Chapter 2
Getting Started with ggplot2

2.1 Introduction

The goal of this chapter is to teach you how to produce useful graphics with
geplot2 as quickly as possible. You’ll learn the basics of ggplot() along with
some useful “recipes” to make the most important plots. ggplot() allows you
to make complex plots with just a few lines of code because it’s based on a
rich underlying theory, the grammar of graphics. Here we’ll skip the theory
and focus on the practice, and in later chapters you’ll learn how to use the
full expressive power of the grammar.
In this chapter you’ll learn:

e About the mpg dataset included with ggplot2, Sect. 2.2.

e The three key components of every plot: data, aesthetics and geoms,
Sect. 2.3.

e How to add additional variables to a plot with aesthetics, Sect. 2.4.

e How to display additional categorical variables in a plot using small mul-
tiples created by facetting, Sect. 2.5.

e A variety of different geoms that you can use to create different types of
plots, Sect. 2.6.

e How to modify the axes, Sect. 2.7.

e Things you can do with a plot object other than display it, like save it to
disk, Sect. 2.8.

e gplot(), a handy shortcut for when you just want to quickly bang out a
simple plot without thinking about the grammar at all, Sect. 2.9.

© The Author 2016 11
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4_2

12 2 Getting Started with ggplot2

2.2 Fuel Economy Data

In this chapter, we’ll mostly use one data set that’s bundled with ggplot2:
mpg. It includes information about the fuel economy of popular car models
in 1999 and 2008, collected by the US Environmental Protection Agency,
http://fueleconomy.gov. You can access the data by loading ggplot2:

library(ggplot2)

mpg

#> Source: local data frame [234 x 11]

#>

#> manufacturer model displ year cyl trans drv cty
#> (chr) (chr) (dbl) (int) (int) (chr) (chr) (int)
#> 1 audi a4 1.8 1999 4 auto(l5) f 18
#> 2 audi a4 1.8 1999 4 manual (m5) f 21
#> 3 audi a4 2.0 2008 4 manual(m6) f 20
#> 4 audi a4 2.0 2008 4 auto(av) f 21
#> 5 audi a4 2.8 1999 6 auto(l5) f 16
#> 6 audi a4 2.8 1999 6 manual(mb5) f 18
#> ..

#> Variables not shown: hwy (int), f1 (chr), class (chr)
The variables are mostly self-explanatory:

cty and hwy record miles per gallon (mpg) for city and highway driving.
displ is the engine displacement in litres.

drv is the drivetrain: front wheel (f), rear wheel (r) or four wheel (4).
model is the model of car. There are 38 models, selected because they had
a new edition every year between 1999 and 2008.

e class (not shown), is a categorical variable describing the “type” of car:
two seater, SUV, compact, etc.

This dataset suggests many interesting questions. How are engine size
and fuel economy related? Do certain manufacturers care more about fuel
economy than others? Has fuel economy improved in the last 10 years? We
will try to answer some of these questions, and in the process learn how to
create some basic plots with ggplot2.

2.2.1 Exercises

1. List five functions that you could use to get more information about the
mpg dataset.

2. How can you find out what other datasets are included with ggplot2?

3. Apart from the US, most countries use fuel consumption (fuel consumed
over fixed distance) rather than fuel economy (distance travelled with fixed
amount of fuel). How could you convert cty and hwy into the European
standard of 1/100 km?

http://fueleconomy.gov

2.3 Key Components 13

4. Which manufacturer has the most the models in this dataset? Which model
has the most variations? Does your answer change if you remove the re-
dundant specification of drive train (e.g. “pathfinder 4wd”, “ad quattro”)
from the model name?

2.3 Key Components

Every ggplot2 plot has three key components:

1. data,

2. A set of aesthetic mappings between variables in the data and visual
properties, and

3. At least one layer which describes how to render each observation. Layers
are usually created with a geom function.

Here’s a simple example:

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()

L]
40 -BEES
i
>30- 488
2]
= 383% oo Li. SiFeil iy
- E‘.: l'. ’ . T
Stdaeg e, .
L] ...
L]
2 : 4 5 6 7
displ

This produces a scatterplot defined by:

1. Data: mpg.

2. Aesthetic mapping: engine size mapped to x position, fuel economy to y
position.

3. Layer: points.

Pay attention to the structure of this function call: data and aesthetic
mappings are supplied in ggplot(), then layers are added on with +. This is
an important pattern, and as you learn more about ggplot2 you’ll construct
increasingly sophisticated plots by adding on more types of components.

