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Abstract. Many pattern recognition techniques have been proposed,
typically relying on feature spaces. However, recent studies have shown
that different data representations, such as the dissimilarity space, can
help in the knowledge discovering process, by generating more informa-
tive spaces. Still, different measures can be applied, leading to different
data representations. This paper proposes the application of a second-
order dissimilarity measure, which uses triplets of nearest neighbors, to
generate a new dissimilarity space. In comparison with the traditional
Euclidean distance, this new representation is best suited for the identi-
fication of natural data sparsity. It leads to a space that better describes
the data, by reducing the overlap of the classes and by increasing the
discriminative power of features. As a result, the application of cluster-
ing algorithms over the proposed dissimilarity space results in reduced
error rates, when compared with either the original feature space or the
Euclidean dissimilarity space. These conclusions are supported on exper-
imental validation on benchmark datasets.

Keywords: Dissimilarity representation · Euclidean space · Dissimilar-
ity increments space · Clustering · Geometrical characterization

1 Introduction

The learning process encompasses developing computer methods to model cate-
gories/classes of objects or to assign objects to one of the different classes. In that
sense, a representation of the objects is required, which can be a vector, string of
symbols or even a graph. Afterwards, a decision rule may be constructed based
on that representation of objects, and the objective is to discriminate between
different classes achieving high accuracy values [1,3,8].

Typically, objects are represented by a set of features, which should character-
ize the objects and be relevant to discriminate among the classes; the Euclidean
vector spaces are the most popular representation of objects [3]. A problem with
the feature-based representation of objects is the difficulty to obtain a complete
description of objects, forcing to an overlap of the classes, leading to an inef-
ficient learning process. That difficulty in describing objects through a set of
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features is due to high-dimensional data or sometimes it is necessary to describe
objects using continuous and categorical variables.

To overcome the limitations of feature-based representations, another repre-
sentations of data can be used. One possibility is the dissimilarity representation,
which is based on comparisons between pairs of objects [10]. This representation
solves the problem of class overlap that exists in feature representations, since
only identical objects have a dissimilarity of zero.

Also, a suitable dissimilarity measure can be used to compare pairs of objects,
and dissimilarity vectors for each object are constructed to obtain the dissim-
ilarity space. Measures that compare the entire objects may be considered or
measures can be derived from raw measurements, strings or graphs. Defining
features that can have a high discriminant power may be a difficult task for
some applications (e.g. shape recognition) than define a dissimilarity measure.

Dissimilarities have been used in pattern recognition, either explicitly or
implicitly, in many procedures, like in cluster analysis, which uses dissimilarities
instead of feature spaces [14]. In the last years, based on the work of Pekalska and
Duin [11], some classification methods for dissimilarity data have been proposed
[2,4,13]. This type of classifiers are useful to tackle problems in computer vision,
bioinformatics, information retrieval, natural language processing, among other
fields [5,9].

Moreover, the dissimilarity space can be constructed using a feature represen-
tation and some appropriate dissimilarity measure [4,12]. This measure may be
asymmetric and does not require to fulfill mathematical properties for metrics.
Over the dissimilarity space, any classifier or clustering procedure that works in
vector spaces can be applied.

The purpose of this paper is to present a novel dissimilarity representation of
data, the dissimilarity increments space, based on a second-order dissimilarity
measure, consisting on triplets of nearest neighbors [6]. This dissimilarity space
is built by the increment in dissimilarity between an object and a set of represen-
tative objects, which are defined as an edge between a prototype and its nearest
neighbor. To fairly compare the proposed dissimilarity space, an Euclidean space
is built by relying on the Euclidean distance to measure the set of representa-
tive objects. Both dissimilarity spaces are used as feature-based dissimilarity
spaces, which consist in representing each object as a vector of dissimilarities,
and typical clustering algorithms are applied to those spaces.

