation by analogy is very common, and anecdo-
tally filtering of projects based on recency is also very common. Past research
has shown that fixed-duration windows help less than fixed-size windows, and
windows help less with EbA than with LR. Evidence that duration-based
windows can be effective with EbA is valuable.

The above observations were obtained using one specific approach to EbA,
with one dataset. Our future work involves generalization with other settings:
other companies’ datasets and perhaps other options for EbA such as using
recency as part of the distance metric [14] and greedy search for feature selec-
tion [15].

The Effects of Duration-Based Moving Windows 29

Acknowledgment. The authors would like to thank the anonymous reviewers for
their thoughtful comments and helpful suggestions on the first version of this paper.
This work was partially supported by JSPS KAKENHI Grant #25330083 and
#15K15975.

References

1. Lokan, C., Mendes, E.: Applying moving windows to software effort estimation.
In: Proceedings of ESEM 2009, pp. 111–122 (2009)

2. Lokan, C., Mendes, E.: Investigating the use of duration-based moving windows to
improve software effort prediction. In: Proceedings of APSEC 2012, pp. 818–827
(2012)

3. Lokan, C., Mendes, E.: Investigating the use of duration-based moving windows to
improve software effort prediction: a replicated study. Inf. Softw. Technol. 56(9),
1063–1075 (2014)

4. Amasaki, S., Lokan, C.: The effects of moving windows to software estimation:
comparative study on linear regression and estimation by analogy. In: 2012 Joint
Conference of 22nd International Workshop on Software Measurement and the 7th
International Conference on Software Process and Product Measurement (IWSM-
MENSURA), pp. 23–32. IEEE, October 2012

5. Mendes, E., Lokan, C.: Investigating the use of chronological splitting to compare
software cross-company and single-company effort predictions: a replicated study.
In: Proceedings of EASE 2009 (2009)

6. Kitchenham, B., Pfleeger, S.L., McColl, B., Eagan, S.: An empirical study of main-
tenance and development estimation accuracy. J. Syst. Softw. 64(1), 57–77 (2002)

7. MacDonell, S.G., Shepperd, M.: Data accumulation and software effort prediction.
In: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM (2010)

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining Inference and Prediction. Springer, New York (2009)

9. Kocaguneli, E., Menzies, T., Bener, A., Keung, J.W.: Exploiting the essential
assumptions of analogy-based effort estimation. IEEE Trans. Softw. Eng. 38(2),
425–438 (2012)

10. Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for
software effort estimation: a comparative study. IIEEE Trans. Softw. Eng. 38,
2354–2364 (2011)

11. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.
Ser. B 58, 267–288 (1996)

12. Mendes, E., Watson, I., Triggs, C., Mosley, N., Counsell, S.: A comparative study
of cost estimation models for web hypermedia applications. Empirical Softw. Eng.
8(2), 163–196 (2003)

13. Port, D., Korte, M.: Comparative studies of the model evaluation criterions MMRE
and PRED in software cost estimation research. In: Proceedings of ESEM 2008.
ACM (2008)

14. Kolodner, J.: Case-Based Reasoning. Morgan-Kaufmann, San Mateo (1993)
15. Kirsopp, C., Shepperd, M., Hart, J.: Search heuristics, case-based reasoning and

software project effort prediction. In: GECCO 2002: Genetic and Evolutionary
Computation Conference. AAAI (2002)

Software or Service? That’s the Question!

Luigi Buglione1,2(&), Alain Abran2, Christiane Gresse von
Wangenheim3, Fergal Mc Caffery4, and Jean Carlo Rossa Hauck3

1 Engineering Ingegneria Informatica Spa, Via R. Morandi 32, 00148 Rome, Italy
luigi.buglione@eng.it

2 Ecole de Technologie Supérieure (ETS), Montréal, Canada
alain.abran@etsmtl.ca

3 Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
{gresse,jeanhauck}@gmail.com

4 Regulated Software Research Group & Lero, Dundalk Institute of Technology,
Dundalk, Ireland

fergal.mccaffery@dkit.ie

Abstract. In Information and Communication Technology (ICT) a ‘deliver-
able’ may be either software (perceived as an ‘output’) or a service (perceived as
an ‘outcome’). On the one hand, the differences between software and service
have led to the design of parallel models and lifecycles with more commonal-
ities than differences, thereby not supporting the adoption of different frame-
works. For instance, a software project could be managed applying best
practices for services (e.g. ITIL), while some processes (e.g. Verification &
Validation) are better defined in models of the Software Management domain.
Thus, this paper aims at reconciling these differences and provides suggestions
for a better joint usage of models/frameworks. To unify existing models we use
the LEGO approach, which aims at keeping the element of interest from any
potential model/framework for being inserted in the process architecture of the
target Business Process Model (BPM) of an organization, strengthening the
organizational way of working. An example of a LEGO application is presented
to show the benefit from the joint view of the ‘software + service’ sides as a
whole across the project lifecycle, increasing the opportunity to have many more
sources for this type of improvement task.

Keywords: Software management � Service management � ISO 20000 �
CMMI-DEV � CMMI-SVC � ITIL

1 Introduction

To classify items human beings create mental boundaries for distinguishing items,
including adopting different terms: this is a classical approach for benchmarking pur-
poses. For example, in the Automobile market SUVs or Crossovers are recognized as
distinct car segments by adopting a number of criteria, for instance their length and
main characteristics. Again, in the Telecom market smartphones, tablets or ‘phablets’
are now recognized as distinct kinds of products mainly according to their size etc.
However, when classification rules become too strict we may risk losing the ‘big
picture’.

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 30–45, 2015.
DOI: 10.1007/978-3-319-24285-9_3

This can also be observed through the division of three main groups of processes
(development, operation, maintenance) of a system throughout its lifetime. Here the
first and the third group are often associated with the Software domain, while the
second is associated with the Service domain. In this context CMMI-DEV [1] or ISO
15504-2 [2] now in the ISO 33000 series) are examples of process improvement
models for the Software domain, while, ITIL [3], MOF[4], CMMI-SVC [5] or eTOM
[6] are examples for the Service domain. Yet, a mix of ‘components’ from models of
those two ‘separated domains’ is rarely observed. However, when analyzing the
existing models/frameworks both at the process level and product level, the differences
are not as sharp. For instance on the process level 16 out of the 22 processes within
CMMI-DEV and CMMI-SVC are about the same, with very slight differences, mostly
in the glossary adapted to the specific tasks to be performed [31].

Looking at the product level, the quality model for a software product in the ISO
25010 standard [7], if the term ‘software product’ was substituted by ‘service’, the list
of categories and sub-categories could still be a good fit for a pure service, with such a
service not being necessarily an ICT-related service (e.g. a service should be designed
to be maintainable, reusable, usable, reliable, etc.). A question that arises is: are soft-
ware and services different or not? And, if not, how to preserve the best aspects from
any existing model/framework/classification currently available within both
communities?

Furthermore, how to lower the Total Cost of Ownership (TCO) for the management
of a project? And could Knowledge Management (KM) be part of such a solution? In
this respect, this paper attempts to answer these questions by introducing an
improvement approach based on merging elements from different frameworks and
models, having in mind one final goal: to reinforce the organization’s Business Process
Model (BPM) respecting, instead of upsetting, its architecture (Fig. 2).

Fig. 1. Mixing CMMI constellations (DEV + SVC) into a unique ‘project scope’

Software or Service? That’s the Question! 31

This paper is structured as follows: Sect. 2 describes the main differences and
commonalities as they are perceived by both communities of interest (software and
service). Section 3 discusses how to merge best practices from other models as
improvements to be integrated into an existing organizational BPM using the LEGO
(Living EnGineering process) approach [8]. Section 4 presents an example using a
typical ICT management case. Section 5 presents some conclusions and suggestions for
improvements.

2 Software vs Service? Friends or Foes?

This section describes briefly the main differences and commonalities between products
and services. According to ITIL and ISO 20000-1 [9]) ‘a service is a means of
delivering value to customers by facilitating outcomes customers want to achieve
without the ownership of specific costs and risks’. ISO 20000-1 adds a note that
‘service is generally intangible’.

2.1 Differences

A typical difference between product and service is the level of tangibility of a
deliverable. A product (such as a table) is more tangible than a service that is typically
intangible (e.g., the value perceived from whatever experience and therefore perishable,
with the need to reproduce the same level of quality each time (QoS – Quality of
Service)). Whereas a product – once produced – may be used many times and typically
exhibiting the same level of quality (QoP – Quality of Product1).

In the early 90’s, ISO published two similar but distinct standards for managing
quality at the organizational level: ISO 9001 for the products and ISO 9002 for the
services, whatever the application domain. Later, the so-called ‘Vision 2000’ project
reconciled the two standards into a single one: ISO 9001:2000 indicated that while the
formal term adopted in the document was ‘product’ it was intended as a
‘product/service’, with the ultimate aim being to achieve customer satisfaction. In
particular, the ICS (International Classification for Standards) code distinguished the
working sector for an organization to be audited2: EA33 is the code for those orga-
nizations managing software, while EA35 is the code for organizations managing
services.

In relation to services for developing software ISO has published the ISO 20000
series, based upon ITIL (IT Infrastructure Library), the UK standard of best practices
for the IT Service Management (ITSM) community. While some concepts are differ-
entiated (e.g. service catalogue, risk register, capacity management), other elements
(such as the process improvement approach based on the Deming’s PDCA cycle) are
the same in both standards. ITIL details the ‘7-Step Improvement process’ stressing the

1 http://asq.org/services/why-quality/overview.html.
2 http://www.iso.org/iso/home/store/catalogue_ics.htm.

32 L. Buglione et al.

http://asq.org/services/why-quality/overview.html
http://www.iso.org/iso/home/store/catalogue_ics.htm

role of a proper Knowledge Management (KM) process for a more effective continuous
improvement.

2.2 Commonalities

There are different types of service. For instance, maintenance is a service; operation is
a service, in addition to both developing and managing software also being a service. In
order to understand how the ‘boundaries’ of both standards overlap, evidence from one
set of standards can be mapped to evidence from the other one (e.g. taking ISO
20000-1 [9] requirement and applying them to a software development project or,
alternatively, taking ISO 9001 requirements [10] and applying them to a pure service).
Their differences seem to be mostly in the terminology adopted rather than the actual
contents.

A ‘service catalogue’ is a library of services: applying the same concept to any type
of asset library, it works well using libraries with software code for reuse. Furthermore,
the ITIL definition in the Definitive Media Library (DML) where software and related
documentation and licenses are stored makes use of the same configuration manage-
ment process. Some specifications (‘Service Asset and Configuration Management’) do
not change the inner content of the process but extend the common concept from
software code to any kind of organizational asset (including HR-asset) needed as
‘components’ of a service, that is - conceptually speaking - wider than the software
itself.

2.3 The Challenge – Possible Benefits

The commonalities appear to out-number the differences. Could this therefore indicate
that an organization could be made more successful through using more knowledge
from models/frameworks typically developed and adopted by each of the two com-
munities? Here it follows a list of candidate drivers for stimulating a positive and

Fig. 2. ISO 25010:2011 quality model [7] – also for service?

Software or Service? That’s the Question! 33

effective change and possible benefits from the joint usage and vision of soft-
ware + services as a whole within the ‘project’ umbrella:

• Unique, Continuous Lifecycle and Process Flow: what the final customer is
asking for is a not a product itself, but the value that such a product (software or
system) can provide to his users by its usage. Thus, the whole project can be split
into a series of sub-projects (or iterations-sprints with several deliverables, outputs
(e.g. software or a user manual) plus outcomes (e.g. training, positive perception
after the usage), as in Fig. 1. Organizations often tend to have a group for the
development part and another one for the maintenance part, creating possible
logical breaks in terms of service continuity and value provided, while a customer
would expect such continuity defined as ‘availability’ as stated in the agreed service
levels to be as high as possible.

• Glossary: a Change Request (CR) is exactly the same as a Request for Change
(RfC) or a Modification Request (MR): these are different terms for the same
concept. This happens also for other terms: for instance, the internal ‘capacity’ of a
service team can be associated to the ‘productivity’ levels needed to do a project
estimate, etc. However, frequently words can create barriers that may be difficult to
overcome and they may reduce the initial effectiveness when people with different
professional paths work together. A common, shared glossary – including a list of
most used acronyms – could help in speeding the communication among people
within a team.

• Knowledge Management (KM): the input for improving anything is to know and,
better, to know how to do better things. Most of the software process models
assume that such knowledge is already part of a team, while often it is not. Thus, an
organization stimulating creativity and knowledge sharing (e.g. the SECI model
[14]) could have a greater probability to be effective on the market than its
competitors.

• Product/Service: the more tangible product is the means for providing a service to
the final users. In that sense, the management of a project should be more
service-oriented because the focus in the mid-long term should be in measuring not
only the ROI (Return on Investment) but also the VOI (Value on Investment). This
includes also what is generated by intangibles.

2.4 A Short Example – Software + Service Together

A further example comes from project ‘lifecycles’. The Agile approach was born in the
mid ‘90 s for managing Telco projects with unstable requirements and short lead times
for delivering the ‘products’. When looking at an Agile Project Management
(APM) method such as Scrum [11], it is possible to adapt it to a pure service using, for
example, a revised version of user stories, US2 (2nd generation of User Stories (US))
[12]. This is illustrated in Fig. 3: a US2 card adds: (a) sizing FUR and NFR by
functional and non-functional sizing units (fsu/nfsu) or – as in typical US cards –

directly assigning the effort in person/days (or person/hours); (b) specifying a priority
(after the INVEST grid evaluation [13], see below) according to the well-known

34 L. Buglione et al.

‘MoSCoW’ (Must or Should, Could or Would) criteria from BABOK [30] and Project
Management guides; (c) the formal writing also of the non-functional side of a story,
which is far from obvious in a typical US card.

There is also the possibility to have only NFR (including in this definition for sake
of simplicity also the project-related tasks, as quality assurance, measurement, project
planning and monitoring & control, etc.), in what we call a Type1 US2 card (Fig. 4).

After the customer and provider create the single US2 cards, as achieved in an agile
context, their analysis and evaluation can be done through applying a grid based on
criteria such as independent, negotiable, valuable, estimable, small and testable
(INVEST) Grid. The process is fully defined in [13] and uses Table 1 as the basic
template to use between a customer and a provider. The six attributes have been
described using a four-point ordinal scale (0–3), as in the ISO 14598-x standards,
where ‘0’ means ‘poor/absent’, ‘1’ means ‘fair’, ‘2’ means ‘good’ and ‘3’ ‘excellent’.
Each cell contains a description that proposes a rating for that attribute at that level.

Fig. 3. US2-Type2, including both FURs and NFRs

Fig. 4. US2-Type1, including only NFRs

Software or Service? That’s the Question! 35

In a service management context the main goal is to release ‘value’ to a customer.
This is a summary of ‘utility’ (fit for purpose) and ‘warranty’ (fit for use), where the
first one covers functional user requirements (FUR3) and the second one for
non-functional requirements (NFR4) (see Fig. 5).

Table 1. The INVEST Grid [13]

Fig. 5. Functional User Requirements (FUR) vs Non-Functional Requirements (NFR)

3 A requirement that specifies a function that a system or system component must be able to perform
(ISO/IEC/IEEE 24765:2010 [Systems and software Engineering Vocabulary]).

4 A software requirement that describes not what the software will do but how the software will do it
(ISO/IEC/IEEE 24765:2010 [Systems and software Engineering Vocabulary]).

36 L. Buglione et al.

There are two factors: (1) the ISO 25010 quality model for a software product can
also be applied to a service for describing and managing the ‘warranty’; (2) a service
project could plan for each iteration (‘sprint’ in the Scrum glossary) to release firstly the
‘core + enabling’ services (in software this could be the ‘development’ part) and the
following ones typically ‘enhancing’ services (in software this could be a series of
enhancements).

3 Methodology

Our objective in this paper is to introduce a discussion and try to demonstrate that only
one side of the story (software or service) may not deliver all the benefits an organi-
zation could achieve from a joint adoption. For instance, in two out of the three CMMI
constellations, DEV and SVC, 16 out of 22 processes are the same [37, 38]: in this case
would an organization run two separated process improvement initiatives or a single
one by evaluating commonalities for a unique improvement plan? This corresponds to
what BSI (British Standards Institution) called a ‘publicly available specification’ for
an integrated management system (‘PAS 99’) [32]. For such an integration, our pro-
posal is based on the LEGO (Living EnGineering prOcess) approach [8] proposed for
stimulating organizations to improve their own processes: it suggests to take pieces (as
LEGO bricks) from multiple candidate information sources and integrate them to form
a unique, reinforced picture for a particular process or set of processes. It allows
organizations to avoid searching conformity to ‘external’ models, when a model itself
is an abstraction for trying to catch several instances at a time5. Again, any
model/framework can represent only a part of the observed reality, not all of its
possible views, since it needs to represent a single viewpoint at a time. In that way,
enlarging the scope of potential useful elements for improving the organizational BPM,
there could be more chances for success. LEGO has four main elements (Fig. 6):

Fig. 6. The four elements of the LEGO approach

5 Other related works are e.g. [27, 28, 33–35].

Software or Service? That’s the Question! 37

1. a ‘Maturity & Capability Models’ (MCM) repository (www.gqs.ufsc.br/mcm), from
which relevant processes (i.e., MCMs) can be identified;

2. knowledge about the process architecture of each model, for understanding how to
transform the desired elements from a certain model into the target format, espe-
cially when considering that the source models may have different architectures that
need to be integrated into a single model;

3. mapping(s) & comparisons between relevant models, in order to understand the real
differences or the deeper level of detail from ‘model A’ to import into ‘model B’;

4. a process appraisal method (PAM) to be applied on the target organization’s BPM
(Business Process Model).

The LEGO approach follows a four step process:

1. Identify informative/business goals: clearly identify your needs from the current
BPM version and content.

2. Query the MCM repository: browse the MCM repository, setting up the proper
filters in order to obtain the desired elements (processes; practices; etc.) to be
inserted into the target BPM.

3. Include the selected element(s) into the target BPM: include the new element(s)
in the proper position in the target BPM (e.g. process group, maturity level, etc.).

4. Adapt & Adopt the selected element(s): according to the process architecture of
both process models (the target and the source one), the selected elements may need
to be adapted, tailoring such elements as needed.

Such an approach has been applied to several contexts and processes (e.g.
requirement management [15], risk management [16], etc.), and it could be applied also
to an improved BPM where some elements could have been missing.

4 Unification of Software + Service

This section presents an example on how to use jointly software and service models
(what ISO calls a Process Reference Models (PRM)), picking up those information and
best practices that one model eventually could not have yet foreseen, and to strengthen
them. As already mentioned, an organization has to manage a project that could be
often composed by pure software development and maintenance and pure services (e.g.
incident management). Thus one of its goals will be how to lower the Total Cost of
Ownership (TCO). Are really software and services so different or not? And if not, how
keep the best from any model/framework/classification currently available from both
communities? Can Knowledge Management (KM) be part of such solution? A real
application should be done on your own BPM processes. Here, for sake of simplicity,
ISO 15504-2 is selected as the target BPM to be reinforced and a series of Software and
Service PRM as the sources to be investigated for picking up some interesting addi-
tional ‘bricks’ to be added, in case. Now a new application can be done considering the
SPICE Knowledge Management process (RIN.3). KM was chosen because it is
important to stress and discuss how to create and generate value for an organization.
Having a proper KM process in place would help as a support process for many

38 L. Buglione et al.

http://www.gqs.ufsc.br/mcm

initiatives, and it is not yet part of CMMI-DEV/SVC but of another SEI-based model
(People CMM): thus it can be proposed as an example, together with CMMI, as a target
model for the positioning of ‘missing pieces’. Table 2 presents a list of KM-related
models/frameworks explored for finding Elements of Interest (EoI) to be inserted for
reinforcing RIN.3.

The following preconditions, process and main results from the application of the
LEGO process to the KM domain are proposed for a better process that may be applied
in an organization:

1. Identify informative/business goals: improve the capability of the organization to
collect, share, reuse and improve its knowledge by its employees and partners.

2. Query the MCM repository: Table 3 proposes the list of potential elements of
interest (EoI) to consider for improving ISO 15504 KM process.

Table 2. Some KM-related models/frameworks

Model/framework Repr.
Type

ML (#) Architect-Type Comments/notes

APQC KMMM
[17]

Staged 5 [1–5] Level-based •

Siemens KMMM
[18]

Staged 5 [1–5] Level-based • 8 Key Areas

ONTOKNOM
[19]

Staged 5 [1–5] Level-based • Ontology included

(G-KMMM [20] Staged 5 [1–5] Matrix -based • Assessment with
questionnaire by ML

InfoSys KMMM
[25]

Staged 5 [1–5] Level-based •

KPMG
Knowledge
Journey [21, 22]

Staged 5 [1–5] Level-based • 4 KPAs

K3 M [22] Staged 8 [1–8] Level-based •

KMCA [23] Staged 6 [0–5] Level-based • Added a ‘zero’ ML
ITIL v3 Refresh
2011 [3]

— — — • Svc Mgmt Framework, 5
SLC phases → KM in the
Svc Transition
(ST) phase; 7-Step
Improvement Process in
CSI (Continual Svc
Improvement) phase

Microsoft MOF
v4 [4]

— — — • Svc Mgmt Framework, 4
SLC phases → KM in the
‘Manage’ phase

COBIT [24] — — — • IT Governance
Framework → 4 main
phases (PO, AI, DS, ME)

Software or Service? That’s the Question! 39

3. Include the selected element(s) into the target BPM: looking at the analysis of
potential EoI (Elements of Interest) in Table 3. Table 4 shows how our suggestions
were introduced in the current RIN.3 process, describing a new possible improved
process that may be mapped against your own QMS internal process(es) covering
that subject.

4. Adapt & Adopt the selected element(s): after adapting the original RIN.3 process
considering the proposed suggestions for improvement (see Table 4), the improved
RIN.3 process should be mapped now against the related QMS internal process

Table 3. KM MCM: Elements of Interest (EoI)

Model/
Framework

Elements of Interest (EoI)

APQC
KMMM

• —

Siemens
KMMM

• 8 Key Areas (Planning, Ext Knowledge, People, Informal Rules,
Operation, Int. Knowledge, Technology, Formal Rules)

ONTOKNOM • KM Maturity Model Ontology based on three components (Admin,
Author, User)

KPMG
KJourney

• 4 KPAs (People, Process, Content, Technology)

G-KMMM • 3 KPAs (People/Org, Process, Technology)
K3 M • More refined levels for a gradual implementation

• Top-down retention measurement at ML3 and a formal Org Knowledge
Base (ML4)

KMCA • Separating ‘behavior’ and ‘infrastructure’ into the analysis
ITIL v3 KM • Overall, global concept of SKMS (Service Knowledge Management

System)
• The four waves for KM: DIKW (Data, Information, Knowledge,
Wisdom)

• Goal-oriented KM, well linked with the Measurement perspective and the
CSI (Continual Service Improvement) process

Microsoft
MOF v4

• ‘Plan’ phase, POL (Policy) area, Process 2 (Create Policy), activity #5
(Create KM policies)

• ‘Operate’ phase, CUS (Customer Service) area, Process 3 (Resolve the
Request), activities asking to search, locate, verify knowledge base
articles

• ‘Manage’ phase, GRC (Governance, Risk, Compliance) area, Process 2
(Assess, Monitor & Risk), Activity #9 (Learn from prior effects and
update the Knowledge Base) → Stressed the ‘learning’ activity as a
‘risky’ element whether not properly managed

COBIT v4.1 • PO2.1 (Enterprise Architecture Model)
• PO2.4 (Integrity Management)
• AI4.2 (Knowledge Transfer to Business Management)
• AI4.3 (Knowledge Transfer to End Users)
• AI4.4 (Knowledge Transfer to Operation and Support Staff)

40 L. Buglione et al.

Table 4. KM process - suggestions for improvements.

ISO/IEC 15504 KM Process Suggested Improvements
RIN.3 KM BPs

BP 01 – Establish a KM system • Distinguish the ‘behavior’ from the ‘infrastructure’
[KMCA]

• Define/Refine which Information Systems are part of
the overall SKMS in Architectural terms [ITIL]
[COBIT PO2.1]

• Define – according to the ‘four waves of KM’ – the
layers and related IS for gathering and distributing
data, information, knowledge and wisdom [ITIL]

BP02 - Create the Network of
Knowledge contributors

• Create and update a list of (primary, secondary)
stakeholders to consider as the main input for
formulating requirements and for checking their
validity [COBIT PO2.4]

BP 03 – Develop a KM strategy • The strategy should have clear KM axes of interest well
defined from the beginning, to be periodically updated
[ITIL SS, Siemens KMMM; KPMG KJourney;
G-KMMM]

• The specification of which KM areas could be the most
relevant to the organization for a proper generation of
value is welcome [Siemens KMMM, G-KMMM,
KPMG]

• Consider KM process and its implication also from a
Risk perspective [MOF]

• A KM Ontology could help during the
creation/periodical update of the organizational overall
strategy [ONTOKNOM]

• The KM Strategy must be goal-oriented, receiving
feedbacks from previous improvements put in action
[ITIL CSI; MOF Plan]

BP04 - Capture Knowledge • Revise periodically the potential sources of
data/information gathering, also considering new
technologies (e.g. Social media and the possibility to
interface organization’s website and intranet) [MOF
Operate CUS; SECI model [14])

BP 05 – Disseminate Knowledge
Assets (KAs)

• Keep in mind several stakeholders, not only customers
but mostly Users and their perceptions in the creation
of value [COBIT AI4.x][ITIL CSI]

BP06 - Improve KAs • KAs must be managed as one of the several
organization’s Configuration Items (CI) to be updated
on a regular basis [ITIL ST]

• KAs must be updated as part of a regular CSI
(Continual Service Improvement) program [ITIL CSI]

Software or Service? That’s the Question! 41

covering that subject. Since many organizations adopt an ISO management system
(e.g. ISO 9001), a cross-check for validating potential improvements from the
design phase could be achieved through re-applying the related mapping document
to their own internal process (e.g. using the N/P/L/F – Not/Partially/Largely/Fully
achieved ordinal scale from CMMI or ISO 15504). Moving from ISO 15504, it
could be used also the Mutafeljia & Stromberg’s mapping [26] and/or the one by
Peldzius and Ragaisis taking CMMI-DEV and ISO 15504 [29] as a basis. In this
paper, our focus was limited to only the design phase. However, a case study with
the application of hybrid-RIN processes will be included in a future paper.

The EoI presented in Table 3, as well as the included elements, respect the BPs of
the RIN.3 process provided in Table 4 are not to be considered exhaustive: to the
contrary, these two tables are to be considered as a starting point for the application of
the LEGO approach in practice.

What can be easily observed reading the ‘EoI’ column is that any model can
propose a series of elements and good practices, but just a single ‘model’ cannot
include in one possible viewpoint every possible EoI, simply because they all were
originated from different assumptions and rationales.

In particular this short example from ISO 15504 RIN.3 process stressed the need:

• to reinforce the list of work products/deliverables defined at the end of the
ISO PRM with few more elements, not currently defined;

• to provide suggestions about the communication area, because – as in the SECI6

model [14]– you can also have a great idea but being limited to few applications,
while the larger the diffusion, the higher the probability to create/generate new joint
ideas from the initial one, being refined little by little after an initial application;

• a list of stakeholders to be periodically contacted (e.g. panels) for providing
opinions/ideas on new products-services or revision for current services provided to
the market.

5 Conclusions and Next Steps

Software and Service are two sides of the same coin within an ICT project. Too often
they are viewed as separated issues to be managed and improved by specific models
and frameworks. After reviewing the main differences and commonalities, it could be
valuable to an organization to start looking at them as friends and not as foes. A list of
common items valid both from the software and service sides has been discussed (e.g.
the way to manage requirements by User Stories), depicting the main challenges to
properly manage them together as a whole.

The LEGO (Living EnGineering prOcess) approach has been presented as an
effective way to take into account several information sources from the MCM (Maturity
& Capability Models) belonging to the desired area/domain to be improved. LEGO has
been applied in different ways over the past years to specific process areas (PA) to be

6 SECI (Socialization – Externalization – Combination – Internalization).

42 L. Buglione et al.

improved as a ‘vertical’ improvement, while in this paper it was applied in a ‘hori-
zontal’ way, trying to give continuity to a continuous flow (from the development of a
software system till its maintenance) within the unique ICT project frame. The RIN.3
Knowledge Management process from the ISO 15504 PRM (Process Reference Model)
has been considered as a small application example, considering models from both
domains (software; service & governance) for picking up potential Elements of Interest
(EoI) to be suggested for strengthening RIN.3.

An organization needs more and more to ‘pick up’ pieces from several frameworks
and models in order to reinforce its own unique Business Process Model (BPM), while
too often organizations search for compliance to ‘external’ models (e.g. one or more
CMMI constellations) thinking such models could be the target instead of being simply
suggestions for an internal improvement. But a model is and remains simply a model.
Each model can have its way to look at a phenomenon but cannot capture all the
potential interpretations and ‘nuances’ of a certain process/domain. Therefore the need
to know more sources of information and try to summarize them in the best possible
way but respecting the organization’s BPM process architecture, that is the real target
to improve. The papers about LEGO applications (e.g. [8, 15, 16, 39]) can be a starting
point to learn and try to replicate the approach on ‘your’ own BPM and processes. The
most challenging item can be how to filter the EoI (Elements of Interest) useful for
being incorporated into your own BMP (target). This is why the issue dealt with in this
paper was Knowledge Management and the way organizations typically deal with that
process (or not). Too often such process seems to be too implicit in many medium-large
organizations and could be confused with solely training.

LEGO represents a different way to improve processes from multi-source models
than done in EnterpriseSPICE [27] or FAA iCMM [28] or other approaches (e.g. [33–
35]) since LEGO stresses a dynamic perspective about how to find room for
improvement in your own BPM, rather than considering a meta-model.

Next steps will be about the analysis of other points of contacts between the
software and the service side of ICT projects, such as the measurability issue, where the
knowledge coming from the software community could bring some useful tips for
reinforcing the Service Level Management (SLM) process as well as how paradigms,
such as DevOps [36], can help improving better and faster software and services by a
more focused collaboration and communication about stakeholders. Again, a mapping
of crossed terms and the way there are differently mentioned in the respective com-
munities (e.g. a ‘Change Request’ is on software side the same concept and working
item that a ‘Request for Change’ in the service side) will be created in order to facilitate
such logical merging.

References

1. CMMI Product Team, CMMI for Development, Version 1.3, CMMI-DEV v1.3, Continuous
Representation, CMU/SEI-2010-TR-033, Technical report, Software Engineering Institute,
November 2010

Software or Service? That’s the Question! 43

2. ISO/IEC, IS 15504-2: 2003, Information technology – Process assessment – Part 2:
Performing an assessment, October 2003

3. ITIL v3 Refresh 2011 suite, AXELOS (2011). http://goo.gl/Ets5Xb
4. Microsoft, Microsoft Operation Framework (MOF) v4.0 (2012). http://goo.gl/BvGg3i
5. CMMI Product Team, CMMI for Service, Version 1.3, CMMI-SVC v1.3,

CMU/SEI-2010-TR-034, Technical report, Software Engineering Institute, November 2010
6. TM Forum, Business Process Framework (eTOM), v14.5 (2015). http://goo.gl/vTXjkh
7. ISO/IEC IS 25010:2011, Systems and software engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – System and software quality models, Geneve
(2011)

8. Buglione, L., Gresse von Wangenheim, C., Hauck, J.C.R., McCaffery, F.: The LEGO
maturity & capability model approach. In: Proceedings of the 5th World Congress on
Software Quality, Shanghai (China), October 2011

9. ISO/IEC IS 20000-1:2011, Information technology – Service management – Part 1: Service
management system requirements, Geneve (2011)

10. ISO, IS 9001:2008, Quality management systems – Requirements, Geneve (2008)
11. Schwaber, K.: Agile Project Management with Scrum, Microsoft Press (2004). ISBN

978-0735619937
12. Buglione L.: Agile-4-FSM. Improving estimates by a 4-pieces puzzle, Webinar, IFPUG

Agile Interest Group, 17 May 2012. http://goo.gl/wtXWt
13. Buglione, L., Abran, A.: Improving the user story agile technique using the INVEST Criteria,

IWSM-MENSURA 2013. In: 23th International Workshop on Software Measurement and
8th International Conference on Software Process and Product Measurement. IEEE/CS
Proceedings, Ankara (Turkey), 23–26 October 2013, pp. 49–53 (2013)

14. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies
create the Dynamics of Innovation, OUP USA (1995). ISBN 978-0195092691

15. Buglione, L., Hauck, J.C.R., Gresse von Wangenheim, C., Mc Caffery, F.: Hybriding CMMI
and requirement engineering maturity & capability models: Applying the LEGO approach
for improving estimates. In: ICSOFT 2012, Proceedings of the 7th International Conference
on Software Paradigm Trends, Rome (Italy), 24–27 July 2012

16. Buglione, L., Lami, G., von Wangenheim, C.G., Caffery, F.M., Hauck, J.C.R.: Leveraging
reuse-related maturity issues for achieving higher maturity and capability levels. In: Favaro, J.,
Morisio, M. (eds.) ICSR 2013. LNCS, vol. 7925, pp. 343–355. Springer, Heidelberg (2013)

17. Hubert, C., Lemons, D.: A Knowledge Management Maturity Model – APQC’s Stages of
Implementation (2009)

18. Langen, M.: Holistic development of KM with the KM maturity model (KMMM). In:
APQC Conference, 7–8 Dec 2000

19. Hefke, M., Kleiner, F.: An ontology-based software infrastructure for retaining theoretical
Knowledge Management Maturity Models. In: 1st Workshop on Formal Ontologies Meet
Industry, FOMI 2005, Verona, Italy (2005)

20. Pee1, L.G., Teah, H.Y., Kankanhalli, A.: Development of a general knowledge management
maturity model. In: Proceedings of the 10th Pacific Asia Conference on Information Systems
(PACIS), 6–9 July, pp. 401–416. Kuala Lumpur, Malaysia

21. KPMG, Knowledge Management Assessment Exercise (1999). http://goo.gl/3c9mOR
22. WisdomSource, Knowledge Management Maturity (K3 M). WisdomSource News 2(1), 31,

May 2004. http://goo.gl/WbaW7b
23. Freeze, R., Kulkami, U.: Knowledge management capability assessment: validating a

knowledge assets measurement instrument. In: HICSS 2005 Proceedings of the Proceedings
of the 38th Annual Hawaii International Conference on System Sciences, vol. 08, p. 251.1
(2005)

44 L. Buglione et al.

http://goo.gl/Ets5Xb
http://goo.gl/BvGg3i
http://goo.gl/vTXjkh
http://goo.gl/wtXWt
http://goo.gl/3c9mOR
http://goo.gl/WbaW7b

24. ISACA, COBIT v4.1 (2007). http://goo.gl/lOaHZv
25. Kochikar, V.P.: The knowledge management maturity model: a staged framework for

leveraging knowledge. In: KM World 2000, Santa Clara, CA (2000). http://goo.gl/zl7tBV
26. Mutafeljia, B., Stromberg, H.: Process Improvement with CMMI v1.2 and ISO Standards,

Auerback Publications (2008). http://goo.gl/BFUqq
27. ISO JTC1/SC7/WG10 Study Group, EnterpriseSPICE - An Integrated Model for

Enterprise-wide Assessment and Improvement Technical report Issue 1 - September
(2010). http://enterprisespice.com/

28. Ibrahim, L., Bradford, B., Cole, D., LaBruyere, L., Leinneweber, H., Piszczech, D., Reed,
N., Rymond, M., Smith, D., Virga, M., Wells, C.: The Federal Aviation Administration
Integrated Capability Maturity Model-, (FAA-iCMM), Version 2.0. An Integrated
Capability Maturity Model for Enterprise-wide Improvement, FAA, September 2001

29. Peldzius, S., Ragaisis, S.: Investigation correspondence between CMMI-DEV and ISO/IEC
15504. Int. J. Educ. Inf. Technol. 5(4), 361–368 (2011). http://goo.gl/Dqupq9

30. IIBA, A Guide to the Business Analysis Body of Knowledge (BABOK) v3, International
Institute of Business Analysis (2015)

31. Pipkin, J., Lunsford, G.H.: Synergism of the CMMI development and services constellations
in an hybrid organization. In: CMMI Conference North America, May 2014. http://goo.gl/
s7s9Is

32. BSI, PAS 99:2012 – Specification of common management system requirements as a
framework for integration – Publicly Available Specification (2012). https://goo.gl/zWh5OZ
(working draft)

33. SEI, PrIME project, Process Improvement in Multiple Envinronment. http://goo.gl/AK79wr
34. Jeners, S., Lichter, H., Dragomir, A.: Towards an integration of multiple process

improvement reference models based on automated concept extraction. In: Winkler, D.,
O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2012. CCIS, vol. 301, pp. 205–216. Springer,
Heidelberg (2012)

35. Andelfinger, U., Heijstek, A., Kirwan, P.: A Unified Process Improvement Approach for
Multi-Model Improvement Environments, News @ SEI, 1 Apr 2006. http://goo.gl/ztuKl2

36. Andelfinger, U., Heijstek, A., Kirwan, P.: DevOps, Wikipedia. https://goo.gl/20PrLX
37. Stall, A., Forrester, E.: Using CMMI-DEV and CMMI-SVC Together – Where ‘Build Stuff’

Happens in CMMI-SVC, 2012 SEPG NA, Presentation, March 2012. http://goo.gl/z0PIuT
38. Gonzales, R.M.: CMMI®-DEV versus CMMI®-SVC analysis. In: 11th Annual CMMI

Technology Conference and User Group, Denver (USA), 15 Nov 2011. http://goo.gl/dhldcC
39. Buglione, L., Gresse von Wangenheim, C., Mc Caffery, F., Hauck, J.C.R.: The LEGO

strategy: guidelines for a profitable deployment. Comput. Standard Interfaces 36(1), 10–20
(2013). Elsevier

Software or Service? That’s the Question! 45

http://goo.gl/lOaHZv
http://goo.gl/zl7tBV
http://goo.gl/BFUqq
http://enterprisespice.com/
http://goo.gl/Dqupq9
http://goo.gl/s7s9Is
http://goo.gl/s7s9Is
https://goo.gl/zWh5OZ
http://goo.gl/AK79wr
http://goo.gl/ztuKl2
https://goo.gl/20PrLX
http://goo.gl/z0PIuT
http://goo.gl/dhldcC

A Process to Improve the Accuracy of MkII FP to
COSMIC Size Conversions: Insights into the COSMIC

Method Design Assumptions

Aveek Dasgupta1, Cigdem Gencel2, and Charles Symons3(✉)

1 Société Internationale de Télécommunications Aéronautiques (SITA), London, UK
aveek.dasgupta@sita.aero

2 DEISER, Madrid, Spain
cigdem.gencel@deiser.com

3 The Common Software Measurement International Consortium (COSMIC), Reigate, UK
cr.symons@btinternet.com

Abstract. Converting software sizes measured by one Functional Size Meas‐
urement (FSM) method to another is usually achieved by measuring the size of a
sample of software items by both methods and deriving a statistical correlation
curve that can be used for converting the whole set of measurements.

This paper describes a ‘calculation method’ to convert functional sizes meas‐
ured by the MkII FSM method to COSMIC functional sizes. The method exploits
some common features of both FSM methods and uses ‘functional profiling’ of
measurements in order to form homogeneous datasets suitable for conversion.
Applying the method to measurements of the same software by both FSM
methods confirms that the calculated COSMIC sizes are more accurate than
statistically-converted sizes.

Comparing the way in which the two methods measure functional size and
the results of the conversion study yields significant, positive insights into the
design assumptions of the COSMIC FSM method.

Keywords: Functional Size Measurement · Function Point Analysis · COSMIC ·
IFPUG · MkII FPA · Size conversion

1 Introduction

The objectives of this paper are:

(a) to present the results of measurements of the functional size of the same software
items using the MkII1 and COSMIC methods, and to use these to establish simple
formulae for converting MkII sizes to COSMIC sizes under certain conditions (we
will call this most commonly-used method the ‘statistical method’);

(b) to propose another method (the ‘calculation method’) with the aim of improved
accuracy when applied to MkII to COSMIC size conversion, and to present the
results of applying this method;

1 ‘MkII’ is an abbreviation for ‘Mark Two’.

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 46–61, 2015.
DOI: 10.1007/978-3-319-24285-9_4

(c) to present some very significant and positive conclusions on the COSMIC method
of measuring functional size, that were an unexpected side-result of this study.

Section 2 of the paper describes the origins and nature of the MkII and COSMIC
measurement data used for the analyses. Section 3 outlines the MkII and COSMIC
Functional Size Measurement (FSM) methods in sufficient detail for the purposes of this
paper.

Section 4 describes a typical process to develop a statistically-based functional size
conversion method (the ‘statistical method’). The results of applying the method to the
available data are presented and the limitations of this method are discussed. We use an
analysis of the distribution of functional sizes over the input, processing and output
phases of software on the two methods (‘IPO profiling’) to show how these profiles vary
with software from different domains and how profiling may be used to identify homo‐
geneous datasets that are well-suited for developing size conversion formulae.

Section 5 describes the ‘calculated method’ for MkII to COSMIC size conversion
that aims to improve on the accuracy obtainable via the statistical method and shows
the results of applying the method to data from 13 Information System software items
and to four Control System software items.

Section 6 draws conclusions from the findings in this paper about the effectiveness
of the calculation method for MkII to COSMIC size conversion and on the effectiveness
of the COSMIC method in its practical uses.

Appendix 2 gives some more detail on differences between how the two methods
measure functional size. We suggest that if more measurement detail were available, it
might be possible to further improve the accuracy of converted sizes.

2 Data Sources

Data analysed in this paper came from two sources. Dr Gencel supplied measurements of
nine software items from four organisations (denoted as A to D in the following). Three of
the software items are from the domain of ‘Information Systems’; the other six are
described as various types of ‘Complex control systems’ (avionics, real-time, embedded,
etc.). Some of the data reported here has been analysed in earlier papers [1, 2].

Measurements of 13 software items from the domain of Information Systems were
supplied by SITA (Société Internationale de Télécommunications Aéronautiques,
www.sita.aero). SITA is the world’s leading specialist in air transport communications
and information technology. SITA is 100 % owned by the world’s air transport industry
and supplies systems and services to its customers in more than 200 countries and terri‐
tories. The measurements (denoted by ‘S’ in the following) were of SITA software
supporting airline and airport operations and management. The 22 pairs of MkII and
CFP total size measurements are from projects to develop new software, except some
measurements from SITA are for projects to develop major additions to existing systems.
Effectively all data are measurements of new software. The data shown in Table 1 and
plotted in Fig. 1 (which distinguishes the organisations supplying the data), were input
to the analysis required by objective (a) of this paper.

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 47

http://www.sita.aero

Table 1. MkII and COSMIC total size measurements of 22 software items

Control system Information system Information system

Org MkII FP COSMIC
FP

Org MkII FP COSMIC
FP

Org MkII FP COSMIC
FP

A 4380 3524 S 249 148 S 1927 1418

A 435 279 S 482 359 S 2182 1664

A 348 251 S 506 364 S 2230 1693

A 1180 923 S 550 400 S 2341 1807

C 261 275 S 652 438 S 2455 1947

C 356 321 S 609 454 B 1346 1029

– – – S 932 661 D 1538 1113

– – – S 833 681 D 2998 1947

Fig. 1. CFP versus MkII sizes by organisation

To meet objective (b) we need to analyse measurements of the components of the
total sizes as shown in Appendix 1. These details were available for all 22 measurements.
Column headings are explained in Sect. 3.

48 A. Dasgupta et al.

3 Background to How the Two FSM Methods Measure
Functional Size

FSM methods aim to measure a ‘functional size’ of the ‘Functional User Requirements’
(FUR) of software.

The first such method was Function Point Analysis, developed by Allan Albrecht of
IBM in the mid-1970s [3]. Albrecht aimed to quantify software functionality in terms
meaningful to the software’s users. The International Function Point Users’ Group
(IFPUG) founded in 1986, adopted the FPA method.

The MkII method was developed in the late 1980s [4] to measure business applica‐
tion software. By 1998 the method was considered mature and was not developed
further. The COSMIC FSM method was developed by a group of software metrics
experts (the ‘Common Software Measurement International Consortium’) starting in
1998 to be applicable to business, real-time and infrastructure software. Both methods
have been accepted as ISO/IEC standards [11, 12].

FUR for any software item can be decomposed into processes that the software must
execute in response to data received about events in the world outside the software. The
principal FSM methods all require that these processes be identified and measured. The
IFPUG method refers to them as ‘elementary processes’ [5], the MkII method as ‘logical
transactions’ [6] and the COSMIC method as ‘functional processes’ [7]. The IFPUG
method defines an elementary process somewhat differently to how the MkII and the
COSMIC methods define this concept. The latter two methods aim to define precisely
the same concept, even though they use different words. The COSMIC definition has
been refined for many more years than has the MkII definition, aiming to ensure consis‐
tent interpretation. We will therefore use the term ‘functional process’ for this concept
for both the MkII and COSMIC methods.

The differences in the two methods’ way of measuring functional size are in the
selection of the components representing the Input, Process and Output phases of a
functional process to be identified and counted, and in their weighting.

The size of a functional process in ‘MkII FP’ units is computed using Eq. (1).

(1)

where

• # = ‘count of’;
• DET = ‘data element type’, and
• ER = ‘Entity reference’, i.e. a read or write reference by the functional process to an

entity in the entity/relationship model of stored data used by the software being
measured;

• the braces {} distinguish the input, process and output components of size.

Every MkII functional process must have at least one input and one output DET and
one ER; its minimum size is therefore 2.5 MkII FP (0.58 + 1.66 + 0.26).

The size of a functional process in units of ‘COSMIC Function Points’ (CFP) is
computed from the counts of its four types of ‘data movements’ as in Eq. (2).

