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Preface

This volume of Springer’s well-known Lecture Notes in Computer Science series
presents the papers from the Third International Workshop on Similarity-Based Pattern
Analysis and Recognition (SIMBAD), held in Copenhagen, Denmark, from October
12–14, 2015. The aim of this series of workshops, of which the previous two editions
were held in Venice and York in 2011 and 2013, respectively, is to consolidate research
efforts in the area of similarity-based and dissimilarity-based machine learning, pattern
recognition, and statistical learning. The workshop provides an informal discussion
forum for researchers and practitioners interested in this important yet diverse subject.
The idea of running these workshops originated from the EU FP7 Project SIMBAD
(http://simbadfp7.eu), which was devoted to this theme in full.

The call for papers resulted in 23 papers being accepted for this workshop. Fifteen
of these contributions are full-length papers and report on original and worked-out
research. The remaining eight works are extended abstracts whose length is limited to
two pages only. These contributions present abstracts of previously-accepted work,
preliminary results, open problems, topics for discussion, appeals for novel research
directions, or any other essay that suits the aim of SIMBAD and underlines the
workshop’s character. The 23 papers cover a wide range of problems, techniques,
applications, and perspectives: from supervised to unsupervised learning, from gen-
erative to discriminative models, and from theoretical issues to empirical validations. In
addition to talks and posters based on the peer-reviewed papers, the workshop was
graced by invited keynote talks by Barbara Hammer (Bielefeld University, Germany),
Nina Balcan (Carnegie Mellon University, USA), and Morten Mørup (Technical
University of Denmark, Denmark).

We would like to take this opportunity to express our sincere gratitude to all those
who helped to make this workshop a success. First of all, thanks go to the members
of the Program Committee. A special thanks goes to Eyasu Zemene Mequanint for
maintaining the web site. We would like to thank the Department of Environmental
Science, Informatics, and Statistics of Ca’ Foscari University of Venice for providing
financial support. We also offer our appreciation to the editorial staff at Springer for
producing this book and supporting the event through publication in their LNCS series.
Finally, we thank all the invited speakers and enthusiastic participants, and of course
you as a reader of these proceedings.

July 2015 Aasa Feragen
Marcello Pelillo

Marco Loog

http://simbadfp7.eu
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A Novel Data Representation Based
on Dissimilarity Increments

Helena Aidos(B) and Ana Fred

Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa,
Lisbon, Portugal

{haidos,afred}@lx.it.pt

Abstract. Many pattern recognition techniques have been proposed,
typically relying on feature spaces. However, recent studies have shown
that different data representations, such as the dissimilarity space, can
help in the knowledge discovering process, by generating more informa-
tive spaces. Still, different measures can be applied, leading to different
data representations. This paper proposes the application of a second-
order dissimilarity measure, which uses triplets of nearest neighbors, to
generate a new dissimilarity space. In comparison with the traditional
Euclidean distance, this new representation is best suited for the identi-
fication of natural data sparsity. It leads to a space that better describes
the data, by reducing the overlap of the classes and by increasing the
discriminative power of features. As a result, the application of cluster-
ing algorithms over the proposed dissimilarity space results in reduced
error rates, when compared with either the original feature space or the
Euclidean dissimilarity space. These conclusions are supported on exper-
imental validation on benchmark datasets.

Keywords: Dissimilarity representation · Euclidean space · Dissimilar-
ity increments space · Clustering · Geometrical characterization

1 Introduction

The learning process encompasses developing computer methods to model cate-
gories/classes of objects or to assign objects to one of the different classes. In that
sense, a representation of the objects is required, which can be a vector, string of
symbols or even a graph. Afterwards, a decision rule may be constructed based
on that representation of objects, and the objective is to discriminate between
different classes achieving high accuracy values [1,3,8].

Typically, objects are represented by a set of features, which should character-
ize the objects and be relevant to discriminate among the classes; the Euclidean
vector spaces are the most popular representation of objects [3]. A problem with
the feature-based representation of objects is the difficulty to obtain a complete
description of objects, forcing to an overlap of the classes, leading to an inef-
ficient learning process. That difficulty in describing objects through a set of

c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 1–14, 2015.
DOI: 10.1007/978-3-319-24261-3 1



2 H. Aidos and A. Fred

features is due to high-dimensional data or sometimes it is necessary to describe
objects using continuous and categorical variables.

To overcome the limitations of feature-based representations, another repre-
sentations of data can be used. One possibility is the dissimilarity representation,
which is based on comparisons between pairs of objects [10]. This representation
solves the problem of class overlap that exists in feature representations, since
only identical objects have a dissimilarity of zero.

Also, a suitable dissimilarity measure can be used to compare pairs of objects,
and dissimilarity vectors for each object are constructed to obtain the dissim-
ilarity space. Measures that compare the entire objects may be considered or
measures can be derived from raw measurements, strings or graphs. Defining
features that can have a high discriminant power may be a difficult task for
some applications (e.g. shape recognition) than define a dissimilarity measure.

Dissimilarities have been used in pattern recognition, either explicitly or
implicitly, in many procedures, like in cluster analysis, which uses dissimilarities
instead of feature spaces [14]. In the last years, based on the work of Pekalska and
Duin [11], some classification methods for dissimilarity data have been proposed
[2,4,13]. This type of classifiers are useful to tackle problems in computer vision,
bioinformatics, information retrieval, natural language processing, among other
fields [5,9].

Moreover, the dissimilarity space can be constructed using a feature represen-
tation and some appropriate dissimilarity measure [4,12]. This measure may be
asymmetric and does not require to fulfill mathematical properties for metrics.
Over the dissimilarity space, any classifier or clustering procedure that works in
vector spaces can be applied.

The purpose of this paper is to present a novel dissimilarity representation of
data, the dissimilarity increments space, based on a second-order dissimilarity
measure, consisting on triplets of nearest neighbors [6]. This dissimilarity space
is built by the increment in dissimilarity between an object and a set of represen-
tative objects, which are defined as an edge between a prototype and its nearest
neighbor. To fairly compare the proposed dissimilarity space, an Euclidean space
is built by relying on the Euclidean distance to measure the set of representa-
tive objects. Both dissimilarity spaces are used as feature-based dissimilarity
spaces, which consist in representing each object as a vector of dissimilarities,
and typical clustering algorithms are applied to those spaces.

To compare the spaces, we use two different approaches. We start by present-
ing an insightful characterization of the spaces by relying on a set of geometrical
measures. Then we apply a set of unsupervised learning methods in order to ana-
lyze the spaces behavior under clustering problems. Experimental results with
an extensive set of datasets show that the proposed second-order dissimilarity
space leads to a substantial improvement in accuracy when compared to the
original feature space and to the feature-based Euclidean space.

This paper is organized as follows: Sect. 2 explains how to build dissimilarity
spaces, and proposes a new dissimilarity space based on a second-order dis-
similarity measure – the dissimilarity increments space. Section 3 presents some
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measures to characterize each dissimilarity space and understand if a learning
problem becomes easier in these spaces. The proposed dissimilarity increments
space is evaluated in the context of unsupervised learning, in comparison with
other dissimilarity spaces, in Sect. 4. Conclusions and final remarks are drawn
in Sect. 5. The datasets used in the experimental evaluation of methods are
described in appendix.

2 Dissimilarity Representation

A dissimilarity representation consists of a matrix with the dissimilarities
between an object and a set of representative objects. Thus, the resulting dissim-
ilarity matrix is considered as a set of row vectors, where each vector represents
a direction from the dissimilarity space, whose dimension corresponds to the
cardinality of the set of representative objects.

Let X = {x1, . . . ,xn} represent a set of objects. In general, xi may not be
a vector, but an image or signal. However, in this paper and given the datasets
used in the experimental validation (see appendix), we assume that xi is a fea-
ture vector in R

p, xi = [xi1 . . . xip]. Also, let R = {e1, . . . , er} be the set of
representative or prototype objects, such that R ⊆ X.

In [11], a dissimilarity space is defined as a data-dependent mapping

D(·, R) : X → R
r, (1)

given a dissimilarity function. Therefore, each object xi from the set X is
described by a r-dimensional dissimilarity vector

D(xi, R) = [d(xi, e1) . . . d(xi, er)], (2)

where d(·, ·) is a dissimilarity measure. So, D(xi, R) is a row of the n × r dis-
similarity matrix D, obtaining the dissimilarity space. Now, we define the
dissimilarity space as a vector space Y by Y = D, where the i-th object is
represented by the dissimilarity vector of the Dij values.

For simplicity, we assume that R is the entire set X, meaning that all objects
of X are used as representatives. Therefore, in this paper, the dissimilarity space
is represented as a n × n dissimilarity matrix.

In this paper, we consider two dissimilarity spaces: the Euclidean space and
the Dinc space, detailed below.

Euclidean space. This space is obtained assuming that d(·, ·) in (2) is the
Euclidean distance,

d(xi, ej) =

(
p∑

k=1

(xik − ejk)2
)1/2

. (3)

Thus, each element, Dij , of the dissimilarity matrix D, is the Euclidean distance
between i-th and j-th objects.

Dinc space. This space is obtained using a second-order dissimilarity measure
between triplets of neighboring objects, and its explained in detail in Sect. 2.1.
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2.1 Dissimilarity Increments Space

Firstly, we need to define the concept of dissimilarity increments. Given xi,
(xi,xj ,xk) is a triplet of nearest neighbors, obtained as follows:

(xi,xj ,xk) − nearest neighbor triplet
xj : j = arg min

l
{d(xl,xi), l �= i}

xk : k = arg min
l

{d(xl,xj), l �= i, l �= j}.

The dissimilarity increments [6] between neighboring objects is defined as

dinc(xi,xj ,xk) = |d(xi,xj) − d(xj ,xk)| , (4)

where d(·, ·) is any dissimilarity measure between pairs of objects; in this paper,
we assume that d(·, ·) is the Euclidean distance.

This measure gives information about the structure of a dataset compared to
pairwise distances, i.e. the dissimilarity increments between neighboring objects
should not occur with abrupt changes, and between well separated classes will
have higher values. Moreover, this measure can identify easily objects in a sparse
class, while most of the distance measures used in the literature discard objects
that are far apart in a sparse class.

We propose to define the set of representative objects as edges between two
specific objects, i.e., a representative object ej is an edge between a prototype
mj (a sample of the dataset) and its nearest neighbor xmj

. So, d(ej) is the
weight of that edge, i.e. d(ej) = d(mj ,xmj

). Moreover, the distance between
any object xi and the representative object ej is defined as

d(xi, ej) = min{d(xi,mj), d(xi,xmj
)}. (5)

Furthermore, we propose a new representation of data based on the dis-
similarity increments measure, called dissimilarity increments space and we will
refer to that space as Dinc space. Similar to the Euclidean space, each object is
described by a n-dimensional dissimilarity vector (2). However, d(·, ·) is no longer
the Euclidean distance, but a dissimilarity increment between each object xi and
a representative object ej (see Fig. 1 for an example how to compute the ele-
ments in Dinc space). Thus, the (i, j)-th element of our dissimilarity space is
defined as

D(xi, ej) = |d(xi, ej) − d(ej)|. (6)

From (6), it is easy to see that the dissimilarity matrix D is non-negative.
Moreover, D is asymmetric, and to see that consider a set of patterns distributed
as shown in Fig. 1. If a is a prototype, ea is an edge between a and its nearest
neighbor b, and will be the representative object. Now, the dissimilarity incre-
ment between c and the representative object, ea, is D(c, ea). On other hand,
when c is a prototype, the representative object, ec, is the edge between c and
its nearest neighbor d, and, thus, D(a, ec) is the dissimilarity increment between
a and the representative object. Therefore, D(c, ea) �= D(a, ec) (see Fig. 1).
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Fig. 1. Set of patterns to illustrate how to compute elements from the Dinc space D
and to demonstrate its asymmetry. If a is a prototype, ea is the representative object
constructed as an edge between a and its nearest neighbor b. Then, D(c, ea) is the
dissimilarity increment between c and the representative object, ea, computed from
(6). D(c, ea) �= D(a, ec) since different triplets of patterns are used to compute D.

3 Characterization of the Dissimilarity Spaces

So far, we constructed feature-based dissimilarity spaces to represent a set of
objects. Both dissimilarity spaces, Euclidean and Dinc spaces, are constructed
on top of feature spaces. In the following we will characterize these spaces based
on some measures to characterize the geometrical complexity of classification
problems proposed by Ho et al. [7]. Those measures are based on the analysis of
different classifiers to understand the separability of classes or even the geometry,
topology and density of manifolds. Thus, we used some of those measures to
understand if a learning problem in the dissimilarity space becomes easier than
in the feature space. According to [7], those measures can be divided into three
categories:

1. Measures of overlaps in feature values from different classes focus on
how good the features are in separating the classes. These type of measures
examine the range and spread of values in the dataset within each class,
and check for overlaps among different classes. Here, we only consider two
measures: the maximum Fisher’s discriminant ratio (F1) and the collective
feature efficiency (F4). F1 computes the maximum discriminant power of
each feature, and high values of this measure indicates that, at least, one of
the features turns the problem of separating the samples of different classes
easier. On the other hand, F4 computes the discriminative power of all the
features.

2. Measures of separability of classes evaluate, based on the existence and
shape of class boundary, to what extent two classes are separable. Here, we
consider three measures: the training error of a linear classifier (L2), the ratio
average intra/inter class nearest neighbor distance (N2) and the leave-one-
out error rate of the one-nearest neighbor classifier (N3). L2 shows if the
classes of the training data are linearly separable. N2 compares the within
class distances with distances to the nearest neighbors of other classes, and
higher values indicate that samples of the same class are disperse. N3 verifies
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how close the objects of different classes are, and lower values means that
there is a high gap in the class boundary.

3. Measures of geometry, topology, and density of manifolds charac-
terize classes, assuming that each class is composed by a single or multiple
manifolds, and their shape and position determines how well two classes are
separated. Here, we considered two measures: the nonlinearity of a linear clas-
sifier (L3) and the nonlinearity of the one-nearest neighbor classifier (N4).
L3 measures, for linearly separable problems, the alignment of the decision
surface of linear classifiers with the class boundary, and N4 measures the
alignment of the nearest neighbor boundary with the shape of the gap or
overlap between the convex hulls of the classes.

Some of the measures are designed for two-class problems, namely L2 and
L3. In this paper, we consider the average value between one versus all classes
problems for datasets with more than two classes. Table 1 presents the results of
the measures presented above, over the datasets described in the appendix, in
the Feature space and in both dissimilarity spaces.

From Table 1 we notice that both dissimilarity spaces have high discriminant
power of features in separating the classes, corresponding to higher values of F1
and F4 than the Feature space. Moreover, F4 in the Feature space has a minimum
of zero and that value increased in both dissimilarity spaces, which means that
the collective feature efficiency increased. Thus, the datasets are better described
in the dissimilarity spaces, even with the increase of dimensionality on those
spaces, compared to the Feature space.

In both dissimilarity spaces, there is a decrease in L2 and N2 values, indi-
cating that there exists less overlap between the classes, which may facilitate
the learner to separate the samples of different classes. However, in both dissim-
ilarity spaces, the measure for geometry and topology of the manifold N4 has
higher values, indicating that, even if the classes are more separable they are
nonlinearly separable by the one-nearest neighbor classifier.

4 Unsupervised Learning in Dissimilarity Spaces

Typically, dissimilarity measures have been used in cluster analysis or in clas-
sification, as a tool to decide which objects are closer to each other. They also
can be used to describe objects, and, consequently, build dissimilarity spaces. In
this paper we proposed a new dissimilarity space based on a second-order dis-
similarity measure. We further investigate if clustering results can be improved
by transforming a feature space into a dissimilarity space, namely the Euclidean
space and the Dinc space.

We applied, to the datasets described in appendix, four hierarchical clustering
algorithms: single-link (SL), average-link (AL), centroid-link (CeL) and median-
link (MeL). Moreover, we set the number of clusters in each clustering algorithm
as being equal to the true number of classes (see Table 4). The results presented
in this section are error rates, i.e. the percentage of misclassified samples, and
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Table 1. Measures to characterize the geometrical complexity of classification problems
in the original feature space, and in both dissimilarity spaces considered in this paper,
Euclidean space and Dinc space. High values for F1 and F4 is better (thus the ↑
sign), while lower values for the remaining measures is better (↓ sign). The values
presented correspond to median (Med), minimum (Min), maximum (Max), first and
third quartiles (Q1 and Q3, respectively), over all datasets. The best space (on median)
according to each geometrical measure are boldfaced.

Feature Space

F1↑ F4↑ L2↓ N2↓ N3↓ N4↓ L3↓

Med 1.88 0.91 0.20 0.64 0.13 0.08 0.50

Min 0.06 0.00 0.00 0.18 0.02 0.00 0.00

Max 22.06 18.73 0.42 0.91 0.38 0.46 0.50

Q1 0.60 0.48 0.10 0.52 0.05 0.03 0.37

Q3 5.20 1.08 0.33 0.75 0.24 0.19 0.50

Euclidean Space

F1↑ F4↑ L2↓ N2↓ N3↓ N4↓ L3↓

Med 2.86 1.00 0.14 0.54 0.14 0.14 0.45

Min 0.04 0.96 0.03 0.11 0.03 0.00 0.00

Max 23.04 20.25 0.42 0.95 0.43 0.62 0.50

Q1 0.44 1.00 0.07 0.43 0.05 0.03 0.15

Q3 4.18 1.00 0.25 0.70 0.26 0.24 0.50

Dinc Space

F1↑ F4↑ L2↓ N2↓ N3↓ N4↓ L3↓

Med 2.76 1.00 0.14 0.56 0.15 0.14 0.40

Min 0.03 0.96 0.03 0.11 0.02 0.00 0.01

Max 27.84 19.31 0.42 0.96 0.45 0.63 0.50

Q1 0.45 1.00 0.07 0.43 0.06 0.03 0.11

Q3 4.35 1.00 0.23 0.71 0.26 0.23 0.50

number of datasets with better error rates (see Table 2). Also, a statistical sig-
nificance difference between each space, in each clustering algorithm considered,
is achieved by applying the Wilcoxon signed rank test over all datasets [15]. A
statistical significance difference is achieved for p-value < 0.05.

Figure 2 shows the error rates, for each clustering algorithm, comparing the
Feature space with the Euclidean space. Notice that if the points (which rep-
resents a dataset) in the plots are lying on the line y = x, this means that the
error rate are equal in both spaces. This situation happens for SL: almost all
points (datasets) have equal error in both spaces. Furthermore, all the remaining
clustering algorithms are better in the Euclidean space compared to the Feature
space, being the CeL the one with better error rates for the Euclidean space.
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Table 2. Number of datasets with better error rate, for single-link (SL), average-link
(AL), centroid-link (CeL), and median-link (MeL), when comparing pairs of spaces.
“=” means equal error rate in both spaces. Mean difference indicates that, when one
space wins, it is better on average x% than the other space. Last column presents
the p-value for the Wilcoxon signed rank test between two spaces, in each clustering
algorithm. A statistical significance difference is achieved when p-value < 0.05.

Feature Space vs Euclidean Space

Clustering Count Mean difference p-value

Method Feat = Eucl Feat Eucl

SL 8 17 11 1.3 % 5.5% 0.355

AL 10 4 22 3.3 % 12.5% 0.002

CeL 11 3 22 2.9 % 16.1% 0.001

MeL 9 2 25 2.6 % 11.8% 0.001

Feature Space vs Dinc Space

Clustering Count Mean difference p-value

Method Feat = Dinc Feat Dinc

SL 9 15 12 1.3 % 4.3% 0.408

AL 10 3 23 3.1 % 11.6% 0.002

CeL 9 3 24 2.7 % 15.9% <0.001

MeL 6 2 28 2.2 % 13.6% <0.001

Euclidean Space vs Dinc Space

Clustering Count Mean difference p-value

Method Eucl = Dinc Eucl Dinc

SL 3 29 4 4.3% 0.7 % 0.859

AL 12 14 10 2.6% 2.4 % 0.523

CeL 7 12 17 1.7 % 2.8% 0.029

MeL 8 10 18 4.0 % 7.1% 0.030

Table 2 presents the number of datasets that have lower error rates for each
clustering algorithm. We notice that the Euclidean space is always better than
the Feature space, and that difference is statistically significant (p-value < 0.01),
except when we apply SL (p-value = 0.355). For all the remaining clustering
algorithms, the Euclidean space is better in more than 20 datasets compared to
the Feature space. The most significant difference on average error rates occurs
for CeL, because when the Feature space is better than the Euclidean space, its
improvement is on average 2.9 %, and it is better on average 16.1 %, when the
Euclidean space is better than the Feature space.

Figure 3 shows the error rates of the comparison between the Feature space
and the Dinc space. Again, SL seems to have similar performance in both spaces,
except for three datasets. However, all the remaining clustering algorithms per-
form better in the Dinc space, with the highest improvement for the CeL. From
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Fig. 2. Error rates with different clustering algorithms when comparing the Feature
space with the Euclidean space. Dots represent datasets and the solid line, y = x,
indicate equal error rate between the two spaces. The dash line represents a linear
regression line forced to be parallel to y = x, to indicate which space is better (on
average) and how much is the improvement.

Table 2, the Dinc space wins the Feature space in more than 20 datasets out
of 36 when we apply any clustering algorithm, except SL, which it wins, by 12
out of 36 datasets against 9 datasets. When the Dinc space wins, it is better
over 11 % on average than the Feature space for any clustering algorithm, and
around 3 % when the Feature space wins, except for SL. The differences between
Dinc and Feature spaces are statistically significant for all clustering algorithms,
except for SL, since p-value < 0.01.

So far we compared both dissimilarity spaces with the Feature space. Now, we
present in Fig. 4 the comparison between both dissimilarity spaces. All clustering
algorithms have similar error rates in both dissimilarity spaces. However, MeL
has a tendency to have lower error rates in the Dinc space. MeL wins in 18 out
of 36 datasets, for the Dinc space, against 8 out of 36 datasets for the Euclidean
space, corresponding to an improvement of 7.1 % on average, when the Dinc
space is better and 4.0 % on average when the Euclidean space is better (see
Table 2). There are statistically significant differences between Euclidean and
Dinc spaces (p-value < 0.05) for CeL and MeL. For AL and SL, the differences
are not statistically significant, as can be seen from the higher number of datasets
with equal error rate between the two spaces.

Table 3 presents the correlations between the measures of geometrical com-
plexity mentioned in Sect. 3 and the error rates of each clustering algorithm. We
notice that there exists a negative correlation between F1 and the error rate
of each clustering algorithm, and that correlation is higher in the dissimilarity
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Fig. 3. Error rates with different clustering algorithms when comparing the Feature
space with the Dinc space. Dots represent datasets and the solid line, y = x, indicate
equal error rate between the two spaces. The dash line represents a linear regression
line forced to be parallel to y = x, to indicate which space is better (on average) and
how much is the improvement.

Fig. 4. Error rates with different clustering algorithms when comparing the Euclidean
space with the Dinc space. Dots represent datasets and the solid line, y = x, indicate
equal error rate between the two spaces. The dash line represents a linear regression
line forced to be parallel to y = x, to indicate which space is better (on average) and
how much is the improvement.
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Table 3. Correlations between measures of geometrical complexity and error rates of
each clustering algorithm (single-link (SL), average-link (AL), centroid-link (CeL), and
median-link (MeL) for each space).

Feature Space

F1 F4 L2 N2 N3 N4 L3

SL −0.01 0.35 −0.46 0.16 −0.08 −0.06 0.14

AL −0.23 0.27 0.03 0.28 0.21 0.28 0.36

CeL −0.13 0.34 −0.26 0.29 0.01 0.02 0.25

MeL −0.01 0.40 −0.47 0.16 −0.06 −0.08 0.04

Euclidean Space

F1 F4 L2 N2 N3 N4 L3

SL −0.28 0.16 −0.15 0.23 0.03 0.07 0.45

AL −0.46 0.30 0.13 0.50 0.48 0.50 0.37

CeL −0.37 0.25 0.00 0.42 0.33 0.35 0.43

MeL −0.35 0.22 −0.10 0.36 0.22 0.24 0.41

Dinc Space

F1 F4 L2 N2 N3 N4 L3

SL −0.24 0.19 −0.11 0.23 0.00 0.08 0.50

AL −0.47 0.28 0.20 0.52 0.46 0.50 0.44

CeL −0.39 0.27 0.08 0.44 0.33 0.40 0.43

MeL −0.37 0.27 −0.03 0.45 0.31 0.39 0.45

spaces, indicating that whenever F1 increases, the error rate decreases. In fact,
from Table 1, F1 is higher in both dissimilarity spaces than in the Feature space,
and looking at the plots of the error rates between the Feature space and one of
the dissimilarity spaces (Figs. 2 and 3), the dissimilarity spaces have lower error
rates, except for SL.

Figures 3 and 4 shows that, for CeL and MeL, the Dinc space is better than
the Feature space and the Euclidean space. The correlations between L3 and
the error rates may explain these results. The Feature and Euclidean spaces
have lower correlations, than the Dinc space and those correlations are positive
correlations. This means that if L3 decreases, then the error rate decreases, and
L3 has a lower value in the Dinc space compared to the other two spaces (see
Table 1). Moreover, N2 have higher and positive correlation in both dissimilarity
spaces compared to the Feature space, indicating that whenever N2 decreases,
the error rate also decreases. Analysing Figs. 2 and 3, we notice that AL, CeL
and MeL have better performances than the Feature space. Accordingly, CeL
and MeL have a better performance in both dissimilarity spaces, however the
Dinc space shows a slightly improvement compared to the Euclidean space.

Overall, if we do not consider SL, F1, N2, N3, N4 and L3 have a higher cor-
relation in the dissimilarity spaces than in the Feature space, and the Dinc space
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Table 4. Datasets used in the analysis of dissimilarity spaces. N is the number of
samples, p the dimension of the feature space and Nc the number of classes.

Dataset N p Nc Dataset N p Nc Dataset N p Nc

crabs 200 5 2 house-votes 232 16 2 ionosphere 351 33 2

iris 150 4 3 log-yeast 384 17 5 pima 768 8 2

std-yeast 384 17 5 wine 178 13 3 80x 45 8 3

biomed 194 5 2 breast 683 9 2 chromo 1143 8 24

ecoli 272 7 3 glass 214 9 4 imox 192 8 4

kimia 216 4096 18 liver 345 6 2 mfeat-fac 2000 216 10

mfeat-fou 2000 76 10 mfeat-kar 2000 64 10 mfeat-pix 2000 240 10

mfeat-zer 2000 47 10 nist16 2000 256 10 sonar 208 60 2

soybean1 266 35 15 soybean2 136 35 4 diff300 300 20 3

same300 297 20 3 sim300 291 10 3 austra 690 15 2

derm 366 11 6 german 1000 24 2 heart 270 9 2

uci-image 2310 18 7 vehicle 846 16 4 wdbc 569 14 2

has higher correlation values than the Euclidean space. This suggests that, the
dissimilarity spaces, especially the Dinc space, have better discriminant features
and the classes are easier to separate using clustering techniques. Although we
increased the dimensionality of the dissimilarity spaces, the assigning of samples
to each class by a clustering algorithm seems much effective.

5 Conclusions

In this paper we proposed a novel dissimilarity representation for data based on
a second-order dissimilarity measure. That measure is computed over triplets of
nearest neighbors and has some advantages over pairwise dissimilarities, namely
it can identify sparse classes. Each element of the Dinc space is a dissimilar-
ity increment between an object and a set of representative objects, which are
defined as an edge between an object and its nearest neighbor.

In this paper we considered that the set of representative objects corresponds
to the entire dataset, which increased the dimensionality of the each dissimilar-
ity space. Although, the dimensionality of the Dinc space was higher than the
Feature space, we have shown that features in the Dinc space are more discrimi-
native and the overlap of the classes has decreased, which facilitate the learning
task to separate the objects from different classes. In future work, we will study
different techniques for prototype selection, in order to obtain a smaller set of
representative objects, leading to lower dimensionality of dissimilarity spaces.

Unsupervised learning techniques were also applied, namely hierarchical clus-
tering algorithms, to the Dinc space, the original Feature space and to a dissim-
ilarity space, built using the Euclidean distance. Overall, the Dinc space had
lower error rates compared to the other two spaces, especially for centroid-link
and median-link.
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Appendix: Datasets

A total of 36 benchmark datasets from two repositories are used for the exper-
imental evaluation of methods. The majority of the datasets are from the
UCI Machine Learning Repository1, and only a few datasets are from the 20-
Newsgroups database2. A summary of the datasets in terms of number of sam-
ples, dimension of the feature space and number of classes is presented in Table 4.
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Abstract. In many pattern recognition problems, a single feature
vector is not sufficient to describe an object. In multiple instance lear-
ning (MIL), objects are represented by sets (bags) of feature vectors
(instances). This requires an adaptation of standard supervised classifiers
in order to train and evaluate on these bags of instances. Like for super-
vised classification, several benchmark datasets and numerous classifiers
are available for MIL. When performing a comparison of different MIL
classifiers, it is important to understand the differences of the datasets,
used in the comparison. Seemingly different (based on factors such as
dimensionality) datasets may elicit very similar behaviour in classifiers,
and vice versa. This has implications for what kind of conclusions may
be drawn from the comparison results. We aim to give an overview of the
variability of available benchmark datasets and some popular MIL clas-
sifiers. We use a dataset dissimilarity measure, based on the differences
between the ROC-curves obtained by different classifiers, and embed this
dataset dissimilarity matrix into a low-dimensional space. Our results
show that conceptually similar datasets can behave very differently. We
therefore recommend examining such dataset characteristics when mak-
ing comparisons between existing and new MIL classifiers. Data and
other resources are available at http://www.miproblems.org.

1 Introduction

Images portraying several objects, text documents covering a range of topics or
molecules with conformations with different chemical properties are all examples
of data, where a single example (image, document, molecule) cannot always be
faithfully represented by a single feature vector. Representing each part (object
in an image, paragraph in a text document, molecule conformation) of an exam-
ple by a single feature vector preserves more information about the example, but
requires a finer level of annotation, which is not always available. To deal with
such problems, supervised learning has been extended to multiple instance learn-
ing (MIL): a learning scenario where examples are sets (bags) of feature vectors
(instances), but where labels are available only for bags. Originally, the goal in
MIL was to classify previously unseen bags, however MIL classifiers which are
able to classify instances have also received a lot of attention because of their
ability to be trained with only coarse annotations.
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 15–27, 2015.
DOI: 10.1007/978-3-319-24261-3 2
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Since the introduction [8] of MIL in 1997, many classifiers have been pro-
posed in the literature. A typical strategy in comparisons is to evaluate on the
early benchmark problems (Musk [8], Fox, Tiger and Elephant [2]) as well as a
number of larger sources, such as MIL adaptations of Corel [5] image datasets,
or Newsgroups [27] text classification problems, which consist of 20 datasets
each. Usually one of the following strategies is used when choosing datasets for
a comparison: (i) targeting a particular application, such as image classification,
and choosing few sources with many datasets per source (ii) choosing diverse
datasets, for example by choosing many sources, with a few datasets per source,
and/or choosing datasets with different characteristics, such as dimensionality.

A potential pitfall in choosing datasets this way is that, while they may seem
diverse to a human observer, this may not be the case for a classifier, and vice
versa. For example, in a related study on characterizing standard datasets [9],
Duin et al. show that when changing dataset size and dimensionality for three
different problems, some modified datasets remain similar (in dataset space) to
their original versions. This is very important for the types of conclusions that
can be drawn from an empirical comparison on a “observer-diverse” or “observer-
similar” set of problems. For example, a classifier which performs well on a
“observer-diverse” set of problems, may in fact only be suitable for problems in
a small area of the dataset space. On the other hand, a classifier that is very good
in one area of the dataset space, but not performing well on “observer-similar”
problems might delay (or even prevent) the paper from being published.

In this paper we review a large number of problems that have been used as
benchmarks in the MIL literature. We propose to quantify the dataset similarity
based on the behavior of classifiers, namely by comparing the ROC curves, or the
area under the ROC curves, that different classifiers obtain on these datasets.
Our results show that conceptually similar datasets can behave quite differently.
When comparing MIL classifiers, we therefore recommend not choosing datasets
based on the application (images, text, and so forth) or on the dataset properties
(bag size, dimensionality), but on how differently existing classifiers perform on
these datasets.

2 Multiple Instance Learning

In multiple instance learning [8], a sample is a set or bag Bi of feature vectors
{x1

i , . . . ,x
ni
i }. Each bag is associated with a label yi ∈ {0, 1}, while the instances

are unlabeled. Often assumptions are made about the existence of instance labels
{zki }, and their relationships to yi. The standard assumption is “a bag is posi-
tive if and only if it has a positive instance”, but over the years, more relaxed
assumptions have been explored [10]. The positive instances are often called con-
cept instances, and an area in the feature space with positive instances is often
referred as “the concept”.

Originally, the goal in MIL is to train a classifier fB , which can label pre-
viously unseen bags. Globally, this can be achieved either by (1) training an
instance classifier fI , which relies on the assumptions about the instance and
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bag labels, and defining fB by combining outputs of fI , or (2) training fB
directly, by defining a supervised representation of the bags, or by distance-
and kernel-based methods. We call these approaches instance-level and bag-level
approaches, respectively. These approaches, which are also summarized in Fig. 1,
are as follows:

Supervised Classifier By assuming that all the instances in a bag share the
bag’s label, a supervised classifier can be trained. A test bag is classified by
combining the outputs of its instances. We call this approach simpleMIL.

MIL Classifier By using the standard MIL assumption of a concept (or a gen-
eralization thereof), an instance classifier can be trained, which is consistent
with the training bag labels. Examples used in this paper are Diverse Den-
sity [16], EM-DD [25], MILBoost [24] and miSVM [3]. In Diverse Density the
concept is explicitly modeled as an ellipsoidal region around one location.
This location, and the dimensions of the ellipsoid, are optimized by maxi-
mizing the data likelihood. The concept should have high “diverse density”:
high density of positive instances but low density of instances from negative
bags. EM-DD is an expectation-maximization algorithm which searches for
the concept. The expectation step selects the most positive instance from
each bag according to the current estimate for the concept, and the maxi-
mization step updates the concept by maximizing the diverse density. The
miSVM classifier extends the regular SVM by searching not only for the
optimal decision boundary, but also for the instance labels, which, given the
decision boundary, are consistent with training bag labels.

Bag Vector, Kernel or Dissimilarity This approach converts the bag into an
alternative representation before training a supervised, bag-level classifier.
Examples used in this paper are Citation-kNN [23], bag statistics [11], bag-
of-words, MILES [5] and MInD [6,22]. Citation-kNN defines a bag distance
based on the number of “referencing” nearest neighbors, and the number
of “citing” neighbors, and applies a nearest neighbor classifier. The other
approaches represent each bag by a single feature vector, and apply a super-
vised classifier. The representation is absolute (instance statistics per bag) or
relative, in terms of similarities to instance clusters (bag of words), instances
in the training set (MILES), and bags in the training set (MInD).

A complete overview of MIL classifiers can be found in [1].

3 Datasets

In this section we describe the datasets we use in the experiments. These include
6 artificial datasets and 34 real-life datasets from 13 groups. For the artificial
datasets, we use three datasets where only a number of concept instances are
informative, and three datasets where all instances are informative. For the real-
life datasets, different groups represent different sources of data. In some cases,
different datasets from the same source are obtained by splitting up a multi-class
problem into different one-against-all problems. For such groups, we use a small
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Fig. 1. A dataset with bags Bi of varying number of instances, and three general
approaches how to arrive at bag labels yi

number of datasets per group to make sure that the influence of each group is
not too large. The complete list of datasets is shown in Table 1.

3.1 Artificial Datasets

Gaussian For the positive bags, instances are drawn from the positive concept
Gaussian centered around (7,1), and a random set of instances is drawn from
a background Gaussian distribution around (0,0). For the negative bags, the
instances are drawn from the background distribution.

Maron Instances are randomly drawn from a uniform distribution in a unit
square. For positive bags, one instance is also drawn from the 5 interval in
the center of the square. This dataset is originally defined in [16].

Concept Instances are randomly drawn from 4 Gaussian distributions with
centers [+2,–2], [–2,+2] or [–2,–2]. For positive bags, at least one instance is
also drawn from [+2,+2].

Difficult Both positive and negative instances are drawn from elongated
Gaussian distributions, that differ in mean in only the first feature.

Rotated The instances are drawn from an elongated Gaussian distributions.
Instances from positive bags are drawn from a slightly rotated version of the
negative instance distribution.

Widened The instances are drawn from two Gaussian distributions. For positive
bags, this Gaussian is slightly wider than for negative bags.
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3.2 Real-Life Datasets

Biology

Musk are molecule activity prediction problems. Each bag is a molecule, each
instance is one of that molecule’s conformations. The molecule is active if at
least one of its conformations is active.

Mutagenesis is a molecule activity prediction problem [20]. Each bag is a mole-
cule and each instance is a pair of atoms in that molecule, described by their
chemical properties.

Protein is a problem of predicting whether a protein belongs to a family of
TrX proteins [21]. A bag is protein, and an instance is part of that protein’s
sequence, represented by its molecular and chemical properties.

Images

Corel are scene classification problems [5]. Each bag is an image, each instance is
a patch of that image. The images depict scenes of a beach, historical build-
ings, and so forth. Using the original 20 classes, 20 datasets are generated
using the one-against-all approach.

SIVAL are image classification problems [18]. The images show a particular
object (such as an apple) from different perspectives and in front of different
backgrounds. Datasets are generated by the one-against-all approach.

Fox, Tiger, Elephant are image classification problems [2]. The positive images
show the respective animal, the negative images are selected randomly from
other (more than just these three) classes.

Breast is an image classification problem [14]. A bag is a tissue microarray
image and an instance is a patch. The task is to predict whether the image
is malignant (positive) or benign (negative).

Messidor is an image classification problem [13]. A bag is an eye fundus image
and an instance is a patch. The task is to predict whether the image is of a
subject with diabetes (positive) or a healthy subject (negative).

Text

Web are text classification problems [26]. A bag is a webpage, and an instance
is a webpage that the original page links to. The goal is to predict whether
to recommend a particular webpage to a user based on the content of the
linked pages. The data in each of the datasets are the same, but the labels
are different for each user.

Newsgroups are text classification problems [27]. A bag is a collection of news-
group posts, each described by frequencies of different words. A positive bag
for a category contains 3 % of posts about that category, whereas negative
bags contain only posts about other topics.
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Table 1. List of MIL datasets and their properties: number of positive and negative
bags, number of features, number of instances and minimum/maximum number of
instances per bag.

Biocreative is a text classification problem [19]. A bag is a biomedical text and
an instance is paragraph in the document. The task is to predict whether
the text should be annotated as relevant for a particular protein.
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Other

Harddrive is a problem of predicting harddrive failures [17]. Each bag are time
series (instance = time point) of different measurements of hard drives, and
each bag is labeled with whether a failure has occured or not.

Birds are concerned with classifying whether a particular bird is present in a
sound recording [4]. A bag is a recording’s spectrogram, an instance is a
segment of that spectrogram. Datasets are generated by the one-against-all
approach.

4 Proposed Approach

To summarize and embed the results of all classifiers on all datasets, we define
a distance or similarity between datasets and results. The most simple represen-
tation uses basic metadata about a dataset. These features can be, for instance,
the dimensionality, the number of bags, the number of instances, and so forth.
When this metadata representation of a dataset i is M (i), the distance between
two datasets is easily defined as:

Dmeta(Xi,Xj) = ‖M (i) − M (j)‖. (1)

These metadata features are typically not very informative for how classifiers
perform on these datasets. For this, the outputs of the classifiers are needed. A
standard approach is to compare the predicted labels and count how often two
classifiers disagree in their prediction [9]. Unfortunately, for MIL problems this
approach is not very suitable, because MIL classification problems can have a
very large class imbalance (as is visible in the Corel and SIVAL datasets). The
alternative is to use the receiver-operating characteristic (ROC) curves instead.
An ROC curve shows the true positive rate as a function of the false positive
rate. Because the performances on the positive and negative class is decoupled
onto two independent axes, class imbalance does not influence the curve.

A drawback of the ROC curve is that it is not straightforward to compare
two different curves. We choose two different approaches to do this. The first
approach is to summarize each ROC curve by its area under the curve (AUC),
and compare the different AUCs. This may be suboptimal, because two ROC
curves can have an identical AUCs, while their shapes may still be very differ-
ent. This is illustrated in Fig. 2, where two curves with equal AUCs are shown,
ROC1 and ROC2 (solid line and dashed line, respectively). In order to differ-
entiate between these two curves, a second approach is used. Here the area of
the difference between the two ROC curves is used as the distance between the
curves. This is indicated by the gray area in Fig. 2.

Let the ROC curve of classifier k on dataset i be ROC(i)
k , and the AUC

performance of classifier k on dataset i be AUC(i)
k = A(ROC(i)

k ). In the first
approach, the distance between datasets Xi and Xj is defined as:

Dauc(Xi,Xj) = ‖AUC(i) − AUC(j)‖ (2)
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Fig. 2. Two ROC curves ROC1 and ROC2 with an equal area under the ROC curve
(A(ROC)), but where the two curves differ. The area of the gray region is the area
A(ROC−ROC).

where AUC(i) is the vector of AUC performances, i.e. all performances of all
classifiers on dataset Xi:

AUC(i) =

⎡
⎢⎢⎣

A(ROC(i)
1 ),

...
A(ROC(i)

L )

⎤
⎥⎥⎦ (3)

In the second approach the area under the difference between two ROC curves
is used:

Droc(Xi,Xj) =
√∑

k

A(ROC(i)
k − ROC(j)

k )2 (4)

In the above, we have chosen the Euclidean norm to ensure that differences
in the embeddings are caused by the choice of representation of the data, rather
than by differences in the (non-)Euclideanness of the distances.

Embedding and Out-of-Sample Extension. Given the distances (1), (2)
or (4), we embed the datasets using multi-dimensional scaling (MDS) [7]. MDS
places a 2D vector for each dataset, such that the (Euclidean) distances in the
2D embedding match the given distances as good as possible. To compare a
previously unseen dataset Z to the datasets in the embedding, the procedure is
as follows. First all classifiers are trained on Z and the resulting ROC curves of
the test sets are determined. Then the distances Dauc or Droc are computed, and
finally the 2D location of the Z is optimized to reproduce the original distances
as well as possible.

Other algorithms could be considered for embedding as well. We have briefly
experimented with t-SNE [15], which had a tendency to position the samples on
a uniform grid, failing to reveal structure inside the data. In our experience, this
happens when only a few samples need to be embedded. Furthermore, the out-of-
sample extension is not as straightforward as for classical scaling approaches [12].
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5 Experiments

In the experiments, we aim to demonstrate the embeddings for distances Dmeta,
Dauc and Droc for the datasets described in Sect. 3. For Dmeta, we use 6 features
which are displayed in Table 1 and normalize these to zero mean and unit vari-
ance. For Dauc and Droc, we use a set of 22 classifiers: simpleMIL, diverse density,
EM-DD, MILBoost, Citation k-NN× 2, miSVM × 2, MILES× 2, MIL kernel × 3,
bag statistics × 3, bag of words × 3, bag dissimilarity × 3. The base classifier for
simpleMIL, bag statistics, bag of words and bag dissimilarity approaches is the
logistic classifier. The different versions per classifier type correspond to differ-
ent classifier parameters for which we have observed different behaviors in earlier
work [6,22]. These performances of these classifiers are available through http://
homepage.tudelft.nl/n9d04/milweb/.

Clearly, the embeddings of Dauc and Droc depend on the classifiers which are
evaluated. Therefore, we first verify that we are using a diverse set of classifiers.
We first create a 22-dimensional dataset where each feature contains all pairwise
distances based a single classifier. We then compute the correlations between the
features of this dataset. We also perform principal component analysis on this
data, and compute the cumulative fraction of variance explained by the principal
components. The results are shown in Fig. 3. The slope of the cumulative fraction
of variance suggests that the classifiers are diverse, i.e., if there were two groups
of highly correlated classifiers, the slope would be much steeper.

Fig. 3. Left: Correlations (white = 1, black = 0) between distances (Droc) given by
each of the 22 classifiers. Right: Cumulative fraction of variance explained in the Droc

distances between all datasets of 22 MIL classifiers.

We now compare the embeddings given by the three distances. Dauc and
Droc have very similar embeddings, so we show only Droc. This means that the
situation sketched in Fig. 2 does not occur very often, i.e. classifiers with similar
AUCs also have similar ROC curves.

http://homepage.tudelft.nl/n9d04/milweb/
http://homepage.tudelft.nl/n9d04/milweb/
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Fig. 4. Left: MDS embedding of the Euclidean distances between the meta-
representations of the datasets. Right: MDS embedding of Droc based on differences of
ROC curves.

When comparing Dmeta and Droc the differences are very large. With Dmeta

some datasets from the same source have exactly the same representation and
are on top of each other in the embedding, while the classifiers behave differently
on these datasets. Another big difference is in the artificial datasets: these are
relatively clustered together in Dmeta, but display drastically different behaviors
with Droc.

We now zoom in more on the Droc embedding. In the Web datasets, the
most similar behavior within a dataset group can be observed. For most other
dataset groups, we see different behavior of the datasets inside a group. In some
situations, such as Birds data, the inside-group variations are smaller than, for
example, Corel or SIVAL. This suggests that choosing a different class as the
positive class (as is done in the Corel and SIVAL datasets) can change the
character of a MIL dataset quite a lot.

A surprising observation is that the artificial datasets are outlier datasets,
although they are supposed to be simpler versions of different situations (only
one instance is informative, or all instances are informative) encountered in MIL.
The differences of the artificial and real data suggest that the real-life datasets
may contain a mixture of a concept region (or several concept regions), as well
as different background distributions (i.e. negative instances in positive bags are
different from negative instances in negative bags). The concept-like artificial
datasets are generated such that these background instances are not informative.
But in real-life cases, negative instances in positive bags could still be correlated
with the bag label. For example, if foxes are photographed in forests more often
than other animals, negative instances in a positive bag, i.e. patches of forest in
an image of a fox, would still help in classifying the bag as positive.

Another interesting observation is that the datasets which have not been
used as benchmarks very often, such as Harddrive, Breast and Biocreative are
all quite different from each other. They are also quite different from the more
frequently used datasets, such as Musk or Corel. Including these newer datasets
in comparisons would therefore be helpful to get a more complete picture of the
differences between classifiers.
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Fig. 5. Left: the average performance of a dataset, averaged over all MIL classifiers and
all crossvalidation folds. Right: the performance of only a concept-based MIL classifier,
the EMDD. Low performance is indicated in blue, high performance is indicated in
yellow or red (Color figure online).

An attempt can be made to interpret the main variations in the MDS embed-
ding of Fig. 4. It appears that the main direction is, not surprisingly, the average
performance that the classifiers can achieve on the datasets. In Fig. 5 again the
datasets are shown, embedded by MDS. In the left subplot the datasets are col-
ored by the average performance of all classifiers. The scatter plot suggests that
the “easier” datasets are in the bottom left. In the right subplot only the perfor-
mance of the EM-DD classifier is shown. Here it can be observed that datasets on
the left tend to have higher performances. It appears that these datasets have
a concept present, that is in particular suitable for EM-DD, but also Diverse
Density or MILBoost classifiers.

