
Chapter 6

Scales, Axes and Legends

6.1 Introduction

Scales control the mapping from data to aesthetics. They take your data and
turn it into something that you can see, like size, colour, position or shape.
Scales also provide the tools that let you read the plot: the axes and legends.
Formally, each scale is a function from a region in data space (the domain of
the scale) to a region in aesthetic space (the range of the scale). The axis or
legend is the inverse function: it allows you to convert visual properties back
to data.

You can generate many plots without knowing how scales work, but un-
derstanding scales and learning how to manipulate them will give you much
more control. The basics of working with scales is described in Sect. 6.2. Sec-
tion 6.3 discusses the common parameters that control the axes and legends.
Legends are particularly complicated so have an additional set of options as
described in Sect. 6.4. Section 6.5 shows how to use limits to both zoom into
interesting parts of a plot, and to ensure that multiple plots have match-
ing legends and axes. Section 6.6 gives an overview of the different types of
scales available in ggplot2, which can be roughly divided into four categories:
continuous position scales, colour scales, manual scales and identity scales.

6.2 Modifying Scales

A scale is required for every aesthetic used on the plot. When you write:

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class))

What actually happens is this:

© The Author 2016
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4 6

109

110 6 Scales, Axes and Legends

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class)) +

scale_x_continuous() +

scale_y_continuous() +

scale_colour_discrete()

Default scales are named according to the aesthetic and the variable type:
scale y continuous(), scale colour discrete(), etc.

It would be tedious to manually add a scale every time you used a new
aesthetic, so ggplot2 does it for you. But if you want to override the defaults,
you’ll need to add the scale yourself, like this:

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class)) +

scale_x_continuous("A really awesome x axis ") +

scale_y_continuous("An amazingly great y axis ")

The use of + to “add” scales to a plot is a little misleading. When you +

a scale, you’re not actually adding it to the plot, but overriding the existing
scale. This means that the following two specifications are equivalent:

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_x_continuous("Label 1") +

scale_x_continuous("Label 2")

#> Scale for 'x' is already present. Adding another scale for 'x',

#> which will replace the existing scale.

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_x_continuous("Label 2")

Note the message: if you see this in your own code, you need to reorganise
your code specification to only add a single scale.

You can also use a different scale altogether:

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = class)) +

scale_x_sqrt() +

scale_colour_brewer()

You’ve probably already figured out the naming scheme for scales, but to
be concrete, it’s made up of three pieces separated by “ “:

1. scale

2. The name of the aesthetic (e.g., colour, shape or x)
3. The name of the scale (e.g., continuous, discrete, brewer).

6.3 Guides: Legends and Axes 111

6.2.1 Exercises

1. What happens if you pair a discrete variable to a continuous scale? What
happens if you pair a continuous variable to a discrete scale?

2. Simplify the following plot specifications to make them easier to under-
stand.

ggplot(mpg, aes(displ)) +

scale_y_continuous("Highway mpg") +

scale_x_continuous() +

geom_point(aes(y = hwy))

ggplot(mpg, aes(y = displ, x = class)) +

scale_y_continuous("Displacement (l)") +

scale_x_discrete("Car type") +

scale_x_discrete("Type of car") +

scale_colour_discrete() +

geom_point(aes(colour = drv)) +

scale_colour_discrete("Drive\ntrain")

6.3 Guides: Legends and Axes

The component of a scale that you’re most likely to want to modify is the
guide, the axis or legend associated with the scale. Guides allow you to
read observations from the plot and map them back to their original values.
In ggplot2, guides are produced automatically based on the layers in your
plot. This is very different to base R graphics, where you are responsible
for drawing the legends by hand. In ggplot2, you don’t directly control the
legend; instead you set up the data so that there’s a clear mapping between
data and aesthetics, and a legend is generated for you automatically. This
can be frustrating when you first start using ggplot2, but once you get the
hang of it, you’ll find that it saves you time, and there is little you cannot
do. If you’re struggling to get the legend you want, it’s likely that your data
is in the wrong form. Read Chap. 9 to find out the right form.

You might find it surprising that axes and legends are the same type of
thing, but while they look very different there are many natural correspon-
dences between the two, as shown in table below and in Fig. 6.1.

Axis Legend Argument name

Label Title name

Ticks & grid line Key breaks

Tick label Key label labels

112 6 Scales, Axes and Legends

mpg

w
t

2

3

4

5

15 20 25 30

Cylinders

8

6

4

Axis label

Legend

Key

Tick mark
and label

Legend title
Axis

Key label

Fig. 6.1 Axis and legend components

The following sections covers each of the name, breaks and labels arguments
in more detail.