To compare the spaces, we use two different approaches. We start by present-
ing an insightful characterization of the spaces by relying on a set of geometrical
measures. Then we apply a set of unsupervised learning methods in order to ana-
lyze the spaces behavior under clustering problems. Experimental results with
an extensive set of datasets show that the proposed second-order dissimilarity
space leads to a substantial improvement in accuracy when compared to the
original feature space and to the feature-based Euclidean space.

This paper is organized as follows: Sect. 2 explains how to build dissimilarity
spaces, and proposes a new dissimilarity space based on a second-order dis-
similarity measure – the dissimilarity increments space. Section 3 presents some
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measures to characterize each dissimilarity space and understand if a learning
problem becomes easier in these spaces. The proposed dissimilarity increments
space is evaluated in the context of unsupervised learning, in comparison with
other dissimilarity spaces, in Sect. 4. Conclusions and final remarks are drawn
in Sect. 5. The datasets used in the experimental evaluation of methods are
described in appendix.

2 Dissimilarity Representation

A dissimilarity representation consists of a matrix with the dissimilarities
between an object and a set of representative objects. Thus, the resulting dissim-
ilarity matrix is considered as a set of row vectors, where each vector represents
a direction from the dissimilarity space, whose dimension corresponds to the
cardinality of the set of representative objects.

Let X = {x1, . . . ,xn} represent a set of objects. In general, xi may not be
a vector, but an image or signal. However, in this paper and given the datasets
used in the experimental validation (see appendix), we assume that xi is a fea-
ture vector in R

p, xi = [xi1 . . . xip]. Also, let R = {e1, . . . , er} be the set of
representative or prototype objects, such that R ⊆ X.

In [11], a dissimilarity space is defined as a data-dependent mapping

D(·, R) : X → R
r, (1)

given a dissimilarity function. Therefore, each object xi from the set X is
described by a r-dimensional dissimilarity vector

D(xi, R) = [d(xi, e1) . . . d(xi, er)], (2)

where d(·, ·) is a dissimilarity measure. So, D(xi, R) is a row of the n × r dis-
similarity matrix D, obtaining the dissimilarity space. Now, we define the
dissimilarity space as a vector space Y by Y = D, where the i-th object is
represented by the dissimilarity vector of the Dij values.

For simplicity, we assume that R is the entire set X, meaning that all objects
of X are used as representatives. Therefore, in this paper, the dissimilarity space
is represented as a n × n dissimilarity matrix.

In this paper, we consider two dissimilarity spaces: the Euclidean space and
the Dinc space, detailed below.

Euclidean space. This space is obtained assuming that d(·, ·) in (2) is the
Euclidean distance,

d(xi, ej) =

(
p∑

k=1

(xik − ejk)2
)1/2

. (3)

Thus, each element, Dij , of the dissimilarity matrix D, is the Euclidean distance
between i-th and j-th objects.

Dinc space. This space is obtained using a second-order dissimilarity measure
between triplets of neighboring objects, and its explained in detail in Sect. 2.1.
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2.1 Dissimilarity Increments Space

Firstly, we need to define the concept of dissimilarity increments. Given xi,
(xi,xj ,xk) is a triplet of nearest neighbors, obtained as follows:

(xi,xj ,xk) − nearest neighbor triplet
xj : j = arg min

l
{d(xl,xi), l �= i}

xk : k = arg min
l

{d(xl,xj), l �= i, l �= j}.

The dissimilarity increments [6] between neighboring objects is defined as

dinc(xi,xj ,xk) = |d(xi,xj) − d(xj ,xk)| , (4)

where d(·, ·) is any dissimilarity measure between pairs of objects; in this paper,
we assume that d(·, ·) is the Euclidean distance.

This measure gives information about the structure of a dataset compared to
pairwise distances, i.e. the dissimilarity increments between neighboring objects
should not occur with abrupt changes, and between well separated classes will
have higher values. Moreover, this measure can identify easily objects in a sparse
class, while most of the distance measures used in the literature discard objects
that are far apart in a sparse class.