6 Conclusions

We proposed to characterize multiple instance learning datasets by quantifying
their differences by the differences of ROC curves that different classifiers obtain
on these datasets. We have shown that datasets which have similar properties
such as the number of bags or instances, can have very different characteristics
in terms of classifier behavior. Datasets from the same source, such as datasets
derived from a multi-class problem, do not necessarily display similar charac-
teristics. Finally, some datasets which are have not been used in comparisons
of MIL classifiers often, behave quite differently from the more frequently used
benchmarks. We believe that the proposed approach is useful when deciding
which MIL datasets to use in a comparison of classifiers, and in interpreting
results obtained by a novel MIL classifier.

A possible extension to the current work is to characterize the datasets by
the ranks of the classifiers, rather than the actual performances. Perhaps in
such a comparison a more apparent trend between datasets with a concept,
multiple concepts, and so forth, would be seen. Another interesting direction of
investigation is creating datasets – artificially, or by subsampling the real-life
datasets – which will fill in the gaps in the dataset space we have investigated.
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Abstract. In this paper we propose a learning method properly
designed for histogram comparison. We based our approach on the so
called diffusion distance which has been introduced to improve the
robustness against the quantization effect and the limitations of the stan-
dard bin-to-bin distance computation. We revised the diffusion distance
definition in order to cast the histogram matching as a distance met-
ric learning problem. In particular, we exploit the Large Margin Nearest
Neighbor (LMNN) classification procedure to introduce a supervised ver-
sion of the standard nearest neighbor (NN) classification paradigm.

We evaluate our method on several application domains namely, brain
classification, texture classification, and image classification. In all the
experiments our approach shown promising results in comparison with
other similar methods.

1 Introduction

Histogram-based representations are very important in computer vision and pat-
tern recognition to encode complex data, like texture or shapes, in a compact
and effective form. The choice of a proper distance for histogram comparison is
therefore crucial for matching purposes. Typically the most used measures are
L2 distance, χ2 distance [8], histogram intersection [19], and Jensen-Shannon
distance [11]. The main disadvantage of these methods comes from the assump-
tion that a perfect alignment between histogram bins is available. However, this
hypothesis is often violated by confounding variables like light variations, shape
deformations, and so on. In particular, these distances are strongly conditioned
by the data quantization process. There is a trade off in the definition of his-
togram size (i.e., the number or bins). When the number of bins is low the dis-
tance is robust, but not discriminative. Conversely, when the number of bins is
high the distance becomes very discriminative but it loses its robustness. In order
to attenuate this effect, some distances based on a cross-bin comparison strat-
egy can be exploited leading to both robust and discriminative performances.
Some example of methods addressing cross-bin distance are quadratic-form dis-
tance [15], earth mover’s distance (EMD) [18], and diffusion distance [12]. All
these methods are based on a hand-crafted distance definition. Another popular
and very effective approach to deal with generic distances is based on super-
vised metric learning procedure (see [3] for a recent survey). Metric learning has
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 28–37, 2015.
DOI: 10.1007/978-3-319-24261-3 3
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been successfully employed for object recognition, image classification, and data
retrieval. The overall idea consists in adopting a data-dependent framework to
automatically estimate a metric specialized on the specific application at hand.
The training samples are organized in a set of pairwise constraints: “must-link”
for pairs of similar samples, and “cannot-link” for pairs of dissimilar samples.
In this fashion the metric learning algorithm is able to find the parameters of
the metric that best agree with these constraints. The metric learning meth-
ods basically differ by the problem formulation and by the used optimization
strategy [3].

In this paper we aim at exploiting how metric learning methods can improve
histogram comparison. Early real metric learning work has been shown in [9].
Very few work has been proposed recently starting from popular histogram-based
distances. For instance a supervised version of the earth mover’s distance has
been introduced in [6,21]. In [21] authors proposed to learn a ground distance
matrix and a flow-network by estimating an optimal transportation scheme.
Similarly, in [6] the supervised EMD is further improved taking into account
metric constraints for the ground metric. In [10] a supervised version of the χ2

distance is exploited. The original formulation is generalized by introducing and
estimating a metric matrix that strictly preserve the histogram properties of
input data on a probability simplex.

Contribution. In our work we propose a supervised version of the diffusion
distance [12] for histograms comparison. We revised the diffusion distance defin-
ition to cast the histogram matching as a distance metric learning problem. The
so called Large Margin Nearest Neighbor (LMNN) metric learning procedure is
adopted to estimate the optimal metric [22]. In this fashion we obtain an effec-
tive and easy way to compute version of a nearest neighbor classification scheme
for applications that use histogram-like data descriptors.

Road-Map. The rest of the paper is organized as following. Section 2 describes
the proposed method. The original definition of diffusion distance and an
overview of LMNN approach is given and the proposed supervised diffusion dis-
tance is defined. Preliminary results are reported in Sect. 3 on different domains.
Finally conclusions are drawn in Sect. 4.

2 Proposed Method

We based our method on the integration between the diffusion distance and a
metric learning procedure. In this section we report the general definition of diffu-
sion distance for histogram comparison as described in [12]. Then a very general
overview on metric learning is introduced highlighting in particular the case of
Large Margin Nearest Neighbor (LMNN) approach [22]. Finally, we revised the
diffusion distance definition in order to propose its supervised version.
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2.1 Diffusion Distance for Histogram Comparison

Given two histograms h1(x) and h2(x), the diffusion distance is defined as [12]:

d(h1, h2) =
L∑

l=0

||(h1(x) − h2(x)) ∗ φ(x, σl)||1, (1)

where (σ0 = 0 < σ1 < · · · < σL) define a set of Gaussian filters with increasing
smoothing effect. The underlined idea is to emulate a diffusion process on the
difference between histograms that attenuate the conditioning of possible bin-
to-bin dis-alignment. In order to reduce the computational complexity of Eq. 1
a recursive procedure is combined with a sub sampling process leading to:

d(h1, h2) =
L∑

l=0

||dl(x)||1, (2)

where d0(x) = (h1(x) − h2(x)), and

dl(x) = [dl−1(x) ∗ φ(x, σ)] ↓2, l = 1, · · · , L. (3)

The notation ↓2 denotes half size down sampling, and L is the number of
Gaussian pyramid layers with a fixed σ.

2.2 Metric Learning

The overall aim of distance metric learning is to replace Euclidean distances by
so-called Mahalanobis distances. A Mahalanobis distance metric computes the
distance between two vectors X and Y as DM =

√
(X − Y )�M(X − Y ), where

M is a full positive semidefinite matrix. When M becomes Identity matrix, the
general equation becomes standard euclidean distance equation. This matrix M
can be learned using Large margin nearest neighbor distance metric learning [22]:

min
M

∑
i,j:j→i

DM (xi, xj)2 + μ
∑

k:yi �=yk

[1 + DM (xi, xj)2 − DM (xi, xk)2]+ (4)

[f ]+ implies a hinge-loss [f ]+ =max(0,f ). The first term pull target neighbors
together. In the equation above j→i implies i and j are neighbors. The second
term pushes away differently labeled (k : yi �= yk) instances from the target
instances by a large margin so that the differently labeled instances are located
further with higher distance unit in the space (see Fig. 1). μ sets the trade-
off between the pulling and pushing objectives. For solving the above equation
convex optimization as an instance of semi-definite programming using sub-
gradient method is adopted.
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Fig. 1. Illustration of large margin nearest neighbor distance metric learning. Before
training (left) and after training (right) (Color figure online).

2.3 Learning Diffusion Distance

The definition of diffusion distance described in Sect. 2.1 can be revised in order
to make its learned version clearer. Exploiting the linear properties of the con-
volution operator Eq. 1 becomes:

d(h1, h2) =
L∑

l=0

||(h1(x) ∗ φ(x, σl)) − (h2(x) ∗ φ(x, σl))||1, (5)

or in a more general definition:

d(h1, h2) = ||ĥ1 − ĥ2||1, (6)

where ĥ = [h(x) ∗ φ(x, σl)]Ll=0. More precisely, the “diffusion” process is applied
to the original histogram by acting as a sort of feature extractor that lead to a
new histogram representation. Similarly, in the more efficient version we obtain
ĥ = [hl(x)∗φ(x, σ)]Ll=0 where h0(x) = h(x) and hl(x) is a half size down sampled
version of (hl−1 ∗ φ(x, σ)). In practice, the new representation is composed by
the concatenation of L resized and filtered versions of the original histogram.
Note that this method is coherent with the approaches that extract features
from a given basic descriptor to enrich its discriminative property [4,5,16,20].
A similar approach was proposed in [17] to exploit a diffusion kernel in a Count-
ing Grid framework. Finally, in order to integrate the new diffusion histogram
representation in a metric learning framework we simply redefine Eq. 6 to:

d(h1, h2) = DM (ĥ1 − ĥ2), (7)
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where the matrix M is learned on the diffusion histogram space. The metric
learning method described in Sect. 2.2 is employed to estimate M by leading to
an optimal nearest neighbor framework for histogram comparison.

3 Experiments

Experiments have been carried out using Nearest Neighbor classification on sev-
eral applications. In this section we describe the dataset used for the experiments,
the methods employed for comparison purposes, and the classification results.

3.1 Datasets

We considered five datasets from different applicative domains.

Brain MRI The study population used in this work consists of 42 patients who
were being treated for schizophrenia and 40 controls. The original MRI image
size is 384 × 512× 144. A Regions of Interest (ROIs) approach was adopted in
order to focus the analysis on well defined brain subparts [2]. In this work, we
used left Thalamus which is found to be impaired in schizophrenic patients.
DARTEL [1] tools within SPM software [7] was used to pre-process the data
in order to align properly the subjects onto the canonical space and normalize
the MRI intensity according to a well defined medical protocols [7]. Finally, we
computed the histogram of normalized intensities of Thalamus for every subject.
Number of bins in each histogram is chosen to be 40.

Outex from texture classification domain [13] containing surface textures and
natural scenes. 168 images categorized into 28 distinct texture classes each hav-
ing 6 example images were considered. The 6 images in each category are scale
variated (i.e. 100, 120, 300, 360, 500 and 600 dpi). 12 sample categories with
minimum and maximum resolution are reported in Fig. 2. Binary Gabor Pattern
(BGP) texture histogram [23] is used as the image’s texture descriptor/feature
with dimension of 216. The process of extracting the BGP feature from an
image involves gabor filtering with varying orientations, binarization and rota-
tion invariant coding.

Webcam from object classification domain. 795 images categorized into 31 cat-
egories/classes were considered. These images are photos of several objects taken
by people in unconstrained scenario as reported in Fig. 3. Local binary pattern
(LBP) descriptor [14] which is commonly used for texture description is used as
the image’s feature with dimension of 256. Even though it may sound strange
to apply descriptors commonly used for texture domain in object categoriza-
tion domain, we believe, the results on ‘Webcam’ column as reported in Table 1
indicates texture descriptors may play important role in object detection and
categorization domain too.



Supervised Learning of Diffusion Distance to Improve Histogram Matching 33

Fig. 2. Sample texture images from Outex dataset.

Amazon from image classification domain. 2817 images with 31 cate-
gories/classes were considered. These images are similar to Webcam images
reported above, the difference is that, they are taken with constrained scenarios
suitable for clear online displays as reported in Fig. 4 and the dataset is fused
with noises. In Fig. 4 only 8 out of 31 categories are reported just to show the
difference between the Webcam dataset. Surf-Bag-of-words (surf-BoW) is used
as the image’s descriptor with dimension of 800.

Corel Vision from image classification domain. 700 images categorized into 6
classes were considered as reported in Fig. 5. Visual bag-of-words is used as the
image’s descriptor with dimension of 200.

3.2 Methods Evaluated

In the Experiments 80/20 percent training/test set split is used then the error
is averaged over the results of 20 random trials. K-nn classification error is used
as evaluation criteria fixing k = 3 following the trend of the work in [10]. For
comparison purposes we evaluate the following methods:

L2 :- k-nn classification is performed using L2 norm distance.
Diff :- k-nn classification is performed using diffusion distance [12] as

described in Sect. 2.1.
X2 :- k-nn classification is performed using χ2 distance [8]. This metric is

based on the χ2 test for testing the similarity between histograms. It is defined as:



34 T.M. Dagnew and U. Castellani

Fig. 3. Sample images from Webcam dataset.

χ(h1, h2) =
n∑

i=1

(hi
1 − hi

2)
2

hi
1 + hi

2

.

lmnn-L2 :- k-nn classification is performed using large margin distance met-
ric [22] reported in Sect. 2.2.

lmnn-Diff :- k-nn classification is performed using our supervised diffusion
distance metric proposed in Sect. 2.3.

lmnn-X2 :- k-nn classification is performed using supervised χ2 distance
metric [10].

3.3 Results

Results for all the experiments are reported on Table 1. As expected in the most
of the cases a drastic improvement is observed when the learning procedure is
introduced. Indeed, overall we can claim that the supervised distance version per-
forms always better than the original one. This is clearly shown in the challenging
scenarios of texture retrieval. We further highlight that in these experiments our
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Fig. 4. Sample images from Amazon dataset.

Fig. 5. Sample images from Corel image database.

Table 1. K-NN classification error in percentage.

Brain MRI Outex Corel vision Amazon Webcam

L2 53.4375 22 54.0357 65.04 54.56

Diff 38.125 22 53.5 62.46 54.18

X2 46.875 - 62.3571 63.41 54.3

lmnn-L2 50.9375 1 42.8571 52.40 37.09

lmnn-Diff 29.0625 0 42.6429 51.33 36.96

lmnn-X2 50.625 4 53.9286 54.98 37.01

supervised diffusion distance always outperforms all other methods. In particu-
lar the benefit of our method is more relevant when quantization procedure is
very critical as it has been seen in the biomedical case.

4 Conclusions

In this paper we introduce a supervised version of the diffusion distance for his-
togram matching. We revised the original version of diffusion distance by showing
that it can be reformulated as a method for feature extraction on the histogram
domain. Therefore we propose to exploit distance metric learning on this new
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histogram representation space. This lead to a very simple and efficient approach
to design a proper distance metric learning method for histogram comparison.
We adopt the so called Large Margin Nearest Neighbors framework to obtain an
optimal nearest neighbor classification scheme. Preliminary experiments on sev-
eral pattern recognition applications are reported by showing promising results.

Future work will be addressed to further exploiting the learning approach
in the diffusion distance process. For instance an adaptive Gaussian filter band-
width estimation can be integrated in the learning scheme. Moreover, the dif-
fusion process caused a sort of spreading of the original histogram leading
to an increasing of the feature dimensions. To overcome this issue a dimen-
sional reduction procedure should be included in the optimal metric estimation
framework.
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Abstract. Similarity compression is a critical step to improve the effi-
ciency of edge detection. In this paper, we compare two approaches for
compressing/decompressing similarity matrices, being edge detection our
application domain. In this regard, state-of-the-art contour detectors rely
on spectral clustering where pixel or patch similarity is encoded in a sym-
metric weight matrix and the eigenvectors of the normalized Laplacian
derived from this matrix are clustered in order to find contours (nor-
malized cuts and its variants). Despite significant interest in learning the
similarity measure for providing well localized boundaries, the underlying
spectral analysis has played a subsidiary role, and has mostly been based
on classical random walks and the heat kernel. However, recent findings
based on continuous-time quantum walks suggest that under the com-
plex wave equation there are long-range interactions not present in the
classical case. In the case of the edge map this opens up a means of con-
trolling texture in the edge map by a simple thresholding. In this paper,
we use the long-time averages of quantum walks for edge detection, and
show that texture is a consequence of short-rangedness of these inter-
actions. This is due to the local-to-global property of limiting quantum
walks. In addition, when analyzing the role of limiting quantum walks
as intermediate/indirect similarity decompression, we find that quantum
walks are able of recovering the original edge structure when a factoriza-
tion compressor is used, whereas this is not the case when compression
relies on the Szemeéredi Regularity Lemma, despite this latter method
is by far more efficient.

Keywords: Edge detection · Spectral clustering schrödinger operator ·
Quantum walks

1 Introduction

Since the seminal work of Canny [1], principled edge detection has been
approached as a multi-stage process. First, local filters are designed so as to
capture which capture the desireable details of local edges structure, and then
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 38–53, 2015.
DOI: 10.1007/978-3-319-24261-3 4
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global effects emerge from multi-resolution analysis or from more global meth-
ods usually based on supervised learning (e.g. Martin (Pb) [2] and Dollár [3]).
Recent developments have addressed the problem of edge gap filling by learning
from contours traced by human observers and those captured algorithmically.
To this end Lim et al [4] use a dictionary of human generated contours. More
recently) [5], attention has focussed on the need for learning a similarity function
so that edges with properties close to those located by human eye to be located
automatically by spectral clustering. In fact, the well known gPb method of
Arbeláez [6] et al. has been merely used as a subsidiary tool.

In this paper we explore the potential of the underlying spectral clustering
methods in more depth, and then to use them in order to understand the power
of the similarity measure itself.

To understand more clearly what is attempted, we briefly provide a formal
statement of the problem studied. Given a set of points X = {x1, . . . ,xN} ⊂ R

d

to be clustered, and a metric d : X × X → R, the spectral approach consists of
mapping the xi to the vertices V of an undirected weighted graph G(V,E) so
that the edge weight W (i, j) = e−d2(xi,xj)/t is a similarity measure between xi

and xj . The analysis of the similarity/affinity matrix W is usually accomplished
through the study of the Laplacian matrix L = D − W or of its normalized
counterpart. Then, despite the fact that W contains just pairwise relations, the
spectrum and eigenvectors of L contain global information. However, it has been
recently pointed out [7] that the limit analysis of a graph Laplacian, for instance
setting t → 0 as a consequence of N → ∞, reveals some flaws or degenerate
behaviors. For instance, ranking functions, which are usually implemented by
Green’s functions (the pseudo-inverse of the Laplacian), diverge when N → ∞.
Zhout et al. propose to solve this problem by computing Green’s functions of
“higher-order” Laplacians, i.e. Lm and m ≥ 0.

One well known example of the spectral approach is provided by the normal-
ized cuts clustering method [8]. This method has been improved by introducing
topological distances which are consistent with a metric (commute-times) [9].
State-of-the-art methods for image segmentation do not only combine different
eigenvectors of the Laplacian (normalized in this case) [6] but also incorporate
better dissimilarity measures to make the weight matrix W more discriminative.

Further impovements of spectral clustering have exploited the random walk
concept. For instance, in [10] pixels are labeled by the probability that a ran-
dom walk will reach them from a given seed. Here the underpinning principle
is to minimize the combinatorial Dirichlet integral associated with the weighted
Laplacian of a graph. Seeds are assumed to be the boundary conditions of a
Dirichlet problem and minimization seeks the values of the unknown labels so
that the Dirichlet integral is the smoothest one. This means that a harmonic solu-
tion is preferred. As a result uniassigned probabilities can be estimated using
semi-supervised learning, and are the averages of the probabilities of neighboring
pixels). This method relies on solving a linear system, and is shown to be more
robust to noise than normalized cuts.
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Recenty, quantum walks have been shown to offer interesting alternatives
to the classical random, which offer non-classical properties such as non-
stationartity, exponentially faster hitting times and as a result the possibility of
long-range interactions. In particular, quantum walks suggest alternative ways of
incorporating “high-order”information. For instance, in [11] a quantum version
of the Jensen-Shannon divergence is used to compute a graph kernel, whereas
in [12] it is exploited to detect both symmetric and anti-symmetric structures
in graphs. In [13] and the references therein, it is suggested that quantum walks
provide information about long-range interactions. For instance, in dendrimers
(trees structured in strata or “generations”) a quantum random walk starting at
the root reaches (in the limit) nodes lying in the same generation with similar
probability.

Our long-term aim is to address the question whether the improvement of
spectral methods for clustering can be driven from quantum walks. In this paper,
we will focus on uncovering the impact of quantum walks in recovering from
similarity compressors in the context of edge detection.

2 Quantum Walks for Analyzing Transport

2.1 Unitary Evolution and the Schrödinger Operator

Let H = span{|j〉 | j = 1, . . . , N} = C
N be a N−dimensional Hilbert space

where 〈j| = (0 . . . 1 . . . 0) with a 1 at the j − th position. We use the Dirac bra-
ket notation where: |a〉 = a, 〈a| = a∗, 〈a|b〉 = a∗b is the inner product and
therefore 〈j|k〉 = j∗k = δjk and

∑N
j=1 |j〉〈j| = 1. Then, a point in the Hilbert

space is given by |ψ〉 =
∑N

j=1 cj |j〉 with cj ∈ C so that |c1|2+|c2|2+. . .+|cN |2 = 1
and |cj |2 = cjcj .

The Schrödinger equation describes how the complex state vector |ψ(t)〉 ∈ C
n

of a continuous-time quantum walk varies with time:

∂|ψ(i)〉
∂t

= −iL|ψt〉. (1)

Given an initial state |ψ(0)〉 =
∑N

j=1 c0j |j〉 the latter equation can be solved to
give |ψ(t)〉 = Ψ(t)|ψ(0)〉, where Ψ(t) = e−iLt is a complex n × n unitary matrix.
In this paper we refer to Ψ(t) as the Schrödinger operator. In this regard, Stone’s
theorem [14] establishes a one-to-one correspondence between a time parame-
terized unitary matrix U(t) and a self-adjoint (Hermitian) operator H = H∗

such that there is a unique Hermitian operator satisfying U(t) = eitH . Such an
operator H is the Hamiltonian. In the case of graphs H = −L and then we have
that Ψ(t) = e−itL is a unitary matrix for t ∈ R. Therefore, given a initial state
|ψ(0)〉, the Schrödinger Operator characterizes the evolution of a Continuous-
Time Quantum Walk (CTQW). The probability that the quantum walk is at
node j is given by |〈j|ψ〉|2 = |cj |2. The |cj |2 are known as the amplitudes of the
wave traveling through the graph.
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2.2 Long-Time Averages from Magnitude

Different choices of the initial state |ψ(0)〉 =
∑N

j=1 c0j |j〉 lead to different
ways of probing the graph by exploiting properties of quantum superposition
and quantum interference. For instance, in [11], initial amplitudes are set to
c0j =

√
dj∑N

k=1 dk
, in order to compute de quantum version of the Jensen-Shannon

divergence. However, in [12], where the focus is on identifying whether the
vertices i and j are symmetrically placed in the graph, we have that either
c0j = 1/

√
2 and c0k = 1/

√
2 (in phase) or c0j = 1/

√
2 and c0k = −1/

√
2 (in

antiphase). Actually, the Quantum Jensen-Shannon divergence has a low value
when pairs or vertices are located anti-symmetrically and a high value when they
are symmetrically placed.

In this paper, we use the classical choice proposed by Farhi and Gutman for
studying transport properties of quantum walks in trees [15]. In such approach,
states |j〉 are associated with excitations at the nodes j. Therefore, the evolu-
tion of a CTQW commencing at node |j〉 is given by |j(t)〉 = e−itL|j〉. In this
regard, the amplitude of a transition between nodes j and k at time t is given
by cjk(t) = 〈k|j(t)〉 = 〈k|e−itL|j〉, and the quantum-mechanical probability of
such a transition is πjk(t) = |cjk(t)|2 =

∣∣〈k|e−itL|j〉∣∣2.
Since the spectral decomposition of the Laplacian is L = ΦΛΦT , where Φ =

[φ1|φ2| . . . |φn] is the N × N matrix of ordered eigenvectors according to the
corresponding eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn, and Λ = diag(λ1 λ2 . . . λn),
we have that e−itL = Φe−itΛΦT where e−itΛ = diag(e−itλ1 e−itλ2 . . . e−itλn ).
Then, the probability of a transition between j and k at time t is given by

πjk(t) =
∣∣〈k|e−itL|j〉∣∣2 =

∣∣〈k|Φe−itΛΦT |j〉∣∣2
=

∣∣∣∣∣〈k|
N∑

u=1

e−itλu |φu〉〈φu|j〉
∣∣∣∣∣
2

=

∣∣∣∣∣
N∑

u=1

e−itλu〈k|φu〉〈φu|j〉
∣∣∣∣∣
2

, (2)

where 〈k|φu〉 = φu(k) and 〈φu|j〉 = φu(j) respectively. Therefore we have

πjk(t) =
N∑

u=1

N∑
v=1

e−it(λu−λv)zu(k, j)zv(k, j), (3)

where zu(k, j) = φu(k)φu(j) and zv(k, j) = φv(k)φv(j) account for the correla-
tions between the k−th and j−th components of the eigenvectors φu and φv.
Then, since e−it(λu−λv) = cos(t(λu − λv)) − i sin(t(λu − λv)) we have that the
long-time limit of πjk(t) does not exist, whereas the corresponding long-time
limit of a classical continuous-time random walk is 1/N . However, in the quan-
tum mechanical case it is possible to compute the long-time average:

χjk = lim
T→∞

1
T

∫ T

0

πjk(t)dt

= lim
T→∞

1
T

∫ T

0

N∑
u=1

N∑
v=1

e−it(λu−λv)zu(k, j)zv(k, j)
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= lim
T→∞

N∑
u=1

N∑
v=1

zu(k, j)zv(k, j)
1
T

∫ T

0

e−it(λu−λv)dt

=
N∑

u=1

N∑
v=1

δλu,λv
zu(k, j)zv(k, j) , (4)

where δλu,λv
= 1 if λu = λv and 0 otherwise. Therefore, the long-time averaged

probabilities do not depend directly on the eigenvalues of the Laplacian but
on their multiplicity. Mülken and Blumen have recently related the multiplicity
to the transport efficiency of CTQWs [13]. More precisely, the averaged return
probability π̄(t) = (1/N)

∑N
k=1 πk,k(t) decays faster with time than that of a

classical continuous-time random walk under conditions of low multiplicity. This
means that in the long-time limit more probabilistic mass is allocated to nodes
lying far away from the origin of the quantum walk, provided that there is low
degeneracy (i.e. multiplicity).

3 Edges from Quantum Walks

3.1 Local-to-Global Role of Quantum Walks

The diagonal of the symmetric matrix χ contains the long-time probabilities
that a CTQW returns to each node. The off-diagonal elements χ(j, k) are the
probabilities that a CTQW commencing at the j−th node reaches the k−th one
in the limit. Then, since

∑T
k=1 χ(j, k) = 1, ∀j we can associate a probability

density function (pdf) to each node j. The fraction of off-diagonal probability
mass e(W ) =

∑N
j=1

∑N
k �=j χ(j, k)/N measures the transport efficiency of the

weighted graph. Since the CTQWs have a coherent behavior, e(W ) increases
when there is enough similarity support, provided that the eigenvectors of the
Laplacian matrix L are not degenerated. For instance, if W encodes a complete
graph we have χ = 1, that is, e(W ) = 0 since the eigenvalues of the Laplacian
are: 0 with multiplicity one, and N , with multiplicity N − 1.

Since the similarity support is not homogeneous, but piecewise smooth, we
have that W is sparser than χ. We also have that off-diagonal probabilities typi-
cally correspond to long-range interactions, i.e. to transitive links, under certain
regimes. More precisely, if we sort the off-diagonal entries χ(j, k) in descending
order, the sequence of graphs generated by incrementally decreasing the thresh-
old γ used for retaining an edge if χ(j, k) ≥ γ this process leads to a structural
level set S1,S2, . . . ,Sr, . . . dominated by long-range interactions as r grows.

In an image this means that CTQWs progressively establish links between
more and more dissimilar regions, however these links are very weak but not
zero.

3.2 Filtering Texture

In our preliminary experiments with edge detection we have checked that
CTQWs play the role of a similarity compressor, i.e., given the original range
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of similarities the result is the new range [0, 1] since χ(j, k) are probabilities.
However, the bulk of the probability mass is under a small threshold α > 0 (see
Fig. 1).

Since edge detection is focused on dissimilarity, we retain the probability
mass corresponding χ(j, k) ≤ α to build a filtered version W S of the original
similarity matrix W :

WS(j, k) =
{

χ(j, k) if j=k or χ(j, k) ≤ α
0 otherwise (5)

The doubly stochasticity of the χ matrix suggests that W S contains a com-
pressed solution of the clustering problem. Actually, the structure of its associ-
ated normalised Laplacian L̃S = I − D

−1/2
S W SD

−1/2
S is as follows:

1. Since diag(χ) is retained to form W S , the have that DS = diag(W S1) ≤ I
for α ≤ 1 and equality holds for α = 1. In that latter case, we have L̃S =
I − W S and trace(L̃S) =

∑N
k=1 λ̃k = N − ∑N

k=1 χkk > 0.
2. For α → 0 we have DS = 1 − ε, where ε > 0 is a vector of residuals. Then

D
−1/2
S = (1 − ε)−1/2 and L̃S = I − (1 − ε)W S . Then, we have trace(L̃S) =∑N
k=1 λ̃k = N − ∑N

k=1(1 − εk)χkk. When ε → 0 (as a consequence of α ≈ 0)
we have trace(L̃S) =

∑N
k=1 λ̃k ≈ 0.

Therefore, the smaller is α, the the closer to 0 becomes the spectrum of L̃S and
we capture less texture. This is due to the fact that for small values of α long-
range interactions dominate over short-range ones which provide texture. This
means that more global (close-to-human) contours are retained (see Fig. 2) with
respect to the crisp-boundaries approach [5] for α < 1. In addition, both methods
work poorly when the object is embedded in a high-textured background. Our
filtering does not merely introduces a low-pass filter (see water reflection in Taj
Mahal) but localizes better the parts of objects (e.g. wheels in the car).

3.3 The Effect of Similarity Compression

Spectral clustering methods applied to image segmentation typically require the
computation of a large amount of affinity pairs, even when superpixels are con-
sidered). This limits the applicability of these methods. In this paper, we explore
the effect of compressing the affinity matrix before computing the Schrödinger
texture filter and the subsequent edges.

We consider two different compression methods: a factorization one, based on
transforming the original W into a reduced similarity matrix Ŵ through a many-
to-one mapping, and a regularization method based on the Szemeredi Regularity
Lemma [16]. In this section we analyze to what extent limiting CTQWs can help
recovering the edge structure from compression.

Compression Through Factorization Let W a N × N similarity matrix
and K 
 N a constant, being K/N the compression rate. The goal of similarity
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Fig. 1. CTQWs as similarity compressors: Original similarities from crisp boundaries
(x-axis) vs χ probabilities (y-axis). Left: without similarity compression. Right: with
similarity compression (see text).

compression is to determine both a reduced similarity matrix Ŵ of order K ×
K and a many-to-one mapping ψ(.) between the pixels being compared W

and their corresponding pixels in Ŵ so that Wij = Ŵψ(i)ψ(j). Following the
factorisation approach introduced in [17], we express the mapping ψ in terms
of a left stochastic (i.e. column stochastic) matrix Y ∈ S, where S = {Y ∈
R

K×N
+ : Y T 1K = 1N}. Thus, any of the N pixels in the j−th column of Y

must be mapped to the k−th pixel in the K rows of Y .
In matrix form, we seek Y and Ŵ so that

W = Y T ŴY , (6)

meaning that the essential affinity information of W must be transferred to Ŵ
through Y . In order to ensure the proper affinity transfer, we must minimize
||W − Y T ŴY ||2. However it is more flexible to enforce: (i) pairwise affinities
between i and j in W must be transferred to pixels k and l in Ŵ when ψ(i) = k
and ψ(l) = j are likely, i.e. when YkiYlj is high; (ii) self-affinity transfer is
enforced. These requirements are consistent with minimizing

f(Y , Ŵ ) =
∑

i,j∈{1,2,...,N}

∑
k,l∈{1,2,...,K}

δ(k,i) �=(l,j)YkiYlj(Wij − Ŵkl)2

+
∑

i∈{1,2,...,N}

∑
k∈{1,2,...,K}

(Wii − Ŵkk)2 (7)

s.t. Y ∈ S and Ŵ ∈ R
K×K.

The latter minimization can be addressed by a EM approach which starts
by a random choice of Ŵ ∈ S and proceeds by alternating estimations of Y
given Ŵ and re-estimations of Ŵ given Y until convergence. Finally, a discrete
solution is obtained through clean-up (projection on the space of binary left
stochastic matrices) [17].
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Fig. 2. Edge-detection results. First column: images from BSDS500. Second column:
Crisp-boundaries from [5]. Third column: edges from quantum walks for α = 0.1.
Fourth column: edges for α = 0.05

The above compression process does not necessarily lead to a clustering solu-
tion (in some cases it is not ensured that pixels in W mapped to the same pixel
in Ŵ share a similar affinity, which in turn is different from those between pixels
in W mapped to different pixels of Ŵ ). However, this method produces good
clustering results in practice. Therefore it can be used, in principle, to simplify
the spectral clustering process. If so, the lossy decompressed matrix Y T ŴY
should induce a low-frequency edge map through spectral clustering. This is not
the case of the crisp-boundaries method [5] despite the fact that incoming affini-
ties in W are derived from mutual information. Actually, the resulting edge map
obtained directly from Y T ŴY is very noisy.

For instance, in Fig. 3 we compare different levels of compression with the
compression-free crisp-boundary approach (right). The size of all images is
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125 × 83 = 10, 375 pixels and K = 1000 (i.e. the compression rate is 0.09 -
only 10% of the pixels is retained). For t = 10 iterations the compression algo-
rithm is still close to the initial random configuration, although some structure
is found when there is a high discriminative figure-ground setting (car). Low-
frequency edges improve t = 20 iterations but the background is still very noisy,
specially at low discriminative figure-ground settings.

Let us now introduce an intermediate step between compression and spec-
tral clustering. Given the compressed similarity matrix Ŵ we compute a fil-
tered version Ŵ S = χ̂ retaining the long-time average of the magnitude of
the CTQWs associated with the compressed matrix, then we decompress Ŵ S

through Y T Ŵ SY (we call this process indirect decompression). Implicitly we
are assuming α = 1 (no filtering) in order to retain both the short-range and
long-range information between clusters (we exploit local-to-global behavior of
CTQWs). All this information is exploited by the limiting quantum walks in
order to join edge fragments while the background noise is suppressed.

For instance, in Fig. 4 we show that for t = 10 iterations, quantum walks find
edge fragments and both the foreground and background noises are suppressed.
These fragments are joined after t = 20 iterations, though the global contrast
decreases with respect to the crisp-boundaries approach. This is due to the long-
rangedness However, for t = 20 background noise tends to be suppressed. As in
the direct case, the more discriminative is the foreground-background setting the
faster the convergence to an acceptable edge map. However, the results showed
in Fig. 4 is still far from an acceptable edge map. To that end we must analyze
the convenience of increasing the number of clusters K and/or the number of
iterations t. In Fig. 5 we focus on the Taj Mahal image for K = {1000, 2000, 3000}
and t = {10, 40, 100}. The impact of the number of clusters K is smaller than
that of the number of iterations. In general, increasing t leads to high-contrast
edges as well as a significant decreasing of both the foreground and background
noise (which cannot be done with the direct approach).

The above indirect results are partially explained by the fact that CTQWs
are similarity compressors (see Fig. 1-right). Since the above factorization also
leads to similarity compression, limiting quantum walks tend to find significant
correlations between the initial similarities W and those of Y T Ŵ SY (left).

Consequently, in addition to control texture, CTQWs are also helpful for
retaining significant edges when compression is needed or it is impossed by real-
time constraints. In terms of efficiency, since computing the limiting CTQWs
require the estimation of all the eigenvectors and eigenvalues of the Laplacian,
if we constrain that task to a K × K matrix with K 
 N , as we do in the
indirect approach, we will exploit all the benefits of the local-to-global behavior
of limiting quantum walks provided that enough compression iterations can be
performed.

Compression Through Graph Regularization The Szémeredi Regularity
Lemma [16] is a fundamental result in extremal graph theory. In our context,
this lemma states, in conjunction to the Key Lemma, that every large graph can
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Fig. 3. Edge-detection results with direct decompression. First column: images from
BSDS500. Second column: edges from K = 1000 and t = 10. Third column: edges from
K = 1000 and t = 20. Fourth column: crisp-boundaries without compression.

be compressed in such a way that the so called reduced graph retains the global
properties of the original graph.

More precisely, let G = (V,E) a graph with N = |V | vertices and E ⊆ V ×V
edges, and let X,Y ⊂ V two disjoint subsets of vertices of G. The edge density
d(X,Y ) associated with the pair X,Y is defined as

d(X,Y ) =
e(X,Y )
|X||Y | , (8)

where e(X,Y ) is the number of edges between vertices of X and vertices of Y .
Given a constant ε > 0, a pair (A,B) of disjoint vertex sets A,B ⊆ V is

ε−regular if for every X ⊆ A and Y ⊆ B satisfying

|X| > ε|A| and |Y | > ε|B| (9)
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Fig. 4. Edge-detection results with indirect decompression. First column: images from
BSDS500. Second column: edges from K = 1000 and t = 10. Third column: edges from
K = 1000 and t = 20. Fourth column: edges from quantum walks for α = 0.1 without
compression.

Fig. 5. Edge-detection results from indirect reconstruction. From top-down/left-right:
input image, (K = 1000, t = 10), (K = 1000, t = 40), (K = 2000, t = 10), (K =
2000, t = 40), (K = 3000, t = 10), (K = 3000, t = 40) and (K = 1000, t = 100)
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we have
|d(X,Y ) − d(A,B)| < ε, (10)

meaning that in a ε−regular pair the edges are distributed quasi-uniformly. On
the other hand, a partition of V into pairwise disjoint classes C0, C1, . . . , CK is
said equitable if all the classes Ci, with (1 ≤ i ≤ N), have the same cardinality.
Equitability is technically possible because the so called exceptional set C0, which
may be empty, exists. According to that, an equitable partition C0, C1, . . . , CK is
called ε−regular if |C0| < ε|V | (the size of the exceptional set is a small fraction
of the number of vertices) and all but at most εK2 of the pairs (Ci, Cj) are
ε−regular (1 ≤ i, j ≤ N) (a small number of pairs are allowed to break the
regularity condition).

The Szémeredi Regularity Lemma states that for every ε > 0 and for every
positive integer t, there is an integer Q = (ε, t) such that every graph with
N > Q vertices has an ε−regular partition into K +1 classes, where t ≤ K ≤ Q.
In other words, for every ε the existence of a ε−regular partition is ensured.

In terms of graph compression, the lemma drives our attention to the K + 1
classes (one of them is the exceptional set). Each of these classes C1, C2, . . . , CK

can be associated with a vertex of a new graph called the reduced graph R. In
addition to ε let us define a density bound d. Then, given vertices Ci and Cj , we
will have the edge (Ci, Cj) in R if the pair (Ci, Cj) is ε−regular and its density
is greater than d.

The so called Key Lemma (see more details in [18]) states that given d >
ε > 0, a reduced graph R and a positive integer m, we can construct a graph G
following these steps:

1. Replace every vertex of R by m vertices.
2. Replace the edges of R with regular pairs of density at least d.

Therefore, for the reduced graph R we have a formal mechanism to expand it
to a more complex partitioned graph G which respects the edge-density bounds.
Since R and G share many structural properties, it is possible to use the reduced
graph R as an efficient proxy of G which is desirable when N is very large.

Due to space limitations we do not describe here how to obtain a ε−regular
partition, but basically all existing methods rely on a refinement from an
original partition until ε−regularity is satisfied [19]. See more details in [20]
where an explicit connection between the lemma and clustering (an evolution
to that described in [18]) is made. The key point here is to focus on an affin-
ity/dissimilarity version of the lemma. The concept of density is defined in terms
of the weights Wij as follows:

d(A,B) =

∑
i∈|A|

∑
j∈|B| Wij

|A||B| (11)

However, finding regular partitions is different from finding clusters, since:

– Size equality of the resulting classes is an important requirement for regular
pairs that is not imposed to clustering algorithms.
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– The Szemerédi Regularity Lemma does not impose that items in the same
class must be similar. It is more focused on inter-class relationships that on
intra-class ones.

In our experiments, we have analyzed the combined use of the Szemerédi
Regularity Lemma for compression and the Key Lemma for decompression. In
Fig. 6, we show the results obtained through this combination. In all cases, the
compression starts with a random partition. We show two regimes for ε: 0.51
and 0.71. The dimension of the compressed similarity matrix Ŵ depends always
on ε. For ε ∈ [0.51, 0.71] we have always K = 4× 4, which is the minimal dimen-
sion of the compressed matrix. In general, effective/reliable values of ε are con-
strained to a small range (ε ≈ 0.5)-second column. Below 0.5 we usually obtain

Fig. 6. Edge-detection results with Szemerédi Regularity Lemma + Key Lemma. First
column: images from BSDS500. Second column: edges for d = 0.44 and ε = 0.51. Third
column: edges for d = 0.44 and ε = 0.71. Fourth column: edges from quantum walks
for α = 0.1 without compression.
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unstructured contrast both in the background and in the foreground. When ε is
close to 0.5 we tend to approximate the real edges, but they appear frequently
fragmented. For higher values of ε (for instance ε = 0.71-third column) an inter-
esting phenomenon occurs: the background is noisy whereas the foreground is
clean whenever the segmentation problem is easy to solve (we obtain bad results
when textured backgrounds arise). Since ε defines to what extent the regularity
requirement is relaxed, we have that ε ≈ 0.5 provides the best possible trade-off.
The threshold d, which determines the minimal density for declaring an edge in
the reconstruction/decompression, is not critical although some images are bet-
ter segmented than others. This is not the case of L, which defines the number of
partitions per iteration (the rate of re-partitioning if the ε−regularity condition
is not satisfied): for L �= 2 we always obtain bad segmentation results (very noisy
and unstructured edge maps, due to the fact that the dimension of Ŵ drops to
K = 4 × 4 when ε ≥ 0.51).

Regarding the effect of introducing an indirect step through CTQWs, we
have that this is useless in this case. This is due to the fact that the similarity
matrices obtained through Szemerédi + Key Lemma are so noisy that limiting
quantum walks are unable to recover the original edge map.

We have also done tests by starting with a deterministic partition. Doing that
not only increases significantly the processing time, but produces very blurred
edge maps. This is why we only show results obtained with an initial random
partition.

Regarding running time we have the following averaged times: without com-
pression we need 2 hours per image, using the factorization the running time
is reduced to 2 minutes per image, and using the Szemerédi + Key Lemma we
achieve 38 secs per image. Therefore, compression is a critical step for improving
the efficiency of low-frequency edge detection. However, our experiments show
that an ideal method for similarity compression/decompression should include
features of both factorization and regularization.

4 Conclusions

In this paper we have investigated the impact of continuous-time quantum
walks in compressing similarities for edge detection through spectral cluster-
ing. We found that an ideal method for similarity compression/decompression
should include features of both factorization and regularization. Future work
includes the development of an information-theoretic interpretation of coher-
ent transport and the development of classifiers for predicting close-to-human
edges. However, beyond the particular application domain of edge detection
explored in the paper, our future developments are addressed to understand
to what extend limiting quantum walks can be combined with compression-
decompression approaches so that the structure of the similarity space is well
understood.
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17. Nourbakhsh, F., Bulò, S.R., Pelillo, M.: A matrix factorization approach to graph
compression. In: 22nd International Conference on Pattern Recognition, ICPR
2014, Stockholm, Sweden, August 24–28, pp. 76–81. IEEE (2014)
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Abstract. Ensemble clustering generates data partitions by using dif-
ferent data representations and/or clustering algorithms. Each parti-
tion provides independent evidence to generate the final partition: two
instances falling in the same cluster provide evidence towards them
belonging to the same final partition.

In this paper we argue that, for some data representations, the fact
that two instances fall in the same cluster of a given partition could
provide little to no evidence towards them belonging to the same final
partition. However, the fact that they fall in different clusters could pro-
vide strong negative evidence of them belonging to the same partition.

Based on this concept, we have developed a new ensemble clustering
algorithm which has been applied to the heartbeat clustering problem.
By taking advantage of the negative evidence we have decreased the mis-
classification rate over the MIT-BIH database, the gold standard test for
this problem, from 2.25 % to 1.45 %.

Keywords: Clustering ensembles · Evidence accumulation · Heartbeat
clustering · Heartbeat representation · Hermite functions · ECG

1 Introduction

Clustering is defined as the task of grouping together similar objects into groups
called clusters. This process is one of the steps in exploratory data analysis and
due to its usefulness has been addressed by researchers in many fields. The appro-
priate clustering algorithm and parameter settings (including parameters such
as the distance function to use, a density threshold or the number of expected
clusters) depend on the individual data set and intended use of the results.
Therefore, we can not claim that a given algorithm will always perform better
c© Springer International Publishing Switzerland 2015
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Fig. 1. (a) shows the three natural partitions present in the dataset. (b) and (c) show
two versions of the K-means algorithm with K = 3 and K = 20, respectively. (d) shows
the result of the combination in a single partition of 100 different partitions created by
K-means algorithm using different values for K in a range between 7 and 37.

than others [3]. Furthermore, different clustering solutions may seem equally
plausible without prior knowledge about the underlying data distributions. Part
of the data analysis process is selecting the best clustering algorithm for the
given data based on the information available on the problem. This is done by
applying and tuning several algorithms in an iterative process to determine the
best choice. This process is time-consuming and prone to error.

Inspired by the work in classifier combination, clustering combination
approaches have been developed [1,6,7,11,22] and have emerged as a power-
ful method to improve the robustness and the stability of the clustering results.
By combining the strengths of many individual algorithms we can improve the
overall performance. Figure 1 shows how combining the results of 100 partitions
created by the K-means algorithm, which is only able to create globular shape
partitions, the three natural non-globular partitions are discovered. These nat-
ural partitions could never be discovered in a single execution of the K-means
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algorithm. Furthermore, the combination of algorithms also reduces the problem
of the high dependence between an algorithm and the clustering results.

In this paper we extend the clustering ensemble method, known as EAC, first
proposed in [7] by introducing the concept of negative evidence. The negative
evidence is obtained from the instances that are not clustered together. We also
illustrate the proposed method in application to heartbeat clustering.

2 Clustering Ensembles

The result of a clustering algorithm is a data partition P of n elements
organized into k clusters. A clustering ensemble is defined as the set of m differ-
ent data partitions P1, P2, . . . , Pm, obtained with different algorithms or different
data representations, ultimately combined in a final data partition P∗. This final
data partition P∗ should, in general, have a better overall performance than any
of the individual partitions.

The following sections present our algorithm built on the EAC paradigm. First
we explain how the data partitions P1, P2, . . . , Pm are created. Then we explain
how the partitions are combined to obtain both positive and negative evidence.
Finally, we show how the final data partition P∗ is created from the evidence.

2.1 Generating the Clustering Ensembles

To harness the potential of clustering ensembles, the data partitions P1,
P2, . . . , Pm must be different. Employing different sets of features, or perturbing
the data with techniques like bagging or sampling, will produce different parti-
tions. We can also obtain different partitions by changing the initialization or the
parameters of the clustering algorithm, or by using different algorithms. With
the combination of several data partitions the particular quirks of each one can
be abstracted in order to find the best partition that summarizes all the results.

Among the various clustering methods, the K-means algorithm, which mini-
mizes the squared-error criteria, is one of the simplest algorithms. Its simplicity
is one of its biggest advantages, making it computationally efficient and fast. Its
reduced number of parameters (typically only the number of clusters) is another
strong point. Its major limitation is the inability to identify clusters with arbi-
trary shapes, ultimately imposing hyperspherical shaped clusters on the data.
By combining the results of several K-means executions this limitation can be
overcome [8].

