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Abstract. Satellite formation flying is an example of an autonomous dis-
tributed system that relies on complex coordinated mode transitions to
accomplish its mission. While the technology promises significant econom-
ical and scientific benefits, it also poses a major verification challenge since
testing the system on the ground is impossible. In this paper, we experi-
ment with formal modelling and proof-based verification to derive mode
logic for autonomous flight formation. We rely on refinement in Event-B
and proof-based verification to create a detailed specification of the auto-
nomic actions implementing the coordinated mode transitions. By decom-
posing system-level model, we derive the interfaces of the satellites and
guarantee that their communication supports correct mode transitions
despite unreliability of the communication channel. We argue that a for-
mal systems approach advocated in this paper constitutes a solid basis for
designing complex autonomic systems.

Keywords: Autonomous flight formation - Formal modelling -+ Event-
B - Refinement - Formal verification

1 Introduction

Nowadays the space industry puts increasingly strong emphasis on novel distrib-
uted satellite technology — formation flying. The most recent development in the
field — autonomic formation flying — allows multiple satellites autonomously posi-
tion themselves into a formation, efficiently maintain the formation and change
it according to the mission and system requirements [4]. The satellites should
function in a coordinated manner to guarantee safety (collision avoidance) and
integrity (maintaining proximity) of the formation. Currently, the space industry
is experimenting with the novel development and verification technologies that
guarantee correctness and safety of autonomic flight formation.

The dynamic behaviour of the formation is defined in terms of modes —
mutually exclusive sets of system behaviour [12]. The mode transition logic is
complex because the mode transition conditions are defined by a variety of
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unpredictable factors — the relative position of the satellites, their health and envi-
ronmental disturbances. The main challenge is to guarantee that, despite highly
non-deterministic environment and the absence of the centralised control, the
satellites perform mode transitions in a coordinated manner.

To address this challenge, we undertake a formal development of autonomous
formation flying in Event-B. Event-B [1] is a state-based approach to correct-
by-construction system development. It supports system-level reasoning about
properties and behaviour. In particular, it allows us to define system invariants
and verify them over all execution scenarios. The main development technique —
refinement — supports stepwise construction and verification of complex specifi-
cations. We start the development by creating a high-level abstract specification,
which is incrementally augmented with the detailed representation of require-
ments. Each refinement step is accompanied by proofs. When a sufficient level
of details is reached, by relying on the modularisation extension [8,16], we can
decompose the obtained specification into a number of independent components,
i.e., arrive at the distributed architecture.

Event-B has an industrial strength automated tool support — Rodin plat-
form [17]. The platform provides the developers with an integrated engineering
environment, which supports modelling in Event-B as well as verification by proofs
and model checking. Reliance on a common Event-B model to perform two types of
verification helps us to address different aspects of system behaviour: model check-
ing facilitates verification of dynamic properties of the inter-satellite communica-
tion, while proofs support reasoning about invariant properties of mode transition
logic.

A combination of abstraction, refinement, proofs and decomposition as well
as mature tool support makes Event-B a powerful framework for reasoning about
behaviour of distributed systems. Development of Event-B and Rodin platform
have been significantly advanced in the Deploy project [6]. Space Systems Fin-
land has participated in the project and built a strong in-house expertise in
formal modelling. Moreover, it has been encouraging the development of new
features of Event-B, such as modularisation support, and validating them in
practice. The company continues experimenting with the use of formal tech-
niques in development of high assurance systems. In particular, this work builds
on our previous experience in modelling of a reconfigurable on-board satellite
system [21] as well as an attitude and orbit control system [10].

In this paper, we define the general patterns for ensuring coordinated mode
transitions in the distributed autonomous systems. We analyse the inter-satellite
communication, impact of failures and the mechanisms of losing and regaining
the coordination. These patterns are integrated into the development of the
overall formation flying specification. We start from an abstract model of the
entire system, gradually introduce the details of the mode transitions, describe
communication between the satellites, and finally decompose the system into
independent sub-systems (i.e., satellites) and the communication link between
them. Such an approach allows us to define precisely the properties that should
hold at the different stages of mode transitions. We believe that the proposed



The Formal Derivation of Mode Logic 31

approach offers a powerful technique for formal development and verification of
autonomous distributed systems.