14 2 Getting Started with ggplot2

Almost every plot maps a variable to x and y, so naming these aesthetics
is tedious, so the first two unnamed arguments to aes() will be mapped to x
and y. This means that the following code is identical to the example above:

ggplot(mpg, aes(displ, hwy)) +
geom_point()

I’ll stick to that style throughout the book, so don’t forget that the first
two arguments to aes() are x and y. Note that I've put each command on
a new line. I recommend doing this in your own code, so it’s easy to scan a
plot specification and see exactly what’s there. In this chapter, I'll sometimes
use just one line per plot, because it makes it easier to see the differences
between plot variations.

The plot shows a strong correlation: as the engine size gets bigger, the fuel
economy gets worse. There are also some interesting outliers: some cars with
large engines get higher fuel economy than average. What sort of cars do you
think they are?

2.3.1 Fxercises

1. How would you describe the relationship between cty and hwy? Do you
have any concerns about drawing conclusions from that plot?

2. What does ggplot(mpg, aes(model, manufacturer)) + geom_point() show? Is
it useful? How could you modify the data to make it more informative?

3. Describe the data, aesthetic mappings and layers used for each of the
following plots. You’ll need to guess a little because you haven’t seen all
the datasets and functions yet, but use your common sense! See if you can
predict what the plot will look like before running the code.

1. ggplot(mpg, aes(cty, hwy)) + geom_point()

2. ggplot(diamonds, aes(carat, price)) + geom_point()
3. ggplot(economics, aes(date, unemploy)) + geom_line()
4. ggplot(mpg, aes(cty)) + geom_histogram()

2.4 Colour, Size, Shape and Other Aesthetic Attributes

To add additional variables to a plot, we can use other aesthetics like colour,
shape, and size (NB: while T use British spelling throughout this book, ggplot2
also accepts American spellings). These work in the same way as the x and y
aesthetics, and are added into the call to aes():

2.4 Colour, Size, Shape and Other Aesthetic Attributes 15

aes(displ, hwy, colour = class)
aes(displ, hwy, shape = drv)
aes(displ, hwy, size = cyl)

ggplot2 takes care of the details of converting data (e.g., ‘f’, ‘r’, ‘4’) into
aesthetics (e.g., ‘red’; ‘yellow’, ‘green’) with a scale. There is one scale for
each aesthetic mapping in a plot. The scale is also responsible for creating a
guide, an axis or legend, that allows you to read the plot, converting aesthetic
values back into data values. For now, we’ll stick with the default scales
provided by ggplot2. You'll learn how to override them in Chap. 6.

To learn more about those outlying variables in the previous scatterplot,
we could map the class variable to colour:

ggplot(mpg, aes(displ, cty, colour = class)) +
geom_point()

35yt
5 class
- ® 2seater
30- o
ot ® compact
25- 88 ® midsize
® minivan
® pickup

® subcompact

® suv

M-
(5]
.
o
-
~

This gives each point a unique colour corresponding to its class. The legend
allows us to read data values from the colour, showing us that the group of
cars with unusually high fuel economy for their engine size are two seaters:
cars with big engines, but lightweight bodies.

If you want to set an aesthetic to a fixed value, without scaling it, do so
in the individual layer outside of aes(). Compare the following two plots:

ggplot(mpg, aes(displ, hwy)) + geom_point(aes(colour = "blue"))
ggplot(mpg, aes(displ, hwy)) + geom_point(colour = "blue")

16 2 Getting Started with ggplot2

40 -

'I colour ‘I
gw‘ °*1 ® blue EBO_ .: ;i""'c

o
S T Sgieg vo '
20~ 20-
’ M L’;i‘o ® i - 'J.'. oﬁ‘ e o
[o8, L ..l
L] L]
2 3 4 5 6 7 2 3 4 5 & 7
displ displ

In the first plot, the value “blue” is scaled to a pinkish colour, and a leg-
end is added. In the second plot, the points are given the R colour blue. This
is an important technique and you’ll learn more about it in Sect. 5.4.2. See
vignette("ggplot2-specs") for the values needed for colour and other aesthet-
ics.