In this work we shall use K-means to generate each data partition. We use
this method due to its simplicity and small computational cost, but any other
partitioning clustering algorithm may be used. To obtain different partitions we
shall run the algorithm with random initializations and different values for the
number of clusters. The number of clusters k in each execution will be determined
at random in a range given by

k ∈ [
√

n/2,
√

n] (1)

being n the number of instances in the data.
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2.2 Combining the Data Partitions

In the literature there are several methods to combine data partitions in ensem-
ble clustering. In this work we shall adopt the evidence accumulation method
proposed in [7] and we shall expand it by introducing the concept of negative evi-
dence. One of its advantages is that it can combine data partitions with different
number of clusters.

The evidence accumulation method gathers the evidence in C, a nxn matrix,
using a voting mechanism. For each data partition, the co-occurrence of a pair
of instances i and j in the same cluster will be stored as a vote. The under-
lying assumption is that instances belonging to the same “natural” cluster are
more likely to be assigned to the same cluster in the different data partitions
P1, P2, . . . , Pm.

The final evidence matrix built from the m partitions will be calculated as
follows:

Ci,j =
nij

m
, (2)

where nij is the number of times the instances i and j are assigned to the same
cluster in the P1, P2, . . . , Pm partitions.

There are some scenarios where the fact that two instances fall in the same
cluster of a given partition provides little information about their natural group-
ing. This weak evidence could introduce noise in the combination of the par-
titions, worsening the results. However, in these scenarios the fact that two
instances fall into different clusters could provide useful evidence against group-
ing those instances. As we shall argue later, this is the case for some of the
features that permit the identification of some arrhythmia types. We shall call
this evidence negative evidence.

We shall gather this negative evidence in a nxn matrix C− that is built as
follows:

C−
i,j = −oij

m
, (3)

where oij is the number of times the instances i and j are assigned to differ-
ent clusters among the P ∗

1 , P ∗
2 , . . . , P ∗

m partitions. Is important to note that the
partitions from which we shall gather the negative evidence cannot be the same
partitions used for gathering positive evidence. In fact, the partitions used to
gather negative evidence P ∗

1 , P ∗
2 , . . . , P ∗

m should be generated with different clus-
tering algorithms or data features, more attuned to obtain this type of evidence.
Futhermore, negative evidence can only be used in conjunction with positive
evidence; negative evidence only indicates which instances should be in different
clusters, but not which instances should be in the same cluster.

Finally, positive and negative evidence matrices are combined into a single
evidence matrix, E, that will be used to generate the final partition:

E = C + C−. (4)
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2.3 Extracting the Final Data Partition

The last step of our clustering ensemble algorithm is extracting from the matrix
E the final data partition P∗. To this end we shall apply a clustering algorithm.
The average-link hierarchical clustering algorithm was developed for clustering
correlation matrices, such as our evidence matrix [20]. Out of the several algo-
rithms tried, this one has shown the best performance.

Most of the clustering ensemble methods rely on a user-specified number
of clusters to build the final data partition P∗. In [8] an alternative method is
proposed: the use of a lifetime criterion to determine the number of clusters. In
an agglomerative algorithm, such as the average-link, each instance starts in its
own cluster. In each iteration the closest pair of clusters are merged until only one
cluster remains. The k-cluster lifetime value is defined as the absolute difference
between the thresholds on the dendogram that lead to the identification of k
clusters. This value is calculated for all the possible values of k (i.e., all possible
number of clusters). The number of clusters that yields the highest lifetime value
will be the one selected for the final data partition.

3 Application to Heartbeat Clustering

Cardiovascular diseases are the first cause of death in the world and are pro-
jected to remain the single leading cause of death for the foreseeable future [16].
The analysis of the electrocardiogram (ECG) is an important tool for the study
and diagnosis of heart diseases. However, this analysis is a tedious task for the
clinicians due to the large amount of data, especially in long recordings such
as Holter recordings. For example, a 72-hour Holter recording contains approx-
imately 300,000 heartbeats per lead. The recording can have up to 12 leads. In
these cases, the amount of data generated makes necessary the use of automatic
tools that support the clinicians. Furthermore, a disadvantage of the visual inter-
pretation of the ECG is the strong dependence of the results on the cardiologist
who performs the interpretation.

Although the detection of the heartbeat is a problem solved satisfactorily,
its classification based on its origin and propagation path in the myocardium is
still an open problem. This task, often referred to as arrhythmia identification,
is of great importance for the interpretation of the electrophysiological function
of the heart and subsequent diagnosis of the patient condition.

In the literature several approaches have been developed by estimating the
underlying mechanisms using a set of labeled heartbeats [5]. However, this app-
roach entails a strong dependence on the pattern diversity present in the training
set. Inter-patient and intra-patient differences show that it can not be assumed
that a classifier will yield valid results on a new patient, or even for the same
patient throughout time. Furthermore, class labels only provide gross informa-
tion about the origin of the heartbeats in the cardiac tissue, loosing all the
information about their conduction pathways. This approach does not distin-
guish the multiple morphological families present in a given class, as in multifocal
arrhythmias.
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Heartbeat clustering aims at grouping together in a cluster those heartbeats
that show similar properties. The possible differences for heartbeats of the same
class are preserved with this method. If the clustering algorithm was successful,
the cardiologist just has to inspect a few heartbeats of each cluster to perform
an interpretation of all the heartbeats that have fallen into that cluster. There
is no clustering method that has shown a significant advantage in the problem
of heartbeat clustering. Here we propose the use of the clustering ensembles
technique described above, to group the heartbeats according to their different
types.

3.1 ECG Database

In this work we used the MIT-BIH Arrhythmia Database [17], which includes a
wide range of arrhythmias and can be considered the gold standard test database
for automatic detection of arrhythmias [4,5,13,24]. This database is composed
by 48 two-channel ambulatory ECG recordings of 30 min. A lead is a recording
of the electrical activity of the heart. Different leads record this activity from
different positions in the patient’s body, providing slightly different information
about the heart. The recordings were digitized at 360 Hz and annotated by two
or more cardiologists. Each heartbeat is annotated with its position in time and
the type of heartbeat (16 different types). The leads used are the modified limb
lead II (MLII) and the modified leads V1, V2, V3, V4 and V5.

3.2 Preprocessing

Before extracting the features that will represent each heartbeat the ECG signal
was filtered. We applied a Wavelet filter to eliminate the baseline drift [2]. The
low frequency component of the signal was reconstructed using the coefficients of
the Discrete Wavelet Transform (DWT) and subtracted from the original signal,
removing the baseline drift. To eliminate the noise of the high frequencies a
low-pass Butterworth filter was applied with a cutoff frequency of 40 Hz.

3.3 Heartbeat Representation

The choice of data representation has a great impact on the performance of
clustering algorithms. In ECG analysis we can find several options. One is using
the samples of the digital signal as the feature vector. This representation has
the problem of the high dimensionality of the feature vectors and the sensitivity
to noise [21]. Another approach is representing the heartbeat by features such
as heights and lengths of the waves that make up the beat, which are the same
features used by clinicians when reasoning about the beat. However, it is hard to
obtain a robust segmentation of the beat to measure those features [14]. The last
main approach in the literature is using a liner combination of basis functions
to represent the heartbeat [23]. The interpretability of the feature vector is lost
with this representation, but its advantages are being compact and robust in the
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presence of noise. Hermite functions are the most widely used basis function for
the representation of heartbeats [9,10,12,13,18]. They have the advantages of
being orthonormal and that the shape of the functions is similar to the shape of
the heartbeat.

To obtain the Hermite representation we start by extracting an excerpt of
200 ms around the beat annotation of the database. This size is enough to fit
the QRS complex leaving out the P and T waves. Once the QRS has been taken
into account, the T wave provides little additional information for arrhythmia
detection, therefore it is not generally represented in the feature vector. The P
wave provides useful information, but the difficulty in identifying it normally
leads to trying to obtain information similar to that provided by the P wave
from the distance between consecutive heartbeats [5,13].

Hermite functions converge to zero at ±∞. To achieve this behavior in the
ECG, a padding of 100 ms zeros is added on each side of the 200 ms signal
excerpt. The resulting window x[l] of 400 ms is represented as:

x[l] =
N−1∑
n=0

cn(σ)φn[l, σ) + e[l],

l = −
⌊

W ·fs

2

⌋
,−

⌊
W ·fs

2

⌋
+ 1, . . . ,

⌊
W ·fs

2

⌋
,

(5)

being N the number of Hermite functions used, W the window size in seconds
and fs the sampling frequency. φn[l, σ) is the n-th discrete Hermite function
obtained by sampling at fs the n-th continuous Hermite function φ(t, σ), cn

are the coefficients of the linear combination, e[l] is the error between x[l] and
the Hermite representation, and σ controls the width of the Hermite function
enabling it to adjust to the width of the QRS. The Hermite functions φn[l, σ),
0 ≤ n < N , are defined as:

φn[l, σ) = 1√
σ2nn!

√
π
e−(l·Ts)

2/2σ2
Hn(l · Ts/σ), (6)

where Ts is the inverse of the sampling frequency.
The Hermite polynomial Hn(x) can be obtained recursively:

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x), (7)

with H0(x) = 1 and H1(x) = 2x.
The N coefficients of the linear combination cn(σ), 0 ≤ n < N , and σ com-

pose our representation of the heartbeat. Figure 2 illustrates how heartbeats can
be reconstructed from Hermite functions. We can always increase the accuracy
of the representation using more functions but, after a certain point, we will
start to model noise instead of the QRS complex.

For a given σ the coefficients cn(σ) can be calculated by minimizing the
summed square error of the Hermite functions:

∑
l

(e[l])2 =
∑
l

(
x[l] −

N−1∑
n=0

cn(σ)φn[l, σ)
)2

. (8)
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Original Beat N=3 N=6

N=9 N=12 N=15

Fig. 2. Original beat and Hermite approximation with N = 3, 6, 9, 12 and 15.

The minimum of the square error is easily calculated thanks to the orthogonality
property:

cn(σ) = x · φn(σ), (9)

where the vectors are defined as x = {x[l]} and φn(σ) = {φn[l, σ)}.
An iterative stepwise increment of σ was done by recomputing (9) and (8)

for each step and selecting the σ that minimizes the error.
To identify arrhythmias that do not affect the morphology of the QRS we

generate two rhythm features from the heartbeat position annotations of the
database:

R1[i] = R[i] − R[i − 1], (10)

R2[i] = u(α) · α,

α = (R1[i + 1] − R1[i]) − (R1[i] − R1[i − 1]), (11)

where R[i] is the time of occurrence of the i-th beat, and u(x) is the Heavi-
side step function. In this work we shall use 16 Hermite functions to represent
the heartbeat, a number high enough to represent most of the QRS complexes
accurately and low enough to not model noise [15]. The representation of each
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N N N R R R

Fig. 3. The figure shows three normal beats followed by three bundle branch block
beats. Note how the distance between beats is not altered at any time. The three
pathological beats shown in the image have the same values for the features given by
Eqs. 10 and 11 as the normal beats.

N N A N N

Fig. 4. The third beat is a premature atrial beat. It is morphologically identical to
the other four normal beats shown in the image. The fact that the distance between
the atrial beat and the preceding and subsequent beat is different than the distance
between normal beats is key to identify this arrhythmia.

heartbeat will be made up by 36 features, 16 Hermite coefficients for each one
of the two leads, one sigma value per lead, and the two rhythm features given
by (10) and (11).

4 Experimental Results

We shall use three different strategies for ensemble generation. The first strategy
is the classical approach in machine learning of putting together all the informa-
tion (Hermite parameters extracted from the two ECG leads and the features
given by (10) and (11)) in the same feature vector. Based on this feature vector
we generate the data partitions P1, P2, . . . , Pm.
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The second strategy relies on the hypothesis that generating data partitions
on different types of features yields better results than using all the features.
Each lead in the ECG is recording the electrical activity from a different view
point of the heart. This makes some configurations more suited to detect certain
pathologies. Furthermore, the rhythm features present a completely different
information, with another frame of reference such as the distance between beats
instead of the electrical activity. By dividing the information in several sets we
can take advantage of these differences and improve the clustering results. Based
on these assumptions, the information is split in three different representations:
one Hermite representation is obtained from each lead and a third one is obtained
from the rhythm features. In this strategy the three representations will be used
separately to generate data partitions that provide positive evidence.

In heartbeat clustering, the fact that two beats have approximately the same
distance to the next beat and the previous beat doesn’t mean that they are of
the same type (see Fig. 3). However, two heartbeats with considerably different
distances to the next beat and the previous beat are most likely of different
types (see Fig. 4). In the third strategy, based on this knowledge, we will use
the same configuration that in the second strategy, but in this case the partition
generated from the rhythm features will be used to generate negative evidence.

In the first strategy 100 data partitions are generated using the complete fea-
ture set with the K-means algorithm as is explained in Sect. 2.1. In the second
strategy 100 data partitions are generated for each one of the three sets of fea-
tures, making a total of 300 data partitions. The evidence in the data partitions
is gathered in the matrices CS1 and CS2 for the first and the second strategy,
respectively. In these strategies we are not using the negative evidence.

In the third strategy we will also generate 100 partitions for each of the
two Hermite representations extracted from each ECG leads. These partitions
provide positive evidence. However, in this case the 100 data partitions cor-
responding to the rhythm features will be treated as negative evidence (see
Eq. 3). To obtain the final matrix for this strategy we shall combine the evi-
dence obtained from the Hermite representation of each ECG lead, CS3, and the
evidence obtained from the rhythm features, C−

S3, into a final matrix ES3 (see
Eq. 4).

The final partitions for each strategy are generated from their respective evi-
dence matrices by applying the average-link method. We ran a test in which
the lifetime criterion was used to determine the number of partitions. An addi-
tional test with a fixed number of partitions (25) was also run. This second test
will allow us to compare our results with the most referenced work in heartbeat
clustering [13], where 25 clusters per recording were used.

To validate our results, we shall consider that each cluster belongs to the beat
type of the majority of its heartbeats. All the heartbeats of a different type than
their cluster are considered errors. In practice, this mapping between clusters and
beat types could be obtained just by having a cardiologist label one beat of each
cluster. Table 1 shows the results for the different strategies using this procedure
to count the errors. This table contains the number of errors, when using a fixed
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Table 1. Results of the clustering for the three strategies. For each strategy we have
the number of errors using a fixed number of 25 clusters (25C) and using the lifetime
criterion. In the second case we also show the number of clusters chosen by this criterion.

1 Strategy 2 Strategy 3 Strategy

Record 25C Lifetime 25C Lifetime 25C Lifetime

Errors Errors Clusters Errors Errors Clusters Errors Errors Clusters

100 33 33 5 6 33 2 6 33 6

101 3 3 7 0 3 5 0 3 5

102 7 47 6 13 58 4 12 30 12

103 1 1 15 0 1 2 0 0 80

104 251 257 11 309 351 4 235 230 35

105 11 12 10 5 5 5 7 5 43

106 2 10 9 1 28 7 1 1 24

107 0 1 9 1 1 3 1 1 29

108 11 16 9 9 9 2 9 9 20

109 4 9 14 2 10 2 3 2 28

111 0 0 11 0 0 2 0 0 17

112 2 2 7 1 2 3 2 2 26

113 0 0 11 0 0 2 0 0 64

114 12 16 12 11 16 4 9 9 36

115 0 0 4 0 0 3 0 0 37

116 2 2 13 0 2 2 1 1 24

117 1 1 7 0 0 7 0 0 56

118 96 96 12 58 100 2 45 7 188

119 0 0 7 0 0 2 0 0 28

121 1 1 12 0 1 2 0 0 27

122 0 0 8 0 0 8 0 0 11

123 0 0 6 0 0 2 0 0 81

124 36 43 9 41 41 4 41 41 11

200 129 130 15 117 531 14 53 52 86

201 48 54 7 50 65 4 48 49 10

202 37 42 12 17 56 2 19 19 31

203 81 82 19 286 385 2 76 59 171

205 14 14 9 13 15 6 14 14 18

207 187 196 20 52 318 5 130 23 76

208 107 109 17 120 449 3 105 143 6

209 181 298 5 106 162 3 66 136 3

210 32 37 17 30 71 2 33 18 120

212 0 0 11 3 4 4 2 2 57

213 112 351 8 90 396 3 102 103 15

(Continued)
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Table 1. (Continued)

1 Strategy 2 Strategy 3 Strategy

Record 25C Lifetime 25C Lifetime 25C Lifetime

Errors Errors Clusters Errors Errors Clusters Errors Errors Clusters

214 6 6 14 4 5 12 4 4 31

215 4 5 20 9 26 3 7 4 100

217 34 50 10 65 69 10 58 58 29

219 11 12 9 11 18 3 9 9 6

220 94 94 3 4 94 2 6 5 35

221 1 3 8 1 1 6 1 1 31

222 389 389 10 328 421 2 288 156 183

223 116 125 17 108 265 3 106 62 59

228 3 3 14 3 4 7 3 3 12

230 0 0 9 0 0 3 0 0 25

231 2 2 5 2 2 5 2 2 5

232 388 398 12 80 89 15 68 97 22

233 19 20 18 32 35 3 17 17 57

234 2 50 5 1 50 2 1 1 15

Total 2470 3020 508 1989 4192 203 1590 1411 2091

% 2.25 2.75 1.81 3.81 1.45 1.28

Table 2. P-values of the Wilcoxon test of significance

1 Strategy vs 2
Strategy

1 Strategy vs 3
Strategy

2 Strategy vs 3
Strategy

25 Clusters 0.0820593 0.0006947 0.0402501

lifetime criterion 0.0046556 0.0000204 0.0000028

number of 25 clusters, and the number of errors and the corresponding number
of clusters, when using the lifetime criterion, for each recording of the MIT-BIH
Arrhythmia Database. We can divide the number of errors by the number of
heartbeats in the database (109966 heartbeats) to obtain the error percentage.
The results for the fixed number of clusters execution are 2.25 %, 1.81 % and
1.45 % for the first, second and third strategies, respectively. Using the lifetime
criterion the results are 2.75 %, 3.81 % and 1.28 %, respectively.

Normality was tested for the number of misclassification errors in each of
the strategies and rejected using a Shapiro-Wilk test [19]. A non-parametric
Wilcoxon test was used to determine the significance of the differences between
strategies. For a fixed number of clusters the p-values were 0.08, <0.01 and
0.04 for strategy 1 vs. strategy 2, strategy 1 vs. strategy 3, and strategy 2 vs.



66 D.G. Márquez et al.

strategy 3, respectively. When using the lifetime criterion the p-values were <0.01
in all comparisons (see Table 2).

5 Discussion

The improvement between the first and the second strategy, from 2.25 % to
1.81 % (p-value = 0.08) with the fixed number of clusters, suggests that the idea
of splitting the information of each channel and the rhythm features has merit
and should be studied further. This idea is particularly interesting to process
12-lead ECG. Usually the 12 leads are available in the clinical routine and they
all are used in the diagnosis of the patient. However, up to date, to avoid an
explosion on the size of the feature vectors representing the heartbeat, typically
only one or two leads are used when trying to identify arrhythmias. Each lead
provides a different perspective on the electrical signal and an automatic solu-
tion would benefit of combining them. Furthermore, some ECG leads may be
misplaced, disconnected or may present noise. A solution that can combine the
12 leads would be more robust and accurate than the normal approach of using
only one or two leads.

When the lifetime criterion is used, the error increases from 2.75 % to 3.81 %
(p-value = 0.004) between the first and the second strategies. At the same time,
the total number of clusters created goes down from 508 to 203 clusters, an
average of 10.5 and 4.2 clusters per recording, respectively. A small number of
clusters is desired because it means that the cardiologist will have to do less
work to interpret the results. However here it comes at the expense of a large
increase in the error.

Using a fixed number of clusters, the misclassification error between the sec-
ond strategy and the third strategy decreases from 1.81 % to 1.45 % (p-value =
0.04). The only difference is the treatment of the information from the rhythm
features. This result supports our previous assumption that the use of some rep-
resentations as negative evidence can improve the results: the use of the rhythm
features as negative evidence results in a lower misclassification error than using
them as positive evidence.

When using the lifetime criterion, the misclassification error between the
second strategy and the third strategy decreases from 3.81 % to 1.28 % (p-value
<0.01). But the lifetime criterion creates 2091 clusters (an average of 43.56
clusters per recording). This proliferation of clusters in some cases, such as in
recording 222, may be due to the noise and artifacts present in the recordings.
Especially for the third strategy, the results using the lifetime criterion are unsat-
isfactory due to the high number of groups generated. Some adjustments should
be done to control the proliferation of the clusters, or a different criterion should
be used to determine the optimum number of clusters.

In [13] a clustering algorithm based on Self Organizing Maps (SOM) is used
with a fixed number of 25 clusters. There are some differences between this paper
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and our work. Lagerholm et al. used their own annotations which may be slightly
different from the database annotations that we are using, and they don’t use
a high frequency noise filter. Nevertheless, the differences are small enough that
a comparison between their results and our results with the fixed number of
clusters is relevant. The best result obtained by Lagerholm et al. was an error
rate of 1.51 % for the complete MIT-BIH database. In our case in the first and
second strategy we obtain worse error rates 2.25 % and 1.81 %. However, using
the negative evidence in the third strategy our error rate, 1.45 %, is slightly
lower.

6 Conclusions

In traditional clustering ensembles algorithms evidence is accumulated only from
the instances that belong to the same partition. We argue that for some data
representations the fact that two instances belong to the same partition may
provide little or no information. However these data representations need not
to be useless; on the contrary: the fact that two instances belong to different
partitions created from those representations can provide useful evidence towards
the instances belonging to different clusters in the final partition.

In this paper we have introduced the concept of negative evidence to gather
evidence from the instances that do not belong to the same data partitions. Based
on this concept, we have designed a new ensemble clustering algorithm that
exploits both positive and negative evidence to create the final partition. We have
applied this algorithm to the problem of heartbeat clustering. Our hypothesis
was that the information derived from the distance from one beat to previous
and next beats would not be useful for generating positive evidence, but may
be used to generate negative evidence. When we apply our algorithm over the
MIT-BIH database the misclassification error fall from 1.81 % to 1.45 % when the
number of clusters was fixed to 25 and from 3.81 % to 1.28 % when the number
of clusters was selected by the lifetime criterion just by using the information
extracted from the distance between beats to generate negative evidence instead
of positive evidence. These results demonstrate the usefulness of the negative
evidence and encourage further research on this concept.

As a future work, we would also like to study the applicability of the clustering
ensembles to the 12-lead ECG and to develop further the concept of negative
evidence, including other potential applications.
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Abstract. Low-resolution face recognition is a very difficult problem.
In this setup, the training database or gallery contains high-resolution
images, but the image to be recognized is of low resolution. Thus we
are dealing with a resolution mismatch problem for training and test
images. Standard face recognition methods fail in this setting, which
suggests that current feature representation approaches are not adequate
to cope with this problem. Therefore, we propose the use of dissimilarity
representations based on different strategies, which differ in how images
with different resolutions are compared, to solve the resolution mismatch
problem. Experiments on four standard face datasets demonstrate that
a strategy based on first down-scaling and afterwards up-scaling training
images while up-scaling test images outperforms all the other approaches.

Keywords: Dissimilarity space · Low-resolution face recognition ·
Super-resolution · Prototype selection

1 Introduction

Face recognition has been studied for decades due to its wide range of applica-
tions. Although face recognition has achieved high recognition accuracy under
controlled environments, in low-resolution face recognition (LR FR) systems the
results are still unsatisfactory. Nowadays, there is a growing interest in real appli-
cations such as video protection and surveillance in which subjects are far away
from the camera. In such scenarios, the face image sizes tend to be small and the
images do not have a good definition of facial features. Moreover, discriminatory
features present in the facial images used for distinguishing one person from
another are lost due to the decrease in resolution, resulting in unsatisfactory
performance. As a result, low-resolution (LR) images affect the performance of
traditional face recognition systems. LR FR aims at recognizing face images with
LR and variations such as pose and illumination. In LR FR the gallery contains
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 70–83, 2015.
DOI: 10.1007/978-3-319-24261-3 6
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high resolution images while the test images are of low resolution, causing the
so-called dimensional mismatch [1,2].

Current approaches mainly include feature vector representations to allow a
good discrimination between different faces for addressing LR FR. Methods such
as the nearest neighbour (1-NN) and the bicubic interpolation are the simplest
ways to increase resolution for an input LR image [3].

In [4] the authors propose a 1-NN approach for producing super-resolution
images from ordinary images and videos. Sparse representation [5] and metric
learning [6], are some of the feature methods for LR FR with the advantages
of low computational complexity and lower requirement of training samples,
making them more suitable for real applications. However, it is difficult to find
a good feature representation in LR FR because most of the effective features
used in high-resolution face recognition such as texture and color may fail in LR
case. As a consequence, most of the successful approaches cannot be efficiently
applied to LR case [3].

A representation based on dissimilarities between objects [7,8] is an alter-
native to the feature-based representation. A dissimilarity-based representation
is advantageous in situations where it is difficult to define sufficiently discrim-
inative features, but it is easier to define dissimilarities. More specifically, the
dissimilarity space (DS) approach is very attractive due to its efficiency and easy
possibility to map new test objects compared to the Pseudo-Euclidean space rep-
resentation [7].

Based on the success of previous works [7], we used the dissimilarity repre-
sentation approach to tackle our problem. Intuitively, the proximity information
is more important for discriminating between the classes than the composition
and features of each object independently [9]. Particularly, we believe that a
dissimilarity space representation can be suitable for LR FR because in the con-
text of comparisons with the prototype objects we can compensate the noise
introduced by the low resolution as well as the lack of information in such low
resolution images. By using the differences with the prototype images for cre-
ating the representations we may be able to emphasize relevant information for
discrimination among the classes, which, otherwise, by only analyzing the image,
may be difficult to express in a feature representation. Furthermore, a dissimi-
larity representation has been used for other difficult problems as well such as:
small sample size situations [10] or problems where the results of the 1-NN on
features are still unsatisfactory [8,11].

In this work, we present an alternative to feature-based representations for
LR FR based on the DS representation. We compare the proposed dissimilar-
ity representation with feature representations for LR FR and also for very
low-resolution face recognition. Three different strategies are tested based on
original or up-scaled test images, and original or down-scaled training images to
address the mismatch problem between training and test images. The compar-
isons show that the dissimilarity space representation outperforms the feature
representation and that the low-high strategy, where the training images are
down-scaled and then up-scaled while the test images are up-scaled, is the best
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way to cope with the mismatch problem. In particular, the linear discriminant
classifier (LDC) in the dissimilarity space is very promising.

The paper is organized as follows. Section 2 presents the related work on LR
FR and the dissimilarity representation. Section 3 presents our proposed reduced
dissimilarity space to cope with classification of LR and very low-resolution
images. Experiments and discussion are presented in Sect. 4, and concluding
remarks are provided in Sect. 5.

2 Related Work

The purpose of LR FR is to recognize faces from small size or poor quality
images (e.g. face inside a 32×20 pixels image) which can also present challenging
facial variations such as pose, illumination, and expression. The LR of the test
images causes a dimensional mismatch when having to deal with high resolution
training images. Three main research lines have been considered to cope with the
problem: interpolation [12,13], down-scaling [14] and unified feature space [15].
The first approach has limitations associated to the scale factor and it is more
suitable for synthesizing generic objects or scenes instead of faces. The second
approach allows to match in the LR domain by down-sampling the training set,
but it represents a reduction of the information useful for the recognition process.
In the third approach, although it seems feasible to cope with the mismatch
problem, it is not easy to find an optimal inter-resolution space.

Several methods have been used for recognizing faces from LR images. Super
resolution (SR) is one of the most frequently employed techniques for dealing
with this problem. SR methods recover the lost information during the image
formation process by including a-priori information about the image. SR meth-
ods produce a reconstructed high-resolution image from a low-resolution one by
making assumptions about the image structure or content. The first SR tech-
niques based on reconstruction represent an intuitive approach to improve a face
image, but are aimed mostly at a visual improvement, and are not designed from
a pattern recognition point of view.

Recently, Zou and Yuen [14] proposed the very low recognition problem,
where the resolution of the face images to be recognized is lower than 16× 12
pixels. Hennings et al. included facial features as prior information into an SR
method named Simultaneous Super-Resolution and Recognition (S2R2) [2] to
improve the results. They showed that when faces are of very low-resolution,
the approach of matching in the low-resolution domain is better than applying
SR. Li et al. [15] proposed the coupled locality preserving mappings method to
include robust features in a unified feature space for increasing the discriminabil-
ity in the recognition process. Nevertheless, finding a resolution-robust feature
representation is still far from being a solved problem.

An alternative solution is a dissimilarity representation between objects
based on the general idea proposed in [7], in which dissimilarities are considered
as the connection between perception and higher-level knowledge, thus being an
important factor in the process of human recognition and categorization. The
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dissimilarity representation is also able to deal with several problems related to
the feature vector representation. A feature-based description may be difficult to
find or can be inefficient for the learning task. Furthermore, the dimensionality
of the feature vector is usually larger than the number of images, commonly
known as the curse of dimensionality. Another advantageous property of this
representation is the possibility to learn from small sample sizes [10].

The dissimilarity-based approach has successfully been used for multiple
tasks such as person re-identification [16] and object classification [17]. In [16],
Satta et al. convert a given appearance-based re-identification method into a
dissimilarity-based one and show a reduction in both the processing time and
the memory requirements. In [18], Orozco et al. use a dissimilarity-based method
for face recognition which was derived by applying the eigenface transformation
and, afterwards, the Euclidean distance between the eigenface representations.

Our present work differs from these works in several aspects. The application
considered in this paper is very different from previous applications as we have
to transform the images first to cope with the resolution mismatch problem, i.e.,
we propose different strategies to be able to compare test images with train-
ing images. We also propose the use of a reduced dissimilarity space by using
prototype selection, including an analysis of its benefits at test time. We show
experimentally that one of our proposals is very promising, and that a small
dimensionality of the DS is sufficient to achieve a good discrimination among
the classes.

3 Proposed Approach: Reduced Dissimilarity Space

3.1 Dissimilarity Space and Prototype Selection

Dissimilarity representations have been studied in a number of problems [18–20],
however their application for LR FR has not been studied so far. We believe that
this type of relational representation can cope with the poor discriminability of
standard feature representations when using LR images. Let X be the space of
objects, let R = {r1, r2, ..., rk} be the set of prototypes such that R ∈ X, and
let d : X × X → R

+ be a suitable dissimilarity measure for the problem. For
a training set T = {x1, x2, ..., xl} such that T ∈ X, a mapping φd

R : X → R
k

defines the embedding of training and test objects in the DS by the dissimilarities
with the prototypes:

φd
R(xi) = [d(xi, r1) d(xi, r2) ... d(xi, rk)]. (1)

In a problem where training, prototype, and test images have the same res-
olution it is straightforward to apply the approach. However, in our setup, test
images are of LR, so we need to decide how to deal with the resolution mismatch
problem. We compare three different strategies to cope with the resolution mis-
match between training, prototype, and test images:

– Low-resolution test images, down-scaled training images (low) and down-
scaled prototypes
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– up-scaled low-resolution test images, down-scaled and then up-scaled training
images (low-high), and high-resolution prototypes

– up-scaled low-resolution test images, high-resolution training images (high),
and high-resolution prototypes

The same training set can be used as the set of prototypes. However, for training
sets of moderate to large size, a selection of the best set of prototypes is needed
to find a trade-off between classification accuracy and computational efficiency.
This can be achieved by selecting a reduced set of prototypes which has similar
performance to using the whole set.

To select the reduced set of prototypes we need a search strategy with a
suitable criterion. Different approaches have been previously studied for this
purpose (see [8,19]). Recently, a genetic algorithm (GA) was proposed in [21],
which showed to be very fast and accurate in selecting a good set of prototypes.
It proposes a number of improvements to the simple GA such as the use of
indexes for codifying the prototypes instead of binary chromosomes, and an early
stopping criterion which was shown to be adequate for this type of problem. In
addition, only scalable criteria are considered for the fitness function to evaluate
each solution (set of prototypes), therefore the method is fast and scalable. We
will use the supervised prototype selection strategy from [21] to find an adequate
set of prototypes for a given or desired cardinality of the DS.

The GA can also be used for feature selection by using a slightly different
selection criterion. The criterion for selecting prototypes is based on maximizing
matching labels between the prototypes and their nearest neighbours. There-
fore, for selecting features, it is replaced by a criterion minimizing the nearest
neighbour error in the training set for a feature set of a given cardinality.

3.2 Considerations at Test Time

We want to remark the advantages of a reduced dissimilarity space (RDS) by
prototype selection in comparison with a RDS by feature extraction as well as
the advantages over a reduced feature space (RFS) by feature selection or by
feature extraction.

Suppose we have these spaces with the same dimensionality. The problem of
a feature space with selected features is that we lose the information contained in
the discarded features, especially in problems where the majority of the features
are informative. Even if only the selected features are informative, due to the
nature of the representation (such as a histogram), all features might need to
be extracted before discarding the non-informative ones. In contrast, once the
prototypes were selected to create a RDS, for a new test object we only need to
measure the dissimilarities with the selected prototypes. Besides, a small set of
prototypes is often enough to represent the data properly which is not the case
for handcrafted feature representations [22].

Feature extraction methods, both in a feature space or a DS, present even
stronger disadvantages in terms of computing time at test time. These methods
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always require the computation of the full set of features (or alternatively dissim-
ilarities with the large set of prototypes) before applying the transformation to
a reduced space, which is performed by expensive floating-point multiplications
of the test object representation with elements from a mapping or projection
matrix. These costs are not adequate for deployment in real-world scenarios [22].

4 Experiments and Discussion

This section presents the experimental comparison, results and discussion of
different feature-based and dissimilarity based strategies for the classification of
LR images where the gallery is composed by high resolution images.

4.1 Databases Description

Four different standard face datasets were used for the experiments. In each
case, the test images were obtained by down-scaling the original images using
a bicubic interpolation. All images were geometrically normalized by the center
of the eyes to a LR size of 10×12 pixels or 24×30 pixels during experiments. A
bicubic interpolation was also applied in the up-scaling process to obtain high
resolution images of 64× 80 pixels.

Olivetti Research Database (ORL) [23]. The ORL database contains 400
grayscale images of 40 individuals, 10 images per person. Some images are
taken with a certain time difference. They present variations in facial expres-
sion (including opening and closing the eyes), illumination changes, different
details on the face (with and without glasses) and a slight difference in scale.
Figure 1 shows examples of variations on this database.

Fig. 1. Some examples of ORL database

Yale Database [24]. The Yale database contains images with variations in
lighting condition (left-light, center-light, right-light), facial expression (normal,
happy, sad, sleepy, surprised, and wink), and with/without glasses. Figure 2
shows example images with some variations for the individuals. During the exper-
iments we used a subset of the database, which consists of 200 images belonging
to 10 subjects with different variations. Some subsets were removed because they
have strong differences in lighting conditions and addressing this problem is not
the purpose in this work.
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Fig. 2. Some examples of Yale database

Essex Database [25]. The database contains single light source images with
racial diversity, and variations with glasses, beards, and so forth. The images
are captured from a fixed distance with different orientation and different facial
expression. The database consists of images of 153 individuals (20 images each).
Each image has plain green background with no head scale but with very minor
variation in head turn, tilt and slant. Some example images are shown in Fig. 3.

During the experiments we used a subset of the database which consists
of 720 images in total belonging to 20 different subjects having 36 images per
person with different variations. Some subsets were removed to focus on the
low-resolution problem.

Fig. 3. Some examples of Essex database

Labeled Faces in the Wild (LFW) [26]. It contains 13233 labelled faces of
5749 people. For 1680 people two or more faces are available. The data is chal-
lenging, as the faces are detected in images “in the wild”, taken from Yahoo!
News. The faces present some variations including changes in scale, pose, back-
ground, hairstyle, clothing, expression, image resolution, focus, and others. Dur-
ing the experiments we used a subset of the database consisting of 3 832 images
belonging to 178 classes, by selecting the classes with 8 or more images. Some
example images are shown in Fig. 4.

The characteristics of the datasets are summarized in Table 1.

4.2 Experimental Setup

We randomly divided the datasets into two sets for training and testing of equal
size five times, ensuring that each class is equally represented in each set. The
classifiers as well as the prototype selectors are trained using the training set
and classification errors are computed for the test set. The average error values
are reported.
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Fig. 4. Some examples of LFW database

Table 1. Characteristics of the datasets used for the experiments

Datasets # Classes # Obj in total

ORL 40 400

Yale 10 200

Essex 36 720

LFW 178 3832

We consider two different representation spaces: a feature space (feat) and a
dissimilarity space (DS). Furthermore, we consider two different classifiers: the
linear discriminant classifier (LDC), which assumes equal covariance matrices
for the classes, and the 1-NN.

In order to obtain the feature representation, we compute local binary pat-
terns on local blocks of the geometrically normalized images. Histograms were
computed on each block and concatenated. Chi square distances are used for
the 1-NN classifiers as well as for creating the DS. Note that, in our case, the
dissimilarity measure was computed on top of a feature representation, therefore
we suffer from the cost of first computing the feature representation. However,
a dissimilarity representation can also be computed by directly matching the
images if we have a good dissimilarity measure for this purpose.

As it would be convenient to compute the dissimilarity measure by matching
the images directly, we reviewed the literature to find good (dis)similarity mea-
sures for this purpose. However, we found that such measures are not as heavily
used for face recognition as feature-based measures. This happens because several
conditions affect facial images such as differences in pose, illumination, expres-
sion, and other capturing conditions, which directly affect image matching mea-
sures such as correlation. Unfortunately, despite several attempts to create good
illumination and pose normalization methods to improve the original images so
they can be used for direct matching, it is easier to use features that intrinsically
deal with these problems such as the local binary patterns histograms that we
used as base for computing the dissimilarities. The definition of such a measure
that is able to deal with the mentioned problems directly is still an open issue.

In general, our motivations behind the use of dissimilarities on top of fea-
tures for the experiments are: first, we can perform a fair comparison between
the feature representation and the dissimilarity representation since it was com-
puted on top of the same feature representation, second, the Chi square distance
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measure on top of the local binary patterns histograms have shown very good
performances in previous works for face recognition [27]. Therefore, it is a good
starting point for our research.

Different DSs are created for each of the strategies and classifiers. However,
as a baseline, the results of the 1-NN and LDC in the feature space are shown
only for the best performing resolution strategy in the DS.

As parameters for the GA for prototype selection we used very similar para-
meters to [21]:

– 40 chromosomes for the population
– 30 generations reached or 10 generations without change in the fitness value

as stopping criteria
– Reproduction probability equal to 0.5
– Mutation probability equal to 0.02

For the feature representation the same GA was used for feature selection to
compare the feature space and DS space with the same dimensionality. The
criterion used for feature selection is an equivalent version to the one used for
prototype selection, the minimization of the 1-NN error on the training set.

4.3 Results and Discussion

Figures 5, 6, 7 and 8 show error rates for different numbers of prototypes in the
DS or features in the feature space. For the 1-NN all the features are used. For
both baseline classifiers the training set used is consistent with the one used for
the different DS. Note that the 1-NN with the up-scaled images (1-NN low-high
feat) correspond to a variant of baseline in LR FR, the so-called super resolution.

From the results we can see that the DS representation outperforms the
feature representations. We think that LR images benefit from the relational

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of prototypes

Av
g 

er
ro

r (
5 

ex
pe

rim
en

ts
)

LDC low−high feat.
1−NN low−high feat.
1−NN low feat.
LDC low DS
1−NN low DS
LDC low−high DS
1−NN low−high DS
LDC high DS
1−NN high DS

(a) using 10x12 pixels as low-
resolution size

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of prototypes

Av
g 

er
ro

r (
5 

ex
pe

rim
en

ts
)

LDC low−high feat.
1−NN low−high feat.
1−NN low feat.
LDC low DS
1−NN low DS
LDC low−high DS
1−NN low−high DS
LDC high DS
1−NN high DS

(b) using 24x30 pixels as low-
resolution size

Fig. 5. Experimental results in ORL database
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Fig. 6. Experimental results in Yale database
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Fig. 7. Experimental results in Essex database

representation since features alone may not capture relevant information for
discrimination. Comparisons with other objects can provide relevant information
for discrimination since small details only present in high resolutions are not as
influential as in a feature representation. The LR and high-resolution strategies
perform poorly, while the best performing strategy is the low-high one. Especially
the classification results with the LDC in the DS for this strategy are very
promising.

The low-high strategy focuses on making the gallery images resemble the
condition of the test images, since they are down-scaled and then up-scaled in
the same way as the test images. In higher resolutions, the feature representation
is able to capture the relevant information which is not possible for the LR case.
Therefore, original high-resolution training images may be useful for comparing
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Fig. 8. Experimental results in LFW database

high to high resolution but they are definitely not good when the test images
were originally of LR. We found that while the resolution of the test images
increases, the classification results in the DS improve, especially when using
high resolution training images.

Our results contradict those of Hennings et al. [2] where the authors found
that the approach of matching in the low-resolution domain is better than apply-
ing SR when faces are of very low-resolution. What we found is that it is better
to up-scale the test images and match them to the training images, instead of
matching the original LR images. However, what is different in our approach
is that we propose that the training images must also go through the same
transformation process.

Note that the dissimilarity representations are very compact since the length
of the final vectors is equal to the number of prototypes, and from the figures
it can be seen than a small set of prototypes (e.g. cardinality equal to 200) is
usually sufficient to obtain a good representation. This makes the approach suit-
able for large-scale and real-time recognition systems. This is also beneficial for
representing a new test object since it implies that at test time only the dissim-
ilarities with the small set of prototypes need to be measured. Note that we do
not compare feature extraction methods because they would require the compu-
tation of dissimilarities with all the prototypes before performing the reduction
for incoming test objects. This poses an extra computational cost that is avoided
by our proposal.

5 Conclusions

In this paper we presented the reduced dissimilarity space (RDS) as an alter-
native representation for low-resolution face recognition. Different dissimilarity-
based representations were compared with feature-based representations.
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We found that using the down-scaled gallery and prototype images is coun-
terproductive, while the strategies that up-scale the test images perform the
best. However, there was a large difference between using the gallery or training
images in their original high resolution and transforming them by first down-
scaling and afterwards up-scaling them again. The proposed transformation out-
performed using the gallery images in their original resolution. This is interest-
ing since previous approaches focused on finding the best transformation for
the low-resolution test images to resemble the high resolution images from the
gallery, while we propose to also transform the gallery images to resemble the
low-resolution test images.

The experiments showed that more discriminative information for classifica-
tion can be obtained if the LR images are analyzed in the context of dissim-
ilarities with other images. Note that, as our approach only assumes general
dissimilarity measures, it can be used with any user-defined or learned metric.
Dissimilarity measures computed directly on the images are desirable, however
we did not find such a measure in the literature with good results and adopted an
established dissimilarity for face recognition. In addition, our approach produces
very compact representations which are suitable for large-scale and real-time
recognition systems.

Future studies will be devoted to study metric learning approaches to cre-
ate more discriminative dissimilarity measures or to improve the representation
in the dissimilarity space. Furthermore, extending the dissimilarity space with
additional dissimilarity measures [28] or prototypes from outside the training
set [29] could be of interest. We believe that a learned representation using the
dissimilarity representation as a starting point could improve the results even
further. The design of robust measures for matching the images directly is also
an interesting open issue.
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Abstract. Deep learning has proven itself as a successful set of models
for learning useful semantic representations of data. These, however, are
mostly implicitly learned as part of a classification task. In this paper we
propose the triplet network model, which aims to learn useful represen-
tations by distance comparisons. A similar model was defined by Wang
et al. (2014), tailor made for learning a ranking for image information
retrieval. Here we demonstrate using various datasets that our model
learns a better representation than that of its immediate competitor, the
Siamese network. We also discuss future possible usage as a framework
for unsupervised learning.
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1 Introduction

For the past few years, deep learning models have been used extensively to solve
various machine learning tasks. One of the underlying assumptions is that deep,
hierarchical models such as convolutional networks create useful representation
of data [1,10], which can then be used to distinguish between available classes.
This quality is in contrast with traditional approaches requiring engineered fea-
tures extracted from data and then used in separate learning schemes. Features
extracted by deep networks were also shown to provide useful representation
[20,24] which can be, in turn, successfully used for other tasks [19].

Despite their importance, these representations and their corresponding
induced metrics are often treated as side effects of the classification task, rather
than being explicitly sought. There are also many interesting open questions
regarding the intermediate representations and their role in disentangling and
explaining the data [2]. Notable exceptions where explicit metric learning is pre-
formed are the Siamese Network variants [3,5,9], in which a contrastive loss
over the metric induced by the representation is used to train the network to
distinguish between similar and dissimilar pairs of examples. A contrastive loss
favours a small distance between pairs of examples labeled as similar, and large
distances for pairs labeled dissimilar. However, the representations learned by
these models provide sub-par results when used as features for classification,
compared with other deep learning models including ours. Siamese networks

c© Springer International Publishing Switzerland 2015
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are also sensitive to calibration in the sense that the notion of similarity vs
dissimilarity requires context. For example, a person might be deemed similar
to another person when a dataset of random objects is provided, but might be
deemed dissimilar with respect to the same other person when we wish to distin-
guish between two individuals in a set of individuals only. In our model, such a
calibration is not required. In fact, in our experiments here, we have experienced
hands on the difficulty in using Siamese networks.

We follow a similar task to that of [4]. For a set of samples P and a chosen
rough similarity measure r(x, x′) given through a training oracle (e.g. how close
are two images of objects semantically) we wish to learn a similarity function
S(x, x′) induced by a normed metric. Unlike [4]’s work, our labels are of the form
r(x, x1) > r(x, x2) for triplets x, x1, x2 of objects. Accordingly, we try to fit a
metric embedding and a corresponding similarity function satisfying:

S(x, x1) > S(x, x2), ∀x, x1, x2 ∈ P for which r(x, x1) > r(x, x2).

In our experiment, we try to find a metric embedding of a multi-class labeled
dataset - meaning that our similarity function is the same-class indicator. We
will always take x1 to be of the same class as x and x2 of a different class,
although in general more complicated choices could be made. Accordingly, we
will use the notation x+ and x− instead of x1, x2. We focus on finding an L2

embedding, by learning a function F (x) for which S(x, x′) = ‖F (x) − F (x′)‖2.
Inspired from the recent success of deep learning, we will use a deep network as
our embedding function F (x).

We call our approach a triplet network. A similar approach was proposed in
[23] for the purpose of learning a ranking function for image retrieval. Compared
with the single application proposed in [23], we make a comprehensive study of
the triplet architecture which is, as we shall argue below, interesting in and of
itself. In fact, we shall demonstrate below that the triplet approach is a strong
competitor to the Siamese approach, its most obvious competitor.

2 The Triplet Network

A Triplet network (inspired by “Siamese network”) is comprised of 3 instances
of the same feed-forward network (with shared parameters). When fed with 3
samples, the network outputs 2 intermediate values - the L2 distances between
the embedded representation of two of its inputs from the representation of
the third. If we will denote the 3 inputs as x, x+ and x−, and the embedded
representation of the network as Net(x), the one before last layer will be the
vector:

TripletNet(x, x−, x+) =

[
‖Net(x) − Net(x−)‖2
‖Net(x) − Net(x+)‖2

]
∈ R

2
+ .

In words, this encodes the pair of distances between each of x+ and x− against
the reference x (Fig. 1).



