Chapter 12
Programming with ggplot2

12.1 Introduction

A major requirement of a good data analysis is flexibility. If your data
changes, or you discover something that makes you rethink your basic as-
sumptions, you need to be able to easily change many plots at once. The
main inhibitor of flexibility is code duplication. If you have the same plotting
statement repeated over and over again, you’ll have to make the same change
in many different places. Often just the thought of making all those changes
is exhausting! This chapter will help you overcome that problem by showing
you how to program with ggplot2.

To make your code more flexible, you need to reduce duplicated code by
writing functions. When you notice you’re doing the same thing over and over
again, think about how you might generalise it and turn it into a function.
If you’re not that familiar with how functions work in R, you might want to
brush up your knowledge at http://adv-r.had.co.nz/Functions.html.

In this chapter I'll show how to write functions that create:

e A single ggplot2 component.
e Multiple ggplot2 components.
e A complete plot.

And then I'll finish off with a brief illustration of how you can apply
functional programming techniques to ggplot2 objects.

You might also find the cowplot (https://github.com/wilkelab/cowplot)
and ggthemes (https://github.com/jrnold/ggthemes) packages helpful.
As well as providing reusable components that help you directly, you can
also read the source code of the packages to figure out how they work.

© The Author 2016 241
H. Wickham, ggplot2, Use R!, DOI 10.1007/978-3-319-24277-4_12

http://adv-r.had.co.nz/Functions.html
https://github.com/wilkelab/cowplot
https://github.com/jrnold/ggthemes

242

12.2 Single Components

12 Programming with ggplot2

Each component of a ggplot plot is an object. Most of the time you create the
component and immediately add it to a plot, but you don’t have to. Instead,
you can save any component to a variable (giving it a name), and then add

it to multiple plots:

bestfit <- geom_smooth(
method = "1Im",
se = FALSE,
colour = alpha("steelblue", 0.5),
size = 2

)

ggplot(mpg, aes(cty, hwy)) +
geom_point() +
bestfit

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
bestfit

2 e
40 - >
n,‘
- L]
2'30-
i ey
20-
L]
10 15 20 25 30 35
cty

displ

That’s a great way to reduce simple types of duplication (it’s much better
than copying-and-pasting!), but requires that the component be exactly the
same each time. If you need more flexibility, you can wrap these reusable
snippets in a function. For example, we could extend our bestfit object to
a more general function for adding lines of best fit to a plot. The following
code creates a geom_lm() with three parameters: the model formula, the line

colour and the line size:

geom_lm <- function(formula =y ~ x, colour = alpha("steelblue", 0.5),

size = 2, ...) {
geom_smooth(formula = formula, se = FALSE, method = "1m", colour = colour,
size = size, ...)

12.2 Single Components 243

ggplot(mpg, aes(displ, 1 / hwy)) +
geom_point() +
geom_1m()

ggplot(mpg, aes(displ, 1 / hwy)) +
geom_point() +

geom_Im(y ~ poly(x, 2), size = 1, colour = "red")
L] L]
0.08 - 0.08 -
L]
* & Bw
>006- .-::IO. > 0.06-
= e o =
£ i Lot 1 £
= 1] ' ° D
0.04 - °o8 * 0.04 -
002-% v T 0025 v
2 3 4 5 6 7 2 3 4 5 6 7
displ displ
Pay close attention to the use of “...”. When included in the function
definition “...” allows a function to accept arbitrary additional arguments.
Inside the function, you can then use “...” to pass those arguments on to
another function. Here we pass “...” onto geom_smooth() so the user can still

modify all the other arguments we haven’t explicitly overridden. When you
write your own component functions, it’s a good idea to always use “...” in
this way.

Finally, note that you can only add components to a plot; you can’t modify
or remove existing objects.

12.2.1 FEzxercises

1. Create an object that represents a pink histogram with 100 bins.

2. Create an object that represents a fill scale with the Blues ColorBrewer
palette.

3. Read the source code for theme_grey(). What are its arguments? How does
it work?

4. Create scale_colour_wesanderson(). It should have a parameter to pick the
palette from the wesanderson package, and create either a continuous or
discrete scale.

