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Preface

This year’s International Conference on Discovery Science, DS 2015, was the 18th
event in this series. Like in previous years, the conference was co-located with the
International Conference on Algorithmic Learning Theory, ALT 2015, which is already
in its 26th year. Started in 2001, ALT/DS is one of the longest-running series of
co-located events in computer science. The unique combination of recent advances in
the development and analysis of methods for discovering scientific knowledge, coming
from machine learning, data mining, and intelligent data analysis, as well as their
application in various scientific domains, on the one hand, with the algorithmic
advances in machine learning theory, on the other hand, makes every instance of this
joint event unique and attractive. This volume contains the papers presented at the 18th
International Conference on Discovery Science, while the papers of the 26th Interna-
tional Conference on Algorithmic Learning Theory are published by Springer in a
companion volume (LNCS Vol. 9355).

The 18th Discovery Science conference received 44 international submissions. Each
submission was reviewed by at least two committee members. The committee decided
to accept 28 papers, of which 16 are long and 12 are short papers. This results in the
36% acceptance rate for long papers. As is the tradition of the Discovery Science and
the Algorithmic Learning Theory conferences, invited talks were shared between the
two meetings. This year’s DS invited talks were “Turning Prediction Tools into
Decision Tools” by Cynthia Rudin from MIT, and “Overcoming Obstacles to the
Adoption of Machine Learning by Domain Experts” by Kiri Wagstaff from Jet
Propulsion Laboratories, while the ALT invited talks were “Finding Hidden Structure
in Data with Tensor Decompositions” by Sham Kakade from Microsoft and the Uni-
versity of Washington, and “Bilinear Prediction Using Low Rank Models” by Inderjit
Dhillon form the University of Texas at Austin. Abstracts of all four invited talks are
included in these proceedings.

We would like to thank all authors of submitted papers, the Program Committee
members, and the additional reviewers for their efforts in evaluating the submitted
papers, as well as the invited speakers and tutorial presenters. Support and advice from
Randy Goebel, the General Chair of both conferences, were essential every step of the
way. We are grateful to Kamalika Chaudhuri, Claudio Gentile, Sandra Zilles, and
Csaba Szepesvari for ensuring a smooth coordination with ALT. We are indebted to
Jonathan Amyot from the Faculty of Computer Science, Dalhousie University, for
putting up and maintaining our website with great competence and efficiency.

We are grateful to the people behind Easychair for making the system available free
of charge. It was an essential tool in the paper submission and evaluation process, as
well as in the preparation of the Springer proceedings. We are also grateful to Springer
for their continuing support of Discovery Science and for publishing the conference
proceedings since its inception.



This year, both conferences were held on October 4-6 in the picturesque setting of
Banff, Alberta, and were organized by Sandra Zilles and Csaba Szepesvari. We are
very grateful to ISM Canada, an IBM company, to the Alberta Innovates - Technology
Futures (AITF), to the Canadian Artificial Intelligence Association (CAIAC), and to the
Faculty of Computer Science at Dalhousie University for their sponsorship of both the
conferences.

October 2015 Nathalie Japkowicz
Stan Matwin
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Bilinear Prediction Using Low Rank Models

Inderjit S. Dhillon

Department of Computer Science
University of Texas at Austin, Austin, USA

inderjit@cs.utexas.edu

Linear prediction methods, such as linear regression and classification, form the
bread-and-butter of modern machine learning. The classical scenario is the presence of
data with multiple features and a single target variable. However, there are many recent
scenarios, where there are multiple target variables. For example, predicting bid words
for a web page (where each bid word acts as a target variable), or predicting diseases
linked to a gene. In many of these scenarios, the target variables might themselves be
associated with features. In these scenarios, we propose the use of bilinear prediction
with low-rank models. The low-rank models serve a dual purpose: (i) they enable
tractable computation even in the face of millions of data points as well as target
variables, and (ii) they exploit correlations among the target variables, even when there
are many missing observations. We illustrate our methodology on two modern machine
learning problems: multi-label learning and inductive matrix completion, and show
results on two applications: predicting Wikipedia labels, and predicting gene-disease
relationships.

This is joint work with Prateek Jain, Nagarajan Natarajan, Hsiang-Fu Yu and Kai
Zhong.



Finding Hidden Structure in Data
with Tensor Decompositions

Sham M. Kakade

Microsoft Research, New England, USA
and University of Washington, Seattle, USA

In many applications, we face the challenge of modeling the interactions between
multiple observations. A popular and successful approach in machine learning and AI
is to hypothesize the existence of certain latent (or hidden) causes which help to explain
the correlations in the observed data. The (unsupervised) learning problem is to
accurately estimate a model with only samples of the observed variables. For example,
in document modeling, we may wish to characterize the correlational structure of the
“bag of words” in documents, or in community detection, we wish to discover the
communities of individuals in social networks. Here, a standard model is to posit that
documents are about a few topics (the hidden variables) and that each active topic
determines the occurrence of words in the document. The learning problem is, using
only the observed words in the documents (and not the hidden topics), to estimate the
topic probability vectors (i.e. discover the strength by which words tend to appear
under different topcis). In practice, a broad class of latent variable models is most often
fit with either local search heuristics (such as the EM algorithm) or sampling based
approaches.

This talk will discuss a general and (computationally and statistically) efficient
parameter estimation method for a wide class of latent variable models—including
Gaussian mixture models (for clustering), hidden Markov models (for time series), and
latent Dirichlet allocation (for topic modeling and community detection)—by
exploiting a certain tensor structure in their low-order observable moments. Specifi-
cally, parameter estimation is reduced to the problem of extracting a certain decom-
position of a tensor derived from the (typically second- and third-order) moments; this
particular decomposition can be viewed as a natural generalization of the (widely used)
principal component analysis method.



Turning Prediction Tools into Decision Tools

Cynthia Rudin

MIT CSAIL and Sloan School of Management
Building E62-576, 100 Main Street, Cambridge, MA 02142, USA

rudin@mit.edu

Arguably, the main stumbling block in getting machine learning algorithms used in
practice is the fact that people do not trust them. There could be many reasons for this,
for instance, perhaps the models are not sparse or transparent, or perhaps the models are
not able to be customized to the user’s specifications as to what a decision tool should
look like. I will discuss some recent work from the Prediction Analysis Lab on how to
build machine learning models that have helpful decision-making properties. I will
show how these models are applied to problems in healthcare and criminology.



Overcoming Obstacles to the Adoption
of Machine Learning by Domain Experts

Kiri L. Wagstaff

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109, USA

kiri.l.wagstaff@jpl.nasa.gov

The ever-increasing volumes of scientific data being collected by fields such as
astronomy, biology, planetary science, medicine, etc., present a need for automated
data analysis methods to assist investigators in understanding and deriving new
knowledge from their data. Partnerships between domain experts and computer sci-
entists can open that door. However, there are obstacles that sometimes prevent the
successful adoption of machine learning by those who stand to benefit most.

We devote a lot of effort to solving technological challenges (e.g., scalability,
performance), but less effort to overcoming psychological and logistical barriers.
Domain experts may fail to be persuaded to adopt a tool based on performance results
that are otherwise compelling to those in machine learning, which can be frustrating
and perplexing. Algorithm aversion is the phenomenon in which people place more
trust in human predictions than those generated by an algorithm, even when the
algorithm demonstrably performs better. Media hype about the dangers of artificial
intelligence and fears about the loss of jobs or the loss of control create additional
obstacles.

I will describe two case studies in which we have developed and delivered machine
learning systems to solve problems from radio astronomy and planetary science
domains. While we cannot claim to have a magic wand that ensures the adoption of
machine learning systems, we can share lessons learned from our experience. Key
elements include progressive integration, enthusiasm on the part of the domain experts,
and a system that visibly learns or adapts to user feedback to correct any mistakes.

This work was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA. Government sponsorship acknowledged.
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Resolution Transfer in Cancer Classification
Based on Amplification Patterns

Prem Raj Adhikari1,2(B) and Jaakko Hollmén1

1 Helsinki Institute for Information Technology HIIT and Department of Information
and Computer Science, Aalto University School of Science,

PO Box 15400, 00076 Aalto, Espoo, Finland
prem.adhikari@utu.fi

2 Department of Physiology and Turku Center for Disease Modeling Institute
of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland

jaakko.hollmen@aalto.fi

Abstract. In the current scientific age, the measurement technology has
considerably improved and diversified producing data in different rep-
resentations. Traditional machine learning and data mining algorithms
can handle data only in a single representation in their standard form.
In this contribution, we address an important challenge encountered in
data analysis: what to do when the data to be analyzed are represented
differently with regards to the resolution? Specifically, in classification,
how to train a classifier when class labels are available only in one reso-
lution and missing in the other resolutions? The proposed methodology
learns a classifier in one data resolution and transfers it to learn the
class labels in a different resolution. Furthermore, the methodology intu-
itively works as a dimensionality reduction method. The methodology is
evaluated on a simulated dataset and finally used to classify cancers in
a real–world multiresolution chromosomal aberration dataset producing
plausible results.

1 Introduction

Over the years, the measurement technologies have improved considerably
providing an opportunity to measure the finer details of the phenomenon [8].
Multiresolution data is generated when the same phenomenon is measured in
different levels of detail [13]. The older generation technologies measure only
the coarser units of the phenomenon resulting in the data in the coarse resolu-
tion while the newer generation technology can measure the finer units of the
phenomenon generating the data in the fine resolution. The fine resolution data
carries more information in the data sample compared to the coarse resolution
data but also has the larger data dimensionality than the coarse resolution data.
The importance of combining multiple data sources, and information within a
single analysis and the availability of multiresolution data in different applica-
tion areas, such as, image processing, and time–series analysis have given major
impetus to the research in multiresolution data analysis [13].
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 1–8, 2015.
DOI: 10.1007/978-3-319-24282-8 1



2 P.R. Adhikari and J. Hollmén

Fig. 1. The research challenge considered in this contribution and the proposed solu-
tion.

In this contribution, we address an important challenge that lies in between
supervised learning and learning from unlabeled data; which resembles the semi–
supervised learning [5] and the transfer learning [10]. The proposed methodol-
ogy learns the classifier in one resolution where the class labels are available
and transforms the classifier to other resolutions where the class labels are not
available. The methodology uses a combination of an unsupervised probabilistic
clustering and a supervised multiclass classification in a pipeline to address the
challenges in classifying the data in different resolutions when class labels are not
available in all the resolutions of the data. In this contribution, we do not propose
a new probabilistic modeling algorithm or a multiclass classification algorithm.
The novelty in the contribution comes from the design of the pipeline for classi-
fying the datasets in different resolutions by resolution transfer of the classifier
and intuitive dimensionality reduction achieved through the unsupervised prob-
abilistic clustering. While the clustering results have been used to improve the
classification results [7], such a methodological pipeline of resolution transfer has
not been proposed in the literature.

The Fig. 1 shows that between the two high dimensional datasets in two dif-
ferent resolutions, only the data in one resolution has the associated class labels;
while the class labels are missing in the data in other resolutions. Therefore,
the challenge to learn a classifier on the data in the resolution having the class
labels and use the same classifier to classify the samples in the data resolution
without the associated labels. A simplified approach of using projection methods
such as principal component analysis (PCA) would not produce expected results
because the representation of data would be lost.

As shown in the bottom panel of Fig. 1, first, we vertically partition both the
datasets based on some predefined landmarks in such a way that the number of
vertical partitions in each dataset in different resolutions are the same. Second,
we train the mixture models in each of the vertical partitions of the dataset with
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the associated labels. Third, we transform the trained mixture models to another
resolution with missing class labels. The transformations are performed using the
apriori knowledge of the relationships among different resolutions of the data
from the domain ontology. Fourth, we retrain the mixture models with the data
partitions in data resolution not consisting of associated labels. The retrained
mixture model generates the cluster labels for the data partitions in the data
resolution with missing class labels. Fifth, we concatenate the obtained cluster
labels in both the data resolutions separately to regenerate the whole genome but
with a reduced dimensionality. Sixth, we learn a multiclass classifier for the whole
genome in the data resolution having the associated class labels. Finally, we can
use the same classifier to classify the data resolution not consisting of associated
labels. Since the clusters labels which are used as features are equivalent in both
the resolution, the classifier can be used for data in both resolution producing
comparable results in both resolutions.

2 Methodology of Multiresolution Multiclass
Classification

In our proposed methodology, we first set aside the class labels and vertically
partition the feature space in both the given high dimensional datasets on spe-
cific landmarks in such a way that specific relationship between different data
resolutions can be easily established. Furthermore, vertical partition should be
such that data in different resolutions will have equal number of partitions while
data dimensionality in each partition can be different. We then use unsuper-
vised probabilistic algorithm, i.e., mixture models, to cluster each partition of
the data separately. The number of clustering experiments is equal to the num-
ber of vertical partitions in the data. We use model selection to determine the
number of clusters in each of the partition of the data separately using ten–fold
cross–validation as in [12].

The cluster labels generated by the clustering algorithms are then vertically
concatenated forming a new dataset with reduced dimensionality for classifica-
tion. The newly formed dataset obtained by concatenating the cluster labels
emulates the original data but results in the reduced data dimensionality. This
is because a cluster label comprise multiple data dimensionality in the vertical
partitions of the data thus ameliorating the problem of curse of dimensional-
ity [4].

In our previous research, we have shown that the mixture models learned in
a resolution can be transformed to a different resolution provided there exists a
well–defined relationship among the different data resolutions [2]. We can use the
domain ontology to determine the relationship between the model parameters in
different resolutions of data and exploit that to transform the mixture models
across different resolutions.

θf ∼ N(μ = θc, σ = 0.01) =
{

θf if 0 ≤ θf ≤ 1
θc if θf < 0 or θf > 1 (1)
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We can re–sample the number of parameters required in the fine resolution from
a normal distribution with the mean (μ) equal to the parameter value in the
coarse resolution and a small standard deviation (σ); 0.01 in our experiments.
Mathematically, we can represent the transformations as in Eq. 1, where θc, and
θf denote the parameters of the mixture components θ in the coarse and the
fine resolution. We can also further ensure that the re–sampled parameters obey
the laws of probability in such a way that the value of the parameter in the fine
resolution is between 0 and 1, i.e., 0 ≤ θ ≤ 1. If the re–sampled value of θ is
outside the given range, we replace it with the value of the parameter, θ, in the
coarse resolution such that θf = θc. Finally, the transformed mixture model is
then retrained on the fine resolution data.

We represent the categorical cluster labels as binary features as discussed
in [6]. The number of bits in binary features is equal to the number of components
in the mixture model for that data partition, i.e., the clusters in the data. For
example, if the number of components is four then the clusters one, two, three,
and four are represented as: 1000, 0100, 0010, and 0001. We then vertically
concatenate the cluster labels in binary representation to represent an entire
dataset. This clustering labels can be assumed to be the summary of the patterns
present in the data. Finally, a multiclass classifier, e.g., support vector machines,
can be trained using on the dataset generated by concatenating the clustering
labels.

3 Experiments on Multiresolution Chromosomal
Aberrations Dataset

Two chromosomal amplification datasets were available in two different resolu-
tions for our experiments. The data in coarse resolution describing the DNA
amplification patterns of 4590 cancer patients were available from [9]. Similarly,
data describing the DNA amplification patterns in fine resolution were available
from [3]. The coarse resolution data describes the chromosomal amplifications
dividing genome in 393 different parts as described in [11]. In contrast, the fine
resolution data describes the chromosomal amplifications dividing the genome
in 862 different parts. In addition to resolution, another important difference
between the datasets is that the coarse resolution data have associated class
labels, i.e., the 4590 patients were associated with 73 different cancer types
whereas the data in the fine resolution do not have the associated cancer types
(class labels).

Data Preprocessing. The number of cancer types in the coarse resolution
dataset (73) were too high to learn any credible cancer classifier. Some of the
cancers had less than 10 samples making it difficult to learn a classifier that
generalizes better on the unseen data [5]. Therefore, we only experimented with
top 34 cancer types. The top 34 cancer types were chosen because they cov-
ers 90 % of the data. This simplification reduces the number of samples in the
data to 4104. The cancer with the highest number of samples is Neuroepithelial
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tumors with 544 samples. In contrast, the cancer with the minimum number
of samples is Pulmonary sarcoma with only 30 samples. The simplified data is
then processed chromosome–wise, i.e., the data describing the genome is verti-
cally partitioned into 24 different chromosomes. When the data is divided into
chromosomes, some samples in some chromosome do not show any amplifica-
tion. We remove those samples without amplifications (vectors with all zeros)
because they carry no information about the cancer and also further simplify
the experimental procedure.

Chromosome–wise Mixture Modeling. After the data have been vertically
partitioned into the different chromosomes, we learn the mixture models based
on a model selection procedure in a ten–fold cross–validation setting as discussed
in [12]. The model selection procedure selects different number of components
in the mixture model to fit the data in different chromosomes. Mixture models
are generally used to represent the probability distribution of the data. Never-
theless, it can also be used to cluster the data into hard partitions. The number
of partitions is equal to the number of components in the mixture model. The
cluster labels are then transformed to binary format and chromosomes are con-
catenated to form the whole genome. We do not use model selection algorithm
on Chromosome Y because of lack of data samples. In chromosome Y, the cluster
label is 1 if any of the chromosomal regions is amplified; otherwise 0.

Cancer Classification Using SVMs. The cluster labels are transformed to
binary format and the chromosomes are concatenated to regenerate the whole
genome. In the cancer samples showing no amplifications in specific chromo-
somes that were ignored during mixture modeling are replaced by all zeros in
the binary features. The example, of four clusters discussed in Sect. 2, it would
be represented as 0000. We then learn multiclass support vector machines using
open–source libsvm software package [6]. The kernel type selected is radial basis
function. The parameters of the support vector machines are γ and C which
also learned in a ten–fold cross–validation setting by a grid search. The support
vector machines are initially learned on the original data with full set of fea-
tures and also on the vertical concatenation of cluster labels. The original data
dimensionality is 393 whereas vertical concatenation of cluster labels results in
data dimensionality of 112. The concatenation of features result in reduction of
data dimensionality that is less than one third of the features in original data
dimension. Naturally, when the data dimension is reduced, the accuracy of clas-
sification decreases. Figure 2 shows that decrease in accuracy is negligible when
the partitions of data is represented by the cluster labels. The computational
and memory efficiency of reduced data dimensionality surpasses the decrease in
the classification accuracy.

Resolution Transfer of the Classifier. The crux of this contribution is the
resolution transfer of the classifier. We use the knowledge of domain ontology
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Fig. 2. Comparative study of the accuracy of SVM in different modes of the classifi-
cation settings.

relations to transform the parameters of the mixture model learned in the res-
olution having the associated class labels to the data resolution not having the
associated class labels as in [2]. The transformed model is retrained on the data
in other resolution in such a way that the components are not much different
than the model in the original resolution. This requirement is enforced because
the clustering algorithm should produce same labels for similar data vectors as
we are using the cluster labels as data features for classification. Since the algo-
rithm is trained on the data in other resolution, the features in the concerned
resolution must be the same as the features in original resolution. Finally, the
data in concerned resolution is classified using the classifier trained in original
data resolution.

The data in fine resolution obtained from [3] does not have associated can-
cer types, i.e., class labels. Therefore, we can use the same classifier to classify
cancers but we cannot access the performance of the classification algorithm.
Therefore, we transform the data to another resolution using deterministic meth-
ods similar to the one suggested in [1]. The data in fine resolution can then be
classified using the classifier learned in the resolution having associated cancer
labels. Furthermore, the performance can be accessed because the transformed
data have labels from the coarse resolution.

Figure 2 depicts the classification accuracy of the classifier in different set-
tings. As expected the classification accuracy is best on the original data. The
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figure shows that the performance of the classifier degrades in resolution transfer.
The decrease in performance is expected because the classifier is learned on data
in different resolution. The results obtained are promising because resolution
transfer provides additional facilities to classify data in different resolution for
which the class labels are not available. Furthermore, the negligible decrease in
performance can also be attributed to curse of dimensionality [4]. In addition, the
performance of multiclass classification is less than 40 % which is comparatively
less but considering that there are 34 classes, the accuracy is plausible because
random classifier would generate accuracy of less than 10 %. If all samples are
classified as the cancer with the highest number of samples, i.e., Neuroepithelial
tumors, the accuracy would be approximately 13 %. Therefore, the performance
achieved by our methodology is plausible and provides a novel methodology to
classify cancers across different resolutions.

3.1 Simulated Data

We also evaluated our methodology on a simulated data set. The simulated
dataset was simple with 1000 data samples and 5 dimensions. We randomly
sampled a number between 1 and 4, and generate row for the data sample where
each element in the sample is equal to the randomly sampled number. For exam-
ple, if we sample number 3, all the elements in the row are 3. We continue this
process until 1000 data samples have been achieved. We then consider first vari-
able as the class and remaining 4 variables as the features. We convert the
four variables to binary using decimal to binary conversion system with 3 bits
such that 4 dimensional data are transformed into 12 dimensional 0–1 vectors.
We then randomly flip the bits of 1200 (10 %) data elements to add noise to
the dataset. Similarly, we vertically concatenated the 12 dimensional data each
dimension one by one to generate 24 dimensional data.

We then group each digit separately again into four groups to run the cluster-
ing experiments. Since, we know the number of clusters in the data, i.e., 4, we do
not run model selection algorithm in this case. We then evaluate our methodol-
ogy on this simulated multiresolution data in the similar vein as in Sect. 3. In this
experiment, there was larger discrepancy in classification accuracy in multiclass
classification. The original algorithm as well as the clusters labels used as class
labels produced accuracy nearing 97 % while the resolution transfer produced
classification accuracy nearing 75 %. Despite the addition of noise, the data is
overly simple and in such simple datasets, classifiers often overfit. In one vs one
and one vs the rest experiments all the methods produced plausible accuracy
of 98.5 %.

4 Summary and Conclusions

In this contribution, we were interested in transferring the classifier learning
across different resolutions. In our setting, we had access to class labels only in
one resolution while the class labels were missing in other resolutions. We learn
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the classifier in the resolution with the class labels and transfer the learned clas-
sifier to classify the data in resolutions with missing class labels. Furthermore,
our proposed methodology intrinsically reduces the data dimensionality to less
than one–third in the coarse resolution and to less than one–eighth in the fine
resolution as an added advantage of the proposed resolution transfer. We exper-
imented our methodology on a simulated dataset, and chromosomal aberrations
patterns to classify cancers with plausible results.
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Abstract. A wind speed forecast corresponds to an estimate of the
upcoming production of a wind farm. The paper illustrates a variant of
the Nearest Neighbor algorithm that yields wind speed forecasts, with
a fast time resolution, for a (very) short time horizon. The proposed
algorithm allows us to monitor a grid of wind farms, which collabo-
rate by sharing information (i.e. wind speed measurements). It accounts
for both spatial and temporal correlation of shared information. Exper-
iments show that the presented algorithm is able to determine more
accurate forecasts than a state-of-art statistical algorithm, namely auto.
ARIMA.

1 Introduction

The growing integration of wind farms into the power grid requires precise fore-
casts of upcoming energy productions at different time scales, depending on the
intended application. Very short-term forecasts (≤6 h) can be used for the turbine
active control, short-term forecasts (48–72 h) may serve for wind power schedul-
ing, as well as for economic dispatch, while longer time scales (up to 5–7 days
ahead) may be considered for planning the maintenance of wind farms and trans-
mission lines. Depending on the nature information processed, wind forecasting
approaches can be classified into physical, statistical and hybrid approaches. A
physical approach [1,6] uses weather forecast, while a statistical approach [2,8–
10,13]) is based on vast amount of historical data (time series) without considering
meteorological conditions. A hybrid approach [4,7]) uses both weather forecasts
and time series analysis.

In this paper, we address the problem of very short-term wind speed fore-
casting by resorting to a statistical approach. We describe a spatio-temporal lazy
learning-based algorithm, called WiNN (spatio-temporal WInd Nearest Neigh-
bor algorithm), which is based on a variant of the Nearest Neighbor algorithm,
which accounts for two forms of autocorrelation: the temporal autocorrelation,
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which may exist in wind speed time series data, and the spatial autocorrela-
tion, which may exist between wind speed data measured at near wind farms.
For every wind farm, lazy learning is performed to produce forecasts from wind
speed values observed in a given spatio-temporal neighborhood. The main advan-
tage of lazy learning is that the computation of a complex forecasting model of
the historical data à la ARIMA is avoided. In addition, it can be easily extended
to account for spatial autocorrelation as well.

The paper is organized as follows. In Sect. 2, we illustrate the data scenario
and formulate the learning problem considered. In Sect. 3, we present the pro-
posed algorithm, while in Sect. 4, we discuss the dataset and the relevant results.
Finally, Sect. 5 draws some conclusions and outlines some future work.

2 Data Setting and Learning Problem

Data Scenario A wind farm grid is defined as a geophysical streaming system
(K,Z, T ), where: (1) K is the set of wind farms spanned on a bi-dimensional1

XY representation of the geographic space, (2) Z is the wind speed variable
and (3) T is the time line discretized in equally spaced time points denoted as
1, 2, . . . , t, . . .. In this data scenario, z(k, t) denotes a measure of Z collected from
a certain wind farm k ∈ K, at a specific time point t ∈ T . A wind speed stream
z(k) is the stream of measures z(k, t) collected at wind farm k ∈ K for each time
point t ∈ T , that is, z(k) = z(k, 1), z(k, 2), . . . , z(k, t), . . .. Following the sliding
window model [3], z(k) is decomposed into consecutive sliding windows of equal
size w, namely z(k) = z(k, 1 → w), z(k, 2 → w + 1), . . . , z(k, t − w + 1 → t), . . .,
where z(k, t−d−w+1 → t−d) denotes the backward data window of wind farm
k at time t, with backward horizon w and temporal delay d = 0, 1, . . . , t − w.

Forecasting Problem. Given a wind farm grid (K,Z, T ) and a time horizon w, a
forecasting service aims at producing, at each time point t and for every wind
farm k ∈ K, the predictions of upcoming w values of Z, which are henceforth
denoted as ẑ(k, t + 1), ẑ(k, t + 2), . . . , ẑ(k, t + w). In this study, the forecasting
service for the upcoming w measurements of Z is based on the backward w
measurements of Z collected over the grid. Backward data can be selected with
a possible temporal delay that is at worst w-sized.

3 WiNN

WiNN is a lazy learning algorithm that allows us to yield (very-) short term
forecasting of wind speed in a wind farm grid (K,Z, T ). Input parameters of the
algorithm are a spatial radius r, a window size w and a similarity threshold δ.
The top-level description of the algorithm is reported in Algorithm1.

First, for every target wind farm k ∈ K, WiNN applies a spatial filter, in order
to determine a spatial neighborhood with center k and radius r (Algorithm 1,
lines 1–3).
1 Multi-dimensional representation of geographic space can be equally dealt.
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Algorithm 1. WiNN(K,Z, T )
1: for k ∈ K do
2: compute σ(k, r) {Definition 31}
3: end for
4: for t ∈ T do
5: for k ∈ K do
6: for d ∈ 1, . . . , w do
7: compute τ(k, t, −d) {Definition 32}
8: η(k, t, −d) ← σ(k) ∩ τ(k, t, −d) {Definition 33}
9: end for{Forecasting}
10: for f ∈ 1, . . . , w do
11: compute L(k, t + f) {Definition 34}
12: ẑ(k, t + f) ← knn(L(k, t + f)) {Definition 35}
13: end for
14: end for
15: end for

Definition 1 (Spatial Neighborhood). The spatial neighborhood σ(k, r) is
the set of reference wind farms of K (σ(k, r) ⊆ K) such that:

σ(k) = {h ∈ K|h �= k and geoDistance(k, h) ≤ r}, (1)

where geoDistance(k, h) is the geographic distance computed between the spatial
coordinates xy(k) and xy(h), respectively.

This phase is performed when the processing of the wind data streams pro-
duced by (K,Z, T ) starts. It is repeated only when changes occur in the grid
structure, i.e. a farm is either deleted from or added to the grid. After this ini-
tialization phase, WiNN processes data (wind speed measurements) as they are
produced by the grid. At every streaming time point, it applies a temporal filter
to every target farm (Algorithm 1, line 7), in order to identify neighbor farms
whose backward data are correlated, with a temporal delay, to the backward
data measured by the target farm at the present time (Algorithm1, line 8). The
temporal delay d ranges between 1 and w.

Definition 2 (Temporal Neighborhood). Let d be a positive, integer-valued
temporal delay with d ≤ w. The temporal neighborhood τ(k, t,−d) is the set of
reference wind farms of K (τ(k, t,−d) ⊆ K) such that:

τ(k, t,−d) = {h ∈ K|h �= k and dataDistance(k, h, t,−d,w) ≤ δ}, (2)

where dataDistance(k, h, t,−d,w) is the Euclidean distance computed between
the target backward data z(k, t−w+1 → t) and the reference, d-delayed backward
data z(h, t − d + w + 1 → t − d), that is

dataDistance(k, h, t,−d,w) =
w∑
i=1

(z(h, t − d − w + i) − z(k, t − w + i))2.
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In this study, the definition of this kind of neighborhood with a temporal
delay is motivated by the characteristics of the physical variable (wind speed)
that we are considering for the forecasting problem. Wind can be considered as a
moving object over space, so it is reasonable that the wind speed measured from
the target wind farm k at time point t is more similar (i.e. higher correlated) to
the wind speed measured from a reference wind farm h at a time point before t
(i.e. t − d) rather than to the wind speed measured from h at t. In this study,
we construct neighborhoods with various temporal delay values, in order to be
able to properly model wind as a moving object also without accounting for
information concerning the wind direction.

(a) k, h1, h2, h3 (b) τ(k, t, −1) = {h1} (c) τ(k, t, −2) = {h2, h3}

Fig. 1. Example of temporal neighborhoods constructed with window size w = 3, time
delay d = 1 (1(b)) and d = 2 (1(c)) for target wind farm k by considering reference
wind farms h1, h2 and h3, respectively (1(a)).

Example 1. Let us consider one target wind farm k, as well as three reference
wind farms, namely, h1, h2 and h3 which measure wind speed data processed
with window size w = 3(Fig. (1(a)). We can construct a temporal neighborhood
of k with time delay d = −1 by comparing z(k, t − w + 1 → t) to z(h1, t − w →
t − 1), z(h2, t − w → t − 1) and z(h3, t − w → t − 1) (Fig. 1(b)), while we
can construct the temporal data neighborhood of k with time delay d = −2 by
comparing z(k, t−w +1 → t) to z(h1, t−w −1 → t−2), z(h2, t−w −1 → t−2)
and z(h3, t − w − 1 → t − 2) (Fig. 1(c)).

A spatial-temporal neighborhood is built by applying a spatial filter and a
temporal filter in cascade. WiNN builds, for every wind farm k ∈ K, w spatial-
temporal neighborhoods, one for every delay d = 1, 2, . . . , w (Algorithm 1, line 8).

Definition 3 (Spatio-TemporalNeighborhood).The spatio-temporal neigh-
borhood η(k, t,−d) is the set of reference wind farms of K (η(k, t,−d) ⊆ K),
which satisfy both the spatial neighborhoodfilterσ(k) (Definition1) and the temporal
neighborhood filter τ(k, t,−d) (Definition 2) simultaneously, that is, η(k, t,−d) =
σ(k) ∩ τ(k, t,−d).

Subsequently, spatio-temporal neighborhoods constructed with temporal
delays d = 1, 2, . . . , w (Algorithm 1, line 11) are processed, in order to popu-
late d learning datasets L(k, t + 1),L(k, t + 2), . . . ,L(k, t + w).
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Definition 4 (Lazy Learning Data Set). Let {η(k, t,−1)}d=1,2,...,w be the
set of spatio-temporal neighborhoods (Definition 3) associated with k ∈ K at
time t and constructed with the temporal delay d = 1, 2, . . . w, respectively. The
learning data set L(k, t+d) is the set of timestamped data points (reference farm,
timestamp, measured wind speed), that is defined as follows:

L(k, t + d) =
⋃
f≥d

{(h, t − f + d, z(h, t − f + d))|h ∈ η(k, t − f)}.

Every learning set L(k, t + d), with d = 1, 2, . . . , w, is constructed in order
to forecast ẑ(k, t + d). Lazy learning is performed by resorting to a spatio-
temporal version of the Nearest Neighbour formula (Algorithm1, lines 12). A
spatio-temporal distance is computed, in order to estimate the weight according
to any sampled backward data point can contribute to the forecast value.

Definition 5 (k-NN). The forecast value ẑ(k, t + d) is determined as follows:

ẑ(k, t + d) =

∑
(h,t′,z)∈L(k,t+d)

ω((k, t + d), (h, t′))z(h, t′)

∑
(h,t′,z)∈L(k,t+d)

ω((k, t + d), (h, t′))
, (3)

where ω((k, t+d), (h, t′)) = 1
st((k,t+d),(h,t′))3 and st((k, t+d), (h, t′)) = 1

2scaled01

(d(k, h)) + 1
2scaled01d(t + d, t′)).

It is noteworthy that st(·, ·) is computed as the sum of the scaling in the
interval [0,1] of the distance (d(k, h) = geoDistance(k, h)) computed between
the geographic coordinates of target wind farm k and neighbor reference farm h,
as well as of the scaling in the interval [0,1] of the distance (d(t+d, t′) = t+d−t′)
computed between the timestamps associated to the forecast value (t + d) and
to the sampled neighbor (t′).

4 Experimental Study

The experiments have been carried out using real world data publicly provided
by the DOE/NREL/ALLIANCE3 (http://www.nrel.gov/). The data consist of
wind speed measurements from 1326 different locations at 80 m of height in the
Eastern region of the US. The data were collected in 10 min intervals during the
year of 2004 (time line). This wind farm grid is able to produce 580 GW, and
each farm produces between 100 MW and 600 MW. Experiments are run on an
Intel(R) Core(TM) i7 920 @2.67GHz running Windows 7 Professional. In this
study, we have evaluated the sensitivity of both accuracy and efficiency of WiNN
to the set-up of the spatial radius. In addition, we have analyzed the accuracy of
WiNN compared to that of auto.ARIMA [5]. The selected competitor is a state-
of-art statistical forecasting algorithm. Both algorithms have been evaluated in

http://www.nrel.gov/
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(very-) short forecasting setting. Forecasts have been produced by considering
a time horizon of six hours with wind speed forecasting performed every 10 min
(w = 36). δ is automatically determined for each considered temporal delay d,
as a percentage (δ % = 10%) of the maximum Euclidean distance computed
between each pair of backward time series, selected for every farm of the grid,
at time t and with delay d.

Evaluating WiNN. We have considered the entire wind farm grid, in order to
analyze the size of constructed spatial neighborhoods, the average learning time
spent, at each time point t, to forecast upcoming wind speed values (over six
hours), as well as the accuracy of produced forecasts. Learning time is measured
in milliseconds and averaged on the number of time points, as well as on the
number of wind farms processed. WiNN is run repeatedly with a radius r vary-
ing between 100 km, 250 km and 400 km. Figure 2 (left side) reports the average
learning time spent by every wind farm, in order to complete the considered fore-
casting task. We observe that by increasing the radius, the number of reference
wind farms processed, as well as the average distance between neighbor farms
increase. Learning times increase accordingly, but they are greatly lower than
10 min. Thus, the forecasting service deployed with WiNN can work in (near)-
real time. Figure 2 reports the root mean squared error of the forecasts produced
from the wind farm grid. Errors are calculated from the forecasts produced at
each time point of the considered time line, for the forward 36 time points (6 h).
We observe that the forecasting error decreases by increasing the number of ref-
erence neighbor farms processed. However, the reduction of forecasting error is
negligible when the radius of spatial neighborhoods is enlarged from 250 Km to
400 km, while the average learning time doubles (from 8 msec to 17 msec) in the
same case. Hence, we consider that the choice r = 250 km can guarantee an
acceptable trade-off between accuracy and efficiency.

r(km) n.neighbors avg distance time (msecs)
100 23.44 61.79 1
250 97.141 152.08 8
400 193.41 238.89 17

Fig. 2. WiNN: radius r varying among 100 km, 250 km and 400 km. Left side: size
of constructed spatial neighborhoods (column 2), average geographic distance between
spatial neighbors (column 3) and learning time spent in millisecs (column 4) to complete
forecasting. Right side: average rmse (axis Y) of forecasts produced from the entire grid
of wind farms at time t+d with t ∈ T and d = 1, 2, . . . , 36 (axis X) (Color figure online).
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Fig. 3. WiNN vs auto.ARIMA: analysis of the forecasting accuracy measured per fore-
casting time point.

Comparing WiNN with auto.ARIMA. We have considered 15 wind farms ran-
domly selected across the grid. For every selected wind farm, we have compared
forecasting errors of WiNN with forecasting errors of auto.ARIMA. WiNN is run
by setting radius r equal to 250 Km and window size w equal to 36. This means
that it forecasts, at each time point of the considered time line, the upcoming 36
values of the wind speed and uses backward windows of size equal to 36, in order
to determine these forecasts. Similarly to WiNN, the competitor auto.ARIMA
forecasts, at each time point of the considered time line, upcoming 36 values
of wind speed. These forecasts are determined by considering backward histor-
ical data with size ranging between 36 (six hours), 144 (24 h) and 288 (48 h).
Figure 3 reports the root mean squared error of the forecasts produced from
the fifteen selected wind farms for the upcoming 36 time points (6 h). Errors
are calculated from the forecasts produced at each time point of the considered
time line. Results show that auto.ARIMA outperforms WiNN if we consider the
forecasts of the wind speed associated with the future time points close to t
(i.e. t + 1, t + 2, t + 3, t + 4 and t + 5), but WiNN outperforms auto.ARIMA if
we consider the forecasts associated with the future time points distant from t
(t+6, t+7, . . . , t+36). Additionally, auto.ARIMA can produce lower errors, which
are closer to the errors produced by WiNN, only by augmenting the amount of
historical data to be learned. These results confirm the efficacy of dealing with
spatial information when forecasting wind speed in a wind farm grid. Results
also show the feasibility of the lazy learning approach that we have formulated
for this forecasting task.

5 Conclusion

This paper presents a data mining algorithm that resorts to a spatio-temporal
variation of Nearest Neighbor algorithm in order to produce accurate forecasting
of very short term wind speed values in a wind farm grid. The efficacy of the
proposed algorithm is compared to that of a state-of-art statistical model. As
future work, we plan to investigate the combination of the neighborhood con-
struction described in this paper with the spatial aware versions of the ARIMA
model described in [11,12].
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Abstract. We describe a method of discovering suitable parameters for simu‐
lating and animating the swarming behaviour of non-biting midges (Diptera:
Chironomidae). A characteristic of animal aggregations that can be emulated by
software is the emergence of complex behaviours from simple rules. Here the
well-characterized swarming behaviour of non-biting midges is used to create a
rule-based behaviour model for them. To test the effectiveness of this model in
creating the emergent qualities of real swarms, success criteria are derived from
quantitative swarm data. We propose using a genetic algorithm to automate the
identification of parameter settings that optimize the effectiveness of the model.

Keywords: Midge · Swarm · Simulation · Animation · Genetic algorithm

1 Introduction

This paper describes a method of discovering suitable parameters for simulating and
animating the swarming behaviour of Chironomidae (non-biting midges, a type of small
insect). In this case, swarming describes the behaviour of individuals in which they aggre‐
gate but do not align their motions (adapted from [2]). This behaviour is different from
flocking, in which the individuals have aligned movement and travel together [11], and it
is also different from forming a torus, in which all of the individuals travel in a circle [2].
Male chironomus midges are well known for exhibiting swarming behaviour [4].

The problem of simulating midge swarms is typical of many problems in the biolog‐
ical simulation of animal behaviours: the goal is to find a model of behaviour for an
individual animal that when simulated across time for many individuals gives a close
approximation to the behaviour of groups of individuals observed in nature. The term
emergent behaviour refers to an apparently complex behaviour which results from
combining relatively simple behaviours of many individuals [1].

One approach to solving the problem of simulating midges is to (a) choose a combi‐
nation of tendencies (influences on the behaviour of an individual midge), (b) formulate
a behaviour model based on parameterized rules that encompasses the characteristics of
the midges and the selected tendencies, (c) select appropriate values for all parameter
settings, (d) run an animated simulation, (e) evaluate the degree of realism of the behav‐
iours in the resulting animation, and (f) repeat until satisfactory results are obtained. If
a human researcher is responsible for choosing the tendencies and parameter settings
and evaluating the results, this process can be relatively inefficient.
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An alternative approach to the same problem, which is the approach we took, is to
attempt to increase efficiency by applying a genetic algorithm to automatically select
the tendencies and parameter values and to evaluate the results. For this alternative
approach, we require a way of scoring the quality of a behaviour model based on the
results of a simulation run or runs. Conveniently, in three recent studies, Puckett, Kelley,
and Ouellette have described in detail the movement of individual midges (Chironomus
riparius) in a swarm [6, 9, 10]. We suggest specific criteria that allow us to assess the
fidelity of the model to nature, based on this quantitative data and separate qualitative
observations of midge behaviour [4, 7]. From this research, we derived specific criteria
to measure the fidelity to nature of a model of midge swarming. We show how to trans‐
form the criteria into real-valued functions and how to combine them into a scoring
function for midge behaviour in a simulation run.

Our overall goal is to improve the appearance of simulated swarms of midges in
animations. A key difference between simulation and animation is that in simulation one
wants to have accurate physics, i.e., the equations should be consistent with known
physical laws, while in animation, it is sufficient to have consistency with detailed
observations. We are attempting first to provide physics-based simulation and secondly
to animate the results. Our software can be run with 3D graphical display enabled or
disabled. Of course, to produce animations in real time (60 frames per second), the
complexity of calculations must be controlled in some fashion to allow the behaviours
to be calculated in real time. The resulting animations will still need to be evaluated by
a person, in a further step we do not attempt in this paper.

The remainder of the paper is organized as follows. The second section describes back‐
ground information on midges and swarms of midges, with emphasis on previous models
of their swarming behaviour. The third section describes our approach, including mention
of the relevant tendencies, the range of possible values for parameters, and a scoring func‐
tion for evaluating behaviours in simulation runs. We also explain how a genetic algorithm
can be applied. The final section gives our conclusions and suggestions for future research.

2 Background

In this section, we present relevant background information on the characteristics of midges
and swarms of midges and a summary of previous research on observing and simulating
swarms of midges.

Midges and Swarms: Chironomidae is a family in the order Diptera (true flies). Chiro‐
nomids are small (less than 2 cm long [3]) and relatively ubiquitous. Male chironomids
form mating swarms. A typical swarm is an aggregation of males “dancing” back and forth
in a certain location [10]. Swarms tend to form in certain preferred locations, often based
on visual cues or air currents [4, 7]. For example, the midges may swarm directly above a
light coloured area (such as a light-coloured straw hat) on a darker background [7]. For
simplicity, for our simulation, we select a specific 3D position as the centre of the swarm.

Other than avoiding collisions, midges exhibit little interaction with each other in
the swarm [9]. Midges tend to “dance” back and forth in a certain pattern, hovering
around one spot and then darting to another. In still conditions (as simulated here),
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midges have complex paths that take them throughout the swarm [9, 10]. Puckett, Kelley,
and Ouellette measured the paths of swarming midges in still conditions and calculated
velocities, accelerations, and other statistics related to the swarm. For example, they
found that a midge makes a high-curvature turn about 1–3 times per second and travel
an average of 3.8 cm between such turns [9]. A high-curvature turn exists when the
curvature of the midge’s path, , exceeds a threshold value, . The value of  is calcu‐
lated as  [10], where  is the velocity vector and  is the acceleration
vector of the midge. The threshold value  is 1/3 cm−1 [10].

Models of Midge Swarms: A relevant early model for swarms is the flocking model used
for boids, i.e., creatures similar to schooling fish and flocking birds [11]. Flocking behav‐
iour is typically simulated with three specific tendencies: (a) cohesion between the individ‐
uals, which attracts them to each other; (b) separation between individuals, which prevents
them from getting too close together, and (c) alignment, which causes the individuals to
travel in the same direction [2, 5, 11]. In swarms, however, there is no alignment because
there is no uniform direction of travel [2]. As well, swarming midges do not interact with
each other via long-distance cohesive influences [9]. Additionally, midges only exhibit
separation behaviour when they are avoiding collisions, a behaviour which only occurs
when they are within 1.2 cm of each other [9]. Therefore, different tendencies should be
used to simulate swarming from those typically used for schooling and flocking simulations.

Couzin et al. proposed a collective behaviour model with separation, cohesion, and
parallel alignment, which is able to simulate four collective behaviours: swarm, torus,
dynamic parallel group, and highly parallel group [2]. The swarming behaviour model,
implemented with long-range cohesion, was determined not to be biologically realistic
by Puckett, Kelley, and Ouellette, who compared the acceleration statistics of the model
with those of a real swarm [9]. Wang et al. created a swarming model in which the
movements of the swarm members are governed by random noise and collision avoid‐
ance, without any cohesion [13]. This model appears to make realistic animations, but
we were unable to compare their model to quantitative data. To improve efficiency, our
approach uses simpler calculations than that of Wang et al.

3 Approach

Our approach to modelling the swarming behaviour of midges has four major facets.
The first step is to collect some tendencies observed to affect the behaviour of individual
midges and formalize these tendencies as rules to give a behaviour model. The relative
weights attached to these tendencies are treated as parameters of the model. The second
step is to examine reports by biologists describing the characteristics of midges (e.g.,
average length and maximum speed in still air) and determine reasonable ranges of
values for these characteristics. These characteristics are also treated as parameters of
the behaviour model. The third step is to develop a scoring function to rate the fidelity
to nature of the behaviour in a simulation run, based on specific statistical measures
suggested by biologists. The final step is to apply a genetic algorithm to discover a set
of values for the parameters that yield simulation runs that obtain high scores. Each of
these facets is now examined in turn.

Discovery of Parameters for Animation of Midge Swarms 19



3.1 Tendencies

We model the following tendencies in the movement of individual midges:

1. Location Preference: The midges have a preference to swarm in a certain location
, based on topographical features [4, 7]. In the simulation, the swarming location

is selected arbitrarily.
2. Central Preference: The midges have a preference to be near to a large number of

other midges, as swarming increases the chances of mating, and larger swarms offer
more protection from predators [8]. In our approach, this tendency is interpreted as
a tendency to fly toward the centre of the swarm. The center of the swarm is calcu‐
lated as the average position of all midges.

3. Maximum Radius: Midges in a swarm have been observed to stay within a radius
defined based on the size of the swarm. The equation for the radius is:

(1)

where V is calculated as the number of midges in the swarm times 200 cm3/midge
[10], the mean volume per individual midge. If the midges fly farther from the center
of the swarm than the radius, this tendency causes them to turn and return to being
inside the specified radius.

4. Dancing Preference: The dancing movements are roughly figure-eight motions
based on an imaginary vertical line through the center of the swarm [4].

5. Random Changes: The midges appear to change direction at random after a certain,
presumably random time interval. When the direction is changed, there is a slight
bias to go toward the preferred location  [9]. Although the direction and time
interval may not actually be random, no other explanation has yet received wide‐
spread acceptance.

6. Collision Avoidance: If a midge is within a certain distance from another midge, it
accelerates rapidly away from the other midge [9].

Given the above tendencies, we propose reformulating each tendency as an influence
on the desired velocity  of an individual midge. The actual velocity  for the next
time step is computed by blending the previous velocity  and the desired velocity 
based on the idea of a steering vector, a maximum acceleration , and a maximum
speed  (adapted from Reynolds [12]).

(2)

(3)
where  reduces the length of the vector given as the first argument to the length
(norm) specified by the second argument.

We assume that the relative importance of the tendencies can be described by
constant weights. As previously mentioned, these weights are parameters in the
behaviour model that are changed by the genetic algorithm.
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Characteristics of midges were obtained from research papers and, where data were
not available, educated guesses. These characteristics and their possible values are listed
below:

• body length: [9, 3]
– minimum: 0.2 to 1.0 cm
– maximum = minimum + x, where x is 0.1 to 0.3 cm

• preferred speed in still air: 16.8 cm/s [10]
– minimum: 10.0 to 14.0 cm/s
– maximum: 17.5 to 21.0 cm/s

• maximum acceleration: 100 to 500 cm/s2 [6]
• zone of repulsion: 1.2 cm [9]
• maximum turning rate: 2π rad/s

The mass of a midge is calculated using Eq. 4 [3]

(4)

where y is the mass in grams and x is the body length in centimeters. When x is small,
y can become negative, so we set a minimum mass of 0.0005 g. The minimum and
maximum body length, minimum and maximum speed, and maximum acceleration
characteristics are used as parameters by the genetic algorithm.

3.2 Criteria Used to Determine the Fidelity of a Model

As mentioned in Sect. 1, quantitative measures, where available, allow automated
assessment of a behaviour model. Considerable progress has been made in deriving
quantitative measures related to midge behaviour from detailed observations. The most
detailed measures were derived by Puckett, Kelley, and Ouellette [6, 9, 10]. We selected
nine of these measures to use as success criteria when testing models. We do not have
access to the original researchers’ raw data, but we were able to estimate the minimum
and maximum observed values for some of the measures from graphs in their papers.
In other cases, the relevant values were explicitly stated. Following the example of
Puckett and Ouellette, we use a swarm size of 10 midges. They referred to this size as
the asymptotic swarm size, i.e., the smallest size at which performance is consistent with
that of larger swarms [10]. To assess the fidelity of a model to nature, we analyze the
extent to which it satisfies the following nine criteria (each stated as a measure and a
desired value or range):

1. Mean velocity in every coordinate direction = 0 [6] (C1)
2. Standard deviation of velocity [6]: (C2)

(a) σvx = 15 to 19 cm/s (horizontal x)
(b) σvy = 15 to 19 cm/s (horizontal y)
(c) σvz = 7 to 13 cm/s (vertical z)

3. Mean acceleration in every coordinate direction = 0 [6] (C3)
4. Standard deviation of acceleration σa = 100 to 200 cm/s2 [6] (C4)
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5. Slope of the function between the mean acceleration (a) in a coordinate direction
and the position (p) in that coordinate direction relative to the centre [6] (C5)
(a) between  and  (horizontal x)
(b) between  and  (horizontal y)
(c) between  and  (vertical z)

6. Mean nearest neighbour distance = 3.2–4.0 cm [9] (C6)
7. Mean acceleration ( ) towards nearest neighbour as a function of distance from

nearest neighbour:  [9] (C7)
8. Mean free path = 3.4 to 3.8 cm [9, 10] (C8)
9. Relative frequency of encounters < 0.01 [9] (C9)

The mean free path is calculated as the average distance travelled between consecutive
turns for all midges [9]. The relative frequency of encounters is calculated as the number
of times a midge is within 1.2 cm of another individual divided by the total number of
high-curvature turns for that midge, then averaged over all individuals.

To simplify the task of combining the nine criteria, we devised a set of nine functions,
 for , each yielding a real value in [0, 1], to represent them. The scoring

function  is a weighted average of these functions, with equal weights ( ) assigned
to each.

(5)

We assume that these functions should be continuous over the real numbers. For
measures with acceptable ranges, a value of 1 is assigned to any result in the desired
range and an exponential function is used to assign a value in [0, 1] to any value outside
the range. Given an acceptable range [a, b] for criterion , we first calculate the midpoint

 and the half width . Then we specify function  as applied to a value
 as:

(6)

This function is defined for  in [ . For criteria that are defined separately for each
coordinate dimension, three results are first produced using Eq. 6 and then they are
averaged (arithmetic mean).

We use an extended version of the same technique for measures with slopes. The
intuition is that in a sphere centred on the desired location , the functions should yield
values of 1, while outside the sphere, the function should yield values less than 1 and
falling to 0 as distance increases. We assume that the area of interest with respect to
each of the three coordinate directions is from  to , where  is the coor‐
dinate for dimension  (i.e., any of x, y, and z) of the preferred location  and  is the
swarm maximum radius. Given  (the function derived by linear regression from the
observed swarm with the lowest values),  (the function derived from the observed
swarm with the highest values), and  (the function derived from our simulation run),
we examine the two edges of the swarm independently for a given coordinate dimension
and average the results. For dimension , the lower edge is evaluated using Eq. 6 with
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, , and . The higher edge is evalu‐
ated with , , and . The two results
are averaged to give a score for dimension . As described above, the results for the
three dimensions are then averaged.

The score reflects the magnitudes of the differences between the statistics derived
from a simulation run and the desired values for these statistics, as listed above. For
example, a model with a mean nearest neighbour distance of 3.5 cm gets a value of 1
for , whereas one with a mean nearest neighbour distance of 2.0 cm gets a lower value.
To obtain the relevant statistics, the program collects the position, velocity, and accel‐
eration, all in relation to the swarm centre, and the nearest neighbour distance for each
midge in every frame.

3.3 Genetic Algorithm

The genetic algorithm used to select parameters is a simple one using a population of
behaviour models. Each behaviour model  is represented by a vector with entries for
every parameter (treated as the chromosomes). The initial population is generated by
choosing random values within the acceptable range for each parameter. Mutation is
performed either (a) by adjusting the value of a parameter by a small increment or
decrement while staying in the acceptable range or (b) by randomly choosing a different
acceptable value for the parameter. Crossover is performed by choosing two models 
and , randomly selecting a crossover point along the chromosome vector, and creating
a new model  with values from  up to the crossover point and values from  after
the crossover point. The processing cycle is as follows: given a population of models,
(a) evaluate each model in the population by performing an individual simulation run
with the parameters specified for this model and then scoring the results of the simulation
run, and (b) create a new population by keeping a fraction of the existing models, adding
some new models produced by mutation, and adding some models produced by cross‐
over. The cycle is repeated for a series of generations until an acceptable model is
produced or a maximum count is reached. The model with the highest score in the final
generation is selected as the best model.

Initially, for the genetic algorithm, we recommend creating a new population by
keeping 50 % of the current members, creating 40 % by mutation, and creating 10 % by
crossover. Of the mutations, we recommend that half be created by making a small
change to one parameter and half by choosing a new random value for the parameter.

4 Conclusions and Further Research

We proposed an approach to the discovery of suitable parameters for a model of midge
swarming behaviour. This approach formalizes tendencies into a rule-based model,
determines ranges of acceptable values for the parameters to this model from the biolog‐
ical literature, develops a scoring function to rate the fidelity to nature of the behaviour
in a simulation run, and finally applies a genetic algorithm to discover a set of values
for the parameters that yield simulation runs that obtain high scores.
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The novelty of this work is that we provide a method for automatically generating
and validating a model of midge behaviour by comparison to quantitative experimental
results. Previous researchers who proposed such models validated their results by qual‐
itative assessments of simulations and animations.

Our basic model can be made more complex by considering different circumstances.
For example, our current model assumes that the air is still, whereas, in nature, there is
almost always at least a light breeze, which is known to affect how the swarm behaves [4].
Additionally, one could adjust the decision-making of the simulated midges to allow them
able to judge swarm size and density, and then join or leave swarms based on their size.
One could allow the form of the functions representing tendencies to be modified under
control of the genetic algorithm. One could also investigate the utility of the midge
swarming model in a simulation of the midge-hunting behaviour of bats, where the midges
will have to react to a solid object (namely, a bat), passing near or through their swarm.
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Abstract. In this study we propose a new method to classify sentiments in
messages posted on online forums. Traditionally, sentiment classification
relies on analysis of emotionally-charged words and discourse units found in
the classified text. In coherent online discussions, however, messages’ non-
lexical meta-information can be sufficient to achieve reliable classification
results. Our empirical evidence is obtained through multi-class classification
of messages posted on a medical forum.

1 Motivation

A rapid growth in the Internet access from 70 % of the population in 2010 to 81 % in
2014 has caused an increase in online networking from 38 % of the population in 2011
to 46 % in 20141. European Commission’s strategy on Big Data (July, 2014) highlights
that “Data is at the centre of the future knowledge economy and society”… and that to
seize the opportunities of the large and complex resulting datasets, and be able to process
such ‘big data’, initiative must be supported e.g. in the health sector (personalized medi‐
cine). Health-care of the future will be based on community, collaboration, self-caring,
co-creation and co-production using technologies delivered via the Web (Cambria et al.
2012).”

Online medical forums are platforms on which interested parties (e.g., patients, family
members) collaborate for better health. The best forums promote empowerment of
patients and improve quality of life for individuals facing health-related problems. An
online survey of 340 participants of HIV/AIDS-related Online Support Groups revealed
four most important factors that contribute to the patient empowerment: receiving social
support, receiving useful information, finding positive meaning and helping others (Mo
and Coulson 2012). On surveyed medical forums, personal testimonials attract attention
of up to 49 % of the participants, whereas 25 % of the participants are motivated by

1 http://ec.europa.eu/eurostat/.
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scientific and practical content (Balicco and Paganelli 2011). In a survey of online infer‐
tility support groups, empathy and shared personal experience constituted 45.5 % of
content, gratitude – 12.5 %, recognized friendship with other members – 9.9 %, whereas
the provision of information and advice and requests for information or advice took
15.9 % and 6.8 % respectfully (Malik and Coulson 2010). In many testimonials, infor‐
mative content intervenes with emotions, e.g. For a very long time I’ve had a problem
with feeling really awful when I try to get up in the morning ties up the author’s poor
feeling and her daily routine.

Restricted communication environment of online support groups can amplify rela‐
tions between communication competence and emotional well-being, especially for
patients diagnosed with potentially life-threatening diseases (Shaw et al. 2008). A study
of 236 breast-cancer patient posting online showed that quality of life and psychological
concerns can be affected in both desired and undesired ways. Giving and receiving
emotional support has positive effects on emotional well-being for breast cancer patients
with higher emotional communication skills, while the same exchanges have detrimental
impacts on emotional well-being for those with a lower emotional communication
competence (Yoo et al. 2014). Challenges arise, however, when sentiments should be
analyzed in a large data set: traditional tools, e.g. general-purpose emotional lexicons,
are not efficient on medical forums, whereas domain-specific lexicons tend to over-fit
the data (Bobicev et al. 2015a, 2015b).

Our current work proposes that coherent online discussions allow classification
of sentiments by using information of the post’s position in the discussion, senti‐
ments of the neighboring posts and the author’s activity level. Further, we test this
approach in multi-class sentiment classification of data gathered from an online
medical forum.

2 Related Work

Strong relationship exists between language of an individual and her health status
(Rhodewalt 1984). Language expressions of negative and undesirable events can be
predictors of cardio-vascular disease risks. This connection has led to the development
of Linguistic Inquiry and Word Count (LIWC) (Pennebaker and Francis 2001). A soft‐
ware program calculates the degree to which people use different categories of words
across a wide array of texts, including emails, speeches, poems, or transcribed daily
speech. This tool automatically determines the degree to which any text uses positive
and negative emotions, self-references, cognitive and social words.

Qiu et al. (2011) studied dynamics among positive and negative sentiments
expressed on Cancer Survivors Network. They estimated that 75 %–85 % of the forum
participants change their sentiment in a positive direction through online interactions
with other community members.

26 V. Bobicev and M. Sokolova



The sheer volume of on-line messages commands the use of Sentiment Analysis to
analyse emotions en masse. Taking advantage of Machine Learning technique, Senti‐
ment Analysis has made considerable progress when applied population health (Chee
et al. 2009) as well as on social networks (Zafarani et al. 2010). Empirical evidence
shows a strong performance of Naive Bayes, K-Nearest Neighbor, Support Vector
Machines, as well as scoring functions and sentiment-orientation methods that use Point-
wise Mutual Information (Liu and Zhang 2012). Sentiment Analysis studies mostly
identify text’s sentiment through the text vocabulary (e.g., positive and negative
adjective, positive and negative adverbs) and style (e.g., use of negations, modal verbs)
(Taboada et al. 2011).

The In Vitro Fertilization (IVF) data set has been introduced in (Sokolova and
Bobicev 2013). The data consists of 80 annotated discussions (1321 posts) gathered
from the IVF Ages 35+ sub-forum2. Each post was annotated by two raters using three
sentiment categories: ‘confusion’, ‘encouragement’ and ‘gratitude’, and one ‘factual’
category, a category transitional between ‘factual’ and ‘encouragement’ was named
‘endorsement’. Each post was assigned with one of the labels: ‘confusion’ (117 posts),
‘encouragement’ (310 posts), ‘gratitude’ (124 posts), ‘factual’ (433), ‘endorsement’
(162 posts), and 176 ‘ambiguous’ posts on which annotators disagreed. The annotators
reached a strong agreement with Fleiss Kappa = 0.737. A detailed description of the
manual annotation process can be found in (Sokolova and Bobicev 2013). Previously,
sentiments transitions in this data had been studied by applying a domain-specific
lexicon HealthAffect and a general-purpose emotional lexicon SentiWordNet (Bobicev
et al. 2015a; Bobicev et al. 2015b).

In the current work, we, however, hypothesize that texts related in their content and
context can be efficiently classified into sentiment categories without invoking vocabu‐
lary of these texts.

3 Problem Statement

We observed a certain pattern of sentiments transactions within discussions: in the first
message, the author who started the discussion usually requested help with finding
information or emotional help (confusion accounted for 56 % of the initial posts). The
following posts were either with encouragement (24 %) or provided the factual infor‐
mation requested by the first author (30 %). In many cases, the discussion initiator either
updated the interlocutors on the factual progress (39 %) or expressed gratitude for their
helpful comments (33 %) (Bobicev et al. 2015b).

The following discussion exemplifies the discussion flow:

2 http://ivf.ca/forums/forum/166-ivf-ages-35/.
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post_id_140964 Hi Everyone,I am only five days past my ET and I'm tempted to do a 
pregnancy home test by next Wednesday.  How many of you did home tests or were 
you patient enough to complete the 2WW without testing at home?  I know most of you 
have mentioned how long the wait seemed or was. … 

post_id_140968 I did do a HPT, first one was 6dp3dt and it was negative, then I did 
another one 8dp3dt and it was very faintly positive....and here we are with a happy 
healthy 2 month old!  it's totally up to you whether you test, everyone has their opin-
ions! good luck!  let us know what you decide!  

post_id_140971 I always test too! I just can't help it. I get too anxious and I would 
much rather know before beta day. … 

post_id_140995 Its really hard to patient and not poas.  I just wanted to mention that 
if you test too early and its negative it can really devasting!  The wait is brutal but so is 
a negative.  I tested early also and it was so hard to deal with. You have to decide 
what you can handle.  Best of luck with your cycle. 

post_id_141010 I have to admit that I was a chicken when it came to the poas.  I 
never did.  I was not sure I could handle it.  I just waited it out. You will have to go with 
your gut.  Good luck with whatever you decide. 

post_id_141032 I believe that you should do what is right for you.  I know some peo-
ple like to wait and they have the patience of a saint!  I know as long as you can keep 
yourself from being too bummed out if it is a BFN then go for it. There are many people 
who can and some who can't. I do know that no matter what you will eventually do 
what your mind wants to do.   It is just human nature.  The urge is SO strong. If you do 
test early, GOOD LUCK!  

post_id_141036 Wow!  Thanks to all of you for the info and encouragement.  Now I 
don’t have to worry about that anymore and I’ll certainly buy First Response and do my 
testing.  Again, thanks and all the best to all of you too in every step of this fertility 
journey. 

Working on sentiment analysis sans vocabulary content, we pursued the following
goals and connected them with feature sets representing the messages:

(A) Our first goal was to demonstrate that there are patterns of sentiments in forum’s
discussions and they mutually influence each other. Hence, we built a representation
which reflected sentiment transitions in discussions. Having two annotation labels for
each post we decided to use them both as features rather than merge them. This allowed
us to disambiguate the ambiguous label, which appeared when two annotators selected
different sentiment labels for the post. We then represented each post through the two
labels assigned by each annotator to the previous post and two labels assigned by each
annotator to the following post; posts lacking this information (e.g., the first post in
discussion) were assigned a label “none” (Set I - 4 categorical features).

(B) We then concentrated on the position of the posts within the discussion, as its
position can affect the expressed sentiments.

We built three binary features showing whether the previous, current and next
messages are first, middle, or last ones. We used these features to enhance the previous
representation (Set II – 4 categorical features + 3 binary features = 7 features).

(C) We were interested in the impact of the longer sequences of sentiment transitions
on the post’s sentiment. To assess this impact, we represented the post by four labels
assigned by each annotator to the two previous messages and by four labels assigned by
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each annotator to the two following messages (Set III - 8 categorical features). To
investigate whether this information can be enhanced by the post’s position, we
expanded Set III with the three position features of the post (Set IV – 8 categorical + 3
binary features = 11 features).

(D) Next, we aimed to represent the influence of author’s activity on the post senti‐
ments. We built three features to present the post author’s activity: a binary feature pr
showing whether the author belongs to the most active authors of this forum (aka a
prolific author); a binary feature i indicating whether the author of the post is the one
who started this discussion; a binary feature f indicating whether the author posted in
this discussion for the first time. Note that these features are independent and can simul‐
taneously be true.

To investigate the mitigating impact of the author’s activity, we enhanced the post
representation through Set IV by all the three features (Set V – 11 features + 3
features = 14 features) and by each feature separately (Set VI – 11 features + pr = 12
features, Set VII – 11 features + f = 12 features, Set VIII – 11 features + n = 12 features).

Note that all the 12 feature sets omit references to the content of the post they represent.
For multi-class classification, we apply Support Vector Machines (SVM, the logistic

model, normalized poly kernel, WEKA toolkit) and Conditional Random Fields (CRF,
the default model, Mallet toolkit). SVM has shown a reliable performance in sentiment
analysis of social networks. At the same time, we expect CRF to benefit from the feature
sets that are sequences of mutually dependent random variables.

4 Empirical Evidence

We worked on four multi-class classification tasks:
6-class classification where 1322 posts are classified into confusion, encouragement,

endorsement, gratitude, facts, ambiguous; the majority class F-score = 0.162;
5-class classification where the ambiguous class is removed and remaining 1146

posts are classified into the other 5 classes; the majority class F-score = 0.207;
4-class classification where 1322 posts are grouped as following: facts and endorse‐

ment classes make up a (factual) class, encouragement and gratitude classes become a
positive class, and confusion and ambiguous classes remain; the majority class F-
score = 0.280;

3-class classification where 176 ambiguous messages are removed and the remaining
1146 messages are classified in positive, confusion and factual as in 4-class classifica‐
tion; the majority class F-score = 0.355.
The best classifiers were found by 10-fold cross-validation. We calculated the macro-
average F-score. Table 1 reports SVM’s performance for each task, and Table 2 – on
CRF. The feature sets are the same as in Sect. 3.

Analyzing the results of SVM, we notice that the best F-score is consistently obtained
when the feature set conveys all the three aspects of the author’s activity (Set V). The
impact of the activity attributes is especially noticeable when we compare the results
with those obtained on Set IV for 5-, 4-, and 3-class tasks: F-score = 0.448, F-
score = 0.495, F-score = 0.594 respectively.
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The situation changes when we consider the classification results obtained by CRF.
For 6-, 4-, 3- class classification, the most predictive feature set is the one that shows
sentiment labels of the preceding and following posts, i.e. Set I. Enhancement of the
four labels with indicators of the post position in the discussion outputs slightly lower
results (Set II). However, these results are still higher than those obtained on other sets.
5-class classification is the only task where CRF benefited from a full spectrum of infor‐
mation available to it. Recall that in this task we removed the ambiguous posts, i.e., the
ones labeled with two different labels, and kept original labels assigned by annotators.

Table 2. Classification results for CRF. For each task, the highest F-score is in bold, the lowest
F-score – in italics.

Sets Feat. 6-class 5-class 4-class 3-class

P R F P R F P R F P R F

I 4 0.390 0.410 0.355 0.45 0.463 0.418 0.494 0.518 0.487 0.609 0.611 0.600

II 7 0.395 0.408 0.356 0.441 0.458 0.414 0.475 0.528 0.489 0.620 0.620 0.605

III 8 0.365 0.400 0.369 0.445 0.468 0.444 0.478 0.500 0.484 0.587 0.593 0.587

IV 11 0.371 0.407 0.373 0.449 0.471 0.448 0.493 0.513 0.495 0.595 0.601 0.594

V 14 0.431 0.460 0.431 0.524 0.528 0.517 0.507 0.538 0.515 0.632 0.630 0.624

VI 12 0.377 0.412 0.379 0.457 0.479 0.457 0.509 0.534 0.513 0.618 0.617 0.610

VII 12 0.404 0.437 0.408 0.506 0.514 0.501 0.498 0.527 0.504 0.620 0.618 0.612

VIII 12 0.387 0.416 0.387 0.470 0.479 0.463 0.503 0.530 0.508 0.631 0.629 0.623

Table 1. Classification results for SVM. For each task, the highest F-score is in bold, the lowest
F-score – in italics.

Sets Feat. 6-class 5-class 4-class 3-class

P R F P R F P R F P R F

I 4 0.621 0.605 0.613 0.619 0.614 0.616 0.681 0.652 0.665 0.732 0.704 0.717

II 7 0.613 0.602 0.607 0.616 0.610 0.613 0.654 0.635 0.644 0.711 0.711 0.711

III 8 0.516 0.490 0.502 0.580 0.540 0.558 0.570 0.524 0.545 0.669 0.609 0.637

IV 11 0.516 0.487 0.500 0.566 0.535 0.548 0.568 0.528 0.546 0.671 0.612 0.640

V 14 0.438 0.436 0.436 0.507 0.500 0.503 0.489 0.480 0.483 0.640 0.625 0.631

VI 12 0.437 0.423 0.429 0.511 0.516 0.513 0.500 0.482 0.489 0.627 0.610 0.617

VII 12 0.569 0.544 0.555 0.637 0.624 0.629 0.559 0.524 0.541 0.657 0.610 0.631

VIII 12 0.489 0.467 0.477 0.561 0.522 0.540 0.536 0.506 0.520 0.661 0.611 0.634
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If compared with the previous work on the same data (Bobicev et al. 2015a, 2015b).
The best F-score = 0.613 for 6 class classification improved on the previously reported
F-score = 0.491. Note, that we obtained this result based on the neighboring posts’
sentiment labels, whereas the classification in (Bobicev et al. 2015a) was done on repre‐
senting messages through emotional lexicons.

5 Discussion

In this work, we proposed a method that eschews the use of a lexical content in sentiment
classification of online discussions. Using a data set gathered from a medical forum, we
have shown that sentiments can be reliably classified when posts are represented through
sentiment labels of the previous and following posts, enhanced by information about the
author activity and the post position in the discussion. We solved 6-,5-,4-, and 3-class
classification problems. On the most difficult 6-class classification task, the best
F-score = 0.613 improves on the previously obtained F-score = 0.491.

SVM’s performance improved when we added information about the post’s author
(i.e., prolificness, the initiator of the discussion, the discussion’s newcomer). CFR
performance, however, demonstrated that relationship between sentiments in the
consecutive posts provide for a higher classification F-score than longer sentiment
sequences. Overall, CRF outperformed SVM due to its ability to gauge information from
a sequence of elements.

In this work, we applied a supervised learning approach which relies on manually
annotated data. To reduce dependency on manual annotation, we plan a transition to
semi-supervised learning. We have shown that sentiment transitions help to predict the
sentiment of the current post. A vast volume of messages posted on social media makes
the use of fully annotated data unrealistic. Thus, we plan to combine a lexicon-based
sentiment classification with the features discussion in this work. A possible approach
would be to use Markov chains to disambiguate ambiguous sentiment labels.
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Abstract. Historical maps are important sources of information for
scholars of various disciplines. Many libraries are digitising their map
collections as bitmap images, but for these collections to be most useful,
there is a need for searchable metadata. Due to the heterogeneity of the
images, metadata are mostly extracted by hand—if at all: many collec-
tions are so large that anything more than the most rudimentary meta-
data would require an infeasible amount of manual effort. We propose
an active-learning approach to one of the practical problems in auto-
matic metadata extraction from historical maps: locating occurrences of
image elements such as text or place markers. For that, we combine tem-
plate matching (to locate possible occurrences) with active learning (to
efficiently determine a classification). Using this approach, we design a
human computer interaction in which large numbers of elements on a
map can be located reliably using little user effort. We experimentally
demonstrate the effectiveness of this approach on real-world data.

Keywords: Active learning · Threshold detection · Human computer
interaction · Template matching · Historical maps · Knowledge discovery

1 Introduction

In this paper we apply proper data mining techniques to a problem in the digital
humanities. Many (university) libraries and archives have an extensive collection
of historical maps. Besides being valuable historical objects, these maps are an
important source of information for researchers in various scientific disciplines.
This ranges from the actual history of cartography to general history, as well as
the geographic and social sciences. To give a non-trivial example: onomastics,
the study of the origin and history of proper names, makes extensive use of
historical maps.

With the progressing digitisation of libraries and archives, these maps become
more easily available to a larger number of scholars. A basic level of digitisation
consists of scanned bitmap images, tagged with some basic bibliographic infor-
mation such as title, author and year of production. In order to make the maps
searchable in more useful ways, further metadata describing the contained infor-
mation is desirable. A particularly useful class of metadata is a georeferenced
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N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 33–47, 2015.
DOI: 10.1007/978-3-319-24282-8 5



34 B. Budig and T.C. van Dijk

Fig. 1. Place markers and text on several historical maps from the Franconica collec-
tion. Note the variety of visual styles, both in the pictographs and the lettering.

index of the contained geographical features (such as labeled cities and rivers)
and geopolitical features (such as political or administrative borders). In this
context, a georeferenced map element is one that is associated with a real-world,
geographical location (in some coordinate reference system). This enables queries
that are useful for actual research practice, such as “all 17th century maps that
include the surroundings of modern-day Würzburg,” or comparing the evolution
of place-name orthography in different regions. It also enables analyses of the
geographic/geodetic accuracy or distortion of the maps, which is of historical
and cartographic interest.

Unfortunately, analysing the contents of historical maps is a complex and
time-consuming process. For the most part, this information extraction task is
performed manually by experts—if at all. For example, it currently takes the
Würzburg University Library between 15 and 30 hours to georeference just the
labeled settlements in a typical map from their collection.1 To see why it takes
so long, consider that the number of labeled place markers in a map can be in
the order of several thousand.

Automated tools for this task are scarce, for a variety of reasons. For one,
there is a large variety of drawing styles in historical maps. This makes it hard
for a single algorithm or software tool to automatically perform well on a large
set of maps: see Fig. 1 for some examples of the range of styles that occur in the
Franconica collection.2 Secondly, there is the question of input. When an histo-
rian georeferences a map, he or she brings a wealth of background information
and the ability to do additional research when required. Finally, there is the issue
of correctness: in general, algorithms for extracting semantic information from
bitmap images are far from perfect. This is to be expected since these problems
are truly difficult for computers. To the curators of historical map collections,
however, the correctness of metadata can be of paramount importance (not to
mention: a matter of pride).

In light of the above difficulties, we have developed an active-learning system
for a generally-applicable subproblem in this area. In this paper we demonstrate
1 Personal communication with Dr. H.-G. Schmidt, head of the Manuscripts and Early

Prints department, Würzburg University Library.
2 Würzburg University Library, http://www.franconica-online.de/.

http://www.franconica-online.de/
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that active learning is suitable for this real-world task. As a first step, a user
indicates a rectangular crop around the map element he or she is looking for,
such as or . We use standard techniques from image processing to find a set
of candidate matches, but the problem remains to determine which of these can-
didate matches are in fact semantically correct. We model this as a classification
problem and use pool-based batch-mode active learning. Experiments show that
the resulting human-computer interaction is efficient.

2 Related Work

Since the digitisation and analysis of historical maps is of increasing interest to
libraries, several systems simplifying this complex process have been developed.
Most of these systems provide convenient graphical interfaces, but still rely heav-
ily on users to manually annotate or even georeference the input maps. See for
example Fleet et al.’s Georeferencer [7] and the system by Simon et al. [23].
For the postprocessing of georeferenced maps, Jenny and Hurni [13] introduced
a tool that is able to analyse the geometric and geodetic accuracy of historical
maps and then visualise the identified distortions.

Some research has gone into image segmentation specifically for bitmap
images of (historical) maps. Höhn [9] introduced a method to detect arbitrarily
rotated labels in historical maps; Mello et al. [15] dealt with the similar topic
of identifying text in historical maps and floor plans. These systems are rather
sensitive to their parameters, requiring careful tweaking in order to perform well.
In a further paper, Höhn et al. [10] specifically raise this as an area for improve-
ment: their experiments work well, but do not necessarily generalise to a large
variety of maps. The system of Mello et al. was developed for a large set of rather
homogeneous maps, which means that it was merited to spend significant effort
to find good parameter values. In contrast, we aim to handle diverse maps, each
with relatively small user effort. We therefore specifically address finding model
parameters.

There is not much research available on fully-algorithmic information retrieval
specifically from historical maps. Automatic approaches exist, but only for
restricted inputs—that is, developed specifically to digitise a particular corpus.
For example, Leyk et al. [14] describe a method to find forest cover in a specific set
of 19th century topographic maps. Arteaga [1] extracts building footprints from
a set of historical maps from the New York Public Library (NYPL). The effec-
tiveness of these approaches is in part due to the homogeneity of these relatively
recent maps. The tests in this paper are performed on much older maps (16th and
18th century).

We approach the above problem using active learning (see Settles [20] for
a survey). In particular, we use batch-mode learning [4,8,11]. Our approach is
pool based, that is, we have a discrete set of items that we wish to classify and
we can only query the oracle on those items. In effect, we learn a threshold [3],
based on logistic regression. See Schein and Ungar [18] for a general discussion
of active learning for logistic regression.
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The design of our system takes into account the human factors involved in
using a human as oracle. This combines aspects of human-computer interaction
(HCI) and knowledge discovery, as advocated for example by Holzinger [12]. Such
factors can be incorporated in the algorithms used, as in proactive learning [6].
For our purposes we found that standard active learning suffices.

3 Design Rationale

Our general goal is to georeference bitmap scans of historical maps. We focus on
a specific subtask of this larger goal in order to get a manageable problem. This
modular approach—with subgoals more modest than “understand this map”—
allows for rigorous problem statements and, thereby, reproducible experiments
and comparability; this is in contrast to monolithic software systems, where it
can be unclear how any specific detail influences the outcome. Competing sys-
tems for a certain step can then be proposed and evaluated. Such a “separation
of concerns” in systems for processing historical maps is also advocated, for
example, by Shaw and Bajcsy [22] and Schöneberg et al. [19]. The latter propose
a pipeline with separate tasks operating independently; our (interactive) system
could serve as a module in such a system.

The task we discuss in this paper is finding pictographs and textual elements.
This is an information extraction step that lifts from the unstructured level of
a bitmap image to data that is combinatorial in nature: a list of locations of
map elements. Finding approximate matches of an example image is a classic
problem in image processing (see for example Brunelli [2] for an overview). This
approach can be used for a variety of map elements, from settlement pictographs,
to forests, to text labels: we find approximate repeat occurrences of an example
image. However, standard techniques yield only a list of candidates along with
“matching scores:” this still needs to be converted into into a yes/no classifica-
tion. In this paper we focus on efficiently learning a classifier in this setting.

Specifically in our application, the user provides a template by indicating
the bounding box for an interesting map element. This could be a prototypical
pictograph on the map, such as a house ( ), a tree ( ) or even individual
characters ( , , ). See Fig. 3 for an example: here the user wants to find all
occurrences of the character ‘a’ and inputs the red rectangle in the leftmost
image. The template matching algorithm comes up with—among thousands of
others—the three matches indicated in the other images. The remaining problem
is to decide which of these matches are in fact semantically correct.

The usefulness of recognising individual characters should not be underes-
timated, since standard optical character recognition (OCR) does not perform
well when applied directly to an entire historical map: consider for example
Fig. 1, particularly the middle image where the text is not clearly separated
from the other map elements. Even in such messy maps, there are usually sev-
eral characters that are particularly recognisable (which ones might depend on
the handwriting). Given one typical example of a character, our method can be
used to find most of the other occurrences of the character with high precision.
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Fig. 2. Overview of the consecutive steps in our method. The input is a bitmap gen-
erated by scanning a historical map, and a template to search for. The output is a list
of positive matches and their location in the image.

If we do this for a small number of different characters, a later pipeline step can
cluster these results to find out where the text elements are (for example: labels).
This can be used as a preprocessing step for OCR, in case the OCR algorithm
would otherwise get confused by overlapping map elements or is computationally
too expensive to be run on the entire map. Because of this application, we prefer
our system to have a tendency to side with precision over recall: false negatives
are not a disaster if we use a suitable set of characters, since it is likely that at
least some character occurrences within each label will be found. This approach
based on finding a small set of specific characters as preprocessing is also used
by Leyk et al. [14].

In our experiments we have used a basic template matching algorithm, which
we briefly sketch here. Since all our maps are effectively black and white, we first
binarise to a 1-bit-per-pixel bitmap. Then we consider a sliding window, which
calculates a matching score for every possible position, to pixel precision: when
the template is shifted to a certain position, how many pixels are equal between
the template and the image, and how many are different? Following standard
procedure, we take the percentage of equal pixels as our matching score.3 If the
score is high for a certain pixel (that is, for a certain position of the template), it
is likely that a slight shift of the template still results in a good score; we therefore
throw out all pixels that do not have maximal score in their 8-neighbourhood.
Of the remaining pixels, we select the 1000 highest-scoring ones: this parameter
is chosen generously such that all true positive matches survive this step. In this
way, the template matching algorithm is used as a data reduction and projection
step that takes place before the classification happens. See Fig. 2 for an overview
of the different steps in this process.

This leaves the classifier. We choose to classify based on a score threshold, or
equivalently: a rank threshold. A threshold that more-or-less cleanly separates
the true positive matches from the true negative matches does indeed exist in
our experiments: we have manually created ground truth for the templates in
Table 1 and find ROC curves with area under curve of around 0.9.