86 E. Hoffer and N. Ailon

Net(x) − Net(x−) 2 Net(x) − Net(x+) 2

x− x x+

Comparator

Net Net Net

Fig. 1. Triplet network structure

2.1 Training

Training is preformed by feeding the network with samples where, as explained
above, x and x+ are of the same class, and x− is of different class. The network
architecture allows the task to be expressed as a 2-class classification problem,
where the objective is to correctly classify which of x+ and x− is of the same
class as x. We stress that in a more general setting, where the objective might
be to learn a metric embedding, the label determines which example is closer
to x. Here we simply interpret “closeness” as “sharing the same label”. In order
to output a comparison operator from the model, a SoftMax function is applied
on both outputs - effectively creating a ratio measure. Similarly to traditional
convolutional-networks, training is done by simple Stochastic Gradient Descent
on a negative-log-likelihood loss with regard to the 2-class problem. We later
examined that better results are achieved when the loss function is replaced by
a simple Mean Squared Error on the soft-max result, compared to the (0, 1)
vector, so that the loss is

Loss(d+, d−) = ‖(d+, d− − 1)‖22 = const · d2+
where

d+ =
e‖Net(x)−Net(x+)‖2

e‖Net(x)−Net(x+)‖2 + e‖Net(x)−Net(x−)‖2

and

d− =
e‖Net(x)−Net(x−)‖2

e‖Net(x)−Net(x+)‖2 + e‖Net(x)−Net(x−)‖2
.
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We note that Loss(d+, d−) → 0 iff ‖Net(x)−Net(x+)‖
‖Net(x)−Net(x−)‖ → 0, which is the required

objective. By using the same shared parameters network, we allow the back-
propagation algorithm to update the model with regard to all three samples
simultaneously.

3 Tests and Results

The Triplet network was implemented and trained using the Torch7 environ-
ment [7].

3.1 Datasets

We experimented with 4 datasets. The first is Cifar10 [11], consisting of 60000
32× 32 color images of 10 classes (of which 50000 are used for training only, and
10000 for test only). The second dataset is the original MNIST [12] consisting of
60000 28× 28 gray-scale images of handwritten digits 0–9, and a corresponding
set of 10000 test images. The third is the Street-View-House-Numbers (SVHN) of
[18] consisting of 600000 32 × 32 color images of house-number digits 0–9. The
fourth dataset is STL10 of [6], similar to Cifar10 and consisting of 10 object
classes, only with 5000 training images (instead of 50000 in Cifar) and a bigger
96× 96 image size.

It is important to note that no data augmentation or whitening was applied,
and the only preprocessing was a global normalization to zero mean and unit
variance. Each training instance (for all four datasets) was a uniformly sampled
set of 3 images, 2 of which are of the same class (x and x+), and the third
(x−) of a different class. Each training epoch consisted of 640000 such instances
(randomly chosen each epoch), and a fixed set of 64000 instances used for test.
We emphasize that each test instance involves 3 images from the set of test
images which was excluded from training.

3.2 The Embedding Net

For Cifar10 and SVHN we used a convolutional network, consisting of 3
convolutional and 2× 2 max-pooling layers, followed by a fourth convolutional
layer. A ReLU non-linearity is applied between two consecutive layers. Network
configuration (ordered from input to output) consists of filter sizes {5,3,3,2},
and feature map dimensions {3,64,128,256,128} where a 128 vector is the final
embedded representation of the network. Usually in convolutional networks, a
subsequent fully-connected layer is used for classification. In our net this layer
is removed, as we are interested in a feature embedding only.

The network for STL10 is identical, only with stride=3 for the first layer, to
allow the bigger input size. The network used for MNIST was a smaller version
consisting of smaller feature map sizes {1,32,64,128}.
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3.3 Results

Training on all datasets was done by SGD, with initial learning-rate of 0.5 and
a learning rate decay regime. We used a momentum value of 0.9. We also used
the dropout regularization technique with p = 0.5 to avoid over-fitting. After
training on each dataset for 10–30 epochs, the network reached a fixed error
over the triplet comparisons. We then used the embedding network to extract
features from the full dataset, and trained a simple 1-layer network model on
the full 10-class classification task (using only training set representations). The
test set was then measured for accuracy. These results (Table 1) are comparable
to state-of-the-art results with deep learning models, without using any artifi-
cial data augmentation [8,14,25]. Noteworthy is the STL10 dataset, in which
the TripletNet achieved the best known result for non-augmented data. We con-
jecture that data augmentation techniques (such as translations, mirroring and
noising) may provide similar benefits to those described in previous works.

We also note that similar results are achieved when the embedded represen-
tations are classified using a linear SVM model or KNN classification with up to
0.5 % deviance from the results in Table 1. Another side-affect noticed, is that
the representation seems to be sparse - about 25 % non-zero values. This is very
helpful when used later as features for classification both computationally and
with respect to accuracy, as each class is characterised by only a few non zero
elements.

Table 1. Classification accuracy (no data augmentation)

Dataset TripletNet SiameseNet Best known result (no data augmentation)

Mnist 99.54±0.08 % 97.9±0.1 % 99.61 % [13,16]

Cifar10 87.1±0.07 % - 90.22 % [13]

SVHN 95.37±0.08 % - 98.18 % [13]

STL10 70.67±0.1 % - 67.9 % [15]

3.4 2d Visualization of Features

In order to examine our main premise, which is that the network embeds the
images into a representation with meaningful properties, we use PCA to project
the embedding into 2d euclidean space which can be easily visualized (Figs. 2, 3
and 4). We can see a significant clustering by semantic meaning, confirming that
the network is useful in embedding images into the euclidean space according to
their content. Similarity between objects can be easily found by measuring the
distance between their embedding and, as shown in the results, can reach high
classification accuracy using a simple subsequent linear classifier

3.5 Comparison with Performance of the Siamese Network

The Siamese network is the most obvious competitor for our approach. Our
implementation of the Siamese network consisted of the same embedding net-
work, but with the use of a contrastive loss between a pair of samples, instead
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of three (as explained in [5]). The generated features were then used for clas-
sification using a similar linear model as was used for the TripletNet method.
We measured lower accuracy on the MNIST dataset compared to results gained
using the TripletNet representations Table 1.

We have tried a similar comparison for the other three datasets, but unfor-
tunately could not obtain any meaningful result using a Siamese network. We
conjecture that this might be related to the problem of context described above,
and leave the resolution of this conjecture to future work.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

12

14

x

y

Cifar10 2d Feature Representation

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Fig. 2. CIFAR10 - Euclidean representation of embedded test data, projected onto top
two singular vectors

4 Future Work

As the Triplet net model allows learning by comparisons of samples instead of
direct data labels, usage as an unsupervised learning model is possible. Future
investigations can be performed in several scenarios:

– Using Spatial Information. Objects and image patches that are spatially
near are also expected to be similar from a semantic perspective. Therefore,
we could use geometric distance between patches of the same image as a rough
similarity oracle r(x, x′), in an unsupervised setting.

– Using Temporal Information. The same is applicable to time domain,
where two consecutive video frames are expected to describe the same object,
while a frame taken 10 min later is less likely to do so. Our Triplet net may
provide a better embedding and improve on past attempts in solving classifi-
cation tasks in an unsupervised environment, such as that of [17].
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It is also well known that humans tend to be better at accurately providing
comparative labels. Our framework can be used in a crowd sourcing learning
environment. This can be compared with [22], who used a different approach.
Furthermore, it may be easier to collect data trainable on a Triplet network, as
comparisons over similarity measures are much easier to attain (pictures taken
at the same location, shared annotations, etc).

5 Conclusions

In this work we introduced the Triplet network model, a tool that uses a deep
network to learn useful representation explicitly. The results shown on various
datasets provide evidence that the representations that were learned are useful to
classification in a way that is comparable with a network that was trained explic-
itly to classify samples. We believe that enhancement to the embedding network
such as Network-in-Network model [14], Inception models [21] and others can
benefit the Triplet net similarly to the way they benefited other classification
tasks. Considering the fact that this method requires to know only that two out
of three images are sampled from the same class, rather than knowing what that
class is, we think this should be inquired further, and may provide us insights
to the way deep networks learn in general. We have also shown how this model
learns using only comparative measures instead of labels, which we can use in
the future to leverage new data sources for which clear out labels are not known
or do not make sense (e.g. hierarchical labels).
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Abstract. As an important unsupervised learning approach, clustering
is widely used in pattern recognition, information retrieval and image
analysis, etc. In various clustering approaches, graph based clustering
has received much interest and obtain impressive success in applica-
tion recently. However, existing graph based clustering algorithms usu-
ally require as input some parameters in one form or another. In this
paper we study the dominant sets clustering algorithm and present a
new clustering algorithm without any parameter input. We firstly use
histogram equalization to transform the similarity matrices of data. This
transformation is shown to make the clustering results invariant to sim-
ilarity parameters effectively. Then we merge clusters based on the ratio
between intra-cluster and inter-cluster similarity. Our algorithm is shown
to be effective in experiments on seven datasets.

1 Introduction

Clustering is an important unsupervised learning approach and widely used in
various fields, including pattern recognition, information retrieval and image
analysis, etc. Generally, existing clustering algorithms fall into five categories,
i.e., partitioning based, density based, model based, grid based and hierarchical
clustering. Some popular algorithms of these categories include k-means, BIRCH,
DBSCAN [1], EM and CLIQUE [2], etc. Some recent developments in these fields
include [3–6].

Among various kinds of clustering algorithms, graph based clustering has
attracted much interest and achieved impressive success in application in recent
years, and the popular works in this domain include [7,8]. Graph based clus-
tering algorithms capture the pairwise relations among data with a graph and
then represent the graph by a pairwise similarity matrix. With the similarity
matrix as input, these algorithms try to find a partitioning of the graph where
each part corresponds to a cluster. In the following we briefly review three types
of graph based clustering algorithms. Spectral clustering performs dimension
reduction by making use of the eigen-decomposition of the similarity matrix
and then clusters data in smaller dimensions. The normalized cuts algorithm
[7], as one type of spectral clustering, has been commonly used in data clus-
tering and image segmentation. Different from spectral clustering, the affinity
propagation algorithm [8] identifies the exemplars and members of clusters by
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 93–102, 2015.
DOI: 10.1007/978-3-319-24261-3 8
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means of passing affinity messages among data iteratively. Affinity propagation
algorithms have been successfully applied to human faces clustering and gene
detection, etc. The third type is the so-called dominant sets (DSets) clustering
[9], which is based on a graph-theoretic concept of a cluster. DSets clustering
extracts clusters sequentially and determines the number of clusters automat-
ically. DSets clustering has been successfully used in such various domains as
image segmentation [9,10], object detection [11], object classification [12] and
human activity analysis [13], etc.

However, all the three graph based clustering algorithms mentioned above
require parameters input explicitly or implicitly. With the normalized cuts algo-
rithm we must determine the number of clusters beforehand. The affinity prop-
agation algorithm requires the preference values of all data to be specified.
Though DSets clustering does not require any parameter input explicitly, we
have found that its clustering results are influenced by the similarity parameter
σ in building the similarity matrix. Here σ denotes the regulation parameter
in s(x, y) = exp(−d(x, y)/σ), where s(x, y) is the similarity between two data
items x and y, and d(x, y) is the distance. In other words, with these algorithms
the clustering results are parameter dependent. In order to obtain satisfactory
clustering results, we must determine the proper value of related parameter(s)
beforehand, which is not easy in many cases. While correlation clustering [14]
is an parameter-independent approach, in this paper we focus on dominant sets
clustering.

In order to solve the parameter dependence problem, we study the influence
of σ’s on DSets clustering results. As a result, we proposed to use histogram
equalization to transform similarity matrices before they are used in clustering
[15]. This transformation is shown to transform similarity matrices from different
σ’s to be nearly identical, and therefore make the clustering results invariant to
σ’s effectively. However, we also found that this transformation causes over-
segmentation in some cases, and harms the clustering quality. In [15] we used a
cluster extension process to solve this problem. However, the cluster extension
involves some parameters which are determined mainly based on experience.
In this paper we present a cluster merging process based on similarity ratio of
intra-cluster and inter-cluster similarities. This merging process does not involve
any parameters, and make our cluster algorithm independent of any parameter
tuning process.

The remaining of this paper is organized as follows. In Sect. 2 we introduce
the DSets clustering briefly and analyze its advantages and problems. Then
we present our solution to the existing problems in Sect. 3 and experimental
validation in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Dominant Sets

In order to help understand the method in this paper, we firstly introduce the
concept of dominant sets briefly, and refer interested read to [9,16] for details.

Dominant sets clustering is based on a graph-theoretic concept of a cluster [9].
Let’s say that we have n data to be clustered and their pairwise similarity matrix
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is A = (apq). Obviously these data can be represented as an undirected edge-
weighted graph G = (V,E,w) with no self-loops, where V , E and w represent
the vertex set, the edge set and the weight function, respectively. With a non-
empty subset D ⊆ V and p ∈ D, q /∈ D, the weight of p with respect to D is
defined in [9] as

wD(p) =

⎧⎨
⎩

1, if |D| = 1,∑
k∈D\{p}

φD\{p}(k, p)wD\{p}(k), otherwise (1)

where φD(p, q) is defined by

φD(p, q) = apq − 1
n

∑
k∈D

apk (2)

From the definition, we see that wD(p) reflects the relation between two similar-
ities, i.e., the average similarity between p and D\{p}, and the overall similarity
in D \ {p}. This relation can be described as follows. A positive wD(p) indi-
cates that p is very similar to D \ {p} and D has larger internal coherency than
D \ {p}. In contrast, a negative wD(p) means that adding p into the set D \ {p}
will reduce the internal coherency inside D \ {p}.

With the total weight of D defined as W (D) =
∑

p∈S wD(p), we are able
to present the formal definition of dominant sets. A non-empty subset D ⊆ V
such that W (T ) > 0 for any non-empty T ⊆ D is called a dominant set if the
following conditions are satisfied:

1. wD(p) > 0, for all p ∈ D.
2. wD

⋃
p(p) < 0, for all p /∈ D.

In this definition the first condition guarantees that a dominant sets is inter-
nally coherent, and the second one implies that the internal coherency will be
destroyed if the dominant set is enlarged. These two conditions together define a
dominant set as a maximally, locally coherent subset of data. This further implies
high similarity within dominant sets and low similarity between dominant sets,
and enable a dominant set to be regarded as a cluster.

It is showed in [9,16] that a dominant set can be extracted with a game
dynamics, e.g., the Replicator Dynamics or the Infection and Immunization
Dynamics [17]. The clustering can then be accomplished by extracting clus-
ters (dominant sets) sequentially, and the number of clusters is determined
automatically.

DSets clustering uses only the pairwise similarity matrix of data as input,
therefore it does not require any parameter to be determined beforehand
explicitly. However, the similarity of two data items is usually in the form of
s(x, y) = exp(−d(x, y)/σ), and different σ’s lead to different similarity matrices.
While we were expecting DSets clustering results to be invariant to σ’s, experi-
ments indicate that this is not the case. In fact, we report the DSets clustering
results with different σ’s on seven datasets in Fig. 1(a), where F-measure is used



96 J. Hou et al.

Table 1. The datasets used in experiments.

Number of points Feature dimension Ground truth number of clusters

Aggregation 788 2 7

Compound 399 2 6

Pathbased 300 2 3

Jain 373 2 2

Flame 240 2 2

Wine 178 13 3

Iris 150 4 3
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Fig. 1. The clustering quality of 8 datasets with different σ’s. (a) The similarity
matrices are used in clustering without being transformed by histogram equalization.
(b) The similarity matrices are transformed by histogram equalization before being
used in clustering.

to evaluate the clustering quality. The seven datasets include Aggregation [18],
Compound [19], Pathbased [20], Jain [21], Flame [22] and two UCI datasets Wine
and Iris. The seven datasets are described compactly in Table 1. Before building
the similarity matrices, we scale each attribute in the data vector to the range
[0,1]. It is evident from Fig. 1(a) that different σ’s cause significant variance in
the clustering results.

3 Cluster Merging

In order to remove the influence of σ’s on the DSets clustering results, we pro-
posed to use histogram equalization to transform similarity matrices before they
are used in clustering. In order to apply histogram equalization to a similarity
matrix, we need to quantize the similarity matrix in order to build a histogram.
Since a very large σ enable all the similarity values in a similarity matrix to be
very large, and a very small σ results in near-zero similarity values, we prefer
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Table 2. The comparison of clustering results after histogram equalization and the
best results without histogram equalization. In the table we use “histeq” to denote
histogram equalization.

The best without histeq After histeq

Aggregation 0.90 0.51

Compound 0.78 0.52

Pathbased 0.83 0.42

Jain 0.78 0.27

Flame 0.80 0.37

Wine 0.92 0.58

Iris 0.81 0.57

a small bin in the quantization step to differentiate between different similarity
values. In this paper we quantize the similarity range [0,1] to 50 bins, and this
option is found to make dominant sets clustering results invariant to σ in the
range from 0.5d to 50d. In experiments the histogram equalization transforma-
tion is shown to transform similarity matrices from different σ’s to be nearly
identical, and therefore generate almost the same clustering results, as shown in
Fig. 1(b).

However, we also observe that this transformation harms the clustering
quality in some cases. If we compare Fig. 1(a) to (b), we find that after his-
togram equalization transformation, the cluster qualities are inferior to the best
ones before histogram equalization transformation, i.e., the peaks of curves in
Fig. 1(a). In fact, the quantitative comparison is reported in Table 2. Our expla-
nation for this observation is as follows. Based on the definition of a dominant
set, one data item must be similar enough to all the data inside a cluster in order
to be admitted into the cluster. Since histogram equalization maximizes the over-
all contrast of similarity values inside a similarity matrix, this transformation
potentially enlarges the similarity differences and results in a large number of
small clusters, i.e., over-segmentation. In fact, we demonstrate the DSets clus-
tering results after histogram equalization in Fig. 2, where the over-segmentation
effect is quite evident.

In order to remove over-segmentation effect and improve the clustering qual-
ity, [15] proposed to use a cluster extension process. However, the algorithm
involves some parameter which are determined mainly based on experiments,
and this make the algorithm less attractive in application.

Since the histogram equalization process tends to cause over-segmentation
in DSets clustering results, in this paper we propose to use a cluster merging
process to solve this problem. This merging decision is made based the very
definition of clustering and no parameters are involved. Specifically, we define
a clustering quality evaluation measure based on the intra-cluster and inter-
cluster similarities, and then refine the clustering results in an iterative process.
The details is described as follows.
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Fig. 2. The Aggregation shape data set and DSets clustering results after histogram
equalization.

The basic requirement of good clustering results can be stated as high intra-
cluster and low inter-cluster similarities. Starting from this point, we define the
clustering quality evaluation measure as the overall ratio between intra-cluster
and inter-cluster similarities. Specifically, for each cluster ci, we find its nearest
neighbor cin so that

Sinter(ci, cin) = max
j=1,··· ,N,j �=i

Sinter(ci, cj) (3)

Sinter(ci, cj) =
∑

u∈ci,v∈cj

s(u, v)
ni ∗ nj

(4)

where N is the number of clusters and ni is the size of cluster ci. In order to
reflect the neighboring relationship between two clusters, in implementation we
calculate Sinter(ci, cj) as the average of the largest ni∗nj

2 inter-cluster similarity
values.

With Eq. (4) as the definition of inter-cluster similarity, we define the intra-
cluster similarity of a cluster ci as

sintra(ci) =
∑

u,v∈ci,u �=v

s(u, v)
ni ∗ (ni − 1)

(5)

With one cluster ci and its nearest neighbor cin, the ratio between intra-cluster
and inter-cluster similarity is defined as

r(ci, cin) =
sintra(ci) + sintra(cin)

sinter(ci, cin)
(6)

The overall ratio is then defined as

RATIO =

N∑
i=1

r(ci, cin) ∗ (ni + nin)

N∑
i=1

(ni + nin)
(7)
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where nin is the size of cluster cin.
Then we merge clusters in such a way to maximize the overall ratio of intra-

cluster and inter-cluster similarities. This part is implemented as follows

1. Use DSets clustering algorithm to obtain a set of clusters.
2. Calculate the ratio of intra-cluster and inter-cluster similarities with Eq. (7),

denoted as RATIO0.
3. For each cluster ci, find its nearest neighbor cin with Eq. (3).
4. For each pair of clusters (ci, cin), calculate the new ratio of intra-cluster and

inter-cluster similarities if they are merged.
5. Find the pair of clusters with the largest ratio RATIO1. If the ratio

gain RATIO1 − RATIO0 is larger than zero, accept the merging, and set
RATIO0 = RATIO1.

6. Go to step 3, until the ratio gain is smaller than zero.

4 Experiments

In this section we use experiments to validate the effectiveness of the proposed
algorithm. The experiments are conducted on the same seven datasets as in
Sect. 2. As all these datasets have ground truth clustering results, we use F-
measure to evaluate the clustering quality.

In the first step we test if the algorithm are still invariant to σ’s. With the
same experimental setups as in Sect. 2, we report the clustering quality mea-
sured by F-measure of our algorithm in Fig. 3. It is evident to see that with our
algorithm, the clustering qualities are almost invariant to σ’s completely.

We then compare our algorithm with the original DSets clustering algorithm
and also the normalized cuts algorithm. With the original DSets algorithm we
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Fig. 3. The clustering results on 7 datasets with different σ’s, using our algorithm.
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Table 3. Clustering quality (F-measure) comparison of different clustering algorithms
on seven datasets.

DSets Normalized cuts Ours

Aggregation 0.51 0.81 0.78

Compound 0.52 0.59 0.60

Pathbased 0.42 0.73 0.55

Jain 0.27 0.88 0.97

Flame 0.37 0.84 0.87

Wine 0.58 0.97 0.73

Iris 0.57 0.89 0.90

mean 0.46 0.82 0.77

also apply histogram equalization to the similarity matrices in order to remove
the influence of σ’s. Since normalized cuts algorithm requires as input the num-
ber of clusters, we assign the ground truth number of clusters to this algorithm.
The comparison is reported in Table 3. From the table we see that our algo-
rithm outperforms the original DSets algorithm significantly. This shows that
the cluster merging step is effective. Besides, our algorithm also performs better
than or comparably to normalized cuts algorithm. Since the normalized cuts
algorithm benefits from the ground truth number of clusters and our algorithm
involves no user-defined parameters, we believe that the comparison validates
the effectiveness of our algorithm.
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Fig. 4. Illustration of clustering results from three methods on Jain (top row) and
Flame (bottom row). From left to right in each row, the results are obtained by DSets,
our algorithm and normalized cuts, respectively.
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Noticing that as a clustering quality evaluation criterion, F-measure does not
always coincide with human judgement, we show in Fig. 4 the clustering results
of three methods on the datasets Jain and Flame. From the comparison in Fig. 4
we see that the clustering results of our method is more close to ground truth
than the other two methods, consistent with the comparison of clustering quality
evaluated by F-measure.

5 Conclusion

In this paper we study the influence of similarity matrices on dominant sets clus-
tering results and present a new clustering algorithm. We firstly use histogram
equalization to transform the similarity matrices before they are used in cluster-
ing. This transformation is shown to remove the dependence of clustering results
on similarity matrices effectively. However, we also observe over-segmentation
in clustering results after the transformation. Therefore we define an internal
clustering quality evaluation measure based on the ratio of intra-cluster and
inter-cluster similarities. We then merge the over-segmented clusters in order to
maximize the clustering quality. Experiments on seven datasets indicate that our
algorithm has little dependence on any parameters, and the clustering quality
is comparable to that of the state-of-the-art algorithms. These results enable us
to believe that our work is a useful step forward in exploring a totally nonpara-
metric clustering algorithm.
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Abstract. For one-class classification or novelty detection, the metric
of the feature space is essential for a good performance. Typically, it is
assumed that the metric of the feature space is relatively isotropic, or
flat, indicating that a distance of 1 can be interpreted in a similar way
for every location and direction in the feature space. When this is not
the case, thresholds on distances that are fitted in one part of the feature
space will be suboptimal for other parts. To avoid this, the idea of this
paper is to modify the width parameter in the Radial Basis Function
(RBF) kernel for the Support Vector Data Description (SVDD) classi-
fier. Although there have been numerous approaches to learn the metric
in a feature space for (supervised) classification problems, for one-class
classification this is harder, because the metric cannot be optimized to
improve a classification performance. Instead, here we propose to con-
sider the local pairwise distances in the training set. The results obtained
on both artificial and real datasets demonstrate the ability of the modi-
fied RBF kernel to identify local scales in the input data, extracting its
general structure and improving the final classification performance for
novelty detection problems.

Keywords: Gaussian kernel · Kernel machines · Metric learning · Nov-
elty detection · Radial Basis Function Kernel · Support Vector Data
Description

1 Introduction

The most appropriate way to define the similarity between pairs of examples
in a dataset is a recurrent subject in pattern recognition problems [2]. There
are different metrics that can be chosen, but finding (or even building) a good
metric for a specific problem is generally difficult. In particular, for datasets that
have different scales [3–5,8], it is expected that known and outlier classes are
composed by examples with different pairwise distances (scales), as presented in
Fig. 1. In this dataset, pairs of examples at the bottom left have lower pairwise
distances, when compared to other regions in the input space.
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 103–116, 2015.
DOI: 10.1007/978-3-319-24261-3 9
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Fig. 1. Dataset with different scales (pairwise distances) in known and novelty (outlier)
classes, which are linearly separable in this case.

For standard one-class classifiers [14], such datasets are particularly chal-
lenging, once they can lead to different types of errors for different solutions.
To illustrate the problem, let us consider the case of the Support Vector Data
Description classifier [12] applied to the dataset presented in Fig. 1. The result
for two different scales are presented in Fig. 2, a large scale and a small scale.

For relatively low pairwise distance values (i.e. examples located around the
origin), it is possible to discriminate between the known and novelty examples
well with the low-scale solution. This is not true for the high-scale solution, that
misclassifies many outliers that are genuine target objects. On the other hand,
for relatively high pairwise distance values that occur in the top right part of
the scatter plot, the high-scale description is more suitable. There, the low-scale
solution rejects most of the target examples unnecessarily.

Additionally, Fig. 2 presents the result for the SVDD with negative exam-
ples [12]. In this formulation, examples from the outlier (negative) class are used
during the training stage to improve the description (i.e. to obtain a tighter
boundary around the data, in areas where outlier objects are present). Such
result highlights that, for one-class classification, the scaling problem is even
more important, because objects from the outlier class cannot fix (adjust) the
boundary, as one can observe in Fig. 2 for low pairwise distance values. As a
general conclusion, one can state that the SVDD with standard RBF kernel is
not able to extract different scales in datasets, even when the outliers are used
in the training stage.
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Fig. 2. Standard SVDD with two different scales applied in the dataset presented in
Fig. 1.

Such limitation could suggest the use of a preprocessing stage with the aim
of extracting scale structures in the dataset, e.g. unsupervised metric learning
(ML) algorithms. Some ML methods based on pairwise similarity information
have been proposed for novelty detection problems [11,18,22,23]. However, as
we present in Sect. 2, most of them typically fits a single Mahalanobis metric
on the dataset and, because of that, they are not locally adaptive. Accordingly,
there is no guarantee that standard unsupervised metric learning algorithms can
improve the one-class classification description for standard one-class classifiers.

Based on what we present so far, the idea of this paper is to introduce an
adaptive local scale approach in the Radial Basis Function kernel for Support
Vector Data Description, in order to adapt (rescale) the similarity measure in
the feature space for different scales that may be present in the dataset – a local
scale approach, derived from the empirical distances in the training set. The
SVDD classifier has been selected due to the flexibility in the representation of
similarities in feature space. Also, the RBF kernel allows a direct modification to
incorporate local concepts in the similarity measure, following the general idea
presented in [21].

Note that this adaptive local scale approach is not restricted to the SVDD
classifier and it can be extended to any kernel-based methods, e.g. the Parzen
density classifier, or the one-class Support Vector Machine [10]. The important
contribution is that there is not one Mahalanobis metric for the whole feature
space that is being trained, but a local adjustment of the metric is proposed.

The paper is organized as follows: Sect. 2 contains some of the most used
metric learning methods for one-class classification problems and its main limi-
tations. In Sect. 3, theoretical aspects related to standard SVDD are presented.
Section 4 presents the proposed method, emphasizing the advantages of a local
representation in the feature space for the SVDD classifier. In Sect. 5, the results
obtained for artificial and real datasets are presented. Finally, in Sect. 6, conclu-
sions are summarized and future work is outlined.
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2 Related Approaches

Recently, a wide variety of methods have been proposed to learn a metric from
available data in an automatic way. Such approaches are normally grouped under
the definition of metric learning [2,19,20]. The main goal of metric learning is
to adapt some pairwise metric function to the dataset – normally based on the
Mahalanobis distance – using the information available in the training exam-
ples [2]. The general formulation is based on the following relations:

S = {(xi,xj) : xi andxj are similar},
D = {(xi,xj) : xi andxj are dissimilar}.

(1)

In standard supervised classification problems, the S set is composed of exam-
ples from the same class, whilst the D set is composed of examples from differ-
ent classes. The learning process, from the metric learning perspective, involves
minimizing distances in the S set and, simultaneously, maximizing distances
between dissimilar examples (D set). At the end of the training stage, one can
obtain a new metric for the problem of interest, which is more similar to the
distance characteristics in the input data. It is also possible to extend metric
learning methods to learn multiple locally linear transformations, as presented
in [19]. With a new metric, standard distance-based algorithms (e.g. k -nearest-
neighbors) can be used to perform classification tasks. Usually, final classification
performances increase with the new metric, as presented in [7,19].

In the particular case of kernel machines, e.g. Support Vector Machine (SVM)
with RBF kernels (SVM-RBF), the most popular Mahalanobis metric learning
algorithms as preprocessing stage normally do not lead to relevant improvements
for SVM-RBF classification [21]. In such cases, the most appropriate method
is based on the combination between learning a Mahalanobis metric with the
training of the RBF kernel parameters. This is equivalent to adapt the kernel
function, or the similarity measure, in the feature space [16]. With the metric
learning applied directly in the feature space, it is possible to obtain a satisfactory
improvement in the final classification performance, as presented in [21]. It is
noteworthy that the approach proposed in [21] is similar to the idea of the
present work: adapt the metric directly in the feature space. However, different
scales are not discussed in that paper.

In unsupervised problems, such as novelty detection, the distance function
learning problems are ill-posed with no well-defined optimization criteria, mainly
because the D set is not available during the training stage [23]. One possible
way to overcome such limitation is to minimize distances in the S set, includ-
ing a constraint to prevent the solution from being achieved by shrinking the
entire space to a single point [1]. The most common solution for this problem is
presented in the Relevant Component Analysis (RCA) [11].

RCA is a linear transform that assigns large weights to relevant dimensions
and low weights to irrelevant dimensions of the dataset. It is also possible to
use the kernel version of the RCA transform, as presented in [15], or other
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variations discussed in [22,23]. When the number of chunklets1 in the RCA or
kernel-RCA is equal to one2, the final solution is equivalent to the standard
whitening transform [1] and its corresponding kernel version [13], respectively.
Some of the advantages of RCA and kernel-RCA for novelty detection problems
are presented in [18], and consequently, in [13].

When the RCA and the kernel-RCA are applied to the dataset presented in
Fig. 1, one obtains the result shown in Fig. 3. For both mappings, only known
examples are used to learn the new metric. In the test stage, the learned metric is
used to embed known and unknown (outlier) examples. For the sake of visualizing
the kernel-RCA representation, we apply kernel-Principal Component Analysis
(PCA) [9] based on the learned kernel matrix to embed the points in a two-
dimensional space [22].

Fig. 3. Linear RCA (left) and Kernel-RCA (right) applied to the dataset presented in
Fig. 1.

In the linear RCA, the different local scales are still preserved in the new
representation. It appears that RCA does not adapt to the nonlinear charac-
teristics in the original dataset. As for the kernel-RCA, a similar result can be
observed, mainly for known examples. In this case, the similarity measure is also
affected by different scales in the dataset. Thus, both RCA and kernel-RCA are
not the most appropriate solution to cope with different scales in novelty detec-
tion problems, as they preserve most of the pairwise distance characteristics in
the mapped space – i.e. they are not locally adaptive. Based on this fact, Sects. 3
and 4 present one possible way to modify the metric directly in the feature space,
in order to adapt the selected one-class classifier (SVDD) in different scales in
the dataset.
1 A chunklet is defined as a set of points where all data points have an identical but

unknown class label.
2 This is normally the case in novelty detection problems, where the known class

corresponds to one single chunklet.
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3 Support Vector Data Description

For a given input class, with N examples and features (x1, ...,xN ), we assume
that there is a closed surface (hypersphere) that surrounds it. The hypersphere
is characterized by its center a and radius R. In the original formulation, the
SVDD model contains two terms. The first term (R2) is related to the structural
risk and the second term penalizes objects located at a large distance from the
edge of the hypersphere, keeping the trade-off between empirical and structural
risks. The minimization problem can defined as:

ε(R,a, ξ) = R2 + C1

∑
i

ξi, (2)

grouping almost all patterns within the hypersphere:

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i, (3)

in which C1 gives the trade-off between the volume of the description and the
errors. This optimization problem is usually solved through its Lagrangian dual
problem, which consists of maximizing:

L =
∑
i

αi(xi · xi) −
∑
i,j

αiαj(xi · xj), (4)

with respect to αi, subject to the following constraint:

0 ≤ αi ≤ C1, ∀i. (5)

The center of the hypersphere may be computed using the expression:

a =
∑
i

αiΦ(xi). (6)

Through Lagrange multiplier constraint analysis, it is possible to establish
the location of a given pattern with respect to the edges of the hypersphere. That
is, a pattern may be located within the edge, on the edge, or outside the edge of
the hypersphere (novelty). The patterns located on the edge of the hypersphere
with nonzero αi are called support vectors, since they are responsible for the
characterization of the hypersphere.

The main feature of the SVDD model is the representation of the input data
in a high-dimensional space without the need of large additional computational
effort [14]. This representation allows more flexible descriptors of the input data,
following the same general idea of Support Vector Machines [17].

In order to develop the hypersphere in feature space, it is necessary to perform
a mapping Φ(x) to the new space. Therefore, Eq. 4 can be rewritten:

L =
∑
i

αiK(xi,xi) −
∑
i,j

αiαjK(xi,xj). (7)
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In this representation, a new pattern z is classified as a novelty if:

∑
i

αiK(z,xi) <
1
2

⎡
⎣1 +

∑
i,j

αiαjK(xi,xj) − R2

⎤
⎦. (8)

Finally, the radius of the hypersphere can be calculated by the distance
between a and one of the unbounded support vectors xs:

R2 = K(xs,xs) − 2
∑
i

αiK(xi,xs) +
∑
i,j

αiαjK(xi,xj). (9)

The RBF kernel, which is the selected kernel in this work, is given by:

K(xi,xj) = exp

(
−‖xi − xj‖2

σ2

)
, (10)

where σ represents the kernel parameter (width).

4 Proposed Method

The final solution for the SVDD classifier with the RBF kernel is highly depen-
dent on different scales in the dataset. In general, the similarity measure provided
by the RBF kernel reflects distance characteristics in the dataset: the higher the
distance between pairs of examples in the input space, the lower the similarity
measure in the feature space. In novelty detection problems, such representation
is highly suitable when target class contains similar pairwise distances. How-
ever, one may have a target class with different pairwise distances, as presented
in Fig. 1. In such cases, a fixed-σ solution does not fit different scales in the
dataset, as presented in Fig. 4.

From Fig. 4, one can conclude that the most appropriate description should
combine different kernel parameters (σ). For lower scales, lower σ values reduce
the number of outliers that are accepted. As for higher scales, descriptions with
relatively higher σ values can include all target examples. One possible way to
do so, is to modify the RBF kernel in such way that similarity measures can be
normalized for different scales in the target class. The purpose of this paper is
to use the following modified RBF kernel:

K(xi,xj) = exp

(
−‖xi − xj‖2

σ(xi,xj)2

)
, (11)

where σ(xi,xj) is the normalization factor for each pair of examples xi and xj .
The computation of σ(xi,xj) contains two different parts and it characterizes
the local scale of both xi and xj :

σ(xi,xj) = λ

[
η (xi) + η (xj)

2

]
+ (1 − λ) σ0. (12)
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Fig. 4. Standard SVDD with different values of σ, applied in the dataset from Fig. 1.
Descriptions with lower σ values are more suitable for lower scales (bottom left), while
descriptions with higher σ values, all target examples are accepted.

The first part η (x) defines the local scale as the average of the distances
between x and its K nearest neighbors:

η (x) =
1
K

K∑
k=1

NNk (x), (13)

where NNk(x) is the distance between x and the k nearest neighbor. The second
part, defined here as σ0, is a global regularization factor. It is defined as the
average among all K nearest neighbor distances in the training set (with N
examples), providing a general idea of the pairwise distances in the dataset:

σ0 =
1
N

N∑
i=1

η(xi). (14)

By modifying the regularization parameter λ, one can control the influence
of the local and global factors in the final description. This is an important step,
mainly because it is possible to avoid severe overfitting in the training stage, by
increasing the σ0 factor. There may be some cases where the amount of training
data is not relevant enough to extract local scales and, when we increase the local
factor, we tend to lose the general structure of the dataset (overfitting in this
case). In this work, the parameters (σ and λ) are selected by cross-validation.

In the test stage, we have to compute the similarity measure between the
new test point z and the support vectors xs: K(z,xs). To do so, the training
data is used as a reference for η (z) and η (xs) calculation.

The final description with the modified RBF kernel, here defined as Adaptive
Width, is presented in Fig. 5. As one can observe, the final description with the
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Fig. 5. Comparison between SVDD with fixed and adaptive widths.

Adaptive Width fits the target data in different scales: it does not accept outliers
in lower scales and all target points are included in the description – in other
words, it captures the structure in the data in different scales.

The main drawback of k -nearest-neighbors-based methods is that one has to
retain the training set to perform the classification in the test stage. For large
datasets, the prediction can be strongly affected by this issue. However, our
main objective with the proposed procedure is imbalanced datasets, with just a
few examples in the target class. In such cases, SVDD-based methods normally
present a better overall performance for novelty detection problems, especially
when we compare to density-based methods, because the SVDD formulation
allows to fit the model on a relatively small set of examples [12].

5 Results

5.1 Artificial Dataset

In order to present the main contribution of the Adaptive Width in the RBF
kernel for SVDD, we start by presenting the results for the artificial dataset
shown in Fig. 1. Results are obtained using five times 10-fold stratified cross-
validation and the Area Under the Curve (AUC) for the Receiver Operating
Characteristic (ROC) curve is used as a reference for classification performance
comparison [6]. The training and test sets for known and outliers classes are
generated using the same data distribution3. The average results are summarized
in Fig. 6.

By comparing the ROC curves for the three different descriptions, it is note-
worthy that the Adaptive Width increases the number of targets accepted (true
3 The artificial dataset can be generated using uniform random distribution in two-

dimensional space, followed by a logarithmic (or even polynomial) operation.
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Fig. 6. ROC curve and the corresponding AUC for three different descriptions with
fixed and adaptive width.

positive rate) and also decreases the number of outliers accepted (false positive
rate) for different thresholds. The improvement is reflected in the final AUC.

5.2 Real Dataset

In addition to the tests with the artificial dataset, we have performed some
novelty detection experiments on four different real-world data sets from the
University of California at Irvine (UCI) Machine Learning Repository4 and the
Delft pump dataset presented in [24]. Table 1 shows the main characteristics of
each selected data set, such as the number of features, the number of target
objects and the number of outlier objects.

Additionally, the following division was applied for each dataset, in order to
obtain target and outlier classes:

– Wisconsin Breast Cancer : Target class is malignant cancer and the outlier
class is benign;

– Glass Identification: Vehicle Windows Float Processed class is used as target
class and all other five classes are outliers;

4 The selected data sets, arranged for novelty detection problems, are available at
http://homepage.tudelft.nl/n9d04/occ/index.html.

http://homepage.tudelft.nl/n9d04/occ/index.html
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Table 1. Dataset characteristics.

Dataset Number of Number of target Number of outlier

features objs objs

Wisconsin Breast Cancer (UCI) 9 241 458

Glass Identification (UCI) 9 17 197

Liver-disorders (UCI) 6 200 145

SPECTF heart (UCI) 44 254 95

Delft Pump 64 137 463

– Liver-disorders: Disorder absence is used as target class and disorder present
is used as outlier class;

– SPECTF (Single Proton Emission Computed Tomography) heart : Abnormal
patients are used as target class and normal patients are used as outlier class;

– Delft Pump: Details of the Delft Pump dataset can be found in [24].

As presented before, the effectiveness of the proposed Adaptive Width can be
measured indirectly by measuring the performance improvement of the novelty
detection problem. In this work, the AUC is used for performance comparison.
Also, we compare the proposed method with the standard SVDD and the SVDD
with the Relevant Component Analysis as the preprocessing stage.

In the SVDD, we have to optimize the regularization parameter (C1) and
the width of the Gaussian kernel (σ). The regularization parameter C1 is related
to the percentage of positive (target) samples (Fp) which are rejected during
training. The relationship is presented below:

C1 =
1

NpFp
, (15)

where Np is the number of positive (target) examples. With that relationship,
we can directly use the percentage factor Fp in the SVDD formulation. In this
work, it was selected from the set {0.01, 0.02, 0.05}. Also, σ is selected among
the following set of discrete values: {σ0/8, σ0/4, σ0/2, σ0, 2σ0, 4σ0, 8σ0}.

As for the SVDD with the Adaptive Width, we have to select the second
regularization parameter λ and the number of neighbors K. The λ is optimized
from the set {0.2, 0.5, 0.8} and the number of neighbors is chosen from {3, 5, 7}.

In all experiments, 80 % of the examples are used to train each classifier. In
order to adjust the parameters, a ten-fold cross-validation is used. Once the clas-
sifier is trained and adjusted, the final test is done using the remaining examples.

The average AUC results are summarized in Table 2. The experiment was
repeated 50 times independently on each data set, with different training-test
set distributions, randomly selected and fixed for all classifiers.

The results indicate that SVDD with the Adaptive Width achieves the best
AUC results for Delft Pump and Glass Identification data sets. Such result indi-
cates that different scales may be present in those data sets. It is important to
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Table 2. AUC for real datasets.

Dataset Standard SVDD RCA and SVDD SVDD with adaptive
width

Wisconsin Breast Cancer 0.97 (0.01) 0.51 (0.02) 0.97 (0.01)

Glass Identification 0.81 (0.12) 0.78 (0.26) 0.84 (0.12)

Liver-disorders 0.52 (0.04) 0.60 (0.12) 0.60 (0.10)

SPECTF heart 0.66 (0.21) 0.50 (0.07) 0.66 (0.32)

Delft Pump 0.92 (0.05) 0.80 (0.08) 0.94 (0.02)

emphasize that this statement is based on the Wilcoxon rank-sum test. Addition-
ally, the SVDD with the Adaptive Width method produces comparable results
for all other data sets, without compromising the classification performance, as
one can observe with RCA and SVDD for the Wisconsin Breast Cancer, Glass
Identification and Delft Pump data sets.

In the Wisconsin Breast Cancer and SPECTF heart data sets, different scales
may not be present, as the results for the Standard SVDD and the proposed
approach are statistically equivalent. On the other hand, even with local scales,
the amount of available training data may not be enough to represent local
structures in the feature space. In such cases, one could argue that there is no
need to use the proposed approach during the training stage. However, due to
the complexity in finding different scales in high dimensional data sets a priori,
the proposed method is one possible way to check if relatively low performances
are related to different scales in the dataset, by evaluating the improvements in
the representation of the target-class boundary.

6 Conclusions

This paper presented an adaptive local scale approach in the Radial Basis Func-
tion kernel for Support Vector Data Description. This approach is especially
useful for the problem of one-class classification, because in one-class classifi-
cation the outliers are mainly determined by the distance to the target class.
Furthermore, in one-class classification, standard metric learning approaches are
unsuitable because no supervised information is available.

Our proposed approach adapts the similarity measure in the feature space
for different scales that may be present in the dataset, by modifying the width
parameter (σ) in the RBF kernel. The different scales are derived from the
pairwise distances that are observed in the target class. The proposed method
contains two factors: the first is related to the local scale and the other to the
global scale. When the amount of training data is not sufficient to extract local
scales reliably, one has to regularize by the global scale factor (σ0) – this avoids
the overfitting problem that the local factor may impose.

Experimental results on artificial and real data sets show that the
proposed method yields significantly better overall AUC for different one-class
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classification problems, both better than the fixed scale Support Vector Data
Description results, and better than the results using the Relevant Component
Analysis (RCA) as a preprocessing stage. We compared the proposed method to
RCA, as the RCA is a metric learning approach that can deal with unsupervised
data. Additionally, the proposed method does not compromise the classification
performance, as one can observe in some cases with the RCA and SVDD.

In the sequence of this work, we intend to apply the proposed method to
different real-world datasets and extend the Adaptive Width approach to other
novelty detectors, e.g. Parzen density classifier. In addition, we will investigate
some possibilities to overcome the k-nearest-neighbor rule in the estimation of
η. With this rule, we have to retain the training set during the prediction stage.
The idea is to avoid storing the entire training set, by replacing it with a simpler
representation, maintaining the adaptive local scale idea.
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Abstract. Latent Dirichlet Allocation (LDA) represents perhaps the
most famous topic model, employed in many different contexts in Com-
puter Science. The wide success of LDA is due to the effectiveness of
this model in dealing with large datasets, the competitive performances
obtained on several tasks (e.g. classification, clustering), and the inter-
pretability of the solution provided. Learning the LDA from training data
usually requires to employ iterative optimization techniques such as the
Expectation-Maximization, for which the choice of a good initialization
is of crucial importance to reach an optimal solution. However, even if
some clever solutions have been proposed, in practical applications this
issue is typically disregarded, and the usual solution is to resort to ran-
dom initialization.

In this paper we address the problem of initializing the LDA model
with two novel strategies: the key idea is to perform a repeated learning
by employ a topic splitting/pruning strategy, such that each learning
phase is initialized with an informative situation derived from the previ-
ous phase.

The performances of the proposed splitting and pruning strategies
have been assessed from a twofold perspective: i) the log-likelihood of
the learned model (both on the training set and on a held-out set); ii)
the coherence of the learned topics. The evaluation has been carried out
on five different datasets, taken from and heterogeneous contexts in the
literature, showing promising results.

Keywords: Topic models · LDA · Split · Prune · Expectation-
Maximization

1 Introduction

Topic models represent an important and flexible class of probabilistic tools,
originally introduced in the Natural Language Processing community [5,6,20].
Their main goal is to describe text documents, based on word counts, abstracting
the topics the various documents are speaking about. Recently, the importance
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24261-3 10
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of topic models has drastically grown beyond text, and they have been exported
as a versatile tool to model and solve a huge variety of tasks in different contexts
[1,8,21,25,30,34,36]. Their wide usage is motivated by the competitive perfor-
mances obtained in very different fields, by their expressiveness and efficiency,
and by the interpretability of the solution provided [9]. Among others, Latent
Dirichlet Allocation (LDA) [6] is the most cited and famous topic model. The
key idea of LDA is that a document may be characterized by the presence of
a small number of topics (e.g. sports, finance, politics), each one inducing the
presence of some particular words that are likely to co-occur in the document;
the total number of topics expected to be found in the corpus of documents is a
fixed quantity decided beforehand. From a probabilistic point of view, a topic is
a probability distribution over a fixed dictionary of words: for example, a topic
about sports would involve words like “match” or “player” with high probability.

