
Tree PCA for Extracting Dominant
Substructures from Labeled Rooted Trees

Tomoya Yamazaki1(B), Akihiro Yamamoto1, and Tetsuji Kuboyama2

1 Graduate School of Informatics, Kyoto University Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan

t.yamazaki@iip.ist.i.kyoto-u.ac.jp, akihiro@i.kyoto-u.ac.jp
2 Computer Centre, Gakushuin University, 1-5-1 Mejiro, Toshima-ku,

Tokyo 171-8588, Japan
ori-ds2015@tk.cc.gakushuin.ac.jp

Abstract. We propose novel principal component analysis (PCA) for
rooted labeled trees to discover dominant substructures from a collec-
tion of trees. The principal components of trees are defined in analogy
to the ordinal principal component analysis on numerical vectors. Our
methods substantially extend earlier work, in which the input data are
restricted to binary trees or rooted unlabeled trees with unique vertex
indexing, and the principal components are also restricted to the form
of paths. In contrast, our extension allows the input data to accept gen-
eral rooted labeled trees, and the principal components to have more
expressive forms of subtrees instead of paths. For this extension, we can
employ the technique of flexible tree matching; various mappings used
in tree edit distance algorithms. We design an efficient algorithm using
top-down mappings based on our framework, and show the applicability
of our algorithm by applying it to extract dominant patterns from a set
of glycan structures.

1 Introduction

Capturing the characteristic features of a given data set is one of the fundamen-
tal problems in data mining. A popular method for high dimensional numeri-
cal vector data is Principal Component Analysis (PCA, for short) proposed by
Pearson [8]. In PCA, the features are subspaces, and the projected subspaces are
extracted so that the amount of information of the original data set is retained as
possible. We want to apply PCA also to non-numerical data such as tree struc-
ture data for extracting dominant features in a set of data. Since PCA requires
a feature space and a distance on the space, we have to tailor a suitable feature
space and a distance to capture common patterns in tree structures.

PCA for tree structure data was first formulated by Wang and Marron [11].
They applied it to binary trees representing the brain artery structures obtained
from MRA images. Ayding et al. [2] proposed an efficient algorithm to compute
principal components for unlabeled rooted binary trees. They further extended
the method to unlabeled rooted ordered trees with indexing [1], like a k-way tree
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 316–323, 2015.
DOI: 10.1007/978-3-319-24282-8 27

Tree PCA for Extracting Dominant Substructures 317

Table 1. The comparison of PCAs for three types of input data.

Ordinal PCA Previous methods [1,2] Proposed methods

Input data Numerical
vectors

Unlabeled rooted
ordered trees with
indexing

Labeled rooted
ordered/unordered
trees

Feature space Euclidean
space R

n
Union of all given data

called a support
tree

A set of subtrees
(a generalized
support tree)

Projected space d(< n)
dimensional
hyperplanes

Paths called tree-lines Subtrees in the
feature space

Criterion Maximum
amount of
variation

Minimum sum of indel
distances

Minimum sum of indel
distances based on
a mapping

Origin point The origin of
coordinate

The root vertex of the
support tree

The root vertex of the
generalized support
tree

indexing [3]. In their methods, the total space of the input data set is defined as
the support tree which is the smallest supertree including all members of the data
set as subtrees. The support tree is defined as the union of all trees in a given
data set on the assumption that all tree structures share the same index schema
uniquely. The projected space is defined as a tree-line, which is a sequence of
subtrees {l0, . . . , lk} where l0 is a given subtree and li is defined from li−1 by the
addition of a single vertex to the same direction. We can treat the tree space
like the Euclidean space when we regard l0 as the origin, the tree-space as a two
dimensional total space, and the tree-line as a one dimensional axis.