Because the maps and the templates vary wildly, picking a single threshold
value will not work. Some literature in fact handwaves this issue (for example [9])
by hand picking the value for their experiments. This is valid when the objective
3 Note that this basic approach is not invariant to scale and rotation. It is naturally

robust against small variations, but some historical maps would require a more
advanced template matching algorithm.
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Template 4 r = 180
s = 82.0%

r = 184
s = 82.0%

r = 187
s = 81.7%

Fig. 3. Various crops from the same historical map. The red rectangle in the leftmost
image indicates the crop used as template; the other three are computed candidate
matches. Note that these three matches have similar rank and score, but do not all
represent semantic matches of the template. In the ground truth we reject the rank-
180 match (probably a hill) and accept the rank-187 match (‘a’). The ground truth of
Experiment 4 accepts the rank-184 match (‘d’): see Fig. 4 for the reasoning.

0 100 200 300 400 500 600 700 800 900 999

“a”

“d”/“g”

other

rank

Fig. 4. Distribution of the contents of the first thousand matches for Template 4,
ordered by rank. Matches containing either “a”, “d” or “g” can be separated fairly
well from the remaining matches using a threshold (e.g. rank ≤ 200). In contrast, a
discrimination of strictly the matches showing “a” will not have high accuracy.

is to show that a certain algorithm can achieve high accuracy, but does not show
usefulness of the method in practice. In order to efficiently classify the potential
matches given to us by the template matching algorithm, we will employ pool-
based active learning with a human user as oracle.

Since a given candidate match either contains the desired element (correct)
or does not contain it (incorrect), we describe it with a dichotomous variable.
We then use logistic regression as a model to discriminate between correct and
incorrect matches. In the experiments section we show that logistic regression is
a suitable classifier when trained on complete ground truth (all labels).

Since acquiring labels is the most time-consuming step in our system—it
involves a human—we use active learning. Following standard practice, we use
the following batch-mode query strategy. As input it takes the list of candidate
matches, ordered by rank, and a parameter k, the size of a batch. (We examine
the choice of k in the experiments section.) The algorithm starts by assuming
the best-scoring match is correct and the worst-scoring match is incorrect and
(trivially) fits an initial model. Then, in each iteration it picks the k unlabeled
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matches that are most uncertain (according to the current model) and asks
the user to label this batch; the results are stored and the model is retrained.
After any number of iterations, this gives the following classifier: return the
user-provided label if available, and give the most likely answer according to the
logistic regression model otherwise.

4 Experiments

In order to evaluate the efficacy of our method, we have implemented the pro-
posed system and applied it to several real-world datasets. This section describes
our findings.

4.1 Evaluation Settings

We implemented our method primarily in Python, using the Scikit-learn library4

for logistic regression. The template matching is implemented in C++. All exper-
iments presented in this section have been run on a desktop PC. Neither runtime
nor memory were an issue; template matching takes up to a couple of second on
practical maps and batch selection occurs in realtime.

To evaluate our active learning approach, we created nine real-world data
sets. These were created by analysing template matching results from actual his-
torical maps, using various templates: the combination of a map and a template
identifies a data set. For every data set, we considered the thousand highest-
ranking matches and manually determined if they are correct. This gives us a
ground truth containing nine times 1,000 samples; Table 1 gives an overview of
these datasets.5 Note that for some templates we have accepted several charac-
ters, not just the exact character in the template. This improves classification
performance for reasons illustrated in Fig. 4; see also Deseilligny [5]. Choosing
which characters to accept for a certain template currently involves some user
judgment, but the sets shown in the table seem widely applicable.

The samples in these data sets have only one feature: their score according to
template-matching algorithm. These scores also imply a ranking of the samples.
In each of the following experiments, there was no clear difference between using
the actual scores and using the implied rank. For the rest of the paper, we report
the results of using the sample’s rank as its (only) feature.

In order to assess how difficult the classification for a particular template is,
and if learning is even feasible, we use ROC analysis for a threshold classifier.
Figure 5 shows an area under curve of over 0.85 for all experiments, showing that
the approach is feasible for a wide range of templates. As an additional measure
of difficulty, we trained the logistic regression model on a full ground truth of
each data set. This allows us to calculate the self information (or: surprisal) for
every sample, relative to this model. Table 1 shows the sum of self information
4 See [17] and http://scikit-learn.org/.
5 Available at http://www1.pub.informatik.uni-wuerzburg.de/pub/data/ds15/.

http://scikit-learn.org/
http://www1.pub.informatik.uni-wuerzburg.de/pub/data/ds15/
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Table 1. Data sets used in our experiments. Each line describes one data set: the
name of the map, a thumbnail of the template, characters that were considered positive
matches, the area under curve according to Fig. 5 and the self-information relative to
the logistic regression model trained on all samples.

Historical Map Template Accepted AUC Self-Info

1 Carte Topo. D’Allemagne (1787) b, h 0.85 462.91 bit

2 Franciae Orientalis (1570) a, g, d 0.90 566.95 bit

3 Franciae Orientalis (1570) e 0.87 642.02 bit

4 Circulus Franconicus, De Wit (1706) a, g, d 0.92 444.48 bit

5 Das Franckenlandt (1533) a, g 0.87 590.50 bit

6 SRI Comitatus Henneberg (1743) n, m, h 0.92 524.85 bit

7 SRI Comitatus Henneberg (1743) e 0.87 524.01 bit

8 Circulus Franconicus, De Wit (1706) 0.88 560.29 bit

9 Circulus Franconicus, Seutter (1731) 0.99 146.16 bit

All maps in this table are taken from the Franconica collection (http://
www.franconica-online.de/) of the Würzburg University Library. Identifiers:
1: 36/A 1.16-41; 2, 3: 36/A 20.39; 4, 8: 36/A 1.17; 5: 36/G.f.m.9-14,136;
6, 7: 36/A 1.13; 9: 36/A 1.18.

over all matches of each template. This can also be regarded as a measure of the
classification difficulty for the particular template: high self information hints at
a larger number of outliers and/or a wider interval of rank overlap between the
positive and negative samples. This interpretation is confirmed by the fact that
the data sets collected on maps from the 16th century have higher self information
than those on maps from the 18th century. On many of the older maps, elements
indeed seem harder for humans to distinguish due to the heterogeneous style of
handwriting and the suboptimal state of preservation.

We measured the classification performance of our algorithm using accuracy
and F1 score. (See for example Parker [16] for definitions of these standard evalua-
tion criteria.) Values for precision and recall of our classifier will also be discussed.
Recall that for our application, precision is more important than recall: a missed
character or text label might still be located later using another template, whereas
false positives could potentially disturb subsequent pipeline steps (such as OCR)
significantly.

4.2 Evaluation Results

Classification Performance. We have run our algorithm on the nine real-
world data sets introduced above. Following Settles [21], we use learning curves
to show the performance of our method. We use batch size k = 3 unless stated
otherwise. A discussion of the choice of this parameter value follows later. As
a baseline, we have used a random strategy, where the batch of samples to
be labeled is picked uniformly at random from the pool of unlabeled samples.

http://www.franconica-online.de/
http://www.franconica-online.de/
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Fig. 5. ROC curves for the data sets in Table 1. Highlighted are the lowest and highest
area under curve values for templates containing characters (Templates 1 and 4). Of
the two templates for place markers, one shows typical performance (Template 8) and
one performs exceptionally well (Template 9).

We now show that our active strategy outperforms this baseline strategy in
almost every situation.

Figure 6 shows the learning curves of our active learning approach in compar-
ison to the random strategy. The plots describe the accuracy of both classifiers
against the number of iterations; the number of labeled samples is three times
this number, as we set k = 3. For the random strategy, we performed 100 runs
and show mean, 10th, and 90th order statistic of the achieved accuracy. As we
can see in the figure, the accuracy of the active learning strategy dominates the
accuracy of the random strategy at almost every iteration. Only in the very
beginning (number of iterations below approximately 15), this is not consis-
tently true. However, the active learning approach is near the 90th percentile
performance of the random strategy in these situations as well.

Now we look at additional performance measures. The results in this experi-
ment refer to Template 6, as a typical example. Figure 7 shows the performance of
the active learning approach in comparison to three runs of the random sampling
strategy. Note that after 15 iterations, the active learning classifier dominates
the three random classifiers in accuracy, precision and F1 score. The random
approach does better only in terms of recall, which we find acceptable, as dis-
cussed before. The same observations hold for a larger number of random runs
and for the remaining data sets; plots are omitted for space.

It can additionally be noted that, in contrast to the random approach, all
four scores increase monotonically after the first few iterations when using the
active learning method. Thus, when adding additional labels, the classifier’s
performance is highly likely to improve. This property is especially valuable for
the design of proper user interaction when using active learning: from the users’
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Fig. 6. Learning curves comparing the performance of our active learning strategy
(k = 3) to the random baseline strategy. The bold black line indicates the accuracy of
our method over the iterations. The thin black line shows the mean accuracy of 100
runs of the random strategy; the grey area indicates 10th to 90th percentile.

point of view, it is hard to accept that additional effort in labeling leads to a
decrease in quality.

In the next experiment, we consider the self information of the samples that
our system selects, in comparison to those chosen by the random baseline strat-
egy. We calculate the self information as before (see Evaluation Settings). For
almost any number of iterations, the total self information in the samples from
the active learning strategy is considerably higher than in those from the random
baseline strategy. Figure 8 illustrates this for four templates; the same holds for
the remaining five data sets. This behaviour of the active learning strategy is
desirable, because higher self information means that the labeled samples were
indeed hard to classify for the logistic regression model and therefore having
them labeled by the user is valuable. In contrast, the random strategy presents a
substantial number of samples whose labels are comparatively clear (for example
because they have a very high rank), thereby wasting the user’s time.
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Fig. 7. Statistics for our active learning strategy (black) and three runs of the random
baseline strategy (grey) on Template 6. Note that after 15 iterations, this strategy
outperforms the random baseline strategy in all measures except recall.
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Fig. 8. Self-information of all samples that have been labeled up to a given iteration.
The labels picked by the active learning strategy (bold black) are considerably more
informative than those selected by the random baseline strategy (black: mean, grey
area: 10th to 90th percentile). Note that in the end, each strategy has labeled all samples
and achieves the self information of the ground truth as listed in Table 1.
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Fig. 9. Accuracy of our active learning strategy using different batch sizes k on Tem-
plate 3. For values of k between 3 and 7, accuracy is acceptable from the start and
increases for increasing number of samples. Exceedingly large values (k ≥ 25) result
in inferior performance for the first few iterations and these represent significant user
effort due to the batch size.

Runtime. In our decidedly unoptimised implementation, it takes a total of
approximately one second of runtime to calculate 100 batches of size k = 3. As
this represents 100 batches of user interaction, the system is clearly suitable for
realtime applications.

Choice of Parameters. Our system depends on the batch size k. We have run
a set of experiments to evaluate the influence of k on our system’s classification
performance. Figure 9 shows that the performance of our system does not depend
very strongly on the choice of k, as long as no extreme values are chosen. Based
on this data set, we might recommend values between 3 and 7. This conclusion
holds for the remaining templates (plots omitted for lack of space).

When choosing the parameter k, human factors should also be taken into
account. The time taken to decide if a displayed candidate match is correct
(that is, to label a sample) varies with the batch size. Since selecting and deliv-
ering a new set of samples to the user requires a perceptible amount of time
(both technologically and cognitively), a larger batch size may cause less user
disturbance. For this reason—and aesthetic reasons—we currently use k = 9 in
our web-based prototype implementation of the user interface.

5 Prototype of a User Interface

In addition to the experimental setup described above, we have implemented
a prototype user interface for our system. This allows us to assess not only
the abstract, but also the practical suitability of our approach. Figure 10 shows
two screenshots of our implementation. The interface on the left allows users
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(a) An overview of a map, the corresponding templates
and the candidate matches.

(b) Classification interface
with batch size k = 9.

Fig. 10. Screenshots showing two user interfaces from our web-based prototype. Note
that (a) is intended to be used on large screens, while (b) can be used conveniently on
smartphones as well.

to browse a historical map, crop templates and start the template matching
process. With the interface on the right, users can classify samples selected by
the active learning system (in the screenshot k = 9). By clicking or touching
any of the nine tiles, the tile turns around and shows a green check mark to
indicate that the sample was classified as positive. Once the user is finished
inspecting the nine samples, he or she presses the “Next” button. The samples
that remain unchecked will be considered negative and a new batch of samples
chosen by the active learning algorithm will be presented. Our implementation
of the user interface is web-based (using HTML5 and JavaScript), so it can be
used seamlessly on any device that runs a modern browser. In particular, the
classification interface can be conveniently used on smartphones, which enables
crowdsourcing of this task. (See also Arteaga [1].)

Using our prototype, it takes a user with some experience approximately
25 seconds to do 4 iterations (that is, to classify 36 samples, since k = 9). This
includes the runtime of our active learning algorithm and client-server overhead.
According to our experimental results in the preceding section, the stated num-
ber of labels is already enough to achieve good classification results for a typical
template. Projecting these numbers, our approach allows the effective classifi-
cation of 10 templates within 5 min, assuming the templates have been selected
beforehand. In contrast, even with significant experience it takes about 10 to
15 min to generate the full ground truth for a single template. This leaves quite
some time to select the templates and still achieve a factor-10 improvement in
template throughput. (Recall that the user is probably looking for many tem-
plates on the same map.) This shows that our system, and the proposed user
interaction, is well-suited for this application.
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6 Conclusion

In this paper, we have tackled a real-world problem from a knowledge-discovery
perspective: the extraction of information from historical maps. We have focused
on the detection of occurrences of certain elements in bitmap images, and intro-
duce a practical approach that solves this problem. Our proposed system uses
template matching for feature extraction from the image, and batch-mode active
learning to detect appropriate thresholds. Particularly this active-learning step
addresses an open problem in the literature on metadata extraction from his-
torical maps. We implemented this approach and experimentally demonstrate
that it performs well on real data sets from practice. In combination with the
user interface we propose, our system is able to save users a significant amount
of time when georeferencing historical maps. Directions for future work include
the following.

In a practical setting, our system clearly extends to other (historical) docu-
ments besides maps. Early experimentation shows, for instance, that the system
also works well for locating specific glyphs in medieval manuscripts. Our pro-
totype is currently being integrated into the existing workflow at Würzburg
University Library, which will enable user studies on a proper scale.

On a more abstract level, our active-learning approach with human-computer
interaction is not limited specifically to historical documents and template match-
ing. We expect that many other computer-vision methods that depend sensitively
on parameter selection can benefit from this strategy.

Acknowledgments. We thank Wouter Duivesteijn for fruitful discussion and helpful
comments. We thank Hans-Günter Schmidt of the Würzburg University Library for
providing real data and practical use cases.
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Abstract. Expressive interpretation forms an important but complex
aspect of music, in particular in certain forms of classical music. Mod-
eling the relation between musical expression and structural aspects of
the score being performed, is an ongoing line of research. Prior work has
shown that some simple numerical descriptors of the score (capturing
dynamics annotations and pitch) are effective for predicting expressive
dynamics in classical piano performances. Nevertheless, the features have
only been tested in a very simple linear regression model. In this work,
we explore the potential of a non-linear model for predicting expressive
dynamics. Using a set of descriptors that capture different types of struc-
ture in the musical score, we compare the predictive accuracies of lin-
ear and non-linear models. We show that, in addition to being (slightly)
more accurate, non-linear models can better describe certain interactions
between numerical descriptors than linear models.

Keywords: Musical expression · Non-linear basis models · Artificial
neural networks · Computational models of music performance

1 Introduction

Performances of written music by humans are hardly ever precise acoustical
renderings of the notes in the score, as a computer would produce —nor are
they expected to be. A natural human performance involves an interpretation
of the music, in terms of structure, but also in terms of affective content [5,22],
which is conveyed to the listener by local variations in tempo and loudness,
and (depending on the expressive possibilities of the instrument) the timing,
articulation, and timbre of individual notes.

Musical expression is a complex phenomenon. Becoming an expert musi-
cian takes many years of training and practice, and rather than adhering to
explicit rules, achieved performance skills are to a large degree the effect of
implicit, procedural knowledge. That is not to say that regularities cannot be
found in the way musicians perform music. Decades of empirical research have
identified a number of factors that jointly determine the way a musical piece
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is rendered [11,21]. For example, aspects such as phrasing [29], meter [25], but
also intended emotions [20], all have an effect on expressive variations in music
performances.

A better understanding of musical expression is not only desirable in its own
right. The potential role of computers in music creation will also depend on
accurate computational models of musical expression. For example, music soft-
ware such as MIDI sequencers and music notation editors may benefit from such
models in that they enable automatic or semi-automatic expressive renderings
of musical scores.

Several methodologies have been used to study musical expression. Com-
plementary to controlled experiments that investigate a single aspect of per-
formance, data mining and machine learning paradigms set out to discover
regularities in musical expression using data sets comprising musical perfor-
mances [23,31]. Given the implicit nature of expressive performance skills, the
benefit of the latter approach is that it may reveal patterns that have gone as
of yet unnoticed, because perhaps they do not relate in any obvious ways to
existing scholarly knowledge about expressive performance.

A computational framework has been proposed in [13], to model the effect of
structural aspects of a musical score on expressive performances of that score,
in particular expressive dynamics (the relative intensity with which the notes
are performed). This framework, referred to as the Linear Basis Model (LBM),
follows the machine learning paradigm in that it estimates the parameters of a
model from a set of recorded music performances, for which expressive parame-
ters such as local loudness, tempo, or articulation, can be measured or computed.

An important characteristic of the LBM is its use of basis functions as a way
to describe structural properties of a musical score, ranging from the metrical
position of the notes, to the presence and scope of certain performance directives.
For instance, a basis function for the performance directive forte (f ), may assign
a value of 1 to notes that lie within the scope of the directive, and 0 to notes
outside the scope. Another basis function may assign a value of 1 to all notes that
fall on the first beat of a measure, and 0 to all other notes. But basis functions
are not restricted to act as indicator functions; They can be any function that
maps notes in a score to real values. For example, a useful basis function proves
to be the function that maps notes to (powers of) their MIDI pitch values. Given
a set of such basis functions, each representing a different aspect of the score,
the intensity of notes in an expressive performance is modeled simply as a linear
combination of the basis functions. The resulting model has been used for both
predictive and analytical purposes [13,15].

The original formulation of the LBM used a least squares (LS) regression to
compute the optimal model parameters. A probabilistic LBM using the Bayesian
linear regression assuming zero mean Gaussian priors with isotropic covariance
was presented in [15], and then expanded to Gaussian priors with arbitrary mean
and covariance in [4].

Although the linear model produces surprisingly good results given its sim-
plicity, a question that has not been answered until now is whether the same
basis function framework can benefit from a more powerful, non-linear model.
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It is conceivable that interactions of score properties produce an effect on perfor-
mance, rather than each of the properties in isolation. Moreover, it may be that
certain properties covary with musical expression, but not in a linear fashion.
Therefore, in this paper, we propose a Non-Linear Basis Model (NLBM), that
enables non-linear combinations of basis functions through the use of supervised
Feedforward Neural Networks (FFNN). These models have been successful in
a variety of tasks, ranging from handwritten digit recognition to robot control.
FFNNs are powerful models for learning non-linear transformations: with enough
hidden units they can represent arbitrarily complex but smooth functions.

Thus, the purpose of this paper is to investigate whether the basis-function
modeling approach to expressive dynamics benefits from non-linear connections
between the basis-functions and the targets to be modeled. To this end, we run
a comparison of the LBM and the NLBM approaches on a data set of profes-
sional concert performances of Chopin’s piano works. Apart from the predictive
accuracy of both models, we present a (preliminary) qualitative interpretation
of the results, by way of a sensitivity analysis of the models.

The outline of this paper is as follows: In Sect. 2, we discuss prior work on
computational models of musical expression. In Sect. 3, the basis-function mod-
eling approach for musical expression is presented in some more detail. A math-
ematical formulation of the presented non-linear model is provided in Sect. 4. In
Sect. 5, we describe the experimental comparison mentioned above. The results
of this experimentation are presented and discussed in Sect. 6. Conclusions are
presented in Sect. 7.

2 Related Work

Musical performance represents an ongoing research subject that involves a wide
diversity of scientific and artistic disciplines. On the one hand, there is an interest
in understanding the cognitive principles that determine the way a musical piece
is performed [5,22] such as the effects of musical imagery in the anticipation and
monitoring of the performance of musical dynamics [2]. On the other hand, com-
putational models of expressive music performance attempt to investigate the
relationships between certain properties of the musical score and performance
context with the actual performance of the score [32]. These models can serve
mainly analytical purposes [30,33], by showing the relation between structural
properties of the music and its effect in the performance of such music, mainly
predictive purposes [28], i.e. the models are used to render expressive perfor-
mances, or both [7,13,17]. Computational models of music performance tend to
follow two basic paradigms: rule based approaches, where the models are defined
through music-theoretically informed rules that intend to map structural aspects
of a music score to quantitative parameters that describe the performance of a
musical piece, and data-driven (or machine learning) approaches, where the
models try to infer the rules of performance from analyzing patterns obtained
from (large) datasets of observed (expert) perfomances [14,31].

One of the most well-known rule-based systems for musical music perfor-
mance was developed at the Royal Institute of Technology in Stockholm (referred
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to as the KTH model) [10]. This system is top-down approach that describes
expressive performances using a set of (music theoretically sound/cognitively
plausible) performance rules that predict aspects of timing, dynamics and artic-
ulation, based on a local musical context. On the other hand, the model proposed
in this paper represents a bottom-up approach that uses a lower level encoding
of a musical score in order to learn how different aspects of the score contribute
to generate an expressive performance of a musical piece.

Among the machine learning methods for musical expression is the model
proposed by Bresin [3]. This model uses artificial neural networks (NNs) in a
supervised fashion in two different contexts: 1) to learn and predict the rules
proposed by the KTH model and 2) to learn the performing style of a professional
pianist using an encoding of the KTH rules as inputs. As in the case of the KTH
model, the NLBM proposed in this paper uses a lower level representation of
the score, and makes less assumptions on how the different score descriptors
contribute to the expressive dynamics.

On the other hand, Van Herwaarden et al. [18] present an unsupervised app-
roach to modeling musical dynamics using restricted Boltzmann machines. This
approach uses a piano roll representation of musical scores to explain the musical
dynamics of performed piano music. In order to predict expressive dynamics of
a score, the features learned by this model are trained in a supervised fashion
using LS regression. The choice of a note-centered representation of a musical
score makes this system able to model harmonic context based on relative pitch,
but insensitive to absolute pitch. Furthermore, this encoding of a score does
not include performance directives written by the composer, such as dynamics
or articulation markings (such as piano, staccato, etc.). Both the KTH system
and previous work on LBMs have shown that the encoding of pitch and dynam-
ics/articulation markings plays an important role in the rendering of expressive
performances.

A broader overview of computational models of expressive music performance
can be found in [14,32].

3 The Basis-Function Model of Expressive Dynamics

In this section, we describe the basis-function modeling (BM) approach, inde-
pendent of the linear/non-linear nature of the connections to the expressive
parameters. We consider a musical score a sequence of elements [13]. These ele-
ments include note elements (e.g. pitch, duration) and non-note elements (e.g.
dynamics and articulation markings). The set of all note elements in a score is
denoted by X . Musical scores can be described in terms of basis functions, i.e.
numeric descriptors that represent aspects of the score. Formally, we can define
a basis function ϕ as a real valued mapping ϕ : X �→ R. In a similar way, musi-
cal expression is characterized in a quantitative way by a number of expressive
parameters. In particular, expressive dynamics is conveyed by the MIDI velocities
of the performed notes. Further expressive parameters capture aspects of note
timing and local tempo (e.g. inter-onset intervals between consecutive notes),
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and articulation (the proportion of the duration of a note with respect to its
inter-onset interval). Although the basis-function approach can be applied with-
out any alteration to model all of these expressive parameters, the focus in this
study will be on expressive dynamics. By defining basis functions as functions of
notes, instead of functions of time, the BM framework allows for modeling forms
of music expression related to simultaneity of musical events, like the micro-
timing deviations of note onsets in a chord, or the melody lead [12], i.e. the
accentuation of the melody voice with respect to the accompanying voices by
playing it louder and slightly earlier.

The BM framework relies on the simplifying assumption that given all score
information, the expressive parameters for each note are independent from those
of other notes. This assumption implies that temporal dependencies within para-
meters are not explicitly modeled. One advantage of non-linear models over pre-
vious work is that this framework allows for modeling of mutual dependencies
between expressive parameters.

Figure 1 illustrates the idea of modeling expressive dynamics using basis func-
tions schematically. Although basis functions can be used to represent arbitrary
properties of the musical score (see Sect. 3.1), the BM framework was proposed
with the specific aim of modeling the effect of dynamics markings. Such mark-
ings are hints in the musical score, to play a passage with a particular dynamical
character. For example, a p (for piano) tells the performer to play a particu-
lar passage softly, whereas a passage marked f (for forte) should be performed
loudly. Such markings, which specify a constant loudness that lasts until another
such directive occurs, are modeled using a step-like function, as shown in the
figure. A gradual increase/decrease of loudness (crescendo/diminuendo) is indi-
cated by right/left-oriented wedges, respectively. Such markings are encoded by
ramp-like functions. A third class of dynamics markings, such as marcato (i.e.
the “hat” sign over a note), or textual markings like sforzato (sfz ), or forte piano
(fp), indicate the accentuation that note (or chord). This class of markings is rep-
resented through (translated) unit impulse functions. In the BM approach, the
expressive dynamics (i.e. the MIDI velocities of performed notes) are modeled
as a combination of the basis functions, as displayed in the figure.

3.1 Groups of Basis Functions

As stated above, the BM approach encodes a musical score into a set of numeric
descriptors. In the following, we describe various groups of basis functions, each
group representing a different aspect of the score. This list should by no means
be taken as an exhaustive (or accurate) set of features for modeling musical
expression. It is a tentative list that encodes basic information, either directly
available, or easily computable from a symbolic representation of the musical
piece (such as MusicXML).

I Dynamics Markings. Bases that encode dynamics markings, such as
shown in Fig. 1. For each of the constant loudness markings (p, pp, f etc.),
two additional ramp-function are included that allows for a gradual change
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Fig. 1. Schematic view of expressive dynamics as a function f(x,w) of basis functions
ϕ, representing dynamic annotations

towards the loudness level indicated by the marking. Such bases are referred
to as anticipation functions, and we distinguish between long and short
anticipations, according to how gradual is the change towards the tar-
get dynamics marking. Additionally, basis functions that describe gradual
changes in loudness, such as crescendo and diminuendo, are represented
through a combination of a ramp function, followed by a constant (step)
function, that continues until a new constant dynamics marking (e.g. f)
appears, as illustrated by ϕ2 in Fig. 1.

II Polynomial Pitch Model. Grachten et al. [13] proposed a third order
polynomial model to describe the dependency of dynamics on pitch. This
model can be integrated in the BM approach by defining each term in the
polynomial as a separate basis function, i.e. “pitch“, “pitch2”, and “pitch3”.

III Vertical Neighbors. Two basis functions that evaluate to the number of
simultaneous notes with lower and higher pitches, respectively.

IV IOI. The inter-onset-interval (IOI) is the time between the onsets suc-
cessive notes; For note i, three basis functions encode the IOIs between
(i, i − 1), (i − 1, i − 2), and (i − 2, i − 3), respectively.

V Ritardando. Encoding of markings that indicate gradual changes in the
tempo of the music; Includes functions for rallentando, ritardando,
accelerando.

VI Slur. Description of legato articulations, which indicate that musical notes
are performed smoothly and connected, i.e. without silence between each
note. The encoding of this bases functions is through parabolic functions
that act locally where such a slur is present on the score.

VI Duration. A basis function that encodes the duration of a note.
VIII Rest. Indicates whether notes precede a rest.

IX Metrical. Representation of the time signature of a piece, and the position
of each note in the bar. For example, the basis function labeled 4/4 beat
0 evaluates to 1 for all notes that start on the first beat in a 4/4 time
signature, and to 0 otherwise.
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ϕ3(xi)
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Fig. 2. The architecture of the used NLBM for modeling expressive dynamics

X Repeat. Takes into account repeat and ending bars, i.e. explicit markings
of that indicate the structure of a piece by indicating the end of a particular
section (which can be repeated), or the ending of a piece.

XI Accent. Accents of individual notes or chords, such as the marcato in
Fig. 1.

XII Staccato. Encodes staccato markings on a note, an articulation indicating
that a note should be temporally isolated from its successor, by shortening
its duration.

XIII Grace Notes. Encoding of musical ornaments that are melodically and
or harmonically nonessential, but have an embellishment purpose.

XIV Fermata. A basis function that encodes markings that indicate that a
note should be prolonged beyond its normal duration.

4 Non-linear Basis Model

In this section we provide a mathematical formulation of the Non-Linear Basis
Model (NLBM) model for modeling expressive dynamics. Let x = (x1, . . . , xN )T

∈ R
N be a vector representing a set of N notes in a musical score and y =

(y1, . . . , yN )T ∈ R
N be a vector representing of an expressive parameter for each

note. In this paper, we focus on expressive dynamics, but this framework can be
used for other parameters. Let ϕ(xi) = (ϕ1(xi), . . . , ϕM (xi))T ∈ R

M be a vector
whose elements are the values of the basis functions for note xi. The influence of
these basis functions in the expressive parameter can be modeled in a non-linear
way using the framework of Feed Forward Neural Networks (FFNNs). These
neural networks can be described as a series of functional transformations [1],
i.e. a series of non-linear activations of linear combinations of the inputs. Using
this formalism, we can write the parameter y as the output of a fully-connected
FFNN with L hidden layers as

y(xi,w) = f (L)

⎛
⎝DL∑

j=1

w
(L)
j h

(L−1)
j (xi) + w

(L)
0

⎞
⎠ , (1)
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where h(l)(xi) ∈ R
Dl is the activation of the l-th hidden layer, whose k-th

component is given by

h
(l)
k (xi) = f (l)

⎛
⎝ Dl∑

j=1

w
(l)
kj h

(l−1)
j (xi) + w

(l)
k0

⎞
⎠ , (2)

and activation of the first hidden layer is then given as a function of the basis
functions as

h
(1)
k (xi) = f (1)

⎛
⎝ M∑

j=1

w
(1)
kj ϕj(xi) + w

(1)
k0

⎞
⎠ . (3)

The set of all parameters is denoted by w, where w(l) = {w
(l)
0 , w1, . . . , w

(l)
Dl

}
are the parameters of the l-th hidden layer1, and f (l) represent the activation
function of the l-th layer. Common (non-linear) activation functions are sigmoid,
hyperbolic tangent, softmax and rectifier (ReLU(x) = max(0, x)). Since we are
using the FFNN in a regression scenario, the activation function of the last
hidden layer is set to the identity function, i.e. f(x) = x [1]. Figure 2 shows the
scheme of an FFNN with one hidden layer.

Given a set of training data consisting of input x and target data t, the
model parameters can be estimated in a supervised way by minimizing a loss
function, as

ŵ = argmin
w

L(y(x,w), t). (4)

A usual loss function for supervised regression problems is the mean squared
error (MSE), i.e.

LMSE(y, t) =
1
N

∑
i

(yi(x,w) − ti)2. (5)

As previously stated, the NLBM is able to model mutual dependencies
between the basis functions. The output of the model can be written as a linear
combination of the last hidden layer, i.e.

y(hL,w(l)) =
DL∑
j=1

w
(L)
j h

(L−1)
j + w

(L)
0 = w(L)T h̃(L−1), (6)

where h̃(L−1) =
(
1, h

(L−1)
1 , . . . , h

(L−1)
DL

)T

. Since h̃(L−1) is a non-linear activation
of linear combinations of the input units, it can model the dependencies and
interactions of the basis functions. Therefore, we can understand the training
of the NLBM as finding Least Squares solution of a non-linear encoding of the
input basis functions.

1 In the machine learning literature {w1, . . . , w
(l)
Dl

} and w
(l)
0 are respectively referred

to as the set of weights and the bias of the l-th layer.
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5 Experiments

To determine to what degree the model is able to account for expressive dynam-
ics, encoded as MIDI velocities of performed notes (see Sect. 5.1), the accuracy of
the predictions of the trained model was tested using a 10-fold cross validation.
We report several measures to characterize the accuracy of the learned models.
Firstly, we report MSE, the mean squared error of the predictions, which is the
most direct measure of how close the model predictions are to their targets. Sec-
ondly the Pearson correlation coefficient (r), expresses how strongly predictions
and target are correlated. Lastly, the coefficient of determination R2, expresses
the proportion of variance explained by the model.

5.1 Data Set

The Magaloff corpus [9] consists of the complete Chopin piano solo works per-
formed by the renown Russian-Georgian pianist Nikita Magaloff (1912–1992)
during a series of concerts in Vienna, Austria in 1989. These performances were
recorded using a Bösendorfer SE computer-controlled grand piano, and then
converted into standard MIDI format. These performances have been aligned to
their corresponding musical scores. One of the unique properties of this corpus
is that the hammer velocities of each performed note have been recorded in a
precise way, and converted to MIDI velocities. This dataset comprises more than
150 pieces and over 300,000 performed notes, adding up to almost 10 hours of
music.

5.2 Model Training

We trained several NLBM models with different configurations. Of the training
data in each fold, 70% was used for updating the parameters, and 30% was used
as validation set. The model was trained using RMSProp [6]. This method is a
mini batch variant of stochastic gradient descent that adaptively updates the
learning rate by dividing the gradient by an average of its recent magnitude. In
order to avoid overfitting, dropout and early stopping were used. Dropout pre-
vents overfitting and provides a way of approximately combining different neural
networks efficiently by randomly removing units in the network, along with all its
incoming and outgoing connections. These methods have been effectively used
to improve the results in several applications including image processing [19,26].

The number of hidden units, activation function of the hidden layers and the
hyper-parameters (learning rate, batch size and probability of dropout pdropout)
were empirically selected using a grid search. The results presented below are
those of the best model on the test set. This network has one hidden layer
model with 100 ReLU hidden units, and a linear output layer with a single unit,
pdropout = 0.5, a learning rate of 0.0001 a batch size of 16000 and was trained
for an average of 1037 epochs. It is interesting to notice that with the current
training methods, the accuracy of the model was not benefitted by the addition
of more hidden layers.
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Table 1. Predictive results for MIDI Velocity, averaged over a 10-fold cross-validation
on the Magaloff piano performance corpus. A smaller value of MSE is better, while
larger r and R2 means better performance.

Model MSE r R2

LBM 0.780 0.472 0.223

LBM (Bayesian) 0.774 0.475 0.226

LBM (best regularized) 0.771 0.477 0.228

NLBM 0.757 0.492 0.242

The LBM models were trained using the original LS solution, a regularized
LS that imposes a constraint in the l2 norm on the model parameters [1] and
the Bayesian LBM reported in [15]. The damping coefficient for the regular-
ized LS was selected empirically through a grid search, and the reported results
correspond to those with the lowest MSE on the test set (denoted as “best
regularized” in Table 1).

6 Results and Discussion

In this section, we present and discuss the results of the cross-validation exper-
iment. We first present the predictive accuracies, and continue with a more
qualitative analysis of the results.

Table 1 shows the accuracy the LBM and the NLBM Models in the 10-fold
cross-validation scenario. All three accuracy measures show that the NLBM model
gives a small but consistent improvement over all LBM models. A t-test was per-
formed over the MSE, showing that the difference between the LBM with lowest
MSE (the regularized LBM, from now on referred to as the best LBM), and NLBM
is statistically significant (t(316344) = 4.64 at p = 3.5×10−6). This may not seem
surprising, since FFNNs are known to be universal approximators, i.e. they can
uniformly approximate any continuous function on a compact input domain to
arbitrary accuracy, given that the model has enough hidden units [1]. However,
the limited amount of training data, and the approximate nature of the parameter
optimization techniques may well limit the improvement in accuracy in practice.

Prior work has revealed that a major part of the variance explained by the
LBM is accounted for by the basis functions that represent dynamic markings
and pitch, respectively, whereas other basis functions had very little effect on
the predictive accuracy of the model [13]. To gain a better insight into the role
that different basis functions play in each of the models, the learned models
must be studied in more detail. For the LBM this is straight-forward: Each
of the basis-functions is linearly related to the target using a single weight,
so that the magnitude of a weight is a direct measure of the impact of the
corresponding basis-function on the target. In a non-linear model such as the
NLBM, the weights of the model cannot be interpreted in such a straight-forward
way. To accommodate for this, we use a more generic method to analyze the
behavior of computational models, referred to as sensitivity analysis.
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6.1 Sensitivity Analysis

In order to account for the effects of the different basis functions, a variance
based sensitivity analysis was performed on the trained LBM and NLBM mod-
els [24]. In this way, the sensitivity of the model as a function of the input basis
functions ϕ given the parameters w, i.e. y = f(ϕ | w) is explained through a
decomposition of the variance of y into terms depending on the input basis func-
tions and their interactions. The first order sensitivity coefficient S1i measures
the additive effect of the basis function ϕi in the model output, while STi

, the
total effect index, accounts for all higher order effects (interactions) of a factor
ϕi. These sensitivity measures are given respectively by

S1i =
Vϕi

(Eϕ\ϕi
(y | ϕi))

V (y)
and STi

=
Eϕ\ϕi

(Vϕi
(y | ϕi))

V (y)
, (7)

where Vϕi
is the variance with respect to the i-th basis function, Eϕ\ϕi

is the
expected value with respect to all basis functions but ϕi and V (y) is the total
variance of y. It can be shown that

∑
i STi

≥ 1, with the equality occurring if
the model is linear (as is the case with LBM), and S1i = STi

. Both quantities are
estimated using a quasi-Monte Carlo method proposed by Saltelli et al. [24], that
generates a pseudo random sequence of samples using low-discrepancy (Sobol
sequences) to estimate the expected values and variances in the above equations.

Table 2 lists the basis functions that contribute the most to the variance of
the model, ordered according to STi

for the best LBM and the NLBM models.
These results show that the polynomial model (the basis functions pitch, pitch2,
and pitch3) and the dynamics annotations (the basis-functions for f, ff, ff and
their anticipations, pp anticipation, and sotto voce) have the strongest impact
on the predicted MIDI velocities in the LBM models. This is consistent with
findings reported in [13]. The other basis functions in the LBM list pertain to
time signatures that occur relatively rarely: 12/8 time signature occurs in 4
pieces; the high ST values for those bases may well be due to an overfitting of
the model to the particularities of those pieces.

The list of bases to which the NLBM model is most sensitive (Table 2, right
half) shows a similar pattern, i.e. the strongest effect on the predicted dynam-
ics come from the dynamics annotations, with a smaller contribution from the
polynomial pitch model. Comparing the total effect index and the first order
sensitivity coefficient shows that the non-linear effects in the NLBM model cap-
ture interactions between the certain basis functions, e.g. diminuendo (dim.)
with ST = 0.173 and S1 = 0.087 and crescendo (cresc.) with ST = 0.133 and
S1 = 0.051. These results also suggest an increased total effect index for gradual
basis functions (like cresc. or dim.).

Figure 3 illustrates how the NLBM model can account for interactions
between the cresc. and dim. These bases interact in ca. 28% of the
Magaloff corpus. In this context, interaction should be understood as those
instances where the value of both basis functions is non-zero at the same time,
i.e. when dim appears after a cresc., before a new constant loudness dynamics
markings appear on the score (see Fig. 1 and Sect. 3.1). The lower half of the
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Table 2. Basis functions with the largest sensitivity coefficients for the best LBM and
NLBM models; Averages are reported over the 10 runs of the cross-validation.

LBM NLBM

Basis function ST S1 Basis function ST S1

pitch3 0.187 0.187 ff 0.182 0.160

ff 0.112 0.112 diminuendo 0.173 0.087

duration 0.085 0.085 crescendo 0.133 0.051

pitch 0.081 0.081 fff 0.115 0.095

fff 0.080 0.080 f 0.095 0.082

f 0.044 0.044 duration 0.082 0.052

pitch2 0.022 0.022 pitch3 0.046 0.041

pp 0.021 0.021 pp 0.032 0.020

f anticipation long 0.016 0.016 pitch2 0.017 0.015

ff anticipation long 0.015 0.015 4/4 weak beat 0.016 0.014

12/8 beat 1 0.013 0.013 p 0.015 0.008

4/4 weak beat 0.013 0.013 p anticipation short 0.014 0.013

fz 0.013 0.013 f anticipation long 0.013 0.010

12/8 beat 2 0.012 0.012 ff anticipation long 0.013 0.012

accent 0.011 0.011 mp 0.012 0.008

12/8 beat 7 0.011 0.011 p anticipation long 0.012 0.010

3/4 beat 1 0.011 0.011 pitch 0.012 0.009

12/8 beat 8 0.010 0.010 accent 0.010 0.009

p 0.010 0.010 fz 0.010 0.008

6/8 beat 1 0.009 0.009 mf 0.010 0.005

figure shows the cresc. and dim. basis functions in two different contexts: cresc.
alone and the effects of cresc. after dim. The upper leftmost figure represents
the case of the dynamics predicted by the best LBM using the crescendo basis
function alone. The upper center figure shows the predicted dynamics by the
NLBM using only cresc., while the upper rightmost figure shows the interac-
tion of a cresc. after a dim. for both NLBM and the best LBM models. Here
it is possible to see a diminished effect of the cresc. on predicted dynamics by
the NLBM when it appears after a dim. On the other hand, these results also
illustrate the inability of the LBM to model interactions between basis functions.
These results also suggest that the NLBM model might be able to capture a more
“natural” dynamics curve for basis function that represent gradual changes, like
cresc., and polynomial pitch model. The interaction between cresc. and dim.
illustrates how the NLBM model can capture interactions between basis func-
tions that the (simpler) LBM model is not able to describe.
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Fig. 3. Example of the effect of the interaction of crescendo after a diminuendo for
both LBM and NLBM models.

The results in Table 2 suggest that some of the most important basis functions
for both the LBM and NLBM correspond to certain rules in the KTH model, as
is the case of the polynomial pitch model and the High Loud phrasing rule2.

7 Conclusions

In this paper, a neural-network based model for musical expression was pre-
sented. This model is shown to perform better than previous work based on
linear basis models. A sensitivity analysis performed on the two models suggests
that the new non-linear approach is able to capture certain interactions of basis
functions that cannot be captured in linear models.

In this work, we used simple music-theoretically informed numerical descrip-
tors to capture certain aspects of the score. The results presented above suggest
that new basis functions could improve the performance of the presented model.

Additionally, the presented results suggest that the LBM model benefits from
bases that contain redundant information (such as long and short anticipation
and the polynomial pitch model). It would be interesting to determine wether
the NLBM model can capture the similar effects, without recurring to the use
of such basis functions, e.g. by using only pitch instead of pitch, pitch2 and
pitch3. Another interesting question would be to investigate to what degree the
nonlinear mappings from basis functions to targets improves the accuracy of the
model for non-binary basis functions.

An interesting approach from the music-theoretic side would be the use of
basis functions that encode structural (i.e. form) and harmonic information of
the piece. Among these basis functions could be the use of key identification
algorithms and pattern identification techniques [27].
2 See Table 1 in [10] for an overview of the rules of the KTH model.
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Furthermore, it would be interesting to use a combination of unsupervised
learned features (using Deep Learning) and music-theoretic-informed features for
analyzing and predicting expressive music performance, expanding previous work
by van Herwaarden et al. [18]. Following previous work on Bayesian LBMs [15],
the presented framework can also be expanded into a fully probabilistic approach
using the framework of Bayesian neural networks [1].

As stated in Sect. 3, neither the NLBM, nor the LBM (in both its determin-
istic and Bayesian formulations) allow for modeling of temporal dependencies
within parameters. This issue can be addressed by using a temporal model, such
as recurrent neural networks (RNNs) [16], conditional random fields (CRFs) or
considering the temporal autocorrelation [8].
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Abstract. Knowledge discovery in scientific and research datasets is an
extremely challenging problem due to the high dimensionality, hetero-
geneity, and complex relationships within the data. When these datasets
also includes temporal and geospatial components, the challenges in
analyzing the data become even more difficult. A number of visualiza-
tion approaches have been developed and studied to support the explo-
ration and analysis among such datasets, including parallel coordinate
plots, dimensional subsetting, geovisualization, and multiple coordinated
views. In this research, we combine and enhance these approaches in
a system called Geo-Coordinated Parallel Coordinates (GCPC), with
the goal of supporting interactive exploration, analytical reasoning, and
knowledge discovery.

1 Introduction

With advances in data collection and storage technology, the volume and
complexity of scientific and research datasets are becoming increasingly over-
whelming. Analyzing and understanding these datasets is an essential step in
hypothesis development and scientific discovery. Discovering new and unex-
pected knowledge requires making sense of large amounts of high-dimensional
and interrelated data. The need to derive insights from data collected for a par-
ticular domain or problem is driving researchers to design, develop, and study
new tools and techniques to support data analysis and knowledge discovery.

Knowledge discovery is the process of identifying and understanding new
meaningful patterns and trends contained within datasets [14]. It is a complex
process that requires multiple iterations of data processing and transformation,
hypotheses generation, and finally interpretation and reasoning about what has
been discovered [14]. Such a process is an extremely challenging problem when
the data is high-dimensional and heterogeneous, contains complex relationships
among attributes, and has important temporal and spatial aspects.

Modern knowledge discovery systems utilize automated data analysis meth-
ods based on research from various fields including data mining, statistics, arti-
ficial intelligence, and machine learning. Even though these automated methods
may be used to identify previously unknown aspects of the data, they provide
researchers with few explanations about how or why the knowledge has been
acquired, and provide little aid to the researchers in interpreting what has been
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 63–77, 2015.
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discovered. Exploratory data analysis takes a different approach, with the aim of
keeping humans involved in the discovery process. This often includes iterative
investigation of the data, with the support of automated data processing, leading
to the understanding of the patterns and the acquisition of new knowledge.

Visual analytics is an emerging approach that is increasingly being employed
to support exploratory analysis of data [7,23]. By combining information visu-
alization, data processing, data mining, and interactive interfaces, analysts are
able to explore, analyze, reason, and make sense of highly complex data [23].
Merging multiple visual and interactive representations helps analysts to gen-
erate hypotheses, identify new lines of inquiry, understand patterns, and derive
new insight from what is being shown.

Our goal in this research is to develop a method to support the exploration
and understanding of complex patterns and trends within high dimensional,
heterogeneous, and geotemporal data. Geo-Coordinated Parallel Coordinates
(GCPC) takes a visual analytics approach to the problem domain, using multi-
ple coordinated views to simultaneously show, filter, and examine the data using
parallel coordinates, micro-visualizations of the statistical features of the data,
geovisualization, and investigative scatter plotting. Interactive and automated
features support the knowledge discovery process, as well as the necessary task
of hiding the complexity of the data to reveal the patterns.

The remainder of this paper is organized as follows. Section 2 provides a
review of the key literature that has informed this research, including overviews
of high dimensional data visualization, geovisual analytics, and multiple coor-
dinated views. Section 3 outlines the key features of GCPC, followed by a case
study in Sect. 4 that illustrates how these features can be used for data explo-
ration and analysis activities, leading to new knowledge generation. The paper
concludes with Sect. 5, which outlines the key contributions of this work, the
limitations of the approach, and future work.

2 Literature Review

The use of visual analytics to support exploration, reasoning, and knowledge
discovery within high dimensional geotemporal data is an active research domain
with applications in many scientific fields [13,22]. The following literature review
focuses on three main topics that are relevant to our work: high dimensional data
visualization, geotemporal data visualization, and multiple coordinated views.

2.1 High Dimensional Data Visualization

While a multitude of approaches have been developed over the years to visual-
ize high dimensional data, each has its limitations [30]. Dimensional reduction
methods use computational techniques such as principle component analysis [2]
or multidimensional scaling [30] to transform the data to a lower dimensional
space while preserving the relative proximity between data points [11]. The end
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result is a visual representation of the data in a coordinate space that has no obvi-
ous correlation to the actual dimensions, introducing complexity while exploring
the data [11]. Dimensional subsetting methods use algorithmic techniques or user
preferences to select a small subset of the dimensions to visualize. The success of
such an approach is dependant on choosing which dimensions contain the most
relevant and useful information [30]. This approach can be extended by display-
ing several dimensionally subsetted views of the data in a small multiples config-
uration. However, as more views are added to explore the relationships between
the different dimensions, it becomes increasingly difficult to detect and interpret
patterns within the data [20]. Instead of using simple shapes to represent each
data point within these plots, glyphs can be used to encode additional dimen-
sions of the data with shape, size, colour, orientation, or other visual attributes.
However, there is a limit to the number of dimensions that can be visualized
using glyphs before they become incomprehensible [12].

A fundamentally different approach to the problem is the use of parallel
coordinate plots, where data are represented within a structure that maps each
of the dimensions to a parallel axis [21]. Individual data points are represented
using polylines, intersecting each axis at the appropriate location for the value on
the specific dimension. This approach is very flexible and scalable with respect
to the dimensionality of the data; adding a new dimension can be achieved
by adding a new parallel axis and extending the polylines to their appropriate
values [17]. The primary value of this approach over other high dimensional
data visualization techniques is that all aspects of the data are shown, and
the relationship between pairs of attributes can be investigated by interactively
placing their axes beside one another.

However, there are also a number of important limitations. When multiple
data points intersect an axis at the same location, ambiguity is introduced. This
can be addressed by interactively highlighting the data points, or replacing the
polylines with curves or density functions, both of which make it easier to per-
ceive and follow the data points through the parallel coordinate structure [17].
When a large number of data points are shown using parallel coordinates, over-
plotting may occur, resulting in visual clutter. Some have explored clustering and
outlier detection algorithms in order to reduce the amount of data that is shown,
and to highlight those data points that are different from the norm [16,32].
Since overplotting may also make it difficult to grasp the distribution of the
data, adding statistical information to the parallel axes may be useful [18], but
may also further contribute to the complexity of the display. When a particular
dimension of the data represents discrete qualitative values, the ambiguity and
overplotting problems become even more acute. Parallel sets provide an alterna-
tive for visualizing such categorical data, using ribbons between the coordinates
to represent the frequency of each category [24]. However, combining this with
traditional parallel coordinates when the data includes a combination of quali-
tative and quantitative data is not feasible.
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2.2 Geotemporal Data Visualization

Geotemporal data visualization is a challenging problem due to the complexity of
representing different scales and relations between the geospatial and temporal
aspects of the data [7]. Simply mapping the data with traditional GIS tools, using
different layers for each temporal range, limits the ability to dynamically analyze
the features of the data. Several approaches have been proposed to support
interactive visual analysis of geotemporal data. One of the earliest methods is
the space-time cube, where location is represented in the map dimensions, and
time represented in the third dimension [5]. Another straightforward method is
using two coordinated visualizations: one to represent the temporal aspect of
the data and the second to represent the geospatial aspect of the data. In this
approach, a thematic dot map [22] or a choropleth map [16] may be used to
visualize the location of the data; the temporal representation can then be used
to interactively filter what is shown in the map. Others have studied methods for
directly visualizing the temporal aspect of the data overlaid on the map (e.g.,
using a glyph to representing an aggregation of monthly temporal data [4]).
However, by using visual attributes to represent the temporal aspect of the
data, these attributes cannot be used to represent other multivariate aspects.
Pre-processing the data to calculate changes over specified timeframes, and then
visualizing these differences, can allow interesting features to be identified that
would be difficult to discern otherwise [19]. Such an approach can be beneficial
when the goal is to analyze how the data are changing over space and time.

2.3 Multiple Coordinated Views

Considering data that consists of both high dimensional attributes and geotem-
poral aspects, exploring and analyzing this type of data becomes an extremely
challenging problem. A single visualization method is not adequate to support
exploration, comparison, analysis, and knowledge discovery across the different
aspects of such complex data. A common approach is to provide multiple visual-
izations of the data, which are linked together such that interactive manipulation
in one (e.g., zooming, filtering, and focusing) results in a corresponding change
in all others [27]. Views of the data that are customized to the specific meanings
of the attributes have been used in this manner, such as the combination of a
scatter plot matrix, time series visualizations, and word clouds [13,16]. From a
geospatial analysis perspective, the coordinated combination of parallel coordi-
nates and geovisualization approaches have been studied for many years [3,15].
However, there remains a shortage of geovisual analytics systems that support
interactive analysis of high dimensional geotemporal data [6]. Furthermore, link-
ing these approaches within an integrated analysis of the qualitative non-spatial
attributes remains an open problem that we wish to address in this research.

3 Geo-Coordinated Parallel Coordinates (GCPC)

Discovering knowledge and testing hypothesis in environmental studies is a chal-
lenging problem due to the complexity of environmental data. Such data often



Geo-Coordinated Parallel Coordinates (GCPC) 67

consists of multiple heterogeneous factors with complex interrelations and impor-
tant spatial and temporal aspects. Motivated by the challenges of exploring
among such data, we have developed a geovisual analytics system to support
analysis and reasoning about high dimensional heterogeneous geotemporal data.
Geo-Coordinated Parallel Coordinates (GCPC) has been designed to enable
the interactive analysis activities described in Keim’s visual analytics mantra:
“analyze first; show the important; zoom, filter, and analyze further; details on
demand” [23].

The core of the system is comprised of two tightly coordinated features: a
parallel coordinate plot and a geovisualization. These two views allow the sys-
tem to represent the high dimensional, heterogeneous, temporal, and geospatial
aspects of the data simultaneously. An optional scatterplot view allows analysts
to interactively investigate correlations between pairs of factors. To further sup-
port exploration among the data, these visual components are linked through
coordinated interactions: filtering, zooming, and highlighting the data to focus
on interesting features in one view results in similar actions in the other views.
Selections for visual encoding (e.g., colour, size) are replicated across all views,
reinforcing the interpretation of the coordination across the views. A screenshot
of the system is provided in Fig. 1.

Fig. 1. The main view of the GCPC consists of parallel coordinates, micro-
visualizations of the statistical properties of each dimension, interactive controls for
configuring the visualizations, a geovisualization of the geospatial distribution of the
data, and the investigative scatterplot. Here, the data is filtered for specific values on
the first dimension and coloured based on the values in the sixth dimension (Colour
figure online).
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Since environmental data analytics is seldom performed on just a single data
set, the system was designed with data flexibility in mind. In order to load an
arbitrary dataset, an automatic pre-processing step converts raw data into a
tabular format with a single geospatial location per data point. The data types
are automatically detected, allowing appropriate visual encodings within the
GCPC interface.

The software was developed within a web-based interface, using the Data
Driven Documents (D3) library [8] as the core. Existing parallel coordinates [10]
and geovisualization [1] plugins were used and extended to add the additional
visual and interactive features. In the remainder of this section, the specific
features and design considerations of GCPC will be explained.

3.1 Parallel Coordinate Plot

The parallel coordinate plot in GCPC allows multiple interactions to support
exploration within the high dimensional data. Since the direct relationship
between a pair of dimensions can only be seen if the dimensions are placed
adjacent to one another, the system supports interactive reordering of the coor-
dinates. Dimensions of the data that are not relevant for the current analysis
activity can be interactively hidden. Investigating interesting subsets of the data
is supported by filtering the data using brushing operations on the coordinates.
Such filtering is immediately applied throughout the system to support further
investigation in the other views. Detailed analysis is also supported by allowing
the user to zoom-in on the brushed data, resulting in a rescaling of the data
displayed on the coordinate. This can allow for the study of a subset of data
that is tightly clustered within a narrow range of values.

The analyst may choose to colour the data according to the value on a chosen
dimension, which is also reflected in the other visualizations. In order to ensure
proper interpretation of the colour encoding, the encoding scheme is different
for each data type. Quantitative data is encoded with a continuous, perceptu-
ally ordered scale; ordinal data is encoded with a discrete perceptually ordered
scale; and qualitative data is encoded with perpetually distinct colour scales.
Colour scales were chosen with an awareness of colour theory and the human
interpretation of colour [31], using ColorBrewer [9] as the starting point for the
specific scale selections. Since a given dataset may contain multiple different
temporal aspects, it was decided to not provide a single timeline to filter the
data, but instead to include these within the parallel coordinates. This allows
the temporal features to be studied, filtered, and manipulated in the same way
as other aspects of the data.

Statistical Descriptors. One of the criticisms of using parallel coordinate plots
is the difficulty in identifying the distribution of the data on a given dimension
when there are a large number of data points. The compact nature of the parallel
coordinates may result in overplotting and visual clutter, making it difficult
to identify the precise data points going through a given value on a specific
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dimension. To address this limitation, micro-visualizations have been added to
each parallel coordinate to illustrate the statistical properties of the data. While
others have explored similar solutions by overlaying the statistical descriptors on
the coordinates [18], GCPC provides these on top of each coordinate, allowing the
information to be observed as needed, without interfering with the interpretation
of the data shown in parallel coordinate plots.

The format of these statistical descriptors depends on the type of data they
describe. Quantitative data is visualized using Tukey box plots [29], providing a
compact representation of the median, quartile, and fifth/ninety-fifth percentiles.
For qualitative and ordinal data, such measures are meaningless; instead his-
tograms of the distributions are provided. Both formats allow the analyst to
quickly observe and interpret the different types of data, providing an overview
of the features of the dataset. Any filtering of the data automatically results in
a recalculation of the statistical properties of what remains, and an update in
these micro-visualizations.

Outlier Detection. A second criticism of parallel coordinate plots is the dif-
ficulty in identifying outliers, due to the significant visual weight that is given
to the dominant pattern within the data. As a result, it is difficult to visually
isolate data points that are different from the norm. In some cases, such outliers
may be uninteresting, and there may be a desire to remove these to reduce the
additional visual clutter they cause. In other cases, the outliers may be impor-
tant for the analysis at hand, and there may be a desire to highlight them. In
order to support outlier analysis, GCPC includes an automatic outlier detection
algorithm.

The approach employed is designed specifically for high dimensional data,
based on the comparison of angles between multi-dimensional vectors [25]. This
is based on the observation that for an anomalous data point, the angle to other
pairs of data points in the collection will be small because of its distance from
the other data. Conversely, for data points that are not anomalous, they will
be surrounded by other points, resulting in large angles to other pairs of data
points. The statistical variance of the angle is computed for each point to all
other pairwise points in the dataset, which is then used as an outlier score to
rank the data points. A data point is labeled as outlier if the score is lower than
an empirically set threshold. Although not entirely accurate, qualitative and
ordinal data are mapped and normalized to numerical values in this process.

More specifically, the angle based outlier detection score (ABOD) of point
A is computed as:

ABOD(A) = V ARB,CεD

( 〈ĀB, ĀC〉
‖ ĀB ‖2‖ ĀC ‖2

)

where B , and C represent all pairs of data points in the dataset D, and V AR is
the statistical variance over these data. What is being calculated are the angles
between point A and all pairs B and C , noramlized by the length of the vectors
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‖ ĀB ‖, ‖ ĀC ‖, which gives more weight to the score if points B ,C are nearer
to point A.

Because this algorithm must compare each data point to all other pairs,
it is computationally expensive (O(n3)). While classifying the data using an
algorithm such as k-nearest neighbours can speed up the approach [25], for our
purposes it is not necessary to calculate these outliers in real-time. Instead, the
outlier ranking scores can be calculated during the pre-processing step and stored
as part of the data, but keeping the cut-off threshold for outlier classification as
an interactive parameter. The analyst may then choose how sensitive to make
the outlier detection, and whether to use this to filter out the outliers or highlight
them for detailed investigation.

3.2 Geovisualization

The purpose of the geovisualization is to allow the analyst to observe and inter-
pret the spatial distribution of the data. This is an essential part of GCPC,
allowing for the exploration among the relations between multiple factors and
the geospatial aspects of the data. GCPC contains two main modes of displaying
geospatial features on the map: a dot map that represents each point as a circle
at the appropriate location, and hexagonal binning that represents aggregated
spatial data on a hexagonal grid. While the process for producing the dot map
is straightforward, there is some complexity in the creation of the hexagonal bin
map. A grid of hexagonal polygons are layered over the map, and the data is
aggregated based on which bin it falls into [26]. The default is to simply count
the number of data points in each bin, but more complex aggregation such as
total or average calculations are also possible. The size of the hexagons are then
used to encode the data aggregated within the bins.

Settings below the parallel coordinate plot allow for the manipulation of two
visual variables within the geovisualization: colour and size. When the dot map
is shown, the size and colour of the dots are encoded based on the dimensions of
the data chosen for these values. When the data is aggregated in the hexagonal
bins, this colour and size encoding cannot be used directly. Instead, the size of the
hexagon continues to be calculated as normal, but the colour is determined by
the average value for quantitative data or the most frequent value for qualitative
data.

The normal pan and zoom operations on the map allow the analyst to view
more closely the geospatial relationships among the data. In order to further
understand and explore among the data, the analyst may activate a geographical
filter. The system allows the user to draw polygons to create arbitrary shapes
that overlap a region of interest. The filter will remove all data points outside of
the drawn shape, both within the geovisualization and also from the other visual
representations. Coordinated highlighting allows the analyst to select specific
data points within the map in order to isolate their attributes in the other
dimensions using the other visual representations. These features enable the
co-exploration of the data within both the high-dimensional elements and the
geospatial elements.
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3.3 Investigative Scatterplot and Correlation Analysis

Investigating the correlation between different factors and dimension is essential
to understanding the complex relations within the data. While the order of the
dimensions in the parallel coordinates may be manipulated to observe the pattern
of the relationship, an analyst may wish to investigate such relationships in more
detail and in a more fluid and interactive way. Selecting dimensions of the data to
plot on the x- and y-axis using the controls under the parallel coordinates results
in the creation of a scatterplot of the data. This enables a direct and intuitive
analysis of the correlation between the selected attributes. Any selections of the
colour and size encoding will also be present in this scatterplot, allowing for the
interactive visualization of four dimensions of the data.

Because the analyst can easily change the dimension of the data to use for
the axes, correlations can quickly be investigated and examined. Following the
same coordinated interaction within the other views of the data, brushing over
a region of this scatterplot will filter the other views, and selecting individual
points will highlight their counterparts within the parallel coordinates and the
geovisualization.

3.4 Data Inspection

During the exploration of the data, it is important to maintain the ability to
drill down to the raw data in order to allow the analyst to inspect the actual
values. This inspection may be used by the analyst to confirm what has been
shown visually. When an individual data point is selected in any of the other
views, a details window is populated with the complete set of data for this
point. In addition, as the analyst filters the data using the parallel coordinates,
geovisualization, and investigative scatterplot, they may wish to extract this
specific subset of the data for detailed inspection and export into other software.
A table view of the data supports this process, which only shows the data that
matches the current filter settings.

4 Case Study

To demonstrate the features and utility of GCPC in the analysis of environmen-
tal data, we describe below three exploration scenarios of a dataset from the
fisheries domain. The dataset was provided by the Too Big To Ignore (TBTI)
research project, whose goal is to document and study the impact and impor-
tance of small scale fisheries around the world [28]. It consists of 127 data points
over nineteen dimensions that include quantitative, qualitative, ordinal, tem-
poral, and geospatial attributes that describe the small-scale fishing industry
around the world. While the size of this dataset is relatively small, its high
dimensionality, heterogeneity, and geotemporal attributes made it difficult to
analyze using traditional means.
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Initial Exploration. The analyst in this case study is an environmental
researcher trying to explore and compare the impact of small scale fisheries
across the broad range of attributes collected. Loading the dataset into GCPC
will automatically identify the type of each dimension and calculate initial sta-
tistical distributions. As shown in Fig. 2, the system will default to showing all
of the data in the parallel coordinates plot, and the locations at which this data
was collected in the geovisualization. From this overview of the entire dataset,
global patterns in the data may be observed, including the distribution of the
data over the dimensions, the correlation between adjacent coordinates, and the
geodistribution of the data. This initial assessment of the data can then be used
as the basis for confirming what is known (e.g., the extent of small-scale fishing
in Central America), and developing and evaluating new hypotheses about the
data.

Fig. 2. The default view of the data loaded in GCPC.

One aspect of the data that can be readily observed from the overview is that
it is highly irregular, with a small number of extreme values that extend the range
of some coordinates (e.g., Inshore Fishing Area (third parameter), and Fishers
Count (sixth parameter)). This pattern in the data causes the remaining data
points to be clustered at the other end of the scale, making it difficult to discern
their pattern. There are two mechanisms built into GCPC that can address
this problem: using the automatic outlier detection to hide these data points
that are substantially different than the norm, or using the interactive focusing,
filtering, and zooming features on the coordinates of interest. Supposing that
the analyst wants to retain interactive control over the analysis process, the
first step in exploring these coordinates is to inspect the extreme values. By
clicking on each, the researcher will observe that they correspond to countries
with large fishing regions (i.e., Canada, Indonesia, and Australia). The data on
these dimensions can be filtered easily, by interactively dragging a bounding box
over the coordinates. Clicking on the zoom icon will cause the selected range to
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fill the available space for the coordinate in question. The results of this filtering
and zooming operation can be seen in Fig. 3.

Knowing that there are outliers in the data, the analyst may wish to have
the system automatically find these so that they can be evaluated, and then
perhaps hidden when conducting future analyses of the data. Figure 4 shows
these anomalies, and dims the remaining data so that the overall pattern can still
be observed. The algorithm identified countries that are considerably different
than the normal pattern of the data across multiple dimensions (e.g., Chile and
Mexico). Another set of outliers detected were data points with multiple missing

Fig. 3. Zooming the scale on the Inshore Fishing Area dimension from over 1,000,000
to 100,000 reveals the pattern at the lower values on this dimension.

Fig. 4. Highlighting the outliers data allows the analyst to easily inspect these, and
the subsequently hide them.
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information, which render them substantially different than normal data (e.g.,
Australia). Isolating these anomalies from the rest of the data would be tedious
and cognitively taxing had it been done manually.

Analysis of Attribute Relationships. After this initial observation and
exploration, the researcher may be interested in the development and testing
of an hypothesis that relates Total Catch, Boats Count, Fishers Count, and
Total Landings. A first step in such an examination is to re-order the coordi-
nates such that they are adjacent to one another. Doing so, allows the analyst
to observe direct or inverse correlations easily. More complex relationships can
be observed using the investigative scatterplot, mapping these attributes to the
x-axis, y-axis, colour, and size options (see Fig. 5). Since the colour and size para-
meters are also represented on the map, the locations where the Total Landings
and Fishers Count are large can be observed. This analysis shows a pattern of
the correlation between these parameters, as well as the instances of data points
that are counter to the pattern (e.g., Japan, with low Fishers Count, but high
Boats Count and Total Catch).

Fig. 5. Investigating the relations between Total Catch, Boats Count, Fishers Count,
and Total Landings using the investigative scatter plot and visual encodings.

Analysis of Spatial Relationships. An important step in analyzing data such
as this is to make comparisons across different geographical regions. Suppose the
researcher wishes to study the gender distribution of small-scale fishers between
Europe and Africa. The map can be zoomed to these regions independently,
and then free-form shapes can be drawn around the areas of interest. Doing so
filters the data shown in the parallel coordinates, which may be further filtered,
perhaps in order to focus on the gender distribution in the most recent data.
Screenshots showing these two analyses are provided in Fig. 6. From this, we can
readily observe that in France, Italy, and Greece, it is not common for both men
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Fig. 6. Zooming the map and filtering the data to specific geographic regions allows
for the isolation of this data within the parallel coordinates, enabling the comparison
of parameters such as the differences on the Gender dimension.

and women to fish. However, in sub-Saharan Africa, recent data shows that both
men and women are actively involved in the small-scale fisheries.

5 Conclusion and Future Work

In this paper, we presented Geo-Coordinated Parallel Coordinates, a visual ana-
lytics system designed to support the exploration and analysis of high dimen-
sional, heterogeneous, geotemporal data. The main contribution of the system
are: (1) the integration and coordination of multiple visualization and inter-
action techniques; (2) the micro-visualizations of the statistical information for
each dimension added to the parallel coordinates; (3) the use of automatic outlier
detection to allow highlighting and filtering of outlier data; and (4) the flexible
design that allows arbitrary high-dimensional data to be loaded into the system.

Even though this paper demonstrated through a case study the benefits
of GCPC in facilitating analytic reasoning through interactive exploration of
the data, there are some limitations. The current implementation assumes the
geospatial data are point data, and does not support data that represents geospa-
tial regions. Complex data types such as hierarchical data and missing data
cannot be represented within the parallel coordinate structure. GCPC does not
currently support the analysis of complex temporal patterns such as temporal
ranges and movement data. Even though we endeavoured to address some of the
fundamental limitations of parallel coordinates in GCPC, it remains difficult to
detect patterns over more than four dimensions of the data.

Future work may include addressing some of these limitations. Supporting
different geospatial features (e.g., regions, trajectories) will allow the system to
more readily support the analysis of such data. Modifying the angle-based outlier
detection approach to more accurately detect differences in qualitative and ordi-
nal data will improve the anomaly detection. Clustering the data may address
the overplotting issues within the parallel coordinates, allowing high-level pat-
terns within the data to be identified. Adding a separate view for temporal data
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(e.g., a timeline), will enable users to analyze different types of temporal data
and identify complex geotemporal patterns and trends. Since this approach is
highly interactive, we are currently in the planning stage for an empirical eval-
uation with expert data analysts, which will provide evidence of the value and
usefulness of the approach for real-world data analysis activities.
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Abstract. We consider the problem of classifying graphs using graph
kernels. We define a new graph kernel, called the generalized shortest
path kernel, based on the number and length of shortest paths between
nodes. For our example classification problem, we consider the task of
classifying random graphs from two well-known families, by the number
of clusters they contain. We verify empirically that the generalized short-
est path kernel outperforms the original shortest path kernel on a number
of datasets. We give a theoretical analysis for explaining our experimental
results. In particular, we estimate distributions of the expected feature
vectors for the shortest path kernel and the generalized shortest path
kernel, and we show some evidence explaining why our graph kernel out-
performs the shortest path kernel for our graph classification problem.

Keywords: Graph kernel · SVM · Machine learning · Shortest path

1 Introduction

Classifying graphs into different classes depending on their structure is a prob-
lem that has been studied for a long time and that has many useful appli-
cations [1,4,11]. It is generally regarded that the number of self-loop-avoiding
paths between all pairs of nodes of a given graph is useful for understanding the
structure of the graph [7,12]. Computing the number of such paths between all
nodes is however a computationally hard task (usually #P-hard). Counting only
the number of shortest paths between node pairs is however possible in polyno-
mial time and such paths at least avoid cycles, which is why some researchers
have considered shortest paths a reasonable substitute. When using standard
algorithms to compute the shortest paths between node pairs in a graph we also
get, as a by-product, the number of such shortest paths between all node pairs.
Our approach for classifying graphs is based on taking this number of shortest
paths into account.

One popular technique for classifying graphs is by using a support vector
machine (SVM) classifier with graph kernels. This approach has proven success-
ful for classifying several types of graphs [3,4,8]. Graph kernels that consider
many different properties have been proposed. Such as graph kernels considering
all walks [6], shortest paths [3], small subgraphs [14], global graph properties [9],
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 78–85, 2015.
DOI: 10.1007/978-3-319-24282-8 8
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etc. Different graph kernels can however give vastly different results depending
on the types of graphs that are being classified. Analyzing how these graph ker-
nels perform on particular datasets, gives us the ability of choosing graph kernels
appropriate for the particular types of graphs that we are trying to classify.

One particular type of graphs, that appears in many applications, are graphs
with a cluster structure. Such graphs appear for instance when considering
graphs representing social networks. In this paper, in order to test how well our
approach works, we test its performance on the problem of classifying graphs
by the number of clusters that they contain. More specifically, we consider two
types of models for generating random graphs, the Erdős-Rényi model [2] and the
planted partition model [10], where we use the Erdős-Rényi model to generate
graphs with one cluster and the planted partition model to generate graphs with
two clusters (See Sect. 4 for details). The example task considered in this paper is
to classify whether a given random graph is generated by the Erdős-Rényi model
or by the planted partition model. Where we consider the standard supervised
machine learning approach. For this classification problem, we use the standard
SVM and compare experimentally the performance of the SVM classifier, with
the shortest path (SP) kernel, and with our new generalized shortest path (GSP)
kernel. We show that the SVM classifier that uses our GSP kernel outperforms
the SVM classifier that uses the SP kernel, on several datasets.

We also give a theoretical analysis of the random feature vectors of the SP
kernel and the GSP kernel, for the random graph models from the experiments.
We give an estimation of expected feature vectors for the SP kernel and show that
the they are relatively close between graphs with one cluster and graphs with
two clusters. We then analyze the expected feature vectors for the GSP kernel,
and we show some evidence that the expected feature vectors have a different
structure between graphs with one cluster and graphs with two clusters.

2 Preliminaries

Here we introduce necessary notions and notation for our technical discussion.
Throughout this paper we use symbols G, V , E (with a subscript or a super-
script) to denote graphs, sets of nodes, and sets of edges respectively. We fix n
and m to denote the number of nodes and edges of considered graphs. By |S| we
mean the number of elements of the set S.

We are interested in the length and number of shortest paths. In relation to
the kernels we use for classifying graphs, we use feature vectors for expressing
such information. For any graph G, for any d ≥ 1, let nd denote the number
of pairs of nodes of G with a shortest path of length d. We call a vector vsp =
[n1, n2, . . .] a SPI feature vector. On the other hand, for any d, x ≥ 1, we use
nd,x to denote the number of pairs of nodes of G that has x number of shortest
paths of length d, and we call a vector vgsp = [n1,1, n1,2, . . . , n2,1 . . .] a GSPI
feature vector. Note that nd =

∑
x nd,x. Thus, a GSPI feature vector is a more

detailed version of a SPI feature vector. In order to simplify our discussion we
often use feature vectors by considering shortest paths from any fixed node of G.
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We will clarify which version we use in each context. By E[vsp] and E[vgsp] we
mean the expected SPI feature vector and the expected GSPI feature vector, for
some specified random distribution. Note that the expected feature vectors are
equal to [E[nd]]d≥1 and [E[nd,x]]d≥1,x≥1.

It should be noted that the SPI and the GSPI feature vectors are com-
putable efficiently. We can use Dijkstra’s algorithm for each node in a given
graph, which gives all node pairs’ shortest path length (i.e. a SPI feature vector)
in time O(nm+n2 log n). Note that by using Dijkstra’s algorithm to compute the
shortest path from a fixed node to any other node, the algorithm actually needs
to compute all shortest paths between the two nodes, to verify that it really
has found a shortest path. Thus it is possible to store the number of shortest
paths between all node pairs, without increasing the running time of the
algorithm, meaning that we can compute the GSPI feature vector in the same
time as the SPI feature vector.

3 Shortest Path Kernel and Generalized Shortest Path
Kernel

A graph kernel is a function k(G1, G2) on pairs of graphs, which can be repre-
sented as an inner product k(G1, G2) = 〈φ(G1), φ(G2)〉H for some mapping φ(G)
to a Hilbert space H, of possibly infinite dimension. In many cases, graph kernels
can be thought of as similarity functions on graphs. Graph kernels have been
used as tools for using SVM classifiers for graph classification problems [3,4,8].

The kernel that we build upon in this paper is the shortest path (SP) kernel,
which compares graphs based on the shortest path length of all pairs of nodes [3].
By D(G) we denote the multi set of shortest distances between all node pairs in
the graph G. For two given graphs G1 and G2, the SP kernel, where we use the
indicator function, is defined as:

KSPI(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

1 [d1 = d2] . (1)

Which is one of the most common versions of the SP kernel, used in for instance
Borgwardt and Kriegel [3]. We call this version of the SP kernel the shortest
path index (SPI) kernel. It is easy to check that KSPI(G1, G2) is simply the
inner product of the SPI feature vectors of G1 and G2.

We now introduce our new kernel, the generalized shortest path (GSP) kernel,
which is defined by using also the number of shortest paths. For a given graph
G, by ND(G) we denote the multi set of numbers of shortest paths between all
node pairs of G. Then the GSP kernel, where we use the indicator function, is
defined as:

KGSPI(G1, G2) =
∑

d1∈D(G1)

∑
d2∈D(G2)

∑
t1∈ND(G1)

∑
t2∈ND(G2)

1 [d1 = d2]1 [t1 = t2]

(2)
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Which we call the generalized shortest path index (GSPI) kernel. It is easy to
see that this is equivalent to the inner product of the GSPI feature vectors of
G1 and G2. It should be noted that we may consider other functions than the
indicator function for the definitions of the SP and the GSP kernels.

4 Random Graph Models

We investigate the advantage of our GSPI kernel over the SPI kernel for a syn-
thetic random graph classification problem. Our target problem is to distinguish
random graphs having two relatively “dense parts”, from simple graphs gener-
ated by the Erdős-Rényi model. Here by “dense part” we mean a subgraph that
has more edges in its inside compared with its outside.

For any edge density parameter p, 0 < p < 1, the Erdős-Rényi model (with
parameter p) denoted by G(n, p) is to generate a graph G (of n nodes) by putting
an edge between each pair of nodes with probability p independently at random.
On the other hand, for any p and q, 0 < q < p < 1, the planted partition
model [10], denoted by G(n/2,n/2,p, q) is to generate a graph G = (V + ∪V −, E)
(with |V +| = |V −| = n/2) by putting an edge between each pair of nodes u and
v again independently at random with probability p if both u and v are in V +

(or both u and v are in V −) and with probability q otherwise.
In the following, we use the symbol p1 to denote the edge density parameter

of the Erdős-Rényi model and p2 and q2 to denote the edge density parameters
of the planted partition model. We want to have q2 < p2 while keeping the
expected number of edges the same for both random graph models (so that one
cannot distinguish random graphs by just counting the number of edges). It is
easy to check that this requirement is satisfied by setting p2 = (1 + α0)p1, and
q2 = 2p1 − p2 − 2(p1 − p2)/n, for some constant α0, 0 < α0 < 1. We consider the
“sparse” situation for our experiments and analysis, and assume that p1 = c0/n
for sufficiently large constant c0. Note that we may expect with high probability,
that when c0 is large enough, a random graph generated by both models have a
large connected component but might not be fully connected [2]. In the rest of the
paper, a random graph generated by G(n, p1) is called a one-cluster graph and
a random graph generated by G(n/2, n/2, p2, q2) is called a two-cluster graph.

5 Experiments

Here we compare the performance of the GSPI kernel with the SPI kernel on
datasets where the goal is to classify if a graph is a one-cluster graph or a
two-cluster graph. All datasets are generated using the models G(n, p1) and
G(n/2, n/2, p2, q2), described above. We generate 100 graphs each from the two
different classes in each dataset. q2 is chosen in such a way that the expected
number of edges is the same for both classes of graphs. Note that the big-
ger difference there is between p1 and p2, the more different the one-cluster
graphs are compared to the two-cluster graphs. In our experiments we gen-
erate graphs where n ∈ {200, 400, 600, 800, 1000}, np1 = c0 = 40 and p2 ∈
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{1.2p1, 1.3p1, 1.4p1, 1.5p1}. Hence p1 = 0.2 for n = 200, p1 = 0.1 for n = 400 etc.
In all experiments we calculate the normalized feature vectors for all graphs. By
normalized we mean that each feature vector vsp and vgsp is normalized by its
Euclidean norm. This means that the inner product between two feature vec-
tors always is in [0, 1]. We then train an SVM using 10-fold cross validation and
evaluate the accuracy of the kernels. We use Pegasos [13] for solving the SVM.

Table 1 shows the accuracy of both kernels on the different datasets. As
can be seen neither of the kernels perform very well on the datasets where
p2 = 1.2p1. This is because the two-cluster graphs generated in this dataset
are very similar to the one-cluster graphs. As p2 increases compared to p1, the
task of classifying the graphs becomes easier. As can be seen in the table the
GSPI kernel outperforms the SPI kernel on nearly all datasets. In particular, on
datasets where p2 = 1.4p1, the GSPI kernel has an increase in accuracy of over
20 % on several datasets. When n = 200 the increase in accuracy is over 40 %!
Although the shown results are only for datasets where c0 = 40, experiments
using other values for c0 gave similar results.

One reason that our GSPI kernel is able to classify graphs correctly when the
SPI kernel is not, is because the feature vectors of the GSPI kernel, for the two
classes, are a lot more different than for the SPI kernel. Due to space constraints
however, visualizations of such feature vectors are not included in this paper.

Table 1. The accuracy of the SPI kernel and the GSPI kernel using 10-fold cross
validation. The datasets where p2 = 1.2p1 are the hardest and the datasets where
p2 = 1.5p1 are the easiest. Very big increases in accuracy are marked in bold.

Kernel n p2 Accuracy

SPI 200 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {52.5 %, 55.5 %,54.5%56.5%}
GSPI 200 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {52.5 %, 64.0 %,99.0%,100.0%}
SPI 400 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {55.5 %, 63.5 %,75.5%, 95.5 %}
GSPI 400 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {54.0 %, 62.0 %,96.5%, 100.0 %}
SPI 600 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {58.0 %, 60.5 %,75.5%, 93.5 %}
GSPI 600 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {58.0 %, 67.0 %,94.0%, 100.0 %}
SPI 800 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {57.5 %, 59.0 %, 72.0 %, 98.0 %}
GSPI 800 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {57.5 %, 58.0 %, 82.0 %, 100.0 %}
SPI 1000 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {53.5 %, 55.0 %,66.0%, 98.5 %}
GSPI 1000 {1.2p1, 1.3p1, 1.4p1, 1.5p1} {55.0 %, 62.0 %,87.5%, 100.0 %}

6 Analysis

In this section we give some approximated analysis of random feature vectors in
order to give theoretical support for our experimental observations. We first show
that one-cluster and two-cluster graphs have quite similar SPI feature vectors (as
their expectations). Next we show some evidence that there is a non-negligible
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difference in their GSPI feature vectors. Throughout this section, we consider
feature vectors defined by considering only paths from any fixed source node s
and use a superscript (z) to denote the number of clusters in the graph. Thus,
for example, n

(1)
d is the number of nodes at distance d from s in a one-cluster

graph, and n
(2)
d,x is the number of nodes that have x shortest paths of length d

to s in a two-cluster graph.
Here we introduce a way to state an approximation. For any functions a

and b depending on n, we write a ≈rel b by which we mean b
(
1 − c

n

)
< a <

b
(
1 + c

n

)
holds for some constant c > 0 and sufficiently large n. Note that this

closeness notion is closed under constant number of additions/subtractions and
multiplications. For example, if a ≈rel b holds, then we also have ak ≈rel bk for
any k ≥ 1 that can be regarded as a constant w.r.t. n.