The parameters of the model are learned from a set of training objects:
however, the learning problem is intractable [6], and is therefore tackled
using approximate optimization techniques such as the variational Expectation-
Maximization (EM [11,17]). The EM is an iterative algorithm that, starting from
some initial values assigned to the afore-described probabilities, maximizes the
log likelihood of the model until convergence is reached. The choice of such initial
values is a critical issue because the EM converges to a local maximum of the
log likelihood function [35], and the final estimate depends on the initialization.

From a very general point of view, different robust variants of the EM algo-
rithm have been proposed in the past ([13,33], just to cite a few); nevertheless,
in most practical applications where the LDA model is employed, this initializa-
tion problem is overlooked, with most solutions starting the EM iterations from
a random solution; this is usually motivated by the already appropriate perfor-
mances of the method. Only few papers explicitly addressed the EM initialization
issue in the LDA case: the authors of [15] proposed to employ a clustering step
using the k-means as initial solution for the EM; in [14], a method based on
the SVD decomposition is proposed. These methods have been originally pro-
posed for a slightly different topic model called PLSA [20], but can be easily
adapted for LDA. More often, workarounds are employed at experimental level:
in some cases, the learning is repeated several times, and average performances
are reported [19]. In other cases, the learning is repeated several times, and the
model with the highest log likelihood is retained [3] (also employed in other
EM-based techniques, such as Gaussian mixtures clustering [26]).

In this paper we contribute to this context, by proposing two novel strategies
for the initialization of the LDA training that specifically exploit the intrinsic
characteristics of the LDA model and the information therein. Both approaches
share the same structure: start by learning a model with an extremely small
(or an extremely large) number of topics, proceeding with consecutive opera-
tions of splitting (pruning) of the topics, until the desired number of topics is
reached; each learning phase is initialized with an informative situation derived
from the previous phase. The pruning strategy takes inspiration from the obser-
vation that, when the number of topics is extremely large, the dependency from
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the initialization of the final estimate is much weaker than when the number of
topics is close to the optimum [4,16,28]. On the other hand, the splitting app-
roach exploits reasoning derived for divisive clustering algorithms, where it has
been shown that such a strategy is useful when the size of the dataset is par-
ticularly high [7,12,31]. In both cases, the approach initializes these “extreme”
models at random, and use the learned estimates to initialize a new model with
a number of topics closer to the desired one. To choose which are the best topics
to split/prune, we exploit a quantity which can be readily extracted from the
learned LDA: the prior Dirichlet probability, which can be thought of a number
indicating the “importance” of each individual topic. This quantity is intrinsic in
the LDA formulation, and is not exploited by the methods described in [14,15].

The proposed splitting and pruning strategies have been extensively tested
on 5 datasets, taken from heterogeneous applicative contexts where LDA has
already been successfully employed. Benefits and merits of both techniques are
discussed, as well as the situations where one seems better suited over the other.
Experimental results confirm the usefulness of initializing the LDA model with
the proposed approach (i) in terms of the model log likelihood (evaluated both
on the training set and on a held out, testing set) and (ii) in terms of the
coherence and the interpretability of the learned topics.

The remainder of the paper is organized as follows: Sect. 2 gives some back-
ground notions on the LDA model, whereas Sect. 3 details the proposed strate-
gies of robust initialization. Sect. 4 contains the experimental evaluation, and
the discussion of the obtained results. Finally, in Sect. 5 conclusions are drawn
and future perspectives envisaged.

2 Background: Latent Dirichlet Allocation

In the general LDA formulation, the input is a set of D objects (e.g. docu-
ments), represented as “bag of words” vectors cd [27]. The bag of words is a
representation particularly suited when the object is characterized (or assumed
to be characterized) by the repetition of basic, “constituting” elements w, called
words. By assuming that all possible words are stored in a dictionary of size N ,
the bag of words vector cd for one particular object (indexed by d) is obtained
by counting the number of times each element wn of the dictionary occurs in d.

In LDA, the presence of a word wn in the object d is mediated by a latent topic
variable, z ∈ Z = {z1,..., zK}. The joint probability of the model variables is:

p(wn, zk, θd) = p(θd|α)p(zk|θd)p(wn|zk, β) (1)

In other words, the topic zk is a probabilistic co-occurrence of words encoded
by the distribution p(wn|zk, β), w = {w1,..., wN}, where β represents, in tabular
form, the probability of word wn being “involved” in topic zk. The variable θd

k =
p(zk|θd) represents the proportion of topics in the object indexed by d; finally
p(θ|α) is a Dirichlet prior indicating the probability of selecting a particular
mixture of topics: αk can be seen as a measure of the prior “importance” of
each topic. From this, the process that generates an object is defined as follows.
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Table 1. Summary of the LDA distributions.

Name Distribution Parameter Dimensionality

p(θd|α) Dirichlet α 1 × K

p(zk|θd) Multinomial θ K × D

p(wn|zk, β) Multinomial β N × K

First, the proportion of topics θ that will compose the object is generated from
the Dirichlet p(θ|α); then, a topic zk is drawn from the distribution p(z|θ), and
from this topic a word is selected according to the probabilities in β. Finally,
the process is repeated, by selecting another topic and another word, until the
whole object is generated. A summary of the distributions involved in the LDA
formulation, as well as their parameter dimensionality, is summarized in Table 1.

Learning the LDA model requires to estimate the parameters α and β from
a set of training data, in order to maximize the likelihood L, defined as

L = p(D|α, β) =
D∏

d=1

∫
θd

p(θd|α)

(
K∑

k=1

N∏
n=1

(
p(zk|θd)p(wn|zk, β)

)cdn

)
(2)

Since this function is intractable [6], such parameters are learned using a varia-
tional Expectation-Maximization algorithm (EM) [17]. The EM iteratively learns
the model by minimizing a bound F (called the free energy [17]) on the negative
log likelihood, by alternating the E and M-step. A detailed derivation of the EM
algorithm for LDA is out of the scopes of this paper (interested readers can refer
to the original LDA paper [6]): intuitively, the derivation yields the following
iterative algorithm:

1. Initialize α and β
2. E-step: for each object in the training set, estimate the posterior probability

p(θ, z | cd, α, β) (obtained by using Bayes’ law from the likelihood formula in
Eq. 2). Unfortunately, obtaining such estimate proved to be intractable [6],
and so an approximate form of the posterior is estimated.

3. M-step: minimize the free energy bound with respect to the model para-
meters α and β. This corresponds to find a maximum likelihood estimate
for each object, under the approximate posterior which is computed in the
E-step.

4. Repeat the steps 2 and 3 until some convergence criterion (usually, a small
variation in the free energy between two consecutive iterations) is met.

Summarizing, the EM is an iterative algorithm that, starting from some initial
values assigned to the parameters α and β, refines their estimates by maximizing
the log likelihood of the model until convergence is reached. As outlined in the
introduction, the choice of such initial values is a critical issue because the EM
converges to a local maximum of the free energy function [35]: the final estimate
depends on the initialization.
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Fig. 1. The top-most row shows some query images we selected: 5 independent runs
of the LDA model (initialized at random) produce very different retrieved images,
presented under each query image.

Even if this problem is known, most practical systems initialize the EM iter-
ations at random. This may lead to very poor results: let us clarify this point
with a simple toy example, inspired by the framework of [8]. In that paper, the
goal was to classify a query image into a scene category (e.g. mountain, forest,
office): first, the LDA is learned on a training set, and each training image d
is projected in the topic space through the vector θd. Then, the query image
dtest is also projected in the topic space via an E-step, and its vector θdtest is
estimated. The retrieval step can be carried out by simply showing the nearest
neighbor, computed for example using the euclidean distance between θdtest and
the training θd. In our simple example, we devised the same retrieval strategy
on a recent dataset of images collected from Flickr1: in particular we learned 5
LDA models – in each case starting with a different random initialization – on a
1 More details on the dataset, called PsychoFlickr, can be found in [10].
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given set of roughly 10000 images. Then, given a query image, we retrieved the
most similar by using the five different models; the expectation, if the LDA is
well trained, is to extract in all the 5 cases the same image. In Fig. 1 we show
some results: it can be immediately noted that, in different cases, the retrieved
images are diverse, in some cases also visually rather unrelated to the query.

3 The Proposed Approach

As stated in the introduction, the goal of this paper is to derive two robust
initialization techniques for the parameters α and β of LDA, by exploiting the
intrinsic characteristics and the information derived from the model. In this
section the two strategies, that we term splitting and pruning, will be detailed.
Intuitively, the idea is to initialize at random the LDA model designed with
an extremely small (for the splitting strategy), or an extremely large (for the
pruning strategy) number of topics, performing a series of splitting or pruning
operations until the chosen number of topics is reached.

In the following, the proposed initialization techniques are detailed.

3.1 LDA Initialization by Pruning

Suppose that the goal is to learn the LDA model with K topics. First, we
propose to learn a model with an extremely large number of topics Klarge, ini-
tialized at random: the idea behind this approach is that this first run of the
EM, due to the excessive number of topics (at the extreme, equal to the number
of training documents D), is less sensitive to initialization [4,16,28]. After the
model is learned, we select a candidate topic to prune, update α and β, and
repeat the learning starting with this new configuration. Of course, the crucial
problem is to decide which topic to prune. To make this choice, we look at the
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Fig. 2. Effects on the α parameter on the sampled topic proportions θ. The triangular
region correspond to the simplex where the θ probability distributions live, with the
edges of the triangle corresponding to the θ distribution where only one topic is present
with probability 1. Note that high values of α for a particular topic k “move” the
proportions θ to be concentrated towards k.
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learned parameter α of the prior Dirichlet distribution. Intuitively, a high value
of αk indicates that a specific topic distribution θ – where k is highly present
– is more likely to appear in the corpus of training objects. On the contrary,
a low value of αk indicates that k is overall scarcely present – Fig. 2 depicts a
graphical illustration of this idea.

For the above mentioned reason, it seems reasonable to consider as the least
interesting topic, i.e. the topic to prune, the topic k̂ with the lowest corresponding
α, i.e.

k̂ = arg min
k

αk (3)

In practice, pruning a topic k̂ implies (i) to remove its αk̂ value, and (ii) to
remove the whole vector of probabilities from β, i.e. βn,k̂ = p(wn|zk̂) for each
n. This is graphically pictured in the left part of Fig. 3. After the pruning, the
remaining parameter vectors α and β can provide a good starting point for the
learning of a new LDA, where the number of topics is decreased by one. This is
reasonable because we are making simple modifications to a good solution (the
model has already converged). Finally, the learning is repeated until K topics
are obtained.

From a practical point of view, it is interesting to notice that it is not neces-
sary to prune one topic at a time: the learned prior α can be used to rank topics,
from the least to the most important, and an arbitrary number of unimportant
topics can be pruned before repeating the learning procedure. The main advan-
tage is that computational cost is reduced, because less LDA models have to be
learned; however, this can deteriorate the quality of the final solution.

Finally, we can draw a parallelism between our approach and an agglomera-
tive hierarchical-type clustering scheme: we start from a large number of topics
and evolve by decreasing such number until the desired one is reached.

3.2 LDA Initialization by Splitting

Contrarily to the pruning approach, the idea behind the splitting strategy is to
initialize at random an LDA model with an extremely small number of topics
Ksmall, and proceeding by splitting one topic at a time into two new topics.

From a clustering perspective, the splitting approach can be seen as a divi-
sive (or top-down) hierarchical-type scheme: starting from a small number of
clusters, the process evolves towards a greater number of clusters. Divisive clus-
tering algorithms proved to be particularly appropriate when the size of the
data is particularly high [7,12,31], and seem therefore a promising strategy to
investigate in this context. Once the first model with Ksmall topics is learned,
we employed – as for the pruning strategy – the α prior in order to decide the
topic to split. In particular, the idea is that a high value of α indicates an overall
highly present topic in the training set. From the divisive clustering perspective,
these topics are the “largest”, clustering together many words and summarizing
most of the objects. For this reason, we propose to split the topic k̂ such that

k̂ = arg max
k

αk (4)
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Fig. 3. (left) Summary of the pruning strategy. The top bar graph represents the
learned α parameter after EM convergence. The candidate topic to prune is the one
with the lowest value of α. On the bottom, the β probabilities are graphically depicted,
with a brighter, red color indicating a higher probability of a particular word belonging
to a particular topic (each column corresponds to a topic). This topic is pruned by
simply removing the corresponding column from the β probabilities. (right) Summary
of the splitting strategy. Given a learned LDA, the topic to split the one with the
highest value of α. A small amount of Gaussian noise is applied to each copy of the
splitted topic (Color figure online).

In practice, splitting a topic k̂ implies to substitute the topic k̂ with two topics
k̂1 and k̂2 such that: (i) the β probability of k̂1 and k̂2 are equal to the β of k̂
plus a small amount of Gaussian noise (a simple normalization is also applied
so that such probabilities add up to 1); (ii) the α of k̂1 and k̂2 are assigned the
same value of αk̂. A graphical summary of the splitting strategy is depicted on
the right side of Fig. 3. Finally, note that – as for the pruning strategy – more
than one topic can be splitted after a learning phase for speedup purposes.

4 Experimental Evaluation

In order to evaluate our robust initialization schemes, we performed several
experiments on 5 different datasets. A summary of the employed datasets is



Robust Initialization for LDA 125

Table 2. Summary of the employed dataset. Columns W , D and Z correspond to the
number of words, documents, and topics respectively.

Dataset name References Type of words N D Z

1. HIV gag proteins [24] Protein sequence 1680 204 100

2. Lung genes [2] Genes 12600 203 100

3. FragBag [29] 3D protein fragments 400 2928 100

4. Flickr images [10] Heterogeneous image features 82 60000 50

5. Science magazine [23] Textual words 24000 36000 100

reported on Table 2, where for each dataset we indicated its name, the number
of words N (i.e. the dictionary size), the number of objects D, and the number of
topics Z we employed for learning (when available, this number corresponds to
the optimal choice found by the authors of the papers in the reported references).

We took these datasets from heterogeneous applicative contexts in the lit-
erature, which involve a wide variety of tasks, ranging from classification and
clustering, to feature selection and visualization. Due to this heterogeneity, quan-
tities such as the classification error can not be employed as a general measure of
performance. Therefore, we resorted to two other validation indices: the first one
is based on the log-likelihood of the learned model (on both the training set and
an held out testing set), the second one takes into account the coherence of the
learned topics. In both cases, we divided each dataset in a training and testing
set using 10-fold crossvalidation, repeating the random subdivisions 3 times. For
each fold and each repetition, we employed the proposed approaches to learn
the LDA on the training set2. For the splitting approach, we set Ksmall to 2,
and the Gaussian noise variance σ to 0.01. After a preliminary evaluation, we
found that this noise parameter does not influence much results, provided that
it is reasonably small (we found that performances deteriorate when σ ≥ 0.1).
For the pruning approach, we set Klarge equal to the number of documents for
the first three datasets, whereas we set it to 1000 for the Flickr images.

We compared our strategies with the random initialization (the currently
most employed method), as well as with the technique proposed in [14], where the
authors propose to initialize the β distribution by performing a Latent Seman-
tic Analysis (LSA) on the training bag of words matrix: we will refer to this
initialization technique as LSA. Please note that this method has been origi-
nally designed for initializing a slightly different topic model called PLSA. Its
generalization to LDA is easy, because in PLSA the Dirichlet distribution is not
employed, and θ is estimated point-wise (the equivalence between PLSA and
LDA has been demonstrated in [18]): however, it is not clear how to initialize α.
We decided to initialize αk = 1 ∀k, this corresponding to a uniform prior over θ.
2 We employed the public Matlab LDA implementation available at http://lear.

inrialpes.fr/∼verbeek/software.php.

http://lear.inrialpes.fr/~verbeek/software.php
http://lear.inrialpes.fr/~verbeek/software.php
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Fig. 4. Log-likelihood of the proposed methods for the different dataset. On the left,
the log-likelihood of the training set. On the right, the log-likelihood evaluated on the
held out testing set.
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4.1 Log-Likelihood Evaluation

We firstly assessed the log-likelihood of the trained LDA models, on both a
training and an held out testing set: while the log-likelihood of the training set
indicates the quality of the learned model, the log-likelihood of the testing set
gives insights into the generalization capability. Such log likelihoods, averaged
over folds and repetitions, are shown in Fig. 4, for the first 4 datasets: the column
on the left represents log-likelihoods obtained on the training set, whereas the
column on the right depicts the ones obtained on the testing (held out) set.
The dashed lines indicate the log-likelihood obtained with the Random and
LSA methods we compared against, whereas the dots correspond to the log-
likelihoods obtained with the proposed approaches. Finally, the bars correspond
to the 95 % confidence intervals computed after a t-test, performed to assess if the
results obtained with the proposed approaches led to a statistically significant
improvement over the best-performing method (among the random and LSA
initialization schemes – we highlighted statistically significant results in blue).
From the figure it can be noted that the splitting scheme is on average the best
one, being able to outperform other approaches in every case except one. The
pruning scheme, even if reaching satisfactory results on 5 cases out of 8, seems
to be slightly worse.

4.2 Coherence Evaluation

As a second measure of evaluation, we employed a measure of topic coherence
to evaluate the proposed approaches. The coherence is essentially a score that is
given to a single topic by measuring the degree of semantic similarity between
highly probable words in the topic. Several coherence measures have been pro-
posed in the past [22,32], and they are aimed at distinguish between topics that
are semantically interpretable and topics that are artifacts of statistical infer-
ence. In this paper we adopted the internal criterion of Umass coherence [22]. We
chose this in particular because it does not rely on an external corpus providing
the ground-truth, which can be available in the text domain, but is absent in the
other scenarios considered here. The Umass coherence defines a score based on a
set of “topic words” Vk, which is created by retaining the top probable words in
the topic (ranked by β probabilities). The Umass coherence of topic k is defined
as

coherence(Vk) =
∑

vi,vj∈Vk

score(vi, vj) (5)

where

score(vi, vj) = log
p(vi, vj) + 1/D

p(vi)p(vj)
(6)

In the equation, p(vi, vj) indicates the frequency of documents containing words
vi and vj , and p(vi) measures the frequency of documents containing vi. Note
that the Umass computes these frequencies over the original corpus used to train
the topic models: it attempts to confirm that highly probable words in the topic



128 P. Lovato et al.

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

U
m

as
s 

co
he

re
nc

e

Ran
do

m
LS

A
Spli

t

Pru
ne

−400

−380

−360

−340

−320

−300

−280

−260

−240

−220

U
m

as
s 

co
he

re
nc

e

−460

−440

−420

−400

−380

−360

−340

−320

U
m

as
s 

co
he

re
nc

e

Ran
do

m
LS

A
Spli

t

Pru
ne

−500

−480

−460

−440

−420

−400

−380

U
m

as
s 

co
he

re
nc

e

Ran
do

m
LS

A
Spli

t

Pru
ne

Ran
do

m
LS

A
Spli

t

Pru
ne

HIV gag proteins Lung genes

FragBag Flickr images

Fig. 5. Umass coherence for the different datasets and the different initialization
schemes. The boxplot can be useful to assess statistical significance.

indeed co-occur in the corpus. In the end, the average coherence over the whole
set of topics is reported as performance: a higher mean coherence indicates an
overall better capability of the model to correctly cluster words in topics.

In our evaluation, for each fold and each repetition of each dataset, we applied
the proposed approaches to learn the LDA on the training set. Then, as done
before [32], we retained for each topic the top 10 words and computed the Umass
coherence for all topics. Finally we averaged the coherences of all topics to get a
final single score for the model. Coherence results, averaged over different folds
and repetitions, are presented as boxplots in Fig. 5. Each box describes an eval-
uated method, and the red bar is the median coherence over the 30 repetitions
(10 folds, randomly extracted 3 times). The edges of the blue box are the 25th

and 75th percentiles, while the whiskers (black dashed lines) extend to the most
extreme data points not considered outliers. Outliers are plotted individually
with a red cross. Two medians are significantly different (at 95 % confidence) if
their notches do not overlap. The splitting strategy always significantly outper-
forms the state of the art, thus confirming the suitability of this initialization
strategy.
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Concerning the pruning approach, we noticed that on the HIV and Lung
datasets – while surpassing the random initialization – it is not competitive
with respect to the other initialization techniques. On the contrary, on the last
two datasets (FragBag and Flickr images), this strategy performs adequately
well, achieving very high topic coherence on the Flickr images dataset in par-
ticular. Interestingly, we can observe that the HIV and lung datasets, due to
the peculiar applicative scenario, present more words than objects, whereas the
FragBag and Flickr images have a larger number of documents than words.

As a final consideration, we compared the computation times of the different
initialization strategies. All the algorithms have been implemented in Matlab
and run on a quad-core Intel Xeon E5440 @ 2.83GHz, with 4GB of RAM. The
pruning strategy requires the largest running time, several order of magnitude
greater than the other strategies. For what concerns the other strategies, it
should be observed that in general results depend on the characteristics of the
dataset (number of documents and number of words). In fact, when the number
of documents D is fairly small (as for the HIV gag dataset), the running times
of the LSA and splitting strategies are comparable with the random one: even
if initializing the parameters α and β at random is almost istantaneous, more
iterations are required to achieve convergence in the learning phase. For exam-
ple, learning the LDA model starting from one random initialization required
158 iterations, starting from the LSA initialization required 140 iterations and
starting from the splitting initialization required 134. On the contrary, when the
number of documents is really high (as for the Psychoflickr dataset), then the
random initialization is approximately 5 times faster. However, it may still be
reasonable to raise the computational burden and adopt the splitting strategy,
motivated by the quality of the solution that can be achieved (in many cases,
the learning is done only once, off-line).

−4.4

−4.38

−4.36

−4.34

−4.32

−4.3

x 10
6

Lo
g 

lik
el

ih
oo

d

Spli
t

Train log likelihood

−6.05

−6

−5.95

−5.9

−5.85

5

Lo
g 

lik
el

ih
oo

d

Spli
t

Test log likelihood

−1150

−1100

−1050

−1000

U
m

as
s 

co
he

re
nc

e

Topics coherence

LSA

LSA

Random
Random

Spli
t

Ran
do

m
LS

A

x 10

Fig. 6. Science magazine results. The first two panels depict as a dot the train and
test log likelihood of the splitting strategy, which is always significantly higher than
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4.3 Science Magazine Dataset

An important consideration that has to be made for the pruning strategy is
that, although it seems suited in several situations, it is not applicable when
the number of documents is very high. This is the case of the Science magazine
dataset, which we discuss separately because we evaluated only the splitting
strategy. Results on this dataset are reported on Fig. 6. Also in this case, it can
be noted that the splitting strategy reaches satisfactory log-likelihood values, as
well as coherence scores, when compared with the other alternatives.

5 Conclusions

In this paper we proposed two novel strategies to initialize the Latent Dirichlet
Allocation (LDA) topic model, that aim at fully exploiting the characteristics of
the model itself. The key idea is to employ a splitting or a pruning approach,
where each training session is initialized from an informative situation derived
from the previous training phase. Then, in order to choose the best topic to
split/prune, we leveraged the intrinsic information derived from the model: in
particular, we exploit the parameter α of the Dirichlet distribution, that can be
seen as a measure of the prior “importance” of each topic. The quality of the
LDA model learned using our approaches has been experimentally evaluated on
5 different datasets, taken from heterogeneous contexts in the literature. Results
suggested that the splitting and pruning strategies are well suited, and can boost
the model in terms of its train and test log likelihood, as well as in terms of the
coherence of the discovered topics.
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Abstract. Motion segmentation is a well studied problem in computer
vision. Most approaches assume a priori knowledge of the number of
moving objects in the scene. In the absence of such information, motion
segmentation is generally achieved through brute force search, e.g.,
searching over all possible priors or iterating over a search for the most
prominent motion. In this paper, we propose an efficient method that
achieves motion segmentation over a sequence of frames while estimating
the number of moving segments; no prior assumption is made about the
structure of scene. We utilize metric embedding to map a complex graph
of image features and their relations into hierarchically well-separated
tree, yielding a simplified topology over which the motions are segmented.
Moreover, the method provides a hierarchical decomposition of motion
for objects with moving parts.

Keywords: Non-rigid motion segmentation · Hierarchically well-
separated trees · Metric embedding

1 Introduction

Motion segmentation aims to identify moving objects in a video sequence by
clustering features or regions over consecutive frames. There exist a wide vari-
ety of methods for motion segmentation. Image differencing [4,18] is among the
simplest methods available which consists of thresholding the intensity difference
between consecutive frames. Another group of techniques used in segmentation
is based on statistical models. Typically, the problem is formulated as a classifi-
cation task in which each pixel is classified as either foreground or background.
Maximum a posteriori (MAP) estimation [21], particle filters [20], and expecta-
tion maximization [22] are frameworks that are commonly exploited in statis-
tical approaches. Wavelets [15], optical flow [25], layers [17], and factorization
[9,11,23] form the basis of other common approaches to motion segmentation.
One common drawback of many of these approaches is their reliance on a pri-
ori knowledge of the number of moving objects in the scene. In this paper, we
overcome this drawback by approaching the motion segmentation problem from
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a graph theoretical perspective. From a complete graph over the set of image
features, we use metric embedding techniques to yield a restricted tree topology,
over which a quadratic optimization problem formulation yields an estimate of
the number of motion clusters.

Due to its representational power, graphs are commonly used in many com-
puter vision tasks. Features extracted from an image can be represented by an
undirected complete graph with weighted edges. Since it is hard to solve prob-
lems over graphs in general, approximate solutions are a viable way to tackle
such problems. Metric embedding is one of the fundamental techniques used to
achieve this goal, and consists of mapping data from a source space to a “simpler”
target space while preserving the distances. It is well known that approximate
solutions to many NP-hard problems over graphs and general metric spaces can
be achieved in polynomial time once the data is embedded into trees. However,
such embeddings tend to introduce large distortion.

A common technique for overcoming such large distortion is the probabilistic
approximation method of Karp [12]. Utilizing probabilistic embedding, Bartal
[1] introduced the notion of hierarchically well-separated trees (HSTs), where
edge weights on a path from the root to the leaves decrease by a constant fac-
tor in successive levels. Embedding graphs into HSTs is especially well-suited
to segmentation problems in computer vision, since the internal nodes of the
tree represent constellations of nodes of the original graph. Thus, HST structure
captures the segment-level information at its internal nodes along with the indi-
vidual features at its leaves. Following Bartal’s seminal work, there have been
several studies on HSTs which improved the upper bound of distortion and intro-
duced deterministic embedding algorithms [2,3,16]. Finally, Fakcharoenphol
et al. [8] devised a deterministic algorithm that achieved embedding of arbitrary
metrics into HSTs with a tight distortion bound.

Given two consecutive frames of a video sequence along with a mapping
between their features, our method first embeds the latter frame into an HST.
Since internal nodes of the HST correspond to clusters of features in the image,
our goal is to find a mapping between the features of the previous frame and the
internal nodes of the HST. This goal is achieved by minimizing a quadratic cost
function which maintains a balance between assigning similar features among
frames and minimizing the number of segments identified in the latter frame.
We also provide two extensions to our method. While our original formulation
provides a single level of clustering for each feature, our first extension allows
assigning a feature to more than one cluster. This translates into detection of
non-rigid motion of objects such as motion of fingers in a moving hand. Our
second extension is in applying the framework to an entire video sequence in an
online fashion. We achieve this by keeping track of feature associations at each
frame and calculate initial assignments of new frames by utilizing this informa-
tion. In the rest of the paper, we explain the theoretical details of our method
and provide its illustration over two consecutive frames of a video sequence as a
proof of concept. We leave empirical evaluation of the method as a future work.
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The rest of the paper is organized as follows: Sect. 2 gives an overview of
notations and definitions. In Sect. 3, we state the optimization problem formu-
lation, which is followed by its application to motion segmentation in Sect. 4.
Finally, in Sect. 5, we draw conclusions and discuss future work.

2 Notations and Definitions

The term embedding refers to a mapping between two spaces. From a compu-
tational point of view, a major goal of embedding is to find approximate solu-
tions to NP-hard problems. Another important use of embedding is to achieve
performance gains in algorithms by decreasing the space or time complexity
of a polynomial-time solvable problem. Given a set of points P , a mapping
d : P × P → R+ is called a distance function if ∀ p, q, r ∈ P , the following four
conditions are satisfied: d(p, q) = 0 iff p = q, d(p, q) ≥ 0, d(p, q) = d(q, p), and
d(p, q) + d(q, r) ≥ d(p, r). The pair (P, d) is called a metric space or a metric.
A finite metric space (P, d) can be represented as a weighted graph G = (V,E)
with shortest path as the distance measure, where points in P form the vertex
set V and pairwise distances between points become the edge weights. However,
the complexity of such graph-based problem formulations can be prohibitive,
motivating approaches that reduce graph complexity. A commonly used app-
roach for decreasing graph complexity is based on changing the structure of the
graph by removing edges that change the distance metric of the graph, removing
or adding vertices, or changing the weights of edges. This approach, however,
introduces distortion on distances in the graph which is defined as the product
of the maximum factors by which the distances in the graph are stretched and
shrunk.

In general, it is hard to find an isometric embedding between two arbitrary
metric spaces. Therefore, it is important to find an embedding in which the
distances between vertices of the destination metric are as close as possible to
their counterparts in the source metric space. In reducing the size of a graph
by removing vertices and edges, we’d like the pruning process to culminate in a
tree, since many problems can be solved much more efficiently on trees than on
arbitrary graphs. Embedding of graphs into trees is a very challenging problem,
even for the simple case of embedding an n-cycle into a tree. Karp [12] introduced
the idea of probabilistic embedding for overcoming this difficulty, where given a
metric d defined over a finite space P , the main idea is to find a set S of simpler
metrics defined over P which dominates d and guarantees the expected distortion
of any edge to be small.

Uniform metrics are among the simplest tessellation spaces where all dis-
tances are regularly distributed across cells. Such metrics are important from
a computational point of view since one can easily apply a divide-and-conquer
approach to problems under uniform metrics. Motivated by these observations,
Bartal [1] defined the notion of hierarchically well separated trees (HST) for
viewing finite metric spaces as a uniform metric. A k-HST is defined as a rooted
weighted tree, where edge weights from a node to each of its children are the
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same and decrease by a factor of at least k along any root-to-leaf path. Assuming
that the maximum distance between any pair of points (diameter) in the source
space is Δ, the source space is separated into clusters (sub-metrics) of diameter
Δ
k . The resulting clusters are then linked to the root as child nodes with edges
of weight Δ

2 . The relation between parent and child nodes continues recursively
until the child nodes consist of single data elements.

Bartal has shown the lower bound for distortion of embedding into HSTs
to be Ω(log n). He also provided a randomized embedding algorithm that uti-
lizes probabilistic partitioning with a distortion rate of O(log2 n). In subsequent
work, both Bartal [2] and Charikar et al. [3] introduced deterministic algorithms
with smaller distortion (O(log n log log n)). Konjevod et al. [16] were the first to
improve the upper bound on distortion to O(log n) for the case of planar graphs.
Fakcharoenphol et al. [8] closed the gap for arbitrary graphs by introducing a
deterministic algorithm with a tight distortion rate (Θ(log n)). The deterministic
nature of their algorithm made this result of great practical value.

A fundamental set of problems in computer science involves classifying a set
of objects into clusters while minimizing a prescribed cost function. The main
goal of the classification problem is to assign similar objects to the same cluster.
Typical cost functions account for the cost of assigning an object to a cluster
and the cost of assigning a pair of similar objects to two unrelated clusters
(separation cost). The multiway cut problem of Dahlhaus et al. [5] is a simplified
classification task that accounts only for the separation cost. Namely, for a given
graph with nonnegative edge weights and a predefined set of terminal nodes, it
builds an assignment of nonterminals to terminals that minimizes the sum of the
edge weights between nodes assigned to distinct terminals:

Definition 1. Given a graph G = (V,E) with nonnegative edge weights w :
E → R and a subset T ⊆ V of terminal nodes, find a mapping f : V → T that
satisfies f(t) = t for t ∈ T , and minimizes

∑
uv∈E,f(u) �=f(v) w(u, v).

Karzanov [13] proposed a generalization of the multiway cut known as the
0-extension problem. In his formulation, the cost function accounts for distance
between terminals when measuring the cut weight of nonterminal edges. Specif-
ically, each term w(u, v) with {uv ∈ E, f(u) �= f(v)} of the cost function in
Definition 1 will be replaced by w(u, v)δ(f(u), f(v)), where δ(f(u), f(v)) is the
distance between terminals to which u and v are assigned.

Finally, Kleinberg and Tardos [14] presented the most general form of the
classification task known as metric labeling problem. Given a set of objects P
and a set of labels L with pairwise relationships defined among the elements of
both sets, metric labeling assigns a label to each object by minimizing a cost
function involving both separation and assignment costs. Separation cost penal-
izes assigning loosely related labels to closely related objects while assignment
cost penalizes labeling an object with an unrelated label. The cost function Q(f)
can be stated as follows:

Q(f) =
∑
p∈P

c(p, f(p)) +
∑

e=(p,q)∈E

wed(f(p), f(q)).
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where, c(p, l) represents the cost of labeling an object p ∈ P with a label l ∈ L
and d(·, ·) is a distance measure on the set L of labels. Although, there has
been ample studies on solving classification problems using labeling methods,
their work was the first study that provided a polynomial-time approximation
algorithm with a nontrivial performance guarantee.

Metric labeling is closely related to one of the well-studied combinator-
ial optimization problems called quadratic assignment. Given n activities and
n locations in a metric space, the goal of quadratic assignment is to place
each activity at a different location by minimizing the cost. Similar to the
metric labeling, there are two terms affecting the cost of assignments. Plac-
ing an activity i at a location l introduces an operating cost of c(i, l). More-
over, popular activities should be located close to each other to minimize
the overall cost which leads the cost function to penalize the separation of
closely related activities. Assuming that a value wij measures the interaction
between activities i and j, and a distance function d(l1, l2) measures the distance
between labels l1 and l2, the quadratic assignment problem seeks to minimize∑

i c(i, f(i)) +
∑

i,j wijd(f(i), f(j)) over all bijections f .

3 Optimizing Number of Segments

Motivated by the quadratic assignment and metric labeling problems, we pose
the following optimization problem:

Definition 2. Given an object graph GO and a label graph GL both equipped
with shortest path metric, and a similarity function defined between nodes of the
two graphs, find a mapping f from nodes of GO to clusters of nodes of GL, in
which similar nodes of the two graphs are matched and a minimum number of
clusters of GL is used in the mapping.

This problem differs from the quadratic assignment problem in that the sizes of
the two graphs can be different and the nodes of the first graph match to clusters
of nodes in the second graph. The method that we propose to solve this problem
involves HSTs which makes it closely related to Kleinberg and Tardos’ approach
on metric labeling. Our method differs from [14] in that we utilize HSTs to
optimize the number of active labels whereas they use it in obtaining a linear
programming formulation for the problem. In the next section, we will show
how the solution to this problem can be applied to motion segmentation while
overcoming the requirement of a priori knowledge of the number of clusters.

We tackle the problem in two steps which consist of: (1) embedding GL into
an HST; followed by (2) solving a quadratic optimization problem. We assume
that a mapping of object nodes p ∈ GO to label nodes a ∈ GL is initially given.
Our goal is to update this mapping by minimizing the number of so called active
labels, i.e., labels that have objects assigned to them.

Embedding GL into the HST H results in a natural clustering of features
of the label graph. The leaf nodes of H will correspond to the label nodes GL,
whereas internal nodes of H will represent clusters of labels in the GL. The initial
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Fig. 1. Embedding of the object graph GO into the HST representation H of the
label graph GL. Object nodes pi ∈ GO that are assigned to labels li ∈ GL are shown
connected to the leaves of the HST with H unweighted edges. T is an internal node
that represents a cluster of labels, which is the root of the subtree emanating from it.
R represents the root of H.

assignment between objects and labels can be visualized as assigning object
nodes to the leaves of the resulting label tree, as shown in Fig. 1, where only the
leaf level nodes are active. We utilize the hierarchical structure of H in order
to update the mapping such that the object nodes get assigned to the internal
nodes of H as labels instead of to its leaves. The following quadratic optimization
problem provides an update mechanism to the initial mapping.

min
∑

p∈GO

∑
T∈H

d(p, T )wp,T xT +
∑

p,q∈GO

∑
T,T ′∈H

d(T, T ′)wp,T xT wq,T ′xT ′ (1)

s.t.
∑
T∈H

wp,T xT = 1, ∀p ∈ GO (2)

xT ∈ {0, 1}

where wp,T = 1 if the leaf li that the object p is assigned to is a descendant of
internal node T ∈ H and wp,T = 0 otherwise, and d(p, T ) is the distance between
li and T measured on HST H. Note that value of wp,T is known a priori based
on the initial assignment of objects to labels for all p ∈ GO and T ∈ H. The first
term in the above objective function will be minimized if all the objects in GO
are assigned to labels at the leaf level. The second term of the objective function
will reduce the number of active labels by enabling nodes that are closer to each
other in the tree. Constraint (2) ensures that only one of the labels on the path
from pi ∈ GO to the root R will become activated. In Fig. 2, as T and T ′ are
chosen closer to the root R, the contribution of the second term to the cost will
be reduced. Also note that the contribution of the second term will be zero for
the two nodes p and q if one of their common ancestors becomes activated.
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Fig. 2. Two objects being assigned to separate non-leaf labels.

We note that representing (1) as a positive semidefinite program will simplify
the quadratic terms and help us prove the performance bound of the method
after relaxation. Since xTi

∈ {0, 1}, we have:

min
∑

p∈GO

∑
T∈H

d(p, T )wp,T · xT = min
∑

p∈GO

∑
T∈H

d(p, T )wp,T · x2
T .

Let T1, · · · , Tc be the subtrees in H and X be a matrix such that X =[
xTi

xTj

]
i,j=1..c

. Since X = x · xT , where x = [xT1 , · · · , xTc
], X is clearly a

PSD matrix. Thus, (1) can be reformulated as follows:

min
∑

p∈GO

∑
i=1..c

d(p, Ti)wp,Ti
Xi,i +

∑
p,q∈GO

∑
i,j=1..c

d(Ti, Tj)wp,Ti
wq,Tj

Xi,j (3)

s.t.
∑

i=1..c

wp,Ti
Xi,i = 1, ∀p ∈ GO (4)

X is PSD
Xi,j ∈ {0, 1}.

Since solving (3) is NP-hard, finding approximate results is desirable. One can
obtain a fractional solution to (3) in polynomial time by relaxing the integrality
constraint. Then, an approximation can be achieved by using a proper round-
ing technique [24]. We leave finding a proper rounding algorithm and making
performance bound proofs as a future work.

4 Application to Motion Segmentation

Formulation (3) can be applied to the motion segmentation problem where
graphs GO and GL correspond to features of two consecutive frames. Here the
goal is to segment objects in a video sequence according to the relative move-
ment of features across the frames. In this section, we illustrate the application
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Fig. 3. Initial mapping between individual features of the two frames. Images taken
from the video in [7].

of our method to motion segmentation as a proof of concept and then suggest
improvements to the formulation.

Using the proposed method, we first obtain clusters of features by embedding
GL into the HST and then minimize the number of segments by solving the
optimization problem based on the relative motion of the features. In general,
motion segmentation methods fall short of segmenting sequences without a priori
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Fig. 4. Embedding features of the second frame into an HST. In the tree, features
of the second frame are located at leaf level of the tree and represented as circles.
The features of the first frame are represented as triangles and shown as mapping to
corresponding features of second frame.
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Fig. 5. Darkly shaded internal nodes of the HST are used as labels in the assignment.
This implicitly enforces segmentation in the second frame, which is obtained based on
the motion.

knowledge of the number of independently moving objects. Our formulation
overcomes this problem by optimizing the number of segments.

We begin by establishing a mapping between the features of two consecu-
tive frames by using a graph matching method such as [6,19] (see Fig. 3). Our
method then embeds the feature graph of the second frame into an HST using
the deterministic algorithm in [8]. As illustrated in Fig. 4, the embedding proce-
dure recursively groups features into hierarchical clusters. In the resulting HST,
actual features are located in the leaf level whereas internal nodes of the tree
correspond to clusters of features of the original image. The initial mapping
then can be visualized as an assignment of the features of the first frame into
the leaves of the resulting HST. By solving the optimization problem (3), the
initial mapping is updated such that features of the first frame are mapped to
the internal nodes of the HST which represent segments of features in the second
frame. Some of the segments will become active as a result of the optimization,
shown in darker color in Fig. 5. Thus, features of the first frame enforce a cluster-
ing of the second frame based on the similarity between features and the choice
of internal nodes of HST to become active. Figure 6 illustrates the result of the
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Fig. 6. Image features are segmented into clusters representing independent motions;
features with the same symbol belong to the same cluster.
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Fig. 7. An object having two active labels in its path to the root.

segmentation. In the rest of this section, we will propose further improvements
to our method.

4.1 Adjusting Rigidity in Segmentation

Due to (4) being an equality, solving (3) will activate exactly one label in a path
from each leaf to the root R, as shown in Fig. 2. By relaxing this constraint, we
can obtain a partial hierarchical labeling where a node will be assigned to several
labels that are hierarchically related to each other, demonstrated in Fig. 7. This
can be achieved by replacing (2) with the following:∑

T∈H
wp,T · xT ≥ 1, ∀p ∈ O (5)

This relaxation can be used for relaxing the rigidity assumption in motion
segmentation. For example, label T ′ might represent the features corresponding
to the fingers of a hand, while label T represents the features of the entire hand,
including the fingers, which move relative to each other.

4.2 Aggregating Motion Over Frames

So far we proposed a framework for establishing motion segmentation of two con-
secutive frames where we initially assumed in (1) that prior assignment informa-
tion wp,T for all p ∈ GO is given. Considering the application of the framework to
a video sequence, we would be interested in utilizing the assignment information
of the previous pair of frames in the calculation of the initial mappings of the
succeeding frame pair. This will allow us to aggregate motion information over
the video sequence in an online fashion as new frames appear. Assume without
loss of generality that there exist k labels at a certain level of the tree, one can
set the assignment probabilities as wp,T = 1/k for all internal nodes T at that
level. This uniform association scheme is suitable for the features that appear
for the first time in the sequence. For the features that appear in more than one
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frame, we propose a voting scheme over the image sequence which keeps track of
associations between features and clusters. Specifically, if a feature p appears in
close proximity of another feature q in several prior frames but it never appears
close to feature r, then probability of assigning p and q to the same cluster will be
higher than that of p and r at this level. Thus, newly appearing features will get
assigned based only on feature similarities whereas assignment of reappearing
features will be biased towards highly correlated recurring features.

5 Discussion and Future Work

In this paper, we presented a novel technique for motion segmentation which,
unlike many existing techniques, does not require a priori knowledge of the
number of moving objects. Our method overcomes this constraint by embed-
ding image features into hierarchically well-separated trees and then solving a
quadratic optimization problem over the tree. We demonstrate the use of our
method over two consecutive frames of a walking athlete. We also provided two
extensions to our initial formulation. First, we relax the constraint of assigning
one label to each feature, enabling us to allow for nonrigidity in motion seg-
mentation, such as detecting the motion of a hand versus the motions of fingers
within a moving hand. Second, we propose using the footprints of a feature over
previous frames to define an assignment probability for the features in the cur-
rent frame. In future work, we will apply this strategy to a video sequence and
compare the results with the state of the art.

Our method has a limitation arising from the way HST embedding is per-
formed. The embedding algorithm of [8] clusters the features based on their spa-
tial distribution. Thus, for example, in Fig. 6, the features located at the back of
the walking athlete and the upper part of the arm are segmented together. How-
ever, we would expect the features at the arm to be clustered together with the
features of the hand. One of the reasons for this artifact is the low density of the
features that we used for demonstrating the method. As the number of features
extracted in a frame increases, this misclassification will be less prominent.

Another direction for future improvement lies in the calculation of initial
matchings for consecutive pairs of frames. Our method assumes that we are
given an initial assignment of features between the former and the latter frames
which is then updated to obtain the optimal number of active labels. As we
noted earlier, this assumption is viable since existing methods can be efficiently
utilized to obtain such a mapping. However, it would be interesting to update
an existing initial mapping between the previous two frames to obtain an initial
mapping for the next frame. This, in turn, translates to making dynamic updates
in an existing matching as the underlying topology changes. Developing an algo-
rithm along the lines of Goemans and Williamson’s primal-dual method [10] for
obtaining dynamic matching is a promising direction for future study. Proposed
method provides an online segmentation in that it makes use of the motion infor-
mation obtained so far in a video sequence to conclude about the clustering of
features in a new frame. Investigating the possibility of an optimization formu-
lation that calculates the segmentation over the entire video sequence is another
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promising direction for future study. We did not address how to handle the noise
and occlusion of object in this study which requires further investigation.

References

1. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic
applications. In: Proceedings of the 37th Annual Symposium on Foundations of
Computer Science, FOCS 1996, pp. 184–193. IEEE Computer Society, Washington,
DC (1996)

2. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, STOC 1998, pp.
161–168. ACM, New York (1998)

3. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a finite
metric by a small number of tree metrics. In: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, FOCS 1998, pp. 379–388. IEEE
Computer Society, Washington, DC (1998)

4. Colombari, A., Fusiello, A., Murino, V.: Segmentation and tracking of multiple
video objects. Pattern Recogn. 40(4), 1307–1317 (2007)

5. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis,
M.: The complexity of multiway cuts (extended abstract). In: Proceedings of the
24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 241–251.
ACM, New York (1992)

6. Demirci, M.F., Osmanlioglu, Y., Shokoufandeh, A., Dickinson, S.: Efficient many-
to-many feature matching under the l1 norm. Comput. Vis. Image Underst. 115(7),
976–983 (2011)

7. Endlessreference. Animation reference - athletic male standard walk - realtime
[Video file], 12 January 2015. https://www.youtube.com/watch?v=GBkJY86tZRE

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, STOC 2003, pp. 448–455. ACM, New York (2003)

9. Flores-Mangas, F., Jepson, A.D.: Fast rigid motion segmentation via incrementally-
complex local models. In: 2013 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2259–2266. IEEE (2013)

10. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation
algorithms and its application to network design problems. In: Hochbaum, D.S.
(ed.) Approximation Algorithms for NP-hard Problems, pp. 144–191. PWS Pub-
lishing Co., Boston (1997)
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Abstract. Kernel methods provide a convenient way to apply a wide
range of learning techniques to complex and structured data by shift-
ing the representational problem from one of finding an embedding of
the data to that of defining a positive semi-definite kernel. One prob-
lem with the most widely used kernels is that they neglect the loca-
tional information within the structures, resulting in less discrimination.
Correspondence-based kernels, on the other hand, are in general more
discriminating, at the cost of sacrificing positive-definiteness due to their
inability to guarantee transitivity of the correspondences between mul-
tiple graphs. In this paper we adopt a general framework for the pro-
jection of (relaxed) correspondences onto the space of transitive cor-
respondences, thus transforming any given matching algorithm onto a
transitive multi-graph matching approach. The resulting transitive cor-
respondences can then be used to provide a kernel that both maintains
locational information and is guaranteed to be positive-definite. Exper-
imental evaluation validates the effectiveness of the kernel for several
structural classification tasks.

1 Introduction

Graph-based representations have proven invaluable in several application
domains due to their ability to characterize complex ensembles in terms of parts
and binary relations. Concrete examples include the use of graphs to repre-
sent shapes [1], metabolic networks [2], protein structure [3], and road maps [4].
However, the expressive power of graphs comes at the cost of a reduced pat-
tern analysis toolset available to the practitioner. In fact, our ability to analyse
data abstracted in terms of graphs is severely limited by the restrictions posed
by standard feature-based paradigm dominating pattern recognition techniques,
which require data to be representable in a vectorial form.