244 12 Programming with ggplot2

12.3 Multiple Components

It’s not always possible to achieve your goals with a single component. For-
tunately, ggplot2 has a convenient way of adding multiple components to a
plot in one step with a list. The following function adds two layers: one to
show the mean, and one to show its standard error:

geom_mean <- function() {

list(
stat_summary(fun.y = "mean", geom = "bar", fill = "grey70"),
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4)
)
}

ggplot(mpg, aes(class, cty)) + geom_mean()
ggplot(mpg, aes(drv, cty)) + geom_mean()

20- 20-
15+
& 10- & 10-
5 -
0 -
ZSGBtInmdsmuMm)mmd
class

If the list contains any NULL elements, they’re ignored. This makes it easy
to conditionally add components:

geom_mean <- function(se = TRUE) {

list(
stat_summary(fun.y = "mean", geom = "bar", fill = "grey70"),
if (se)
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4)
)
}

ggplot(mpg, aes(drv, cty)) + geom_mean()
ggplot(mpg, aes(drv, cty)) + geom_mean(se = FALSE)

20-
f r

drv drv

20~
15-
£ 10-
5-
0-

12.3 Multiple Components 245

12.3.1 Plot Components

You're not just limited to adding layers in this way. You can also include any
of the following object types in the list:

e A data.frame, which will override the default dataset associated with the
plot. (If you add a data frame by itself, you’ll need to use %+%, but this is
not necessary if the data frame is in a list.)

e An aes() object, which will be combined with the existing default aesthetic
mapping.

e Scales, which override existing scales, with a warning if they’ve already
been set by the user.

e Coordinate systems and facetting specification, which override the existing
settings.

e Theme components, which override the specified components.

12.3.2 Annotation

It’s often useful to add standard annotations to a plot. In this case, your
function will also set the data in the layer function, rather than inheriting it
from the plot. There are two other options that you should set when you do
this. These ensure that the layer is self-contained:

e inherit.aes = FALSE prevents the layer from inheriting aesthetics from the
parent plot. This ensures your annotation works regardless of what else is
on the plot.

e show.legend = FALSE ensures that your annotation won’t appear in the
legend.

One example of this technique is the borders() function built into ggplot2.
It’s designed to add map borders from one of the datasets in the maps pack-
age:

borders <- function(database = "world", regions = ".", fill = NA,
colour = "grey50", ...) {
df <- map_data(database, regions)
geom_polygon(
aes_("lat, "long, group = “group),
data = df, fill = fill, colour = colour, ...,
inherit.aes = FALSE, show.legend = FALSE

246 12 Programming with ggplot2

12.3.3 Additional Arguments

If you want to pass additional arguments to the components in your func-
tion, ... is no good: there’s no way to direct different arguments to different
components. Instead, you’ll need to think about how you want your function
to work, balancing the benefits of having one function that does it all vs. the
cost of having a complex function that’s harder to understand.

To get you started, here’s one approach using modifyList() and do.call():

geom_mean <- function(..., bar.params = list(), errorbar.params = list()) {
params <- list(...)
bar.params <- modifylList(params, bar.params)
errorbar.params <- modifylList(params, errorbar.params)

bar <- do.call("stat_summary", modifyList(
list(fun.y = "mean", geom = "bar", fill = "grey70"),
bar.params)

)

errorbar <- do.call("stat_summary", modifyList(
list(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4),
errorbar.params)

)

list(bar, errorbar)

}

ggplot(mpg, aes(class, cty)) +
geom_mean (
colour = "steelblue",
errorbar.params = list(width = 0.5, size = 1)
)
ggplot(mpg, aes(class, cty)) +
geom_mean (
bar.params = list(fill = "steelblue"),
errorbar.params = list(colour = "blue")

)
20- 20-
15-
& 10- & 10- I I

ZSeatrnpadsmn-tbmrnmu ZSGBhansmn\-tbmmm
class class

12.4 Plot Functions 247

If you need more complex behaviour, it might be easier to create a custom
geom or stat. You can learn about that in the extending ggplot2 vignette
included with the package. Read it by running vignette("extending-ggplot2").

12.3.4 Ezxercises

1. To make the best use of space, many examples in this book hide the axes
labels and legend. I've just copied-and-pasted the same code into multiple
places, but it would make more sense to create a reusable function. What
would that function look like?

2. Extend the borders() function to also add coord_quickmap() to the plot.

3. Look through your own code. What combinations of geoms or scales do
you use all the time? How could you extract the pattern into a reusable
function?