In this paper, we extend the idea due to [1] and introduce PCA for labeled
rooted unordered trees without indexing ; i.e., our methods do not rely on the
strong assumption above. Our idea is to use a mapping, a set of pairs of ver-
tices with some restrictions, to express principal components. In the previous
work [1,2], the expression of principal components is restricted to paths on
trees, while our methods allow principal components to have more expressive
forms of subtrees by taking advantage of mappings. The notion of mappings was
originally introduced for defining the distance between trees [9]. The mapping
is regarded as a common substructure between two trees, and many variants of
tree edit distance are formulated by the classes of mappings [7]. In this paper, we
introduce a general schema for defining PCA for labeled rooted trees and show
an algorithm using top-down mappings as an instance of the schema. We apply
it to a glycan structure data set, and compute principal components for extract-
ing dominant patterns in the structures. We confirm its validity by classifying
the glycan data, and evaluate the accuracy. The comparison of PCA properties
among the conventional numerical vector, previous methods and our methods is
shown in Table 1.

318 T. Yamazaki et al.

2 Preliminary

A rooted tree (tree, for short) is a connected directed acyclic graph in which
every vertex is connected from a root vertex. A tree T = (V,E, r, α) is a labeled
rooted unordered tree, where V is a set of vertices, E is a set of edges, r is a
vertex in V called the root, and α is a label function defined as α : V → Σ,
assuming an alphabet to be Σ. The label of v ∈ V is denoted by l(v). We write
v ∈ T instead of v ∈ V . A forest F = {T1, . . . , Tn} is a set of trees. If |F | = 1,
we identify F = {T1} with F = T1. The ancestor-descendant relation is denoted
by <, and for v, w ∈ T , v < w means that w is an ancestor of v. The depth of
a vertex v is defined as dep(v) = |{w | v ≤ w}|. The sibling relation is denoted
by ≺, and for v, w ∈ T , v ≺ w means that w is a right sibling vertex of v. The
parent vertex of v ∈ V \ {r} is denoted by parent(v).

For two trees T1 and T2, the following operations are called edit operations :
deletion and insertion of a vertex v ∈ T1, and substitution of the label of v ∈ T1

for the label of w ∈ T2. The costs of edit operations, deletion, insertion and
substitution, are denoted by γ(v → λ), γ(λ → w) and γ(v → w), respectively.
An edit distance is the minimum sum of the costs for transforming T1 to T2

if all of the costs of edit operations are the same. When γ(v → w) ≥ γ(v →
λ) + γ(λ → w), that is, the edit distance without substitution operations, is
called an indel (insertion-deletion) distance.

A mapping M ⊆ V1×V2 is a set of pairs of vertices for two trees T1 = (V1, E1)
and T2 = (V2, E2). Various types of mappings have been proposed [7]. They are
distinguished by their restrictions such as an ancestor-descendent relation. We
show two instances of mappings; i.e., a Tai mapping and a top-down mapping.
Tai Mapping [9]: Let T1 = (V1, E1) and T2 = (V2, E2) be rooted ordered
trees, a set M ⊆ V1 × V2 is called a Tai mapping on ordered trees if any pairs
(v1, v2), (w1, w2) ∈ M satisfy all of the following conditions.

v1 = w1 ⇐⇒ v2 = w2 (one-to-one relation),
v1 < w1 ⇐⇒ v2 < w2 (ancestor-descendant preservation), and
v1 ≺ w1 ⇐⇒ v2 ≺ w2 (sibling order preservation).

If T1 and T2 are unordered trees, the third condition is not considered.

Top-Down Mapping [12]: A Tai mapping M between two trees T1 and T2 is
a top-down mapping if for any pair of vertices (v, w) ∈ M such that both of v
and w are not root vertices, there exists a pair (parent(v),parent(w)) ∈ M .