6.3.1 Scale Title

The first argument to the scale function, name, is the axes/legend title. You
can supply text strings (using \n for line breaks) or mathematical expressions
in quote() (as described in ?plotmath):

df <- data.frame(x = 1:2, y = 1, z = "a")

p <- ggplot(df, aes(x, y)) + geom_point()

p + scale_x_continuous("X axis")

p + scale_x_continuous(quote(a + mathematical ˆ expression))

Because tweaking these labels is such a common task, there are three
helpers that save you some typing: xlab(), ylab() and labs():

6.3 Guides: Legends and Axes 113

p <- ggplot(df, aes(x, y)) + geom_point(aes(colour = z))

p +

xlab("X axis") +

ylab("Y axis")

p + labs(x = "X axis", y = "Y axis", colour = "Colour\nlegend")

There are two ways to remove the axis label. Setting it to "" omits the
label, but still allocates space; NULL removes the label and its space. Look
closely at the left and bottom borders of the following two plots. I’ve drawn
a grey rectangle around the plot to make it easier to see the difference.

p <- ggplot(df, aes(x, y)) +

geom_point() +

theme(plot.background = element_rect(colour = "grey50"))

p + labs(x = "", y = "")

p + labs(x = NULL, y = NULL)

6.3.2 Breaks and Labels

The breaks argument controls which values appear as tick marks on axes
and keys on legends. Each break has an associated label, controlled by the
labels argument. If you set labels, you must also set breaks; otherwise, if
data changes, the breaks will no longer align with the labels.

The following code shows some basic examples for both axes and legends.

114 6 Scales, Axes and Legends

df <- data.frame(x = c(1, 3, 5) * 1000, y = 1)

axs <- ggplot(df, aes(x, y)) +

geom_point() +

labs(x = NULL, y = NULL)

axs

axs + scale_x_continuous(breaks = c(2000, 4000))

axs + scale_x_continuous(breaks = c(2000, 4000), labels = c("2k", "4k"))

leg <- ggplot(df, aes(y, x, fill = x)) +

geom_tile() +

labs(x = NULL, y = NULL)

leg

leg + scale_fill_continuous(breaks = c(2000, 4000))

leg + scale_fill_continuous(breaks = c(2000, 4000), labels = c("2k", "4k"))

If you want to relabel the breaks in a categorical scale, you can use a
named labels vector:

df2 <- data.frame(x = 1:3, y = c("a", "b", "c"))

ggplot(df2, aes(x, y)) +

geom_point()

ggplot(df2, aes(x, y)) +

geom_point() +

scale_y_discrete(labels = c(a = "apple", b = "banana", c = "carrot"))

6.3 Guides: Legends and Axes 115

To suppress breaks (and for axes, grid lines) or labels, set them to NULL:

axs + scale_x_continuous(breaks = NULL)

axs + scale_x_continuous(labels = NULL)

leg + scale_fill_continuous(breaks = NULL)

leg + scale_fill_continuous(labels = NULL)

Additionally, you can supply a function to breaks or labels. The breaks

function should have one argument, the limits (a numeric vector of length

116 6 Scales, Axes and Legends

two), and should return a numeric vector of breaks. The labels function
should accept a numeric vector of breaks and return a character vector of
labels (the same length as the input). The scales package provides a number
of useful labelling functions:

• scales::comma format() adds commas to make it easier to read large num-
bers.

• scales::unit format(unit, scale) adds a unit suffix, optionally scaling.
• scales::dollar format(prefix, suffix) displays currency values, rounding

to two decimal places and adding a prefix or suffix.
• scales::wrap format() wraps long labels into multiple lines.

See the documentation of the scales package for more details.

axs + scale_y_continuous(labels = scales::percent_format())

axs + scale_y_continuous(labels = scales::dollar_format("$"))

leg + scale_fill_continuous(labels = scales::unit_format("k", 1e-3))

You can adjust the minor breaks (the faint grid lines that appear be-
tween the major grid lines) by supplying a numeric vector of positions to the
minor breaks argument. This is particularly useful for log scales:

df <- data.frame(x = c(2, 3, 5, 10, 200, 3000), y = 1)

ggplot(df, aes(x, y)) +

geom_point() +

scale_x_log10()

mb <- as.numeric(1:10 %o% 10 ˆ (0:4))

ggplot(df, aes(x, y)) +

geom_point() +

scale_x_log10(minor_breaks = log10(mb))

6.3 Guides: Legends and Axes 117

Note the use of %o% to quickly generate the multiplication table, and that
the minor breaks must be supplied on the transformed scale.

6.3.3 Exercises

1. Recreate the following graphic:

Adjust the y axis label so that the parentheses are the right size.
2. List the three different types of object you can supply to the breaks argu-

ment. How do breaks and labels differ?
3. Recreate the following plot:

118 6 Scales, Axes and Legends

4. What label function allows you to create mathematical expressions? What
label function converts 1 to 1st, 2 to 2nd, and so on?

5. What are the three most important arguments that apply to both axes
and legends? What do they do? Compare and contrast their operation for
axes vs. legends.

6.4 Legends

While the most important parameters are shared between axes and legends,
there are some extra options that only apply to legends. Legends are more
complicated than axes because:

1. A legend can display multiple aesthetics (e.g. colour and shape), from
multiple layers, and the symbol displayed in a legend varies based on the
geom used in the layer.

2. Axes always appear in the same place. Legends can appear in different
places, so you need some global way of controlling them.

3. Legends have considerably more details that can be tweaked: should they
be displayed vertically or horizontally? How many columns? How big
should the keys be?

The following sections describe the options that control these interactions.