We propose to define the set of representative objects as edges between two
specific objects, i.e., a representative object ej is an edge between a prototype
mj (a sample of the dataset) and its nearest neighbor xmj

. So, d(ej) is the
weight of that edge, i.e. d(ej) = d(mj ,xmj

). Moreover, the distance between
any object xi and the representative object ej is defined as

d(xi, ej) = min{d(xi,mj), d(xi,xmj
)}. (5)

Furthermore, we propose a new representation of data based on the dis-
similarity increments measure, called dissimilarity increments space and we will
refer to that space as Dinc space. Similar to the Euclidean space, each object is
described by a n-dimensional dissimilarity vector (2). However, d(·, ·) is no longer
the Euclidean distance, but a dissimilarity increment between each object xi and
a representative object ej (see Fig. 1 for an example how to compute the ele-
ments in Dinc space). Thus, the (i, j)-th element of our dissimilarity space is
defined as

D(xi, ej) = |d(xi, ej) − d(ej)|. (6)

From (6), it is easy to see that the dissimilarity matrix D is non-negative.
Moreover, D is asymmetric, and to see that consider a set of patterns distributed
as shown in Fig. 1. If a is a prototype, ea is an edge between a and its nearest
neighbor b, and will be the representative object. Now, the dissimilarity incre-
ment between c and the representative object, ea, is D(c, ea). On other hand,
when c is a prototype, the representative object, ec, is the edge between c and
its nearest neighbor d, and, thus, D(a, ec) is the dissimilarity increment between
a and the representative object. Therefore, D(c, ea) �= D(a, ec) (see Fig. 1).
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Fig. 1. Set of patterns to illustrate how to compute elements from the Dinc space D
and to demonstrate its asymmetry. If a is a prototype, ea is the representative object
constructed as an edge between a and its nearest neighbor b. Then, D(c, ea) is the
dissimilarity increment between c and the representative object, ea, computed from
(6). D(c, ea) �= D(a, ec) since different triplets of patterns are used to compute D.

3 Characterization of the Dissimilarity Spaces

So far, we constructed feature-based dissimilarity spaces to represent a set of
objects. Both dissimilarity spaces, Euclidean and Dinc spaces, are constructed
on top of feature spaces. In the following we will characterize these spaces based
on some measures to characterize the geometrical complexity of classification
problems proposed by Ho et al. [7]. Those measures are based on the analysis of
different classifiers to understand the separability of classes or even the geometry,
topology and density of manifolds. Thus, we used some of those measures to
understand if a learning problem in the dissimilarity space becomes easier than
in the feature space. According to [7], those measures can be divided into three
categories:

1. Measures of overlaps in feature values from different classes focus on
how good the features are in separating the classes. These type of measures
examine the range and spread of values in the dataset within each class,
and check for overlaps among different classes. Here, we only consider two
measures: the maximum Fisher’s discriminant ratio (F1) and the collective
feature efficiency (F4). F1 computes the maximum discriminant power of
each feature, and high values of this measure indicates that, at least, one of
the features turns the problem of separating the samples of different classes
easier. On the other hand, F4 computes the discriminative power of all the
features.

2. Measures of separability of classes evaluate, based on the existence and
shape of class boundary, to what extent two classes are separable. Here, we
consider three measures: the training error of a linear classifier (L2), the ratio
average intra/inter class nearest neighbor distance (N2) and the leave-one-
out error rate of the one-nearest neighbor classifier (N3). L2 shows if the
classes of the training data are linearly separable. N2 compares the within
class distances with distances to the nearest neighbors of other classes, and
higher values indicate that samples of the same class are disperse. N3 verifies
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how close the objects of different classes are, and lower values means that
there is a high gap in the class boundary.