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 49

(2)

An Entry and an Exit each move a data group into and out of the software respec‐
tively. Reads and Writes move data from persistent storage into software, or vice versa,
respectively. Every COSMIC functional process must be triggered by an Entry and it must
have an outcome, i.e. either a Write or an Exit; its minimum size is therefore 2 CFP.

The DET’s of a COSMIC data group all describe a single ‘object of interest’. In
general, MkII method entities for which data are stored correspond to COSMIC ‘objects
of interest’. Hence MkII ‘entity references’ correspond to COSMIC Read and/or Write
data movements, subject to two exceptions described in the Appendix 2.

[In fact, describing the three components of the size of a functional process, as
measured by either method, as representing its input, process and output phases is more
a convenient label for discussion than an accurate description. In reality, the divisions
of functionality, particularly between the input and process phases differ from this simple
view, which we have had to use given the data that are available. See the Appendix 2
which discusses this point in more detail.]

For both methods, the size of a software item is obtained by summing the sizes of
all its functional processes. Both methods have very similar rules for sizing changes to
software but these are not relevant to this paper.

The set of three weights (0.58, 1.66, 0.26) for the MkII method were introduced
because of the need to combine counts of two different concepts (DET’s and ER’s) to
get a total size measure. The values of the weights were designed [8] to reflect the relative
effort, averaged over all types of software projects, to develop the components.
Weighting by relative effort was chosen because the MkII size scale was intended for
use in comparing the performance of projects across different types of software using
different technologies, etc., and for use in project estimating. (The sizes of the compo‐
nents of the IFPUG method were similarly calibrated based on relative effort.)

In practice, the MkII weights were obtained by a ‘Delphi’ exercise, asking repre‐
sentatives of 66 completed development projects to ‘guestimate’ the relative effort they
had needed to deal with the input, processing and output phases of their software. As a
final step of this calibration process, the weights were scaled so that the minimum size
of a MkII logical transaction was 2.5 MkII FP which resulted in software sizes similar
in magnitude to those measured by the IFPUG method.

The COSMIC size formula did not need any weights because all four components
of a functional process size are sub-types of the same concept, a ‘data movement’, so
their counts may be simply added together. Further, the method designers deliberately
avoided introducing weights so that the size scale is completely independent of project
effort and unquestionably conforms to the principles of functional size measurement
published by ISO [10].

4 The ‘Statistical Method’ for Converting MkII FP to
COSMIC Sizes

For an organisation that has many software size measurements using the MkII
method and that wishes to start using the COSMIC method, conversion of the

50 A. Dasgupta et al.

existing measurements to CFP sizes is very important to do as accurately as possible
so as not to lose all the accumulated value and uses of those data.

The simplest way to convert existing MkII FP sizes to CFP sizes is to use the
following process.2

• measure the CFP size of typically 10 or more software items that share a ‘common
profile’ for which the organisation already has the corresponding MkII FP sizes;

• plot the pairs of (MkII FP, CFP) sizes on a scatter diagram and find the best-fitting
correlation curve, ideally a straight line;

• (assuming a reasonable correlation of the two sets of sizes) use the straight line rela‐
tionship to convert all existing MkII sizes to COSMIC sizes.

The choice of which measurements to include in the ‘common profile’ is critically
important in order to develop a statistically-reliable method of size conversion. Criteria
include the following.

• All software sizes are for new developments or for enhancements (but not mixed)
and from the same domain, e.g. business applications. Organisations with a very large
software portfolio should explore dividing it into sub-groups that might be expected
to have more homogeneous size characteristics, e.g. operational versus MIS systems.

• The selected dataset should be selected for a limited size range, avoiding very small
or large software sizes, well-outside the size range of the majority of measurements.
Such outliers can easily distort the best-fitting correlation curve obtained by an Ordi‐
nary Least Squares (OLS) process, making it inaccurate for conversion of the
majority of the sizes.

• A particular factor that is relevant to MkII to COSMIC conversion is that the
minimum size of a functional process is 2.5 MkII FP or 2 CFP. For all practical
purposes, this ‘data point’ can therefore be included as a constraint on the OLS fitted
curve so that it passes through the origin of the graph at (0, 0). Hence in this paper,
all graphs will only show straight line fits that are constrained to pass through the
origin. (It is noticeable that the slopes of all fitted straight lines in the following are
close to 0.8, the ratio of the minimum sizes on the two FSM methods.)

Applying the first ‘common profile’ criterion to the 22 pairs of size measurements
in Table 1, we first decided to analyse the Control Systems and Information Systems
data separately. The resulting fitted straight lines are shown in Fig. 2.

The fitted two straight lines are very close together, with high R-squared in spite of
the diverse origins of the measurements. Nevertheless, the accuracy of converting from
MkII FP sizes to COSMIC sizes using the OLS-fitted straight line might still not be good
enough for practical purposes.

2 This process has been applied several times [9] for the conversion of IFPUG to COSMIC func‐
tional size measurements but until now we are not aware of any published results of applying
the process for MkII to COSMIC size conversion.

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 51

Fig. 2. CFP vs MkII sizes by domain

Fig. 3. Measured sizes for 13 SITA software items

To illustrate this point, we plotted the CFP versus MkII FP sizes for the subset of
the 13 Information System data points from SITA, which should be a relatively homo‐
genous data set,, shown in Fig. 3.

52 A. Dasgupta et al.

The slope of the line has changed slightly from the value for all Information Systems
shown in Fig. 2 and the R-squared has improved significantly, which is promising for
conversion. However, an important question remains: how accurate will the fitted line
be when used to predict the CFP size from the measured MkII size for each individual
software item?

To answer this question, we used this equation to predict the CFP sizes for the SITA
software items from the measured MkII FP sizes. We then computed two parameters:

• the difference of the predicted CFP size from the measured CFP size, as a percentage
of the measured CFP size, called the ‘% Diff.’

• the average of the absolute values of the ‘% Diff.’ values for all 13 projects, called
the ‘AA% Diff.’ (The absolute values are taken to eliminate the effect that some
differences are positive and some negative. This parameter treats all software items
as being equally important.)

The results for these 13 SITA software items in Table 2 show that this process can
result in very significant errors in predicted CFP sizes, especially for the smaller sizes.
Also there is a distinct bias to predicting CFP sizes that are higher than the measured
CFP sizes.

Table 2. Measures of the inaccuracy of CFP sizes predicted from a conversion formula derived
by conventional statistical analysis of measured MkII FP and CFP sizes

AA % Dff. # under-sized items # over-sized items 3 × highest % Diff errors

6.0 % 4 9 28 %, 13 %, 7.3 %

Ideally, one would seek more accurate converted COSMIC sizes than given by this
statistical method.

At first glance, according to the second of our criteria for selection of a dataset of
measurements for a conversion study, the data in Figs. 1 and 2 would suggest that the
two highest data points (at about 3000 and 4380 MkII FP’s) should be discarded as
outliers. However, before making this decision, we analysed the profile of the software
from another angle, using detailed data from the table in Appendix 1.

We computed the percentages of the contributions to total size of the input, process
and output components as measured by both FSM methods, for all the software items.
(We call this ‘IPO profiling’). This analysis showed high homogeneity of the IPO
profiles for the 13 SITA Information System software items and for the four Control
System software items from organisation A. The three other Information System items
and the two other Control System items had quite different profiles. Figure 4a shows the
average profile of the 13 SITA Information System software items, as measured by the
MkII and COSMIC methods. Figure 4b shows the corresponding result for the four
Control System software items from organisation A.

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 53

Fig. 4. Percentage contributions of sizes of input, process and output phases to measured total
software sizes

[Note re the four Control Systems, Fig. 4b shows that these systems have an unusual
IPO profile, with a high proportion of size being accounted for by the processing phase
relative to the input and output phases. These are air traffic control and avionics systems
which must make many references to validate aircraft ID’s and their flight plans, to store
and retrieve statuses, etc.]

The conclusions from these analyses of both total sizes and of the IPO profiles are:

• the SITA Information System dataset is very homogeneous;
• the other three Information System software items (from organisations B and D) have

a quite different IPO profiles from the SITA software, so should be kept separate.
They were not analysed further;

• the four Control System software items have a common and distinctive IPO profile
so may be analysed as one dataset. The other two Control System software items
have quite different profiles, so should be kept separate. These were also not analysed
further.

Note that the Information System data point at (2998 MkII FP, 1947 CFP) was
omitted from this dataset not just because it was an outlier on the fitted straight line for
all Information System software in Fig. 2, but because of its very different IPO profile
from that shown in Fig. 4a.

Rejecting a data point because it is a statistical outlier to the fitted curve of a sample
of measurements chosen to study size convertibility is dangerous. This is because we
do not know without further investigation if the outlier data point is due to something
unusual about either size measurement (in this case the MkII or the COSMIC size), or
both. When using a fitted curve for conversion, we will only have the size measurements
on the one scale (in this case MkII sizes). What we need is a test that can be applied to
the measurements-to-be-converted for homogeneity, and that can identify any individual
measurement as a potential outlier against the fitted curve, before applying its conversion
formula. IPO profiling is an example of a useful and powerful test.

The very large Control System software item (4380 MkII FP, 3524 CFP) would also
be a candidate for rejection as an outlier because it will dominate the OLS fitting of a
straight line to organisation A’s data. However we decided to explore using this small

54 A. Dasgupta et al.

dataset of four software items as a further test of the conversion process that was devised
for the SITA dataset.

5 Improving the Accuracy of Conversion of MkII FP to COSMIC
CFP Sizes: The ‘Calculation Method’

From the structure of the two FSM methods, we know that the CFP size of an individual
software item converted from a MkII FP size using the fitted straight line process
described in Sect. 4, may vary from the measured size because the software item has

• an exceptionally high or low count of DET’s on its input and/or output compared
with the average for all software resulting from the ‘smoothing out’ of the fitted
straight line process;

• an exceptionally high or low count of entity references compared with the average
for all software implied by the fitted straight line.

This suggests that a MkII to COSMIC size conversion process that takes into account
exceptional distributions of the relative contributions of input, processing and output
functionality to the overall size would lead to more accurate converted CFP sizes than
using the OLS fitted straight line process. The following is such a process. (Entries,
Exits, Reads and Writes are abbreviated as E, X, R and W respectively.)

(a) Take a set of software items with a ‘common profile’ and measure their MkII FP
and CFP sizes, recording the numbers of their component DET’s and ER’s for the
MkII sizes, and E’s, X’s, R’s and W’s for the COSMIC sizes.

(b) Sum these numbers for each component over the whole set, designating the totals
as:

∑ Input DET’s, ∑ Output DET’s and ∑ ER’s, for the MkII FP counts
∑ E’s, ∑ X’s, ∑ R’s and ∑ W’s for the COSMIC counts

(c) Compute the following ratios from these sums for the whole set:

AIDE = Average Input DET’s per Entry = (∑ Input DET’s)/∑ E’s
AODX = Average Output DET’s per Exit = (∑ Output DET’s)/∑ X’s
AERP = Average Entity Refs per (R + W) data movement = ∑ ER’s/(∑ R’s + ∑

W’s)

(d) Compute the CFP size of each individual software item using the sums of the DET’s
and ER’s for the components of its measured MkII FP size and the Eq. (3) in order
to obtain a ‘Computed CFP size’.

(3)

This method was applied to the 13 SITA data points, with the results shown in
Table 3.

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 55

Table 3. Measures of the inaccuracy of CFP sizes calculated by using a calculation method to
convert from measured MkII FP sizes

AA % Diff. # under-sized items. # over-sized items 3 × highest % Diff errors

6.4 % 6 7 18 %, 11 %, 11 %

This calculation method for obtaining CFP sizes improves on the accuracy of the
statistical method (cf results shown in Table 2) in that there is now no bias towards over-
sizing or under-sizing, and the highest ‘% Diff.’ figures for individual software items
are substantially reduced. However, the absolute average of the % Diff.’s for all 13
projects is slightly worse than obtained by the statistical method.

We then noticed that the values of IDE, ODX and ERP for the individual software
items (i.e. not the average value for all 13 software items) vary with MkII measured
software size. Figure 5 shows that the values of IDE and ODX decline slowly with MkII
size whereas the ERP values are practically constant. (The explanation for these trends
seems to be related to the nature of SITA’s systems.)

Fig. 5. Values of IDE, ODX and ERP versus actual MkII size for 13 SITA projects

If we now modify the process described above so that in step c) we compute the
values of IDE, ODX and ERP for each individual software item from the three fitted
lines shown in Fig. 5, and use them in Eq. (3) in step d) instead of the average values
(AIDE, AODX and AERP) to calculate the CFP sizes, then we get the improvement in
calculated CFP sizes that we have been seeking. Table 4 shows the results.

56 A. Dasgupta et al.

Table 4. Measures of the inaccuracy of CFP sizes obtained by using an improved ‘calculated
method’ to convert from measured MkII FP sizes

AA % Dff. # under-sized items. # over-sized items 3 × highest % Diff errors

3.8 % 6 7 11 %, 8.9 %, 6.4 %

The average error on the calculated CFP size is now down to below 4 % and the
maximum error is now well under half the maximum error obtained from using the
statistical method to predict CFP sizes.

For the record, the result of applying this ‘calculated method’ to convert the sizes of
the four Control software items from organisation A also shows similar improvement
in accuracy through the three steps that were applied to the SITA dataset, as shown in
Table 5. However this result from a set of only four data points has, of course, low
statistical significance.

Table 5. Improvements in the accuracy of calculated CFP sizes over statistically-converted CFP
sizes for four Control System software items

Conversion method AA % Diff. # under-sized
items

over-sized
items

2 × highest %
Diff. errors

OLS statistical
straight line fit

9.7 % 1 3 25 %, 11 %

Calculated using
AIDE, AODX,
AERP values

8.6 % 2 2 17 %, 8.4 %

Calculated using
individual IDE,
ODX, ERP
valuesa

6.6 % 2 2 12 %, 9.9 %

Using a process identical to that used to produce the IDE, ODX and ERP versus MkII FP sizes as shown
in Fig. 5 for the SITA data.

6 Conclusions and Observations on the COSMIC Method Design
Assumptions

The analyses in this paper demonstrate the limitations of statistically-based functional
size conversion methods and that, in the case of MkII to COSMIC size conversion, a
calculation conversion process based on a knowledge of the two methods’ measurements
of the input/process/output size profile can give significantly more accurate converted
sizes.

Before starting on a FSM size conversion exercise, we recommend some form of
‘profiling’ of the measurements-to-be-converted to test for homogeneity and to identify

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 57

potential outliers against the conversion curve. Refinement of a statistically-derived
conversion formula by simply removing outliers without understanding why they are
outliers could lead to unnecessary inaccuracy in size conversion.

The idea of functional profiling has been taken into account in selecting homoge‐
neous sets of measurements to develop project effort estimation methods [13–15] but
we are not aware of any previously-published size conversion studies that have used
functional profiling to select homogenous sets of measurements-to-be-converted in
order to improve conversion accuracy. The successful use of IPO profiling to test for
homogeneity of datasets for MkII to COSMIC conversion suggests that IFPUG-to-
COSMIC size conversion accuracy might also be improved by devising equivalent
profiling tests that can be applied to IFPUG Unadjusted FP size measurements. An
example might be to examine the ratio of the size contributions of their ‘Elementary
Processes’ and so-called ‘Data Functions’ to total size.

This study has unexpectedly given new insight into the design assumptions of the
COSMIC FSM method. A consequence of these assumptions is that it has always been
legitimate to ask two important questions concerning the method’s effectiveness as a
size measure for its intended practical uses for software project performance measure‐
ment and estimating.

i. First, does the fact that the COSMIC method ignores the detail of how many DET’s
are input and output to a functional process make a significant difference to the
measured sizes? (The IFPUG and MkII methods take this detail into account.)

ii. Second, is the COSMIC method likely to be less suitable than other FSM methods
for its intended practical uses because its size measurement scale has not been
explicitly calibrated in relation to project effort (as were the scales of the IFPUG and
MkII methods)?

The results of the data analyses in this paper help answer these two design questions.
The data in Figs. 4a and 4b show similar distributions of the input/process/output

contributions to size when measured by the two methods. Further, the data in Fig. 2
show good correlations of total MkII and COSMIC sizes, especially bearing in mind the
rather heterogeneous data available for analysis. These two findings suggest that it is
unimportant to COSMIC size measurement that this method ignores the level of detail
of the number of DET’s on the input and output data, and that the method’s design does
not apply effort-related weights to the counts of data movement types. This conclusion
is valid, of course, only based on the analysis of 13 Information System software data
points and four Control System data points used in this study.

Subject to this limitation, these findings give independent confirmation that the
design of the COSMIC method, as well as being theoretically well-founded, yields
measures of functional size that should be valid and effective for software project
performance measurement and for effort estimation – as we already have evidence from
its use in the field for these purposes.

Acknowledgements. The authors are very grateful to SITA for supplying these data.

58 A. Dasgupta et al.

Appendix 1: Components of the MkII and COSMIC Size
Measurements

Appendix 2: A More Detailed Examination of How the MkII and
COSMIC Methods Measure the Input vs Processing Phases of a
Functional Process

Data validation in the input phase of a functional process. The input phase of any
functional process is normally considered to include validation of entered data, which
can require significant amounts of functionality for business applications.

As represented by the MkII method, validation processes may require references to:

• the so-called ‘System Entity’; this was introduced into the MkII method to simplify
measurement by counting a single ER (entity reference) in any functional process
that referenced fixed tables of simple codes and descriptions and other ‘non-primary’
entities, typically found in dialogues of on-line systems with GUI interfaces, and

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 59

• other ‘primary’ entities, e.g. to check if the data to be entered describes an occurrence
of an entity about which data are already stored.

Consequently, the input phase is more closely accounted for by:

• the number of DET’s on the input, plus
• (where required) reference to the System Entity and maybe references to other enti‐

ties.

This is in contrast to the ‘simple’ view described in the main text which assumes all
entity-references belong to the processing phase.

Similarly, for the COSMIC method, data entry is accounted for by the Entry data
movements and by any Read data movements needed for validation of the input data.
So in reality the functionality needed to handle data entry and validation, i.e. the Input
phase, includes some of the Reads that have been considered as part of the Processing
phase on the ‘simple’ view of the division of functionality across the three phases.

Differences between MkII ‘entity references’ and COSMIC ‘data movements’.
There are two significant differences between how the MkII method defines an ‘entity’
and its rules for counting ER’s, and the equivalent COSMIC method’s definition of an
‘object of interest’ and its rules for counting Reads and Writes of persistently-stored
data groups.

• The COSMIC method requires that all objects of interest that need to be referenced
to validate entered data must be identified and counted as Reads. The COSMIC
method does not recognise the simplifying concept of a ‘System Entity’. So a single
reference to the System Entity in the measurement of a MkII functional process may,
when measured by the COSMIC method, be replaced by one or more Reads of objects
of interest. (For more on this topic of the MkII System Entity and the equivalent
COSMIC objects of interest, see the respective method’s documentation.)

• In the COSMIC method, a functional processes that is designed for batch-processing
may need a Read and Write of the same object of interest. The MkII method rules
would require the counting of one ER in such a functional process. (All software
items on which size data are reported in this paper were designed for on-line, not
batch, processing, so this difference has no influence on the results reported here.)

Potential for further refinement of the ‘calculated’ size conversion method. The
data available to the authors do not distinguish whether the counts of entity references
include any that were required for input data validation. For this reason we have to
continue to adopt the simple view of the division of functionality across the three phases
when analysing the available data.

If we had the measurements, or could make some reasonable assumptions about the
proportion of MkII entity-references and COSMIC Reads devoted to the input phase,
then it might be possible to develop an even more refined version of the ‘calculated’
conversion process described and used in the body of this paper.

60 A. Dasgupta et al.

References

1. Gencel, C., Demirors, O.: Functional size measurement revisited. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 17(3), 71–106 (2008)

2. Demirors, O., Gencel, C.: Conceptual association of functional size measurement methods.
IEEE Softw. 26(3), 71–78 (2009)

3. Albrecht, A.: Measuring application development productivity. In: Proceedings of the Joint
SHARE, GUIDE, and IBM Application Development Symposium, pp. 83–92 (1979)

4. Symons, C.R.: Function point analysis: difficulties and improvements. IEEE Trans. Softw.
Eng. 14(1), 2–11 (1988)

5. The IFPUG Counting Practices Manual, v4.3. www.ifpug.org
6. The MkII FPA Counting Practices Manual, v1.3.1. www.uksma.org
7. The COSMIC Measurement Manual, v4.0.1. www.cosmic-sizing.org
8. Symons, C.: Software Sizing and Estimating: MkII FPA. John Wiley & Sons Ltd, West Sussex

(1991)
9. Guideline on how to convert between ‘First Generation’ Function Points and COSMIC Sizes

10. Information technology – software measurement – Functional size measurement. Part 1
Definition of concepts, ISO/IEC 14143/1:2011

11. Software engineering – COSMIC: a functional size measurement method, ISO/IEC
19761:2011

12. Software engineering – MkII Function Point Analysis – Counting Practices Manual, ISO/IEC
20968:2002

13. Abran, A., Gil, B., Lefebvre, E.: Estimation models based on functional profiles. International
Workshop on Software Measurement – IWSM/MetriKon. Kronisburg, pp. 195–211. Shaker
Verlag, Germany (2004)

14. Abran, A., Panteliuc, A.: Estimation Models Based on Functional Profiles. In: III Taller
Internacional de Calidad en Technologias de Information et de Communications, Cuba,
February 15–16 (2007)

15. Gencel, Ç., Buglione, L.: Do base functional component types affect the relationship between
software functional size and effort? In: Cuadrado-Gallego, J.J., Braungarten, R., Dumke, R.R.,
Abran, A. (eds.) IWSM-Mensura 2007. LNCS, vol. 4895, pp. 72–85. Springer, Heidelberg
(2008)

A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions 61

http://www.ifpug.org
http://www.uksma.org
http://www.cosmic-sizing.org

Applying Manufacturing Performance Figures
to Measure Software Development Excellence

Andreas Deuter1(B) and Hans-Jürgen Koch2

1 Ostwestfalen-Lippe University of Applied Sciences, 32657 Lemgo, Germany
andreas.deuter@hs-owl.de

2 Phoenix Contact Electronics GmbH, 31812 Bad Pyrmont, Germany
hkoch@phoenixcontact.com

Abstract. The Internet of Things is going to digitize traditional man-
ufacturing plants. Apart from being as functional and robust as ever,
products required to run these plants will need to be smart and con-
nected. They will have software inside. Producing companies monitor
their manufacturing excellence related to these products by evaluating
manufacturing performance figures such as delivery time and yield. How-
ever, for the time being, no figures for the software inside are measured
with similar means.

Software performance figures have been investigated a lot in software
research and in the IT industry. However, as they are software domain-
oriented they are difficult to understand for leading managing minds of
producing companies.

This article demonstrates that it is reasonable to apply manufac-
turing performance figures to measure software development excellence.
This is a valuable element ensuring future business success of producing
companies by enabling their managers to control excellence in software
development processes.

Keywords: Software performance figures · Manufacturing performance
figures · Added value · Sliced V-model

1 Introduction

Huge changes in traditional manufacturing are taking place driven by IT-
technology. The Internet of Things as well as cyber-physical systems are going
to render plants self-organized and reconfigurable. The manufactured goods find
their ways through the plants automatically. Mass customization is the vision.
It is the fourth industry revolution - the so-called Industry 4.0 [1].

These changes have far-reaching consequences for all manufactures running
these plants. At the same time, also those companies producing the products
required to run these plants efficiently are affected enormously. Today, their
products range from pure hardware (connectors, cables, power supplies, etc.)
to intelligent automation devices (PLC, HMI, Industrial Switches, etc.) and
complex machinery. In order to fulfill the scenarios foreseen many of the new
c© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 62–77, 2015.
DOI: 10.1007/978-3-319-24285-9 5

Manufacturing performance figures for software 63

Fig. 1. The balanced scorecard principle [2]

products need to be intelligent. They will get or be equipped with much more
software inside. It is inevitable that future innovation of manufacturing will be
software-driven.

What are the consequences of these prospects for the producing companies?
In order to compete and keep pace they will need to understand their software
development excellence in the way they do understand their manufacturing excel-
lence. Today, producing companies apply the balanced scorecard to measure their
manufacturing excellence [2]. Kaplan and Norton say: “The balanced scorecard
allows managers to look at the business from for four important perspectives.”
(Fig. 1). Manufacturing excellence as part of the internal business perspective is
monitored by performance figures for cycle time, unit costs or yield.

Phoenix Contact, a leading supplier of electrical and electronic components
for industrial applications, applies the balanced scorecard principle. Amongst
others, it uses the manufacturing performance figures shown in Table 1 to mea-
sure the manufacturing excellence of the manufacturing lines for electronic devices.

With the increasing importance of software applied in electronic devices,
the need to monitor the software development excellence is increasing as well.

Table 1. Manufacturing performance figures

Figure Meaning

Readiness for delivery (%) Ratio of agreed/actual delivery date

Complaints rate (%) Ratio of produced/returned products

First pass yield (%) Ratio of passed/failed end-tests

Order costs e Costs to produce an order

Added value e Production value minus related costs

Added value rate Ratio of added value/order costs

64 A. Deuter and H.-J. Koch

The current balanced scorecard measures do not include the measurement of the
software development. However, as the balanced scorecard principle is well estab-
lished and well known, it seems very promising to integrate software development
performance figures into the balanced scorecard ones. Furthermore, as the manu-
facturing performance figures are perfectly understood (which cannot be said for
software performance figures) it seems even more promising to apply the same
performance figures for the software development. Therefore, the Ostwestfalen-
Lippe University of Applied Sciences and Phoenix Contact have started a design
research activity to validate the following two hypotheses:

H1: The manufacturing performance figures used today to monitor manufactur-
ing excellence can be applied to measure the software development excellence.

H2: The application of these well-understood performance figures creates value
by increased management attention towards software development.

This article is structured as follows: Sect. 2 presents related work. Section 3
describes our design research and the details of the proposed approach. Section 4
explains its implementation and evaluation at Phoenix Contact. Section 5 out-
lines the conclusions and the future work.

2 Related Work

This section gives an overview about the known work on software performance
figures and the transfer of manufacturing ideas to software. Before we start with
this we explain the sliced V-model as it is the process model used for the proposed
approach.

2.1 Sliced V-Model

In a recent work, the first author introduced the sliced V-model [3]. It main-
tains the strength of the traditional V-model originally defined by Boehm [4].
However, the sliced V-model eases the management of documentation, reduces
team’s Work In Progress (WiP) and more flexible regarding time. Within a sliced
V-model documents are containers of work items. A work item is a small piece
of information created during a phase of the software life cycle, e.g. a require-
ment or a test case. All work items and source code revisions belonging to a
single requirement are linked together. This ensures easy traceability in software
projects (Fig. 2). Furthermore, a defect is also tracked as a work item. The source
code needed to fix this defect is linked to the defect work item.

The sliced V-model requires the application of an appropriate database sys-
tem. Phoenix Contact uses the Polarion system [5]. There is a Polarion project
for each software product. This projects contains all data over the complete soft-
ware life cycle. Furthermore, defects found during internal testing activities and
defects reported externally are tracked separately.

The team members enter their efforts in “task” work items. Each team mem-
bers is asked not only to track tasks for implementing, but also for writing spec-
ifications, performing tests, etc.

Manufacturing performance figures for software 65

Fig. 2. The sliced V-model structure [3]

Baselines track the time-line of a single software version. A baseline is “a
reference configuration from which to identify and to control changes” [6]. We
set a baseline when the work on a new software version starts and when it is
released. The difference between these dates is the duration as defined by Barry
et al. [7].

2.2 Software Performance Figures

There are numerous articles, books and studies about software performance fig-
ures, metrics and measures. Fenton and Fleeger name a length of possible met-
rics, e.g. function points and defect density [8]. Applying suitable measures to
understand software performance have already been investigated in the past.
Kasunic names possible suitable software performance measures such as produc-
tivity, post-release defect density or requirement completion ratio [9]. Velocity
is another practiced metric used preferable in agile developments [10]. Further-
more, there is published scientific literature to address software economics, e.g.
by Boehm [11]. However, when we selected some figures and asked the managers
at Phoenix Contact: “Do you understand the meaning of these performance fig-
ures?” they answered “Rather no”. Especially, they struggle to understand the
specific measuring units such as function points or lines of code. One may think
that these performance figures could be explained in several sessions to these
managers. But in our opinion, this is not a constructive way to make software
performance transparent to them. Therefore, we have developed the idea of our
alternative approach which includes important figures for software value. Man-
agers do ask about money: “How do I know how much value is created by the
software teams?”.

66 A. Deuter and H.-J. Koch

2.3 Transfer from Manufacturing to Software

The idea to transfer methods and performance figures from manufacturing to
software is not new. There have been enormous productivity increases over the
last decades in manufacturing. Why not analyze and transfer applicable methods
and performance figures to software development to increase its productivity as
well? Kanban is probably the most prominent example of such transfer. It origins
in manufacturing and is a lean management process to control manufacturing
plants [12]. Kanban has been transferred to an agile software process model [13].
There are more transfers of lean manufacturing ideas to software, e.g. Petersen
and Wohlin propose software improvement through the lean management [14].

Binder analyzed manufacturing quality models such as six sigma and their
potential transfer to software [15]. He came to the conclusion that manufacturing
and software are two different domains and quality models cannot be transferred.
In opposite to that opinion, Schneidewind points out that there are indeed some
methods used in manufacturing which can be transferred [16]. He names the
Tagushi methods, statistical quality control and statistical process control using
failure probability and failure counts as possible elements. However, our analyzes
of related work to this topic indicates that there is very few research in this area.

Summarizing, we know that there are many software performance figures.
However, at least in the environment of Phoenix Contact as a traditional man-
ufacturing company, the middle and upper management is excellent in applying
manufacturing performance figures and other business related figures such as
turnover or margin. But, there is little understanding about software perfor-
mance figures. As explained, we believe that this situation will not change in the
near future. As there is no mapping today between these two worlds we fill this
gap with our approach.

3 Proposed Approach

In order to proceed in a structured way, we follow the design research (DR) app-
roach as depicted by Goldkuhl [17] (Fig. 3). In the previous sections we derived
the problem analysis. This section builds the approach consisting of software
performance figures and manufacturing ones. Section 4 addresses the evaluation.

Fig. 3. Design research approach [17]

Manufacturing performance figures for software 67

Fig. 4. Measuring the software documentation size of one requirement

3.1 Software Performance Figures

Quantity: The first author participated in the development of an approach to
calculate software quantity in the sliced V-model [18]. The core idea is to calcu-
late the sum of work items which are connected to a single requirement (Fig. 4)
and the sum of code changes made to implement this requirement. As work items
represent the documentation by this way we include the size of the development
and the test documentation in the software size. We called it software documen-
tation size and use the symbol Docr. The measuring unit is Work Items (WI).
We apply the churn method [19] by using unified diff patches [20] to measure
the source code changes. We call it requirements churn. We use the symbol Chr.
The measuring unit is Kilobytes (KB). These calculations are repeated for each
requirement implemented in a specific software version giving the software sizes
for one software version represented with the symbols DocR and ChR.

Quality: Due to the mentioned defect organization in a sliced V-model project we
can analyze the quality data. We measure the number of defects found during
internal testing activities, DI, the number of defect reported externally, DX,
and the sum of both, DS. Furthermore, we measure the size of source code
changes made to fix all defects, which have been found during the internal testing
activities. We call this size internal defect churn. We use the symbols Chdi for
one defect and ChDi for all defects found during testing activities (Fig. 5).

Furthermore, we measure the size of source code changes made to fix all
defects, which have been found after the software releases. We call this size
external defect churn. We use the symbol Chdx for one defect and ChDx for all
externally reported defects.

Costs: The development costs of a software version using the sliced V-model
process are the sum of all efforts reported in the “task” work item multiplied with
a company dependent hour rate. We do not consider further costs, e.g. indirect

68 A. Deuter and H.-J. Koch

Fig. 5. Measuring the defect churn of one defect

costs in distributed environments. Equations (1) and (2) show the calculations.

DE =
n∑

i=1

TSi (1)

DC = DE ∗ HR (2)

with:
DE Development effort
TS Effort per “task” work item
n Number of “task” work items
DC Development costs
HR Hour rate (company dependent)

The measuring unit for DE is hours (h) and for DC it is e.

Duration: The development duration is the number of elapsed days between the
start baseline and the end baseline. Equation (3) shows the calculation.

DD = tBe
− tBs

(3)

with:
DD Development duration for a software version
tBe

Date when the work of software version starts
tBs

Release date of the software version

The measuring unit for DD is days (d).

Productivity: The productivity is the ratio between the software quantity and
the development effort. It indicates the team’s efficiency to develop software. As

Manufacturing performance figures for software 69

we have defined two software sizes, there are also two figures for productivity.
Equations (4) and (5) show the calculations.

PD =
DocR
DE

(4)

PC =
ChR

DE
(5)

with:
PD Software documentation productivity
PC Requirements churn productivity

Velocity: The velocity is the ratio between the software quantity and the develop-
ment duration. It indicates how fast teams can deliver. As we have two software
sizes, we also have two figures for velocity. Equations (6) and (7) show the cal-
culations.

VD =
DocR
DD

(6)

VC =
ChR

DD
(7)

with:
VD Software documentation velocity
VC Requirements churn velocity

Defect Density: The defect density is the ratio between the total number of
defects DS and the software quantity. It indicates the team’s capability to deliver
defect-free software. As we have two software sizes, we also have two figures for
defect density. Equations (8) and (9) show the calculations.

DTD =
DS

DocR
(8)

DTC =
DS

ChR
(9)

with:
DTD Software documentation defect density
DTC Requirements churn defect density

Table 2 summarizes all software performance figures.

3.2 Manufacturing Performance Figures

Now we map the software performance figures to the manufacturing performance
figures shown in Table 1.

Complaints Rate: The traditional complaints rate indicates how many products
have been returned by customers. As most of the returns are due to quality

70 A. Deuter and H.-J. Koch

Table 2. Software performance figures

Figure Symbol

Software documentation size DocR

Requirements churn ChR

Internal defect churn ChDi

External defect churn ChDx

Defect numbers DI, DX, DS

Development duration DD

Development effort DE

Development costs DC

Productivity PD, PC

Velocity VD, VC

Defect density DTD, DTC

issues, it indicates the ability to produce error-free products. In order to find a
suitable mapping into the software world, we set the requirements churn size,
the internal defect churn size and the external defect churn size into a relation.
This relation also indicates the ability to develop error-free software. Equation
(10) shows the calculation.

CR = 100% ∗ ChDx

ChR + ChDi + ChDx
(10)

with:
CR Complaints rate

First Pass Yield: The traditional first past yield indicates the percentage of prod-
ucts successfully passed the production end-tests. It indicates the amount of
re-work in order to deliver all manufactured pieces. In order to find a suitable
mapping into the software world, we set the requirements churn size and the
internal defect churn size into a relation. This relation also indicates the amount
of re-work before the release of a software version. Equation (11) shows the
calculation.

FPY = 100% ∗ ChR

ChR + ChDi
(11)

with:
FPY First past yield

Order Costs: The traditional order costs consist of labor and material costs of
a production lot. We do not consider material costs for software. Therefore, the
software order costs are the development costs DC. Equation (12) shows the
calculation.

OC = DC (12)

Manufacturing performance figures for software 71

with:
OC Order costs

Added Value: The traditional added value is a monetary indicator of the value
produced by own competencies and resources. Simplified said, it is the difference
between the material costs of all product pieces and the product sales price. The
software documentation size and the requirements churn size indicate the amount
of software produced by the own teams to implement requirements. These figures
also indicate the added value for software, as there are no other results produced.
However, these are not monetary values. Therefore, we multiply DocR and ChR

with added value factors. These added value factors are given in e. They are
defined per work item and per churn KB separately. Historical project data can
be analyzed to determine suitable values. Equation (13) shows the calculation.

AV =
(DocR ∗ AFD)

WI
+

(ChR ∗ AFC)
KB

(13)

with:
AV Added value
AFD Software documentation added value factor
AFC Requirements churn added value factor

The so-defined software added value is a virtual monetary figure, because in dif-
ference to the traditional added value it is not charged to the customer. However,
such mapping makes software value much more tangible for managers. It shows
the potential business value created by the software teams. If this value would
not contribute to the business success the related activities could be omitted at
all.

Added Value Rate: The traditional added value rate is the ratio of the added
value and the overall performance. It quantifies the value growth by the appli-
cation of production means expressed as order costs. The added value rate for
software quantifies the value growth per development costs. Equation (14) shows
the calculation.

AV R =
AV

DC
(14)

with:
AV R Added value rate

Readiness for Delivery: The traditional readiness for delivery indicates how many
products were delivered on requested or confirmed time. It is a figure of produc-
ing companies’ ability to deliver on-time. The velocities VD and VC indicate how
fast teams can develop software. But, they are not figures measure the ability to
deliver software on-time. Therefore, for the readiness for delivery manufacturing
figure we cannot provide an appropriate mapping.

However, we believe that is required to indicate some information about
“speed” also for software. Such figure should be expressed with a well-understood

72 A. Deuter and H.-J. Koch

measuring unit (see discussion in Sect. 2.3). Therefore, we create a ratio between
potential target and actual figures for the velocities VD and VC . As it is an
indicator to deliver on-time, we call it “Readiness for delivery indicator”. The
measuring unit is %. Equation (15) shows the calculation.

RDI = 100% ∗
VDa

VDt
+ VCa

VCt

2
(15)

with:
RDI Readiness for delivery indicator
VDa Actual software documentation velocity
VDt Target software documentation velocity
VCa Actual requirements churn velocity
VCt Target requirements churn velocity

The target values for VD and VD are defined for different software products
individually. Initial values for target figures are determined by first sample mea-
surements. If RDI exceeds 100 %, the target values will be adjusted.

4 Evaluation of the Approach

Phoenix Contact is highly interested in this approach. In order to evaluate it,
we took two evaluation steps:

1. Verification: The approach is technically applicable in Phoenix Contact’s
environment.

2. Validation: The approach helps Phoenix Contact managers to better under-
stand software development.

4.1 Verification

We implemented a reporting tool called “PQM”. It generates the software per-
formance figures and manufacturing performance figures in an automated way.

Fig. 6. The measurement setup

Manufacturing performance figures for software 73

Table 3. Software performance figures (PQM)

Figure V1.0 V1.2

DocR 170 WI 50 WI

ChR 2,737.238 KB 1,017.051 KB

ChDi 14.921 KB 17.303

ChDe 2.964 KB 0 KB

DS 7 WI 2 WI

DD 680d 144d

DE 377 h 74h

DC e 26,390 e 5,180

PD 0.45 WI/h 0.68 WI/h

PC 7.3 KB/h 13.7 KB/h

VD 0.25 WI/d 0.34 WI/d

VC 4.0 KB/d 7.1 KB/d

DTD 0.042 Defect/WI 0.04 Defect/WI

DTC 0.0025 Defect/KB 0.002 Defect/KB

PQM captures data from Polarion and Subversion, which is the version control
system in use, and stores them in an Excel file (Fig. 6).

After implementing, we measured the PQM software development as a first
test. PQM has been developed over around two years before the version V1.0
was released. There are only few tests performed so far. First measurements
were taken for the PQM version V1.0, second measurement were taken for a
version V1.2 internally released few month after V1.0. Table 3 shows the software
performance figures for both versions.

We created the manufacturing performance figures based on the software
performance figures. We defined a software documentation added value factor
AFD of e 50 per work item and a requirements churn added value factor AFC of
e 30 per KB. These are arbitrary values. We did not start an analysis on more

Table 4. Manufacturing performance figures (PQM)

Figure V1.0 V1.2

Readiness for Delivery Indicator (RDI) 100 % 156.75 %

Complaints Rate (CR) 0,11 % 0 %

First Pass Yield (FPY) 99,45 % 98,32 %

Order Costs (OC) e 26,390 e 5,180

Added Value (AV) e 91,150 e 33,010

Added Value Rate (AV R) 3.45 6.37

74 A. Deuter and H.-J. Koch

appropriate values. As the version V1.0 was the first version measured its actual
values for the velocities were declared as initial target values. For version V1.2
their target values are the actual values of V1.0. The version V1.2 has not been
distributed. Therefore, no external defects have been reported. Table 4 shows the
manufacturing performance figures taking these frame conditions into account.

There are discussable facts seen in the Tables 3 and 4. It is noticeable that
the added value rate increased. In V1.2 more quantity was produced with less
effort. A deeper look into the project showed that there was one source code
file generated automatically. This generation does not consume any effort, but
increase the churn figures a lot. Furthermore, for V1.2 a number of “test” work
items were created without detailing or performing them. This increased the
software documentation size, but again it did not consume much effort. It also
increased the velocities in V1.2. Therefore, the readiness for delivery indicator
RDI is here higher than 100 %.

4.2 Validation

In order to create more confidence in our approach we took also performance
figures of a large Phoenix Contact software product. We call it SWB. This prod-
uct exists already for many years. A lot of maintenance work is required for this
product. As in the sliced V-model project of SWB the defects found internally
and externally are not separately tracked we could not measure the complaints
rate. Therefore, the first past yield contains the size of code changes made to
fix both types of defects. We measured the order costs and the added value. We
are not allowed to show these figures in this article. However, the AV R figures
indicates the ratio between those two figures. The SWB manufacturing perfor-
mance figures are shown in Table 5. We can demonstrate that our approach can
be applied on a real-life software products.

Table 5. Manufacturing performance figures (SWB)

Figure V1.0 V1.1

Readiness for Delivery Indicator (RDI) 100 % 46.89 %

Complaints Rate (CR) - -

First Pass Yield (FPY) 68,31 % 70,80 %

Order Costs (OC) nn nn

Added Value (AV) nn nn

Added Value Rate (AV R) 0.52 0.23

As next, we interviewed five Phoenix Contact managers. We selected follow-
ing different roles: one low level software manager, one quality manager and three
higher level managers, each of them running different departments. The quality
manager and the higher level managers are not from the software domain. How-
ever, they are responsible to control and manage software departments. In these
interviews we explained the content of the different tables. When we showed

Manufacturing performance figures for software 75

them the SWB manufacturing performance figures they could immediately start
a discussion. For example, they were surprised to see that approximately 30 %
of the source code changes are motivated by bug fixing. As a lot of maintenance
work is required, these data are plausible. Also, the small added value rate pro-
vided discussions. However, as we used arbitrary added value factors we were
encouraged to analyze potential realistic values. There were also plausible rea-
sons for the reduction of the RDI figure in SWB V1.1. After this discussion, we
asked them the following questions:

– Do you understand the approach?
– Do you use today manufacturing performance figures for your management

tasks?
– Would you apply manufacturing performance figures for software develop-

ment?
– Would this approach help you to better understand software?

The answers given in these interviews were overwhelming for us. All managers
were strongly interested in this approach. They followed our opinion that the
application of traditional manufacturing performance figures supports them to
understand software development much better. Exemplary the following state-
ments:

– “Applying performance figures I already know for software development, would
be a great help for me in making better software product-related decisions.
Honestly, I cannot tell today if we are improving in software development.”

– “This approach will help me to consider our software development as a value
center, rather than a cost center it is considered today. Especially, the added
value figures are very promising.”

All managers encouraged us to proceed in implementing the approach on a
broader level.

5 Conclusion and Future Work

This article introduces a novel approach applying manufacturing performance
figures to measure software development excellence. It is a two-step approach:

1. Measurement of software performance figures.
2. Mapping software performance figures to manufacturing performance figures.

We developed the approach as a design research activity. We evaluated the app-
roach by taking performance figures of a reporting tool and of one Phoenix
Contact software product. We interviewed several Phoenix Contact managers to
proof that our approach is a valuable support for their management duties.

Assessing the hypotheses stated in Sect. 1, we conclude following:

H1 - Applicability of Manufacturing Performance Figures to Software:
Our approach demonstrates that is possible to use manufacturing performance

76 A. Deuter and H.-J. Koch

figures to monitor software development excellence. It is not simply a name
mapping. It also maintains the meaning of the figures. However, our approach
requires the measurement of software performance figures to gather the manu-
facturing ones.

H2 - Value Creation by Increased Management Attention: First inter-
views have shown that our approach eases the software understanding for man-
agers unrelated to the software domain. For the first time, they could discuss
about performance figures for software products. Therefore, as assumed, our
approach increases the management attention towards software.

However, there are some threats to the validity of our approach. First of all,
in order to generate exact figures, a high discipline in implementing the sliced
V-model is required by the teams in their daily work. We have seen that if some
rules of the sliced V-model are not followed, some performance figures cannot
be generated.

Furthermore, there was only one iteration in our design research activity.
In order to get a better understanding how managers will control software
with our approach we will need a more broad-based field study. Therefore, the
Ostwestfalen-Lippe University of Applied Sciences and Phoenix Contact have
agreed on testing this approach on several software products for another year.
We expect that we will get a better knowledge of the acceptance of our approach
in the daily business of Phoenix Contact and by this a much more rigorous eval-
uation. We foresee that we may add, remove or adapt some of the performance
figures explained in this article. Nevertheless, with our approach we have defined
a clear starting point to transfer this new way of thinking into practice.

Our definition of the added value is rather straightforward. The great strength
of this approach is its automated generation. Khurum et al. propose a system-
atic approach called software value map which could be taken into account for
deeper analyses [21].

We did not find an adequate mapping regarding the “readiness for delivery”
figure. A possible solution is to measure the duration between the agreed date to
deliver a new function and its actual delivery date as part of a software version.
However, in order to measure such figures from the database, we will need to
extend the sliced V-model definition.

Today, producing companies have implemented an automated data collection
of the performance figures of their manufacturing lines without any manual
rework required. Our approach follows this key requirement for data collection.
With our reporting tool we implemented an automated measurement of our
performance figures. This is another important criterion towards the successful
transfer of our novel approach into practice.