6.4.1 Layers and Legends

A legend may need to draw symbols from multiple layers. For example, if
you’ve mapped colour to both points and lines, the keys will show both
points and lines. If you’ve mapped fill colour, you get a rectangle. Note the
way the legend varies in the plots below:

6.4 Legends 119

By default, a layer will only appear if the corresponding aesthetic is
mapped to a variable with aes(). You can override whether or not a layer
appears in the legend with show.legend: FALSE to prevent a layer from ever
appearing in the legend; TRUE forces it to appear when it otherwise wouldn’t.
Using TRUE can be useful in conjunction with the following trick to make
points stand out:

ggplot(df, aes(y, y)) +

geom_point(size = 4, colour = "grey20") +

geom_point(aes(colour = z), size = 2)

ggplot(df, aes(y, y)) +

geom_point(size = 4, colour = "grey20", show.legend = TRUE) +

geom_point(aes(colour = z), size = 2)

Sometimes you want the geoms in the legend to display differently to the
geoms in the plot. This is particularly useful when you’ve used transparency
or size to deal with moderate overplotting and also used colour in the plot.
You can do this using the override.aes parameter of guide legend(), which
you’ll learn more about shortly.

norm <- data.frame(x = rnorm(1000), y = rnorm(1000))

norm$z <- cut(norm$x, 3, labels = c("a", "b", "c"))

ggplot(norm, aes(x, y)) +

geom_point(aes(colour = z), alpha = 0.1)

ggplot(norm, aes(x, y)) +

geom_point(aes(colour = z), alpha = 0.1) +

guides(colour = guide_legend(override.aes = list(alpha = 1)))

120 6 Scales, Axes and Legends

ggplot2 tries to use the fewest number of legends to accurately convey the
aesthetics used in the plot. It does this by combining legends where the same
variable is mapped to different aesthetics. The figure below shows how this
works for points: if both colour and shape are mapped to the same variable,
then only a single legend is necessary.

ggplot(df, aes(x, y)) + geom_point(aes(colour = z))

ggplot(df, aes(x, y)) + geom_point(aes(shape = z))

ggplot(df, aes(x, y)) + geom_point(aes(shape = z, colour = z))

In order for legends to be merged, they must have the same name. So if you
change the name of one of the scales, you’ll need to change it for all of them.

6.4.2 Legend Layout

A number of settings that affect the overall display of the legends are con-
trolled through the theme system. You’ll learn more about that in Sect. 8.2,
but for now, all you need to know is that you modify theme settings with the
theme() function.

6.4 Legends 121

The position and justification of legends are controlled by the theme set-
ting legend.position, which takes values “right”, “left”, “top”, “bottom”, or
“none” (no legend).

df <- data.frame(x = 1:3, y = 1:3, z = c("a", "b", "c"))

base <- ggplot(df, aes(x, y)) +

geom_point(aes(colour = z), size = 3) +

xlab(NULL) +

ylab(NULL)

base + theme(legend.position = "right") # the default

base + theme(legend.position = "bottom")

base + theme(legend.position = "none")

Switching between left/right and top/bottom modifies how the keys in
each legend are laid out (horizontal or vertically), and how multiple legends
are stacked (horizontal or vertically). If needed, you can adjust those options
independently:

• legend.direction: layout of items in legends (“horizontal” or “vertical”).
• legend.box: arrangement of multiple legends (“horizontal” or “vertical”).
• legend.box.just: justification of each legend within the overall bounding

box, when there are multiple legends (“top”, “bottom”, “left”, or “right”).

Alternatively, if there’s a lot of blank space in your plot you might want to
place the legend inside the plot. You can do this by setting legend.position to
a numeric vector of length two. The numbers represent a relative location in
the panel area: c(0, 1) is the top-left corner and c(1, 0) is the bottom-right
corner. You control which corner of the legend the legend.position refers to
with legend.justification, which is specified in a similar way. Unfortunately
positioning the legend exactly where you want it requires a lot of trial and
error.

base <- ggplot(df, aes(x, y)) +
geom_point(aes(colour = z), size = 3)

base + theme(legend.position = c(0, 1), legend.justification = c(0, 1))
base + theme(legend.position = c(0.5, 0.5), legend.justification = c(0.5, 0.5))
base + theme(legend.position = c(1, 0), legend.justification = c(1, 0))

122 6 Scales, Axes and Legends

There’s also a margin around the legends, which you can suppress with
legend.margin = unit(0, "mm").

6.4.3 Guide Functions

The guide functions, guide colourbar() and guide legend(), offer additional
control over the fine details of the legend. Legend guides can be used for any
aesthetic (discrete or continuous) while the colour bar guide can only be used
with continuous colour scales.

You can override the default guide using the guide argument of the corre-
sponding scale function, or more conveniently, the guides() helper function.
guides() works like labs(): you can override the default guide associated with
each aesthetic.

df <- data.frame(x = 1, y = 1:3, z = 1:3)

base <- ggplot(df, aes(x, y)) + geom_raster(aes(fill = z))

base

base + scale_fill_continuous(guide = guide_legend())

base + guides(fill = guide_legend())

6.4 Legends 123

Both functions have numerous examples in their documentation help pages
that illustrate all of their arguments. Most of the arguments to the guide
function control the fine level details of the text colour, size, font etc. You’ll
learn about those in the themes chapter. Here I’ll focus on the most important
arguments.