There are two reasons why graphs are not easily reduced to a vectorial form.
First, unlike the components of a vector, there is no canonical ordering for the
nodes in a graph, requiring correspondences to be established as a prerequisite for
analysis. Second, the variation in the graphs of a particular class may manifest
itself as subtle changes in structure. Hence, even if the nodes or the edges of a
graph could be encoded in a vectorial manner, the vectors would be of variable
length, thus residing in different spaces.
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 146–159, 2015.
DOI: 10.1007/978-3-319-24261-3 12



Transitive Assignment Kernels for Structural Classification 147

The first 30 years of research in structural pattern recognition have been
mostly concerned with the solution of the graph matching problem as the fun-
damental means of assessing structural similarity [5]. With the correspondences
at hand, similarity-based recognition and classification techniques can be used.
Alternatively, graphs can be embedded in a low-dimensional pattern space using
either multidimensional scaling or non-linear manifold leaning techniques.

Another alternative is to extract feature vectors from the graphs providing
a pattern-space representation by extracting structural or topological features.
For example, spectral features extracted from the singular value decomposition
of the graph Laplacian have been proven effective [6–9]. For an overall survey
about the current state-of-the-art in the graph matching problem, refers to the
work by Livi and Lizzi [10].

1.1 Graph Kernels

The famous kernel trick [11] has shifted the problem from the vectorial repre-
sentation of data, which now becomes implicit, to a similarity representation.
This has allowed standard learning techniques to be applied to data for which
no easy vectorial representation exists. Once we define a positive semi-definite
kernel k : X × X → R on a set X, there exists a map φ : X → H into a Hilbert
space H, such that k(x, y) = φ(x)�φ(y) for all x, y ∈ X. Also, given the kernel
value between φ(x) and φ(y) one can easily compute the distance between them
by noting that ||φ(x) − φ(y)||2 = φ(x)�φ(x) + φ(y)�φ(y) − 2φ(x)�φ(y). Thus,
any algorithm that can be formulated in terms of dot products between the
input vectors can be applied to the implicitly mapped data points through the
direct substitution of the kernel for the dot product. For this reason, in recent
years the structural pattern recognition field has witnessed an increasing inter-
est in graph kernels. However, due to the rich expressiveness of graphs, this task
has also proven to be difficult, with the problem of defining complete kernels,
i.e., ones where the implicit map φ is injective, sharing the same computational
complexity of the graph isomorphism problem [12].

One of the most influential works on structural kernels is the definition of
the class of R-convolution kernel proposed by Haussler [13]. Here graph ker-
nels are computed by comparing the similarity of the basic elements for a given
decomposition of the two graphs. Depending on the decomposition chosen, we
obtain different kernels. Most R-convolution kernels simply count the num-
ber of isomorphic substructures in the two graphs. For example, Kashima et
al. [14] compute the kernel by decomposing the graph into random walks, while
Borgwardt et al. [15] have proposed a kernel based on shortest paths. Here, the
similarity is determined by counting the numbers of pairs of shortest paths of
the same length in a pair of graphs. Shervashidze et al. [16] have developed a
subtree kernel on subtrees of limited size, where the number of subtrees com-
mon between two graphs is computed efficiently using the Weisfeiler-Lehman
graph invariant. Recently, Kriege et al. [17] proposed that a kernel based on the
number of isomorphisms between pairs of subgraphs, while Neumann et al. [18]
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have introduced the concept of propagation kernels to handle partially labelled
graphs through the use of continuous-valued vertex attributes.

1.2 Assignment Kernels

One drawback of these kernels is that they neglect the locational information
for the substructures in a graph. In other words, the similarity does not depend
on the relationships between substructures. As a consequence, these kernels can-
not establish reliable structural correspondences. This limits the precision of the
resulting similarity measure. Ong et al. [19] introduce several kernel methods
about indefinite kernel for general structures, while Geibel et al. [20,21] gives a
solution to deal with not positive semidefinited kernel based on Schur-Hadamard
Inner Product applied on graphs. Further, Schietgat et al. [22] propose a graph
metric which is based on the maximum common subgraph, while in [23] the
authors exploit indefinite maximum common subgraph kernels using the poten-
tial of support vector machine for indefinite matrices, extending the work pro-
posed by Hochreiter and Obermayer [24]. Another interesting solution described
by Fröhlich et al. [25] presents alternative optimal assignment kernels. Here each
pair of structures is aligned before comparison. Another example of alignment-
based kernels are the edit-distance-based kernels introduced by Neuhaus and
Bunke [26]. Here the alignments obtained from graph-edit distance are used to
guide random walks on the structures being compared.

Unfortunately, the introduction of the alignment step results in a kernel
that is not positive definite in general [27]. The problem results from the fact
that alignments are not in general transitive. In other words, if σ is the vertex-
alignment between graph A and graph B, and π is the alignment between graph
B and graph C, in general we cannot guarantee that the optimal alignment
between graph A and graph C is π ◦ σ. Lacking positive definiteness the opti-
mal assignment kernels cannot be guaranteed to represent an implicit embedding
into a Hilbert space. However, they have proven to be very effective in classifying
structures.

1.3 Multi-graph Matching

The problem of estimating a transitive set of correspondences between struc-
tures, known as the multi-graph matching problem, has received much less atten-
tion by the research community than pairwise matching. One of the earliest work,
due to Williams et al. [28], imposes the transitive vertex-matching constraint
in a softened Bayesian manner, inducing inference triangles by forming fuzzy
compositions of pairwise matching functions. Sole-Ribalta and Serratosa [29]
extended the Graduated Assignment algorithm [30] to the multi-graph scenario
by raising the assignment matrices associated to pair of graphs to assignment
hypercube, or tensors, between all the graphs. For computational efficiency,
the hypercube is constructed via sequential local pair matching. More recently,
Yan et al. [31,32] proposed a new framework explicitly extending the Integer
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Quadratic Programming (IQP) formulation of pairwise matching to the multi-
graph matching scenario. The resulting IQP is then solved through alternating
optimization approach. Pachauri et al. [33], on the other hand, synchronize a
given set of assignments through a spectral relaxation.

1.4 Contribution

In this paper we want to investigate the use of multi-graph matching techniques
in the context of graph kernels. By forcing the correspondences between the
structures under study to satisfy transitivity, we obtain an alignment kernel
that, not only is positive definite, but also makes use of more reliable locational
information obtained through the enforcement of global consistency constraints.
In fact, when the alignments are transitive, there is a common simultaneous
alignment of all the graphs. Under this alignment, the kernel is simply the sum
over all the vertex/edge kernels, which is positive definite since it is the sum of
separate positive definite kernels.

Here we adopt an approach similar to Pachauri et al. [33] in avoiding the
definition of a specific multi-graph matching algorithm. Rather, we project a
set of (possibly relaxed) assignments to the set of transitive correspondences.
Transformation synchronization techniques such as this have been proven effec-
tive in several fields due to their effectiveness, their ability to leverage the state
of the art in pairwise transformation estimation, and their computational effi-
ciency [34,35]. The proposed synchronization technique shares some similarities
with [33], but we adopt a different relaxation scheme that does not result in a
generalized low rank Rayleigh problem, but can however be solved with a pro-
jected power method, avoiding the requirement for an eigendecomposition of the
matching tensor.

2 Projection on the Transitive Alignment Space

Let G1, G2, . . . , GN be graphs and let Pij for i, j = 1, . . . , N be a matrix matching
vertices in Gi to vertices in Gj obtained with any pairwise matching algorithm.
Here we assume that (Pij)vw expresses a likelihood that node v in Gi is matched
to node w in Gj , but is not required to represent a permutation, and can be in a
relaxed space such as the space of doubly stochastic matrices. Our goal is to find
a set of permutation matrices P ij ∈ Σn (with Σn the permutation space and
i, j = 1, . . . , N) as similar as possible, in the least square sense, to Pij , which
satisfy the transitivity constraint. Namely,

∀i, j, k = 1, . . . , N P ijP jk = P ik . (1)

In order to do this first we force the graphs all to the same size n by padding
them with dummy disconnected nodes to the maximum size of all the graphs of
the set (see Fig. 1).

Once the graphs are all of the same size, we can enforce transitivity through
the introduction of an unknown reference canonical ordering and the alignment
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Fig. 1. Graphical example about the refinement task of our datasets. In the figure, the
set is composed of three graphs G1, G2 and G3. The maximum number of nodes is 5
(the second graph), hence we add two disconnected nodes in G1 and three in G3 in
order to obtain respectively the extended graphs G′

1 and G′
2. The final dataset with

the same number of nodes n = 5 is composed by the graphs set G′
1, G2 and G′

3.

matrices Qi ∈ Σn i = 1, . . . , N that map vertices in Gi to the reference order.
With these matrices to hand we set P ij = QiQ

T
j . Note that there is no lack in

representation power, as the transitivity constraint guarantees the existence of
such canonical ordering. In fact, let for example Qi = P i1. For transitivity, we
have

P ij = P i1P 1j = P i1P
T

j1 = QiQ
T
j . (2)

Furthermore, such canonical ordering is not unique, since for any permutation
matrix P ∈ Σn, we have

P ij = QiQ
T
j = (QiP )(PT QT

j ) . (3)

With the canonical ordering representation the projection on the transitive
space of permutations cast as the following minimization process

argmin
Q∈(Σn)N

N∑
i,j=1

||Pij − QiQ
T
j ||22 =

argmin
Q∈(Σn)N

N∑
i,j=1

(||Pij ||22 + ||QiQ
T
j ||22 − 2Tr(QjQ

T
i Pij)

)
=

argmin
Q∈(Σn)N

2N2n − 2
N∑

i,j=1

Tr(QT
i PijQj) =

argmin
Q∈(Σn)N

2N2n − 2
N∑

i,j=1

vec(Qi)T (I ⊗ Pij) vec(Qj) , (4)

where || · ||2 is the Frobenius matrix norm while Tr is the linear trace operator.
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This is equivalent to the following Integer Quadratic Problem

argmax
Q∈(Σn)N

⎛
⎜⎜⎜⎝

vec(Q1)
vec(Q2)

...
vec(QN )

⎞
⎟⎟⎟⎠

T

︸ ︷︷ ︸
vec(Q)T

⎛
⎜⎜⎜⎝

I ⊗ P11 I ⊗ P12 . . . I ⊗ P1N

I ⊗ P21 I ⊗ P22 . . . I ⊗ P2N

...
...

. . .
...

I ⊗ PN1 I ⊗ PN2 . . . I ⊗ PNN

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Π

⎛
⎜⎜⎜⎝

vec(Q1)
vec(Q2)

...
vec(QN )

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
vec(Q)

. (5)

where ⊗ represents the Kronecker product while I is the identity matrix. Note
that if the pairwise matches are symmetric, i.e., Pij = PT

ji , then Π is symmetric
as well. However, as in all quadratic problem, Π (and thus Pij) can be made
symmetric without affecting the result.

Our proposal is to relax this to the problem

maximize xT Πx
s.t. x ∈ (Sn)N (6)

where Sn is the unit sphere in R
n, and then project the solution to (Σn)N

in order to obtain the alignment matrices Si (which differs from the QI seen
before since we are working on a relaxed space) and, consequently, the transitive
permutation matrices P ij = SiS

T
j .

We solve 6 efficiently through a power iteration projected to (Sn)N by noting
that the gradient of the quadratic form can be computed in terms of multiplica-
tions and additions of the matching and alignment matrices:

Πx =

⎛
⎜⎜⎜⎝

I ⊗ P11 I ⊗ P12 . . . I ⊗ P1N

I ⊗ P21 I ⊗ P22 . . . I ⊗ P2N

...
...

. . .
...

I ⊗ PN1 I ⊗ PN2 . . . I ⊗ PNN

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xN

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∑N
i=1 P1iXi∑N
i=1 P2iXi

...∑N
i=1 PNiXi

⎞
⎟⎟⎟⎠ , (7)

where xT = (xT
1 , . . . ,xT

N )T expresses the N spherical components of x, and
Xi is the matrix representing the current relaxation of Qi, for which we have
xi = vec(Xi).

Hence, we can maximize 6 by iterating the recurrence

X
(t+1)
i =

∑N
j=1 PijX

(t)
j

||∑N
j=1 PijX

(t)
j ||2

(8)

Once the matrices Xi are at hand, we obtain the closest (in the least square
sense) permutations Qi by solving N maximum bipartite assignment problems.
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3 Transitive Assignment Kernel

With transitive matches to hand, we follow Fröhlich et al. [25] in the definition
of an assignment kernel between graphs Gi = (Vi, Ei) and Gj = (Vj , Ej): we
define two sets of kernels, one Kv : Vi × Vj → R for the vertices, and one
Ke : V 2

i ×V 2
j → R for the edges and fuse them with the transitive correspondence

πij : Vi → Vj encoded in P ij , to obtain the Transitive Assignment Kernel:

TAK(Gi, Gj) =
∑
v∈Vi

Kv

(
v, πij(v)

)
+

∑
v∈Vi

∑
w∈Vi

Ke

(
(v, w), (πij(v), πij(w))

)
(9)

Here, both kernels are assumed to be positive semidefinite and symmetric. In
our experiments we used the dot product between Heat Kernel Signatures [36]
(HKS) for the vertex kernel Kv. More precisely, given an undirected graph G of
n nodes, let A = (aij) the n × n adjacency matrix (where aij is the weight of
the edge between the nodes i and j in G) and D the degree matrix, we compute
the related n × n Laplacian matrix L as

L = D − A

Let φi the i-th eigenvector of L (with i = 1, . . . , n) and Λ = (λ1, λ2, . . . , λn)T

the eigenvalues of the Laplacian. Finally, let m be a set of time values
{t1, t2, . . . , tm}. We define the HKS feature vector f = (f1, f2, . . . , fm)T as

fj =
n∑

k=1

exp(−tjλk)φ2
k

Once computed, the feature vectors are collected on a n × m matrix F as
columns

F = (f1, f2, · · · , fm)

Given two graph Gi and Gj (with the same number of nodes n), our HKS kernel
is defined as the sum of the dot product between the respective feature matrices
k = Fi · Fj = (k1, k2, . . . , kn)T . Hence, the kernel matrix is defined as

Kv(Gi, Gj) =
n∑

w=1

kw

On the other hand, the edge kernel Ke was chosen to be a discrete enforce-
ment of the topological structure:

Ke

(
(u, v), (a, b)

)
=

{
1 if

(
(u,w) ∈ Ei ∧ (a, b) ∈ Ej

) ∨ ((u,w) �∈ Ei ∧ (a, b) �∈ Ej

)

0 otherwise.

(10)
The positive semidefiniteness of the proposed kernel can be proved through the
closure properties of positive definite functions. The closure under sum states
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that, given a non-empty set X and two positive semidefinite symmetric kernels
KA,KB : X × X → R, it holds

K = KA + KB : X × X → R (11)

Then, K is a positive semidefinite symmetric kernel. In other words, in order
to construct a new positive semidefinite kernel as the sum of existing ones (Kv

and Ke in our instance), first the kernels need to be positive semidefinite. Sec-
ond, they all must be defined in the same space. The kernels employed in 9
are positive semidefinite by hypothesis. Furthermore, since the projection on
the transitive alignment space introduces a reference canonical order (and such
canonical ordering is guaranteed by the transitivity constraints, see Sect. 2), the
space of the kernels is the same. In fact, the kernels defined as the sum of all
Kvs (KA) and the sum of all Kes (KB) are clearly positive semidefinite since all
Kvs and all Kes belong to the same respective spaces. Hence, the kernel defined
in 9 is positive semidefinite. Note that without the transitive alignment and its
induced canonical ordering, the assumption that all Kvs and Kes belong to the
same respective spaces would be wrong.

4 Experimental Evaluation

We evaluate the performance of the proposed method in terms of classification
accuracy and we compare it with a number of well-known kernels, namely the
Weisfeiler-Lehman kernel [37] (where the number of iterations parameter was
set to h = 3 and we used the degree of each node as the node attribute), the
graphlet kernel [38], the shortest-path kernel [39], the random walk kernel [14]
and an experimental kernel based on the Heat Kernel Signature [36] method.
In particular, we employ the Heat Kernel Signature to compute the feature
descriptors with respect to k = 100 time parameters t uniformly distributed
within the range [1, 10] and we build the kernel as described in Sect. 3.

Furthermore, we compare the performance of the proposed method with
respect to the state-of-the-art of graph matching methods, namely the Spectral
Matching (SM) [40] and Reweighted Random Walks Matching (RRWM) [41]. In
order to do so, we address the classification task using several popular datasets
with and without the permutations computed by the graph matching methods.

Given a pair of graphs (Gp, Gq) with the same number of nodes n, we compute
the n2 × n2 affinity matrix Mpq = (mia,jb) as

mia,jb = exp

(
− (ap

ij − aq
ab)

2

σ2

)

where σ2 is a scale factor which is experimentally set to 0.15. This affin-
ity matrix is employed as the input of one of the graph matching technique
(GM ) introduced above (SM and RRWM), obtaining the n × n weight matrix
Wpq = GM(Mpq). Note that the number of nodes of the graphs Gp and Gq

are not required to be same, since if they are different, we will just add some
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disconnected dummy nodes in order to make the number of the nodes equal, as
explained in Sect. 2. Finally, we use the real matrix Wpq as the input for the
Hungarian algorithm, which is a well-known method that performs a combina-
torial optimization finding a maximum weight matching in a weighted bipartite
graph. This results in a discretized version of the weight matrix, which is, in
practice, a permutation matrix. Hence, we define the permutation matrix Ppq as

Ppq = Hungarian(Wpq)

We run our experiments on the following datasets:
MUTAG dataset [42] was constructed based on data from review of litera-

tures about mutagenicities in Salmonella Typhimurium based on 200 aromatic
and heteroaromatic nitro compounds. As a result, 188 congeners were extracted
together with their structure-activity relationship (SAR) data.

PPI dataset, which consists of protein-protein interaction (PPIs) networks
related to histidine kinase [43] (40 PPIs from Acidovorax avenae and 46 PPIs
from Acidobacteria).

PTC (The Predictive Toxicology Challenge) dataset, which records the car-
cinogenicity of several hundred chemical compounds for male rats (MR), female
rats (FR), male mice (MM) and female mice (FM) [44] (here we use the 344
graphs in the MR class).

COIL dataset, which consists of 5 objects from [45], each with 72 views
obtained from equally spaced viewing directions, where for each view a graph
was built by triangulating the extracted Harris corner points.

Reeb dataset, which consists of a set of adjacency matrices associated to the
computation of reeb graphs of 3D shapes [46].

ENZYMES dataset [47] is based on graphs representing protein tertiary
structures consisting of 600 enzymes from the BRENDA enzyme database, which
are correctly assigned to one of the 6 EC top-level classes.

SHOCK dataset consists of graphs from the Shock 2D shape database. Each
graph of the 150 graphs divided into 10 classes is a skeletal-based representation
of the differential structure of the boundary of a 2D shape.

For efficiency purposes, the experiments do not involve the whole datasets.
In particular, we select a certain number of classes and a certain number of
graphs for each class. The selection of these subsets is performed randomly on
the original datasets. Table 1 shows the number of classes and the number of
graphs of each dataset that has been used to compute the results. In order to
get an homogeneous number of nodes within the graphs of the same dataset, we
add to each graph nMAX − ni dummy nodes (i.e. not connected nodes), where
nMAX is the maximum number of nodes among the graphs of a certain dataset,
while ni is the number of nodes of the i-th graph.

We used a binary C-SVM to test the efficacy of the kernels. We performed 10-
fold cross validation, where for each sample we independently tune the value of C,
the SVM regularizer constant, by considering the training data from that sample.
The process was averaged over 100 random partitions of the data, and the results
are reported in terms of average accuracy ± standard error. In particular, at
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Table 1. Details of the datasets.

Dataset name Classes Graphs per class Total Graphs Graph nodes

MUTAG 2 ≈94 188 28

PPI 2 20 40 161

PTC 2 30 60 70

COIL 3 20 60 112

Reeb 3 20 60 86

ENZYMES 3 20 60 26

SHOCK 10 15 150 33

each 10-fold cross validation iteration, the dataset is randomly permuted and
subdivided in 10 folds. Every fold is used as a crossvalidation fold, while the
remaining are use to train the SVM. The process is repeated 100 times. Finally,
we define the standard error as

σ̂X =
√

n ·
√∑n

i=1(x − x̄)2

n
=

√√√√ n∑
i=1

(x − x̄)2

where x̄ is the mean accuracy obtained in a crossvalidation iteration with n
samples X = {x1, x2, . . . , xn}.

Table 2 shows the average classification accuracy (± standard error) of the
different kernels on the selected datasets. The first part of the table shows the
accuracy computed using the datasets after the pruning operation mentioned
before. The second part of the table (after the double line) shows the classifica-
tion accuracy achieved after the application of the permutations yielded by the
compared graph matching methods. More precisely, given Pij the permutation
matrix which defines the correspondences of the graph i with respect to graph
j, we compute the value of the kernel between the permuted graph i and the
graph j. In particular, HKS-SM shows the classification accuracy obtained per-
muting the graphs using the Spectral Matching results, while HKS-TSM shows
the results obtained using the proposed method which has been initialized using
Spectral Matching. The results show that the proposed method is competitive
and outperform the other graph matching algorithms in almost all the datasets.
COIL and PTC datasets are an exception, since HKS-RRWM performs slightly
better with respect to our proposal. Note that the first part of the table should be
treated by the reader just as a reference of the accuracies that the current state-
of-the-art kernel methods achieve. Indeed, these kernels work independently from
the alignment of the graphs to be classified. The main goal of the experimental
results is the comparison between the proposed alignment method with respect
to the compared ones, namely Spectral Matching and Reweighted Random Walks
Matching. In particular, we want to show the performance achieved by the cur-
rent state-of-the-art in graph matching methods with respect to the transitive
approach we are presenting.
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Table 2. Classification accuracy (± standard error) on unattributed graph datasets.
Respectively, HKS is the Heat Kernel Signature [36], WL is the Weisfeiler-Lehman
kernel [37], GR denotes the graphlet kernel computed using all graphlets of size 3 [38],
SP is the shortest-path kernel [39], and RW is the random walk kernel [14]. The second
part of the table collects the accuracy of HKS kernel employing the permutations from
Spectral Matching (SM) [40] and Reweighted Random Walks Matching (RRWM) [41]
with respect to the transitive versions produced by our method (denoted by the prefix
T). For each kernel and dataset, the best performing kernel is highlighted in italic,
while the bold highlights the maximum just considering data in the second part of the
table for each pair of graph matchings (non transitive w.r.t. transitive).

Kernel MUTAG PPI PTC COIL Reeb ENZYMES SHOCK

HKS 80.5 ± 0.2 63.6 ± 0.7 50.2 ± 0.5 87.8 ± 0.8 46.6 ± 0.6 56.9 ± 0.6 46.8 ± 0.3

WL 78.3 ± 0.2 70.4 ± 0.8 67.1 ± 0.6 70.6 ± 0.7 68.7 ± 0.4 55.4 ± 0.6 35.0 ± 0.2

SP 83.3 ± 0.2 58.5 ± 0.7 50.5 ± 0.6 86.7 ± 0.6 68.1 ± 0.4 52.2 ± 0.5 39.0 ± 0.3

RW 80.1 ± 0.2 48.5 ± 0.8 41.6 ± 0.6 65.2 ± 0.7 49.8 ± 0.6 13.6 ± 0.3 1.7 ± 0.1

GR 81.5 ± 0.2 30.3 ± 0.5 51.6 ± 0.6 87.1 ± 0.5 22.7 ± 0.6 47.0 ± 0.6 26.1 ± 0.3

HKS-SM 69.0 ± 0.3 60.9 ± 0.8 49.4 ± 0.6 84.8 ± 1.0 45.7 ± 0.6 49.1 ± 0.6 39.4 ± 0.4

HKS-TSM 80.7 ± 0.2 64.2 ± 0.8 50.1 ± 0.6 87.0 ± 0.9 46.2 ± 0.5 57.2 ± 0.7 46.7 ± 0.3

HKS-RRWM 79.8 ± 0.2 60.4 ± 0.9 52.1 ± 0.5 87.3 ± 0.9 44.5 ± 0.6 44.9 ± 0.6 25.7 ± 0.2

HKS-TRRWM 80.5 ± 0.2 64.3 ± 0.8 50.9 ± 0.5 86.1 ± 0.9 44.8 ± 0.6 45.5 ± 0.6 46.4 ± 0.3

5 Conclusion

In this paper we investigated the use of multi-graph matching techniques in the
context of graph kernels. By forcing the correspondences between the structures
under study to satisfy transitivity, we obtain an alignment kernel that, not only
is positive definite, but also makes use of more reliable locational information
obtained through the enforcement of global consistency constraints. We pro-
posed a general framework for the projection of (relaxed) correspondences onto
the space of transitive correspondences, thus transforming any given matching
algorithm to a transitive multi-graph matching approach. The resulting transi-
tive correspondences where used to provide an alignment-based kernel that was
able to both maintain locational information and guarantee positive-definiteness.
Experimental evaluation shows that the projection onto the transitive space
almost invariably increases the classification performance of the alignment ker-
nel, often taking it to a performance level that is at least statistically equivalent
to the best performing well-tuned graph kernels present in the literature.
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Abstract. Indefinite similarity measures can be frequently found in bio-
informatics by means of alignment scores. Lacking an underlying vector
space, the data are given as pairwise similarities only. Indefinite Kernel
Fisher Discriminant (iKFD) is a very effective classifier for this type of
data but has cubic complexity and does not scale to larger problems.
Here we propose an extension of iKFD such that linear runtime and
memory complexity is achieved for low rank indefinite kernels. Evaluation
at several larger similarity data from various domains shows that the
proposed method provides similar generalization capabilities while being
substantially faster for large scale data.

1 Introduction

Domain specific proximity measures, like alignment scores in bioinformatics [19],
the modified Hausdorff-distance for structural pattern recognition [7], shape
retrieval measures like the inner distance [12] and many other ones generate non-
metric or indefinite similarities or dissimilarities. Classical learning algorithms
like kernel machines assume Euclidean metric properties in the underlying data
space and may not be applicable for this type of data.

Only few machine learning methods have been proposed for non-metric prox-
imity data, like the indefinite kernel Fisher discriminant (iKFD) [11,15], the
probabilistic classification vector machine (PCVM) [3] or the indefinite Support
Vector Machine (iSVM) [1,10]. In contrast to the iKFD the PCVM is a sparse
probabilistic kernel classifier pruning unused basis functions during training,
applicable to arbitrary positive definite and indefinite kernel matrices. A recent
review about learning with indefinite proximities can be found in [18].

While being very efficient these methods do not scale to larger datasets with
in general cubic complexity. In [9,16] the authors proposed a few Nyström based
[20] approximation techniques to improve the scalability of the PCVM for low
rank matrices. The suggested techniques use the Nyström approximation in a
non-trivial way to provide exact eigenvalue estimations also for indefinite kernel
matrices. This approach is very generic and can be applied in different algo-
rithms. In this contribution we show this for an approximation of the indefinite
kernel Fisher discriminant. The obtained Ny-iKFD approach is linear in runtime
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 160–170, 2015.
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and memory consumption for low rank matrices. The formulation is exact if the
rank of the matrix equals the number of independent landmarks points.

First we review iKFD and PCVM as well as some approximation concepts
proposed by the authors in [16]. Subsequently we reformulate iKFD based on
the introduced concepts and show the efficiency in comparison to PCVM and
Ny-PCVM for various indefinite proximity benchmark data sets.

2 Indefinite Fisher and Kernel Quadratic Discriminant

In [11,15] the indefinite kernel Fisher discriminant analysis (iKFD) and indefinite
kernel quadratic discriminant analysis (iKQD) was proposed focusing on binary
classification problems, recently extended by a weighting scheme in [21]1.

The initial idea is to embed the training data into a Krein space and to apply
a modified kernel Fisher discriminant analysis or kernel quadratic discriminant
analysis for indefinite kernels. Consider binary classification and a data set of
input-target training pairs D = {xi, yi}Ni=1, where yi ∈ {−1,+1}. Given the
indefinite kernel matrix K and the embedded data in a pseudo-Euclidean space
(pE), the linear Fisher Discriminant function f(x) = 〈w,Φ(x)〉pE + b is based
on a weight vector w such that the between-class scatter is maximized while
the within-class scatter is minimized along w. Φ(x) is a vector of basis function
evaluations for data item x and b is a bias term. This direction is obtained by
maximizing the Fisher criterion in the pseudo Euclidean space

J(w) =
〈w, Σb

pEw〉
pE

〈w, Σw
pEw〉

pE

where Σb
pE = ΣbJ is the pseudo Euclidean between scatter matrix, with

J = diag(1p,−1q) where 1p ∈ R
p denotes the p-dimensional vector of all ones.

The number of positive eigenvalues is denoted by p and for the negative eigen-
values by q. The within scatter matrix in the pseudo-Euclidean space is given as
Σw

pE = ΣwJ . The used Euclidean between and within scatter matrices can be
expressed as:

Σb = (μ+ − μ−)(μ+ − μ−)� (1)

Σw =
∑
i∈I+

(φ(xi) − μ+)(φ(xi) − μ+)� +
∑
i∈I−

(φ(xi) − μ−)(φ(xi) − μ−)� (2)

where the set of indices of each class are I+ := {i : yi = +1} and I− := {i :
yi = 1}. In [11] it is shown that the Fisher Discriminant in the pE space ∈ R

(p,q)

is identical to the Fisher Discriminant in the associated Euclidean space R
p+q.

To avoid the explicit embedding into the pE space a kernelization is considered
such that the weight vector w ∈ R

p,q is expressed as a linear combination of the
training data φ(xi), hence w =

∑N
i=1 αiφ(xi). Transferred to the Fisher criterion

this allows to use the kernel trick. A similar strategy can be used for KQD as
well as the indefinite kernel PCA.
1 For multiclass problems a classical 1 vs rest wrapper is used within this paper.
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3 Probabilistic Classification Vector Learning

PCVM uses a kernel regression model
∑N

i=1 wiφi(x) + b with a link func-
tion, with wi being again the weights of the basis functions φi(x) and b as a
bias term. The Expectation Maximization (EM) implementation of PCVM [4]
uses the probit link function, i.e. Ψ(x) =

∫ x

−∞ N (t|0, 1)dt, where Ψ(x) is the
cumulative distribution of the normal distribution N (0, 1). We get: l(x;w, b) =
Ψ

(∑N
i=1 wiφi(x) + b

)
= Ψ (Φ(x)w + b) .

In the PCVM formulation [3], a truncated Gaussian prior Nt with support
on [0,∞) and mode at 0 is introduced for each weight wi and a zero-mean
Gaussian prior is adopted for the bias b. The priors are assumed to be mutually

independent. p(w|α) =
N∏
i=1

p(wi|αi) =
N∏
i=1

Nt(wi|0, α−1
i ), p(b|β) = N (b|0, β−1),

δ(·) = 1x>0(x).

p(wi|αi) =
{

2N (wi|0, α−1
i ) if yiwi > 0

0 otherwise
= 2N (wi|0, α−1

i ) · δ(yiwi).

We follow the standard probabilistic formulation and assume that z(x) =
Φ(x)w + b is corrupted by an additive random noise ε, where ε ∼ N (0, 1).
According to the probit link model, we have:

h(x) = Φ(x)w + b + ε ≥ 0, y = 1, h(x) = Φ(x)w + b + ε < 0, y = −1 (3)

and obtain: p(y = 1|x,w, b) = p(Φ(x)w + b + ε ≥ 0) = Ψ(Φ(x)w + b). h(x)
is a latent variable because ε is an unobservable variable. We collect evalua-
tions of h(x) at training points in a vector H(x) = (h(x1), . . . , h(xN))�. In the
expectation step the expected value H̄ of H with respect to the posterior distri-
bution over the latent variables is calculated (given old values wold, bold). In the
maximization step the parameters are updated through

wnew = M(MΦ�(x)Φ(x)M + IN )
−1

M(Φ�(x)H̄ − bΦ�(x)I) (4)
bnew = t(1 + tNt)−1t(I�H̄ − I�Φ(x)w) (5)

where IN is a N-dimensional identity matrix and I a all-ones vector, the diagonal
elements in the diagonal matrix M are:

mi = (ᾱi)−1/2 =

{√
2wi if yiwi ≥ 0

0 else
(6)

and the scalar t =
√

2|b|. For further details see [3].

4 Nyström Approximation

The Nyström approximation for kernel methods (details in [20]) gives:

K̃ = KN,mK−1
m,mKm,N . (7)
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Thereby m (columns/rows) of the original kernel matrix have been selected as
so called landmarks and K−1

m,m denotes the Moore-Penrose pseudoinverse of this
landmark matrix. The matrix KN,m refers to the rectangular submatrix of K
containing all rows of K but only with the columns corresponding the respective
landmark indices. The matrix Km,N is the transposed matrix of KN,m. Strategies
how to chose the landmarks have been recently been addressed in [22]. In our
experiments we simply chose a reasonable large number of landmarks randomly
selected from the data. The approximation is exact, if Km,m has the same rank
as K. In [16] the authors have shown how the PCVM can be modified such that
a linear complexity method is obtained. Beside using the standard Nyström
approximation to approximate a kernel matrix as shown in Eq. (7) especially a
linear time eigenvalue correction for (potentially indefinite) low rank matrices
was proposed. This low rank eigenvalue decomposition is used in PCVM to
approximate the Hessian matrix in the EM parameter optimization steps. While
we will not review the specific steps for PCVM we review subsequently the
necessary components which we can apply to iKFD.

4.1 Pseudo Inverse, SVD and EVD of a Nyström Approximated
Matrix

In the Ny-PCVM approach we need the pseudo inverse of a Nyström approxi-
mated matrix while for the Ny-iKFD a Nyström approximated eigenvalue decom-
position (EVD) is needed.

A Nyström approximated pseudo inverse can be calculated by a modified
singular value decomposition (SVD) with a rank limited by r∗ = min{r,m}
where r is the rank of the pseudo inverse and m the number of landmark points.
The output is given by the rank reduced left and right singular vectors and
the reciprocal of the singular values. The singular value decomposition based
on a Nyström approximated similarity matrix K̃ = KNmK−1

m,mK�
Nm with m

landmarks, calculates the left singular vectors of K̃ as the eigenvectors of K̃K̃�

and the right singular vectors of K̃ as the eigenvectors of K̃�K̃2. The non-
zero singular values of K̃ are then found as the square roots of the non-zero
eigenvalues of both K̃�K̃ or K̃K̃�. Accordingly one only has to calculate a new
Nyström approximation of the matrix K̃K̃� using e.g. the same landmark points
as for the input matrix K̃. Subsequently an eigenvalue decomposition (EVD) is
calculated on the approximated matrix ζ = K̃K̃�. For a matrix approximated
by Eq. (7) it is possible to compute its exact eigenvalue estimators in linear time.

To compute the eigenvectors and eigenvalues of an indefinite matrix we first
compute the squared form of the Nyström approximated kernel matrix. Let K
be a psd similarity matrix, for which we can write its decomposition as

K̃ = KN,mK−1
m,mKm,N = KN,mUΛ−1U�K�

N,m = BB�,

where we defined B = KN,mUΛ−1/2 with U and Λ being the eigenvectors and
eigenvalues of Km,m, respectively.

2 For symmetric matrices we have K̃K̃� = K̃�K̃.
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Further it follows for the squared K̃:

K̃2 = BB�BB� = BV AV �B�,

where V and A are the eigenvectors and eigenvalues of B�B, respectively. Appar-
ently the square operation does not change the eigenvectors of K but only the
eigenvalues. The corresponding eigenequation can be written as B�Bv = av.
Multiplying with B from left we get: BB�︸ ︷︷ ︸

K̃

(Bv)︸ ︷︷ ︸
u

= a (Bv)︸ ︷︷ ︸
u

. It is clear that A

must be the matrix with the eigenvalues of K̃. The matrix Bv is the matrix of
the corresponding eigenvectors, which are orthogonal but not necessary ortho-
normal. The normalization can be computed from the decomposition:

K̃ = B V V �︸ ︷︷ ︸
diag(1)

B� = BV A−1/2AA−1/2V �B� = CAC�,

where we defined C = BV A−1/2 as the matrix of orthonormal eigenvectors of K.
The eigenvalues of K̃ can be obtained using A = C�K̃C. Using this derivation
we can obtain exact eigenvalues and eigenvectors of an indefinite low rank kernel
matrix K, given rank(K) = m and the landmarks points are independent.3

5 Nyström Based Indefinite Kernel Fisher Discriminant

Given a Nyström approximated kernel matrix a few adaptations have to be made
to obtain a valid iKFD formulation solely based on the Nyström approximated
kernel, without any full matrix operations.

First we need to calculate the classwise means μ+ and μ− based on the
row/column sums of the approximated input kernel matrix. This can be done by
rather simple matrix operations on the two low rank matrices of the Nyström
approximation of K. For better notation let us define the matrices KNm as Ψ
and Kmm as Υ then for each row k of the matrix K we get the row/column
sum as:

∑
i

[K̃]k,i =
m∑
l=1

⎛
⎝ N∑

j=1

Ψj,·Υ−1

⎞
⎠ Ψ�

l,k (8)

This can obviously also be done in a single matrix operation for all rows in
a batch, with linear complexity only. Based on these mean estimates we can
calculate Eq. (1). In a next step we need to calculate a squared approxi-
mated kernel matrix for the positive and the negative class with removed means
3 An implementation of this linear time eigen-decomposition for low rank

indefinite matrices is available at: http://www.techfak.uni-bielefeld.de/∼fschleif/
eigenvalue corrections demos.tgz.

http://www.techfak.uni-bielefeld.de/~fschleif/eigenvalue_corrections_demos.tgz
http://www.techfak.uni-bielefeld.de/~fschleif/eigenvalue_corrections_demos.tgz
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μ+ or μ− respectively. For the positive class with n+ entries, we can define a
new Nyström approximated (squared) matrix with subtracted mean as:

K̂+
N,m = KN,m · K−1

m,m · (K�
I+,m · KI+,m) · K−1

m,m · K�
m,m − μ+ · μ�

+ · n+ (9)

An equivalent term can be derived for the negative class providing K̂−
N,m. It

should be noted that no obtained matrix in Eq. (9) has more than N ×m entries.
Finally K̂+

N,m and K̂−
N,m are combined to approximate the within class matrix as

shown in Eq. (2). From the derivation in [11] we know, that only the eigenvector
of the Nyström approximated kernel matrix based on K̂N,m = K̂+

N,m + K̂−
N,m

are needed. Using a Nyström based eigen-decomposition (explained before) on
K̂N,m we obtain:

α = C · A−1 · (C ′ · (μ+ − μ−))

where C contains the eigenvectors and A the eigenvalues of K̂N,m. Instead of A−1

one can use the pseudo-inverse. The bias term b is obtained as b = −α�(μ+ +
μ−)/2.

6 Complexity Analysis

The original iKFD update rules have costs of O(N3) and memory storage O(N2),
where N is the number of points. The Ny-iKFD may involve the extra Nyström
approximation of the kernel matrix to obtain KN,m and K−1

m,m, if not already
given. If we have m landmarks, m 	 N , this gives costs of O(mN) for the first
matrix and O(m3) for the second, due to the matrix inversion. Further both
matrices are multiplied within the optimization so we get O(m2N). Similarly, the
matrix inversion of the original iKFD with O(N3) is reduced to O(m2N)+O(m3)
due to the Nyström approximation of the pseudo-inverse. If we assume m 	 N
the overall runtime and memory complexity of Ny-iKFD is linear in N . For the
Ny-PCVM we obtain a similar analysis as shown in [16] but with extra costs
to calculate the Nyström approximated SVD. Additionally, Ny-PCVM uses an
iterative optimization scheme to optimize and sparsify w with constant costs
CI and CI as the number of iterations. Accordingly Ny-iKFD and Ny-PCVM
have both linear memory and runtime complexity O(N), but Ny-PCVM maybe
slower than Ny-iKFD due to extra overhead costs.

7 Experiments

We compare iKFD, Ny-iKFD, Ny-PCVM and PCVM on various larger indefi-
nite proximity data. In contrast to many standard kernel approaches, for iKFD
and PCVM, the indefinite kernel matrices need not to be corrected by costly
eigenvalue correction [5,17].4

4 In [18] various correction methods have been studied on the same data indicating
that eigenvalue corrections may be helpful if indefiniteness can be attributed to noise.
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Fig. 1. Visualization of the indefinite Fisher kernel for two Gaussians in a two dimen-
sional pseudo-Euclidean space R

(1,1). The predicted labels are with respect to the iKFD
classification.

Further the iKFD and PCVM provides direct access to probabilistic classifi-
cation decisions. First we show a small simulated experiment for two Gaussians
which exist in an intrinsically two dimensional pseudo-Euclidean space R

(1,1).
The plot in Fig. 1 shows a typical result for the obtained decision planes using the
iKFD or Ny-iKFD. The Gaussians are slightly overlapping and both approaches
achieve a good separation with 93.50% and 88.50% prediction accuracy,
respectively.

Subsequently we consider a few public available datasets for some real life
experiments. The data are Zongker (2000pts, 10 classes) and Proteom (2604pts,
53 classes) from [8]; Chromo (4200pt, 21 classes) from [14] and the SwissProt
database Swiss (82525pts, 46 classes) from [2], (version 10/2010, reduced to
prosite labeled classes with at least 1000 entries and 1000 randomly chosen
landmarks). Further we used the Sonatas data (1068pts, 5 classes) taken from
[13]. All data are processed as indefinite kernels with 100 landmarks if not stated
otherwise5. For all experiments we report mean and standard errors as obtained
by a 10 fold crossvalidation. For PCVM we fixed the upper number of optimiza-
tion cycles to 500. The probabilistic outputs can be directly used to allow for a
reject region but can also be used to provide alternative classification decisions
e.g. in a ranking framework

In Tables 1 and 2 we show the results for different non-metric proximity
datasets using Ny-PCVM, PCVM and iKFD or Ny-iKFD. Considering Table 1
we see that iKFD and PCVM are similarly effective with slightly better results
5 An increase of the number of landmarks leads to a better kernel reconstruction in

the Frobenius norm until the full rank of the matrix is reached. Landmarks have not
been changed between methods but only for each dataset.
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Table 1. Accuracies - indefinite kernels. iKFD* is provided for a better judgment of
the two approximation levels of the Ny-iKFD method and refers to a classical iKFD
model but with a Nyström approximated and subsequently reconstructed kernel. iKFD
and PCVM use the original indefinite kernel without approximations. Ny-iKFD and
Ny-PCVM use the Nyström approximation within the implementation as discussed
before and the same Nyström approximated kernel.

iKFD iKFD* Ny-iKFD PCVM Ny-PCVM

Sonatas 90.17 ± 2.14 83.52 ± 4.77 83.71 ± 3.32 91.20 ± 2.69 86.15 ± 3.91

Zongker 96.60 ± 1.97 91.85 ± 2.27 90.45 ± 2.36 93.60 ± 2.00 90.45 ± 1.78

Proteom 99.58 ± 0.38 93.39 ± 0.68 82.13 ± 20.40 99.58 ± 0.28 93.32 ± 1.49

Chromo 97.24 ± 0.94 94.98 ± 1.07 95.12 ± 0.76 93.29 ± 1.51 92.40 ± 0.61

Swiss – – 75.11 ± 1.3 – 67.63 ± 6.6

Table 2. Runtimes - indefinite kernels

iKFD Ny-iKFD PCVM Ny-PCVM

Sonatas 5.04 ± 0.22 1.85 ± 0.06 60.07 ± 2.54 7.01 ± 0.24

Zongker 51.61 ± 1.43 5.53 ± 0.16 184.07 ± 14.97 16.91 ± 0.24

Proteom 559.25 ± 15.29 42.08 ± 1.92 352.08 ± 18.05 111.22 ± 1.88

Chromo 763.24 ± 31.54 27.91 ± 1.77 694.43 ± 15.61 54.36 ± 0.77

Swiss – 178.79 ± 10.63 – 123.29 ± 2.72

Table 3. Model complexity - indefinite kernels (threshold 1e−4)

iKFD Ny-iKFD PCVM Ny-PCVM

Sonatas 100.00 ± 0 99.98 ± 0.04 11.24 ± 0.56 3.61 ± 0.49

Zongker 100.00 ± 0 100.00 ± 0 14.42 ± 3.65 2.71 ± 0.28

Proteom 100.00 ± 0 100.00 ± 0 5.23 ± 0.36 4.91 ± 0.30

Chromo 100.00 ± 0 100.00 ± 0 7.49 ± 0.51 3.62 ± 0.11

Swiss − 94.60 ± 0.74 − 0.79 ± 0.12

for iKFD. The Nyström approximation of the kernel matrix only, often leads to
a in general small decrease of the accuracy, as can be seen by comparing the
iKFD and iKFD* results. In Ny-iKFD and Ny-PCVM we also use the Nyström
approximation in the algorithm itself, to approximate e.g. the calculation of a
large inverse matrix. The effect of this approximation can be best judged for
iKFD by comparing iKFD* and Ny-iKFD. In general the additional approxi-
mation step, in the algorithm itself, does not substantially decrease the predic-
tion accuracy6. In our experiments we found only for the proteom dataset a
6 Also the runtime and model complexity are similar and therefore not reported in

the following.
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substantial decrease using Ny-iKFD (but not for Ny-PCVM). The proteom data
are very imbalanced with sometimes very small classes hence the calculation
of an approximated inverse may become numerically in-stable. Considering the
overall results in Table 1 the approximations used in the algorithms Ny-iKFD
and Ny-PCVM appear to be effective. The runtime analysis in Table 2 clearly
shows that the classical iKFD is very complex. As expected, the integration of
the Nyström approximation leads to substantial speed-ups. Larger datasets like
the Swiss data with 
 10.000 entries could not be analyzed by iKFD or PCVM
before.

The PCVM is focusing on a sparse parameter vector w in contrast to the
iKFD. For the iKFD most training points are also used in the model (≥ 94%)
whereas for Ny-PCVM often less than 5% are kept in general as shown in Table 3.
In practice it is often costly to calculate the non-metric proximity measures like
sequence alignments and accordingly sparse models are very desirable. Consid-
ering the runtime again Ny-PCVM and Ny-iKFD are in general faster than the
original algorithms, typically by at least a magnitude. the PCVM and Ny-PCVM
are also very fast in the test case or out-of sample extension due to the inherent
model sparsity.

8 Conclusions

We presented an alternative formulation of the iKFD employing the Nyström
approximation. We found that Ny-iKFD is competitive in the prediction accu-
racy with the original iKFD and alternative approaches, while taking substan-
tially less memory and runtime but being less sparse then Ny-PCVM. The Ny-
iKFD provides now an effective way to obtain a probabilistic classification model
for medium to large psd and non-psd datasets, in batch mode with linear runtime
and memory complexity. Using the presented approach we believe that iKFD is
now applicable for realistic problems and may get a larger impact then before.
In future work it could be interesting to incorporate sparsity concepts into iKFD
and Ny-iKFD similar as shown for classical KFD in [6].