2 Satellite Flight Formation

Formation flying is a novel technology for a future generation of space missions. It
offers benefits from both economical and technological perspectives. To perform
a specific mission it is usually more cost-effective to compose a system from a
number of simpler satellites rather than to develop a single dedicated spacecraft.
Moreover, formation flying is easier to manage from the fault tolerance point
of view — a failed satellite can be replaces by a similar one without the need
to abort the entire mission. Finally, relatively small and simple satellites with
specific functionalities are faster to develop and easier to maintain.

A few European missions have already exercised formation flying on low
earth orbit, e.g., PRISMA [15] and TANDEM [3] missions. However, due to high
gravity on lower orbits, it is unfeasible to establish precise relative positioning
of satellites in the formation and therefore to perform sophisticated scientific
observations. To overcome these limitations, the European Space Agency is cur-
rently developing PROBA-3 [4,14] mission (to be launched in 2017) that should
demonstrate autonomous formation flying on the highly elliptical orbits. In this
paper, we use the currently adopted configuration of the PROBA-3 mission.

The purpose of the PROBA-3 mission is to obtain the pictures of the inner
solar corona. The mission consists of two satellites — the Coronagraph Space-
craft and Occulter Spacecraft. In simple non-technical terms, the Coronagraph
is responsible for detecting sun position and taking pictures, while the Occulter
should provide the shadow. To actually take the pictures, the spacecraft should
maintain close proximity to each other (with relative distance from 25 to 250 m),
which is achievable only in the low gravity region of the elliptical orbit.

Traditionally, in the space sector, the global system behaviour is specified in
terms of modes — the mutually exclusive sets of system behaviour [12] — defined
according to the mission and system requirements. The PROBA-3 mission has
the following modes: STACK, MANUAL, OPERATIONAL and PARKING. The
scheme of possible mode transitions is given in Fig. 1. The STACK mode is the
initial mode where spacecraft are not yet separated. MANUAL is the safest
mode that used for formation commissioning and during error recovery. OPER-
ATTIONAL and PARKING are “active” modes, at which the formation flying is
performed. They are highly autonomous modes.

sTack (1
MANUAL

OPERATIONALv<—>v PARKING

Fig. 1. System modes
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The mode transition scheme given in Fig.1 looks fairly simple. However,
system autonomy and unreliability of the communication channel posses a sig-
nificant challenge to coordination of the mode transitions. In the next section,
we will investigate this problem in detail and derive the requirements guaran-
teeing correct implementation of the coordination.

3 Coordinated Mode Transitions in Autonomous Systems

Mode-rich distributed systems typically have the hierarchical architecture [9].
There is a dedicated component, called a Leader, that triggers mode transitions
by broadcasting the id of the next target mode to all components in the system.
The other spacecraft(s) is called the Follower. Essentially, after receiving the
mode transition command from the Leader, the Follower performs the actions
required to execute mode transition.

To make the decisions about mode transitions, the Leader should have the
knowledge of the global state, i.e., its own state, the state of the Follower and
the environment. In the case of the centralised or ground-coordinated distributed
systems, such knowledge is always available. However, in case of the autonomous
systems, due to the communication failure, the Leader might lack the knowl-
edge of the Follower state. The active autonomous modes OPERATIONAL and
PARKING require the maintenance of the close spacecraft proximity. Therefore,
in the off-nominal situations of communication failure or relative position failure,
the Leader has an incomplete knowledge of the global state and cannot make
safe decision about the active mode transition, i.e., collision avoidance cannot
be guaranteed under such uncertainty. This leads us to the first requirement
imposed on the mode logic:

R1: The Leader can trigger transition to OPERATIONAL and PARKING
modes only in the nominal situations.

To guarantee safety, in the off-nominal situations, we should merely take
care of avoiding a collision, i.e., put the spacecraft at the safe distance from each
other. In other words:

R2: In case of relative positioning failure, the Leader should trigger the MAN-
UAL mode.

R3: In case of communication failure, the Leader and the Follower should
enter the MANUAL mode. This is a self-triggered mode transition, i.e., the
Leader and the Follower perform it independently upon detection of failure.

The requirement R3 leads to an important safety design constraint R4:

R4. Communication failures should always be detectable within the predefined
time bound.
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Now we have to address two problems: how to restore the coordination, and
how to ensure that the communication failures are always detected.