3. Measures of geometry, topology, and density of manifolds charac-
terize classes, assuming that each class is composed by a single or multiple
manifolds, and their shape and position determines how well two classes are
separated. Here, we considered two measures: the nonlinearity of a linear clas-
sifier (L3) and the nonlinearity of the one-nearest neighbor classifier (N4).
L3 measures, for linearly separable problems, the alignment of the decision
surface of linear classifiers with the class boundary, and N4 measures the
alignment of the nearest neighbor boundary with the shape of the gap or
overlap between the convex hulls of the classes.

Some of the measures are designed for two-class problems, namely L2 and
L3. In this paper, we consider the average value between one versus all classes
problems for datasets with more than two classes. Table 1 presents the results of
the measures presented above, over the datasets described in the appendix, in
the Feature space and in both dissimilarity spaces.

From Table 1 we notice that both dissimilarity spaces have high discriminant
power of features in separating the classes, corresponding to higher values of F1
and F4 than the Feature space. Moreover, F4 in the Feature space has a minimum
of zero and that value increased in both dissimilarity spaces, which means that
the collective feature efficiency increased. Thus, the datasets are better described
in the dissimilarity spaces, even with the increase of dimensionality on those
spaces, compared to the Feature space.

In both dissimilarity spaces, there is a decrease in L2 and N2 values, indi-
cating that there exists less overlap between the classes, which may facilitate
the learner to separate the samples of different classes. However, in both dissim-
ilarity spaces, the measure for geometry and topology of the manifold N4 has
higher values, indicating that, even if the classes are more separable they are
nonlinearly separable by the one-nearest neighbor classifier.

4 Unsupervised Learning in Dissimilarity Spaces

Typically, dissimilarity measures have been used in cluster analysis or in clas-
sification, as a tool to decide which objects are closer to each other. They also
can be used to describe objects, and, consequently, build dissimilarity spaces. In
this paper we proposed a new dissimilarity space based on a second-order dis-
similarity measure. We further investigate if clustering results can be improved
by transforming a feature space into a dissimilarity space, namely the Euclidean
space and the Dinc space.

We applied, to the datasets described in appendix, four hierarchical clustering
algorithms: single-link (SL), average-link (AL), centroid-link (CeL) and median-
link (MeL). Moreover, we set the number of clusters in each clustering algorithm
as being equal to the true number of classes (see Table 4). The results presented
in this section are error rates, i.e. the percentage of misclassified samples, and
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Table 1. Measures to characterize the geometrical complexity of classification problems
in the original feature space, and in both dissimilarity spaces considered in this paper,
Euclidean space and Dinc space. High values for F1 and F4 is better (thus the ↑
sign), while lower values for the remaining measures is better (↓ sign). The values
presented correspond to median (Med), minimum (Min), maximum (Max), first and
third quartiles (Q1 and Q3, respectively), over all datasets. The best space (on median)
according to each geometrical measure are boldfaced.

