
ISA2R: Improving Software Attack and Analysis
Resilience via Compiler-Level Software Diversity

Rafael Fedler, Sebastian Banescu (B), and Alexander Pretschner

Technische Universität München, Boltzmannstr. 3, 85748
Garching Bei München, Germany

{fedler,banescu,pretschn}@cs.tum.edu

Abstract. The current IT landscape is characterized by software mono-
culture: All installations of one program version are identical. This leads
to a huge return of investment for attackers who can develop a single
attack once to compromise millions of hosts worldwide. Software diver-
sity has been proposed as an alternative to software monoculture. In this
paper we present a collection of diversification transformations called
ISA2R, developed for the low-level virtual machine (LLVM). By diversi-
fying the properties crucial to successful exploitation of a vulnerability,
we render exploits that work on one installation of a software ineffec-
tive against others. Through this we enable developers to add protective
measures automatically during compilation. In contrast to similar exist-
ing tools, ISA2R provides protection against a wider range of attacks
and is applicable to all programming languages supported by LLVM.

Keywords: Software diversity · Software protection · Code obfuscation

1 Introduction

Security can be considered a matter of economics: If the effort or investment
required to develop and deploy an attack surpass its promised yields, the attack
will not be carried out [11], which holds for all attackers that act rationally in
the economical sense. This notion is especially useful as the modern attacker
model is increasingly characterized by financial motivation, e.g. monetization of
compromised hosts’ resources, or indirect economical and political intentions.

Nowadays, malicious adversaries can reverse engineer a program and develop
an exploit or patch for it once, then successfully launch it against potentially
hundreds of millions of systems, e.g. in the case of widespread vulnerable target
software such as browsers, Adobe Reader and Flash Player, or Oracle’s Java
Runtime Environment, which can be found on almost all private and many
commercial computer systems. Thus, by only developing one exploit, millions
of systems can be compromised by the attacker. This leads to a big return of
investment for many attackers, e.g. exploit developers, software crackers, mal-
ware authors and buyers [1]. If the incentive for attack development is lowered,
many attacks might not be developed in the first place.
c© Springer International Publishing Switzerland 2015
F. Koornneef and C. van Gulijk (Eds.): SAFECOMP 2015, LNCS 9337, pp. 362–371, 2015.
DOI: 10.1007/978-3-319-24255-2 26



ISA2R: Improving Software Attack and Analysis Resilience 363

Contributions: In this paper, we present ISA2R, short for Improving Soft-
ware Attack and Analysis Resilience, a collection of diversification transformations
for the LLVM compiler infrastructure. ISA2R currently includes 12 transforma-
tions diversifying both the process memory layout and executable code of program
being compiled. ISA2R generates different program code in each compilation run,
which has the same input-output behavior as its input program code. The output
programs automatically gain protection against exploits with different aims than
availability (e.g., code execution). After transformation, an exploit developed to
work on one instance of this program will fail with high likelihood and at most
cause an availability issue by making other instances crash. However, the exploit
does not achieve its original goal of compromising confidentiality or integrity of
the program, e.g. injected code execution. Unlike previous similar work, ISA2R
offers protection against a broad range of attacks and supports all programming
languages which have an LLVM front-end: C/C++, Java bytecode, C#, Python,
Ruby, Objective-C, Go, Swift, Fortran, ActionScript, etc.

This paper is organized as follows: Sect. 2, presents related work. Section 3
describes the transformations offered by ISA2R. Section 4 covers the evaluation
of ISA2R. Conclusions and future work ideas are presented in Sect. 5.

2 Related Work

Software diversity as a concept to increase fault tolerance has been an active
research area since the 1970s [10]. Software diversity for security purposes, how-
ever, has gained momentum only rather recently [2,5]. Obfuscator-LLVM 1 is
a tool similar to ISA2R. However, Obfuscator-LLVM ’s 3 transformations aim
to protect intellectual property (IP) against manual reverse engineering, while
ISA2R offers 12 transformations hampering automatic reverse engineering, a
pre-requisite for developing effective buffer overflow and code patching exploits.
Nevertheless, the transformations of these two tools can be merged into one tool
since they both operate on LLVM code. Sandmark2 and Tigress3 are two obfus-
cation and diversification tools. They offer transformations similar to those of
ISA2R. However, they are applicable to Java, respectively C source code whereas
ISA2R supports all languages with an LLVM front-end. These tools that lever-
age software diversity concepts in order to increase security have the following
drawbacks: Some are limited to specific program languages, while others are lim-
ited with regard to attacks they defend against (e.g. reverse engineering, buffer
overflow exploits). With ISA2R, we provide one single tool (for all languages
supported by LLVM), which offers protection against most attacks aiming to
compromise a large user-base of an application by reusing the same attack, and
which can be extended to satisfy a wide range of security-enhancing transforma-
tion needs.