First we compare the SPI feature vectors. We consider relatively small1 dis-
tances d so that d can be considered as a small constant w.r.t. n. We show that
E[n(1)

d ] and E[n(2)
d ] are similar in the following sense.

Theorem 1. For any constant d, we have E[n(1)
d ] ∈ E[n(2)

d ](1 ± 2
c0−1 ), holds

within our ≈rel approximation when c0 ≥ 2 +
√

3.

Remark. For deriving this relation we assume that all paths in G exists inde-
pendently, following the analysis of Fronczak et al. [5]. The proof of this theorem
can be found in the full version of this paper. Note that the difference between
E[n(1)

d ] and E[n(2)
d ] vanishes for large values of c0.

Heuristic Comparison of GSPI Feature Vectors: Here we compare the expected
GSPI feature vectors E[v(1)

gsp ] and E[v(2)
gsp ], and show evidence that they have

some non-negligible difference. Here we focus on the distance d = 2 part of the
GSPI feature vectors, i.e., subvectors [E[n(z)

2,x]]x≥1 for z ∈ {1, 2}. Since it is not so

easy to analyze the distribution of the values E[n(z)
2,1],E[n(z)

2,2], . . ., we introduce
some “heuristic” analysis. The results of the analysis can be summarized as
follows. The values of the feature vector for a one-cluster graph are approximately
distributed as

E[n(1)
2,x] ≈ E[n(1)

2 ] · Pr
[
Bin(np1, p1) = x

]
.

where Bin(N, p) is the binomial distribution. This means that the values of this
subvector has one peak at x

(1)
peak = np21. The values of the feature vector (at

distance 2) of a two-cluster graph are approximately distributed according to
the mixture distribution of the two distributions N(n(p22 + q22)/2, σ2

1 + σ2
2) and

N(np2q2, σ
2
3 +σ2

4), with weights E[V +
2 ] and E[V −

2 ]. Where N(μ, σ2) is the normal
distribution, E[V +

2 ] and E[V −
2 ] are the expected number of nodes at distance 2

from s that are in the same cluster as s or in the other cluster respectively. The
1 This smallness assumption is for our analysis, and we believe that the situation is

more or less the same for any d.
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two peaks of this mixture distribution are x
(2,+)
peak = n(p22 + q22)/2 and x

(2,−)
peak =

np2q2. Using this, we may bound the difference between these peaks by

x
(2,+)
peak − x

(2,−)
peak ≈rel 2nα2

0p
2
1 ≥ 2α2

0x
(2,−)
peak .

This means that these peaks have a non-negligible relative difference. From
this heuristic analysis we may conclude that the two vectors [E[n(1)

2,x]]x≥1 and

[E[n(2)
2,x]]x≥1 have different distributions of their component values. In particular,

while the former vector has only one peak, the latter vector has a double peak
shape (for big enough α0). Note that this difference does not vanish even when
c0 is big. This means that the GSPI feature vectors are different for one-cluster
graphs and two-clusters graphs, even when c0 is big, which is not the case for the
SPI feature vectors, since their difference vanishes when c0 is big. This provides
evidence as to why our GSPI kernel performs better than the SPI kernel.

Though this is a heuristic analysis, we can show some examples that our
observation is not so different from experimental results. In Fig. 1 we have
plotted the mixture normal distribution that gives us our approximated vector
[E[n(2)

2,x]]x≥1 and the corresponding experimental vector obtained by generating
graphs according to our random model. In this figure the double peak shape can
clearly be observed, which provides empirical evidence supporting our analysis.

Fig. 1. Average experimental and approximate distributions of number of nodes with x
number of shortest paths of length 2 from a fixed node. The experimental distribution
has been averaged for each node in the graph and also averaged over 500 randomly
generated graphs. Graphs used had parameters n = 400, p2 = 0.18 and q2 = 0.0204.

7 Conclusions

We have defined a new graph kernel, based on the number of shortest paths
between node pairs in a graph. Calculating the GSP kernel does not take longer
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time than the SP kernel. The reason for this is that the number of shortest
paths between node pairs is a by-product of using Dijkstra’s algorithm to get
the length of the shortest paths between all node pairs in a graph. We showed
experimentally that the GSP kernel outperformed the SP kernel, at the task of
classifying graphs as containing one or two clusters. We also gave an analysis
motivating why the GSP kernel is able to correctly classify the two types of
graphs when the SP kernel is not able to do so.
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Abstract. In this work, we address the task of learning ensembles of
predictive models for predicting multiple continuous variables, i.e., multi-
target regression (MTR). In contrast to standard regression, where the
output is a single scalar value, in MTR the output is a data structure – a
tuple/vector of continuous variables. The task of MTR is recently gain-
ing increasing interest by the research community due to its applicabil-
ity in a practically relevant domains. More specifically, we consider the
Extra-Tree ensembles – the overall top performer in the DREAM4
and DREAM5 challenges for gene network reconstruction. We extend
this method for the task of multi-target regression and call the extension
Extra-PCTs ensembles. As base predictive models, we propose to use
predictive clustering trees (PCTs) – a generalization of decision trees for
predicting structured outputs, including multiple continuous variables.
We consider both global and local prediction of the multiple variables,
the former based on a single model that predicts all of the target vari-
ables simultaneously and the latter based on a collection of models, each
predicting a single target variable. We conduct an experimental evalua-
tion of the proposed method on a collection of 10 benchmark datasets
for with multiple continuous targets and compare its performance to
random forests of PCTs. The results reveal that a multi-target Extra-
PCTs ensemble performs statistically significantly better than a single
multi-target or single-target PCT. Next, the performance among the dif-
ferent ensemble learning methods is not statistically significantly differ-
ent, while multi-target Extra-PCTs ensembles are the best performing
method. Finally, in terms of efficiency (running times and model com-
plexity), both multi-target variants of the ensemble methods are more
efficient and produce smaller models as compared to the single-target
ensembles.

Keywords: Multi-target regression · Ensembles · Extremely
randomized trees · Predictive clustering trees

1 Introduction

Supervised learning is one of the most widely researched and investigated areas
of machine learning. The goal in supervised learning is to learn, from a set of
examples with known class, a function that outputs a prediction for the class of
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 86–100, 2015.
DOI: 10.1007/978-3-319-24282-8 9
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a previously unseen example. However, in many real life problems of predictive
modelling the output (i.e., the target) is structured, meaning that there can
be dependencies between classes (e.g., classes are organized into a tree-shaped
hierarchy or a directed acyclic graph) or some internal relations between the
classes (e.g., sequences).

In this work, we concentrate on the task of predicting multiple continuous
variables. Examples thus take the form (xi,yi), where xi = (xi1, . . . , xik) is a
vector of k input variables and yi = (yi1, . . . , yit) is a vector of t target variables.
This task is known under the name of multi-target regression (MTR) [1] (also
known as multi-output or multivariate regression).

MTR is a type of structured output prediction task which has application
in many real life problems where we are interested in simultaneously predicting
multiple continuous variables. Prominent examples come from ecology: predict-
ing abundance of different species living in the same habitat [2], or predicting
properties of forests [3,4]. Due to its applicability in a wide range of domains,
this task is recently gaining increasing interest in the research community.

Several methods for addressing the task of MTR have been proposed [1,5].
These methods can be categorized into two groups of methods [6]: (1) local
methods that predict each of the target variable separately and then combine the
individual models to get the overall model and (2) global methods that predict
all of the variables simultaneously (also known as ‘big-bang’ approaches). In the
case of local models, for a domain with t target variables one needs to construct
t predictive models – each predicting a single target. The prediction vector (that
consists of t components) of an unseen example is then obtained by concatenating
the predictions of the multiple single-target predictive models. Conversely, in the
case of global models, for the same domain, one needs to construct 1 model. The
prediction vector of an unseen example here is then obtained by passing the
example through the model and getting its prediction.

In the past, several researchers proposed methods for solving the task of
MTR directly and demonstrated their effectiveness [1,4,7,8]. The global methods
have several advantages over the local methods. First, they exploit and use the
dependencies that exist between the components of the structured output in
the model learning phase, which can result in better predictive performance.
Next, they are typically more efficient: it can easily happen that the number of
components in the output is very large (e.g., hierarchies in functional genomics
can have several thousands of components), in which case executing a basic
method for each component is not feasible. Furthermore, they produce models
that are typically smaller than the sum of the sizes of the models built for each
of the components.

In [1,9], we evaluated the construction of local and global models for MTR in
the context of ensemble learning. More specifically, we focus on two most widely
used ensemble learning techniques: bagging [10] and random forests [11]. We
show that both global and local tree ensembles perform better than the single
model counterparts in terms of predictive power. Global and local tree ensembles
perform equally well, with global ensembles being more efficient and producing
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smaller models, as well as needing fewer trees in the ensemble to achieve the
maximal performance.

In this paper, we investigate a new strategy for learning MTR global models
through ensemble learning. In particular, we extend the Extra-Trees algo-
rithm to the context of MTR. The Extra-Trees algorithm, proposed by
Geurts et al. [12], is an algorithm for tree ensemble construction based on an
extreme randomization of the tree construction algorithm. The algorithm at each
node of the tree randomly selects k attributes and, on each of them, randomly
selects a split. The k candidate splits are then evaluated and the best split is
put in the node. Here, we propose an extension of the Extra-Trees algorithm
for the task of predicting multiple continuous variables.

Geurts et al. evaluated their approach in the context of single-target
regression and classification problems containing only numerical attributes. The
bias/variance analysis of the error revealed that Extra-Trees decrease the vari-
ance while at the same time they increase the bias. If the level of randomization is
well adjusted, then the variance almost disappears at the cost of a slight increase
of the bias with respect to that of standard trees. In this study, we perform an
empirical evaluation of the Extra-Trees algorithm extension in domains where
the descriptive attributes can be continuous, categorical or mixed.

The Extra-Trees algorithm has been successfully applied to several
practically relevant domains including computer vision [13] and gene network
inference [14,15]. Especially noticeable are the applications in the latter domain:
a variant of the method that exploits its feature ranking mechanism (GENIE3
algorithm) has been overall top performer in the DREAM4 and DREAM5 chal-
lenges1 for gene network inference. All of these considerations strongly motivate
this study.

In this paper, we propose an extension of the Extra-Trees algorithm based
on the predictive clustering trees (PCTs) framework [1,16]. We call this extension
Extra-PCTs algorithm. PCTs belong to the group of global methods and can
be considered as a generalization of standard decision trees towards predicting
structured outputs. They offer a unifying approach for dealing with different
types of structured outputs and construct the predictive models very efficiently.
They are able to make predictions for several types of structured outputs: tuples
of continuous/discrete variables, hierarchies of classes [17], and time series.

The remainder of this paper is organized as follows. Section 2 presents the
proposed Extra-PCTs algorithm for MTR. Next, Sect. 3 outlines the design of
the experimental evaluation. Furthermore, Sect. 4 discusses the results. Finally,
Sect. 5 concludes and provides directions for further work.

2 MTR with Ensembles of Predictive Clustering Trees

The predictive clustering trees framework views a decision tree as a hierarchy
of clusters. The top-node corresponds to one cluster containing all data, which
1 For more information, visit http://dreamchallenges.org/.

http://dreamchallenges.org/


Ensembles of Extremely Randomized Trees for Multi-target Regression 89

is recursively partitioned into smaller clusters while moving down the tree. The
PCT framework is implemented in the CLUS system [18], which is available for
download at http://clus.sourceforge.net.

PCTs are induced with a standard top-down induction of decision trees
(TDIDT) algorithm [19]. Table 1 outlines the general algorithm for PCT induc-
tion. It takes as input a set of examples (E) and outputs a tree. The heuristic
(h) that is used for selecting the tests (t), in a regular PCT, is the reduction in
variance caused by the partitioning (P) of the instances corresponding to the
tests (t) (see line 7 of the BestTest procedure in Table 2). Intuitively, by max-
imizing the variance reduction, the cluster homogeneity is maximized and the
predictive performance is improved.

Table 1. The top-down induction algorithm for PCTs.

procedure ExtremelyRnd PCT
Input: A dataset E, size of attribute subset k
Output: A predictive clustering tree
1: (t∗, h∗,P∗) = FindTest(E)
2: if t∗ �= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)
5: return node(t∗,

⋃
i{treei})

6: else
7: return leaf(Prototype(E))

The extremely randomized variant of PCTs introduces a randomization in
the test selection (Table 2). More specifically, it requires an input parameter (k)
that controls the number of attributes considered at each node of the tree. The
test selection procedure randomly selects k attributes and from each attribute
randomly selects a split. For each of the k selected attributes, the algorithm
selects the split in two different ways, depending on the type of the attribute. If
the attribute is numeric the splitting point is selected randomly from the set of
possible splitting points. Possible splitting points are found in the set of values of
the attribute in the training set associated to the specific node. If the attribute
is categorical (i.e., nominal) then a non-empty subset of values of the attribute
in the training set associated to the specific node are randomly selected.

The k-candidate tests are then evaluated using the variance reduction heuris-
tic and the best test is selected. In order to take multiple target variables into
account simultaneously, variance used to initialize h is defined as follows:

V ar(E) =
t∑

j=1

V ar(E, Yj),

http://clus.sourceforge.net
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Table 2. Extremely randomized test selection for PCTs.

procedure FindTest
Input: A dataset E
Output: the selected test (t∗), its heuris-
tic score (h∗) and the partition (P∗) it
induces on the dataset (E)
1: (t∗, h∗,P∗) = (none, 0, ∅)
2: A = getAttributeList(E)
3: As = selectAttributes(E, k)
4: for each attribute a ∈ As do
5: t = selectRandomTest(a)
6: P = partition induced by t on E

7: h = Var(E) − ∑
Ei∈P

|Ei|
|E| Var(Ei)

8: if (h > h∗) then
9: (t∗, h∗,P∗) = (t, h,P)

10: return (t∗, h∗,P∗)

procedure selectRandomTest
Input: Attribute a and partition P
Output: A test t

1: t = none
2: Av = getAttributeV alues(a,P)
3: if a is numerical then
4: aM = getMaxV alue(Av)
5: am = getMinV alue(Av)
6: ac = rndCutPoint(am, aM )
7: t = a < ac
8: if a is categorical then
9: As = rndNonEmptySet(Av,P)

10: t = a ∈ As

11: return t

where V ar(E, Yj) is the normalized variance (according to the min − max nor-
malization function) of the variable Yj in the set E. The variances of the target
variables are normalized so that each target variable contributes equally to the
overall variance. This is due to the fact that the target variables can have com-
pletely different ranges.

Obviously, the smaller the variance reduction (h in the procedure FindTest -
see Table 2) the better the split. If we set the value of k to 1, this algorithm works
in the same way of the Random Tree algorithm proposed in [20]. The advantage
with respect to the Random Tree algorithm is that in the approach we adopt
there is still a non-random selection based on some evaluation measure (i.e.,
variance reduction).

The extremely randomized PCTs are very unstable predictive models because
of the intense randomization at each node. Consequently, such PCTs are only
meaningful when used in combination with an ensemble learning framework.
In this work, we construct ensembles of extremely randomized PCTs (Extra-
PCTs) by following the same ensemble learning approach proposed in [12] where,
however, PCTs are not used and, consequently, it is not possible to directly follow
a global approach and naturally consider the multi-target regression task.

Each of the base predictive models is constructed using the complete training
set and each of them uses different, randomly selected, attributes in the nodes.
The number of attributes (k) that are retained is given by a function of the
total number of descriptive attributes D (e.g., k = 1, k = �√D + 1�, f(D) =
�log2(D) + 1�, k = D . . . ). Depending on the application, one can select to use
different values for k. In this study, we investigate the effect of the function used
to initialize k on the performance of the ensemble for MTR.
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In the Extra-PCTs ensemble, the prediction for a new instance is obtained
by combining the predictions of all the base predictive models. For the MTR
task, the prediction for each target variable is computed as the average of the
predictions obtained from each tree. Note that this solution exploits possible
dependencies in the output space since clusters used for prediction (and their
hierarchical organization, i.e., the tree) have been built by taking into account
the whole output space.

One of the strong advantages of the Extra-PCTs ensembles is their compu-
tational efficiency. In [1], we discuss the computational cost of an ordinary PCTs
and ensembles of PCTs extensively. The computational cost of constructing an
ordinary PCT for predicting multiple target variables can be summarized as

O(DN log2 N) + O(SDN logN) + O(N logN),

where D is the number of descriptive attributes, N is the number of examples
and S is the number of target variables.

The cost of constructing a Extra-PCTs can be derived as follows.Two pro-
cedures are executed at each node of the tree and they include: calculating the
best split out of the k randomly selected, candidate splits at a cost of O(kSN),
and applying the split to the training instances with a cost of O(N). Further-
more, we assume, as in [20], that the tree is balanced and bushy. This means
that the depth of the tree is in the order of logN , i.e., O(logN). Having this in
mind, the total computational cost of constructing a single tree is

O(kS logN) + O(N logN).

Comparing the two costs, we can note that Extra-PCTs have much lower
computational complexity as compared to regular PCTs. The ensembles usually
amplify the computational cost of the base predictive models linearly with the
number of base models. Consequently, the cost of an Extra-PCTs ensemble
will be much lower than the cost of a regular ensemble.

3 Experimental Design

We construct several types of trees and ensembles thereof. First, we construct
PCTs that predict a separate tree for each variable from the multiple target
variables. Second, we learn PCTs that predict all of the target variables simulta-
neously. Finally, we construct the ensemble models in the same manner by using
both random forests and the Extra-PCTs algorithm.

3.1 Experimental Questions

We consider three aspects of constructing tree ensembles with the Extra-PCTs
algorithm for predicting multiple target variables: convergence, predictive per-
formance and efficiency. We first investigate the saturation/convergence of the
predictive performance of global and local ensembles with respect to the num-
ber of base predictive models they consist of. Namely, we inspect the predictive
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performance of the ensembles at different ensemble sizes (i.e., we construct sat-
uration curves). The goal is to check which type of Extra-PCTs ensembles,
global or local, saturates at a smaller number of trees.

We next assess the predictive performance of global and local Extra-PCTs
ensembles and investigate whether global and local ensembles have better pre-
dictive performance than the respective single model counterparts. Moreover,
we check whether the exploitation of the multiple targets can lift the predictive
performance of an Extra-PCTs ensemble (i.e., global versus local ensembles).
Furthermore, we compare the performance of the Extra-PCTs ensembles with
the performance of a random forest ensemble of PCTs. Random forests of PCTs
are considered among the state-of-the-art predictive modelling techniques [1].
Finally, we assess the efficiency of both global and local single predictive models
and ensembles thereof by comparing the running times for and the sizes of the
models obtained by the different approaches.

3.2 Data Description

The datasets with multiple continuous targets used in this study are 13 in total
and are mainly from the domain of ecological modelling. Table 3 outlines the
properties of the datasets. The selection of the datasets contain datasets with
various number of examples described with various number of attributes. For
more details on the datasets, we refer the reader to the referenced literature.

Table 3. Properties of the datasets with multiple continuous targets (regression
datasets); N is the number of instances, D/C the number of descriptive attributes
(discrete/continuous), and T the number of target attributes.

Name of dataset N |D|/|C| T
Collembola [21] 393 8/39 3

EDM [22] 154 0/16 2

Forestry-Slivnica-LandSat [23] 6218 0/150 2

Forestry-Slivnica-IRS [23] 2731 0/29 2

Forestry-Slivnica-SPOT [23] 2731 0/49 2

Sigmea real [24] 817 0/4 2

Soil quality [2] 1944 0/142 3

Solar-flare 1 [25] 323 10/0 3

Solar-flare 2 [25] 1066 10/0 3

Water quality [26] 1060 0/16 14

3.3 Experimental Setup

Empirical evaluation is the most widely used approach for assessing the per-
formance of machine learning algorithms, that is based on the 10-fold cross-
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validation evaluation strategy. The performance of the algorithms are assessed
using some evaluation measures and, in particular, since the task we consider is
that of MTR, we employed three well known measures: the correlation coefficient
(CC), root mean squared error (RMSE) and relative root mean squared error
(RRMSE). We present here only the results in terms of RRMSE, but similar
conclusions hold for the other two measures.

Next, we define the parameter values used in the algorithms for constructing
the single trees and the ensembles of PCTs. The single trees (both for multi-
target and single-target regression) are obtained using F-test pruning. This prun-
ing procedure uses the exact Fisher test to check whether a given split/test in
an internal node of the tree results in a reduction in variance that is statisti-
cally significant at a given significance level. If there is no split/test that can
satisfy this, then the node is converted to a leaf. An optimal significance level
was selected by using internal 3-fold cross validation, from the following values:
0.125, 0.1, 0.05, 0.01, 0.005 and 0.001.

The construction of both ensemble methods takes, as an input parameter, the
size of the ensemble, i.e., number of base predictive models to be constructed.
We constructed ensembles with 10, 25, 50, 75, 100, 150 and 250 base predictive
models. Following the findings from the study conducted by Bauer and Kohavi
[27], the trees in the ensembles were not pruned.

Both the Extra-PCTs ensemble and the random forests algorithm take as
input the size of the feature subset that is randomly selected at each node. For
the Extra-PCTs ensemble, we follow the recommendations from Geurts et al.
[12], and set the value of k to the number of descriptive attributes, i.e., k = D.
For the random forests of PCTs, we apply the logarithmic function of the number
of descriptive attributes �log2 |D|� + 1, which is recommended by Breiman [11].

In order to assess the statistical significance of the differences in performance
of the studied algorithms, we adopt the recommendations by Demšar [28] for the
statistical evaluation of the results. In particular, we use the Friedman test for
statistical significance. Afterwards, to check where the statistically significant
differences appear (between which algorithms), we use two post-hoc tests. First,
we use Bonferroni-Dunn test to compare the best performing method with the
remaining methods. Second, we use Nemenyi post-hoc test when we compare all
of the methods among each other. We present the results from the statistical
analysis with average ranks diagrams [28]. The diagrams plot the average ranks
of the algorithms and connect the ones whose average ranks are smaller than a
given value, called critical distance. The critical distance depends on the level of
the statistical significance, in our case 0.05. The difference in the performance of
the algorithms connected with a line is not statistically significant at the given
significance level.

4 Results and Discussion

We analyze the results from the experiments along three dimensions. First, we
present the saturation curves of the ensemble methods (both for multi-target
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and single-target regression). We also compare single trees vs. ensembles of trees.
Next, we compare models that predict the complete structured output vs. mod-
els that predict components of the structured output. Finally, we evaluate the
algorithms by their efficiency in terms of running time and model size.

In Fig. 1, we present the saturation curves for the ensemble methods for multi-
target regression. Although these curves are averaged across all target variables
for a given dataset, they still provide useful insight into the performance of the
algorithms. First, the curves show that for part of the datasets the ensembles
reach their optimal performance when just as few as 25 base predictive models
are constructed.

Second, we note that on majority of the datasets the proposed Extra-PCTs
ensembles outperform the random forests of PCTs across all ensemble sizes.
The most notable improvements are for the following datasets: EDM, Forestry-
Slivnica-LandSat, Forestry-Slivnica-SPOT and Soil quality. The worst perfor-
mance of the Extra-PCTs ensembles as compared with the random forests
is for the dataset Sigmea real. For this, dataset the Extra-PCTs ensembles
perform worse even than a single PCT. This may be due to the fact that this
dataset has only 4 descriptive variables and the extreme randomization used in
the Extra-PCTs ensembles hurts the predictive performance of the ensemble
and misses on a crucial information. More specifically, the extreme random-
ization in this case decreases the variance only slightly while it increases the
bias significantly (similarly as observed in [12]). Furthermore, on the datasets
containing only categorical descriptive variables (Solar-flare1 and Solar-flare2 )
both the Extra-PCTs ensembles and random forests perform poorly and their
performance is worse than the performance of a single tree.Finally, in the case of
mixed numeric and categorical variables (Collembola dataset) the multi-target
random forests are the best performing method. The application of the proposed
Extra-PCTs ensembles on datasets with categorical variables prompts further
investigation.

Next, we perform statistical tests to detect up to which point the improve-
ment is no longer statistically significant. To this end, we used Friedman test
with Bonferroni-Dunn post-hoc test. We center the Bonferroni-Dunn test around
the best performing ensemble size and check until which size the performance
does not degrade statistically significantly. The results are presented in Fig. 2.
From the diagrams, we can note that the multi-target Extra-PCTs ensem-
bles achieve optimal performance with 75 base predictive models added to the
ensemble. The remaining methods, multi-target and single-target random forests
and single-target Extra-PCTs ensembles, require 100 base predictive models
to achieve their optimal performance. This means that the global Extra-PCTs
ensembles achieve their optimal performance with fewer trees added as com-
pared with the local Extra-PCTs ensembles. Considering this, we perform the
statistical analysis on ensembles with both 75 and 100 base predictive models.

Figure 3 gives the average rank diagrams of the different ensemble methods
and the single-tree models. The results for ensembles with both 75 and 100 base
predictive models show that the differences in predictive performance among
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(c) Forestry-Slivnica-LandSat (d) Forestry-Slivnica-IRS

(e) Forestry-Slivnica-SPOT (f) Sigmea real

(g) Soil quality (h) Solar-flare 1

Fig. 1. Saturation curves for the two ensemble methods for MTR. Note that the scale
of the y-axis is adapted for each curve. The algorithm names are abbreviated as follows:
Predictive clustering trees - PCT , Extra-PCTs - ET , random forests - RF , multi-
target prediction - MT and single-target prediction - ST .
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(i) Solar-flare 2 (j) Water quality

Fig. 1. (continued)

the different ensemble methods are not statistically significant at the level of
0.05. However, the multi-target Extra-PCTs ensembles are the best perform-
ing method. Furthermore, the difference in performance between ensembles and
single multi-target and single-target PCTs is statistically significant.

Finally, we compare the algorithms by their running time and the size of the
models for ensembles of 50 trees (see Fig. 4). The statistical tests show that, in
terms of the time efficiency, the multi-target Extra-PCTs ensembles are the
fastest method. Moreover, they significantly outperform both ensemble meth-
ods predicting the targets separately. The diagram also shows that the global
(multi-target) ensembles are clearly more efficient than the local (single-target)
ensembles. The multi-target Extra-PCTs are faster than multi-target random
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(a) Multi-target Extra-PCTs (b) Single-target Extra-PCTs
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(c) Multi-target random forest of PCTs (d) Single-target random forest of PCTs

Fig. 2. Average rank diagrams for the ensembles constructed with varying number of
base predictive models. The critical distance is set for a significance level at 0.05. The
differences in performance of the algorithms connected with a line are not statistically
significant.
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Fig. 3. Average rank diagrams for the various ensembles consisting of (a) 75 and (b) 100
base predictive models. The critical distance is set for a significance level at 0.05. The
differences in performance of the algorithms connected with a line are not statistically
significant.

4 3 2 1

MTET75

MTRF75

STET75

STRF75

Critical Distance = 1.48321

4 3 2 1

MTRF75

MTET75

STRF75

STET75

Critical Distance = 1.48321

(a) Time efficiency (b) Size of the models

Fig. 4. Efficiency (running time and model size) of the ensembles for MTR. The size
of the ensembles is 75 trees, however the same conclusions hold across all ensemble
sizes. The critical distance is set for a significance level at 0.05. The differences in
performance of the algorithms connected with a line are not statistically significant.

forests ∼ 1.77 times. The computational advantage is even more pronounced in
the datasets with more examples. In terms of model size, the multi-target ran-
dom forests are the best performing method. Both global ensembles are clearly
better than their local counterparts. The results for the efficiency of the meth-
ods given in Fig. 4 show that the computational efficiency of the multi-target
Extra-PCTs ensembles comes at the price of constructing slightly larger mod-
els. Namely, due to the increased randomness as compared to the random forests
method fewer test are being evaluated (i.e., smaller computational cost) but, in
the same time, this means that the constructed (PCT) models will grow larger.

5 Conclusions

In this work, we address the task of learning ensembles of predictive models for
predicting multiple continuous variables, i.e., multi-target regression. In contrast
to standard regression, where the output is a single scalar value, in MTR the
output is a data structure – a tuple/vector of continuous variables. We consider
both global and local prediction of the multiple variables, the former based on
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a single model that predicts all of the target variables simultaneously and the
latter based on a collection of models, each predicting a single target variable.

Ensembles have proved to be highly effective methods for improving the pre-
dictive performance of their constituent models, especially for classification and
regression tree models. In particular, we consider the Extra-Tree ensembles
as predictive models. Extra-Tree ensembles are a well established method
for predictive modelling that has been successfully applied to computer vision
and, especially, gene network inference. This approach has been the overall top
performer in the DREAM4 and DREAM5 challenges for gene network recon-
struction. Following this, we extend this method for the task of multi-target
regression and call the Extra-PCTs ensembles. As base predictive models, we
propose to use predictive clustering trees (PCTs). These can be considered as
a generalization of decision trees for predicting structured outputs, including
multiple continuous variables.

We conduct an experimental evaluation of the proposed method on a collec-
tion of 10 benchmark datasets for with multiple continuous targets. We make
several comparisons. First, we investigate the influence of the number of base pre-
dictive models in an ensemble to its predictive performance. Second, we compare
the performance of multi-target Extra-PCTs ensembles with the performance
of single-target Extra-PCTs ensembles. Next, we compare the multi-target
Extra-PCTs ensembles with multi-target and single-target random forests of
PCTs. Random forests are considered among the state-of-the-art modelling tech-
niques. Furthermore, we compare the efficiency of the different approaches.

The results reveal the following. First, the performance of the multi-target
Extra-PCTs ensembles starts to saturate as soon as even only 25 base predic-
tive models are added to the ensemble. Moreover, after adding 75 base predic-
tive models, the performance of a multi-target Extra-PCTs ensemble does not
change statistically significantly. Second, a multi-target Extra-PCTs ensemble
performs statistically significantly better than a single multi-target or single-
target PCT. Next, the performance among the different ensemble learning meth-
ods is not statistically significantly different, while multi-target Extra-PCTs
ensembles are the best performing method. Finally, in terms of efficiency (run-
ning times and model complexity), both multi-target variants of the ensemble
methods are more efficient and produce smaller models as compared to the single-
target ensembles.

We plan to extend the work along four major dimensions. First, we will extend
the proposed algorithm to cover other tasks of structured output prediction, such
as multi-target classification, multi-label classification and hierarchical multi-
label classification. Second, we will adapt the feature ranking mechanism of
the Extra-Trees algorithm for different types of structured outputs. Next,
we will perform a more extensive study on the sensitivity of the algorithm of
its parameter k and the influence of categorical variables in the dataset to the
ensembles’ performance. Finally, we will perform a more extensive experimental
evaluation by using a larger number of benchmarking datasets.
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etation height and canopy cover from remotely sensed data with machine learning.
Ecol. Inform. 5(4), 256–266 (2010)
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Universitätsplatz 2, 39106 Magdeburg, Germany

georg.krempl@iti.cs.uni-magdeburg.de

http://kmd.ovgu.de/res/pal

Abstract. Facing ever increasing volumes of data but limited human
annotation capacities, active learning approaches that allocate these
capacities to the labelling of the most valuable instances gain in impor-
tance. A particular challenge is the active learning of arbitrary, user-
specified adaptive classifiers in evolving datastreams.We address this
challenge by proposing a novel clustering-based optimised probabilistic
active learning (COPAL) approach for evolving datastreams. It combines
established clustering techniques, inspired by semi-supervised learning,
which are used to capture the structure of the unlabelled data, with the
recently introduced probabilistic active learning approach, which is used
for the selection among clusters. The labels actively selected by COPAL
are then available for training an arbitrary adaptive stream classifier. The
performance of our algorithm is evaluated on several synthetic and real-
world datasets. The results show that it achieves a better accuracy for
the same budget than other recently proposed active learning approaches
for such evolving datastreams.

Keywords: Probabilistic active learning · Selective sampling · Evolving
datastreams · Nonstationary environments · Concept drift · Adaptive
classification · Clustering

1 Introduction

In the face of ever increasing volumes of data [6] that contrast limited human
annotation and supervision capacities, approaches for the efficient allocation of
these capacities are of increasing interest. Active machine learning approaches
address this by providing strategies for determining and selecting the most valu-
able information. In classification tasks, this corresponds to selecting the instance
from a set of candidates, whose label is expected to improve a classifier’s per-
formance the most [23]. Active learning is considered a particularly challenging
problem [15] in evolving datastreams, where instances arrive continuously over
time and distributions may change and require adaptation.
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We address this challenge by proposing a novel active learning approach for
evolving datastreams. Inspired from semi-supervised learning, our clustering-
based optimised probabilistic active learning (COPAL) approach uses estab-
lished clustering techniques to capture the structure of the unlabelled data. We
combine this with the recently introduced optimised probabilistic active learn-
ing [13] approach that we use for selecting the cluster, and with a diversity-
maximising criterion for selecting the instance within that cluster. This actively
selected label is then used for the training of a user-specified adaptive stream
classifier.

We contribute two such clustering-based probabilistic active learning
approaches. The first is an incremental clustering variant that maintains and
adapts its clustering model over time. The second is an amnesic clustering vari-
ant that iteratively learns new clustering models from scratch on each chunk and
discards it after updating the classifier. We evaluate both variants by comparing
them against each other and several competitors on six different datastreams,
among them four real-world datasets. The results of the experimental evalua-
tion indicate an overall superior performance of our incremental clustering-based
probabilistic active learning approach.

We first review the related work in Sect. 2, before presenting our clustering-
based optimised probabilistic active learning approach in its incremental and
amnesic clustering variant in Sect. 3. These and other recently proposed AL-
approaches are evaluated in Sect. 4, followed by a conclusion in Sect. 5.

2 Background and Related Work

Active machine learning [23] aims to optimise the selection of labels when they
are costly to obtain. The scenario addressed in this paper is stream-based selec-
tive sampling [22], where instances arrive continuously and an active classifier has
to decide for each instance upon its arrival once-and-forever whether to acquire
its label. Compared to the rich literature on selective sampling in streams in
general, active learning in nonstationary, evolving datastreams has received far
less attention, although it is considered as a challenging, relevant task [7,15].

One line of research [16,17,21,24,25] has investigated ensemble-based active
learning approaches for evolving datastreams. The approach in [24] processes
instances in chunks, such that in each chunk a certain initial percentage of
instances are labelled. These initial labels in the chunk are used to learn a new
base classifier, which is added to the ensemble. The disagreement within the
updated ensemble is then used to select iteratively a given number of instances
within the remaining unlabelled ones in the chunk. This is extended in [25]
by a criterion that determines when to stop the active learning process on a
chunk, and by an adaptive weighting of the base classifiers in the ensemble. The
ActMiner-algorithm proposed in [17] processes data also in chunks, but clus-
ters the data into spherical micro-clusters, which represent base classifiers of an
ensemble. New instances that are not covered by any micro-cluster (so-called
F-outliers) or instances with disagreeing micro-clusters are labelled and saved in
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a buffer for later inspection. If the instances in the buffer form a new cluster,
this cluster is added to the ensemble. The approach suggested in [21] extends
this in two directions. First, by processing the stream instance-wise, and second,
by using decision trees as base classifiers. Like [17], it also summarises the dis-
tribution of each base classifier’s training data by a spherical cluster centred at
its mean. This clustering is then used for the weighting of base classifiers and for
the identification of suspicious instances outside all clusters. The labels of these
suspicious instances are then requested to train a new base classifier. In contrast
to these works, a different combination of query-by-committee and clustering
for instance-wise active learning is proposed in [16]: upon the arrival of a new
instance, a new ensemble of Gaussian mixture models is created by sampling
from a normal inverse Wishart distribution, such that each Gaussian component
corresponds to one class. The GMMs in the ensemble converge as the number of
acquired labels increases, reducing the areas of disagreement between the GMMs
and balancing exploration and exploitation.

More recently, other authors [1,10,11,20] have investigated the idea of com-
bining clustering and stream-based active learning further. They extend the
older clustering-based active learning approach in [19], which addressed a pool-
based setting but already used the clustering information to select the most
representative instances for labelling, thereby reducing the required number of
labelled instances in each cluster. In contrast, the newer StreamAR approach in
[1] is actually a semi-supervised stream classification approach that uses a micro-
clustering ensemble to assign labels and uses active learning solely to resolve ties
due to votes from opposing classes in the ensemble. Thus, while reducing the
requested number of labels, it provides no means for controlling its budget.

In [20], a clustering-based approach is proposed for evolving datastreams, the
so-called Concurrent Semi-supervised Learning of Data Streams (CSL-Stream).
It maintains a clustering and assumes the posterior distribution within a cluster
to be homogeneous, i.e. statistically independent of the feature position given
the cluster membership. Its active learning step differentiates between clusters
with and without any labelled instances. In the latter case, the algorithm seeks
to obtain the label of the centremost instance. In the former case, the algorithm
checks for a skewed label distribution: if all labels are on one side of the cluster,
an additional label at the opposite side of the cluster is requested. Otherwise,
if the class of the labels differs between the sides of the cluster, the cluster is
split. If the distribution of labels is homogeneous, the cluster is kept as it is.
Concept drift is addressed by using a fading model such that instances age over
time. Unfortunately, the author’s informed us that an implementation for this
algorithm is no longer available.

While the clustering-based approaches above integrate clustering and classi-
fication, the aim of Clustering Based Active Learning for Evolving Data Streams
(ACLStream) proposed in [10] is to be usable with any stream classifier technol-
ogy. On each arriving chunk of instances a new clustering is performed and the
most informative instances from each cluster are selected for labelling. For this
selection, the approach distinguishes between a macro and a micro step. The
macro step is used to rank clusters according to their homogeneity in terms of
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their predicted class distribution. This distribution is estimated by the model
learnt from all the labelled instances from previous chunks of instances. The later
micro step determines the most useful instance within a given cluster. Thus, it
ranks instances by combining geometrical information inside their cluster and
the maximum a posteriori classification probability. After selected instances are
labelled, the clustering information is discarded.

The most recent active learning approach for evolving datastreams is DBAL-
Stream [11]. This instance-wise approach combines density-weighting with uncer-
tainty sampling. The density-weighting is used in a preselection step, such that
solely instances within dense areas are considered as labelling candidates. Among
those preselected candidates from dense regions, a margin-based uncertainty
sampling approach is used to select one-by-one instances for labelling. This is
done by comparing an instance’s margin against a threshold, which is adjusted
depending on the consumed and available budget and combined with random
noise to improve exploration. This approach was reported to perform best in
the evaluation by [11], making it an interesting candidate for our experimental
evaluation.

The active learning algorithms for evolving datastreams discussed above are all
based either on the disagreement in a query-by-committee approach, or the uncer-
tainty in an uncertainty sampling approach, with known shortcomings [14,23].
Recently, the probabilistic active learning (PAL) approach has been proposed to
overcome these shortcomings in the pool-based setting [14]. PAL summarises the
labelled information in an instance’s neighbourhood and evaluates the impact of
acquiring a label therein in terms of the expected performance change. Expecta-
tion is not only done over the possible realisations of a candidate’s label as in error
reduction, but also over the true posterior in the candidate’s neighbourhood. In
[12], combining this approach with budgeting for datastreams is investigated. In
[13], a fast closed-form solution is proposed that combines the qualities of uncer-
tainty sampling and error reduction, namely being fast and optimising directly a
performance measure. Thus, it seems worth exploring this fast approach in com-
bination with clustering in a stream-based setting.

3 Clustering-Based Probabilistic Active Learning

Our approach combines ideas from clustering-based semi-supervised learning
and probabilistic active learning. More precisely, we use the clustering model
to define the neighbourhoods for the label statistics in a probabilistic active
learning approach [14]. Our Clustering-based Optimised Probabilistic Active
Learning (COPAL) algorithm consists of four steps, which are pre-clustering,
macro and micro selection, and updating. To complete the big picture, we briefly
summarise them before providing their details in the Subsects. 3.1 to 3.3. Finally,
in Subsect. 3.4, we present two variants of COPAL with their pseudocode.

The pre-clustering step starts with a pool of unlabelled instances. In this
step, all instances are divided into some initial clustering. While more elaborate
clustering algorithms can be used, we opted for conventional K-means because
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it builds spherical clusters and because our focus is on assessing the neighbours
of a data point and not on achieving a good partitioning of the data space.

The task of the macro step is to determine the most important cluster to
select instances from for labelling. Therefore, we need an approach to measure the
value of additional labels for a cluster. For that purpose, we adapt the OPAL-gain
formula from probabilistic active learning [13] to our clustering model. The micro
step then selects an instance from the previously chosen cluster for labelling, such
that the diversity among the labelled instances within a cluster is maximised.
After a new instance is labelled, the class distribution in the selected cluster may
have changed. Thus, an updating step is used to adjust the clustering model. In
this last step, we examine the homogeneity of the posterior distribution within
the selected cluster. We split the cluster in case it has become inhomogeneous.

3.1 Macro Step: Determining the Most Valuable Cluster

The OPAL-gain formula in [13] is designed to compute the expected average mis-
classification loss reduction from obtaining m additional labels within a candi-
date’s neighbourhood. It relies on label statistics ls, which summarise the number
of already obtained labels n within its neighbourhood and the share of positives
therein p̂. For COPAL, the cluster of an instance defines its neighbourhood, thus
n equals the number of labels acquired in that cluster, and p̂ equals the share of
positives therein. Because all instances in the cluster share the same neighbour-
hood, their probabilistic gains are equal. Following [13], the resulting expected
average misclassification loss reduction in the cluster (GOPAL) is calculated as:

GOPAL(n, p̂, τ,m) =
(n + 1)

m
.

(
n

n.p̂

)
.

(
IML(n, p̂, τ, 0, 0)

)
−

m∑
k=0

IML(n, p̂, τ,m, k)

(1)
Here, τ ∈ [0, 1] is given by the application and corresponds to the relative

cost of each false positive classification, normalised such that the costs of a false
positive and a false negative sum to one. For example, when the objective is
maximising the classifier’s accuracy, τ = 0.5 and GOPAL is proportional to the
gain in accuracy. Likewise, m > 0 is the application-given remaining budget for
the currently processed chunk. Thus, τ and m are the same for each cluster.
Equation 1 uses the function IML, introduced in [13], to compute a value that is
proportional to the expected misclassification loss within a cluster, given that k
additional positives among the m additional labels are sampled:

IML(n, p̂, τ,m, k) =
(

m

k

)
.

⎧⎪⎨
⎪⎩

(1 − τ) .Γ (1−k+m+n−np̂)Γ (2+k+np̂)
Γ (3+m+n)

np̂+k
m+n < τ

(τ − τ2) .Γ (1−k+m+n−np̂)Γ (1+k+np̂)
Γ (2+m+n)

np̂+k
m+n = τ

τ .Γ (2−k+m+n−np̂)Γ (1+k+np̂)
Γ (3+m+n)

np̂+k
m+n > τ

(2)

In a clustering model, the expected misclassification loss reduction for a clus-
ter depends not only on the probabilistic gain, but also on the size of the cluster.
Since a larger cluster affects more future classifications than a smaller one, the
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larger is favoured if their probabilistic gains are (nearly) equal. Therefore, for
estimating the importance of a cluster Clusteri with NClusteri

(labelled and
unlabelled) instances therein, we propose to compute a cluster-size-weighted
probabilistic gain GClusteri

by the following formula:

GClusteri
= GOPALi

· NClusteri∑N
j=1 NClusterj

(3)

The algorithm in Algorithm 1 describes this macro step in detail. For each
cluster c, we calculate the values of n and p̂ for this cluster, before computing
its weighted gain by using the formulas 1, 2 and 3 (line 3–5). Finally, we select
the cluster with the largest weighted gain and return it as the output (line 7–8).

Algorithm 1. Select the Best Cluster for Budget m and Cost-Ratio τ

1: procedure selectCluster(C, m, τ) � C: Pool of clusters
2: for c ∈ C do
3: (n, p̂) ← labelstatistic (c)
4: GOPAL ← getOPALGain (n, p̂, m, τ) � Use Eq. 1
5: Gc ← getWeightedGain (GOPAL, c) � Use Eq. 3
6: end for
7: c∗ ← arg maxc∈C(Gc)
8: return c∗

9: end procedure

3.2 Micro Step: Selecting an Instance Within the Cluster

The micro step selects an instance within the cluster c∗ that was previously
chosen in the macro step. We aim to maximise diversity among the label that
are requested within that cluster. Thus, by using Eq. 4, we select the instance
for labelling, whose nearest labelled neighbour is the furthest away. Here, c∗

U is
the subset of the current chunk’s unlabelled instances within c∗, c∗

L is the subset
of labelled ones, and | · |2 is the l2-Norm:

x∗ ← arg max
xi∈c∗

U

(
min

xl∈c∗
L

|xi − xl|2
)

. (4)

3.3 Updating Step: Adjusting the Clustering Model

Upon having obtained the label for the instance selected in the micro step,
the cluster it belongs to is updated. In this step, two alternating hypotheses
are considered: The first hypothesis H1 is that the cluster is homogeneous with
respect to its posterior distribution and, as a consequence, should not be split fur-
ther. The second, alternative hypothesis H2 is that the cluster is inhomogeneous
and the instances therein originate from two spatially separable subpopulations
with different posteriors. In the second case, splitting the cluster should improve
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homogeneity. Therefore, we calculate the current error rate E1 (under H1) and
compare it to the error rate after splitting1(E2 under H2). However, due to
the limited number of remaining labels in each subcluster, the simple approach
to use directly the training error is prone to overfitting. Instead, we perform a
leave-one-out cross-validation on the labelled instances and calculate E2 as the
average error rate over each fold. In the case of ties due to an equal number of
positives and negatives, we use an error rate of 50%. If the error rate decreases
by splitting (i.e. E1 > E2), we retrain the classifier on all labels in the cluster
and partition the instances based on their assigned labels into two new clusters.

3.4 Variants of COPAL

We propose two variants of COPAL for combining the modules above. The first
uses a sliding window and an incremental clustering, the second an amnesic clus-
tering that forgets the clustering model after processing its chunk. The latter
is inspired by the discussions of the authors of [10], who observed good perfor-
mance with their amnesic clustering approach. However, COPAL worked better
with an incremental rather than an amnesic clustering in our experiments.

Incremental Clustering Variant (COPAL-I). The pseudocode of the pro-
posed incremental variant COPAL-I is provided in Algorithm2. It uses the four
steps above in combination with an incremental clustering model to actively
select instances for labelling, which are then passed to an arbitrary incremental
classifier. Using a sliding window approach, a fixed number of the most recent
instances is kept in a Cache. These instances are used to maintain the cluster
model. Consequently, the pre-clustering step is only applied for the first chunk
(line 6), which also initialises the Cache (line 7). For subsequent chunks, the new
instances are matched to the closest cluster of the current model (lines 9–11),
and appended to the Cache, eventually replacing the oldest ones therein (lines
13–17). Afterwards, the macro, micro and update steps are applied iteratively
to select the most valuable instances for labelling (lines 19–25). The update in
each iteration comprises updating the dedicated classifier by the new label (line
23), and updating the clustering model (line 24).

Amnesic Clustering Variant (COPAL-A). This variant of COPAL uses an
amnesic clustering model, as outlined in Algorithm 3. As above, after a chunk
has been processed, the labels selected by COPAL-A therein are used to train
an incremental classifier. The clustering model, however, is forgotten. Therefore,
the pre-clustering step is repeated on each chunk (line 4). Afterwards, the macro
and micro steps are applied to get the most valuable instance for labelling (lines
6–7). Its label is used to update the incremental classifier (line 9), and the process
is repeated until the budget for this chunk is exhausted. Then, if necessary, the
clustering is updated by splitting the cluster of the new instance (line 10).

1 For speed, we used logistic regression for determining the preliminary splits.
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Algorithm 2. Incremental Clustering Variant COPAL-I
Require: S: Stream of Instances
Require: b: Budget (per Chunk)
Require: w: Window Size (of Cache)
1: cl ← initClassifier
2: Cache ← null � Initialise cache of recent instances
3: while hasMoreInstances(S) do
4: St ← nextChunk(S)
5: if Cache == null then
6: C ← preClustering (St) � C: Pool of clusters with centroids c̄
7: Cache ← St

8: else � Cluster pool and cache maintainance
9: for xi ∈ St do

10: c∗ ← arg minc̄∈C |xi − c̄|2 � l2-Norm(instance xi,centroid c̄ of C)
11: addInstance(c∗, xi) � Add xi to cluster c∗

12: end for
13: Cache.append(St) � Add new instances to cache
14: while Cache.size() > w do
15: x ← Cache.removeOldest() � Remove oldest instance from cache
16: removeInstance(C, x) � Remove oldest instance from clustering
17: end while
18: end if
19: for k ∈ {1, 2, · · · , b} do
20: c∗ ← selectCluster (C, b + 1 − k, τ) � Marco step, Alg. 1
21: xi ← selectInstance (c∗) � Micro step, Eq. 4
22: yi ← askLabel(xi)
23: trainClassifier(cl, xi, yi) � Classifier update
24: updateCluster(c∗, xi, yi) � Cluster update
25: end for
26: end while

Algorithm 3. Amnesic Clustering Variant COPAL-A
Require: S: Stream of instances
Require: b: Budget (per chunk)
Require: τ : false positive misclassification cost
1: cl ← initClassifier
2: while hasMoreInstances(S) do
3: St ← nextChunk(S)
4: C ← preClustering (St) � C: Pool of clusters with centroids c̄
5: for k ∈ {1, 2, · · · , b} do
6: c∗ ← selectCluster (C, b + 1 − k, τ) � Marco step, Alg. 1
7: xi ← selectInstance (c∗) � Micro step, Eq. 4
8: yi ← askLabel(xi)
9: trainClassifier(cl, xi, yi) � Classifier update

10: updateCluster(c∗, xi, yi) � Cluster update
11: end for
12: end while
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4 Experimental Evaluation

In the following Subsect. 4.1, we describe the setting for our experimental evalu-
ation, including the datasets and the compared active learning approaches. This
is followed by a presentation and discussion of the results in Subsect. 4.2.

4.1 Experimental Setup

The objective in active learning is the selection of the most beneficial labels
for the training of the classifier, such that for a given budget the classification
performance is maximised. How well a strategy handles this trade-off between
classification performance and consumed budget is usually evaluated in learning
curves, which plot the performance in dependence of the budget. For stream-
based scenarios, this requires to aggregate the performance over time, as done
for example in [10,11]. However, for evolving datastreams the variance in the per-
formance over time is also an important aspect, as it indicates whether and how
quickly an algorithm adapts to drift. For passive stream classifiers, the standard
approach is prequential evaluation [5], which uses newly arrived instances first
for testing the current classifier, before using them for updating the classifier.

We consider both aspects in our experimental evaluation: following the pre-
quential evaluation paradigm, we evaluate the classifier first on newly arriving
instances, before we consider them as candidates for the active learning and
classifier updating step. For studying the active learning strategies’ effect on the
adaptation of the classifier to drift, we provide curves that show the accuracy of
the algorithms over time. For evaluating how well the strategies perform in the
trade-off between accuracy and budget size, we provide learning curves that plot
the aggregated accuracy over time for different budget shares. This is the most
informative common evaluation method, as there is no consensus on an approach
for statistically testing such active learning results in evolving datastreams yet.

Using this setup, we compare the incremental variant COPAL-I and the
amnesic variant COPAL-A of our approach against several other active learn-
ing strategies: first, we use complete labelling (denoted as Complete), which
requests all labels and serves as a proxy for the upper bound of the achievable
performance, thereby indicating the complexity of the datastream. Second, we
use random selection (denoted as Random) as a baseline, where instances are
chosen randomly with equal selection probabilities. Third, we compare our app-
roach to ACLStream , the most recently proposed [10] clustering-based active
learning strategy for evolving datastreams. Finally, we compare against DBAL-
Stream , to our knowledge the most recently proposed active learning strategy
for evolving datastreams. This strategy was reported in [11] to outperform sev-
eral other active learning strategies for evolving datastreams, including the ones
proposed in [26]. Other active learning approaches for evolving datastreams dis-
cussed in Sect. 2 integrate a specific classifier into their algorithm. Since this con-
flicts with a differentiated evaluation between the impact of the AL-component
alone and the used classifier technology, they were not included into the eval-
uation. Furthermore, to ensure a fair evaluation, all algorithms are run within
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the MOA framework in Java, using the original implementations and recom-
mended parameter settings of their authors. For the non-deterministic strategies
ACLStream and Random, we average the performance over 5 runs. For better
comparison, we use for COPAL the same k-means pre-clustering technique with
k = 5 as in ACLStream, and the same type of classifier (adaptive Naive Bayes
with drift detection, see [4]) that was proposed for DBALStream in the evalua-
tion of all approaches. The chunk- and sliding window size is set to 100 instances
for all approaches. We measure accuracy gain in COPAL by setting τ = 0.5.

The experimental evaluation is done on six datastreams, including four real-
world ones. The first synthetic datastream is based on the Moving Hyperplane
generator proposed in [9]. The concept therein is based on a hyperplane, which
rotates over time to generate drift. The implementation of the HyperplaneGen-
erator class in MOA was used with default settings to generate the data. The
second synthetic datastream, random radial basis function (Random RBF ), is
based on the randomRBFGeneratorDrift class in MOA [3]. It uses a mixture of
Gaussians with a fixed number of components, such that each component gener-
ates instances from a single class. Drift is induced by moving the centroids of the
components in the featurespace. Except for the number of components, which
was set to 20, the default parameter settings were used. The first real-world
datastream is the Airline dataset by the US Bureau of Transportation Statis-
tics, Research and Innovative Technology Administration (RITA), with the task
being to predict whether a flight will be delayed based on the information of
its scheduled departure. The second one is the Bank Marketing dataset by [18],
where the task is to predict whether the client will subscribe to a term deposit
subsequently to a direct marketing campaign. The third one is the Electricity
dataset by [8], with the task to predict an increase or decline of the electricity
prices in New South Wales (Australia). The fourth datastream is the EEG Eye
State dataset from [2], with the task to repeatedly predict over the experiment’s
duration of 117 s whether a proband’s eyes are opened or closed.

4.2 Results and Discussion

We first discuss the results of the evaluation of the active learning strategies’
performances under different budgets. These are shown in the learning curves
in Fig. 1, which plot the accuracy (aggregated over time) for different budget
shares. Overall, COPAL-I performs best for the most datastreams and bud-
get sizes. It is always better than ACLStream, better than Random except for
a budget of 0.05% on Bank Marketing, and better than DBALStream except
for a single budget share on the Airline, the Bank Marketing, the EEG Eye
State and the Electricity datastreams. Compared to its amnesic counterpart
COPAL-A, it performs better on Airline and Moving Hyperplane, and compa-
rably on the remaining datastreams, except for its worse performance on the
EEG Eye State. Compared to their competitors, COPAL-A performs also well,
being better than Random on all datastream-budget combinations except for
one particular budget share on Electricity and Bank Marketing, and perform-
ing always better than ACLStream except for the budget share of 0.05 on the
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Fig. 1. Learning curves in budget share against accuracy for different datastreams.
Complete (black dotted line) corresponds to an upper bound of the performance with
all instances being labelled. Early convergence to high values is favourable.
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Fig. 2. Performance (in accuracy) over time (in steps of 100 instances). On
all datastreams prequential evaluation and a budget share of 15 % were used. Complete
(black dotted line) corresponds to an upper bound of the performance with all instances
being labelled. Higher values are favourable.
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Moving Hyperplane datastream. However, on the latter datastream, COPAL-A
is worse than DBALStream, while being on the other datastreams still better in
the majority of tested budget shares. Concerning the superiority of DBALStream
over ACLStream, which was indicated in [11], our results confirm that overall the
former is the better strategy of the two. Due to the label sets becoming more and
more similar with increasing budgets, one would expect the differences between
the strategies to diminish with increasing budget shares. This is indeed the case
in most of our results, except for ACLStream on Electricity.

The performance and adaptivity over time are reported in Fig. 2, which shows
the active classifier’s accuracy for the budget share of 0.15. The trend of the
black-doted curve of the Complete-baseline indicates changes in the classifica-
tion task’s complexity over time. Except for initially low performance (compared
to Complete) on the Random RBF and Electricity datastreams, the curves of
COPAL-I and COPAL-A follow this trend, indicating a quick adaptation. How-
ever, on the Random RBF datastream all approaches initially perform poorly,
and the ACLStream approach completely fails to improve over time (for better
visibility of the other strategies’ performance, its curve was cut below an accu-
racy of 0.6, but its downward trend continued). Thus, except for ACLStream all
active learning approaches were able to recover from drift.

In summary, our experimental evaluation indicates a mostly superior per-
formance of the incremental variant COPAL-I compared to all other tested
approaches including its amnesic counterpart COPAL-A, while the latter shows
comparable performance to the most recently proposed DBALStream approach.
In our experiments, the clustering-based active learning strategy ACLStream
proposed in [10] performed in most test-cases not better than random sampling.

5 Conclusion

In this paper, we have proposed a clustering-based optimised probabilistic active
learning approach (COPAL) for selective sampling in evolving datastreams.
Inspired from semi-supervised learning, it combines established clustering tech-
niques, which it uses to capture the structure within the unlabelled data, with
the recently proposed probabilistic active learning [14] approach, which serves
for selecting the best among the clusters. Our approach is designed for selecting
labels actively in nonstationary environments, and is usable to actively train any
adaptive stream classifier. We studied two variants of this approach: COPAL-
I uses incremental clustering and windowing to maintain and adapt a single
clustering model over time. COPAL-A is an amnesic clustering variant that iter-
atively learns a new clustering model on each chunk and discards it after classi-
fier training. The experimental evaluation against competitors that include two
recently proposed approaches for evolving datastreams shows an overall supe-
rior performance of the proposed COPAL approach. The incremental variant
performs overall the best, while the amnesic variant performs at least on par
with competitors and in three out of six datasets best for large budget sizes.
While for better comparison with competitors the same combination of cluster-
ing and classifier technique was used in this paper, the performance with other
combinations is subject of ongoing research.
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Furthermore, COPAL uses the obtained clustering model solely in the active
sampling process. Thus, the information from the structure of the unlabelled data
is not considered explicitly during classifier training. Future work will focus on
extending COPAL by semi-supervised techniques in the classification step, for
example by self-labelling of the unlabelled instances or by using the clustering
directly in the classification process.
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26. Zliobaitė, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting
streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 27–39 (2013)



Predictive Analysis on Tracking Emails
for Targeted Marketing

Xiao Luo1(B), Revanth Nadanasabapathy1, A. Nur Zincir-Heywood1,
Keith Gallant2, and Janith Peduruge2

1 Faculty of Computer Science, Dalhousie University, Halifax, Canada
{luo,zincir}@cs.dal.ca, rv974562@dal.ca

2 EmailOpened, Halifax, Canada
{keith,janith}@emailopened.com

Abstract. In this work, we present our experiences using a learning
model on predicting the “opens” and “unopens” of targeted marketing
emails. The model is based on the features extracted from the emails and
email recipients profiles. To achieve this, we have employed and evaluated
two different classifiers and two different data sets using different feature
sets. Our results demonstrate that it is possible to predict the rate for a
targeted marketing email to be opened or not with approximately 78 %
F1-measure.

Keywords: Email · Targeted marketing · Feature extraction ·
Prediction

1 Introduction

Over the last two decades, online marketing has grown to a $70 billion industry
worldwide annually [1]. Online marketing aims to promote products or brands
via one or more forms of electronic media. email is one of the important electronic
marketing media. In this media, the rate of opened emails is a critical factor to
evaluate the effectiveness of targeted marketing via email. If a system can predict
the opened rate for a marketing email before it is sent out to the recipients,
that could be very beneficial to the sender to improve the effectiveness of the
marketing.

In 2002, May et al. [2] investigated the success factors for email marketing.
They recommended that features derived from the email and the recipients’
historical profile should be used for the task of prediction. However, they did
not investigate what and how the features should be extracted for predicting
which e-mail would be opened.

Additionally, the Bag of Words approach has been widely used and has shown
its effectiveness for many information management tasks [18,19], network intru-
sion detection tasks [8] and bioinformatics tasks [9]. We used this approach in
our work too. We treat the open and unopen instances of emails as documents.
For each open or unopen, a bag of features is constructed based on the emails
c© Springer International Publishing Switzerland 2015
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and the recipients’ historical profiles. On the other hand, we also realize that
by including all the features from emails, such as including all the email recipi-
ents’ domains, the number of features could grow dramatically with the growth
of the number of email recipients. Hence, the real time prediction of the email
opened rate becomes computationally costly. Thus, different feature selection
methods are investigated to select the most relevant features for predicting the
email opened rate.

Predicting the rate of the “opens” and “unopens” of an email is similar to
classifying an email recipient’s behavior into two categories: open or unopen,
once the email recipient sees the email in the Inbox. Hence, in this research, we
deployed two classification models for the task of prediction. Specifically, they
are the Decision Tree (C4.5) [26] and the Support Vector Machines (SVMs)
classifiers [21]. To fully evaluate our prediction models, we train the models on
different combinations of scenarios. These include: (i) all data and all features;
(ii) different organizations’ data, with (as well as without) feature selection;
and (iii) including (as well as not including) the recipients’ email domains. The
results show that the C4.5 classifier outperforms the SVMs classifier and achieves
approximately 81 % F1-measure prediction rate on “opens”. With feature selec-
tion, the prediction rate decreases a little. However, employing the proposed
prediction system in practice (real time) becomes feasible since there are less
number of features. With feature selection, the proposed prediction model can
process 29206 emails within 34 seconds on a regular personal laptop. The F1-
measure prediction rate on “opens” can reach up to 78 % (10-fold cross valida-
tion). The results also show that it is better to train the prediction models for
each client given that the interest or characteristics of the email recipients are
different.

The rest of this paper is organized as follows. Section 2 summarizes the related
work and methodologies in the area of email marketing; Sect. 3 presents the fea-
tures used, how they are extracted and derived from the raw log data. Section 4
shows the two classification models that are employed for the prediction pur-
poses in this research. Experimental setup and results are provided in Sect. 5.
Finally, conclusions are drawn and the future work is discussed in Sect. 6.

2 Related Work

The application of email as a marketing media, as well as how powerful this media
can help building customer relationship has been explored in Jim Sterne’s book
in 2000 [3]. Sternes also demonstrated the strategies and the techniques to help
improve email response rates and forge lasting customer relationships. However,
his work is purely from the marketing point of view, there is no discussion on
information technology related issues such as data collection or automatic pre-
diction of the response rate given a targeted marketing email. In 2004, Phelps
et al. studied the different aspects that increase the probability of emails to be
forwarded [17]. In 2006, Bonfrer et al. [16] developed a methodology that could
be used to predict the performance of email marketing campaigns in real time.
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In that research, only features derived from the clicks as well as the timestamp
of the email sent and the timestamp of the email most likely would be opened
were used to build the prediction model. Pavlov et al. [15] analyzed how to
build an infrastructure towards a sustainable email marketing. Some researchers
discussed that the subject line of an email has a strong influence on the con-
sumers decision to open or not to open the email [4]. Unlike our research, their
work employs features only from the email itself without considering the email
recipients’ profile, which we believe plays a very important role in the email
“opens”.

On the other hand, employing user profiles for prediction has been researched
in other areas. For example, Pazzani et al. [6] studied the identification of inter-
esting websites based on learning and revising user profiles. Espinosa et al.
employed user profiles to predict students’ GPAs [5]. User profiles have also
been used to identify users’ intentions for many different activities such as online
shopping etc. on the Internet [10]. Moreover, they have been widely employed in
personalized information retrieval, personalized web ranking and so on [7]. With
the increase of the popularity of social media, the prediction of information dif-
fusion in social networks has also employed user profiles [11]. However, to the
best of our knowledge, no material has been published on the usage of recipient
profiles in the area of email marketing.

3 Feature Extraction and Data Representation

In this research, we have employed real targeted marketing data in order to
study the usage of emails for this purpose. Our data sets include the emails that
were sent to the recipients and the logs that recorded the recipients’ actions such
as opening an email or clicking on an email and so on. Based on the log data,
we extract features from emails and build the profiles of the recipients. Figure 1
shows the process of feature extraction.

Inbox View

Email Opened by 
Recipient

Email Features Recipient Profile Features

Fig. 1. Feature extraction and email recipient profile construction

The email features employed in this work include the subject of an email
as well as the day and time when an email is sent. Additionally, the recipient
profile features employed in this work include the location of the recipient, the
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computing environment of the recipient, the response time and the email domain
of the recipient. However, it should be noted here that some of the recipient
profile features can only be extracted when there is an action on the email.

3.1 Extracting the Email Features

In this work, we extracted three features from each email. These are: the words
of the subject line of the email, the day the email is sent and the time the email
is sent. The time and the day are two features that are very straight forward.
We use the time stamp of the sent email, and then extracted these features.
For the day feature, we use the day of the week which runs from Sunday to
Saturday. As for the time feature, we divided the time of a day into four groups:
Morning (06:00 am–12:00 pm), Night (00:00 am–06:00 am), Evening (18:00 pm–
24:00 am), Afternoon (12:00 pm–18:00 pm). Hence, given a time stamp as: 2014-
07-08 16:39:16, the sent day feature is: Tuesday, and the sent time feature is:
Afternoon.

Prediction based on the individual words within the subject line of an email
could be very challenging, because the number of words in a subject line is not
that many to start with. In general, we can say that prediction by using a bag
of words approach relies on how many times a word has been used in the email.
If a word has been repeatedly used in the subject, it is easier to predict than
the case, where a word has never been used before in the subject line. In the
latter case, it is difficult to associate that word with the open rate of an email.
Other than these two extreme cases, the words, which are used rarely in the past,
and the ones similar to the previously used, have varying degrees of difficulty
in using them for the prediction. Hence, based on the generic knowledge on the
popular words that are used for marketing purposes, we categorize the words in
the subject lines into the following six categories. In this project, we classified
all the words in the subject lines into these categories (Table 1).

Table 1. Categories of the words used in the subject line of an email

Category Description Examples

Client Related to the business name of the sender McDonalds

Business Related to the business product of the sender Hamburg, Fries, Pop, . . .

Time A name of a time or day Holidays, July, Weekend, . . .

Location A name of a location New York, Amherst, . . .

Highlight An adjective to highlight information Happy, Brilliant, . . .

CAP Word in the upper case form COUPON, THURSDAY, . . .

3.2 Extracting the Recipient Profile Features

Other than the characteristics of an email itself, the properties of email recipients
are also very important in determining if the email will be opened by the recipient
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or not. Researches show that the geographical location is important for many
Internet applications, such as online advertisement [20]. It helps to understand
the customer distribution and enables location-based advertising services. Thus,
in this work, we explored whether the same will apply in the email marketing
field too. Many researches [12,13] have been done on identifying the geolocation
from IP addresses. We employed the popular GeoIP open source [14] tool to
identify the country, the state and the city of the recipient based on his/her IP
address, and include this as one of the features of the recipient.

We hypothesize that whether a recipient opens an email or not will also rely
on the computing environment that the recipient has when the email hits his/her
Inbox. Imagine that when an email recipient is using a mobile device during the
day, and there is a maximum data limit on the mobile device, then the probabil-
ity of not opening an email on the mobile device might be higher than opening
it. Instead, he/she might choose to open it while he/she is at home using a PC
with a higher network bandwidth. Thus, we hypothesize that the computing
environment of the recipient at a certain time and location plays an important
role in predicting the rate of opened emails, especially for targeted marketing
purposes. On the other hand, based on an individual’s preferences, some recipi-
ents might like to open the marketing email using some specific browsers. In this
work, we use the user-agent string header embedded in the HTTP to extract the
recipient’s OS type, browser type and device type as part of the profile features.
Table 2 presents the features used for recipient profiling as well as some of their
sample values.

Table 2. Features for email recipient profiling

Type Data source Examples

Country IP address Canada, US, . . .

State IP address Ontario, California, . . .

OS type User-Agent string iOS, Android, . . .

Device type User-Agent string iPad, PC, . . .

Browser type User-Agent string IE, Chrome, . . .

Domain The domain part of recipient’s email address hotmail.com, rogers.com, . . .

3.3 Data Representation

The Bag-of-Word model or the vector space model approach has been widely
used in the information retrieval, data mining and even bioinformatics fields
[8,9,18,19]. It provides the foundation for the data representation in these fields.
In this work, we use this approach to represent the opened and the unopened
emails. Vectors are built for all the instances of “opens” and “unopens”. The
length of the vector is the total number of features seen in all the instances. It is
easy to get all the features of each instance of opened emails. However, for each
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instance of the unopened emails, only the set of email features are present. We
can not capture the actual geolocation and computing environment information
since there is no action from the recipient. In this case, we use the most highly
used values of each of the features from the recipient’s profile to populate unopen
instances. For example, if a recipient has an unopened instance, we will employ
mostly used location from the “opens” in his/her past history for the location of
this unopen instance. We are aware that populating the missing values using this
approach may introduce some errors. However, this is one of the simplest ways to
overcome the missing values problem. In the future, we will also investigate other
approaches to study this problem. An example of such a data representation is
shown in Table 3.

Table 3. Example of data representation

EmailSentEvening CAPTitle CIESIN.COLUMBIA.EDU Canada . . . . .

0.14 0.45 0 2.67 . . . . .

Instead of using 1 and 0 to present the occurrence of the feature, we used the
traditional tfidf function to provide a weight for each feature. The tfidf weight
calculation is given in Eq. 1:

Wij = tfijidfi = tfij log2(
N

idfj
). (1)

tfij : Feature tfij frequency in open or unopen instance j
idfi: Instance frequency of feature i.

4 Prediction

In the early 1990s, classification techniques such as Decision Tree learners, Naive
Bayes classifiers and Neural Networks were applied to many data mining tasks.
Since late 1990s, new machine learning methods, the so called large margin
classifiers such as Support Vector Machines (SVMs) have been proposed. One of
the differences between decision trees and other classification methods is that the
trained model of the decision tree can be interpreted as a readable form, while
others are more like black boxes, the trained model can not be easily interpreted.
In this paper, we employ both the Decision Tree and the SVMs classifiers for
our task.

4.1 Decision Tree

ID3 and C4.5 are the most popular ones among the decision tree inductive learn-
ing algorithms. C4.5 is a representative and a software extension of ID3 algorithm
[26]. Unlike ID3, C4.5 handles both continuous as well as discrete attribute val-
ues. It also handles missing attributes and does pruning after the tree has been
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created. Due to pruning in C4.5, as the branches that do not contribute much
on the classification are removed, tree size is considerably reduced and memory
usage is improved in comparison to ID3. We use C4.5 decision tree learning algo-
rithm to classify the features based on their numeric tfidf scores [24]. In our
experiments, the C4.5 is applied to the list of features described in Sect. 3. The
C4.5 algorithm can be summarised as the following:

1. Take all features in the training set. Calculate its entropy information.
2. Choose maximum entropy feature as tree node.
3. Split the tree node into two branches for examples with tfidf scores that are

= 0 and > 0.
4. For each branch, find the child node from the sublists of features.
5. Repeat the steps until the examples of the node are empty and directly pre-

dicts single class.

4.2 Support Vector Machines

Another classification algorithm we use is the Support Vector Machines (SVMs)
[21]. The SVMs classifier aims to separate the input data linearly using hyper-
planes. For a good generalization for the classification and a less complex hyper-
plane function, the maximum margin between the hyperplane and the support
vectors is required.

When the samples are not linearly separable, support vector machines is used
to non-linearly transform the training features from a two dimensional space ‘x’
to a higher dimensional feature space ‘ϕ (x)’ using a factor φ : x → ϕ (x) and a
function called ‘Kernel’, an inner product of two examples in the feature space.
The kernel function used in our experiments is given in Eq. 2:

K(xi, xj) = (1 + xT
i xj)p. (2)

p : Degree of polynomial function K.

This ability to learn from large feature spaces and the dimensionality inde-
pendence make the support vector machines a universal learner for text clas-
sification. Another characteristic of SVMs is the use of soft margins to protect
from overfitting caused by the misclassification of noisy data in such large feature
spaces [22].

5 Experimental Setup and Results

The data sets employed in this work are the log files received from our industrial
partner - EmailOpened. These log files include data from two different organi-
zations that are from two different business sectors. One is from the restaurant
business, we call it as Restaurant-A in the rest of the paper. The other one is from
the publishing business, we call it as Journal-B in the rest of the paper. The data
sets include 34 emails sent by Restaurant-A to 2221 recipients, and 20 emails
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sent by Journal-B to 4703 recipients. For all these emails sent, other than the
bounced back emails, Restaurant-A has 10845 opened instances (“opens”) and
12636 unopened instances (“unopens”) whereas Journal-B has 18987 “opens”
and 10219 “unopens”. After the data cleaning and the feature extraction, there
are totally 891 features over all data sets. Figure 2 shows the device distribution
of the “opens” within all the data. Approximately 65 % of “opens” happen on
PCs compared to the other device types. The “opens” on the iPhone devices
seem to be 19 % more than the rest of the mobile phones based on the data used
for the experiments. One reason could be that more email recipients in these
email campaigns were iPhone users.

Fig. 2. Percentage of open instances on different device types

Figures 3 and4present the locationdistributions of the “opens” forRestaurant-
A and Journal-B.The figures show that the data distributions for different business
clients are different. For Journal-B, 94 % of the “opens” happen in United States,
while 2 % of the “opens” happen in the Canada. However, for Restaurant-A, 85 %
of the “opens” are from Canada and 13 % are from the United States. The different
distributions represent the difference of the businesses and the targeted audiences,
i.e. email recipients.

Fig. 3. Top location distributions of the “opens” : Restaurant-A
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Fig. 4. Top location distributions of the “opens” : Journal-B

In this work, Waikato Environment for Knowledge Analysis (WEKA) [25] sys-
tem, which is an open source software that consists of a collection of machine learn-
ing algorithms for data mining tasks, is used for training and testing our classifiers
for the purpose of prediction. In WEKA, the J48 classifier, which is the C4.5 Deci-
sion Tree classifier, and the SMO type under functions category, which is the SVMs
classifier, are used. Specifically, for C4.5, we used three fold pruned C4.5 classifier
with confidence factor of 0.25. As for SVMs, we used polynomial kernel function
with degree 3, exponent and random seed set to 1.0 on normalized training data.
In order to fully analyze the prediction performance on the data sets without any
biases, ten-fold cross-validation is used to evaluate the prediction models. After
the feature extraction and data representation steps, we train the two prediction
models on all the data of Restaurant-A and Journal-B, respectively. The decision
tree trained from the data set is fairly large, because it makes use of a high num-
ber of features from the training data. Hence, it is not included in the paper. The
results based upon the three traditional evaluation measurements, namely: preci-
sion, recall and F1-Measure are shown in Tables 4 and 5.

Table 4. Prediction results of the decision tree

All Data Restaurant-A Journal-B

Recall Precision F1 Recall Precision F1 Recall Precision F1

Opens 0.797 0.801 0.799 0.773 0.681 0.724 0.806 0.877 0.840

UnOpens 0.739 0.734 0.737 0.752 0.828 0.788 0.727 0.609 0.663

Weighted
average

0.772 0.772 0.772 0.762 0.760 0.759 0.779 0.783 0.778

Number of
features

891 354 654

The results show that with all the data, the proposed prediction analysis
models achieved a prediction F1-measure rate of approximately 80 % on the
“opens” when the decision tree classifier is employed and a prediction F1-measure
rate of approximately 74 % on the “opens” when the SVMs classifier is employed.
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Table 5. Prediction results of the support vector machines

All Data Restaurant-A Journal-B

Recall Precision F1 Recall Precision F1 Recall Precision F1

Opens 0.717 0.760 0.738 0.782 0.538 0.637 0.703 0.914 0.795

UnOpens 0.660 0.608 0.633 0.687 0.871 0.768 0.639 0.283 0.393

Weighted
Average

0.692 0.694 0.692 0.731 0.717 0.708 0.681 0.693 0.654

Number of
features

891 354 654

The results show that the Decision Tree performs better on all data cases. One
of the reasons for the lower performance of the SVMs classifier could be, we
deployed a polynomial kernel for the SVMs. However, the instances of “unopens”
and “opens” might not be separable by deploying the polynomial kernel of degree
3. On the other end, both prediction analysis models performs slightly better
on the “opens” for Journal-B data. The highest prediction F1-measure for the
“opens” on the Journal-B data is 84 %.

Tables 4 and 5 demonstrate that Restaurant-A and Journal-B have differ-
ent number of features. We investigated all the features, and identified that
a high percentage of the features are domains and locations derived from the
email recipients. We then take a further step to investigate how much the email
domains of the recipients contribute to the prediction performance. To this end,
we filtered out all the domain features and repeated experiments on the rest of
the data from Restaurant-A and Journal-B data sets, respectively. Tables 6 and
7 show the results without including domains as features for the prediction.

Table 6. Prediction results of the decision tree classifier without using the domains

All Data Restaurant-A Journal-B

Recall Precision F1 Recall Precision F1 Recall Precision F1

Opens 0.757 0.773 0.765 0.735 0.578 0.647 0.768 0.893 0.826

UnOpens 0.696 0.676 0.694 0.821 0.752 0.765 0.715 0.500 0.589

Weighted
Average

0.730 0.731 0.731 0.713 0.709 0.704 0.750 0.755 0.743

Number of
features

267 136 234

Based on the weighted average F1-measure, without including the domains
as features, the performance of the classifiers on Restaurant-A and Journal-B
drops 2 % to 4 %. This implies that the domains features do contribute to the
prediction performance at some level.
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Table 7. Prediction results of the SVMs classifier without using the domains

All Data Restaurant-A Journal-B

Recall Precision F1 Recall Precision F1 Recall Precision F1

Opens 0.677 0.766 0.719 0.741 0.486 0.587 0.681 0.973 0.801

UnOpens 0.631 0.523 0.572 0.660 0.854 0.744 0.755 0.152 0.253

Weighted
average

0.657 0.661 0.655 0.697 0.684 0.672 0.707 0.686 0.609

Number of
features

267 136 234

5.1 Online Prediction and Feature Selection

In the email marketing area, it is very important to effectively send the marketing
emails and gain a high opening rate. This will help building healthy (without
invading the privacy) relationships between the marketing businesses and the
email recipients. So, if the prediction can happen in real time, after the sender
constructs the email but before the email is sent out, it will be very useful for
marketers to forecast the effectiveness of the email. This can also help the email
sender to revise the email before it is sent. On the other hand, for the email
recipients, they would receive less unwanted marketing emails. Figure 5 shows
the proposed online prediction process.

Fig. 5. Proposed online email opens prediction process

The prediction model is trained based on the historical data, emails sent
before. The features are extracted from the “opens” and “unopens” instances of
the emails that were sent previously. Email recipient features for the “unopens”
are constructed based on the “opens”. After the email sender finishes writing
the subject line, sets up the planned sending time, and selects the group of email
recipients, the online prediction process can start to extract the features based
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upon these information and predict the email opens rate for the email to be
sent. If the predicted opens rate of the email to be sent is low, then the email
sender can modify the email subject line or the planned sending time to start the
prediction process again till the email sender is satisfied with the predicted opens
rate. Figure 6 shows the user interface of the tool developed by our industrial
partner for their business clients to form their marketing emails.

Fig. 6. User interface of the marketing emails sending tool of EmailOpened

From the previous results, we concluded that the profile features of the
email recipients of different businesses, e.g. Restaurant-A or Journal-B, might
be totally different. Hence, training the prediction model for each business client
seems to be more effective. In Fig. 5, the prediction model is trained by using
the historical data of a business client.

We realize that the training process can be done offline periodically. How-
ever, the prediction process, which is the testing process, needs to be efficient.
In this work, we explored the efficiency and the prediction performance based
on different numbers of features input to the prediction models. To achieve this,
Chi Square feature selection method is deployed to remove redundant and irrel-
evant features. The Chi Squared attribute evaluation is used in statistics to test
the independence of two events [23]. In this case, it is used to test whether the
occurrence of a specific feature and the occurrence of a specific class are inde-
pendent. Thus, Eq. 3 is used to calculate the chi-square value (χ2(f, Cj)) for
each feature (f). High scores indicate that the null hypothesis of independence
should be rejected and thus that the occurrence of the feature and the class
are dependent. Hence, we select the features with higher scores, and use those
selected features for class prediction.

χ2(f, Cj) =
(P (f, Cj)P (f, Cj) − P (f, Cj)P (f, Cj))2

P (f)P (f)P (Cj)P (Cj)
. (3)
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f : a feature
Cj : the category j in the data set.

We ranked the features according to the score, and then selected eight differ-
ent feature sets with an increasing number of features in each set for Restaurant-
A and Journal-B, respectively. In the experiments conducted, we identified that
it took less time to train the Decision Tree classifier and also to test the instances
with the trained Decision Tree model. Figure 7 shows the F1-measure rate on the
“opens” of the different feature sets. With the increase of the number of features
in a set, the F1-measure rate increases. The performance on the Journal-B data
is better than Restaurant-A. Even with the number of features reduced to 25,
F1-measure prediction rate of 78 % is achieved. In summary, the performance of
the feature selection on top of all the features and without domain features are
very similar.

Fig. 7. Prediction results of decision tree with feature selection

Experimental results also show that as the number of features increase, the
computational cost for testing increases too. With 23481 instance, the testing
time for 25 features by using C4.5 classifier is about 25 s. While the training
time for 95 features is about 160 s. Hence, when building the online prediction
model, the number of features selected needs to be balanced with the prediction
performance.