The sets of vertices of V1 and V2 including in a mapping M are respectively
denoted by M |T1 and M |T2 which are defined as M |T1 = {v ∈ V1 | ∃w ∈
V2, (v, w) ∈ M} and M |T2 = {w ∈ V2 | ∃v ∈ V1, (v, w) ∈ M}. The total cost
of edit operations for M is γ(M) =

∑
(v,w)∈M γ(v → w) +

∑
v∈M |T1 γ(v →

λ) +
∑

w∈M |T2 γ(λ → w). Calculating the edit distance between T1 and T2

is equivalent to finding a mapping M minimizing the cost γ(M) [9]. We call
such mappings by optimal mappings. Below, we assume a rule R for select-
ing an optimal mapping from the set of all optimal mappings. Given a set

Tree PCA for Extracting Dominant Substructures 319

FS = {F1, . . . , Fn} of forests, and a mapping M , we define a forest FSM recur-
sively as follows:

FSM =
{

F1 if |FS | = 1,
{Fn, {F1, . . . , Fn−1}M} = M(Fn, {F1, . . . , Fn−1}M) otherwise.

where M(F1, F2) is the forest induced by an optimal mapping M between F1

and F2 following the rule R.

3 Tree PCA by Top-Down Mappings

3.1 New Schema for Tree PCA

In this section, we introduce new methods for extracting principal components
from labeled rooted unordered trees without indexing and we give a new schema
for formulating principal components based on the following three contents. The
first is a distance metric dM (·, ·) based on a mapping M , and the second is the
total space of given data set T , denoted by TS (T). The total space TS (T) is
a set of trees. The third is the set of all components, denoted by AC (E), for
any elements E of TS (T). For example, the set of all components of a path is a
tree-line.

The projection of the tree T onto the union of AC (t1)�· · ·�AC (tk) is defined
by using the inclusion-exclusion principle as follows:

P{t1...tk}(T) ≡ arg min
PS∈AC (t1)�···�AC (tk)

|PS |∑

n=1

(−1)n+1
∑

ps∈{U⊂PS ||U |=n}
dM (T, psM),

(1)

where S�T denotes the set {{s, t} | s ∈ S, t ∈ T}. The k-th principal component
is defined as

PC k ≡ arg min
E∈TS(T)

∑

T∈T

∑

t∈P{PC1...PCk−1,E}(T)

dM (T, t). (2)

3.2 Path Features by Top-Down Mappings

In this section, we show how to apply the top-down mappings to the new
schema. The sequence of labels of the path from the root r to v is defined as
Path(v) ≡ 〈α(r)α(parentdep(v)−2(v)) . . . α(parent1(v))α(v)〉, where parentn(v)
is defined as parent(parent(. . . parent

︸ ︷︷ ︸
n

(v))), and thus parent1(v) = parent(v).

The set Fiber(T) ≡ {Path(v) | v ∈ Leaf(T)} of paths is called the fiber of
T . We define the total space as the support fiber of an input data set T ,
denoted by SF (T) while the total space is defined as the support tree in the
previous section. The support fiber representing the total space is defined as
SF (T) =

⋃
T∈T Fiber(T).

320 T. Yamazaki et al.

Given a path P , the tree-line composed of P is TL(P) =
⋃

v∈P Path(v), where
v is a vertex of path P . Given two trees T1 and T2, an indel distance based on
a top-down mapping between T1 and T2 is denoted by dtd(T1, T2). The top-
down mapping without substitution operations following the rule R is denoted
by MT1,T2

td . In other words, MT1,T2
td is a set of pairs of vertices corresponding with

the both of labels of vertices from the root vertex completely.

Algorithm 1. Making a super tree of SF (T)
INPUT : the set of path SF (T)
Support tree ST initialized with a single dummy vertex vd.
for Path P in SF (T) do

Lchild ← {l(vc) | vc ∈ children(vd)} /*list of child vertices*/
Add P to the single vertex with ε label until dep(P) = dep(SF (T)).
for Each vertex v ∈ P from the root vertex to a leaf vertex do

if Lchild contains l(v) then
Lchild ← {l(vc) | vc ∈ children(ve)} where ve ∈ Lchild satisfies l(ve) = l(v).

else
A subpath SP ← a subtree of P whose root vertex is v.
Add SP to the parent vertex of Lchild.
Break the inner loop.

end if
end for

end for
OUTPUT : ST.