6.4.3.1 guide legend()

The legend guide displays individual keys in a table. The most useful op-
tions are:

• nrow or ncol which specify the dimensions of the table. byrow controls how
the table is filled: FALSE fills it by column (the default), TRUE fills it by row.

df <- data.frame(x = 1, y = 1:4, z = letters[1:4])

Base plot

p <- ggplot(df, aes(x, y)) + geom_raster(aes(fill = z))

p

p + guides(fill = guide_legend(ncol = 2))

p + guides(fill = guide_legend(ncol = 2, byrow = TRUE))

• reverse reverses the order of the keys. This is particularly useful when
you have stacked bars because the default stacking and legend orders are
different:

p <- ggplot(df, aes(1, y)) + geom_bar(stat = "identity", aes(fill = z))

p

p + guides(fill = guide_legend(reverse = TRUE))

124 6 Scales, Axes and Legends

• override.aes: override some of the aesthetic settings derived from each
layer. This is useful if you want to make the elements in the legend more
visually prominent. See discussion in Sect. 6.4.1.

• keywidth and keyheight (along with default.unit) allow you to specify the
size of the keys. These are grid units, e.g. unit(1, "cm").

6.4.3.2 guide colourbar

The colour bar guide is designed for continuous ranges of colors—as its name
implies, it outputs a rectangle over which the color gradient varies. The most
important arguments are:

• barwidth and barheight (along with default.unit) allow you to specify the
size of the bar. These are grid units, e.g. unit(1, "cm").

• nbin controls the number of slices. You may want to increase this from the
default value of 20 if you draw a very long bar.

• reverse flips the colour bar to put the lowest values at the top.

These options are illustrated below:

df <- data.frame(x = 1, y = 1:4, z = 4:1)

p <- ggplot(df, aes(x, y)) + geom_tile(aes(fill = z))

p

p + guides(fill = guide_colorbar(reverse = TRUE))

p + guides(fill = guide_colorbar(barheight = unit(4, "cm")))

6.4 Legends 125

6.4.4 Exercises

1. How do you make legends appear to the left of the plot?
2. What’s gone wrong with this plot? How could you fix it?

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(colour = drv, shape = drv)) +

scale_colour_discrete("Drive train")

3. Can you recreate the code for this plot?

126 6 Scales, Axes and Legends

6.5 Limits

The limits, or domain, of a scale are usually derived from the range of the
data. There are two reasons you might want to specify limits rather than
relying on the data:

1. You want to make limits smaller than the range of the data to focus on
an interesting area of the plot.

2. You want to make the limits larger than the range of the data because you
want multiple plots to match up.

It’s most natural to think about the limits of position scales: they map
directly to the ranges of the axes. But limits also apply to scales that have
legends, like colour, size, and shape. This is particularly important to realise
if you want your colours to match up across multiple plots in your paper.

You can modify the limits using the limits parameter of the scale:

• For continuous scales, this should be a numeric vector of length two. If
you only want to set the upper or lower limit, you can set the other value
to NA.

• For discrete scales, this is a character vector which enumerates all possible
values.

df <- data.frame(x = 1:3, y = 1:3)

base <- ggplot(df, aes(x, y)) + geom_point()

base

base + scale_x_continuous(limits = c(1.5, 2.5))

#> Warning: Removed 2 rows containing missing values (geom_point).

base + scale_x_continuous(limits = c(0, 4))

6.5 Limits 127

Because modifying the limits is such a common task, ggplot2 provides some
helper to make this even easier: xlim(), ylim() and lims() These functions
inspect their input and then create the appropriate scale, as follows:

• xlim(10, 20): a continuous scale from 10 to 20
• ylim(20, 10): a reversed continuous scale from 20 to 10
• xlim("a", "b", "c"): a discrete scale
• xlim(as.Date(c("2008-05-01", "2008-08-01"))): a date scale from May 1 to

August 1 2008.

base + xlim(0, 4)

base + xlim(4, 0)

base + lims(x = c(0, 4))

If you have eagle eyes, you’ll have noticed that the range of the axes
actually extends a little bit past the limits that you’ve specified. This ensures
that the data does not overlap the axes. To eliminate this space, set expand

= c(0, 0). This is useful in conjunction with geom raster():

ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density)) +

theme(legend.position = "none")

ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density)) +

128 6 Scales, Axes and Legends

scale_x_continuous(expand = c(0,0)) +

scale_y_continuous(expand = c(0,0)) +

theme(legend.position = "none")

By default, any data outside the limits is converted to NA. This means that
setting the limits is not the same as visually zooming in to a region of the plot.
To do that, you need to use the xlim and ylim arguments to coord cartesian(),
described in Sect. 7.4. This performs purely visual zooming and does not
affect the underlying data. You can override this with the oob (out of bounds)
argument to the scale. The default is scales::censor() which replaces any
value outside the limits with NA. Another option is scales::squish() which
squishes all values into the range:

df <- data.frame(x = 1:5)

p <- ggplot(df, aes(x, 1)) + geom_tile(aes(fill = x), colour = "white")

p

p + scale_fill_gradient(limits = c(2, 4))

p + scale_fill_gradient(limits = c(2, 4), oob = scales::squish)

6.6 Scales Toolbox 129

6.5.1 Exercises

1. The following code creates two plots of the mpg dataset. Modify the code
so that the legend and axes match, without using facetting!

fwd <- subset(mpg, drv == "f")

rwd <- subset(mpg, drv == "r")

ggplot(fwd, aes(displ, hwy, colour = class)) + geom_point()

ggplot(rwd, aes(displ, hwy, colour = class)) + geom_point()

2. What does expand limits() do and how does it work? Read the source
code.

3. What happens if you add two xlim() calls to the same plot? Why?
4. What does scale x continuous(limits = c(NA, NA)) do?