6 Conclusions and the Future Work

Through this work, we employed a learning model for predicting the “opens”
and “unopens” of targeted marketing emails. The model is based on the fea-
tures extracted from the emails and email recipients profiles. Two classification
methods are compared for predicting whether an email written will be opened



Predictive Analysis on Tracking Emails for Targeted Marketing 129

by a potential recipient or not. They are the C4.5 Decision Tree classifier and
the SVMs classifier. The results show that the Decision Tree classifier performs
better in all the scenarios. However, the parameter sensitivity of these two algo-
rithms for this task is left for future work.

We have also investigated the feasibility of online prediction by using this
model. Chi square feature selection technique has been used to select the most
relevant features and to improve the efficiency of the prediction process. The
results show that with the feature selection, the prediction performance drops a
little. However, the proposed model can be deployed for online prediction in a
timely fashion. The number of selected features can be adjusted based upon the
prediction accuracy requirements and the computational power of the system.

Based on the literature review, this is the first research work that builds
an email recipient profile. In this work, the email recipient profile contains only
the location and the computational environment features. In the future, more
sophisticated profiles can be build to include email features when the recipient
have “opens” and “clicks” on the email. Similar to the user’s profile for person-
alized search, the profile can be ever adaptive and changing to reflect the email
recipient preferences. On the other hand, more email features can be extracted
to include the message objective defined by the sender. We also believe that sim-
ilar models can be explored to predict the “clicks” and “unclicks” on the URLs
after an email is opened.
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Abstract. Recommender systems suffer from an extreme data sparsity
that results from a large number of items and only a limited capability of
users to perceive them. Only a small fraction of items can be rated by a
single user. Consequently, there is plenty of unlabelled information that
can be leveraged by semi-supervised methods. We propose the first semi-
supervised framework for stream recommender systems that can leverage
this information incrementally on a stream of ratings. We design several
novel components, such as a sensitivity-based reliability measure, and
extend a state-of-the-art matrix factorization algorithm by the capability
to extend the dimensions of a matrix incrementally as new users and
items occur in a stream. We show that our framework improves the
quality of recommendations at nearly all time points in a stream.

Keywords: Recommender systems · Semi-supervised learning · Matrix
factorization · Collaborative filtering · Stream mining

1 Introduction

Data sparsity is a known problem in recommenders. It is amplified by the intro-
duction of new items and the appearance of new users, on which and whom
little is known. In [11], Zhang et al. proposed to deal with this problem with
semi-supervised learning. In this study, we demonstrate the potential of semi-
supervised learning (SSL) as cure to data sparsity in stream recommenders.
The streaming context poses several challenges on semi-supervised algorithms,
which do not show in the static context: on which data of the stream should the
learning be done, on which data should the learner be tested before being applied
on the ongoing stream, how should an algorithms treat new users and items? To
deal with these challenges, we propose a semi-supervised stream recommender
that deals with data sparsity by deriving predictions from part of the stream
(unlabelled information) and using them for learning. To deal with new users
and items we extend a state-of-the-art matrix factorization algorithm BRISMF
[10] by the ability to deal with growing dimensions of the matrix on the ongo-
ing stream. Our framework encompasses novel reliability measures, selectors for
unlabelled data and further components specified in Sect. 3. To our knowledge,
this is the first such framework for stream recommender systems.
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 131–145, 2015.
DOI: 10.1007/978-3-319-24282-8 12
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Sparsity and cold start problems are often tackled by using context or exter-
nal sources of information (e.g. demographics of users, characteristics of items,
etc.). These approaches, however, narrow down the palette of applicable algo-
rithms to the few ones able to use them and it excludes many practitioners, who
do not have the required data. Our framework does not rely on any additional
source of information, but only on the user-item-rating matrix, which makes it
general and applicable to any collaborative filtering algorithm.

In an empirical study on real-world datasets we show that our SSL framework
improves the quality of recommendations at nearly all time points in the stream.

Contributions. To summarize, our contributions are as follows:

– we propose the first SSL framework for stream recommenders including
novel reliability measures, selectors for unlabelled instances, etc.

– we extend the BRISMF algorithm by the ability to deal with growing dimen-
sions of the matrix

– we show that SSL for stream recommenders improves the quality of recom-
mendations.

Organization. This paper is structured as follows. In Sect. 2 we discuss related
work. Section 3 gives an overview over our framework and explains the interplay
of its components. The following section describes an instantiation of the com-
ponents of the general framework. Evaluation protocol is described in Sect. 5.
Our results are explained in Sect. 6. Finally, in Sect. 7, we conclude our work
and discuss open issues.

2 Related Work

Recommender systems have been researched thoroughly in the recent years.
State-of-the-art in the group of collaborative filtering approaches are nowadays
matrix factorization methods. Their predictive performance has been shown
in several publications [5,6,10]. We focus on their incremental version, since
those methods are applicable to streams of ratings. In this work we extend the
BRISMF algorithm (biased regularized incremental simultaneous matrix factor-
ization) proposed by Takács et al. [10]. BRISMF exists in two versions. One of
them was developed for batch processing. Takács et al., however, also developed
an incremental version of it (cf. Algorithm 2 in [10]). In this version the latent
item vectors are fixated and updated as new ratings occur in the stream. Latent
user vectors are updated, however, no new users are added to the matrix. In our
work we lift those limitations of the BRISMF algorithm.

While semi-supervised classification has been investigated thoroughly in the
field of data mining, semi-supervised regression, a discipline that matrix fac-
torization belongs to, is a less researched problem [12]. Recommender system
domain is even more specific due to its idiosyncrasies, such as dealing with large
matrices that are typically up to 99 % empty, clod start problem and many more.
Due to those challenges only little work was done on semi-supervised learning
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in recommender systems. The work by Zhang et al. [11] belongs to the few ones.
They proposed a co-training method for stationary, batch-based recommender
systems. Their approach, however, is not incremental and not appropriate for
streams of ratings and, therefore, would require a frequent retraining of the
models. The framework proposed by us lifts those limitations by incrementally
incorporating new rating information into the models and adapting to changes.

One of the biggest challenges in recommender systems is an extreme sparsity
of data. Many techniques have been developed in order to tackle this problem.
One of the most straightforward techniques is filling of the missing values in
the matrix with default values (e.g. averages). This method, however, is very
time and memory consuming and it lacks personalization. Another approach
involves active learning techniques, where an algorithm chooses what label (rat-
ing) to request from a user in order to maximize a predefined gain for the model
[4]. Active Learning techniques base on the assumption that a user knows the
requested label and is willing to share it. This is often not the case in real appli-
cations. Semi-supervised learning provides here an important advantage of not
having to relay on users’ input.

3 Semi-supervised Framework for Stream Recommenders

In this section we present our main contribution - a semi-supervised framework
for stream recomemnders with a description of the components and their func-
tion. Our new components are marked in red in the figures below. This section
gives definitions and an overview of how the components are interrelated. An
instantiation and implementation of the components is provided in Sect. 4.

3.1 Incremental Recommendation Algorithm

The core of our framework is a recommendation system algorithm. Figure 1
depicts two modes of a stream-based recommendation algorithm. The entire
rectangle in the figure represents a dataset consisting of ratings. The dataset
is split between a batch mode (blue part) and a stream mode (yellow part).
The stream mode is the main mode of an algorithm, where information about
new ratings is incorporated incrementally into the model, so that it can be used
immediately in the next prediction. Semi-supervised learning also takes place in
this phase (green bars).

Before the stream mode can start, the algorithm performs an initial training
in the batch mode. The batch mode data is, therefore, split again into training
and test set. On the training dataset latent factors are initialized and trained.
The corresponding prediction error is then calculated on the test dataset (second
blue rectangle) and the latent factors are readjusted iteratively. Once the ini-
tial training is finished, the algorithm switches into the streaming mode, where
learning and prediction take place simultaneously. Our extended version of the
BRISMF algorithm, etxBRISMF, is described in Sect. 4.1.
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Fig. 1. Division of a dataset (entire rectangle) into batch (blue part) and stream mode
(yellow part). The stream mode is the main part of an algorithm with incremental
learning and predictions. Batch mode is used for initial training (Color figure online).

3.2 Stream Co-Training Approach

For semi-supervised learning we use the co-training approach. We run in parallel
multiple stream-based recommendation algorithms that are specialized on dif-
ferent aspects of a dataset and can teach each other. Due to this specialization
an ensemble in the co-training approach can outperform a single model that uses
all information.

Initial Training. The specialization of the algorithms takes place already in
the initial training. In Fig. 2 we present a close-up of the batch mode from
Fig. 1. Here, the initial training set is divided between N co-trainers from the
set C = {Co − Tr1, ..., Co − TrN}, where N ≥ 2.

Fig. 2. Different co-trainers are trained on different parts of the initial training set. The
component responsible for splitting the training set is training set splitter (Color
figure online).

The component that decides, how the initial training set is divided between
the co-trainers is called training set splitter (marked in red in Fig. 2; cf.
Sect. 4.2 for instances of this component). Formally, a training set splitter func-
tion that relates all co-trainers to subsets of all ratings in the initial training set
RinitialTrain:

f(C,RinitialTrain) : ∀n{(Co − Trn ∈ C) → RCo−Trn

initialTrain} (1)
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with n = 1, ..., N and RCo−Trn

initialTrain ⊆ RinitialTrain. This function is not a parti-
tioning function, since overlapping between different RCo−Trn

initialTrain is allowed and
often beneficial. Implementations of this component are provided in Sect. 4.2.

Streaming Mode - Supervised and Unsupervised Learning. After the
initial training is finished all co-trainers switch into the streaming mode. In this
mode a stream of ratings rt is processed incrementally. First, a prediction is
made and evaluated, then the models are updated using the new information
according to the prequential evaluation (cf. Sect. 5).

Figure 3 is a close-up of the stream mode from Fig. 1. It represents a stream
of ratings r1, r2, .... The yellow part of the figure depicts the supervised learning,
whereas the green part symbolizes the unsupervised learning (cf. next section).
For each rating rx in the stream all co-trainers calculate a prediction:

∀n : Co − Trn(rx) = r̂xCo−Trn
(2)

Fig. 3. Close-up of the stream mode from Fig. 1. The yellow part represents the super-
vised learning and the green one unsupervised learning. Predictions made by co-trainers
are aggregated by a prediction assembler (Color figure online).

In order to aggregate all predictions made by co-trainers into one predic-
tion r̂xAgg we use a component called prediction assembler. The most simple
implementation is arithmetical average (further implementations in Sect. 4.3).
The function of prediction assembler is as follows:

predictionAssembler(rx, C) = r̂xAgg (3)

In Fig. 3 this process is visualized only for the rating r1 due to space con-
straints, however in real application, it is repeated for all ratings in the stream
with known ground truth (supervised learning). For instances with no ground
truth the procedure is different.

Unsupervised Learning. USL takes place periodically in the stream. After
every m-th rating (m can be set to 1) our framework executes the following
procedure. First, a component called unlabelled instance selector selects z
unlabelled instances (cf. Fig. 4). Unlabelled instances in recommender systems
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are user-item-pairs that have no ratings. We indicate those instances with ru
z (“u”

for unsupervised). The unlabelled instance selector is important, because the
number of unsupervised instances is much larger then the number of supervised
ones. Processing all unsupervised instances is not possible, therefore, with this
component we propose several strategies of instance selection (cf. Sect. 4.4).

Fig. 4. The procedure of unsupervised learning. User-item-pair without ratings are
selected using an unlabelled instance selector. Predictions and their reliabilities
are estimated. The most reliable predictions are used as labels for the least reliable
co-trainers.

Once the unlabelled instances ru
1 , ..., ru

z are selected, co-trainers are used
again to make predictions:

∀n, i : Co − Trn(ru
i ) = r̂u

iCo−Trn
(4)

where i = 1, ..., z and n = 1, ..., N . After this step we use a reliability measure
to assess in an unsupervised way, how reliable is a prediction made by each
co-trainer. Formally, a reliability measure is the following function:

reliability : (Co − Trn, r̂u
iCo−Trn

) → [0; 1] (5)

This function takes a co-trainer and its prediction as arguments and maps
them into a value range between 0 and 1, where 1 means the maximal and
0 the minimal reliability. Subsequently, we calculate pairwise differences of all
reliabilities of the predictions for ru

i :

Δ = |rel(r̂u
iCo−Tra

) − rel(r̂u
iCo−Trb

)| (6)

for all a, b = 1, ..., N and a �= b. All values of Δ are stored temporarily in a list,
which is then sorted. From this list we extract the top-q highest differences of
reliability i.e. cases, where one co-trainer was very reliable and the second one
very unreliable. In such cases the reliable co-trainer provides a label to ru

i and
the unreliable co-trainer learns incrementally using the provided label.

4 Instantiation of Framework Components

While, in previous section, we provided definitions of our components, here we
present several instances of each component and their implementations.
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4.1 extBRISMF - Dimensionality Extending BRISMF

The core of our framework is a matrix factorization algorithm. We extended the
BRISMF algorithm by Takács et al. [10] by the ability to deal with chang-
ing dimensions of the matrix over time. We named this new variant of the
algorithm extBRISMF for dimensionality extending BRISMF. The original
BRISMF keeps the dimensions of the matrix fixed and does not update latent
item factors. In our algorithm we lift those limitations. This ability is important
in SSL, because the algorithms often encounter items and users not seen before.

For decomposition of the rating matrix R into two latent matrices R ≈ PQ
we use stochastic gradient descent (SGD). P is a matrix of latent user factors
with elements puk, where u is a user and k is a latent dimension. Similarly, Q
is a matrix of latent item factors with elements qik, where i is an item. That
results in the following update formulas for SGD [10]:

pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k)

(7)

where η is a learn rate and λ a regularization parameter that prevents overfitting.
A rating prediction can be obtained by multiplying the corresponding item and
user vector from latent matrices r̂ui ≈ pu · qi.

In Algorithm 1 we present our extBRISMF. Apart from expanding dimen-
sions of latent matrices, we also introduced a different type of initialization for
new user/item vectors. We initialize them with an average vector of the cor-
responding matrix plus a small random component instead of just a random
vector.

4.2 Training Set Splitter

We propose three types of training set splitter (cf. Fig. 1). All of them have one
parameter p that controls the degree of overlapping between the co-trainers.

User Size Splitter. This splitter discriminates between users of different sizes.
Size of a user is defined as the number of rating he/she has provided. Users are
divided into segments based on their sizes and assigned to co-trainers. In case of
only two co-trainers, for instance, one of them will be trained on so called “power
users” and the other one on small users. This method is based on a histogram of
user sizes. It creates N segments (N = number of co-trainers) using equal density
binning (each segment has the same number of users).

Random Splitter. Ratings are divided between co-trainers randomly. This
method serves as a baseline for comparisons.

Dimensions Preserving Random Splitter. This splitter also assigns rat-
ings randomly to co-trainers, however, in contrast to the previous method, it
guarantees that all co-trainers have a matrix with same dimensions. This means
that all co-trainers have at least one rating from all users and items from the
initial training set. This might be beneficial for methods not able to extend the
dimensions of their matrices over time.
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Algorithm 1. extBRISMF - trainIncrementally(ru,i)
Input: ru,i, P, Q, η, k, λ
1: −→pu ← getLatentUserVector(P, u)
2: −→qi ← getLatentItemVector(Q, i)
3: if −→pu = null then
4: −→pu ← getAverageVector(P ) + randomVector
5: P ← P.append(pu)
6: end if
7: if −→qi = null then
8: −→qi ← getAverageVector(Q) + randomVector
9: Q ← Q.append(qi)

10: end if
11: r̂u,i = −→pu · −→qi //predict a rating for ru,i
12: evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
13: epoch = 0
14: while epoch < optimalNumberOfEpochs do
15: epoch++; //for all retained ratings
16: −→pu ← getLatentUserVector(P, u)
17: −→qi ← getLatentItemVector(Q, i)
18: predictionError = ru,i − −→pu · −→qi
19: for all latent dimensions k do
20: if k �= 1: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
21: if k �= 2: qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k)
22: end for
23: end while

4.3 Prediction Assembler

Prediction assembler aggregates rating predictions from all co-trainers into a
single value. We propose three ways of calculating this aggregation.

Recall-based Prediction Assembler assembles predictions of N co-trainers
using a weighted average with weights depending on their past recall values.

r̂u,iAgg =

∑N
j=0 recall(Co − Trj) · r̂u,iCo−Trj∑N

j=0 recall(Co − Trj)
(8)

In the above formula recall is measured globally for an entire co-trainer. Alterna-
tively, recall can be measured also on user or item level. In this case recall(Co−
Trj) can be substituted with recall(Co − Trj , u) or recall(Co − Trj , i).

RMSE-based Prediction Assembler. Similarly to the previous method, this
prediction assembler uses a weighted average, however, here the RMSE measures
(root mean square error) serve as weights. Also here, measuring RMSE on user
and item levels are possible.

r̂u,iAgg =

∑N
j=0 RMSE(Co − Trj) · r̂u,iCo−Trj∑N

j=0 RMSE(Co − Trj)
(9)
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Reliability-weighted Prediction Assembler. This prediction assembler uses
a reliability measure to give more weight to more reliable co-trainers.

r̂u,iAgg =

∑N
j=0 rel

r̂u,i

Co−Trj
· r̂u,iCo−Trj∑N

j=0 rel
r̂u,i

Co−Trj

. (10)

4.4 Selector of Unlabelled Instances

This component is used in the unsupervised learning to select unlabelled instances
as candidates for training. Due to a large number of unlabelled instances a meth-
ods for selecting them is needed. We propose two such methods that as parameter
take the number of instances to be selected.

Latent Disagreement Selector. For all known users each co-trainer stores a
latent vector that is specific for this co-trainer. We denote this vector as pCo−Trn

u .
In this method we search for users, where the disagreement of the latent user
vectors among the co-trainers is the highest. We define the disagreement among
two co-trainers upon a user u as follows:

disagreement(Co − Tra, Co − Trb, u) = |pCo−Tra
u − pCo−Trb

u | (11)

This measure can be computed for all known users and all co-trainer pairs.
Users with highest disagreement are then selected as candidates together with
a random selection of items. The motivation behind this method is that the
instances with highest disagreement can contribute the most to the learners.
This method can be analogously applied onto latent item vectors.

Random Selector. Random combinations of known users and items are gen-
erated. This method is used as a baseline for comparisons.

4.5 Reliability Measure

Reliability measures are used in our framework to assess the reliability of a rating
prediction in an unsupervised way. Based on prediction reliability decisions on
which co-trainer teaches which one are made.

Sensitivity-based Reliability Measure. This is a novel measure of reliability
for recommender systems that is based on local sensitivity of a matrix factoriza-
tion model. As a user model in matrix factorization we understand a latent user
vector pu. This vector changes over time as new rating information that occurs
in the stream is incorporated incrementally into the model. The changes of this
vector can be captured using the following formula:

Δpu
=

k∑
i=0

(pt+1
u,i − pt

u,i)
2 (12)

where pt+1
u,i and pt

u,i are user vectors at different time points. If Δpu
is high,

then it means that the user model is not stable and it changes considerably over
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time. Therefore, predictions made by this model can be trusted less. Similarly
to the user sensitivity we can also measure a global sensitivity of the entire
model as a different variant of this measure. Since Δpu

has a value range [0,∞)
a normalization is needed (cf. last paragraph of this section).

Popularity-based Reliability Measure. Zhang et al. proposed in [11] a relia-
bility measure based on popularity. This measure uses the idea that the quality
of recommendations increases as the recommender system accumulates more rat-
ings. They used the absolute popularity of users and items normalized by a fixed
term. We implemented this reliability measure in our framework for compari-
son, however, with a different normalization method. Normalisation on streams
is different and more challenging (cf. last paragraph of this section).

Random Reliability Measure. A random number from the range [0, 1] is
generated and used as reliability. This measure is used as a baseline.

Normalization of Reliability Measures. As defined in Sect. 3.2, a reliability
measure is a function with value range of [0; 1]. With many aforementioned
reliability measures this is not the case, therefore, a normalization is necessary.
Normalization on a stream, however, is not trivial. Division by a maximal value
is not sufficient, since this value can be exceeded in a stream and a retrospective
re-normalization is not possible. In our framework we use the following sigmoid
function for normalization:

f(reliability) =
1

1 + eα·(reliability−μ)
(13)

where α controls the slope of the function and μ is the mean of the distribution.
The parameters can be set either manually, or automatically and adaptively in
a self-tuning approach. While the adaptive calculation of μ in a stream is trivial,
the calculation of α requires more effort. For that purpose we store 1000 most
recent arguments of this function and determine their fifth percentile. We define
that the value of the sigmoid function for this percentile should be equal to 0.9.
From that, the optimal value of α can be derived. Note that α also controls if
the function is monotonically increasing or decreasing.

5 Evaluation Setting

Incremental matrix factorization algorithm works on a stream of ratings, how-
ever, it requires a short initialization phase that also needs to be taken into
account, while evaluating our framework. Therefore, a simple split into a training
and test datasets is not sufficient. Also peculiarities of a stream based evaluation
should be considered. In [8] we developed an evaluation framework suitable for
this type of algorithms. We adopt it also here to measure the performance of our
SSL algorithms and explain it shortly in this section.
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5.1 Evaluation Protocol

Our evaluation protocol consists of two modes that are presented in Fig. 5. The
figure represents an entire dataset and splitting of it into the two aforementioned
modes, as well as into training and test datasets within the modes. The first mode
is a batch mode used for initial training and tuning (blue colour in Fig. 5). The
batch mode itself consists of two further parts. Part (1) of a dataset is used as
initial training set. Part (2) is used for testing of the initial training and for
adjusting parameters of the model. This part is crucial especially for matrix fac-
torization algorithms using stochastic gradient descent. Once the initial training
is finished, the algorithm switches into the stream mode (yellow part). From this
moment on, evaluation and training are performed simultaneously as proposed
by Gama et al. in prequential evaluation [2].

Fig. 5. Splitting of the dataset between the batch and streaming mode. Separation of
training and test datasets in each of the modes [9] (Color figure online).

In Fig. 5 we can see that part (1) and (3) are user for learning and part (2) for
testing in batch mode. Excluding part (2) from learning would create a temporal
gap in the stream. This gap can be problematic for many incremental methods
that rely on time aspects and are sensitive to ordering of data instances. In order
to avoid this gap, we use part (2) for learning in the streaming mode as well,
but not for testing, since it has been used for batch testing already. Testing in
the stream mode starts in part (3).

In our framework the streaming mode is the main part of the preference
learning, where SSL methods are used. Therefore, our results refer always to the
streaming mode of an algorithm. To investigate the effect of SSL, we compare
results of exrBRISMF with the SSL setting and without it.

5.2 Evaluation Measure - Incremental Recall

In our experiments we use an incremental recall measure proposed by Cremonesi
et al. [1]. In the incremental setting precision can be derived from incremental
recall (cf. [1]) and, therefore, we do not present it. In contrast to purely rating-
based measures, such as RMSE or MAE, the incremental recall measure also
considers ranking of a predicted item. Another problem of RMSE and MAE is
that they weight all predictions uniformly, regardless of relevance of items, i.e.
predictions on all irrelevant items (typically > 99 %) influence the error measure
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equally strong as predictions on relevant items. In incremental recall the ranking
of relevant items only counts.

The procedure of measuring incrementallRecall@N is as follows. At each
new rating in a stream the relevance of the corresponding item is determined
using a rating threshold (e.g. rui > 4 is considered relevant). For each relevant
item additional 1000 random irrelevant items, are selected. For all of those items
rating predictions are made and sorted. Finally, the rank p of the relevant item
among the irrelevant ones is determined. If the rank p is lower than N , a hit is
counted. The value of incrementalRecall@N is set to #hits

|Testset| .

6 Experiments

To show the effect of our SSL framework we compared the results of the
extBRISMF algorithm alone (abbreviated hereafter as NoSSL) and extBRISMF
with our SSL framework (abbrv. as SSL). Both, the algorithm and the frame-
work require setting parameters, such as learn rate η in gradient descent, etc.
Therefore, in order to find approximately best parameter setting we performed
a grid search in the parameter space. The grid search was performed on a cluster
running the (Neuro) Debian operating system [3]. In total we conducted more
than 350 experiments. For brevity we present here only the best result achieved
by the SSL and NoSSL method on each dataset.

Datasets. In our experiments we use four real-world datasets from the recom-
mender systems domain. We stress out that our framework is applicable to all
datasets in form of a user-item-rating matrix unlike similar SSL frameworks that
rely on external sources of information. The datasets we used encompass Movie-
lens 100 k, Movielens 1M1 datasets, as well as random samples of 1000 users of
the Netfilx2 and Epinions (extended) [7] datasets. We used sampling on the large
datasets due to a large numbers of experiments in the grid search. The percent-
age of labelled data out of all possible user-item-pairs in those datasets amounts
to values between 0.03 % and 6.3 %. This shows how much of the unlabelled
information is available in the process of preference learning.

Results. Figure 6 shows the incremental recall@10 over time on the vertical axis
(higher values are better) and the time dimension on the horizontal axis. The
red curves represent the SSL method, whereas the blue ones stand for the NoSSL
method. The dashed lines in colours of both curves represents the median value
of the incremental recall. They correspond to the medians in the boxplots in
the right part of the figures that visualize the distribution of incremental recall
in a simplified way. In all parts of Fig. 6 we can see that the SSL method
dominates the NoSSL one at nearly all time points. More precise results with
the corresponding settings are presented in Table 1. The columns 2–5 of the table
represent the components (e.g. a reliability estimator based on user popularity
in the first row). Rows with no components, but with “NoSSL” stand for the
1 www.movielens.org.
2 www.netflix.com.

www.movielens.org
www.netflix.com
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(d) Epinions extended (random sample of 1000 users)

Fig. 6. Incremental Recall on four real datasets (higher values are better). Application
of SSL techniques yields an improvement on all datasets at nearly all time points (Color
figure online).
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Table 1. Average incremental recall@10 and computation time for a single instance.
Our SSL framework is marked in blue.

Dataset
Reliability
Estimator

Prediction
Assembler

Unlabelled
Instance
Selector

Training
Set Splitter

Avg. In-
cremental
Recall@10

Avg. Time
for Instance

(ms)

ML100k
User

Popularity
User
Recall

Latent User
Disagreement

Random 0.101235 2.417228

NoSSL 0.095099 0.138642

ML1M
Sensitivity
Global

User
Recall

Latent User
Disagreement

Dimensions
Preserving

0.136564 10.88977

NoSSL 0.130721 0.250437

Netflix
1000 users

Sensitivity
Global

RMSE
Global

Latent Item
Disagreement

Dimensions
Preserving

0.184150 6.888166

NoSSL 0.177380 0.400382

Epinions
1000 users

Sensitivity
Global

RMSE
Global

Latent User
Disagreement

User Size 0.003312 131.7290

NoSSL 0.002289 0.979214

extBRISMF alone with no SSL used. The sixth column contains the average
incremental recall@10 for each of the setting. Best results are marked in bold.
Also here we can recognize that the SSL setting dominated the NoSSL one on
all datasets. From the components there are no clear winners, except for latent
disagreement instance selectors, which performed the best on all datasets. From
reliability measures the sensitivity-based ones were mostly successful.

The last column in Table 1 contains the average runtime for a single instance
in milliseconds. We observed that the computation time increased considerably,
when using SSL. Nevertheless, the runtime still stayed in the range of a few
milliseconds, except for the Epinions dataset with 131 ms, which is still feasible
in real-world applications. Remaining settings used in the experiments are the
regularization parameter λ = 0.01, number of latent dimensions k = 40 and learn
rate η = 0.003. The framework used USL every m = 50 ratings, where z = 100
unlabelled instances were selected. Although our framework was developed for an
arbitrary number of co-trainers, in this work we used two of them. Experiments
with a larger number of co-trainers are part of our future work.

7 Conclusions

In this work we proposed a semi-supervised framework for stream recommender
systems based on the co-training approach. To our knowledge, it is the first such
framework that can deal with a stream of ratings and incremental algorithms.
Within the framework we proposed several generic components including training
set splitter, reliability measures, prediction assemblers and selectors for unlabelled
instances. For each of those components we developed several instantiations e.g.
sensitivity-based reliability measure, latent disagreement-based instance selector
and many more. Furthermore, we extended the BRISMF algorithm [10] by the
ability to extend the dimensions of the matrix incrementally.

In experiments on four real datasets we showed that our SSL framework
outperforms the non-SSL method at nearly all time points. This is,
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because our framework is able to leverage the unlabelled information, which in
recommender systems is abundant. Using this information allows us alleviate the
problem of sparsity even without using any context information. The improve-
ment is, however, at the cost of longer computation time. Nevertheless, the com-
putation time of a single instance still remains in a range of a few milliseconds
(normally around 6 ms, except for Epinions dataset - ca. 131 ms). Therefore, this
framework applicable in real-world recommenders.

Our immediate next steps are to investigate, how to make this framework
faster by e.g. sharing parts of the matrix among co-trainers and by using efficient
data structures. Furthermore, we plan to experiment with more than two co-
trainers and to implement further instances of the aforementioned components.
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Abstract. Transmembrane (TM) proteins are proteins that span a cell
membrane; their segments crossing the membrane are called TM domains.
TM domain and TM protein detection are important problems in compu-
tational biology, but typical machine learning approaches yield classifiers
that are difficult to interpret and hence yield no biological insight. We
study both TM domain and TM protein detection with easy to inter-
pret decision trees. For TM domain detection, the use of decision trees
is already reported in the literature, but we provide a critical study of
the existing approach, resulting in improved feature sets as well as obser-
vations on how to avoid biased training and test sets. In particular, we
discover a motif known to be common to TM domains that was not
discovered in previous research using machine learning. For TM protein
detection, we propose a 2-layer learning method. This method can be
generalized to deal with a large class of string classification problems.
The method achieves sensitivity and specificity values of up to 92 % on
the settings we experimented with, while providing intuitive classifiers
that are easy to interpret for the domain expert.

1 Introduction

A transmembrane (TM) protein is a protein that is located partly inside and
partly outside a cell. Such proteins usually cross the cell membrane several times,
and each protein segment that spans the cell membrane is called a TM domain,
see Fig. 1. Among the diverse functions of TM proteins, cellular communication
with the external environment and transportation of ions and molecules are
the most important. TM proteins assist in host-pathogen interactions and play
key roles in the host’s immune response and drug resistance [3,10]. A major
fraction of clinically approved drugs target TM proteins, which indicates their
importance in drug design and discovery [4]. It is hence critical to devise efficient
and accurate computational methods for TM protein detection.

TM proteins are well-studied, and a number of classification approaches with
which to distinguish them from other types of proteins have been suggested in the
literature. In particular, we focus on methods that identify TM proteins based
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Fig. 1. A cell membrane
(delimited by the two
straight lines) hosting two
TM proteins: one with five
TM domains and one with
three TM domains.

on their primary structure alone, i.e., based only on
their underlying amino acid sequences. Most exist-
ing machine learning approaches, e.g., using neural
networks [7,8] or hidden Markov models [12], typi-
cally use highly specific expert knowledge in select-
ing training data or designing the model structure.
While the resulting classifiers perform well (see [2]
for a survey), they are difficult to interpret and do
not provide the biologist with amino acid patterns
that are common in TM proteins or in non-TM pro-
teins. As opposed to that, statistical analyses yield
patterns that are common in TM domains and pat-
terns that are uncommon in TM domains [11], but they do not immediately yield
classifiers that can be used to identify TM proteins among a set of proteins.

The most common example of a type of classifier that can easily be inter-
preted by the domain specialist is the decision tree. In this paper, we train and
test decision trees for the purpose of classifying proteins into TM proteins and
non-TM proteins. To the best of our knowledge, the only related studies using
decision trees were conducted by Arikawa et al. [1] and He et al. [5]. Both focused
only on the problem of deciding whether or not a given amino acid segment is
a TM domain. While solving this problem can help to solve the problem of
identifying TM proteins, it does not immediately yield a solution to the latter.
Furthermore, He et al. [5] tested the rules generated by their system on only 165
hand-selected TM proteins, which cannot be considered a representative sample.

We propose a machine learning approach, called 2LDT (2-Layer Decision
Tree), for classifying proteins into TM and non-TM proteins with a classifier
that is easy to interpret. Our machine learning approach is based solely on
decision trees and works in two layers. In the first layer, we train a decision
tree for identifying TM domains among short protein segments. We then apply
the learned decision tree to a series of subsegments of actual TM and non-TM
proteins and record for each protein how many segments were classified as TM
domains by our trees learned in the first layer. This information is then used in
the second layer of training to build a decision tree for identifying TM proteins.
2LDT follows a framework that works in principle with training any kind of
classifier—it does not require the use of decision trees.

In our experiments, the training in the first layer of 2LDT is quite similar
to the method suggested by Arikawa et al. [1], but we propose to use different
features and to evaluate the first layer decision trees more carefully than they
did. In a systematic analysis of the approach by Arikawa et al., we test which
parameters of their learning environment and their testing environment might
lead to improvements when modified.

Overall, our contributions and findings can be summarized as follows:

– We present 2LDT, the first learning method for identifying TM proteins that
results in easy-to-interpret classifiers. It achieves sensitivity and specificity
values of up to 92 % in our experiments, while the classifiers trained with this
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method provide more insights into patterns common and uncommon in TM
proteins than previously published machine learning methods do. The two-
layer learning approach of 2LDT requires no domain knowledge whatsoever
and may potentially be applicable to string classification problems of any
kind. When applying the method to amino acid sequences for TM protein
identification, the only domain knowledge we use is that the hydropathy of
amino acids plays a role in this context. For other applications, one can simply
exchange the feature sets based on hydropathy by other features, i.e., one
would change the presentation of the data, not the learning method.

– The TM domain identification method deployed in the first layer of our app-
roach outperforms the method by Arikawa et al., after which it was modeled.
In this context, we demonstrate that (i) the frequency of certain types of
amino acids (especially when using hydropathy indices [6]) in a sequence is
more useful for classification than testing their mere existence or testing the
existence of substrings of arbitrary length, (ii) to identify TM domains is eas-
ier when the given sequence has a fixed length of 30 (as in Arikawa et al.’s
experiments) than when its length is chosen uniformly at random from the
length distribution of TM domains, (iii) when training a decision tree, it does
not make much difference whether the negative training sequences are sampled
from non-TM proteins or from the non-TM domain segments of TM proteins,
and (iv) sequences sampled from non-TM proteins are difficult to distinguish
from those sampled from the non-TM domain segments of TM proteins, at
least when using decision trees over a variety of intuitive feature sets.

– The decision trees trained by Arikawa et al. showed that amino acids from the
set {D,E,H,K,N,Q,R} occur often outside TM domains, i.e., they form a
negative motif for TM domain detection. Our experiments suggest that these
negative motifs alone may be too weak when lifting TM domain detection
to TM protein detection. The trees we train provide an additional positive
motif to check for, namely the frequent occurrence of amino acids from the set
{A,C, F, I, L,M, V }. While it is known that such amino acids (which are non-
polar) are frequent in TM domains [9], existing machine learning approaches
have not explicitly suggested this pattern (mostly because they do not yield
intuitive classifiers).

2 Problem Formulation

We are concerned with the problem of detecting TM proteins in a set of proteins
of various kinds, and we are looking for an easy-to-interpet classifier that achieves
good values both for sensitivity (true positive rate) and for specificity (true
negative rate).

The lead question we try to answer in our study is the following:

Question 1. Can one obtain reasonable sensitivity and specificity values
when learning decision trees that detect TM proteins among a set of
proteins of various kinds, while using as input only amino acid sequences?
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The 2LDT approach described in Sect. 3 proposes a solution to this classification
problem. It is based on a first step of detecting TM domains among a set of amino
acid sequences. TM domain detection was the focus of work by He et al. [5], who
used a combination of decision trees and SVM to obtain a set of rules—to obtain
a classifier one would further have to pick support and confidence thresholds.
They test only on sequences taken from 165 TM proteins, not on any sequences
taken from non-TM proteins, and they provide no information on the training
data. Because of these issues, we do not compare the results of our first step to
the accuracy values reported by He et al.

Arikawa et al. [1] also focused solely on detecting TM domains rather than
TM proteins, and they only mention in passing that they used their method
to design a classifier for proteins, achieving accuracy values between 85 % and
90 %. They describe neither this classifier nor the data used for its evaluation,
so it remains unclear what these accuracy values actually mean. For example,
if the test data is imbalanced (as is the case in nature, where the majority of
proteins are non-TM), even a classifier labelling every instance negative can
achieve very high accuracy. Hence, when comparing to Arikawa et al.’s work, we
restrict ourselves to the problem of detecting TM domains. We critically analyze
their approach along the following aspects.

Feature Sets. All the features that Arikawa et al. allowed for training their trees
were binary and represented whether or not the input string contained certain
substrings in a specified order. A substring of a string s is a string of consec-
utive symbols in s. For example, AAE is a substring of FGFAAE, but not of
FGAAFE. Due to runtime problems though, in their actual training phase, they
restricted these features further and considered only those that represent whether
or not the input string contained a single substring. These features were com-
puted once over the raw amino acid sequences (using an alphabet of 20 letters),
and in a separate experiment over indexed sequences, in which every amino acid
was replaced by one of three possible symbols representing its hydropathy [6].
The trees Arikawa et al. displayed among their results used as attributes only
substrings of length 1 in case of raw sequences and substrings of length 2 or 3 in
case of indexed sequences. We ask the following question:

Question 2. Does the best sensitivity and specificity for detecting TM
domains necessarily require testing for substrings of arbitrary length in
the inner nodes of the decision trees?

Length of Negative Example Sequences used for Training and Testing. Arikawa
et al. trained and tested their trees with TM domains as positive examples and
other sequences consisting of around 30 amino acids as negative examples. They
do not report how well their classifiers perform when trained or tested with
negative examples of a different length. We ask:

Question 3. How does the length of negative training and test sequences
affect the sensitivity and specificity of TM domain detection?
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Source of Negative Example Sequences used for Training and Testing. The neg-
ative examples Arikawa et al. used for training were substrings of the non-TM
parts of TM proteins. Their test cases included substrings both from the non-TM
parts of TM proteins and from non-TM proteins. We ask:

Question 4. How does the type of protein used as a source for the negative
examples affect the sensitivity and specificity of TM domain detection?
Question 5. Using standard methods, can one learn a decision tree that
distinguishes between substrings of the non-TM parts of TM proteins
and substrings of non-TM proteins?

3 2-Layer String Classification Method

A core contribution of this paper is 2LDT, a 2-layer learning method for protein
classification. We use this method in an attempt to answer Question 1, but the
method is much more generally applicable.

Compare the following two string classification problems. For each problem,
one wants to classify strings into classes A and B, where strings of class A
typically contain substrings of class S and strings of class B do not. In Problem 1,
suppose S is the class of strings typically containing substrings from a fixed set
S′. In Problem 2, S is the class of strings typically not containing substrings
from S′. To solve Problem 1, a successful classifier may simply label every string
containing a substring from S′ with A and all others with B. In Problem 2, S
is characterized by the absence rather than the presence of S′. The presence of
an S′ pattern in a substring of a string s means that s is most likely not of
class S, but that doesn’t imply s itself is most likely of class B—s may have
substrings that do not contain any S′ pattern and are thus considered of class S;
so s might still be of class A. The TM protein detection problem is an example
of Problem 2: A is the class of TM proteins, B the class of all others, and S is the
class of TM domains. It has been pointed out in the literature, see, e.g. [1], that
TM domains are characterized not so much by the presence but rather by the
absence of certain amino acid patterns. So, a classifier that detects TM domains
(based on the absence of certain patterns) does not immediately yield a classifier
that detects TM proteins, since both protein classes have parts that are not TM
domains and thus typically have the critical patterns present.

We propose the following 2-layer decision tree (2LDT) learning framework
for Problem 2:
input: a set D of strings, with class labels in {A,B}, where each data feature
gives information on the containment of a specific substring
output: a decision tree that assigns any string to class A or B

1. use part of D to train a decision tree T1 that decides whether a string is in
class S

2. fix a set M of pairs (windowsize, stepsize) with windowsize ≥ 1 and 1 ≤
stepsize ≤windowsize

3. for each string d ∈ D not used in Step 1 for each pair (windowsize, stepsize)
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• apply T1 to all substrings of d of length windowsize, starting with the one
beginning at the first letter of d and always proceeding with the substring
beginning stepsize many positions further to the right

• record the results of T1 as features in a new data item d′

4. use the newly generated data items to train a decision tree T2 that decides
whether a string is in class A or in class B; output T2

2LDT trains a decision tree T1 detecting class S at layer 1. At layer 2, it
uses T1 to change the features of the remaining pool of training data. It does
so by sliding a window of a fixed length across the string, moving by a fixed
stepsize, and recording information on when T1 labels the string in the current
window with S. Note that the same 2-layer approach can be used with any kind
of classifier instead of decision trees.

In our instantiation, at the second layer (learning T2) we also used the length
of a protein as a feature. We will give more details on the features and the values
for windowsize and stepsize in Sect. 5.

4 Experiments: Identifying Transmembrane Domains

This section is concerned with Questions 2 through 5 posed in Sect. 2. All these
questions concern TM domain detection, i.e., the first layer of 2LDT.

4.1 Experimental Setup

Datasets. Our training data and test data are all extracted from the UniProt/
Swiss-Prot database (Release 2014-09, http://www.uniprot.org/). This database
contains 546,439 proteins (represented as amino acid sequences in which TM
domains, if existent, are marked) of which we extracted the first 400,000. If an
amino acid sequence occurred more than once, only the first occurrence was kept,
thus reducing the set by 64,888 sequences. Further, a total of 2,041 sequences
containing any of the letters B, J, O, U, X, Z1 were removed.

Every protein containing at least one TM domain was considered a TM
protein, all others were considered non-TM proteins.

Positive data at layer 1 were sampled from the full TM domains (substrings
of TM proteins) marked as such. We first extracted all TM domains and sampled
200,000 of them at random, to be used as positive instances for layer 1.

For negative instances at layer 1, we collected three types, each in two length
categories. For each length category, (i) type Neg-TM contains 200,000 sequences
of consecutive amino acid symbols taken from TM proteins, yet outside the
TM domains, (ii) type Neg-NonTM contains 200,000 sequences of consecutive
amino acid symbols taken from non-TM proteins, and (iii) type Neg-Combined
contains 200,000 randomly chosen instances from the union of Neg-TM and Neg-
NonTM. In the first length category (‘30’), we collected only sequences of length
1 U and O are two rare amino acids found in some species. B, J, X, and Z are used in

case of inconclusive identification of residues in the protein sequences.

http://www.uniprot.org/


152 M. Nikravan et al.

30 (comparable to what Arikawa et al. did, who took sequences “of length around
30” ([1], p. 367), while a negative dataset of the second length category (‘D’)
has sequences following the same distribution of lengths as the positive data at
layer 1, see Fig. 2, restricted to length at most 40 (only 18 out of 200,000 TM
domains, i.e., 0.009 %, have length greater than 40).

Fig. 2. Distribution of lengths of TM
domains in the positive data at layer 1.
The peak is at length 21.

We generated these negative instances
in the following way: First, we extracted
sequences of length 50. For Neg-NonTM
we took positions 1–50, 51–100, 101–
150, and so on, from a protein’s amino
acid sequence, for as long as full non-
overlapping sequences of length 50 could
be selected; for Neg-TM we did the same
in each single one of the substrings neigh-
bouring a TM domain. Second, we gener-
ated sequences of length 40 by randomly
picking a start point among the first 11
amino acids in any sequence of length 50
previously generated. These sequences of length 40 were then used to generate
instances in either length category as follows. For length category 30, we ran-
domly chose the start point of the sequence to be generated. For length category
D, we randomly picked a positive example, recorded its length L and took the
first L symbols in a randomly chosen negative sequence of length 40 (in case
L > 40, we would pick a new positive example).

Feature Sets. Arikawa et al. [1] demonstrated that replacing the symbol for
an amino acid by a symbol for its hydropathy class (i.e., using the symbol +
for G,P, S, T,W, Y , the symbol ∗ for A,C, F, I, L,M, V , and the symbol − for
D,E,H,K,N,Q,R, cf. [6]) is helpful for TM domain detection. We used the
following feature sets in our experiments:

1. AA(binary): 20 binary features, for each amino acid x a feature representing
whether or not x is contained in the sequence

2. Hyd(fraction): 3 numerical features, for each hydropathy class x a feature
representing the number of occurrences of x in the sequence, divided by the
length of the sequence

3. 2Hyd(binary): 9 binary features, for each pair x of hydropathy classes a fea-
ture representing whether or not x is contained in the sequence

4. 3Hyd(binary): 27 binary features, for each triple x of hydropathy classes a
feature representing the number of occurrences of x in the sequence, divided
by the length of the sequence.

Note that a binary version of the ‘Hyd’ feature set would not be helpful for dis-
tinguishing TM domains from other protein segments, since a very large fraction
of protein segments that are as long as TM domains contain amino acids from
each of the three hydropathy classes.
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QNKY RENNK(GPMMDFLATAV FAFMWLV SSSAWA)KGLSD
VKMATDPENIIKEMPMCRQTGNT

− − − + − − − − −(+ + ∗ ∗ − ∗ ∗ ∗ + ∗ ∗ ∗ ∗ ∗ ∗ + ∗ ∗ + + + ∗ +∗) − + ∗ + −
∗ − ∗ ∗ + − + − − ∗ ∗ − − ∗ + ∗ ∗ − − + + − +

Fig. 3. A substring of a protein sequence, once represented with amino acids and once
represented with hydropathy indices. The part of the sequence inside the parentheses
is a TM domain, while the other parts are outside of TM domains. Taken from [1],
Figs. 3 and 4.

Learning Method. For the first layer of our learning method, we used the decision
tree learning method in Matlab, with the following parameters: split criterion =
‘deviance’, prune criterion = ‘error’, prior = ‘uniform’, algorithm for categorical
predictor = ‘exact’. We tried pruning to levels 0, 1, and 2. In some subexperi-
ments, pruning was switched off.

Evaluation. We evaluate the resulting decision trees with respect to their sensi-
tivity (TPR) and their specificity (TNR). The set of 200,000 positive examples,
as well as each of the six sets of 200,000 negative examples (3 types, 2 length
categories) were randomly shuffled. From each shuffled set, the first 10,000 exam-
ples were chosen for training, the remaining 190,000 were set aside for testing.
We ran 5-fold cross-validation on some experiments, showing very little vari-
ance for either of these two values across the 5 folds (the differences were about
0.1 %). Hence, the results reported below are all from experiments run without
cross-validation.

For each feature set, we trained 18 trees, namely one for each combination
of type and length category of negative training data (6 combinations) with 3
different levels of pruning. Each tree was tested twice on negative data of type
Neg-Combined, once for length category ‘30’ and once for category ‘D’.

4.2 Results

Pruning to levels 1 and 2 generally yielded fairly similar performance, and both
typically slightly outperformed trees pruned at level 0. Table 1 hence reports
only results for level 2.

Question 2. Does the best sensitivity and specificity for detecting TM domains
necessarily require testing for substrings of arbitrary length in the inner nodes
of the decision trees? Despite the fact that Arikawa et al. [1] allowed substrings
of arbitary length as tests in the inner nodes, the best trees they obtained con-
tained only short strings (length up to 3 when using hydropathy indices, length
1 when using amino acids). They hand-crafted a classifier that tests for a min-
imum of 5 (not necessarily consecutive) occurrences of hydrophilic amino acids
(hydropathy index ‘-’), which showed excellent performance on their test data.
This suggests that long substrings are not of interest for TM domain detection,
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Table 1. Results (in percent, rounded) on TM domain detection. Results on test data
using the length category ‘D’ (‘30’, resp.) for the negative examples are reported in
the top (bottom, resp.) half of the table. Each row represents a specific type/length
category of negative data used in training. The first four columns refer to the feature
sets we tested. The last two columns refer to the best trees trained by Arikawa et al. [1].

Test: (D) AA(b) Hyd(f) 2Hyd(b) 3Hyd(b) [1], Fig. 5a [1], Fig. 5c

Neg-TM (D) TPR 86.0 96.6 88.2 88.0

TNR 84.1 95.3 91.6 90.0

Neg-TM (30) TPR 94.7 97.3 94.2 88.9 79.0 90.0

TNR 78.1 93.0 82.1 88.6 83.0 85.1

Neg-NonTM (D) TPR 84.4 97.6 88.2 88.8

TNR 89.0 94.4 91.6 88.8

Neg-NonTM (30) TPR 94.6 97.3 94.2 88.8

TNR 77.9 93.0 82.1 88.8

Neg-Comb (D) TPR 84.4 94.6 88.3 88.0

TNR 89.0 96.8 91.2 90.0

Neg-Comb (30) TPR 94.6 97.3 93.3 88.8

TNR 78.0 93.0 82.6 88.8

Test: (30) AA(b) Hyd(f) 2Hyd(b) 3Hyd(b) [1], Fig. 5a [1], Fig. 5c

Neg-TM (D) TPR 86.0 96.6 88.2 88.0

TNR 93.1 96.4 98.3 94.6

Neg-TM (30) TPR 94.7 97.3 94.2 88.9 79.0 90.0

TNR 90.6 98.2 92.6 96.4 93.1 93.2

Neg-NonTM (D) TPR 84.4 97.6 88.2 88.8

TNR 95.8 95.8 98.3 95.8

Neg-NonTM (30) TPR 94.6 97.3 94.2 88.8

TNR 90.4 98.4 92.6 95.8

Neg-Comb (D) TPR 84.4 94.6 88.3 88.0

TNR 95.8 98.7 98.2 94.6

Neg-Comb (30) TPR 94.6 97.3 93.3 88.8

TNR 90.7 98.2 92.6 95.8

and that the frequency of symbols rather than just a binary feature testing the
mere existence of certain symbols provides useful knowledge. Our experiments
support this conclusion. Using hydropathy indices, tests for pairs mostly yield
better classifiers than tests for triples (in several cases, triples yield better speci-
ficity, but overall pairs outperform triples). Further, single hydropathy symbols
are by far the best features we tested, as long as their fraction rather than their
mere existence is tested. They yield sensitivity values from 94.6 % to 97.6 %, and
specificity values from 93.0 % to 98.7 %. In particular, the best trees learned by
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Arikawa et al.’s method, applied to our test data, cannot compete with our tree
based on the fraction of hydropathy symbols. Hence, we answer Question 2 neg-
atively: we suggest to restrict feature sets to very short substrings or even just
single symbols, but to use frequencies of symbols rather than binary features. We
do not claim optimality of such features, but rather that the strongest feature
sets do not necessarily include tests for “long” substrings.

To obtain further evidence for our conclusion, we tested Arikawa et al.’s hand-
crafted classifier, which only checks for at least 5 occurrences of hydrophilic
amino acids (sequences not passing the check are classified as TM domains,
those that pass the check are considered not to be TM domains). This classifier
maintains its excellent performance across the test data sets: for our test data,
its (TPR,TNR) values are (98.4 %,86.4 %) on data with negative examples of
length category ‘D’ and (98.4 %,97.7 %) on data with negative examples of length
category ‘30’. Again this suggests that the frequency of hydropathy symbols
makes for very strong features in TM domain detection.

Question 3. How does the length of negative training and test sequences affect the
sensitivity and specificity of TM domain detection? An immediate observation
from Table 1 is that all classifiers tested here perform better on length category
‘30’ than on length category ‘D’, independent of the length distribution they
were trained with. This suggests that it is easier to distinguish TM domains
from other sequences when the latter are of length 30 than when the latter
are shorter (the vast majority of sequences in the category ‘D’ have length 21).
The classifier performance reported by Arikawa et al., who tested on negative
sequences of length around 30 only, might not be stable across other lengths
of protein segments, even on the proteins they used for testing. Concerning the
effect of the length of negative training sequences, no clear trend is observed in
Table 1. That is, while the length of negative test data shows clear patterns in
how it affects the performance of the classifiers, no similar patterns have been
observed concerning the length of negative training data.

Question 4. How does the type of protein used as a source for the negative exam-
ples affect the sensitivity and specificity of TM domain detection? Interestingly,
the answer seems to be ‘not at all’, for the features we used. The classifier per-
formance reported in Table 1 is quite stable with respect to changes in the kind
of protein from which the negative training sequences were taken. Consequently,
the choice of training sequences used by Arikawa et al. [1] has probably not
biased their system, in contrast to their choice of test data.

Question 5. Using standard methods, can one learn a decision tree that distin-
guishes between substrings of the non-TM parts of TM proteins and substrings
of non-TM proteins? The answer to that question seems to be ‘no’, at least when
restricted to the feature sets we tested, as can be seen in Table 2. The classi-
fiers obtained perform barely better than random guessing. We also tried some
other feature sets not reported here, but never obtained any substantially better
results. This seems to support our answer to Question 4—for the purposes of
TM domain detection, there truly is no difference between negative data taken
from TM proteins and negative data taken from other proteins.
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Table 2. Results (in percent, rounded) on detecting non-TM domains taken from TM
proteins among non-TM domains taken out of any kind of protein. (All training and
test sequences were of length 30.)

AA(b) Hyd(f) 2Hyd(b) 3Hyd(b)

TPR 53.1 62.5 82.5 50.5

TNR 59.5 51.4 22.9 60.5

A Positive Motif. All trees presented by Arikawa et al. [1] that are based on
hydropathy indices use only negative motifs (strings assumed to occur outside
of TM domains) in their inner nodes. Our best trees use both a negative and a
positive motif. The negative motif is similar to the one Arikawa et al. observed:
TM domains typically do not contain a large number (in our case fraction) of ‘−’
symbols. Many of our experiments yield trees, which, in case a sequence contains
a small fraction of ‘−’ symbols, additionally check for the fraction of ‘∗’ symbols.
Only if that fraction is large enough, the trees label a sequence as TM domain.
See Fig. 4 (left) for illustration.

5 Experiments: Identifying Transmembrane Proteins

Using 2LDT requires (i) a feature set used for training at layer 1, (ii) a set of
(windowsize, stepsize) pairs, and (iii) a feature set used for training at layer 2.

Concerning (i), we experimented with the following decision trees at layer 1:

– Tfull, the unpruned tree trained with negative data from Neg-Combined(D),
using Hyd(f) features,

– Tlevel2, the tree pruned at level 2, trained with negative data from Neg-
Combined(30), using Hyd(f) features,

– T5−, the hand-crafted classifier labelling as TM domains exactly those
sequences that contain fewer than 5 ‘−’ hydropathy symbols.

Note that even 100 % accuracy at layer 1 would not guarantee that 2LDT per-
forms well at layer 2, due to a crucial difference in the test data we used for TM
domain detection and the segments on which the trees in layer 1 of 2LDT are
deployed. For the former, positive examples are always full TM domains that do
not overlap with non-TM domains and negative examples are always segments
that do not overlap with TM domains. As opposed to that, the latter may cover
part of a TM domain and part of an adjoining non-TM domain.2

2 This suggests that it might be helpful to train and test the trees used at the first
layer using segments that cover part of a TM domain and part of a non-TM segment.
However, in this case it is not straightforward how to assign labels to the training
and test data, i.e., to decide how much overlap a segment needs to have with a TM
domain in order to be considered a positive example.
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Concerning (ii), we only experimented with sets of size 1, i.e., each time we
trained a tree at layer 2 of 2LDT, we used information only from one parame-
ter setting of windowsize and stepsize. We varied both windowsize and stepsize
across experiments. We tried windowsize = 30 because our first layer trees per-
formed well on non-TM domain segments of length 30, see Sect. 4. However, note
that Tfull, Tlevel2, and T5− all check for a negative motif in the root (symbols
that are common in protein parts that are not TM domains). Such negative
motifs often occur close to the TM domain boundary; see the segment to the left
of the TM domain in Fig. 3 for illustration. Therefore the risk of false negatives
at layer 1 may be very high if the window size is too large. Hence we also tested
windowsize = 20. We report results on stepsize values of 1, 2, 3, and 5.

Concerning (iii), we used as features in all our experiments

– the number of hits at layer 1, i.e., the number of times the tree at layer 1
classifies a substring of the given string as a TM domain,

– the number of ‘blocks’ of predicted TM domains in the given string,
– the length of the protein,

To explain the notion of a ‘block’ of predicted TM domains, consider the sequence
of predicitons the tree trained at layer 1 makes when using 2LDT. Assume the
tree at layer 1 predicts ‘non-TM’ for the first two windows, then ‘TM’ at the
next window, then ‘non-TM’ at the next window, then eight times ‘TM’ and
afterwards only ‘non-TM’. Then the protein has two blocks of predicted TM
domains, namely one of length 1 and one of length 8. So, a block is any largest
consecutive sequence of TM domain predicitions made at layer 1.

A straightforward idea would be to classify a protein as TM if ever a TM
domain is predicted on any of its substrings of a certain length, independent of
the number of blocks or of the length of the protein. However, a small percentage
of false positives predicted at layer 1 would then result in a large number of false
positives at layer 2. This is one reason for our broader choice of features.

5.1 Experimental Setup

The first set of training and test examples is from UniProt/Swiss-Prot (Release
2014-09). To minimize overlap with the data used at layer 1, we took the proteins
in positions 400,001 through 450,000. As in layer 1, we removed duplicates and
sequences containing any of the letters B, J, O, U, X, Z. Every protein containing
at least one TM domain was considered a TM protein, all others were considered
non-TM proteins. We randomly picked 100 positive and 100 negative examples
for training. We used two test data sets. To allow for a comparison with PRED-
CLASS [7], a neural network method, our first test set was a subset of the test
data used in the original PRED-CLASS study (we had to remove 83 from a
total of 387 original test examples, since their IDs were either not available or
obsolete). This test set contains 140 TM proteins and 164 non-TM proteins.
The second test set consists of 400 positive examples and 400 negative examples
randomly selected from the 50,000 proteins described above, disjoint from the
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training data set (referred to as UniProt test set below; the corresponding protein
IDs are listed at http://www2.cs.uregina.ca/∼zilles/proteinIDs.txt).

As in the case of TM domain detection, we report TPR and TNR values.

5.2 Results

One important observation is that even minor changes in the performance of
the layer 1 trees for TM domain detection may drastically affect their usefulness
when deployed in 2LDT. This is best illustrated when comparing the results
obtained using Tlevel2 to those obtained using T5−. Both trees show an excellent
performance at TM domain detection: TPR/TNR on data of length category
‘30’ are 96.3%/98.4% for Tlevel2 and 98.4%/97.7% for T5−. However, when
testing 2LDT on the set from the PRED-CLASS study, Tlevel2 turns out to
be much more useful than T5−, see Table 3. While Tlevel2 yields an acceptable
classification performance of 2LDT, T5− results in TNR values of around 31 %
for 2LDT (for windowsize = 30 and stepsize ∈ {1, 2, 3}). Intuitively, this is due
to the fact that Tlevel2 tests for both a negative motif and a positive motif: it
classifies a segment as TM domain if it contains not too many occurrences of
‘−’ and at the same time at least a certain fraction of occurrences of ‘∗’. As
opposed to that, T5− already classifies a segment as TM domain if it does not
contain too many occurrences of ‘−’, i.e., it tests only for a negative motif. The
slightly higher sensitivity of T5− in TM then translates into a noticeably lower
TNR in 2LDT.

Note though that the TNR values for 2LDT using T5− increase drastically
(to 87 %–90 %) on the UniProt data set, while all other values stay comparable
to those on the PRED-CLASS data, see Table 3. This suggests that the hand-
selected data in the PRED-CLASS set may not be a representative sample.

To show the impact of the windowsize parameter, we tested 2LDT with
stepsize = 2 using Tfull on the PRED-CLASS data, for windowsize = 30 and
windowsize = 20. The TPR/TNR values obtained were 87.1%/89.0% for win-
dowsize = 30 and 96.4%/85.4% for windowsize = 20. On the UniProt data, TPR
and TNR both varied by about 4 % in the same experiment, where again TPR
was lower for windowsize = 30. As explained above, the lower TPR value for

Table 3. Results (in percent, rounded) from 2LDT using two different trees at layer 1.
All results were obtained with windowsize = 30, either on the PRED-CLASS test set
(‘PRED’) or the UniProt test set (’UniP’).

stepsize = 1 stepsize = 2 stepsize = 3

PRED UniP PRED UniP PRED UniP

Tlevel2 TPR 75.7 78.0 80.7 79.3 88.6 88.3

TNR 95.7 92.8 92.7 93.25 89.0 93.0

T5− TPR 86.4 88.8 83.6 87.0 85.7 86.0

TNR 32.9 87.0 31.1 90.0 30.5 90.0

http://www2.cs.uregina.ca/~zilles/proteinIDs.txt
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Fig. 4. The left tree was trained at layer 1 and then used to train the right tree at layer
2 with windowsize = 20 and stepsize = 5. By f(s) we refer to the fraction of occurrences
of symbol s in a sequence. #hits is the number of hits at layer 1, and Length is the
length of the protein. The resulting classifier labels a sequence as a TM protein if the
tree on the left classifies at least 6 windows as TM domains, or if it classifies at least
2 as TM domains and the protein has fewer than 322 amino acids.

windowsize = 30 may be due to the fact that the dominant negative motif (a
large number of ‘−’ symbols outside of a TM domain) often occurs close to a
TM domain boundary.

Finally, we report the best result we obtained in our 2LDT experiments on
the UniProt test set. At layer 1, we trained a tree as follows. To generate pos-
itive examples, we used full TM domains of length up to 20. If a TM domain
was longer than 20, we selected a random substring of length 20 from that
sequence. Similarly, we created negative examples starting from the set Neg-
Combined(30). We then randomly picked 10,000 positive and 10,000 negative
examples for training. The resulting tree was pruned to level 3 and used at
layer 1. (This tree achieved TPR/TNR values of 94.3 %/97.2 % for TM domain
detection on the remaining 380,000 test samples. Again it checks for the domi-
nant negative motif, fraction of ‘−’, and the dominant positive motif, fraction of
‘∗’; this time each of these is checked twice with different thresholds, see Fig. 4,
left.) At layer 2, we used windowsize = 20 and stepsize = 5, to obtain TPR/TNR
values of 93.5 %/90.8 %. Firstly, this classifier performs almost as well on ran-
domly chosen data as PRED-CLASS does on carefully selected data (with values
around 96 %). Secondly, it beats PRED-CLASS in that it provides intuitive rules
for classification, see Fig. 4, right. Note that this particular tree does not use the
‘blocks’ feature, but several of the other trees we trained do.

6 Conclusions

We presented 2LDT, a learning method for classifying proteins into TM and
non-TM proteins that is potentially applicable to a large variety of string classi-
fication problems. For detecting TM proteins, it yields easy-to-interpret decision
trees, while performing nearly as good as the best existing classifiers in terms of
TPR/TNR. Concerning TM domain classification, we obtained a number of deep
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insights that have to date not been discussed in the literature. In particular, as
opposed to existing machine learning approaches, our method found a positive
motif of TM domains that is known to be important for TM protein detection,
namely the frequent occurrence of amino acids from the set {A,C, F, I, L,M, V }.
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Abstract. We propose a method of detecting the points at which the
speed of information diffusion changed from an observed diffusion
sequence data over a social network, explicitly taking the network struc-
ture into account. Thus, change in diffusion is both spatial and temporal.
This is different from most of the existing change detection approaches
in which all the diffusion information is projected on a single time line
and the search is made in this time axis. We formulate this as a search
problem of change points and their respective change rates under the
framework of maximum log-likelihood embedded in MDL. Time com-
plexity of the search is almost proportional to the number of observed
data points and the method is very efficient. We tested this using both
a real Twitter date (ground truth not known) and the synthetic data
(ground truth known), and demonstrated that the proposed method can
detect the change points efficiently and the results are very different from
the existing sequence-based (time axis) approach (Kleinberg’s method).

Keywords: Social networks · Information diffusion · Change point
detection

1 Introduction

Recent technological innovation and popularization of high performance mobile/
smart phones has drastically changed our communication style and the use of
various social media such as Twitter1 and Facebook2 has been substantially
1 https://twitter.com/.
2 https://www.facebook.com/.
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affecting our daily lives. It is fresh to our memory that Twitter played a very
important role as the information infrastructure during the recent natural dis-
aster, both domestic and abroad, including the 2011 To-hoku earthquake and
tsunami in Japan.

In reality, the way information diffuses depends on both the content and the
interest of the people. Being able to detect changes in the way information prop-
agates allows us to analyze peoples behavior, e.g. finding a community of people
with a similar interest, and deepens our understanding of the world around us.
This brings in an important and interesting problem, which is to accurately and
efficiently detect the change points (where in the network the changes take place
and how big the respective changes in the diffusion speed are) from the observed
information diffusion data.

There are substantial number of studies on change detection in information
diffusion process. Most of them treat change detection along the time axis alone
in which all the diffusion information is projected on a single time line and the
detection is formulated as a search problem in this time axis. These include [1–
3,7–9]. We have also approached this problem by directly dealing with the change
of time interval between occurrences of a target event [6], and showed that our
method outperformed Kleinberg’s method [3] which is considered to be the state
of the art. However, in reality information diffusion takes place along a diffusion
path. Each path has multiple descendants (child nodes) and new paths start
only from the children that are in the observed data. Thus, change in diffusion
is both spatial and temporal. The above traditional sequence-based (time axis)
approaches may be good enough to know a global trend over a long period of
time, but is definitely not good enough to detect the correct change points.
Information diffuses differently within different communities just as the sound
velocity changes within different substances. Thus it is important to take both
spatial and temporal factors into account in detecting changes, i.e., where and
when the change takes place.

We model these changes as changes in the time-delay parameter, where the
delay is assumed to follow an exponential distribution. More precisely, we assume
that the parameter changes are approximated by a step function along each dif-
fusion path and propose an optimization algorithm that maximizes the likeli-
hood of generating the observed diffusion sequence, and the number of change
points are determined by MDL principle. The time complexity of the algorithm
is almost proportional to the number of observed data points (candidates of
possible change points).

We first demonstrate that the proposed method can detect the bursts using a
real Twitter data quite efficiently. The results were very different from
Kleinberg’s method [3] which is considered to be the state of the art for burst
detection along the time axis. This confirmed the need to explicitly use the net-
work structure. Since we do not know the ground truth for the Twitter data, we
generated synthetic data and embedded the change points of varying number
using the same network structure with the Twitter data. The proposed method
could successfully detect the correct change points for all cases with one very
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minor mis-detection, while Kleinberg’s method again performed very poorly and
the detected many incorrect change points.

2 Proposed Method

We consider information diffusion over a social network whose structure is defined
as a directed graph G = (V,E), where V and E (⊂ V × V ) represent a set of
all nodes and a set of all links, respectively. Suppose that we observe a sequence
of information diffusion C = {(v0, t0), (v1, t1), · · · , (vN , tN )} that arose from the
information released at the source node v0 at time t0. Here, vn is an active node
where the information has been propagated and tn is its time. We assume, as
a standard setting, that the actual information diffusion paths of a sequence C
correspond to a tree TC that is embedded in the directed graph G representing
the social network [5], i.e., the parent node which passed the information to
a node vn is uniquely identified to be vp(n) if n > 0. Here, p(n) is a function
that returns the node identification number of the parent of vn in the range of
{0, · · · , n − 1}.

By setting that the time delay of information diffusion is represented as
the simple exponential distribution p(tn − tp(n); r) = r exp(−r(tn − tp(n))), we
mathematically define the change point detection problem. For the actual infor-
mation diffusion paths of a sequence C, we consider the corresponding set of
integers defined by D = {0, 1, · · · , N}. Let the node of the j-th change point be
n(j) ∈ D, then we assume that the delay parameter switches from rj to rj+1

for the descendant nodes of vn(j) until another change took place. Namely, we
are assuming a step function as a shape of parameter changes. Let the set com-
prising J change points be SJ = {n(1), · · · , n(J)}, and we set n(0) = 0 for the
sake of convenience (tn(j−1) < tn(j)). Let the division of D by SJ be Dj , i.e.,
D = D0 ∪ D1 ∪ · · · ∪ DJ , where Dj is a set of the descendant nodes of vn(j) until
another change happens, and |Dj | represents the number of observed points in
Dj . Here, we request that |Dj | �= 0 for any j ∈ {0, · · · , J}.

We consider the problem of detecting change points as a problem of finding
a subset SJ ⊂ D when the set of nodes of information diffusion result C is given.
For this purpose, we consider maximizing the following objective function.

L(C; r̂J+1,SJ ) = −N −
J∑

j=0

|Dj | log

⎛
⎝ 1

|Dj |
∑
n∈Dj

(tn − tp(n))

⎞
⎠ . (1)

Here, as shown in [6], we can obtain this objective function by substituting
the maximum likelihood estimate of the parameter r̂J+1 to the log-likelihood
for C for a given set of change points SJ . We first describe the simple method
which is applicable when the number of change points J is large. This is a
progressive binary splitting without backtracking. Below we describe the details
of this algorithm A: after initializing j ← 1 and S0 ← ∅ (step A1), we fix the
already selected set of (j − 1) change points Sj−1 and search for the optimal
j-th change point n(j) (step A2), and add it to Sj−1 (step A3). We repeat
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this procedure from j = 1 to J . Here note that in the step A3 elements of
the change point set Sj are reindexed to satisfy tn(i−1) < tn(i) for i = 2, · · · , j.
Clearly, the time complexity of the simple method is O(NJ) which is fast. Thus,
it is possible to obtain the result within a reasonable computation time for a
large N . However, since this is a greedy algorithm, it can be trapped easily to a
poor local optimal.

By inheriting the basic idea of our previous method [6], we propose a method
which is computationally almost equivalent to the simple method but gives a
solution of much better quality. Below we describe the details of this algorithm B:
We start with the solution obtained by the simple method SJ (step B1), pick up
a change point n(j) from the already selected points, fix the rest SJ \{n(j)} and
search for a better value n(j)′ (step B2), where · \ · represents set difference. We
repeat this from j = 1 to J . If no replacement is possible for all j (j = 1, · · · J),
i.e. n(j)′ = n(j) for all j, then no better solution is expected and the iteration
stops.

So far, we have fixed the number of change points J , and proposed a method
of finding the optimal parameter vector r̂J+1 and inferring the change points
SJ for the observed data C. Now, we present a method of estimating the value
of J from C for solving the change points detection problem. To this end, we
employ MDL (Rissanen’s Minimum Description Length) [4]. More specifically,
in order to describe the information diffusion model based on the obtained result
SJ , we need the set of J + 1 time-delay parameters r̂J+1, as well as the set of J
change points SJ , which amounts to 2J + 1 parameters. Thus we can consider
the following MDL formula for the case of J change points:

MDL(J) = −L(C; r̂J ,SJ+1) +
1
2
(2J + 1) log(N). (2)

Below we describe the details of this algorithm C: after initializing J ← 0 and
S0 ← ∅ (step C1), we compute SJ+1 by the proposed algorithms A and B, and
Calculate MDL(J + 1) from Eq. (2) (step C2). We repeat this procedure from
J = 0 by setting J ← J + 1 while MDL(J + 1) ≤ MDL(J). Here, we note that
for model selection, we can consider employing various methods other than the
MDL criterion and the likelihood ratio test, although we used the MDL criterion
as a candidate.

3 Experiments

We applied the proposed method to the real-world information diffusion sequence
which takes a form of tree and investigated how it can detect reasonable change
points on the tree by visualizing the resulting change points and correspond-
ing time-delay parameters estimated by it. To this end, we used a sequence of
retweets extracted from Twitter3, and formed a corresponding diffusion tree that
has 477 nodes (tweets) and 476 edges (retweet actions). We refer to this dataset
as the Retweet dataset.
3 https://twitter.com/.

https://twitter.com/
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(a) Proposed (b) KLBG1

Fig. 1. Visualization of changes of diffusion time on the information diffusion tree by
the proposed and KLBG1 methods (Color figure online).

3.1 Results for Real Data

We applied our proposed method to the Retweet dataset, and obtained the result
that the number of change points underlying in the tree is 4. Actually, the log-
likelihoods for J = 4 and 5 are −3359.6 and −3353.9, respectively, and the
corresponding MDL values are 3387.4 and 3387.9, respectively. We can observe
that those values do not change significantly between J = 4 and 5, but it does
not hold if J is smaller. Figure 1(a) visualizes the result for J = 4, in which
nodes of the diffusion tree are denoted by different colors and different markers
according to the estimated time-delay parameter values associated to them and
the four change points detected are indicated with squares.

From these results, we can find that the given diffusion tree is clearly divided
into 5 subtrees which have a certain number of nodes and whose root nodes are
either the root node of the whole tree or change points detected by the proposed
method. In addition, it can be observed that the diffusion speed clearly changes
between different subtrees. Thus, these subtrees are likely to be considered as
different communities in which information diffusion speed of a certain topic is
different. Analyzing these subtrees more in depth is one of the future directions
of this work.

Next, we compared the proposed method with conventional sequence-based
methods [3,6] that detect change points by considering only a time series diffu-
sion sequence without using any structural information of the network behind
the diffusion. In this paper, we chose Kleinberg’s method [3] as a representative
one among them. It is based on hidden Markov model and has two parameters,
γ and s. The parameter γ is used in its cost function, and we employed γ = 1
in this experiment. The parameter s is a scaling parameter and determines the
delay parameter at the state j by rj = sjr0 where the parameter r0 is estimated
by r0 = N/tN as described in [3]. We set the scaling parameter s to 5 based
on the observations obtained by applying our proposed method to the origi-
nal dataset. Hereafter, we refer to Kleinberg’s method with this setting as the
KLBG1 method. In addition, we consider an alternative Kleinberg’s method with
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another setting in which r0 is fixed to 1.0, and refer to it as the KLBG2 method,
which is used only for the experiments on the synthetic datasets discussed below.

Figure 1(b) shows, in the same manner as in Fig. 1(a), the result obtained by
applying the KLBG1 method to the Retweet dataset. Comparing to Fig. 1(a),
it is found that the number of change points detected by the KLBG1 method is
substantially larger than the one by the proposed method. In addition, there are
multiple small subtrees with an identical time delay parameter and they spread
across a wide range of the diffusion tree. This is because the sequence-based
methods use only a sequence of time stamps projected on a single time axis and
do not take into account any structural information behind the diffusion process.
Consequently, we cannot utilize this result to extract meaningful node groups or
communities that could affect the information diffusion speed, which is possible
by the proposed method.

3.2 Results for Synthetic Data

We constructed a synthetic sequence of information diffusion by utilizing the
Retweet dataset. More specifically, to systematically regenerate the observation
time points in which J change points are embedded, we divided D of the Retweet
dataset into J +1 subsets D0, · · · ,DJ so that the original diffusion tree is decom-
posed into J + 1 subtrees each of which has at least 20 nodes. Then, we set the
time-delay parameter rj to 1.0 for j = 0 and 5 × rpt(j) for j > 0, where pt(j)
means the index such that p(n(j)) ∈ Dpt(j). It is noted that this coefficient of 5
is equivalent to the value of the scaling parameter of the KLBG1 and KLBG2
methods. After that, we generated observation time of nodes in each Dj accord-
ing to the exponential distribution with the parameter rj , varying J from 1 to 5,
and generated 10 different datasets for each value of J .

To quantitatively evaluate the proposed method, we applied the proposed,
KLBG1, and KLBG2 methods to the synthetic datasets, and compared their
learning performance in terms of two criteria: the number of detected change
points and the estimation error of the time-delay parameter. For each value
of J , we applied each method to the 10 different synthetic datasets, each embed-
ded with J change points, and computed an average over these 10 trials for
each criterion. Figure 2(a) shows the number of change points detected by each
method. It is obvious that the proposed method can almost exactly detect the
number of embedded change points regardless of the value of J . In contrast,
both the KLBG1 and KLBG2 methods overestimated the number of embedded
change points. The KLBG2 method detected much more change points than the
KLBG1 method did although the KLBG2 method used the true value of r0 in
addition to the true scale parameter s that was available for the KLBG1 method.

Next, we investigated the error E between the estimated time-delay parame-
ter and the true one, defined as E = N−1

∑N
n=1 |r̂(n) − r(n)|, where r̂(n) is a

parameter value that is estimated to have generated the time delay tn − tp(n),
and r(n) is its true value. Since both the KLBG1 and KLBG2 methods do
not use any structural information of the diffusion tree, we defined p(n) as
p(n) = arg maxm∈D{tm|tm < tn} for these two methods so that E gets to a
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Fig. 2. Learning performance by the proposed, KLBG1, and KLBG2 methods for J = 1
to 5.
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Fig. 3. Visualization results using the true change points and those estimated by the
proposed, KLBG1, and KLBG2 methods for a synthetic dataset having J = 3 change
points.

small value if they exactly detect change points and estimate the correspond-
ing parameter values within small deviations. The results for each value of J
are shown in Fig. 2(b), from which it is clear that the proposed method achieved
extremely small errors, and thus can accurately estimate the parameter value for
any value of J . On the other hand, the errors for the KLBG1 and KLBG2 meth-
ods are extremely large and increase in proportion to the number of embedded
change points J .

Figure 3 visualizes, in the way similar to the case of Fig. 1(a), results for a
synthetic dataset in which J = 3 change points were embedded. Figures 3(a) to
(c) show the results of the proposed, KLBG1, and KLBG2 methods, respectively.
The same 3 true change points illustrated by circles in Fig. 2(c) were used for
the three methods. Comparing Figs. 2(c) and 3(a), we can see that the proposed
method almost exactly detected the 3 true change points in the tree. In contrast,
from Figs. 3(b) and (c), we see that they are much different from Fig. 2(c), and
the diffusion speed changes at many nodes other than the true change points. The
KLBG1 method is slightly better than the KLBG2 method, but the number of
states it detected is 3 that is one less than the true value 4. The KLBG2 method
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that uses the true value of r0 detected 5 states and there are many more change
points than the true ones.

4 Conclusion

We addressed the problem of detecting the points at which the speed of infor-
mation diffusion changed from a single observed diffusion sequence under the
assumption that the delay of the information propagation follows the exponen-
tial distribution. Most of the existing change detection methods focus on changes
in the time axis, ignoring the path along which information diffuses within the
network. The proposed method is different and unique in that it explicitly takes
the underlying network structure into account. It can deal with both spatial and
temporal changes in information diffusion.

We formulated this problem as an optimization problem of maximizing the
likelihood of generating the observed data. In doing so the change detected at a
node is passed only to its descendants, and different information diffusion paths
are handled in parallel. We devised an efficient iterative search algorithm whose
time complexity is almost linear to the number of data points, and determined
the optimal number of change points using MDL criterion. We tested the algo-
rithm against the real Twitter data for which we do not know the ground truth
and a synthetic data for which we know the ground truth.

The results for the real Twitter data revealed that the proposed method can
detect change points efficiently. We also tested the other method that does not
use the network structure data, choosing Kleinberg’s burst detection method as
one of the representative methods of this kind. The results were very different,
which confirmed the need to explicitly use the network structure. The results for
the synthetic data reveled that the proposed method could successfully detect
the correct change points for all cases with one very minor mis-detection, while
Kleinberg’s method again performed very poorly and the detected many incor-
rect change points.
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Abstract. Multi-label classification is becoming more and more critical
in data mining applications. Many efficient methods exist in the classi-
cal batch setting, however, in the streaming setting, comparatively few
methods exist. In this paper, we propose a new methodology for multi-
label classification via multi-target regression in a streaming setting and
develop a streaming multi-target regressor iSOUP-Tree, which uses this
approach. We experimentally evaluated two variants of the iSOUP-Tree
algorithm, and determined that the use of regression trees is advisable
over the use model trees. Furthermore, we compared our results to the
state-of-the-art and found that the iSOUP-Tree method is comparable
to the other streaming multi-label learners. This is a motivation for the
potential use of iSOUP-Tree in an ensemble setting as a base learner.

1 Introduction

In recent years, the task of multi-label classification has been very prominent in
the data mining research community [8]. It can be seen as a generalization of the
ubiquitous multi-class classification task, where instead of a single label, each
example is associated with multiple labels. This is one of the reasons why multi-
label classification is the go-to approach when it comes to automatic annotation
of media, such as images, texts or videos, with tags or genres.

Most research into multi-label classification has been in the batch context,
however, strides have also been made to explore multi-label classification in the
streaming setting [4,14,16]. The tendency of big data is clear and present in the
research community, as well as in the real world. With an appropriate method,
the streaming context allows for real-time analysis of large amounts of data, e.g.,
emails, blogs, RSS feeds, social networks, etc.

However, due to the nature of the streaming setting, there are several con-
straints that need to be considered. A data stream is potentially infinite sequence
of examples, which needs to be analyzed with finite resources, in particular, in
finite time and memory. The largest point of divergence from the batch setting
is the fact that the underlying concept we are trying to learn, can change at
any point. Therefore, the algorithm design is often divided into two parts: (1)
learning the stationary concept, and (2) detecting and adapting to it’s changes.
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 170–185, 2015.
DOI: 10.1007/978-3-319-24282-8 15
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In this paper, we focus on a method for multi-label classification in the streaming
context that learns the stationary concept.

Many algorithms in the literature take the problem transformation approach
to multi-label classification, both in the batch and the streaming setting. They
transform the multi-label classification problem into several problems that can
be solved with off-the-shelf methods, e.g., transformation into an array of binary
classification problems. With this transformation, the label inter-correlations can
be lost, and, consequently, the predictive performance can decrease.

In this paper, we take a different transformation approach and transform
the multi-label classification problem into a multi-target regression problem.
Multi-target regression is a generalization of single-target regression, i.e., it is
used to predict multiple continuous variables. Many facets of the multi-label
classification are also expressed in multi-target regression, e.g., the correlation
between labels/variables, which motivated us to experiment with multi-label
classification by using multi-target regression methods.