1
https://github.com/obfuscator-llvm/obfuscator.

2
http://sandmark.cs.arizona.edu/.

3
http://tigress.cs.arizona.edu/.

https://github.com/obfuscator-llvm/obfuscator
http://sandmark.cs.arizona.edu/
http://tigress.cs.arizona.edu/


364 R. Fedler et al.

3 Implemented Transformations

This section presents all ISA2R transformations, which provide protection
against each attack category from the taxonomy of Larsen et al. [9], i.e.: informa-
tion leaks, reverse engineering, memory corruption, code injection, code reuse,
program tampering. We make ISA2R available to anyone from academia and
industry upon request. Most can be controlled by a set of parameters, which
we do not describe in detail for the sake of brevity, however, they are described
in ISA2R’s user manual. One of these parameters is called the transformation
probability and specifies the likelihood that a potential target function will be
transformed.

Instruction Reordering : By determining the happened-before relation on code
and thus the temporal dependencies of instructions, one also determines which
statements are independent of each other and can thus be randomized in regards
to their execution order. This transformation was created to help against code
reuse attacks, as it diversifies the location of instructions relative to the base
address of the program similar to Instruction Location Randomization (ILR) [6].

Insertion of Loops with Randomized Iteration Count : This transformation
inserts loops into conditional branches (if/else statements as well as loop
entry/exit conditions). These loops calculate the Collatz series, which, until it
converges, greatly varies in the number of iterations until convergence depending
on its input character. This transformation is intended to automatically counter
timing and, to some extent, power side channel attacks [7,8].

Opaque Predicate Insertion: Opaque predicates are logical predicates whose
evaluation is known a priori to the party performing the transformation, but
whose evaluation is hard to perform statically [4]. In some cases, as in well imple-
mented pointer arithmetic-based opaque predicates, evaluation may be close to
practically infeasible. They can be used to obscure control flow. Often, opaque
predicates are used to strengthen other transformations.

Insertion of Bogus Code: This transformation inserts random instructions
which do not interfere with the original instructions of a method. It is protected
against static analysis using opaque predicates in the condition of if/else-
statements that either lead to correct instructions or to incorrect ones. This
transformation obfuscates the logic of a method, which make reverse engineering
harder. However, the added instructions also influence the location of pre-existing
program instructions, having a positive effect against code reuse attacks.

Stack Frame Size Diversification: This transformation adds an odd random
number of bytes to each stack frame of a binary, being a more fine-grained version
of ASLR. This makes buffer overflow exploits applicable to only a fraction of
binary instances of a program. Therefore, if the attacker uses the same code
injection exploit code that writes a fixed number of bytes to the vulnerable
buffer on a diversified program instance, it overwrites the stack pointer (ESP)
and the return address (EIP) on the stack with values which will very likely lead
to a crash, not achieving the attacker’s goal of capturing the control flow of the
program. This happens because the offset of ESP and EIP will vary for each
diversified binary instance.



ISA2R: Improving Software Attack and Analysis Resilience 365

Stack Variable Order Randomization: The order of the variables on the stack
are randomized, in order to diversify the distance from a vulnerable buffer to
important target values such as the copies of ESP and EIP on the stack. This
decreases the applicability of a buffer overflow exploit which assumes a fixed
variable layout. Additionally, this transformations places all buffers/arrays above
all non-buffer variables on the stack, to prevent pointers or variables (used in
branch-condition evaluation), from being overwritten if a buffer overflow occurs.

Addition of Bogus Method Arguments: This transformation inserts random
arguments in method definitions, removing part of the logical abstractions of
the program. The bogus arguments are used by bogus code added to the corre-
sponding method and are finally secured with opaque predicates which make it
seem as though the bogus argument actually contributes to the return value.