Different types of aesthetic attributes work better with different types of
variables. For example, colour and shape work well with categorical variables,
while size works well for continuous variables. The amount of data also makes
a difference: if there is a lot of data it can be hard to distinguish different
groups. An alternative solution is to use facetting, as described next.

When using aesthetics in a plot, less is usually more. It’s difficult to see
the simultaneous relationships among colour and shape and size, so exercise
restraint when using aesthetics. Instead of trying to make one very complex
plot that shows everything at once, see if you can create a series of simple
plots that tell a story, leading the reader from ignorance to knowledge.

2.4.1 Ezxercises

1. Experiment with the colour, shape and size aesthetics. What happens
when you map them to continuous values? What about categorical values?
What happens when you use more than one aesthetic in a plot?

2. What happens if you map a continuous variable to shape? Why? What
happens if you map trans to shape? Why?

3. How is drive train related to fuel economy? How is drive train related to
engine size and class?

2.5 Facetting

Another technique for displaying additional categorical variables on a plot
is facetting. Facetting creates tables of graphics by splitting the data into
subsets and displaying the same graph for each subset. You'll learn more
about facetting in Sect. 7.2, but it’s such a useful technique that you need to
know it right away.

2.5 Facetting 17

There are two types of facetting: grid and wrapped. Wrapped is the most
useful, so we’ll discuss it here, and you can learn about grid facetting later.
To facet a plot you simply add a facetting specification with facet.wrap(),
which takes the name of a variable preceded by ~.

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(~“class)

2seater compact midsize
L]
40- l
30-
0 se . My s, .
minivan pickup subcompact
L]
40 - .
£ o
= - ® og po : s 0 ' .
. el & 8%
.
suv
40-
30-

'o
20- .I‘.ﬂ% |

[]
2 3 4 5 6 7
displ

You might wonder when to use facetting and when to use aesthetics.
You’ll learn more about the relative advantages and disadvantages of each in
Sect. 7.2.5.

2.5.1 Exercises

1. What happens if you try to facet by a continuous variable like hwy? What
about cyl? What’s the key difference?

2. Use facetting to explore the three-way relationship between fuel economy,
engine size, and number of cylinders. How does facetting by number of
cylinders change your assessment of the relationship between engine size
and fuel economy?

3. Read the documentation for facet wrap(). What arguments can you use to
control how many rows and columns appear in the output?

4. What does the scales argument to facetwrap() do? When might you
use it?

18 2 Getting Started with ggplot2

2.6 Plot Geoms

You might guess that by substituting geom_point() for a different geom func-
tion, you'd get a different type of plot. That’s a great guess! In the following
sections, you'll learn about some of the other important geoms provided in
gegplot2. This isn’t an exhaustive list, but should cover the most commonly
used plot types. You’ll learn more in Chap. 3.

e geom_smooth() fits a smoother to the data and displays the smooth and its
standard error.

e geomboxplot() produces a box-and-whisker plot to summarise the distri-
bution of a set of points.

e geom_histogram() and geom_freqgpoly() show the distribution of continuous
variables.

e geom_bar() shows the distribution of categorical variables.

e geom_path() and geom_line() draw lines between the data points. A line plot
is constrained to produce lines that travel from left to right, while paths
can go in any direction. Lines are typically used to explore how things
change over time.

2.6.1 Adding a Smoother to a Plot

If you have a scatterplot with a lot of noise, it can be hard to see the dominant
pattern. In this case it’s useful to add a smoothed line to the plot with
geom_smooth():

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth()

2.6 Plot Geoms 19

This overlays the scatterplot with a smooth curve, including an assessment

of uncertainty in the form of point-wise confidence intervals shown in grey. If
you’re not interested in the confidence interval, turn it off with geom_smooth(se
= FALSE).