Feature Space

F1↑ F4↑ L2↓ N2↓ N3↓ N4↓ L3↓

Med 1.88 0.91 0.20 0.64 0.13 0.08 0.50

Min 0.06 0.00 0.00 0.18 0.02 0.00 0.00

Max 22.06 18.73 0.42 0.91 0.38 0.46 0.50

Q1 0.60 0.48 0.10 0.52 0.05 0.03 0.37

Q3 5.20 1.08 0.33 0.75 0.24 0.19 0.50

Euclidean Space

F1↑ F4↑ L2↓ N2↓ N3↓ N4↓ L3↓

Med 2.86 1.00 0.14 0.54 0.14 0.14 0.45

Min 0.04 0.96 0.03 0.11 0.03 0.00 0.00

Max 23.04 20.25 0.42 0.95 0.43 0.62 0.50

Q1 0.44 1.00 0.07 0.43 0.05 0.03 0.15

Q3 4.18 1.00 0.25 0.70 0.26 0.24 0.50

Dinc Space

F1↑ F4↑ L2↓ N2↓ N3↓ N4↓ L3↓

Med 2.76 1.00 0.14 0.56 0.15 0.14 0.40

Min 0.03 0.96 0.03 0.11 0.02 0.00 0.01

Max 27.84 19.31 0.42 0.96 0.45 0.63 0.50

Q1 0.45 1.00 0.07 0.43 0.06 0.03 0.11

Q3 4.35 1.00 0.23 0.71 0.26 0.23 0.50

number of datasets with better error rates (see Table 2). Also, a statistical sig-
nificance difference between each space, in each clustering algorithm considered,
is achieved by applying the Wilcoxon signed rank test over all datasets [15]. A
statistical significance difference is achieved for p-value < 0.05.

Figure 2 shows the error rates, for each clustering algorithm, comparing the
Feature space with the Euclidean space. Notice that if the points (which rep-
resents a dataset) in the plots are lying on the line y = x, this means that the
error rate are equal in both spaces. This situation happens for SL: almost all
points (datasets) have equal error in both spaces. Furthermore, all the remaining
clustering algorithms are better in the Euclidean space compared to the Feature
space, being the CeL the one with better error rates for the Euclidean space.
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Table 2. Number of datasets with better error rate, for single-link (SL), average-link
(AL), centroid-link (CeL), and median-link (MeL), when comparing pairs of spaces.
“=” means equal error rate in both spaces. Mean difference indicates that, when one
space wins, it is better on average x% than the other space. Last column presents
the p-value for the Wilcoxon signed rank test between two spaces, in each clustering
algorithm. A statistical significance difference is achieved when p-value < 0.05.

Feature Space vs Euclidean Space

Clustering Count Mean difference p-value

Method Feat = Eucl Feat Eucl

SL 8 17 11 1.3 % 5.5% 0.355

AL 10 4 22 3.3 % 12.5% 0.002

CeL 11 3 22 2.9 % 16.1% 0.001

MeL 9 2 25 2.6 % 11.8% 0.001

Feature Space vs Dinc Space

Clustering Count Mean difference p-value

Method Feat = Dinc Feat Dinc

SL 9 15 12 1.3 % 4.3% 0.408

AL 10 3 23 3.1 % 11.6% 0.002

CeL 9 3 24 2.7 % 15.9% <0.001

MeL 6 2 28 2.2 % 13.6% <0.001

Euclidean Space vs Dinc Space

Clustering Count Mean difference p-value

Method Eucl = Dinc Eucl Dinc

SL 3 29 4 4.3% 0.7 % 0.859

AL 12 14 10 2.6% 2.4 % 0.523

CeL 7 12 17 1.7 % 2.8% 0.029

MeL 8 10 18 4.0 % 7.1% 0.030

Table 2 presents the number of datasets that have lower error rates for each
clustering algorithm. We notice that the Euclidean space is always better than
the Feature space, and that difference is statistically significant (p-value < 0.01),
except when we apply SL (p-value = 0.355). For all the remaining clustering
algorithms, the Euclidean space is better in more than 20 datasets compared to
the Feature space. The most significant difference on average error rates occurs
for CeL, because when the Feature space is better than the Euclidean space, its
improvement is on average 2.9 %, and it is better on average 16.1 %, when the
Euclidean space is better than the Feature space.

Figure 3 shows the error rates of the comparison between the Feature space
and the Dinc space. Again, SL seems to have similar performance in both spaces,
except for three datasets. However, all the remaining clustering algorithms per-
form better in the Dinc space, with the highest improvement for the CeL. From
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Fig. 2. Error rates with different clustering algorithms when comparing the Feature
space with the Euclidean space. Dots represent datasets and the solid line, y = x,
indicate equal error rate between the two spaces. The dash line represents a linear
regression line forced to be parallel to y = x, to indicate which space is better (on
average) and how much is the improvement.