References

1. Kagermann, H., Wahlster, W., Helbig, J., eds.: Securing the Future of German Man-
ufacturing Industry: Recommendations for Implementing the Strategic Initiative
INDUSTRIE 4.0, Final Report of the Industrie 4.0 Working Group. Forschungsunion
im Stifterverband für die Deutsche Wirtschaft e.V., Berlin, April 2013

Manufacturing performance figures for software 77

2. Kaplan, R.S., Norton, D.P.: The balanced scorecard - measures that drive perfor-
mance. Harvard Bus. Rev. 69, 71–79 (1992)

3. Deuter, A.: Slicing the V-model - Reduced effort, higher flexibility. In: Proceedings
of 8th International Conference on Global Software Engineering, ICGSE 2013, pp.
1–10 (2013)

4. Boehm, B.W.: Guidelines for verifying and validating software requirements and
design specifications. In: Samet, P.A. (ed.) Euro IFIP, vol. 79, pp. 711–719. North
Holland, Amsterdam (1979)

5. Polarion (2004). http://www.polarion.com. 04 April 2015
6. Deininger, W., Cottingham, C., Kanner, L., Verbeke, M.A.: Systems engineering

data book (sedb) - a product baseline definition and tracking tool. In: 19th Interna-
tional Conference on Systems Engineering, 2008, ICSENG 2008, pp. 19–24 (2008)

7. Barry, E.J., Mukhopadhyay, T., Slaughter, S.A.: Software project duration and
effort: An empirical study. Inf. Technol. Manag. 3(1–2), 113–136 (2002)

8. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach,
2nd edn. PWS Publishing Co., Boston (1997)

9. Kasunic, M.: A data specification for software project performance measures:
Results of a collaboration on performance measurement. Technical report
CMU/SEI-2008-TR-012, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania (2008)

10. Hartmann, D., Dymond, R.: Appropriate agile measurement: using metrics and
diagnostics to deliver business value. In: Agile Conference, 2006, pp. 126-134, July
2006

11. Boehm, B.W.: Software Engineering Economics, 1st edn. Prentice Hall PTR, Upper
Saddle River (1981)

12. Liker, J.: The Toyota Way, 1st edn. McGraw-Hill, New York (2004)
13. Hiranabe, K.: Kanban applied to software development: from agile to lean (2008).

http://www.infoq.com/articles/hiranabe-lean-agile-kanban. 04 April 2015
14. Petersen, K., Wohlin, C.: Software process improvement through the lean measure-

ment (spi-leam) method. J. Syst. Softw. 83(7), 1275–1287 (2010)
15. Binder, R.: Can a manufacturing quality model work for software? Softw. IEEE

14(5), 101–102, 105 (1997)
16. Schneidewind, N.: What can software engineers learn from manufacturing to

improve software process and product? Intell. Inf. Manag. 1, 98–107 (2009)
17. Goldkuhl, G.: Action research vs. design research: using practice research as a lens

for comparison and integration. In: IT Artefact Design & Workpractice Improve-
ment (ADWI 2013) (2013)

18. Deuter, A., Engels, G.: Measuring the software size of sliced V-model projects. In:
Proceedings of International Workshop on Software Measurement and the Interna-
tional Conference on Software Process and Product Measurement, IWSM-Mensura
2014, pp. 233–242 (2014)

19. Sjoberg, D.I., Johnsen, A., Solberg, J.: Quantifying the effect of using kanban
versus scrum: a case study. IEEE Softw. 29, 47–53 (2012)

20. Jang, J., Agrawal, A., Brumley, D.: Redebug: finding unpatched code clones in
entire os distributions. In: IEEE Symposium on Security and Privacy, pp. 48–62
(2012)

21. Khurum, M., Gorschek, T., Wilson, M.: The software value map - an exhaustive
collection of value aspects for the development of software intensive products. J.
Softw. Evol. Process 25(7), 711–741 (2013)

http://www.polarion.com
http://www.infoq.com/articles/hiranabe-lean-agile-kanban

Quantitative Functional Change Impact
Analysis in Activity Diagrams:
A COSMIC-Based Approach

Mariem Haoues1(&), Asma Sellami1, Hanêne Ben-Abdallah2,
and Nourchène Elleuch Ben Ayed2

1 Mir@cl Laboratory, University of Sfax, Sfax, Tunisia
mariem_haoues@yahoo.fr, asma.sellami@isimsf.rnu.tn

2 Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia
{hbenabdallah,nbenayed}@kau.edu.sa

Abstract. Change requests are inevitable in every phase of the Software
Development Life Cycle (SDLC), and responding to a change request without
jeopardizing the project success remains a challenge for software
developers/managers. Expressing functional changes in terms of COSMIC
Function Point units can be helpful in identifying changes leading to a potential
impact on the software functional size; this latter can be used as a means to plan
the project activities. This paper proposes to analyze the impact of functional
changes on the size of UML activity diagrams, one artifact type produced early
in the SDLC. The proposed analysis handles directly as well as indirectly
affected elements in both modelling levels of the activity diagrams.

Keywords: COSMIC functional size measurement � Activity diagram �
Functional change � Impact analysis � Functional user requirements change

1 Introduction

Functional requirements changes may occur at any phase of the Software Development
Life Cycle (SDLC). Decisions taken about a change request may jeopardize the project
success: Accepting a change request can lead to an additional cost and effort to produce
the final product within the schedule, whereas rejecting a change request may produce a
software that does not satisfy the user expectations. A judicious decision about a
change request needs a thorough change impact analysis conducted over the various
artifacts produced in all the phases of SDLC.

Many researches focused on change impact analysis in one SDLC phase like the
design (cf. [1]) or the implementation (cf. [2]). Researches highlight that requirements
changes occurring during later stages of the SDLC are costlier than those occurring in
the early stages [3]. Consequently, some researchers looked into change prediction in
an attempt to predict the risk of a change in the implementation phase (cf. [4]). Other
studies focused on the requirements change in an early stage: analysis and design
phases (e.g. [1, 5], and [6]). For example, [6] proposed a mechanism based on a formal

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 78–95, 2015.
DOI: 10.1007/978-3-319-24285-9_6

semantics of requirements relations and requirements change types to improve change
impact analysis.

In the design phase, there are two types of impact change analysis:
intra-dependency analysis which identifies changes among the same diagram (cf. [7]),
and inter-dependency analysis which identifies changes among different diagrams (cf.
[1]). Even though many researchers focused on the inter-dependency and/or
intra-dependency analysis, there is not yet a study on the Functional Change
(FC) impact in the Activity Diagram (UML-AD). In this paper, we focus on the
intra-dependency analysis in UML-AD to propose a new approach for measuring
the FC in terms of COSMIC Function Point (CFP) units and its impact on the size of
the UML-AD.

The rest of this paper is organized as follows: Sect. 2 presents an overview of the
COSMIC method and UML-AD, and it surveys some related works. In Sect. 3, we
propose to use COSMIC to measure the FC in terms of CFP units and identify its
impact on the functional size of UML-AD and UML-AD elements. Section 4 illustrates
our approach through an example. Finally, Sect. 5 summarizes the presented work and
outlines some of its extensions.

2 Background

2.1 Functional Size Measurement

Functional Size (FS) of software is defined as the size “derived by quantifying the
functional user requirements” [8]. Functional User Requirements (FUR) represent “user
practices and procedures that the software must perform to fulfill the user’s needs, and
exclude quality requirements and any technical requirements” [8]. Functional Size
Measurement (FSM) methods based on FUR can be used to predict software project
effort, control requirements, analyze project productivity, etc.

Several FSM methods have been proposed in the literature. The first generation of
FSM methods was provided by Allan Albrecht in 1979 “Function Point Analysis”
(FPA); it is supported by the “International Function Point Users Group” (IFPUG) and
by ISO from 2003 - IFPUG (ISO/IEC 20926:2009). Other methods have since been
proposed such as NESMA (ISO/IEC 24570:2005), MKII (ISO/IEC 20968:2002),
FiSMA (ISO/IEC 29881:2010), and recently COSMIC (ISO/IEC 19761:2011). As
argued in [9], IFPUG and MkII were primarily designed to measure business appli-
cation software, whereas COSMIC can be used in different domains (e.g. business
application, real-time, etc.). For a comparison between the IFPUG, MkII, and COSMIC
methods, the reader is referred to [9].

As it is observed in Fig. 1, COSMIC identifies four types of data movements:
Entry, eXit, Read, and Write. “Entry” data movement describes the move of data group
from a functional user across the boundary into the functional process where it is
required [8]. “eXit” data movement correspond to the move of data group from a
functional process across the boundary to the functional user that requires it [8]. “Read”
data movement represents the move of data group from persistent storage into the
functional process which requires it [8]. Finally, a “Write” is a data movement that

Quantitative Functional Change Impact Analysis 79

moves a data group lying inside a functional process to persistent storage [8]. Each data
movement is equivalent to 1 CFP. The software functional size is computed by adding
all data movements identified for every functional process.

In the case of an enhancement project, the functional size of a functional change
noted by FS(FC) is equal to the sum of the size of all data movements that are either
new, changed or removed from the software [8]. In fact, COSMIC defines a FC as “any
combination of additions of new data movements or of modifications or deletions of
existing data movements” [8]. In addition, COSMIC provides rules to measure the FS
(FC): After functionally changing a piece of software, its new total size equals: the
original size, plus the functional size of all the added data movements, minus the
functional size of all the removed data movements [8]. Note that, in COSMIC, mod-
ifying a data movement has no influence on the FS of the software.

2.2 Overview of UML Activity Diagram

A UML-AD involves the dynamic and functional behavior of a software system [10].
Figure 2 presents the meta-model of UML-AD where an activity is represented by a set
of nodes ‘Activity Node’ interconnected by edges ‘Activity Edge’. Subsets of the
‘Activity Node’ are ‘Executable Node’, ‘Object Node’, and ‘Control Node’.

‘Executable Node’ is represented by ‘Action’. According to [10], an action is “the
fundamental unit of executable functionality”. The textual description of an action is
provided in [11] as follow:

An activity can be invoked by using the ‘Call Behavior Action’ node, which means
that the invoked activity is defined in more details in another activity diagram.

Fig. 1. Data movement types and their relationships with a functional process [8]

80 M. Haoues et al.

– ‘Object Node’ contains data that are input to and output from ‘Executable Node’.
Data can be moved from/to ‘Object Node’ using ‘Object Flow’ edges.

– ‘Control Node’ specifies sequencing of ‘Executable Node’ via ‘Control Flow’
edges. ‘Control Flow’ edges link between ‘Actions’ or ‘Activities’ and can move
data using ‘Pin’.

– ‘Pin’ is an object node that allows inputs and outputs values to actions.

The UML-AD meta-model depicted in Fig. 2 is inspired from [10]. It does not
include all elements used in the UML-AD, because we keep only those that can be
aligned with COSMIC concepts and represent an impact on the FS(UML-AD). As an
example, we kept ‘Call Behavior Action’ since it will be used differently compared to
other actions, such as Time Event Action, Accept Event Action, etc. (see Sect. 3).

2.3 Works on Change Impact Analysis

Despite all the attention taken in the requirements specification phase, requirements
often change during all the software development lifecycle. For instance, customers
may wish to alter the original design of software once the implementation is initiated
(such as, adding some buttons after the inspection of a partially completed user
interface; a new technology or market change may dictate adding new software
requirements; designers may propose a functional change if they detect an error in the
requirements specification, etc.). Thus, requirements change can be considered as a risk
that needs to be addressed early in the SDLC. Risks of requirements change include for

Fig. 2. A portion of activity diagram meta-model

Quantitative Functional Change Impact Analysis 81

example; risk to the success and the completion of the project, reduce the product’s
quality, changes snowball, etc.

Change impact analysis is defined as “the process of identifying the potential
consequences (side-effects) of a change, and estimating what needs to be modified to
accomplish that change” [12]. In fact, each change must be accompanied by an impact
analysis to determine the effect of this change on the software development progress.
Surveying the problem of change impact analysis is a widely discussed subject in the
literature. For instance:

– Bohner [12] provided causes for requirements change in different phases of the
SDLC (requirement elicitation, design, implementation, and test).

– Chaumun et al. [13] focused on change assessment in object-oriented system. They
provided the impact of changes defined at the design phase i.e. classes and mapped
on the C ++ language in the implementation phase.

– Briand et al. [3] focused on analysis and design phases to keep UML diagrams
up-to-date and to assess the potential impact of changes in the system.

– Russo et al. [2] focused on source code to identify the impact of changes in software
products using colored commit graphs.

During the design phase, many researchers studied the intra-dependency change
analysis (e.g. [14]) while other researchers studied the inter-dependency change anal-
ysis between class, sequence, and statechart diagrams (e.g. [1] and [15]). Inpirom et al.
[7] focused on inter-dependency change analysis between use case, sequence and class
diagrams. They proposed a taxonomy of changes that can be occurred in each diagram.
Based on this change taxonomy, they identified the change impact in each element of
these three diagrams. Although, this analysis is divided into four directions (Parent,
Child, In, and Out), it does not provide a detailed identification of possible changes. For
example, they identified only four possible changes in sequence diagram (Add object
life line, Delete object life line, Add call message, and Delete call message).

In summary, as shown in Table 1, current proposals for analyzing the impact of
changes in the design phase focused on particular diagrams, such as class, sequence,
and statechart diagrams. Despite its importance in the requirements specification and
design phases, the activity diagram has not been treated.

Table 1. Summary of the proposals focused on changes in UML Diagrams

Inpirom
et al. [7]

Briand
et al. [1]

Hoa
et al. [16]

JayPrakash
[15]

Vargas
et al. [14]

Briand
et al. [17]

Chaumun
et al. [13]

UML
diagrams

Class Class Class Class Class Class Class

Sequence Sequence Sequence Sequence Sequence
Statechart Statechart

Use Case Use Case

82 M. Haoues et al.

3 Functional Changes in UML-AD

3.1 Classification of Functional Change Impact in UML-AD

A UML-AD is used to illustrate the behavior of a software system early in the SDLC at
both the functional and dynamic levels. The functional level is first used to describe the
services provided by the system, and the dynamic level is used to detail the dynamic
operations of the system. In terms of the UML-AD meta-model, the functional level is
modeled through the activity nodes, activity edges, etc. Each activity is detailed in the
dynamic level, it is modeled through actions, partitions, activity edges, object nodes,
etc.

In this paper, we focus on the intra-dependency functional change analysis in the
UML-AD. When a functional change occurs in the UML-AD, it can affect the func-
tional and/or dynamic level. Then, the impact of this change should be classified into
one or a combination of the following impact directions:

1. Internal impact: the functional change affects only the element subject of the change
and it does not propagate to any other element in the UML-AD. It can happen at
either levels. For example, the modification of a “Pre-condition” in an activity.

2. Intra-level impact: the functional change affects elements within the level of the
element subject of the change (e.g. functional level). For example, when an activity
A invokes another activity B by a ‘Call Behavior Action’ node. In other words, to
continue the execution of activity A, it is required to execute activity B.

3. Inter-level impact: the functional change affects elements within the higher and/or
lower level of the element subject of the change. This type of change induces
changes that affect not only the element subject of the change but also the struc-
turally related elements. When the changed element is at the functional (dynamic)
level, then we have a child impact (parent impact). For example, the deletion of an
activity generates a series of deletions to all of its actions, objects node, and activity
edges, which causes a child impact. The addition of an action with data recovery
from an object node will induce a change on the corresponding activity, causing a
parent impact.

The more impact directions a functional change causes, the more delicate/costly it
may be and vice versa. To determine the functional change in terms of CFP units, we
move from the functional level, where activities, i.e. functional processes are identified,
to the dynamic level where each activity is decomposed into actions. Indeed, as we next
propose, the COSMIC measurement method can be applied adequately in dynamic
level where the sub-processes may be identified [8].

3.2 Identification of COSMIC Data Movements in UML-AD

As it is described in our previous work [18], to identify the data movements in the
UML-AD, we need to map COSMIC concepts onto UML-AD elements [18]. It is to be
noted that data groups are encapsulated into ‘Pin’ in the UML-AD. If a ‘Pin’ provides a
constant value, then it is not considered as a data group.

Quantitative Functional Change Impact Analysis 83

Read (R) and Write (W) DATAMovements in UML-AD. The identification of Read
and Write data movements are provided in activities at the second level (dynamic
level). Figure 3 presents the Read and Write data movements in an activity A. Note that
(a) and (b) notations are equivalent according to [10].

Entry (E) and eXit (X) Data Movements in UML-AD. Unlike Read and Write data
movements, Entry and eXit data movements can be depicted in the first and the second
levels. In fact, in the functional level, when a data exchange is needed between activity
A and activity B, then it should be accounted for since each activity is associated to a
Functional Process (FP). And, according to the COSMIC method, a data exchange
between FPs is measured as data movements (Entry/eXit). For example, in Fig. 4 where
A requests data from B through passed parameters, the data movements are an eXit
followed by an Entry. 1 CFP is added to the functional size of each activity (A and
B) measured in the dynamic level.

In the second level, Entry and eXit data movements are depicted in activities
(Figs. 5 and 6). The call of an activity should be taken into account. As it is showed in
Fig. 5, activity A calls two activities (B and C) using two ‘Call Behavior Action’ nodes.
Entry and eXit data movements are identified as provided in Fig. 5.

Actions in an activity exchange data through control and object flows. Control flow
can lead to an Entry or eXit data movements if they move data encapsulated into ‘Pin’
as depicted in Fig. 6. Whereas, object flow corresponds to Read and Write data
movements as provided in Fig. 3. Moreover, ‘Exception Handlers’ correspond to ‘Error
messages’ in COSMIC. It is equivalent to one eXit data movement. ‘Confirmation
messages’ correspond also to one eXit data movement.

Fig. 3. Read/Write data movements in an activity

Fig. 4. Entry/eXit data movements in UML-AD

84 M. Haoues et al.

3.3 Functional Size of UML-AD Elements When a Functional Change
is Submitted and Classified into Impact Directions

As discussed in Sect. 3.1, we propose three possible FC impact directions (internal,
intra-level, and inter-level) in UML-AD when FC requests are submitted. Recall that in
COSMIC method, a FC includes addition, modification or deletion of a data move-
ment. In this section, we propose to determine the FS of UML-AD elements after a FC.
Appendix A gives measurement formulas used to measure the functional size of
UML-AD, as it is proposed in our previous work [18].

Internal Impact of a Functional Change in UML-AD. Internal impact change is
considered only within the element subject of the change and it does not propagate to
any other element in the UML-AD. Table 2 determine the functional size of the
element subject of the change (UML-AD) when a functional change is required. In this
case, we can add, modify or delete an activity A in UML-AD, where:

• FSf(UML-AD): functional size of UML-AD after the change
• FSi(UML-AD): functional size of UML-AD before the change
• FS(A): functional size of the activity A.

Fig. 5. Entry/eXit data movements in the case of ‘Call Behavior Action’ in an activity A

Fig. 6. Entry/eXit data movements inside an activity

Quantitative Functional Change Impact Analysis 85

Intra-Level Impact of a Functional Change. When a FC affects an element in the
UML-AD and lead to an impact on another element in the same level then the
intra-level impact change direction is required. In this case, we have only one possi-
bility: ‘Activity => Activity’. Table 3 presents how to determine the FS of an activity
A when A calls activity B by a ‘Call Behavior Action’ in order to continue its execution,
where:

• FSf(A): the functional size of the activity A after the change
• FSi(A): the functional size of the activity A before the change
• FS(B): the functional size of the activity B.

Inter-Level Impact of a Functional Change. A FC that affects an action may lead to
an impact not only on the FS of the affected action but also the FS of the related
activity. Since actions are represented in the dynamic level and activities are repre-
sented in the functional level, we can say that this change propagates from the dynamic
to the functional level (parent impact). It is to be noted that a FC in an action may lead
to an impact only if it affects either: [<Pre_condition>], [<Input-Parameters>], or
[<Output-Paramaters>]. Table 4 presents the functional size of an action act and
activity A when a functional change is needed, where:

• FSf(act): the functional size of act after the change
• FSi(act): the functional size of act before the change
• FSf(A): the functional size of A after the change
• FSi(A): the functional size of A before the change.

Moreover, when a FC affects an ActivityEdge (object flow or control flow) in an
activity A, it may lead to an impact on the FS of A and the FS of its actions. In this case,
‘inter-level impact’ (parent) direction is required. For example, when the FC is the
addition of an object flow between two actions (acti and actj) in activity A then we
should add 2 CFP to the FS(A), and 1 CFP to the FS of acti and actj (see Fig. 3). When
a FC affects a control flow in activity A, then it will have an impact on the FS(A) only if
it is generated with a ‘guard-condition’ or if it includes a ‘Pin’. It will also have an

Table 2. Functional size of UML-AD in the case of a FC - internal impact

FC in UML-AD

UML-AD Addition (A) Modification (A) Deletion(A)
FSf(UML-AD) = FSi
(UML-AD) + FS(A)

FSf
(UML-AD) = FSi
(UML-AD)

FSf(UML-AD) = FSi
(UML-AD) - FS(A)

Table 3. Functional size of an activity A in the case of an intra-level impact of a FC

FC in an activity A

Activity A Addition (B) Modification (B) Deletion(B)
FSf(A) = FSi(A) + FS(B) FSf(A) = FSi(A) FSf(A) = FSi(A) - FS(B)

86 M. Haoues et al.

impact on the FS of the action preceded by the decision node or regrouping the
input/output parameters ‘Pin’ (see Fig. 6). Table 5 presents the FS of activity A and its
actions (acti and/or actj) when a FC affects an ActivityEdge. Where:

• FSf(acti), FSf(actj): the functional size of acti and actj after the change
• FSi(acti), FSi(actj): the functional size of acti and actj before the change
• FSf(A): functional size of activity A after the change
• FSi(A): functional size of activity A before the change

It is to be noted that in functional level, the deletion of an activity will necessary
generate the deletion of all its actions (dynamic level). In this case, ‘inter-level impact’
(child) direction is required (Table 6). The addition of an activity requires only the
internal-impact direction as provided in Table 2. The modification of an activity is

Table 4. Functional size of an action and its related activity in the case of the inter-level impact
(parent) of a functional change

FC in an action
Addition (act) Modification

(act)
Deletion(act)

Pre Cond Action
(act)

FSf(act) = FSi
(act) + 1CFP

FSf
(act) = FSi
(act)

FSf(act) = FSi(act) -
1CFP

Activity
A
(act’s
parent)

FSf(A) = FSi(A) + 1
CFP

FSf(A) = FSi
(A)

FSf(A) = FSi(A) -1
CFP

Input
Parameters

Action
(act)

if [act 6� param-int]
then FSf(act) = FSi
(act) + 1CFP

else FSf(act) = FSi
(act)

FSf
(act) = FSi
(act)

if [act 6� param-int]
then FSf
(act) = FSi(act) - 1
CFP

else FSf(act) = FSi
(act)

Activity
A
(act’s
parent)

if [act 6� param-int]
then FSf(A) = FSi
(A) + 1 CFP

else FSf(A) = FSi(A)

FSf(A) = FSi
(A)

if [act 6� param-int]
then FSf(A) = FSi
(A) - 1 CFP

else FSf(A) = FSi(A)
Output
Paramaters

Action
(act)

if [act 6� param-out]
then FSf(act) = FSi
(act) + 1 CFP

else FSf(act) = FSi
(act)

FSf
(act) = FSi
(act)

if [act 6� param-out]
then

FSf(act) = FSi(act)-1
CFP

else FSf(act) = FSi
(act)

Activity
A
(act’s
parent)

if [act 6� param-out]
then

FSf(A) = FSi(A) + 1
CFP

else FSf(A) = FSi(A)

FSf(A) = FSi
(A)

if [act 6� param-out]
then

FSf(A) = FSi(A) - 1
CFP

else FSf(A) = FSi(A)

Quantitative Functional Change Impact Analysis 87

presented in Table 4, and Table 5. Table 6 presents the FS of the UML-AD and act
(action in A) after a FC proposed the deletion of an activity A. Where:

Table 5. Functional size of an action and its related activity in the case of inter-level impact
(parent) of a functional change

FC in an Activity
Addition
(A-Edge)

Modification
(A-Edge)

Deletion
(A-Edge)

Object flow Action (acti) FSf(acti) = FSi
(acti) + 1CFP

FSf
(acti) = FSi
(acti)

FSf(acti) = FSi
(acti)-1 CFP

Action (actj) FSf(actj) = FSi
(actj) + 1CFP

FSf
(actj) = FSi
(actj)

FSf(actj) = FSi
(actj)-1 CFP

Activity A
(act’s
parent)

FSf(A) = FSi
(A) + 2 CFP

FSf(A) = FSi
(A)

FSf(A) = FSi(A)
-2CFP

Control flow
[guard_cond]

Action
(acti)

FSf(acti) = FSi
(acti) + 1CFP

FSf
(acti) = FSi
(acti)

FSf(acti) = FSi
(acti) - 1CFP

Activity A
(act’s
parent)

FSf(A) = FSi
(A) + 1CFP

FSf(A) = FSi
(A)

FSf(A) = FSi(A)
-1CFP

Control flow
with [Pin]

Action (acti) FSf(acti) = FSi
(acti) + 1CFP

FSf
(acti) = FSi
(acti)

FSf(acti) = FSi
(acti) -1CFP

Activity A
(act’s
parent)

FSf(A) = FSi
(A) + 1CFP

FSf(A) = FSi
(A)

FSf(A) = FSi(A)
-1CFP

Table 6. Functional size of an activity and its related actions in the case of inter-level impact
(child) of a functional change

FC = Deletion of an Activity A

Action with [Pre-condition] UML-AD FSf(UML-AD) = FSi(UML-AD) -
FS(A)

Action act (A’s
child)

FSf(act) = FSi(act) - 1 CFP

Action with
[Input-Parameters]

UML-AD FSf(UML-AD) = FSi(UML-AD) -
FS(A)

Action act (A’s
child)

FSf(act) = FSi(act) - 1 CFP

Action with
[Output-Paramaters]

UML-AD FSf(UML-AD) = FSi(UML-AD) -
FS(A)

Action act (A’s
child)

FSf(act) = FSi(act) - 1 CFP

88 M. Haoues et al.

• FSf(UML-AD): functional size of UML-AD after the change
• FSi(UML-AD): functional size of UML-AD before the change
• FSf(act): the functional size of act after the change
• FSi(act): the functional size of act before the change.

3.4 Functional Change Impact Analysis in UML-AD

Measuring the FS before and after a FC is required, but it is not enough to identify the
impact of a FC on the FS(UML-AD). In some cases, the measurement value of FS
(UML-AD) is the same before and after the FC. For example, a FC involving a set of
modifications of data movements, or the addition and deletion of the same number of
data movements. Thus, it is required to identify the status of the FC based on its FS.

Given the FC status, we can expect what should be happen after the submission of
the FC. In fact, in COSMIC [8], “very small” changes to a piece of software means “a
few data movements”. COSMIC also considers that “The minimum size of a change to
a piece of software is 1 CFP” [8]. In this context, we need a numerical threshold to help
us to determine “how important is a functional change?”. Assuming that this numerical
threshold should not be a fixed value, we believe it will depend on the average value
R of the functional sizes of all activities in the UML-AD. In other words, depending on
the FS of UML-AD and the number of activities in UML-AD, we can determine R.

R ¼ FSðUML� ADÞ
n

Where:

• FS(UML-AD): functional size of the UML-AD, and
• n: the number of activities in UML-AD.

As illustrated in Fig. 7, the identification of the FC status in UML-AD depends on
its FS compared to R. The matrix as presented in Fig. 7 is divided into three zones
representing “Major”, “Moderate”, and “Minor” FC status. A FC with the status
“Major” can lead to a potential impact on the software development progress. How-
ever, a FC that can be handled without any impact on the software development
progress is considered as very small change with the status “Minor”, while “Moderate”
change may produce a low change in the software development progress. More
specifically:

Fig. 7. FC Status identification in UML-AD

Quantitative Functional Change Impact Analysis 89

– If the FS(FC) = 1 CFP, then the FC will be classified as “Minor” change. Since,
COSMIC considers that “The minimum size of a change is 1 CFP” [8].

– If the FS(FC) > R, it will have a “Major” impact on the FS(UML-AD). Since the FC
includes a number of data movements that exceed the ratio R.

– If 2 CFP ≤ FS(FC) ≤ R, the FC will be classified as “Moderate”.

Analyzing the impact of FC will be helpful in decisions taken to answer the FC
request (accepted, rejected, or deferred). It allows also managers to assess how much
flexibility they have to justify acquiring additional cost or delaying the software project.
Moreover, the benefit of quantifying the “Minor”, “Moderate”, and “Major” change is
to help managers to determine whether the proposed FC can be really accomplished
with a minor/moderate changes or not. These two change status are “in scope” change
according to [19]. Whereas, “Major” change status is classified as an “out-of-scope”
change according to [19]. Thus, “Major” changes should be accompanied with certain
adjustment to the budget, schedule, etc.

Fig. 8. “Ticket Vending Machine” activity diagram before change [20]

90 M. Haoues et al.

4 Illustrative Example

Figure 8 presents the activity diagram of the “Ticket Vending Machine” process [20].
This activity includes three partitions: Commuter, Ticket vending machine, and Bank.
It allows a Commuter to buy a ticket. When a Commuter asks for a ticket, the Ticket
vending machine will then request for trip information. Based on the provided trip info,
Ticket vending machine will calculate payment due and request payment options. If
payment by card was selected, Bank will participate by authorizing the payment via
card. After payment is completed, ticket is dispensed to the Commuter. Ticket vending
machine show the message “Thank You” at the end of the activity.

In order to illustrate the proposed impact change analysis in UML-AD, we propose
the functional change as showed in Fig. 9: Add a decision node after the action
“Authorize Card Payment” with guard conditions “[Verified]” and “[not Verified]”. If
[Verified] then “Dispense Ticket” action is executed, else if [not Verified] then return to
“Process Payment” action.

Fig. 9. “Ticket Vending Machine” activity diagram after change

Quantitative Functional Change Impact Analysis 91

The proposed FC lead to the addition of a guard condition, which lead to the
addition of 1 CFP to the FS (“Ticket Vending Machine”) activity, according to [18].
Then, the FS(FC) = 1 CFP. In fact, R = 13/1 = 13 CFP. Moreover, it affects the action
“Process Payment”. In this case, the ‘inter-level impact (parent)’ direction is required.
In fact, the FC that affects the action “Process Payment” will lead to an impact on
action’s parent i.e. “Ticket Vending Machine” activity.

As provided in Table 7, the FS (“Ticket Vending Machine”) before the change is
equal to 13 CFP, and after the change the FS (“Ticket Vending Machine”) is equal to
14 CFP. The inter-level impact (parent) on the FS of the activity (“Ticket Vending
Machine”) is performed as provided in Table 7. As it is depicted in Fig. 7, this FC is
considered as a “Minor” change since FS(FC) = 1 CFP.

5 Conclusion

In the software engineering literature, FC is one of the critical issue. Since, it may lead
to project failure or induce an extra effort in the SDLC to satisfy a FC request. For this
reason, many researchers focused on the problem of requirements change and proposed
many solutions in order to solve this problem. Some studies proposed to anticipate the
change, while others proposed to analyze the change impact in different SDLC phases
(design, implementation, etc.). Our studies focused on FC impact analysis in the design

Table 7. Measurement results (Activity “Ticket Vending Machine”) before and after change

92 M. Haoues et al.

phase. The herein presented work focused on the analysis of FC impact in the UML
Activity Diagram (UML-AD) by using COSMIC-FSM method.

Our approach deals with the change impact along three directions (Internal,
Intra-level, and Inter-level) and two levels (functional and dynamic). It provides for an
analysis of the FC on the element subject of change as well as the overall UML-AD in
terms of CFP units. We can provide the FC status (“Minor”, “Moderate”, or “Major”)
based on its FS. This analysis identifies also if the FC can be handled without changes
to other UML-AD elements or if it cannot be accepted without compensating changes
to other UML-AD elements. FS(FC) can be used also to compare the impact of the
same FC on two distinct activity diagrams. In fact, regarding the ratio R, the same FC
can be a “Minor” change in one UML-AD and a “Major” change in another UML-AD.

Further works include the extension of the proposed approach to other UML dia-
grams such as a structural diagram. Moreover, the focus of this paper is only on the
intra-dependency analysis of a FC in UML-AD, in further work we focused on
inter-dependency analysis. The extended approach can be helpful to software managers
since it will provide guidelines to help in making appropriate decisions related to the
FC purpose (e.g. enhancing the existing system, re-developing the system, etc.) and
fast-track review of the proposed changes.

Appendix A

As proposed in our previous work [18], the FS(UML-AD) is computed as follows:

FS ðUML� AD Þ ¼
Xn
i¼1

FS ðAiÞ ð1Þ

Where:

• n: the number of activities in the activity diagram UML-AD (functional level).
• FS(Ai): the functional size of the activity Ai in UML-AD (dynamic level).

To measure the functional size of an activity Ai, we use formula (2) [18].

FSðAiÞ ¼ FScond ðPcond AiÞ þ
Xm
j¼1

FSðactijÞ ð2Þ

Where:

• FS(Ai): the FS of the activity Ai (1� i� n)
• m: the number of actions detailing the activity Ai (dynamic level).
• FS(actij): the FS of an action actij (dynamic level).
• FScond(Pcond Ai): the FS of the pre-condition of Ai. (1CFP if it exists).

Quantitative Functional Change Impact Analysis 93

To measure the FS of an action (actii), we use formula (3) [18].

FSðactijÞ ¼ FScond ðPcond actijÞ þ FSparam ðParam actijÞ ð3Þ

Where:

• FScond(Pcond actij): the FS of the pre-condition of actii (1 CFP if it exists).
• FSparam(Param actij) = 1 CFP if actij includes input or output parameters).

To measure the functional size of a guard condition, we use formula (4) [18].

FScond ðCondGuard Þ ¼ 1 CFP if actij has a guard condition

0 otherwise:

(
ð4Þ

References

1. Briand, L.C., Sullivan, Y., Labiche, L.O., Sowka, M.M.: Automated impact analysis of
UML models. J. Syst. Softw. 79, 339–352 (2005)

2. Russo, B., Steff, M.: What can changes tell about software processes? In: International
Workshop on Emerging Trends in Software Metrics, Hyderabad, India, pp. 1–7 (2014)

3. Mala, D.J., Geetha, S.: Object Oriented Analysis and Design Using UML (2013)
4. Germán, D.M., Robles, G., Hassan, A.E.: Change impact graph: determining the impact of

prior code changes. In: International Working Conference on Source Code Analysis and
Manipulation, Beijing, China, September 2008

5. Fu, Y., Li, M., Chen, F.: Impact propagation and risk assessment of requirement changes
for software development projects based on design structure matrix. Int. J. Proj. Manage. 30,
263–373 (2012)

6. Goknil, A., Kurtev, I., Van den Berg, K., Spijkerman, W.: Change impact analysis for
requirements: a metamodeling approach. Inf. Softw. Technol. 56, 950–972 (2014)

7. Inpirom, A., Prompoon, N.: Diagram change types taxonomy based on analysis and design
models in UML. In: IEEE International Conference on Software Engineering and Service
Science, Beijing, pp. 283–287 (2013)

8. COSMIC (The Common Software Measurement International Consortium), The COSMIC
Functional Size Measurement Method, Version 4.0.1, Measurement Manual (2015)

9. Gencel, C., Demirors, O.: Functional size measurement revisited. ACM Trans. Softw. Eng.
Methodol. 17(3), 71–106 (2008)

10. Object Management Group. Unified Modeling Language (UML) Version 2.5 (2012)
11. Sellami, A., Haoues, M., Ben-Abdallah, H.: Automated COSMIC-based analysis and

consistency verification of UML activity and component diagrams. In: Filipe, J., Maciaszek,
L.A. (eds.) ENASE 2013. CCIS, vol. 417, pp. 48–63. Springer, Heidelberg (2013)

12. Bohner, S.A.: Software change impacts-an evolving perspective. In: International
Conference on Software Maintenance (2002)

13. Chaumun, M.A., Kabaili, H., Keller, R.K., Lustman, F.: A change impact model for
changeability assessment in object-oriented software systems. In: European Working
Conference on Software Maintenance and Reengineering (2002)

14. Vargas, R.T., Nugroho, A., Chaudron, M.,Visser, J.: The use of UML class diagrams and its
effect on code change-proneness. In: International Workshop on Experiences and Empirical
Studies in Software Modelling (2012)

94 M. Haoues et al.

15. JayPrakash, L.T.: impact analysis of UML design changes using model slicing. In: CPSM,
Eindhoven, pp. 1–10, September 2013

16. Hoa, K.D., Winikoff, M.: Supporting change propagation in UML models. In: International
Conference on Software Maintenance, Timisoara, pp. 12–18, September 2010

17. Briand, L.C., Labiche, Y., Soccar, G.: Automating impact analysis and regression test
selection. In: International Conference on Software Maintenance, pp. 252–261 (2002)

18. Sellami, A., Haoues, M., Ben-Abdallah, H.: Analyzing UML activity and component
diagrams - an approach based on COSMIC functional size measurement. In: International
Conference on Evaluation of Novel Approaches to Software Engineering (2013)

19. Fairly, R.E.: Managing and Leading Software Projects. IEEE Computer Society, Hoboken
(2009)

20. The Unified Modeling Language, UML Activity Diagram Example: Ticket Vending
Machine (2014). http://www.uml-diagrams.org/

Quantitative Functional Change Impact Analysis 95

http://www.uml-diagrams.org/

Application of Function Points and Data Mining
Techniques for Software Estimation - A Combined

Approach

Przemysław Pospieszny(✉), Beata Czarnacka-Chrobot, and Andrzej Kobyliński

Institute of Information Systems and Digital Economy, Warsaw School of Economics,
ul. Madalińskiego 6/8, 02-513 Warsaw, Poland

p.pospieszny@gmail.com, {bczarn,kobyl}@sgh.waw.pl

Abstract. Project estimation is recognized as one of the most challenging
processes in software project management on which project success is depend‐
able. Traditional estimation methods based on expert knowledge and analogy tend
to be error prone and deliver overoptimistic assessments. Methods derived from
function points are good sizing tools but do not reflect organizations’ specific
project management culture. Due to those deficiencies in recent years data mining
techniques are explored as an alternative estimation method. The aim of this paper
is to present a combined approach of functional sizing measurement and three
data mining techniques for effort and duration estimation at project early stages:
generalized linear models, artificial neural networks and CHAID decision trees.
The estimation accuracy of these models is compared in order to determine their
potential usefulness for deployment within organizations. Moreover a merged
approach of combining algorithms’ results is proposed in order to increase predic‐
tion accuracy and overcome possibility of overfitting occurrence.

Keywords: Project estimation · Effort and duration estimation · Software
measurement · Functional size measurement · Function points · Data mining ·
Predictive algorithms

1 Introduction

For centuries human activities were organized into temporary endeavors focused on
delivering unique products, services or results [1]. The development and popularization
of project management as a formal discipline that supports and provides tools for
achieving the final outcome occurred in the 1960s. At that time project methodologies
and techniques were applied widely for delivering complex initiatives by such organi‐
zations as NASA and IBM, additionally, major project management organizations were
established, like Project Management Institute (PMI) and International Project Manage‐
ment Association (IPMA). Over the years these bodies have been responsible for the
definition of numerous standards, practices and tools that support the development of
final product and enhance project success rate.

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 96–113, 2015.
DOI: 10.1007/978-3-319-24285-9_7

In the current fast-paced world, information technology systems, which mostly are
delivered as projects, play a significant role. Foremost they enable automation of
different organizational processes and allow rational decision-making due to delivering
accurate and comprehensive information. As a result, they may lead to cost reduction
and the increased efficiency of processes within institutions [2].

The success of software initiative is dependent on delivering the final outcome within
the assumed timeframe, budget and scope. These factors are considered as project
constraints and part of project iron triangle, where any change to one of them during
project execution impacts negatively others. They are defined at the initial stage of the
initiative in order to put together a business case and estimate profitability of developing
and implementing the system within the organization. In recent years a high rate (approx.
60 %) of software projects can be observed struggling with delivering products within
their assumed timeframe, budget and scope [3, 4]. This often leads to project overruns
or even cancelation because of unbalanced business cases, due to the development cost
overcoming the potential benefits of implementing the solution, or that time to market
does not guarantee achieving a competitive advantage. There are many grounds for
failure mentioned, including problems like poor communication, lack of skills within
the project team or no project management methodology in place [5–8]. Nevertheless
the most important reason that determines project success is considered to be improper
planning conducted at an early stage of the initiative lifecycle [9]. During that time,
project boundaries are defined, such as the effort and duration needed to develop the
final product, therefore inaccurate estimation of those two may often result in an over‐
optimistic budget and schedule, and ultimately lead to project failure.

The process of estimation of effort and duration during project initiation and planning
is a very complex task, mostly due to the high uncertainty and lack of information avail‐
able in terms of the product that the initiative needs to deliver. Available techniques and
tools, which are in place and are commonly used for that purpose, are mostly based on
estimation by analogy or expert knowledge. They rely on common sense and subjective
judgment; therefore in the hands of inexperienced project managers may provide inac‐
curate estimations. More mature organizations that undertake software projects use a
parametric models based on source line of code (SLOC), but they are technology sensi‐
tive and difficult to apply at early stages of the project, due to an issue of relation of
SLOC to functional requirements [8]. An other approach employed is function points
measurement (FPM), that overcomes the above mentioned problems, and provide accu‐
rate software size measurement even at project initiation. Nevertheless, product devel‐
opment methods derived from FPM may deliver imprecise results in terms of the effort
and duration needed because of applying mathematical formulas for this purpose that
do not take into consideration factors like existing project management methodology or
details of organizational culture that highly impact budget and timeframe of projects.
Therefore it is considered as an excellent software sizing method, but there is a necessity
for an additional estimation approach that would utilitize the system size represented in
function points, and based on that information provide accurate effort and duration
predictions.

In the past 20 years, data mining techniques have been applied for numerous disci‐
plines, especially for tasks where uncertainty and risk occurrence is substantial, such as

Application of Function Points and Data Mining Techniques 97

credit scoring or customer retention. In terms of project management, researchers in the
past decade explored its potential application and proved its outstanding prediction
capability for estimating effort and duration at initial project phases, but also for moni‐
toring the use of earned value analysis and system’s maintenance cost. Despite numerous
publications in the area, there are few studies of real-life applications, mostly because
researchers focus on the efficiency of particular data mining algorithms rather than
proposing an implementation approach.

The aim of this paper is to present a combined application of function points and
data mining techniques for this crucial aspect, from a project success perspective, as
an estimation of effort and duration at the initial project phases. Initiative size is one
of the key inputs for any estimation models, including data mining ones. Therefore
it was decided to use size computed with function points for this purpose, as it is
considered to be a very accurate approach. For building data mining models, the
International Software Benchmarking Standards Group (ISBSG) database [10] was
used, consisting of a large number of high quality data regarding completed projects,
and the foremost software size information assessed using function point methods
developed by the International Function Point Users Group (IFPUG), the Nether‐
lands Software Metrics Association (NESMA), the Finnish Software Metrics Asso‐
ciation (FiSMA), the common software measurement consortium (COSMIC) and
also the Mk II method proposed by the United Kingdom Software Metrics Associa‐
tion (UKSMA). Based on the database, two models were built, separately for effort
and duration, where each of them consisted of three algorithms: a generalized linear
model (GLM), a multilayer artificial neural network (ANN) and CHAID decision
trees. The prediction results of the algorithms for each model were combined in
order to provide estimations robust to noise within the data, and evaluated using
forecast error measures. The empirical part of this article outlined above and
presented in Sect. 5 is preceded with an overview of common project estimation
approaches (Sect. 2), knowledge discovery in project management (Sect. 3) and a
literature review (Sect. 4).

2 Project Estimation

Project success is dependable on delivering a product within a defined timeframe, and
with a budget and quality that meets end-user and sponsor expectations [11]. Those
attributes are considered as a project’s triple constraints or iron triangle, because they
are defined during project initiation and planning, and any further alternations to one of
them negatively impacts the others.

Duration and budget has the largest impact on the successful completion of a project,
since cost or time overrun is usually compensated for by lower quality of the final
product. They are defined in a process of estimation that tends to be one of the most
crucial and demanding in software project management, due to the complexity of infor‐
mation technology systems that are based on logically connected instructions, modu‐
larity and dispersion. Moreover it is conducted at the early stages of the project, and as
such, approximation of project cost and duration are based on incomplete information
about the functionalities of the final product and the activities that need to be completed

98 P. Pospieszny et al.

in order to deliver it. Therefore this estimation is conducted with high uncertainty and
probability of error that may lead to under or overestimation. According to Boehm [12]
the uncertainty is the highest at project initiation, and decrease with the passing of time
and increase in information availability. Currently it assumes that the error of estimates
is on the level of +100/−50 % in a feasibility study, +50/−25 % for requirements and
+20/−10 % for design [13].

During the estimation process, duration is usually reflected in months and cost is
derived from effort, which is measured in man-days. For this purpose numerous tradi‐
tional methods are used, that are mostly based on guesstimating, analogy or expert
knowledge. The most recognizable ones are considered to be analogy-based estimation,
program evaluation and review technique (PERT), Delphi, Planning Poker or bottom
and top-down. Due to their simplicity they are highly popular, especially those based
on expert knowledge [4], but in the hands of an inexperienced project manager, may
generate extremely error prone estimates, mostly due to underestimation. The other
approach is to utilize parametric methods like: the constructive cost model II (COCOMO
II), the Putnam model (SLIM) and the software evaluation and estimation resources –
software estimating model (SEER-SEM), which are derived from mathematics and
statistics. For estimation purpose those techniques use source of code lines (SLOC) of
the software system, historic databases of completed projects and numerous formulae
for project cost and duration calculation. Although parametric methods provide auto‐
matic and repeatable methods they tend to be ineffective in terms of modern dispersed
and modular systems, and those developed using 4GL programming languages [8], and
for projects implemented with agile methodologies.