An important argument to geom_smooth() is the method, which allows you

to choose which type of model is used to fit the smooth curve:

method = "loess", the default for small n, uses a smooth local regression
(as described in ?1oess). The wiggliness of the line is controlled by the span
parameter, which ranges from 0 (exceedingly wiggly) to 1 (not so wiggly).

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(span = 0.2)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(span = 1)

Loess does not work well for large datasets (it’s O(n?) in memory), so an
alternative smoothing algorithm is used when n is greater than 1000.
method = "gam" fits a generalised additive model provided by the mgcv
package. You need to first load mgcv, then use a formula like formula = y
“s(x) ory " s(x, bs = "cs") (for large data). This is what ggplot2 uses
when there are more than 1000 points.

library(mgcv)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(method = "gam", formula =y 7 s(x))

20 2 Getting Started with ggplot2

e method = "1m" fits a linear model, giving the line of best fit.

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(method = "1Im")

e method = "rlm" works like Im(), but uses a robust fitting algorithm so that
outliers don’t affect the fit as much. It’s part of the MLASS package, so
remember to load that first.

2.6.2 Bozplots and Jittered Points

When a set of data includes a categorical variable and one or more continuous
variables, you will probably be interested to know how the values of the
continuous variables vary with the levels of the categorical variable. Say we’re
interested in seeing how fuel economy varies within car class. We might start
with a scatterplot like this:

ggplot(mpg, aes(drv, hwy)) +
geom_point()

2.6 Plot Geoms 21

hwy
] W
o [==]
- - @ CHNENED SNNNDND
® NN o 0
SERD SIRIOND

-

drv

Because there are few unique values of both class and hwy, there is a lot of
overplotting. Many points are plotted in the same location, and it’s difficult
to see the distribution. There are three useful techniques that help alleviate
the problem:

e Jittering, geom_jitter(), adds a little random noise to the data which can
help avoid overplotting.

e Boxplots, geom_boxplot(), summarise the shape of the distribution with a
handful of summary statistics.

e Violin plots, geom_violin(), show a compact representation of the “density”
of the distribution, highlighting the areas where more points are found.

These are illustrated below:

ggplot(mpg, aes(drv, hwy)) + geom_jitter()
ggplot(mpg, aes(drv, hwy)) + geom_boxplot()
ggplot(mpg, aes(drv, hwy)) + geom_violin()

L] [] L]
40- . 40- T 40-
g ‘
- =10~ =130 -
an %..‘? 230 $ Eso
o IEERE =Sl
° o?‘ °
'Y]
4 f ' 4 ' r 4 f r
drv drv drv

Each method has its strengths and weaknesses. Boxplots summarise the
bulk of the distribution with only five numbers, while jittered plots show
every point but only work with relatively small datasets. Violin plots give
the richest display, but rely on the calculation of a density estimate, which
can be hard to interpret.

22 2 Getting Started with ggplot2

For jittered points, geom_jitter() offers the same control over aesthetics as
geom_point(): size, colour, and shape. For geom_boxplot() and geom_violin(),
you can control the outline colour or the internal fill colour.

2.6.3 Histograms and Frequency Polygons

Histograms and frequency polygons show the distribution of a single numeric
variable. They provide more information about the distribution of a single
group than boxplots do, at the expense of needing more space.

ggplot(mpg, aes(hwy)) + geom_histogram()

#> “stat_bin()" using ‘bins = 30‘. Pick better value with
#> “binwidth®.

ggplot(mpg, aes(hwy)) + geom_freqgpoly()

#> “stat_bin()" using ‘bins = 30‘. Pick better value with
#> “binwidth*.

10 20 30 40
hwy hwy

Both histograms and frequency polygons work in the same way: they bin
the data, then count the number of observations in each bin. The only dif-
ference is the display: histograms use bars and frequency polygons use lines.

You can control the width of the bins with the binwidth argument (if you
don’t want evenly spaced bins you can use the breaks argument). It is very
important to experiment with the bin width. The default just splits your
data into 30 bins, which is unlikely to be the best choice. You should always
try many bin widths, and you may find you need multiple bin widths to tell
the full story of your data.

ggplot(mpg, aes(hwy)) +
geom_fregpoly(binwidth = 2.5)
ggplot(mpg, aes(hwy)) +
geom_fregpoly(binwidth

1l
—
~

2.6 Plot Geoms

60 -
. 40-
c
=}
8
20~
0- ' ' ' '
10 20 30 40
hwy

50

count

10 20 30
hwy

40

23

An alternative to the frequency polygon is the density plot, geom_density().
I’'m not a fan of density plots because they are harder to interpret since the
underlying computations are more complex. They also make assumptions
that are not true for all data, namely that the underlying distribution is
continuous, unbounded, and smooth.