12.4 Plot Functions

Creating small reusable components is most in line with the ggplot2 spirit:
you can recombine them flexibly to create whatever plot you want. But some-
times you’re creating the same plot over and over again, and you don’t need
that flexibility. Instead of creating components, you might want to write a
function that takes data and parameters and returns a complete plot.

For example, you could wrap up the complete code needed to make a
piechart:

piechart <- function(data, mapping) {
ggplot(data, mapping) +
geom_bar(width = 1) +
coord_polar(theta = "y") +
xlab(NULL) +
ylab(NULL)

}

piechart(mpg, aes(factor(1), fill = class))

248 12 Programming with ggplot2

class

B 2seater
. compact
B riosize
B minivan
B vickup

. subcompact
. suv

This is much less flexible than the component based approach, but equally,
it’s much more concise. Note that I was careful to return the plot object,
rather than printing it. That makes it possible add on other ggplot2 compo-
nents.

You can take a similar approach to drawing parallel coordinates plots
(PCPs). PCPs require a transformation of the data, so I recommend writing
two functions: one that does the transformation and one that generates the
plot. Keeping these two pieces separate makes life much easier if you later
want to reuse the same transformation for a different visualisation.

pcp_data <- function(df) {
is_numeric <- vapply(df, is.numeric, logical(1))

Rescale numeric columns
rescale@l <- function(x) {

rng <- range(x, na.rm = TRUE)

(x - rngl11) 7/ (rngl2] - rngl1])
}

df[is_numeric] <- lapply(df[is_numeric], rescale@l)

Add row identifier
df$.row <- rownames(df)

Treat numerics as value (aka measure) variables

gather_ is the standard-evaluation version of gather, and

is usually easier to program with.

tidyr::gather_(df, "variable", "value", names(df)[is_numeric])
}
pcp <- function(df, ...) {

df <- pcp_data(df)

ggplot(df, aes(variable, value, group = .row)) + geom_line(...)
}
pcp(mpg)
pcp(mpg, aes(colour = drv))

12.4 Plot Functions 249

1.00- 1.00-

0.75- 0.75- drv
S S =
+ 0.50- w 0.50- A
> >

0.25- 0.25- —L

0.00- ' ' ' [l ' 0.00- ' ' ' ' '

cty cyl displ hwy year cty cyl displ hwy year
variable variable

A complete exploration of this idea is gplot(), which provides a fairly deep
wrapper around the most common ggplot() options. I recommend studying
the source code if you want to see how far these basic techniques can take
you.

12.4.1 Indirectly Referring to Variables

The piechart() function above is a little unappealing because it requires the
user to know the exact aes() specification that generates a pie chart. It would
be more convenient if the user could simply specify the name of the variable
to plot. To do that you’ll need to learn a bit more about how aes() works.

aes() uses non-standard evaluation: rather than looking at the values of
its arguments, it looks at their expressions. This makes it difficult to work
with programmatically as there’s no way to store the name of a variable in
an object and then refer to it later:

x_var <- "displ"
aes(x_var)
#> % x -> x_var

Instead we need to use aes_(), which uses regular evaluation. There are
two basic ways to create a mapping with aes_():

e Using a quoted call, created by quote(), substitute(), as.name(), or parse().

aes_(quote(displ))

#> x x -> displ
aes_(as.name(x_var))

#> x x -> displ
aes_(parse(text = x_var)[[1]11)
#> x x -> displ

f <- function(x_var) {

250 12 Programming with ggplot2

aes_(substitute(x_var))
}
f(displ)
#> % x -> displ

The difference between as.name() and parse() is subtle. If x_var is “a +
b”, as.name() will turn it into a variable called ‘a + b‘, parse() will turn
it into the function call a + b. (If this is confusing, http://adv-r.had.co.
nz/Expressions.html might help).

e Using a formula, created with ~.

aes_("displ)
#> x x -> displ

aes_() gives us three options for how a user can supply variables: as a string,
as a formula, or as a bare expression. These three options are illustrated below

piechartl <- function(data, var, ...) {

piechart(data, aes_("factor(1), fill = as.name(var)))
}
piechart1(mpg, "class") + theme(legend.position = "none")
piechart2 <- function(data, var, ...) {

piechart(data, aes_("factor(1), fill = var))
}
piechart2(mpg, “class) + theme(legend.position = "none'")
piechart3 <- function(data, var, ...) {

piechart(data, aes_("factor(l1), fill = substitute(var)))
}
piechart3(mpg, class) + theme(legend.position = "none")