Table 2, the Dinc space wins the Feature space in more than 20 datasets out
of 36 when we apply any clustering algorithm, except SL, which it wins, by 12
out of 36 datasets against 9 datasets. When the Dinc space wins, it is better
over 11 % on average than the Feature space for any clustering algorithm, and
around 3 % when the Feature space wins, except for SL. The differences between
Dinc and Feature spaces are statistically significant for all clustering algorithms,
except for SL, since p-value < 0.01.

So far we compared both dissimilarity spaces with the Feature space. Now, we
present in Fig. 4 the comparison between both dissimilarity spaces. All clustering
algorithms have similar error rates in both dissimilarity spaces. However, MeL
has a tendency to have lower error rates in the Dinc space. MeL wins in 18 out
of 36 datasets, for the Dinc space, against 8 out of 36 datasets for the Euclidean
space, corresponding to an improvement of 7.1 % on average, when the Dinc
space is better and 4.0 % on average when the Euclidean space is better (see
Table 2). There are statistically significant differences between Euclidean and
Dinc spaces (p-value < 0.05) for CeL and MeL. For AL and SL, the differences
are not statistically significant, as can be seen from the higher number of datasets
with equal error rate between the two spaces.

Table 3 presents the correlations between the measures of geometrical com-
plexity mentioned in Sect. 3 and the error rates of each clustering algorithm. We
notice that there exists a negative correlation between F1 and the error rate
of each clustering algorithm, and that correlation is higher in the dissimilarity
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Fig. 3. Error rates with different clustering algorithms when comparing the Feature
space with the Dinc space. Dots represent datasets and the solid line, y = x, indicate
equal error rate between the two spaces. The dash line represents a linear regression
line forced to be parallel to y = x, to indicate which space is better (on average) and
how much is the improvement.

Fig. 4. Error rates with different clustering algorithms when comparing the Euclidean
space with the Dinc space. Dots represent datasets and the solid line, y = x, indicate
equal error rate between the two spaces. The dash line represents a linear regression
line forced to be parallel to y = x, to indicate which space is better (on average) and
how much is the improvement.
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Table 3. Correlations between measures of geometrical complexity and error rates of
each clustering algorithm (single-link (SL), average-link (AL), centroid-link (CeL), and
median-link (MeL) for each space).

Feature Space

F1 F4 L2 N2 N3 N4 L3

SL −0.01 0.35 −0.46 0.16 −0.08 −0.06 0.14

AL −0.23 0.27 0.03 0.28 0.21 0.28 0.36

CeL −0.13 0.34 −0.26 0.29 0.01 0.02 0.25

MeL −0.01 0.40 −0.47 0.16 −0.06 −0.08 0.04

Euclidean Space

F1 F4 L2 N2 N3 N4 L3

SL −0.28 0.16 −0.15 0.23 0.03 0.07 0.45

AL −0.46 0.30 0.13 0.50 0.48 0.50 0.37

CeL −0.37 0.25 0.00 0.42 0.33 0.35 0.43

MeL −0.35 0.22 −0.10 0.36 0.22 0.24 0.41

Dinc Space

F1 F4 L2 N2 N3 N4 L3

SL −0.24 0.19 −0.11 0.23 0.00 0.08 0.50

AL −0.47 0.28 0.20 0.52 0.46 0.50 0.44

CeL −0.39 0.27 0.08 0.44 0.33 0.40 0.43

MeL −0.37 0.27 −0.03 0.45 0.31 0.39 0.45

spaces, indicating that whenever F1 increases, the error rate decreases. In fact,
from Table 1, F1 is higher in both dissimilarity spaces than in the Feature space,
and looking at the plots of the error rates between the Feature space and one of
the dissimilarity spaces (Figs. 2 and 3), the dissimilarity spaces have lower error
rates, except for SL.