Method Merging : This transformation breaks the abstraction created by
developers (i.e. methods) by merging two unconnected methods into one. The
only requirement is that the return type of the two methods is identical. An
additional selection parameter is appended to the argument list and all call sites
are adjusted accordingly. This makes reverse engineering harder, but also diver-
sifies the location of instructions relative to the base address of the program,
breaking certain code reuse exploits.

Shuffling of Method Arguments: This transformation randomly permutes the
arguments of a method. It is very useful in combination with the method merging
transformation, as it always appends an additional indicator variable to deter-
mine which of the contained methods should be executed in the merged version.

Method Cloning : To confuse an adversary, methods are cloned and some –
but not all – call sites are adjusted to call the clone. It is advisable to run
transformations which diversify the code in order to protect the clone from being
identified as a clone of another method.

Randomization of Symbolic Method Names: Symbolic method names pro-
vide a reverse engineer with useful information about the functionality of a
method. They must sometimes be retained in programs and often so in libraries
for linking. This transformation assigns random names to methods and provides
a textual mapping to assist in automatic name adjustment.

Proceduralization of Static Data: This transformation removes static buffers
in a program, which are never written to. For each of them it creates (1) a key and
(2) a keyed generator function. At runtime, before each access to such a buffer,
the generator function using the correct key recreates the buffer dynamically.
Generator function and key can be protected using other transformations such as
bogus code insertion. This transformation protects static data such as passwords,
host names, etc. from extraction through static analysis attacks – in order to see
such data, the adversary must perform dynamic analysis.

4 Preliminary Evaluation

In order to evaluate the ISA2R collection of transformations described in Sect. 3,
we want to answer two questions: (1) Are ISA2R’s transformations practical
to use, or is the impact on binary file size, runtime performance, or compila-
tion process duration too costly to justify the benefits (if any)? and (2) Are



366 R. Fedler et al.

ISA2R’s transformations effective at achieving the formulated goal of diversify-
ing a program such that attacks are not applicable on all instances of that pro-
gram due to the introduced diversity? We performed a preliminary evaluation
to start answering these questions. This includes an efficiency and effectiveness
evaluation, detailed in the following. As test compilation targets we used the
well-known ls utility from the GNU core utilities (version 8.23) and our own
implementation of the Sieve of Eratosthenes, as they cover very different code
profiles. ls was chosen as a non-trivial application (over 3000 lines of C code),
which is I/O- and user-interaction centric, with lots of branching and special case
treatment. Though lacking a GUI, it is comparable to end-user productivity and
web software. As such, we used ls to determine compilation time and binary file
size overhead. The Sieve of Eratosthenes was selected as our implementation is
CPU intensive and heavy on memory operations without any blocking or other
interruptions. It represents software with high CPU performance needs and thus
was used to measure runtime overhead of ISA2R’s transformations.

4.1 Efficiency

Compilation Time: When compared to GCC, the ISA2R transformations each
added about 20 to 30 % compilation time overhead on average.Comparing to
a pure LLVM build, which is significantly faster than a pure GCC build, the
median relative overhead was 16 % higher. The overhead for all single trans-
formations can be found in Table 1. Significant penalties occur when chaining
multiple transformations, as the effect stacks. If all transformations are per-
formed, compilation time increases by more than 200 %. We assume, however,
that optimizing the implementation of ISA2R can lead to a 50 % reduction of
the compilation overhead through caching results of currently redundant calls.

Table 1. Median (n = 500) increase in build time, binary size by single transformations

ls build-time ls binary file size

relative increase relative increase

Transformation GCC LLVM O0 O1 O2 O3 Os

AddBogusArguments 30.7 % 48.4 % 0.27 % 0.27 % 0.02 % 0.25 % 0.02 %

CloneFunctions 33.3 % 52.6 % 2.75 % 2.49 % 2.06 % 2.05 % 1.56 %

InsertBogusCode 20.5 % 32.4 % 0.27 % 0.00 % 0.25 % 0.25 % 0.02 %

InsertRandomLoops 81.0 % 127.9 % 7.49 % 3.76 % 4.54 % 4.82 % 2.40 %

MergeMethods 29.7 % 46.8 % 2.00 % 0.60 % 0.30 % 0.03 % 0.91 %

OpaquePredicateGenerator 32.8 % 51.8 % 0.80 % 0.00 % 0.25 % 0.02 % 0.02 %

ReorderInstructions 23.3 % 36.8 % 0.00 % 0.00 % 0.25 % 0.02 % 0.02 %

ScrambleFunctionNames 16.7 % 26.3 % 0.13 % 0.41 % 0.31 % 0.31 % 0.06 %

ShuffleArguments 25.0 % 39.5 % 0.00 % 0.28 % 0.37 % 0.65 % 0.30 %

StackOrderDiversify 17.3 % 27.4 % 0.00 % 0.00 % 0.25 % 0.02 % 0.02 %

StackSizeDiversify 17.2 % 27.1 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