Implementation: The Nyström approximation for iKFD is provided at http://
www.techfak.uni-bielefeld.de/∼fschleif/source/ny ikfd.tgz and the PCVM/Ny-
PCVM code can be found at https://mloss.org/software/view/610/.
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Abstract. In this paper we study the identifiability of users across social
networks, with a trainable combination of different similarity metrics.
This application is becoming particularly interesting as the number and
variety of social networks increase and the presence of individuals in
multiple networks is becoming commonplace. Motivated by the need to
verify information that appears in social networks, as addressed by the
research project REVEAL, the presence of individuals in different net-
works provides an interesting opportunity: we can use information from
one network to verify information that appears in another. In order to
achieve this, we need to identify users across networks. We approach this
problem by a combination of similarity measures that take into account
the users’ affiliation, location, professional interests and past experience,
as stated in the different networks. We experimented with a variety of
combination approaches, ranging from simple averaging to trained hybrid
models. Our experiments show that, under certain conditions, identifi-
cation is possible with sufficiently high accuracy to support the goal of
verification.

Keywords: User identification · Similarity learning · Entity resolution

1 Introduction

Social network services have become part of our everyday life. It is now com-
monplace that people have accounts in multiple social networks, sharing their
thoughts, promoting their work and probably influencing a part of the popula-
tion via them. A variety of functionalities are provided by these services, such
as video and photo uploading, posting, messaging, republishing etc., differing
according to the platform and its aim.

Motivated by the need to verify the validity and trustworthiness of infor-
mation that appears on social networks, the presence of individuals in different
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 171–185, 2015.
DOI: 10.1007/978-3-319-24261-3 14
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networks can be proved particularly useful. Public information from one network
can be used to validate the source of information in another network. To achieve
this goal, there is a need for user identification across social networks.

In this paper, we try to identify users across two popular networks: LinkedIn
and Twitter. Our approach relies on novel similarity measures, that mainly take
into consideration professional information about the users. To achieve a sat-
isfactory combination of the proposed similarity metrics, we experiment with
various supervised classification techniques, such as decision trees, naive bayes,
knn and a hybrid classifier that merges naive bayes and decision tables efficiently.
In addition, an attempt is made to deal with the imbalanced data problem and
estimate the value of missing fields. Experiments based on a real world scenario
and show the high accuracy in user identification between these networks. Thus,
the main contribution of our work is to prove that the proposed approach of
combining different similarity metrics is a viable solution to the identification of
users, which in turn can be used to verify the validity of public information in
social network.

The remainder of the paper is organized as follows. In the next section,
we give a brief summary of the REVEAL project and describe the main char-
acteristics of the problem that we address. In Sect. 3, we present the proposed
similarity metrics and describe the classification techniques that we have used to
combine these metrics. In Sect. 4, we first describe our dataset and then we ana-
lyze our experimental results. Closely related work is presented in Sect. 5. Finally
in Sect. 6, we summary the main conclusions and propose possible extensions of
our work.

2 Problem Description

The trustworthiness of information in social networks, according to the REVEAL
project1, can be assessed on the basis of three pillars: Contributor, Content and
Context, themselves supported by various modalities that are organised in two
levels. The first-level modalities, such as reputation, presence, influence etc., are
calculated directly from social media data, while the modalities of the second
level, such as trustworthiness, misbehavior etc., rely on the results of the first
level [17]. Our study contributes to the presence modality of REVEAL, as user
identification provides information about individuals in different platforms. Our
research relies on Reveal’s Journalism scenario, where verification and validation
of information providers are necessary.

In this study, we focus on individuals that are interested in promoting their
professional activities in social media. We assume that these individuals often
provide their real name in different social networks and therefore, the problem
that we need to solve is primarily that of name disambiguation. Specifically, our
approach compares users that have similar names, based on public information
provided by the users, as returned by search engine of the respective network.
In other words, starting with the account of a user in one social network SN1

1 http://revealproject.eu/.

http://revealproject.eu/
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we want to identify the account of a user with a similar name in another social
network SN2, that most likely belongs to the same user.

In our study we try to identify users across two popular social networks:
Twitter and LinkedIn. We experiment on those networks because they are both
used mainly, though not exclusively, for professional purposes. Focusing on the
journalism scenario of REVEAL, we form our target group with well-known
professionals.

Within a social network, each user is represented by a set of attributes that
forms their user profile. We derive a subset of these attributes based on the
public accounts of users in the respective network. The LinkedIn profile of a user
includes the following attributes: screen name, summary, location, specialization,
current/past jobs with the respective affiliations, education, as well as projects
and publications. On the other hand, the Twitter profile of a user contains: screen
name, short biography, location and the user mentions, that the user specifies in
her tweets. Although the process starts with a name search, screen name can be
considered as a feature because the results of the search engine do not always
fit exactly to the query. Figure 1 presents a simple example of how the user’s
attributes are aligned in the two networks, in order to be used in the similarity
metrics. Some attributes can be aligned in a straightforward manner, e.g. Name,
Location and Description, while others require the combination of various fields
in the original user profile, e.g. Achievements and Affiliation-Education.

Fig. 1. Example profiles and the alignment of their attributes, as used in the similarity
metrics.
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3 Approach

3.1 Description of Profiles

As explained in the previous section, the basic idea of our approach is to pair
accounts that result from name search and identify those that belong to the same
user. Therefore, the task that we are dealing with is translated to a classification
of account pairs into two classes: “match” and “mis-match”.

Specifically, in order to identify users we create a similarity vector for each
pair of users’ profiles. The representation of our similarity vector is based on the
definition proposed by [12]. Suppose that we have two user profiles from different
social networks:

u1 ∈ SN1 and u2 ∈ SN2 . (1)

The similarity vector of the two profiles is defined as:

V (u1, u2) = < score1, score2, · · · , scoren >. (2)

where scorek corresponds to the score, returned by the kth similarity metric. In
order to facilitate the comparison, the similarity scores are normalized in the
range [0.0, 1.0].

In the following subsections, we first present the similarity measures that we
use and then the methods we tested for classifying similarity vectors.

3.2 Similarity Measures

In this subsection we describe the similarity metrics that we use, in order to
construct the similarity vectors for pairs of user profiles.

Name Measures. Previous work in record linkage [10] recommend Jaro-
Winkler as an appropriate similarity for short strings. Therefore, in our app-
roach we use the Jaro-Winkler distance in order to find the similarity between
the screen names of users – first and last name that a user provides during her
registration. Due to name ambiguity problem mentioned in Sect. 2, additional
information is needed for user identification.

Description Measures. The basic idea is inspired from the fact that users
often provide common phrases in their description in different social networks.
This measure estimates the similarity between the short biographies or sum-
maries that users provide in different social networks, in order to describe them-
selves, their work and their specialization. An example is shown in Fig. 1. In
order to measure similarity according to this short description, we pre-processed
corresponding fields of the two profiles. We removed the punctuation, lowercased
and tokenized the description, thereby creating two different token lists. Taking
into consideration the example in Fig. 1, the two token lists are as follows:



Similarity-Based User Identification Across Social Networks 175

A1 = [for, more, than, a, decade, i, have, established, a, positive, reputation,
as, a, hard, working, reporter, who, worked, in, popular, news, agencies, like,
cnn, bbc, i, have, gained, experience, as, an, editor].

A2 = [hard, working, reporter, specialized, at, writing, and, editing, at, cnn,
international, bbc, and, new, york, times, many, interests, in, human, rights,
with, a, publication, in, international, human, concern].

The similarity of the two token lists is computed as the ratio of their common
words, to the total number of all words in both description fields.

Location Measures. A recent study associates location with the user’s posts,
based on attached geo-tags [3]. Although it is a promising approach, it is not
directly applicable to all social networks, e.g. LinkedIn doesn’t provide geo-
tagging. For this reason our comparison utilizes the textual representation of the
location field in a geospatial semantic way. We convert the locations provided in
the different social networks to bounding boxes, with the use of the geonames
ontology [14]. The similarity score of the two locations is defined as follows:

1. The ratio of bounding box areas if one bounding box is within the other.
2. The Euclidean distance between the centers of the bounding boxes when the

locations belong to the same country.
3. 0.0 otherwise.

Specifically, the above enumeration can be defined by the following equation:

LocSim(l1, l2) =

⎧⎪⎪⎨
⎪⎪⎩

Bbox(l1)/Bbox(l2) if Bbox(l1) ⊆ Bbox(l2)
Bbox(l2)/Bbox(l1) if Bbox(l2) ⊆ Bbox(l1)
1/(1 + ‖l1 − l2‖2) if l1, l2 in SC
0.0 otherwise

(3)

where Bbox represents the bounding box of the respective location and SC refers
to the same country. The similarity score in all situations is normalized in the
range [0.0 , 1.0].

For example lets assume that we have SNlocation1 = “New York”, that appears
in one social network and SNlocation2 = “Manhattan”, that appears in the other.
Since Manhattan is a borough of New York City, its bounding box – imagine
it as a quadrilateral that covers the Manhattan area – will be included into
the bounding box of New York city. Thus, the similarity of the two locations
is measured as the ratio between the covering area of Manhattan’s bounding
and the area of New York City’s bounding box. In the example of Fig. 1, the
similarity of the two locations will be 1.0 since the bounding boxes, which are
returned from the ontology, coincide.

Now suppose that we retrieve two locations that belong to the same coun-
try but their bounding boxes are not subsumed – SNlocation3 = “Athens” and
SNlocation4 = “Sparta”. In this case, their similarity is computed by the Euclid-
ean distance of the coordinates of the centers of two bounding boxes, as shown
in Fig. 2.
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Fig. 2. Compute location similarity by the Euclidean distance.

Affiliation-Education Measure. This measure attempts to match the cur-
rent/past affiliation and educational experience of the users, as stated in the
social network profiles. In order to measure the similarity score we create two
token sets, one for each corresponding network. Figure 1 shows the profile fields
that participate in this score. In LinkedIn’s set we use the affiliation of current
and past experiences and the educational schools, while in Twitter’s set we use
the userMentions (@ symbol in Twitter) that appear in the user’s tweets. We
assume that the user is likely to mention her affiliation and school names in her
micro-blogging posts to promote her work. While neither of the two token sets
include duplicates, the token set obtained from Twitter contains additionally
the frequency of each userMention. An additional practical problem with user-
Mentions is that they appear in an abbreviated form. So, there is a need for a
textual comparison measure that is suitable for substring matching. Based on
the related survey [6], the Smith-Waterman distance measure seems adequate,
because it combines edit and affine gap distances. In particular we used the
implementation of the measure from the simmetrics library [15]. We measure
the similarity between each pair of tokens in the two token sets and keep only
those similarity scores that exceed a predefined threshold t. Then we weigh the
resulting scores according to the frequency of a userMention in Twitter profile.
Therefore, the overall similarity score is calculated as shown in the following
equation:

n∑
i=1

(scorei × freqi) /
n∑

i=1

freqi (4)

where scorei is the Smith-Waterman similarity score of a pair of tokens that is
above the threshold t and freqi is the frequency of appearance of the specific
userMention in the user’s tweets. The weight indicates a significance estimate of
the corresponding userMention.

Some similarity scores, that exceed the threshold, may correspond to the
same token of one of the sets. This is acceptable because many userMentions or
jobs often refer to different variants of the same entity. For instance in Fig. 1,
“@BBCNews” and “BBCzamani” refer to the same entity. So, the affiliation
“BBC” in LinkedIn will combine the two similarity scores if they are above the
threshold.
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Achievements Measure. It is common that users highlight their professional
achievements and their job specialization in the short biography field of their
profile. The main idea is based on the observation where the words that a user
often provides in description field in Twitter, belong to the same family with the
ones that she provides for her job, publication etc. in LinkedIn. We attempt to
capture this by using SoftTFIDF metric, which takes into consideration “sim-
ilar” and not only identical tokens [6]. We compose a textual summary of the
most significant professional achievements of a user, as she provides in LinkedIn:
we combine current and past job experiences and the corresponding affiliations,
professional specialization, projects and publications that she has participated
in. The similarity between this “profession summary” and the short biography in
Twitter is computed with the use of SoftTFIDF as implemented in the second-
String library [9,16]. SoftTFIDF converts the two texts into two bags-of-tokens
and calculates the overall similarity score, by computing the TFIDF distance
between each pair of tokens. SoftTFIDF method prunes the tokens where their
similarity score, computed by Jaro-Winkler metric, is below 0.9.

3.3 Classification

As mentioned above, the various similarity measures are used to built similarity-
vectors. These vectors are then classified in order to achieve the required user
identification. Below we describe the different classification approaches that we
tested.

Baseline Classification Results. As a baseline we calculate the average of
the scores in the similarity vectors:

AvgScore(V ) =
n∑

i=1

(scorei)/n (5)

where scorei corresponds to the respective score in the similarity vector.
As an example, lets assume the following 3 user profiles:

u1 ∈ SN1 and u2, u3 ∈ SN2 . (6)

We pair the resulting profiles and two different similarity vectors are created.
Suppose that the similarity vectors of the five scores are as follows:

V1(u1, u2) = <1.0, 0.345, 0.456, 0.678, 0.879 >
V2(u1, u3) = <1.0, 0.432, 1.0, 0.789, 0.654 >

The simple combination computes the following average scores:
AvgScore(V1) = 3.358 / 5 = 0.6716
AvgScore(V2) = 3.875 / 5 = 0.775.

The higher the score, the more likely it is that the corresponding profiles belong
to the same user.
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Binary Classifiers. A different way to classify similarity vectors is by training
binary classifiers. We use binary classifiers because we formulate the problem as
a two-class one – match and mis-match.

For each profile set, we declare as “match” the profile that is assigned maxi-
mum probability by the classifier, depending on the classes’ distribution of the
respective binary classifier.

The classifiers that we tested are presented below in brief:

– Decision Tree: this method creates a decision tree model, by analyzing a
training set of instances, i.e. similarity vectors with the correct classification.
Each internal node of the tree represents a test on one of the five similarity
scores, that most effectively splits the respective set into subsets of more
homogeneity. The measure of the purity of each node is its entropy – lower
entropy denotes higher homogeneity/purity. Each leaf node of the tree holds
a class label, corresponding to the majority class in the training instances.
During the test phase, the classifier decides whether a pair is a match or not
by traversing the decision model tree from root to the leaf. In our study, we
experiment with the C4.5 decision tree and use pruning to avoid overfitting.

– Naive Bayes: this classifier uses Bayes theorem to calculate the probability
of a class given a test instance, assuming that all features of the vector, i.e.
the five scores, are independent. As we use continuous features we calculate
probabilities by fitting a Gaussian distribution. In the training phase, the
classifier estimates two probability distributions, one for each class. During
testing, the classifier decides the label of a specific pair, depending on its
probability of belonging to each of the two classes. The computation of these
probabilities is based on the respective distributions that were estimated in
the training phase.

– KNN: this classifier chooses the label of a test, based on the majority class
among its k nearest training instances. In our study, we set the value of k to
5. Moreover, the nearest neighbors are determined by the Euclidean distance
of the pair to the training instances.

– DTNB: this is a hybrid approach that involves Naive Bayes and Decision
Tables classifiers. Decision Tables have their origins to classification rules, as
each row of the table represents a rule and is associated with a class label [4].
Initially in DTNB, all features are modeled in Decision Tables. Afterwards
with the use of forward selection, the classifier adds in a stepwise manner
the feature that improves classification in the validation set the most. Then
DTNB selects features with Naive Bayes while it uses the Decision Tables for
the rest. The label of a pair results from the combination of class probability
estimations of both classifiers (Decision Table and Naive Bayes)

4 Experimental Results

4.1 Data Collection

The collection of the data was based on name search, as denoted in Sect. 2.
We started with a list of “target users” in mind, e.g. “Katerina Zamani”, the
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Table 1. Profiles in the datasets

LinkedIn Twitter

Number of profiles 2766 3373

Number of profile sets 262 262

first author of this paper. Each target-user had a different name. Given the
name of a particular target-user, we gathered the first 25 profile-results from
each network, using the network’s search engine. Thus, we created two sets of
profiles (one for each network), each set containing the results of the search for
a particular name. The aim of our study was to identify within each such set
only the profile of the target-user, given the user’s profile in the other network,
e.g. given Zamani’s profile in Twitter, we wanted to identify the profile of the
same person in LinkedIn, among the set of profiles that the search for “Katerina
Zamani” has returned. We did this matching both ways, i.e. from Twitter to
LinkedIn and vice versa, but only for a single target-user with that name. This
set-up is motivated by our goal of verifying the validity of profiles of professional
individuals in social networks. We also assumed that each target-user has a single
account in each network. Therefore, in each set we identified one profile as the
correct match, while all others were considered mismatches.

In Table 1 the total number of profiles in each of the two networks that we
used is provided. We separate the data into two datasets—one for each network.
Each data set contains 262 profiles sets and each set includes at most 25 profiles.

4.2 Experimental Setup

Starting with a profile from a social network (SN1) and a set of profiles from a
different one (SN2), our aim is to find the profile that most likely matches the one
from (SN1). In order to select the most likely match, we compare each profile in
each set from one social network with each profile of the corresponding set from
the second network. Each comparison produces a similarity vector, as described
in Sect. 3.2, which is classified as a match or not. In our experiments we use
two different datasets corresponding to the “direction” of the identification, i.e.
starting with a profile from LinkedIn we compare it against the profiles of the
corresponding set in the Twitter dataset and vice versa. Henceforth, we refer to
the former task as Twitter identification and the latter as LinkedIn identification.

Missing Values. It is common that users do not complete every fill in all
fields of their profile. This influences the performance of our approach because
many profile fields that we use, are not available. Table 2 presents the number
of missing fields for each similarity metric.

As shown in Table 2, the name of the user is never missing as it is a compul-
sory field during the user’s registration. However, the location field in Twitter
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Table 2. Number of missing values

SN/metric Name Description Location Affiliation-Education Achievements
metric metric metric metric metric

LinkedIn 0 1866 0 462 221

Twitter 0 1431 1582 735 1431

is only available for 53 % of the users in our dataset. The availability of descrip-
tion/summary fields varies from 33 % for LinkedIn to 58 % for Twitter, while
the userMention attribute in tweets is used by 78 % of the users. Regarding the
Affiliation-Education and Achievements metrics, LinkedIn provides more com-
plete information than Twitter. This is due to the use of many fundamental and
professional fields, such as affiliation, professional experience etc., that many
users usually provide in their LinkedIn account.

Imbalanced Data. The nature of the identification problem across social net-
works results in considerable imbalance between the two classes (match vs. mis-
match). In our study, only 9.5 % of the LinkedIn profiles and 7.8 % of the Twitter
profiles comprise the minority (match) class. This imbalance can cause problems
during training for some classifiers. In order to handle this issue, we suggest a
procedure during the testing phase of classification.

4.3 Results for Separate Measures

In this section we evaluate separately each similarity measure that we used.
Taking into consideration the large amount of missing values and how this could
influence the accuracy of classification, we examined the following solutions:

– Set a default score: We set 0.5 as a default similarity score, when the score
cannot be calculated. It was worth recalling that all scores are normalised in
the range [0.0, 1.0].

– Set the average score: We set the missing similarity score to the average
value of the similarity scores, that can be computed from the available fields.
This average score is different for each metric and it depends on the measured
similarity scores of the respective measure.

– Set the median score: The basic idea of this approach is similar to previous
one, but instead of the average, we use the median value of the computed
similarity scores.

In particular, we compute the recall of each similarity score separately. Note
that precision is the same as recall here, since all methods are required to return
exactly 262 matches. Specifically, we select as the most likely matching set the
one with the maximum similarity score. Tables 3 and 4 provide the results for
the two datasets (LinkedIn identification and Twitter identification), and for the
different strategies to deal with missing values.
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Table 3. Recall for LinkedIn identification for different measures and different strate-
gies for missing values. Results are presented as percentages to facilitate readability.

Strategy for Name Description Location Affiliation-Education Achievements
missing values measure measure measure measure measure

Default 68.70 % 60.31 % 67.94 % 80.15 % 83.59 %

Average 68.70 % 64.12 % 69.08 % 79.77 % 87.02 %

Median 68.70 % 63.74 % 68.70 % 79.77 % 87.02 %

Table 4. Recall for Twitter identification for different measures and different strategies
for missing values. Results are presented as percentages to facilitate readability.

Strategy for Name Description Location Affiliation-Education Achievements
missing values measure measure measure measure measure

Default 90.84 % 80.92 % 75.57 % 75.19 % 74.81 %

Average 90.84 % 85.50 % 82.44 % 75.19 % 79.77 %

Median 90.84 % 85.50 % 79.78 % 74.43 % 79.77 %

As we expected, the success scores in name metric are the same in all
approaches because name fields are always available in social networks. How-
ever, the score in Twitter’s identification case is much higher, due to the different
nature of network’s search engines. On one hand the sequence of results, that
is returned from a search query in Twitter, depends on the popularity of each
account, while on the other hand LinkedIn’s search engine categorize different
its resulting user accounts. In addition, the high success scores of the two last
metrics in LinkedIn’s identification case, indicate the importance of the profes-
sional fields in the identification. Regarding the two tables we conclude that the
average score approach predominates in missing values problem, so we choose
this for the rest of our experiments.

4.4 Baseline Classification Results

In this subsection we assess the results of the simple average combination of the
similarity measures as described in Sect. 3.3. For each profile set, we define as
“match” the pair with the maximum average score. As in the previous subsection
we use recall to measure performance.

In the LinkedIn identification task, the simple combination recognizes cor-
rectly 227 pairs out of 262, arriving at a recall of 86.64 %. In the Twitter identi-
fication task the respective recall is 88.55 %. Although the results are promising
for a simple combination, are somewhat lower than the best individual scores,
i.e. the Achievement measure for LinkedIn (see Table 3) and the Name measure
for Twitter (see Table 4).
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Table 5. LinkedIn identification results for various classifiers

LinkedIn’s identification Decision Tree Naive Bayes KNN (k = 5) DTNB

Precision 89.58 % 90.35 % 92.66 % 94.98 %

Recall 88.96 % 89.69 % 91.99 % 94.27 %

F-measure 89.27 % 90.02 % 92.33 % 94.62 %

Table 6. Twitter identification results for various classifiers

Twitter’s identification Decision Tree Naive Bayes KNN (k = 5) DTNB

Precision 86.49 % 86.10 % 90.73 % 90.73 %

Recall 86.49 % 86.10 % 90.73 % 90.73 %

F-measure 86.49 % 86.10 % 90.73 % 90.73 %

4.5 Results of the Trained Classifiers

At this subsection we refer to our classification strategy and we present the
results from the different classifiers we use. To estimate the performance of our
classifiers we utilize the k-fold cross validation technique. Due to the structure of
our datasets, we split our sets to 7-folds in order to test the 14 % of the database
each time. Our analysis is based on Information Retrieval, so we evaluate the
performance of our approach with the use of well-known measures, such as pre-
cision, recall, F-measure and ROC curve, which plots the true positive rate as a
function of false positive rate. The results we present, are the average estimation
of the resulting measures at every step of cross validation.

Due to imbalanced data problem, we specify as “match” the pair with the
maximum probability. This probability, which is derived from the distribution
of the positive class during training, denotes the likelihood membership of the
instance in that class [13]. The two tables above show the results in LinkedIn’s
identification and Twitter’s identification of every classifier.

As we can notice from Tables 5 and 6, our approach performs well for detect-
ing matches and especially with the use of DTNB classifier. Even the low pro-
portion of ground-truth data, the results for precision and recall in match class
are satisfactory, so we achieve a high score in accuracy.

In the Figs. 3 and 4 we can see the ROC curves of the classification results
in the LinkedIn’s identification (first graph) and Twitter’s identification (second
graph) cases. We can notice that the DTNB classifier performs better, because
its ROC curve is closer to upper left corner than the others.

5 Related Work

A variety of recent studies focus on the problem of user identification across the
web. To the best of our knowledge this is the first study that is motivated by
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Fig. 3. ROC curves of the classifiers for the LinkedIn identification task. y-axis repre-
sents true positive rate (TPR) while x-axis the false positive rate (FPR).

Fig. 4. ROC curves of the classifiers for the Twitter identification task. y-axis represents
true positive rate (TPR) while x-axis the false positive rate (FPR).
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the verification of the validity of information based on public professional infor-
mation provided by users in social networks. The novelty of this approach is the
combination of different sets of features, that are associated to the professional
aspects of a user account, in order to validate professional accounts.

The user identification problem can be related to record linkage or duplicate
detection in databases. Elmagarmid, Ipeirotis and Verykios [6] analyze exten-
sively different similarity measures and efficient techniques for duplicate record
detection. Moreover, Cohen et al. [10] evaluate many distance functions for name
matching.

Additionally, many different approaches have been proposed for correlating
accounts by exploiting information that is explicitly or implicitly provided by
the users. For example Vosecky, Hong, and Shen [12] combine different explicit
profile fields by setting definite comparison vectors. In addition, Iofciu et al. [2]
study the influence of tags in user identification across tagging network services
relying on the combination of implicit and explicit information. Malhotra et al.
[11] utilize explicit feedback, in order to model the digital footprints of users
in the Twitter and LinkedIn social networks. Their work is the one that comes
closest to our approach, but it also bears a number of differences from it. Firstly,
due to our original motivation of verifying the validity of professional accounts,
we focused on a different set of features to be extracted from the user profiles.
Also, Malhotra et al. [11] handle differently the problem of imbalanced data.
Namely they use random sub-sampling to balance the training data, thus training
their model with the same number of match and mis-match examples. Finally,
our work addresses the issue of missing feature values, which is not dealt with
in Malhotra et al. [11].

The authors of [3] focus on the use of implicit features of a user’s activity,
such as location, timestamps and writing style. That approach is only applicable
to activity-based social networks. The most recent work of Goga et al. [1] is also
the one closer to our work, correlates users across different and popular social
networks in large scale. Their study is based on public feature extraction and the
proposed similarity metrics deal with explicit information. Due to the large scale
of data, they present a classification strategy in order to deal with availability
of fields and imbalance.

6 Conclusion and Future Work

In our work, we studied user identification in two popular social networks in order
to support information verification. We used different similarity measures for
different pieces of information provided by the user, and we combined them using
supervised classification upon similarity vectors. As shown by our experiments,
on the specific data set, using a hybrid classifier (DTNB) we can achieve a very
high user identification performance.

A possible future extension of the presented work, would be the handling of
class imbalance with a more sophisticated approach, either by using ensemble
filtering (e.g. SMOTE [8]), or by setting higher weights to the matches during
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training [1]. Moreover, we could enrich location information provided by the
users with estimations of locations as mentioned by the user in tweets or job
descriptions, as [7] suggests. Finally it would be interesting to study the poten-
tial contribution of our approach to the difficult problem of identifying fake or
compromised account in social networks [5].

Acknowledgments. This work was partially supported by the research project
REVEAL (REVEALing hidden concepts in Social Media), which is funded by the
European Commission, under the FP7 programme (contract number 610928).

References

1. Goga, O., Perito, D., Lei, H., Teixeira, R., Sommer, R.: Large-scale correlation of
accounts across social networks. Technical report (2013)

2. Iofciu, T., Fankhauser, P., Abel, F., Bischoff, K.: Identifying users across social
tagging systems. In: Adamic, L.A., Baeza-Yates, R.A., Counts, S. (eds.) ICWS.
The AAAI Press (2011)

3. Goga, O., Lei, H., Parthasarathi, S., Friedland, G., Sommer, R., Teixeira, R.: On
exploiting innocuous user activity for correlating accounts across social network
sites. Technical report, ICSI Technical Reports University of Berkeley (2012)

4. Hall, M., Frank, E.: Combining Naive Bayes and decision tables. In: FLAIRS Con-
ference, vol. 2118, pp. 318–319 (2008)

5. Egele, M., et al.: COMPA: detecting compromised accounts in social networks. In:
NDSS (2013)

6. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE Trans. Knowl. Data Eng. 19, 1–16 (2007)

7. Chen, Y., Zhao, J., Hu, X., Zhang, X., Li, Z., Chua, T.S.: From interest to function:
location estimation in social media. In: AAAI (2013)

8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

9. Moreau, E., Yvon, F., Capp, O.: Robust similarity measures for named entities
matching. In: Proceedings of the 22nd International Conference on Computational
Linguistics, vol. 1, pp. 593–600. Association for Computational Linguistics (2008)

10. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for match-
ing names and records. In: KDD Workshop on Data Cleaning and Object Consol-
idation, vol. 3, pp. 73–78 (2003)

11. Malhotra, A., Totti, L., Meira, Jr., W., Kumaraguru, P., Almeida, V.: Studying
user footprints in different online social networks. In: Proceedings of the 2012
International Conference on Advances in Social Networks Analysis and Mining,
ASONAM, pp. 1065–1070. IEEE Computer Society (2012)

12. Vosecky, J., Hong, D., Shen, V.Y.: User identification across multiple social net-
works. In: First International Conference on Networked Digital Technologies, NDT
2009, pp. 360–365. IEEE (2009)

13. Machine Learning Group at the University of Waikato. http://www.cs.waikato.ac.
nz/ml/index.html

14. GeoNames Ontology. http://www.geonames.org/
15. Simmetrics Library. https://github.com/Simmetrics/simmetrics
16. SecondString Library. https://github.com/TeamCohen/secondstring
17. Reveal Project: Social Media Verification. http://revealproject.eu/

http://www.cs.waikato.ac.nz/ml/index.html
http://www.cs.waikato.ac.nz/ml/index.html
http://www.geonames.org/
https://github.com/Simmetrics/simmetrics
https://github.com/TeamCohen/secondstring
http://revealproject.eu/


Dominant-Set Clustering Using Multiple
Affinity Matrices

Eyasu Zemene1(B), Samuel Rota Bulò2, and Marcello Pelillo1
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Abstract. Pairwise (or graph-based) clustering algorithms typically
assume the existence of a single affinity matrix, which describes the simi-
larity between the objects to be clustered. In many practical applications,
however, several similarity relations might be envisaged and the problem
arises as to how properly select or combine them. In this paper we offer
a solution to this problem for the case of dominant sets, a well-known
formalization of the notion of a cluster, which generalizes the notion of
maximal clique to edge-weighted graphs and has intriguing connections
to evolutionary game theory. Specifically, it has been shown that dom-
inant sets can be bijectively related to Evolutionary Stable Strategies
(ESS) - a classic notion of equilibrium in the evolutionary game the-
ory field - of a so-called “clustering game”. The clustering game is a
non-cooperative game between two-players, where the objects to cluster
form the set of strategies, while the affinity matrix provides the players’
payoffs. The proposed approach generalizes dominant sets to multiple
affinities by extending the clustering game, which has a single payoff,
to a multi-payoff game. Accordingly, dominant sets in the multi-affinity
setting become equivalent to ESSs of a corresponding multi-payoff clus-
tering game, which can be found by means of so-called Biased Replicator
Dynamics. Experiments conducted over standard benchmark datasets
consistently show that the proposed combination scheme allows one to
substantially improve the performance of dominant-set clustering over
its single-affinity counterpart.

1 Introduction

Since their introduction [15,16], dominant sets have proven to be an effective
tool for graph-based clustering and have found applications in a variety of differ-
ent domains, such as bioinformatics [6], computer vision [15,24], image process-
ing [2,26], group detection [11,25], security and video surveillance [1,8], etc.
Although they were originally rooted in optimization and graph theory (being a
generalization of the notion of maximal clique to edge-weighted graphs), recent
work has shown intriguing connections with non-cooperative game theory and
this perspective has opened the door to elegant generalizations to directed graphs
[23] and hypergraphs [18]. The basic idea behind this connection is consider-
ing the clustering problem as a non-cooperative “clustering game” between two
c© Springer International Publishing Switzerland 2015
A. Feragen et al. (Eds.): SIMBAD 2015, LNCS 9370, pp. 186–198, 2015.
DOI: 10.1007/978-3-319-24261-3 15
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players. Players simultaneously select an object to cluster and receive a pay-
off proportional to the similarity of the selected objects. Since clusters are sets
of objects that are highly similar, the competition induced by the game forces
the players to coordinate by selecting objects from the same cluster. Indeed, by
doing so, both players are able to maximize their expected payoff. In this setting,
cluster hypotheses are modelled in terms of mixed strategies, i.e.probability dis-
tribution over the set of objects, and the notion of a dominant set turns out
to be equivalent to a classic equilibrium concept known as Evolutionary Stable
Strategy (ESS), which satisfies both the internal coherency and external inco-
herency conditions pertaining to a cluster [23]. From an algorithmic perspective,
ESSs, and hence dominant sets, are sought by means of Replicatory Dynam-
ics, i.e.evolutionary dynamics under which ESSs turn out to be asymptotically
stable points.

In virtually all practical applications there might be several ways of deter-
mining a similarity relation between objects and then the problem arises as to
how select or combine them in a principled way. For example, in figure-ground
separation problems the similarity of edge elements (edgels) can be measured
using co-circularity, smoothness, proximity, and contrast [10]. Another example
is image segmentation, where the similarity between two pixels can be measured
by using e.g.proximity, color, texture etc.

The problem of combining multiple sources of information has received
considerable attention within the pattern recognition and machine learning com-
munities, which resulted in a whole arsenal of ensemble methods (see [29] for an
up-to-date introduction to the topic). In the supervised learning literature, for
example, we find multi-kernel algorithms (see, e.g.[7] and references therein).
Another related method is consensus clustering [22]. The goal of consensus
clustering is to combine different clustering results (a.k.a.clustering ensemble)
obtained from different algorithms into a single partition. If we constructed the
ensemble by running the base clustering algorithms on the different similarities,
the consensus solution would integrate the information from multiple sources.

Motivated by the game-theoretic interpretation of dominant sets [17,18,23],
in this paper we propose a principled solution to the problem of integrating multi-
ple affinity matrices or, in other words, the problem of clustering weighted multi-
graphs, i.e.graphs that are permitted to have multiple edges between vertices
[9]. Contrary to the consensus clustering idea, instead of combining the results
obtained by using different affinity matrices, we focus instead on the problem of
properly combining the matrices themselves. From our game-theoretic perspec-
tive this problem can be seen in the context of multi-payoff (or multi-criteria)
games, a topic that has been the subject of intensive studies by game theorists
since the late 1950’s [3,4,19,28]. Under this setting, payoffs are no longer scalar
quantities but take the form of vectors whose components represent different
commodities. Clearly, the main difficulty that arises here is that the players’
payoff spaces now can be given only a partial ordering. Although in “classical”
game theory several solution concepts have been proposed during the years, the
game theory community has typically given little attention to the evolutionary
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setting. Recently, a solution to this problem has been put forward by the authors
of [21], who extended both the equilibrium concept of ESS and the replicator
dynamics to multi-payoff games [13]. Another recent attempt towards this direc-
tion, though more theoretical in nature, can be found in [12]. In this work, we
exploit the results in [13,21] to provide a principled solution to the problem of
integrating multiple payoff functions within the dominant set framework. The
idea is to extend the clustering game to a multi-payoff setting, in such a way that
dominant sets become equivalent to evolutionary stable strategies of the result-
ing multi-payoff clustering game. ESSs of multi-payoff games can then be sought
by means of so-called Biased Replicator Dynamics, i.e.replicator dynamics that
integrate k affinity matrices A1, . . . , Ak into a single payoff matrix

Aλ =
k∑

i=1

λiAi, (1)

where the λi’s (i = 1 . . . k) represent appropriate non-negative trade-off
weights associated to the different matrices, subject to the constraint

∑
i λi = 1.

We demonstrate the potential of our approach using both synthetic
and real-world datasets from the UCI machine learning repository
archive.ics.uci.edu/ml/datasets.html. In addition we show the viability of our
approach for image segmentation.

2 Dominant Sets as Equilibria of Evolutionary Games

A dominant set is a graph-theoretic notion of cluster introduced by Pavan and
Pelillo [15,16] that generalizes maximal cliques to edge-weighted graphs. In [23],
dominant sets have been linked to game theory, by showing that they can be
characterized in terms of a classic equilibrium concept known as evolutionary
stable strategy of a particular non-cooperative game that can be constructed
given a clustering problem instance (a.k.a., clustering game).

The clustering game can be summarized as follows. Given a set of elements
O = {1 . . . n} and an n×n (possibly asymmetric) affinity matrix A = (aij), which
quantifies the pairwise similarities between the objects in O, we envisage a situ-
ation whereby two players play a game that consists of simultaneously selecting
an element from O. After showing their choice the players get a reward, which is
proportional to the similarity of the chosen elements. In game-theoretic jargon
the elements of set O are the “pure strategies” available to both players and the
affinity matrix A represents the “payoff” function (specifically, aij represents the
payoff received by an individual playing strategy i against an opponent playing
strategy j).

A central notion in game theory is that of a mixed strategy, which is sim-
ply a probability distribution x = (x1, . . . , xn)T over the set of pure strategies
O. From the clustering perspective, mixed strategies can be regarded as a clus-
ter hypothesis, where xi represents the probability of having the ith object in

http://archive.ics.uci.edu/ml/datasets.html
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the cluster. Mixed strategies clearly belong to the (n − 1)-dimensional standard
simplex:

Δ =

{
x ∈ R

n :
n∑

i=1

xi = 1 and xi ≥ 0, i = 1, . . . , n

}
.

Given a mixed strategy x ∈ Δ, we define its support as σ(x) = {i ∈ O : xi > 0}.
The expected payoff received by an individual playing mixed strategy y

against an opponent playing mixed strategy x is given by y�Ax. The set of
best replies against a mixed strategy x is defined as

β(x) = {y ∈ Δ : y�Ax = max
z

z�Ax}.

A mixed strategy x ∈ Δ is said to be a Nash equilibrium if it is a best reply to
itself, namely if x ∈ β(x) or, in other words, if

x�Ax ≥ y�Ax for all y ∈ Δ. (2)

Intuitively, at a Nash equilibrium no player has an incentive to unilaterally
deviate from it.

An Evolutionary Stable Strategy (ESS) is an equilibrium concept developed
within evolutionary game theory. An ESS is a mixed strategy x being a Nash
equilibrium satisfying an additional stability condition given below:

y ∈ β(x) \ {x} =⇒ x�Ay > y�Ay.

Intuitively, ESS’s are strategies such that any small deviation from them will
lead to an inferior payoff (see [27] for an excellent introduction to evolutionary
game theory).

An ESS-cluster is the support of an ESS equilibrium of a clustering game. In
[18,23] a combinatorial characterization of ESSs is given, which establishes the
link to dominant sets and makes them plausible candidates for the notion of a
cluster. Indeed, it can be shown that ESS-clusters do incorporate the two basic
properties, which characterize a cluster, i.e.

– internal coherency : elements belonging to the cluster should have high mutual
similarities;

– external incoherency : the overall cluster internal coherency decreases by intro-
ducing external elements.

The internal coherency follows from the Nash condition. Indeed, if x is an ESS,
then Eq. (2) implies that (Ax)i = x�Ax for all i ∈ σ(x), i.e.every element of the
cluster (i ∈ σ(x)) has the same average similarity with respect to the cluster.
On the other hand, the external incoherency (a.k.a. cluster maximality) follows
from the ESS stability condition, which implies that no ESS-cluster can contain
another ESS-cluster.

The problem of clustering becomes the problem of finding ESS-clusters of
a clustering game. One of the distinguishing features of this approach is its
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generality as it allows one to deal in a unified framework with a variety of
scenarios, including cases with asymmetric, negative, or high-order affinities.
Moreover, when the affinity matrix A is symmetric (that is, A = A�), the notion
of an ESS-cluster coincides with the original notion of dominant set introduced
by Pavan and Pelillo, which amounts to finding a (local) maximizer of x�Ax
over the standard simplex Δ [23].

Algorithmically, to find an ESS-cluster one can use the classical replicator
dynamics [27], a class of dynamical systems, which mimic a Darwinian selec-
tion process over the set of pure strategies. The discrete-time version of these
dynamics is given by the following update rule:

xi(t + 1) = xi(t)
(Ax(t))i

x(t)�Ax(t)
(3)

for all i ∈ O. The process starts from a point x(0) usually close to the barycenter
of the simplex Δ, and it is iterated until convergence (typically when distance
between two successive states is smaller than a given threshold). It is clear that
the whole dynamical process is driven by the payoff function, which, in our case,
is defined precisely to favor the evolution of highly coherent objects. Accordingly,
the support σ(x) of the converged state x does represent a cluster, the non-null
components of which providing a measure of the degree of membership of its
elements.

The support of an ESS corresponds to the indices of the elements in the same
group. To extract all the ESS-clusters we implemented a simple peel-off strategy:
when an ESS-cluster is computed the corresponding elements are removed from
the original and the replicator dynamics is executed again on the remaining
elements.

3 Pareto Nash Equilibra in Multi-payoff Games

Pareto reply and Pareto Nash equilibrium are notions from multi-payoff games,
which are equivalent to Nash best reply and Nash equilibrium of single payoff
game. In single objective games, moving away from the equilibrium strategies
results in no gain for a player. Similarly, in multi-payoff games moving away
from the equilibrium eventually results in a payoff decrease in at least one payoff
function for any of the players.

Consider a symmetric multi-payoff game with k payoff matrices A1, . . . , Ak.
The vector payoff that a player obtains by adopting strategy y ∈ Δ against an
opponent playing x ∈ Δ is given by:

u(y,x) = (u1, u2, ....uk)(y,x) = (y�A1x,y�A2x....y�Akx).

The set of Pareto best replies βP (x) to a strategy x ∈ Δ is given by those
strategies for which no other strategy exists performing comparably well against
x on all the payoff functions and better on at least one:

βP (x) = {y ∈ Δ | (�z ∈ Δ)(u(z,x) > u(y,x))},
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where a > b holds if (∀i)(ai ≥ bi) and a �= b. A strategy x ∈ Δ is a Pareto Nash
equilibrium if it is a Pareto best reply to itself, i.e.x ∈ βP (x).

In [20], the set of Pareto best replies is characterized using notions from
MCLP and, specifically, in terms of the so-called weighted sum scalarization
program. Given x ∈ Δ, the weighted sum scalarization program corresponding
to βP (x) is a linear program, which is defined for a trade-off weight-vector
λ > 0 ∈ R

k as
Lwss(x,λ) = argmax

y∈Δ
y�Aλx.

The set of Pareto best replies to x is the collection of all solutions in Lwss(x,λ)
for all λ > 0, i.e.

βP (x) =
⋃

λ>0

Lwss(x,λ).

Interestingly, there exists a finite set of weight-vectors Λ(x) = {λ1, . . . ,λm},
with λi > 0 ∈ R

k, that allows to construct the set of Pareto best replies to x,
i.e.βP (x) =

⋃m
i=1 Lwss(x,λi). Moreover, this finite set of weight-vectors can be

efficiently computed by solving the following MCLP:

P
max
y∈Δ

Uy, (4)

where the superscript P stands for Pareto maximization, and U is a k×n matrix,
the ith row being x�Ai. In particular we employ the multi-criteria simplex
method. We refer the reader to Chap. 7 of [5] and to the original paper [21]
for further details.

Given the re-interpretation of the Pareto best replies in terms of solution to
the weighted sum scalarization problem, it becomes evident that for any λ > 0,
all Nash equilibria of a two-person symmetric game with payoff matrix Aλ are
also Pareto Nash equilibria of the multi-payoff game. Indeed, for any fixed λ > 0
and any Nash equilibrium x ∈ Δ of Aλ we have that

x�Aλx = max
y∈Δ

y�Aλx.

Hence, x ∈ Lwss(x), which implies x ∈ βP (x), i.e.x is a Pareto Nash equilibrium.

4 Dominant Sets with Multiple Affinities

In the previous section we have characterized Nash equilibria in multi-payoff
games and in Sect. 2 we have introduced dominant sets in the single-objective
case as ESS of two-person symmetric games. Hence, the natural extension of the
notion of dominant set in the presence of multiple affinities is via a generalization
of the notion of ESS equilibrium to multi-payoff games.

There exist several definitions of ESS for multi-payoff games [12,21], but in
this work we adhere to the so-called Biased-ESS proposed in [21]. A strategy
x ∈ Δ is a Biased-ESS (BESS) if there exists λ > 0 such that
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– u(x,x) ≥λ u(y,x) for all y ∈ Δ;
– u(x,x) =λ u(y,x) =⇒ u(x,y) >λ u(y,y),

where, for a relation R ∈ {=,≥, >,≤, <}, (a Rλb) ⇐⇒ (λ�a R λ�b). Each
Biased-ESS is a Pareto Nash equilibrium because it is a Nash equilibrium of Aλ

(see previous section). Biased-ESS can be extracted for any λ > 0 by employing
biased Replicator Dynamics [21], ie standard replicator dynamics in (3) run on
the payoff matrix Aλ. Given a Biased-ESS x ∈ Δ we obtain the corresponding
dominant set by taking its support σ(x).

As it turns out, enumerating all dominant sets corresponding to Biased-ESSs
of multi-payoff games is a poser, because every λ > 0 might potentially lead to
one or more Biased-ESSs. Many of them will of course agree in their support, for
there are uncountably many λs versus a finite set of possible dominant sets (not
more than 2|O| − 1), but in general characterizing the set of dominant sets will
remain an intractable problem. For this reason we rely on some heuristic that
allow us to efficiently extract some of the Biased-ESSs in multi-payoff games.
The corresponding set of dominant sets will then be used to construct a single
affinity matrix, from which we compute the ultimate dominant set clustering
result.

4.1 Heuristics for Selecting Multi-objective Dominant Sets

We compute the finite set of weight-vectors Λ(x) that characterizes the set
of Pareto best replies to the barycenter of the simplex, i.e.xi = 1/n for all
i ∈ {1, . . . , n}. This computation is performed by running a MCLP simplex
solver for the multi-criteria optimization problem in (4). As a result, we typically
obtain several hundreds of weight-vectors, depending on the affinity matrices. In
order to reduce the number of weight-vectors, we cluster them by using dom-
inant sets clustering (see, Sect. 2) with affinity Aij = �i�=j exp(−‖λi − λj‖2),
where �P = 1 if P is true, 0 otherwise. For each dominant set, we retain as
a cluster representative the element having highest entry in the correspond-
ing ESS equilibrium. The set of representatives after this procedure consists of
few tens of elements. For each representative weight-vector λ, we compute the
corresponding Biased-ESSs by running the biased replicatory dynamics under a
peeling-off strategy. The set of supports of all the computed Biased-ESSs, i.e.the
corresponding dominant-sets, is the output of the heuristic.

We tried also another heuristic, which is computationally more demanding.
We first collected the set X of single-payoff ESS equilibria from each affinity
matrix using the replicator dynamics under peeling-off strategy. For each col-
lected equilibrium x ∈ X , we computed the set of weight-vectors Λ(x) by solv-
ing the corresponding MCLP. For each weight-vector in λ ∈ ⋃

x∈X Λ(x), we
extracted the corresponding set of biased-ESS equilibria using the biased repli-
cator dynamics under peeling-off strategy. The supports of those equilibria were
finally returned by the heuristic. However, experimentally it turned out that this
second approach yields results, which are comparable to the ones achieved by
the simpler heuristic. Therefore, in the experiments we rely on the first one.
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4.2 Combination into a Single Affinity Matrix and Final Clustering

Given a set of m multi-objective dominant sets obtained with the heuristic pro-
posed in the previous section, the final affinity matrix is built using a cluster
embedding technique. For each data point i ∈ O, we construct a m-dimensional
binary vector vi ∈ {0, 1}m, where vi

k = 1 if i belongs to the kth dominant set. We
then build an affinity matrix Âij = �i�=j exp(β‖vi −vj‖2), where β > 0 is a free,
scale parameter, and we obtain the final result by running the single-objective
dominant set clustering algorithm on Â.