Due to the abovementioned imperfections of SLOC for measuring the size of soft‐
ware and using it for effort and duration estimation from a project management perspec‐
tive, organizations apply FPM. It allows measuring the functionalities of a system from
an end-user perspective. Moreover, FPM is independent of technology, programming
language, and software development methodology used. The functionality of the soft‐
ware system is measured using function points (FP) that are assigned to each system’s
functions, grouped into components. Function point analysis (FPA) was first introduced
in 1979 by Allan Albrecht [14], and in 1986 transformed into IFPUG method. The
popularization of function points sparked the development of alternative approaches to
IFPUG like NESMA, COSMIC or Mk II that vary to some degree in method of counting
the system’s functionalities. In practical consideration, the difference between the
newest versions of them are inappreciable, especially considering the most popular ones:
IFPUG and COSMIC. Over the 30 years of the method’s existence more than 20 FPA
approaches have been developed. In order to standardize software sizing using function
points, a function size measurement working group was established in 1994 that
published the ISO/IEC 14143 norm. It consists of set of rules, which FPM methods need
to conform to, and additionally provide guidance for its use. As a result only five of the
methods have been acknowledged by the ISO/IEC: IFPUG, NESMA, COSMIC, FiSMA
and Mk II (UKSMA) [15].

Function point analysis is considered as a very accurate sizing method due to the
end-user and product functionality perspective, and its technology independence. Never‐
theless it may tend to be subjective with regard to assigning points to a system’s features,

Application of Function Points and Data Mining Techniques 99

and in the hands of untrained staff may generate false assessments. Moreover, estimating
effort and duration needed to complete a project and develop the final product using
methods based on FSM assessment is mostly dependent on formulae that are prone to
omit factors that impact project budget and timeframe, like organizational culture,
existing project and software development methodology, and the skills of the project
staff and its effectiveness. Therefore, although function points measurement methods
deliver accurate sizing measures, with respect to estimation of effort and duration, there
is a necessity for an additional approach that would deliver accurate predictions and
address the abovementioned limitations.

Additionally it needs to be mentioned that software size has a significant impact on
the estimation of project constraints [16]. Other factors, like type of the final product,
programming language or the system’s architecture, have less influence on their assess‐
ment. Therefore the proper choice of sizing method is crucial for delivering accurate
estimates, and for purpose of this article, function point analysis was selected to be used
in conjunction with other project attributes for building data mining models in order to
predict project effort and duration.

3 Knowledge Project Management

Knowledge in software project management is a key resource that determines the
successful achievement of project goals . According to PMI, project knowledge can be
grouped into 10 knowledge areas: integration, scope, time, cost, quality, human resources,
communication, risk, procurement and stakeholder management [1]. It is created at every
stage of project lifecycle as both the unstructured knowledge of team members, and in the
form of documentation, repositories and databases. Proper use of available knowledge
impacts not only the development of software and its functionalities within an assumed
quality, but also delivering it within defined budget and timeframe.

Project knowledge management compromises two main dimensions. The first, micro-
knowledge, is the knowledge needed to perform a particular task, or to solve a given
problem. During the process of its acquisition, creation, application, transfer and sharing it
becomes macro-knowledge, which is the total knowledge required to conduct the project
[17]. It also includes developing organizational ability to conduct initiatives, introduce new
products and services to the market, and achieving competitive advantage.

The majority of organizations that conduct software initiatives maintain project
databases. They are maintained usually by the project management office (PMO), and
contain key project performance metrics gathered during its lifecycle. The following
information can be distinguished in project databases [8]:

1. Cost – staff, phase and total effort
2. Schedule – milestones, activities, phases
3. Quality – defects found, effort required
4. Product characteristics – development language, technology, architecture, size
5. Project characteristics – methodology, resources allocated
6. Project progress – budget and schedule performance, effort and schedule changes.

100 P. Pospieszny et al.

The information gathered is mostly used for project monitoring and reporting. It
allows tracking initiative progress, identifying any deviations from baselines and imple‐
menting corrective actions. Moreover it is used for reporting purposes in order to keep
sponsors, stakeholders and management informed. The project database and the infor‐
mation stored within it allows deriving knowledge (on lessons learnt, best practices)
from completed initiatives, that can be used further for conducting new projects, in order
to mitigate risks and increase the project success factor within an organization.

In terms of estimation, a project database is commonly used for analogy-based based
estimation and as an input for adjusting parametric techniques. Nevertheless it can be
also applied in knowledge discovery process in databases, [18] for the prediction of
project constraints using data mining techniques. In the last 20 years, data mining has
became extremely popular and is used in wide range of disciplines, especially for those
where risk and uncertainty is substantial. It relies on the exploration and analysis of large
quantities of data in order to discover meaningful patterns and rules [19]. For this purpose
interdisciplinary techniques are used that derive from statistics, machine learning, arti‐
ficial intelligence and pattern recognition. The widespread application of data mining
(i.e. credit scoring, customer churn, drug testing) is a result of their outstanding predic‐
tion capability, that contributes to decreased operational risks, increased sales, reduced
time to market of new products and eventually achieving a competitive advantage.

Depending on the aim of an application and its expected outcome two types of data
mining tasks, descriptive and predictive, can be distinguished. The first focuses on
finding useful characteristics and human-interpretable patterns describing a given
dataset. The second performs inference on the data in order to predict future values [20].
They both require a data set in order to generate an outcome, but in terms of descriptive
data-mining is it is unlabeled data set (unsupervised learning), while for predictions,
supervised learning algorithms are used to analyze a training dataset and produce an
inferred function that can be used for mapping new cases. Within predictive tasks two
major groups of techniques can be applied, depending on the type of outcome variable;
binary or discrete variables are used for classification algorithms, and numerical ones
for regression.

Recent research has been done in terms of applying data mining techniques for
project management,the areas of initial estimation, project controlling and monitoring
[21, 22], risk and quality management [23, 24] or maintenance cost estimation [25].
Nevertheless the most important of these from the perspective of project success is effort
and duration estimation, for which data mining algorithms require good sizing meas‐
urement in order to generate accurate predictions.

4 Literature Review

With growing data mining popularity in recent 20 years researchers recognized its poten‐
tial application for software projects estimation, especially at early project lifecycle. Their
motivation was mainly to replace or using in conjunction with traditional error prone and
often ineffective techniques with new approaches based on modern machine learning and
statistical algorithms in order to boost estimation accuracy and increase project success

Application of Function Points and Data Mining Techniques 101

rate. For this purpose the researchers applied various classification and prediction techni‐
ques such as: regression, decision trees, neural networks, case-based reasoning or support
vectors machines. The comprehensive literature review of software development cost esti‐
mation techniques, including application of data mining algorithms, was conducted by
Jorgensen and Sheppard (2007) [26]. Wen et al. (2012) [27] focused their review on
machine learning data mining techniques that were utilized for effort estimation in last two
decades. Table 1 presents only selected publications from effort and duration estimation
area at initial project stages with utilization of data mining techniques in order to indicate
the most important findings and research limitations.

Most of the researchers focused on validating various data mining algorithms and
comparing their effectiveness in order to determine the most accurate one [23, 27, 29–
33]. The results achieved were inconclusive and it hardly can be distinguished the most
precise technique in terms of delivered predictions. Although that all publications
presented data mining models’ outstanding accuracy and prediction capability for effort
and duration estimation. The discrepancies in results between used techniques were
minor and mostly caused by applying various datasets for training algorithms. This is a
consequence of data quality issues and chosen data preparation approach that contributes
to models’ outcome variations [30]. Therefore the researchers pointed out an importance
of data pre-processing that impacts highly models’ accuracy [26, 34].

In order to improve prediction accuracy of data mining techniques applied for soft‐
ware effort estimation in recent years researchers explored utilization of ensemble
methods. Mittas and Angelis [35] conducted comparison of data mining techniques used
for cost estimation across 6 databases and indicated that algorithms deliver different
accuracy depending on training dataset, hence they should be applied in groups.
Kocaguneli et al. [36] proposed an approach of selecting best performing techniques
and using them for building an ensemble model. Although, the outlined by researchers
framework of using random sampling for training base models and combining over a
dozen data mining algorithms definitely boost outcome model’s accuracy but introduces
substantial complexity and increase of computational time, that may exclude the frame‐
work from practical use. Due to mentioned limitations ensemble methods, like bagging
and boosting, are rarely deployed by practitioners for real life scenarios and mostly only
predictions sourced from up to three techniques are combined using averaging or voting.

Effort and duration estimation data mining techniques require a database of completed
projects that consist of numerous observations and attributes describing an initiative. More‐
over for research purposes it should be open to public for replication of results. Due to
deficiency of databases meeting the above criteria for training algorithms researchers
applied databases used widely for validating source of lines of code or function points
models. Depending on origin, the most used ones for data mining estimation models are:

• SLOC – COCOMO [37], NASA/Promise [38], SourceForge [39]
• FP – Albrecht [40], ISBSG [41]

The most comprehensive collection of data about historic projects is ISBSG that is
constantly updated with software initiatives from numerous industries and countries, vali‐
dated with data quality criteria and consist up to date with more than 6000 observations.

102 P. Pospieszny et al.

Software size has the most significant influence on effort and duration estimation
with use of data mining techniques [42]. Although, as an input variable it could be used
size assessed with traditional estimation techniques, most of researchers based their
models on databases where software size is calculated using SLOC and FP. Due to

Table 1. Selected research papers in domain of data mining application for effort and duration
estimation

No Authors Title Year Aim Algorithms Database

1 I.Barcelos
Tronto,
J.Simoes da
Silva, N.
Sant'Anna

Comparison of Artificial
Neural Network and
Regression Models in
Software
Effort Estimation

2006 Effort
estimation

Neural
networks,
linear
regression

COCOMO

2 D.Dzega,
W.Pietruszkiewi
cz

Classification and
Metaclassification in
Large Scale Data
Mining Application for
Estimation of Software
Projects

2009 Duration
estimation

Decision trees:
C4.5, random
tree and
CART

SourceForge

3 A.Bakır,
B.Turhan,
A.Bener

A comparative study for
estimating software
development effort
intervals

2010 Effort
estimation

Linear
discrimination,
k-nearest
neighbor and
decision tree

Promise and
Softlab Data
Repository

4 C.Lopez-Martin,
C.Isaza,
A.Chavoya

Software development
effort prediction of
industrial projects
applying a general
regression neural
network

2011 Effort
estimation

General
regression
neural
network,
regression

ISBSG

5 J.Balsera,
F.Fernandez,
V.Montequin,
R.Suarez

Effort Estimation in
Information Systems
Projects using Data
Mining
Techniques

2012 Effort and
duration
estimation

Decision tree
MARS

ISBSG

6 K.Dejaeger,
W.Verbeke,
D.Martens,
B.Baesens

Data Mining
Techniques for Software
Effort Estimation: A
Comparative Study

2012 Effort
estimation

13 algorithms
including:
ordinary least
squares
regression,
MARS,
CART, neural
network, case-
based
reasoning,

Cocnasa,
Maxwell,
USP05,
COCOMO,
Desharnais,
the
Experience,
ESA,
ISBSG, and
Euroclear

support vector
machines.

 Source: Own elaboration based on [28]

Application of Function Points and Data Mining Techniques 103

deficiency of project databases, mostly not intentionally, they applied sizing approaches
that tend to deliver the most precise results, especially in terms of function points.
Moreover it was presented that combined approach of FP and data mining techniques
could deliver accurate effort and duration predictions.

Despite effectiveness of data exploration techniques in exemplifying project constraints
at project early stage, there are hardly known any applications in practice. The reason
behind that is lack of comprehensive approach that could be used for models’ implemen‐
tation. The researchers rather focused on comparing accuracy of data mining algorithms
applied for software estimation than on applying them in practice. Additionally for building
models databases where used that consist of small number of observations (i.e. COCOMO:
63, NASA: 60) that could lead to overfitting and overoptimistic estimations. It can also
occur when single algorithm is used, which can preform well on one dataset but when
different data is processed it can generate error prone predictions. Moreover applied by
researchers databases are often outdated and often sourced in 80 s and 90 s, hence due to
technology change may lead to false conclusions [26].

Therefore, in this paper it was proposed an approach that addresses all those
limitations. ISBSG dataset is applied for training data mining models that consist of
large volume of project data and sizing attribute calculated using function points.
Moreover three algorithms are used in combination, separately for effort and dura‐
tion estimation, in order to prevent overfitting and increase models’ robustness to
noises within the data.

5 Effort and Duration Estimation Using Function Points and Data
Mining Techniques

This section of the article presents a combined approach for effort and duration esti‐
mation at project early stage with use of function points for software sizing and data
mining techniques for mentioned project constraints prediction. For this purpose
CRISP-DM [43] methodology was applied, which provided guidance through the
modeling process. Data about completed projects was sourced from ISBSG data‐
base that provides the most comprehensive and reliable information about software
initiatives conducted in numerous industries across the world. It is constantly
updated and validated by ISBSG organization and version R12 used for modeling
purposes consist of 6006 observations about projects that were conducted in last two
decades. Foremost the database provides information about size of implemented
software measured with function points, mostly using IFPUG method, but as well
COSMIC, FiSMA and NESMA (see Fig. 1), which was used in this article as an
input variable for estimating effort and duration.

As a result of preliminary modeling and by conducting literature review for building
data mining models three prediction algorithms were selected from regression and
machine learning area: generalized linear model, multilayer artificial neural network and
CHAID decision trees. They are considered by practitioners as precise techniques that
deliver accurate estimations and are robust to noises within the data that could affect
algorithm’s prediction capability. GLM is a generalization of ordinary linear regression

104 P. Pospieszny et al.

that depending on response variable type, distribution and variance appropriate link
function is used to represent relationship between attributes [44]. It has a remarkable
ability to analyze large datasets with non-linear variables. Artificial neural networks
compute values from inputs using interconnected layers of neurons and non-linear acti‐
vation function. They are capable of learning through back-propagation process that
relies on modifying weights to the expected results, therefore it may adapt to the data
and exclude irrelevant information [45]. The last algorithm applied, CHAID, uses non-
binary and easy to interpret trees for reflecting relationships within data, and chi-square
for significance testing.

GLM, ANN and CHAID techniques were used for both effort and duration. For each
dependent variable the predictions delivered by those algorithms were combined using
arithmetic mean (see Fig. 2). It was motivated with possibility of overfitting particular
model to data that may result in false estimations. Moreover, depending on quality of
dataset algorithms may generate diverse predictions. Therefore, averaging the results
make them robust to those limitations and increase estimation accuracy. Additionally,
due to used large dataset for purposes of this article, that significantly decrease possi‐
bility of models’ overfitting, both it was decided not utilize ensemble methods based on
sampling (boosting or bagging). An application of these aggregation techniques for
building models would increase complexity and computational time of models, thus
from practitioner point of view could present a major limitation.

In order to build accurate data mining models the ISBSG database was processed
through data preparation. Firstly 28 variables were selected based on their potential
impact on effort and duration prediction. In terms of sizing it was decided to use Relative
Size that represents counted software function points grouped into 9 categorical values
(ranges). Utilization of categorical independent variables rather than continuous ones
tend to boost model’s accuracy due to narrowed complexity and segmentation necessity
of data required during building models in order to find rules and associations. Next
attributes with poor quality and substantial number of missing values were removed.
For numeric variables three standard deviations from mean criterion was applied to
exclude any potential outliers that could affect models’ learning process.

Fig. 1. Breakdown of FSM methods in ISBSG database.
Source: Own elaboration based on [10]

Application of Function Points and Data Mining Techniques 105

The depended variable Effort (derived from Normalized Work Effort) presents total
effort required to preform the project reflected in hours, and Duration (Project Elapsed
Time) total project elapsed time in months. In order to use the same units the first one
was transformed to work months [46]. Both variables had positive skewness (see Fig. 3)
that indicated distribution other than normal. Therefore, two tests were conducted to
verify normality of distributions: Kolmogorov-Smirnov and Shapiro-Wilk. Signifi‐
cances of statistics generated by those tests were lower than 0,05 therefore null
hypothesis that there is a normal distribution within effort and duration was rejected.
Taking into consideration that data mining algorithms including GLM, ANN and
CHAID generate more accurate predictions for numeric dependent variables with
normal distribution Effort and Duration were log-transformed.

The above-presented approach for data preparation narrowed dataset to 11 inde‐
pendent, 2 depended variables (Table 2), and 1494 observations (projects). In order to
verify dependency between input and output attributes Pearson correlation and stepwise
regression was preformed. Both Effort and Duration had the biggest relationship with
sizing variable measured with function points (0,672 and 0,256 respectively).

Fig. 2. Effort and duration prediction model process based on function points sizing.
Source: Own elaboration

Fig. 3. Box plot for depended variables Effort and Duration.
Source: Own elaboration based on SPSS Modeler

106 P. Pospieszny et al.

Other independent attributes had lower ability for predicting depended variables
(0,1-0,2). In terms of stepwise regression for Effort only 5 variables were included into
model mostly due to high influence of Relative Size. Regarding Duration the regression
required 9 independent attributes in result of more similar affect on the output. Never‐
theless none of input variables were excluded from the dataset because their dependency
on Effort and Duration is on significant level, which may leverage models’ estimation
accuracy. Correlation between output variables was on level 0,470 that is considered to
be strong taking into account large amount of varied observations within the dataset.

For further modeling purposes the dataset of 1494 projects (see Table 2) defined
during data preparation process was split into training (80 %) and test (20 %) dataset.
The first one was used for building models and the other for validating their effort and
duration estimation capability. Due to large set of data used for purposes of this article
it was decided not to use sampling methods for building ensemble models (bagging or
boosting) and also not to utlilitize k-fold cross validation.

Three data mining prediction algorithms were applied with use of SPSS Modeler
software for both depended variables: generalized linear model, multilayered neural

Table 2. Selected variables for effort and duration estimation

No Variable Description Type Categories Role
1 Industry Sector Organisation type Nominal 14 Input

2 Application
Type

Type of application being
addressed

Nominal 16 Input

3 Development
Type

New development,
enhancement or re-
development

Nominal 3 Input

4 Development
Platform

PC, Mid Range, Main Frame
or Multi platform

Nominal 4 Input

5 Language Type Programming language
(2GL, 3GL, 4GL)

Nominal 3 Input

6 Package
customization

Indicates whether the project
was a package customisation

Nominal 3 Input

7 Relative Size Function points grouped into
categories

Nominal 7 Input

8 Architecture System architecture Nominal 6 Input

9 Agile Agile used? Flag 2 Input

10 Used
Methodology

Development methodology
used?

Nominal 3 Input

11 Resource Level Development team effort,
development team support,
computer operations
involvement, end users or
clients

Nominal 4 Input

12 Effort Total project effort in work
months, log-transformed

Continuous Target

13 Duration Total project elapsed time in
months, log-transformed

Continuous Target

−

−

 Source: Own elaboration based on [28]

Application of Function Points and Data Mining Techniques 107

network and CHAID decision trees. Achieved estimations from each of them were
merged (averaged) separately for effort and duration in order to potentially boost predic‐
tion accuracy. For validating models forecast error measures were utilized: mean error
(ME), mean absolute error (MAE), mean squared error (MSE) and root mean squared
error (RMSE) [45, 47]. Additionally magnitude of relative error (MRE), mean magni‐
tude of relative error (MMRE) and prediction at level k PRED(k) were used that are
commonly applied for assessing accuracy of software estimation models. According to
Conte, Dunsmore and Shen [48] ‘good’ estimating model should have MMRE ≤ 0,25
and PRED (0,25) ≥ 0,75. Nevertheless such criterion is hardly achieved especially when
models are trained based on large heterogeneous datasets that consist of mix-sized
projects derived from various industries [49].

Table 3 presents prediction accuracy measures for built effort and duration estimation
models. Results for individual algorithms GLM, ANN and CHAID are compared with
merged models where generated predictions by those three techniques were averaged.
As it can be noticed forecast errors across all models are on similar level and differences
are almost imperceptible. For effort prediction the best performing algorithm was gener‐
alized linear model, where square root of the variance of the residuals (RMSE) that
indicates distance between observed and predicted values for testing dataset was 0,402
(ANN 0,418 and CHAID 0,412). Additionally the difference between RMSE and MAE
for all effort estimation models is very small therefore it can be stated that large errors
did not occur. In terms of duration estimation the lowest generated forecast errors deliv‐
ered neural network, where RMSE for testing dataset was on level 0,25 (GLM 0,268
and CHAID 0,273). The variance between RMSE and MAE was very small which indi‐
cates that, similarly to effort models, large errors did not exist.

Analyzing commonly used measures for assessing software estimation models it can
be noticed that for both effort and duration estimation models MMRE was slightly above
20 %. This indicates that predicting with those models effort and timeframe required to
complete a project only in 20 % cases error can occur. It is considered to be very good
level below 25 % Conte criterion. PRED(0,25) values were averaging around 60 %,
which points out that models were within 25 % accuracy in 60 % of time. This is lower
than assumed 75 % level that good estimation model should posses but considering large
and diverse database used for training and validating it can be accepted as a satisfactory.
Additionally, if considered PRED(0,3) indicator the accuracy increase even by 10 %.

For both effort and duration estimation the most accurate models were the merged
ones. They outperformed individual algorithms achieving the highest MMRE and PRED
based on training and testing dataset. The final model for effort prediction had for testing
dataset MMRE of 0,04 and PRED(0,25) of 0,597. In relation to duration estimation the
merged model achieved accuracy MMRE of 0,245 and PRED(0,25) of 0,591.

To conclude, all models built based on sizing measured with function points have
very good software project effort and duration prediction capability. Forecast errors
obtained where small and estimation accuracy was very good especially considering
large volume of diverse data used for training purposes. For effort estimation the best
performing algorithm was generalized linear model, and for duration artificial neural
networks. Nevertheless, the prediction accuracy between algorithms used was almost
insignificant and each one of them could be used individually for effort and duration

108 P. Pospieszny et al.

estimation. The merged approach of combining results of GLM, ANN and CHAID by
averaging output estimates delivered even more accurate predictions. Additionally, it
overcomes possibility of overfitting and difference in algorithms’ performance
depending on utilized database and depended variable. Models could be even more
accurate if deployed for particular organization and trained based on homogeneous
dataset.

6 Conclusions

Effort and duration estimation of software projects at early stage during initiation and
planning is considered as one of the most challenging tasks in project management on
which project success is dependable. The reason of that is lack of information about the
functionalities of the final product and activities necessary to preform in order to develop
and implement the software system. Therefore, project managers and other project
practitioners during estimation process act on incomplete information where uncertainty
and risk occurrence is significant. For estimation purposes they utilize mostly traditional
manual techniques that derive from expert knowledge or are based on analogy. These
methods tend to be error prone and deliver overoptimistic estimates that result in cost

Table 3. Forecast errors and accuracy measures of built GLM, ANN and CHAID models for
effort and duration prediction

Generalized
linear model

Artificial neural
network

CHAID Decision
tree Combined model

Training Test Training Test Training Test Training Test

Effort
ME 0,000 -0,012 0,008 0,002 0,000 -0,008 -0,004 -0,011

MAE 0,288 0,310 0,308 0,331 0,287 0,313 0,288 0,310

MSE 0,139 0,162 0,159 0,175 0,140 0,169 0,139 0,160

RMSE 0,373 0,402 0,398 0,418 0,374 0,412 0,373 0,400

MMRE 0,203 0,053 0,226 0,113 0,225 0,050 0,187 0,040

PRED(0,25) 0,599 0,604 0,571 0,545 0,612 0,607 0,618 0,597

PRED(0,3) 0,680 0,662 0,657 0,623 0,680 0,662 0,685 0,662

Duration
ME 0,000 0,003 0,000 0,009 0,000 0,012 0,000 0,008

MAE 0,206 0,217 0,188 0,198 0,193 0,212 0,186 0,201

MSE 0,075 0,072 0,065 0,063 0,068 0,074 0,064 0,064

RMSE 0,274 0,268 0,255 0,250 0,261 0,273 0,253 0,252

MMRE 0,228 0,263 0,213 0,259 0,217 0,251 0,205 0,245

PRED(0,25) 0,611 0,558 0,623 0,588 0,654 0,568 0,659 0,591

PRED(0,3) 0,700 0,646 0,706 0,653 0,732 0,653 0,750 0,675

Source: Own elaboration

Application of Function Points and Data Mining Techniques 109

and schedule overrun, which may contribute to project failure. Additionally for estima‐
tion purposes researchers and practitioners deployed in last 30 years numerous techni‐
ques that are based on sizing assessed with FP. Despite their accuracy in terms of size
calculation they lack of ability to estimate effort and duration, especially if considered
various project management culture within organizations and large complex projects
that are nowadays often conducted.

On the other hand data mining is growing in popularity. Their techniques derived
from statistics, artificial intelligence and machine learning poses outstanding prediction
capability that can be applied for various purposes especially where uncertainty occurs
and may contribute to risk materialization, ultimately financial loses (i.e. credit scoring,
customer attrition). Therefore, for last two decades researchers explored deployment of
data mining algorithms for software estimation but despite demonstrating their excep‐
tional accuracy for effort and duration prediction there can be found hardly any deploy‐
ment in practice. The reason of this may be that the proposed approaches focus on
performance of individual algorithms and mostly are tailored for particular dataset
instead of presenting robust to noise, change and data heterogeneity complex models.
Moreover a role of software sizing is omitted that is the most significant input variable
for effort and duration estimation and its proper assessment impacts prediction accuracy.

The aim of this paper was to present a combined approach of functional size meas‐
urement and data mining techniques for effort and duration estimation. The software
size assessed with function points tends to generate the most accurate results. It was
utilized as an input variable for three robust data mining prediction algorithms: gener‐
alized linear model, artificial neural network and CHAID decision tree. For this purpose
ISBSG database was used that provides information about software size calculated using
IFPUG, NESMA, COSMIC and FiSMA methods. Based on preprocessed dataset
models were built separately for effort and duration estimation. Moreover, merged
approach was explored that combines predictions delivered by GLM, ANN and CHAID
using arithmetic mean. Obtained results demonstrated a very good capability of used
individual data mining algorithms for effort and duration estimation based on software
sizing assessed with function points. Nevertheless the proposed merged approach of
combining GLM, ANN and CHAID predictions by averaging generated even more
accurate predictions and foremost overcome possibility of overfitting and delivering
false predictions by individual algorithms depending on quality of data used for training.

The further research should focus on deploying the proposed approach in practice
as a decision support tool that could be used for early effort and duration estimation of
small to large software projects. It may be integrated with existing project management
tools and preferably be maintained by project management office that would ensure
proper quality of input data and models’ update in order to retain their accuracy in project
changing environment. Data mining techniques with use of function points for sizing
require historic database of completed projects in order to tailor models for organiza‐
tion’s specific project management culture. The proper attention should be given to
quality of data since data mining models are sensitive to anomalies and missing values.
Therefore, preferably they should be implemented within capability maturity model
integration (CMMI) certified organizations where certainly the proposed approach
would contribute to increase process success rate.

110 P. Pospieszny et al.

References

1. Project Management Institute: A Guide to the Project Management Body of Knowledge -
PMBOK Guide. Project Management Institute (2013)

2. Marchewka, J.: Information Technology Project Managment - Providing Measurable
Organizational Value. Wiley, Hoboken (2003)

3. Standish Group: The CHAOS Manifesto 2011. Standish Gr. Int. EUA. 25 (2011)
4. Czarnacka-Chrobot, B.: Analysis of the functional size measurement methods usage by polish

business software systems providers. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-
Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 17–34. Springer,
Heidelberg (2009)

5. Neimat, T.: Al: Why IT projects fail. Proj. perfect white Pap. Collect., pp. 1–8 (2005)
6. Tan, S.: How to Increase Your IT Project Success Rate. Gart. Res. Rep. (2011)
7. Mieritz, L.: Survey Shows Why Projects Fail (2012)
8. Galorath, D., Evans, M.: Software Sizing, Estimation, and Risk Management. Auerbach

Publications, Boca Raton (2006)
9. Wells, G.: Why projects fail. Manag. Sci. J. (2001)

10. International Software Benchmarking Standards Group: ISBSG Repository Data Release
12 - Field Descriptions (2013)

11. Schwalbe, K.: Information Technology Project Management. Course Technology, Boston
(2014)

12. Boehm, B.W.: Software Engineering Economics. Prentice Hall, Englewood Cliffs (1981). 10,
4–21

13. Laird, L.M., Brennan, M.C.: Software Measurement and Estimation: A Practical Approach.
Wiley, Hoboken (2006)

14. Albrecht, A.: Measuring application development productivity. In: IBO Conference on
Application Development, pp. 83–92 (1979)

15. Czarnacka-Chrobot, B.: Standardization of software size measurement. In: Tkacz, E.,
Kapczynski, A. (eds.) Internet – Technical Development and Applications. AISC, vol. 64,
pp. 149–156. Springer, Heidelberg (2009)

16. Hill, P.: Practical Software Project Estimation: a Toolkit for Estimating Software
Development Effort & Duration. McGraw Hill Professional, New York (2010)

17. Gasik, S.: A model of project knowledge management. Proj. Manag. J. 42, 23–44 (2011)
18. Piatetsky-Shapiro, G., Frawley, W.J.: Knowledge Discovery in Databases (1991)
19. Linoff, G.S., Berry, M.J.A.: Data Mining Techniques: For Marketing, Sales, and Customer

Relationship Management. Wiley, New York (2011)
20. International Society of Parametric Analysts: Parametric Estimating Handbook. ISPA (2008)
21. Iranmanesh, S.H., Mokhtari, Z.: Application of data mining tools to predicate completion

time of a project. Proc. World Acad. Sci. Eng. Technol. 32, 234–240 (2008)
22. Azzeh, M., Cowling, P.I., Neagu, D.: Software stage-effort estimation based on association

rule mining and Fuzzy set theory. In: Proceedings - 10th IEEE International Conference on
Computer and Information Technology, CIT-2010, 7th IEEE International Conference on
Embedded Software and Systems, ICESS-2010, ScalCom-2010, pp. 249–256 (2010)

23. Balsera, J.V., Montequin, V.R., Fernandez, F.O., González-Fanjul, C.A.: Data Mining
Applied to the Improvement of Project Management. InTech. (2012)

24. Nagwani, N.K., Bhansali, A.: A data mining model to predict software bug complexity using
bug estimation and clustering. In: ITC 2010 - 2010 International Conference on Recent Trends
in Information, Telecommunication, and Computing, pp. 13–17 (2010)

Application of Function Points and Data Mining Techniques 111

25. Shukla, R., Shukla, M., Misra, A.K., Marwala, T., Clarke, W.A.: Dynamic software
maintenance effort estimation modeling using neural network, rule engine and multi-
regression approach. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.,
Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 157–169.
Springer, Heidelberg (2012)

26. Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation
studies. IEEE Trans. Softw. Eng. 33, 33–53 (2007)

27. Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine learning
based software development effort estimation models. Inf. Softw. Technol. 54, 41–59 (2012)

28. Kobyliński, A., Pospieszny, P.: Zastosowanie technik eksploracji danych do estymacji
pracochłonności projektów informatycznych. Studia i Materiały Polskiego Stowarzyszenia
Zarządzania Wiedzą, pp. 67–82, Bydgoszcz (2015)

29. Dzega, D., Pietruszkiewicz, W.: Classification and metaclassification in large scale data
mining application for estimation of software projects. In: 2010 IEEE 9th International
Conference on Cybernetic Intelligent Systems, CIS 2010 (2010)

30. Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for software
effort estimation: A comparative study. IEEE Trans. Softw. Eng. 38, 375–397 (2012)

31. Brewer, J., Dittman, K.: Methods of IT Project Management. Prentice Hal, New York (2009)
32. Ruchika Malhotra, A.J.: Software effort prediction using statistical and machine learning

methods. Int. J. Adv. Comput. Sci. Appl. 2, 145–152 (2011)
33. Pai, D.R., McFall, K.S., Subramanian, G.H.: Software effort estimation using a neural

network ensemble. J. Comput. Inf. Syst. 53, 49–58 (2013)
34. Lopez-Martin, C., Isaza, C., Chavoya, A.: Software development effort prediction of

industrial projects applying a general regression neural network. Empir. Softw. Eng. 17, 738–
756 (2012)

35. Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models through a
multiple comparisons algorithm. IEEE Trans. Softw. Eng. 39, 537–551 (2013)

36. Kocaguneli, E., Menzies, T., Keung, J.W.: On the value of ensemble effort estimation. IEEE
Trans. Softw. Eng. 38, 1403–1416 (2012)

37. Reifer, D.J., Boehm, B.W., Chulani, S.: The Rosetta stone: Making COCOMO 81 Files Work
With COCOMO II. Univ. South Calif. 1–10 (1998)

38. PROMISE Software Engineering Repository. http://promise.site.uottawa.ca/SERepository/
39. SourceForge. http://sourceforge.net
40. Albrecht, A.J., Gaffney, J.E.J.: Software function, source lines of code, and development

effort prediction: a software science validation. IEEE Trans. Softw. Eng. SE-9, 639–648
(1983)

41. International Software Benchmarking Standards Group. http://www.isbsg.org
42. Villanueva-Balsera, J., Ortega-Fernandez, F., Rodríguez-Montequín, V., Concepción-

Suárez, R.: Effort estimation in information systems projects using data mining techniques.
In: Proceedings of the 13th WSEAS International Conference on Computers - Held as part
of the 13th WSEAS CSCC Multiconference, pp. 652–657 (2009)

43. Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., Wirth, R.: CRISP-DM 1.0
(2000)

44. Giudici, P., Figini, S.: Applied Data Mining for Business and Industry. Wiley, New York
(2009)

45. Larose, D.T.: Data Mining Methods and Models. Wiley, New York (2007)
46. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,

Reifer, D.J., Steece, B.: Software Cost Estimation with Cocomo II. Prentice Hall PTR, Upper
Saddle River (2000)

112 P. Pospieszny et al.

http://promise.site.uottawa.ca/SERepository/
http://sourceforge.net
http://www.isbsg.org

47. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

48. Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models.
Benjamin/Cummings Pub. Co., Menlo Park (1986)

49. Jorgensen, M.: A critique of how we measure and interpret the accuracy of software
development effort estimation. In: 1st International Workshop on Software Productivity
Analysis and Cost Estimation. ss. 15–22 (2007)

Application of Function Points and Data Mining Techniques 113

Functional Size Measurement for Processor Load
Estimation in AUTOSAR

Hassan Soubra1(✉), Alain Abran2, and Mehdi Sehit3

1 École Supérieure des Techniques Aéronautiques et de
Construction Automobile – ESTACA, Levallois, France

hassan.soubra@estaca.fr
2 École de Technologie Supérieure – ETS, Université du Québec,

Montréal, Canada
alain.abran@etsmtl.ca

3 École Supérieure d’Informatique, Électronique, Automatique – ESIEA,
Laval, France

sehit@et.esiea-ouest.fr

Abstract. Functional size measurement (FSM) gives a measure of a software
product and can be used to build objective estimation models for predicting
project effort and duration. AUTOSAR is an architecture standard that allows
collaboration on basic Electrical and Electronic (E/E) functions while providing
a platform to develop new innovative ones. AUTOSAR allows portability and
reuse of software functions on different hardware architectures. However,
designing software functions in AUTOSAR requires several software allocation
decisions which impact on E/E system performance and development costs. In
this context, processor load estimation becomes an important task early in soft‐
ware development projects for automotive real-time embedded systems. This
paper analyzes the relationship between FSM and ECU processor load in
AUTOSAR, and introduces the SYMTA/S tool and an automation prototype tool
developed in this study. The findings demonstrate a relationship between FSM
and processor load.

Keywords: COSMIC · AUTOSAR · FSM · ECU · Processor load · ISO 19761

1 Introduction

Software functional size is a key input for building software development estimation
models, effort models, benchmark models, and quality models [1]. Software measurement
is a powerful tool for managing software projects, allowing application of engineering
principles to software development, and providing an objective, quantitative base for
management decisions. For instance, software size gives a measure of the software product
itself, and can be used to obtain development productivity ratios and build objective esti‐
mation models for predicting project effort and duration.

Among the many challenges facing the automotive industry today are escalating
production costs related to the use of Electrical and Electronic (E/E) systems. E/E systems

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 114–129, 2015.
DOI: 10.1007/978-3-319-24285-9_8

are composed of Electronic Control Units (ECUs) interconnected by a communication
network and relying heavily on software. E/E systems have been known, since their early
days, for being complex systems that integrate both software and hardware, creating many
challenges [2]. They are designed by Original Equipment Manufacturers (OEMs) to
provide specific functionalities, which are described in sometimes quite abstract terms.
Moreover, they are implemented at various technological levels and with a number of
different interfaces that may themselves be a mix of software and hardware functionali‐
ties. These variations in functionality levels across hardware and applications were not
easily discernible in early E/E systems design [3]. Today’s car prices are highly related to
the use of E/E systems, in which software plays an even more important role because of
both functionalities and infrastructure. Consequently, software reuse and carryover have
become inevitable for OEMs [4, 5].

Moreover, the increasing complexity of E/E architecture requires methods and tools
for design automation and synthesis of distributed systems in order to assess alternative
solutions for estimated performance and safety indicators [6, 7].

The AUTOSAR (AUTomotive Open System ARchitecture) consortium [8] was
formally launched in July 2003 by the automotive industry, including manufacturers,
suppliers and tool developers. It has created a basis for collaboration on basic functions
while providing a platform which encourages competition for innovative functions. One
of AUTOSAR’s main objectives is to standardize a large number of ECU software
modules to facilitate reuse; it also aims to prepare for the increase in functional scope
of E/E systems. AUTOSAR has become an important part of production design criteria
for many vehicle manufacturers, especially the automotive electronics industry. Its ECU
software design methodology is gradually replacing the earlier version, which was
decentralized and OEM specific. AUTOSAR is the new generation of ECU software
design architecture, methodology and meta-model [9, 10].

The use of software functional size, measured in function points, goes hand in hand
with AUTOSAR objectives in terms of managing automotive software projects [11].
For instance, functional size can be used in AUTOSAR to estimate ECU software
development cost and duration. It can also be used for purposes such as processor load
estimation, network traffic estimation and acceptance condition estimation [7].

COSMIC [12] provides a standardized method for measuring the functional size of
software from both Management Information Systems and real-time domains. COSMIC
is considered a second-generation FSM and has been accepted as an International
Standard (ISO/IEC 19761, Software Engineering – COSMIC – A functional size meas‐
urement method). Version 4.0.1 of the COSMIC manual is available on the COSMIC
website [13]. While this release includes a number of refinements, the original principles
of COSMIC have remained unchanged since first published in 1999. Functional sizes
measured by COSMIC are designed to be independent of any implementation decisions
embedded in the operational artifacts of the software. This means that the functional
user requirements (FUR) can be extracted not only from software already developed but
also from the software model before implementation.

This paper presents a study of the relationship between processor load and functional
size based on the COSMIC ISO 19761 standard for ECU software designed in
AUTOSAR. The aim is to provide a basis for building objective estimation models to

Functional Size Measurement for Processor Load Estimation 115

predict processor load. The COSMIC-based FSM procedure used in this work is
described in detail in [14].

The paper is organized as follows. Section 2 presents a literature review of processor
load estimation and FSM in automotive real-time embedded systems. Section 3 presents
overviews of COSMIC, AUTOSAR and SYMTA/S. Section 4 presents our proposed
COSMIC-based FSM procedure in the AUTOSAR architecture. Section 5 presents a
study of the relationship between processor load and functional size on a set of over 150
input models on multiple ECUs. Section 6 presents our conclusions and a discussion of
future work.

2 Related Work

This section presents related work, first on methods or processes tackling real-time
related performance constraints in AUTOSAR and, second, on COSMIC-based FSM
procedures for automotive real-time embedded systems (RTES) with a focus on meas‐
urement purposes and context for proposed procedures.

2.1 Related Work on Processor Load Estimation

In [15] a timing tool was proposed for different phases of the development process based
on ARTOP and AUTOSAR’s timing extensions: this tool provided prediction and veri‐
fication of timing constraints of embedded software.

In [16] the importance and application of timing interfaces were discussed
suggesting that AUTOSAR requires a basic timing model to allow application of
such timing interfaces.

In [17] an algorithm was presented for optimizing implementation of AUTOSAR
runnables in a concurrent program executing a set of tasks. The authors showed that
there is an opportunity for optimizing memory requirements when implementing a
system. Their plan proposed a solution with minimal memory usage that respects real-
time schedulability constraints.

In [18] Hegde et al. demonstrated that, because there can be as many as 75 to 80
ECUs in some vehicles, load balancing mechanisms are needed to ease ECU integration
and for efficient utilization of CPU power in ECUs.

2.2 Related Work on Using COSMIC-Based FSM Procedures

This sub-section presents work on COSMIC-based FSM procedures in the context
of real-time embedded systems (RTES) with particular emphasis on measurement
purposes.

In [11] a guideline was presented for measuring functional size in accordance
with COSMIC ISO 19761 for ECU Application Software designed following
AUTOSAR architecture: in this case, the measurement was performed manually. In
[14] an FSM procedure based on this guideline [11] was presented and used to
illustrate the application of a proposed automation verification protocol.

116 H. Soubra et al.

In [19] a software development effort estimation process was presented using the
COSMIC functional size method. The FSM results were summarized in a classic file
containing COSMIC Functional size of the specifications. Renault decided to develop
an estimation process to predict its software development effort early in the project
specification requirements phase.

In [20] a functional size measurement (FSM) procedure was proposed for real
time embedded software requirements documented using the Simulink modeling
tool. The procedure proposed in this study is for development effort estimation.

In [21] a tool was proposed for estimating code size, but was not evaluated in detail.
In [22] a tool based on COSMIC was presented for measuring the functional size of

embedded automotive software early on, using a UML profile that captured all the
information needed for functional size measurement according to COSMIC. The case
study was conducted at Saab using requirement specifications and software implemen‐
tations developed by Saab and GM.

In summary, related works on COSMIC-based FSM procedures for automotive
real-time embedded systems focused on software development effort estimation or
code size estimation. No research reports on processor load estimation in AUTOSAR
were found.

3 Overviews of COSMIC, AUTOSAR and SYMTA/S

This section presents overviews of COSMIC, AUTOSAR and SYMTA/S.

3.1 COSMIC Overview

COSMIC measures the Functional User Requirements (FUR) of software. The result
obtained is a numerical ‘value of a quantity’ (as defined by the ISO) representing the
functional size of the software.

Functional size measured by COSMIC is designed to be independent of any imple‐
mentation decisions embedded in the operational artifacts of the software. This means
that FUR can be extracted not only from software already developed but also from the
software model before it is implemented.

Version 4.0.1 of COSMIC consists of three phases:

1. In the Measurement Strategy Phase the COSMIC Software Context Model is
applied.

2. The COSMIC Generic Software Model is applied in the Mapping Phase.
3. In the Measurement Phase, the actual measurement results are obtained.

The measurement result corresponds to the functional size of FUR, and is expressed
in COSMIC Function Points (CFP).

In COSMIC, a functional process is a set of data movements representing an elemen‐
tary part of FUR for the software being measured. The set is unique within the FUR and
is defined independently of any other functional process. A functional process may have
only one triggering Entry. Each functional process begins processing on receipt of a data

Functional Size Measurement for Processor Load Estimation 117

group moved by the triggering Entry data movement of the functional process. The set
of all data movements of a functional process is the set needed to meet its FUR for all
possible responses to the triggering Entry. According to COSMIC, software function‐
ality is embedded within the functional flows of data groups. Data flows can be char‐
acterized by four distinct types of movement. Two types (Entries (E) and Exits X))
between the functional user FU and a COSMIC functional process allow the exchange
of data with a functional user across a boundary. Two other types (Reads (R) and Writes
(W) between a COSMIC functional process and the persistent storage allow exchange
of data with the persistent storage hardware. The measurement result corresponds to the
functional size of the FUR of the software measured, and is expressed in COSMIC
Function Points (or CFP).

3.2 AUTOSAR Overview

AUTOSAR provides a set of concepts and a methodology for design and implemen‐
tation of automotive E/E systems. AUTOSAR methodology follows a model-driven
approach where software and hardware architectures are designed using an
AUTOSAR meta-model. The layered architecture of AUTOSAR methodology is
illustrated in Fig. 1. The virtual functional bus (VFB) view (1) presents AUTOSAR
Application Software as a set of software components (SWC 1, SWC 2, SWC 3 and
SWC 4) communicating through the VFB (2) via communication ports. The main
objective of the VFB view is to abstract high level software functionalities, rendering
them independent of low level hardware/software implementation, and allowing
designers to validate the interactions between SWCs before implementation.

Using the ECU description (3) and the system constraint description (4), SWCs
are then mapped to ECUs available in the hardware architecture (5). The Run Time
Environment RTE (6) provides the necessary environment for interactions between
SWCs implemented on one ECU (intra-ECUs) or on several (inter-ECUs). RTE may
be considered as an instance of VFB per ECU.

SWCs, the main elements of Application Software in AUTOSAR, contain the
functional description of the Software. There are two types of SWC: Sensor/Actuator
SWC and Application SWC. While Application SWCs are defined regardless of
hardware architecture and ECU location, Sensor/Actuator SWCs are bound to the
ECU to which the sensor/actuator is physically connected. The internal behavior of
an SWC is defined as a set of Runnable entities (Runnables) executed at runtime. A
Runnable represents a portion of the code that will be executed on the target ECU.
A Runnable is mapped to an Operation System (OS) task. Runnables exchange
information using inter-Runnable variables, as the use of global variables is not
permitted in AUTOSAR.