Essentially, in the autonomous flight formation, failures result in the loss of
the situation awareness that should be regained to restore coordination. Since the
formation has the elliptical trajectory, each round includes the perigee phase (low
gravity region of the orbit), where GPS measurement and mission ground control
are available. The intervention of the ground control is required to restore the
coordination between the spacecraft. Since there are no other means to restore
the coordination, failure to restore coordination by the ground control implies
failure of the entire mission. This observation implies our next requirement:

R5. In the MANUAL mode in the perigee phase the ground control should
control both the Leader and the Follower to restore coordination between
them. Upon successful completion of this, the control is passed to the Leader
and a transition to an active mode PARKING or OPERATIONAL becomes
enabled.

Communication is a critical aspect in ensuring coordination and safety of the
autonomous formation flying. The spacecraft communicate with each other to
coordinate not only mode transitions but also orbital manoeuvring. The orbital
manoeuvring is structured by four phases: the perigee phase, the apogee phase
(high gravity region of the orbit) and the intermediate preparation phases. The
phase transitions are performed according to the predefined logic.

According to R4, we should ensure that communication failures can be
promptly detected by each spacecraft. Eventual but slow detection might cause
a collision. This rules out the asynchronous communication and implies the fol-
lowing requirements:

R6: Communication should be periodic.

R7. Communication timeouts are set for sending and receiving messages
during each communication period. No communication during the timeout is
treated (by a spacecraft) as a failure of the communication link.

The analysis presented above shows that ensuring correctness of coordinated
mode transitions in autonomous formation flying is a challenging engineering
task. To approach it in a systematic rigorous way, in the next section we present
our modelling framework — Event-B.

4 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-
construction development paradigm and formal verification by theorem proving.
In Event-B, a system model is specified using the notion of an abstract state
machine [1]. An abstract state machine encapsulates the model state, repre-
sented as a collection of variables, and defines operations on the state, i.e., it
describes the dynamic behaviour of a modelled system. The important system



34 A. Tarasyuk et al.

properties to be preserved are defined as model invariants. A machine usually
has the accompanying component, called context. A context may include user-
defined carrier sets, constants and their properties (defined as model axioms).

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e = any a where G, then R, end,

where e is the event’s name, a is the list of local variables, and (the event guard)
G, is a predicate over the model state. The body of an event is defined by
a multiple (possibly non deterministic) assignment to the system variables. In
Event-B, this assignment is semantically defined as the next-state relation R..
The event guard defines the conditions under which the event is enabled, i.e.,
its body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification thatnondeterminis-
tically models the most essential functional system behaviour. In a sequence of
refinement steps, we gradually reduce non determinism and introduce detailed
design decisions. In particular, we can add new events, refine old events as well
as replace abstract variables by their concrete counterparts.

The consistency of Event-B models — verification of model well-formedness,
invariant preservation as well as correctness of refinement steps — is demonstrated
by discharging the relevant proof obligations. The Rodin platform [17] provides
tool support for modelling and verification. In particular, it automatically gen-
erates all required proof obligations and attempts to discharge them. When the
proof obligations cannot be discharged automatically, the user can attempt to
prove them interactively using a collection of available proof tactics. Moreover, a
user can also rely on verification by model checking supported by ProB plug-in.

Recently the Event-B language and the tool support have been extended
with a possibility to define modules. Modules are components containing groups
of callable atomic operations [8,16]. Modules can have their own (external and
internal) state and invariant properties. An important characteristic of modules
is that they can be developed separately and, when needed, composed with the
main system. Since decomposition is a special kind of refinement, such a model
transformation is also a correctness-preserving step that has to be proven.

A module description consists of two parts — module interface and module
body. A module interface is a separate Event-B component that consists of the
external module variables, the module invariants, and a collection of module
operations, characterised by their pre- and postconditions. In addition, a module
interface may contain a group of standard Event-B events. These events model
autonomous module thread of control, expressed in terms of their effect on the
external module variables. In other words, they describe how the module external
variables may change between operation calls. A formal development of a module
starts with the deciding on its interface. Once an interface is defined, it cannot
be changed in any manner during the development. This ensures that a module
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body may be constructed independently from a system model that relies on
the module interface. A module body is an Event-B machine. It implements the
interface by providing a concrete behaviour for each of the interface operations.
To guarantee that each interface operation has a suitable implementation, a set
of additional proof obligations is generated.