There’s another advantage to aes_() over aes() if you're writing ggplot2
plots inside a package: using aes_("x, ~y) instead of aes(x, y) avoids the
global variables NOTE in R CMD check.

http://adv-r.had.co.nz/Expressions.html
http://adv-r.had.co.nz/Expressions.html

12.4 Plot Functions 251

12.4.2 The Plot Environment

As you create more sophisticated plotting functions, you’ll need to understand
a bit more about ggplot2’s scoping rules. ggplot2 was written well before I
understood the full intricacies of non-standard evaluation, so it has a rather
simple scoping system. If a variable is not found in the data, it is looked for
in the plot environment. There is only one environment for a plot (not one
for each layer), and it is the environment in which ggplot() is called from
(i.e. the parent.frame()).

This means that the following function won’t work because n is not stored
in an environment accessible when the expressions in aes() are evaluated.

f <= function() {
n<-10
geom_line(aes(x / n))
}
df <- data.frame(x = 1:3, y = 1:3)
ggplot(df, aes(x, y)) + f()
#> Error in x/n: non-numeric argument to binary operator

Note that this is only a problem with the mapping argument. All other
arguments are evaluated immediately so their values (not a reference to a
name) are stored in the plot object. This means the following function will
work:

f <= function() {
colour <- "blue"
geom_line(colour = colour)
}

ggplot(df, aes(x, y)) + fO

If you need to use a different environment for the plot, you can specify it
with the environment argument to ggplot(). You'll need to do this if you're
creating a plot function that takes user provided data. See gplot() for an
example.

12.4.3 Ezxercises

1. Create a distribution() function specially designed for visualising contin-
uous distributions. Allow the user to supply a dataset and the name of
a variable to visualise. Let them choose between histograms, frequency
polygons, and density plots. What other arguments might you want to
include?

2. What additional arguments should pcp() take? What are the downsides of
how ... is used in the current code?

252 12 Programming with ggplot2

3. Advanced: why doesn’t this code work? How can you fix it7

f <= function() {

levs <- c("2seater", "compact", "midsize", "minivan", "pickup",
"subcompact", "suv")
piechart3(mpg, factor(class, levels = levs))
}
fO

#> Error in factor(class, levels = levs): object 'levs' not found

12.5 Functional Programming

Since ggplot2 objects are just regular R objects, you can put them in a list.
This means you can apply all of R’s great functional programming tools. For
example, if you wanted to add different geoms to the same base plot, you
could put them in a list and use lapply().

geoms <- list(
geom_point(),
geom_boxplot(aes(group = cut_width(displ, 1))),
list(geom_point(), geom_smooth())

p <- ggplot(mpg, aes(displ, hwy))
lapply(geoms, function(g) p + g)
[[11]

#>

[[2]1]

#>

[[31]

12.5 Functional Programming 253

If you’re not familiar with functional programming, read through http://
adv-r.had.co.nz/Functional-programming.html and think about how you
might apply the techniques to your duplicated plotting code.

12.5.1 Exercises

1. How could you add a geom_point() layer to each element of the following
list?

plots <- list(

ggplot(mpg, aes(displ, hwy)),

ggplot(diamonds, aes(carat, price)),

ggplot(faithfuld, aes(waiting, eruptions, size = density))
)

2. What does the following function do? What’s a better name for it?

mystery <- function(...) {
Reduce(*+*, list(...), accumulate = TRUE)

}

mystery(
ggplot(mpg, aes(displ, hwy)) + geom_point(),
geom_smooth(),
xlab(NULL),
ylab(NULL)

http://adv-r.had.co.nz/Functional-programming.html
http://adv-r.had.co.nz/Functional-programming.html

	12 Programming with ggplot2
	12.1 Introduction
	12.2 Single Components
	12.2.1 Exercises

	12.3 Multiple Components
	12.3.1 Plot Components
	12.3.2 Annotation
	12.3.3 Additional Arguments
	12.3.4 Exercises

	12.4 Plot Functions
	12.4.1 Indirectly Referring to Variables
	12.4.2 The Plot Environment
	12.4.3 Exercises

	12.5 Functional Programming
	12.5.1 Exercises