To address the multi-label classification task, we have developed a straight-
forward multi-label classification via multi-target regression methodology, and
used it in a combination with a streaming multi-target regressor (iSOUP-Tree).
The generality of this approach is paramount as it allows us to address multiple
types of structured output prediction problems, such as multi-label classification
and hierarchical multi-label classification, in the streaming setting. In this paper,
we show that this approach is a viable candidate for the multi-label classifica-
tion task on data streams. Furthermore, we explore the multi-target regressor
in detail to determine which internal methodology is most appropriate for the
task at hand. Finally, we perform comparisons with state-of-the-art methods for
multi-label classification in the streaming setting.

The structure of the paper is as follows. First, we present the background
and related work (Sect. 2). Next, we present the task of multi-label classification
via multi-target regression on data streams (Sect. 3). Furthermore, we present
the research questions and the experimental design (Sect. 4). Finally, we con-
clude with the discussion of the results (Sect. 5), conclusions, and further work
(Sect. 6).

2 Background and Related Work

In this section, we review the state-of-the art in multi-label classification, both
in the batch and the streaming context. In addition, we present the background
of the multi-target regression task, which we use as a foundation for defining the
multi-label classification via multi target regression approach.

2.1 Multi-label Classification Task

Stemming from the usual multi-class classification, where only one of the possible
labels needs to be predicted, the task of multi-label classification (MLC) requires
a model to predict a combination of the possible labels. Formally, this means
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that for each data instance x from an input space X a model needs to provide a
prediction ŷ from an output space Y , which is constructed as a powerset of the
labelset L, i.e., Y = 2L. This is in contrast to the multi-class classification task,
where the output space is simply the labelset Y = L. We denote the real labels
of an instance x by y, and a prediction made by a model for x by ŷ(x ) (or ŷ).

In the batch setting, the problem transformation approach is commonly used
to tackle the task of multi-label classification. Problem transformation methods
are usually used as basic methods to compare to, and are used in a combination
with off-the-shelf base algorithms. The most common approach, called binary
relevance (BR), transforms a multi-label task into several binary classification
tasks, one for each of the possible labels [17]. Binary relevance models have been
often overlooked due to their inability to account for label correlations, though
some BR methods are capable of modeling label correlations during classification.

Another common problem transformation approach is the label combination
or label powerset (LC), where each subset of the labelset is considered as an
atomic label for a multi-class classification problem [18,26]. If we start with
a multi-label classification task with a labelset of L, we transform this into a
multi-class classification with a labelset L′ = 2L.

Third most common problem transformation approach is the pairwise clasi-
fication, where we have a binary model for each possible pair of labels [7]. This
method performs well in some contexts, but for larger problems the method
becomes intractable because of model complexity.

In addition to problem transformation methods, there are also adaptations
of the well known algorithms that handle the task of multi-label classification
directly. Examples of such algorithms are the adaptation of the decision tree
learning algorithm for MLC [27], support-vector machines for MLC [9], k-nearest
neighbours for MLC [28], instance based learning for MLC [5], and others.

2.2 Multi-label Classification on Data Streams

Many of the problem transformation methods for the multi-label classification
task have also been used in the streaming context. Unlike the batch context,
where a fixed and complete dataset is given as input to a learning algorithm,
the streaming context presents several limitations that the stream learning algo-
rithm must take into account. The most relevant are [2]: (1) the examples arrive
sequentially; (2) there can potentially be infinitely many examples; (3) the distri-
bution of examples need not be stationary; and (4) after an example is processed
it is discarded or archived. The fact that the distribution of examples is not pre-
sumed to be stationary means that algorithms should be able to detect and
adapt to changes in the distribution (concept drift). This sub-problem is called
drift detection.

The first approach to MLC in data streams was a batch-incremental method
that trains stacked BR classifiers [14]. Some methods for multi-class classifica-
tion, such as Hoeffding Trees (HT) [6], have also been adapted to the multi-label
classification task [16]. Hoeffding trees are incremental anytime decision trees for
learning from data streams that use the notion that a small sample is usually
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sufficient for choosing an optimal splitting attribute, i.e., the use of the Hoeffding
bound. Bifet et al. [3] also introduced the Java-based Massive Online Analysis
(MOA)1 framework, which also allows for the analysis of concept drift [2] and
has become one of the main frameworks for data stream mining. Read et al. [16]
proposed the use of multi-label Hoeffding trees with prunned sets (PS) at the
leaves (HTPS) and Bifet et al. [4] proposed the use of ensemble methods in this
context (e.g., ADWIN Bagging).

Recently, Spyromitros et al. [24] introduced a parameterized windowing tech-
nique for dealing with the concept drift in multi-label data in a data stream
context. Next, Shi et al. [21] proposed an efficient and effective method to detect
concept drift based on label grouping and entropy for multi-label data. Finally,
Shi et al. [22] proposed an efficient class incremental learning algorithm, which
dynamically recognizes some new frequent label combinations.

2.3 Multi-target Regression

In the same way as was multi-label classification adapted from regular classifica-
tion, we can look at the multi-target regression task as an extension of the single-
target regression task. Multi-target regression (MTR) is the task of predicting
multiple numeric variables simultaneously, or, formally, the task of making a pre-
diction ŷ from R

n, where n is the number of targets for a given instance x from
an input space X.

As in multi-label classification, there is a common problem transformation
method that transforms the multi-target regression problem into multiple single-
target regression problems. In this case, we consider each numeric target sepa-
rately and train a single-target regressor for each of them. However, this local
approach suffers from similar problems as the problem transformation approaches
to multi-label classification, e.g., in this case the models do not consider the inter-
correlations of the target variables. The task of simultaneous prediction of all
target variables at the same time (the global approach) has been considered in
the batch setting by Struyf and Džeroski [25]. In addition, Appice and Džeroski
[1] proposed an algorithm for stepwise induction of multi-target model trees.

In the streaming context, some work has been done on multi-target regres-
sion. Ikonomovska et al. [13] introduced an instance-incremental streaming tree-
based single-target regressor (FIMT-DD), which utilized the Hoeffding bound.
This work was later extended to the multi-target regression setting [12] (FIMT-
MT). There has been theoretical debate whether the use of the Hoeffding bound
is appropriate [19], however, a recent study by Ikonomovska et al. [11] has shown
that in practice the use of the Hoeffding bound produces good results. However,
these algorithms had the drawback of ignoring nominal input attributes. Addi-
tionally, Shaker et al. [20] introduced an instance-based system for classification
and regression (IBLStreams), which can be used for multi-target regression.

1 http://moa.cms.waikato.ac.nz/, accessed on 2015/05/25.

http://moa.cms.waikato.ac.nz/
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3 Multi-label Classification via Multi-target Regression

In this section, we present the task of multi-label classification that is solved by
transforming the problem into a multi-target regression setting. First, we present
the problem formulation that describes the transformation procedure. Second,
we describe the implementation of the proposed approach.

3.1 Problem Formulation

The problem transformation methods (see Sect. 2.1) generally transform a multi-
label classification task into one, or several, binary or multi-class classification
tasks. In this work, we take a different approach and transform a classification
task into a regression task. The simplest example of a transformation of this type
is to transform a binary classification task into a regression task. For example, if
we have a binary target with labels yes and no, by transforming to the regression
setting, we would consider a numeric target to which we would assign a numeric
value of 0 if the binary label is no and 1 if the binary label is yes.

In the same way, we can approach the multi-class classification task. Specif-
ically, if the multi-class target variable is ordinal, i.e., the class labels have a
meaningful ordering, we can assign the numeric values from 0 to n to each of
the corresponding n labels. This makes sense, since if the labels are ordered, a
missclassification of a label into a “nearby” label is better than into a “distant”
label. However, if the variable is not ordinal this makes less sense, as any given
label is not in a strict relationship with other labels.

To address the multi-label classification task using regression, we transform
it into a multi-target regression task (see Fig. 1). This procedure is done in two
steps: first we transform the multi-label classification target variable into several
binary classification variables, similar as in the BR method. However, instead of
training one classifier for each of the binary variables, we further transform the
values of the binary variable into numbers. A numeric target corresponding to a
given label has a value 1 if the label is present in a given instance, and a value
0 if the label is not present.

For example, if we have a multi-label task with target labels L =
{red,blue, green}, we transform it into a multi-target regression task with three
numeric target variables yred, yblue, ygreen ∈ R. If an instance is labeled with

Target space Instance

MLC y ⊆ L = {λ1, . . . , λn} y = {λ1, λ3, λ4}
⏐
⏐
⏐
�

transformation
⏐
⏐
�

MTR y ∈ R
n y = (1, 0, 1, 1, . . . )

Fig. 1. Transformation from MLC to MTR. Used when the multi-target regressor is
learning.
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Target space Instance

MTR ŷ ∈ R
n ŷ = (0.98, 0.21, 0.59, 0.88, . . . )

⏐
⏐
⏐
�

thresholding
⏐
⏐
�

MLC ŷ ⊆ L ŷ = {λ1, λ3, λ4}

Fig. 2. Transformation from MTR to MLC. Used when transforming a multi-target
regression prediction into a mulit-label classification one.

red and green, but not blue, the corresponding numeric targets will have values
yred = 1, yblue = 0, and ygreen = 1.

Since we are using a regressor, it is possible that a prediction for a given
instance will not result in 0 or 1 for each of the targets. For this purpose, we
use thresholding to transform back a multi-target regression prediction into a
multi-label one (see Fig. 2). Namely, we construct the multi-label prediction in
such a way that it contains labels with numeric values over a certain threshold,
i.e., in our case, the labels selected are those with a numeric value over 0.5. It is
clear, however, that a different choice of threshold leads to different predictions.

In the batch setting, thresholding could be done in the pre- and postprocess-
ing phases, however, in the streaming setting it needs to be done in real time.
Specifically, the process of thresholding occurs at two times. The first thresh-
olding occurs when the multi-target regressor has produced a multi-target pre-
diction, which must then be converted into a multi-label prediction. The second
thresholding occurs when we are updating the regressor, i.e., when the regressor
is learning. Most streaming regressors are heavily dependent on the values of the
target variables in the learning process, so the instances must be converted into
the numeric representation that the multi-target regressor can utilize.

The problem of thersholding is not only problematic in the MLC via MTR
setting, but also when considering the MLC task with other approaches. In
general, MLC models produce results which are interpreted as probability esti-
mations for each of the labels, thus the threhsolding problem is a fundamental
part of multi-label classifcation.

3.2 Implementation

For the purpose of this work, we have reimplemented the FIMT and FIMT-MT
algorithms [12] in the MOA framework to facilitate usability and visibility, as
the original implementation was a standalone extension of the C-based VFML
library [10] and was not available as part of a larger data stream mining frame-
work. We have also extended the algorithm to consider nominal attributes in
the input space when considering splitting decisions. This allows us to use the
algorithm on a wider array of datasets, some of which are considered herein.

In this paper, we combined the multi-label classification via multi-target
regression methodology with the extended version of FIMT-MT, reimplemented
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in MOA. We named this method the incremental Structured OUtput Prediction
Tree (iSOUP-Tree), since it is capable of addressing multiple structured output
prediction tasks, i.e., multi-label classification and multi-target regression.

Ikonomovska et al. [13] have considered the performance of FIMT-DD when
a simple predictive model is placed in each of the leaves, i.e., in this case a
single linear unit (a perceptron). Opposed to regular regression trees where the
prediction in a given leaf for an instance x is made as the average value of
the recorded target values, a model tree produces the prediction as a linear
combination of input attribute values, i.e., ŷ(x ) = 1

|S|
∑

y∈S y, where S is the
set of observed examples in a given leaf, and ŷ(x ) =

∑m
i=1 xiwi+b, where m is the

number of input attributes and wi, b are the perceptron weights, respectively. It
was shown that the performance was increased when using model trees, however,
this was only experimentally confirmed for regression tasks, where the targets
generally exhibit larger variations than in classification tasks.

Specifically, even when considering a classification task through the lens of
regression, the actual target variables can only take values of 0 and 1. If we use a
linear unit to predict one of the targets, we have no guarantee that the predicted
value will land in the [0,1] interval, where as the regression tree will produce an
average of zeroes and ones, which will always land in this interval. Additionally,
the perceptrons in the leaves are trained in real-time according to the Widrow-
Hoff rule, which consumes a non-negligible amount of time. This motivated us
to consider the use of multi-target regression trees when addressing the task of
multi-label classification via multi-target regression. We denote this algorithm
variant iSOUP-RT and the model tree variant iSOUP-MT.

4 Experimental Design

In this section, we first present the experimental questions that we want to
answer in this paper. Next, we describe the datasets and algorithms used in
the experiments. Furthermore, we discuss the evaluation measures used in the
experiments. Finally, we conclude with the employed experimental methodology.

Experimental Questions. Our experimental design is constructed in such a
way to answer several lines of inquiry. First, we want to explore if the use of
model trees improves predictive performance, as it was shown in the regular
multi-target regression scenario [13]. Second, we want to compare the introduced
methods to other state-of-the-art methods. In this case, we will limit ourselves
to comparisons with basic multi-label classification methods. Specifically, this
means that we will not be comparing to ensemble or other meta-learning meth-
ods, as these methods could potentially utilize the iSOUP-Tree models as base
models. Finally, and most crucially, we will consider whether addressing the task
of multi-label classification via multi-target regression is a viable approach. For
this question, we will use the results from the experiments addressing the previ-
ous questions, since they are sufficient.
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Table 1. Datasets used in the experiments. N – number of instances, L – number of
labels, φLC(D) – average number of labels per instance.

Dataset Enron IMDB MediaMill Ohsumed Slashdot TMC

Domain text text video text text text

N 1702 120919 43907 13929 3782 28596

Attribs. 1001 binary 1001 binary 120 numeric 1002 binary 1079 binary 500 binary

L 53 28 101 23 22 22

φLC(D) 3.4 2.0 4.4 1.7 1.2 2.2

Datasets. In the experiments, we use a subset of datasets listed in [16, Table 3]
(see Table 1). The Enron2 dataset [15] is a collection of labelled emails, which,
though small by the data stream standards, exhibits some data stream proper-
ties, such as time-orderedness and evolution over time. The IMDB3 dataset [16]
is constructed from text summaries of movie plots from the Internet Movie Data-
Base and is labelled with the relevant genres. The MediaMill (See footnote 2)
dataset [23] consists of video data annotated with various concepts which was
used in the TRECVID challenge. The Ohsumed4 dataset [16] was constructed
from a collection of peer-reviewed medical articles and labelled with the appro-
priate disease categories. The Slashdot (See footnote 3) dataset [16] was mined
from http://slashdot.org web page and consists of article blurbs and is labelled
with subject categories. The TMC (See footnote 2) dataset was used in the SIAM
2007 Text Mining Competition and consists of human generated aviation safety
reports, labelled with the problems being described (we are using the version of
the dataset specified in [26]).

Algorithms. To address our experimental questions, we performed experiments
using our implementations of algorithms for learning multi-target model trees
(iSOUP-MT) and multi-target regression trees (iSOUP-RT). In addition, to
preform comparison with other state-of-the-art algorithms we reuse results of
experiments [16], performed under the same experimental settings. These include
the following basic algorithms: binary relevance classifier (BR), classifier chains
(CC), multi-label Hoeffding Trees (HT) and pruned sets (PS).

Evaluation Measures. In the evaluation, we use a set of measures used in
recent surveys and experimental comparisons of different multi-label algorithms
in the batch setting [8]. These include the following measures: accuracy, Ham-
ming loss, exact match, and ranking loss. Aside from ranking loss, we selected
these measures based on the available results for other basic multi-label meth-
ods in [16], since we were unable to rerun the experiments with the code made
available by the authors. The differences in implementation also disallow for the

2 http://mulan.sourceforge.net/datasets-mlc.html, accessed on 2015/05/25.
3 http://meka.sourceforge.net/, accessed on 2015/05/25.
4 Provided on request by authors of [16].

http://slashdot.org
http://mulan.sourceforge.net/datasets-mlc.html
http://meka.sourceforge.net/
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comparison of running times. However, we will briefly consider the running times
of the iSOUP-Tree variants.

In the following definitions, N is the number of examples in the evaluation
sample, i.e., the size of one window w, while Q is the number of labels in the
provided MLC setting. Accuracy for an example with a prediction set ŷi and a
real labelset yi is defined as the Jaccard similarity coefficient between them, i.e.,
|ŷi∩yi|
|ŷi∪yi| . The accuracy over a sample is the averaged accuracy for each example:

Accuracy = 1
N

∑N
i=1

|ŷi∩yi|
|ŷi∪yi| . The higher the accuracy of a model the better its

predictive performance.
The Hamming loss measures how many times an example-label pair is mis-

classified. Specifically, each label that is either predicted but not real, or vice
versa, carries a penalty to the score. The Hamming loss of a single example
is the number of such misclassified labels divided by the number of all labels,
i.e., 1

Q |ŷi � yi| where ŷi � yi is the symmetric difference of the ŷi and yi sets.
The Hamming loss of a sample is the averaged Hamming loss over all examples:
HL = 1

N

∑N
i=1

1
Q |ŷi � yi|. The Hamming loss of a perfect model, which makes

completely correct predictions, is 0 and the lower the Hamming loss the bet-
ter the predictive performance of a model. Note, that the Hamming loss will
generally be reported as the Hamming score, i.e., HS = 1 − HL.

The exact match measure (also known as subset accuracy or 0/1-loss) is a
very strict evaluation measure as it requires the predicted labelset to be identical
to the real labelset. Formally, the exact match measure is defined as EM =
1
N

∑N
i=1 I(ŷi, yi), where I(ŷi, yi) = 1, iff ŷi and yi are identical. The higher the

exact match, the better the predictive performance.
Since thresholding can have a large impact on performance measures and

determining the optimal threshold is non-trivial, we are also interested in mea-
sures that are independent of the chosen threshold. One such measure is ranking
loss, defined as RL = 1

N

∑N
i=1

|Di|
|yi||yi| , where yi = L \ yi is the complement of

yi in L, Di = {(λk, λl) | s(ŷi, k) ≤ s(ŷi, l), (λk, λl) ∈ yi × yi} and s(ŷi, k) is the
numeric score (probability) for the label λk in the prediction ŷi, before applying
the threshold. Essentially, it measures how well the labels are ordered by score,
i.e., the loss is low when the labels that aren’t present have lower scores than the
present labels. Consequently, lower values of ranking loss indicate better perfor-
mance.

Experimental Setup. Throughout our experiments we use the holdout evalu-
ation approach for data streams. This means that a holdout set (or a window)
of fixed size is constructed once enough examples accumulate, after which the
predictions on the holdout set are used to calculate and report the evaluation
metrics. Following that, the model is then updated with the collected examples
and the process is repeated until all of the examples have been used.

To answer the proposed experimental questions, we constructed the following
experimental setup. To compare the predictive performance of iSOUP-MT and
iSOUP-RT, we have decided to observe the evolution of the ranking loss over
time. Ranking loss was selected as the measure of choice, as it is independent of a
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chosen threshold and, as discussed earlier, thresholding is a non-trivial problem
to solve in the streaming context. In this case, the desired properties are low
ranking loss and/or a strongly declining tendency of the ranking loss, indicating
an improvement over time.

For our experiments, we used a window size of w = N
20 , i.e., each of the

streams was divided into 20 windows, and the measures were recorded at each
window. This not only allows us to look at the time evolution of the selected
measures, but is also identical to the experimental setup from Read et al. [16].
Since we wish to directly compare our results to the results provided therein, we
averaged the selected measures over all 20 of the windows.

5 Results and Discussion

In this section, we present the results of the performed experiments that answer
our experimental questions. First, we compare the performance of the iSOUP-MT
and iSOUP-RT methods on several datasets using a set of evaluation measures.
Next, we provide a comparison of our methods with different basic incremental
ML methods using results from previous studies. Finally, we provide a discussion
of results with a focus on possible improvements to our methodology.

Comparison of iSOUP-MT and iSOUP-RT. In Table 2, we show the com-
parison of iSOUP-MT and iSOUP-RT on a set of evaluation measures. The
results show that with the exception of accuracy on the Slashdot dataset, iSOUP-
RT generally achieves better or at least comparable results than iSOUP-MT and
clearly uses less time. This indicates that model trees are generally worse than
regression trees when using the MLC via MTR methodology. The implemen-
tation of iSOUP-MT that uses percetrons in the leaves of the trees should be
adapted to capture the dependencies of labels on the input attributes more accu-
rately or a different type of model should be used in their place.

Table 2. Comparison of iSOUP-MT and iSOUP-RT. The best result per dataset is
shown in bold. Other than time, the results are an average over 20 windows.

Dataset evaluation measure Enron IMDB MediaMill Ohsumed Slashdot TMC

Exact match iSOUP-MT 0.165 0.000 0.000 0.000 0.000 0.000

iSOUP-RT 0.194 0.001 0.044 0.072 0.001 0.103

Hamming score iSOUP-MT 0.740 0.903 0.560 0.765 0.620 0.516

iSOUP-RT 0.945 0.929 0.966 0.979 0.947 0.912

Accuracy iSOUP-MT 0.273 0.005 0.047 0.036 0.065 0.089

iSOUP-RT 0.276 0.002 0.346 0.114 0.001 0.322

Ranking loss iSOUP-MT 0.311 0.625 0.483 0.518 0.486 0.465

iSOUP-RT 0.105 0.180 0.058 0.250 0.220 0.126

Time [s] iSOUP-MT 15.02 549.97 363.83 96.63 17.60 53.67

iSOUP-RT 9.81 295.84 307.54 68.66 9.02 29.32
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In Fig. 3, we show the ranking loss diagrams, which show the comparison of
the iSOUP-MT and iSOUP-RT methods on all 6 datasets used in our experi-
ments. The figures clearly show that the evolution of the ranking loss measure is
considerably better for the iSOUP-RT over all datasets. The only dataset where
the ranking losses of iSOUP-MT and iSOUP-RT are comparable is the Enron
dataset. However, it is a small dataset in terms of data streams, so the windows
are small enough that the trees do not have time to significantly grow.

Comparison of Different Incremental Multi-label Methods. In this
section, we present the results of the comparison of our methods (iSOUP-MT and

(a) Enron dataset (b) IMDB dataset

(c) MediaMill dataset (d) Ohsumed dataset

(e) Slashdot dataset (f) TMC dataset

Fig. 3. Ranking loss diagrams
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Table 3. Exact match measure. The best result per dataset is shown in bold. * marks
results reused from [16, Table 6].

Dataset iSOUP-MT iSOUP-RT BR* CC* HT* PS*

Enron 0.168 0.194 0.006 0.007 0.058 0.086

IMDB 0.000 0.001 0.031 0.014 0.108 0.027

MediaMill 0.000 0.044 0.008 0.000 0.050 0.017

Ohsumed 0.000 0.072 0.115 0.054 0.083 0.212

Slashdot 0.000 0.001 0.000 0.000 0.137 0.113

TMC 0.000 0.076 0.149 0.123 0.087 0.298

iSOUP-RT) with other basic incremental multi-label methods. These include:
binary relevance classifier (BR), classifier chains (CC), multi-label Hoeffding
Trees (HT) and pruned sets (PS). Here, we note the results for these methods
were reused from Read et al. [16, Tables 5, 6 and 7], because of inability to
reproduce the experiments from the software links provided in [16].

In terms of the exact match measure our methods did not often score the best
among compared algorithms (see Table 3). In this case, HT performed best on
three of the datasets and was followed by PS with best results on two datasets.
iSOUP-RT performed best on the Enron dataset. Notably, the results of iSOUP-
RT are generally close to those of HT, except for a case where exact match is
considerably higher for iSOUP-RT and a case where the opposite holds.

When considering the Hamming loss (presented in Table 4 as the Hamming
score), however, iSOUP-RT out matched all other algorithms, except for the
TMC dataset. Interestingly, the iSOUP-RT’s results here are better aligned with
PS’s results, and not HT’s, as in the case of exact match.

The results for the accuracy measure are less clear (see Table 5). PS performed
the best with best results on three of the datasets, iSOUP-RT outperformed
other algorithms in two cases and HT performed best on the IMDB dataset.

Table 4. Hamming loss (displayed as 1.0 − loss). The best result per dataset is shown
in bold. * marks results reused from [16, Table 7].

Dataset iSOUP-MT iSOUP-RT BR* CC* HT* PS*

Enron 0.740 0.945 0.524 0.503 0.926 0.934

IMDB 0.903 0.929 0.884 0.834 0.918 0.875

MediaMill 0.560 0.966 0.897 0.634 0.958 0.947

Ohsumed 0.765 0.979 0.913 0.866 0.900 0.947

Slashdot 0.620 0.947 0.055 0.054 0.915 0.912

TMC 0.516 0.912 0.907 0.871 0.884 0.935
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Table 5. Accuracy. The best result per dataset is shown in bold. * marks results reused
from [16, Table 5].

Dataset iSOUP-MT iSOUP-RT BR* CC* HT* PS*

Enron 0.273 0.276 0.144 0.142 0.134 0.241

IMDB 0.005 0.002 0.139 0.170 0.210 0.146

MediaMill 0.047 0.346 0.119 0.080 0.301 0.297

Ohsumed 0.036 0.114 0.297 0.292 0.125 0.372

Slashdot 0.065 0.001 0.054 0.054 0.145 0.200

TMC 0.089 0.322 0.415 0.446 0.171 0.562

Discussion. The results clearly indicate that the regression tree variant iSOUP-
RT is a more appropriate method for the task of MLC via MTR than the model
tree variant iSOUP-MT. This indicates that the perceptrons placed in the leaves
significantly reduce the method’s performance. This may be due to the mecha-
nism of the perceptron, which does not guarantee that the result will land in the
[0, 1] interval. Other types of leaf models should be considered and evaluated in
the future, similar to [16] where the pruned sets (PS) method was used in the
leaves of the Hoeffding trees.

A cursory glance makes it clear that there is a lot of variation in the majority
of the results reported in the comparison of different methods. The exact match
measure and accuracy fluctuate to a large extent and only the results of Hamming
loss are consistent. However, with respect to the Hamming loss, the iSOUP-RT
method consistently outperformed other methods, which possibly indicates that
the learning mechanism is biased toward optimization of a similar measure.

Given the relatively small selection of evaluation measures and the observed
variation among them, it would be prudent to consider other evaluation mea-
sures in a more in-depth experimental evaluation. This variation in the results
is something that would be out of place in a more classical machine learning
setting, however, there are many partially unexplored variables in the MLC con-
text, e.g., drift-detection, thresholding, etc. Looking at the selected datasets also
does not give us sufficient data to determine and analyze the effect of data set
size on the performance of the various methods. Overall, we have shown that
the MLC via MTR methodology is a valid approach for MLC. However, the
use of perceptrons as models in the tree leaves is not advisable and other types
of models should be considered. We have determined that iSOUP-RT’s perfor-
mance is similar to the other basic incremental multi-label learners. Therefore,
iSOUP-RT is a suitable candidate for further experimentation, e.g., as a base
model in ensemble methods explored in [16].

6 Conclusion and Future Work

In this paper, we have introduced the multi-label classification via multi-target
regression methodology and introduced the iSOUP-Tree algorithm that is used
to address the multi-label classification task.
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We performed two sets of experiments, the first of which was designed to
evaluate whether the use of model trees over regression trees increases the pre-
dictive performance as it was shown for the streaming multi-target regression
task [13]. We observed the time evolution of the ranking loss, as well as the aver-
age ranking loss, exact match, Hamming loss and accuracy measures over the
considered datasets. From these experiments, it was made clear that regression
trees outperform model trees for the task of MLC via MTR.

The second set of experiments were designed to compare the introduced
methods to other multi-label learners. To this end, the experimental design was
equal to the one in [16]. While we were not able to establish clear superiority
of one method over the other, we were able to determine that the introduced
iSOUP-Tree method is a promising candidate for further experimentation, e.g.,
as a base model in state-of-the-art ensemble or other meta-learning techniques.

Additionally, due to the relatively unexplored nature of the streaming multi-
label classification task, we plan to perform a more extensive experimental eval-
uation on more datasets and with respect to a wider set of evaluation measures.
Specifically, we also wish to address the problems of drift detection and thresh-
olding for the iSOUP-Tree method.

We also propose two other avenues of further work, in regards to extending
the introduced methodology. The first one focuses on the model and the aim is
to extend the iSOUP-Tree method using the option tree paradigm [11], used in
the single-target regression setting, to the multi-target regression setting. This
approach has been shown to outperform the regression tree methodology. The
second extension is specific to the MLC via MTR methodology. In classical
(batch) data mining, the task of hierarchical multi-label classification (HMC) is
becoming more and more prevalent. In HMC, the labels are ordered in a hierachy
and adhere to the hierarchy constraint, i.e., if an example is labeled with a label
it also has to be labelled with the label’s ancestors. We plan to extend the MLC
via MTR methodology to be applicable to HMC tasks in the streaming setting.
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11. Ikonomovska, E., Gama, J., Džeroski, S.: Online tree-based ensembles and option
trees for regression on evolving data streams. Neurocomputing 150, 458–470 (2015)
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20. Shaker, A., Hüllermeier, E.: IBLStreams: a system for instance-based classification
and regression on data streams. Evolving Syst. 3(4), 235–249 (2012)

21. Shi, Z., Wen, Y., Feng, C., Zhao, H.: Drift detection for multi-label data streams
based on label grouping and entropy. In: 2014 IEEE Data Mining Workshop
(ICDMW), pp. 724–731. IEEE (2014)

22. Shi, Z., Xue, Y., Wen, Y., Cai, G.: Efficient class incremental learning for multi-
label classification of evolving data streams. In: International Joint Conference on
Neural Networks (IJCNN), 2014, pp. 2093–2099. IEEE (2014)

http://www.cs.washington.edu/dm/vfml/


Multi-label Classification via Multi-target Regression on Data Streams 185

23. Snoek, C.G., Worring, M., Van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.:
The challenge problem for automated detection of 101 semantic concepts in mul-
timedia. In: Proceedings of the 14th Annual ACM International Conference on
Multimedia, pp. 421–430. ACM (2006)

24. Spyromitros-Xioufis, E.: Dealing with concept drift and class imbalance in multi-
label stream classification. Ph.D. thesis, Aristotle University of Thessaloniki (2011)
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Abstract. Finding periodical regularities in sequential databases is an
important topic in Knowledge Discovery. In pattern mining such regular-
ity is modeled as partially periodic patterns, where typical periods (e.g.,
daily or weekly) can be considered. Although efficient algorithms have
been studied, applying them to real databases is still challenging because
they are noisy and most transactions are not extremely frequent in prac-
tice. They cause a combinatorial explosion of patterns and the difficulty
of tuning a threshold parameter. To overcome these issues we investi-
gate a pre-processing method called skeletonization, which was recently
introduced for finding sequential patterns. It tries to find clusters of sym-
bols in patterns, aiming at shrinking the space of all possible patterns
in order to avoid the combinatorial explosion and to provide comprehen-
sive patterns. The key idea is to compute similarities within symbols in
patterns from a given database based on the definition of patterns we
would like to mine, and to use clustering methods based on the similar-
ities computed. Although the original method cannot allow for periods,
we generalize it by using the periodicity. We give experimental results
using both synthetic and real datasets, and compare results of mining
with and without the skeletonization, to see that our method helps us to
obtain comprehensive partially periodic patterns.

Keywords: Sequential pattern mining · Partially periodic pattern ·
Skeletonization · Spectral clustering · Data preprocessing

1 Introduction

Finding patterns frequently appearing in databases is one of the important prob-
lems in data mining. Transactions of such databases naturally have timestamps
as their auxiliary attributes. They are often ordered with their timestamps.
A typical sorting using the order is the chronological order. For example sequences
of transactions describing purchases of products in electronic commerce sites are
sorted in the chronological order, from old transactions to new ones. If such
chronological attributes are important to a database, such database is called
a sequential database. As the order is directly related to time, typical periods
c© Springer International Publishing Switzerland 2015
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related to clocks or calendars (e.g., hour, day, etc.) may contribute to regularities
in the data. Thus assuming that such periodical behaviors may appear in various
sequential databases (e.g., trajectory or life-log) is natural in data mining.

To get insights from sequential databases by capturing periodical regularities,
periodical pattern mining have been studied [4,5,12]. The fundamental patterns
are full periodic patterns and partial periodic patterns [4]. Note that, for the sake
of simplicity, we here assume that patterns are sequences of symbols drawn from
an alphabet Σ. For example, let Σ = {sns,news,blog, shops}. We consider a
sequence s = (sns,news,blog, sns,news,blog, sns, shop,blog) representing some
access log of Web pages. A pattern (sns,news) appears twice in s, and this is
called full periodic pattern. As full periodic patterns require that all symbols be
fully specified in them, they are not flexible and it is difficult to handle various
periodical behaviors. As more flexible patterns, partial periodic patterns have
been studied [5]. For example, a partial periodic pattern (sns, �,blog) appears 3
times, where � is the wildcard symbol of length 1 representing any symbol in Σ.
As partial periodic patterns can contain the symbol �, they are more flexible than
full periodic patterns to capture periodical behaviors in databases. In mining
these periodic patterns, we assume that a given sequence s is divided into � |s|

P �
fragments, where P is a period of users’ interest. In the example above, the pat-
tern (sns, �,blog) appears 3 times in fragments (sns,news,blog), (sns,news,blog),
and (sns, shop,blog) of s. By listing such patterns, users can find frequently and
periodically appearing combinations of symbols. A common way in the mining
is to obtain a parameter θ from users, enumerate all candidates, and filter them
by their frequency, called support, based on the user-specific parameter θ.

Although many efficient algorithms have been developed [4,12], it is still
challenging to use them in practice because the number of enumerated patterns
highly depends on the number |Σ| of symbols we use. When databases get large,
the size of Σ increases as well. This fact consequently makes evaluating patterns
by their supports difficult because most patterns have similar and relatively small
supports. That is, the space of (frequent) patterns on Σ get sparse with respect
to the space of all possible patterns1. In addition, the number of patterns in the
output become exponential to the size of Σ in the worst-case, and we essentially
need to decrease the size Σ to get comprehensive patterns.

We resolve these issues by a recently developed novel pre-processing method,
named temporal skeletonization [6], which aims at reducing the number of sym-
bols. Since the temporal skeletonization cannot be applied to periodical settings,
we generalize it by using the idea of periodical extensions of functions. Before
going into the details, here we give two motivating examples of our study.

Motivating Example. For both numerical (e.g., price, temperature) and symbolic
(e.g., item, product) sequences, preparing a large set Σ of symbols is inevitable
if we deal with various databases. For example, Fig. 1(a) shows a sequence of
electric power demand per day in UK, 2013. We discretize the sequence with
1 Consider to find all partially periodic patterns up to the length k on Σ. Let Σ� =

Σ ∪ {�}. All possible combinations are in Σ� ∪ Σ2
� ∪ · · · ∪ Σk

� , which can become
much larger than that of all patterns appearing in databases in practice.
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(a) Original sequence (b) Discretized with |Σ| = 16

Fig. 1. A numeric sequence of power demand in UK, 2013 (Figure 1(a)), and its dis-
cretization with 16 symbols (corresponding to dashed lines) in Fig. 1(b).

dividing values into |Σ| bins uniformly2 as seen in Fig. 1(b) with |Σ| = 16 bins.
It is obvious that we can represent a sequence as a symbolic sequence with a
smaller loss with a larger set Σ. In Fig. 1(b), however, only a few combinations
of Σ appear consecutively. It is difficult to tune the set Σ while taking a balance
among the expressiveness and the sparseness. Now a typical periodical behav-
ior is that the demand gets higher every weekend, which could be obtained by
frequent patterns, where symbols corresponding to low values are followed by
those doing to high values. We believe that such comprehensive and high-level
patterns are more informative and useful to analyzing databases.

Similar tendencies can be seen in symbolic data as well. As an example
we take into account those stored from Last.fm (http://last.fm/), which are
sequences of songs logged by users. Currently the site has 640 million songs as
symbols. It is obviously intractable for both enumerating and analyzing patterns.
We take some logs of users from an open dataset3 (See Sect. 3 of [2]), where a
sequence s = (S1, S2, . . . ) is a log of a user and each Si is the set of songs heard
in the index i, where i corresponds to a 1 h interval of the log (e.g., the set S4

shows the listened songs during 0 A.M. to 1 A.M.). For example, the sequence
for user ID 808 is length 16, 913 log, where the user listened to 24, 310 songs and
1, 340 out of 16, 913 intervals are not empty (i.e., in other intervals the user did
not listen to any songs). Then if we would like to analyze some daily behaviors
(i.e., P = 24) including the empty situation, 24, 31024 is the upper bound4 of
the size of all combinations. Again, this is an intractable situation and data are
obviously sparse and hard to analyze with pattern mining methods.

2 For example, if the range of values [0, 10) and |Σ| = 4, values in [0, 10] would be
categorized into either [0, 2.5), [2.5, 5.0), [5.0, 7.5), or [7.5, 10), and symbolic alphabets
are assigned into those bins to encode the sequence into a symbolic sequence.

3 http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/.
4 Of course most of them are infrequent patterns.

http://last.fm/
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/
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In pattern mining, therefore, Liu et al. [6] and others insisted that users
carefully need to tune the set Σ and proposed the temporal skeletonization for
symbolic sequences. Their idea is to construct clusters of symbols and assign
each cluster a label. Then a sequence can be translated into a high-level and
potentially comprehensive sequences of cluster labels, which roughly characterize
the given sequence. By grouping symbols into clusters, we reduce the size of
Σ. We develop such method for periodical analyses by generalizing the idea of
temporal skeletonization [6], and discuss frequently occurring high-level patterns.

The rest of this paper is organized as follows. We give preliminaries in Sect. 2.
Our method is formally described in Sect. 3. We provide our experimental results
and discuss them in Sect. 4 and conclude our study in Sect. 5.

2 Periodic Pattern Mining and Temporal Skeletonization

Let Σ be the alphabet. The set Σ� denotes the Kleene closure of Σ. We use
Σ+ ≡ Σ� \ {ε}, where ε is the empty string. For a sequence s in Σ∗, |s| denotes
the length of s, and we define |ε| = 0. In addition, si and si,j represent i-th
element and the continuous subsequence from i to j of s (i < j), respectively.
Let P be an fixed integer representing the period of users’ interest.

2.1 Frequent Partially Periodic Pattern Mining

Periodical behaviors of databases can be modeled as partially periodic patterns.
Transaction databases in the literature can be defined as (singleton) sets of
sequences on Σ or those of subsets of Σ. Then patterns are intuitively sequences
of (sets of) symbols. An important concept used is periodical segments of
sequences.

Definition 1 (Event Sequences and Segments). For an event sequence s ∈
Σ+ and a period P , s can be divided into m(= � |s|

P �) mutually disjoint segments.
We denote it by s = 〈ps1, ps2, . . . , psm〉, where for 1 ≤ i ≤ m, psi = sim,(i+1)m−1.
For example with a sequence s = abcabdabb of symbols {a, b, c, d} and P = 3,
the sequence s is divided into ps1 = abc, ps2 = abd, and ps3 = abb.

Definition 2 (Partial Patterns). A sequence from Σ ∪ {�} is a (partial) pat-
tern, where the special character � 
∈ Σ represents any event of length 1.

Periodical patterns we want to obtain are those appearing in periodical seg-
ments frequently. For a sequence s and a pattern p, we need to evaluate whether
or not p is interesting. To estimate interest, we adopt support, as defined below.

Definition 3 (Support). For a sequence s and a pattern p of the same length,
we say that s is covered by the pattern p if and only if pi = � or pi = si for
all 1 ≤ i ≤ |s|, denoted by s � p. The support of a partial pattern p, denoted
by SupP(p), is defined as SupP(p, s) = |{psi | s = 〈ps1, . . . , psm〉, psi � p}|. For
s2 = abcabdabb = 〈abc, abd, abb〉 and P = 3, SupP(ab�, s2) = 3

3 = 1.0.
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If a partial pattern p satisfies SupP(p) ≥ θ with a threshold θ and a period
P , then p is frequent and we call it a partially periodic pattern (PPP). We have
the problem of finding frequent partially periodic patterns below.

Problem 1. Let θ be a user-specific threshold and P be a given period length.
For a sequence s, the Frequent Partially Periodic Pattern Mining (FPPPM )
problem is to list all partially periodic patterns p from s satisfying SupP(p) ≥ θ.

Note that in this case a sequential database DB is a single sequence s from which
we try to list all frequent partially periodic patterns. Without loss of generality,
we can extend it to deal with a set DB = {s1, s2, . . . , sM} of sequences.

Several efficient algorithms have been developed for the frequent partially
periodic pattern mining problem. For examples, Han et al. showed a fundamental
algorithm using max sub-pattern trees [5] and Yang et al. proposed to use tuple
representations for periodic patterns and a depth-first search algorithm based
on the PrefixSpan [9] used in sequential pattern mining [12].

2.2 Temporal Skeletonization

We refer to the original definition of temporal graphs to explain the idea of the
temporal skeletonization in [6], which tries to build a similarity graph5 from a
given database DB for capturing the similarity within symbols in Σ. Note that
in this literature, a transaction in DB is defined as a sequence on Σ.

Definition 4 (Temporal Graphs [6]). Let DB = {s1, . . . , sN} be the set of
sequences of symbols from Σ. We define a weighted undirected graph G = (V,E),
where V corresponds to Σ. For two symbols x, y ∈ Σ, the weight Wx,y of the
edge corresponding to {x, y} is defined as

Wx,y =
1
N

N∑
n=1

∑
1≤i,j≤|sn|,|i−j|≤r,i<j

ei=sn,i,ej=sn,j

1ei=x∧ej=y (1)

where N is the number of sequences, r be the window width, 1f is the indicator
function that returns 1 if and only if the predicate f is true. Intuitively we count
the number of co-occurrences of symbols x and y in the window of width r.

The right-hand side of Eq. 1 can be computed by checking the given database
DB = {s1, . . . , sn}, where the indicator function can be replaced with other
similarity measures. For example in [6], authors used the exponential function
exp(− ||i−j||2

k ) with a parameter k to compute weights.
In constructing a temporal graph G, all indices of sequences in DB are taken

into account several times. In each time we focus on some index i, we check all
neighbors within width r. This computation is based on an implicit assumption;

5 A similarity graph is a weighted graph in which vertices represent data points and
edges represent the similarity between two points with their weights.
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(a) Input sequences
(b) Computed Ws,t (c) Re-ordered Ws,t

Fig. 2. A toy example in [6] and two heatmaps: Fig. 2(b) shows the original W com-
puted from DB, and Fig. 2(c) is the re-ordered one.

symbols x, y appearing closely and temporally (i.e., within the window of width
r) may belong to some meaningful temporal clusters. After constructing G, users
try to find clusters of symbols by applying clustering methods to G (such as
spectral clustering [7,10]). The problem of finding clusters can be formulated as
a standard graph-based optimization problem with some constraints as shown
in [6], where an important step of clustering is to compute eigenvalues and
eigenvectors of similarity matrices corresponding to a graph G. With the spectral
clustering, a graph G can be represented as a heatmap, as shown in Fig. 2.

Example 1. The input is shown in Fig. 2(a). We compute the weights from
{s1, s2, s3, s4} as seen in Fig. 2(b) and represent them by a heatmap, where both
the x-axis and y-axis correspond to the order of the alphabet Σ. That is, on some
(i, j), the thickness in the heatmap corresponds the value WΣi,Σj

. After applying
the spectral clustering, we can re-order indices of W as shown in Fig. 2(c). For
example, we can find a cluster of symbols such as C1 = {4, 7, 9, 11, 12}, which is
the upper right area in Fig. 2(c). Note that C1 appears in prefixes of sequences
in DB. With thanks to the temporal skeletonization, we can conjecture that all
sequences in DB are in the form (C1, C1, C1, . . . ). This prefix consisting of clus-
ter labels can be regarded as a high-level (or, more abstract and comprehensive)
pattern of the sequences given in DB.

3 Periodical Skeletonization

The key idea for taking into account periodical information is simple: Extending
functions representing areas that we check in computing weights to some periodic
functions of the periodicity P of our interest. If we would like to analyze some
daily behaviors, we set P = 31 (or 30 days, for example).

The sliding window of width r used in the temporal skeletonization can be
modeled by a rectangular function with width r and the origin i6. By modify-
ing this function in a periodical manner, we can deal with the periodicity of
6 The function is defined as Recti,r(t) = 0 if |t − i| > r, 1 otherwise.
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Fig. 3. An idea of the periodical skeletonization in Fig. 3(a). Figure 3(b) is a result only
using the temporal information and Fig. 3(c) is that adopting the periodical information
only, where rectangles are the discovered clusters.

occurrences of symbols. We can easily imagine such techniques on the analogy
of Fourier series and Fourier transforms. Please recall the toy examples used in
Sect. 2.1. For an input sequence s = abcabdabb and P = 3, a frequent partially
periodic pattern ab� appears 3 times in every segment abc, abd, and abb. This
means that not only neighbors according to the sliding window Recti,r(·), but
also periodical information from i, that is, i+P, i+2P, i+3P, . . . could be used
to search for similar intervals.

This observation inspires our modification for periodical skeletonization.
Because now a target database in the FPPPM problem is a long sequence s
as we defined in Problem 1, we make use of the same setting in the following.

Definition 5 (Periodical Graphs). In a periodical graph G, the weights from
an input sequence s and a period P for two symbols x, y are computed as follows:

Wx,y =
∑

1≤i,j≤|s|,ei=si,ej=sj

if ei=x∧ej=y

1|i−j|≤r + 1i≡j ) (2)

The second term is newly introduced based on the periodical information. We
can also replace the right-hand side of Eq. 2 with similarity functions by adapting
them in a similar fashion based on the temporal skeletonization.

Example 2. Figure 3 illustrates examples of computing Eq. 2 from s =
(0, 2, 6, 0, 2, 4, . . . ) with Σ = N. Figure 3(b) is computed by the temporal skele-
tonization, while Fig. 3(c) adopts the periodical term only in Eq. 2. We can see
3 clusters as rectangles: C1 = {0, 1}, C2 = {2, 3} and C3 = {4, 5, 6, 7, 8} in
Fig. 3(c), and they are clear than those in Fig. 3(b).

We obtain this example by using an HMM in Fig. 4. We build an HMM H of
three states T1, T2, T3 with a cyclic relation (i.e., it has transitions from T1 to
T2, from T2 to T3, and T3 to T1, respectively with the probability 1). To simulate
a partially periodic pattern 02�, in T1 and T2, H outputs 0 and 2, respectively
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Fig. 4. Settings of HMMs used for generating synthetic data.

with high probability 100 × (1 − u)% and outputs 1 and 3 with low probability
100 × u%. On the other hand in T3, H generates {4, 5, 6, 7, 8, 9} uniformly. By
generating sequences of length N from such H, we can obtain a sequence s
containing the partially periodic pattern 02� very frequently. Compared with
the result in Fig. 3(b), we can see that C1, C2, C3 correspond to T1, T2, T3 more
clearly as blocks in the heatmaps if we consider the periodicity in Fig. 3(c).

In summary, our periodical skeletonization is a method to make clusters of
symbols using the co-occurrences and the periodical co-occurrences of symbols.

4 Experiments

We first report experiments with synthetic and real datasets which should have
simple periodical behaviors to observe the effect of our proposal and to discuss
the difference between two skeletonization methods. Then we apply both meth-
ods to analyze Last.fm datasets. With the results by skeletonization, we discuss
the FPPPM problem for encoded sequences using cluster labels.

4.1 Preliminary Experiments

Datasets and Environment. Here we use both synthetic and real datasets. The
summary of these datasets is shown in Table 1. A synthetic dataset is generated
by using the HMM shown in Fig. 4. A real dataset, named PowerDemand, is a set
of sequences of electric power demand in 2013, extracted from the GridWatch
system7, which were previously used in Fig. 1. The original sequence records
power demand in UK 12 times per hour, that is, roughly 300 times per day.
We take the simple average (not moving average) of them to construct a hourly
sequence of power demand in 2013, named PowerDemand-32. Because an yearly
record may contain many periodical behaviors (e.g., daily, weekly, monthly, etc.),
we extract a small subset, named PowerDemand-128F, of PowerDemand-32 and
make the resolution of Σ more clear by increasing the size Σ from 32 to 128
and taking a part roughly from summer to autumn. For PowerDemand-128F,
we expect that the sequence have the period P = 7. As another real dataset,
we use Kyoto, a sequence of the daily temperatures in Kyoto from 1880 to 2014
with P = 365 and |Σ| = 359.

7 http://www.gridwatch.templar.co.uk/.

http://www.gridwatch.templar.co.uk/
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Table 1. Summary of datasets and parameters used in experiments.

Name Length |Σ| Period P Note

HMM-600-u 600 10 3 with error rate u = 0.25

PowerDemand-32 365 32 7 Discretized with level 32

PowerDemand-128F 100 128 7 Subset of PowerDemand with level 128

Kyoto 43,833 359 365 Discretized with the resolution 0.1◦C

(a) DT (b) DP (c) DTP (d) EXP (k = 3)

Fig. 5. Heatmaps representing similarity matrices of graphs from HMM-600-u with the
parameter P = 3, r = 2, and k = 3. Figure 5(b) and (c) successfully show clear clusters
as rectangles (surrounded by dashed lines).

We would like to show computed graphs and the discovered clusters by the
spectral clustering algorithm via temporal/periodical graphs. To illustrate the
discovered clusters, we additionally adopt the k-means algorithm in the spectral
clustering. We set k by using the heuristic of the spectral clustering (Please see
[11]), and use the normalized graph laplacian. In the following, we prepare the
following labels to represent methods: (1) DT means the temporal skeletoniza-
tion, (2) DP users the periodical information only, (3) DTP adopts both (1) and
(2), and (4) EXP replaces the function δ(·) with exp(·) in the DTP setting.

We implemented the periodic skeletonization part in C++8, and apply the
spectral clustering algorithm (and k-means algorithm in it) by using a built-
in implementation provided by scikit-learn [8] based on Python 2.7.8. All
experiments are run on a machine of Mac OS X 10.9 with 2 × 2.26 GHz Quad-
Core Intel Xeon processors and 64 GB memory.

Results and Discussions. Out of several parameter settings we tried, we took
a part of results to compare our periodical skeletonization with the temporal
skeletonization. We showed results of synthetic data in Fig. 5, and those of real
datasets in Fig. 6 with varying methods of computing weights slightly, where the
labels {DT,DP,DTP,EXP} represent the corresponding methods above used
for computing similarity graphs of the temporal/periodical graphs.

From results using synthetic data, we can conjecture that periodical infor-
mation of temporal graphs are helpful to find clusters of symbols compared with
Fig. 5(a), (b) and (c), where we would like to extract periodical clusters, that

8 gcc 4.7 with -std=c++11 without any parallelization techniques.
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(a) DT (b) DP (c) DTP (d) EXP (k = 3)

(e) DT (f) DP (g) DTP (h) EXP (k = 3)

(i) DT (j) DP (k) DTP (l) EXP (k = 3)

Fig. 6. Heatmaps from PowerDemand-32 (top row), PowerDemand-128F (middle row)
and Kyoto (bottom row) with varying DT, DP, DTP, and EXP.

is, clusters representing {0, 1} and {2, 3}, which corresponds to T1 and T2 in
the HMM in Fig. 4, respectively. From the result using only temporal informa-
tion in Fig. 5(a), however, we cannot find them. On the another hand, results
using periodical information seen in Fig. 5(b) and both of them in Fig. 5(c) show
two clusters {0, 1} and {2, 3} much clearly. The exp(·) computation in Fig. 5(d)
disturbs them.

Results from real datasets should be affected by properties of sequences and
the periodicity of them. In two cases with PowerDemand-32 and PowerDemand-
128F, for example, results were symmetric with respect to methods: If we use
the periodical information in Fig. 6(b) and (c), we cannot find any clusters but
in Fig. 6(f) and (g), we can find a few clusters of symbols, which are similar to
results of synthetic data. We guessed that the difference between PowerDemand-
32 and PowerDemand-128F is whether or not there exists many periodical behav-
iors in sequences. Because we selected a subsequence from PowerDemand-32 as
PowerDemand-128F to remove multiple periodical information, the periodical
skeletonization with a fixed period parameter P = 7 seemed to work well.

In results from Kyoto, we can see that there exist roughly 3 clusters in all out-
puts from Fig. 6(k) to (l). If we adopt the periodical information, those clusters
are also emphasized on visualized temporal graphs. For example, by comparing
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Table 2. Statistics of parts of logs by users from the Last.fm dataset.

User ID |Lall| |Lne| (non-empty intervals) |Σ| S
User 672 384 147 247 2,329

User 808 529 147 578 2,108

results in Fig. 6(i) and (k), we confirmed that two dense clusters (top left and
bottom right) in Fig. 6(k) are much more clear than in those Fig. 6(i). Note that
these clusters are related to winter and summer, respectively. We inferred that
these visualized results are helpful to analyze given sequential databases and
enumerated patterns, particularly when we need to run methods iteratively to
tune parameters.

Note that in both synthetic and real datasets, we observed that results are
not sensitive with respect to parameters r (the window width) and k (parameter
of exp(·)) if r is enough smaller than P for the periodical setting.

Conclusions. We conclude experiments using sequences containing clear peri-
odical behaviors. Originally, results of clustering symbols are sensitive to def-
initions of similarities. The previous study reported in [6] that results of the
skeletonization seemed to be stable. As far as we investigated in experiments,
with respect to the parameters r and k, which control a kind of smoothing of
symbols sequences, the results could be stable as well. We also see that our
method could be helpful to highlight periodical behaviors of sequences. We guess
that this result is also affected from the multiple periodicity, and conclude that
the periodical skeletonization help us to find underlying structures. Although
the method sometimes (as seen in PowerDemand-32) disturbs results, it seems
to work as we expected particularly when the periodicity is clear.

4.2 A Case Study Using Last.fm Datasets

This section deals with datasets collected from the Last.fm site. Because prop-
erties of data vary according to users, we would like to investigate how results
get for real datasets. Datasets are obtained from [2] by gathering and ordering
the logs of songs listened by users based on focusing the granularity “hour”.
One database corresponds to one sequence of sets of symbols (i.e., songs) by one
user. For experiments, we take randomly users from the whole dataset, obtain
sequences of sets of symbols, and use small parts of such sequences. We pro-
vide statistics of selected parts of sequences chosen by our method in Table 2.
For a sequence s = S1, S2, . . . , SM of Si ⊆ Σ, Lall means |s| = M , Lne shows
|{Si | Si 
= ∅, Si is in s}|, Σ means the size of the set |S1 ∪ · · · ∪ SM |, and
|S| =

∑
i |Si|, respectively. We set P = 24 to analyze hourly behaviors.

We show results in Fig. 7. Here we do not want to say which clustering results
are good (or bad). From experiments by periodical information in the skeletoniza-
tion we confirmed two kind of results: A type increases the number of clusters
compared with the ordinal temporal skeletonization (e.g., from Fig. 7(a) to (c)).
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User 672

(a) DT (w = 2) (b) DP (c) DTP (w = 2)

User 808

(d) DT (w = 2) (e) DP (f) DTP (w = 2)

Fig. 7. Heatmaps from Last.fm datasets with varying DT, DP, and DTP.

Another type, in contrast, decreases the number of clusters (e.g., from Fig. 7(a)
to (b), Fig. 7(d) to (e) and (f)). As the periodical information help us to consider
periodical co-occurrences of symbols, if there exist some periodical behaviors of
sequences, then applying the periodicity skeletonization should be helpful. We
can only confirm that in some cases the clustering work for our purpose. We
conjecture that for some databases our method does not work as they contain
no periodical regularities.

Discussions. Discussing the quality of clusters is fundamentally impossible as
we do not have any labels. Conceptually, the skeletonization does not use any
semantic information of symbols, and results only depend on the co-occurrences
of symbols. In our method, we intend that adding more computations by the
periodicity have increased information we can use in the pre-processing step.
Introducing additional resources for computing the similarities such as back-
ground knowledge or taxonomy is one of interesting future work. However, such
knowledge resources are in general high cost compared with the skeletonization.
Therefore, we guess that combining both methods is much effective for solving
the sparseness problem. In addition, we also expect that introducing sophis-
ticated clustering algorithms is important: For example, hierarchical spectral
clustering [1], Non-negative Matrix Factorization (NMF) for clustering (e.g., [3])
should be helpful (e.g., considering multiple periods with hierarchy).

4.3 Partially Periodic Pattern Mining and Skeletonization

We now apply the periodical skeletonization into the FPPPM problem. Our
purpose here is to obtain comprehensive and high-level patterns in mining by
reducing the size |Σ|. We use clustering results obtained by the above exper-
iments. For enumeration of patterns, we use the algorithm proposed by Yang
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Algorithm 1. FPPPM with The Periodical Skeletonization
1: procedure PS-FPPPM(s (input), θ (threshold))
2: Construct a periodical graph G from s � The Periodical Skeletonization
3: Estimate the number k of clusters with heuristics
4: Compute assignments of symbols to clusters � Σ → {1, 2, . . . , k}
5: Sort clusters C1, · · · Ck with their cardinality (|C1| > |C2| > . . . |Ck|)
6: for j = 1 to k do
7: Replace symbols in s using the cluster Cj and get s(≥j) � Re-encoding
8: Apply PPPMiner for re-encoded s(≥j) with the threshold θ

et al. [12], and call it PPPMiner. For the purpose, we re-implemented PPP-
Miner in Python 2.7.8. Experimental settings are the same to those in Sect. 4.1.
To examine how the periodical skeletonization affects enumerating patterns by
the PPPMiner, we use Kyoto and Last.fm datasets.

Before mining, the number k of clusters is estimated by a well-known heuris-
tics as we mentioned [11]. With this k, we propose an incremental method, where
users replace symbols with cluster labels incrementally. The overview of this
process is shown in Algorithm 1. We first sort clusters by the size. In descend-
ing order of the size, we incrementally re-encode an original sequence s with
cluster labels as follows: First, we replace symbols in s belonging to the largest
cluster labeled by C1 (this new sequence is denoted by s(≥1) in Algorithm 1),
second we do the same with the second largest cluster labeled by C2, and so
on (corresponding to Line 6 and Line 7). For each step in Line 8, we apply the
PPPMiner to mine frequent partially periodic patterns.

Results. For the Kyoto dataset, let k = 3. We prepared four cases: Kyoto (origi-
nal), Kyoto(≥1), Kyoto(≥2), and Kyoto(≥3). We show the number of enumerated
patterns with P = 365 and with varying the threshold θ in Table 3(a).

For the User 672 dataset from the Last.fm dataset, we first apply both skele-
tonization methods as shown in Fig. 7(c) as well. We use the number k = 10
of clusters to pre-process. Out of k = 10 clusters illustrated in Fig. 7(c), for
the integer j in Line 6, we use the largest cluster C1 and get the re-encoded
sequence User 672(≥1) corresponding to j = 1. In the same manner, we adopt
the top three largest clusters C1, C2, and C3 (i.e., j = 3) and get the sequence
User 672(≥3). We finally use all clusters (j = 10) and label the obtained sequence
as User 672(≥10). We show in Table 3(b) the numbers of enumerated patterns.

Discussions. In both cases we cannot find any frequent patterns without the peri-
odical skeletonization. That is, without any pre-processing, databases are sparse
and we cannot evaluate the support count well to get insights from datasets in the
standard manner of partially periodic patterns mining. However, with thanks to
the periodical skeletonization, we can discover many frequent patterns in other
cases. Because the periodical skeletonization help us to find rough, characteristic
patterns by clustering, we are now able to discover abstract but readable and
high-level frequent partially periodic patterns.
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Table 3. Numbers of enumerated patterns with (i.e., re-encoding labeled as (≥j)) and
without (i.e., original data) the skeletonization.

(a) For the Kyoto dataset (P = 365)

Datasets θ = 0.9 0.7 0.5 |Σ|
Kyoto(≥1) 9,065 57,596 133,027 224

Kyoto(≥2) 28,134 210,806 523,021 97

Kyoto(≥3) 54,354 349,648 917,403 3

Kyoto 0 0 0 359

(b) For User 672 dataset (P = 24)

Datasets θ = 0.3 0.2 0.1 |Σ|
User 672(≥1) 128 318 51,304 177

User 672(≥3) 128 319 22,540 144

User 672(≥10) 127 260 5,718 10

User 672 0 0 0 247

For example in the Kyoto(≥1) setting, we found 9,065 patterns which charac-
terize 90 % of segments in the given sequence. In addition, in the settings of User
672(≥1) and User 672(≥3), we successfully discover roughly 300 frequent patterns
that characterize 20 % of segments, and this number is relatively small and easy
to analyze. We also glanced at patterns listed with the cluster C1 (the largest
one), combinations of C1 and songs ids 20, 22, 23, 27 appeared frequently, i.e.,
patterns containing (C1, 20), (C1, 20, 22), etc. are mined many times.

We conjectured that these comprehensive and high-level patterns containing
cluster labels would be helpful to analyze periodical behaviors in databases,
particularly when we have some background knowledge about symbols in Σ.
In addition, we confirmed that clustering using the skeletonization as a pre-
processing of pattern mining work well to get more frequent patterns than those
obtained from raw sequences. In our experiments, many patterns constructed by
shifting symbols are also mined. For example, we often have the case a frequent
pattern p occurring at 8 a.m. again becomes frequent at 9 a.m., 10 a.m., and
so on. That is, the primitive definition of partially periodic patterns have some
redundancy. It is our important future work to overcome such a redundancy
problem. Tuning hyper-parameters including the number k of clusters and the
width r of sliding windows is also our future work to enrich partially periodic
pattern mining with pre-processing using the skeletonization. Further studies for
the multiple periodicity are also our interesting future direction.

5 Concluding Remarks and Future Work

In this paper we have provided a new skeletonization method for dealing with
partially periodic patterns based on the temporal skeletonization and periodi-
cal information. Our experiments with synthetic and real datasets have shown
that our method could help us to obtain clusters of symbols even for periodi-
cal settings, particularly for a case where sequences have only one fixed period.
Pattern mining results with the skeletonization have indicated that our method
is helpful to obtain readable results with a relatively small computational cost
as Σ get small. Even we use a large threshold θ, we can find frequent patterns
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which cannot be listed without the skeletonization. Using Last.fm datasets in
our case study, we have tested that our method give some insights on relation of
symbols used for describing databases, and their analyses might be important
and helpful for Knowledge Discovery.

In future work, we would like to develop algorithms to reduce the redundancy
of patterns more, based on well-studied concepts (e.g., closed patterns) together
with the skeletonization. Further discussion using other pre-processing methods
using semantic information (i.e., hierarchy) are also our important future work.
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Abstract. Adverse Drug Events (ADEs) are a major health problem,
and developing accurate prediction methods may have a significant
impact in public health. Ideally, we would like to have predictive meth-
ods, that could pinpoint possible ADRs during the drug development
process. Unfortunately, most relevant information on possible ADRs is
only available after the drug is commercially available. As a first step,
we propose using prior information on existing interactions through rec-
ommendation systems algorithms. We have evaluated our proposal using
data from the ADReCS database with promising results.

Keywords: Adverse drug effects · Adverse drug reactions · Singular
value decomposition · Recommender-systems · Pharmacovigilance

1 Introduction

Adverse Drug Events (ADEs)1 are events that indicate a relationship between
the treatment and a negative outcome. It is estimated that, in the United States
alone, ADEs account for up to 28 % of all emergency department visits [8], and
5 % of hospital deaths [3]. As a consequence, between 30 and 150 billion dollars
are spent annually in hospitals treating those adverse events [4]. There is thus,
not only a moral obligation on pursuing safer medicines, but also strong economic
impact.

Randomized Controlled Trials (RCTs) are the main tool used to ensure drug
quality. They are conducted in standardized conditions, nonetheless, authors
have noticed under-representation of women and elderly patients in those tri-
als [6]. Alongside RCTs being conducted regardless of the specific features of the
drug or the patient, they often use small samples and with very little statistical
significance. Due to these limitations, only ADEs that are common and that
develop over short periods of time can be detected with high-confidence.

In this work, we aim at taking advantage of the ability of Machine Learning
to process large amounts of data in order to find hidden connections. Our method
is as follows. First, we collect data that would be publicly available before the
1 Also referred to as Adverse Drug Reactions (ADR).
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drug enters the market. Second, we feed that information to a recommendation
system. The output is the set of side-effects with higher estimated probability.
We experimented our method, using two methods: Singular Value Decomposition
(SVD) and Restricted Boltzmann Machines (RBM), and then combining them
as an ensemble classifier.

The main contribution of the present work is the adaptation and evaluation
of recommender systems to the problem of predicting ADEs. As the empiri-
cal evaluation shows, the technology is scalable and flexible, and enables ADE
prediction at any stage of the drug’s development (with special focus on the
pre-marketing stage).

2 Related Work

Most ADR research is done on the post-marketing stage, where not only there is
more information available, but also when large amounts of money were already
invested and the cost of discovering a new ADE is considerably higher. Such
research has relied on a variety of data sources. One major source has been elec-
tronic health records (EHRs), even though they pose challenges of their own [7].

Our approach is inspired on the excellent performance of recommender sys-
tems in sparse domains [5]. A significant boost to research in recommender sys-
tems was due to the NetFlix challenge. The winning entry of the competition
was an ensemble of several algorithms, including various Singular Value mod-
els blended with RBM [2]. Our work applies and adapts these methods to the
challenging task of ADE prediction.

3 Methods and Algorithms

3.1 Singular Value Decomposition

Formalization. The drug-ADE relationship is represented as a matrix M ∈
Rm×n, where m is the number of drugs and n the number of ADEs. Whenever
a drug d is known to cause ADE a, Mda = 1 This representation causes M to
be sparse.

Matrix factorization allows not only the mapping of drugs and ADEs in
factor-spaces but also the reduction of the matrix dimensionality. Consider that
each drug is associated with a vector pi and each ADE with a vector qi such
that:

M = PQ� (1)

The Singular Value Decomposition (SVD) is a factorization of a real (in
our case) or complex matrix. Let’s consider the factorization of a real valued
matrix. Formally, the singular value decomposition of an m × n matrix M is
a factorization of the form M = UΣV �, where U is an m × r orthonormal
matrix, Σ is an r × r diagonal matrix with positive, non-zero, singular values in
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decreasing order, and V � is an r × n orthonormal matrix, where r is the rank
of matrix M . Then, it is possible to obtain matrices P and Q from Eq. 1 by:

P = U
√

Σ (2)

Q =
√

ΣV � (3)

We are interested in matrix Q of size r × n, whose entries represent the
“meta” relations between r pseudo-drugs and the n ADEs.

Dimensionality Reduction. The model generated by the method described
above might suffer from over-fitting, since it would fit the noise present in M .
One solution to generalize the model and reduce the effects of the noise is to
find a matrix M̂ which is the best rank k approximation of M , with k < r.

The problem to be solved is, then, to find the optimal value for k. The energy
of the factorization of a matrix is defined by Rajaraman and Ullman [9] as the
sum of the squares of all its singular values. The new reduced matrix is obtained
by discarding a certain amount of that energy. k is the value that minimizes ε:∣∣∣∣∣

k∑
i=1

Σ2
ii − α

r∑
i=1

Σ2
ii

∣∣∣∣∣ = ε, (4)

where α ∈ [0, 1] is the amount of energy we wish to keep. Tests showed that the
optimal value of alpha for this problem is 0.9, as greater values reduce the Recall
and smaller values reduce the Precision.

Gradient Descent. After the dimensionality reduction step, it is possible to
optimize P and Q by using gradient descent.

min
P,Q

∑
training

(mxi − piq
�
x )2 + λ

[∑
x

‖px‖2 +
∑
x

‖qi‖2
]

(5)

The real goal is to find P and Q based on known drug-ADE relations so
that we predict well the unseen values. This enables us to approximate missing
drug-ADE relations as zeros.

3.2 Restricted Boltzmann Machines

Formalization. Restricted Boltzmann Machines (RBMs) [10] can be used to
perform a binary factor analysis. An RBM is a stochastic neural network con-
sisting on a layer of visible units, a layer of hidden units and a bias unit. The
visible units represent, in this context, the drug’s ADEs that we know. The hid-
den units are the latent factors that we want the model to learn. The visible
units and the hidden units form a bipartite graph.

It is possible to reduce the dimensionality of a feature vector, in the case that
the hidden layer has fewer units than the visible layer. By providing a drug d with
size 1×n it is possible to obtain a vector f with its latent factors of size 1× l with
l being the number of hidden units. On the other hand, vector l can also be used
to obtain a vector d̂. d̂i represents the probability of drug d causing ADE i.
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3.3 Ensembles

SVD and RBM are able to predict the probability of a drug causing a set of
ADEs. More formally, given a drug d of size 1 × n, each method predicts a drug
d̂ of the same size:

d̂ =
[
p̂1 p̂2 · · · p̂n

]
(6)

where p̂i represents the probability of drug d causing ADE i.
One can look at the problem of making an element-wise combination of d̂SV D

and d̂RBM as a classification problem where, given two probabilities the model
classifies the final probability as positive (i.e. causing the ADE) or negative (i.e.
not causing the ADE); or as a regression problem where, given two probabilities
the model computes a new probability.

We have used a Support Vector Machine (SVM) with a Radial Basis Function
(RBF) kernel for the classification problem. On the other hand, to solve the
regression problem, a Support Vector Regression (SVR) algorithm was used,
also with a RBF kernel. The SVR model was trained the same way as the SVM
model, nonetheless, a threshold was required in order to be able to classify a
drug as causing ADE i or not.

The Receiver Operating Characteristic (ROC) curve was computed and
the threshold is obtained by using the Youden index [12], which maximizes
Sensitivity +Specificity − 1. Graphically, the index is represented by the max-
imum height above the chance line.

4 Empirical Evaluation

4.1 Data

In these experiments we use the ADReCS2 data-base as ground truth. This drug-
ADE database is maintained by researchers at Xiamen University, and includes
adverse drugs’ reactions ontologies, that enable the standardization and hier-
archization of ADE terms. The drug-ADE information of ADReCS was mainly
sourced from the drug labels in the DailyMed, maintained by the U.S. National
Library of Medicine (NLM) [1].

4.2 Methodology

The samples were randomly split into two different sets: 70% into a training
set and the remaining into a test set. In the case of the SVD and the regres-
sion ensemble, the elements of the resulting prediction vary between 0 and 1.
A threshold is needed to distinguish between a positive and a negative example.
To do that, the ROC curve is computed by using a validation set, and the Youden
index [12] is used as the threshold, as described in Subsect. 3.3. The validation
set is computed differently for each method and, therefore, it is explained in the
corresponding Subsection. To test the model, the testing set is used. For each
2 http://bioinf.xmu.edu.cn/ADReCS.

http://bioinf.xmu.edu.cn/ADReCS
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element of the testing set, 30 % of the ADEs are randomly removed and used as
input to the model. The Precision, Recall and, whenever possible, the ROC area
are computed.

SVD Experiments. To build the model, k-fold cross validation was applied to
the training set, with k = 10. At each iteration, 9 folds are chosen as matrix M
and matrix Q is computed, as described in Subsect. 3.1, leaving the remaining
fold as the validation set.

After obtaining the model, the method was tested using the testing set. The
computed metrics are presented on Table 1.

Table 1. Results of the SVD by removing 30 % of each drug’s known ADEs present in
the test set

ROC area Precision Recall

Average 0.954 0.373 0.843

Standard deviation 0.054 0.120 0.136

Minimum 0.410 0.000 0.000

Maximum 1.000 1.000 1.000

The system performs well on the majority of the elements from the test
set, as can be seen by the large ROC area and small standard deviation. With
this approach, on average, the system is able to find 84% of the ADEs of each
drug. Nonetheless, about 37% of the elements classified as positive are, indeed,
positive, as concluded from the Precision.

A sensitivity analysis was performed, by varying the number of removed
ADEs from the test set, in order to evaluate the system’s performance under
different conditions. As show in Fig. 1, the system’s performance deteriorates as
the level of information is reduced.

Fig. 1. Sensitivity Analysis of the different metrics by varying the number of removed
ADEs from the test set



206 D. Pinto et al.

Table 2. Results of the RBM by removing 30 % of each drug’s known ADEs present
in the test set

ROC area Precision Recall

Average 0.950 0.572 0.758

Standard deviation 0.051 0.276 0.196

Minimum 0.417 0.000 0.000

Maximum 1.000 1.000 1.000

RBM Experiments. The RBM model was built using 1000 hidden nodes,
and was trained for 300 epochs. The results are presented on Table 2. Also, a
sensitivity analysis was performed, the same way as for the SVD, and is presented
on Fig. 2.

It is possible to conclude that the RBM provides better Precision but with
lower Recall than the SVD. Also, this method deals better with the absence of
information than the SVD.

Ensemble. In order to combine the two methods, 10% of the training set
is used as validation set. The results of combining SVD and RBM using the
classification approach and the regression approach are compared on Table 3.
Again, a sensitivity analysis was performed on the two approaches and presented
on Fig. 3.

Fig. 2. Sensitivity Analysis of the different metrics by varying the number of removed
ADEs from the test set

Table 3. Results of combining SVD and RBM, using SVM and SVR, by removing
30 % of each drug’s known ADEs present in the test set

Precision(SVM) Recall(SVM) ROC(SVR) Precision(SVR) Recall(SVR)

Average 0.974 0.718 0.990 0.687 0.909

SD 0.112 0.198 0.036 0.128 0.140

Minimum 0.000 0.000 0.509 0.000 0.000

Maximum 1.000 1.000 1.000 1.000 1.000
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Fig. 3. Performance of all methods by varying the number of missing ADEs. (a) Pre-
cision. (b) Recall.

4.3 Discussion

By analyzing Fig. 4 it is possible to conclude that the combined approach is able
to maximize one of the two metrics, but not both. The classification one is able
to achieve high precision but has low recall, on the other hand, the regression
approach achieves high recall but low precision.

Fig. 4. Results of using the classification and regression approaches to combine the
SVD and RBM models. (a) Classification. (b) Regression.

5 Conclusions and Future Work

The method presented here serves as a basis for further expansion. It is capable of
taking other data to strengthen its results e.g., molecular descriptors, molecular
substructures, literature statistical analysis or even patients information.

Another connection particularly interesting is the comparison of the results
with drug→side-effect reports that can be mined from a database such as the
FDA Adverse Event Reporting System (FAERS), based on the approach of Rong
Xu and QuanQiu Wang [11]. On the other hand, the comparison against other
methods, such as different variations of SVM and Random Forests, could give
more insight and even boost the precision and recall of the ensemble method.
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In sum, there is still much work to be done based on this method, and most
important, as a reminder to the research community of the importance on focusing
on pre-marketing prediction (and consequent prevention) strategies for ADEs.
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Abstract. Even if research communities and publishing houses are put-
ting increasing efforts in delivering scientific articles as structured texts,
nowadays a considerable part of on-line scientific literature is still avail-
able in layout-oriented data formats, like PDF, lacking any explicit struc-
tural or semantic information. As a consequence the bootstrap of
textual analysis of scientific papers is often a time-consuming activity.
We present the first version of the Dr. Inventor Framework, a publicly
available collection of scientific text mining components useful to pre-
vent or at least mitigate this problem. Thanks to the integration and
the customization of several text mining tools and on-line services, the
Dr. Inventor Framework is able to analyze scientific publications both
in plain text and PDF format, making explicit and easily accessible core
aspects of their structure and semantics. The facilities implemented by
the Framework include the extraction of structured textual contents, the
discursive characterization of sentences, the identifications of the struc-
tural elements of both papers header and bibliographic entries and the
generation of graph based representations of text excerpts. The Frame-
work is distributed as a Java library. We describe in detail the scientific
mining facilities included in the Framework and present two use cases
where the Framework is respectively exploited to boost scientific creativ-
ity and to generate RDF graphs from scientific publications.

Keywords: Scientific text mining · Scientific information extraction ·
Software framework

1 Introduction: Mining Scientific Publications

Several studies concerning scientific text mining are built on the analysis of cor-
pora populated with proper collections of scientific publications. The selection of
the publications to include in these corpora is driven by the final goal of the study,
but is also often strongly influenced by the publishing format and the
related ease of access to the contents of papers. In order to perform text

The work described in this paper has been funded by the European Project
Dr. Inventor (FP7-ICT-2013.8.1 - Grant no: 611383).
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mining, most of the tools need as input the plain text of a whole paper or parts of
it. Even if several research communities and publishing houses are increasingly
adopting structured, Web-friendly, textual formats to share papers, including
XML dialects like JATS1 [1], Elsevier Schemas2 and RASH3, layout-oriented
data formats, like PDF, still represent one of the most exploited means to deliver
publications and scientific results. Consequently, often the initial phases of sci-
entific text mining studies suffer from the difficulty to access the information
contained in papers because of both their unavailability as plain texts and the
lack of any kind of structured way to browse their contents.

In order to mitigate this problem, we present the first version Dr. Inventor
Framework, an integrated collection of text mining components useful to support
the initial steps of scientific literature analysis. The Framework is delivered in
the form of a publicly available self-contained Java library4. By integrating and
customizing several text mining tools and on-line services, the Framework is able
to process distinct facets of the contents of scientific publications. Papers, both
plain texts and PDF documents, are analyzed so as to automatically identify and
enrich their relevant structural and semantic elements. The Framework has been
conceived and developed in the context of the European Project Dr. Inventor
to support scientific creativity by automatically identifying analogies in docu-
ment collections. Anyway, a wide range of scientific text mining analyses can be
enabled and eased by relying on it.

In this paper we introduce the architecture of the first version of the
Dr Inventor Framework. The set of Natural Language Processing components
and external Web services that the Framework integrates and extends is described
in detail in Sect. 2. Section 3 presents two use cases where the text analysis
components of the Framework are exploited to support more complex tasks. In
particular the rich structured representation of the contents of a paper that is
generated by the Framework is used to extract knowledge graphs in order to
foster scientific creativity and to represent the contents of the same paper as a
RDF dataset. In Sect. 4 we provide our future plans to extend an evaluate the
Dr. Inventor Framework.

2 Dr. Inventor Framework

The first version of the Dr. Inventor Framework enables a core set of structural,
linguistic and semantic analyses over scientific papers. This Section provides, first
of all, an overview of the general architecture of the Framework (Subsect. 2.1).
In this way we introduce the high-level platform where the information provided
by the text mining tools and Web services that are integrated in the Frame-
work is merged thanks to the adoption of a shared data model of rich scientific

1 http://jats.nlm.nih.gov/.
2 http://www.elsevier.com/author-schemas/elsevier-xml-dtds-and-transport-schemas.
3 http://cs.unibo.it/save-sd/rash/documentation/index.html.
4 The last release of Framework together with the related documentation can be down-

loaded at: http://backingdata.org/dri/library/.

http://jats.nlm.nih.gov/
http://www.elsevier.com/author-schemas/elsevier-xml-dtds-and-transport-schemas
http://cs.unibo.it/save-sd/rash/documentation/index.html
http://backingdata.org/dri/library/
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publication. Then, we describe in detail each one of the scientific text analysis
components that are part of the first version of the Framework (Subsect. 2.2).

2.1 Architectural Overview

Considering the extensive adoption of Java as the programming language of
choice in a multitude of contexts and the broad availability of both general-
purpose and text mining libraries and tools implemented in Java, we chose
to rely on Java to build Dr. Inventor Framework. In particular, we exploited
and extended the Java-based text engineering architecture GATE [2]. We took
advantage of GATE programming facilities to support the modeling, access and
storage of textual annotations as well as the integration of external text mining
tools and services. In fact, each component of the Framework is structured as a
GATE Processing Resource5.

An overview of the pipeline of text analysis components that are integrated in
the first version of Dr. Inventor Framework is shown in Fig. 1. We can notice how
each component relies on the output of previous ones and is responsible for the
analysis of a defined aspect of a scientific publication. The Framework exposes
the result of article analysis by specifying an enriched scientific publication data
model: it consists of a set of Java classes that provides easy programmatic access
to all the information extracted from a paper.

2.2 Scientific Text Components

This section introduces the set of text mining tools that have been integrated as
components of the first version of the Dr. Inventor Framework.

PDF-to-text Converter. Objective: convert a PDF paper to a semi-
structured text (XML) by spotting basic structural elements (title, abstract,
sections, bibliographic entries, etc.), so as to enable further processing.

Currently there are several tools that support the conversion of PDF files
to raw or semi-structured text. From the perspective of scientific text mining,
these tools can be grouped into two broad categories: general-purpose PDF
to text converters including Apache PDFbox6, Pdf2xml7 and Poppler8 and
tools tailored to the conversion of PDF files of scientific articles like
LA-PDFText9 [3], Cermine10 [4], SectLabel11 [5] or PDFX12 [6]. After a com-
parative test of these tools, in the first version of the Dr. Inventor Framework,

5 https://gate.ac.uk/sale/tao/splitch7.html.
6 http://pdfbox.apache.org/.
7 http://pdf2xml.sourceforge.net/ and http://sourceforge.net/projects/pdf2xml/.
8 http://poppler.freedesktop.org/.
9 https://code.google.com/p/lapdftext/.

10 http://cermine.ceon.pl/.
11 http://wing.comp.nus.edu.sg/parsCit/.
12 http://pdfx.cs.man.ac.uk/.

https://gate.ac.uk/sale/tao/splitch7.html
http://pdfbox.apache.org/
http://pdf2xml.sourceforge.net/
http://sourceforge.net/projects/pdf2xml/
http://poppler.freedesktop.org/
https://code.google.com/p/lapdftext/
http://cermine.ceon.pl/
http://wing.comp.nus.edu.sg/parsCit/
http://pdfx.cs.man.ac.uk/
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Fig. 1. Architectural overview of the components of Dr. Inventor Framework

we decided to face PDF-to-Text conversion by integrating the on-line Web API
of PDFX. PDFX, thanks to its robust rule-based PDF analysis engine, manages
to perform most of the times clean and consistent extractions of semi-structured
textual contents from PDF files. The XML output of PDFX spots basic struc-
tural elements of the converted PDF publication: the title, the abstract, the sec-
tions and the bibliographic entries. PDFX has two main restrictions: the current
PDF-to-Text conversion is available only as an on-line Web service and cannot
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deal with PDF files greater than 5 Mb. As a consequence, in future releases of the
Framework we are planning to substitute PDFX with a customized version of a
general purpose PDF-to-Text converter, like the Apache PDFbox Java library.