6.6 Scales Toolbox

As well as tweaking the options of the default scales, you can also override
them completely with new scales. Scales can be divided roughly into four
families:

• Continuous position scales used to map integer, numeric, and date/time
data to x and y position.

• Colour scales, used to map continuous and discrete data to colours.
• Manual scales, used to map discrete variables to your choice of size, line

type, shape or colour.
• The identity scale, paradoxically used to plot variables without scaling

them. This is useful if your data is already a vector of colour names.

The follow sections describe each family in more detail.

130 6 Scales, Axes and Legends

6.6.1 Continuous Position Scales

Every plot has two position scales, x and y. The most common continu-
ous position scales are scale x continuous() and scale y continuous(), which
linearly map data to the x and y axis. The most interesting variations are
produced using transformations. Every continuous scale takes a trans argu-
ment, allowing the use of a variety of transformations:

Convert from fuel economy to fuel consumption

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_y_continuous(trans = "reciprocal")

Log transform x and y axes

ggplot(diamonds, aes(price, carat)) +

geom_bin2d() +

scale_x_continuous(trans = "log10") +

scale_y_continuous(trans = "log10")

The transformation is carried out by a “transformer”, which describes the
transformation, its inverse, and how to draw the labels. The following table
lists the most common variants:

Name Function f(x) Inverse f−1(y)

asn tanh−1(x) tanh(y)
exp ex log(y)
identity x y
log log(x) ey

log10 log10(x) 10y

log2 log2(x) 2y

logit log(x
1−x)

1
1+e(y)

pow10 10x log10(y)

6.6 Scales Toolbox 131

Name Function f(x) Inverse f−1(y)

probit Φ(x) Φ−1(y)
reciprocal x−1 y−1

reverse −x −y
sqrt x1/2 y2

There are shortcuts for the most common: scale x log10(), scale x sqrt()

and scale x reverse() (and similarly for y.)
Of course, you can also perform the transformation yourself. For example,

instead of using scale x log10(), you could plot log10(x). The appearance of
the geom will be the same, but the tick labels will be different. If you use a
transformed scale, the axes will be labelled in the original data space; if you
transform the data, the axes will be labelled in the transformed space.

In either case, the transformation occurs before any statistical summaries.
To transform, after statistical computation, use coord trans(). See Sect. 7.4
for more details.

Date and date/time data are continuous variables with special labels. gg-
plot2 works with Date (for dates) and POSIXct (for date/times) classes: if your
dates are in a different format you will need to convert them with as.Date()

or as.POSIXct(). scale x date() and scale x datetime() work similarly to
scale x continuous() but have special date breaks and date labels arguments
that work in date-friendly units:

• date breaks and date minor breaks() allows you to position breaks by date
units (years, months, weeks, days, hours, minutes, and seconds). For ex-
ample, date breaks = "2 weeks" will place a major tick mark every two
weeks.

• date labels controls the display of the labels using the same formatting
strings as in strptime() and format():

String Meaning

%S Second (00–59)
%M Minute (00–59)
%l Hour, in 12-hour clock (1–12)
%I Hour, in 12-hour clock (01–12)
%p am/pm
%H Hour, in 24-hour clock (00–23)
%a Day of week, abbreviated (Mon–Sun)
%A Day of week, full (Monday–Sunday)
%e Day of month (1–31)
%d Day of month (01–31)
%m Month, numeric (01–12)
%b Month, abbreviated (Jan–Dec)
%B Month, full (January–December)

132 6 Scales, Axes and Legends

String Meaning

%y Year, without century (00–99)
%Y Year, with century (0000–9999)

For example, if you wanted to display dates like 14/10/1979, you would
use the string "%d/%m/%Y".

The code below illustrates some of these parameters.

base <- ggplot(economics, aes(date, psavert)) +

geom_line(na.rm = TRUE) +

labs(x = NULL, y = NULL)

base # Default breaks and labels

base + scale_x_date(date_labels = "%y", date_breaks = "5 years")

base + scale_x_date(

limits = as.Date(c("2004-01-01", "2005-01-01")),

date_labels = "%b %y",

date_minor_breaks = "1 month"

)

base + scale_x_date(

limits = as.Date(c("2004-01-01", "2004-06-01")),

date_labels = "%m/%d",

date_minor_breaks = "2 weeks"

)

6.6 Scales Toolbox 133

6.6.2 Colour

After position, the most commonly used aesthetic is colour. There are quite
a few different ways of mapping values to colours in ggplot2: four different
gradient-based methods for continuous values, and two methods for mapping
discrete values. But before we look at the details of the different methods, it’s
useful to learn a little bit of colour theory. Colour theory is complex because
the underlying biology of the eye and brain is complex, and this introduction
will only touch on some of the more important issues. An excellent and more
detailed exposition is available online at http://tinyurl.com/clrdtls.