To compare the distributions of different subgroups, you can map
a categorical variable to either fill (for geom_histogram()) or colour (for
geom_fregpoly()). It’s easier to compare distributions using the frequency
polygon because the underlying perceptual task is easier. You can also use
facetting: this makes comparisons a little harder, but it’s easier to see the

distribution of each group.

ggplot(mpg, aes(displ, colour =
geom_fregpoly(binwidth = 0.5)

drv)) +

ggplot(mpg, aes(displ, fill = drv)) +

geom_histogram(binwidth = 0.5) +
facet_wrap(~drv, ncol = 1)

30-
drv
- — 4
S 20-
=] —1
[&]
— i
10-
O-
2 4 & 8
displ

4
30-
20~
10~
D.

24 2 Getting Started with ggplot2
2.6.4 Bar Charts

The discrete analogue of the histogram is the bar chart, geom_bar(). It’s easy
to use:

ggplot(mpg, aes(manufacturer)) +
geom_bar ()

30

: II II

audlchevroiailodge Iord hondé’1yunda|]eepland rovdmcolrmercur:n|ssarponl|ac;ubarutoymalkswager
manufacturer

count

(Youll learn how to fix the labels in Sect. 8.4.2).

Bar charts can be confusing because there are two rather different plots
that are both commonly called bar charts. The above form expects you to
have unsummarised data, and each observation contributes one unit to the
height of each bar. The other form of bar chart is used for presummarised
data. For example, you might have three drugs with their average effect:

drugs <- data.frame(
drug = c("a", "b", "c"),
effect = c(4.2, 9.7, 6.1)
)

To display this sort of data, you need to tell geombar() to not run the
default stat which bins and counts the data. However, I think it’s even better
to use geom_point() because points take up less space than bars, and don’t
require that the y axis includes 0.

ggplot(drugs, aes(drug, effect)) + geom_bar(stat = "identity")
ggplot(drugs, aes(drug, effect)) + geom_point()

2.6 Plot Geoms 25

10.0- L]
7.5-
k3 %
6- .
2.5-
OIO- Ll = 1 L} L}
b a b c
drug drug

2.6.5 Time Series with Line and Path Plots

Line and path plots are typically used for time series data. Line plots join the
points from left to right, while path plots join them in the order that they
appear in the dataset (in other words, a line plot is a path plot of the data
sorted by x value). Line plots usually have time on the x-axis, showing how
a single variable has changed over time. Path plots show how two variables
have simultaneously changed over time, with time encoded in the way that
observations are connected.

Because the year variable in the mpg dataset only has two values, we’ll show
some time series plots using the economics dataset, which contains economic
data on the US measured over the last 40 years. The figure below shows two
plots of unemployment over time, both produced using geom_line(). The first
shows the unemployment rate while the second shows the median number of
weeks unemployed. We can already see some differences in these two variables,
particularly in the last peak, where the unemployment percentage is lower
than it was in the preceding peaks, but the length of unemployment is high.

ggplot(economics, aes(date, unemploy / pop)) +
geom_line()

ggplot(economics, aes(date, uempmed)) +
geom_line()

0.05- 25~
3
L004- B -
-y E
o 15-
Q.0.03- %
qE; 2 10-
c . =
S 0.02-

5-
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010

date date

26 2 Getting Started with ggplot2

To examine this relationship in greater detail, we would like to draw both
time series on the same plot. We could draw a scatterplot of unemployment
rate vs. length of unemployment, but then we could no longer see the evo-
lution over time. The solution is to join points adjacent in time with line
segments, forming a path plot.