Sentence Splitter. Objective: spot sentences of scientific publications by
identifying their boundaries.

We customized the rule-based sentence splitter integrated in ANNIE13, the
information extraction system bundled in GATE. To this purpose, we analyzed
the sentence split errors performed on a set of 40 Computer Graphics papers
(occurring with expressions like: i.e., et al., Fig., Tab.) and modified the sentence
splitting rules of ANNIE in order to correctly deal with these situations.

Inline Citation Spotter. Objective: identify the inline citation markers in
the text of the paper and link each inline citation marker to the proper reference
in the bibliography section of the same paper.

Fig. 2. Inline citation markers and spans

The inline citation spotter performs the following processing tasks (see Fig. 3):

– task A: identification of inline citation spans and markers (see Fig. 2) in the
textual contents of the paper by means of a set of rules implemented in JAPE,
an pattern matching formalism available in GATE14 tailored to match wide-
spread inline citations styles;

– task B : identification of the bibliographic entries, usually listed at the end
of the paper. In the first release of the Framework, bibliographic entries are
spotted by PDFX;

– task C : linking of each inline citation marker to the referenced bibliographic
entry by means of a set of heuristics;

– task D : identification of the syntactic/non-syntactic role of each inline citation
marker, in order to properly support the dependency parsing of the sentence
in which the citation marker occurs (see following text analysis components).
The first inline citation marker of Fig. 3 has a syntactic role in the sentence
(subject), while the second one has no syntactic role. To verify the syntactic
role of an inline citation span we exploit the approaches described in [7,8].

13 https://gate.ac.uk/sale/tao/splitch6.html#chap:annie.
14 https://gate.ac.uk/sale/tao/splitch8.html.

https://gate.ac.uk/sale/tao/splitch6.html#chap:annie
https://gate.ac.uk/sale/tao/splitch8.html
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Fig. 3. The processing tasks of the inline citation spotter

Web-Based Reference Parser. Objective: access on-line Web services to
parse bibliographic entries so as to retrieve fine-grained publication metadata
(title, authors name, year of publication, etc. see Fig. 4).

In the first version of Dr. Inventor Framework we access and merge the results
of the following on-line Web services in order to parse bibliographic entries:

– FreeCite15: this on-line tool analyzes citations by relying on a conditional
random field sequence tagger trained on the CORA dataset, made of 1838
manually tagged bibliographic entries16;

– CrossRef 17: this Web service matches free form citations/bibliographic entries
to the items of CrossRef publications metadata archive;

– Bibsonomy18: its Web API enables the retrieval of the BibTeX metadata of a
publication from the Bibsonomy database by providing its title in the query.

We merge the results retrieved by querying the REST endpoints of these
three Web services, trying to determine for each bibliographic entry the title of
the paper, the year of publication, the list of authors, and the venue or journal of

15 http://freecite.library.brown.edu/welcome.
16 https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html.
17 http://search.crossref.org/help/api.
18 http://www.bibsonomy.org/help/doc/api.html.

http://freecite.library.brown.edu/welcome
https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html
http://search.crossref.org/help/api
http://www.bibsonomy.org/help/doc/api.html
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publication. We give precedence to Bibsonomy results over CrossRef and Freecite
outputs, when the outputs of their responses disagree.

Citation-Aware Dependency Parser. Objective: execute the dependency
parsing of the sentences of the paper by properly dealing with sentences that
include inline citations.

In the first version of Dr. Inventor Framework we rely on the MATE19 depen-
dency parser [9] to determine the syntactic structure of the sentences of a paper.
MATE analyzes a paper sentence-by-sentence by performing the following tasks:
tokenization, lemmatization, POS tagging and dependency parsing. We modified
the parser to correctly deal with inline citation spans when building the depen-
dency tree of a sentence. In particular we exclude inline citation spans from the
textual contents to parse if they have no syntactic role in the sentence to analyze
(see the second citation shown in Fig. 3). On the contrary, if we determine that
a citation has a syntactic role with respect to the sentence to parse (like the first
citation of Fig. 3 where the inline citation span is the subject of the sentence), we
replace the whole inline citation span with the word ‘citation’ before processing
it by MATE.

Fig. 4. Example of parsed bibliographic entry

Scientific Discourse Annotator. Objective: automatically classify each sen-
tence of a paper as belonging to one of following scientific discourse categories:
Approach, Challenge, Background, Outcomes and Future Work.

We trained and integrated in the Framework a classification model useful
to determine the scientific discourse category of the sentences of a paper. The
classifier was trained over the set of 8877 sentences belonging to 40 Computer
Graphics papers that constitute the Dr. Inventor Rhetorically Annotated Cor-
pus [10]. All the sentences of the Corpus have been manually characterized by
three annotators by associating a scientific discourse category, obtaining a value
of inter-annotator agreement (Cohen’s k) equal to 0.6567. We identified the set
of scientific discourse categories that we used to characterize the sentences of
the corpus by relying on the scientific discourse annotation schemata proposed

19 https://code.google.com/p/mate-tools/.

https://code.google.com/p/mate-tools/
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by [14,15]. This set of scientific discourse categories has been also determined
with the purpose of correctly characterizing the contents of Computer Graphics
papers. Alternative sets of scientific discourse categories have been proposed like
the one referred to as IRMAD (Introduction, Results, Method, Abstract and
Discussion) [16,17], that is tailored to characterize the discursive structure of
articles concerning medicine and biology.

The sentence classifier integrated in the Framework exploits both lexical and
syntactic features to model each sentence and is based on a Support Vector
Machine with linear kernel [11]. We exploited the machine learning Java library
Weka20 to support all the tasks related to rhetorical sentence classification. This
classifier obtains a F1 score equal to 0.764 as result of a 10-fold cross validation
over the set of sentences of the Dr. Inventor Rhetorically Annotated Corpus.

Knowledge Graph Builder. Objective: build graph-based representations
that models the contents of papers.

In the first version of Dr. Inventor Framework we implemented a set of rules to
extract subject-verb-object triples from the dependency graph generated by the
Citation-aware dependency parser. We merge the contents of each subject and
object node with its eventual modifiers. The output of this process constitutes
the knowledge-graph generated by the Knowledge graph builder. In Fig. 5 we
show an example of a subject-verb-object triple of a knowledge-graph.

3 Dr. Inventor Framework in Practice

In this Section we present two application scenarios where the rich, structured
versions of scientific publications generated by means of the Dr. Inventor Frame-
work are exploited to support more complex data analysis and modeling tasks.
The first scenario concerns the core aim of Dr. Inventor Project: the automated
identification of analogies in scientific literature to support creativity. In the sec-
ond scenario we deal with the creation of RDF graphs of scientific publications.

3.1 Scenario 1: Looking for Creative Analogies

The Dr. Inventor Framework is developed in the context of the European Project
Dr. Inventor. The final aim of this Project is to provide a set of tools and compu-
tational approaches to support and stimulate scientific creativity. In particular,
the Project focuses on the investigation of analogy-based creativity that is the
creative process triggered by the identification of unforeseen analogies between a
pair of artifacts (e.g. research papers). Since Dr. Inventor deals with the scientific
domain, the core artifacts that are considered are Research Objects. A Research
Object is any kind of output of research like publications, reports, patents,

20 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 5. Example of subject-verb-object triple extracted by the Knowledge-graph
builder

datasets, workflows, etc. Dr. Inventor aims at supporting users to explore cre-
ative associations between Research Objects by browsing their latent structural
similarities.

As explained in detail in [12], Research Objects and in particular the con-
tents of scientific publications are modeled in Dr. Inventor by means of sets
of subject-verb-object triples as required by Gentner’s theoretical framework to
model analogies [13]. By relying on the Knowledge graph builder component,
the Dr. Inventor Framework enables the automated extraction and aggregation
of such triples to represent the contents of research papers. Figure 6 sketches
how, starting from a sentence extracted from a PDF paper, its content is parsed
by the Citation-aware dependency parser and then a Knowledge graph is built
by extracting subject-verb-object triples. Dr. Inventor is investigating measures

Fig. 6. Example of the steps to extract subject-verb-object triples from a PDF paper
(verbs are into rectangular boxes)
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of structural and semantic similarity among the triples extracted from scientific
publications in order to identify and propose analogies among the corresponding
contents of the original papers [12]. An evaluation of the quality of the extracted
triples together with their usefulness to support scientific creativity is planned
in the following stages of Dr. Inventor Project.

3.2 Scenario 2: Modeling Papers Contents as RDF Datasets

Dr. Inventor Framework has been exploited to enable the automated genera-
tion of RDF datasets that represent the contents of scientific articles thanks to
the detailed, structured information that can be extracted from scientific pub-
lications. In particular, in the context of the Semantic Publishing Challenge21,
organized as part of the European Semantic Web Conference 2015, we have
exploited the Framework to extract information from the header and the bibli-
ography of papers as required by one of the three Tasks of the same Challenge.
Considering the set of PDF papers that are accessible online on the CEUR-WS
Proceedings Web Portal22, we used the Framework to easily parse their con-
tents. Then we modeled the information we extracted as RDF triples by using
widespread Semantic Publishing Ontologies, as shown in Fig. 7.

Fig. 7. RDF data model of bibliographic data extracted from scientific publications -
Namespace prefixes: co: Component Ontology, fabio: FRBR-aligned Bibliographic
Ontology, biro: Bibliographic Reference Ontology, swrc: Semantic Web for Research
Communitie Ontology, ceurws: CEUR-WS pubblications Ontology

Thanks to the RDF data modeling of scientific publications, by means of
simple SPARQL queries we are able to perform complex bibliographic searches
among the papers published at CEUR-WS. For instance we can easily select all
the papers that have less than a specific number of citations or that cited only
works published before 2010. In the context of the Semantic Publishing Challenge
2015, 10 SPARQL queries where proposed so as to evaluate the information
extracted from a set of test papers and modeled as RDF triples. Considering the
subset of 5 SPARQL queries that deal with contents mined from the headers and
bibliographic entries of the test paper, we achieved an average F-1 score of 0.55.

21 https://github.com/ceurws/lod/wiki/SemPub2015.
22 http://ceur-ws.org/.

https://github.com/ceurws/lod/wiki/SemPub2015
http://ceur-ws.org/
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4 Conclusions and Future Works

We presented the initial version of the Dr. Inventor Framework, a publicly avail-
able Framework that enables the extraction of several types of structural and
semantic information from the plain text or PDF document of scientific publica-
tions. The Framework is intended as an integrated collection of utilities useful to
support the execution of more complex text analysis tasks over scientific articles.
After a detailed description of the components that are integrated in the Frame-
work, we have presented two practical examples of its use in specific scientific
literature mining tasks: the extraction of subject-verb-object triples from papers
contents in order to foster creative analogies and the generation of RDF datasets
describing scientific articles’ contents. Dr. Inventor Framework is distributed as
a Java library.

The version of the Dr. Inventor Framework presented in this paper is still
in its early stages. As future work, we plan to improve the performances and
perform both intrinsic and extrinsic evaluations of the components of the Frame-
work by giving priority to the ones that support the information extraction needs
of the Project Dr. Inventor. In particular, we aim at improving the Knowledge
graph builder by both integrating a co-reference resolution module in order to
be able to effectively merge duplicated nodes and by validating its output with
respect to the effectiveness in supporting the discovery of scientific analogies.
We will integrate scientific paper summarization capabilities by relying on the
support of the SUMMA library [18]. Moreover, we plan to integrate in the Frame-
work and customize an existing PDF-to-Text conversion library in order not to
rely on external Web service like PDFX. We also plan to improve and further
validate the performances of the Scientific discourse annotator by relying on
sequence classifiers. To conclude, we would also explore the possibility to provide
access to the text analysis components of the Framework by a set of RESTful
Web services.
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Abstract. Kernels for structured data have gained a lot of attention in
a world with an ever increasing amount of complex data, generated from
domains such as biology, chemistry, or engineering. However, while many
applications involve spatial aspects, up to now only few kernel methods
have been designed to take 3D information into account. We introduce
a novel kernel called the 3D Neighborhood Kernel. As a first step, we
focus on 3D structures of proteins and ligands, in which the atoms are
represented as points in 3D space. By comparing the Euclidean distances
between selected sets of atoms, the kernel can select spatial features
that are important for determining functions of proteins or interactions
with other molecules. We evaluate the kernel on a number of benchmark
datasets and show that it obtains a competitive performance w.r.t. the
state-of-the-art methods. While we apply this kernel to proteins and
ligands, it is applicable to any kind of 3D data where objects follow a
common schema, such as RNA, cars, or standardized equipment.

1 Introduction

Over the past years, kernel functions for structured data have gained a lot of
attention and were successfully applied to many real-world problems. Chemoin-
formatics is an area which is of particular interest. Since molecules are naturally
represented by graphs, graph kernels have proven very suitable for this kind of
problems and they have obtained excellent results [5,6,21]. However, until now,
attention has mostly focused on the so-called small (mostly drug) molecules.
In this context, even NP-hard problems can usually still be solved efficiently
in practice. The ability to tackle proteins, which are two orders of magnitude
larger, is a far bigger challenge.

Proteins are macromolecules that play a crucial role in a wide range of bio-
logical processes. They are responsible for, e.g., signaling responses between or
within cells, the formation of structural elements, or catalyzing chemical reac-
tions. In order to obtain more insights into these processes, many of them have
been modeled by machine learning and data mining methods, with applications
as predicting the function of proteins [24], the ligands they bind to [6,15], or
drug resistance in HIV [8].

c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 221–235, 2015.
DOI: 10.1007/978-3-319-24282-8 19
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Fig. 1. Chemical structure of the peptide bond (bottom) and the three-dimensional
structure of a peptide bond between an Alanine and an adjacent amino acid (top)
(from: Wikipedia/Protein). The black box indicates a single peptide bond. We call all
the atoms belonging to the side chains or residues (abbreviated as R1, R2, R3 in the
figure) side chain atoms. We call all other atoms backbone atoms.

A protein consists of a polypeptide chain of amino acids linked with peptide
bonds (Fig. 1). The linked series of carbon, nitrogen and oxygen atoms is known
as the protein backbone and the variable parts of the amino acids are the residues
or side chains. Proteins can be represented as graphs using different approaches
[22]. In some approaches, atoms are represented as vertices and bonds as edges
whereas others use nodes to represent amino acids and edges to represent the
strength of interaction between the side chains of two amino acids. The struc-
tural similarities can be measured with graph mining tools such as kernels [21]
or distance measures [25]. Analyzing structural similarity is motivated by the
fact that proteins having similar structures are more likely to exhibit common
biochemical properties [2].

However, existing graph kernels have multiple limitations. First, they perform
poorly on large labeled graphs [26]. Second, they do not take into account 3D
information directly. By transforming the protein structures into graphs, infor-
mation about angles and exact distances is lost. Third, the size of protein graphs
have a large impact on their efficiency. In general, it is not clear yet whether
learning on 3D structures directly results in accurate models and whether this
approach performs better than state-of-the-art graph kernels applied to proteins.

In this paper, we propose a new kernel for 3D data, called the 3D Neighbor-
hood Kernel (3DNK). In contrast to existing kernels, it takes spatial distances
into account, focusing on geometry rather than relationships in a graph. As a first
step, we focus on two biological applications involving 3D structures of proteins
and ligands. The first task involves the classification of proteins into enzymes
and Gene Ontology (GO) classes [20], while the second task involves the pre-
diction of binding affinities, representing interaction strength between proteins
and ligands [1]. We will compare our kernel to four state-of-the-art methods:
two graph kernels (the Fast Subtree Kernel (FSTK) [26] and the Neighborhood
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Subgraph Pairwise Distance Kernel (NSPDK) [6]) and two methods that were
created specifically to solve the aforementioned biological tasks (the Mammoth
kernel [20] and RF-Score [1]). Our results show that the 3DNK kernel is com-
petitive with the state-of-the-art methods w.r.t. predictive performance, while
it can be applied to a larger variety of tasks.

The remainder of the paper is structured as follows. Section 2 presents the
necessary definitions and notation w.r.t. support vector machines and kernel
methods. We describe the 3DNK kernel in Sect. 3. Section 4 performs an experi-
mental evaluation of 3DNK and a comparison with the state-of-the-art methods.
Section 5 discusses related work and Sect. 6 concludes.

2 Preliminaries

Kernel Functions. Given a set X and a function K : X × X → R, we say that
K is symmetric if for any xi and xj ∈ X holds that K(xi, xj) = K(xj , xi), and K
is positive-semidefinite if for any n ≥ 1 and any x1, . . . , xn ∈ X, the matrix K
defined by K(xi, xj) is positive-semidefinite, that is,

∑
ij cicjK(xi, xj) ≥ 0 for all

c1, . . . , cn ∈ R or equivalently if all its eigenvalues are nonnegative. The function K
is called a kernel function and K(xi, xj) represents a measure of similarity between
xi andxj , which can be for example vectors, strings, trees, graphs, or 3D structures.

Support Vector Machines (SVMs). Let X be a non-empty set of n train-
ing examples associated with class labels {xi, yi}n

i=1, xi ∈ X = R
d, d ∈ N the

dimension of input space, and yi ∈ R the target value (discrete in the classi-
fication case, a numerical value in the regression case). The task is to learn a
function f : X → y to predict the target value of unlabeled examples. An SVM
gives the solution to, for example, the binary classification problem by intro-
ducing a hyperplane that separates the training data into positive and negative
examples. An infinite number of such hyperplanes exists. Let w ∈ R

d be the
weight vector that determines the orientation of the hyperplane and b ∈ R be
the threshold that determines the offset of the plane from the origin. The class
of such hyperplanes is then given by 〈w,x〉 + b = 0 and corresponds to the deci-
sion function f(x) = sgn(〈w,x〉 + b). The maximum margin classifier identifies
the optimal hyperplane that is distinguished by the maximum distance from
the nearest training objects in both the classes. The optimal solution is unique
and sparse, and it is determined by data points close to the decision boundaries
called support vectors. In the regression case, a similar method is applied, but
the orientation of the hyperplane is determined by the ε-sensitive loss, which
measures the deviation from the target values yi [7].

In many real-world situations, the data are not easily separable in the input
space. However, linear separation can be achieved if the input data are projected
onto some higher dimensional dot product feature space F . Let φ : X → F be
a non-linear mapping from input space X to feature space F . Surprisingly, the
explicit mapping of data from input space to feature space is not needed. A kernel
function, mapping K(xi, xj) to 〈φ(xi), φ(xj)〉 makes it possible to compute dot
products in the feature space without explicitly knowing the mapping φ [7,28].
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3 The 3D Neighborhood Kernel

In this section, we will first present a family of kernels that act on 3D point
sets (Sect. 3.1). Then, we discuss how we instantiate different kernels from this
family in order to solve two specific biological tasks (Sect. 3.2). Finally, we show
how we can make the kernel more efficient (Sect. 3.3).

3.1 The 3D Neighborhood Kernel Family

Let P = R
3 × Σ be the set of all 3D points, embedded in a Euclidian space and

labeled over an alphabet Σ. For a point p ∈ P , let ζ(p) and λ(p) represent its
3D coordinates, i.e., a tuple 〈xp, yp, zp〉, and its label, respectively. Furthermore,
let the input space X = 2P represent the set of all possible 3D point sets. We
will call a point set X ∈ X an example.

Let n ∈ N be a parameter. Let FΔ be the family of all functions Δ : X → X
for which ∀X : Δ(X) ⊆ X, i.e., for any point set, Δ outputs a subset of that
point set. Let FΦ be the family of all functions Φ : X × P → Pn such that for
every X ∈ X and p ∈ X, Φ(X, p) = 〈p1, p2, . . . , pn〉 ∈ Xn is a tuple of n points
with pi ∈ X for 1 ≤ i ≤ n. For a function Φ ∈ FΦ, we define:

dΦ(X, p) = 〈‖ζ(p) − ζ(p1)‖, ‖ζ(p) − ζ(p2)‖, . . . , ‖ζ(p) − ζ(pn)‖〉,

where Φ(X, p) = 〈p1, p2, . . . , pn〉. This function generates a tuple of Euclidian dis-
tances, where the distances are those from p to the corresponding point decided
by Φ(X, p).

The idea of the 3D Neighborhood Kernel (3DNK) is to compare point sets
based on their 3D structure. More specifically, the kernel performs the following
steps on its two input point sets: (i) for each of both point sets, a subset of points
is selected (called the selected points) according to a user-specified criterion Δ;
(ii) for each selected point, its neighborhood is retrieved according to a user-
specified neighborhood function Φ; and (iii) for each point in the sets of selected
points, a feature vector is constructed describing the local spatial conformation
of that point in its neighborhood. The distance between two point sets is then
calculated by comparing the feature vectors of all pairs of identically labeled,
selected points. The construction of a tuple of distances for a point a ∈ ΔX is
shown in Fig. 2.

Definition 1 (3DNK family). Let n ∈ N be a neighborhood size parameter,
Δ ∈ FΔ be a selection function, Φ ∈ FΦ be a neighborhood function, and σ ∈ R

+

be a parameter for the Gaussian RMS width. The 3DNK family, KΔ,Φ : X ×X →
R, is defined as follows:

KΔ,Φ(X,Y ) =
∑

a∈Δ(X)

∑
b∈Δ(Y )

KG (dΦ(X, a), dΦ(Y, b)) · I (λ(a) = λ(b)) ,
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(a) An example X and its
Δ(X).

(b) Neighborhood for a
selected point: Φ(X, a) =
〈n1, n2, n3, n4, n5〉.

(c) dΦ(X, a) =
〈d1, d2, d3, d4, d5〉, where
di is the distance between
a and the corresponding
neighborhood point ni.

Fig. 2. Overview of the defined functions Δ, Φ and dΦ.

where KG : Rn × R
n → R is a Gaussian-based distance kernel, i.e.,

KG(va,vb) = exp

(−‖va − vb‖2
σ2

)
,

and I(x) = 1 if x is true, and 0 otherwise.

It can be easily verified that instantiations of the 3DNK family will lead to
positive-semidefinite kernels.

3.2 Instantiations of the 3DNK Kernel

In this section, we discuss how we instantiate the two function parameters of the
3DNK family in order to solve two biological tasks: predicting protein function
and protein-ligand interaction. We denote with C the set of all chemical elements.

Predicting Protein Function. In this setting, an example is a protein 3D
structure, consisting of atoms. For such a protein X and an atom a ∈ X, we
define Δ(X) as the set of its side chain atoms, and the neighborhood function
Φ(X, a) will only select backbone atoms of X in the neighborhood of a. The
motivation for this is that the distances between atoms from the backbone and
atoms from the side chains will influence binding pocket geometry, and hence
determine protein function. For example, when predicting resistance in HIV pro-
teins, resistant proteins will generally have similar backbones, but the acquired
mutations (changing the side chains of the protein) will influence the distances
between backbone and side chain atoms.

Let X be a protein, a ∈ Δ(X) a side chain atom, and Σ = C. We present two
approaches for mapping a side chain atom to a feature vector, i.e., two candidates
for the function Φ as given in Definition 1, resulting into two kernels:
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(a) Nearest neighbor neigh-
borhood selection.

(b) Sequence window neigh-
borhood selection centered
around the nearest backbone
atom (n3).

Fig. 3. The backbone atoms n1 to n5 for an atom a (neighborhood size 5).

1. Nearest Neighbor. For each side chain atom a, Φnn(X, a) maps the atom
to the n nearest backbone atoms, ordered in ascending order (Fig. 3(a)). We
denote this kernel with 3DNKnn.

2. Sequence Window. For each side chain atom a, Φsw(X, a) maps the atom
to n backbone atoms, by using a window of size n over the backbone, centered
around its nearest backbone atom. The tuple of size n consists of the backbone
atoms in the window, ordered from left to right (Fig. 3(b)). Note that amino
acids towards both ends of the sequence do not have a complete window, and
therefore these side chain atoms are not used in the kernel. We denote this
kernel with 3DNKsw.

Predicting Protein-Ligand Interaction. In this setting, an example X is
the set of ligand atoms and the protein binding pocket atoms to which the ligand
is bound. We define Δ(X) as the set of ligand atoms, while the neighborhood
function Φ will select atoms from the protein binding pocket. The motivation
for this is that the distances between the ligand atoms and the atoms from
the binding pocket will influence the binding affinity. We again present two
approaches:

1. Ligand Type. For each ligand atom a, we construct the neighborhood by
using Φnn to select the nearest protein atoms (Fig. 4(a)). We reuse the nota-
tion 3DNKnn, as it is very similar to the one of the previous learning task.

2. Ligand-protein Atom Type. Contrary to 3DNKnn, which does not take
into account the atom types at the protein side, here we construct for each
ligand atom a and each atom type t the neighborhood by selecting the nearest
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(a) Nearest neighbor neigh-
borhood selection.

(b) Nearest neighbor, atom-
type dependent neighbor-
hood selection of atom a
and neighbors with label C,
λ(a) = (S, C).

Fig. 4. The protein atoms n1 to n5 for an atom a (neighborhood size 5).

protein atoms having an atom type t. Constructing multiple neighborhoods
per ligand atom (one for each atom type), can be done by applying the fol-
lowing procedure: (i) for each ligand atom a ∈ Δ(X) and for each atom type
t ∈ Σ, add a new point p to Δ(X) with ζ(p) = ζ(a) and λ(p) = (λ(a), t) ∈ Σ2;
(ii) remove the original ligand atom a from Δ(X). For a point p with label
(λ(a), t), Φat(X, p) selects the n nearest protein atoms with label t. The kernel
value only depends on selected points with the same label, and hence two lig-
and atoms a and b will be compared if and only if (i) they have the same atom
type, and (ii) both their neighborhoods are constructed with respect to the
protein atoms with the same atom type. This process is shown in Fig. 4(b).
We denote this kernel with 3DNKat.

3.3 Implementation Optimizations

A trivial implementation of this kernel would give a complexity of

O (
n2 × |Δ(X)| × |Δ(Y )| × |X| × |Y |).

As the neighborhood function Φ in Definition 1 only depends on a single example,
calculating the feature vectors can be done as a preprocessing step. Furthermore,
we can optimize both preprocessing and kernel value computation:

– Preprocessing. Our different versions of the neighborhood function Φ pro-
posed in Sect. 3.2 depend on finding one or more nearest atoms, for which
we use a k-d tree [11]. Constructing a k-d tree requires time |X| log |X|, and
finding n nearest neighbors requires time n log |X| for each atom. The total
runtime for the preprocessing step can thus be upper bounded by

O ((|X| + n|S|) log |X|),
subquadratic for values of n < |X|/ log |X|.
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– Kernel Value Approximation. Computing the actual kernel value takes
quadratic time in |S|. However, for a point from Δ(X), only those points
from Δ(Y ) with a similar feature vector will significantly influence the fea-
ture vector, i.e., their representations in feature space are near. For a point a
mapped to va ∈ R

n, we consider only those points vb that lie within a hyper-
cube with side 2r around va. This limits the number of points but induces an
error ε in the kernel value. The value for r for a given ε is then

r = σ

√
2 log

( |S|
ε

)
.

Finding those points inside the hypercube can be done efficiently by using
orthogonal range trees [17], which have a worst-case complexity of

O
(
n|S|1− 1

n + k
)
,

where k is number of points inside the hypercube. Note that k grows to |S|
as ε tends to zero. In our implementation we use a k-d tree as defined in [4].

The total complexity of both preprocessing and computing the kernel value can
be upper bounded by

O
(
n × |X| ×

(
|X|1− 1

n + k
))

,

which is at most quadratic in |X|.
The implementation of the 3DNK kernel can be downloaded at https://dtai.

cs.kuleuven.be/software/3DNK.

4 Experimental Evaluation

In this section, we perform an experimental analysis to assess the predictive per-
formance of the different instantiations of 3DNK on the one hand, and w.r.t. the
state-of-the-art methods on the other hand. In order to do so, we conduct exper-
iments on four benchmark datasets (defining 31 binary classification problems
and 1 regression problem) for four state-of-the-art methods.

4.1 Datasets

We assembled a first dataset (HIV) on our own, adopted two dataset collections
of protein 3D structures (EC and GO) from Qiu et al. [20], and adopted a fourth
dataset of 3D structures of protein-ligand pairs (PDBbind) from Ballester and
Mitchell [1].

https://dtai.cs.kuleuven.be/software/3DNK
https://dtai.cs.kuleuven.be/software/3DNK
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HIV Resistance (HIV). This dataset contains 2048 protein structures belong-
ing to HIV protease. The protein sequences were retrieved from the Stanford
database (http://hivdb.stanford.edu). 1024 sequences from patients treated with
the protease inhibitor indinavir were labeled as therapy-resistant while 1024
other sequences from patients who did not receive any treatment were labeled
as therapy-naive. Since there were no 3D structures available, we generated each
protein’s 3D structure through homology modelling, using the tool Modeller
[23] and applying standard parameters.

Enzyme Classification (EC). The Enzyme Classification (EC) dataset [10]
contains 998 protein structures derived from the EC hierarchy, of which the top
level consists of six enzyme classes. The benchmark contains 498 PDB struc-
tures representing these classes, plus an additional 498 PDB structures of non-
enzymes. The dataset defines 7 different binary classification tasks: one predicts
whether a protein structure is an enzyme, and the six others predict the cor-
rect enzyme class within the set of enzymes, adopting a one-vs-all strategy. The
average number of examples per dataset is 569.

Gene Ontology Classification (GO). The Gene Ontology (GO) dataset links
1024 proteins to 23 GO terms [20]. All GO terms are leaves of the GO hierarchy,
while 11 of them belong to the molecular function branch, 8 to the biological
process branch and 4 to the cellular component branch. The authors transform
this multi-label problem into a set of binary classification problems in the follow-
ing way. For each GO term T , they partition the set of proteins into three sets.
First, all proteins that are annotated with T are labeled as positive. Next, all
paths from T to the root of the GO hierarchy are traversed. Any protein having a
child of the terms belonging to these paths is not taken into consideration, since
the authors argue that such proteins might not be properly assigned. Finally, a
randomized sample of proteins (ensuring a ratio of negatives to positives of 3 to
1) of that are not on the path from T to the root are labeled as negative. The
average number of examples per dataset is 173.

Protein-Ligand Interactions (PDBbind). The PDBbind benchmark dataset
was designed to assess the performance of scoring functions for molecular docking.
The aim is to predict whether a small molecule (called ligand) will bind to a target
protein. The strength of the binding is expressed as a numerical value representing
the log-value of the measured binding affinity, constituting a regression problem.
Here we use the 2007 version of the PDBbind database [29], which was divided
by [1] into a training set of 1105 examples and a carefully selected test set of 195
examples, which has an equal number of representatives for each protein family.

4.2 State-of-the-art Methods

We compare our method against four state-of-the-art methods that take as input
graphs or 3D structures of proteins, ligands or combinations thereof. The first
two are graph kernels which have been applied to biological data before, while

http://hivdb.stanford.edu
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the last two methods were designed specifically to solve the tasks of predicting
protein function and protein-ligand interaction.

Fast Subtree Kernel. The Fast Subtree Kernel (FSTK) is a graph kernel
proposed by Shervashidze and Borgwardt [26] and is based on the Weisfeiler-
Lehman test for graph isomorphism. FSTK iteratively looks at neighborhoods
of nodes and unfolds the structure to get a tree-like pattern called a subtree. It
then counts the matching subtree patterns of height up to h in two graphs G and
G′. The authors show in their paper that FSTK outperforms four state-of-the-art
graph kernels.

Fast Neighborhood Subgraph Pairwise Distance Kernel. Costa and De
Grave [6] propose a fast graph kernel (NSPDK) based on the pairwise distance
of neighborhood subgraphs and show that it outperforms four state-of-the-art
graph kernels. Their decomposition kernel works as follows. First, pairs of so-
called neighborhood subgraphs are generated, and then the kernel counts the
number of identical pairs of neighboring graphs of radius r at distance d between
two graphs.

Mammoth Kernel. Qiu et al. [20] propose a kernel that is based on the struc-
tural alignment between two proteins. However, this alignment score cannot be
converted into a kernel function directly, because it is not positive-semidefinite.
Instead, the authors employ an empirical kernel map as follows. For a given
dataset of structures X = x1, . . . , xn, a structure xi is represented as an n-
dimensional vector in which the jth entry is the Mammoth score between xi and
xj . The resulting Mammoth kernel incorporates information about the alignabil-
ity of a given pair of proteins. In their paper, the authors compare the Mammoth
kernel to five other state-of-the-art kernels for protein structures and show that
it outperforms them.

RF-Score. Ballester and Mitchell [1] introduce RF-Score as an alternative
to traditional scoring functions for molecular docking. RF-Score uses random
forests to make predictions based on 36 features they extract from the protein-
ligand pairs. Each feature is an occurrence count of a particular atom type pair
(one from the ligand and one from the protein) at a maximum distance of 12
Angström from each other. In their paper, the authors show that RF-Score out-
performs 18 scoring functions on a testset of 195 examples. Since we use exactly
the same training and test set, we adopt the results of the different scoring
functions.

4.3 Methodology

To evaluate the kernels, we generate the kernel matrices, train support vector
machines (SVMs) on them and evaluate their predictive performance. As SVM
implementation we use SVMlight [14]. To evaluate the methods on the PDBbind
dataset, we compare with published results [1].
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Parameter Settings. We optimized the following parameters of the different
methods on a separate tuning set. We tuned the regularization parameter c of
the SVM out of the values {10−3, 10−2, 10−1, 100, 10−1, 102, 103}. For 3DNK, the
neighborhood size (parameter n) was tuned out of the set {15, 21, 27, 33}, and the
parameter σ out of the set {10−2, 10−7/4, 10−3/2, 10−5/4, 10−1, 10−3/4, 10−1/2,
−10−1/4, 100, 101/4, 101/2, 103/4, 101}, while the precision parameter ε was set to
10−3. Since FSTK and NSPDK are graph kernels, we could not give them the
3D data directly. Instead, we adopted the strategy of Borgwardt et al. [3] and
constructed for each protein structure a graph in which every amino acid is a
node. Next, we added an edge between two amino acids if the amino acids are less
than a certain distance from each other. For the protein datasets (HIV, EC and
GO), we tuned FSTK and NSPDK for thresholds of 6 and 8 Angström (values
suggested by the authors). For the PDBbind dataset, there are no amino acids
on the ligand side, so we generated graphs with atoms as nodes instead. Since
these are graphs of much smaller granularity, we added a distance threshold of 4
Angström to create graphs. For FSTK, we tuned one additional parameter h (the
number of iterations) out of {1, ..., 11}. For NSPDK, we tuned two additional
parameters: the distance parameter out of {1, 2, 3, 4} and the radius parameter
out of {0, 1, 2}, as recommended by the authors. For the Mammoth kernel, no
parameters had to be tuned.

Evaluation. To evaluate the classification models, we use the area under the
ROC curve (AUROC) score [19]. To evaluate the regression models, we use
Pearson’s correlation coefficient (R), Spearman’s correlation coefficient (RS) and
standard deviation of the difference between predicted and measured binding
affinity (SD) in order to be able to compare with the published results of [1]. For
HIV, EC and GO, a stratified 10-fold cross-validation is used. To optimize the
above mentioned parameters, we constructed a tuning set through an internal
5-fold cross-validation over the training data. For PDBbind, we used the same
training and test split as in [1]. Here, the parameters were optimized through a
10-fold cross-validation over the training data.

We compute the statistical significance of the different methods by comput-
ing standard deviations on the AUROC and regression scores. Method A then
significantly outperforms method B at the 1 % level under a t-test if their con-
fidence intervals do not overlap.

4.4 Results

Predicting Protein Function. In Table 1 we compare 3DNKsw and 3DNKnn

to the state-of-the-art methods. Since RF-Score only works for protein-ligand
interaction data, we could not run it for this task. First, the results show that
there is no significant difference between 3DNKsw and 3DNKnn, since their
confidence intervals at 1 % around their AUROC scores overlap on the three
datasets. Second, 3DNKsw and 3DNKnn perform significantly better than FSTK
on HIV, but there are no significant differences with FSTK on EC and GO.
Third, 3DNKsw and 3DNKnn perform significantly worse than NSPDK on HIV,
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Table 1. AUROC of 3DNK and the state-of-the-art methods for the benchmark clas-
sification datasets. The best scoring method per dataset is indicated in bold. For EC
and GO, averaged results are reported.

Dataset 3DNKsw 3DNKnn FSTK NSPDK Mammoth

HIV 0.848 ± 0.008 0.853 ± 0.008 0.717 ± 0.010 0.896 ± 0.007 0.863 ± 0.008

EC 0.575 ± 0.021 0.600 ± 0.021 0.573 ± 0.021 0.535 ± 0.021 0.536 ± 0.021

GO 0.744 ± 0.033 0.710 ± 0.035 0.687 ± 0.035 0.660 ± 0.036 0.859 ± 0.026

while 3DNKnn significantly outperforms NSPDK on EC. On GO, there are no
significant differences between NSPDK and 3DNKsw/3DNKnn. Fourth, Mam-
moth significantly outperforms 3DNKsw and 3DNKnn on the GO dataset, while
3DNKnn significantly outperforms Mammoth on EC. On HIV, there are no sig-
nificant differences between Mammoth and 3DNKsw/3DNKnn. The Friedman
test combined with the Nemenyi post-hoc test, a non-parametric test procedure
for statistical comparisons of classifiers over multiple datasets [9], confirms that
there are no significant differences between 3DNKsw/3DNKnn and the state-of-
the-art methods.

Predicting Protein-Ligand Interaction. In Table 2 we compare 3DNKnn

and 3DNKat to the state-of-the-art scoring functions. Since Mammoth only
works on proteins, we could not apply it here. Furthermore, we could not run
FSTK due to excessive memory requirements. For RF-Score (the top-scoring
method), the confidence interval around its performance for R at 1 % is
[0.691, 0.840]. This shows that the performance of 3DNKat is not significantly
different than the one of RF-Score.

Table 2. Pearson’s correlation coefficient (R), Spearman’s correlation coefficient (RS)
and standard deviation of the difference between predicted and measured binding affin-
ity (SD) of 3DNK and the state-of-the-art methods (including the results published in
[1]) for the PDBbind benchmark regression dataset. FSTK and RF-Score could not be
applied on this dataset. Methods are ordered by decreasing R.

Method R RS SD

1 RF-Score 0.776 0.762 1.58
2 3DNKat 0.730 0.75 1.67
3 NSPDK 0.685 0.679 1.83
4 3DNKnn 0.652 0.688 1.81
5 X-Score::HMScore 0.644 0.705 1.83
6 DrugScoreCSD 0.569 0.627 1.96
7 SYBYL::ChemScore 0.555 0.585 1.98
8 DS::PLP1 0.545 0.588 2.00
9 GOLD::ASP 0.534 0.577 2.02

10 SYBYL::G-Score 0.492 0.536 2.08
11 DS::LUDI3 0.487 0.478 2.09

Method R RS SD

12 DS::LigScore2 0.464 0.507 2.12
13 GlideScore-XP 0.457 0.435 2.14
14 DS::PMF 0.445 0.448 2.14
15 GOLD::ChemScore 0.441 0.452 2.15
16 SYBYL::D-Score 0.392 0.447 2.19
17 DS::Jain 0.316 0.346 2.24
18 GOLD::GoldScore 0.295 0.322 2.29
19 SYBYL::PMF-Score 0.268 0.273 2.29
20 SYBYL::F-Score 0.216 0.243 2.35
21 FSTK – – –
22 Mammoth – – –
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Conclusion. The different instantiations of 3DNK perform competitively when
compared to the state-of-the-art methods on the two tasks.

5 Related Work

A first group of methods that learn on geometrical data can be found in the field
of pattern mining. Kuramochi and Karypis [16] present a framework in which
the frequent pattern mining task is upgraded to the geometrical level. Their
algorithm finds frequent geometric subgraphs (with 3D coordinates) which are
rotation, scaling and translation invariant. Because noise is often present in
these types of data, they perform an inexact matching based on a user-defined
tolerance threshold. Nowozin and Tsuda [18] approach the task, which they call
frequent subgraph retrieval, from a slightly different angle: they start from a
database and a query graph and look for all subgraphs of this query graph in
the database, given a geometric tolerance factor.

In the context of inductive logic programming, Srinivasan et al. [27] use a
logical description of the 3D coordinates and chemical properties of molecules
in order to learn structure-activity relationships. Borgwardt et al. [3] introduce
graph kernels for proteins. They convert protein structures into a graph, with
nodes representing secondary structure elements (integrated in the nodes are
chemical properties) and propose a kernel based on random walks which uses
appropriate kernels on the node level to take into account their continuous
attributes. The authors also use a hyperkernel to select the best kernels and
their weights for a specific dataset. Shervashidze and Borgwardt [26] describe
a way to convert graphs and propose an efficient graph kernel on them. Costa
and De Grave [6] propose a fast graph kernel based on the pairwise distance
of neighborhood subgraphs and show that it outperforms four state-of-the-art
graph kernels, including the one of [26]. Ceroni et al. [5] incorporate the 3D struc-
ture directly in their decomposition kernel, but is limited to small molecules.
Hinselmann et al. [12] present a graph decomposition kernel for small molecules
which also takes into account 3D information. The idea is to assign each atom
the distance information to the remaining atoms and their corresponding atom
type. This information is stored in a trie, which holds information on the short-
est path and the geometrical environment. This leads to efficient computation
of the local kernels.

Qiu et al. [20] proposed the Mammoth kernel. In [13], the authors convert
their kernel into a paired variant in order to decide whether two proteins interact
with each other. Ballester and Mitchell [1] proposed RF-Score. These methods
were discussed in Sect. 4.2.

6 Conclusions and Further Work

In this paper, we introduced the 3DNK kernel, which acts on 3D structures.
We applied 3DNK to two biological tasks and compared it to four state-of-the-
art methods. Empirical evaluation showed that 3DNK performed competitively
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w.r.t. the state-of-the-art graph kernels and two methods that were designed
specifically to solve the two respective biological tasks. Contrary to these
application-specific methods, 3DNK is more broadly applicable and can solve
both tasks equally well as those methods. The results suggest that the informa-
tion in 3D structures can be exploited successfully and that the kernel can be
deployed on a variety of problems.

In future work, we will explore various aspects of the 3DNK family further
(such as the parameter space) and search for application domains on which new
instantiations can be applied.

Acknowledgements. The authors would like to thank students Davy De Mits and
Sunil Aryal for conducting preliminary experiments, Dr. Kurt De Grave and
Dr. Fabrizio Costa for assistance with running NSPDK, and Jérôme Renaux for proof-
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Abstract. Most of works on text categorization have focused on clas-
sifying documents into a set of categories with no relationships among
them (flat classification). However, due to the intrinsic structure that
can be found in many domains, recent works are focusing on more com-
plex tasks, such as multi-label classification, hierarchical classification
and multidimensional classification. In this paper, we propose the hier-
archical multidimensional classification task, where documents can be
classified according to different dimensions/viewpoints (e.g., topic, geo-
graphic area, time period, etc.), where in each dimension categories can
be organized hierarchically. In particular, we propose the system Multi-
WebClass, a multidimensional variant of the system WebClassIII, which
discovers correlations among categories belonging to different dimensions
and exploits them, according to two different strategies, to refine the set
of features used during the learning process. Experimental evaluation
performed on both synthetic and real datasets confirms that the exploita-
tion of correlations among categories can lead to better results in terms
of classification accuracy, possibly reducing specialization error or gen-
eralization error, depending on the strategy adopted for the refinement
of the feature sets.

Keywords: Structured output prediction · Text categorization · Hier-
archical classification · Multidimensional classification

1 Introduction

The number of web documents continuously and massively increases every day
and their automatic classification is considered an essential task. In recent years,
a plethora of classification algorithms has been developed. Some of them work in
the single label classification setting, where categories are not organized accord-
ing to any specific schema. However, (web) documents can naturally be classified
into several hierarchically organized categories. For example, a blog article clas-
sified as Sport could, at the same time, be classified as Tennis, Roland Garros,
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and so on. For this reason, recent works have focused on the hierarchical classi-
fication task, where class labels are hierarchically organized and each object is
associated to more than one class label (according to the hierarchy).

Moreover, documents can be classified according to different classification
dimensions. For example, a web page could be classified according to its topic,
the referenced geographical information or the publication date. By considering
multiple dimensions of classification, each of which possibly hierarchically orga-
nized, it is possible to define the task of Hierarchical Multidimensional Classifi-
cation. More formally, this task represents the combination of Multidimensional
Classification and Hierarchical Classification, where: (i) more than one class
attribute is associated to each document, each describing the document accord-
ing to a different point of view and (ii) each class attribute is hierarchically
organized.

In the literature, several works about multidimensional classification and
hierarchical classification have been proposed. Some works consider the first
task as a variant of (and, accordingly, convertible to) the latter, whereas other
works consider these two tasks separately. For example, in [2] a multidimensional
classification method based on Bayesian Network is proposed. The authors per-
form multidimensional classification on a flat set of labels by organizing class
variables (dimensions), feature variables and bridges (from classes to features)
as three distinct network subgraphs. In [14], the authors propose the application
of multidimensional classification approaches to biomedical texts, in order to
extract specific portions of text containing scientific content.

In [16] the authors propose a framework which implements three different
classifiers (kNN, näıve Bayes and centroid-based) in order to evaluate three
different techniques for multidimensional classification: flat-based, hierarchical-
based and multidimensional-based. In the first two cases, they convert the mul-
tidimensional model into flat and hierarchical models, respectively, whereas in
the last case they consider each dimension separately. Experiments performed
on two datasets showed that the multidimensional-based and hierarchical-based
approaches outperform the flat-based approach.

Moreover, in a recent work [7], the hierarchical multidimensional classification
task is solved by considering it as a multi-label classification task. First, the
system builds a set of probabilistic multi-class classifiers (one for each non-leaf
node in the hierarchy) which are applied simultaneously to each test instance.
Second, a probability is computed for each path in the hierarchy, by combining
the output of the classifiers learned for the nodes involved in the path. Finally,
the path with the highest probability is the output of the classification.

In this paper, we extend the system WebClassIII [5] (described in Sect. 2),
which offers a hierarchical classification framework, with the more complex task
of Hierarchical Multidimensional Classification. Moreover, we exploit the possi-
ble multi-dimensionality of the data in order to improve the classification with
respect to each single dimension, which are generally classified independently by
existing works. In order to exploit such possible dependencies, we propose the
identification of correlations among categories belonging to different hierarchies.
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Such correlations can be exploited to improve the classification accuracy with
respect to a given hierarchy, even when the other hierarchies are not the main
subject of the classification task. The discovery of correlations is motivated by
the reasonable assumption that documents labeled with a given category along
one dimension could be usually labeled with another given category belonging to
another dimension. For example, we can consider documents organized accord-
ing to the Geographic dimension and the Topic dimension. If many documents
labeled with Rome in the Geographic hierarchy (structured as Europe → Italy →
Rome), are also frequently labeled as Traffic in the Topic hierarchy (structured
as News → Accident → Traffic), then it is possible that there is a correlation
between the categories Rome and Traffic, possibly representing the fact that:
“Rome is affected by an high number of accidents due to traffic”.

The rest of the paper is organized as follows. In the next section, the classifi-
cation framework implemented in WebClassIII, which represents the background
of this work, is described. In Sect. 3 the extension of WebClass to perform hier-
archical multidimensional classification is presented. Some experimental results
on both synthetic and real datasets are reported and discussed in Sect. 4. Final
conclusions and remarks are reported in Sect. 5.

2 Background: WebClassIII

WebClass is a classification framework for HTML pages. The last version of
WebClass, i.e., WebClassIII, is an extension for the hierarchical text categoriza-
tion [5] which exploits three different classification approaches: Näıve Bayes [10],
centroid-based [6] and SVM [11].

The hierarchical organization of categories is exploited in all the phases of
the document classification, namely feature selection, learning of the classifica-
tion model, and categorization of a new document. Documents are represented
as bag-of-words (where each term is associated to its frequency in the docu-
ment). In general, two alternatives can be considered [1]: (i) the same feature
space is used to represent documents belonging to all categories or (ii) several
specific feature spaces are used to represent documents belonging to different
categories. In WebClassIII an intermediate solution is adopted. In particular,
for each category, a different document representation is used to decide which
subcategory (temporary represented in the same feature space of its parent) is
the most appropriate for a given document.

In the learning phase, starting from the root, the system builds a classification
model for each category c. When c has only a subcategory, a dummy subcategory
is introduced. The training documents associated to the dummy subcategory are
those associated only to c (and not to the subcategory). Therefore, the sum of
probabilities of all the direct subcategories of c is not necessarily 1.0, since the
probability that the document does not belong to any subcategory should be
taken into account.

The classification phase is performed in a top-down fashion from the root
to the leaves, according to a greedy strategy. When the document reaches an



Hierarchical Multidimensional Classification with MultiWebClass 239

internal category c, it is represented on the basis of the feature set associated to
c and the system computes a score for each direct subcategory (dummy categories
are not considered during the classification), according to the classification model
learned on c. The document is associated to the subcategory with the highest
score above a precomputed threshold (one for each category, see [4] for details).
The search proceeds recursively from that subcategory, until no score is greater
than the corresponding threshold or a leaf category is reached. The first case
mainly happens when the document deals with a general rather than a specific
topic or when the document belongs to a specific category which does not appear
in the hierarchy. If the search stops at the root, then the document is marked as
unclassified.

In the following, we report some details about the identification of an appro-
priate subset of terms (dictionary) for representing documents belonging to each
category, which are then extended in order to exploit correlations among cate-
gories.

In particular, documents are initially tokenized, and the set of tokens is
filtered in order to remove HTML tags, punctuation marks, numbers and tokens
with less than three characters. After tokenization, two standard pre-processing
methods are applied, that are stopword removal (based on words in Glimpse [9])
and stemming (using Porter algorithm [12]).

WebClassIII associates each category with a subset of words which best rep-
resent documents of that category. In particular, each word wi,c′ that appears
in at least a document of the category c′ (direct subcategory of c), WebClassIII
computes a weight vi,c′ and builds a dictionary Dictc′ containing ndict words
with the highest weight. The weight vi,c′ is computed as follows:

vi,c′ = TFc′(wi) × DF 2
c′(wi) × 1

CFc(wi)
(1)

where:

– TFc′(w) is the maximum term frequency of w over the documents belonging
to the category c′;

– DFc′(w) is the document frequency computed as the percentage of documents
of category c′ in which w occurs;

– CFc(w) is the category frequency computed as the number of direct subcate-
gories of c having at least a document in which w occurs.

It is noteworthy that positive examples for c′ are sufficient for the compu-
tation of TFc′(w) and DFc′(w), while the computation of CFc(w) also requires
the negative examples for c′.

The feature set associated to each category c, which is exploited for learning
the corresponding classifier, consists of the union of the dictionaries associated
to all the subcategories of c (called Hierarchical Feature Set in [5]).

3 Hierarchical Multidimensional Classification

In this Section, we describe MultiWebClass, an extension of WebClassIII which
is able to perform Hierarchical Multidimensional Classification. The most
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(a) (b)

Fig. 1. (a) Contingency matrix between two dimensions Dp and Dq. (b) Contingency
matrix between two categories cpi ∈ Dp and cqj ∈ Dq built using artificial categories.

straightforward solution would consist in learning a classification model for each
dimension independently. However, as discussed in Sect. 1, this solution is not
able to catch possible correlations among categories belonging to different dimen-
sions. In MultiWebClass we adopt a different solution which first identifies pos-
sible correlations among categories belonging to different dimensions and then
exploit such correlations in order to extend the feature sets used in the learning
phase so to improve predictive performances. In the following subsections, we
describe the proposed approach.

3.1 Discovery of Correlations Between Categories

The identification of correlations between two variables is a common task in
statistics which is usually solved by means of a contingency matrix, where rows
and columns represent the values of the first and the second variables, respec-
tively. Inspired by this commonly used solution, we use the same strategy for
categories. In particular, we build a contingency matrix as shown in Fig. 1(a),
where:

– the variables on rows and columns represent two classification dimensions
Dp = {cp1, c

p
2, . . . , c

p
n} and Dq = {cq1, c

q
2, . . . , c

q
m}, where cpi is the i-th category

of the p-th dimension;
– each cell value Tij represents the number of documents labeled as both the

categories cpi and cqj in the training set;
– Tr(cpi ) represents the set of training documents labeled as cpi in the hierarchy

of the p-th dimension.

Starting from such contingency matrix, we construct a further 2 × 2 contin-
gency matrix for each pair of categories cpi , c

q
j belonging to different dimensions

(p �= q) as shown in Fig. 1(b). In this matrix, we build two artificial categories
¬cpi ,¬cqj which consist of all the documents not belonging to cpi and cqj , respec-
tively. Obviously, we exclude root categories when computing such contingency
matrices.
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The correlation between two categories can be symmetric or not, on the
basis of the considered correlation measure. In this work, we exploit a variant
of the Confidence measure [15]. Such measure is asymmetric and is defined as
γ(cpi , c

q
j) = f11

f10
and γ(cqj , c

p
i ) = f11

f01
, where f11, f10 and f01 are the values of the

contingency matrix between cpi and cqj (see Fig. 1(b)). This measure is actually
a frequency-based estimation of the probability that documents belonging to cpi
also belong to cqj (or vice versa). This measure, however, can lead to unreliable
probabilities in the case that very few documents are used for its computation.
To overcome this issue, we consider f11

f10
(and f11

f01
) as a proportion in a statistical

population and we use the Wilson confidence interval [17] in order to make
conservative decisions about the presence of a correlation. We use the Wilson
score interval since it directly derives from the Pearson’s chi-squared test with
two cases (here the two cases for f11

f10
are: a document that belongs to cpi also

belongs to cqj or not). Formally, the Wilson score interval for f11
f10

is defined as:

[

f11 +
z20
2

f10 + z2
0

−
√

f10z0
f10 + z2

0

√

f11f12
f2
10

+
z2
0

4f10
,

f11 +
z20
2

f10 + z2
0

+

√
f10z0

f10 + z2
0

√

f11f12
f2
10

+
z2
0

4f10

]

(2)

where z0 is the Z-score value (according to the normal distribution) for a given
confidence 1 − α.

Since we are interested in making conservative decisions about the presence
of a correlation, we consider the lower bound of this interval as the probability
that cpi and cqj are correlated:

γ(cpi , c
q
j) =

f11 + z2
0
2

f10 + z20
−

√
f10z0

f10 + z20

√
f11f12

f2
10

+
z20

4f10
(3)

Due to the asymmetry of the considered correlation measure, as shown in
Algorithm 1, we pair-wisely search for correlations between two categories belong-
ing to two different dimensions Dp and Dq in both the directions Dp → Dq and
Dq → Dp. Note that we are only interested in the discovery of positive correlations
(i.e., a given category on a dimension possibly implies a category in another dimen-
sion). For this reason, we do not consider the proportions f21/f01 and f12/f10.
Moreover, since we are only interested to highly correlated pairs of categories, we
consider as correlated two categories cpi and cqj only if γ(cpi , c

q
j) > β, where β is a

user-defined threshold.
Finally, since we use the correlations to extend the feature sets and we use

hierarchical feature sets (this aspect will be clarified in the next subsection), if
the correlation cpi → cqj is identified, then it is possible to prove that, for each
cqk ∈ ancestors(cqj), there exists the correlation cpi → cqk. This can be easily
proved by observing Eq. (3). Indeed, for each cqk ∈ ancestors(cqj) we have that
γ(cpi , c

q
k) ≥ γ(cpi , c

q
j). This directly follows from the following observations:

– f01 has the same value in both γ(cpi , c
q
k) and γ(cpi , c

q
j), since it is the number

of documents labeled as cpi ;
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Algorithm 1. Discovery of correlations among categories

input : The set of dimensions D = {D1, D2, . . . , Ds};
a correlation measure γ(·, ·);
a threshold β to consider a discovered correlation as relevant.

output: correlations = {〈c, CorrelatedSetc〉}c, where CorrelatedSetc is the
set of categories d, s.t. exists the correlation c → d.

1 correlations ← ∅;
2 for all pairs of dimensions Dp, Dq do
3 correlations ← correlations ∪ findCorrelations(Dp, Dq, β);
4 correlations ← correlations ∪ findCorrelations(Dq, Dp, β);

5 return correlations;

6 findCorrelations(Dp, Dq, β)
7 correlations ← ∅;
8 exploredPairs ← ∅;

9 for cpi ∈ Dp in pre-order do
10 correlatedSet ← ∅;
11 for cqj ∈ Dq in post-order do

12 if 〈cpi , cqj〉 /∈ exploredPairs and γ(cpi , c
q
j) ≥ β then

13 correlatedSet ← correlatedSet ∪ {cqj};

// Skip the exploration of ancestors of cqj
14 for cqk ∈ ancestors(cqj) and cqk �= root(Dq) do

15 exploredPairs ← exploredPairs ∪ {〈cpi , cqk〉};
16 correlatedSet ← correlatedSet ∪ {cqk};

17 correlations ← correlations ∪ {〈cpi , correlatedSet〉};

18 return correlations;

– f12 has the same value in both γ(cpi , c
q
k) and γ(cpi , c

q
j), since it is the number

of documents which are not labeled as cpi ;
– f11 for γ(cpi , c

q
k) is greater than or equal to f11 for γ(cpi , c

q
j), since cqk contains

documents in cqj .

In order to take into account this property, we visit the first hierarchy in
pre-order and the second hierarchy in post-order. The effect is a reduction of
the number of correlations between pairs of categories to be evaluated (see
Algorithm 1, lines 14–16).

3.2 Exploiting Discovered Correlations

As shown in Sect. 2, in WebClassIII, the feature set associated to each category
is the union of the dictionaries of its subcategories. In this work, we exploit the
discovered correlations to extend the feature set of some categories. In particular,
given a discovered correlation cpi → c′q

j (where c′q
j is a subcategory of cqj), we
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(a) (b)

Fig. 2. Feature set extension FSE I, when (a) cpi is a leaf and when (b) cpi is not a
leaf. Red arrows indicate correlations, while blue arrows indicate feature set extension
(Color figure online).

extend the feature sets of the involved categories according to two different
strategies:

– FSE I: Category Dictionaries. This strategy extends the feature set of
the category cqj by including features in the dictionaries of categories in the
dimension Dp:
• When cpi is a leaf, then the feature set of the category cqj is extended by

including the top-k (k < ndict) terms of the dictionary associated cpi (see
Fig. 2(a));

• When cpi is not a leaf, the feature set of the category cqj is extended by
including the top-k (k < ndict) terms from the dictionaries of the subcate-
gories of cpi (see Fig. 2(b)).

The top-k terms are selected according to Eq. 1. The rationale behind this
strategy is to use, in the classifier associated to cqj , some of the features that
the classifier associated to cpi uses to discriminate among its child categories.

– FSE II: Correlated Words. This strategy works similarly to FSE I, but
adds a different set of terms to the feature set of cqj . In particular, the top-k
(k < ndict) words, according to Eq. 1, are those that appear in the feature sets
of both cpi and c′q

j , but not to cqj . Note that the feature selection algorithm
implemented in WebClassIII could have pruned some features of c′q

j when
building the feature set of cqj . This strategy could restore such features because
of the presence of the correlation.

FSE II is more conservative than FSE I since it uses, for feature extension,
features extracted from the same dimension. On the contrary, since FSE I incor-
porates in one dimension features coming from a completely different dimension,
it is more “daring”, but can also incur into errors (possibly) coming from unre-
lated features.
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4 Experiments

The experimental evaluation has been performed using, in WebClass, the Näıve
Bayes classification algorithm which was proved to perform the best among those
implemented in the framework [5]. For evaluation purposes, we consider both real
and synthetically generated datasets. Since we are interested in the evaluation
of the contribution given by the exploitation of the correlations, in this work
the results obtained with both the proposed feature set extension strategies
introduced in MultiWebClass (i.e., FSE I and FSE II) are compared only with
the results obtained by WebClass III. This because WebClass III does not exploit
correlations among different hierarchies and represents the non-multidimensional
counterpart of the approach we propose.

4.1 Datasets

Real Dataset. The evaluation on real data has been performed on the dataset
Reuters Corpora Volume 1 (RCV1) [8]. It contains more than 800,000 stories
collected by the international news agency Reuters from 20th August 1996 to
19th August 1997. News are manually labeled according to the following three
classification dimensions:

– Topic: the main subject of a story (hierarchically organized);
– Industry : the type of business discussed in a story (hierarchically organized);
– Region: a geographic location or an economic/political group (not hierarchi-

cally organized).

The training and testing sets are obtained according to [8], i.e., by selecting
documents published from 20th August 1996 to 31st August 1996 as training
set, and documents published from 1st September 1996 to 19th August 1997
as testing set. Coherently with [5], we considered only documents associated to
a single category. The result is a set of 4,517 training documents and 146,248
testing documents.

Synthetic Datasets. The evaluation on synthetic data has been performed by
means of the 5 fold cross validation approach on a set of datasets generated by
simulating the presence of correlations among categories belonging to different
dimensions. In particular, the generation of the datasets takes into account the
following aspects:

– Dimensions. The set of dimensions D is created using as parameters: the num-
ber of dimensions s, the tree depth and the degree of nodes. Each dimension
is represented as a full and perfectly-balanced tree.

– Dictionaries. Each leaf category is associated with a fixed number of terms
(50 in our experiments) randomly selected from the Ispell American English1

dictionary, whereas each internal category is associated with the dictionary
obtained as the union of the terms selected for its subcategories.

1 http://fmg-www.cs.ucla.edu/geoff/ispell-dictionaries.html.

http://fmg-www.cs.ucla.edu/geoff/ispell-dictionaries.html
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– Document Generation. For each category c, a set of dc documents is generated.
Each document consists of a set of t terms, randomly selected from the dic-
tionary associated to c, and a set of tg general terms randomly taken from the
Ispell American English dictionary. The complete set of documents belonging
to the category c is then obtained as the union of the dc documents (properly)
belonging to c and the set of documents belonging to its subcategories.

– Correlation Injection. Correlations are injected between pairs of categories
belonging to different dimensions. Injection is performed by labeling docu-
ments belonging to a category of a given dimension also with a given cate-
gory of another dimension.The system takes an input parameter ncorr which
represents the number of correlations to inject into leaf categories, whereas
correlations between internal categories are injected in a bottom-up fashion.
In particular, for each correlation cpi → cqj injected at l-th level, we introduce
a correlation father(cpi ) → father(cqj) at (l − 1)-th level. In order to avoid
the injection of several and redundant correlations involving the same internal
categories, only the most frequent correlations are preserved. The percentage
of correlations to preserve is given by the user-defined parameter CorrRatio.

We generated all the synthetic datasets with the following parameters: s = 3
(i.e., 3 hierarchically organized classification dimensions), degree = 2 (i.e., each
internal node has 2 children), ncorr = 20 (i.e., for each pair of dimensions, we
inject a correlation for 20 randomly selected pairs of leaf categories) and Cor-
rRatio = 0.40 (i.e., we preserve the top-40 % most frequent correlations among
parent categories).

For each category, all the documents are generated by randomly selecting 80
terms from the dictionary of the category (i.e., t = 80) and 20 terms from the
Ispell American English dictionary (i.e., tg = 20). The number of hierarchical
levels (i.e., the parameter depth) and the number of documents dc for each cate-
gory are set to different values in order to generate different synthetic datasets.
In particular, we generated five different datasets, that are:

– 4–20, which has 4 hierarchical levels and 20 documents for each category;
– 4–30, which has 4 hierarchical levels and 30 documents for each category;
– 4–40, which has 4 hierarchical levels and 40 documents for each category;
– 4–50, which has 4 hierarchical levels and 50 documents for each category;
– 3–40, which has 3 hierarchical levels and 40 documents for each category.

While the results obtained on the datasets 4–20, 4–30, 4–40 and 4–50 are
compared in order to analyze the performance by varying the number of doc-
uments for each category, results obtained on the datasets 3–40 and 4–40 are
compared in order to obtain a preliminary analysis on the sensitiveness of the
algorithm to the complexity of the hierarchical structure of each classification
dimension.

4.2 Experimental Setting

In the following, we report some details about the parameter setting of Multi-
WebClass. In particular, we set the confidence value 1−α to 0.95. Consequently,
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the Z-score value is z0 = 1.96. The threshold value β has been set to 0.3. ndict

(size of dictionaries) is set to 25, which provided good results in WebClassIII.
The number of terms k, propagated by the proposed strategies for feature set
extension is set to 20 (coherently with ndict).

As regards the classification dimensions, we considered the Topic dimension
for RCV1 (which is typically used for classification purposes [13]), exploiting
the correlations with the other two dimensions (i.e., Industry and Region) and
the first dimension for the synthetic datasets, exploiting the correlations with the
other two dimensions2.

The comparison between WebClassIII and MultiWebClass has been per-
formed according to five evaluation measures, that are:

– Accuracy, which is the percentage of correctly classified documents;
– Generalization Error, which is the percentage of documents classified as a

super-category of the correct category;
– Specialization Error, which is the percentage of documents classified into a

subcategory of the correct category;
– Misclassification Error, which is the percentage of documents classified as a

category which is in a different path with respect to the correct category in
the hierarchy;

– Unknown Ratio, which is the percentage of documents that are not classified
(actually classified in the root category of the hierarchy).

Intuitively, the sum of all the considered measures is always equal to 1.

4.3 Results

According to the experimental setting, in this section we report the results
obtained with all the considered datasets and perform three different analy-
ses on:

– synthetic datasets with a fixed depth of the hierarchies (i.e., depth = 4) and
a different number of documents for each category (i.e., dc = {20, 30, 40, 50});

– synthetic datasets with a fixed number of documents for each category (i.e.,
dc = 40) and different depths of the hierarchies (i.e., depth = {30, 40});

– real data, i.e., on the RCV1 dataset.

Synthetic Datasets with Fixed Depth. Results for this analysis are reported
in Table 1. As it can be observed from the table, all the considered approaches
were able to make at least a decision in the root node, i.e., the Unknown Ratio
is 0. Moreover, by observing the Misclassification Error, we can see that all the
systems were almost always able to consider the correct path in the hierarchy.
The main differences can be observed in the other three measures. In particular,
FSE I always leads to better accuracy values when the number of documents
2 In the case of synthetic datasets, results do not depend on the specific dimension.
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per category increases (i.e., dc > 20). This approach also obtains good results
in terms of Generalization Error, sometimes at the cost of a slightly higher Spe-
cialization Error, which confirms that FSE I generally leads to less conservative
decisions, if compared to FSE II. Overall, by comparing the results obtained by
FSE I and FSE II with those obtained by WebClassIII, it is possible to see that
the exploitation of the discovered correlations leads to better results.

Synthetic Datasets with Different Depth. This analysis aims at evaluating
the performance with respect to the depth of the hierarchy. Results are reported
in Table 2. As expected, the higher the complexity of the classification hierarchy,
the lower the classification accuracy. However, the proposed approaches always
lead to better results. A more detailed analysis reveals that, as expected, moving
from 3 to 4 levels in the hierarchy leads to reduce the advantage of the MultiWe-
bClass with respect to WebClassIII (percentage gain in accuracy changes from
9.3 % to 8.1 % in the case of FSE I). As regards the specific error measures, we can
observe that all the systems generally prefer to make Generalization Errors with
respect to Specialization Errors when the complexity of the hierarchy increases.

Table 1. Classification results of synthetic dataset 4–20, 4–30, 4–40 and 4–50 on the
first dimension.

Dataset 4–20

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.759 0.168 0.073 0.000 0.000

MWC - FSE II 0.764 0.217 0.019 0.000 0.000

WebClass III 0.685 0.246 0.069 0.000 0.000

Dataset 4–30

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.795 0.153 0.052 0.000 0.000

MWC - FSE II 0.751 0.162 0.087 0.000 0.000

WebClass III 0.698 0.245 0.057 0.000 0.000

Dataset 4–40

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.731 0.261 0.008 0.000 0.000

MWC - FSE II 0.711 0.229 0.030 0.030 0.000

WebClass III 0.676 0.245 0.079 0.000 0.000

Dataset 4–50

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.829 0.099 0.072 0.000 0.000

MWC - FSE II 0.715 0.147 0.138 0.000 0.000

WebClass III 0.727 0.247 0.026 0.000 0.000
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Table 2. Classification results of synthetic dataset 3–40 and 4–40 on the first dimen-
sion.

Dataset 3–40

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.834 0.129 0.037 0.000 0.000

MWC - FSE II 0.833 0.131 0.036 0.000 0.000

WebClass III 0.763 0.169 0.068 0.000 0.000

Dataset 4–40

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.731 0.261 0.008 0.000 0.000

MWC - FSE II 0.711 0.229 0.030 0.030 0.000

WebClass III 0.676 0.245 0.079 0.000 0.000

Real Data. Finally, we compare the results obtained with MultiWebClass and
WebClassIII on RCV1. Results are reported in Table 3.

From the results we can see that, differently from what we observed for
synthetic datasets, Unknown Ratio is nonzero. This because, contrary to the
synthetic datasets, testing set contains documents that do not come from the
same data distribution of training documents. However, despite higher Unknown
Ratio, FSE II obtains better results in terms of Accuracy, Generalization Error,
Specialization Error and Misclassification Error. This confirms the more con-
servative nature of FSE II, which makes more accurate predictions and avoids
wrong decisions when the degree of uncertainty is high. This general behavior
can suggest us the use of FSE II when we would like to obtain a more accurate
classification, at the price of some unclassified instances, whereas FSE I (and, in
some cases, the original WebClass III) is more appropriate when we want to force
classification (reducing Unknown Ratio), at the price of a higher Specialization
Error. This observation does not hold for synthetic datasets since the unknown
ratio is always zero due to the considerations about data distribution reported
before.

In Table 4, we show some correlations discovered by our approach and used
for feature set extension. It is noteworthy that most of them appear reason-
able. For example, some regions which are usually subject to political issues

Table 3. Classification results of RCV1 on the dimension Topic.

Reuters RCV1

System Accuracy Gen. Error Spec. Error Misclass. Error Unknown Ratio

MWC - FSE I 0.559 0.141 0.003 0.087 0.210

MWC - FSE II 0.566 0.129 0.002 0.078 0.225

WebClass III 0.561 0.188 0.003 0.101 0.147
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Table 4. Correlations discovered on RCV1 with correlation strength greater than 0.3.

Source category Target category Correlation Strength

Region.Cyprus Topic.Government/Social 0.51841

Region.EuropeanUnion Topic.EuropeanCommunity 0.51322

Region.Macedonia Topic.Government/Social 0.46769

Industry.PortsAndShippingServices Topic.Corporate/Industrial 0.42569

Region.Ghana Topic.EquityMarkets 0.42438

Region.Malawi Topic.Government/Social 0.35930

Region.Syria Topic.Government/Social 0.35479

Region.Bahrain Topic.Government/Social 0.35027

Region.Jamaica Topic.Corporate/Industrial 0.34238

Region.Malta Topic.Government/Social 0.32404

Industry.PortsAndShippingServices Topic.Capacity/Facilities 0.31651

Region.CzechRepublic Topic.Markets 0.30804

Region.UnitedArabEmirates Topic.Government/Social 0.30070

are correlated to the topic Government/Social. Moreover, some regions whose
economy is based on some specific business activities are correlated to the topic
Corporate/Industrial.

5 Conclusions and Future Work

In this paper we tackled the Hierarchical Multidimensional Classification task
and presented, at this purpose, the system MultiWebClass. In particular, Mul-
tiWebClass discovers correlations between categories belonging to different hier-
archies and exploits them by extending (according to two different strategies)
the feature sets used for learning classifiers.

Results on both synthetic and real datasets show that the exploitation of
the discovered correlations, which appear reasonable after a quick qualitative
analysis, can lead to better classification performances in terms of accuracy.
Moreover, the different strategies proposed for feature set extension appear
appropriate for different goals (i.e., higher accuracy vs higher number of classified
instances), since they have a different degree of conservativeness when making
decisions.

For future work, we intend to deeply analyze the sensitiveness of MultiWeb-
Class to different parameter settings. We will also consider additional strategies
for exploiting the discovered correlations, possibly including negative correla-
tions. Moreover, inspired by the work in [3], we will explore the task of mul-
tidimensional hierarchical classification in the transductive setting. Finally, we
intend to perform experiments on additional real-world datasets, also related to
different application domains (e.g., biological data).
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Evaluating the Effectiveness of Hashtags
as Predictors of the Sentiment of Tweets
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Abstract. Recently, there has been growing research interest in the
sentiment analysis of tweets. However, there is still a need to exam-
ine the contribution of Twitter-specific features to this task. One such
feature is hashtags, which are user-defined topics. In our study, we com-
pare the performance of sentiment and non-sentiment hashtags in clas-
sifying tweets as positive or negative. By combining subjective words
from different lexical resources, we achieve accuracy scores of 83.58 %
and 83.83 % in identifying sentiment hashtags and non-sentiment hash-
tags, respectively. Furthermore, our accuracy scores surpass those scores
obtained using models that apply a single lexical resource. We apply
derived properties of sentiment and non-sentiment hashtags, including
their sentiment polarity to classify tweets. Our best classification models
achieve accuracy scores of 81.14 % and 86.07 % using sentiment hash-
tags and non-sentiment hashtags, respectively. Additionally, our models
perform comparably to supervised machine learning algorithms, and out-
perform a scoring algorithm developed in a previous study.

1 Introduction

Since its inception in 2006, Twitter, a microblogging application, has gained
increasing popularity with approximately 302 million monthly users and an esti-
mated 500 million new daily posts1. Twitter provides a platform whereby regis-
tered users can post short text messages called tweets. Tweets are opinionated
statements, which convey sentiments about different topical issues. Therefore,
we can apply sentiment analysis to determine whether the sentiment contained
within the text is either positive or negative [5]. Positive tweets express favor-
ability whereas negative tweets express unfavorability towards a subject. Thus,
sentiment analysis is useful in assessing people’s attitudes and emotions towards
products and services offered by businesses [13], or political candidates in general
elections [3].

For sentiment analysis, research studies have applied both machine learn-
ing techniques and lexicon-based methods. The lexicon-based approach depends
entirely on using opinion lexicons, which are dictionaries of positive and negative
words, to detect subjectivity in text [19]. By contrast, supervised machine learn-
ing applies learning algorithms to large number of labeled data. Unlike other
1 https://about.twitter.com/company.
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text, tweets can contain a significant amount of information which can make the
sentiment analysis task challenging [4]. Therefore, it is important to examine
the unique nature of tweets, as this plays a significant role in determining their
overall sentiment.

Tweets are highly informal text messages, which are restricted to 140 char-
acters. They are conversational in nature and thus, they contain many features
including: abbreviations, slangs, acronyms, repetitions of characters in words
e.g., “yeaaaah”, punctuation marks, and emoticons. In terms of Twitter-specific
features, these are described below.

1. Retweets are copies of an original tweet that are posted by other users [7].
They are denoted by the letters, “RT”.

2. Mentions are used for replying directly to others. They begin with the “@”
symbol followed by the name of a Twitter user e.g., “@john”.

3. URL links are used to direct users to interesting pictures, videos or websites
for additional information.

4. Hashtags are user-defined topics, keywords or categories denoted by the hash
symbol, “#”. Hashtags can be a single word or a combination of consecutive
words, e.g., “#believe” and “#wishfulthinking”, respectively. A tweet can
contain multiple hashtags, which can be located anywhere in the text.

Of all the features of tweets described previously, hashtags have been selected
as the focus of our study. The significance of hashtags lies in their unique ability
to simultaneously connect related tweets, topics, and communities of people
who share similar interests. Each hashtag is a sharable link, which can be used
to promote specific ideas, search for popular content, engage other users, and
group related content. Most importantly, hashtags are useful for determining
the popularity of topics, and the overall sentiment that is being expressed by
groups of users. Consequently, hashtags are being used by many other platforms
including photo-sharing applications such as Instagram2 and social networks like
Facebook3, Tumblr4 and Google+5.

Additionally, hashtags contain sentiment and topic information. Hashtags
that contain only topic information are considered to be non-sentiment bear-
ing. However, hashtags that contain sentiment information, such as an emotion
expressed by itself or directed towards an entity, are considered to be sentiment
bearing. These two types of hashtags are similar to the sentiment, sentiment-
topic and topic hashtags that were proposed in a previous study [17]. Examples
of sentiment and non-sentiment hashtags are “#best” and “#football”, respec-
tively.

In this study, we hypothesize that hashtags can be used as accurate predictors
of the overall sentiment of tweets. Based on this assumption, we can identify
three major opportunities for improving the sentiment analysis of tweets. Firstly,

2 http://instagram.com/.
3 http://facebook.com/.
4 https://www.tumblr.com/.
5 https://plus.google.com/.

http://instagram.com/
http://facebook.com/
https://www.tumblr.com/
https://plus.google.com/
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we might be able to accurately determine the sentiment of a large volume of
tweets without having to examine individual tweets. Secondly, we can reduce
dependency on manual annotation of tweets, which can be time-consuming and
labor-intensive [4,6,19]. Thirdly, by focusing on a single feature, we reduce the
effort required in determining the optimal combination of the various features
in the tweets. Therefore, our study applies the derived properties of hashtags,
including their sentiment polarity, in order to classify tweets as positive and
negative. We describe these properties as “derived” because they are not part of
the definition of a hashtag, but they are resulting because of it. For instance, a
hashtag may contain a subjective word, thus we consider that there are two types
of hashtags: sentiment and non-sentiment bearing. Additionally, we consider all
hashtags to have a polarity which can be determined by examining the tweets
that contain them. Therefore, in this study, we compare the effectiveness of
sentiment and non-sentiment hashtags for classifying subjective tweets.

The main contributions of our paper are summarized as follows:

1. It demonstrates the effectiveness of combining different lexical resources to
identify sentiment from non-sentiment bearing hashtags.

2. It presents different scoring algorithms for determining the sentiment polarity
of hashtags.

3. It demonstrates the effectiveness of using the derived properties of hashtags,
including their sentiment polarity, for the sentiment classification of tweets.

4. It shows that non-sentiment hashtags are more effective at classifying tweets
as positive and negative, than sentiment hashtags.

The remainder of this paper is organized as follows. Section 2 summarizes pre-
vious studies on the sentiment analysis of tweets. Section 3 describes the devel-
opment of the our approach. Section 4 discusses our experimental results, and
compares these results with that of another study. Finally, Sect. 5 presents our
conclusions and plans for future work.

2 Related Work

Sentiment analysis of tweets has garnered much research interest in recent years.
A study by [2] demonstrated that a scoring algorithm can be used to accurately
classify positive and negative tweets [2]. They applied the function to two sepa-
rate datasets, Stanford [7] and Mejaj [5], which used emoticons, and sentiment
suggestive words as sentiment labels, respectively. The scoring function calcu-
lated an overall score for each tweet by aggregating the difference in the pos-
itive and negative probabilities of unigrams, and assigning predefined weights
to emoticons and punctuations. After applying stop word removal, stemming,
spelling correction and noun identification, the function applied a Popularity
Score in order to boost the scores of domain specific words. Tweets were deter-
mined to be positive (negative) if the sum of their sentiment scores was greater
(less) than zero. Experimental results revealed that the Stanford and Mejaj
datasets achieve accuracy scores of 87.2 % and 88.1 %, respectively. Also, these
accuracy scores were comparable to that obtained using a SVM classifier.
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In terms of the contribution of hashtags to the sentiment analysis of tweets,
very few studies have focused on this task. Kouloumpis et al. [9] investigated
Twitter hashtags for identifying positive, negative and neutral tweets such that
the polarity of the tweet is determined by the hashtag. Using linguistic, lexi-
cal and microblogging features extracted from tweets, an AdaBoost.MH clas-
sifier achieved accuracy scores of 74 % and 75 % on hashtagged, and emoticon
datasets, respectively. However, their study only focused on tweets containing
a single hashtag. By contrast, Mohammad [10] analyzed self-labeled hashtagged
emotional words in tweets, and concluded that they are good indicators of the
sentiment of the entire tweet. In a later study, Mohammad et al. [11] developed
a hashtag sentiment lexicon using a dataset of about 775,000 tweets and 78
hashtagged seed words. A tweet was assigned the same sentiment polarity if it
contained any of the positive (negative) hashtagged seed words. By applying the
hashtag lexicon to classify sentiment in tweets, the performance of the classifier
increased by 3.8 %. Therefore, both studies demonstrate that hashtags can be
useful in the sentiment analysis of tweets.

Wang et al. [17] applied a graph-based approach for classifying sentiment in
hashtags as either positive or negative by incorporating hashtag co-occurrence
information, their literal meaning, and the sentiment polarity distribution of
tweets. By doing so, they showed that the polarity distribution of tweets can be
combined with hashtag information for sentiment classification.

Rodrigues Barbosa et al. [14] performed a preliminary investigation into
determining the effectiveness of hashtags in the sentiment analysis of tweets.
The study focused specifically on using hashtags to detect and track online pop-
ulation sentiment. In order to do this, the authors studied hashtag propagation
patterns, and the use of hashtags to express sentiment in tweets. Using a dataset
of tweets on elections in Brazil, the authors manually identified frequent posi-
tive and negative hashtags. After performing analysis on the hashtags, the results
revealed that in some cases hashtags were required for defining the sentiment
of the tweet. Overall, this study concluded that hashtags may be useful for the
sentiment analysis of tweets. By contrast, our study seeks to demonstrate con-
clusively that hashtags are accurate predictors of the sentiment of tweets.