At the physical level, colour is produced by a mixture of wavelengths of
light. To characterise a colour completely, we need to know the complete
mixture of wavelengths. Fortunately for us the human eye only has three
different colour receptors, and so we can summarise the perception of any
colour with just three numbers. You may be familiar with the RGB encoding
of colour space, which defines a colour by the intensities of red, green and
blue light needed to produce it. One problem with this space is that it is
not perceptually uniform: the two colours that are one unit apart may look
similar or very different depending on where they are in the colour space. This
makes it difficult to create a mapping from a continuous variable to a set of
colours. There have been many attempts to come up with colours spaces that
are more perceptually uniform. We’ll use a modern attempt called the HCL
colour space, which has three components of hue, chroma and luminance:

• Hue is a number between 0 and 360 (an angle) which gives the “colour”
of the colour: like blue, red, orange, etc.

• Chroma is the purity of a colour. A chroma of 0 is grey, and the maximum
value of chroma varies with luminance.

• Luminance is the lightness of the colour. A luminance of 0 produces black,
and a luminance of 1 produces white.

Hues are not perceived as being ordered: e.g. green does not seem “larger”
than red. The perception of chroma and luminance are ordered.

The combination of these three components does not produce a simple
geometric shape. Figure 6.2 attempts to show the 3d shape of the space.
Each slice is a constant luminance (brightness) with hue mapped to angle
and chroma to radius. You can see the centre of each slice is grey and the
colours get more intense as they get closer to the edge.

An additional complication is that many people (˜10% of men) do not
possess the normal complement of colour receptors and so can distinguish
fewer colours than usual. In brief, it’s best to avoid red-green contrasts, and
to check your plots with systems that simulate colour blindness. Visicheck is
one online solution. Another alternative is the dichromat package (Lumley,
2013) which provides tools for simulating colour blindness, and a set of colour
schemes known to work well for colour-blind people. You can also help people
with colour blindness in the same way that you can help people with black-
and-white printers: by providing redundant mappings to other aesthetics like
size, line type or shape.

http://tinyurl.com/clrdtls

134 6 Scales, Axes and Legends

Fig. 6.2 The shape of the HCL colour space. Hue is mapped to angle, chroma to radius
and each slice shows a different luminance. The HCL space is a pretty odd shape, but you
can see that colours near the centre of each slice are grey, and as you move towards the
edges they become more intense. Slices for luminance 0 and 100 are omitted because they
would, respectively, be a single black point and a single white point

6.6.2.1 Continuous

Colour gradients are often used to show the height of a 2d surface. In the fol-
lowing example we’ll use the surface of a 2d density estimate of the faithful

dataset (Azzalini and Bowman, 1990), which records the waiting time be-
tween eruptions and during each eruption for the Old Faithful geyser in
Yellowstone Park. I hide the legends and set expand to 0, to focus on the
appearance of the data. . Remember: I’m illustrating these scales with filled
tiles, but you can also use them with coloured lines and points.

erupt <- ggplot(faithfuld, aes(waiting, eruptions, fill = density)) +

geom_raster() +

scale_x_continuous(NULL, expand = c(0, 0)) +

scale_y_continuous(NULL, expand = c(0, 0)) +

theme(legend.position = "none")

There are four continuous colour scales:

• scale colour gradient() and scale fill gradient(): a two-colour gradient,
low-high (light blue-dark blue). This is the default scale for continuous
colour, and is the same as scale colour continuous(). Arguments low and
high control the colours at either end of the gradient.

6.6 Scales Toolbox 135

Generally, for continuous colour scales you want to keep hue constant, and
vary chroma and luminance. The munsell colour system is useful for this
as it provides an easy way of specifying colours based on their hue, chroma
and luminance. Use munsell::hue slice("5Y") to see the valid chroma and
luminance values for a given hue.

erupt

erupt + scale_fill_gradient(low = "white", high = "black")

erupt + scale_fill_gradient(

low = munsell::mnsl("5G 9/2"),

high = munsell::mnsl("5G 6/8")

)

• scale colour gradient2() and scale fill gradient2(): a three-colour gradi-
ent, low-med-high (red-white-blue). As well as low and high colours, these
scales also have a mid colour for the colour of the midpoint. The midpoint
defaults to 0, but can be set to any value with the midpoint argument.
It’s artificial to use this colour scale with this dataset, but we can force it
by using the median of the density as the midpoint. Note that the blues
are much more intense than the reds (which you only see as a very pale
pink)

mid <- median(faithfuld$density)

erupt + scale_fill_gradient2(midpoint = mid)

136 6 Scales, Axes and Legends

• scale colour gradientn() and scale fill gradientn(): a custom n-colour
gradient. This is useful if you have colours that are meaningful for your
data (e.g., black body colours or standard terrain colours), or you’d like
to use a palette produced by another package. The following code includes
palettes generated from routines in the colorspace package. (Zeileis et al.,
2008) describes the philosophy behind these palettes and provides a good
introduction to some of the complexities of creating good colour scales.

erupt + scale_fill_gradientn(colours = terrain.colors(7))

erupt + scale_fill_gradientn(colours = colorspace::heat_hcl(7))

erupt + scale_fill_gradientn(colours = colorspace::diverge_hcl(7))

By default, colours will be evenly spaced along the range of the data. To
make them unevenly spaced, use the values argument, which should be a
vector of values between 0 and 1.