3.3 SYMTA/S Overview

The SYMTA/S tool models and analyzes real-time embedded systems in order to
measure system performance (e.g. Worst Case Execution time -WCET, CPU load, end
to end latencies, etc.) while taking into account various scheduling constraints and

118 H. Soubra et al.

differing execution scenarios. SYMTA/S is suitable for several system architectures
including AUTOSAR.

SYMTA/S’s graphical interface allows users to model both hardware and software
layers of a system, visualize the models created, run simulations and visualize analysis
results in the form of graphs.

Analysis and measurement procedures applied to a modeled system are implemented
in Python. SYMTA/S provides a complete library allowing manipulation of all elements
of the system modeled.

Results of applied procedures are saved in XML files containing the complete
description of the systems modeled.

4 An FSM Procedure for ECU Software Designed Following
AUTOSAR

To correctly measure the functional size of ECU application software designed
following AUTOSAR, the measurement objective, scope and other elements must be

Fig. 1. AUTOSAR methodology as presented in [11].

Functional Size Measurement for Processor Load Estimation 119

identified and well defined. The proposed procedure is based on the measurement guide‐
line presented in [11] and the procedure in [14]. To obtain functional size a set of
mapping rules was applied to the modeled system. The Measurement Phase is presented
below.

4.1 The Measurement Phase

The data group movements of each AUTOSAR Runnable (Functional Process) are
identified using the rules described in Table 1.

A Software Component (SWC) can interact with another SWC, with an AUTOSAR
service module located in the basic software layer, and/or with a sensor/actuator phys‐
ically connected to the ECU. These interactions are performed using communication
ports. There are two kinds of ports:

A. Provide Ports (PPort) used to transmit data by SWCs.
B. Require Ports (RPort) used to receive data by SWCs.

Through an RPort, Runnables can receive data elements in the Sender-Receiver
communication mode, or they can invoke an operation or require access to the persistent
storage in the Client-Server communication mode. Thus an RPort is mapped to a
COSMIC Entry data group movement (rule 2).

Through a PPort, Runnables can send data elements in the Sender-Receiver commu‐
nication mode, and can execute an operation in the Client-Server communication mode.
Thus a PPort is mapped to a COSMIC Exit data group movement (rule 3).

AUTOSAR InterRunnablesVariables are typed data elements shared between
Runnables belonging to the same SWC. An AUTOSAR Read InterRunnablesVari‐
able is mapped to a COSMIC Entry data group movement (rule 4). An AUTOSAR
Write InterRunnablesVariable is mapped to a COSMIC Exit data group movement
(rule 5).

Runnables can be activated by a DataReceivedEvent which corresponds to a data
reception via an RPort. However, they also can be activated by an AUTOSAR
TimingEvent, which is mapped to a COSMIC Triggering Entry data group move‐
ment (rule 1).

In the FSM procedure proposed in this paper, only communication ports with a
Sender-Receiver or a Client-Server interface are taken into account. There are no
AUTOSAR elements that can be mapped to COSMIC Read/Write data group move‐
ments, as Runnables do not have direct access to the persistent storage: this access
is provided by the NVRAM manager module located in the basic Software layer.

Table 1 presents the rules for identifying the data group movements. The rules for
obtaining the functional size of each functional process and the whole software are
presented in Table 2.

120 H. Soubra et al.

Table 1. Rules to identify data group movements in the context of AUTOSAR.

Rule N° AUTOSAR element Cosmic data group movement

1 RTE TimingEvent Entry data group movement (E)

2 Require Port (RPort)
connected to the
Runnable

Entry data group movement (E)

3 Read InterRunnables
Variable

Entry data group movement (E)

4 Provide Port (PPort)
connected to the
Runnable

Exit data group movement (X)

5 Write InterRunnables
Variable

Exit data group movement (X)

Once all the data movements in a Runnable have been identified, the standard size
value of one CFP is assigned to each data movement. The final step consists of aggre‐
gating the results to obtain the functional size of each Runnable (rule 6). The functional
size of the Runnables are next aggregated to obtain the functional size of the ECU
application software being measured (rule 7).

Table 2. Rules for obtaining the functional sizes of the Runnables and the whole Software.

Rule N° AUTOSAR element Cosmic data group movement

6 Runnable Aggregate the identified data
group movements to obtain the
functional size of the Runnable

7 ECU Application
Software

Aggregate the functional sizes of
the identified Runnables to
obtain the functional size of the
software

5 ECU Load and Functional Size

This section investigates the relationship between ECU Load and functional size
measured using the proposed COSMIC-based FSM procedure. In our work, we used
SYMTA/S to create different AUTOSAR models and obtain the ECU processor load
required by the models. The Measurement Phase is presented below.

Functional Size Measurement for Processor Load Estimation 121

5.1 Experimental Set-up

A set of 164 distinct input models (Table 3) generated using SYMTA/S, were used to
measure system performance including WCET, CPU load, end to end latencies, etc., taking
into account various scheduling constraints and different systems architectures (e.g.
number of ECUs used). Each AUTOSAR model was composed of one or more SWC
(Software components) which, in turn, were composed of one or more Runnables. Table 3
presents seven different architectures created using various numbers of ECUs, the total
number of AUTOSAR models created within these different architectures and the total
number of Runnables per architecture. For example, for architecture A, 107 models were
created composed of one ECU; for architecture B, 12 models were created composed of two
ECUs. The experiment consisted of four steps:

1. We measured the functional size of an input AUTOSAR model after its allocation to
one of the seven architectures. To speed up the measurement process and reduce the
possibility of human error, we used an automated prototype tool developed in our study.

2. We observed the processor load, in the AUTOSAR model developed using SYMTA/
S, run from 0 % (free) to 100 % (fully occupied).

3. We correlated the relation between ECU processor load (from step 2) and COSMIC
functional size (from step 1).

4. We used linear regression analysis to build estimation models of ECU processor load
for AUTOSAR models.

Table 3. Number of ECUs within an Architecture, and Corresponding number of Models.

Architecture Number of ECUs
in the architecture

Total number of AUTOSAR
models used in the architecture

Total number of
Runnables used in
the architecture

A 1 107 107

B 2 12 24

C 3 5 15

D 4 21 84

E 5 7 35

F 6 11 66

G 7 1 7

Total number in all architectures 164 338

5.2 The Automation Tool

An automation prototype tool in JAVA was developed at ESTACA [24]. The inputs
are SYMTA/S simulation files that include both AUTOSAR models and ECU
processor load information. This tool makes it possible to measure automatically
software functional size, in CFP, designed following AUTOSAR methodology and
meta-model. This tool is also capable of measuring, simultaneously, a group of input
specifications. The prototype tool’s primary functionalities:

122 H. Soubra et al.

A. Automatically measures COSMIC functional sizes of the input models.
B. Determines ECU processor load for each input model using processor load infor‐

mation in SYMTA/S simulation files.
C. Yields ECU load vs COSMIC functional size graphs using input files.
D. Estimates processor load for additional models using previously generated graphs

by using ECU load vs COSMIC functional size graphs from step A to estimate ECU
processor load for new input models.

The tool outputs the functional sizes, ECU Load, and curves plotting the relationship
between Functional size and ECU Load. Figures 2, 3, 4 and 5 illustrate examples of
outputs using the automation tool. Regression models developed from a set of models can
then be used to estimate the processor load of other models which did not contribute to the
initial regression model.

5.3 Analyzing the Data

In statistics, correlation quantifies the degree to which two variables are related. The
Bravais-Pearson product-moment correlation coefficient (r) [23] is a measure of the linear
correlation between two variables X and Y. The correlation coefficient shows the degree
Y tends to change as X changes. When r is 0.0, there is no relationship. When r is posi‐
tive, Y increases as X increases. When r is negative, Y increases as X decreases. It is
widely used in the sciences as a measure of the degree of linear dependence between two
variables. While correlation is used to determine the existence of a relationship between two
variables X and Y, linear regression finds the best line that predicts Y from X.

Using the Bravais-Pearson linear correlation coefficient to calculate the relation
between ECU load and COSMIC functional size on 21 different AUTOSAR models from
architecture A, we obtained a correlation coefficient of 0.93 (1). We concluded that the two
variables are strongly dependent indicating a positive correlation between COSMIC Func‐
tional Size and CPU processor load: when the functional size of AUTOSAR models
increases, the ECU processor load of the host ECU increases.

(1)

Figure 2 shows the functional size (x coordinate) of 107 AUTOSAR models embedded
in one ECU (Architecture A), and the corresponding ECU processor load (y coordinate).

To verify the correlation is also valid for an architecture composed of multiple
ECUs, we applied the same approach to AUTOSAR models distributed respectively
on: Architecture B, Architecture C, Architecture D (Fig. 3), Architecture E (Fig. 4),
Architecture F (Fig. 5) and Architecture G. The ECUs have the same simulated
characteristics. The figures show ECU processor load (y coordinate) and COSMIC
functional size (x coordinate) in the different architectures.

Functional Size Measurement for Processor Load Estimation 123

Fig. 3. Functional Size and processor load of Architecture D (4 ECUs and N = 84).

Fig. 4. Functional Size and processor load of Architecture E (5 ECUs and N = 35).

Fig. 2. Functional Size and processor load of Architecture A (1 ECU and N = 107).

124 H. Soubra et al.

Fig. 5. Functional Size and processor load of Architecture F (6 ECUs and N = 66).

Figures 2, 3, 4 and 5 show a strong correlation between COSMIC functional size of
an AUTOSAR model and ECU processor load, independently of the number of ECUs
used in the E/E architecture and how the models are embedded in the ECUs.

5.4 Using Linear Regression Models to Estimate Processor Load of Other Input
Models

The fourth step consists in the design of an estimation model of processor load for other
AUTOSAR models using linear regression. Linear regression finds the best line that
predicts ECU processor load from COSMIC functional size.

A linear regression model graph for each ECU of each architecture was built using
the 164 models from Table 3. The regression model (R2 = 0.546) of Architecture A with
107 models on a single ECU (Fig. 6) was then used to estimate ECU processor loads of
24 “new” AUTOSAR models (“new” in the sense that they were not in the initial set of
ten models of Architecture A used to build the regression model of Fig. 6).

Fig. 6. Regression model for ECU1 from Architecture A (R2 = 0.546).

Functional Size Measurement for Processor Load Estimation 125

To verify the accuracy of estimates produced by our automated approach, the ECU
processor load of these 24 models were directly simulated, measured with SYMTA/S,
and then compared with the load estimates produced with the regression models built
from the 107 models of Architecture A (Table 4).

Table 4. Number of ECUs within an Architecture, and Corresponding number of Models.

Model N° Actual data load from
SYMTA/S

Estimates from
regression model

Difference (%)

1 0.066 0.21 14.40 %

2 0.2009 0.21 0.91 %

3 0.143 0.2256 8.26 %

4 0.32 0.3509 3.09 %

5 0.2009 0.4291 22.82 %

6 0.0975 0.21 11.25 %

7 0.2817 0.3509 6.92 %

8 0.2044 0.2882 8.38 %

9 0.2511 0.3978 14.67 %

10 0.4287 0.4448 1.61 %

11 0.3335 0.4135 8,00 %

12 0.1957 0.3822 18,65 %

13 0.3783 0.4918 11,35 %

14 0.6091 0,5074 10,17 %

15 0.299 0,4918 19,28 %

16 0.3724 0,3665 0.59 %

17 0.6096 0.5231 8.65 %

18 0.2171 0.3978 18.07 %

19 0.4682 0.5857 11.75 %

20 0.59 0.6483 5.83 %

21 0.6968 0.6796 1.72 %

22 0.3366 0.57 23.34 %

23 0.5495 0.6953 14.58 %

24 0.4076 0.5074 9.98 %

126 H. Soubra et al.

Results of the comparison showed twelve estimates with a disparity less than 10 %
and ten estimates with a disparity between 10 % and 20 %. Finally, only two estimates
had a disparity higher than 20 %.

Table 4 presents 24 models with actual ECU processor load data obtained using
SYMTA/S and estimates obtained using the automation tool. The results of the compar‐
ison made per model are also presented. Figure 7 shows ECU processor load estimates
produced by our automated approach in blue and actual ECU processor load data meas‐
ured with SYMTA/S in red, for the 24 models used in this step.

Fig. 7. Processor load: Estimates VS SYMTA/S processor load data

The mean difference between the actual data and the estimated data for the 24 models
is 10.59 %. The accuracy of the estimates is approximately 90 %.

In our study, we observed a dependence of ECU processor load on COSMIC func‐
tional size. Estimates produced by our approach can be used to determine ECU processor
load with fair accuracy. These results need to be verified using the data of other archi‐
tectures and, as a next step, real-life AUTOSAR models. Finally, using linear regression
models, one can use the automated approach to estimate processor load for one specific
ECU or a set of ECUs.

6 Conclusion

FSM is traditionally used to estimate development effort, manage project scope changes,
measure productivity, benchmark, and normalize quality and maintenance ratios. FSM
goes hand in hand with AUTOSAR objectives for managing automotive software
projects.

Designing software functions in AUTOSAR requires several software allocation
decisions. For example, an important task in software development projects for auto‐
motive real-time embedded systems is estimating processor load, which in turn impacts
E/E systems performance and development costs.

This paper presented a study of the relationship between FSM and processor load,
in AUTOSAR. The findings have demonstrated the dependence of ECU processor load
on COSMIC functional size. A proposed prototype tool allowed estimate of ECU
processor load for a model using its functional size for a specific ECU.

Functional Size Measurement for Processor Load Estimation 127

To verify the accuracy of the estimates produced by our automated approach, the ECU
processor load of 24 models were directly simulated and measured with SYMTA/S, and
then compared with load estimates produced with regression models built from an archi‐
tecture composed of a single ECU.

The proposed automation tool can be adapted to different design rules (naming rules,
specific memory blocks, etc.). A video demonstrating the automation prototype tool
presented in this section, in addition to the tool itself, are freely available as downloads
on ESTACA’s website [24]. In future studies, additional estimates from different archi‐
tectures will be produced and compared with the ECU processor load of directly simu‐
lated and measured with SYMTA/S. Also, we intend to apply our prototype tool to
estimate the ECU processor load of “real life” systems and analyze the related data.

References

1. Marín, B., Pastor, Ó., Giachetti, G.: Automating the measurement of functional size of
conceptual models in an MDA environment. In: Jedlitschka, A., Salo, O. (eds.) PROFES
2008. LNCS, vol. 5089, pp. 215–229. Springer, Heidelberg (2008)

2. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the 28th
International Conference on Software Engineering (ICSE 2006). ACM Press (2006). Keynote

3. Bischof, H., Donhauser, B., Meder, K.: The ECU of a rear wheel steering system. In: 8th
International Conference on Automotive Electronics (ICAE 1991), London, pp. 208–213,
October 1991

4. Heinecke, H., et al.: AUTomotive Open System ARchitecture – an industry-wide initiative
to manage the complexity of emerging automotive E/E-architectures. In: Convergence 2004,
International Congress on Transportation Electronics, Detroit (2004)

5. Fürst, S., et al.: AUTOSAR – a Worldwide Standard is on the Road. In: 14th International
VDI Congress Electronic Systems for Vehicles, BadenBade (2009)

6. Daghsen, A., Chaaban, K., Saudrais, S.: Software function allocation and configuration of an
AUTOSAR-compliant system. In: SAE 2012 World Congress & Exhibition, Detroit,
Michigan, USA, April 2012

7. Soubra, H.: The use and benefits of Functional Size Measurement in the context of
AUTOSAR. In: 23rd UKSMA – UK Software Metrics Association Annual Conference,
London, UK (2012)

8. http://www.autosar.org
9. Heinecke, H., et al.: AUTOSAR – Current results and preparations for exploitation. In:

Euroforum Conference, 3 May 2006
10. Fennel, H., et al.: Achievements and exploitation of the AUTOSAR development partnership.

In: SAE Convergence Congress, Detroit (2006)
11. Soubra, H., Chaaban, K.: Functional size measurement of electronic control units software

designed following the AUTOSAR standard. In: 22nd International Workshop on Software
Measurement & 7th International Conference on Software Process and Product
Measurement - IWSM-MENSURA, Assisi, Italy, 17–19 October 2012. IEEE Computer Society
Press (2012)

12. Lesterhuis, A., Symons, C.: The COSMIC Measurement Manual, version 4.0.1 (2014). http://
www.cosmic-sizing.org/publications/measurement-manual-401/

13. http://cosmic-sizing.org

128 H. Soubra et al.

http://www.autosar.org
http://www.cosmic-sizing.org/publications/measurement-manual-401/
http://www.cosmic-sizing.org/publications/measurement-manual-401/
http://cosmic-sizing.org

14. Soubra, H., Alain A., Ramdane-Cherif, A.: Verifying the accuracy of automation tools for
the measurement of software with COSMIC--ISO 19761 including an AUTOSAR-based
example and a case study. In: Joint Conference of the International Workshop on Software
Measurement and the International Conference on Software Process and Product
Measurement (IWSM-MENSURA), Rotterdam (The Netherlands), Nov. 2014, pp. 23–31.
IEEE CS Press (2014)

15. Scheickl, O., Ainhauser, C., Gliwa, P.: Tool support for seamless system development based
on AUTOSAR timing extensions. In: Embedded Real-Time Software Congress (ERTS)
(2012)

16. Scheickl, O., et al.: How timing interfaces in AUTOSAR can improve distributed development
of real-time software. In: GI Jahrestagung (2), pp. 662–667 (2008)

17. Zeng, H., Di Natale, M.: Efficient implementation of AUTOSAR components with minimal
memory usage. In: 2012 7th IEEE International Symposium on Industrial Embedded Systems
(SIES). IEEE (2012)

18. Hegde, R., Gurumurthy, K.S.: Load balancing across ECUs in automotives. In: 2009
International Conference on Communication Software and Networks (ICCSN 2009). IEEE (2009)

19. Stern, S., Guetta, O.: Manage the automotive embedded software development cost by using
a Functional Size Measurement Method (COSMIC). In: ERTS2 2010, 5th International
Congress & Exhibition, Toulouse (2010)

20. Soubra, H., Abran, A., Stern, S., Ramdan-Cherif, A.: Design of a functional size measurement
procedure for real-time embedded software requirements expressed using the Simulink
model. In: IWSM-MENSURA, Nara, Japan, pp. 76–85. IEEE CS Press (2011)

21. Lind, K. Heldal, R.: Estimation of real-time software code size using COSMIC FSM. In: The
IEEE International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC 2009), pp. 244–248 (2009)

22. Lind, K., Heldal, R.: A model-based and automated approach to size estimation of embedded
software components. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 334–348. Springer, Heidelberg (2011)

23. Artusi, R., Verderio, P., Marubini, E.: Bravais-Pearson and Spearman correlation coefficients:
meaning, test of hypothesis and confidence interval. Int. J. Biol. Markers 17(2), 148–151
(2002)

24. http://www.estaca.fr/hassan-soubra/

Functional Size Measurement for Processor Load Estimation 129

http://www.estaca.fr/hassan-soubra/

Selecting the Right Visualization of Indicators
and Measures – Dashboard Selection Model

Miroslaw Staron1(B), Kent Niesel2, and Wilhelm Meding3

1 Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden
miroslaw.staron@gu.se

2 Volvo Car Group, Gothenburg, Sweden
kent.niesel@volvocars.com

3 Ericsson AB, Gothenburg, Sweden
wilhelm.meding@ericsson.com

Abstract. Background: Contemporary software development organi-
zations utilize multiple channels to disseminate information about their
indicators, measures, trends and predictions. Selecting these channels is
usually done based on the availability of the visualization technology and
a set of requirements elicited from stakeholders at the company. Eliciting
these kind of requirements can be labor-intensive and time-consuming.
Goal: The objective of this research is to develop a method for selecting
which dashboard should be used. As the set of dissemination patterns of
measures in modern organizations is limited, this method should be able
to identify the needs of visualizations at the company and match them to
the dissemination patterns and their supporting technology. Method:
The research method applied is action research conducted at Volvo Car
Group. The action research is conducted as part of a project redesigning a
large project status reporting tool and has been designed to quantify the
requirements elicited from the stakeholders of the system. Results: The
results is the dashboard selection model which consists of seven dimen-
sions – type of reporting, data acquisition method, type of stakeholders,
method of delivery, frequency of updates, aim of the information, and
length of data processing (flow). Conclusions: The conclusions show
that using this model leads to a rapid identification of the best visualiza-
tion method for measurement data, which has a cost-saving impact on
measurement programs and effect-maximizing impact on the companies.

1 Introduction

Contemporary medium-to-large software development organizations often rely
on quantitative information in monitoring their products and processes [Sta12].
These kind of companies use measures and indicators to both monitor the status
and to plan long-term evolution of their business [Par10]. In order to effectively
trigger decisions, support evolutions and prevent problems, the ways in which
the measures are visualized and communicated have to vary.

In this paper we recognize the need for variability of information visual-
ization types in modern software companies based on how information should
c© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 130–143, 2015.
DOI: 10.1007/978-3-319-24285-9 9

Dashboard Selection Model 131

be disseminated and how it is supposed to be used. Normally, this variability
is designed when developing measurement systems or dashboards and is con-
stant over time. Therefore it is a prerequisite of success that the elicitation of
the requirements for these dashboards is correct and efficient. However, there
exists only a limited set of technologies for storing, processing and visualizing
the results of measurement processes.

Therefore in this paper we address the following research question – How
to efficiently map stakeholders’ requirements to indicator dissemination patterns
including the supporting visualization?

The result of addressing this question is the dashboard selection model –
a method for quantifying the requirements for dashboards and matching them
to dissemination patterns. The model has been developed as part of an action
research project at Volvo Car Group. The goal of the project was to support the
company’s transformation of project status reporting by studying and evolving
project reporting practices and eliciting future requirements for the reporting
processes.

The remaining of the paper is structure as follows. Section 2 presents the
most relevant related work in literature regarding the experiences of selecting
dashboards. Section 3 describes the design of the action research project where
the model was developed.

2 Related Work

We review work in three areas – standardization in the area of measurement
in software engineering (which is an important input to the creating measures
and KPIs), measurement theory (in general and its applications in software
engineering) and visualization of metrics in software engineering.

2.1 Dashboards and Visualization

In our previous work we identified the need for building dashboards at different
levels of the organization by studying team decision meetings at RUAG Space
[FSHL13]. The results from the evaluation showed that one should combine
different views and information in one dashboard, but the visualization of the
data is the most crucial aspect for the success dashboard’s adoption.

In our later studies we expanded the evaluation of dashboards to more com-
panies – SAAB Electronic Defense Systems, Ericsson and Volvo Cars [SMH+13].
During the study one of the observations was that the standard visualizations
of data available from measurement instruments (aka metric tools) focus on the
data rather than the information need, which requires a more thorough design.

Telea [Tel14] described a set of modern data visualization principles which we
used when developing examples of how a dashboard should visually be designed.

Staron and Meding [SM09a] designed a set of principles of for assessing the
reliability of information, which was the base for constructing one of the dimen-
sions of the dashboard selection model – delivery method. This method was

132 M. Staron et al.

proven to be useful when designing industrial measurement systems, e.g. for
monitoring bottlenecks [SM11].

In our previous work we also studied how information visualization in form of
models helps decision making in large companies – [MS10]. The results showed
that the alignment of the type of model and the decision is one of the prerequi-
sites for efficient software development and prevents waste.

2.2 Standardization

Measurement theory has been used as a basis for the main international stan-
dard in measurement on common vocabulary in metrology – VIM [oWM93].
The standard defines such concepts as measurement uncertainty, measurand and
quantification. These definitions capture the meaning of the concepts from the
measurement theory in engineering. These concepts are important when setting
up the measurement program and its visualization – in particular when consider-
ing the assessment of how the data should support the decisions at the company
(e.g. whether the product is ready to be releases w.r.t. its quality, [SMP12]).

VIM standardizes the most important concepts which influence measurement
processes, for example:

– Measuring instrument: device used for making measurements, alone or in con-
junction with supplementary device(s).

– Measuring system: set of one or more measuring instruments and often other
devices, including any reagent and supply, assembled and adapted to give
measured quantity values within specified intervals for quantities of specified
kinds.

The standard specifies the concepts, but does not prescribe any specific means
for visualization of use of these concepts in practice. In this paper we set off to
address the need for such a linkage.

2.3 Measurement Theory

Kitchenhamn [KPF95] presented a framework for software measurement valida-
tion which focused on the need for linking the empirical properties of metrics to
their corresponding empirical entities. This kind of link is important when select-
ing measures and their visualizations, which impacts the data-flow dimension of
the dashboard selection model.

Briand et al. [BEEM96] presented the concepts from the measurement the-
ory in the context of software engineering. In addition to the theoretical illus-
tration of units, scales, admissible transformations and other related concepts,
the authors illustrated the implications of applying them in software engineer-
ing – e.g. by discussing the property of additivity for complexity measures. This
paper has also influenced the design of the data-flow dimension in the dashboard
selection model.

Dashboard Selection Model 133

3 Research Design – Action Research

In this study we applied the principle of action research as advocated by Susman
and Evered [SE78] and used in our previous studies with the same company
[RSB+13,RSM+13,RSB+14]. The action research set-up provided us with a
unique opportunity to be part of a project at Volvo Car Group (VCC) which
aimed at a redesign of a large program status reporting tool. The tool was used
to monitor the progress of car development projects and was divided into three
parts – Key Performance Indicators, Milestone reporting and Risk monitoring.
In our work we focused only on the Key Performance Indicators part as it was
aligned with the researcher’s competence and the company’s interest.

The research was organized in action research cycles, which is shown in
Table 1.

Table 1. Action research cycles

Cycle Goal Outcomes

Project initialization Understand the practices of
using the tool

Plan for assessing the KPIs

Development of tools Prepare research
instruments

KPI quality model, dashboard
selection model

Interviews Collect the data A set of dashboard selection
models

In the first cycle we focused on refining the initial problem formulation – how
to effectively elicit requirements for a new dashboard.

In the second cycle we prepared research instruments for defining the dash-
board selection model – preparing the dissemination patterns based on literature
studies and discussions with focus group at the company. The result of this cycle
was the dashboard selection model presented in this paper.

In the third cycle we focused on applying the dashboard selection model and
on understanding its advantages and shortcomings.

4 Dashboard Selection Model

4.1 Dissemination Patterns in Modern Companies

During the first cycle of our action research project we observed the dissemina-
tion patterns of metrics in large software development companies. These patterns
are presented in Fig. 1.

The classical dissemination pattern is the top-down communication from
managers to employees and the bottom-up reporting of status from employees
to management. This communication is based on pre-defined templates created
by management or process methodologists which intend to unify the ways of
working across the company.

134 M. Staron et al.

Fig. 1. Metrics dissemination patterns in large software development companies

The new pattern is the communication from teams to management. The
teams define themselves which kind of information they want to communicate
and which information is important for the team, the product and at that par-
ticular time.

Finally, there is also the new pattern of facilitated knowledge-sharing between
the teams. There are usually no indicators or measures defined when this type
of knowledge-sharing takes place, but the teams organize knowledge-sharing ses-
sions in order to spread good practices and warnings about pitfalls.

Given these dissemination patterns, in the first action research cycle we iden-
tified a set of characteristics of measurement systems and dashboards. These
characteristics form a model which is presented in Fig. 2.

The characteristics shown in Fig. 2 capture the way in which dashboards and
measurement systems are used (report vs. dashboard), who the stakeholders are
or how the dashboards are distributed to their stakeholders. These characteristics
evolved during the next action research cycle into the dashboard selection model.

Reports

Individual

Group

Dashboards

Manual

Automated

Raw data

Indicators

Fig. 2. Initial model for diversity of measurement systems

Dashboard Selection Model 135

4.2 Dashboard Selection Model

Dashboard selection model is a graphical way of choosing properties of a dash-
board, based on the information needs of stakeholders. It is divided into seven
dimensions with each dimension defined by two alternatives – from full focus
on one alternative, through equal focus on both, to the full focus on the other
alternative.

The seven dimensions of the dashboard selection model are:

– Type of Dashboard – defining what kind of visualization is needed. Many
dashboards are used as reports where the stakeholders input the data and
require the flexibility of the format – the alternative is named report whereas
some require a strictly pre-defined visualization with the same structure for
every update – the alternative designated as dashboard. There is naturally a
number of possibilities of combining the flexibility and the strict format, which
is denoted by the scale between fully flexible and fully strict.

– Data Acquisition – defining how the data is input into the tool. In general
the stakeholders/employees can enter the data into the tool – e.g. making
an assessment – the alternative is named manual or they can have the data
being imported from other systems – this alternative is named automated. The
previous selection of a dashboard for visualization quite often correlates to the
selection of the automated data provisioning.

– Stakeholders – defining the type of the stakeholder for the dashboard. The
dashboards which are used as so-called information radiators often have an
entire group as a stakeholder, for example a project team. However, many
dashboards which are designed to support decisions often have an individual
stakeholder who can represent a group.

– Delivery – defining how the data is provided to the stakeholders. On the one
hand the information can be delivered to a stakeholder in such forms as e-
mails or MS Sidebar gadgets – the alternative is delivered to the stakeholders
and fetched, which requires the stakeholder to actively seek the information
in form of opening a dedicated link and searching for the information.

– Update – defining how often the data is updated. One alternative is to update
the data periodically, for example every night with the advantage of the data
being synchronized but with the disadvantage that it is not up-to-date. The
other alternative is the continuous update which has the opposite effects on
the timeliness and synchronization.

– Aim – defining what kind of aim the dashboard should fulfill. One of the
alternatives is to use the dashboard as an information radiator – to spread the
information to a broad audience. The other option is to design the dashboard
for a specific type of decision in mind, for example release readiness [SMP12].

– Data Flow – defining how much processing of the data is done in the dash-
board. One of the alternatives is to visualize the raw data which means that
no additional interpretation is done and the other is to add the interpretations
by applying analysis models and thus to visualize indicators.

136 M. Staron et al.

The graphical representation of the dashboard selection model is presented
in Fig. 3. Each line represents one dimension and each dot can be moved to one
of the positions – e.g. fully towards report for the type of dashboard.

detamotuAlaunaMData acquisition:

puorGslaudividnIStakeholders:

derevileDdehcteFDelivery:

ylsuonitnoCyllacidoirePUpdate:

troppusnoisiceDnoitamrofnIAim:

draobhsaDtropeRType:

srotacidnIatadwaRData flow:
Fully FullyEqually

Mostly Mostly

Fig. 3. Dashboard selection model – visualization

Each selection of one of the dimensions is captured by a short, natural lan-
guage, sentence describing why and how the stakeholder reasons about his need.

4.3 Examples

The dashboard selection model can be applied to a set of existing tools and
classify them based on the dashboard model which they represent. For example,
MS Excel can be used to visualize the data, but it primarily is dedicated to other
purposes. If MS Excel is used to visualize measurement systems and contains a
dedicated visualization of indicators, its classification could be done as presented
in Fig. 4. This example comes from our previous work on the frameworks for
developing measurement systems [SMN08].

detamotuAlaunaM

puorGslaudividnI

derevileDdehcteF

ylsuonitnoCyllacidoireP

troppusnoisiceDnoitamrofnI

draobhsaDtropeR

srotacidnIatadwaR

Fig. 4. Dashboard selection model – classification of MS Excel with indicators

An example of such a measurement system is shown in Fig. 5. The colored
cells present the indicators and the measures, trends and raw data are available
in other worksheets in the same workbook.

The evaluation of the MS Sidebar gadgets as a means of visualization of
measures and indicators is classified as shown in Fig. 6. An example gadget from
our previous works is also shown in Fig. 7.

In such a gadget, the data is pre-processed in form of indicators, fetched from
core product development systems, wide spread, used both for radiation and for
decision support [SMN08,SMP12,SMH+13,SM09b].

Dashboard Selection Model 137

Fig. 5. Example of a visualization using MS Excel.

detamotuAlaunaM

puorGslaudividnI

derevileDdehcteF

ylsuonitnoCyllacidoireP

troppusnoisiceDnoitamrofnI

draobhsaDtropeR

srotacidnIatadwaR

Fig. 6. Dashboard selection model – classification of gadget

Another example of a tool used for similar purposes is Tableu, which has
been evaluated in our previous studies [PSSM10] and is presented in Fig. 8. The
tool provides a number of pre-defined visualizations and analysis recipes, but
is interactive and therefore not fully suited as an information radiator [Coc06].
However it is important that the presentation can be understandable [KS02,
SKT05].

Yet another example is a class of tools referred to as information radiators,
i.e. dashboards dedicated to spread the information to a broad audience. Their
classification is presented in Fig. 9. These tools are designed with one purpose

Fig. 7. Example of a gadget

138 M. Staron et al.

detamotuAlaunaM

puorGslaudividnI

derevileDdehcteF

ylsuonitnoCyllacidoireP

troppusnoisiceDnoitamrofnI

draobhsaDtropeR

srotacidnIatadwaR
Fully FullyEqually

Mostly Mostly

Fig. 8. Dashboard selection model – classification of Tableu

in mind and are meant to be non-interactive. Their primary use is in landscapes
and during decision meetings.

detamotuAlaunaM

puorGslaudividnI

derevileDdehcteF

ylsuonitnoCyllacidoireP

troppusnoisiceDnoitamrofnI

draobhsaDtropeR

srotacidnIatadwaR

Fig. 9. Dashboard selection model – classification of information radiators

An example of an information radiation from Ericsson is presented in Fig. 10.
It shows the usage of a network in a laboratory environment and is dedicated
for the project team to observe the status of their test network. For the con-
fidentiality reasons the names of the tested products are covered with greyed
boxes.

The last example is a typical Business Intelligence tool (not a specific product,
but a class of products) with the possibility to create reports and to work with
the data, but at the same time with the possibility to create dashboards as
presented in Fig. 11.

5 Evaluation

In the last action research cycle we used the dashboard selection model when
eliciting a possible next generation of the project reporting tool at the company.
Using the dashboard selection model for the elicitation of requirements for a
future tool was a good candidate for the evaluation. Since we had the oppor-
tunity to work with users of the project reporting tool, we could verify that
the requirements captured by the dashboard selection model were consistent

Dashboard Selection Model 139

Fig. 10. An example of information radiator

detamotuAlaunaM

puorGslaudividnI

derevileDdehcteF

ylsuonitnoCyllacidoireP

troppusnoisiceDnoitamrofnI

draobhsaDtropeR

srotacidnIatadwaR

Fig. 11. Dashboard selection model – classification of Business Intelligence tools

with their envisioned new version of the tool. The current version of the tool
is presented in Fig. 12 and shows one of the forms for reporting the KPIs (Key
Performance Indicators) for one of the areas.

In this cycle we interviewed nine stakeholders from different parts of VCC –
from software development (and electrical systems development), through mechan-
ical engineering, manufacturing engineering to purchasing organization. All of
the interviewees had a role in the project leadership – from the main project man-
ager, through sub-project managers to sub-sub-project managers. We included
also the project quality managers (two persons) who were in charge of monitor-
ing the KPIs in the tool and controlling the quality of the projects. The project
quality managers had a more holistic view on the product while the project
management had more focus on the project progress and quality. All stakehold-
ers had a significant number of years of experience with projects at VCC and
worked with previous version of the project status reporting tools.

The result from the evaluation is presented in Fig. 13. Each dot represents
one stakeholder.

140 M. Staron et al.

Fig. 12. Project status reporting tool – a screenshot

detamotuAlaunaMData acquisition:

puorGslaudividnIStakeholders:

derevileDdehcteFDelivery:

ylsuonitnoCyllacidoirePUpdate:

troppusnoisiceDnoitamrofnIAim:

draobhsaDtropeRType:

srotacidnIatadwaRData flow:
Fully FullyEqually

Mostly Mostly

Fig. 13. Result from using the dashboard selection model for designing the future
project reporting tool

The dots representing the answers of each interviewee in Fig. 13 are spread
over the entire model, which is a result of different views on the needs for such a
tool. Since the tool is used at a large organization, this is quite a normal situation
and the dashboard selection model helped to compactly visualize this diversity.

We analyzed each of the characteristics separately to elicit the potential next
evolution step. We summarize them in Table 2 per dimension of the dashboard
selection model.

One of the conclusions based on the interviews was to evolve the project
reporting tool’s presentation possibilities to support wider spread of the status –
i.e. to introduce a dashboard to the entire project team. By using this model
a more particular set of requirements was collected and stakeholders’ relation
between different elements (e.g. what should be manual and what should be
automatic) were elicited.

Another significant finding was that by using this model we could link the set
of answers which differed from the rest (e.g. the yellow dot in the type dimension)

Dashboard Selection Model 141

Table 2. Summary of qualitative data for each dimension

Dimension Summary

Type The tool should provide a possibility to show per default the
status of the project in a simple form, addressing such
questions as Which areas are green ?, How up-to-date is the
information?, When is the next deadline?, and What is the
trend towards the deadline?

Data acquisition Importing of data from source systems should be fully
automated (e.g. importing diagrams, numbers), but the status
assessment of KPIs should be manual in order to give the
stakeholders the possibility to valuate the numbers

Stakeholders The view/presentation should be divided into “classes of users” –
individual with interactive features as possibility of
drill-down, and groups with static informative screens like
information radiators

Delivery Most of the interviewees would like to see easier/simpler way of
finding the relevant information – delivered, e.g. links to
specific information which has been updated, periodical
reports, e.g. in e-mails; however, some sub-project managers
(mid level of the project management hierarchy) prefer the
information be fetched to prevent e-mail overflow

Update The data could be updated periodically but it should be
synchronized – when indicators are calculated they should be
calculated in such a way that the information quality
properties are retained

Aim Most of the interviewees would like to see more decisions to be
based on the data available in this tool – it would be clearer
who should make the decisions, what the decisions have been
made and it could serve as a basic communication to everyone
about the status

Data flow The tool should contain more KPIs/indicators (majority of
indicators/data), but these should be complemented with raw
data as in source systems (e.g. project planning) – to support
KPI assessment; KPIs should be treated as the primary
means of communicating the status, not as a complement to
the qualitative assessment

to a specific type of functionality envisioned by the interviewee. Without this
model there was a risk that this answer would be considered as insignificant.

6 Conclusions

Developing dashboards for monitoring of product quality, project progress or
customer satisfaction are popular in modern software development companies.

142 M. Staron et al.

The dashboards present quantitative data in a visually appealing manner and
help to spread the information to broad population and to support designated
stakeholders in making decisions. Depending on the purpose of the dashboard,
its elements can vary in terms of applied technology, visualization or interactivity
with users.

In this paper we address the problem of choosing the right dashboard for the
right purpose by presenting a dashboard selection model and evaluating it at
Volvo Car Group in an action research project.

The dashboard selection model is based on the patterns of dissemination of
information in modern software development companies and allows to choose
between dashboards for visualizing project status in large office landscapes and
stakeholder specific MS Sidebar gadgets dedicated to provide pre-selected infor-
mation for stakeholders in order to make decisions. The use of the dashboard
selection model allows to quantify requirements for metrics information visu-
alization from a number of stakeholders. It can be applied both as a tool for
requirement elicitation and as a tool for market survey at the company.

Using the dashboard selection models allow metrics teams to focus on their
core business – designing metrics and supporting measurement processes – and
therefore in the future we intend to expand it to support automated selection
of the right visualization based on the stakeholders’ needs (e.g. by linking the
model to pre-defined set of visualizations).

Acknowledgment. This work has been partially supported by the Swedish Strategic
Research Foundation under the grant number SM13-0007.

References

[BEEM96] Briand, L., Emam, K.E., Morasca, S.: On the application of measurement
theory in software engineering. Empirical Softw. Eng. 1(1), 61–88 (1996)

[FSHL13] Feldt, R., Staron, M., Hult, E., Liljegren, T.: Supporting software decision
meetings: Heatmaps for visualising test and code measurements. In: 2013
39th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), pp. 62–69. IEEE (2013)

[KPF95] Kitchenham, B., Pfleeger, S.L., Fenton, N.: Towards a framework for soft-
ware measurement validation. IEEE Trans. Softw. Eng. 21(12), 929–944
(1995)

[KS02] Kuzniarz, L., Staron, M.: On practical usage of stereotypes in uml-based
software development. In: Forum on Design and Specification Languages
(2002)

[MS10] Melleg̊ard, N., Staron, M.: Characterizing model usage in embedded soft-
ware engineering: a case study. In: Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, pp. 245–252.
ACM (2010)

[oWM93] International Bureau of Weights and Measures: International vocabulary
of basic and general terms in metrology, 2nd edn. International Organiza-
tion for Standardization, Genve, Switzerland (1993)

[Par10] Parmenter, D.: Key performance indicators (KPI): Developing, Imple-
menting, and Using Winning KPIs. John Wiley & Sons, Hoboken (2010)

Dashboard Selection Model 143

[PSSM10] Pandazo, K., Shollo, A., Staron, M., Meding, W.: Presenting software
metrics indicators: a case study. In: Proceedings of the 20th International
Conference on Software Product and Process Measurement (MENSURA),
vol. 20 (2010)

[RSB+13] Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., Torner, F.:
Evaluating long-term predictive power of standard reliability growth mod-
els on automotive systems. In: 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE), pp. 228–237. IEEE (2013)

[RSB+14] Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., Törner, F.,
Meding, W., Höglund, C.: Selecting software reliability growth models and
improving their predictive accuracy using historical projects data. J. Syst.
Softw. 98, 59–78 (2014)

[RSM+13] Rana, R., Staron, M., Melleg̊ard, N., Berger, C., Hansson, J., Nilsson, M.,
Törner, F.: Evaluation of standard reliability growth models in the context
of automotive software systems. In: Heidrich, J., Oivo, M., Jedlitschka, A.,
Baldassarre, M.T. (eds.) PROFES 2013. LNCS, vol. 7983, pp. 324–329.
Springer, Heidelberg (2013)

[SE78] Susman, G.I., Evered, R.D.: An assessment of the scientific merits of
action research. Adm. Sci. Q. 23, 582–603 (1978)

[SKT05] Staron, M., Kuzniarz, L., Thurn, C.: An empirical assessment of using
stereotypes to improve reading techniques in software inspections. ACM
SIGSOFT Softw. Eng. Notes 30, 1–7 (2005). ACM

[SM09a] Staron, M., Meding, W.: Ensuring reliability of information provided by
measurement systems. In: Abran, A., Braungarten, R., Dumke, R.R.,
Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol.
5891, pp. 1–16. Springer, Heidelberg (2009)

[SM09b] Staron, M., Meding, W.: Using models to develop measurement systems:
a method and its industrial use. In: Abran, A., Braungarten, R., Dumke,
R.R., Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS,
vol. 5891, pp. 212–226. Springer, Heidelberg (2009)

[SM11] Staron, M., Meding, W.: Monitoring bottlenecks in agile and lean software
development projects – a method and its industrial use. In: Caivano, D.,
Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011. LNCS,
vol. 6759, pp. 3–16. Springer, Heidelberg (2011)

[SMH+13] Staron, M., Meding, W., Hansson, J., Höglund, C., Niesel, K., Bergmann,
V.: Dashboards for continuous monitoring of quality for software prod-
uct under development. In: System Qualities and Software Architecture
(SQSA) (2013)

[SMN08] Staron, M., Meding, W., Nilsson, C.: A framework for developing mea-
surement systems and its industrial evaluation. Inf. Softw. Technol. 51(4),
721–737 (2008)

[SMP12] Staron, M., Meding, W., Palm, K.: Release readiness indicator for mature
agile and lean software development projects. In: Wohlin, C. (ed.) XP
2012. LNBIP, vol. 111, pp. 93–107. Springer, Heidelberg (2012)

[Sta12] Staron, M.: Critical role of measures in decision processes: managerial and
technical measures in the context of large software development organiza-
tions. Inf. Softw. Technol. 54(8), 887–899 (2012)

[Tel14] Telea, A.C.: Data Visualization: Principles and Practice. CRC Press, Boca
Raton (2014)

[Coc06] Cockburn, A.: Agile software development: the cooperative game. Pearson
Education (2006)

Measurement-as-a-Service – A New Way
of Organizing Measurement Programs in Large

Software Development Companies

Miroslaw Staron1(B) and Wilhelm Meding2

1 Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden
miroslaw.staron@gu.se

2 Ericsson AB, Gothenburg, Sweden
wilhelm.meding@ericsson.com

Abstract. Modern software development companies focus on their pri-
mary business objectives, delivering customer value and customer satis-
faction which often leads to prioritization of core business areas over such
areas as measurement. Although the companies recognize the need and
importance of software measurement, they often do not have the compe-
tence and/or time to focus on software measurement. In this paper we
address the challenge of optimizing the measurement processes in mod-
ern companies by using cloud computing and by providing measurement
(process) as a service for core business of the companies. Similar to the
concept of Software-as-a-Service we define the concept Measurement-as-
a-Service and describe how to organize a measurement program accord-
ing to this definition. The Measurement-as-a-Service concept is well-
aligned with measurement programs developed according to ISO/IEC
15939 and can help the companies to increase the benefits obtained from
the efficient use of metrics.

Keywords: Cloud · Measurement systems · Measurement program

1 Introduction

Modern software development companies focus on their core businesses and on
delivering customer value and aligning their processes towards that. Measure-
ment programs in such companies are often designed to support these goals, but
they do not form the core business areas and as such can be optimized in a dif-
ferent manner [JA97,SMKN10]. Instead of focusing directly on the customers,
the measurement programs are focused on internal stakeholders – which repre-
sent either the external customers or internal roles in the company (e.g. quality
management) [SM09b].

This kind of evolution of the software business model creates new opportu-
nities for the evolution of the measurement programs at the software develop-
ment companies – centralizing the development and delivery of the measurement
programs in companies. As prescribed by the ISO/IEC 15939 (Systems and

c© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 144–159, 2015.
DOI: 10.1007/978-3-319-24285-9 10

Measurement-as-a-Service – MaaS 145

Software Engineering – Measurement Processes) standard [OC07,SMN08] the
measurement programs should include the set of measurement systems and the
infrastructure supporting building and disseminating the knowledge base of soft-
ware measurement.