A general strategy of a distributed system development in Event-B is to
start from an abstract centralised specification and incrementally augment it
with design-specific details. When a suitable level of details is achieved, certain
events of the specification are replaced by the calls of the interface operations.
The variables become distributed across the modules. As a result, a monolithic
specification is decomposed into the separate modules and communication mech-
anisms are introduced explicitly. In the next section, we demonstrate how to use
such a general refinement strategy to model the mode logic of the autonomous
flight formation.

5 Modelling Satellite Flight Formation in Event-B

In this section, we outline the overall Event-B development of formation flying
and discuss the most challenging aspects. The full Event-B development can be
found in [20].

Abstract Specification. The outline of the initial model FFS_abs is shown in
Fig.2. It abstractly represents the Leader’s mode transitions as well as failure
occurrence and handling. The variable cur_mode_leader € MODES represents
the current mode of the leader spacecraft, while the variable prev_mode_leader €
MODES stores its previous mode. Here the set MODES = {STACK, MANUAL,
OPERATIONAL, PARKING} contains all system modes that can be entered
by the satellites.

The events StackSeparation, ModeTransitionManual and ModeTransition-
Autonomous model all possible mode transitions (i.e., entering a target mode) of
the Leader. The satellite might also maintain the current mode as modelled by
the event RemainCurrentMode. This event will be further refined by the events
modelling the manoeuvres within the currently active mode, i.e., by the phase
transitions. The mode transition rules (defined in Fig.1) are specified as the
model invariant properties, where the auxiliary function nextMode defines all
possible successor modes for any system mode.

The failure detection is modelled by the event FormationFailureDetection that
assigns value TRUE to the flag failure. This will enable the event ModeTransition-
Manual, i.e., according to the requirements R2 and RS trigger transition to the
Manual mode. In this paper, we keep an abstract representation of the failure
detection and recovery procedures.

First Refinement: Modelling Follower Behaviour. Our first refinement
step introduces the similar data structures and events for the Follower spacecraft.
At this stage, we do not constrain mode transitions, i.e., there is no coordination
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Machine FFS_abs

Variables cur_mode_leader, prev_mode_leader, failure

Invariants cur_mode_leader € MODES A prev_mode_leader € MODES A failure € BOOL A
cur_mode_leader # STACK = cur_mode_leader € nextMode(prev_mode_leader) . ..

Events

StackSeparation ... // spacecraft separation

ModeTransitionManual ... // transition to MANUAL mode

ModeTransitionAutonomous = // autonomous mode transition
any mode

when cur_mode_leader € {OPERATIONAL, PARKING} A
mode € nextMode(cur_mode_leader) N failure = TRUE = mode = MANUAL

then cur_mode_leader, prev_mode_leader := mode, cur_mode_leader end
RemainCurrentMode ... // spacecraft remains in the current mode
FormationFailureDetection = // failure detection

when cur_mode_leader € {OPERATIONAL, PARKING} A failure = FALSE

then failure:= TRUE end
FormationFailureHandling ... // failure handling in MANUAL mode

Fig. 2. Satellite flight formation: initial model

between the satellites. It will be introduced upon modelling the inter-satellite
communication link in the next refinement.

Modelling Mode-level Communication. Modelling and verification of the
communication mechanism is the central part of our development. In our second
refinement step, we focus on modelling the mode-level communication — the
high level communication between satellites — used to coordinate the transitions
between the modes of the formation.

To trigger mode transitions in the nominal conditions (according to R1) the
Leader sends the unique id of the target mode to the Follower via the inter-
satellite communication link. Upon delivery of the message, the Follower per-
forms transition into the requested mode and sends the acknowledgement to the
Leader. Upon receiving the acknowledgement, the Leader also makes the transi-
tion to the new target mode. Essentially, our communication is a simple version
of the sliding window protocol with the one-place buffers. However, our com-
munication is two-layered — it is split into the higher-level mode communication
and the lower-level phase communication — which makes proof-based verification
of correctness challenging.