3 Method

In order to investigate the effectiveness of hashtags as predictors of the overall
sentiment of tweets, we divide the project into two main phases. In the first
phase, we develop a modified lexicon-based approach to automatically classify
hashtags as either sentiment or non-sentiment bearing. In the second phase, we
apply supervised machine learning to classify tweets containing these hashtags
as either positive or negative.

3.1 Phase 1: Classification of Hashtags

In the modified lexicon-based approach, the subjective words from different sen-
timent resources are used to detect subjectivity in the hashtags extracted from
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the tweets. Hashtags are stripped of their hash symbol, and their stems are found
using a Regexp stemmer from Natural Language Processing Toolkit (NLTK)6.

Sentiment resources refer to both opinion lexicons and word lists of senti-
ment terms. In our study, we use seven opinion lexicons (listed from smallest
to largest): AFINN [12], SentiStrength [16], Bing Liu Lexicon [8], Subjectivity
Lexicon [18], General Inquirer [15], NRC Hashtag Sentiment Lexicon [11], and
SentiWordNet [1]. For each lexicon, we extract all positive and negative words.
However, there are a few lexicons, in which we extract only the strongly subjec-
tive words. For SentiStrength Lexicon, we extract positive and negative words
with semantic orientations greater than 2.0, and less than −2.0, respectively.
For NRC Hashtag Sentiment Lexicon, we extract the top 500 adjectives for each
sentiment class (positive and negative). For SentiWordNet, we consider only the
adjectives (POS tags provided in the lexicon) that have scores for positivity or
negativity, which are greater than or equal to 0.5.

We also use three lists of sentiment words: Steven Hein feeling words7 which
contains 4232 words, The Compass DeRose Guide to Emotion Words8 which
consists of 682 words, and sentiment bearing Twitter slangs and acronyms col-
lected from various online sources9,10. Most of these words are not found in the
other lexicons. Examples include “fab” for “fabulous”, and “HAND” for “Have
a Nice Day”.

Using these 10 sentiment resources, a total of five aggregated lists of words
are created after a series of experiments is performed on the training set to
determine the selected combinations. These are described below.

1. FOW (Frequently Occurring Words) list contains the most subjective words.
These 915 words have occurred in at least five resources. The threshold of
five represents half of the total number of resources under consideration.

2. Stems of FOW contains the stems of all the opinion words in the FOW list.
There are 893 words in this list.

3. MDW (More Discriminating Words) list contains strongly subjective words.
These 7366 words occur in the smaller opinion lexicons and word lists: AFINN,
SentiStrength, Bing Liu and Compass DeRose Guide as well as those which
occur in 4 out of the 5 larger lexicons and word lists: NRC Hashtag Sentiment,
SentiWordNet, General Inquirer, Subjectivity Lexicon and Steven Hein list
of feeling words.

4. LDW (Less Discriminating Words) list consists of subjective words that occur
in at least 2 but not exceeding 3 of the 5 larger lexicons and word lists. These
868 words are considered to be the least subjective.

5. Twitter slangs and acronyms which have been manually identified. This list
also includes common interjections11, giving a total of 308 words.

6 www.nltk.org.
7 http://eqi.org/fw.htm.
8 http://www.derose.net/steve/resources/emotionwords/ewords.html.
9 http://www.socialmediatoday.com/content/top-twitter-abbreviations-you-need-kn

ow.
10 http://www.webopedia.com/quick ref/Twitter Dictionary Guide.asp.
11 http://www.dailywritingtips.com/100-mostly-small-but-expressive-interjections/.

www.nltk.org
http://eqi.org/fw.htm
http://www.derose.net/steve/resources/emotionwords/ewords.html
http://www.socialmediatoday.com/content/top-twitter-abbreviations-you-need-know
http://www.socialmediatoday.com/content/top-twitter-abbreviations-you-need-know
http://www.webopedia.com/quick_ref/Twitter_Dictionary_Guide.asp
http://www.dailywritingtips.com/100-mostly-small-but-expressive-interjections/
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Model Development. The classification model uses a binary search algorithm
to determine whether the hashtags in the training datasets meet one of the
following criteria:

1. It is an opinion word or originates from an opinion word.
2. It contains an opinion word or feature.

Based on this criteria, the model is divided into two steps. Initially, each of the
aggregated word lists are sorted alphabetically. In the first step, each hashtag is
compared with each opinion word in the different word lists. Comparisons are
also made between the stem of the hashtag and each opinion word. If a match
is found, the search terminates. Otherwise, the search must continue into the
second step.

The second step focuses on the hashtags that have not been matched after
the first step. Our aim is to ascertain if the hashtag contains an opinion word
(including a word originating from an opinion word) or feature. In order to do
this, two recursive algorithms are employed to create substrings of the hashtag.
Both algorithms return a list of substrings sorted in descending order of length.
The resulting substrings are compared to the opinion words in the FOW, stems
of FOW, and MDW lists because the substrings are smaller representations of
the hashtag, and thus, we consider only matches to the most subjective words
are considered. Additionally, we only consider substrings of the hashtag that
contain 3 or more characters. Our two recursive algorithms are described below.

1. reduce hashtag eliminates the rightmost character from the hashtag after
each iteration. The remaining characters form the left substring, whereas
the removed character(s) form the right substring. For example, the hash-
tag, “lovestory” has 10 substrings: “lovestor”, “lovesto”, “lovest”, “estory”,
“loves”, “story”, “love”, “tory”, “lov”, and “ory”.

2. remove left removes the leftmost character from the hashtag after each iter-
ation. Using this algorithm, six relevant substrings of the pre-processed hash-
tag, “lovestory”, are found: “ovestory”, “vestory”, “estory”, “story”, “tory”,
and “ory”.

Initially, the reduce hashtag algorithm is applied to produce a list of substrings.
Starting with the largest substring, each one is compared to each opinion word
in the FOW, stems of FOW and MDW lists, until a match is found. If the search
is unsuccessful, then the remove left algorithm is applied.

We then ascertain if the hashtag contains an opinion feature. In this study,
an opinion feature is any non-word attribute in the hashtag that suggests the
expression of a sentiment. Therefore, we consider only the presence of extra
repeated letters (at least 3), exclamation or question marks.

Table 1 outlines the eight rules for determining whether a hashtag is sentiment
bearing. If any of these rules is found to be true, then the hashtag is determined
to be sentiment bearing. Otherwise, the hashtag is non-sentiment bearing.
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Table 1. Rules for identifying sentiment hashtags

No. Rules

1 Hashtag = opinion word

2 Hashtag = stem of an opinion word

3 Stem of the hashtag = an opinion word

4 Stem of the hashtag = stem of a FOW

5 Max(substring of the hashtag) = an opinion word

6 Stem of the max(substring of the hashtag) = stem of a FOW

7 Max(substring of the hashtag) = stem of an opinion word

8 Hashtag contains a sentiment feature

3.2 Phase 2: Classification of Tweets

In this phase, we develop different scoring algorithms that can be used in con-
junction with various classifiers, in determining the sentiment polarity of tweets.
We only consider tweets with hashtags.

Model 1. In this model, the total number of occurrences of each unique hashtag,
is determined for each sentiment class. Each unique hashtag is assigned to the
sentiment class, for which it has the highest frequency. This is the simplest
model.

Model 2. This model uses a bag-of-words approach. Tweets in the training
set are tokenized into unigrams. Usernames and URL links are replaced with
generic tags [7]. Hashtags are extracted, and stored separately. Emoticons are
identified, and replaced with tags to indicate their sentiment polarity. Similarly,
negating words, repeated questions and exclamation marks are also extracted,
and substituted with special tags. All other punctuation marks and stop words
are removed from the dataset. Then, each unique word, wordf , in the tweet is
used as a feature. The frequency of each word in the different sentiment classes is
calculated. Then the positive and negative ratios are found using Eqs. 1, and 2.
The positive ratio shown in Eq. 1 is defined as the difference between the number
of positive tweets and the number of non-positive tweets that the word occurs
in, divided by the number of positive tweets that contains the word.

positive ratio(word) =
pos(word) − (neg(word))

pos(word)
(1)

The negative ratio shown in Eq. 2 refers to the difference between the number
of negative tweets and the number of non-negative tweets that the word occurs
in, divided by the number of negative tweets that contains the word.

negative ratio(word) =
neg(word) − (pos(word))

neg(word)
(2)



258 C. Simeon and R. Hilderman

The sentiment polarity of the word, sp(word), is the maximum of the positive
and negative ratios. The sentiment weight of each word, wordsw, is determined
as the product of sp(word) and wordf .

Additionally, emoticons, punctuation marks, and negating words are also
incorporated as features into the model. Positive emoticons and exclamation
marks are assigned a polarity of 1, whereas negative emoticons, question marks
and negations are assigned a polarity of −1. The feature weight featurefw of
each feature is described in Eq. 3

featurefw =
count(fw)

frequencyfw
× sp(feature) (3)

where count(fw), is the frequency of the word in the tweet, frequencyfw, is the
total frequency in the dataset and sp(feature), is the sentiment polarity of the
word. Then, the sentiment score of each hashtag in the tweet is the weighted
average of all the features (including the words) which is determined by Eq. 4 as

hastag score =
∑n

i=1 featurefwi
× sp(featurei)∑n

i=1 featurefwi

(4)

where n, is the number of features. The sentiment score for each hashtag in
the tweet ranges from −1 to 1. If the score is greater than 0, the hashtag is
considered to be positive. Otherwise, the hashtag is considered to be negative.

In order to determine the overall sentiment of the hashtag in the training set,
we count the number of times the hashtag is scored as positive or negative, and
assign the sentiment class with the highest frequency.

At the end of the training phase, we have two derived properties for each
hashtag: its frequency in the training set, and its sentiment polarity.

4 Experimental Results

4.1 Dataset

Our dataset consists of 71,836 unique tweets with hashtags, which are extracted
using the Twitter API12. The tweets were collected during the FIFA World Cup
2014 using search terms (excluding hashtags) related to the football matches,
in order to capture the opinions of the Twitter users during each game. We use
Sentiment140 API13 to automatically assign sentiment labels to the tweets in
our dataset. Sentiment140 uses a Maximum Entropy classifier with an accuracy
of 83 percent on a combination of unigrams and bigrams [7]. Positive, negative,
and neutral tweets are assigned numerical values of 4, 2, and 0, respectively.

12 http://www.dev.twitter.com/.
13 http://help.sentiment140.com/api.

http://www.dev.twitter.com/
http://help.sentiment140.com/api
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4.2 Evaluation Measures

Our evaluation measures are accuracy, precision, recall and f-measure. Accuracy
measures the number of tweets (hashtags) for each class that are classified cor-
rectly. Precision determines the ratio of actual relevant tweets (hashtags) among
predicted tweets (hashtags) for the sentiment category. Recall refers to the frac-
tion of relevant tweets (hashtags) actually classified by the model. F-measure is
the average of precision and recall.

4.3 Classification of Hashtags

Hashtags are extracted from the dataset and manually classified. Hashtags
belonging to the same type are grouped. For each hashtag type, we selected
all the tweets containing at least one hashtag of the respective type. Then, we
divided this group of tweets equally into training and test sets. Table 2 shows
the total number of hashtags extracted from the training and test sets.

Table 2. Training and test sets for each type of hashtag

Type Train Test Total

Sentiment 1,368 1,376 2,744

Non-sentiment 3,070 3,142 6,212

In order to evaluate our model, we compare the hashtags extracted in the
training and test sets. The hashtags in the test set is compared with the list
of determined hashtags in the training set. If the hashtag is found in this list,
the same class label is assigned. If it is not found, then similarity testing is
performed where we compare their stems and length (threshold of 95 %) of the
hashtags to determine a suitable match. Then, we compare the predicted class
label assigned by the model to that of actual label of the hashtag assigned during
manual annotation in order to evaluate our model.

Table 3 shows examples of the sentiment and non-sentiment hashtags that
are identified by our model. Table 4 shows the precision, recall, f-measure, and
accuracy metrics (in percent) obtained by our classification model.

Discussion. It can be observed from Table 4 that our model achieved higher
percentages for accuracy, precision, recall and f-measure in identifying non-
sentiment hashtags than sentiment hashtags. Therefore, our results suggest that
it is easier to identify non-sentiment hashtags than sentiment hashtags.

In order to compare the performance of our model, we created models which
used a single lexical resource in order to identify sentiment hashtags from non-
sentiment hashtags. Figure 1 shows the accuracy scores for the top five models.
It can be observed in Fig. 1 that our model (last column), which used combined
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Table 3. Examples of sentiment and non-sentiment hashtags classified by our model

Type Examples

Sentiment #stressful, #helpmeunderstand,

#shedoesntlookveryhappy, #strong

#celebration #mindblowing

Non-sentiment #budweiser, #dance

#2014fifaworldcup, #children

#teambrazil, #waiting

Table 4. Results for classification of hashtags

Hashtag type Accuracy Precision Recall F-measure

Sentiment 83.58 86.27 80.96 83.53

Non-sentiment 83.83 94.25 84.93 89.35

resources is the most accurate in identifying sentiment hashtags when compared
with models which used a single lexical resource. For the identification of non-
sentiment hashtags, our model performs comparably to one of the models which
used a single lexical resource. Therefore, the experimental results show that
using subjective words from different lexical resources is effective in boosting
the identification of sentiment hashtags.

4.4 Classification of Tweets

We use the sentiment and non-sentiment hashtags that are classified by our
model to select tweets that contain these hashtags. These tweets form our train-
ing and test set for each sentiment class. Table 5 show the number of tweets in
our training and test sets, for each sentiment class.

Table 5. Tweets for sentiment classification

Dataset Train Test Total

Positive 2,886 2,888 5,774

Negative 16,477 16,478 32,995

In order to classify positive and negative tweets in the test sets, we use the
derived properties of the hashtags in the training sets. For each tweet in the
test set, we determine if it contains at least one hashtag from the correspond-
ing training set. Then, we assign the tweet the same sentiment polarity as the
hashtag. If the tweet contains multiple hashtags from the training set, we apply
two derived properties of the hashtags: the type of hashtag and, its frequency in
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Fig. 1. Comparing the accuracy of our model to models using a single resource

the training set. For classifying tweets using sentiment hashtags, we determine
the most subjective hashtag in the group by comparing the hashtags to opinion
words in the FOW list. If one of the hashtags is found in this list, the tweet is
assigned the same sentiment polarity as this hashtag. Otherwise, the tweet is
assigned the sentiment polarity of the hashtag with the highest frequency. For
classifying tweets using non-sentiment hashtags, we determine the most descrip-
tive hashtag in the group by selecting the hashtag that is not determined to be
a noun. We use a POS tagger in NLTK for python. Then the tweet is assigned
the same sentiment polarity as this hashtag. Otherwise, the tweet is assigned
the sentiment polarity of the hashtag with the highest frequency.

Table 6 shows the precision, recall, f-measure, and accuracy metrics (in per-
cent) for our models on the test set, for each type of hashtag.

Discussion. It can be observed from Table 6 that both Model 1 and 2 for non-
sentiment hashtags achieve higher accuracy, recall, precision, and f-measure in
classifying tweets as positive and negative than Models 1 and 2 for sentiment
hashtags. Therefore, non-sentiment hashtags are more effective in classifying
tweets as positive and negative than sentiment hashtags.

Furthermore, our experimental results show that Model 1 outperforms Model
2 in classifying tweets using non-sentiment hashtags. For classifying tweets with
sentiment hashtags, Model 1 achieves higher precision and f-measure than
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Table 6. Results for classification of tweets

Hashtag type Model Accuracy Precision Recall F-measure

Sentiment Model 1 81.14 76.94 81.23 77.77

Model 2 81.72 71.34 81.84 73.91

Bakliwal et al. [2] 71.24 76.72 71.22 73.38

Non-sentiment Model 1 86.07 81.96 86.03 81.50

Model 2 85.97 73.89 85.92 79.46

Bakliwal et al. [2] 71.70 81.13 71.73 75.22

Model 2. However, Model 2 achieves slightly higher accuracy and recall than
Model 1. Overall, Model 1 is the better classification model.

In order to further evaluate our models, we apply the scoring algorithm cre-
ated by Bakliwal et al. [2] to our dataset. Experimental results show that all of
our models achieve higher accuracy, recall and f-measure scores than the model
which applied the scoring algorithm by Bakliwal et al. [2]. However, the models
created using the scoring algorithm by Bakliwal et al. [2], achieve the highest
precision.

We then compare Model 1 for each hashtag type to four established classifiers,
Naive Bayes, SVM, Maximum Entropy and C4.5. We use the WEKA implemen-
tation of these classifiers. We modify the training and test sets previously used
for Model 1, using 1 and 0 to indicate the presence and absence of each hashtag
in each tweet. Tables 7 and 8 shows the precision, recall, f-measure, and accu-
racy values (in percent) for the five classifiers for the test set on sentiment and
non-sentiment hashtags, respectively.

Table 7. Results for classification using sentiment hashtags

Classifier Accuracy Precision Recall F-measure

Naive Bayes 80.81 77.20 80.80 78.20

SVM 82.85 79.70 82.90 79.60

Maximum Entropy 73.52 75.40 73.50 74.40

C4.5 82.78 80.10 82.80 76.90

Model 1 81.14 76.94 81.23 77.77

It can be observed from Tables 7 and 8 that our models performed quite
comparably to the established classifiers. Additionally, all five models which
applied non-sentiment hashtags achieve higher accuracy, precision, recall and
f-measure scores than the models which applied sentiment hashtags. Therefore,
this suggests that non-sentiment hashtags are more effective than sentiment
hashtags in classifying tweets as positive or negative.
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Table 8. Results for classification using non-sentiment hashtags

Classifier Accuracy Precision Recall F-measure

Naive Bayes 85.90 80.50 85.90 79.90

SVM 86.12 82.30 86.10 82.00

Maximum Entropy 85.74 81.70 85.70 82.10

C4.5 86.41 83.30 86.40 81.80

Model 1 86.07 81.96 86.03 81.50

Overall, all our experimental results show that non-sentiment hashtags are
more effective in classifying tweets as positive and negative than sentiment hash-
tags. Additionally, Model 1 is determined to be the better model. Model 1 signif-
icantly outperforms the model created using the scoring algorithm by Bakliwal
et al. [2], and performs comparably to that of the established classifiers, which
demonstrates that our method is effective.

5 Conclusions and Future Work

In this paper, we evaluated the effectiveness of hashtags as accurate predictors
of the sentiment of tweets. First, we applied a modified lexicon-based approach,
which incorporated subjective words from different lexical resources, in order to
accurately distinguish sentiment-bearing hashtags from non-sentiment hashtags.
Using this model, we are able to achieve accuracy of 83.58 % and 83.83 % in iden-
tifying sentiment hashtags and non-sentiment hashtags, respectively. Further-
more, our accuracy surpassed those scores obtained using models that applied a
single lexical resource.

Then, we applied the derived properties of hashtags to classify tweets as
positive and negative. We developed and evaluated two separate classification
models using training and test datasets of tweets. Our best models achieved accu-
racy scores of 81.14 % and 86.07 % in classifying tweets using sentiment hashtags
and non-sentiment hashtags, respectively. Additionally, the performance of our
models outperforms a previously developed algorithm [2] but is comparable to
established classifiers. Finally, all our experimental results clearly indicate that
non-sentiment hashtags are more effective than sentiment hashtags for the sen-
timent analysis of tweets.

In terms of future work, we will extend our work to include neutral tweets,
and we plan to use hashtags for topic-based sentiment analysis.
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Abstract. We introduce meta-pattern discovery from a data ensemble,
a new paradigm of pattern discovery which goes beyond the KDD process
model. A data ensemble, which represents a set of data sets, seems to
be more natural as a model of the big data (We focus on the volume
and velocity aspects of the big data.). We propose two kinds of meta-
patterns, each of which specifies patterns such as clusters for a set of data
sets, for an unsupervised setting and a supervised one. Our solutions for
these settings were shown to be feasible with one synthetic and two real
data ensembles by experiments.

Keywords: Meta-pattern · Data ensemble · Data squashing · Sparse
coding

1 Introduction

Typical huge data, including the big data, can be rather regarded as a set of
data sets. For instance, some specific location data of cellular phone users can be
regarded as an ensemble of 1 million data sets, i.e., a collection of data on 10000
users, each being monitored for 100 days. We call a set of data sets a data ensem-
ble, which is beyond just a collection of data sets because they together describe
the target. In this paper, we propose a new paradigm of pattern discovery which
goes beyond the KDD (Knowledge Discovery in Databases) process model [4].
The paradigm skips the effort of selecting the data sets for pattern extraction
and instead extract patterns from a data ensemble and merge them to discover
new kinds of patterns. Relationships among the data sets would be described
explicitly in the output as “meta patterns”. Our motivation here is to explore
the possibility of this new pattern mining rather than improving the state-of-the-
art methods for individual, traditional problems. In this respect, our paradigm
differs substantially from such seemingly-relevant data mining problems, e.g.,
tensor decomposition [6], multi-task learning [8], data approximation [5].
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2 Meta-Pattern Discoveries from a Data Ensemble

2.1 Data Ensemble

A data ensemble Ω is a set of data sets Ω = {D1,D2, . . . , Dν}, where Di and
ν represent the ith data set and the number of the data sets, respectively. For
instance, Di can represent the location data of a specific cellular phone user on
a specific day.

Di consists of n(i) instances, i.e., Di = {di,1,di,2, . . . ,di,n(i)}, where di,j rep-
resents the jth instance of Di. We assume that it is a point (vi,j,1, vi,j,2, . . . , vi,j,m)
in the Euclidean space described with m features a1, a2, . . . , am due to its gen-
erality. Here vi,j,k represents the value of a feature ak of di,j . An instance di,j

is either unsupervised, i.e., di,j = (vi,j,1, vi,j,2, . . . , vi,j,m), or supervised, i.e.,
di,j = (vi,j,1, vi,j,2, . . . , vi,j,m, yi,j), where yi,j represents the class label of di,j .

2.2 Meta-Patterns in an Unsupervised Setting

In the unsupervised setting, we adopt clustering due to its generality and utility.
Note that in our meta-patterns, a cluster is discovered from the data ensemble Ω
and not given in the input. We extract a set of clusters from the whole data set
D1∪D2∪· · ·∪Dν in Ω and define meta-patterns over the probability distribution
on the clusters. Let the extracted clusters be c1, c2, . . . , cμ, which is a partition
of D1 ∪ D2 ∪ · · · ∪ Dν , then the probability distribution of Di on the clusters is
given by (pi,1, pi,2, . . . , pi,μ), where pi,j = |cj |/

∑ν
i=1 n(i). We set a meta-pattern

as specifying data sets with similar distributions. We call this kind of pattern

∪i Di ∼ (pi,1, pi,2, . . . , pi,μ) (1)

a cluster distribution meta-pattern, where A ∼ B represents that a set A of data
sets follows a probability distribution B. It represents that a set ∪iDi of data sets
contain clusters c1, c2, . . . , cμ with a probability distribution (pi,1, pi,2, . . . , pi,μ).

2.3 Meta-Patterns in a Supervised Setting

In the supervised setting, we opt for classification, which would be the most
popular problem in this kind of learning. We restrict our attention to dictio-
nary learning based on sparse coding [8] due to its affinity to pattern extraction
which will be explained later. Sparse coding is an information representation for
multi-dimensional observed data [8]. Sparse coding is defined as the operation of
decomposing an observed vector d to a multiplication of L and a sparse weight
vector (coefficient vector) s, i.e., d�Ls.

By following [8] we induce a classifier f(d;θi) from Di, where θi represents
the parameter vector. The value of θi is approximated with latent components
L∈ R

ν×k shared among classification tasks of inducing f(d;θi) from Di (i =
1, 2, . . . , ν), where k is the dimensionality of the latent space. That is, the value
of θi is learnt so that it becomes close to the value of Lsi, i.e., θi � Lsi, in terms
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of a sparse weight vector si ∈ R
k. Here each column vector of L corresponds to an

atom, which corresponds to a principal component in PCA, and L is considered
to be the dictionary. Note that the latent space here is learned from Ω to transfer
knowledge among the classification tasks.

By following [8], we adopt the logistic regression classifier

f(d;θi) = sgn
[

1
1 + exp (−θi,0 − θi,1a1 − · · · − θi,mam)

− 0.5
]

(2)

to induce from Di, where θi,j represents the jth coefficient and θi = (θi,0, . . . ,
θi,m). Note that the logistic regression classifier has been popular for decades in
various fields.

In our meta-pattern we adopt weight si,j of dictionary learning based on
sparse coding, where si = (si,0, . . . , si,k). Our choice corresponds to describing
relationships among data sets in the latent space defined by the atoms in the
dictionary L. The philosophy of sparse coding dictates that the weight vector si

is sparse, i.e., most of its elements are zero. Thus we adopt a non-zero weight
si,j (�= 0) as an element of the meta-pattern in this setting. Note that si,j >
0 (j = 1, . . . , m) represents that aj has a positive influence for predicting the
positive class while si,j < 0 (j = 1, . . . , m) represents that aj has a positive
influence for predicting the negative class. Thus we propose directional non-zero
weight meta-pattern

∪i Di →
∧
j

[(si,j > 0) or (si,j < 0)], (3)

where → represents the logical implication. Note that the data sets that follow
a directional non-zero weight meta-pattern share the same characteristics in the
latent space spanned by the elements with non-zero weights.

3 Meta-Pattern Discovery

3.1 Unsupervised Setting

To efficiently discover clusters c1, c2, . . . , cμ from D1∪D2∪· · ·∪Dν , we adopt data
squashing [2]. In our problem, the approach squashes the ν data sets into a set
C of micro clusters, each of which consists of information on similar instances.
Then the approach agglomerates similar micro clusters to obtain the output
clusters c1, c2, . . . , cμ.

BIRCH [11] is an early work of data squashing for clustering, which is simpler
and hence requires less tuning than its successors. It employs the CF (clustering
feature) vector, which consists of the number and the first and second moments of
examples, as the condensed representation of data. The CF vectors are managed
by the CF tree, which is a height-balanced tree with three parameters, i.e.,
branching factor βinternal for an internal node, branching factor βleaf for a leaf1,
1 In this paper we use the same values and denote them β.
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and the diameter θ of the CF vectors in a leaf. Note that we could adopt a more
recent clustering algorithm, e.g., CluStream [1], as well as options of BIRCH
such as outlier filtering. These possibilities would be necessary when we handle
a time-evolving data ensemble or a data ensemble with a considerable number
of outliers. We leave these possibilities to our future work.

We show the pseudo-code below. We first initialize the CF tree T and a linked
list L to which we add the leaves of T . Procedure addInstanceTree(di,j , T, L, θ)
adds instance di,j to T , updates L, and returns the updated tree. Procedure
mergeSimilarClusters(merged, L, θ) merges the cells in L with similar micro clus-
ters based on the value of θ. Here a pair of CF vectors are judged similar if the
average inter-cluster distance between them is less than θ.

Procedure transformListDSVec(L,H) transforms L into a matrix H, of which
(i, j) element represents the occurrence probability of the learnt jth cluster in
terms of the examples in Di. For instance, if L contains three clusters and D1

contains 20 % of c0, 0 % of c1, and 80 % of c2, then the second row of H is
(0.2, 0, 0.8). Procedure transformDSVecMetaPattern(H, φ) transforms H into a
set of cluster distribution meta-patterns. The procedure regards that Di and
Dj (i < j) belong to the same meta-pattern if the KL divergence2 of the ith
row of H to the jth row of H is less than a user-specified threshold φ, which
we call data set agglomeration parameter. Note that the information theoretic
approach is known to be robust to various kinds of probabilistic distributions
and often provides a sound interpretation.

Procedure addInstanceTree(di,j , T, L, θ) first assigns the instance di,j to the
root node of the CF tree T and updates the CF vector of the root node so that it
includes di,j . Then it iteratively assigns di,j to the closest child node in terms of
the average inter-cluster distance and repeats the update until it reaches a parent
of a leaf node. If the average inter-cluster distance between di,j and the closest
child leaf node is below θ, di,j is absorbed in the leaf node3, which undergoes
the same update procedure. Otherwise, a new leaf node to which only di,j is
assigned is created.

algorithm: Cluster distribution meta-pattern discovery
Input: data ensemble Ω, thresholds θ, φ
Output: set of meta-patterns

T = (empty tree)
L = (empty list)
For i=1 To ν do

For j = 1 To n(i)
T = addInstanceTree(di,j , T, L, θ)

Do
merged = FALSE
mergeSimilarClusters(merged, L, θ)

While(merged)

2 We adopt the standard procedure of using the Laplace correction.
3 This condition is our modification to the original BIRCH.
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transformListDSVec(L,H)
Output transformDSVecMetaPattern(H, φ).

3.2 Supervised Setting

For discovering directional non-zero weight meta-patterns4, we adopt ELLA
(Efficient Lifelong Learning Algorithm) [8], which is a lifelong learning algo-
rithm based on dictionary learning with sparse coding. Note that ELLA due
to its approximation has shown to be much faster than strict methods and to
achieve comparable performance [8]. Lifelong Learning is an extension of online
multitask learning and its objective is to leverage the overall prediction accu-
racy by transferring knowledge among domains each time given a new task [8].
Lifelong learning targets at a series of supervised learning tasks Z1, Z2, . . . , Zν .
In our case, the ith classification task takes Di as the input.

Given the training data of each task, ELLA updates L and si to minimize
the following objective function eν(L) for the ν tasks it has received.

eν(L) =
1
ν

ν∑
i=1

arg minsi

⎧⎨
⎩

1
n(i)

n(i)∑
j=1

L (f (di,j ;Lsi) , yi,j) + μ‖si‖1

⎫⎬
⎭ + λ‖L‖2F

(4)

Here L is the given loss function and the L1-norm of si is used as a convex
approximation of the sparseness of the vector. ‖A‖F =

√∑m
i=1

∑n
j=1 |aij |2 rep-

resents the Flobenius norm of matrix A = (aij) and μ and λ are parameters.
After obtaining the weight vectors si (i = 1, 2, . . . , ν), the task of discovering

the directional non-zero weight meta-patterns is straightforward. Note that the
pattern adopts logical implication and not probabilistic implication, making the
use of the support threshold unnecessary. Note also that most of the weights are
0 in sparse coding, which would result in a manageable number of meta-patterns.

4 Experiments

4.1 Unsupervised Synthetic Data Ensemble

We used a PC with Intel Core i7-3960X CPU of clock speed 3.30–3.90 GHz and
16 GB RAM. The OS was Ubuntu 12.04.3 and the compiler gcc 4.6 with -O3
option. We tested5 the performance of our method for the unsupervised setting
firstly with synthetic data, as our problem requires the ground truth as the
answer. The synthetic data were generated in the 3D space, i.e., m = 3, which is
common for evaluating a distance-based method such as [9,11] to avoid the curse
of dimensionality. Note that a variety of effective dimension reduction techniques
4 Note that this solution is independent from the one in the previous section. A semi-

supervised, hybrid solution is beyond the scope of this paper.
5 We use the past tense for our past actions.
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exist, ranging from unsupervised ones [7] to semi-supervised ones [10]. Our goal
was to evaluate methods from the viewpoint of estimating the true distribution
of the examples in a data ensemble with the discovered cluster distribution meta-
patterns. We, in this case, employed the recall and the precision of the cluster
distribution meta-patterns as evaluation criteria.

The synthetic data concern 27 clusters N ((x0, y0, z0), 1), where each of x0, y0
and z0 takes a value either γ, 0, or −γ. We generated 18 data sets, i.e., ν = 18,
each of which is an equi-probable mixture of 3 to 6 of the 27 clusters. Note also
that when γ becomes small, the clusters become close to each other as γ also
represents the distance from a cluster center to the centers of its closest clusters.
For instance, γ = 3 means that two closest clusters overlap each other by nearly
50 %, as about 99.7 % of examples belong to the range of μ ± 3σ. One concern
was the effective range of φ, which turned out to be wide in our preliminary
experiments. It turned out that φ has only a small influence on the results so we
set φ equal to θ throughout this paper.

We compared our method with the k-means algorithm, as it is one of the
most frequently used algorithms in clustering. Our clusters are spherical and
equi-probable, which justifies its usage. As common with the algorithm, we ran
the k-means algorithm with randomly set k seeds multiple times and report the
clustering result with the smallest

∑k
i=1

∑
x∈Ci

D(x, ci)2, where ci is the mean
of the cluster to which x belongs. The number of the random restart was fixed
to 10 throughout the experiments6. For a fair comparison, we agglomerated
the resulting clusters with the list agglomeration procedure of our method in
Sect. 3.1 using the same parameter θ. This agglomeration typically leverages the
performance of the k-means algorithm when k is larger than the number of true
clusters.

Figure 1 up shows the precision and recall for γ = 6, 5, 4, 3 with varying noise
levels. The parameters were set n(i) = 2000, θ = 3, β = 15, φ = 0.3, k = 27 and
noise deviations N ((0, 0, 0), 3) were added to the 18 data sets. We see that the
k-means algorithm outperforms our method in both recall and precision in many
cases, which is not surprising as the former treats the examples as they are while
our method squashes them. The run times of the k-means algorithm was 40 times
longer than our method, which is not a serious problem under these conditions
as each run is completed in less than 10 s. However, the k-means algorithm has
a fatal flaw in its scalability. The compiler failed with n(i) = 4000 and ν = 18
because the (half) distance matrix contains about 2.59 ∗ 109 distances. On the
other hand, even with n(i) = 4000000, the run time of our method was about
546 s, which we believe acceptable and even relatively short as a pattern mining
problem. Figure 1 down shows the results of the experiments under extremely
hard conditions, as the noise deviation is increased to 5σ. Basically we see the

6 Preliminary experiments showed that the number of the random restart has a minor
influence to the performance as long as it is not extremely small.
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Fig. 1. Results with the 3D domain (n(i) = 2000, θ = 3, β = 15, φ = 0.3, k = 27) with
noise deviations N ((0, 0, 0), 3) (up) and N ((0, 0, 0), 5) (down). Precisions are plotted
with lines - points while recalls are displayed with impulses.
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Fig. 2. Results of discovering cluster distribution meta-patterns (Left) and directional
non-zero weight meta-patterns (Right) from 100 facial expression data

same tendencies with worse performance for both methods. We believe that these
conditions seldom occur in reality7.

Note that most of these experiments suffer from extremely bad conditions,
e.g., noise level above 40 %, some even 100 %, many clusters overlap, examples
can be shifted much farther than the next cluster even with a noise deviation
of 3σ, which is considered as “modest” in our experiments. These results are
surprisingly well given these bad conditions, partly because of the large number
of examples, i.e., n(i) = 2000 × ν = 18, and the fact that we evaluated meta-
patterns in our problem instead of examples in clustering. A few number of the
recalls and precisions might appear to be inconsistent in terms of the difficulties
of the clustering problems but we think that they are due to the fact that the
resulting CF tree depends on the order of the examples.

We also investigated other parameters. For our method, we have found that
β is not influential under these conditions. Precisions and recalls are usually the
same. Run time can increase several dozens of percent, which is not a problem
because they are less than 0.3 s. For the k-means algorithm, we provided a correct

7 Due to the good performance under these conditions, we believe that our method
outperforms sampling-based k-means algorithms as well as state-of-the-art methods.
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value, k = 27, throughout the experiments in Fig. 1. We tried k = 40 under some
conditions and the results were similar, as similar clusters were merged with our
list agglomeration procedure with φ as stated above. However, setting k below
the correct number of clusters cause fatal problems, resulting very low precision
and recall.

4.2 Unsupervised Facial Data Ensemble

We tested the feasibility of our method for the unsupervised setting with a
real data set8. We constructed facial expression benchmark data of 100 persons
using Kinect face tracking application [3]. We devised multi-lingual instruction
sheets on 25 expressions, collected data from 115 persons, and carefully inspected
and labeled the outcome to construct the data. The benchmark data consist of
263,106 instances, each of which is described with 17 features. Among the 17
features, we used 6 animation units (AUs), each of which represents a deviation
from the neutral face and is highly useful in such an analysis. The images of a
person is considered as the data set for the person, resulting in a data ensemble
of ν = 100 data sets.

Branching factor βinternal = βexternal were set to 30 throughout the experi-
ments in this and the next section. We varied the absorption threshold θ and
measured the run time and the number of discovered meta-patterns. Figure 2
left shows the results of the experiments. The results show that our solution for
discovering cluster distribution meta-patterns is at least feasible: the run time
is at most 8.5 min and the numbers of meta-patters range from 684 to about
47300. The interpretation of the meta-patterns are not as easy as these evalu-
ation criteria because it involves the interpretation of the learned clusters and
our intuition on human faces sometimes hinders it.

4.3 Supervised Facial Data Ensemble

We tested the feasibility of our method for the supervised setting with a real data
set9. For the 100 person facial expression data set, out of the 263,106 instances,
we labeled 62,500 of them as 1 of the 25 expressions. We used only the labeled
images to form a data ensemble of ν = 100 data sets with again the 6 AU
features.

We classified the discovered meta-patterns in terms of the number of the
conditions in the premise and for each of them we show the distribution of the
number of data sets the meta-pattern covers. Figure 2 right shows the results,
where a box represents the total number of meta-patterns and the dagger, cross,
and star respectively represents the number of low coverage (1–32 data sets), mid
coverage (33–56 data sets), and high coverage (57–100 data sets) meta-patterns.
Again, our solution turned out to be feasible in this case, i.e., the number of

8 As feasibility study, we did not compare our method with other methods.
9 We used the default setting of ELLA http://www.seas.upenn.edu/∼eeaton/

publications.html.

http://www.seas.upenn.edu/~eeaton/publications.html
http://www.seas.upenn.edu/~eeaton/publications.html
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meta-patterns are relatively small in number (below 1000), especially if we go
for finding meta-patterns which cover many data sets.
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Abstract. We developed an algorithm to exactly solve an influence
maximization problem (MaxInf) for a two-terminal series parallel graph
(TTSPG) in the independent cascade model. The class of TTSPGs can
be considered as a class wider than that of trees, only for which an effi-
cient exact solver of this problem has been developed so far. Our algo-
rithm calculates candidate node sets in the divide-and-conquer manner
keeping the number of them as small as possible by efficiently eliminat-
ing unnecessary ones in merge of subproblems’ solutions. Furthermore,
we propose a way of converting an arbitrary network to a TTSPG with
edges important for propagation to apply our method to real networks.
According to our empirical results, our method is significantly faster than
the greedy approximation algorithm for MaxInf of a TTSPG. We also
demonstrate improvement of solutions by converting to TTSPGs instead
of trees using real networks made from DBLP datasets.

Keywords: Influence maximization · Two-terminal series parallel graph

1 Introduction

The information or influence propagation on networks has gathered attention
in this decade. The research on this area is useful for word-of-mouth marketing
[1,3], epidemics analysis [4], innovation diffusion [8] and so on.

In this paper, we study the influence maximization problem (MaxInf) on
Independent Cascade (IC) model formulated by [5], whose objective is to find the
most influential k nodes from a given network for a given number k ∈ N. Here
IC model is one of the most popular models of the influence diffusion dynamics.
MaxInf is one of the most important problems in the area of network analysis
because of its rich applications. A problem of finding the best testers for new
products in word-of-mouth marketing is an instance of this problem.

[5] has proposed a greedy approximation algorithm for MaxInf. Their algo-
rithm finds a set of k initially activated nodes by repeatedly adding the node
that increases the effect most. The approximation ratio of the solution is guar-
anteed by the analysis using a sub-modular function. Their algorithm, however,
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 275–283, 2015.
DOI: 10.1007/978-3-319-24282-8 23
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must calculate the effect for a given initial active nodes many times, and they
estimated it by a large number of simulations in their experiments because its
fast exact calculation has not been known yet. On the other hand, [6] proposed
an exact algorithm for a tree that runs in polynomial time.

We propose an exact method for a two-terminal series parallel graph (TTSPG).
Since any weighted directed tree can be converted to a weighted TTSPG with the
same propagation structure by adding a new node v and 0-weighted edges from all
the leaves to v, the class of TTSPGs can be considered to be larger than the class of
trees. In our algorithm, the effect on a TTSPG for a set of initial active nodes is rep-
resented as a linear function of the activation probability of its source node. This
enables the algorithm to calculate the effect on each subTTSPG without know-
ing the activation probability of its source node that depends on what upstream
nodes are selected as initial active nodes. Thus, effect calculation in the divide-
and-conquer manner becomes possible. The number of candidate sets of initial
active nodes are exponential to k but we have to check only the sets whose local
effect functions are maximal, and the number of such maximal sets is not large
according to the result of our experiments using randomly generated TTSPGs.
Our algorithm calculates candidate node sets in the divide-and-conquer manner
efficiently by eliminating non-maximal ones in merge of subproblems’ solutions.
We also propose a way of obtaining a TTSPG from a general directed graph to
apply our algorithm to a real network.

According to the result using synthetically generated random TTSPGs, our
exact algorithm is significantly faster than the greedy approximation algorithm
developed by [7]. In the experiments on networks constructed from DBLP records,
more influential authors are extracted by our method compared with the method
using a spanning tree developed by [6] in terms of the h- and g-index sum.

2 Preliminary

2.1 Influence Maximization in Independent Cascade Model

Independent Cascade (IC) Model is one of the most popular information propa-
gation models. An edge-weighted graph G = (V,E, p) is used in this model, where
V and E are the set of nodes and directed edges, respectively, and p is a weight
function of edges that satisfies p(e) ∈ [0, 1] for all edges e. Nodes correspond to
individuals and the edges correspond to relationship between individuals. Infor-
mation propagates from a node to its neighbor nodes via edges only. The weight
p(e) of an edge e is the success probability of propagation via the edge e. We
assume that the success of the propagation via one edge is independent from
that via any other edge. Active state propagates step by step, that is, if a node v
become active at time round t, a neighbor inactive node u of v turns into active
state at time round t+1 via an edge v → u by probability p(v → u). If the node
v fails to activate u at time round t + 1, v doesn’t try to activate u anymore.
Once a node becomes active state, it never turns into inactive in the future. The
propagation process starts from given initial active nodes at time round 0 and
ends by time round |V |. For an initial active set of nodes S ⊂ V , its effect, which
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is denoted by σ(S), is defined as the expected number of active nodes at the end
of the state propagation process.

An influence maximization problem (MaxInf) is formalized as follows.

Problem 1 (MaxInf [5]). Given a weighted directed graph G = (V,E, p) and
k ∈ N, find a k-element subset S of V that maximizes σ(S).

2.2 Two-Terminal Series Parallel Graph

A two-terminal series parallel graph (TTSPG) is defined as follows.

Definition 1 (TTSPG [9]). A two-terminal series parallel graph (TTSPG) is
defined recursively as follows.

1. A directed graph G consisting of two vertices v1 and v2 joined by an edge
v1 → v2 is a TTSPG. The node v1 (v2) is called the source (sink) of G.

2. If G1 and G2 are TTSPGs, so the directed graph obtained by either of the
following operations.
– (Parallel Composition): identify the source of G1 with the source of G2 and

the sink of G1 with the sink of G2.
– (Series Composition): identify the sink of G1 with the source of G2.

By Definition 1, any TTSPG with more than two nodes can be decomposed
in parallel or series, and we call such decomposition as SP decomposition. By
applying SP decomposition repeatedly, TTSPG can be decomposed into its com-
ponent non-decomposable subgraphs with one edge in polynomial time [9].

3 Algorithm for a TTSPG

Let G = (V,E, p) be a TTSPG. As the number k of initially activated nodes, we
assume k < |V | because S = V is the solution of MaxInf otherwise, where |V |
denotes the number of elements in V . Since any node subset S which contains
the sink node cannot be a unique solution when k < |V |, we only have to search
the solution S among k-element subsets of V that exclude the sink node.

3.1 Local Effect Function of Source Activation Probability

By SP decomposition, a TTSPG G = (V,E, p) can be decomposed into G1 =
(V1, E1, p) and G2 = (V2, E2, p) in parallel or series. Let us try to solve MaxInf
for G and k in the divide-and-conquer manner using this fact. Consider the case
that the decomposition is series. In this case, the activation probability of the
source s1 of G1 is 0 or 1 depending on whether s1 is chosen as an initial active
node or not. The activation probability of the source s2 of G2, however, can take
a variety of values depending on what subset of V1 is selected as the set of initial
active nodes in G1 when s2 is not chosen as an initial active node: the number
of values taken by it can be Ω(((|V1| − 1)/k)k). This prevents the problem from
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being efficiently solved by a divide-and conquer approach. Note that the number
of possible values for the activation probability of any node is at most its depth
plus two in the case with a tree, which enables an efficient algorithm of MaxInf
for a tree.

To overcome the above problem, we propose a method in which the effect
of the set S2 ⊆ V2 of initial active nodes in G2 is calculated as a function of
the activation probability p0 of s2 without knowing the specific values of p0. We
introduce two functions σS

G and qS
G of p0 defined for each node subset S of G.

Definition 2. Let G = (V,E, p) be a TTSPG with a sink node t. For a node
subset S ⊆ V \{t}, σS

G(p0) and qS
G(p0) are defined as the expected number of active

non-sink nodes and the probability to have an active sink node, respectively, at
the end of the state propagation process in which all the nodes in S are initially
activated and the source node is also activated (initially) with probability of p0.

The effect σ(S) of S on G can be expressed as σ(S) = σS
G(0) + qS

G(0)
using notations introduced above. It is trivial that σS

G and qS
G are monotoni-

cally increasing functions. Note that σS
G(p0) and qS

G(p0) are constantly equal to
σS

G(1) and qS
G(1), respectively, when the source node of G is included in S. By

the following theorem, we know that σS
G and qS

G are representable by the form
of ap0 + b using some constant reals a and b.

Theorem 1. For a TTSPG G = (V,E, p) and k < |V |, let S be a k-element
subset of V that excludes the sink node of G. Then, σS

G and qS
G are linear.

Corollary 1. Assume that a TTSPG G = (V,E, p) can be decomposed into two
TTSPGs G1 = (V1, E1, p) and G2 = (V2, E2, p) by an SP decomposition. Let
S1 = S ∩V1 and S2 = S ∩V2 for S ⊆ V . If all the parameters of linear functions
of σS1

G1
(x) = a1x+b1, qS1

G1
(x) = c1x+d1, σS2

G2
(x) = a2x+b2 and qS2

G2
(x) = c2x+d2

are known, then parameters a, b, c and d of linear functions of σS
G(x) = ax + b

and qS
G(x) = cx + d can be calculated in O(1) time.

For a TTSPG G = (V,E, p) and two subsets S1, S2 ⊆ V , let us write
(S1, σ

S1
G , qS1

G ) ≤ (S2, σ
S2
G , qS2

G ) if σS1
G (p0) ≤ σS2

G (p0) and qS1
G (p0) ≤ qS2

G (p0) hold
for all p0 ∈ [0, 1]. We say that a triplet (S, σS

G, qS
G) is maximal in S if (S, σS

G.qS
G) ∈

S and (S, σS
G, qS

G) �≤ (S′, σS′
G , qS′

G ) for any S′ ∈ S \ {S}.

3.2 Algorithm

For a given TTSPG G = (V,E, p) and a natural number k < |V |, let Sall(G, k) =
{(S, σS

G, qS
G)|S ⊆ V \{t}, |S| = k}, where t is the sink node of G. Then, the set S∗

of the most influential k nodes is expressed as S∗ = arg max
S:(S,σS

G,qS
G)∈Sall(G,k)

(σS
G(0)+qS

G(0)).

Unfortunately, Sall(G, k) cannot be enumerated efficiently because Sall(G, k) con-
tains Ω(((n − 1)/k)k) subsets. Considering the fact that S for non-maximal
triplets (S, σS

G, qS
G) cannot be S∗, the algorithm only have to check the effect of

S for (S, σS
G, qS

G) in
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S(G, k) = {(S, σS
G, qS

G) ∈ Sall(G, k) | (S, σS
G, qS

G) is maximal in Sall(G, k)}.

There has been yet no theoretical analysis on how much reduced the set S(G, k)
is from Sall(G, k), but the reduction seems significantly large according to the
following our empirical result. we randomly generated 100 TTSPGs (V,E, p) with
|V | = 800 and p ≡ 0.1 in the way explained in Sect. 4.1 and calculate |S(G, k)|.
Their largest size is 104 and their average size is 43.2, which is overwhelmingly
smaller than |Sall(G, 5)| = (799 · 798 · 797 · 796 · 795)/(5 · 4 · 3 · 2 · 1) ≈ 2.7 trillion.

So, in the rest of this subsection, we explain how efficiently our algorithm
calculates S(G, k). Let Sk

G,1 denote the set of all the elements in S(G, k) that
contains the source of G and let Sk

G,0 denote the set of all the other elements in
S(G, k). Consider the problem of calculating {(S�

G,0,S�
G,1)}�=0,1,...,k instead of

S(G, k) only. Since S(G, k) = Sk
G,0∪Sk

G,1, this is a finer problem. This finer prob-
lem can be solved recursively by making use of SP decomposition of G. Let G1 =
(V1, E1, p) and G2 = (V2, E2, p) be TTSPGs that is made by some SP decompo-
sition of G. Define k1 and k2 as min{|V1|−1, k} and min{|V2|−1, k}, respectively.
Assume that {(S�

G1,0,S�
G1,1)}�=0,1,...,k1 and {(S�

G2,0,S�
G2,1)}�=0,1,...,k2 have been

already obtained. We show that {(S�
G,0,S�

G,1)}�=0,1,...,k can be obtained from
those.

Let us consider the case with series decomposition. We can assume that G1

is positioned upstream of G2 without loss of generality in this case. Then, for
each � ∈ {0, 1, . . . , k} and x ∈ {0, 1}, S�

G,x can be calculated from S�−k′
G1,x and

Sk′
G2,0 ∪ Sk′

G2,1 for k′ ∈ [0, �] ∩ [� − k1, k2] as

S�
G,x = {(S, σS

G, qS
G) ∈ S�

G,x | (S, σS
G, qS

G) is maximal in S�

G,x}, where

S�

G,x =
⋃

{(S1 ∪ S2, σ
S1∪S2
G , qS1∪S2

G ) | (S1, σ
S1
G1

, qS1
G1

) ∈ S�−k′
G1,x ,

(S2, σ
S2
G2

, qS2
G2

) ∈ Sk′
G2,0 ∪ Sk′

G2,1}. (1)

Consider the case that G can be made from G1 and G2 by parallel composi-
tion. In this case, for each � ∈ {0, 1, . . . , k}, S�

G,1 can be calculated from S�−k′+1
G1,1

and Sk′
G2,1 for k′ ∈ [1, �] ∩ [� − k1 + 1, k2] as

S�
G,1 = {(S, σS

G, qS
G) ∈ S�

G,1 | (S, σS
G, qS

G) is maximal in S�

G,1}, where

S�

G,1 =
}⋃

}
{(S1 ∪ S2, σ

S1∪S2
G , qS1∪S2

G ) | (S1, σ
S1
G1

, qS1
G1

) ∈ S�−k′+1
G1,1 ,

(S2, σ
S2
G2

, qS2
G2

) ∈ Sk′
G2,1}, (2)



280 K. Tabata et al.

and S�
G,0 can be calculated from S�−k′

G1,0 and Sk′
G2,0 for k′ ∈ [� − k1, k2] ∩ [0, �] as

S�
G,0 = {(S, σS

G, qS
G) ∈ S�

G,0 | (S, σS
G, qS

G) is maximal in S�

G,0}, where

S�

G,0 =
2}⋃

}
{(S1 ∪ S2, σ

S1∪S2
G , qS1∪S2

G ) | (S1, σ
S1
G1

, qS1
G1

) ∈ S�−k′
G1,0 ,

(S2, σ
S2
G2

, qS2
G2

) ∈ Sk′
G2,0}. (3)

Note that at the formulas (1), (2) and (3), σS1∪S2
G and qS1∪S2

G can be calcu-
lated in O(1) from σS1

G1
, σS2

G2
, qS1

G1
and qS2

G2
as guaranteed by Corollary 1.

For a non-decomposable TTSPG G = ({s, t}, {s → t}, p),

S0
G,0 = {(∅, p0, p(s → t)p0)}, S0

G,1 = ∅, S1
G,0 = ∅ and S1

G,1 = {({s}, 1, p(s → t))}
hold. The correctness of our algorithm can be proved by mathematical induction
on the number of edges of G using this fact and the formulas (1), (2) and (3).

Fig. 1. Running times and their 95 % confidence intervals of our algorithm and Greedy
for MaxInf with k = 8 (a) and in the graphs with 800 nodes (b).

4 Experiments

4.1 Experiments for TTSPGs

In this subsection, we describe empirical evaluation on calculation time and
accuracy of our method comparing to those of the greedy approximation method
developed by [7].

Dataset. We generated n-node TTSPGs by combining two subTTSPGs using
“series” or “parallel” composition with probability 0.5. Each of the subTTSPGs
is also generated by the above generating method so that the number of nodes
after combining them becomes n, that is, this generating method is a recursive
procedure. The number of nodes of each subTTSPG is selected from a uniform
distribution. For each number of nodes n ∈ {100, 200, 400, 800}, we generated 5
TTSPGs. The weights of the edges are set to a constant value p ≡ 0.1.
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Comparative Algorithm. Since no algorithm to exactly solve MaxInf for a
TTSPG has been developed so far, we compare the performance of our algorithm
to that of a hill-climbing approximate algorithm for a general network developed
by [5] and improved by [7], which we call Greedy for short. To estimate the
influence spread we run 10,000 Monte Carlo simulations in all experiments.

Results. The running time dependency on the number of nodes in a given graph
is shown in Fig. 1(a). In this experiment, the number of the initial active nodes
are fixed to 8. Our algorithm is significantly faster than Greedy: at least about 50
times faster for all the numbers of nodes in our setting (n = 100, 200, 400, 800). In
Fig. 1(b), we show the running time dependency on the number of initial active
nodes. The number of nodes in a given graph is fixed to 800 in the experiment.
Our algorithm is faster than Greedy for all the numbers of initial active nodes
in our setting (k = 3, 4, . . . , 9). The growth rate of the running time of our
algorithm, however, is larger than that of Greedy.

4.2 Experiments for Real Networks

In order to demonstrate the effectiveness of our approach to application for the
general networks, we conducted experiments using real networks. Real networks
used in our experiments are the collaborative networks made from the snapshot
of the DBLP database on April. 4th, 2014. We extracted the sets of influential
researchers from the collaborative networks using our approach and compared
them with those extracted by the conventional approach using a spanning tree
developed by [6]. We made a weighted directed graphs (V,E, p) of conference A
from the set D of papers recorded in the DBLP database as follows. Let W (⊆ D)
denote the set of papers presented in conference A in some past year and let V
denote the set of authors of the papers in W . Define m(w) as the set of authors
of a paper w for each paper w ∈ W . Then, an edge set E and a weight function
p is defined as follows.

E = {u → v | {u, v} ⊆ m(w) for some w ∈ W}
p(u → v) =

|{w ∈ W | {u, v} ⊆ m(w)}|
|{w ∈ W | v ∈ m(w)}|

In order to obtain a good approximate solution for the original graph G =
(V,E, p), the set E′ of edges in the spanning tree T = (V,E′, p) are selected so as
to maximize its likelihood

∏
e∈E′ p(e) in their method. Such a spanning tree can

be found by solving the problem of finding the minimum spanning tree for the
graph G′ = (V,E,− ln p), which is known to be solved in O(|E|+ |V | ln |V |) time
[2]. Different from trees, there may be no spanning TTSPGs even for the graphs
in which there is a node that is reachable to any node. Such graphs, however,
have a spanning pseudo-TTSPG, which is defined as follows.

Definition 3. Let G = (V,E) be a directed graph and let Vt(⊆ V ) be the set of
nodes with no outgoing edge. A directed graph G is said to be a pseudo-TTSPG
if the directed graph (V ∪ {w}, E ∪ {v → w | v ∈ Vt}) is a TTSPG for w �∈ V .
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If a spanning tree exists for G, a spanning pseudo-TTSPG also exists because
a directed tree is a pseudo-TTSPG. For a given weighted pseudo-TTSPG
(V,E′, p), a corresponding weighted TTSPG (V ∪{w}, E′∪{v → w | v ∈ Vt}, p′),
which can be seen as a graph with the same propagation structure, is obtained
easily by adding 0-weight edges v → w to E′ for all the nodes v in Vt, where Vt

and w are notations used in Definition 3, and weight function p′ is defined as
p′(e) = p(e) for e ∈ E′ and p′(e) = 0 otherwise.

Therefore, in order to use our algorithm to approximately solve MaxInf for
a general weighted directed graph G, we only have to find a spanning pseudo-
TTSPG with many edges and high likelihood. Since any efficient algorithm to
find a maximum-likelihood spanning pseudo-TTSPG with a maximal set of edges
has not been known yet, we took the following greedy approach for a given
weighted directed graph (V,E, p). (Step1) Calculate the spanning tree (V,E′, p)
with the maximal likelihood using the algorithm of [2]. (Step2) For each e ∈
E \ E′, do the following in decreasing order of p(e): if (V,E′ ∪ {e}, p) is still a
pseudo-TTSPG, add e to E′.

We made graphs for several major conferences on machine learning and data
mining and conducted experiments using them, but we report the results only
for ACML due to space limitation. The numbers of nodes and edges are 341 and
1,146 in ACML graph.

Table 1. Authors extracted as the solution
of MaxInf : The solutions for a spanning pseudo-
TTSPG and a spanning tree are shown. We used the
h- and g-indices provided by ArnetMiner (http://
arnetminer.org/) on Feb. 4, 2015. (CI: confidence
interval)

Extracted authors h-&g-idx Tree TTSPG

Qiang Yang 50 85 �
T. G. Dietterich 47 122 �
Zhi-Hua Zhou 45 82 � �
Aapo Hyvärinen 28 81 � �
Kristian Kersting 26 47 � �
M. Sugiyama 26 46 � �
Alan Fern 21 39 �
Steven C. H. Hoi 19 33 �
Jan Ramon 14 27 � �
M. Ghavamzadeh 14 26 �
Yang Zhang 12 15 � �
Kouzou Ohara 9 13 � �
Qian Zhou 9 11 �
h-idx sum 209 271

g-idx sum 394 544

Estimated effect (99 % CI) 83.56 83.60

±0.02 ±0.02

The results of our exper-
iments are shown in Table 1.
The number k of initial active
nodes was set to 10. There are
three authors unique to the
set of the influential authors
extracted by each the app-
roach, and more influential
authors seem to be extracted
by using spanning pseudo-
TTSPGs in terms of the h-
index sum and also g-index
sum. These indices are known
as the most popular measures
to quantify researcher’s per-
formance.

Moreover, we estimated
the effects on original graphs
of these solutions over
1,000,000 times of Monte
Carlo simulation. The esti-
mated effects of the solutions
by using a tree and a spanning
pseudo-TTSPG are 83.565798
and 83.599365, respectively.
The effects of solutions by pseudo-TTSPG are higher and there is a 99 % chance
of a statistically significant difference between them are detected by Welch’s

http://arnetminer.org/
http://arnetminer.org/
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method. We also obtained the similar result for other datasets in our experi-
ments.
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Abstract. Retaining users and customers is one of the most important
challenges for the service industry from mobile communications to online
gaming. As the users of these services form dynamic networks that grow
in size, predicting ‘churners’ becomes harder and harder. In this work, we
explore the use of anomaly detection for churn prediction. To this end,
we evaluate bio-inspired and deterministic online clustering algorithms
on both cell phone and online gaming data sets. We discuss the results of
each technique from the perspective of: feature identification, sensitivity
analysis of the parameters as well as their capacity to detect churn.

Keywords: Churn detection · Performance measures · Clustering

1 Introduction

Customers are continuously offered alternative products and services from a
range of service providers in addition to their own, i.e. customers are potentially
only retained for short periods of time. Hence, the threat of low brand loyalty
may decrease the use of services or even end up with a loss of customers. Those
customers, who terminate their subscription of a service, are called churners
and the rate of churn in a certain period of time is referred to a churn rate.
Companies endeavour to keep churn rate as low as possible.

Churn detection represents the capacity to predict when a customer might
‘churn’ and therefore provide the provider with the capacity to take preventative
action, e.g. make service discounts. Churn detection is therefore of significance
to a broad range of industries, such as: telecommunication, insurance, finance,
Internet service providers, online services, and TV providers.

From the detection perspective, data sets are used to characterize the churn
behavior of customers taking a particular service. A cross section of attributes
are collected in an attempt to characterize the perceptions and demographics
of customers, as well as their interactions with the company [3]. One of the
problems of churn data sets is their unbalanced nature; generally, only small
portion of the data consists of churning customers [23]. Nevertheless, predicting
that small amount of churn can be a valuable source for companies to retain
their customers who are about to quit the service [20].
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 284–298, 2015.
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In addition, the underlying causes that motivate users to switch between
service providers are not necessarily static. Hence, merely constructing predictive
models from historical data does not represent a feasible approach. The non-
stationary aspect of the task implies that some form of online or streaming
algorithm should to be assumed.

In this study, we benchmark a recently proposed bio-inspired approach to
constructing clusters from streaming data, Flockstream [8] algorithm, and com-
pare against three deterministic clustering algorithms available from the Massive
online Analysis repository [4]: ClusTree, CluStream, and DenStream. The aim of
this research is to give a comprehensive analysis of these algorithms in terms of
clustering performance for churn detection on continuously streaming and evolv-
ing data. Algorithms are evaluated by experiments on three data sets; KDD 2009
churn data set which is publicly available, and two commercial data sets. In the
evaluation phase, we discuss the results of all algorithms based on well-known
performance metrics.

The paper is organized as follows. Section 2 summarizes the literature review.
Section 3 presents the algorithms employed. Section 4 details the experimental
evaluations on our real life data sets. Finally, conclusions are drawn and the
future work is discussed in Sect. 5.

2 Literature Survey

A wide variety of classification techniques have been applied to churn detection
(prediction). According to the results of the churn-modeling tournament pre-
sented by Neslin et al. in [17], logistic regression and decision trees are the two
most popular methods with a usage ratio of 68% in total. Lee et al. argue that
k-NN based classification using time series performs better than the other clas-
sification techniques [14]. They used the data gathered from one of the largest
telecommunication companies in Taiwan over a four months period. As a neural
network approach, Mozer et al. [16] studied a wireless telecommunication data
set containing approximately 47, 000 subscribers. The experimental tests are per-
formed on two randomly selected groups of subscribers. The results show that
the churn rate in treatment group in which potential subscribers were contacted
by the company is 40% less than the control group where no action was taken
by the company for the subscribers. Huang et al. [11] compared decision tree,
neural network and SVM methods for churn modelling. They used the telecom-
munication data set where roughly 23% of the data consisted of churners and
results indicate that neural networks and multi-class SVMs performed better.
Another comparison is made by Zhao and Dang [23] using artificial neural net-
work (ANN), decision tree (C4.5), logistic regression and naive Bayesian classi-
fiers on financial data set containing information about one of the commercial
banks’ VIP customers. In the evaluation of the techniques, they consider the
accuracy, hit, and covering rate, as well as the lift coefficient which is calculated
as a ratio between accuracy rate and customer churn rate. According to the
results, SVM shows the best performance compared to other techniques. GA is
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another technique used by Pendharkar [18] with a combination of neural net-
works. The data set involves nearly 200, 000 records from a wireless company
and evaluations are made in terms of ROC performance metric. A comparative
study between GA-based ANN algorithm developed by researcher and statistical
z-score classification model indicates that the GA-based model performs better
than the statistical one. Instead of classification techniques, the effect of fuzzy
c-means clustering for separating churning customers is studied by Karahoca
and Karahoca in [12]. As in many studies, they ran the algorithm on telecom-
munication data which includes randomly selected loyal and churner subscribers.
In the comparison with the data mining approaches (Ridor, ANFIS and decision
trees) it is observed that the proposed clustering technique is better than the
other algorithms with respect to sensitivity, specificity, precision, and correctness
performance metrics.

Working on churn prediction itself is impractical for long term analysis when
we consider the changing behavior of the subscribers. For that reason, we have
decided to consider churn detection problem with the challenges of streaming
data. In this context, three well known stream clustering algorithms (CluStream
[1], DenStream [5], ClusTree [13], and Flockstream [8]) are discussed in detail in
the next section.

3 Methodology

This study is an attempt to quantify to what degree state-of-the-art stream
clustering techniques are applicable for addressing the challenging real-world
task of churn detection. In this context, we conducted our research on three
data sets gathered from both commercial and public sources. The first is the
KDD Cup 2009 churn data set, which is publicly available and used in many
studies related to classification and clustering tasks [21]. On the other hand, we
gathered two more data sets from a leading online gaming company. The need
for commercial confidentiality implies that throughout the study we will refer
to this data as ‘commercial’ small/big. The data sets are characterized in more
detail in Sect. 3.1.

Benchmarking will be performed across four stream clustering algorithms:
CluStream [1], DenStream [5], ClusTree [13], and Flockstream [8]. The first three
algorithms are sourced via the Massive Online Analysis (MOA) toolbox [4], which
is a free open source software to perform clustering and classification techniques
for data stream mining. Conversely, the Flockstream algorithm was implemented
using libraries in Java. Sections 3.2 to 3.5 summarize the properties of algorithms
for constructing clusters from streaming data.

3.1 Data Sets

KDD Cup 2009, characterized in detail by Guyon et al. [10], was presented by
the French Telecommunication company, Orange, for the KDD Cup 2009 chal-
lenge. The aim of the challenge was to predict propensity of the customers to
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change their provider. Two data sets were presented as churn data, one large and
one small. In this work, we picked the small data set which consists of 50, 000
instances and 230 attributes. The data includes a large amount of missing val-
ues (∼60 %). Additionally, the first 190 variables are numerical, whereas the last
40 variables are categorical. Due to the privacy concerns, this data set is not
fully documented. Moreover, categorical variables were replaced with meaning-
less codes. For that reason, the data is preprocessed before being used in our
experiments such that the categorical attributes and features containing no value
for all instances are deleted. Additionally, the mean of each feature is calculated
column-wise and missing values are filled with the mean of the corresponding
feature. Before running experiments on the data sets, they are normalized such
that the range of the values is limited between 0 and 1, or x(t) = x(t)−xmin

xmax−xmin
;

where x(t) denotes the independent variable at location t in the stream. Nat-
urally, the process of normalization assumes that prior task specific attribute
range information is available (xmin, xmax) to facilitate this process.

In the case of the online gaming data two data sets are used and referred
to as ‘big’ and ‘small’. They are composed of a set of activities by customers
during the game. The main purpose is to detect churners within the upcoming
24 − 48 h time window. The data sets are unbalanced, with only ≈ 9% and
≈ 8% churn rate for small and big data sets, respectively. The small data set
consists of 1, 669, 593 data instances, whereas the large data set has 9, 618, 868
instances. There are 16 numerical features for each data instance. At the request
of the company, we can not share the meaning of these features but basically,
each instance represents one play with a collection of player behavior during
the game. Naturally, more than one play might be played by each player. An
identification number for each player helps us to group players and preprocess
them to extract their behaviours throughout the game. Similar to the KDD 2009
data set, values are normalized before being processed. Information about data
sets is summarized in Table 1.

Table 1. Information of data sets.

Data sets # Instances # Features # Classes Size (MB) Churn rate (%)

Commercial-Small 1,669,593 16 2 118.8 9

Commercial-Big 9,618,868 16 2 809.1 8

KDD Cup 2009 50,000 175 2 122.1 7

3.2 CluStream

CluStream divides the clustering process into two separate phases. Phase 1, online
micro-clustering, identifies summary statistics from the data. Subsequently, the
statistics can be used to analyze clusters in accordance with the user demand,
which is known as the offline phase. Naturally, if the stream is divided into non-
overlapping windows, or ‘chunks’, then it is possible to construct clusters on an
‘incremental’ basis.
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In order to minimize memory requirements, Zhang et al. suggested that fea-
tures of data points can be represented as a characteristic vector [22]. This
characteristic vector, or Clustering Feature (CF), has three components and is
defined as CF = (N,LS, SS). Here, N , LS, and SS represent the total number,
linear sum (

∑N
i = 1 Xi ), and squared sum (

∑N
i = 1 X

2
i ) of the data points in the

cluster, respectively.
When a new data point x i arrives to the cluster, total number of points N is

incremented by 1, x i and x 2
i are added to LS and SS, respectively. If two CFs are

need to be merged, then a new CF vector is comprised of sum of their components
respectively such that, CF1 + CF2 = (N1 + N2, LS1 + LS2, SS1 + SS1).

In CluStream, data points are processed in a time interval and each of them
has a timestamp. Based on the above CF structure, CluStream introduces micro-
clusters. A micro-cluster can be represented with the (2 ∗ d + 3) tuple for a set
of points Xi1 , . . . , XiN and time stamps Ti1 , . . . , TiN as (CF2x, CF1x, CF1t,
CF2t, N). The benefit of this extension is to facilitate the access of saved micro-
clusters at different time intervals. In this respect, users are able to extract old
clusters from the history and examine them on demand.

The generation and maintenance of micro-clusters is addressed handled in
two phases. The online phase begins with a sufficient amount of micro-clusters
generated by using standard k-means algorithm. After that the system starts to
accept new data points. When a new point arrives to the system, there are two
cases in order to achieve maintenance: (1) Either the new point joins a current
micro-cluster (2) or a new micro-cluster is initiated by including the new point.

In the offline phase, the aim is to provide in-depth analysis of micro-clusters
to the users in a given time horizon. Hence, the summary statistics are prepared
in the online phase, it is easy to extract relevant micro-clusters. Pyramidal time
frame ensures that there is always a snapshot between the current time tc and
the time horizon h′, which is an admissible horizon within the interval (tc, h).
A more detailed description of CluStream can be found in [1].

3.3 DenStream

Cao et al. [5] proposed a density-based clustering algorithm for streaming data.
It extends the core point concept introduced with DBSCAN [7], by using the
micro-clustering technique from CluStream (Sect. 3.2). However, unlike CluS-
tream, the DenStream algorithm does not partition the stream into distinct
blocks of data. Instead, a damped window model is used to determine the impor-
tance of historical data; thus, the importance of a data point gradually decreases
according to the fading function f(t) = 2−λ·t, where λ > 0. In addition to the
weight of data points, the data stream has its own weight, which is specified as a
constant W = v/1 − 2−λ, where v is the speed of the stream, i.e. the number of
points arrive to the system in a one time unit. In order to separate (streaming)
data points into different regions of density, the authors employ three concepts:
core-micro-cluster, potential core-micro-cluster, and outlier-micro-cluster.

A core-micro-cluster (c-micro-cluster) is defined as CMC(w, c, r) at time
t for a group of close points pi1 , . . . , pin with time stamps Ti1 , . . . , Tin . The
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components in CMC(w, c, r) denote the weight, center, and radius of the c-
micro-cluster, respectively. The authors propose that the set of c-micro-cluster
can be used to represent the clusters with an arbitrary shape. However, the clus-
ters need to be distinguished from outliers. Therefore, they introduced ‘potential’
core-micro-cluster, and outlier-micro-cluster, similar to those in [2] in terms of
incremental computation.

Analogously to CluStream, there are two phases; the online phase where
the micro-clusters are updated and maintained, and the offline phase where the
clusters are extracted on user demand. In the first phase, assume that the data
point p is one of the streaming data coming into the system. There are three
scenarios respectively:

1. Merging p into the nearest p-micro cluster cp such that, if it satisfies the
condition that the new radius rp of cp is less than or equal to ε.

2. Merging p into the nearest o-micro cluster co if it satisfies the condition that
the new radius ro of co is less than or equal to ε, i.e. ro ≤ ε, then merging
occurs. If the weight of co is greater than βμ, i.e. w ≥ βμ, then it is promoted
to p-micro-clustering.

3. If one of first two conditions is not satisfied, then a new o-micro-cluster is
generated by p.

In the offline phase, the DenStream algorithm makes use of the variant of
DBSCAN to find the final clusters. A more detailed information on DenStream
can be found in [5].

3.4 ClusTree

Kranen et al. [13] have introduced a self-adaptive clustering algorithm, ClusTree,
for mining data streams. They proposed a parameter-free solution which is able
to adapt for different stream speeds (lengths of non-overlapping window). Micro-
clustering and the R-Tree data structure [9] form the basis of the ClusTree
algorithm. As per Sect. 3.2, the clustering feature (CF) tuple is used to store a
summary of information related to the data stream. The tree structure makes it
possible to maintain micro-clusters at different levels of a hierarchy. The main
idea is to place an arriving object to the optimal micro-cluster, searching the
tree from the root to leaf node.

Insertion of an object is a continuous process, every data point travels from
root through the leaf nodes by choosing the subtree with the closest mean. In the
case that an object can not reach the leaf nodes, the process is interrupted and
the current CF is saved to the buffer of the subtree. Whenever that subtree is
accessed by another object, then the saved entry is taken as a hitchhiker. Unless
their paths differ from each other, they descend together. If their paths need to
be separated, then the hitchhiker is saved again to the buffer and the current
insertion continues on its path. When we assume that an object reaches the leaf
node, then it causes a split if there is still time. Otherwise, the closest entries
are merged and their ids are saved to a list as a pair.
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In the updating process, all entries in the node are updated considering their
CF, buffer and last update time. If a leaf node needs to be split, then the least
significant entry in the system can be discarded. In that situation, the related
entry is subtracted from the path through the root. This ensures that no entry
or CF is discarded if an object is added to it before the last snapshot. Moreover,
it guarantees that each entry is stored in at least one snapshot. A more detailed
description of the ClusTree algorithm can be found in [13].

3.5 Flockstream

Forestiero et al., introduced a bio-inspired, agent-based approach for single pass
stream clustering [8]. They adapt the micro-clustering approach from the Den-
Stream algorithm but unlike the proceeding algorithms, a single-pass paradigm is
adopted instead of a two phase approach. Analogously to DenStream, a damped
window model is chosen to fade the importance of historical data points through-
out the process. The flocking model, first proposed by [19] and developed further
by [6] defines a set of agents that interact with each other in an environment.
Agents can only interact with their neighbouring agents in their ‘visibility range’.
Additionally, they keep some distance between them to avoid collisions. Their
movements in the environment are coordinated based on three rules: alignment,
separation, and cohesion.

The algorithm defines two spaces: a d-dimensional feature space represented
as Rd, and a 2-dimensional Cartesian space or the virtual space, R2

v. The feature
space is the data space in which each data point is stored. On the other hand,
the virtual space is a discrete toroidal grid system consisting of a finite number
of cells in which agents move and interact with each other. Each cell contains
only one agent at a time. Every agent deployed to the virtual space represents
a data point from the feature space. An Agent A is defined as A = (P, v), such
that P is the position of the agent A in R2

v, i.e. P = (x, y) and v is the velocity
vector of the agent A, i.e. v = (m, θ).

The basic relationships between agents and data is summarized as follows.
Let pc be a data point in feature space which is represented by the agent Ac in
the virtual space. Each agent can interact with only the neighboring agents in
a range with radius R1 and may defend itself from collision with other agents
within the range of R2. Assume that the neighboring agents in Ac’s visibility
range are denoted as F1, . . . , Fn. The distance between two agents, i.e. dv(Ai, Fi),
is the Euclidean distance between positions of the agents in the virtual space, i.e.
PFi

= (xFi
, yFi

), PAi
= (xAi

, yAi
). On the other hand, dist(pc, pi) specifies the

Euclidean distance between the data points pc and pi, where pi is the data point
of the neighboring agent Fi. Thus, the similarity between two agents is defined
such that, if dist(pc, pi) ≤ ε, then two points are assumed to be similar. The
maximum threshold value ε is used later to specify the radius of a micro-cluster.

The flocking behavior itself is the combination of velocity vectors: var, vsr,
v cr. Before the each movement of the agent Ac, these velocities are combined
together to find the target velocity, i.e. var +vsr +v cr, and normalized to obtain
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a unit vector. The final velocity vector determines the movement of the agent
Ac. See [8] for the details of the MSF flocking rules.

Flockstream employes a combination of three types of agent to perform the
clustering process:

1. basic agents, which represent the new data points arriving to the system;
2. p-representative agents, which represent the p-micro-clusters; and,
3. o-representative agents, which represent the o-micro-clusters.

Clustering itself is performed in two steps: (1) initialization where the initial set
of basic agents is established; and, (2) micro-cluster maintenance and clustering
takes place for the all three types of agents present in the virtual space. Naturally,
initialization is only performed once relative to some initial stream content,
whereas step 2 is performed thereafter as the remainder of the stream passes.
We conclude our discussion of the Flockstream algorithm by detailing these
processes as per the following subsections.

Initialization. At the initialization phase, a predetermined number of basic
agents are created and deployed to random positions in the virtual space. Ini-
tially, the velocity vectors of basic agents v = (m, θ) are assigned such that the
magnitude m equals to 1 and the angle θ is a random value within the range
[0, 360]. Agent identifiers are incrementally assigned from 1 to n, where n is the
total number of data points.

For a predefined number of iterations, the agents move and interact with
each other on the virtual space simultaneously according to the MSF flocking
rules [8]. Each basic agent is influenced by the neighboring agents in its visibility
range. At every iteration, the velocity vector of each basic agent is calculated
and assigned for the next move. During this process, similar agents (based on
a Euclidean distance between the data points from the feature space) are more
likely to move together as a flock, whereas dissimilar agents move away from
the flocks. Although an agent can be involved in a flock, it may disjoin due to a
change in flocking behavior or effect of the MSF rules. At the end of this phase,
we have two kinds of basic agents; those that belong to one of the flocks and
those that do not.

At the end of the initialization phase, any flocks identified are characterized
by representative agents, i.e. the basic agents corresponding to each flock will
be represented by a single representative agent. Summary statistics of the basic
agents in the flocks are computed and stored by the corresponding represen-
tative agent. Finally, these basic agents are discarded from the system. Given
that representative agents are now expressing the cluster properties of the data
stream, representative agents are divided into two types, p-representative and
o-representative agents in accordance with the p and o micro-cluster definitions
in DenStream (Sect. 3.3).

Maintenance and Clustering. When initialization has finished, there are
three types of agents remaining in the system; p-representative, o-representative,



292 S.B. Tatar et al.

and basic agents that were not involved in a flock at the initialization process.
The purpose of this phase is both to maintain the p and o representative agents
associated with the p and o micro-clusters in the feature space, and to per-
form online clustering. At the next iteration, a new allocation of basic agents
is accepted to the system. Note that, the stream speed and maximum number
of iterations are specified by the user at the beginning of the process – in effect
defining a non-overlapping window from which the next data ‘chunk’ is sam-
pled. Similar to the initialization phase, agents move around the environment
with respect to the MSF rules. However, because the types of the agents are not
the same, agent similarity is defined as follows:

– Basic → Basic : In the case that basic agent A, associated with a data point
pA ∈ Rd meets basic agent B, associated with a data point pB ∈ Rd, then the
two are considered similar when dist (pA, pB) ≤ ε.

– Basic → Representative : In the case that a basic agent A meets either a
p-representative B (i.e. p-micro-cluster cB

p ) or an o-representative B (i.e. o-
micro-cluster cB

o ) then we add pA to the copy of micro-cluster cB
p or cB

o to
obtain a new radius. If the new radius rp or ro ≤ ε, then they are considered
similar.

– Representative → Basic : In the case that a p- or o-representative agent A,
meets a basic agent B associated with data point pB , then they are considered
similar if the Euclidean distance between the center of the micro-cluster and
pB is less than ε.

– Representative → Representative : In the case that a p-representative A (i.e.,
p-micro-cluster cA

p ) or an o-representative A (i.e., o-micro-cluster cA
o ) meets

another representative agent, then they are considered to be similar if the
Euclidean distance between centers of the micro-clusters less than ε.

The above similarity functions enable agents to move around the virtual
space. On completing a fixed number of iterations relative to the current block
of data from the stream Flockstream ‘labels’ the next batch of stream content
using the current content. Algorithm 1 summarizes the complete process assumed
for Flockstream maintenance/clustering.

4 Evaluation

In this section, we present the evaluation metrics, which are used to compare the
algorithms. The criteria of best can be stated as generating the purest possible
clusters with a reasonable precision in lowest possible execution time.

4.1 Parameterization

The DenStream parameters are a subset of those used for Flockstream; hence,
they assume a common process for parameterization. In the case of CluStream
and ClusTree, the recommendations from the MOA distribution are assumed.
Table 2 summarizes the resulting parameterization for the three MOA sourced
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Algorithm 1. Flockstream cluster maintenance and identification.

1: for each flock F in the Virtual Space do
2: check the type of each agent in F
3: if the type of all agents is basic then
4: if number of agents ≥ μ then
5: create a new p-representative agent
6: else if number of agents ≤ μ then
7: create a new o-representative agent
8: end if
9: end if

10: if there is only one representative agent Ar in F then
11: insert all other basic agents to Ar

12: if Ar is p-representative ∧ its weight ω ≤ βμ then
13: diminish Ar to o-representative
14: else if Ar is o-representative ∧ its weight ω ≥ βμ then
15: promote Ar to p-representative
16: end if
17: end if
18: if there is more than one representative agent in F then
19: merge representative agents and insert basic agents into it
20: label new representative agent as a swarm
21: end if
22: end for

algorithms. Flockstream assumes the parameters of DenStream, plus: (1) Max-
Iterations defining the maximum number of iterations; and, (2) d defining the
size of the virtual space. The authors of Flockstream suggest that if the stream
speed is v (aka size of the non-overlapping window interface to the data stream),
then the size of the virtual space parameterized such that d × d ≥ 4 × v. The
maximum stream speed used in our experiments is 1000. Therefore, the minimum
size of the virtual space would be 64 × 64. A virtual space value of 100 × 100
was adopted in order to reduce congestion resulting from agent immobility.