Below we plot unemployment rate vs. length of unemployment and join
the individual observations with a path. Because of the many line crossings,
the direction in which time flows isn’t easy to see in the first plot. In the
second plot, we colour the points to make it easier to see the direction of
time.

ggplot(economics, aes(unemploy / pop, uempmed)) +
geom_path() +
geom_point()

year <- function(x) as.POSIX1t(x)$year + 1900

ggplot(economics, aes(unemploy / pop, uempmed)) +
geom_path(colour = "grey50") +
geom_point(aes(colour = year(date)))

25- 25- year(date)
® %- 2 2- 2010
2000
CE,_15- 2_15-
g g 1990
10- 10-
= = 1980
! . . . SRS i 1970
0.02 0.03 0.04 0.05 0.02 0.03 0.04 0.05
unemploy/pop unemploy/pop

We can see that unemployment rate and length of unemployment are
highly correlated, but in recent years the length of unemployment has been
increasing relative to the unemployment rate.

With longitudinal data, you often want to display multiple time series on
each plot, each series representing one individual. To do this you need to
map the group aesthetic to a variable encoding the group membership of each
observation. This is explained in more depth in Sect. 3.5.

2.6.6 FExercises

1. What’s the problem with the plot created by ggplot(mpg, aes(cty, hwy))
+ geom_point()? Which of the geoms described above is most effective at
remedying the problem?

2.7 Modifying the Axes 27

2. One challenge with ggplot(mpg, aes(class, hwy)) + geom_boxplot() is that
the ordering of class is alphabetical, which is not terribly useful. How
could you change the factor levels to be more informative?

Rather than reordering the factor by hand, you can do it automati-
cally based on the data: ggplot(mpg, aes(reorder(class, hwy), hwy)) +
geom_boxplot(). What does reorder() do? Read the documentation.

3. Explore the distribution of the carat variable in the diamonds dataset. What
binwidth reveals the most interesting patterns?

4. Explore the distribution of the price variable in the diamonds data. How
does the distribution vary by cut?

5. You now know (at least) three ways to compare the distributions of
subgroups: geom_violin(), geom_fregpoly() and the colour aesthetic, or
geom_histogram() and facetting. What are the strengths and weaknesses
of each approach? What other approaches could you try?

6. Read the documentation for geom_bar(). What does the weight aesthetic do?

7. Using the techniques already discussed in this chapter, come up with three
ways to visualise a 2d categorical distribution. Try them out by visualising
the distribution of model and manufacturer, trans and class, and cyl and
trans.

2.7 Modifying the Axes

You'll learn the full range of options available in Chap. 6, but two families
of useful helpers let you make the most common modifications. xlab() and
ylab() modify the x- and y-axis labels:

ggplot(mpg, aes(cty, hwy)) +
geom_point(alpha = 1 / 3)

ggplot(mpg, aes(cty, hwy)) +
geom_point(alpha = 1 / 3) +
xlab("city driving (mpg)") +
ylab("highway driving (mpg)")

Remove the axis labels with NULL
ggplot(mpg, aes(cty, hwy)) +
geom_point(alpha = 1 / 3) +
xlab(NULL) +
ylab(NULL)

28
o0
40- .
L]
ot
> =
230
=
20-
.i 1 i 1) 1
10 15 20 25 30 35
cty

1) £

=] [=]

1 '
L

highway driving (mpg)
ha
=]

L]
10 15 20 25 30 35
city driving (mpg)

xlim() and ylim() modify the limits of axes:

ggplot(mpg, aes(drv, hwy)) +
geom_jitter(width = 0.25)

ggplot(mpg, aes(drv, hwy)) +
geom_jitter(width = 0.25) +

LinC F', ety
ylim(20, 30)

2 Getting Started with ggplot2

10

15

20 25 30

#> Warning: Removed 138 rows containing missing values (geom_point).

For continuous scales, use NA to set only one limit
ggplot(mpg, aes(drv, hwy)) +

geom_jitter(width = 0.25, na.rm =

ylim(NA, 30)

L3]

=
20-
- L]

4 f r
drv

30.0- ii
27.5-
2 5 -
Z 250- !i .
L]
225-
¢
L]
20.0- .'
r
drv

TRUE) +

=-§ s ¢ D

d

drv

bt WL L0

o0

35

Changing the axes limits sets values outside the range to NA. You can

suppress the associated warning with na.rm =

TRU

E.