In this paper we address the following research problem – How to support
the company’s core business processes by optimizing the sharing of measurement
competence across different units? To address this research question we introduce
the term Measurement-as-a-Service, MaaS. MaaS is a measurement licensing and
delivery model in which metrics are licensed on a subscription basis, centrally
hosted, collected and delivered on demand. This concept is similar to the concept
of Software-as-a-Service and Platform-as-a-Service. As the definition of Software-
as-a-Service describes the licensing, delivery model and value proposition for
centrally hosted software available on the web, we propose to use measurement
in the same way thus achieving such benefits as:

– higher quality of metrics – since the knowledge base (including good and
bad practices) are shared easier and faster through the centralized metrics
storage/team

– lower maintenance costs – since the centralized storage of metrics is optimized
towards handling large quantities of data

– faster adoption of new metrics – since the metric team has the possibility to
quickly assess the quality of metrics, has access to the relevant data sources
and can reuse measurement systems between different parts of the company.

The method used in this paper is a case study where we define the theoretical
framework – MaaS – a priori and use it to describe the measurement program
at Ericsson (which is the unit of analysis). Our preposition is that by describing
the measurement program using the MaaS conceptual framework we can identify
new improvement areas – e.g. how to define value propositions for metrics.

The paper is structured as follows. Section 2 explains the main concepts and
elements used in measurement-as-a-service. In Sect. 3 we describe how we used
MaaS to describe the measurement program at Ericsson. In Sect. 4 we describe
the main related work to our study and finally in Sect. 5 we summarize the main
message of the paper and outline the current research directions in this area.

2 Measurement-as-a-Service

MaaS is a measurement licensing and delivery model in which metrics are licensed
on a subscription basis, centrally hosted, collected and delivered on demand.
This concept is similar to the concept of Software-as-a-Service and Platform-as-
a-Service. Figure 1 shows what MaaS consists of and how it relates to the core
business processes (e.g. software development).

The main two types of actors in this context are the Metrics team and the
Stakeholder. The metric team is responsible for the measurements – both process-
wise (eliciting metrics, developing measurement systems, deploying information
products) and competence-wise (assessing the quality of metrics and indicators,

146 M. Staron and W. Meding

Measurement-as-a-Service

Business processes

Extracts
Measurements

Metrics team

Develops
and

maintains

Provide measurements

Stakeholder

Uses and maintains

MetricsCloud - Metrics, infrastructure,
licensing, delivery

Fig. 1. Conceptual model of a measurement program

optimizing the number of metrics collected). The stakeholders are responsible for
their business processes and/or products and use the measures to make decisions
in their work [Sta12].

The metrics team is responsible for the development of measures and indica-
tors based on the discussions with the stakeholders. The team has the responsi-
bility for the long-term maintenance of the measurement knowledge base. The
measurement knowledge base is the set of documented experiences and artifacts
which have been proven to be useful for the organization, the set of best practices
and the set of common pitfalls (e.g. measures which were found to be incorrect
or leading to negative effects).

The metrics are naturally delivered as a product – information product accord-
ing to ISO/IEC 15939. Examples of the information products can be MS Excel
files, web pages with dashboards or MS Sidebar Gadgets. The delivery method
for the information products can vary, but is usually similar to the SaaS – using
the concept of cloud computing – e.g. [SM14].

The main benefit from organizing the measurement program as MaaS is the
clear separation of competence in the organization – stakeholders focus on their
business processes whereas the metrics team is the main point-of-contact for the
measurement competence.

2.1 Central Hosting

One of the key challenges in managing the measurement program is the abil-
ity to deliver the right metrics for the right stakeholders at the right time.

Measurement-as-a-Service – MaaS 147

The variability of stakeholders and their goals usually causes the number of
measurement systems in the measurement program to grow over time. As the
number of measurement systems grew in our collaborating organization and dif-
ferent dissemination patterns appeared (e.g. the distinction between public and
local metrics), the company started to introduce an internal, cloud-based metrics
dissemination system.

2.2 Collection and Licensing

Although the majority of measurement systems within one organization can be
available for all stakeholders, it is often practical to maintain a control over who
uses which measurement system – license them. Since (according to ISO/IEC
15939) the measurement systems are dedicated for specific stakeholders, it is
natural that the stakeholder’s role in the company and the sensitivity of the
information dictates the availability of the measurement system. The stake-
holder can “license” the measurement system to be: (i) public (everyone can
have access to the measurement system with read access right), (ii) local (pri-
vate, only selected stakeholders can have access to the measurement system with
read/write access), and (iii) shared (selected stakeholder can have access to the
measurement system with read access). The metrics team manages the licens-
ing – it could be a dedicated measurement support team or a set of roles spread
across the company.

In MaaS, licensing is done per subscription. Stakeholders can subscribe to
a specific kind of metric or indicator which they need for a particular purpose.
The licensing should be time-limited in order to limit the number of unused
metrics. It also allows the metric team to focus on the most important tasks at
the moment and do not maintain unused metrics.

Collection, however, has a different pattern. Metrics should be collected
(especially the base measures) even if they are not used by any stakeholders.
The collected metrics can be used for visualizing trends for the stakeholders
when they subscribe to the metrics and indicators. In this way the stakeholders
have the incentive to use the MaaS supplier rather than to spend time on col-
lecting the data themselves (in periods of time when the metrics is seemingly
not useful).

The infrastructure and the automated execution environment form a mea-
surement program together with the measurement systems, source files, raw
data, databases and stakeholders. The measurement program is maintained by
a measurement team which consists of designers and measurement agents. The
metric team consists of the following roles: (i) designers – responsible for design,
implementation and maintenance of the measurement systems, (ii) measurement
agents – responsible for contacts with stakeholders to elicit information needs in
the organization and keep the design of the existing indicators up-to-date, and
(iii) metric champions – responsible for identifying and introducing new metrics
into the organization.

148 M. Staron and W. Meding

2.3 Delivered on Demand

The delivery of the metrics should be done on demand – i.e. when the stakehold-
ers who subscribe to a particular metric want to access the data. They could also
be delivered automatically when new measurements are available (e.g. nightly
after the automated measurement process has been executed).

The on-demand delivery does not require extra storage from the stakeholders’
side, but utilizes the central storage. However, it makes the subscribed metrics
available when needed (through the use of underlying cloud technologies such as
MetricCloud).

2.4 Role of the Metrics Team

The supplier of MaaS is usually the metrics team at the company. The role of
the team is then to identify the information needs of the organizations, identify
measurements of importance, develop and provision measurement systems and
manage the licensing of measurements in the organization. The metrics team
realizes such tasks as the quality assurance of the measurement program, the
functional development of the measurement program, operational and corrective
maintenance and supporting the company with measurement competence.

This new responsibility of the metrics team extends the set of roles identified
in the standard for measurement processes – ISO/IEC 15939 – by such roles
as: measurement architect (responsible for the overall structure of the measure-
ments, e.g. dependencies, links between information needs), measurement team
leader (responsible for the coordination of efforts in the team, e.g. prioritizing
assignments) and measurement account manager (responsible for contacts with
specific unit, e.g. one product development unit). These roles, in particular the
role of measurement account manager, are important for the continuity of the
measurement program and its effectiveness in decision processes.

One of the main challenges for the metric team when operating in the MaaS
context is the need to develop a business model for measurement. The team needs
to describe metrics in terms of their value for the customers – value proposition
of the metric which helps the team to “sell” the metrics to the stakeholders.
Since the stakeholder’s main focus in the main business of the company, this
value propositions should link to the customer value that the company itself
delivers.

2.5 Value Propositions

The value proposition for each metric in the measurement program needs to
include the goals which are important for the stakeholders, but it can contain
common elements depending on the type of the stakeholder. The value proposi-
tion for a measurement should address such aspects as:

– Who should be the stakeholder for the measurement?
– How is the measurement linked to the goals of the stakeholder?

Measurement-as-a-Service – MaaS 149

Table 1. Measurement value proposition for MaaS

Element Characteristics Purpose

Headline Brief statement of the purpose of the
measurement

Grabs attention

Sub-healine A specific explanation of the
measurement – what, for whom and
why it is useful

Lists key benefits

Example A simple example of what the
measurement shows

Explains the context

Stakeholder Role and mandate of the stakeholder Links the measurement to the
stakeholder

Value Benefits from conducting the
measurement

Value of the measurement

Risks A list of risks of conducting the
measurement, e.g. sub-optimizations

Describes the potential
problems

– Which information need of the stakeholder is fulfilled by the measurement?
– What value will the measurement bring if conducted?
– Which risks are related to conducting the measurement?

The template for a value proposition for a measurement should contain the
elements described in Table 1.

An example of a value proposition for a release readiness indicator [SMP12]
is presented in Table 2.

Table 2. Measurement value proposition for MaaS

Element Characteristics

Headline Release readiness indicator

Sub-healine Shows project managers how many weeks are needed to finish the
product with a given quality

Example When the project is finished with new feature development it shows
how many weeks the testing and bug-fixing will take

Stakeholder Release project manager

Value Can decrease the cost of re-planning by as much as 30 %

Risks Releasing the product with minimum viable functionality

The value proposition provides a support for stakeholders in adopting the
new measurement and allows to make a decision whether to buy a license for
this type of service from the MaaS supplier.

150 M. Staron and W. Meding

3 Case Study – Using MaaS to Describe
the Measurement Program at Ericsson

In this paper we introduce the term MaaS, and in this section we use it to
describe the way in which the measurement program at one of the units of Eric-
sson is organized. Ericsson AB (Ericsson) develops large software products for
the mobile telecommunication network. The size of the organization during the
study is several hundred engineers and the size of the projects is up to a few
hundreds. Projects are increasingly often executed according to the principles
of Agile software development and Lean production system. In this environ-
ment, various teams are responsible for larger parts of the process compared
to traditional processes: design teams (cross-functional teams responsible for
complete analysis, design, implementation, and testing of particular features of
the product), network verification and integration testing, etc. The organization
uses a number of measurement systems for controlling the software development
project (per project) described above, a number of measurement systems to con-
trol the quality of products in field (per product) and a measurement system
for monitoring the status of the organization at the top level. All measurement
systems are developed using the in-house methods described in [SMN08], with
the particular emphasis on models for design and deployment of measurement
systems presented in [SM09c]. The needs of the organization evolved from met-
rics calculations and presentations (ca. 9 years before the writing of this paper),
to using predictions, simulations, early warning systems and handling of vast
quantities of data to steer organizations at different levels, and providing infor-
mation from project and line. These needs are addressed by the action research
projects conducted in the organization, since the 2006.

3.1 Measurement Program at Ericsson

Measurement programs in industry are socio-technical systems where the tech-
nology interacts with stakeholders in order to support certain goals. Even though
the term measurement program is defined in literature, the international stan-
dard ISO/IEC 15939:2007 (Systems and Software Engineering: Measurement
process) introduces the concept of measurement management system which com-
prises both the measuring systems (e.g. instruments for data collection and visu-
alization), the infrastructure where these operate, the knowledge bases on the
use of measures and the stakeholders involved in the measurement process as
conceptually shown in Fig. 2.

The central element of the measurement program is the set of measure-
ment systems and information products. The measurement systems are dedi-
cated software applications, designed for measuring quantities, addressing the
stakeholder’s information needs. The quantities are assembled (or combined)
together in order to form indicators which, together with the analysis models,
are packaged into information products.

There are multiple solutions about how to realize measurement systems – for
example using business intelligence tools and their reporting functionalities or

Measurement-as-a-Service – MaaS 151

using simplistic MS Excel files (which is shown in Fig. 2). The measurement sys-
tems combine the inputs from multiple measurement instruments (either directly
of by querying databases) in order to calculate the indicators. The process is
specified in the hierarchical measurement information model of the ISO/IEC
15939 standard.

The input to the measurement program is obtained by measuring proper-
ties of products, organizations (people) and processes. The measurement is often
done by using measurement instruments (e.g. metrics tools) which quantify prop-
erties of one entity (e.g. source code of a program) into numbers (e.g. McCabe
complexity number). These measurement instruments are often specialized for
measuring properties of single entities of single types (e.g. complexity of the C
code).

The output of the measurement program is a set of decisions taken in the orga-
nizations, the insights into the organizations’ processes, products and projects and
the early warnings of the coming problems and challenges. These are usually inter-
connected – e.g. insights can trigger decisions, decisions can require new insights
when being implemented [Sta12].

Fig. 2. Conceptual model of a measurement program

3.2 Information Products

Delivering measurement information across organizations can be done in mul-
tiple ways. The concepts of information radiators [RS05], metric tools [FP98],
business intelligence [EW07] or visual analytics [TC06] were coined for this pur-
pose and each concept describes a specific kind of a measurement system. The
work presented in this paper is compatible with these concepts as self-healing
is important for all of them – the analyses can be reliable if the right data is
available. In order to standardize the discussions and put self-healing in the
context, we use the internationally adopted standard for developing measure-
ment programs ISO/IEC 15939 (Software and Systems Engineering measure-
ment processes) [OC07]. An alternative to ISO/IEC 15939 method for defining
measures was presented by Chirinos et al. [CLB05], which is based on a meta-
model for measures proposed by authors created by combining certain aspects

152 M. Staron and W. Meding

of GQM (Goal Question Metric, [VSBCR02]) into ISO/IEC 15939. In the case
of Ericsson the information product is a measurement system.

A typical measurement system at Ericsson is built based on MS Excel and its
scripting language VBA (Visual Basic for Applications) as presented in Fig. 3.
The main worksheet of the MS Excel file (the grayed page at the top of the figure)
contains indicators (green cells in the grayed page) if they are defined by the
stakeholders, otherwise it contains values of measures. The indicators worksheet
has the associated base and derived measures in other worksheets of the MS Excel
file. These measures and indicators are calculated using VBA scripts (VBA for
calculating measures and indicators) and VBA scripts for accessing the raw data
from other measurement systems.

Fig. 3. Example of a measurement system (Color figure online)

The basic control of the quality of the information is done by a separate set
of VBA scripts (Information quality) and the result of the control is visualized
as one of the indicators on the main page.

Such an architecture of measurement systems is aligned with the prescriptions
of the standard [OC07] with the separation between base/derived measures and
indicators, associated decision criteria and algorithms for data processing. This
architecture is also scalable as it allows developing new measurement systems
based on the existing ones (e.g. allowing to reuse existing derived measures in
other measurement systems) yet providing the measurement systems towards
dedicated stakeholders. Each stakeholder has his/her own measurement system
fulfilling his/her information needs.

Another example of an information product at Ericsson is a dashboard pre-
sented in Fig. 4. It shows the usage of a network in a laboratory environment
and is dedicated for the project team to observe the status of their test network.
For confidentiality reasons the names of the tested products are covered with
greyed boxes.

Measurement-as-a-Service – MaaS 153

Fig. 4. An example of information radiator

The use of both types of information products differs as the first one is dedi-
cated for decision support for particular stakeholders, is interactive and provides
the possibility to access detailed data like trends. The dashboards are dedicated
for spreading the information to larger populations (e.g. a project team) and is
supposed to contain succinct information that provides enough details so that
the users do not need to interact with the dashboard.

3.3 On-Demand Delivery – MS Sidebar Gadgets

An example of the on-demand delivery is the use of MS Sidebar gadgets.
A gadget is used as a placeholder for the content on the stakeholders’ computer,
but the information itself is served through the metric infrastructure [SMN09].
An example of such a gadget is presented in Fig. 5.

Fig. 5. MS Sidebar gadget – an example of on-demand delivery

The gadget presents the number of weeks to release as defined in our earlier
work [SMP12] and presents the indicator only. Once clicked the entire measure-
ment system in MS Excel is fetched from the server and is presented to the
stakeholder (on-demand delivery). This kind of on-demand delivery combined

154 M. Staron and W. Meding

with continuous data collection could help to remedy the problems with missing
data in software processes – e.g. [AN93].

3.4 Centralized Storage – MetricsCloud

MetricsCloud is an infrastructure for disseminating measurement systems used
at Ericsson [SM14]. MetricsCloud addresses such needs of the organization’s
stakeholders as (s-i) dissemination of self-managed measurement systems,(s-ii)
possibility to share measurement systems, and (s-iii) obtaining simple mea-
surement execution infrastructure. MetricsCloud also provides benefits to the
metric team: (m-i) reducing the need to create “simple” measurement systems -
now done by stakeholders, (m-ii) applying identity-based security, and (m-iii)
reducing the need to constantly keep-alive the web-server with all measurement
systems.

The dissemination of metrics based on MetricsCloud separates the concerns
of information delivery and execution/storage of information. This separation of
concerns is done by designing cloud systems based on layers according to the
principles defined by Pallis et al. [PAL10]. Pallis et al. identifies such layers in
a cloud-based system in general – e.g. platform, infrastructure. In this paper we
instantiate three of these layers based on the division of responsibility (in the
organization): (i) Information product delivery, (ii) Execution and information
quality, and (iii) Storage and access as presented in Fig. 6.

Storage and access

Execution and
information quality

Information product
provisioning and licensing

Fig. 6. Layers in cloud infrastructure

The top layer contains measurement systems managed individually by stake-
holders of measurement systems who need access to information (addressing the
needs of s-i, s-ii and m-i). The mid-layer is the layer of execution and update
of measurement systems and is managed by the dedicated metric team. The
stakeholders of the measurement systems do not need to be concerned about
the execution of public measurement systems, but are notified if the measure-
ment systems are not updated (e.g. by information quality indicators [SM09a]).
Finally the lowest layer is the standard IT infrastructure of the company with
network file servers, web servers and client programs which is managed by the
IT department of the company.

Measurement-as-a-Service – MaaS 155

3.5 Evolution

The existing measurement program at the studied unit evolved from their decen-
tralized set-up to MaaS measurement programs in a number of steps summarized
in Table 3.

This evolution helped the organization to centralize the measurements and
“outsource” them internally or externally to the metric team. The metric team
has the opportunity to develop a business model where the value of the met-
rics for the stakeholders is the main interest. This focus on the value helps to
emphasize the metrics which bring more value to the company and de-prioritize
the metrics which are not that important.

Table 3. Evolution of measurement programs to MaaS

Step Characteristics

Standardization of
measurement systems

Standardized measurement systems based on common
tools – e.g. MS Excel, Tableau, QlikView

Common support Established metric team with the dedicated roles to
support the organization

Centralized distribution Centralization of the distribution of the metrics – e.g.
MetricCloud

Licensing Development of a business model for “selling” metrics
to different stakeholders and organizations within the
company

Research Identification and development of new metrics,
combined with the business model for “selling”
measurements

4 Related Work

One of the aspects important in the use of MaaS internally at companies is the
understanding how information product spread – i.e. the internal communication
channels and the reusability of metric. One of the works in this area is the work of
Atkins et al. [AMVP03] which presents the models for reusability of metrics. Our
work complements the reusability aspects by providing the value proposition.

Another work in this area is the work of Jorgensen et al. [Jor99]. As their
work shows, this is not an easy task due to the potential different definitions
of measures. Jorgensen shows contrasting definitions of measures if quality is
defined as “a set of quality factors”, “user satisfaction”, and “software quality
related to errors”. Our research recognizes the needs for viewing the same aspects
(e.g. quality) from different perspectives - depending on the stakeholder. These
needs are also recognized by the measurement team which we collaborated with.

The delivery method for metrics – MetricCloud – have been validated at
Ericsson in our previous work. This validation is aligned with the work of

156 M. Staron and W. Meding

Pawluk et al. [PSS+12] who described the process of introducing a new cloud
solution to a large enterprise. The purpose of the cloud is similar to ours and
we use their work when designing our cloud system. The current cloud system
is an evolution of the previous work on ensuring information reliability done
together with Ericsson [SM09a]. In this work we address the problems of ensur-
ing that information is available throughout the enterprise and its understanding
[KS02,SKT05,MS10,MST12].

Yoon et al. [YOL13] showed how to establish security into cloud computing.
The security of MetricsCloud is based on similar principles but is a simplification
of the security policies. All security is based on the enterprise log-in. The licens-
ing model of the measurements, important for MaaS, need the kind of security
described by Yoon et al.

Another approach was presented by Zhang et al. [ZZ09] and their CCOA
framework. Although a very elaborate framework could be used in our solution
we preferred to use a simple approach and focus on the ease-of-use. It is the
ease-of-use and performance which are important for similar cloud systems as
described by Gong et al. [GLZ+10].

Farooq et al. [FKDW06] presented an approach for structuring the measure-
ment process (ISO/IEC 15939 based) using web services in order to increase
scaleability and reuse of metrics. We complement their approach by adding the
explicit role of the metrics team, licensing and value propositions for software
metrics.

Sakamoto et al. [SMSN13] have developed a tool for mining software metrics
and storing them in a web service environment. Their study is a good comple-
ment to our work as it addresses the question of metrics acquisition from large
software repositories.

5 Conclusions

Modern large software development organizations focus on delivering customer
value and often adopt decentralized software development models such as Agile.
In these models various units of the organizations can work independently and
communicate often. Measures, indicators and Key Performance Indicators are
examples of communication means. However, the challenge in such organizations
is to manage these means – e.g. keeping them consistent, secure and available
on-demand. In this paper we addressed the problem of how to manage this in an
efficient way by using a newly introduced concept – Measurement-as-a-Service,
MaaS.

MaaS is a measurement licensing and delivery model in which metrics are
licensed on a subscription basis, centrally hosted, collected and delivered on
demand. This concept is similar to the concept of Software-as-a-Service and
Platform-as-a-Service. We introduced this term in this paper and we used it to
describe the measurement program at Ericsson – one of our industrial partners.
We have shown that Measurement-as-a-Service is targeted towards improving
the internal and external management of measurement programs. We showed

Measurement-as-a-Service – MaaS 157

that using modern, yet simplistic, cloud-based dissemination systems allows to
develop new business models for measurement distribution. This new business
model allows the stakeholders for measurement systems to focus on their core
business activities while leaving the core metric competence to a dedicated entity.

The benefits of using Measurement-as-a-Service help the company to become
more effective in their decision processes and allows them to focus on delivering
customer value, at the same time having fact-based decisions. The benefits from
using MaaS include such aspects as:

– higher quality of metrics – since the knowledge base (including good and
bad practices) are shared easier and faster through the centralized metrics
storage/team

– lower maintenance costs – since the centralized storage of metrics is optimized
towards handling large quantities of data

– faster adoption of new metrics – since the metric team has the possibility to
quickly assess the quality of metrics, has access to the relevant data sources
and can reuse measurement systems between different parts of the company.

In our further work we intend to explore the notion of value proposition
of metrics by studying the value propositions used in our industrial partner.
We plan to develop a generic model for describing metrics and indicators in a
business-like manner in order to reduce the number of “wrong” metrics collected
in industry today.

Acknowledgements. This work has been partially supported by the Swedish Strate-
gic Research Foundation under the grant number SM13-0007.

References

[AMVP03] Atkins, K.L., Martin, B.D., Vellinga, J.M., Price, R.A.: Stardust: imple-
menting a new manage-to-budget paradigm. Acta Astronaut. 52(2–6),
87–97 (2003). TY - JOUR

[AN93] Abran, A., Nguyenkim, H.: Measurement of the maintenance process from
a demand-based perspective. J. Softw. Maintenance Res. Pract. 5(2), 63–
90 (1993)

[CLB05] Chirinos, L., Losavio, F., Bøegh, J.: Characterizing a data model for soft-
ware measurement. J. Syst. Softw. 74(2), 207–226 (2005)

[EW07] Elbashir, M., Williams, S.: Bi impact: the assimilation of business intelli-
gence into core business processes. Bus. Intell. J. 12(4), 45 (2007)

[FKDW06] Farooq, A., Kernchen, S., Dumke, R.R., Wille, C.: Web services based
measurement for it quality assurance. In: Proceedings of the International
Conference on Software Process and Product Measurement (MENSURA
2006), pp. 241–251 (2006)

[FP98] Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical
Approach. PWS Publishing Co., Boston (1998)

[GLZ+10] Gong, C., Liu, J., Zhang, Q., Chen, H., Gong, Z.: The characteristics
of cloud computing. In: 2010 39th International Conference on Parallel
Processing Workshops (ICPPW), pp. 275–279. IEEE (2010)

158 M. Staron and W. Meding

[JA97] Jacquet, J.-P., Abran, A.: From software metrics to software measure-
ment methods: a process model. In: Third IEEE International Software
Engineering Standards Symposium and Forum, pp. 128–135. IEEE (1997)

[Jor99] Jorgensen, M.: Software quality measurement. Adv. Eng. Softw. 30(12),
907–912 (1999)

[KS02] Kuzniarz, L., Staron, M.: On practical usage of stereotypes in uml-based
software development. In: Proceedings of Forum on Design and Specifica-
tion Languages (2002)

[MS10] Melleg̊ard, N., Staron, M.: Characterizing model usage in embedded soft-
ware engineering: a case study. In: Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, pp. 245–252.
ACM (2010)

[MST12] Mellegard, N., Staron, M., Torner, F.: A light-weight defect classification
scheme for embedded automotive software and its initial evaluation. In:
2012 IEEE 23rd International Symposium on Software Reliability Engi-
neering (ISSRE), pp. 261–270. IEEE (2012)

[OC07] International Standard Organization and International Electrotechnical
Commission: Software and systems engineering, software measurement
process. Technical report, ISO/IEC (2007)

[PAL10] Pallis, G.: Cloud computing: the new frontier of internet computing. IEEE
Internet Comput. 14(5), 70–73 (2010)

[PSS+12] Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing
STRATOS: a cloud broker service. In: IEEE CLOUD, pp. 891–898 (2012)

[RS05] Robinson, H., Sharp, H.: Organisational culture and xp: three case studies
(2005)

[SKT05] Staron, M., Kuzniarz, L., Thurn, C.: An empirical assessment of using
stereotypes to improve reading techniques in software inspections. In:
ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 1–7. ACM (2005)

[SM09a] Staron, M., Meding, W.: Ensuring reliability of information provided by
measurement systems. In: Abran, A., Braungarten, R., Dumke, R.R.,
Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol.
5891, pp. 1–16. Springer, Heidelberg (2009)

[SM09b] Staron, M., Meding, W.: Transparent measures: cost-efficient measure-
ment processes in SE. Int. Workshop Softw. Technol. Transf. 1, 1–10
(2009)

[SM09c] Staron, M., Meding, W.: Using models to develop measurement systems:
a method and its industrial use. In: Abran, A., Braungarten, R., Dumke,
R.R., Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS,
vol. 5891, pp. 212–226. Springer, Heidelberg (2009)

[SM14] Staron, M., Meding, W.: Metricscloud: scaling-up metrics dissemination
in large organizations. Adv. Softw. Eng. 2014 (2014)

[SMKN10] Staron, M., Meding, W., Karlsson, G., Nilsson, C.: Developing measure-
ment systems: an industrial case study. J. Softw. Maintenance Evol. Res.
Pract. 23, 89–107 (2010)

[SMN08] Staron, M., Meding, W., Nilsson, C.: A framework for developing mea-
surement systems and its industrial evaluation. Inf. Softw. Technol. 51(4),
721–737 (2008)

[SMN09] Staron, M., Meding, W., Nilsson, C.: A framework for developing mea-
surement systems and its industrial evaluation. Inf. Softw. Technol. 51(4),
721–737 (2009)

Measurement-as-a-Service – MaaS 159

[SMP12] Staron, M., Meding, W., Palm, K.: Release readiness indicator for mature
agile and lean software development projects. In: Wohlin, C. (ed.) XP
2012. LNBIP, vol. 111, pp. 93–107. Springer, Heidelberg (2012)

[SMSN13] Sakamoto, Y., Matsumoto, S., Saiki, S., Nakamura, M.: Visualizing
software metrics with service-oriented mining software repository for
reviewing personal process. In: 2013 14th ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), pp. 549–554. IEEE (2013)

[Sta12] Staron, M.: Critical role of measures in decision processes: managerial and
technical measures in the context of large software development organiza-
tions. Inf. Softw. Technol. 54(8), 887–899 (2012)

[TC06] Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput.
Graph. Appl. 26(1), 10–13 (2006)

[VSBCR02] Van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question
metric (gqm) approach. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering, pp. 578–583. Wiley, New York (2002)

[YOL13] Yoon, Y.B., Oh, J., Lee, B.G.: The establishment of security strategies for
introducing cloud computing. KSII Trans. Internet Inf. Syst. (TIIS) 7(4),
860–877 (2013)

[ZZ09] Zhang, L.-J., Zhou, Q.: CCOA: cloud computing open architecture. In:
IEEE International Conference on Web Services, 2009. ICWS 2009, pp.
607–616. IEEE (2009)

Designing an Unobtrusive Analytics Framework
for Monitoring Java Applications

Sampo Suonsyrjä(B) and Tommi Mikkonen

Department of Pervasive Computing, Tampere University of Technology,
Korkeakoulunkatu 10, 33720 Tampere, Finland
{sampo.suonsyrja,tommi.mikkonen}@tut.fi

Abstract. In software development, attention has recently been placed
on understanding users and their interactions with systems. User studies,
practices such as A/B testing, and frameworks such as Google Analytics
that gather data on production use have become common approaches in
particular in the context of the Web, where it is easy to perform frequent
updates as new needs emerge. However, when considering installable
desktop applications, the situation gets more complex. While analytics
facilities are still needed, they should address business logic, not generic
traffic as is the case with many web sites. Moreover, analytics should be
unobtrusive, and not have a high impact on the evolution of the actual
application; thus, analytics should be treated as an add-on, as the target
system may already exist. Finally, the instrumentation of features that
are observed should be easy and flexible, but the provided mechanisms
should be expressive enough for many use cases. In this paper, we exam-
ine different alternatives for implementing such monitoring mechanisms,
and report results from an experiment with Vaadin, a web framework
based on Java and Google Web Toolkit, GWT.

1 Introduction

The introduction of Agile methods [6] caused a paradigm shift in the develop-
ment of software systems: instead of starting with a set of requirements that
are all of the same value, software developers began to embrace a model where
systems are first built with only a set of key features to be later extended into a
more complete form. As more and more experience regarding the use of the sys-
tem is gathered, developers write new versions of the system which satisfy user
needs better. In fact, one can even claim that the core of iterative development
is the ability to learn in each increment, which leads to improved products.

In the process of creating the software in the above fashion, input from users
of the system can play a crucial role, given that adequate mechanisms for collect-
ing the input are available. The most traditional way is to design questionnaires
or other studies that the end users answer to guide the development, but in
particular in the field of web systems, also more sophisticated forms of gather-
ing information exist regarding users and the way the system is being used. For
instance A/B testing, where different sets of users use a slightly different ver-
sion of the software, helps in deciding between two ways to provide similar or the
c© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 160–175, 2015.
DOI: 10.1007/978-3-319-24285-9 11

Designing an Unobtrusive Analytics Framework 161

same features. Moreover, analytics frameworks such as Google Analytics provide
detailed understanding regarding how users interact with the system to perform
more complicated tasks. In general, the ability to gather all this information is
opening new possibilities for developers, because even the slightest deviations in
user behavior can be tracked and reacted upon.

Although the field of web systems can nowadays be seen to have an edge in
collecting post-deployment data, the same need is increasing in other contexts as
well, as evidenced by [8]. In this paper, we investigate techniques for monitoring
application-level user activity, as well as an option to extend the techniques to
cover installable desktop applications, too.

The goal is to track actions at the level of user interface widgets, such as
buttons, sliders, and text fields for instance. The work is based on using Java
web framework Vaadin [5], where applications are first composed with Java, and
then compiled into a form that can be deployed to the web, with the parts of
the application that form the user interface being compiled with Google Web
Toolkit [12]. As the concrete implementation mechanism for introducing ana-
lytics facilities, we experiment using aspect-oriented techniques [4] to bind an
existing design to an external data analytics framework.

The rest of this paper is structured as follows. In Sect. 2, we introduce motiva-
tion and background of the study. In Sect. 3, we introduce our research questions.
In Sect. 4, we describe our demonstrator application and how it has been con-
structed. In Sect. 5, we provide details of our implementation: showing how data
is gathered in an unobtrusive fashion and describing the design of our analytics
framework. In Sect. 6, we provide an extended discussion regarding our findings.
Finally, in Sect. 7, we draw final conclusions.

2 Background

Analytics is used by businesses of all type to better understand customers. Dur-
ing the recent years, also software engineers and software engineering organiza-
tions have understood the opportunity to use more data for making constantly
better decisions, but as even sporting teams have improved their performance
with the help of analytics, the uses for analytics seem to be fairly general [1].

2.1 Software Analytics

Pachidi et al. [11] have developed the Usage Mining Method that enables con-
ducting classification analyses, user profilings and clickstream analyses on logged
operation data. Such data is beneficial for program understanding and reengi-
neering [3]. In addition, as the size and complexity of software systems continue
to grow, decision making is becoming even more difficult in the future and thus
new solutions such as the use of analytics data are needed [2].

Kristjansson and van der Schuur have formulated the concept Software Oper-
ation Knowledge [9]. They describe that to consist of knowledge of in-the-field

162 S. Suonsyrjä and T. Mikkonen

performance, quality and usage of software, and knowledge of end-user experi-
ence and end-user feedback. The researchers continue with stating how software
vendors have a great interest in acquiring such knowledge, but that the system-
atic practice of gathering, analyzing and acting on such knowledge is still limited.
Correspondingly, this kind of in-the-field knowledge could benefit usability stud-
ies as the lack of long-term data collection is considered as one of the challenges
in measuring usability [7].

In general, it is possible to collect usage metrics by executing software appli-
cations, but this usually requires some sort of modifications to the source code
of the target application. There are a few exceptions however. For example, the
Patina system [10] uses Microsoft Active Accessibility API to collect accessibility
data, and thus no altering of the source code is needed. The system creates a
so-called heatmap, which visualizes the content and location of the user interface
controls visible in the application. As a drawback, supporting the accessibility
API usually requires some extra work from the application developers and so
the coverage of the accessibility API can vary.

As for concrete implementations, one of the most commonly used analysis
frameworks is Google Analytics (http://www.google.com/analytics/), which is
presently being used by an increasing number of web sites. With it, the devel-
opers of a web site can track traffic of a monitored web site and view it in a
form that is easy to interpret. The data provides information regarding visitors,
their geographical locations, the time they remain on the site, what is the path
that users take on the web site, and so on. Since the system operates in the
Web, its operation can rely on web protocols that reveal these properties. For a
generic desktop application, however, these facilities are not immediately avail-
able. Moreover, when considering installable applications, data to be collected
is often application specific, not web traffic related as is the case with Google
Analytics. However, the popularity of Google Analytics demonstrates that there
is an increasing interest regarding user data, which can be made available in an
unobtrusive fashion.

2.2 Aspect-Oriented Programming

Aspect-oriented software development provides means for capturing cross-cutting
concerns and modularizing them as manageable units [4]. Tackling the issue of
tangled code, aspect-oriented programming languages such as AspectJ provide
means to insert additional operations to a target program in an unobtrusive
fashion with a new construct, so-called aspect. Aspects in turn provide increased
opportunities for advanced modularity.

At the implementation level, an AspectJ aspect always includes at least two
parts: a pointcut and an advice, both of which are code snippets. The pointcut
is used to describe the point where the execution of the target program is paused
for inserting the additional code programmed in the advice part. Figure 1 pro-
vides a simple aspect code that introduces a simple logging facility that records
the parameters and the return value of a method call. In this aspect, the point-
cut is defined to take effect around the defined function of our example class,

http://www.google.com/analytics/

Designing an Unobtrusive Analytics Framework 163

MyClass::MyFunc. The Logger aspect takes effect as the function is called, and
the aspect code is executed both before and after actually executing the original
method in a fashion where its execution is not affected. The operations that are
being executed before and after running the method can be arbitrary; however
for the purposes of software analytics, these include data collection operations.

aspect Logger {

pointcut loggedFunction = call("void MyClass::MyFunc(...)");

advice loggedFunction:around() {

// Log call and method parameters

tjp->Proceed(); // Run MyClass::MyFunc

// Log results

}

}

Fig. 1. A sample aspect.

3 Research Questions

The research questions we formed to evaluate our usage data collection and
analysis framework are the following.

RQ1: To What Extent can a Data Collecting Feature be Implemented
Without Compromising the Evolution of the Target Program? As a
starting point for our research, we have taken a view where the design and
evolution of the target system, in other words the program from which usage
data is to be collected, must remain as independent from data collection and
analysis as possible. High priority of this independence is motivated by the fact
that in the end analytics data leads to changes in the target program. Therefore,
it is crucial that the target program can be under constant change and these
data can still be collected from it. This leads to the selection of implementation
techniques that are as unobtrusive as possible.

As the evolution of the target program results in data being collected from
different versions of the target program, the approach used for collecting data
has to ensure that these data are still comparable between the different versions.
Thus, not only do we want to find out specific types of data that can be collected
with our framework, but also if the data is adequate enough to be compared
between different versions of the target program. Finally, as we aim at designing a
data collection framework that is independent of the underlying target program,
we also introduce an option to reuse the development effort invested in the
framework in different setups, including desktop applications as well as web
systems built using Java.

164 S. Suonsyrjä and T. Mikkonen

RQ2: What Types of Data can be Collected with the Given Approach?
As with any technology, there are restrictions regarding the data that can be
collected. In this paper, we are interested in interactions between the user and
the application, and therefore we focus on data that is associated with user
interactions only. Thus, interactions with e.g. external actors or machines are
beyond our scope in this paper.

RQ3: How to Connect the Data Collecting Feature with an Analysis
Framework? Being able to record data from a user interface is only a beginning
in the way towards understanding how an application is being used. Therefore,
it is necessary to load the resulting usage data to an analysis system, which can
then be used to further process the data into a meaningful form.

4 Demonstrator Application

To answer the above research questions, we next describe a demonstrator appli-
cation. First, we introduce the platform on top of which the system is built. Then,
we describe the application. Finally, we show how manual instrumentation could
be carried out for this application.

4.1 Vaadin Web Framework

Vaadin [5] is an open source framework that is used for developing Rich Internet
Applications (RIA). Vaadin applications are written using Java, and they are
transformed into AJAX applications with the facilities of Google Web Toolkit
(GWT) [12]. The architecture of the system is illustrated in Fig. 2.

Vaadin applications are implemented similarly to Java Standard Edition
desktop applications, with all the functionality written using Java. However,
instead of using the usual Java UI libraries like AWT, SWT, or Swing, a specific
set of Vaadin UI components is used. These components can be compiled into
a form that is runnable inside the browser, following the development process
of GWT. This process is illustrated in Fig. 3. In addition, new custom made UI
components can be implemented when needed to create systems with different
kinds of look-and-feel.

4.2 Demonstration Application

To evaluate the designed framework for usage data collection, we selected a
Vaadin application, which is fully functional and already developed yet simple
enough to be the first test application. The source code is available for download
at https://github.com/vaadin/dashboard-demo, and a working demo is located
at http://demo.vaadin.com/dashboard.

The target application, called QuickTickets Dashboard Demo, demonstrates
how the Vaadin framework can be used to create a simple dashboard web applica-
tion. The main dashboard view is initialized as an object of DashboardView class.

https://github.com/vaadin/dashboard-demo
http://demo.vaadin.com/dashboard

Designing an Unobtrusive Analytics Framework 165

Fig. 2. Vaadin architecture. Image adapted from [5]

Fig. 3. GWT process of compiling Java to HTML and JavaScript [12]

During the initialization, several objects of HorizontalLayout class are instan-
tiated and pushed to the view with an addComponent method. These include
components such as a toolbar and several rows. Buttons are added correspond-
ingly to these layout components in the same manner. In Fig. 4, we demon-
strate the initialization of a dashboard object on code level along with a toolbar
(a horizontalLayout object) and a notify button.

In the following, we demonstrate how collecting usage data works by focusing
on buttons that can be pressed by users. While this obviously does not cover all
the dimensions of software operation knowledge, this restriction simplifies the
presentation to a form that is concrete enough to demonstrate at a detailed level
how data collection works.

166 S. Suonsyrjä and T. Mikkonen

public DashboardView() {

HorizontalLayout top = new HorizontalLayout();

addComponent(top);

Button notify = new Button(’2’);

Notify.addClickListener(

new ClickListener(){

...

});

top.addComponent(notify);

};

Fig. 4. Initialization of a dashboard object.

4.3 Manual Method as a Motivation

To show how the proposed automatic data collection feature simplifies develop-
ers’ tasks, we first provide a manual implementation of the same function. To
this end, we inserted data collecting features manually ourselves to specific places
in the original source code of the target application. Thus, this approach is an
intrusive one as it essentially changes the source code of the target application,
which is built by someone else.

First, we developed a class called DataLogger.java. This class was used for
two important tasks. On one hand, it included public method logButtonClick
and on the other hand it stored these button clicks to a SQL type of a container.
Button and ClickEvent objects were used as parameters for the method. It
draws information about the button and its context and then stores it to the
aforementioned temporary container. This information could be of course stored
in some other way as well, but for our study case this was not seen important.
However, some storing options are discussed in the future work section. This class
itself was then included in the same java package with the target applications
source code files. Up until this point the target applications source code was not
altered.

In the unobtrusive part, the whole source code of the target application was
then searched through to find each and every place where a new button was
instantiated and added to the UI as seen in Fig. 4. As with every button there
was also an instantiation of its ClickListener, we always inserted a call to our
logEvent method within this instantiation. In Fig. 5, we provide a code snippet
that elaborates how this implementation was done.

Clearly, we only used one intrusive insertion to the application, the call to
method Logger.logEvent. However, even with this simple application, there
were a total of 33 of this kind of button instantiations in the target application, all
of which had to be extended with a similar call to our data logging method. While
33 insertions can be implemented once quite fast, the devil is in the complexity
that most likely starts to build up when such implementation process is repeated
for a while. Especially in a case where the target application is developed by a
different person than the one implementing the usage data logging features, there

Designing an Unobtrusive Analytics Framework 167

final Button signin = new Button("Sign In");

signin.addClickListener(

new ClickListener() {

public void buttonClick(ClickEvent e) {

Logger.logEvent(signinEvent, e);

...

}

}

);

Fig. 5. Manual implementation of data collection.

is always the risk of forgetting to add these logging features to all the necessary
places. Furthermore, even if a special script was developed to insert the logging
features automatically to specific places, one would have to be very careful in
developing such a script. Although this should reduce the risk of forgetting to
log a button at all, any possible extra calls to the data logging methods would
then again distort the data and its reliability as button clicks could be recorded
not just once but twice or trice and so on.

In the regard of data comparability the manual approach, qualities depend
greatly on the specific implementation. In this case study, our implementation
gathered data only straight from the context of the target application. This
included data types such as buttons caption, session id, and URI fragment.
Although having all the data coming from the Vaadin frameworks context creates
quite a reliable starting point for a further usage data analysis, target application
evolution and changes in for example buttons captions might lead to inconsis-
tencies in collected usage data.

In what comes to the flexibility of the manual approach and usefulness of the
data it collects, we saw this approach performing understandably well. Making
the application log new kinds of data types was as easy as making it log the first
types of data. Of course in a case with a larger-scale application this might take
more than a blink of an eye. However, the point in the flexibility criterion is to
evaluate if the approach is able to collect also new kinds of data and the manual
approach certainly has that as an advantage. Similarly, it collects just the types
of data one wants and thus these data should be as useful as any.

5 Data Collection and Analysis Framework

To support usage data collection, we designed a framework where several already
existing techniques and tools are used (Fig. 6). These key components are:

– AspectJ is used for creating an unobtrusive monitoring mechanism for the
target application.

– Fluentd (www.fluentd.org) is used as the mechanism for unified data collec-
tion.

www.fluentd.org

168 S. Suonsyrjä and T. Mikkonen

– Elasticsearch (www.elasticsearch.org/overview/elasticsearch) is used as a real-
time storage for flexible searches.

– Kibana (www.elasticsearch.org/overview/kibana) is used for creating real-
time visualizations and analytics.

This stack that combines Fluentd, Elasticsearch, and Kibana can be considered
as an open source alternative to Splunk (www.splunk.com) log management
software.

Fig. 6. The designed framework for unobtrusive analytics.

5.1 Aspect-Oriented Usage Monitoring

The aspect-oriented approach to inserting additional features into existing appli-
cations is unobtrusive by nature. As already mentioned, we demonstrate this
facility by focusing on buttons. To this end, we wish to intervene in the exe-
cution every time a button is being added to a UI component (see Fig. 4 in
Subsect. 4.2). To attach a pointcut and a logging advice to such call, aspect
AddComponentListener was created as shown in Fig. 7.

In this aspect, pointcut called addComponentCall defines that each time
method addComponent is called with a button as its parameter, the execution

www.elasticsearch.org/overview/elasticsearch
www.elasticsearch.org/overview/kibana
www.splunk.com

Designing an Unobtrusive Analytics Framework 169

public aspect AddComponentListener {

// Button clicks are stored in this container.

DataLogger dataCollector = new DataLogger();

// To be executed when a button is added to the layout.

pointcut addComponentCall(Button b):

call(* *.addComponent(*)) && args(bb);

// To be executed after a button has been added to layout.

after(final Button b):

addComponentCall(b) {

// Clicks are listened to with a basic Vaadin ClickListener.

b.addClickListener(

new Button.ClickListener() {

public void click(ClickEvent e) {

dataCollector.logEvent(b, e);

}

});

}

}

Fig. 7. Data collector aspect, its pointcut and advice.

Fig. 8. Insertion of an additional click listener with an aspect.

can be cut for the corresponding advice part. This part will then define an
additional click listener. This is shown in Fig. 8.

Finally, a remark must be made regarding the degree of unobtrusiveness of
the approach. While the effect of AspectJ code is unobtrusive to the underlying
target program, tooling is affected by AspectJ. To begin with, for the build
process, a dependency to AspectJ must be inserted to the target application’s
project file. Additionally, the AspectJ tools must be included in the used IDE,
in our case Eclipse.