Flockstream includes two additional parameters which are MaxIterations
for the maximum number of iterations and d for the dimensions of the virtual
space. They are fixed to 800 and 100, respectively. The authors of Flockstream
suggest that if the stream speed is v, then dimensions of virtual space can be
specified such that d × d ≥ 4 × v. The maximum stream speed used in our
experiments is 1000. Therefore, dimensions of virtual space should be roughly
more than 64 × 64. However, we picked a 100 × 100 virtual space to reduce
congestion resulting from immobility. Another difference between parameters is
the offline multiplier used in DenStream to calculate the final value of epsilon.
In Flockstream, we only use epsilon. The following sections cover the topics of
evaluation metrics.
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Table 2. Descriptions of parameters of each algorithm from MOA

Algorithms Parameters Descriptions

CluStream -h (d: 1000) Range of the window

-k (d: 100) Maximum number of micro kernels to use

-t (d: 2) Multiplier for the kernel radius

-M Evaluate the underlying micro-clustering instead
of the macro-clustering

DenStream -h (d: 1000) Range of the window

-e (d: 0.02) Defines the epsilon neighbourhood

-b (d: 0.2) Beta (β) constant

-m (d: 1) Mu (μ) constant

-i (d: 1000) Number of points to use for initialization

-o (d: 2) Offline multiplier for epsilon

-l (d: 0.25) Lambda (λ) constant

-s (d: 100) Number of incoming points per time unit

-M Evaluate the underlying micro-clustering instead
of the macro-clustering

ClusTree -h (d: 1000) Range of the window

-H (d: 8) The maximal height of the tree

-M Evaluate the underlying micro-clustering instead
of the macro-clustering

FlockStream -d (d: 100) Dimensions of Virtual Space

-e (d: 0.1) Defines the epsilon neighbourhood

-b (d: 0.2) Beta (β) constant

-m (d: 10) Mu (μ) constant

-i (d: 300) Number of points to use for initialization

-x (d: 800) Maximum number of iterations

-l (d: 0.25) Lambda (λ) constant

-s (d: 300) Number of incoming points per time unit

4.2 Evaluation Metrics

All algorithms used in this study are evaluated according to three performance
metrics: macro-purity, micro-precision, and recall. MOA refers to these metrics
as Purity, F1-P, and F1-R respectively [15]. Micro and macro measures are
calculated in the same manner except with respect to the degree of support
for clusters in the confusion matrix. Specifically, the macro confusion matrix
groups all the clusters that share the same majority label in the same micro
confusion matrix row. In the following, CRi represents clusters identified by
the algorithm, whereas CSj represents the (true) class value; thus |CSj | are
the number of classes. In every identified cluster, vij represents the number of
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data points identified each class. The precision, recall and F1 −Score of clusters
identified by the algorithms are defined as follows.

precisionCRi
=

max (vi1, . . . , vim)∑m
j = 1 vij

(1)

recallCRi
=

max (vi1, . . . , vim)∑n
i = 1 vij

(2)

F1 − ScoreCRi
= 2 · precisionCRi

· recallCRi

precisionCRi
+ recallCRi

(3)

Purity and F1-P metrics can now be defined in terms of the total number clusters
identified by each algorithm, n, or:

Purity =
∑n

i precisionCRi

n
(4)

F1 − P =
∑n

i = 1 F1 − ScoreCRi

n
(5)

The final performance measure of the MOA used in the experiments is F1-R.
This is estimated from the maximum F1 − Score for each value vij in the class
CSj as follows:

F1 − Scorevij
= 2 · precisionvij

· recallvij

precisionvij
+ recallvij

(6)

Max F1 − ScoreCSj
= max

(
F1 − Scorev1j , . . . , F1 − Scorevnj

)
(7)

F1 − R =

∑m
j = 1 Max F1 − ScoreCSj

m
. (8)

4.3 Evaluation Results

In this section, all related experiments are done with the MOA Release 2014.04.
For DenStream and Flockstream algorithms, the epsilon values are chosen as 0.1
and 0.8 for the experiments on the commercial and public data sets, respectively.
Other parameters are set as discussed at the beginning of Sect. 4.

Tables 3, 4 and 5 summarize the performances of algorithms on Commercial-
Big, Commercial-Small, and KDD 2009 churn data sets respectively. The eval-
uation metrics assume those used in MOA, or F1-P, F1-R, and Purity, where
larger values are better.

Flockstream generally provides lower precision and higher recall than the
MOA algorithms. From the purity point of view, it returns 25% better purity
than DenStream. The CluStream and ClusTree results are essentially equivalent.

Table 4 outlines the results of the bigger commercial data set. Flockstream
again achieves the highest purity and recall, albeit at the expense of precision.
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Table 3. Results of algorithms on commercial-small data set

Algorithms F1-P F1-R Purity

Flockstream 0.01 0.40 0.96

DenStream 0.32 0.25 0.83

CluStream 0.04 0.03 0.54

ClusTree 0.04 0.03 0.53

Table 4. Results of algorithms on commercial-big churn data set

Algorithms F1-P F1-R Purity

Flockstream 0.01 0.44 0.98

DenStream 0.14 0.11 0.85

CluStream 0.08 0.06 0.72

ClusTree 0.09 0.07 0.73

Both Clustree and CluStream provide improvements relative to their respec-
tive behavior under the ‘small’ commercial data set, but fail to approach the
performance of either DenStream or Flockstream.

The results of public data set underlines the performance difference between
Flockstream and the remaining algorithms. The purity of the Flockstream on
public data remains the highest. Indeed, the performance differential in purity
was typically 70%. The F1-R (recall) for Flockstream also remains strong. Per-
formance by the other algorithms remains weak throughout, with all three of
the returning algorithms returning poor values for F1-P and F1-R. As a general
remark, we note that there is always a significant disparity between the Purity
and the F1 metrics. This is a reflection of the macro nature of the Purity metric.
Hence, for strong macro performance all that is necessary is that the clusters be
‘pure’ (not mix multiple classes). Strong micro performance in addition requires
that the number of clusters matches the number of classes. Hence a micro metric
incrementally penalizes the use of more clusters than classes.

Table 5. Results of algorithms on KDD 2009 churn data set

Algorithms F1-P F1-R Purity

Flockstream 0.0328 0.475 0.93

DenStream 4.67 × 10−4 2.33 × 10−4 0.21

CluStream 2.15 × 10−4 1.07 × 10−4 0.20

ClusTree 6.82 × 10−4 3.41 × 10−4 0.19



Benchmarking Stream Clustering for Churn Detection in Dynamic Networks 297

5 Conclusions and the Future Work

The purpose of the study was to evaluate the performance of the Flockstream
algorithm against state-of-the-art stream clustering algorithms available from
MOA (CluStream, DenStream, and ClusTree) in task of the churn detection.
Benchmarking on three data sets quantifies performance differences in terms of
the micro precision and recall and macro purity of clusters identified over the
course of the stream. In our experiments, we observed that the epsilon value
plays a vital role in the performance of Flockstream. Larger epsilon values cause
irrelevant data points to aggregate in the same cluster. In contrast, only very
similar data points became a swarm, whereas a large amount of data points
remain in the system at a lower epsilon value. Therefore, the choice of epsilon
value is vitally important for Flockstream functionality.

Based on the results of all the algorithms on both the commercial and the
public data sets, it is clear that Flockstream presents remarkable results, espe-
cially on purity. While DenStream is the closest on the commercial data sets,
there is a still a considerable difference between them. In the experiments on
the public data set, the superiority of Flockstream on the purity is most signif-
icant. Additionally, it is observed that the unbalanced data sets reveal better
differentiation on data points in found clusters. When we examine results from
the precision point of view, both DenStream and Flockstream produce the best
results. As precision values are evaluated using micro performance metric, all the
algorithms analyzed are characterized by lower values. That said, Flockstream
is still more effective under F1-R (recall) metric implying that although many
more clusters are created than classes, the clusters must be particularly pure.

In conclusion, the effect of clustering techniques on churn detection research
is notable. This approach can be applied to various service industries in addition
to the gaming and the telecommunication sectors. In the future, we plan to
investigate how to speed up the Flockstream algorithm as well as how to improve
the precision measurements.
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Abstract. In this study, we apply non-linear kernelized canonical cor-
relation analysis (KCCA) as well as primal-dual sparse canonical corre-
lation analysis (SCCA) to the discovery of correlations between sulphate
reducing bacterial taxa and their geochemical environment in the deep
biosphere. For visualization of canonical patterns, we demonstrate the
applicability of the correlation plot technique on kernelized data. Finally,
we provide an extension to the visual analysis by clustergrams. The pre-
sented framework and visualization tools enabled extraction of latent
canonical correlation patterns between the salinity of the groundwater
and the bacterial taxonomic orders Desulfobacterales, Desulfovibrionales
and Clostridiales.

Keywords: Canonical correlation · Kernel methods · Sparsity · Deep
biosphere

1 Introduction

Multivariate analysis methods are becoming increasingly popular in uncovering
the complex network of microbe-environment interactions. Various settings have
been studied concerning the human microbiome [14], soil microbes related to
agricultural practice [15] and microbiota in sediments associated with europh-
ication [16]. Canonical correlation analysis (CCA) [14–16] and combinations of
univariate and multivariate regression [14] including principal component analy-
sis (PCA) [15] have been among the popular methods. Despite their popularity,
these methods are limited by the assumption of linear dependencies among the
variables and the fact that the resulting models are often overly complicated for
human interpretation.
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In this paper, we examine sulphate reducing bacteria (SRB)-environment
data arising from the deep biosphere research. Our data originates from deep
bedrock drill holes of the Fennoscandian shield. There, SRB are observed up to
several kilometer’s deep [7]. SRB affect their anoxic living habitats for example
by producing corrosive hydrogen sulfides. In deep geological storage of nuclear
waste they may impact the long-term safety of the spent nuclear fuel storage
canisters and other metallic radioactive waste [11]. In order to efficiently abate
or estimate the effects of SRB the factors driving the SRB communities residing
deep in the bedrock environment the physicochemical parameters driving the
SRB communities must be identified. Better understanding of the deep biosphere
has potential ramifications to application fields such as climate research [13] and
biotechnology [8].

In microbe-environment interaction studies, the sample size is generally rel-
atively modest and the number of variables is large. Thus, we choose to analyse
microbe-environment interactions by kernel CCA (KCCA) [4] and sparse CCA
(SCCA) [5], recent extensions of CCA, designed to tackle high-dimensional data
through regularization, to extract non-linear dependencies and to find sparse
solutions facilitating interpretation. In order to ensure statistical validity of the
results, we apply in addition cross-validation to optimize model hyperparame-
ters and randomization through permutation tests to determine the statistical
significance of the discovered patterns.

Visualization of the results of multivariate analysis is challenging due to
the typical high dimensionality. Frequent visualization approaches of projection-
based methods, such as PCA or CCA, include score plots [15] biplots [14,16],
and, more recently, correlation plots [2,3,10], all designed to project the data
on a two-dimensional scatter plot, where similarity of variables or data points
can be visually deduced. In this study, we first show that the correlation plot
technology naturally extends to kernelized CCA variants, and go on to introduce
a new clustergram visualization to represent the results of CCA-based methods,
including kernelized ones. A clustergram provides an alternative dimension to the
analysis of the results since it does not suffer from the problem of visual clutter
that occurs in correlation plots when multiple variables have similar correlation
coefficients with the projections.

2 Canonical Correlation Analysis Methods

We first present the Canonical Correlation Analysis (CCA) methods used in this
paper. Let the data matrices Xa and Xb, of sizes n×p and n×q, denote the views
a and b respectively. The row vectors xk

a ∈ R
p and xk

b ∈ R
q for k = 1, 2, . . . , n

denote the sets of empirical observations, or samples, of Xa and Xb respectively
and the column vectors ai ∈ R

n for i = 1, 2, . . . , p and bj ∈ R
n for j = 1, 2, . . . , q

denote centered variable vectors of the n samples respectively.
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In canonical correlation analysis [6], two projection directions wa ∈ R
p and

wb ∈ R
q that maximize the correlation

ρ = max
wa,wb

wT
a XT

a Xbwb

‖wT
a Xa‖‖wT

b Xb‖ (1)

between the two datasets are sought for. Extending the CCA framework, recent
years have put forward regularized, sparse and kernelized variants of CCA,
widening the applicability of the method and to overcome limitations of CCA
on high-dimensional problems [4,5].

Kernel Canonical Correlation Analysis (KCCA). [4] performs CCA by first map-
ping the original observations through a feature map φa : Rp �→ Ha to a Hilbert
Space Ha. The similarity of the objects is captured by a symmetric positive
semi-definite kernel function, corresponding to the inner product in Ha

Ka(xi
a,xj

a) = 〈φa(xi
a),φa(xj

a)〉Ha
.

Using kernels Ka and Kb to map the objects in view a and b, respectively, one
can express the KCCA objective by [4]

ρ = max
α,β

αT KaKbβ√
αT K2

aα · βT K2
b β

, (2)

where α,β ∈ R
n denote the dual variables that assign weights to the training

examples. However, this optimisation problem results in a trivial correlation
coefficient of value 1 when either Ka or Kb is invertible. Following [4], we solve
this problem through partial Gram-Schmidt orthogonalisation (PGSO) to reduce
the dimensionality of the kernels and by penalising the norms of the weight
vectors by a convex combination of constraints based on Partial Least Squares
to enforce non-trivial learning of the projection directions:

ρ = max
α,β

αT K̃aK̃bβ√
(αT K̃2

aα + καT K̃aα) · (βT K̃2
b β + κβT K̃bβ)

Above, the kernel matrices are substituted by product of lower-triangular matri-
ces Ra (resp. Rb) arising from PGSO approximation: K̃a = RaRT

a
∼= Ka and

K̃b = RbR
T
b

∼= Kb, respectively.

Primal-Dual Sparse Canonical Correlation Analysis (SCCA). [5] seeks to max-
imise the correlation among subsets of features by discarding the features that do
not contribute to the correlation sufficiently in comparison to others. In primal-
dual SCCA, one of the views is given in the primal representation (using features)
while the other is given in dual (using kernels). We denote the non-kernelized view
by Xa and the kernelized view by Kb. The primal weights for Xa are denoted by
wa and the dual weights for Kb by β.

ρ = max
wa,β

wT
a XT

a Kbβ√
wT

a X2wa · βT K2
b β
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The correlation is maximised between the vectors Xawa and Kbβ. This is equiva-
lent to minimising the 2-norm between the vectors subject to ||Kbβ||2 = 1. Since
this would not result in a convex optimisation problem, the constraint is replaced
by ||β||∞ = 1. In order to force a non-trivial solution, the dual weight of one
selected example that has an index k is fixed to βk = 1 and the a constraint
of 1-norm is put on the remaining entries of dual weight vector, denoted by
β̃ = (β�)� �=k. The 1-norm of wa is also constrained to favour a sparse solution
in view a. The final optimisation problem is then

min
wa,β

||Xawa − Kbβ||2 + μ||wa||1 + γ||β̃||1 (3)

subject to ||β||∞ = 1 where μ and γ are regularisation parameters controlling
the trade-off between the function objective and the level of sparsity. The scalar
μ represents the level of sparsity that controls how many of the features in Xa

are discarded. The parameter γ is determined directly from the data in Kb.

3 Experiments

3.1 Data

Data consists of 43 deep bedrock groundwater samples obtained at different time
points from three different sites around Finland: 15 and 11 samples from Out-
okumpu, Finland in 2007 and 2009, respectively, 13 samples from Olkiluoto in
years 2009–2013, one from Onkalo, Finland, and three samples from Palmottu,
Finland. Bacterial species were identified by dissimilatory sulphate reduction
dsrB marker gene targeting which is used to identify specifically sulphate reduc-
ing microbial species. Denaturing Gradient Gel Electrophoresis (DGGE) was
used to separate taxonomically variable genes which were used to construct
operational taxonomic units (OTUs). The 58 DGGE bands corresponded to the
binary bacterial variables that were paired with 15 geochemical variables.

3.2 Training Settings

In the SCCA algorithm [5] the constraint ||β||∞ = 1 is fulfilled by selecting a
seed example xk

b , and fixing its dual variable at βk = 1. Following [12], we used
spectral clustering to compute three medoids from the second view b to be used
as candidate seeds. We compared two settings of kernel combinations. First,
we performed linear analysis by applying linear kernel K(x,x′) = xTx′ to both
views in KCCA and the kernelized view of SCCA. These settings will be referred
to as L-KCCA and L-SCCA respectively. In the second setting, we used Gaussian
kernel K(xb,x′

b) = exp(− ||xb−x′
b||2

2σ2 ) on the second (geochemical data) view b and
let the first view (microbial communities) view to remain linear for both SCCA
and KCCA. The motivation for this setup was to keep the data representation
comparable for the two methods, whilst allowing us to impose primal sparsity
on the microbial community view. These settings will be referred to as G-KCCA
and G-SCCA respectively.
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Table 1. Results obtained at the optimal parameter values that yielded a maximal
predictive canonical correlation coefficient.

Projections

1 2 3

L-SCCA 0.863 0.835 0.826

G-SCCA 0.910 0.908 0.751

L-KCCA 0.838 0.802 0.798

G-KCCA 0.965 0.962 0.948

3.3 Parameter Estimation and Statistical Significance Testing

We optimized hyperparameter μ that controls sparsity of view a in L-SCCA
and G-SCCA, as well as the width of the Gaussian kernel σ in G-SCCA by
3-fold cross-validation. The same kernel width σ was also applied to G-KCCA.
The model selection criterion was predictive canonical correlation, that is, the
canonical correlation of test fold, using the canonical weights computed from the
training fold.

The canonical correlation coefficients given the optimized hyperparameters
of the first three leading projection directions are shown in Table 1. We observe
that correlation coefficient of the leading projection (k = 1) is the greatest, as
expected. The use of Gaussian kernels improve the correlations for both SCCA
and KCCA. The statistical significance of the canonical correlation coefficients,
given the optimized hyperparameters, were estimated using permutation tests
[12]. A background data distribution consistent with the null hypothesis, H0 :
“There is no correlation between the two views of the data”, was generated
by permuting the rows of one view 500 times and computing the correlation
coefficients for such randomized data. According to the permutation tests, the
leading three canonical correlations obtained from the dataset were statistically
significant in all settings at 99% significance level. We note that the present setup
corrects for multiple testing with respect to the optimal projection directions
(wa,wb). However, it omits multiple testing correction of the hyperparameters
(μ, σ) due to large computational resource requirement of permutation tests.

3.4 Visualization of the Correlations

We visualized the canonical projections arising from SCCA and KCCA with
correlation plots (c.f. [3,9,10]) based on Pearson’s correlation coefficients of single
variables and the projections. In particular, here we show that the technique is
immediately applicable to kernelized projections, despite the fact that we do not
have access to the projection weights of the variables.

Within view a, correlation coefficient between values of a single variable and
the primal (sk

a = Xawk
a) and dual (sk

a = Kaαk) representation of the k’th
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canonical projection scores are computed by

ρ(ai, s
k
a) =

〈ai, Xaw
k
a〉

||ai||||Xawk
a|| =

〈ai, Kaαk〉
||ai||||Kaαk|| (4)

Correlations of the two leading canonical projections in view a are used as coor-
dinates for plotting the single variables ai in view a by (ρ(ai, s1a)), ρ(ai, s2a)). The
correlations and coordinates regarding view b are computed analogously.

A correlation plot showing the relations between the variables in the data,
obtained by L-SCCA, is shown in Fig. 1. For example, a high correlation is
observed between the DGGE band number 57, that represents the Peptococ-
caceae bacterial family, and Ca2+ measurements. On the other hand, there is a
high negative correlation between the DGGE band number 68, that represents
the Desulfobacteraceae family, and Ca2+.

The similarities and dissimilarities between the samples can be analysed by
score plots. In a score plot, the axes are the first two leading projections, sk

a =
Xawk

a and sk
a = Kaαk for k = 1, 2 for SCCA and KCCA respectively [2]. In this

case, the clusters of the samples can be interpreted by their positions in relation
to the variables on the correlation plot.

A score plot on the results of L-SCCA on the data is shown in Fig. 2. In
general, samples obtained from the same site at the same time point cluster
together. The positions of the samples on the score plot can be explained by
analysing which of the variables on the correlation plot are found in the same
position. The samples obtained from very deep, OK-2-23, OK-2-21 and OK-2-
19, are located in similar positions with respect to the projection axes as the

Fig. 1. Correlation plot showing L-
SCCA results on dataset. The numbers
represent the DGGE bands of the bac-
terial species and the geochemical mea-
surements are given by their names.

Fig. 2. Score plot showing L-SCCA results
on dataset. The names of the different sam-
pling sites are abbreviated by OK-1, OK-2,
OL, P and ONK for Outokumpu 1, Out-
okumpu 2, Olkiluoto, Palmottu and the
ONKALO respectively. The drill hole num-
ber is given after the name.
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depth variable on the correlation plot. In addition, since salinity and tempera-
ture increase with depth, also the temperature and Ca2+ variables explain the
separation of OK-2-23, OK-2-21 and OK-2-19 from the other samples.

Clustergram Visualization. In a correlation plot, visual clutter may occur since
the coordinates are defined by the correlation coefficients of the variables with
the two projections. In particular, this is a problem in KCCA, where no sparsity
is enforced on the number of variables. Also, it is not easy to obtain an overall
picture of correlations picked up by a set of projections by examining correlation
plots. Here, we propose using clustergrams, frequently used in gene expression
data analysis [1], in a novel way: to visualize the overall correlation of two sets
of variables in a set of canonical projections. Clustergrams combine heatmaps
and hierarchical clustering for visualization. To compute an entry cg(i, j) in
the clustergram heatmap for two variables ai and bj and k leading canonical
projections, we compute

cg(i, j) =
〈ρ(i, �), ρ(j, �)〉

||ρ(i, �)||||ρ(i, �)|| , (5)

where ρ(i, �) denotes the correlation of ai with the �’th canonical projection.
Clustergrams representing results of L-SCCA and G-SCCA are shown in

Figs. 3 and 4. Both methods find similar correlation patterns but the Gaussian
kernel induces more sparsity on the results than the linear kernel. When compar-
ing the two clustergrams, the DGGE band 54 that represents the Peptococcaceae
taxonomic family correlates positively with Ca2+, depth and temperature (T).
In addition, the DGGE bands 7, 59 and 68 representing the Desulfobacteraceae
and Desulfovibrionaceae families, correlate negatively with depth, Cl−, Ca2+,
total dissolved solids (TDS), electrical conductivity (EC) and temperature, in
both clustergrams.

Fig. 3. Clustergram showing L-SCCA
results.

Fig. 4. Clustergram showing G-SCCA
results.



306 V. Uurtio et al.

4 Discussion

In this paper, we have studied primal-dual sparse (SCCA) and kernel canonical
correlation (KCCA) analysis of the deep groundwater SRB communities and
their geochemical environment. We have presented a data analysis framework
including model selection, parameter tuning, statistical testing through permu-
tation tests that allowed us to distill statistically significant patterns, despite
a relatively modest-sized dataset. For visualization, we showed that correlation
plots [3,9,10] are also applicable for kernelized setting in primal-dual SCCA
and KCCA models. Finally, we introduced an alternative way to summarize the
correlations in two or more projections through the use of clustergrams which
provide an accessible overview to the correlations induced by the CCA projec-
tions. Indeed, the sparsifying effect of the Gaussian kernel in SCCA was first
spotted by the authors from the clustergram.

Analyzing the models, higher canonical correlation coefficients were observed
for the Gaussian kernel than the for linear kernel, which indicates that the data
contains significant non-linear dependencies. We also observed that predictive
canonical correlation coefficient assessed through cross-validation provided a
good model selection criterion for SCCA.

The results in this paper help in characterizing the sulphate-reducing bacte-
rial communities and their biochemical processes in their habitat. The discov-
ered canonical patterns related the salinity of the groundwater, defined by the
geochemical measurements Ca2+, Cl−, total dissolved solids and electrical con-
ductivity, to the bacterial taxonomic orders Desulfobacterales, Desulfovibrionales
and Clostridiales. Salinity seemed to be a unique characteristic of each of the
drill hole sites based on the sample clusters of the score plots. In general, depth
and temperature measurements co-occurred close together on the correlation
plot which was expected, since temperature is known to increase with increasing
depth below ground surface.

The software used to produce the results in this paper are available for down-
load at https://github.com/aalto-ics-kepaco/DeepBiosphere.
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lighting relationships between heterogeneous biological data through graphical dis-
plays based on regularized canonical correlation analysis. J. Biol. Syst. 17(02),
173–199 (2009)
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Abstract. We propose a kernel-based online semi-supervised algorithm
that is applicable for large scale learning tasks. In particular, we use a
multi-view learning framework and a co-agreement strategy to take into
account unlabelled data and to improve classification performance of the
algorithm. Unlike the standard online methods our algorithm is natu-
rally applicable to many real-world situations where data is available in
multiple representations. In addition our online algorithm allows learning
non-linear relations in the data via kernel functions, that are efficiently
embedded into the formulation of the algorithm. We test performance
of the algorithm on several large-scale LIBSVM and UCI benchmark
datasets and demonstrate improved performance in comparison to stan-
dard online learning methods. Last but not least, we make a Python
implementation of our algorithm available for download (Available at
https://github.com/laurensvdwiel/KeCo).

Keywords: Kernel · Non-linear · Online · Large-scale · Semi-supervised ·
Co-agreement · Multi-view · Classification

1 Introduction

Semi-supervised learning algorithms have gained more and more attention in
recent years as they allow the use of large amounts of easily accessible unla-
belled data. One of the most elegant approaches to take unlabelled data into
account is based on multi-view framework [1]. Multi-view learning algorithms
split the attributes into independent sets and an algorithm is learnt based on
these different ‘views’. The goal of the learning process consists in finding a
prediction function for every view performing well on the labelled data and so
that all prediction functions agree on the unlabelled data. Closely related to
this approach is the co-agreement framework, where the same idea of agreement
maximization between the predictors is central. Briefly stated, algorithms based
upon this approach search for hypotheses from different views, such that the
training error of each hypothesis on the labelled data is small and, at the same
c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 308–315, 2015.
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time, the hypotheses give similar predictions for the unlabelled data. Within
this framework, the disagreement among the predictors is taken into account
via a co-regularization term. Empirical results show that the co-regularization
approach works well for domain adaptation [2], classification [3,4], regression
[5], and clustering [6] tasks. Moreover, theoretical investigations demonstrate
that the co-regularization approach reduces the Rademacher complexity by an
amount that depends on the ‘distance’ between the views [7,8].

Recently an online multi-view algorithm has been proposed in [9]. The algo-
rithm can operate in the semi-supervised regime by using co-regularization. The
reported performance of the algorithm is promising compared to other state-of-
the-art supervised approaches that do not make use of co-regularization, such as
Pegasos [10] and SPD [11]. Our work presents substantial improvements to the
online algorithm proposed in [9] by formulating a novel co-agreement learning
strategy (explained in Sect. 3) and use of the non-linear kernel function, which
enables the method to learn non-linear relations from the data.

2 Preliminaries

Prior to introducing the co-agreement framework and our algorithm we describe
some standard notations and settings that are frequently used in online learning.

Consider a training set D = (X,Y ) of size N , originating from a set {(xi,
yi)}Ni=1 of data points where X = (x1, . . ., xN )T ∈ XN and Y = (y1, . . .,
yN )T ∈ {−1, 1}. Thus, a single data point (x, y) where x = (x1, . . . , xm) is a
feature vector of size m, with features defined as xi ∈ X and a label y ∈ {−1,
1}. A loss function L(y, f(x)) measures the quality of the prediction f(x) if
the actual label is y. The learning task now becomes a minimization task, which
constitutes a typical binary-classification learning setting.

In practice, we often would like not only to achieve the smallest possible loss
(via error minimization) but also to ensure good generalization of the model.
A popular mechanism to accomplish this is regularization, which is applied in
state-of-the-art online learning algorithms such as GURLS [12], Pegasos [10],
SPD [11] and LPC [13].

Regularization enhances the minimization of a loss function by imposing
additional restrictions on specific properties (e.g. smoothness, sparsity, etc.) of
the prediction function f(x). This is done by adding a regularization term with
an appropriate parameter λ, which denotes how much regularization should be
applied.

Online learning methods are frequently formulated in the primal setting for
computational efficiency. However, the dual formulation (e.g. [10]) makes it pos-
sible to learn non-linear relations in the data. Predictions then depend on a
linear combination of weights and kernel function evaluations:

ŷi =
1
λt

p∑
j=1,j �=i

α[j]yjK(xi,xj), (1)
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where ŷi is the predicted label for example xi, α represents the sample weight
vector, yj is the actual label for example xj , λ is the regularization parameter,
t is the number of observed examples at the moment of prediction, and 1/(λt)
represents the step size. Furthermore, the α-vector is a sparse vector of size
N with p non-zero elements, containing discrete weight values to indicate the
importance of specific examples. The kernel functions make it possible to create
rich feature spaces at low computational cost.

To achieve optimal prediction in (1), [10] proposes to minimize

F (α) = min
α

λ

2

p
∑

i,j=1

α[i]α[j]K(xi,xj) +
1

p

p
∑

i=1

max

{

0, 1 − yi

p
∑

j=1

α[j]K(xi,xj)

}

, (2)

where the last term corresponds to hinge loss. The setting above is frequently
referred to as minimization in a dual setting.

2.1 Multiple Views

The multi-view paradigm [1] is particularly suited for learning from datasets
having more than a single data representation. A classic example is a web doc-
ument classification task [1], where documents are represented via two different
views - one that is based on the links and another one based on the text in each
document. As another example, complex, structured data with multiple represen-
tations are frequently encountered in the biomedical domain, making multi-view
methods a natural application choice. Although in many circumstances the indi-
vidual data representation can be sufficient for training a model, a combination
of the multiple views can lead to more robust and accurate predictions compared
to the ones obtained via the individual views [14].

Online learning in the multi-view setting was recently introduced in [9]. Infor-
mally, building a prediction model for each view can be considered as training
several ‘judges’, whose advice can be combined for improved evaluation. Views
can be built by randomly choosing various features from the dataset. However,
more informative views are usually considered such as those that use different
feature sources (e.g. in a medical diagnosis application, separating the blood
sample data from the x-ray results).

We extend the description of an example (x, y) to cope with multiple views
as with x = (x(1), ...x(V )), where V is the maximum number of views and each
x(i) represents the ith subset of the features in x. The predicted label for a view
i is denoted as ŷ(i). Our learning algorithm is presented in the following section.

3 Kernel-Based Online Co-agreement Algorithm

First we discuss the preliminaries on how to deal with predictions in the case of
unlabelled examples.
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(Semi-)supervised prediction for an example xi in a single view n after t iterations
of the KeCo algorithm is defined as:

ŷ
(n)
i =

1
λ(t − 1)

p∑
j=1,j �=i

α
(n)
t−1[j]z

(n)
j K(x(n)

i ,x(n)
j ), (3)

where z
(n)
i , given the example to be labelled or unlabelled, represents either the

label or the co-agreement for example i:

z
(n)
i =

{
yi if xi ∈ S

c
(n)
i if xi ∈ Ŝ.

(4)

Here S represents the set containing all labelled examples, Ŝ the set containing
all unlabelled examples and c

(n)
i is the co-agreement (as described in the next

paragraph) for sample i in view n. In the case where Ŝ = ∅, (3) turns into a
supervised multi-view variant of the prediction function used in the Pegasos
algorithm [10].
Co-agreement is a strategy to estimate an ‘agreement ’ on the label of an example
xi. This is done by making use of different views of the examples and training on
each of those views separately in order to create multiple models. We consider
these models as ‘judges’. Co-agreement represents the agreement between the
‘judges’ in order to label an example. This is done for each view n by measuring
agreement of all the views over the prediction of the example, while excluding
the current view n:

c
(n)
i = sign

⎛
⎝ V∑

v=1,v �=n

ŷ
(v)
i

⎞
⎠ . (5)

We propose to extend the hinge loss with the use of the co-agreement (5) in
the case of unlabelled examples as:

max{0, 1 − z
(n)
i ŷ

(n)
i }, (6)

with z
(n)
i as described in (4). Again when z

(n)
i ŷ

(n)
i ≥ 1, there is zero loss, allowing

us to generalize the rule to z
(n)
i ŷ

(n)
i < 1 and retain the possibility to use it as

part of the optimization goal (2).

3.1 KeCo Algorithm

We propose a kernel-based online co-agreement algorithm, which we name KeCo,
that is applicable to large-scale semi-supervised binary classification tasks.
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S = The set containing all labelled examples

Ŝ = The set containing all unlabelled examples

V = The number of views

λ = The regularization parameter

T = The maximum number of iterations

α
(n)
t = α -vector for view n at iteration t

ŷ
(n)
i = Predicted label for example i in view n , see (3)

x
(n)
i = Feature vector for example i in view n

z
(n)
i = Represents the label or co-agreement label for example i, see (4)

Algorithm 1. KeCo Algorithm
Input: S, Ŝ, V, λ, T
1: for t = 1, 2, . . . , T do
2: Choose i ∈ {1, . . . , |S ∪ Ŝ|} uniformly at random
3: for all j ∈ {1, . . . , |S ∪ Ŝ|} ∧ j �= i, n ∈ {1, . . . , V } do

4: α
(n)
t+1[j] ← α

(n)
t [j]

5: for all n ∈ {1, . . . , V } do

6: ŷ
(n)
i ← 1

λt

∑p
j=1,j �=i α

(n)
t [j]z

(n)
j K(x

(n)
i ,x

(n)
j )

7: for all n ∈ {1, . . . , V } do

8: if z
(n)
i ŷ

(n)
i < 1 then

9: α
(n)
t+1[i] ← α

(n)
t [i] + 1

10: else
11: α

(n)
t+1[i] ← α

(n)
t [i]

Output: [α
(1)
T+1, . . . , α

(V )
T+1]

Initially, α
(n)
0 [1] = . . . = α

(n)
0 [ |S ∪ Ŝ| ] = 0 for all n ∈ {1, . . . , V }.

In the formulation above we could consider having a regularization parameter
λ for each different view. This, however, would notably increase the number of
hyper parameters and hence the time required for an optimal model calculation
(e.g. grid search via cross-validation).

The computational complexity of a prediction (see (3) and Algorithm 1, line
6), may require as many as min(t, p) kernel evaluations.

4 Experimental Set-Up and Results

We evaluate the performance of KeCo and compare it with the Pegasos [10]
algorithm by measuring the AUC [15] achieved on the testing data.

We have evaluated the performance during experiments on the SVMGUIDE1,
SVMGUIDE3 [16] and Ionosphere datasets. SVMGUIDE1 and SVMGUIDE3
are publicly available through LIBSVM [17], Ionosphere is available through the
UCI [18] repository. KeCo is designed for partially-labelled, large-scale datasets
with multiple views that contain non-linear relations. These datasets do not
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necessarily cohere to all of these claims, but for the sake of these experiments
are considered as such.

Each experiment is repeated five times and the reported AUC is an average
over the performance of these five experiments. In each experiment we first
randomly select 20% of the data to be considered as labelled examples and use
a classic train-test split of the data, where we randomly select 70% to be used
for training and the remaining 30% of the data is used for testing.

The training consists of a 10-fold cross-validation with a grid search over
the parameter sets where T = 1000, λ ∈ {10−10, 10−9, 10−8, 10−7, 10−6, 10−5,
10−4, 10−3, 10−2, 10−1} and for the Gaussian kernel, σ ∈ {2−4, 2−3, 2−2, 2−1,
20, 21, 22, 23}. The optimal grid found during this process is used to construct
a model on the training set and that model is evaluated on the test set in order
to generate the result for an experiment. We only evaluate a 2-view scheme for
KeCo and we construct the views to represent a randomly selected 75 % of the
original set of features.

Furthermore, we used the following strategy to evaluate the performance of
the algorithm. Semi-supervised strategy (KeCo) first uses 50 % of the maximum
iterations T to train on the labelled samples present in the partially labelled
dataset, followed by a repeating sequence that considers 1 labelled followed by
1 unlabelled sample until the number of iterations reaches the value for T . The
supervised strategy (Pegasos) uses the exact same sequence as KeCo, except
that it skips the learning from the unlabelled sample.

The result of the experiments can be found in Table 1 where we see the
Gaussian kernel outperforming the linear one and in both cases achieving a
statistical significant improvement for semi-supervised learning with respect to
the supervised setting. For the implementation of the experimental setup we
have made use of the scikit-learn framework [19].

Table 1. Results of the semi-supervised KeCo algorithm, in a 2-view setting, with
a comparison to the fully supervised Pegasos algorithm on 20 % labelled versions of
the SVMGUIDE1, SVMGUIDE3 and Ionosphere datasets. The comparisons have been
made using a Linear and a Gaussian kernel.

Kernel linear Gaussian

Method Pegasos KeCo Pegasos KeCo

SVMGUIDE1 0.8778 0.8959 0.9231 0.9238

SVMGUIDE3 0.6491 0.6183 0.7192 0.7331

Ionosphere 0.7627 0.8012 0.8953 0.9107

5 Conclusion

This work presents a kernel-based online co-agreement algorithm applicable to
large scale semi-supervised classification tasks.
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Our algorithm is related to online methods such as such as Pegasos [10],
LaSVM [20] and GURLS [12] and unlike many of these methods is naturally
applicable for multi-view datasets. In the empirical evaluation we demonstrate
that our method consistently performs well on publicly available datasets as well
as notably outperforms supervised learning algorithms.

In particular we demonstrate that a kernel-based version of the method in
combination with a co-agreement over a multi-view learning regime makes it
possible to achieve more optimal results then the fully supervised state-of-the-
art Pegasos algorithm, given a partially labelled dataset. Last but not least, we
make available an efficient implementation of our algorithm coded in Python1.

Our algorithm can be extended to be applicable to various learning tasks.
For instance, it can straightforwardly be adapted for the task of large scale
kernel-based online regression analysis.

In the near future we also aim to pursue a theoretical analysis of kernel-
based online co-agreement algorithms. For example, we aim to investigate the
consistency of multi-view online learning, and provide results on the rate of
convergence of the algorithm as the sample size increases.
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Abstract. We propose novel principal component analysis (PCA) for
rooted labeled trees to discover dominant substructures from a collec-
tion of trees. The principal components of trees are defined in analogy
to the ordinal principal component analysis on numerical vectors. Our
methods substantially extend earlier work, in which the input data are
restricted to binary trees or rooted unlabeled trees with unique vertex
indexing, and the principal components are also restricted to the form
of paths. In contrast, our extension allows the input data to accept gen-
eral rooted labeled trees, and the principal components to have more
expressive forms of subtrees instead of paths. For this extension, we can
employ the technique of flexible tree matching; various mappings used
in tree edit distance algorithms. We design an efficient algorithm using
top-down mappings based on our framework, and show the applicability
of our algorithm by applying it to extract dominant patterns from a set
of glycan structures.

1 Introduction

Capturing the characteristic features of a given data set is one of the fundamen-
tal problems in data mining. A popular method for high dimensional numeri-
cal vector data is Principal Component Analysis (PCA, for short) proposed by
Pearson [8]. In PCA, the features are subspaces, and the projected subspaces are
extracted so that the amount of information of the original data set is retained as
possible. We want to apply PCA also to non-numerical data such as tree struc-
ture data for extracting dominant features in a set of data. Since PCA requires
a feature space and a distance on the space, we have to tailor a suitable feature
space and a distance to capture common patterns in tree structures.

PCA for tree structure data was first formulated by Wang and Marron [11].
They applied it to binary trees representing the brain artery structures obtained
from MRA images. Ayding et al. [2] proposed an efficient algorithm to compute
principal components for unlabeled rooted binary trees. They further extended
the method to unlabeled rooted ordered trees with indexing [1], like a k-way tree
c© Springer International Publishing Switzerland 2015
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Table 1. The comparison of PCAs for three types of input data.

Ordinal PCA Previous methods [1,2] Proposed methods

Input data Numerical
vectors

Unlabeled rooted
ordered trees with
indexing

Labeled rooted
ordered/unordered
trees

Feature space Euclidean
space R

n
Union of all given data

called a support
tree

A set of subtrees
(a generalized
support tree)

Projected space d(< n)
dimensional
hyperplanes

Paths called tree-lines Subtrees in the
feature space

Criterion Maximum
amount of
variation

Minimum sum of indel
distances

Minimum sum of indel
distances based on
a mapping

Origin point The origin of
coordinate

The root vertex of the
support tree

The root vertex of the
generalized support
tree

indexing [3]. In their methods, the total space of the input data set is defined as
the support tree which is the smallest supertree including all members of the data
set as subtrees. The support tree is defined as the union of all trees in a given
data set on the assumption that all tree structures share the same index schema
uniquely. The projected space is defined as a tree-line, which is a sequence of
subtrees {l0, . . . , lk} where l0 is a given subtree and li is defined from li−1 by the
addition of a single vertex to the same direction. We can treat the tree space
like the Euclidean space when we regard l0 as the origin, the tree-space as a two
dimensional total space, and the tree-line as a one dimensional axis.

In this paper, we extend the idea due to [1] and introduce PCA for labeled
rooted unordered trees without indexing ; i.e., our methods do not rely on the
strong assumption above. Our idea is to use a mapping, a set of pairs of ver-
tices with some restrictions, to express principal components. In the previous
work [1,2], the expression of principal components is restricted to paths on
trees, while our methods allow principal components to have more expressive
forms of subtrees by taking advantage of mappings. The notion of mappings was
originally introduced for defining the distance between trees [9]. The mapping
is regarded as a common substructure between two trees, and many variants of
tree edit distance are formulated by the classes of mappings [7]. In this paper, we
introduce a general schema for defining PCA for labeled rooted trees and show
an algorithm using top-down mappings as an instance of the schema. We apply
it to a glycan structure data set, and compute principal components for extract-
ing dominant patterns in the structures. We confirm its validity by classifying
the glycan data, and evaluate the accuracy. The comparison of PCA properties
among the conventional numerical vector, previous methods and our methods is
shown in Table 1.
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2 Preliminary

A rooted tree (tree, for short) is a connected directed acyclic graph in which
every vertex is connected from a root vertex. A tree T = (V,E, r, α) is a labeled
rooted unordered tree, where V is a set of vertices, E is a set of edges, r is a
vertex in V called the root, and α is a label function defined as α : V → Σ,
assuming an alphabet to be Σ. The label of v ∈ V is denoted by l(v). We write
v ∈ T instead of v ∈ V . A forest F = {T1, . . . , Tn} is a set of trees. If |F | = 1,
we identify F = {T1} with F = T1. The ancestor-descendant relation is denoted
by <, and for v, w ∈ T , v < w means that w is an ancestor of v. The depth of
a vertex v is defined as dep(v) = |{w | v ≤ w}|. The sibling relation is denoted
by ≺, and for v, w ∈ T , v ≺ w means that w is a right sibling vertex of v. The
parent vertex of v ∈ V \ {r} is denoted by parent(v).

For two trees T1 and T2, the following operations are called edit operations :
deletion and insertion of a vertex v ∈ T1, and substitution of the label of v ∈ T1

for the label of w ∈ T2. The costs of edit operations, deletion, insertion and
substitution, are denoted by γ(v → λ), γ(λ → w) and γ(v → w), respectively.
An edit distance is the minimum sum of the costs for transforming T1 to T2

if all of the costs of edit operations are the same. When γ(v → w) ≥ γ(v →
λ) + γ(λ → w), that is, the edit distance without substitution operations, is
called an indel (insertion-deletion) distance.

A mapping M ⊆ V1×V2 is a set of pairs of vertices for two trees T1 = (V1, E1)
and T2 = (V2, E2). Various types of mappings have been proposed [7]. They are
distinguished by their restrictions such as an ancestor-descendent relation. We
show two instances of mappings; i.e., a Tai mapping and a top-down mapping.
Tai Mapping [9]: Let T1 = (V1, E1) and T2 = (V2, E2) be rooted ordered
trees, a set M ⊆ V1 × V2 is called a Tai mapping on ordered trees if any pairs
(v1, v2), (w1, w2) ∈ M satisfy all of the following conditions.

v1 = w1 ⇐⇒ v2 = w2 (one-to-one relation),
v1 < w1 ⇐⇒ v2 < w2 (ancestor-descendant preservation), and
v1 ≺ w1 ⇐⇒ v2 ≺ w2 (sibling order preservation).

If T1 and T2 are unordered trees, the third condition is not considered.

Top-Down Mapping [12]: A Tai mapping M between two trees T1 and T2 is
a top-down mapping if for any pair of vertices (v, w) ∈ M such that both of v
and w are not root vertices, there exists a pair (parent(v),parent(w)) ∈ M .

The sets of vertices of V1 and V2 including in a mapping M are respectively
denoted by M |T1 and M |T2 which are defined as M |T1 = {v ∈ V1 | ∃w ∈
V2, (v, w) ∈ M} and M |T2 = {w ∈ V2 | ∃v ∈ V1, (v, w) ∈ M}. The total cost
of edit operations for M is γ(M) =

∑
(v,w)∈M γ(v → w) +

∑
v∈M |T1 γ(v →

λ) +
∑

w∈M |T2 γ(λ → w). Calculating the edit distance between T1 and T2

is equivalent to finding a mapping M minimizing the cost γ(M) [9]. We call
such mappings by optimal mappings. Below, we assume a rule R for select-
ing an optimal mapping from the set of all optimal mappings. Given a set
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FS = {F1, . . . , Fn} of forests, and a mapping M , we define a forest FSM recur-
sively as follows:

FSM =
{

F1 if |FS | = 1,
{Fn, {F1, . . . , Fn−1}M} = M(Fn, {F1, . . . , Fn−1}M ) otherwise.

where M(F1, F2) is the forest induced by an optimal mapping M between F1

and F2 following the rule R.

3 Tree PCA by Top-Down Mappings

3.1 New Schema for Tree PCA

In this section, we introduce new methods for extracting principal components
from labeled rooted unordered trees without indexing and we give a new schema
for formulating principal components based on the following three contents. The
first is a distance metric dM (·, ·) based on a mapping M , and the second is the
total space of given data set T , denoted by TS (T ). The total space TS (T ) is
a set of trees. The third is the set of all components, denoted by AC (E), for
any elements E of TS (T ). For example, the set of all components of a path is a
tree-line.

The projection of the tree T onto the union of AC (t1)�· · ·�AC (tk) is defined
by using the inclusion-exclusion principle as follows:

P{t1...tk}(T ) ≡ arg min
PS∈AC (t1)�···�AC (tk)

|PS |∑
n=1

(−1)n+1
∑

ps∈{U⊂PS ||U |=n}
dM (T, psM ),

(1)

where S�T denotes the set {{s, t} | s ∈ S, t ∈ T}. The k-th principal component
is defined as

PC k ≡ arg min
E∈TS(T )

∑
T∈T

∑
t∈P{PC1...PCk−1,E}(T )

dM (T, t). (2)

3.2 Path Features by Top-Down Mappings

In this section, we show how to apply the top-down mappings to the new
schema. The sequence of labels of the path from the root r to v is defined as
Path(v) ≡ 〈α(r)α(parentdep(v)−2(v)) . . . α(parent1(v))α(v)〉, where parentn(v)
is defined as parent(parent(. . . parent︸ ︷︷ ︸

n

(v))), and thus parent1(v) = parent(v).

The set Fiber(T ) ≡ {Path(v) | v ∈ Leaf(T )} of paths is called the fiber of
T . We define the total space as the support fiber of an input data set T ,
denoted by SF (T ) while the total space is defined as the support tree in the
previous section. The support fiber representing the total space is defined as
SF (T ) =

⋃
T∈T Fiber(T ).
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Given a path P , the tree-line composed of P is TL(P ) =
⋃

v∈P Path(v), where
v is a vertex of path P . Given two trees T1 and T2, an indel distance based on
a top-down mapping between T1 and T2 is denoted by dtd(T1, T2). The top-
down mapping without substitution operations following the rule R is denoted
by MT1,T2

td . In other words, MT1,T2
td is a set of pairs of vertices corresponding with

the both of labels of vertices from the root vertex completely.

Algorithm 1. Making a super tree of SF (T )
INPUT : the set of path SF (T )
Support tree ST initialized with a single dummy vertex vd.
for Path P in SF (T ) do

Lchild ← {l(vc) | vc ∈ children(vd)} /*list of child vertices*/
Add P to the single vertex with ε label until dep(P ) = dep(SF (T )).
for Each vertex v ∈ P from the root vertex to a leaf vertex do

if Lchild contains l(v) then
Lchild ← {l(vc) | vc ∈ children(ve)} where ve ∈ Lchild satisfies l(ve) = l(v).

else
A subpath SP ← a subtree of P whose root vertex is v.
Add SP to the parent vertex of Lchild.
Break the inner loop.

end if
end for

end for
OUTPUT : ST.

Therefore, we can extract principal component paths by adapting M to
Mtd, dM (·, ·) to dtd(·, ·), TS (T ) to SF (T ), and AC (E) to TL(P ) where P is a
path. Our method extends the previous methods by Alfaro et al. [1] and Aydin
et al. [2]. Our method based on the top-down mappings can apply to ordered
trees if we just give the label of a vertex to a sibling information.

3.3 An Algorithm for PCA by Top-Down Mappings

In this subsection, we give an algorithm for extracting principal component based
on the top-down mappings. First, we make a super tree from the each path of
SF (T ) and we show the algorithm for making such super tree in Algorithm 1.
The algorithm is similar to making a prefix tree representing an upper common
subtree. In Algorithm 1, for a tree T , the maximum depth and maximum number
of leaves of T is denoted by dep(T ) and Leaf(T ), respectively. The label meaning
the empty is denoted by ε �∈ Σ. We show an example of the input data set in
Fig. 1a and the super tree of the input data set in Fig. 1. We generalize ST (T )
in accordance with Algorithm 1 and we regard ST (T ) as a set of paths. The
k-th principal component derived from Eq. (2) is
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(b) The super tree and 1st
principal component of (a).

Fig. 1. (a) An example of input data set T . The characters, a,b and c, are labels of
vertices. (b) The super tree of the input data (Fig. 1a). A label ε represents the terminal
and d represents the dummy vertex. An integer which describes the right-hand side of
each vertex is the weight of Eq. (4). The heavy line is the first principal component.
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Fig. 2. The accuracy of classification based on a top-down indel distance between
cumulative principal components and the given data tree.

PCk = arg max
P∈ST(T )

∑
v∈P

∑
T∈T

wk(v, T, P ), (3)

where wk(v, T, P ) =
{

1 if v ∈ M
{P,T}
td |P and v �∈ P1 ∪ · · · ∪ Pk−1,

0 otherwise.
(4)

Therefore, the k-th principal component is the path whose sum of weights is
the maximum. Then, we can extract k principal components, converting wk on
principal components to 0. The time complexity of extracting k principal com-
ponents is O((Leaf(ST (T ))dep(ST (T ))+k|V |)|T |) where |V | = max{|V1|, |V2|}.

4 Experiment

In our experiment, we use glycan structure data from the KEGG/GLYCAN
database [5] and their annotations are from the CarbBank/CCSD database [4].
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(a) Leukemic (b) Erythrocyte

Fig. 3. The super trees of Leukemic and Erythrocyte, respectively, where the each
root vertex is a dummy vertex and not including ε vertices. The heaviest and second
heaviest lines are 1st and 2nd principal component paths, respectively.

Table 2. Comparing the classification accuracy.

Comparing Leukemic Erythrocyte Serum Plasma

20 principal components 0.802 0.871 0.827 0.881

Other global structure 0.914 0.841 0.843 0.787

We regard a glycan structure as a labeled tree as with [6]. A glycan structure is
often regarded as an ordered tree, however, in our experiment, we regard it as a
labeled unordered tree because we focus on only paths.

For a glycan structure, many studies have been proposed e.g. [6,13]. Each
glycan structure is assigned to a blood component class among Leukemic, Ery-
throcyte, Serum, and Plasma, and the number of each class data used in our
experiment is 140, 127, 78 and 60, respectively.

First, we visualize super trees and the first and second principal components
of the Leukemic and Erythrocyte in Fig. 3. The heaviest and the second heaviest
lines in Fig. 3 are the first and second principal component paths, respectively.
Next, we try to classify the input data set into the 4 classes by using principal
components. First, we classify a given data set with a top-down indel distance,
that is the number of vertices not including the largest common prefix structure.
The results are shown in Fig. 2. The accuracy of all class labels is mostly over
0.8. We compare the accuracy of classification by using principal components
from 1st to 20th with the one of measuring a global edit distance. The result
is shown in Table. 2. The classification of the Erythrocyte and Plasma using
principal components is higher while the one of the other classes using the global
edit distance is higher. According to the results, we could conclude Leukemic
has specific global structures while Erythrocyte and Plasma have specific local
structures because principal components are local dominant structures of the
given data. Moreover, the classification using principal components runs faster
because the time complexity of computing the global edit distance between two
trees is O(|V |3).
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5 Concluding Remarks

We introduced a general schema for defining PCA for labeled rooted trees in
Sect. 3. Because of lack of space, we gave only one instance of the schema.
Another instance can be given with bottom-up mappings [10]. We should select
a mapping depending on the given data set.

In [5,6], glycan data are classified by using kernels, but in this method, we
cannot know the similar structures explicitly. By extracting principal compo-
nents, we can observe the dominant structures and the similar structures and
classify the given data by using the principal components. Moreover, the time
complexity of classification by using principal components is lower than the one
by measuring a global edit distance between two unordered trees, NP-hard prob-
lem.
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Abstract. It is an important task in Data Mining and Social Network
Analysis to detect dense subgraphs, namely pseudo-cliques in networks.
Given a positive integer k designating an upper bound of the number of
disconnections, some algorithms to enumerate k-plexes as pseudo-cliques
have been proposed based on the anti-monotonicity property similar to
the case of cliques. Those algorithms are however effective only for small
k, since every vertex set with its size less than k + 1 is trivially a k-plex.
Moreover, there still exist non-dense k-plexes with their sizes exceeding
k. For these reasons, it has been a hard task to design an efficient k-plex
enumerator for non-small k. This paper aims at developing a fast enumer-
ator for finding densely connected k-plexes for non-small k, avoiding both
of the small k-plexes and non-dense medium k plexes. For this purpose,
we construct a clique-graph from the original input graph and consider
meta-cliques of overlapping cliques satisfying several constraints about
k-plexness and overlappingness using bond measure for set-theoretic cor-
relation. We also show its usefulness by exhaustive experiments about the
number of solution k-plexes, computational costs and even the quality
of output k-plexes.

Keywords: k-plex · Clique graph · Meta-clique · Bond measure

1 Introduction

A social network is often represented by a graph of vertices representing actors
in a social network. The edges represent ties between actors [6]. The actors are
typically people, and the ties are their relationships as friendship, the collegial-
ity, the acquaintance, or other types of associations. In recent years, with the
increasing availability of network data, the structures of networks have drawn
great interest. A key feature of networks is that vertices are often organized into
communities [9]. As a formal model of communities, a clique notion has been
used from the beginning of study [5]. A clique satisfies three important proper-
ties of communities, familiarity, reachability, and robustness. These properties
c© Springer International Publishing Switzerland 2015
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are represented by vertex degree, path length, and connectivity, respectively in
graph theoretic terms [17].

However, the clique approach has been criticized for its restrictive nature
for analysis of real data [22]. Most communities are in fact not cliques, allow-
ing exceptional disconnection between actors. This motivates us to the study of
clique relaxation models [20]. Luce [16] proposed a distance-based model called
k-clique and Alba [2] introduced a diameter-based model called k-club. These
models were also studied along with a variant called k-clan which was introduced
by [18]. In a word, the major parameter k of these models controls admissible
distances among vertices. As is well known by the study of Small World Net-
work [26], when we allow a longer distance parameter, large dense subgraphs
appear which are almost cliques even when the subgraphs w.r.t. the original
edge connection are not dense. On the other hand, k-plex model [22,27] dis-
cusses the density w.r.t. the original graph. A vertex set X is called a k-plex
if, for any vertex v in X, the number of vertices not connected to v is at most
k including v itself. We also concern in this paper the density of vertex sets in
the original graph. However, the definition of k-plex is clearly weak in detecting
dense vertex sets whose sizes are not small. As we target larger dense vertex
sets, more number of missing edges as exceptions must be allowed in the set.
This means that we have to set larger k accordingly. Since every vertex set with
its size less than k + 1 is trivially a k-plex, there exist many trivial k-plexes
for such a k. Moreover, k-plexes with their sizes exceeding k are not necessarily
densely connected. These simple facts prevent us from designing efficient k-plex
enumerator for densely connected vertex sets.

A hint to overcome this difficulty would be found in the study of communi-
ties and networks. Various indices for evaluating clusters of vertices have been
proposed to show how the vertices in a community cluster together. A clustering
coefficient [26] is often used as such an index. As more number of small cliques,
namely triangles, in a cluster, it has a higher index value. Some of those small
cliques are directly connected via overlapped common vertices. In this paper, we
focus on finding clusters consisting of cliques overlapping each other to keep the
density as a whole. We call such a cluster a meta-clique in a graph of cliques in
the original graph. As a vertex set, the cluster is simply a set union of member
cliques. The cluster thus defined may not be a k-plex when the member cliques
less overlap. We require that the clusters must be k-plexes, and call them k-clique
sets. We also use a set-theoretic correlation measure, similar to the bond used for
transaction databases [19], to guarantee the degree of connection among member
cliques. Typical meta-cliques targeted in this paper are illustrated in Fig. 1.

A notion of overlapping cliques has been already studied in [12], where its
search process is much complicated. The procedure firstly tries to enumerate the
intersections called cores, and then try to find out member cliques by adding
additional vertices to the cores. Thus, the process invokes clique enumerator
each time candidate core is found by a clique enumerator. On the other hand,
the procedure MetaClique developed in this paper firstly enumerates possible
cliques that can be member cliques and their connections constrained by the
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Fig. 1. Target meta-clique

bond measure beforehand. Then the remaining task is simply computing cliques
in the clique graph under k-plex constraint. This reduces the overall compu-
tational cost drastically. Since the clique enumeration is fast enough for sparse
graph as has been demonstrated in [8], MetaClique for finding overlapping cliques
is working quite well even for medium k, as we demonstrate by several experi-
ments in Sect. 5.

In our experimentation for several synthetic and real world networks, we
compare with an extended maximal k-plex enumerator and verify the effective-
ness of our approach. For a protein-protein interaction network, we also evaluate
the quality of extracted communities by F1-score defined with recall and preci-
sion for a given answer set. Particularly, we observe that MetaClique gives the
best score for a parameter setting which it is hard for GCE [14], known as the
most effective system, to detect solutions with high quality. This implies that
our MetaClique has an ability to detect many meaningful communities missed
by GCE.

The remainder of this paper is organized as follows. In the next section, we
introduce some terminologies used throughout this paper. In Sect. 3, we define
our problem of enumerating overlapping cliques as meta-cliques. Our algorithm
MetaClique for the problem is presented with a pseudo-code in Sect. 4. Section 5
presents our experimental results for several networks. In Sect. 6, we conclude
this paper with a summary and future work.

2 Preliminaries

A simple graph is denoted by G = (V,E), where V is a set of vertices and
E ⊆ V ×V a set of undirected edges. For a pair of vertices, vi, vj ∈ V , vi is said
to be adjacent to vj if (vi, vj) ∈ E. For a vertex v, the set of vertices adjacent
to v is denoted by NG(v), where |NG(v)| is called the degree of v in G and is
referred to as degG(v). If any pair of vertices v, v′ ∈ V (v �= v′) are adjacent each
other, then G is said to be complete.

For a graph G = (V,E), a subgraph of G induced by V ′ ⊆ V , donoted by
G[V ′], is defined as G[V ′] = (V ′, E ∩ (V ′ × V ′)). A complete subgraph is called
a clique in G. We often refer to a clique G[V ′] as simply V ′. A clique is said
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to be maximal if it is not a proper subset of any other cliques. The problem of
enumerating all the maximal cliques is called “Maximal Clique Problem”.

As previously discussed, although a clique is a perfect structure for commu-
nity, it is difficult to find them in real world. Therefore, a notion of k-plex has
been introduced as one of the relaxation model [22].

Definition 1 (k-plex). For a set of vertices S ⊆ V , the subgraph G[S] is called
a k-plex if degG[S](v) ≥ |S| − k for every vertex v in S.

A k-plex G[S] is also referred to as simply S.
Similar to the case of cliques, a k-plex is said to be maximal if it is not a

proper subgraph of any other k-plexes. A k-plex is regarded as a pseudo-clique in
the sense that it can be obtained by deleting less than k-edges from each vertex
in a clique. Thus, a clique is a special case of k-plex with k = 1. We should point
out that Definition 1 does not emphasize the requirement of connectivity. From
the definition, it is clear to see that k-plex is anti-monotonic, that is, any subset
of a k-plex is also a k-plex.

3 k-Maximal Clique Set

As has been mentioned, existing algorithms for enumerating maximal k-plexes
will detect a large amount of sparse patterns and work well with only relatively
small k values. In this section, we present a new subclass of k-plexes to address
this problem.

3.1 k-Maximal Clique Set: k-MCS

The new class of pseudo-clique we define is called a k-Maximal Clique Set
(k-MCS). It is formally defined as follows.

Definition 2 (k-Maximal Clique Set). Given a graph G, let Comp be a set
of maximal cliques in G, where each c ∈ Comp is considered as a primitive
component. Then, a set of components T ⊆ Comp is called a k-MCS(Maximal
Clique Set) iff

⋃
ci∈T ci is a k-plex in G.

A k-MCS T is defined as a set of component maximal cliques whose union
form a k-plex in G. In what follows, the k-plex defined as the union of components
in T is referred to as Ext(T ), that is, Ext(T ) =

⋃
ci∈T ci.

Roughly speaking, by combining maximal cliques, we can expect to efficiently
obtain a densely connected community with reasonable cost, because several
practical algorithms for enumerating maximal cliques are recently available [24].

From the anti-monotonicity of k-plex, we are particularly concerned with a
maximal k-MCS, that is, a maximal set of components whose union can give
a k-plex. It should be noted here that in some cases, we could have different
maximal k-MCSs T and T ′ such that Ext(T ) = Ext(T ′).
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Figure 2 shows a simple example of k-MCS. In the figure, c represents the
term “clique”. {c1, c2, c3, c4, c5} is a maximal k-MCS consisting of five compo-
nents. It is clear that maximal k-MCSs are not always maximal k-plexes. In the
example, a maximal k-plex must contain some of the vertices in c6. However, the
maximal k-MCS cannot contain those vertices since we consider only maximal
cliques as primitive components.

Fig. 2. Image of maximal k-MCS

From now on, we use the term “k-MCS” as the meaning of “maximal k-MCS”
in a given graph G unless otherwise stated.

3.2 Restricting k-MCS with Size and Overlappingness
of Components

In Definition 2, each k-MCS is required to form a k-plex. Although the constraint
can exclude many useless combinations of components which result in obviously
sparse communities, we often have undesirable k-MCSs when we assume a rela-
tively larger k value. For example, we could obtain a k-MCS whose components
have little shared vertices. Needless to say, such a community would not be so
meaningful because it is not reasonable to combine components with low com-
monality into one group. Moreover, in many real world networks, there exist a
large amount of small maximal cliques consisting of just a few vertices. However,
those small cliques (components) exponentially increase the number of useless
combinations, making computational efficiency worse. Therefore, we impose the
following additional constraints on size of component maximal cliques in order
to exclusively find densely connected pseudo-cliques with certain amount of size.

More precisely speaking, given a graph G and a positive integer minsize, we
consider

Cminsize(G) = {c | c is a maximal clique inG such that |c| ≥ minsize}

as our set of components and try to find maximal k-MCSs consisting of compo-
nents in Cminsize(G). The constraint on component size can effectively exclude
sparse communities mainly consisting of component cliques with small size.
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In addition to the constraint, we take overlappingness of components in a
maximal k-MCS into account. That is, in order to obtain densely connected
communities, we require our maximal k-MCS to consist of components overlap-
ping each other. Formally speaking, we evaluate our degree of overlappingness
by bond measure [19] which is regarded as an extension of Jaccard Coefficient.

Given a pair of sets A and B, the bond value for A and B, Bond(A,B), is
simply defined as Bond(A,B) = |A∩B|

|A∪B| . From the definition, it is easy to see that
if A and B are highly overlapping, then the bond value Bond(A,B) is close to
1.0.

3.3 Problem of Finding Maximal k-MCS

From the above discussion, we can now define our problem of enumerating max-
imal k-MCSs in a given graph.

Definition 3 (Maximal k-MCS Problem). Let G be a graph, minsize a
minimum size of components and minbond a threshold for minimum bond value.
Then, a Maximal k-MCS Problem is to find every maximal set of components
T ⊆ Cminsize(G) satisfying the following conditions, where
Cminsize(G) = {c|c is a maximal clique inG such that |c| ≥ minsize}:
– Ext(T ) =

⋃
ci∈T ci is a k-plex in G.

– For any pair of ci and cj in T , Bond(ci, cj) ≥ minbond.

In the next section, we present our algorithm for this problem.

4 Enumerating Maximal k-Maximal Clique Set

In order to enumerate all maximal k-MCSs for given minsize and minbond, we
have to exhaustively examine possible combinations of components in Cminsize

(G). For efficient computation, we first introduce a notion of k-Clique Graph by
which we can exclude quite useless combinations of components in our search
process.

4.1 k-Clique Graph

Our maximal k-MCS T to be detected must consist of pairwisely overlapping
components whose union forms a k-plex. This implies that any pair of compo-
nents in T , ci and cj , gives a sufficient bond value and the union ci ∪ cj forms a
k-plex from the monotonicity of k-plex. Let us here consider an auxiliary graph
G̃ in which each vertex is a component in c ∈ Cminsize(G) and an edge means
the connected vertices (that is, components) give a sufficient bond value and
form a k-plex. Then, any maximal k-MCS can be extracted as a clique in G̃.
That is, in order to enumerate our maximal k-MCSs, it is sufficient to examine
cliques in G̃. Thus, the auxiliary graph G̃ can provide useful information about
candidiate combinations of components we have to check. Since each vertex in
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G̃ is a component maximal clique for our problem, we call G̃ a k-clique graph
which is regarded as an extension of clique graph [11]. It is formally defined as
follows.

Definition 4 (k-Clique Graph). Fora given graphG,k,minsizeandminbond,
a graph G̃k

minsize,minbond = (Ṽ , Ẽ) is called the k-clique graph for the maximal
k-MCS problem, where

Ṽ = Cminsize(G) = {c | c is a maximal k − plex inG such that |c| ≥ minsize}

Ẽ = {(ci, cj) | ci, cj ∈ Ṽ , Bond(ci, cj) ≥ minbond and (ci ∪ cj) is a k − plex}
Figure 3(a) and (b) present a simple instance of k-clique graph with k = 4.

The k-clique graph can often simplify the input graph.

Fig. 3. k-Clique graph

As is just mentioned above, since a maximal k-MCS can be detected as a
clique in G̃k

minsize,minbond, that is, a clique of component cliques, we often call
it a Meta-Clique.

With the help of the k-clique graph G̃k
minsize,minbond, we can efficiently

extract all maximal k-MCSs. We discuss below our algorithm in details.

4.2 Basic Search Strategy

Given a graph G, k, minsize and minbond, we first identify the set of com-
ponents Cminsize(G) which consists of all maximal cliques in G with size no
less than minsize. We then construct the k-clique graph, G̃k

minsize,minbond, by
examining whether each pair of components in Cminsize(G) have a sufficient
degree of overlap and forms a k-plex. Finally, we try to enumerate (meta-)cliques
in G̃k

minsize,minbond and check their maximality and k-plexness. Our process of
enumerating meta-cliques is based on CLIQUES [24], an excellent algorithm for
listing all maximal cliques. As a basic procedure, in our algorithm, a meta-clique
X is tried to expand by adding a component c ∈ Cand(X) to obtain a larger
meta-clique X∪{c}, where Cand(X), called the candidate set for X, is the set of
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components each of which is adjacent to all components of X in G̃k
minsize,minbond.

Starting with X = ∅ and cand(X) = Cminsize(G), such an expansion process
is iterated in depth-first manner until no meta-clique can be expanded. At each
expansion step, the meta-clique X is examined whether the union of all compo-
nents in X (that is, Ext(X)) forms a k-plex or not. If it is true, X is tried to
further expand. On the other hand, if it is false, we can safely stop expanding
X and then backtrack to the next alternative because any expansion of X can
never be our solution from the monotonicity of k-plex.

4.3 Pruning Useless Search Branches

As has been mentioned, for a pair of component sets X and X ′, we often observe
Ext(X) = Ext(X ′). In our search process, for a meta-clique X, if the candidiate
set Cand(X) includes a component c such that c ⊂ Ext(X), expanding X with
c is quite useless because we must have Ext(X) = Ext(X∪{c}). In other words,
we do not need to actually examine the search branch corresponding to such an
expansion. Just adding c to X is sufficient in our search process.

Based on this idea, at each expansion step for X, we first detect a meta-
clique M ⊆ Cand(X) defined as M = {c | c ∈ Cand(X) and c ⊆ Ext(X)} and
then try to expand (X ∪M) with a component in Cand(X ∪M). As the result,
we can prune |M | search branches from the search node of X without loss of
completeness.

4.4 Algorithms

Summarizing the above discussion, we present an algorithm for enumerating all
maximal k-MCSs based on k-clique graph as well as several pruning strategies.
A pseudo-code is presented in Algorithm 1.

Procedure EnumerateClique identifies the set of primitive components
(maximal cliques inG) with size no less thanminsize. ProcedureBuildKClique-
Graph then builds a k-clique graph. Finally, Procedure EnuerateKMCS tries
to detect all maximal k-MCSs. All pruning mechanisms presented above are incor-
porated into the algorithms. Due to the space limitation, the pseudo-code for the
component identification is omitted.

5 Experimental Results

We present our experimental results in this section. Because our method, referred
to as MetaClique, points to find a subclass of k-plex, we here compare our method
against a maximal k-plex enumerator MaxKPlex.

MaxKPlex tries to enumerate maximal k-plexes except obviously undesirable
and trivial ones. More concretely speaking, the task of MaxKPlex is to extract
all non-pass connected k-plexes each of which contains more than k vertices.

In order to compare MetaClique and MaxKPlex under similar conditions,
MaxKPlex is imposed an additional constraint on size of solution maximal
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Algorithm 1. Algorithms for finding maximal k-MCSes
1: procedure Main(G, k, j, b)
2: C ← EnumerateClique(G, j) � j
3: F ← BuildKCliqueGraph(C, G, k, b)
4: return EnumerateKMCS(F, G, k)
5: end procedure

1: procedure BuildKCliqueGraph(C, G, k, b)
2: VF = C
3: EF = ∅
4: NF = {n|n = |c|, c ∈ C}
5: MF = ∅
6: F = F (VF , EF , NF , MF ) � Initialize k-clique graph
7: for each c ∈ C do
8: for each c′ ∈ C \ {c} do
9: if bond(c, c′) > b and c ∪ c′ is k-plex in G then
10: EF ← EF ∪ {(c, c′)} � Add edge
11: MF ← MF ∪ {|c ∩ c′|} � Calculate overlap of cliques
12: end if
13: end for
14: end for
15: return F
16: end procedure

1: procedure EnumerateKMCS(F, G, k)
2: C ← V (F ) � Initial candidate set takes all vertices of F
3: comp ← ∅
4: not ← ∅
5: doEnumerateKMCS(comp, C, not)
6: end procedure

1: procedure doEnumerateKMCS(comp, C, not)
2: if C = ∅ and not = ∅ then
3: Print comp �
4: end if
5: while C 	= ∅ do
6: u ← one of the largest cliques in C
7: C ← C \ {u}
8: not ← not ∪ {u}
9: Cconnected ← N(u) ∩ C
10: notconnected ← N(u) ∩ not
11: Ckmcs ← ∅
12: notkmcs ← ∅
13: for each d ∈ Cconnected do
14: if d ∪ comp is a k − plex then
15: Ckmcs ← Ckmcs ∪ {d}
16: end if
17: end for
18: for each d ∈ notconnected do
19: if d ∪ comp is a k − plex then
20: notkmcs ← notkmcs ∪ {d}
21: end if
22: end for
23: Dbridge ← the set of all bridges in Ckmcs

24: for each r in EnumerateClique(G[Dbridge], 1) do
25: doEnumerateKMCS(comp ∪ {u} ∪ r, Ckmcs ∩ N(r), not ∪ N(r))
26: end for
27: end while
28: end procedure

k-plexes to be extracted, because size of k-plexes found by MetaClique is at
least minsize, the minimum size of components. It should be noted here that
the additional constraint on size is beneficial for computational efficiency of
MaxKPlex because its branch-and-bound pruning can work more powerfully.
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Datasets: We observe computational performance of MetaClique compared with
MaxKPlex for various benchmark graphs, including synthetic random graphs and
real world networks. Because of the limit of space, we here present just a small
part of our experiments.

Our random graphs have been generated by the method described in [25].
We have selected some degree distributions under power law as well as average
degrees to generate different types of graphs.

CA-GRQC [15] is a collaboration network constructed from the e-print arXiv
and covers scientific collaborations. among authors whose papers submitted to
General Relativity and Quantum Cosmology category.

GEOM-0 [3] is an authors’ collaboration network produced from Computa-
tional Geometry Database geombib.

COM-AMAZON [15] is based on the feature customers who bought this item
also bought provided by Amazon website. It is one of the large scale datasets to
test the computational performance of our algorithm.

Moreover, in order to verify ability of MetaClique to identify meaningful
communities, we have made an experiment on a protein-pretoin interaction net-
work referred to as PPI [7] and compared MetaClique with existing community
detectors for PPI networks.

Detailed information of those networks are summarized in Table 1.

Table 1. Information of graphs

Name # of Vert # of Edges Density Avg. Clique Size Max.
Clique Size

RANDOM-10000-1 10000 40497 0.00081 2.3 4

RANDOM-10000-2 10000 95474 0.00191 3.3 6

GEOM-0 7343 11898 0.00044 3.1 22

CA-GRQC 5242 14484 0.00105 3.1 44

COM-AMAZON 334863 925872 0.00002 2.9 7

PPI 1622 9070 0.00690 17.9 33

Computational Performance: We observe computation times and numbers
of solutions detected by MetaClique and MaxKPlex. For each graph, we have
executed both systems with minsize of the range from 3 to 7 and various
k-values.

Figure 4 shows computation times for each graph. In these figures, missing
data points mean that the algorithms have failed to return within 3 h. Compu-
tation times by MetaClique include those for enumerating component maximal
cliques and constructing k-clique graphs. For each graph, however, it takes less
than 1% of the total.
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For k = 2, 3, both MetaClique and MaxKPlex achieve good efficiency.
However, when k becomes larger than 3, our MetaClique greatly outperforms
MaxKPlex. Particularly, for CA-GRQC, MetaClique can detect solutions 100, 000
times faster than MaxKPlex.

In Fig. 5, we also present numbers of solutions. From the figure, MetaClique
extracts a much less number of solutions than MaxKPlex for each graph. As
a remarkable point the authors would like to emphasize, the figures show that
numbers of solutions by MetaClique are not strongly affected by the parameter
k. For each j as minsize, we have almost the same numbers of solutions even for
different k values. This means that the number of solutions by MetaClique could
be a useful index for characterizing networks.

Figure 6(a) and (b) show the behavior of MetaClique and MaxKPlex accord-
ing to the parameter k. We can see that for small k values, MaxKPlex gets
better performance than MetaClique. As k becomes larger, however, our Meta-
Clique outperforms MaxKPlex. The reason of this behavior is that when k is
smaller, enumeration cost for maximal k-plexes is expected to be not high. It
would often be almost the same as that for enumerating maximal cliques. Thus,
MaxKPlex efficiently works for small k-values. On the other hand, even for small
k-values, MetaClique must first enumerate maximal cliques to obtain primitive
components and then construct a k-clique graph. We have to accept the con-
struction cost as an overhead in our framework. After the construction of k-clique
graph, however, MetaClique can efficiently extract solutions. Particularly, for a
larger value of k, since k-clique graphs usually become sparse, our solutions can
be obtained much more efficiently and the overhead for graph construction can
be disregarded.
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Fig. 4. Computation times (bond = 0)
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Fig. 5. Number of solutions (bond = 0)

We have found that bond values do not affect both runtime and number of
solutions greatly when bond < 0.75. When its value becomes larger than 0.75,
times for building k-clique graphs decrease greatly. In such a case, since our
k-clique graph tends to be sparse, we can obtain solutions very efficiently.

Quality: In order to verify quality of communities extracted by MetaClique,
we compare our system with existing systems for community detection in PPI
networks [10,14].

A PPI network [7] treats proteins as vertices and protein-protein interac-
tions as edges. For a given PPI network, we define pre-discovered multiprotein
complexes as the “ground-truth” communities, because proteins in multiprotein
complexes are usually linked by protein-protein interactions. These “ground-
truth” communities are considered as an answer set to be detected. Then we
apply different community detection algorithms on the PPI network and com-
pare their outputs with “ground-truth” communities.

In general, communities detected by those algorithms usually do not perfectly
match the “ground-truth” communities. Moreover, we may detected more than
one clusters which match one “ground-truth” community. The general definition
of precision and recall can not be used directly here. Furthermore, when we
consider the size constraint j, any ground-truth community with less than j
vertices is out of our targets.

Given a threshold w, for a community c detected by an algorithm, if there
exists a “ground-truth” community c̃ such that |c∩c̃|

min(|c|,|c̃|) > w, we consider that c
matches c̃. We also say that c̃ is detected by the algorithm and c is a correct com-
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munity. Based on this judgement, we define precision p

and recall . To measure quality of commu-
nities detected by each algorithm, we here use F1−score, defined as F1−score =
2 × p×r

p+r . In our preliminary experiment, we have found that w = 0.8 is an ade-
quate value to measure the correctness of detected communities allowing some
divergence.

Fig. 6. Computation times (j = 1, bond = 0)

In our experimentation, we have used the Combined-AP/MS data [7] from
Yeast Interactome Project as interaction network as a graph dataset. For ground-
truth communities, we use CYC2008 [21] which contains the complexes that
have actually been discovered. We have applied different algorithms on the PPI
networks then measured quality of detected communities.

Figure 7 shows F1-scores of MetaClique, Greedy Clique Expansion (GCE)1

[14], LINK2 [1], Order Statistics Local Optimization Method (OSLOM2)3 [13]
and Community Overlap PRopagation Algorithm (COPRA)4 [10] on the PPI
network, where GCE works best for PPI network as far as we know. Each ver-
tical line shows F1-score and horizontal line minsize-value for our minimum
component size. Because COPRA, LINK and OSLOM are not clique-based sys-
tems, we can not apply constaints on cliques. Thus, they give horizontal lines
through j. Even though Meta-Clique generally detects much more clusters than
other algorithms, our algorithm still achieves the highest score in all the listed
methods.

When j increases, the quality of solutions by MetaClique worsens because
only a small number of (larger) components are available. Even in such a case,
however, MetaClique shows the highest score among all systems. Particularly,
although GCE shows the best score at j = 6, our MetaClique can have a score
clearly higher than that. It is emphasized here that MetaClique gives the best

1 https://sites.google.com/site/greedycliqueexpansion/.
2 https://github.com/bagrow/linkcomm.
3 http://www.oslom.org/software.htm.
4 http://www.cs.bris.ac.uk/∼steve/networks/software/copra.html.

https://sites.google.com/site/greedycliqueexpansion/
https://github.com/bagrow/linkcomm
http://www.oslom.org/software.htm
http://www.cs.bris.ac.uk/~steve/networks/software/copra.html
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Fig. 7. Comparison of F1-score on protein-protein interaction network

score at j = 4 at which it is difficult for GCE to detect solutions with high qual-
ity. This means that our MetaClique has an ability to detect many meaningfull
communities which are unfortunately missed by GCE.

We find that MetaClique outputs many highly-overlapped clusters which usu-
ally only have one vertex different from each other. In our evaluation, these
highly-overlapped clusters are all marked as correct. However, in the task of
community detection, highly-overlapped clusters may be unwelcomed. Thus, we
need to reduce the overlapness of Meta-Clique’s output in future works.

6 Conclusions and Future Works

In this paper, we discussed Maximal k-MCS Problem for finding densely con-
nected communities in a given graph. In order to restrict the solutions to what
we want, we introduced constraints on component size and overlappingness.

Our problem of enumerating k-MCSs can be transformed into a problem
of finding meta-cliques in a k-clique graph. Therefore, our algorithm has been
designed based on CLIQUES [24], an efficient maximal clique enumerator. We
empirically verified effectiveness of our method for several synthetic and real
world networks from the viewpoints of computational performance and quality
of solutions. In order to make our method more appealing, we need to have a
theoretical analysis of our algorithm as an important future work. Since the liter-
ature [24] has already investigated the worst-case time complexity for CLIQUES,
it would provide many helpful and constructive suggestions in our theoretical
analysis.

To get denser communities, we cut off small cliques. However, by removing
them, we lose the ability of clustering the vertices contained only by these small
cliques. Even though the number of small cliques is huge, most of them are highly
overlapped. From this, we can surmise that the cover set of these vertices can
be small and able to be considered without slowing down the algorithm. As a
solution, a clique coverage heuristic process [14] can be introduced.

Very recently, it has been argued that in many networks, a lower bound for the
typical community size is given as 5 to 7 [23]. Therefore, it is natural to assume
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a minimum size of components in order to detect meaningfull communities. In
this sense, our approach in this paper would be quite reasonable. However, one
might claim that our target k-plex as a combination of component cliques seems
too restrictive. In order to make the restriction weaken, we can consider our
components to be pseudo-clique so that we can obtain various dense communities
more flexibly. Then it would be worth designing an efficient algorithm for such
a relaxed maximal k-MCS problem.

As another approach in this direction, it would be promissing to impose a
constraint on connectivity of vertices in communities. More concretely speaking,
for a community, we may require each vertex to be adjacent to a certain number
of vertices in the community. This kind of community can be formalized with
the notion of j-core [4] and is currently under investigation as j-cored k-plexes.
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