2.8 Output 29

2.8 Output

Most of the time you create a plot object and immediately plot it, but you
can also save a plot to a variable and manipulate it:

p <- ggplot(mpg, aes(displ, hwy, colour = factor(cyl))) +
geom_point()

Once you have a plot object, there are a few things you can do with it:

e Render it on screen with print(). This happens automatically when run-
ning interactively, but inside a loop or function, you’ll need to print() it
yourself.

print(p)

40- ° factor(cyl)
;30‘ :!l- 8 : :
= : .iigz‘lin] ¢ : S e ® 6

2 L :.‘..'. 06‘.... ® e 8

2 3 4 5 6 7
displ

e Save it to disk with ggsave(), described in Sect. 8.5.

Save png to disk
ggsave("plot.png", width = 5, height = 5)

e Briefly describe its structure with summary().

summary (p)

#> data: manufacturer, model, displ, year, cyl, trans, drv,
#> cty, hwy, fl, class [234x11]

#> mapping: x = displ, y = hwy, colour = factor(cyl)

#> faceting: facet_null()

B> oo

#> geom_point: na.rm = FALSE

#> stat_identity: na.rm = FALSE

#> position_identity

e Save a cached copy of it to disk, with saveRDS(). This saves a complete
copy of the plot object, so you can easily re-create it with readRDS().

30 2 Getting Started with ggplot2

saveRDS(p, "plot.rds")
g <- readRDS("plot.rds")

The plot structure is not guaranteed to stay the same over time, so use
this for short-term caching, not long-term storage. You’ll learn more about
how to manipulate these objects in Chap. 12.

2.9 Quick Plots

In some cases, you will want to create a quick plot with a minimum of typing.
In these cases you may prefer to use gplot() over ggplot(). gplot() lets you
define a plot in a single call, picking a geom by default if you don’t supply
one. To use it, provide a set of aesthetics and a data set:

gplot(displ, hwy, data = mpg)

gplot(displ, data = mpg)

#> “stat_bin()" using ‘bins = 30‘. Pick better value with
#> “binwidth*®.

h
8
[]
- -
(1]
LB
208
e
LN
F
E
L]
L]
L]
-
L]
count

displ displ

Unless otherwise specified, gplot() tries to pick a sensible geometry and
statistic based on the arguments provided. For example, if you give gplot()
x and y variables, it’ll create a scatterplot. If you just give it an x, it’ll create
a histogram or bar chart depending on the type of variable.

gplot() assumes that all variables should be scaled by default. If you want
to set an aesthetic to a constant, you need to use I():

gplot(displ, hwy, data = mpg, colour = "blue")
gplot(displ, hwy, data = mpg, colour = I("blue"))

2.9 Quick Plots 31

L] L]
40- °® 40- ©®
?30_1 colour 2 30- ..'
£ e®8 ® blue .: & "." e * 8
® - ® ®
i ... ' 2
< -) ..Jl' ogliBe o
[] ' .. ' ...
L]
2 3 4 5 6 7 2 3 4 5 6 7
displ displ

If you’re used to plot() you may find gplot() to be a useful crutch to get
up and running quickly. However, while it’s possible to use gplot() to access
all of the customizability of ggplot2, I don’t recommend it. If you find yourself
making a more complex graph, e.g. using different aesthetics in different layers
or manually setting visual properties, use ggplot(), not gplot().

	2 Getting Started with ggplot2
	2.1 Introduction
	2.2 Fuel Economy Data
	2.2.1 Exercises

	2.3 Key Components
	2.3.1 Exercises

	2.4 Colour, Size, Shape and Other Aesthetic Attributes
	2.4.1 Exercises

	2.5 Facetting
	2.5.1 Exercises

	2.6 Plot Geoms
	2.6.1 Adding a Smoother to a Plot
	2.6.2 Boxplots and Jittered Points
	2.6.3 Histograms and Frequency Polygons
	2.6.4 Bar Charts
	2.6.5 Time Series with Line and Path Plots
	2.6.6 Exercises

	2.7 Modifying the Axes
	2.8 Output
	2.9 Quick Plots