According to the R6 and R7 the communication between the satellites is
periodic and has the predefined maximal delay. This requirements allow us to
fulfil the R4, i.e., ensure detection of failures. In our models, we could have rep-
resented the communication failure as a non-deterministic change of the inter-
satellite link status as it is typically done in Event-B modelling. However, we
have chosen another approach and decided to model the link failure as an explicit
notification that is delivered to both satellites. This approach closely resembles
the timeout mechanism used to detect communication failures. Moreover, it facil-
itates specification of invariant properties of the inter-satellite communication.

To model communication according to the defined requirements, we introduce
the models of one-place incoming and outgoing buffers for each of the satellites:

— modeQutgoing: leader’s outgoing buffer for target mode
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LeaveOperationalMode =
any mode_id
where cur_mode_leader = OPERATIONAL A cur-mode_follower = OPERATIONAL A
modeOutgoing = & N modeDeliveryReport = &
mode_id € {PK, MAN} A failure = FALSE A ...
then modeOutgoing := {mode_id} end
ModeCommunicationLink =
any msg
where modeOutgoing # & A msg € modeOutgoing U {LOST}
then modeOutgoing, modeDeliveryReport, modelncoming := &, {msg}, {msg} end
EnterParkingModeleader =
refines ModeTransitionManualLeader, ModeTransitionAutonomousLeader
when (cur_mode_leader = MANUAL V cur_-mode_leader = OPERATIONAL) A
modeDeliveryReport = {PK}
with mode = PARKING
then cur_mode_leader, prev_mode_leader := PARKING, cur_mode_leader
modeDeliveryReport := @ end
EnterParkingModeFollower =
refines ModeTransitionManualFollower, ModeTransitionAutonomousFollower
when (cur_mode_follower = MANUAL V cur_mode_follower = OPERATIONAL) A
modeIncoming = {PK}
with mode = PARKING
then cur-mode_follower, prev_mode-follower := PARKING, cur_-mode_follower
modelncoming := & end

Fig. 3. Flight formation: second refinement

— modelncoming: follower’s incoming buffer for target mode
— modeDeliveryReport: leader’s acknowledgment delivery buffer

To demonstrate communication during the mode transition, in Fig.3 we
show several events representing the transition to the PARKING mode. The
event LeaveOperationalMode models initiating a mode transition by the Leader
while being in the OPERATIONAL mode. In this case, two transitions are
enabled — either to the PARKING or to the MANUAL mode. At this
stage the choice between them is modelled nondeterministically (mode_id €
{PK,MAN}). The mode-level communication link is modelled by the event
ModeCommunicationLink that can either deliver the issued instructions, i.e., the
next mode id stored in the modeOutgoing buffer, or “deliver” the LOST mes-
sage, that abstractly models detection of a communication failure by the time-
out. Finally, two events EnterParkingModeleader and EnterParkingModeFollower
represent transition into the PARKING mode by the leading and the follow-
ing satellites correspondingly. Transitions to other modes are modelled in the
similar way.

In case a satellite receives LOST message, it independently initiates the tran-
sition into the MANUAL mode (according to the requirement R3). The events
modelling off-nominal conditions can be found in the full development [20].

Note that at this stage we still rely on the availability of the global knowl-
edge, i.e., we are not yet ready to decompose the system into a distributed
model. Indeed, to guarantee correctness of the coordination, we explicitly allow
the Leader to assess the current mode of the Follower before it schedules the next
mode transition (see the second guard of LeaveOperationalMode). This modelling
trick helps us to postulate important properties of the coordination. In the later
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refinement step, we abandon this abstraction and refine the global state repre-
sentation into the model of a distributed state space. The Leader will rely solely
on the communication to assess state of the Follower.

Formal development in Event-B allows us to formulate and verify a num-
ber of the mode consistency properties. They are defined and proved as system
invariants. For example,

cur_mode_leader # cur_mode_follower =
cur_mode_leader = prev_-mode_follower V
cur_mode_follower = prev_mode_leader (1)

modeQutgoing # & = cur_mode_leader = cur_mode_follower (2)

Property (1) stipulates that the satellites can be at most one mode transition
ahead (or behind) each other. Moreover, the divergence can be only in the case,
when the satellites are actually performing the transition to the next mode (one
satellite has already made a transition and another is still in process of doing
it). In case, when the Leader’s outgoing buffer is not empty (i.e., it is ready to
initiate a mode transition), the satellites are in the same mode (as defined by
property (2)).