170 S. Suonsyrjä and T. Mikkonen

5.2 Collecting Data with Fluentd

Fluentd was implemented in quite a similar fashion as the AspectJ for monitoring
features. However, wherein AspectJ was used for unobtrusively monitoring the
usage, Fluentd was used for collecting usage data from the usage points defined
with AspectJ. Thus, the core idea of Fluentd is to be the unifying layer between
different types of log inputs and outputs. This is illustrated in Fig. 9, in which a
box is a component and the arrows describe the data flow.

Fig. 9. Architecture of Fluentd and its plugins. Image adapted from [fluentd.org/
architecture]

Figure 9 illustrates the architecture of Fluentd. Its various plugins for data
input make it easier to unify the logging layer of an application or even an
application ecosystem. There are a number of different input plugins available
for several programming languages. In this study, we obviously used an input
plugin for Java applications. However, Fluentd supports inputs not only from
different language applications but also from entirely different kinds of inputs.
These include for example access and error logs from web servers and system logs.

The concrete implementation of Fluentd into the target application required
that a Fluentd dependency was inserted into the source code of the target appli-
cation. This was done similarly as with the AspectJ facilities. Additionally, we
installed and ran Fluentd on the same machine with the target application. As
these requirements are met, the Fluentd process is able to receive the inputs
described in Fig. 10. As described with the usage monitoring aspect in Fig. 7,
logButtonClick method is called whenever a button is clicked.

Similar to the input plugins of Fluentd, its plugins for storing data stan-
dardize that front. Depending on the use case, data can be stored in different
formats for archiving and analysis, for example. In this study, we used Fluentd
for parsing the usage data into JSON and then forwarding them for analysis in
Elasticsearch. As seen in Fig. 10, there were different types of usage data related
to a button click, its context, and the button itself. These data were first stored
in a temporary Java Hashmap object but then forwarded to Fluentd for its
filtering, buffering, and rerouting processes.

http://fluentd.org/architecture
http://fluentd.org/architecture

Designing an Unobtrusive Analytics Framework 171

public class DataLogger {

private static FluentLogger LOG =

FluentLogger.getLogger("button.click");

public void logButtonClick(Button b, ClickEvent event){

Map<String, Object> data = new HashMap<String, Object>();

data.put("Uri Fragment", Page.getCurrent().getUriFragment());

data.put("Page", Page.getCurrent().toString());

data.put("Button Caption", b.getCaption());

data.put("Button ID", b.getId());

...

data.put("Click X", event.getClientX());

data.put("Click Y", event.getClientY());

LOG.log("click", data);

}

}

Fig. 10. Collecting data from a Java application with Fluentd.

5.3 Elasticsearch and Kibana

In our study setup, we used Fluentd and Elasticsearch on the same localhost.
Fluentd sent the collected usage data to Elasticsearch, which stored them into
its document oriented database without any pre-configurations. As the data
was already formatted in JSON, the field names were already there. This in
combination with the full-text search abilities made analyzing facilities easily
accessible. In addition, Elasticsearch supports real-time access to exploring the
stored data.

However, Elasticsearch is only storing the data and making it searchable.
Therefore, Kibana was used as a dashboard for displaying the data from Elas-
ticsearch. Through this dashboard, one can make queries and then visualize the
results in various different forms. An example visualization is shown in Fig. 11.
In the visualization there is a pie chart illustrating how many times a specific
button has been clicked.

6 Discussion

To discuss our findings, we next revisit our research questions one by one. In
addition, we will also provide some directions for future research.

6.1 Research Questions Revisited

Based on our experiences with the proposed framework, we revisit the paper’s
questions as follows.

172 S. Suonsyrjä and T. Mikkonen

Fig. 11. Screenshot of a Kibana visualization.

RQ1: To What Extent can a Data Collecting Feature be Implemented
Without Compromising the Evolution of the Target Program? Aspect-
oriented approach to inserting additional features is quite unobtrusive by nature,
which is supported by the code snippets. Also in this case, the usage monitoring
facilities were inserted without changing the source code of the target appli-
cation. The only parts which needed some modifications were the dependency
addition to a build file and an insertion of an AspectJ file.

As these modifications were not altering the source code itself, the target
application’s evolution was not compromised nearly as much as with the manual
approach. In this sense, if the target application’s next version was to include
new buttons, the aspect-oriented monitoring would notice them just as they did
with all the rest. Therefore, the approach allows the target application to scale
in that way without any additional efforts needed to include to the additional
buttons as new data collecting points.

However, if the target application was to be changed in the way its buttons
are instantiated, the aspect-oriented monitoring needs to be changed correspond-
ingly. Even in this kind of a case though, the modification to the monitoring
pointcut would most likely have to be done only once.

Designing an Unobtrusive Analytics Framework 173

RQ2: What Types of Data can be Collected with the Given Approach?
With an aspect-oriented monitoring approach, pointcuts could be made on a
vast variety of different points in the execution flow. For instance, we could have
associated the pointcuts with the initialization of objects of a particular class, as
well as any other public method. The same goes for advices, which can contain
almost arbitrary code that is needed for monitoring.

Additionally, aspect-oriented techniques support various different types of
data that can be collected. Software operation knowledge in general includes
information such as in-the-field performance, quality and usage of software, and
knowledge of end-user experience, and end-user feedback, and to some extent
this is necessarily platform-specific. In our case, the Vaadin framework provides
an API to get such data directly from the platform. For instance, there are
straightforward methods to get information on timestamps, URI fragments, but-
ton captions, and so on. With such information, it is possible to gain knowledge
for example about the clickstream a user leaves behind, the average time they
spent on a specific page, or what kind of errors are logged the most.

All in all, the aspect-oriented approach provides us with the same flexibility
in gathering different types of data as the manual approach did. With such
arbitrary data types, the problems of analytics are more about asking the right
questions than getting enough data.

RQ3: How to Connect the Data Collecting Feature with an Analysis
Framework? Although collecting data can be done in most cases in a various
ways, further exploring and analyzing of data might turn out more difficult.
The use of a standardized analysis framework might require the data to be in a
specific format. In this regard, the data logging tool’s ability to unify the data
it collects becomes important. In this study, Fluentd was used for collecting
data, and it also performed the unifying by turning the data into the JSON
format. This again was a format that the data storing solution supported and
the visualization tool had an access to. Thus, the data collection tool’s unifying
feature enabled us to form an end-to-end analytics framework starting from the
usage monitoring and peaking in the visualizations.

In circumstances such as these, general collection frameworks can provide a
way to standardize parts of the logging even if data inputs and outputs varied
from time to time. This becomes especially important when the aim is to combine
data from different kinds of sources such as access, error and application logs.

6.2 Future Work

The work reported in this paper is only the very beginning of research regarding
using aspects as a tool for analyzing user interactions. As already pointed out,
at present we have a mechanism for collecting the data, and next challenge is
to figure out which part of the data is truly meaningful, and how should the
gathered data be used. Some of the directions for future work are listed below.

174 S. Suonsyrjä and T. Mikkonen

Extending the Measurement Point Set. In addition to collecting straightforward
data on user actions, broadening the focus to cover attributes such as in-the-
field performance or end-user feedback can turn out as helpful opportunities for
various different fields. For instance, a short user experience survey could be
injected as an aspect into a specific point of execution flow, an error log could be
sent to developers when a system crashes, or a sorry-note could be shown to the
user in case of system performing under a specified level. Being able to perform
this in a non-intrusive fashion could improve user experience considerably, with
no risk to the future evolution of the system.

Experimenting with Real-Life Apps. Obviously, the feasibility of the above data
collection approaches is domain dependent, and the type of the application as
well as the setup created for testing has an impact on whether or not operations
are offline or real time. Therefore, experimenting the different approaches with
real-life applications and developer needs forms an important part of future work.
Our present strategy is to execute these experiments together with Vaadin and
the associated developer community. In addition, once we reach a maturity level
where the analysis framework can be used in production use, we wish to study
how interaction data that has been automatically collected relates to user studies
executed in more conventional fashion.

7 Conclusions

Fueled by the opportunities provided by the web and associated tools, analytics
regarding the use of software applications have become a central aspect in soft-
ware development. The rationale is that data regarding the fashion a software
system is used helps in understanding the true needs of end users. This in turn
enables the design of more satisfying software applications, with improved perfor-
mance, simplified interactions, and superior user experience. However, gathering
data on real-life use of applications is sometimes difficult, in particular when con-
sidering installable applications that cannot be easily updated remotely. More-
over, creating practical tools for analysis commonly requires application specific
attention.

In this paper, we are experimenting how analytics facilities similar to web
applications can be introduced to desktop and Rich Internet Applications writ-
ten in Java. To keep the application intact from analytics facilities, we are using
AspectJ as the implementation technique for introducing application-level mon-
itoring, which allows us to hook analytics facilities to user interface events in a
non-intrusive fashion. As for analysis, we are using an already existing tool set,
where open source systems play a key role. The implementation we have created
is concise, and it can be easily generalized to other applications if needed.

Based on our experiences reported in this paper, we find aspects a technique
that is well-suited for creating data extraction features for already existing appli-
cations. In particular, given that the applications follow certain conventions, it
appears to be relatively straightforward to create join points that are easily

Designing an Unobtrusive Analytics Framework 175

repeatable. Since we wish to track user actions, starting with user interface wid-
gets is the natural starting point and almost all user interaction mechanisms
in modern programs follow certain patterns, we believe that the results we have
obtained can be generalized to many other environments, too. Moreover, already
existing analysis tools provide support for filtering, analysing and visualizing
data at real-time.

Acknowledgment. The authors wish to thank Digile Need4Speed program (http://
www.n4s.fi/) for its support for this research.

References

1. Begel, A., Zimmermann, T.: Analyze this! 145 questions for data scientists in soft-
ware engineering. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 12–23. ACM (2014)

2. Buse, R.P., Zimmermann, T.: Information needs for software development analyt-
ics. In: Proceedings of the 34th International Conference on Software Engineering,
pp. 987–996. IEEE Press (2012)

3. El-Ramly, M., Stroulia, E.: Mining software usage data. In: Proceedings of 1st
International Workshop on Mining Software Repositories (MSR 2004), pp. 64–68
(2004)

4. Filman, R., Elrad, T., Clarke, S.: Aspect-Oriented Software Development. Addison-
Wesley Professional, Reading (2004)

5. Grönroos, M.: Book of Vaadin. Uniprint, Turku (2011)
6. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley Longman

Publishing Co. Inc., Boston (2002)
7. Hornbaek, K.: Current practice in measuring usability: challenges to usability stud-

ies and research. Int. J. Hum. Comput. Stud. 64, 79–102 (2006)
8. Juergens, E., Feilkas, M., Herrmannsdoerfer, M., Deissenboeck, F., Vaas, R., Prom-

mer, K.: Feature profiling for evolving systems. In: Proceedings of the 19th Inter-
national Conference on Program Comprehension, pp. 171–180. IEEE (2011)

9. Kristjánsson, B., van der Schuur, H.: A Survey of Tools for Software Opera-
tion Knowledge Acquisition. Department of Information and Computing Sciences,
Utrecht University, Technical report UU-CS-2009-028 (2009)

10. Matejka, J., Grossman, T., Fitzmaurice, G.: Patina: dynamic heatmaps for visu-
alizing application usage. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 3227–3236. ACM, April 2013

11. Pachidi, S., Spruit, M., van de Weerd, I.: Understanding users behavior with soft-
ware operation data mining. Comput. Hum. Behav. 30, 583–594 (2014)

12. Perry, B.W.: Google Web Toolkit for Ajax. OReilly Short Cuts. OReilly (2007)

http://www.n4s.fi/
http://www.n4s.fi/

A Functional Software Measurement Approach to Bridge
the Gap Between Problem and Solution Domains

Erdir Ungan(✉) and Onur Demirörs

Graduate School of Informatics,
Middle East Technical University, Ankara, Turkey

{erdir,demirors}@metu.edu.tr

Abstract. There are various software size measurement methods that are used
in various stages of a software project lifecycle. Although functional size meas‐
urement methods and lines of code measurements are widely practiced, none of
these methods explicitly position themselves in problem or solution domain. This
results in unreliable measurement results as abstraction levels of the measured
artifacts vary greatly. Unreliable measurement results hinder usage of size data
in effort estimation and benchmarking studies. Furthermore, there exists no
widely accepted measurement method for solution domain concepts other than
lines of code, such as software design. In this study, an approach is defined to
distinguish problem and solution domains for a software project and a software
size measurement methodology for solution domain is proposed based on soft‐
ware design sizes.

1 Introduction

Software projects are conducted to solve a problem in the real life. Similar to the case in
other engineering disciplines, it is possible to develop multiple solutions to a problem. As
these solutions may differ greatly, their size and the effort required to realize them also
vary significantly.

This fact, makes it difficult to establish a direct relationship between the product and
the process to develop that product. As there is no one-to-one relationship between a
problem and its possible solutions, it is difficult to define a relation between the size of
the problem and the solution.

Within the discipline of software measurement, there exists methods that measure
both problem and solution domains. Problem domain measurements came a long way
since their initiation and can quantify problem definitions and specifications. Solution
domain measurements are more formal and more precise as they are based on physical
constructs and models.

However, problem domain measures fall short in accuracy as inputs to prediction
models, and solution domain measures emerge too late in a project lifecycle to be used
in predictions. We believe this is one of the main problems in software measurement
(and estimation) as a discipline.

The main reason for problem domain measurement’s failure in representing the
development effort lies in the ambiguity of the process of developing a solution to a

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 176–191, 2015.
DOI: 10.1007/978-3-319-24285-9_12

problem at hand. Developing a solution to a problem is a “soft” area. Therefore problem
domain concepts fail to predict solution domain concepts on their own.

Most of the measurement and estimation methods assume that there is a continuity
in the development lifecycle, which begins with the problem statement and ends with
development and testing of the software product.

However, there is an inherent discontinuity between the concepts of problem and
solution. There is a gap between these two domains which the actual engineering or
“art” as some would call traverses.

Jackson states that, the solution is an answer from the machine domain to the problem
[29]. Therefore the relation between these two domains is not straightforward. It is
affected by the designer’s skills, imagination, and experience. Certain factors such as
use of design patterns, similarities between problem-solution tuples in an organization’s
historical data and traditions of an organization tend to help making this problem to
solution transformation formal and algebraic. Most of the estimation methods in the
literature exploit these factors and try to calculate solution domain concepts such as
development effort using certain multipliers for external factors and/or curve fitting
algorithms.

Measurements in problem domain are good for representing problem domain
concepts and measurements in solution domain are good for representing solution
domain concepts. Problem domain concepts such as price, features, can be represented
by problem domain measurements such as function points, feature points, use case
points. Solution domain concepts such as development effort, physical size, and devel‐
oper performance can be represented in solution domain sizes such as LOC and design
based sizes.

In this context, software size measurement plays an important role. It is widely
accepted that software size is one of the key factors that potentially affect the cost and
time of the software projects [17, 21, 22, 27, 41].

1.1 Problem Statement

In software project management it is crucial to be able to accurately quantify the size of
software as the size information is utilized as an input in most of the management activ‐
ities such as developing project estimates (e.g., effort, cost), risk assessment, produc‐
tivity measurement, performance management, benchmarking, quality management.

Problems of Granularity: Most, if not all, measurement methods in problem domain does
not incorporate a definition for abstraction and/or granularity level of the system being
measured. FSM methods such as COSMIC do define the granularity level of function‐
ality to be measured but they don’t define the granularity level of the system itself.

Today, software systems can be so large that it became virtually impossible to define
and communicate a whole system within a single analysis. This applies to both functional
and structural aspects of the definition of a system. Big software systems are now defined
in various levels of decomposition. Correspondingly, their functionality is defined in
various levels. Their architecture is vertically decomposed in many layers as well as
horizontally into components.

A Functional Software Measurement Approach 177

Development of subsystems resulting from the decomposition of a bigger system
can be delegated to separate development teams, departments or even companies. Soft‐
ware projects are defined for intermediate software products such as services, layers and
components. These projects can be defined so disjointed that there may be no informa‐
tion available to identify the decomposition level of the software product. The end
product can be a subsystem of a bigger system which is in turn a subsystem of a bigger
system. Similarly, the software product can be utilizing smaller systems which in turn
utilize further smaller systems themselves.

As problem domain software measures, that is predominantly FSM methods, lack
the information about the granularity level of the system being measured, size of a super
system, sub system or a component are all represented in a single level. Making, meas‐
urements non additive, non-homomorphic and non-transitive. This violates the metro‐
logical requirements for a measurement. With existing measurement methods, size of
an overall system will be different from their total size and cannot be calculated from
the size of its subordinates.

The level of granularity and hence, the number of Objects of Interest directly affect
the measurement result.

Functional process is not a universal or absolute definition for level of abstraction/
granularity. It is a relative definition for granularity as system functionality definitions
can be broken down into sub system functionality definitions and one may start to define
functional processes with a functionality definition which is either higher or lower in
level of abstraction in the continuum of problem-solution domain chain.

Defining functional process in each level of structural abstraction is possible. Rules
for defining functional processes can be applied to any level of system definition and
therefore the granularity level for the functionality definition will be consistent within
the level in which the measurement is performed. However, there will be functional
processes defined in different system decomposition levels, making the granularity level
defined by function process neither universal nor absolute.

Moreover, as far as software maintenance is concerned, changes request can be in
any level of decomposition. That is, changes in a requirement can be measured by FSM
methods, however a change request only causing a change in the implementation is hard
to measure by using artifacts in higher levels. Similarly, two low level changes would
be represented by the same measurement in higher levels. Based on this resolution
problem, FSM methods may prove to be inaccurate while to measure lesser than func‐
tional user requirement level changes.

Problems in Effort Estimation: During the last thirty years, numerous estimation models
for software projects were developed. Besides these generic models, organizations also
developed their own, specific estimation models. However, effort estimation models still
far from the required accuracy.

Parametric effort estimation methods in the literature take three main aspects into
consideration. Software Size, external factors and subjective assessments.

Most of the methods in the literature utilize functional size measurement methods
such as Function Points, IFPUG, COSMIC, NESMA and similar methods [6]. These
methods measure software size based on requirements and specifications, which is ready
at the beginning of the project lifecycle.

178 E. Ungan and O. Demirörs

On the other hand measurement methods in solution domain, based on source code,
design constructs and algorithms generally correlate better with development effort data
than those in problem domain [34, 43]. However, solution domain sizes cannot be
obtained early in the project lifecycle which is the time estimations are actually needed.

In order to overcome this, estimation methods suggest either predicting software size
and use those approximate values for estimation or measure domain size and convert it
to solution domain size based on some historical data [24, 45]. Both these approaches
again, introduce errors in estimation.

Problems in Benchmarking: The above mentioned problems in measurement results and
granularity also affects the quality of data in benchmarking data sets. Özcan Top and
Yilmaz [37] conducted a study in our research group on benchmarking data sets such
as ISBSG, and concluded that, those sets lack structural information about the projects.
We cannot deduct information about the abstraction level of measurements in those data
sets. Comparing data from varying abstraction levels will result in erroneous bench‐
marking. With existing measurement methods, size of an overall system will be different
from their total size and cannot be calculated from the size of its subordinates. And one
cannot get the information about how total size for a project is calculated. Similarly,
studies also shown that the quality of the measurement in public data sets is questionable
and reliability of any size information is disputed.

1.2 Solution Approach

In this study, we recognize the separation of problem and solution domains. We relate
activities, artifacts and their corresponding size measurements to these domains.

While separating the problem and solution domains, we also suggest that problem and
solution domain definitions shift as problems are decomposed into smaller problems. System
decomposition and abstraction techniques guide this shift through the engineering process.

Similar to the most common FSM methods, we consider data movements as the base
functional component for measurement. Data movement is an abstract, domain inde‐
pendent concept. It is atomic as far as a decomposition level is concerned and can be
well defined for a given measurement view.

Abran [8] states this as: “The key concept of functionality at the highest level of
commonality that is present in all software was identified as the data movement. This
data movement concept was then assigned to the metrology concept of a size unit”.

Considering that data movements is a common feature of many FSM methods there
is a quite broad consensus that data movement is a good representation of the concept
of the functional size of software [23].

We believe definition of functionality is traversable through decomposition levels.
Therefore, we perceive the functional requirements as definitions of functionality which
can be defined in various abstraction levels. Hence, different levels of functional
processes can be defined in corresponding decomposition levels. Functionality allocated
to a structural entity in a decomposition level can be broken down into smaller functional
processes defined in a lower decomposition level.

We suggest that the definition of functionality is defined in a chain of alternating
problem and solution domains. That is, a solution (function) poses as a problem for lower

A Functional Software Measurement Approach 179

levels of decomposition and a problem (expected outcome) will be attained through
solutions (functions) in a further lower level of decomposition.

This leads us to the notion that a Base Functional Component for functionality, may
exist in both problem and solution domains based on the perspective therefore posing
as a common concept in both domains.

The Base Functional Component for Data Movement Point (DMP) measurement
method is based on the data movement concept which is commonly present in both
domains. We suggest that, through such a method, size information obtained in one
domain will be usable in other.

We propose that a measurement framework which incorporates decomposition
levels into measurement will mitigate the problems defined above.

Estimation of concepts in the problem domain and solution domain will be more
accurate if they are based on concepts residing in their respective domains. However,
as mentioned before, existing measurement methods are confined in one domain and
utilized for normalizing or estimating concepts in the other domain.

We propose a measurement framework consisting of a functional size measurement
method and an approach for approximating functional size. Our functional size meas‐
urement approach is based on the approach introduced by the COSMIC method. Size
approximation is based on structural decomposition considerations.

It is possible to measure software size using the lowest level of decomposition for
data movement, automatically. Then, it is possible to scale up the measurement by
mapping lower decomposition level objects to objects in higher levels.

We also present a software tool to perform the measurement method defined.

2 Previous Studies on Measuring Functional Software Size Based
on Software Design Models

Bévo et al. [8] associates the concepts of UML version 1.0 and COSMIC-FFP version
2.0. Their approach is based on use cases and class diagrams. Each use case maps to a
functional process in COSMIC notation. Actors of a use case are considered as functional
users. Scenarios of a use case are transformed into data movements and each class of a
class diagram is mapped with a data group. However, triggering events and measurement
layers in COSMIC notation are not mapped to any UML concept. Proposed approach
was verified with five case studies in [9]. The procedure is applied in a measurement
tool named, Metric Xpert.

Jenner [25] evaluates the model of Bévo et al. and improves the model by mapping
additional UML concepts to COSMIC concepts. Unlike Bévo et al. he (she) maps each
functional process to a sequence diagram. Interaction messages in each sequence
diagram are mapped to data movements. She suggests usage of swim lanes to represent
measurement layers. This procedure is also supported by a measurement tool [24].

Poels’s [39] model which was developed by associating the concepts of COSMIC
and the concepts of the business model and the services model of MERODE [28] allows
measurement of multilayered applications. The model is proposed for the measurement
of management information systems applications. Based on the business model and

180 E. Ungan and O. Demirörs

COSMIC mapping; functional processes corresponds to a set of class methods and data
movements are mapped to each of these class methods. Classes of the business model
corresponds to data groups.

Unlike Bévo et al. [8], Nagano et al.’s proposal [35] allows measurement of real time
applications from xUML [32] concepts. The model utilizes Class, state transition, and
collaboration diagrams. The attributes of the class diagrams, message parameters and
control signals are considered as candidate data groups. Collaboration diagrams are
utilized for the identification of triggering events. Finally, set of data movements in
collaboration diagrams correspond to functional processes.

Azzouz et al. [4] presents a proposal based on the fundamentals of Bévo’s [8] and
Jenner’s [24] models and develops a tool to automate the functional size measurement
process of management information systems projects developed with Rational Unifies
Process (RUP) methodology. The model utilizes use cases and use case scenarios in
three phases of the development methodology. These phases are business modelling,
requirements analysis and design. One advantage of this proposal is that the tool had
integration with Rational Rose tool.

Condori-Fernández et al. [33] presents a proposal to measure the functional size of
object oriented systems. The proposal works based on the OO-Method requirements
model including functions refinement tree, use case diagrams and sequence diagrams.
Use cases and functions of the refinement tree correspond to functional processes.
Sequence diagrams’ elements corresponds to data groups and data movements. The
model does not explain triggering events. Although the model does not have a tool
support, it has been verified in [14–16].

Habela et al. [18] presents a mapping of UML version 1.5 and COSMIC FFP version
2.2 in the use case context. The proposal depends on detailed use case definitions and
use case diagrams. Use cases are mapped with functional processes and scenario
descriptions are mapped with data movements. In the literature there is no such study
to describe the verification of the proposal.

Levesque et al. [19] develops a model for the measurement of management infor‐
mation systems from use cases and sequence diagrams. In the model, each use case
corresponds to functional process and each actor of the use case corresponds to func‐
tional user. Sequence diagram elements are mapped to data groups and data movements.
In this model data manipulations are also taken into account. Error messages in the
sequence diagrams correspond to data manipulations. Levesque’s proposal does not
supported with a measurement tool. In addition, it was mentioned that the result of the
case study conducted with Rice Cooker case [17] displayed %8 difference from the
original measurement result.

Marín et al.’s [36] proposal allows measurement of object oriented systems devel‐
oped using OO-Method. OO-Method, being a Model Driven Architecture approach, has
a three tier architecture: presentation tier, logic tier, and database tier. Layer concept of
COSMIC measurement method is associated with these tiers. Interaction units in presen‐
tation tier are associated with functional processes.

On the other hand, the proposal involves three models: the requirements model, the
conceptual model and the execution model. The conceptual model is composed of four
models: the object model, the functional model, the dynamic model and the presentation

A Functional Software Measurement Approach 181

model. Classes in the object model are associated with data groups, whereas attributes
of the classes are associated with data attributes. Finally, the proposal has a well-defined
rule structure, tool support and has been verified using various case studies.

3 Problem Domain and Solution Domain Distinction

A real world problem, as humans see it, is a behavior-first domain. Humans perceive a
problem or a need by the behavioral aspect first. We first perceive the cause and effect,
which are behavioral, then attach those to objects. Solutions however, are object-first,
rendering the solution domain an object-first domain.

The procedure of solving a problem is, essentially, devising components to attain
the desired behavior. This phenomenon, makes the mapping of problem domain
concepts to solution domain concepts arbitrary and non-mathematical.

Similarly in software engineering. The problem is defined as behavior-first and
solution as object-first.

A problem can be represented as a hierarchy of sub-problems. A higher level problem
can be broken down to lower level problems. This phenomenon is defined as Functional
Decomposition in engineering.

Similarly, components can also be represented as a hierarchy of sub-components.
A larger component can be broken down to smaller lower level components. This
phenomenon is defined as Structural Decomposition in engineering.

However there exists no natural relation between these decompositions in two
domains. Any mapping in between items in any decomposition level is problem and
solution specific and not straightforward. One “item” in the functional decomposition
tree in the problem domain may correspond to several “items” in the structural decom‐
position tree and vice versa. This is the main factor that there is a gap between problem
and solution domain which is crossed through use of engineering problem solving.

Axiom: Software is a systems that consists of data movements in various levels of
granularity. Abran elaborates on this on [1, 2].

The question about “how” a problem is solved is essentially the process of breaking
down a larger “What” question to smaller “What” to do questions. The question “What?”
stands for the description of a need or the aim of the system and the question “How?”
stands for the solution devised for this problem.

The decomposition for a system can happen in any level and may be extended verti‐
cally to higher and lower levels. Theoretically this extension is infinite. Higher and
higher level problems can be defined as well as lower and lower level solutions.

Engineering is about defining the start and end points for a system. Limiting the
highest level with system boundary and lower level with system abstraction principles.
In our approach, lowest level is the methods of a class, whereas lower levels can be
defined for physical bytes in the memory, registers in the memory, bits defining
mnemonics of instructions etc.

Figure 1 displays the boundaries of problem and solution domains for software
engineering discipline. Positions of work products and software lifecycle activities with
respect to these domains are also defined.

182 E. Ungan and O. Demirörs

Fig. 1. Problem and solution domain borders in a software project lifecycle

Problem domain, by definition, involves the real life need and problem defini‐
tion. Activities performed to understand the problem such as requirements elicita‐
tion and requirements development also lie in the problem domain. Moreover, the
validation of the solution, that is, validating whether the solution meets our needs
also lie outside the solution box and in problem domain. High-level requirement
based testing and related test case generation activities may fall in this category.

Solution domain, on the other hand, involves the activities performed towards
building a solution to the problem. Typically, these activities include detailed analysis,
design, implementation and integration. Implementation typically involves coding and
unit test activities.

In order to prove our suggestion on the separation of problem and solution from a
metrics point of view, we conducted two studies [42, 43] with I.Unal. In the first study
we investigated the correlation of problem and solution domain sizes with the problem
and solution domain effort. In the second study, we conducted a case study where a
single set of requirements were to be developed using two different implementation
approaches. Both studies supported our suggestions about problem and solution domain
separation. A similar but theoretical study by Lavazza and Bianco [28] also demonstrates
the independence of problem and solution domain through the Rice Cooker case origi‐
nally designed by COSMIC [17].

4 Suggested Measurement Approach

In this study we suggest a functional size measurement approach which is essentially
based on COSMIC FSM principles. In essence, it is the measurement of data movements
within a defined level of decomposition. It also provides information about level of
decomposition in which the functional size is measured. We refer to the method as Data
Movement Point (DMP).

Describing the Empirical World: Characterization and Modeling: The method
considers characterization and modeling of the software system in two dimensions:
Functional size and structural decomposition.

A Functional Software Measurement Approach 183

Describing the Empirical World: Characterization and Modeling: Instead of a
mathematical model, DMP method utilizes conceptual modeling for modeling the
empirical world. UML models are used to represent structures, relations among them
and behavior of a software system in object oriented software engineering methodology.

Conceptual Model for Functional Size: As a conceptual model for functional size
attribute, a behavioral model is needed. There are studies in the literature that utilize
different behavioral diagrams to measure functional size.

For DMP measurement method we needed to use a model which had these properties
to meet the needs of the overall measurement approach:

• Enable automated generation of the model by backfiring form the existing software
products in the solution domain.

• Can be defined in various decomposition levels.
• Can be used to model concepts both in problem domain and solution domain.
• Give as much information as possible about the software model.

Based on these needs, we chose sequence diagram as the main software model for
the empirical world to measure functional size attribute.

Definition of Atomic Level of Decomposition: It is hard to distinguish concepts
belonging to different intermediate levels of decomposition from each other. However,
lowest level of decomposition (minimum size of granule) can be identified for a meas‐
urement objective.

The objective of the DMP measurement method is to measure the functional size
of the software to use in project management activities such as effort estimation,
performance management, productivity management and benchmarking. Therefore
the lowest level of decomposition relevant to this objective would be the lowest
level of data movement in which actual effort is put in development. In object
oriented software development, this level would be the method level. The lowest
level of decomposition for Data Movements in an object oriented system design
would be the calls (and methods) of an object. There would be no lower levels of
data movement to be developed.

Definition of Tier: Each decomposition of the system will result in a new Tier of system
definition. Each increase in the tier number represents one higher level of decomposition
traversed in the description of the system.

Each tier consists of objects communicating with same tier level of objects. One
set of objects in a tier can be present in a higher level if the entry and exit point of
data movements between them and other objects does not change on their end. That
is, certain object may belong to more than one tier at the same time.

The method level decomposition is defined as universal Tier 0 for every measure‐
ment. Then each consolidated view of decomposition is defined as Tier 1, Tier 2, Tier
3 etc. Tier number is defined based on specific system definition. It is a definitive value
and does not infer any ratio in scale, it is a measurement in ordinal scale.

184 E. Ungan and O. Demirörs

Mapping Phase. Mapping phase in DMP method corresponds to mapping the scenarios
to decomposition levels, that is mapping sequence diagrams to tiers.

A specification begins by identifying the entities in the problem domain and their
interrelationships and continue further by detailing the functions performed by and the
internal state of each object.

The next step would be to identify which objects could allow decomposition and the
layers of abstraction in each decomposition level.

A major advantage of object oriented development and UML modeling is that,
solution domain entities can be defined in a direct and natural correspondence with
the real world, since problem domain entities may be introduced directly into the
model.

a. Identifying Scenarios: Based on the decomposition level (Tier Value) for the meas‐
urement, definition of the functional processes and their triggering entries change.
1. The triggering entry of the functional process must be visible in the system model

defined at this level.
2. The structural entity receiving the triggering entry must be visible in the system

model defined at this level.
3. The output of the process (Exit or Write) must be visible in the system model

defined at this level.
Note that, functional process in higher tiers, will also be preset in lower tiers as their
triggering entries will also be present in lower tiers. That is, certain functional
processes will have different sizes in different tiers. Typically increasing by the
decreasing tier number.

b. Identifying Objects: There exist several rules to check whether a structural entity
belongs to a Tier.
• The tier of a structural entity is the level of decomposition it has over the class/

method level.
• If there exists no more super entities for an object, that tier is considered the

maximum Tier for that object. For further tiers the object is considered to exist
in every higher than its maximum tier level.

c. Identifying Atomic Data Movements: Within atomic level of functional processes,
the data movements are represented as method calls between structural entities
(objects). This call is not an abstraction or a superstructure but the actual developed
method call during the implementation. In other words, this call must be able to be
represented as a single code instruction.

d. Identifying Tiers: The lowest tier level in DMP method is 0. Tier 0 corresponds to
the decomposition level in which all communication between structural entities
(namely objects, in this level) is carried on with atomic data movements, a single
method call.

The Measurement Phase. Once the measurement tier, functional process and objects
participating in the process is identified. The sequence diagram for the process is drawn.
In the sequence diagram of the functional process, these calls between objects corre‐
spond to data movements (Synchronous message, Asynchronous message, Creation
message, Destruction message, Self message, Found message).

A Functional Software Measurement Approach 185

Applying the Measurement Function and Aggregating Measurement Results. The
size of a functional process is found by counting the total number of data movements
(calls) within its sequence diagram. The size of a software component or a software
product for a tier is calculated by summing of all its functional process sizes in that tier.
In order to calculate the size of developed software (with the purpose of effort estima‐
tion), re-used or COTS components should be identified as a single structural entity in
the models.

4.1 Measurement Tool – SDMC

We have developed a measurement tool specifically designed to perform this task. The
tool was developed as a graduate project in METU Informatics Institute, Software
Management graduate program by Yalın Meriç with the co-supervision of Erdir Ungan
and Onur Demirörs [46]. The tool was named Sequence Diagram Metric Collector
(SDMC).

In order to automate and communicate UML diagrams, Object Management Group
(OMG) has developed XMI which is an XML standard to formalize UML data and
provide a method to exchange metadata information between different systems. SDMC
tool generates and interprets XMI files defining sequence diagrams.

SDMC gets folders with source code files in it so that, the measurement can be
performed independent of the framework or IDE utilized. SDMC can interpret most
popular object oriented programming languages such as: Java (versions 1.4, 5, 6), C#
(versions 1.2, 2, 3, 4) and Visual Basic (7.1, 8, 9).

SDMC counts data movements in each sequence diagram. In order to obtain a well-
structured measurement result, this is consolidated and interpreted. For the base level –
Tier 0- measurement, the data should have been queried based on measurement date,
project and component. For the component level, data movements between methods
should be grouped by the classes in the components. So that, only data movements
coming out and in of the components are counted. Similarly, for user defined class
clusters, which form the layers, design level components and interfaces the measurer
defines, the data movements should be grouped by the groups.

5 Validation

In order to validate our solution to these problems and research goals we set in Sect. 1;
we defined these goals for the case study we performed.

1. Verify that it is possible to measure existing software products by backfiring meas‐
urable software models from source code.

2. Verify that DMP is a better input for effort estimation than problem domain sizes.
3. Investigate DMP’s representation of project effort vs. solution domain sizes’.
4. Verify that DMP method results are reliable and repeatable.
5. Verify that DMP is easier to learn and use than other FSM methods.

In order to increase the number of samples and investigate the performance of DMP
in different software development environments, we conducted four case studies in four
different environments.

186 E. Ungan and O. Demirörs

First case study was conducted in a company which maintains a big MIS software
framework. The company releases monthly releases. That is, the development timeframe
and effort is fixed for each release. They include new features, bugs fixes and changes
in existing modules. The second case study was conducted with student projects.
Different student groups were required to develop a software product with the same
purpose and a common problem definition. The third case study was conducted with an
IT department of a governmental institution. The fourth case study was conducted with
a single very big simulation project developed for the defense industry.

Case Study Results: Due to limited length of this paper, we cannot present the results
of the case study in detail. One can see the details of the validation case study in [44]
Results indicated that LOC size correlates better with effort than both COSMIC and
DMP within an organization. However, when we look at the overall correlation, that is,
cross organization effort correlation, DMP performs better than LOC. This result is
expected as changes in development technology and environment impacts the LOC the
most. DMP on the other hand, is less prone to this effect as it is more abstract in nature.

In each case DMP’s correlation was higher than COSMIC’s which also backed up
our initial claims.

DMP measurements do have a good correlation with LOC sizes. The correlation of
COSMIC size with LOC however is found to be much lower both in our study and other
studies in the literature. Based on this, we may say that DMP measurement is a better
base for predicting LOC for the purpose of effort estimations.

Measurement Effort with DMP. We have observed that, modeling the source code
from the sequence diagram for tier 0 measurements can take time as long as a couple of
hours based on the size of the code, number of structural entities, layers and the compu‐
tation power of the computer the SDMC tool is running on. However, as the measure‐
ment was performed automatically, the human effort needed to conduct the measurement
was very small.

For higher Tier measurements, the measurement time and effort is less as the size of
higher level models and hence their DMP size are lower. However, in the industry
companies tend to omit detailed design phases or require design models only for complex
elements of the project.

On the other hand, FSM measurement (e.g. COSMIC, IFPUG) takes much more time
and human effort. In our previous studies, we had calculated the average effort for COSMIC
measurements as 2 min per FP for experts and much higher for inexperienced measurers
[45]. DMP is a great improvement on other FSM methods for measurement effort.

Learning Curve for DMP. We had the chance to let software engineers perform the
measurement in Cases 1 and 3. As far as Tier 0 measurements are concerned, it took a
negligible time for them to learn how to use SDMC and measure DMP from the source code.

We had explained the rationale of the method and told them how to use it for higher
tiers in previous phases of a project. Those with experience in software design and
development had no difficulties in practicing the method. However, those with experi‐
ence in only analysis had difficulties on predicting the tier level of a measurement
performed in earlier stages.

A Functional Software Measurement Approach 187

Nonetheless, compared with our previous experiences in COSMIC training, meas‐
urers learned to DMP method in much less time and with higher success. In case 1 they
mentioned it was natural for them to predict how deep an entity will go in decomposition
as they are accustomed to imagine further levels of development while they are writing
requirements or developing pseudo designs for the requirements.

5.1 Validity Threats

Different organizations have different definitions for project effort. The method of
collecting the effort data also differs. Cross case evaluations based on effort data may
have less accuracy compared to evaluations within a single organization.

In Case 2, student projects were investigated. Being class assignments, the quality
of project documents and accuracy of project data may be lower than those collected
from actual projects in the industry.

6 Conclusion

We defined a measurement approach based on a concept that is common in both problem
and solution domains; data movement. This streamlines measurement of both project
and product attributes in two domains. This improves conversion of units, estimations,
approximations and normalization of several size definitions and values.

Improvements in Reliability of Measurement Results. We minimize human errors
and subjective assessments by basing the Tier 0 measurements to actual constructs,
which can be measured by an automated tool.

For higher level measurement results we traverse through higher levels utilizing
metadata for the lowest level. Only point of human interpretation is in the generation of
this metadata which relates lower level concepts to higher level ones. This mitigates
measurement errors as there is less room left for interpretation and renders errors recov‐
erable by fixing the metadata.

Resilient Measurement. Existing FSM methods follow a top down approach in
modeling. Functional size measurement methods in the literature first develop an
abstract model for a system definition for measurement purposes and then conduct
measurement on that model. This abstraction needs to model the whole system correctly
to make a successful measurement. Imperfect, partial or incomplete system definitions
result in erroneous measurement models and this in turn have a big impact on the meas‐
urement results as the measurements use this model as a basis and use in every step of
measurement procedure.

However, DMP method have a bottom up modeling approach. The measurement
model is based on atomic level of decompositions. This makes the measurement results
less susceptible to erroneous and incomplete system definitions. Missing parts of a system
will not affect the other parts and aspects of the measurement model. Only error in the
measurement results will be missing size for the missing definitions. This makes the DMP
model much less susceptible to imperfect, partial or incomplete system definitions.

188 E. Ungan and O. Demirörs

By DMP method, it is possible to measure specifications defined in levels lower than
functional user requirements. This makes measurement of components in highly decom‐
posed systems possible independent of other sub systems and components.

DMP method also makes it possible to size software changes that are defined in lower
resolution levels than functional user requirements.

Better Effort Estimations. Most estimation models in the field dictate using several
factors and multipliers to convert problem domain sizes to solution domain sizes and
utilize historical data to estimate the project effort based on the solution domain size.

Assuming an inherent relation between different size measurements in different
domains and predicting one using other actually introduces another level of estimation
error. We suggest an estimation approach which rely on the same concepts that the
measurement method does will eliminate the gap caused by such conversions and by
this approach, estimations will become less prone to gaps between domains and project
phases.

Moreover, most FSM methods either does not include data manipulations in meas‐
urement or just incorporate the size of manipulations as an order of complexity to the
overall measurement. As discussed above, manipulations defined in a level gradually
become movements as decomposition levels deepen. By measuring in lower levels of
decomposition, DMP method measures data manipulations which would otherwise be
left out in higher levels into measurement. This should also increase the accuracy of
estimations.

Better Measurement of Software Changes. By DMP method, it is possible to measure
specifications defined in levels lower than functional user requirements. This will make
measuring software changes that are defined in lower resolution levels than functional
user requirements more accurate than existing FSM methods. Identifying the tier level
of change requests will also improve the change management processes as the scope
and impact of the change can be better analyzed.

Better Benchmarking. Having decomposition level incorporated into measurement
results makes the scope and abstraction of the measured software product visible. This
is especially crucial in benchmarking studies as current benchmarking datasets either
do not include this information or do not have predefined scale for decomposition level.
Comparing measurement methods on the same level of decomposition will greatly
improve the accuracy of benchmarking studies.

References

1. Abran, A.: Software metrics need to mature into software metrology. Position Paper Prepared by
Software Metrics Need to Mature into Software Metrology (Recommendations), pp. 1–18 (1998)

2. Abran, A.: Software Metrics.and Software Metrology. Wiley and IEEE-CS Press, New Jersey
(2010)

3. Baker, A.L., Bieman, J.M., Collins, F., Fenton, N., Gustafson, D.A., Melton, A., Whitty, R.:
A Philosophy for Software Measurement, pp. 1–9

A Functional Software Measurement Approach 189

4. Azzouz, S., Abran, A.: A proposed measurement role in the Rational Unified Process (RUP)
and its implementation with ISO 19761: COSMIC FFP. In: Software Measurement European
Forum 2004, Rome (2004)

5. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
6. Ozkan, B., Turetken, O., Demirors, O.: Software Functional Size: For Cost Estimation and

More, pp. 59–69 (2008)
7. Boehm, B.W.: Estimating Software Costs. Prentice Hall, Englewood Cliffs (1981)
8. Bévo, V., Lévesque, G., Abran, A.: Application de la méthode FFP à partir d’une spécification

selon la notation UML: compte rendu des premiers essais d’application et questions. In: 9th
International Workshop Software Measurement, Lac Supérieur, Canada, pp. 230–242 (1999)

9. Bevo, V.: Analyse et Formalisation Ontologique des Procédures de Mesure Associées aux
Méthodes de Mesure de la Taille Fonctionnelle des Logiciels: de Nouvelles Perspectives Pour
la Mesure. Doctoral thesis, Université du Québec à Montréal - UQAM, Montréal (2005)

10. Boehm, B.W.: Software Engineering Economics. Prentice-Hall Inc, Englewood Cliffs (1981)
11. Dekkers, C., Gunter, I.: Using backfiring to accurately size software: more wishful thinking

than science? IT Metrics Strat. 6(11), 1–8 (2000)
12. Kemerer, C.F.: An empirical validation of software cost estimation models. Commun. ACM

30(5), 416–429 (1987)
13. Symons, C.: COSMIC GROUP CASE STUDY: RICE COOKER, pp. 1–15 (2010)
14. Condori-Fernández, N., Pastor, O.: An empirical study on the likelihood of adoption in

practice of a size measurement procedure for requirements specification. In: 6th International
Conference on Quality Software – QSIC, Beijing, pp. 133–140 (2006)

15. Condori-Fernández, N., Pastor, O.: Evaluating the Productivity and Reproducibility of a
Measurement Procedure. In: ER Workshops, pp. 352–361 (2006)

16. Condori-Fernández, N.: Un procedimiento de medición de tamaño funcional a partir de
especificaciones de requisitos. Doctoral thesis, Universidad Politécnica de Valencia, Valencia
(2007)

17. COSMIC Group: Rice Cooker – Cosmic Group Case Study. École de technologie supérieure,
Université du Québec à Montréal - UQAM, Mo

18. Glowacki, E., Serafinski, T., Subieta, K., Habela, P.: Adapting Use Case Model for COSMIC-
FFP based Measurement

19. Levesque, G., Bevo, V., Cao, D.T.: Estimating software size with UML models. In:
Proceedings of the 2008 C3S2E Conference on - C3S2E 2008, p. 81 (2008)

20. Poels, G.: Definition and validation of a COSMIC-FFP Functional Size Measure for Object-
Oriented Systems, pp. 1–6 (2003)

21. Zhao, H., Stockman, T.: Software sizing for OO software development - object function point
analysis. In: GSE Conference

22. ISBSG Data Collection Questionnaire. http://www.isbsg.org
23. ISO: ISO/IEC 14143-1- Information Technology – Software measurement - Functional Size

Measurement. Part 1: Definition of Concept (1998)
24. Jenner, M.S.: Automation of counting of functional size using COSMIC-FFP in UML. In:

12th International Workshop Software Measurement, pp. 43–51 (2002)
25. Jenner, M.S.: COSMIC-FFP and UML: estimation of the size of a system specified in UML –

problems of granularity. In: 4th European Conference on Software Measurement and ICT
Control, Heidelberg, pp. 173–184 (2001)

26. Laranjeira, L.A.: Software size estimation of object-oriented systems. IEEE Trans. Softw.
Eng. 16(5), 510–522 (1990)

190 E. Ungan and O. Demirörs

http://www.isbsg.org

27. Lavazza, L., Del Bianco, V.: A case study in COSMIC functional size measurement: the rice
cooker revisited. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego, J.J.,
Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 101–121. Springer, Heidelberg
(2009)

28. Jackson, M.: Software Requirements & Specifications: A Lexicon of Practice, Principles and
Prejudices. ACM Press/Addison-Wesley Publishing Co., New York (1995)

29. Jenner, M.S.: Automation of counting of functional size using COSMIC FFP in UML
functional users requirements use case functional process type sub-process, pp. 43–51

30. Jenner, M.S.: Backfiring COSMIC size from Java and C++ code
31. Mellor, S., Balcer, J.: Executable UML: A Foundation for Model-Driven Architecture.