5 Experimental Results

In this section we present two types of experiments. In both cases we evaluated
the clustering result based on the number of correct predictions our framework
made from all predictions, which is just the classification accuracy. The first
one addresses the problem of data clustering on both synthetic and real-world
datasets, while the second one addresses the problem of image segmentation.
Our approach was tested against the single-payoff dominant set clustering and
against an affinity combination approach based on consensus clustering.

5.1 Data Clustering

We perform experiments on data clustering using affinities constructed from the
Gaussian kernel and the polynomial kernel, under different parametrizations.
In the specific, if f i is the ith data point, we consider affinities of the type
Aσ

ij = exp(‖f i −f j‖2/2σ2) constructed in terms of the Gaussian kernel, where σ
is sampled from (0, 1). We considered also the following two dataset-dependent
value of the scaling parameter: σM = maxi�=j ‖f i − f j‖. Finally, we considered
an affinity constructed using the polynomial kernel, i.e. Ap

ij = (1 + f�
i f j).

The datasets that we have used are summarized in the first three rows of
Table 1. The first is a toy datasets that we generated, while the other are taken
from the well-known UCI Machine Learning repository. The toy dataset has 250
points in 3-dimensional space, with two Gaussian-distributed clusters of points.
Each cluster has 100 points, while 50 points are uniformly-distributed clutter
points.

To give an idea of the positive effect of the combination of multiple affinities,
we report in Fig. 2, how the accuracy changes as the number of affinity matrices
that are combined increases. Affinity matrices were randomly sampled (without
replacement) from a set of 20 available matrices and clustered with the proposed
multi-objective dominant set algorithm. We reported the average accuracies of
20 trials obtained on Toy-1 and the Iris data set. The bars represent the variance
which, as can be seen from the figure, decreases with increasing similarities. We
can also notice that there is a clear benefit from the combination method that
we propose, which is more evident on the real-world dataset Iris.

We tested our algorithm on all the datasets using eight affinities (Aσ with 6
randomly sampled σ ∈ (0, 1), AσM and Ap). In Table 1 we report the accuracies
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Fig. 1. Exemplary dataset generated synthetically. Red points correspond to clutter
(best viewed in color) (Color figure online).

Table 1. Accuracies of single-objective dominant sets on the 8 affinities Si, i = 1..8,
and the multi-objective dominant sets SC . On the Classes row, ‘2+1’ means 2 classes
plus additional background clutter noise (see, e.g. Fig. 1)

T
oy Ir
is

Io
n
oS

.

S
ee

d
s

H
ab

er
.

W
in

e

H
ay

es

B
lo

o
d

S
p
ec

t.

Instances 250 150 351 210 306 178 132 748 267

Features 3 4 33 7 3 13 5 10 8

Classes 2+1 3 2 3 2 3 3 2 2

S1 0.963 0.913 0.652 0.552 0.667 0.652 0.405 0.701 0.689

S2 0.959 0.893 0.672 0.895 0.667 0.719 0.423 0.701 0.772

S3 0.962 0.880 0.672 0.890 0.673 0.702 0.415 0.707 0.742

S4 0.960 0.893 0.681 0.886 0.686 0.702 0.409 0.707 0.697

S5 0.971 0.860 0.678 0.900 0.693 0.674 0.402 0.723 0.704

S6 0.964 0.833 0.681 0.890 0.696 0.556 0.411 0.723 0.697

S7 0.958 0.333 0.641 0.333 0.735 0.404 0.386 0.762 0.794

S8 0.965 0.920 0.541 0.895 0.533 0.517 0.417 0.701 0.558

SC 0.997 0.947 0.710 0.914 0.727 0.736 0.439 0.775 0.794

obtained by single-objective dominant sets clustering on each of the 8 affinities
(Si, i = 1, . . . , 8), as well as the results obtained by our multi-objective dominant
set (SC). As we can see, the quantitative results confirm that the proposed
multi-objective clustering method based on dominant sets is consistently able to
improve the results that one would obtain by employing the single similarities,
on all tested real-world and synthetic datasets.

We compared the result of our algorithm also against a consensus clustering
[22] method, by using an ensemble of clusterings constructed with the informa-
tion coming from all the available affinities. Specifically, we adopt the single-
objective dominant set clustering run on the different affinities to create the
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Fig. 2. Accuracy for different numbers of similarity measures

clustering ensemble. The different clusterings are then combined into a single
affinity matrix according to the Evidence Accumulation paradigm, i.e. we built
a matrix A known as co-association matrix, where Aij is (for distinct i and j) the
fraction of times object i and object j were clustered together among all clus-
terings in the ensemble, while Aij = 0 if i = j. To get the final clustering result,
we run the single-objective dominant set clustering on the co-association matrix
raised to a power γ between 0 and 1, i.e.A = Aγ , where γ = 1 recovers the stan-
dard co-association matrix. The results reported in Fig. 3 show the score that we
obtain under the best gamma. As we can see, the proposed multi-objective clus-
tering approach is consistently better than the consensus clustering approach,
even though by a small margin.

Fig. 3. Comparison Against Consensus Clustering
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Fig. 4. Segmentation results and their corresponding Rand Index. The multi-objective
version (M) is compared against the best result a single affinity measure (S).

5.2 Application to Image Segmentation

With the last part of the experiments we tried to assess the robustness of the app-
roach with respect to image segmentations using the multi- and single-objective
approach. We regard segmentation as a clustering of pixels. According, we define
different pixel-similarity measures from different color spaces: RGB, grayscale,
HSV and Lab. In-addition, we also built other similarity measures using different
combinations of the color spaces and by changing the parameters σ. The qualita-
tive experiments are done over few exemplary images from the Berkeley dataset
[14] using the multi-objective game-theoretic approach and single-objective one.
Both results are evaluated using their measure of Rand-Index which enables us
for a numerical comparison between our result using a human segmented nat-
ural images from Berkeley dataset. The result confirms that the multi-similarity
approach outperforms that of single objective game-theoretic one.
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6 Conclusions

In this paper we have a proposed an approach to combine multiple affinity matri-
ces within the dominant-set clustering framework. The proposed idea is moti-
vated by the game-theoretic interpretation of dominant sets and has its roots in
multi-criteria (evolutionary) game theory. Basically, the problem of extracting
dominant sets in the presence of multiple affinities is cast into the problem of
finding and combining Biased-ESS equilibria in the corresponding multi-payoff
game. Due to the intractability of a complete enumeration of equilibria, we intro-
duced an heuristic to extract some of them, which are then combined into a single
affinity for the final clustering (Fig. 4).

Results on several synthetic as well as standard benchmark datasets have
consistently demonstrated the effectiveness of the proposed approach. As a mat-
ter of future work, we plan to apply the proposed approach to different real-world
scenarios involving multiple-cues, and devise more principled way of character-
izing the set of dominant sets under multiple afifnities.
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Abstract. We present here a novel method for the classical task of find-
ing and extracting recurring spatiotemporal patterns in recorded spik-
ing activity of neuronal populations. In contrast to previously proposed
methods it does not seek to classify exactly recurring patterns, but rather
approximate versions possibly differing by a certain number of missed,
shifted or excess spikes. We achieve this by fitting large Hopfield networks
to windowed, binned spiking activity in an unsupervised way using min-
imum probability flow parameter estimation and then collect Hopfield
memories over the raw data. This procedure results in a drastic reduction
of pattern counts and can be exploited to identify prominently recurring
spatiotemporal patterns. Modeling furthermore the sequence of occur-
ring Hopfield memories over the original data as a Markov process, we
are able to extract low-dimensional representations of neural population
activity on longer time scales. We demonstrate the approach on a data
set obtained in rat barrel cortex and show that it is able to extract a
remarkably low-dimensional, yet accurate representation of population
activity observed during the experiment.

Keywords: Neuronal population activity · Parallel spike train analysis ·
Spatiotemporal patterns · Hopfield network · Ising model

1 Introduction

Finding recurring spatiotemporal patterns (STP) in recorded spiking activity
of neuronal populations is a classical problem in the data analysis of parallel
spike trains, and quite a number of approaches to detect and classify recurring
spatiotemporal patterns of neural population activity have been proposed [3,6].
Yet, most published methods so far either focus solely on synchrony detection
[15,16,18] or assume a more or less noiseless scenario, seeking to classify exactly
recurring STP in neuronal activity (apart from allowing some jitter in spike
timing), see e.g. [5].
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Given the usually high variability of population responses to stimuli, the
re-occurrence of such exactly repeating STP becomes more and more unlikely
with increasing population size though. Despite this variability, there is strong
experimental evidence that neural populations code information about stimuli
in some form of STP, see e.g. [1,2]. Thus, a much more plausible situation is that
some underlying STP appears in several “corrupted” variants, both expressing
jitter in spike times and differing in a few missing or excess spikes. To find and
classify recurring STP in parallel spike trains, we fit Hopfield networks (HN)
to windowed, binned spiking activity of a population of cells using minimum
probability flow [19] (MPF), a novel probabilistic learning rule for HN with many
desirable properties [8,10]. We then use Hopfield network dynamics to classify
the raw data and identify recurring STP. The presented method is robust to
the aforementioned variability in the signal and able to extract the underlying
recurring patterns, even for seldom occurring STP and large population sizes.

Modeling furthermore the sequence of occurring Hopfield memories as a
Markov process, we are able to extract low-dimensional representations of neural
population activity. We demonstrate the approach on a data set obtained from
rat barrel cortex [14] and show that it is able to extract a remarkably low-
dimensional, yet accurate representation of the average population response to
whisker stimulation.

The paper is organized as follows. In Sect. 2 we give a short overview of
the theoretical background, namely Hopfield networks and minimum probability
flow parameter estimation. We then present our method in Sect. 3, followed by
a demonstration of the method in Sect. 4. We conclude in Sect. 5.

2 Background

Hopfield networks [11] are a well-known model of memory and collective process-
ing in networks of abstract McCulloch-Pitts [13] neurons.

The possible states of a HN are the same as those of a non-ferromagnetic
Ising model, a classical model in statistical physics [12]. This discrete probability
distribution has as states all binary vectors of length n, with the probability of
a particular state x = (x1, . . . , xn) ∈ {0, 1}n being

px =
1
Z

exp

⎛
⎝∑

i<j

Jijxixj −
∑

i

θixi

⎞
⎠ =

1
Z

exp (−Ex) , (1)

in which J ∈ R
n×n is a real symmetric matrix with zero diagonal (the coupling

matrix ), the vector θ ∈ R
n is a bias or threshold term, and Z =

∑
x exp(−Ex)

is the partition function (which normalizes p = (px)x∈{0,1}n to sum to 1). Typ-
ically, the expression inside the exponential of (1) is viewed as the negative of a
quadratic energy function,

Ex = −1
2
x�Jx + θ�x. (2)
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Thus, states x with low energy (2) appear most often under sampling from (1).
It follows from basic theory (e.g. [4]) that the distribution defined by (1) is the
maximum entropy distribution on binary vectors given its first and second order
statistics (mean and covariance).

A HN is a recurrent network of binary nodes (representing spiking neurons)
with deterministic dynamics. Formally, a HN on n nodes {1, . . . , n} consists of
a symmetric coupling matrix J ∈ R

n×n and a threshold vector θ ∈ R
n.

An asynchronous dynamics update of state x in a HN consists of iteratively
replacing each xi in x with a new value

xi =

⎧⎨
⎩

1 if
∑

j �=i Jijxj > θi,

0 otherwise.
(3)

The update given by Eq. (3) is inspired by computations exhibited in neurons [13]
and a model neuron with such an update rule is often called a McCulloch-
Pitts neuron. A fundamental property of HNs is that an asynchronous dynamics
update given by Eq. (3) does not increase the energy given by Eq. (2). Thus,
after a finite number of updates, each initial state x converges to a fixed-point
x∗ (also called stable-point or memory) of the dynamics. Intuitively, we may
interpret the dynamics as an inference technique, producing the most probable
nearby memory given a noisy version. See Fig. 1 for an example of a small HN
and its energy landscape.

A basic problem is to construct Hopfield networks with a given set D of
binary patterns as memories (i.e. local minima of Ex). Such networks are useful

x3

-1

1 2

Ex

J  =
 0    -1    1
-1     0    2
 1     2    0

x1

x2

x3

1
1
0

0

-2

x2x1

0
0
0

1
0
0

0
1
0

1
0
1

1
1
1

0
0
1

0
1
1

-1

Fig. 1. Small Hopfield network. A 3-node Hopfield network with coupling matrix
J and zero threshold vector θ. A state vector x = (x1, x2, x3) has energy Ex as labeled
on the y-axis of the diagram. Arrows represent one iteration of the network dynamics;
i.e. x1, x2, and x3 are updated by Eq. (3) in the order of the clockwise arrow. Resulting
fixed-points x∗ are indicated by blue circles (Color figure online).
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for memory denoising and retrieval since corrupted versions of patterns in D will
converge through the dynamics to the originals.

In contrast to traditional rules used for this task such as the outer-product
learning rule [11] (OPR) and the perceptron learning rule [17] (PER) that face
a number of limitations such as low memory capacity, bad generalization prop-
erties and high computational cost, we here use minimum probability flow [19]
(MPF) to estimate the parameters of a Hopfield network. Applied to estimat-
ing the parameters in an Ising model/Hopfield network, Eq. (1), the minimum
probability flow objective function [8,19] is:

KD(J, θ) =
∑
x∈D

∑
x′∈N (x)

exp
(

Ex − Ex′

2

)
. (4)

Here, the neighborhood N (x) of x consists of those binary vectors which are
Hamming distance 1 away from x. The function in (4) is infinitely differentiable,
jointly convex in the parameters, consists of only order O(|D|n) terms, and can
be minimized using standard methods such as gradient descent. Notice also that
when KD is small, the energy differences Ex−Ex′ between points x in the dataset
D and patterns x′ in single-flip neighborhoods N (x) will be negative, making
x a fixed-point of the Hopfield dynamics. Importantly to applications, much
more is true: minimizing (4) given a storable set of patterns D will determine a
Hopfield network storing those patterns as robust memories [8]. Moreover, the
MPF objective function can naturally be turned into an online, neurologically
plausible learning rule [9].

3 Our Method

The training data X are obtained by sliding a window of given length L over
a binary matrix of dimension N × T representing the binned spiking activity of
N cells over a time period of T bins, yielding T −L binary vectors of length NL
as training data, see Fig. 2.

After fitting a HN with NL nodes on the data using MPF, we converge each
window of the raw, binned spiking data to its Hopfield memory.

We label the sequence of occurring memories by natural numbers in the order
of their appearance so that we obtain a memory sequence S = (s1, . . . , sT−L),
with si ∈ {m1, . . . , mk} = M , k ≤ T −L, where M denotes the set of all distinct
memories in S.

Note that usually k � |S|, as STP occurring in the raw data that have
low Hamming distances are likely to converge to the same memory under the
Hopfield dynamics as a result of fitting the network with MPF.

For each memory mi ∈ M we compute all pairwise one-step Markov transi-
tion probabilities to mj ∈ M (1 ≤ j ≤ k) using data from S and the entropy
over this probability distribution for each mi, which we call the entropy of the
memory mi and denote by H(mi).

The entropy of a memory is a measure for how predictable the following
network state is, according to the observed data. Memories with a more restricted



Discovery of Low-Dimensional Dynamical Structure in Parallel Spike Trains 203

Fig. 2. Windowing of binned neural activity. To generate training data for the
Hopfield network, spiking data of N cells are first binned and then training vectors are
extracted using a sliding window. Windows of length L are shifted by d bins (here, we
take d = 1) resulting in training vectors of dimension n = NL. The above illustration
shows five overlapping windows.

set of following network states have lower entropy, ones with less predictable
states have higher entropy. H(mi) can therefore be seen as a local measure (in
time) for how deterministic the network dynamics evolve from that memory.

We then construct a directed graph with the elements of M as nodes. Two
nodes mi,mj are connected by an edge (mi,mj) of weight w if their Markov
transition probability w = P (mj |mi) obtained from S is non-zero. We call this
graph the Markov graph GM of S. Paths and cycles (i.e. simple closed paths)
in GM along nodes with low entropy correspond to sequences of memory labels
and thus sequences of STP of spiking activity that are prominently and reliably
generated by the neuronal population.

4 Application to Data

We applied the proposed method to spiking data of recorded in the rat barrel
cortex during repeated whisker stimulation [14] (N = 16, T = 3.4 · 104, L = 10,
1 ms bins), see Fig. 3 for a raster plot of 50 trials of the experiment. For each
trial, recorded spiking activity measured in 16 electrodes (multi unit activity,
MUA) is shown. Whisker stimulation is performed at 1000 ms within each trial.

The number of different 160-dimensional patterns (corresponding to 10 ms
of network activity) in the raw data is 161,171. After fitting a Hopfield network
to the raw data and collecting the memories over the input data we obtain 577
distinct Hopfield memories, a 280-fold reduction in count, see also Fig. 4. The
Markov transition probability matrix for the 577 memories is shown in Fig. 5,
their probabilities and entropies in Fig. 6.

To ease data analysis, we further restrict the number of memories considered
to the 50 memories of highest rank from this point on. The Markov Graph
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Fig. 3. Raster plots of 16 cells over 50 trials. Binned into 1 ms bins, stimulation of
primary whisker at 1000 ms. White dots denote spiking activity. Horizontal axis shows
time, vertical axis units/trials.

Fig. 4. Ranks of raw and Hopfield patterns of 10ms length.

GM is pruned accordingly, but node entropies are calculated on the full set of
memories. To each Hopfield memory we associate memory triggered averages
(MTAs, computed as the average of all raw patterns converging to the given
Hopfield memory); these are shown in Fig. 7.

For this data set we find a ‘central’ node mα (corresponding to memory label
1) in the Markov Graph GM that has a high degree (sum of in- and out-degrees).
This is characteristic for a situation in which the node is the termination (resp.
starting) point of prominently occurring STP of network activity. Interestingly,
the memory mα occurs very frequently in the data (p > 0.9) and the node
has low entropy. This we expect from a network’s low-energy base state that
it prominently rests in and repeatedly returns to. Using the information of the
stimulus protocol, we indeed found that mα corresponds to the resting state of
the network (see top left MTA in Fig. 7).

We now look at cycles (i.e. closed, simple paths) in the Markov Graph GM

starting and terminating in some given node. We expect that cycles in GM

starting in mα can give insight on how the network is driven out of its resting
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Fig. 5. Markov transition probabilities of all Hopfield memories (577) observed in the
raw data.

Fig. 6. Occurrence probabilities and entropies of Hopfield memories. Left:
Occurrence probabilities of memories observed in raw data (cut at 10−2). Right:
Entropies of memories (calculated for each memory from its Markov transition proba-
bilities) observed in raw data.

state by some stimulus and enters a transient sequence of excited states before
falling back to the resting state. See Fig. 8 for the distribution of cycle lengths in
the restricted Markov graph. Note that windows overlap by 9 ms in the present
case, making the approximation of longer time-scale network dynamics via a first
order Markov process (as paths in the Markov Graph) rather robust.

Tracing such cycles in GM (and scoring them by their entropy, obtained
as a weighted sum of the entropies of the cycle’s nodes as a measure for how
reliably that cycle is “visited” by the network dynamics), we find that the most
STP associated with low entropy cycles indeed correspond closely to the average
network response to whisker stimulation (that we computed from the raw data
using knowledge of the simulation protocol), see Fig. 9. Note that our method
was able to reconstruct the average network response without any knowledge of
the stimulus protocol.
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Fig. 7. Memory triggered averages. Memory triggered averages of 50 memories
with highest rank observed in the raw data (ordered by decreasing rank, top left to
bottom right). Each plot shows one MTA encoding a prominent STP of length 10 ms;
a white pixel denotes high (1) spiking probability of a given neuron at a given time, a
black pixel low spiking probability (0).

Fig. 8. Distribution of cycle lengths around base node 0 in reduced Markov
graph.

Fig. 9. Reconstruction of stable network response. Left: Stimulus triggered aver-
age obtained from raw data obtained using knowledge of stimulus protocol. Right:
Likely network response reconstructed by our method, corresponding to a low entropy
path in the Markov graph, not using any knowledge of the stimulus protocol.
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5 Conclusion

We presented here a method for identifying and classifying recurring spatiotem-
poral patterns in parallel neural spike trains based on Hopfield networks. In
contrast to previously proposed methods [5,6,15,16,18], it does not solely focus
on (partial) synchrony detection or finding exactly recurring patterns, nor does it
face combinatorial explosion in the number of neurons or time steps considered.

The trained Hopfield networks denoise the data, grouping similar patterns
together in a way that respects the underlying statistics of the data. They are
thus able to identify prominent patterns reoccurring in the dataset, possibly
corrupted by noise, and eliminate the large number of spurious patterns occur-
ring rarely. In its memories the network encodes different structural aspects of
the spiking data such as prominent temporal firing sequences that usually are
very difficult to identify in the raw data or using standard methods. Modeling
the sequence of occurring memories as a Markov chain, we have shown that
the method is able to extract salient features of parallel spike trains in a fully
unsupervised way.

We thus propose the method as a novel tool in mining parallel spike trains for
possibly low-dimensional underlying network dynamics. An open source software
in form of a Python package [7] allowing for the wider application of the method
is currently in beta test and to be released soon.

Acknowledgements. The authors would like to thank Yuri Campbell for helpful
comments on an earlier version of this manuscript.
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1 Introduction

We introduce the Translation-invariant Matrix-T process (TiMT) for estimating
Gaussian graphical models (GGMs) from pairwise distances. The setup is particularly
interesting, as many applications only allow distances to be observed in the first place.
Hence, our approach is capable of inferring a network of probability distributions, of
strings, graphs or chemical structures. The basic building block of classical GGMs is
the matrix eX 2 R

n�d which follows the Matrix-Normal distribution [1]

eX �NðM; Ψ � IdÞ: ð1Þ

The goal is to identify Ψ�1, which encodes the desired dependence structure. More
specifically, two objects (= rows) are conditionally independent given all others if and
only if Ψ�1 has a corresponding zero element. Prabhakaran et al. [3] formulated the
Translation-invariant Wishart Network (TiWnet), which treats eX as a latent matrix and
only requires their squared Euclidean distances Dij ¼ dEðexi; exjÞ2, where exi 2 R

d is the
ith row of eX . Also, SE ¼ eX eX> refers to the n� n inner-product matrix, which is linked
via Dij ¼ SE;ii þ SE;jj � 2 SE;ij. Importantly, the transition to distances implies that
means of the form M ¼ 1nw

> with w 2 R are not identifiable anymore. In contrast to
the above, we start off by assuming a matrix X:¼eXΣ1

2 �NðM; Ψ �ΣÞ, where the
columns (= features) are correlated as defined by Σ 2 R

d�d . Due to this change, the

inner-product becomes SMH ¼ XX> ¼ eXΣeX>
. In our setting only pairwise distances

of squared Mahalanobis type are observed,

Dij ¼ dMHðxi; xjÞ2 ¼ ðexi � exjÞ>Σðexi � exjÞ: ð2Þ

The quantities d, X, eX , S:¼SMH, Σ and M ¼ 1nw
> are treated as latent variables. The

main difficulty comes from the inherent mixture effect of Ψ and Σ in the distances,
which blurs or obscures what is relevant in GGMs. For example, if we naively enforce
Σ ¼ Id , then all of the information is solely attributed to Ψ . However, in applications
where the true Σ 6¼ Id , we would consequently infer false structure, up to a degree
where the result is completely mislead by feature correlation.

In a Bayesian fashion, we specify a prior belief for Σ. For a conjugate prior, this
leads to the Matrix-T distribution. The resulting model generalizes TiWnet and is
flexible enough to account for arbitrary feature correlation.
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2 Experiments

We apply TiMT it to the publicly available colon cancer dataset of Sheffer et al. [4],
which is comprised of 13 437 genes measured across 182 patients. Using the latest gene
sets from the KEGG database, we arrive at n ¼ 276 distinct pathways. After learning
the mean and variance of each pathway as the distribution of its gene expression values
across patients, the Bhattacharyya distances [2] are computed as a 276� 276 matrix
D. The pathways are allowed to overlap via common genes, thus leading to similarities,
however it is unclear how and to what degree the correlation of patients affects the
inferred network. For this purpose, we run TiMT alongside TiWnet with identical
parameters for 20 000 samples and report the annealed networks in Figure 1. Again, the
difference in topology is only due to latent feature correlation.

Without side information it is not possible to confirm either result, hence we resort
to expert knowledge for protein-protein interactions from the BioGRID database and
compute the strength of connection between pathways, leading to the conclusion that
TiWnet overestimates the network and produces a highly-connected structure
contradicting the evidence. This is a clear indicator for latent feature correlation.
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Fig. 1. A network of pathways in colon cancer patients, where each vertex represents one pathway.
From both results, we extract a subgraph of 3 pathways including all neighbors in reach of 2 edges. The
matrix on the bottom shows external information on pathway similarity based on their relative number
of protein-protein interactions. Black/red edges refer to þ /� edge weight (Color figure online).
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This extended abstract summarizes work presented at CVPR 2015 [1].
Standard statistics and machine learning tools require input data residing in a

Euclidean space. However, many types of data are more faithfully represented in
general nonlinear metric spaces or Riemannian manifolds, e.g. shapes, symmetric
positive definite matrices, human poses or graphs. The underlying metric space
captures domain specific knowledge, e.g. non-linear constraints, which is available a
priori. The intrinsic geodesic metric encodes this knowledge, often leading to improved
statistical models.

A seemingly straightforward approach to statistics in metric spaces is to use kernel
methods [3], designing exponential kernels:

kðx; yÞ ¼ exp �λðdðx; yÞÞqð Þ; λ; q[ 0; ð1Þ
which only rely on geodesic distances d(x, y) between observations. For q ¼ 2 this
gives a geodesic generalization of the Gaussian kernel, and q ¼ 1 gives the geodesic
Laplacian kernel. While this idea has an appealing similarity to familiar Euclidean
kernel methods, we show that it is highly limited if the metric space is curved, see
Table 1.

Theorem 1. For a geodesic metric space (X, d), assume that kðx; yÞ ¼ expð�λd2ðx; yÞÞ
is positive definite (PD) for all λ[ 0. Then (X, d) is flat in the sense of Alexandrov.

This is a negative result, as most metric spaces of interest are not flat. As a
consequence, we show that geodesic Gaussian kernels on Riemannian manifolds
are PD for all λ[ 0 only if the Riemannian manifold is Euclidean.

Theorem 2. Let M be a complete, smooth Riemannian manifold with its associated
geodesic distance metric d. Assume, moreover, that kðx; yÞ ¼ expð�λd2ðx; yÞÞ is PD

Table 1. Overview of results: For a geodesic metric, the geodesic exponential kernel (1) is only
positive definite for all λ[ 0 for

Extends to general
Kernel Metric Spaces Riemannian Manifolds

Gaussian (q ¼ 2) No (only if flat) No (only if Euclidean)
Laplacian (q ¼ 1) Yes, iff metric is CND Yes, iff metric is CND
Geodesic exp. (q[ 2) Not known No
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for all λ[ 0. Then the Riemannian manifold M is isometric to a Euclidean space.
Do these negative results depend on the choice q ¼ 2 in (1)?

Theorem 3. Let M be a Riemannian manifold with its associated geodesic distance
metric d, and let q[ 2. Then there is some λ[ 0 so that the kernel (1) is not PD.

The existence of a λ[ 0 such that the kernel is not PD may seem innocent;
however, as a consequence, the kernel bandwidth parameter cannot be learned. In
contrast, the choice q ¼ 1 in (1), giving a geodesic Laplacian kernel, leads to a more
positive result:

Theorem 4. i) The geodesic distance d in a geodesic metric space (X, d) is
conditionally negative definite (CND) if and only if the corresponding geodesic
Laplacian kernel is PD for all λ[ 0.
ii) In this case, the square root d ffiffip ðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

dðx; yÞp
is also a distance metric, and

ðX; d ffiffip Þ can be isometrically embedded as a metric space into a Hilbert space H.
iii) The square root metric d ffiffip is not a geodesic metric, and d ffiffip corresponds to the
chordal metric in H, not the intrinsic metric on the image of X in H.

The proofs rely on Schönberg’s classical theorem [4], metric geometry and recent
results on conditionally negative definite kernels [2]. Theoretical and empirical results
on PD’ness of geodesic exponential kernels are summarized in Table 2.

Table 2. For a set of popular data spaces and metrics, we record whether the metric is a geodesic
metric, whether it is a Euclidean metric, whether it is a CND metric, and whether its
corresponding Gaussian and Laplacian kernels are PD.

Space Distancemetric Geodesic Euclidean? CND PD Gaussian PD Laplacian
metric? metric? metric? kernel? kernel?

R
n Euclideanmetric � � � � �

R
n, n > 2 lq-norm‖ · ‖q , q > 2 � ÷ ÷ ÷ ÷

SphereSn classical intrinsic � ÷ � ÷ �
Realprojective spacePn(R) classical intrinsic � ÷ ÷ ÷ ÷

Grassmannian classical intrinsic � ÷ ÷ ÷ ÷
Sym+

d Frobenius � � � � �
Sym+

d Log-Euclidean � � � � �
Sym+

d Affine invariant � ÷ ÷ ÷ ÷
Sym+

d Fisherinformation metric � ÷ ÷ ÷ ÷
Hyperbolic spaceHn classical intrinsic � ÷ � ÷ �

1-dimensionalnormal distributionsFisherinformation metric � ÷ � ÷ �
Metrictrees treemetric � ÷ � ÷ �

Geometricgraphs (e.g.kNN) shortestpath distance � ÷ ÷ ÷ ÷
Strings stringedit distance � ÷ ÷ ÷ ÷

Trees, graphs tree/graphedit distance � ÷ ÷ ÷ ÷
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In the last few years, matrix factorization approaches have become an important tool in
machine learning and found successful applications for tasks like, e.g. information
retrieval, data mining and pattern recognition. Well-known techniques based on matrix
factorization are, e.g. Singular Value Decomposition [1], Principal Component
Analysis [2] and Nonnegative Matrix Factorization [3, 4].

A matrix undergoing a factorization in learning algorithms typically arises as a
collection of feature vectors, each vector being a column of the matrix, or as a
representation of the similarity/dissimilarity relations among data objects. In the latter
case, we can easily interpret the matrix as the adjacency matrix of a weighted graph
having the data objects as vertices. The application of matrix factorization for the
analysis of graphs is mainly restricted to clustering [5, 6]. This paper aims at giving a
novel viewpoint about the role of matrix factorization in the analysis of graphs and, in
the specific, we show how matrix factorization can serve the purpose of compressing a
graph.

Compressing data consists in changing its representation in a way to require fewer
bits. Depending on the reversibility of this encoding process we might have a lossy or
lossless compression. Information-theoretic works on compressing graphical structures
have recently appeared [7]. However, they do not focus on preserving a graph structure
as the compressed representation, which is instead what we aim at in our graph
compression model. Our work is instead closer in spirit to [8], which proposes a
summarization algorithm for unweighted graphs, and [9], which proposes a greedy
procedure to determine a set of supernodes and superedges to approximate a weighted
graph. Moreover, our work is related to the Szemerédi regularity lemma [10], a
well-known result in extremal graph theory, which roughly states that a dense graph
can be approximated by a bounded number of random bipartite graphs. An algorithmic
version of this lemma has been used for speeding-up a pairwise clustering algorithm
in [11].

A problem linked to graph compression that has focused the attention of researchers
in the network and sociometric literature for the last few decades is blockmodeling [12,
13]. Blockmodels try to group the graph vertices into groups that preserve a structural
equivalence, i.e. vertices falling in the same group should exhibit similar relations to
the nodes in other groups (including self-similarity), and they differ by the way in
which structural equivalence is defined.
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In this paper1 we provide a novel viewpoint about the role of matrix factorization in
the analysis of graphs and, in the specific, for the purpose of compressing a graph. The
solution that we propose to compress a graph can be regarded as a blockmodel, where
blocks and their relationships can be determined using a matrix factorization approach.
The main contributions of the paper are the following: we link matrix factorization with
graph compression by proposing a factorization that can be used to reduce the order of
a graph, and we show that the same technique can be used to compress a kernel, by
retaining a kernel as the reduced representation; we cast the discrete problem of finding
the best factorization into a continuous optimization problem for which we formally
prove the equivalence between the discrete and continuous formulations; we provide a
novel algorithm to approximately find the proposed factorization, which resembles the
NMF algorithm in [15] (under ‘2 divergence). Additionally, we formally prove
convergence properties for our algorithm; finally, we establish a relation between
clustering and our graph compression model and show that existing clustering
approaches in the literature can be regarded as particular, constrained variants of our
matrix factorization.
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The ability to identify similarities between shapes is important for applications such as
medical diagnosis, registration and alignment of objects or images, and shape retrieval.
Recently the usefulness of patch based registration for two dimensional medical images
has appeared in various works [4]. Based on our knowledge this has not been explored
for three dimensional medical surfaces registration. With the help of advanced
acquisition techniques, 3D surface models for automated shape analysis, registration
and statistical atlases has become rather ubiquitous [2].

The problem of patch correspondence finds similar or corresponding patches in
different three dimensional surfaces. A main challenge of 3D patch correspondence is
to find a suitable shape signature that can discriminate between similar and dissimilar
shapes and can be constructed and compared quickly. Several approaches have been
employed in resolving this problem including approaches based on using global
features, such as Fourier or spherical harmonics, histograms of the shape features or
local features such as shape moments. Recently, diffusion based techniques have been
introduced which use the intrinsic geometry of the surface to construct surface
descriptors. Exploiting the implicit geometrical structure also makes it independent of
the co-ordinate system being used. These techniques include Heat Kernel Signature
(HKS) or Wave Kernel Signature (WKS) [1] and construct shape signatures using the
fundamental solutions of heat equation or Schrodinger equation, respectively on the
surface. The corresponding kernel construction uses the eigen values and eigen
functions of Laplace Beltrami operator on a 3D surface. These geometric features are
invariant with respect to the co-ordinate system and are inherent to the surface
properties.

Our approach consists of three steps: 1. We use the fast marching procedure to patch
a given 3D surface or point cloud [5]. 2. We construct a Wave Kernel Signature for
each patch. We form a statistics for the Wave Kernel Signature and construct a
probability distribution [1]. 3. We compute the distance between the two probability
distributions for different patches which can be used for patch correspondence. By
exploiting the distance between the probability distributions allows to find the
corresponding patch surface in different bone surfaces. Summarizing, our approach
combines a PDE based segmentation approach and the statistical approaches for using
the distributions of WKS feature descriptors as signatures for a patch.

Using the geometric features, first we identify the feature points. These points are
selected based on the sharp changes in the curvatures. Let k1; k2 be the principal
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curvatures at point p, then the selection of feature points are obtained by first mapping
the curvatures to [0, 1] using Shape index S(p). Denoting k1; k2 as the principal
curvatures, we define S(p) by

SðpÞ ¼ 1
2
� 1
π
tan�1 k1ðpÞþ k2ðpÞ

k1ðpÞ � k2ðpÞ :

Since tan�1 maps the real axis to ½�π=2;π=2�, S maps the principal curvatures to [0, 1].
A higher shape index indicates convex surfaces and the smaller value indicates
concavity. Furthermore, we choose thresholds for both the minimal and the maximum
that are used to choose the feature points to make sure that these points do not
concentrate in a small region. Given the feature points as initial source points, the
distance maps are computed using a curvature dependent speed. To compute distance
maps on the surfaces fast marching procedure is performed. This algorithm solves the
front propagation problem and distance map computation formulated as a boundary
value partial differential equation. Next, we use the Voronoi diagram for the given 3D
surface and its distance map to perform a local surface patch construction. The Voronoi
diagram consists of convex geometry enclosed by a closed curve and forms a partition
for a 3D surface in disjoint subsets.

As introduced in [1] the wave kernel signature is obtained by using the wave
function solving Schrödinger equation on a 3D surface. Let ψðx; tÞ solve the
Schrödinger equation otψ ¼ iΔψ; on a 3D surface, and λk;φk; k ¼ 1; 2; 3; . . . be the
eigen values and eigen vectors, respectively of Laplace-Beltrami operator for this
surface. The solution ψ is obtained by ψ ¼ P1

k¼1 exp ðiλktÞφkðxÞf ðλkÞ, where f is a
probability distribution of λk. Then the wave kernel signature (WKS) is defined by the
time average of square of ψ. This gives, WKS ¼ P1

k¼1 jφkðxÞj2jf ðλkÞj2. We compute a
probability distribution for the eigenvalues of the Laplace Beltrami operator and use the
KL divergence distance to compare the two respective distributions from any two
patches.

The primary advantage of this approach is that the shape recognition problem is
reduced to sampling, normalization, and comparison of probability distributions for the
patches, which are relatively simple tasks when compared to prior methods that
required reconstructing a solid object or manifold surface from degenerate 3D data,
registering pose transformations, finding feature correspondences, or fitting high-level
models. Moreover, this approach works directly on the original polygons of a 3D
model, making few assumptions about their organization, and thus it can be used for
similarity queries in a wide variety of databases. In fact, this approach also reduces the
problem of point correspondence as once the patches are identified, performing this
correspondence becomes more tractable. This is because the problem size scales much
faster than the size for point correspondence.

Our proposed model incorporates the statistical distribution of geometrical
information as well as the spatial information per individual patches. In the presence
of pathology the morphological variability and the shape connectivity may suffer due to
the surface reconstruction numerical errors and surface resolution. This may influence
the reliability of the point-wise local estimation of surface features such as curvature.
Hence, the classical point-wise shape curvature descriptors are insufficient, while
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including a bit larger area around the main feature points can make the selection more
robust to the point-wise or sufficiently small region changes. The main question
remains to be explored is the sufficient scale and number of patches on a single surface
required in order to recognise and retrieve the similar 3D object patches from different
individual models. Our algorithm has no prior models of any objects and is automated.
In this work, we further explore the development of this framework for medical surface
recognition and registration purposes.
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Fig. 2. ðaÞ Segmentation of the distal part of a radius, red circles indicate the starting points
(largest/smallest curvature). ðbÞ A cut segment from the radius and WKS plots for two selected
locations. ðcÞ Logarithmic distance between one segment and corresponding perturbed segments with
random noise.
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1 Introduction

Differential manifolds, or even stratified spaces, can be used as data domains when
vector space structure is too restrictive to accurately model properties of data.
Similarity between objects on e.g. Riemannan manifolds are most often defined via the
geodesic distance. However, stochastic data models suggest other similarity measures
than geodesic distance when analyzing non-linear data. In this abstract, we will discuss
a recent approach to statistics of manifold valued data where the data is considered as
the results of random diffusions.

2 Diffusions and Anisotropic Distributions on Manifolds

The normal distribution is a standard choice for modelling data in Euclidean space. To
treat manifold valued data, it is natural to seek for a generalization of the normal
distribution to a distribution on manifolds. The isotropic normal distribution can be
generalized to Riemannian manifolds via the heat diffusion, i.e. its density is a solution
at time t0 to the PDE

o
ot
pðt; xÞ ¼ 1

2
Δpðt; xÞ; lim

t!0
pðt; xÞ ¼ δx;y

where Δ is the Laplace-Beltrami operator on M. However, for normal distributions
with anisotropic covariance Σ, holonomy prevents a globally defined analogue ofΔ, so
the construction does not transfer to this situation.

Another way of constructing the normal distribution is as the transition distribution
of a Brownian motion. The Brownian motion can be generalized to manifolds by the
Eells-Elworthy-Malliavian construction using stochastic development in the frame
bundle. The corresponding transition distribution may be viewed as a generalization of
the Euclidean normal distribution when Σ is anisotropic. This distribution can then be
used for defining the mean or performing e.g. PCA, both in non-differentiable [1] and
differentiable cases [2]. We shall describe the basic ideas in this abstract.
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3 The Frame Bundle and Stochastic Development

The frame bundle FM of a differentiable manifold M is the smooth vector bundle
consisting of points x 2 M and corresponding frames (ordered bases) in the tangent
spaces TxM. A fundamental property of FM is the existence of n ¼ dimðMÞ globally
defined horizontal vector fields H1; . . .;Hn. These correspond to infinitesimal
displacements δx on M together with a parallel transport of the frame along δx.

Given a stochastic processes Bt in Rn starting at 0, the stochastic development [3] of
Bt is the stochastic process Ut on FM satisfying the Stratonovich stochastic differential
equation dUt ¼ Hi � dBi

t with initial condition U0 ¼ u0. If Bt is an anisotropic
Brownian motion, the projection πUt of Ut ontoM may be considered as an anisotropic
diffusion on M starting at πu0.

4 Most Probable Paths

Among the stochastic paths of a stationary diffusion processes in Rn that start at a point
x and end at a point y, the straight line is the most probable path. On a manifold M, the
most probable path for an isotropic diffusion process on M between x; y 2 M is defined
to be the one that minimizes the Onsager-Machlup functional [4]. This functional
involves the path length plus a curvature correction term, which means that the most
probable paths are generally not geodesics. The Onsager-Machlup functional thus
provides a different way of measuring similarity between points than the geodesic
distance.

In [5], the most probable paths for anisotropic processes are formally described in
terms of a sub-Riemannian metric on FM. The resulting paths are generally not
geodesics. We are currently exploring in which sense this formal approach can be given
a rigorous stochastic interpretation.

5 Outlook

For isotropic data, the Onsager-Machlup functional can be used to define similarities
between points on manifolds. We are currently investigating the possibility to
generalize this to the anisotropic situation. In particular, we would like to formalize the
description of most probable paths of anisotropic diffusion processes in terms of the
sub-Riemannian metric on FM considered in [5]. This would provide a foundation for
estimating means and covariances on manifolds.
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1 Extended Abstract

Spectral clustering, which is a relaxed graph-cut optimization approach based on
eigen-decomposition of a Laplacian matrix derived from pairwise similarities, is able to
extract clusters with various characteristics thanks to its independence from parametric
models [1–3]. To address their high computational cost in large data analysis, they are
applied via approximate spectral clustering (ASC). The ASC applies spectral clustering
on a reduced set of data representatives either selected by a sampling approach or data
quantization [4–7, 9]. [4] uses random sampling based on Nystrom method whereas [5]
shows that selective sampling is the best sampling method with a similar success to
k-means quantization. [6] uses k-means and random projection trees as quantization to
conclude experimentally that the best sampling can be achieved by vector quantisation
with minimum distortion. [7] compares neural networks with k-means and achieves
superior ASC accuracies with neural gas quantisation. Alternatively, k-means++ [8], a
successful variant of k-means with a novel probabilistic approach for initialisation, can
be a good alternative for quantisation in ASC [9].

Besides making spectral methods feasible for large datasets, the ASC enables
accurate similarity definitions harnessing different information types on the level of
data representatives. For example, a reduced set of representatives partitions the data
space into Voronoi polygons where each representative is the centroid of its
corresponding data points distributed into these polygons. This not only provides a
data density distribution which may determine separation among submanifolds, but
also helps identify their topological relations with respect to the data manifold. [7, 9]
exploit these information by defining various similarity criteria to utilize a local density
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distribution more detailed than the level of Voronoi polygons and an accurate manifold
based neighborhood representation.

In addition to the variety of sampling or quantization methods for ASC, different
representative sets are often obtained at each run even by the same method (due to
random initialization and update in the implementation of these methods). Therefore,
together with various similarity criteria, many partitionings can be obtained for a given
dataset. The naive approach is to combine these partitionings into a consensus
partitioning using an ensemble learning (such as maximum voting), which is shown
outperforming the individual results [10]. However, ensemble approaches require to
obtain all partitionings, which is time-consuming and computationally intense,
especially for quantization based ASC.

An alternative solution can be to develop a novel selection criterion representing
graph properties of the similarity matrices after getting the sets of data representatives
so that one could decide whether a favored selection would exploit intrinsic data
characteristics for the optimal clustering. Such a criterion (or different criteria) derived
from similarity graphs can help: i) find the best representative set for a given sampling
or quantization method, ii) find the best sampling or quantization method, or iii) select
the optimum similarity matrix. Our preliminary experiments using traditional
graph-based measures, such as assortativity, clustering coefficients and their
local-global variants [11], are unfortunately unsuccessful in guiding the best
representative set, sampling / quantization method or the best similarity criterion.
Can the optimum similarity matrix be selected before clustering, for the graph-based
ASC approaches? Is there such a criterion or is it possible to develop one?
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Abstract. This is a summary of the paper published in [1] which proposes new
hybrid similarity measures exploiting various information types such as density,
distance and topology, to achieve high accuracies by approximate spectral
clustering (an algorithm based on similarity based graph-cut optimization). The
experiments in [1] on a wide variety of datasets show the outperformance of the
proposed advanced similarities.
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1 Extended Abstract

Spectral methods, recently popular approach in clustering, have a manifold learning
algorithm based on eigenvalue decomposition of pairwise similarities of the data
points. Due to its ability to extract irregularly shaped clusters, its independence from
parametric cluster models, and its easy implementation, spectral clustering has been
theoretically and empirically supported with successful applications in various areas
such as information retrieval, computer vision, and image processing. However, its
effective submanifold (cluster) extraction based on eigendecomposition has a drawback
of high computational cost (OðN3Þ, N: number of data points) due to the very same
reason. This makes direct use of spectral clustering infeasible for clustering large
datasets.

In order to address challenges in clustering large datasets with spectral methods,
approximate spectral clustering (ASC) applies spectral clustering on a reduced set of
data representatives either selected by a sampling approach or data quantization [2–4].
The ASC methods mainly focus on finding a suitable sampling or quantization method
to find the data representatives, with a similarity criterion defined by (Euclidean)
distance based Gaussian function. Both theoretical and empirical studies indicate that
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quantization based ASC generally achieves higher accuracies than sampling based
ASC in expense of higher computational time. Additionally, [4] achieves superior ASC
accuracies with neural gas quantization thanks to its relatively low quantization error.

Besides making spectral methods feasible for large datasets, the ASC approach
enables accurate similarity definitions harnessing different information types on the
level of data representatives. For example, the reduced set of representatives efficiently
partitions the data space into Voronoi polygons (where each representative is the
center), and the data points are distributed to these representatives. This not only
provides a data density distribution which may determine separation among
submanifolds, but also helps identify topological relations of these representatives
with respect to the data manifold. [4] exploits these information to some extent by
using CONN similarity defined in [5], to achieve high clustering accuracies than
traditional distance based similarity definition. CONN is a weighted adjacency matrix
where weights show local data distribution within the Voroni subpolygons with respect
to neighbor representatives (producing a more detailed density distribution than the
Voronoi polygons level). If the subpolygon of a pair of representatives is empty, then
its connectivity weight becomes 0, indicating that those two representatives are not
neighbors with respect to the data manifold (even though they are neighbors in the data
space). This manifold based accurate definition of topological relations enables the use
of geodesic distances for ASC without any user-set parameter.

Despite being an extensively used approach, geodesic distances are ignored in ASC,
mainly due to the difficulty in determining the topological relations required for their
truthful calculation with respect to the data manifold: the traditional approaches
(k-nearest neighor, ε-neighborhood) require some parameters to be set optimally, yet,
these emprically-set parameters may differ not only for each dataset, but also for
representatives in the same data set.

In [1], we propose geodesic based similarities using topological information
provided by CONN. We then fuse them with traditional (Euclidean) distance and local
density information, to utilize all available information types provided by ASC. The
proposed geodesic criteria outperform non-geodesic based similarities on a wide
selection of datasets with respect to accuracy, adjusted Rand index and normalized
mutual information. We refer to [1] for detailed discussion.
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