Figures 3 and 4 shows that, for CeL and MeL, the Dinc space is better than
the Feature space and the Euclidean space. The correlations between L3 and
the error rates may explain these results. The Feature and Euclidean spaces
have lower correlations, than the Dinc space and those correlations are positive
correlations. This means that if L3 decreases, then the error rate decreases, and
L3 has a lower value in the Dinc space compared to the other two spaces (see
Table 1). Moreover, N2 have higher and positive correlation in both dissimilarity
spaces compared to the Feature space, indicating that whenever N2 decreases,
the error rate also decreases. Analysing Figs. 2 and 3, we notice that AL, CeL
and MeL have better performances than the Feature space. Accordingly, CeL
and MeL have a better performance in both dissimilarity spaces, however the
Dinc space shows a slightly improvement compared to the Euclidean space.

Overall, if we do not consider SL, F1, N2, N3, N4 and L3 have a higher cor-
relation in the dissimilarity spaces than in the Feature space, and the Dinc space
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Table 4. Datasets used in the analysis of dissimilarity spaces. N is the number of
samples, p the dimension of the feature space and Nc the number of classes.

Dataset N p Nc Dataset N p Nc Dataset N p Nc

crabs 200 5 2 house-votes 232 16 2 ionosphere 351 33 2

iris 150 4 3 log-yeast 384 17 5 pima 768 8 2

std-yeast 384 17 5 wine 178 13 3 80x 45 8 3

biomed 194 5 2 breast 683 9 2 chromo 1143 8 24

ecoli 272 7 3 glass 214 9 4 imox 192 8 4

kimia 216 4096 18 liver 345 6 2 mfeat-fac 2000 216 10

mfeat-fou 2000 76 10 mfeat-kar 2000 64 10 mfeat-pix 2000 240 10

mfeat-zer 2000 47 10 nist16 2000 256 10 sonar 208 60 2

soybean1 266 35 15 soybean2 136 35 4 diff300 300 20 3

same300 297 20 3 sim300 291 10 3 austra 690 15 2

derm 366 11 6 german 1000 24 2 heart 270 9 2

uci-image 2310 18 7 vehicle 846 16 4 wdbc 569 14 2

has higher correlation values than the Euclidean space. This suggests that, the
dissimilarity spaces, especially the Dinc space, have better discriminant features
and the classes are easier to separate using clustering techniques. Although we
increased the dimensionality of the dissimilarity spaces, the assigning of samples
to each class by a clustering algorithm seems much effective.

5 Conclusions

In this paper we proposed a novel dissimilarity representation for data based on
a second-order dissimilarity measure. That measure is computed over triplets of
nearest neighbors and has some advantages over pairwise dissimilarities, namely
it can identify sparse classes. Each element of the Dinc space is a dissimilar-
ity increment between an object and a set of representative objects, which are
defined as an edge between an object and its nearest neighbor.

In this paper we considered that the set of representative objects corresponds
to the entire dataset, which increased the dimensionality of the each dissimilar-
ity space. Although, the dimensionality of the Dinc space was higher than the
Feature space, we have shown that features in the Dinc space are more discrimi-
native and the overlap of the classes has decreased, which facilitate the learning
task to separate the objects from different classes. In future work, we will study
different techniques for prototype selection, in order to obtain a smaller set of
representative objects, leading to lower dimensionality of dissimilarity spaces.

Unsupervised learning techniques were also applied, namely hierarchical clus-
tering algorithms, to the Dinc space, the original Feature space and to a dissim-
ilarity space, built using the Euclidean distance. Overall, the Dinc space had
lower error rates compared to the other two spaces, especially for centroid-link
and median-link.
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Appendix: Datasets

A total of 36 benchmark datasets from two repositories are used for the exper-
imental evaluation of methods. The majority of the datasets are from the
UCI Machine Learning Repository1, and only a few datasets are from the 20-
Newsgroups database2. A summary of the datasets in terms of number of sam-
ples, dimension of the feature space and number of classes is presented in Table 4.
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