StaticToProceduralData 153.0 % 241.6 % 17.87 % 7.72 % 11.52 % 11.55 % 11.84 %



ISA2R: Improving Software Attack and Analysis Resilience 367

Binary File Size Overhead : Most transformations did not add significantly
to the size of the diversified binary, as can be seen in the right part of Table 1,
which presents the median value taken over 500 repeated measurements for each
of the follow 5 different optimization levels of LLVM: O0, O1, O2, O3 and Os.
Values range from 0 % to a maximum of 17 %, with the average below 5 %.

Runtime Overhead : As stated above, we used an implementation of the Sieve
of Eratosthenes which is heavy on memory and CPU processing to measure
runtime overhead. The maximum runtime overhead measured was 5 %, except
for recursive calls which suffered from a 116 % increase in runtime when the
transformation to remove static data and have it recreated dynamically at run-
time is applied. All in all, however, runtime penalties where usually below 1 %,
except for InsertRandomLoops and StaticToProceduralData, which are affected
by recursion in the sieve of Eratosthenes.

4.2 Effectiveness

To demonstrate the effectiveness of ISA2R we chose to design one scenario and cor-
responding vulnerable program from each attack category in [9]. Figure 1 provides
a condensed and simplified version of these programs combined into one. If the user
executing this program is the administrator (line 34), then top secret information
is printed (lines 35-36). Otherwise, the program takes an input argument which is
copied into a statically allocated buffer called key (line 32), which is passed as an
argument to an ad-hoc string hashing function called hs() (lines 14-20), which in
turn makes calls to an integer hashing function called h (lines 1-12). If the hash of
the input argument is equal to a hard-coded constant (line 37) then secret informa-
tion is displayed to the authenticated user (lines 38-39). To enable a ROP attack
[9] the program uses a function that prints a new line in a strange way (lines 21-
26). We use this program as a running example for all attack categories presented
below, except information leaks described next.

Fig. 1. Running example illustrating a vulnerable C program



368 R. Fedler et al.

Fig. 2. Square and multiply

Information Leaks: To assess effectiveness
against information leaks, we chose an RSA imple-
mentation using a left-to-right square-and-multiply
Montgomery multiplication for exponentiation
(pseudo-code in Fig. 2) as our transformation tar-
get, where m is the plaintext and n is the length
of the key in bits. Before transformation, it is vul-
nerable to a timing side channel attack due to the
if-statement inside the for loop, which allows an
attacker to extract a private RSA key. We add perturbations to this timing side
channel, by adding a loop with a random number of iterations on every conditional
branch. The previous dependency of execution time on key bits is distorted. Before
transformation, the implementation will exhibit longer timing in 50 % of multi-
plications, and in 30 % of squaring operations. As multiplication and squaring
operations depend on key bits, this is a statistical prediction model for these key
bits. After transformation, however, the bit prediction model is altered because of
adding instructions (and thus execution time) randomly to either the case where
the current key bit is 0, 1, or to branches independent of key bits at all. As long
as the attacker has no access to the diversified implementation, it is hard to pre-
dict which behavior is induced by which branches. Quantifying the number of
bits leaked by a program after transformation is out of the scope of this paper.
However, intuitively timing side channel attacks are harder to perform due to this
transformation [7].