Therefore, we can extract principal component paths by adapting M to
Mtd, dM (·, ·) to dtd(·, ·), TS (T) to SF (T), and AC (E) to TL(P) where P is a
path. Our method extends the previous methods by Alfaro et al. [1] and Aydin
et al. [2]. Our method based on the top-down mappings can apply to ordered
trees if we just give the label of a vertex to a sibling information.

3.3 An Algorithm for PCA by Top-Down Mappings

In this subsection, we give an algorithm for extracting principal component based
on the top-down mappings. First, we make a super tree from the each path of
SF (T) and we show the algorithm for making such super tree in Algorithm 1.
The algorithm is similar to making a prefix tree representing an upper common
subtree. In Algorithm 1, for a tree T , the maximum depth and maximum number
of leaves of T is denoted by dep(T) and Leaf(T), respectively. The label meaning
the empty is denoted by ε �∈ Σ. We show an example of the input data set in
Fig. 1a and the super tree of the input data set in Fig. 1. We generalize ST (T)
in accordance with Algorithm 1 and we regard ST (T) as a set of paths. The
k-th principal component derived from Eq. (2) is

Tree PCA for Extracting Dominant Substructures 321

T1

a

a c

b

T2

a

b c

b a

a

T3

a

a

b

c

(a) Input data set

ST

d

a 3

a 3

2

2

b 1

c 1

b 1

1

1

c 2

a 1

1

b 2

2

(b) The super tree and 1st
principal component of (a).

Fig. 1. (a) An example of input data set T . The characters, a,b and c, are labels of
vertices. (b) The super tree of the input data (Fig. 1a). A label ε represents the terminal
and d represents the dummy vertex. An integer which describes the right-hand side of
each vertex is the weight of Eq. (4). The heavy line is the first principal component.

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50

Number of principal components

A
cc

ur
ac

y

Class Label

Leukemic

Erythrocyte

Serum

Plasma

Fig. 2. The accuracy of classification based on a top-down indel distance between
cumulative principal components and the given data tree.

PCk = arg max
P∈ST(T)

∑

v∈P

∑

T∈T
wk(v, T, P), (3)

where wk(v, T, P) =
{

1 if v ∈ M
{P,T}
td |P and v �∈ P1 ∪ · · · ∪ Pk−1,

0 otherwise.
(4)

Therefore, the k-th principal component is the path whose sum of weights is
the maximum. Then, we can extract k principal components, converting wk on
principal components to 0. The time complexity of extracting k principal com-
ponents is O((Leaf(ST (T))dep(ST (T))+k|V |)|T |) where |V | = max{|V1|, |V2|}.

4 Experiment

In our experiment, we use glycan structure data from the KEGG/GLYCAN
database [5] and their annotations are from the CarbBank/CCSD database [4].

322 T. Yamazaki et al.

(a) Leukemic (b) Erythrocyte

Fig. 3. The super trees of Leukemic and Erythrocyte, respectively, where the each
root vertex is a dummy vertex and not including ε vertices. The heaviest and second
heaviest lines are 1st and 2nd principal component paths, respectively.

Table 2. Comparing the classification accuracy.

Comparing Leukemic Erythrocyte Serum Plasma

20 principal components 0.802 0.871 0.827 0.881

Other global structure 0.914 0.841 0.843 0.787

We regard a glycan structure as a labeled tree as with [6]. A glycan structure is
often regarded as an ordered tree, however, in our experiment, we regard it as a
labeled unordered tree because we focus on only paths.

For a glycan structure, many studies have been proposed e.g. [6,13]. Each
glycan structure is assigned to a blood component class among Leukemic, Ery-
throcyte, Serum, and Plasma, and the number of each class data used in our
experiment is 140, 127, 78 and 60, respectively.