• scale color distiller() and scale fill gradient() apply the Color-
Brewer colour scales to continuous data. You use it the same way as
scale fill brewer(), described below:

erupt + scale_fill_distiller()

erupt + scale_fill_distiller(palette = "RdPu")

erupt + scale_fill_distiller(palette = "YlOrBr")

6.6 Scales Toolbox 137

All continuous colour scales have an na.value parameter that controls what
colour is used for missing values (including values outside the range of the
scale limits). By default it is set to grey, which will stand out when you use
a colourful scale. If you use a black and white scale, you might want to set it
to something else to make it more obvious.

df <- data.frame(x = 1, y = 1:5, z = c(1, 3, 2, NA, 5))

p <- ggplot(df, aes(x, y)) + geom_tile(aes(fill = z), size = 5)

p

Make missing colours invisible

p + scale_fill_gradient(na.value = NA)

Customise on a black and white scale

p + scale_fill_gradient(low = "black", high = "white", na.value = "red")

6.6.2.2 Discrete

There are four colour scales for discrete data. We illustrate them with a
barchart that encodes both position and fill to the same variable:

138 6 Scales, Axes and Legends

df <- data.frame(x = c("a", "b", "c", "d"), y = c(3, 4, 1, 2))

bars <- ggplot(df, aes(x, y, fill = x)) +

geom_bar(stat = "identity") +

labs(x = NULL, y = NULL) +

theme(legend.position = "none")

• The default colour scheme, scale colour hue(), picks evenly spaced hues
around the HCL colour wheel. This works well for up to about eight
colours, but after that it becomes hard to tell the different colours apart.
You can control the default chroma and luminance, and the range of hues,
with the h, c and l arguments:

bars

bars + scale_fill_hue(c = 40)

bars + scale_fill_hue(h = c(180, 300))

One disadvantage of the default colour scheme is that because the colours
all have the same luminance and chroma, when you print them in black
and white, they all appear as an identical shade of grey.

• scale colour brewer() uses handpicked “ColorBrewer” colours, http://
colorbrewer2.org/. These colours have been designed to work well
in a wide variety of situations, although the focus is on maps and so
the colours tend to work better when displayed in large areas. For
categorical data, the palettes most of interest are ‘Set1’ and ‘Dark2’
for points and ‘Set2’, ‘Pastel1’, ‘Pastel2’ and ‘Accent’ for areas. Use
RColorBrewer::display.brewer.all() to list all palettes.

bars + scale_fill_brewer(palette = "Set1")

bars + scale_fill_brewer(palette = "Set2")

bars + scale_fill_brewer(palette = "Accent")

http://colorbrewer2.org/
http://colorbrewer2.org/

6.6 Scales Toolbox 139

• scale colour grey() maps discrete data to grays, from light to dark.

bars + scale_fill_grey()

bars + scale_fill_grey(start = 0.5, end = 1)

bars + scale_fill_grey(start = 0, end = 0.5)

• scale colour manual() is useful if you have your own discrete colour palette.
The following examples show colour palettes inspired by Wes Anderson
movies, as provided by the wesanderson package, https://github.com/
karthik/wesanderson. These are not designed for perceptual uniformity,
but are fun!

library(wesanderson)

bars + scale_fill_manual(values = wes_palette("GrandBudapest"))

bars + scale_fill_manual(values = wes_palette("Zissou"))

bars + scale_fill_manual(values = wes_palette("Rushmore"))

https://github.com/karthik/wesanderson
https://github.com/karthik/wesanderson

140 6 Scales, Axes and Legends

Note that one set of colours is not uniformly good for all purposes: bright
colours work well for points, but are overwhelming on bars. Subtle colours
work well for bars, but are hard to see on points:

Bright colours work best with points

df <- data.frame(x = 1:3 + runif(30), y = runif(30), z = c("a", "b", "c"))

point <- ggplot(df, aes(x, y)) +

geom_point(aes(colour = z)) +

theme(legend.position = "none") +

labs(x = NULL, y = NULL)

point + scale_colour_brewer(palette = "Set1")

point + scale_colour_brewer(palette = "Set2")

point + scale_colour_brewer(palette = "Pastel1")

Subtler colours work better with areas

df <- data.frame(x = 1:3, y = 3:1, z = c("a", "b", "c"))

area <- ggplot(df, aes(x, y)) +

geom_bar(aes(fill = z), stat = "identity") +

theme(legend.position = "none") +

labs(x = NULL, y = NULL)

area + scale_fill_brewer(palette = "Set1")

area + scale_fill_brewer(palette = "Set2")

area + scale_fill_brewer(palette = "Pastel1")

6.6 Scales Toolbox 141

6.6.3 The Manual Discrete Scale

The discrete scales, scale linetype(), scale shape(), and scale size discrete()

basically have no options. These scales are just a list of valid values that are
mapped to the unique discrete values.