We can also formally define the connection between the formation modes
and the state of the inter-satellite link, i.e., the values of the satellite buffers as
shown by properties (3) and (4):

modelncoming = {PK} A cur_mode_leader = PARKING =
prev_mode_leader = cur_mode_follower
3)
modelncoming = {PK} A cur_mode_leader # PARKING =

cur_mode_leader = cur_mode_follower (4)

In the similar way, properties (5) and (6) below describe relationships between
the Leader’s acknowledgement buffer and the current Follower mode.

modeDeliveryReport = {PK} A cur_mode_follower = PARKING =
prev_mode_follower = cur_mode_leader
()
modeDeliveryReport = {PK} A cur_mode_follower # PARKING =
cur_mode_leader = cur_mode_follower (6)
failure = TRUE A modeOutgoing # @ = modeOutgoing = {MAN} (7)

Property (7) describes dependency between the communication failure and the
leader’s outgoing buffer. In case, when a failure has been detected, the Leader
can only command transition to the MANUAL mode. The properties describing
dependency between the communication failure and other buffers are formulated
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in the similar way. In total, we have formulated and proved more than 40 invariant
properties of mode-level communication.

Modelling Phase-level Communication. In the OPERATIONAL and
PARKING modes the designed orbital routine for the nominal operation con-
sists of four different phases. The phase-level communication is used to coor-
dinate the transitions between the phases. Our third refinement step described
in [20] focuses on modelling it. The phase-level communication is more com-
plex than the mode-level communication. To ensure synchronisation and safety
of orbital manoeuvring, not only the Follower but also the Leader sends the
acknowledgements of the phase-transition message delivery. The modelling style
is similar to the previous step. Modelling the fine-grained phase-level communi-
cation resulted in a complex specification that contains a hierarchy of properties
ensuring consistency not only at level of mode-logic but also at the level of
phases. At this refinement step we formulated and proved more than 70 logical
properties described the phase-level communication.

Modelling Communication With the Ground. As described in Sect.3
(requirement R5), the ground control should intervene when the spacecraft have
lost the coordination. The ground control generates and sends telecommands to
the leading satellite. A telecommand might consist of the next target mode and
a number of orbits to be performed (if the target mode is OPERATIONAL).

Decomposition. As a result of the previous refinement steps, we have arrived at
a detailed centralised model of the flight formation system. In the final refinement
step, we employ decomposition approach provided by the Modularisation plug-
in and derive a distributed architecture of the flight formation mode logic. We
decompose centralised model into two independent components representing the
satellites and the communication link. A graphical representation of the system
after decomposition refinement is given in Fig.4. The previous, more abstract
model is refined by a machine CommLink and two modules for satellites — Leader
and Follower. To enable two-way communication between the spacecraft, the
generic interfaces of the modules Leader and Follower describe a collection of
externally callable operations. The machine CommLink, that models all types of
communication, invokes these operations in the bodies of its events.

The machine CommLink imports two module interfaces — Leader and Follower.
The events ModeCommunicationLink, LeaderFollowerPhaseComm, FollowerLeader-
PhaseComm, ManualTC and FailureTC are refined by the communication link
events. The rest of the events (e.g., mode transitions) are now becoming a part
of the autonomous processes of the Leader and Follower modules. Thus, the events
modelling the behaviour of the Leader satellite are now refined by the Leader’s
interface events, while the events related to the follower satellite are refined by
the corresponding events of the Follower’s interface. Similarly, the variables of
abstract model are now refined by the variables of Leader and Follower modules.

Discussion. The presented development focuses on studying the coordination
aspect of mode transitions. The further refinement steps can be performed to



40 A. Tarasyuk et al.
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Fig. 4. The decomposition refinement

model the internal architecture and detailed behaviour of each spacecraft. The
properties of coordination were formulated as model invariants that are related
to the high-level requirements informally defined in Sect. 3.

To verify correctness of the models we discharged more than 2200 proof oblig-
ations. Around 86 % of them have been proved automatically by the Rodin plat-
form and the rest have been proved manually in the Rodin interactive proving
environment. Most of the manual proofs were related to proving the invariants
describing the mode/phase consistency properties as well as logical connections
between the formation modes and the state of the inter-satellite link. However,
some of the manually proved POs were identical (as some mode/phase tran-
sitions are identical up to the variable/constant names) and the corresponding
proofs were reused. Moreover, a significant amount of manually proved POs were
promptly discharged by calling a single external prover (e.g., predicate prover or
SMT-prover). Thus, actual amount of manually proved POs was less that 10%
of the total amount, which is a very good result for such a complex model.