First, we visualize super trees and the first and second principal components
of the Leukemic and Erythrocyte in Fig. 3. The heaviest and the second heaviest
lines in Fig. 3 are the first and second principal component paths, respectively.
Next, we try to classify the input data set into the 4 classes by using principal
components. First, we classify a given data set with a top-down indel distance,
that is the number of vertices not including the largest common prefix structure.
The results are shown in Fig. 2. The accuracy of all class labels is mostly over
0.8. We compare the accuracy of classification by using principal components
from 1st to 20th with the one of measuring a global edit distance. The result
is shown in Table. 2. The classification of the Erythrocyte and Plasma using
principal components is higher while the one of the other classes using the global
edit distance is higher. According to the results, we could conclude Leukemic
has specific global structures while Erythrocyte and Plasma have specific local
structures because principal components are local dominant structures of the
given data. Moreover, the classification using principal components runs faster
because the time complexity of computing the global edit distance between two
trees is O(|V |3).

Tree PCA for Extracting Dominant Substructures 323

5 Concluding Remarks

We introduced a general schema for defining PCA for labeled rooted trees in
Sect. 3. Because of lack of space, we gave only one instance of the schema.
Another instance can be given with bottom-up mappings [10]. We should select
a mapping depending on the given data set.

In [5,6], glycan data are classified by using kernels, but in this method, we
cannot know the similar structures explicitly. By extracting principal compo-
nents, we can observe the dominant structures and the similar structures and
classify the given data by using the principal components. Moreover, the time
complexity of classification by using principal components is lower than the one
by measuring a global edit distance between two unordered trees, NP-hard prob-
lem.

Acknowledgments. The authors would like to thank both the anonymous reviewers
and Kouichi Hirata, Kyushu Institute of Technology, Japan for their valuable com-
ments. This work was partially supported by the Grant-in-Aid for Scientific Research
(KAKENHI Grant Numbers 26280085, 26280090, and 24300060) from the Japan Soci-
ety for the Promotion of Science.

References

1. Alfaro, C.A., Aydin, B., Valencia, C.E., Bullitt, E., Ladha, A.: Dimension reduction
in principal component analysis for trees. CSDA 74, 157–179 (2014)

2. Aydin, B., Pataki, C., Wang, H., Bullitt, E., Marron, J.S.: A principal component
analysis for trees. Ann. Appl. Stat. 3(4), 1597–1615 (2009)

3. Chartrand, G., Lesniak, L.: Graphs and Digraphs, 3rd edn. Chapman and
Hall/CRC, London (2000)

4. Doubet, S., Albersheim, P.: CarbBank. Glycobiology 2(6), 505–507 (1992)
5. Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K.F., Ueda, N.: KEGG as

a glycan informatics resource. Glycobiology 16, 63–70 (2006)
6. Kuboyama, T., Hirata, K., Aoki-Kinoshita, K.F., Kashima, H., Yasuda, H.: A gram

distribution kernel applied to glycan classification and motif extraction. Genome
Inform. 17(2), 25–34 (2006)

7. Kuboyama, T.: Matching and learning in trees, Ph.D. thesis, Univ. Tokyo (2007)
8. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos.

Mag. 2(6), 559–572 (1901)
9. Tai, K.C.: The tree-to-tree correction problem. J. Addociation Comput. Mach.

26(3), 422–433 (1979)
10. Valiente, G.: An efficient bottom-up distance between trees. In: Proceedings of the

8th SPIRE, pp. 212–219. IEEE Comp. Science Press (2001)
11. Wang, H., Marron, J.S.: Object oriented data analysis: set of trees. Ann. Stat.

35(5), 1849–1873 (2007)
12. Wang, J.T.-L., Zhang, K.: Finding similar consensus between trees : an algorithm

and a distance hierarchy. Pattern Recogn. 34, 127–137 (2001)
13. Yamanishi, Y., Bach, F., Vert, J.P.: Glycan classification with tree kernels. Bioin-

formatics 23(10), 1211–1216 (2007)

	Tree PCA for Extracting Dominant Substructures from Labeled Rooted Trees
	1 Introduction
	2 Preliminary
	3 Tree PCA by Top-Down Mappings
	3.1 New Schema for Tree PCA
	3.2 Path Features by Top-Down Mappings
	3.3 An Algorithm for PCA by Top-Down Mappings

	4 Experiment
	5 Concluding Remarks
	References