If you want to customise these scales, you need to create your own new
scale with the manual scale: scale shape manual(), scale linetype manual(),
scale colour manual(). The manual scale has one important argument, values,
where you specify the values that the scale should produce. If this vector is
named, it will match the values of the output to the values of the input;
otherwise it will match in order of the levels of the discrete variable. You
will need some knowledge of the valid aesthetic values, which are described
in vignette("ggplot2-specs").

The following code demonstrates the use of scale colour manual():

plot <- ggplot(msleep, aes(brainwt, bodywt)) +

scale_x_log10() +

scale_y_log10()

plot +

geom_point(aes(colour = vore)) +

scale_colour_manual(

values = c("red", "orange", "green", "blue"),

na.value = "grey50"

)

#> Warning: Removed 27 rows containing missing values (geom_point).

colours <- c(

carni = "red",

insecti = "orange",

herbi = "green",

omni = "blue"

)

142 6 Scales, Axes and Legends

plot +

geom_point(aes(colour = vore)) +

scale_colour_manual(values = colours)

#> Warning: Removed 27 rows containing missing values (geom_point).

The following example shows a creative use of scale colour manual() to
display multiple variables on the same plot and show a useful legend. In most
other plotting systems, you’d colour the lines and then add a legend:

huron <- data.frame(year = 1875:1972, level = as.numeric(LakeHuron))

ggplot(huron, aes(year)) +

geom_line(aes(y = level + 5), colour = "red") +

geom_line(aes(y = level - 5), colour = "blue")

That doesn’t work in ggplot because there’s no way to add a legend man-
ually. Instead, give the lines informative labels:

ggplot(huron, aes(year)) +

geom_line(aes(y = level + 5, colour = "above")) +

geom_line(aes(y = level - 5, colour = "below"))

6.6 Scales Toolbox 143

And then tell the scale how to map labels to colours:

ggplot(huron, aes(year)) +

geom_line(aes(y = level + 5, colour = "above")) +

geom_line(aes(y = level - 5, colour = "below")) +

scale_colour_manual("Direction",

values = c("above" = "red", "below" = "blue")

)

See Sect. 9.3 for another approach.

6.6.4 The Identity Scale

The identity scale is used when your data is already scaled, when the data and
aesthetic spaces are the same. The code below shows an example where the
identity scale is useful. luv colours contains the locations of all R’s built-in
colours in the LUV colour space (the space that HCL is based on). A legend is
unnecessary, because the point colour represents itself: the data and aesthetic
spaces are the same.

144 6 Scales, Axes and Legends

head(luv_colours)

#> L u v col

#> 1 9342 -3.37e-12 0 white

#> 2 9101 -4.75e+02 -635 aliceblue

#> 3 8810 1.01e+03 1668 antiquewhite

#> 4 8935 1.07e+03 1675 antiquewhite1

#> 5 8452 1.01e+03 1610 antiquewhite2

#> 6 7498 9.03e+02 1402 antiquewhite3

ggplot(luv_colours, aes(u, v)) +

geom_point(aes(colour = col), size = 3) +

scale_color_identity() +

coord_equal()

6.6.5 Exercises

1. Compare and contrast the four continuous colour scales with the four
discrete scales.

2. Explore the distribution of the built-in colors() using the luv colours

dataset.

References 145

References

Azzalini A, Bowman AW (1990) A look at some data on the old faithful
geyser. Appl Stat 39:357–65

Lumley T (2013) dichromat: color schemes for dichromats. R package version
2.0-0. https://CRAN.R-project.org/package=dichromat

Zeileis A, Kurt H, Paul M (2008) Escaping RGBland: selecting colors for
statistical graphics. Comput Stat Data Anal. http://statmath.wu-wien.
ac.at/∼zeileis/papers/Zeileis+Hornik+Murrell-2008.pdf

https://CRAN.R-project.org/package=dichromat
http://statmath.wu-wien.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2008.pdf
http://statmath.wu-wien.ac.at/~zeileis/papers/Zeileis+Hornik+Murrell-2008.pdf

	6 Scales, Axes and Legends
	6.1 Introduction
	6.2 Modifying Scales
	6.2.1 Exercises

	6.3 Guides: Legends and Axes
	6.3.1 Scale Title
	6.3.2 Breaks and Labels
	6.3.3 Exercises

	6.4 Legends
	6.4.1 Layers and Legends
	6.4.2 Legend Layout
	6.4.3 Guide Functions
	6.4.3.1 guide_legend()
	6.4.3.2 guide_colourbar

	6.4.4 Exercises

	6.5 Limits
	6.5.1 Exercises

	6.6 Scales Toolbox
	6.6.1 Continuous Position Scales
	6.6.2 Colour
	6.6.2.1 Continuous
	6.6.2.2 Discrete

	6.6.3 The Manual Discrete Scale
	6.6.4 The Identity Scale
	6.6.5 Exercises

	References