The considered formation of two satellites is inspired by a PROBA-3 mission.
However, the created model of inter-satellite communication is rather generic and
can be used to model formations with similar architecture. For instance, it can be
adopted for modelling formations with an arbitrary number of follower satellites
by using support for decomposition into an an indexed collection of modules.
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6 Conclusion and Related Work

In this paper, we have presented a formal development and verification of
autonomous formation flying in Event-B. We have proposed a novel approach
to modelling unreliable asynchronous communication in Event-B. We formally
define requirements that ensure coordinated mode transitions of autonomic flight
formation. The Rodin platform was used to automate modelling and verification
efforts. The framework has demonstrated a good scalability and provided us with
a suitable basis for designing such a complex distributed system. We believe that
the following aspects were critical for the success of the development. The first
aspect is support for refinement and decomposition. It allowed us to start from a
centralised succinct system model and derive complex and tangled communica-
tion mechanism gradually in a correctness preserving way. The second aspect, is a
support for highly iterative development provided by the Rodin platform. Proofs
provided us with an immediate feedback on our models and helped to spot many
intricate interdependencies between modes, phases and effects of faults. Finally,
our experience has also shown that it is essential to combine proving with model
animation and model checking [11] because they help to validate the model and
prevent introducing deadlocks in intertwined communication. For instance, we
used ProB model checker to validate invariants, i.e. check that requirements are
correctly represented by the logical formulae.

In our modelling we focused on verifying consistency of mode logic in pres-
ence of satellite and communication failures. The autonomy of satellites required
complex handshaking schemes to ensure proper coordination between them. As
a future work, it would be interesting to extend the proposed approach to mod-
elling multiple satellite formation and explore the properties of autonomic coor-
dination in such complex multi-party environment.

Event-B follows top-down refinement strategy that allowed us to formulate
system-level properties defining mode consistency conditions. An alternative
approach is to rely on high-level programming paradigms to facilitate the design
of the decentralized control. In particular, it would be interesting to compare
the approach proposed in this paper, with the actor-based design approach [2].

In our previous work [10] we have studied development of centralised mode-
rich systems. We have demonstrated how to derive a specification of an Attitude
and Orbit Control System — a generic system of satellites by refinement in Event-
B. However, due to centralised nature of the system, the model was much simpler
with smaller set of properties. The development presented in current paper,
is much more complex. The resultant model contains a large set of invariants
describing in details the relationships not only between modes and phases but
also the effect of failures at different stages of communication.

The application of Event-B formalism to describe safety layered architec-
tures for Unmanned Aerial Vehicle (UAV) control system has been presented
in [5]. The authors unfold the system architecture by a refinement, while in our
work we rely on refinement technique to model and derive complex and tangled
communication mechanism for mode transitions.
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Formal validation of the mode logic and, in particular, fault tolerance mech-
anisms of satellite software has been studied by Rugina et al. [19]. They have
investigated different combinations of simulation and model checking. The sim-
ilar approach that relies on collaborative modelling and simulation was also
used to validate the spacecraft’s functional behaviour and command/control
FDIR [18]. Though the authors combine model checking with simulation while
we combine proofs and model checking, they draw the similar conclusions: a com-
bination of different techniques as well as reliance on abstraction are required to
model such complex systems as satellites.

The work [7] reports on modelling and analysis effort of a satellite platform
using the COMPASS toolset that is based solely on model checking. The work
aims at combining different safety analysis techniques and modelling to verify
correctness, safety and dependability of a single satellite. A quantitative evalua-
tion of dependability of navigation of satellite systems using probabilistic model
checking is presented in [13]. In our work, we aimed at studying logical aspects
of the impact of failures on system behaviour.

Webster et al. [22] adopted the agent concept to verify decision-making
aspects of Autonomous Unmanned Aircraft control. Specifically, they choose the
particular Rules of the Air and verified that the behaviour of the system does not
violate them. Verification is performed using agent model checker AJPF. This
is an interesting approach for verification and can be seen as complementing
our work. In our approach, formal development helps not only verify but also
identify the properties of the system.
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