Reverse Engineering Attacks: Typically imply extracting the key verification
algorithm (line 37, Fig. 1) or hard-coded secrets (lines 35, 38, Fig. 1). To protect
against reverse engineering, we applied transformations to merge methods, add
bogus operands, obscure control flow through opaque predicates, insert bogus
code, and replace static data (i.e. hard-coded secrets) through dynamic gen-
erator functions. For lack of objective metrics measuring obfuscation strength
and to illustrate ISA2R’s transformations, we choose to present an example of
effects by ISA2R on the program described above. The left part of Fig. 3 shows
the control-flow graphs of two functions h() (a single basic block at the top)
and hs() (four basic blocks at the bottom) before transformation. The right
part of Fig. 3 shows the resulting control-flow graph after the application of the
aforementioned transformations. The gain in complexity is evident: Two dis-
joint functions are merged into one, and statically an attacker cannot easily
determine which basic block will be the one to return the correct value, thanks
to the opaque predicates and bogus code. Moreover, the hard-coded values on
lines 35 and 38 in Fig. 1 were transformed into encoded strings by the StaticTo-
ProceduralData transformation, which eliminates low-hanging-fruit that could
be extracted using the Linux strings command-line utility.

Memory Corruption Attacks: We constructed a buffer overflow exploit code
tailored for the program in Fig. 1. The exploit assumed that the variables on
the stack frame of the main function are key above uid with sizes of 20 bytes,
respectively 4 bytes. By giving a 24 byte argument to the program, the call to
strcpy() on line 32 in Fig. 1 overwrites the value of variable uid with the last
4 bytes of the input argument. If these 4 bytes are equal to the value of ADMIN



ISA2R: Improving Software Attack and Analysis Resilience 369

Fig. 3. Control-flow graph of h() (top-left), hs() (bottom-left) and their merger (right)

the check on line 34 is bypassed and the “crown jewels” are disclosed (line 35).
After performing the transformations to randomize stack size and stack variable
order of the program from Fig. 1, the same exploit code failed on the diversified
instances of the same program, i.e. uid would no longer be overwritten because
it is placed below key and a random size buffer would be placed above key.
If the size of the inserted buffer was higher than the size of uid, the program
continued functioning correctly, otherwise a crash occurred. This works reliably
for exploit buffers crafted to fit certain byte boundaries. For exploit buffers that
consist of repeatedly sprayed return addresses, however, the attacker can still
correctly overwrite the EIP on the stack with a probability of 1 divided by the
memory address width in bytes. Again, the attacker loses precision in predicting
the stack layout which increases the difficulty to construct effective exploits.

Code Injection Attacks: Similar to memory corruption attacks, code injection
attacks on the stack fail for the program in Fig. 1. The reason is that due to ran-
domized stack layout and stack frame sizes, it becomes harder for the attacker
to predict target address for the injected code. While stack frame size diversifi-
cation adds a random number of bytes within a certain range to the stack frame,
the diversification of the order of variables leads to NOP slides being ineffective,
i.e. the execution might try to commence too low in memory, before the buffer
holding the NOP slide and the code to be executed. Again, exploits working on
the program from Fig. 1 failed in a similar way as for memory corruption attacks,
on its diversified instances compiled to allow executable stacks, i.e. the code was
placed on the stack but it was not executed successfully.

Code Reuse Attacks: The application from Fig. 1 can be leveraged by ROP
exploits, as it calls libc functions such as execve on line 25. Therefore, we con-
structed a ROP exploit against this program that bypasses ASLR. By applying
transformations to reorder instructions, insert bogus code, insert random loops,
and opaque predicates, we randomized code locality as much as possible. Previ-
ous gadget addresses were invalidated and the ROP exploit failed with a crash
as some gadget addresses now pointed elsewhere, leading to invalid opcodes.



370 R. Fedler et al.

Program Tampering: We crafted two patches for the compiled version of the
program in Fig. 1. One rewriting its binary at a specific offset to patch the
equality comparison represented by line 37 in Fig. 1, and the other performing
pattern matching to locate the correct offset of the call to hs inside the binary.
By applying the same transformations as in the code reuse attack scenario,
we diversified the code section and the fixed offset patch overwrote parts of 2
instructions in the binary program, which failed with a crash when executed.
This was not surprising; however, the pattern matching exploit also failed with
a crash, as the operand to the call opcode it tried to patch was altered through
diversification transformations, i.e. hs was transformed and its offset displaced.

4.3 Evaluation Summary

As shown in Sect. 4, ISA2R was effective at fending off attacks from each attack
category presented by Larsen et al. [9] for our example programs. However, this
does not mean that ISA2R is effective against all attacks from each category and
it may also be ineffective if applied to particular target programs. To further
investigate effectiveness we are performing similar case studies using ISA2R on
various open source projects. Efficiency measurements showed that most ISA2R
transformations have little impact on program file size and execution time which,
however, stacks when multiple transformations are applied on the same program.
The party who compiles the software bares a significant relative increase since
each single transformation takes between 20 % and 30 % more compilation time
on average, also resulting in much higher compilation times when multiple (or
all) transformations are combined. However, we expect to lower these numbers by
around 50 % in the future by eliminating recurring instructions through caching.