Addison Wesley, Reading (2002)
32. Condori-Fernández, N., Abrahão, S., Pastor, O.: On the estimation of the functional size of

software from requirements specifications
33. Habra, N., Abran, A., Lopez, M., Sellami, A.: A framework for the design and verification

of software measurement methods. J. Syst. Softw. 81(5), 633–648 (2008)
34. Nagano, S., Ajisaka, T.: Functional metrics using COSMIC-FFP for object-oriented real- time

systems. In: 13th International Workshop on Software Measurement, Montreal (2003)
35. Marín, B., Pastor, O., Giachetti, G.: Automating the Measurement of Functional Size . . .
36. Top, Ö.Ö., Özkan, B., Nabi, M., Demirörs, O.: Internal and external software benchmark

repository utilization for effort estimation. In: IWSM/Mensura, pp. 302–307 (2011)
37. Rule, P.G.: The importance of the size software requirements, Software Measurement

Services Ltd, p. 18, UK (2001)
38. Poels, G.: A functional size measurement method for event-based object-oriented enterprise

models. In: 4th International Conference on Enterprise Information Systems – ICEIS, Ciudad
Real, pp. 667–675 (2002)

39. Dumke, R., Abran, A.: COSMIC Function Points: Theory and Advanced Practices (2011)
40. Standish_Group: The 2003 CHAOS Chronicles. The Standish Group International, Inc.

(2003)
41. Ünal, I., Ungan, E., Demirörs, O.: The effect of implementation technology on software

development effort: an industrial case”. In: EPIC Workshop, the Proceedings of International
Symposium on Empirical Software Engineering and Measurement, Bolzano, Italy (2010)

42. Ünal, I.: Predicting effort from COSMIC FSM method or design size : a case study. Technical
report, Middle East Technical University, Ankara (2010)

43. Ungan, E. Ph.D. thesis. Graduate School of Informatics. Middle East Technical University,
Ankara, Turkey (2013)

44. Ungan, E., Demirörs, O., Top, Ö.Ö., Özkan, B.: An experimental study on the reliability of
COSMIC measurement results. In: Abran, A., Braungarten, R., Dumke, R.R.,
Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 321–336.
Springer, Heidelberg (2009)

45. Del Bianco, V., Lavazza, L., Politecnico, C.: An Empirical Assessment of Function Point-
Like Object-Oriented Metrics. In: no. Metrics (2005)

46. Meriç, Y., Ungan, E.: Automated functional size measurement using sequence diagrams,
METU (2013)

A Functional Software Measurement Approach 191

Improving the COSMIC Approximate Sizing Using
the Fuzzy Logic EPCU Model

Francisco Valdés Souto(✉) and Alain Abran

École de technologie supérieure – Université du Québec,
Montréal, Canada

francisco.valdes@spingere.com.mx,
francisco.valdes.1@ens.etsmtl.ca, Alain.Abran@etsmtl.ca

Abstract. In software engineering, the standards for functional size measurement
require, for accurate measurement results, that the functionality to be measured be
fully known. Therefore, in the early phases of software development when there is
a lack of details, approximate sizing approaches must be used instead of the stand‐
ards themselves: such approximate sizing techniques are typically based on the anal‐
ysis of historical data of the functional size of a number of completed projects within
an organization. This paper revisits a fuzzy logic size approximation technique – the
EPCU model, and presents an improved version, which lifts a number of constraints
on its design, considering the Vogelezang dataset used in the literature to define the
Equal Size Bands approximation approach.

Keywords: EPCU model · COSMIC ISO 19761 · Approximate sizing · Fuzzy
logic · Functional size · FSM

1 Introduction

To date, the ISO has recognized five functional size measurement (FSM) methods for
software as compliant with ISO 14143-1:

• Four are considered as 1st generation FSM methods: MKII: ISO 20698, IFPUG: ISO
20926, NESMA: ISO 24570, and FISMA: ISO 29881.

• One is referred to as a 2nd generation FSM method: COSMIC – ISO 19761 [6].

These FSM methods work best when the information to be measured – the functional
user requirements – is fully known. However, this is most often not the case in the early
phases of software development projects when only the non-detailed information is
commonly available [4, 13, 14]: approximation techniques are then necessary to tackle
this lack of details and to come up within a relevant range of candidate functional sizes.

Similarly, as pointed out in [8], “a rapid size measurement will be acceptable if it
can be produced faster and still can deliver a reliable approximation of the detailed size
measurement”. As observed by Desharnais et al. [11], when the software documentation
is lacking it is not possible to apply all the detailed measurement rules and the measurers
must then fall back on approximation techniques for sizing the requirements without

© Springer International Publishing Switzerland 2015
A. Kobyliński et al. (Eds.): IWSM-Mensura 2015, LNBIP 230, pp. 192–208, 2015.
DOI: 10.1007/978-3-319-24285-9_13

enough details. While the Desharnais et al. [11] research work focused on the IFPUG
FSM [12] method, their key findings are relevant to all FSM methods. For instance, in
[11] a number of contexts were identified where the detailed measurement rules cannot
be used, such as:

• The documentation is not precise enough for the application of the detailed meas‐
urement rules.

• The amount of work required to apply the detailed measurement rules to obtain
precise measures of the software, and the work required subsequently to update the
detailed measurement results, is perceived by management as being too expensive.

Santillo [13] further states that the “functional size of software to be developed can
be measured precisely [only] after the functional specification stage: this stage is often
completed relatively late in the development process.”

A few researchers have developed approximation approaches [21] for measuring
software functional size by analyzing historical data from completed projects; however,
few of them have investigated how the performance of such approximation techniques
in contexts with missing information, as encountered in the early phases of software
projects.

In previous works, a fuzzy logic-based EPCU approach for approximate func‐
tional size in COSMIC was proposed by Valdés et al. using as a reference the Equal
Size Bands Approach defined by Vogelezang et al. [8]: to do so did not require
access to the details of this dataset. For organizations that do not have historical
data, this fuzzy logic-based model could be useful to approximate functional size
early in the development process.

This paper aims to improve the EPCU approach for approximate functional size
without historical data [21, 24], considering the dataset used by Vogelezang et al. [8] to
define the Equal Size Bands Approach. More specifically, this paper is focusing on the
output variable domain: indeed, in the previous works, the dataset was not accessible
and the assumption about the largest category (Very Large) was that its average value
(16.4 CFP) represented adequately the full quartile, which meant that most of the largest
sizes were close this average. Later access to the detailed dataset and personal feedback
from the author of Vogelezang et al. [8] provided additional insights about the dataset,
clarifying in particular that the average value (cutoff) for the largest category did not
consider larger functional processes.

The rest of this paper is organized as follows. Section 2 describes the related works.
Section 3 presents an analysis from the dataset used to generate the Equal Size Band
Approximation Approach, and the validation of using a continuous range of possible
values from 2 CFP with a “natural” upper boundary, or cutoff, stated at 16.4 CFP for
the output variable in the EPCU model approximation approach. Section 4 describes the
improvement applied to the EPCU model approximation approach. Section 5 presents
the results gathered from the application of the EPCU model approximation approach
using the same input data in the case study defined in [24] and the comparison with the
previous work. Section 6 presents the conclusions.

Improving the COSMIC Approximate Sizing 193

2 Related Works

In 1997, Meli [18] proposed two techniques for two distinct types of size approximation,
but did not report on their performance:

• Early Function Points (EFP), a faster version of the IFPUG 4.0 approximation
method, and

• Extended Function Points (XFP), derived from the EFP after the application of three
correction factors.

In 2003, Desharnais et al. [11] analyzed two approximation techniques used in the
industry, Function Points Simplified (FPS) [15] and Backfiring [16], using two verifi‐
cation criteria selected from ISO 14143-3: accuracy and convertibility. They reported
that, in the organizational context of their study, the FPS technique performed better
with an accuracy range of 5 %.

In 2004, Conte et al. [14] extended the Early & Quick (E&Q) technique to the
COSMIC FSM method, and indicated that further tests would be needed to make adjust‐
ments to the proposal, or to confirm it. This E&Q technique is based on (direct) analogy
and (derived) analysis: it is a human-based size approximation method, and is impacted
by the approximator ability to “recognize” the components of the system as belonging
to the proposed classes.

In 2007, Vogelezang et al. [8] proposed a size approximation technique based on
size bands using the quartile approach and reported on a study of 50 projects for the
identification of such size bands. They also investigated the influence of distinct factors
in approximate sizing and reported that, within their sample of 50 projects, the only
factor that had a substantial influence on the size of an average functional process in
each of the quartiles was the number of functional processes [8].

In 2007, the COSMIC Group published the ‘Advanced and Related Topics’ [5]
document which describes two types of sizing approximation:

• Early Sizing: for use early in the life cycle of a project, before the Functional User
Requirements (FUR) are detailed and specified.

• Rapid Sizing: for use when there is not enough time to measure using the standard
method.

These two types of sizing approximation can be considered in the early phases of a
development project. In general, an approach to approximate sizing some scaling factor
for the type(s) of artifact(s) of the FUR of the software to be measured must be defined
locally [5], requiring, for instance, that an average size of the artifacts to be measured
be established locally – see Fig. 1.

This scaling factor represents the size expected to be measured when the functional
user requirements are at the level of detail where an accurate measurement can be made
because all the necessary details are available [8]. This solution needs historical data in
order to produce an adequate scaling factor.

In [5], four approaches to approximate sizing of new ‘whole’ sets of requirements
are presented. Each approach is based on two main assumptions:

194 F.V. Souto and A. Abran

• There exist historical data to determine the scaling factor (average, or size bands).
• The whole set of requirements is described, or at least there is a commitment, defined

by the requirements, about the scope of the software to be developed.

The four approaches described in [5] are:

(1) The Average Functional Process approach. The approximate size of the new piece
of software is estimated to be equal to (Number of Functional Processes x Average
Size from historical data).

(2) The Fixed Size Classification approach. A statement of requirements is analyzed
to identify the functional processes and to classify each of them into one of three
or more size classes, called, for instance: Small, Medium, and Large. A corre‐
sponding scaling factor is next assigned to each functional process, from historical
data.

(3) The Equal Size Bands Approach. The functional processes are first classified into
a small number of size bands. In the next step, the average sizes of each band are
calculated (preferably calibrated locally), and then these average functional sizes
are multiplied by the number of functional processes of the new piece of software,
in each band respectively, to obtain the total approximate size.

(4) The Average Use Case approach. This example extends (1) to a higher level of
granularity.

In 2011, Santillo [13] proposed the use of the Analytic Hierarchy Process [17], a
technique that provides a means for making choices among sizing alternatives,
particularly when a number of concurrent objectives have to be satisfied.

In 2012, Valdés et al. [21] proposed a solution using the fuzzy logic model from [2–4],
referred to as the Estimation of Projects in a Context of Uncertainty – the EPCU model.
This study, as in [11], analyzed the performance of an approximation technique using fuzzy
logic [7, 9, 19 and 20] in an early phase context. For comparison purposes, the experiment
was carried out also with the Equal Size Bands approach from Vogelezang et al. [8] which

Fig. 1. Scaling of sizes between different levels of granularity [5]

Improving the COSMIC Approximate Sizing 195

had led to an MMRE1 = 11 % and SDMRE2 = 9 %: in their experiment, using a reference
software system [10] with a full set of stable requirements and its stated measured func‐
tional size, for this case study the Equal size band approach provided better approximation
results.

In 2013 Almakadmeh [23] designed a framework to assign scaling factors for iden‐
tifying the level of granularity of functional requirements specifications of software. In
[23] two variants of the criteria to assess the levels of granularity were defined: the first
one considers a software functional component and the second considers the elements
of the UML use-case model. In order to rank the levels of granularity identified, the
scaling factors used in [8] were selected; next, the scaling factor assignation is based on
conducting an analogy-based comparison with similar pieces of software in which the
functional size of those pieces of software is accurately measured using the COSMIC
measurement method.

A workshop on discussion on approximate COSMIC FSM at the IWSM/MENSURA
2013 conference reported that “the approximation methods described in the in-progress
COSMIC Guideline on Approximation rely on a common principle, namely that the
only precisely defined level of granularity of functional user requirements is the func‐
tional process level of granularity” [22]. It also mentioned that the approximation
methods were based on two approximation principles or a combination of them: Scaling
and Classification, which concepts had been identified first in [23], respectively as
scaling factors and levels of granularity.

Also in 2013, De Marco et al. [26] investigated to what extend some COSMIC-based
approximate sizing could be useful for project managers for early effort estimation for
Web applications: an empirical analysis was reported employing data from 25 Web
applications to assess whether the two approximate sizes (number of COSMIC Func‐
tional Processes (FP) or the Average Functional Process approach) can be exploited to
get accurate effort estimates. The conclusion is that the use of COSMIC-based approx‐
imate countings were a suitable approach for early effort estimates, while the estimates
obtained with the approximate sizes are worse than those achieved employing the size
obtained from the application of the standard COSMIC method.

In 2014, De Vito et al. [27] considered the need of a simplified and rapid COSMIC
measurement that should avoid the use of scaling factors since incorrect calibrations of
the scaling factors can lead to inaccurate approximations, proposed a simplified meas‐
urement process (Quick/Early) that can be applied on the use case models and aims to
reduce the measurement time. This Quick/Early Approximation approach precision is
directly proportional to the level of granularity of the analyzed use cases model: this
means that the use cases have to be at least stable requirements –which does not happen
too often in the very early stages; still, they conclude that accuracy of Quick/Early is
good.

Also in 2014, Valdés et al. [24] reported on a case study of a simulation of the early
approximation step using the EPCU model for an industry project for which only the
names of the use cases were made available to the participants, without any additional

1 Mean Magnitude of Relative Error (MMRE).
2 Standard Deviation of MRE (SDMRE).

196 F.V. Souto and A. Abran

documentation. This case study confirmed that the EPCU Size Approximation approach
does not require local calibration and is useful when there are no historical data available;
in addition it is less expensive than the calibration of the equal size band approach which
requires historical data.

For the case study with a real industrial project, the EPCU Size Approximation
approach came up with better results with a MMRE of 45 % in comparison an
MMRE = 63 % for the Equal Size Bands Approach, while both approaches led to
underestimated results.

In order to integrate the highlights of the literature review in [22] and after,
Table 1 was adapted from [24]. This table shows that the validity of most approxi‐
mations techniques is dependent on the representativeness of the samples with
respect to the software being approximated: said differently, to date most of the
approximation methods need to be calibrated locally and this requires local histor‐
ical data. However, in practice, most organizations do not have such data: as

Table 1. Approximation techniques analysis highlights

Improving the COSMIC Approximate Sizing 197

previously pointed out by Morgenshtern: “Algorithmic models need historical data,
and many organizations do not have this information. Additionally, collecting such
data may be both expensive and time consuming” [1] and approximation techniques
based on historical data are of little use for organizations without such data. Alter‐
natives must therefore be developed for such contexts of approximation.

3 Analyzing the Functional Process Sizes in the Quartile Analysis
from the Equal Size Bands Approximation Approach Dataset

3.1 Data Set Description

The Vogelezang dataset has been used to generate the equal size bands approximation
approach [5]: it includes 47 projects related to four sectors (Banking, Government,
Insurance, Logistics). See Table 2. More specifically:

• The project size range for the Banking sector goes from 11 CFP to 2743 CFP, with
a project average functional size is 476 CFP with 1345 Functional Process (FP), and
a total size of 12375 CFP for all projects.

• For the Government sector, the total size of the set of projects is 3845 CFP with 838
FP where the project average functional size is 481 FP and the project size range for
the sector is 64 to 2364 CFP.

• For the Insurance sector, the size range is from 84 CFP to 1311 CFP, the project
average functional size is 551 CFP with 342 FP with a total size of all projects is
3305 CFP.

• For the Logistics sector, the number of FP considered is 321, with a total size of 3766
CFP, with a project average functional size of 538 CFP, and a project size range from
193 to 1164 CFP. See Table 2.

Table 2. Dataset characterization

The dataset contains two general analyses labeled Q-Size and Q-Number, and eight
specific analyses by sector, labeled Q-Size (sectori) and Q-Number (sectori). For this new
study we will consider the integrated analysis, the concept of both is described below.

• For Q-Size the total measured size [CFP] is divided into four quartiles and the average
FP size is calculated from there - see Table 3.

• For Q-number the total number of functional processes is divided into four quartiles
and the average and the average FP size is calculated from there - see Table 4.

198 F.V. Souto and A. Abran

Table 3. Q-Size considering four sectors

Table 4. Q-Number considering four sectors

In Table 3, it can be observed that:

• Q1(Small FP) contains most of the FP (55 %) which sizes is up to 6 CFP with an
average of 3.7 CFP.

• Q2 (Medium FP) contains 26 % of the total FP with a range of functional size from
6 to 10 CFP with an average of 7.7 CFP.

• Q3 (Large FP) contains 14 % of FP with an FP average size of 14.6 CFP and the
range going from 10 CFP to 25 CFP.

• Q4 (Very Large FP) contains 5 % of the total FP (142 FP with an average of 44.1
CFP) and defines a range larger than 25 CFP.

In Table 4, each quartile contains the 25 % of the FP: the average size for Q1 (Small
FP) is 2.7 CFP and the range is up to 4 CFP, the Q2 (Medium FP) defines a range of
functional size from 4 to 6 CFP with an average of 4.3 CFP. In the Q3 (Large FP) the
average size of FP is 7.1 CFP and the range goes from 6 CFP to 8 CFP. The quartile Q4
(Very Large FP) defines the range from 8 CFP and larger, with an average FP size of
18.6 CFP.

Table 5. Quartiles closeness

Improving the COSMIC Approximate Sizing 199

In Table 5, the analysis of the differences of the average size for the Q-Size and the
Q-Number shows that for the Q-Number the average sizes for each quartile are closer
than in the Q-Size approach.

3.2 Comparison of the 2014 and 2015 Study

In the 2012 and 2014 case study [21, 24], the output variable in the EPCU model was
defined using a continuous range of possible values from 2 CFP with a “natural” upper
boundary, or cutoff, stated at 16.4 CFP, considering the assumption about the Very Large
category is that the average value (16.4) and that it adequately represents the full quartile,
which means that most of the sizes are around the average, as is described in [5].

In 2105, using the analyzing the dataset for the Q-Size (Banking), we found that the
16.4 CFP average is for the Q3 (Large FP), including 14 % of the FP and the range goes
from 10 to 31 CFP, and that there is another quartile Q4 (Very Large FP) with an average
of 51.6 CFP: this means that the average of 16.4 CFP does not represent a relevant value
to be used as cutoff for the Banking sector or the sectors described in the dataset used
to define equal size bands approximation approach [5].

4 Improving the EPCU Model Approximation Approach

4.1 Redefining the Output Variable

To tackle the lack of historical data issue discussed in the previous studies [21, 24], and
considering that there is no universal average functional process from which a scaling
factor for early size measurement can be derived [8], the Equal Size Bands Approach,
or Quartile, approach (Example 3) defined by Vogelezang et al. [8] was selected in the
previous work [21, 24], as the basis for the COSMIC approximate sizing task using the
EPCU model approach for business applications.

Vogelezang [8] used measurements on business application development projects,
each having a total size greater than 100 CFP. The quartile values from this dataset were
as follows: Small = 4.8 CFP, Medium = 7.7 CFP, Large = 10.7, and Very Large = 16.4
CFP [8] – see Fig. 2.

Fig. 2. Quartile size values of Functional Processes (FP)

As discussed in section B, the value 16.4 CFP does not represent a relevant value to
be used as cutoff for all the sectors described in the dataset used to define equal size
bands approximation approach.

200 F.V. Souto and A. Abran

Because this paper is about a functional size not about number of FP’s, the Q-Size
analysis about the quartiles are used – see Table 3.

Considering this assumption, the average for each quartile is Q1 = 3.7 CFP, Q2 = 7.7
CFP, Q3 = 14.6 CFP, Q4 = 44.1 CFP. Considering the range defined by the quartiles
for the Q-Size approach will be [3.7 CFP to 44.1 CFP]. Consequently the range for the
output variable is from 2 CFP (minimum functional size using COSMIC for a FP) to 44
CFP, with four linguistic values (fuzzy sets) defined: Low, Average, High, and Very
High - see Fig. 3.

In Fig. 3, it can be observed that he range is continuous, but the difference between
the quartile averages makes that the Large and Very Large Fuzzy Sets are wider than
the Small and Average - see Table 5.

Fig. 3. Output variable schema

5 Application of the EPCU Model Approximation Approach
Improved

The 2012 case study used a reference system [21] with its full set of stable requirements
and its stated measured functional size, and an industry project [24] for which only the
names of the use cases were shared with the participants through a survey form: no other
information was shared with the participants who had to determine the size of the project
functional requirements through their own evaluation of the input variables.

In order to compare the results about the improvement realized to the EPCU context
used to approximate functional size, the same data used in [24] was used, because it is
considered as a more realistic simulation of the early approximation step using the EPCU
model.

5.1 The Measurement Reference: Software System ALFA3

The requirements of the ALFA software system scope were stated in a set of 14 Use
Case descriptions. To establish the measurement reference for the comparison of the
approximation against measurement results based from the detailed documentation of

3 ALFA project was a project from a Mexican Federal Institution, for confidentiality purposes
the Use Cases was are referred by sequential numbers only.

Improving the COSMIC Approximate Sizing 201

these 14 use cases, the detailed descriptions of the use cases were used by one of the
researcher, certified as a COSMIC measurer (CCFL), to obtain the COSMIC measure‐
ment size based on the complete detailed documentation.

Table 6 presents, for each use case, the detailed COSMIC measurement results,
including the data movement types and their functional size in COSMIC CFP units.

Table 6. COSMIC size of the use cases in the ALFA project

Use case Id Entry in CFP Exit in CFP Read in CFP Write in CFP Size in CFP

Use case 1 1 7 6 2 16

Use case 2 5 18 23 9 55

Use case 3 1 12 12 2 27

Use case 4 1 4 2 1 8

Use case 5 1 1 7 0 9

Use case 6 1 2 3 0 6

Use case 7 1 11 11 3 26

Use case 8 1 4 3 0 8

Use case 9 4 3 6 3 16

Use case 10 1 1 1 1 4

Use case 11 5 4 9 5 23

Use case 12 3 3 7 3 16

Use case 13 3 2 5 4 14

Use case 14 1 7 14 0 22

Total size 250

The total functional size for the ALFA software requirements is 250 CFP (bottom
line of Table 6), distributed across 14 use cases with a mean of 17.9 CFP per use case,
a median of 16 CFP, and a standard deviation of 13 CFP [24].

5.2 Participants Tasks in the Experiment

In the 2014 study the detailed use case information relative to the ALFA project require‐
ments was not made available for the practitioners.

Furthermore, the practitioners participating in the experiment:

• were not familiar with the COSMIC method,
• they had no historical data for approximating the FSM using COSMIC,
• they did not participate in the definition of the EPCU context or know the EPCU model.

202 F.V. Souto and A. Abran

The only information the 2014 participants had access to was the list of use cases
identified and their own experience with the business process related to the project. Only
a form with a list of the 14 use cases identified by the case study (with the real names)
was sent by email to 12 practitioners from this organization – see Table 7; only eight
set of answers were received.

The participants were asked to perform the following (full data shown in Appendix A):

1. Classify each of the 14 use cases using the linguistic values: Small, Medium, Large
and Very Large.

2. Classify the number of objects of interest for each of the fourteen use cases using
the linguistic values: Few, Average, and Many.

3. Assign values for the two input variables previously defined from the EPCU context
(the functional process size, the quantity of objects of interest related to the functional
process [24]) for each of the 14 use cases: considering the subjective classification
relative functional size of the use cases and the subjective classification about the
number of objects of interest in each use case, each value assigned within the range
of 0 to 5 ε R.

The Input variables value assignation provided by the practitioners was next fed into
the refined EPCU fuzzy logic model.

5.3 Data Analysis

In Table 8, the first column gives the practitioner’s ID, the second column gives the 250
CFP reference size for the ALFA system, the third column the functional size calculated
using the Equal Size Bands Approach, and the related magnitude of the relative error
(MRE) is shown in the fourth column. The columns five and six show the functional
size calculated using the EPCU approximation approach using the cutoff in 16.4 CFP
(as was established in [24]) and the related MRE respectively. The column seven shows
the functional size calculated using the EPCU improved approximation approach devel‐
oped in this paper (Sect. 4) - i.e., using the cutoff of 44 CFP. The rightmost column
indicates the MRE calculated from each size approximated by practitioners.

Comparing results using the Equal Size Bands approach against the reference
functional size.

As mentioned in [24], comparing the Equal Size Bands approach, the mean magni‐
tude of the relative error (MMRE) for this dataset is 63 % with respect to the refer‐
ence size of 250 CFP, and the standard deviation of the MRE (SDMRE) is 5 %. – see
Table 8 and Fig. 4.

The maximum MMRE is 67 % (Practitioner 1 and 6) and the minimum is 54 %
(Practitioner 8) – see Fig. 4.

Comparing results using an EPCU Size Approximation approach (using a
cutoff = 16.4 CFP) against the Equal Size Bands Approach.

In [24] the results show that considering the MMRE the functional size approxi‐
mated with the EPCU Model (MRE = 45 %) is more accurate than the approxima‐
tion using the “Equal Size bands Approach” [8] (MMRE = 63 %). The difference
between the MMRE obtained using the “Equal Size bands Approach” and the EPCU

Improving the COSMIC Approximate Sizing 203

Table 7. Experiment information request form

Table 8. Experiment results using EPCU size approximation approach

Fig. 4. Case study results for each practitioner

204 F.V. Souto and A. Abran

Size Approximation approach is 18 %. In [24] all the practitioners using the both
approximation approach obtain estimation results under the reference size 250 CFP-
see Table 8 and Fig. 4.

The behavior observed in Table 8 is that the “Equal Size bands Approach” has a
smaller SD (SDMRE = 5 %) than the results obtained with the EPCU model approach
SDMRE = 18 %: the difference between the SD between the “Equal Size bands
Approach” and the EPCU Size Approximation approach is 13 % - see Table 8 and Fig. 4.

Comparing results using an EPCU Improved Size Approximation approach
(using a cutoff = 44 CFP) against the reference functional size.

Considering the data in Table 8, the MMRE and SDMRE of the EPCU improved size
approximation for all 8 practitioners are presented in the two bottom lines of Table 8 in the
columns seven and eight:

• the MMRE with the EPCU model is 43 %,
• the SDMRE is 34 %.
• the maximum MMRE value with the EPCU model is 97 % (Practitioner 8) and the

minimum value is 4 % (Practitioners 7 and 2) – see Fig. 5.

Fig. 5. EPCU improved apprximation approach results for each practitioner

Comparing results using an EPCU Size Approximation approach (using a
cutoff = 16.4 CFP) against EPCU Improved Size Approximation approach (using
a cutoff = 44 CFP).

In Table 8 in the bottom lines, it can be observed that the MMRE for EPCU Size
Approximation approach (using a cutoff = 16.4 CFP) is 45 % with a SDMRE about
18 %. For the EPCU Improved Size Approximation approach (using a cutoff = 44 CFP),
the MMRE is 43 % and the SDMRE is 34 %.

The EPCU Size Approximation approach (using a cutoff = 16.4 CFP) shows less
dispersion and the EPCU Improved Size Approximation approach (using a cutoff = 44
CFP) shows better results because the MMRE is low.

Improving the COSMIC Approximate Sizing 205

From the data in Table 8 and Fig. 4, it can be seen that the use of EPCU Size
Approximation approach in the early phases, considering the kind of information that
is usually available at this phase, presents better results than the use of the un-calibrated
“Equal Size Bands Approach”.

Figure 5 shows that using a cutoff about 16.4 CFP the approximation of functional
size is underestimating; using the cutoff about 44 CFP, the results are above and below
from the real value, as discussed by De Marco “An estimation is a prediction that is
equally likely to be above or below the actual result” [25].

An important feature of the EPCU Size Approximation approach is that the context
does not have to be calibrated: it does not use bands, but rather a continuous range in ε
R, which is represented by a membership function up to the upper boundary defined.

In summary, this 2015 case study reports a better performance with respect to the
equal size band approach than reported in the earlier 2012 and 2014 case study [21, 24].

6 Conclusions

This research aimed to improve the EPCU approach for approximate functional size
without historical data [21, 24], considering the dataset used by Vogelezang et al. [8] to
define the Equal Size Bands Approach.

In this paper, the improvement made to the EPCU Functional Size Approximation
Approach consisted in defining for the output variable, a continuous range of possible
values with a “natural” upper boundary, or cutoff, at 44 CFP, the average of the func‐
tional size for FP in Q4 related to the Q-Size approach - Table 3.

As in [24], the EPCU Size Approximation approach does not require local calibration
and is useful when there are no historical data available; in addition it is less expensive
than the calibration of the equal size band approach which requires historical data.

For the experiment with a real industrial project, the 2015 EPCU Improved Size
Approximation approach (cutoff in 44 CFP) presented better results with a MMRE of
43 % in comparison to the 2012 Equal Size Bands Approach (MMRE = 63 %) and EPCU
Size Approximation approach (cutoff at 16.4 CFP) with an MMRE = 45 %.

For last two approaches, it is possible to observe an underestimate of functional size
using them; on the other hand, using the EPCU Improved Size Approximation approach
(cutoff at 44 CFP), the results are above and below the real value.

In summary, in this 2015 case study, a cutoff at 44 CFP presents more realistic results,
because it considers FP with a larger functional size (including a wide range of FP from
the dataset), something that it is not happening using the cutoff at 16.4 CFP.

Planned further work includes the collection of a set of projects with their use cases
or their functional process identified, in order to conduct a more in depth analysis of the
EPCU Improved Size Approximation approach.

This will include a comparison of the behavior of the EPCU Improved Size Approx‐
imation approach, considering the output variable range using the defined quartile for
each sector (Q-Size (sectori)) and a more in depth analysis considering specific projects
for each sector.

206 F.V. Souto and A. Abran

Appendix A: The Full Data Set of the Information Collected in This
Case Study

References

1. Morgenshtern, O., Raz, T., Dovir, D.: Factors affecting duration and effort estimation errors
in software development projects. Inf. Softw. Technol. 49(8), 827–837 (2007)

2. Valdés, F., Abran, A.: Industry case studies of estimation models based on fuzzy sets. In:
Abran-Dumke-Màs (eds.) International Workshop on Software Measurement IWSM-
Mensura 2007, Palma de Mallorca, Spain, pp. 87–101. UIB-Universitat de les Illes Baleares,
5–9 Nov 2007. ISBN 978-84-8384-020-7

3. Valdés, F., Abran, A.: Comparing the estimation performance of the EPCU model with the
expert judgment estimation approach using data from industry. In: Lee, R., Ormandjieva, O.,
Abran, A., Constantinides, C. (eds.) SERA 2010. SCI, vol. 296, pp. 227–240. Springer,
Heidelberg (2010). ISBN 978-3-642-13272-8

4. Valdés, F.: Design of a fuzzy logic software estimation process. Ph.D. thesis, École de
Technologie Supérieure, Université du Québec, Montreal, December 2011

5. COSMIC Measurement Practice Commitee: The COSMIC functional size method version
3.0, advanced and related topics. http://www.cosmicon.com/portal/public/COSMIC
%20Method%20v3.0%20Advanced%20&%20Related%20Topics.pdf (2007). Accessed 4
Sept 2010

6. COSMIC Measurement Practice Commitee: The COSMIC functional size measurement
method, version 3.0.1, Measurement Manual, May 2009. www.cosmicon.com

7. Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008)
8. Vogelezang, F.W., Prins, T.G.: Approximate size measurement with the COSMIC method:

factors of influence. In: SMEF 2007 Conference, Rome, Italy (2007)
9. Zadeh, L.A.: Fuzzy logic. IEEE Comput. 1, 83 (1988)

10. Khelifi, A., Abran A., Symons, C., et al.: Proposed measurement etalon: C-Registration
system, January 2007. http://www.cosmicon.com/portal/public/CRS_RUP_Case_
%20Study_version_Jan_04_2007_web_%20version_update_feb_2008.pdf. Accessed
February 2008

Improving the COSMIC Approximate Sizing 207

http://www.cosmicon.com/portal/public/COSMIC%2520Method%2520v3.0%2520Advanced%2520%26%2520Related%2520Topics.pdf
http://www.cosmicon.com/portal/public/COSMIC%2520Method%2520v3.0%2520Advanced%2520%26%2520Related%2520Topics.pdf
http://www.cosmicon.com
http://www.cosmicon.com/portal/public/CRS_RUP_Case_%2520Study_version_Jan_04_2007_web_%2520version_update_feb_2008.pdf
http://www.cosmicon.com/portal/public/CRS_RUP_Case_%2520Study_version_Jan_04_2007_web_%2520version_update_feb_2008.pdf

11. Desharnais, J.-M., Abran, A.: Approximation techniques for measuring function points. In:
13th International Workshop on Software Measurement – IWSM 2003, pp. 270–286.
Springer, Montréal, Canada, 23–25 Sept 2003

12. IFPUG: Function point practices manual, release 4.1. International Function Points User
Group (IFPUG), Mequon, Wisconsin Release 4.1, January 1999

13. Santillo, L.: Early and quick COSMIC FFP overview. In: Abran, A., Dumke, R. (eds.)
COSMIC Function Points Theory and Advanced Practices, pp. 176–191. CRC Press, Boca
Raton (2011). ISBN 978-1-4398-4486-1

14. Conte, M., Iorio, T., Santillo, L.: E&Q: an early & quick approach to functional size
measurement methods. In: Software Measurement European Forum SMEF 2004, Rome,
Italy, 1–3 Jan 2004

15. Bock, D.B., Klepper, R.: FP-S: a simplified function point counting method. J. Syst. Softw.
18, 245–254 (1992)

16. Jones, C.: Applied Software Measurement, Assuring Productivity and Quality, 2nd edn.
McGraw Hill, New York (1997)

17. Santillo, L.: Early FP estimation and the analytic hierarchy process. In: ESCOM-SCOPE
2000 Conference, Munich, Germany, 18–20 Apr 2000

18. Meli, R.: Early function points: a new estimation method for software projects. In: ESCOM
1997, Berlin, Germany, May 1997

19. Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using linguistic
synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)

20. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic
controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

21. Valdés, F., Abran, A.: Case study: COSMIC approximate sizing approach without using
historical data. In: 22nd International Workshop on Software Measurement & 7th
International Conference on Software Process and Product Measurement – IWSM-
MENSURA, Assisi, Italy, November 2012

22. Vogelezang, F., Symons, C., Lesterhuis, A., Meli, R.: Approximate COSMIC functional size
guideline for approximate COSMIC functional size measurement. In: 23rd International
Workshop on Software Measurement (IWSM) and 8th International Conference on Software
Process and Product Measurement (Mensura), Ankara, Turkey, October 2013. IEEE doi:
10.1109/IWSM-Mensura.2013.14

23. Almakadmeh, K.: Development of a scaling factors framework to improve the approximation
of software functional size with COSMIC - ISO19761. Ph.D. thesis, École de Technologie
Supérieure, Université du Québec, Montreal, Canada, June 2013

24. Valdès, F., Abran, A.: COSMIC approximate sizing using a fuzzy logic approach: a
quantitative case study with industry data. In: Joint Conference of the 24th International
Workshop on Software Measurement and 9th International Conference on Software Process
and Product Measurement - IWSM-MENSURA 2014, pp. 282–292. IEEE Press, Rotterdam,
Netherlands, 6–8 Oct 2014. doi:10.1109/IWSM.Mensura.2014.44

25. De Marco, T.: Controlling Software Projects. Prentice Hall, Englewood Cliffs (1982)
26. De Marco, L., Ferrucci, F., Gravino, C.: Approximate COSMIC size to early estimate web

application development effort. In: 2013 9th Euromicro Conference Series on Software
Engineering and Advanced Applications, Santander, Spain, 4–6 Sept 2013

27. De Vito, G., Ferrucci, F.: Approximate COSMIC size: the quick/early method. In: 40th
Euromicro Conference on Software Engineering and Advanced Applications, Verona, Italy,
27–29 Aug 2014

208 F.V. Souto and A. Abran

http://dx.doi.org/10.1109/IWSM-Mensura.2013.14
http://dx.doi.org/10.1109/IWSM.Mensura.2014.44

Author Index

Abran, Alain 1, 30, 114, 192
AL-Badareen, Anas Bassam 1
Amasaki, Sousuke 14

Ben-Abdallah, Hanêne 78
Buglione, Luigi 30

Czarnacka-Chrobot, Beata 96

Dasgupta, Aveek 46
Demirörs, Onur 176
Desharnais, Jean-Marc 1
Deuter, Andreas 62

Elleuch Ben Ayed, Nourchène 78

Gencel, Cigdem 46
Gresse von Wangenheim, Christiane 30

Haoues, Mariem 78

Kobyliński, Andrzej 96
Koch, Hans-Jürgen 62

Lokan, Chris 14

Mc Caffery, Fergal 30
Meding, Wilhelm 130, 144
Mikkonen, Tommi 160

Niesel, Kent 130

Pospieszny, Przemysław 96

Rossa Hauck, Jean Carlo 30

Sehit, Mehdi 114
Sellami, Asma 78
Soubra, Hassan 114
Staron, Miroslaw 130, 144
Suonsyrjä, Sampo 160
Symons, Charles 46

Ungan, Erdir 176

Valdés Souto, Francisco 192

	Preface
	Conference Organization
	Contents
	A Suite of Rules for Developing and Evaluating Software Quality Models
	Abstract
	1 Introduction
	1.1 Software Quality Evaluation
	1.2 Software Quality Models

	2 Problems Related to Software Quality Models
	3 Software Quality Model Components
	4 Quality Characteristics Construction
	4.1 Task-Based Characteristic
	4.2 State-Based Characteristic

	5 Rules of Software Quality Models
	5.1 Product Evaluation
	5.2 Quality Presentation

	6 Conclusions and Future Research
	References

	The Effects of Duration-Based Moving Windows with Estimation by Analogy
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Dataset Description
	3.2 Modeling Techniques
	3.3 Effort Estimation on Chronologically-Ordered Projects
	3.4 Performance Measures

	4 Results
	4.1 The Effects of Changes in EbA
	4.2 The Effects of Moving Windows of Fixed Duration

	5 Discussion
	5.1 Answer to RQ1
	5.2 Answer to RQ2
	5.3 Answer to RQ3
	5.4 What are the Practical Implications of this Study?

	6 Threats to Validity
	7 Conclusions
	References

	Software or Service? That's the Question!
	Abstract
	1 Introduction
	2 Software vs Service? Friends or Foes?
	2.1 Differences
	2.2 Commonalities
	2.3 The Challenge -- Possible Benefits
	2.4 A Short Example -- Software + Service Together

	3 Methodology
	4 Unification of Software + Service
	5 Conclusions and Next Steps
	References

	A Process to Improve the Accuracy of MkII FP to COSMIC Size Conversions: Insights into the COSMIC Method Design Assumptions
	Abstract
	1 Introduction
	2 Data Sources
	3 Background to How the Two FSM Methods Measure Functional Size
	4 The ‘Statistical Method’ for Converting MkII FP to COSMIC Sizes
	5 Improving the Accuracy of Conversion of MkII FP to COSMIC CFP Sizes: The ‘Calculation Method’
	6 Conclusions and Observations on the COSMIC Method Design Assumptions
	1 Appendix 1: Components of the MkII and COSMIC Size Measurements
	1 Appendix 2: A More Detailed Examination of How the MkII and COSMIC Methods Measure the Input vs Processing Phases of a Fuctional Process
	References

	Applying Manufacturing Performance Figures to Measure Software Development Excellence
	1 Introduction
	2 Related Work
	2.1 Sliced V-Model
	2.2 Software Performance Figures
	2.3 Transfer from Manufacturing to Software

	3 Proposed Approach
	3.1 Software Performance Figures
	3.2 Manufacturing Performance Figures

	4 Evaluation of the Approach
	4.1 Verification
	4.2 Validation

	5 Conclusion and Future Work
	References

	Quantitative Functional Change Impact Analysis in Activity Diagrams: A COSMIC-Based Approach
	Abstract
	1 Introduction
	2 Background
	2.1 Functional Size Measurement
	2.2 Overview of UML Activity Diagram
	2.3 Works on Change Impact Analysis

	3 Functional Changes in UML-AD
	3.1 Classification of Functional Change Impact in UML-AD
	3.2 Identification of COSMIC Data Movements in UML-AD
	3.3 Functional Size of UML-AD Elements When a Functional Change is Submitted and Classified into Impact Directions
	3.4 Functional Change Impact Analysis in UML-AD

	4 Illustrative Example
	5 Conclusion
	Appendix A
	References

	Application of Function Points and Data Mining Techniques for Software Estimation - A Combined Approach
	Abstract
	1 Introduction
	2 Project Estimation
	3 Knowledge Project Management
	4 Literature Review
	5 Effort and Duration Estimation Using Function Points and Data Mining Techniques
	6 Conclusions
	References

	Functional Size Measurement for Processor Load Estimation in AUTOSAR
	Abstract
	1 Introduction
	2 Related Work
	2.1 Related Work on Processor Load Estimation
	2.2 Related Work on Using COSMIC-Based FSM Procedures

	3 Overviews of COSMIC, AUTOSAR and SYMTA/S
	3.1 COSMIC Overview
	3.2 AUTOSAR Overview
	3.3 SYMTA/S Overview

	4 An FSM Procedure for ECU Software Designed Following AUTOSAR
	4.1 The Measurement Phase

	5 ECU Load and Functional Size
	5.1 Experimental Set-up
	5.2 The Automation Tool
	5.3 Analyzing the Data
	5.4 Using Linear Regression Models to Estimate Processor Load of Other Input Models

	6 Conclusion
	References

	Selecting the Right Visualization of Indicators and Measures -- Dashboard Selection Model
	1 Introduction
	2 Related Work
	2.1 Dashboards and Visualization
	2.2 Standardization
	2.3 Measurement Theory

	3 Research Design -- Action Research
	4 Dashboard Selection Model
	4.1 Dissemination Patterns in Modern Companies
	4.2 Dashboard Selection Model
	4.3 Examples

	5 Evaluation
	6 Conclusions
	References

	Measurement-as-a-Service -- A New Way of Organizing Measurement Programs in Large Software Development Companies
	1 Introduction
	2 Measurement-as-a-Service
	2.1 Central Hosting
	2.2 Collection and Licensing
	2.3 Delivered on Demand
	2.4 Role of the Metrics Team
	2.5 Value Propositions

	3 Case Study -- Using MaaS to Describe the Measurement Program at Ericsson
	3.1 Measurement Program at Ericsson
	3.2 Information Products
	3.3 On-Demand Delivery -- MS Sidebar Gadgets
	3.4 Centralized Storage -- MetricsCloud
	3.5 Evolution

	4 Related Work
	5 Conclusions
	References

	Designing an Unobtrusive Analytics Framework for Monitoring Java Applications
	1 Introduction
	2 Background
	2.1 Software Analytics
	2.2 Aspect-Oriented Programming

	3 Research Questions
	4 Demonstrator Application
	4.1 Vaadin Web Framework
	4.2 Demonstration Application
	4.3 Manual Method as a Motivation

	5 Data Collection and Analysis Framework
	5.1 Aspect-Oriented Usage Monitoring
	5.2 Collecting Data with Fluentd
	5.3 Elasticsearch and Kibana

	6 Discussion
	6.1 Research Questions Revisited
	6.2 Future Work

	7 Conclusions
	References

	A Functional Software Measurement Approach to Bridge the Gap Between Problem and Solution Domains
	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Solution Approach

	2 Previous Studies on Measuring Functional Software Size Based on Software Design Models
	3 Problem Domain and Solution Domain Distinction
	4 Suggested Measurement Approach
	4.1 Measurement Tool – SDMC

	5 Validation
	5.1 Validity Threats

	6 Conclusion
	References

	Improving the COSMIC Approximate Sizing Using the Fuzzy Logic EPCU Model
	Abstract
	1 Introduction
	2 Related Works
	3 Analyzing the Functional Process Sizes in the Quartile Analysis from the Equal Size Bands Approximation Approach Dataset
	3.1 Data Set Description
	3.2 Comparison of the 2014 and 2015 Study

	4 Improving the EPCU Model Approximation Approach
	4.1 Redefining the Output Variable

	5 Application of the EPCU Model Approximation Approach Improved
	5.1 The Measurement Reference: Software System ALFA3
	5.2 Participants Tasks in the Experiment
	5.3 Data Analysis

	6 Conclusions
	1 Appendix A: The Full Data Set of the Information Collected in This Case Study
	References

	Author Index