5 Conclusion and Future Work

In this work, we presented ISA2R, a collection of software diversification trans-
formations to harden software against attacks. Since ISA2R is based on LLVM
it can be applied to programs written in any language supported by LLVM. We
have shown through examples that ISA2R is effective at fending off attacks from
all software attack categories presented by Larsen et al. [9]. Nevertheless, this
does not mean that it defends against all attacks.

In our experiments we have constructed attacks which work against one pro-
gram instance and fail against other diversified instances. Although our evalu-
ation is based on case studies we believe that exploit resilience for the attacks
mentioned in our evaluation section generalizes for the majority of programs. It
is important to note that vulnerabilities are not removed, but unified exploita-
tion through identical attack vectors is hindered. The more instances exist, the
smaller the likelihood of a successful attack for adversaries. This decreases the
return of investment for attackers, as one exploit no longer suffices to successfully
attack and compromise all installations of a software. This is achieved without
prohibitive runtime or file size overhead. However, one significant impact lies in



ISA2R: Improving Software Attack and Analysis Resilience 371

the diversification process, which increases the costs of the software compilation
and their distribution to end-users. Usability for software developers is consid-
ered high, as they only need to plug in ISA2R into the compilation process.

ISA2R offers 12 transformations for improving resilience against various
attacks presented in [9] in a unified way, whereas existing specialized tools sup-
port only specific programming languages and are usually commercial or focused
on a particular attack. To cover more attacks types, we will add further trans-
formations in the future. ISA2R is available to interested parties upon request.

We intend to add more transformations to protect against further attacks
and strengthen existing protections. For example, we plan on integrating simu-
lation [3] to further complicate code injection attacks and runtime diversification
(also known as build and execute [3]) to hamper reverse engineering. More impor-
tantly, we plan to assess the resilience of such diversification transformations to
adaptable exploits, which are aware of the transformations that can be employed.

We are currently conducting work in the field of transformation semantics
and correctness. Some transformations presented above can be easily verified to
produce valid and semantically equivalent code, e.g. stack size and order diversi-
fication, instruction order randomization, etc. Others, however, cannot be triv-
ially verified. As it is of utter importance that diversity transformations do not
change functionality or introduce bugs into diversified instances, we are exploring
ways to maintain specification semantics and correctness, while changing attack
semantics; and to describe formal requirements to ensure these properties.

References

1. Allodi, L., Shim, W., Massacci. F.: Quantitative assessment of risk reduction with
cybercrime black market monitoring. IEEE Sec. Priv. Workshops (2013)

2. Banescu, S., Pretschner, A., Battré, D., Cazzulani, S., Shield, R., Thompson, G.:
Software-based protection against changeware. In: Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, pp. 231–242 (2015)

3. Cohen, F.B.: Operating system protection through program evolution. Comput.
Secur. 12(6), 565–584 (1993)

4. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, stealthy
opaque constructs. In: 25th ACM SIGPLAN-SIGACT, pp. 184–196 (1998)

5. Forrest, S., Somayaji, A., Ackley, D.: Building diverse computer systems. In: 6th
Workshop on Hot Topics in Operating Systems, pp. 67–72, May 1997

6. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.: ILR: where’d my
gadgets go? In: IEEE Symposium on Security and Privacy, May 2012

7. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: IEEE Symposium on Security & Privacy (2014)

10. Randell, B.: System structure for software fault tolerance. IEEE Trans. Softw. Eng.
1, 220–232 (1975)

11. Schechter, S.E.: Computer security strength & risk: a quantitative approach. Ph.D.
thesis, Harvard University, Cambridge, Massachusetts, May 2004


	ISA2R: Improving Software Attack and Analysis Resilience via Compiler-Level Software Diversity
	1 Introduction
	2 Related Work
	3 Implemented Transformations
	4 Preliminary Evaluation
	4.1 Efficiency
	4.2 Effectiveness
	4.3 Evaluation Summary

	5 Conclusion and Future Work
	References


