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Abstract. This paper addresses quantifying security risks associated
with data assets within design models of embedded systems. Attack and
system behaviours are modelled as time-dependent stochastic processes.
The presence of the time dimension allows accounting for dynamic
aspects of potential attacks and a system: the probability of a success-
ful attack changes as time progresses; and a system possesses different
data assets as its execution unfolds. These models are used to quan-
tify two important attributes of security: confidentiality and integrity. In
particular, likelihood/consequence-based measures of confidentiality and
integrity losses are proposed to characterise security risks to data assets.
In our method, we consider attack and system behaviours as two sepa-
rate models that are later elegantly combined for security analysis. This
promotes knowledge reuse and avoids adding extra complexity in the
system design process. We demonstrate the effectiveness of the proposed
method and metrics on smart metering devices.
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1 Introduction

Concern for security issues in embedded systems is growing due to mass deploy-
ment of devices in a wide range of applications – from pace makers to criti-
cal infrastructures. Due to criticality of many such deployments and prevalent
attacks, security should be an integral part of system development. Moreover,
it should start already at an early design phase, because costs associated with
security fixes grow steeply when progressing in the product life cycle. A seri-
ous obstacle to designing secure systems is that system engineers do not have
suitable means to investigate how the decisions made at the design phase affect
security. As a result, systems often remain unprotected. Our contribution to this
research area is a method that enables analysing what security risks are inherent
in a certain system model and how certain design decisions affect these risks. In
particular, we address the risks related to data assets.
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The output provided by our method can be used by system engineers to
reason about the protection needed for data assets in the context of a given design
and to evaluate these needs with respect to other factors such as economical
costs. In particular, the contributions of this paper are as follows:

– Formal definition of two probabilistic risk-based metrics to quantify confiden-
tiality and integrity of data assets in the context of a given design model.

– Development of a formal method to calculate these metrics using three types
of models: functional and platform models of a system, and attack models.

– Illustration of how these metrics can be used to show different risks to the
assets of a metering device which is part of a smart grid.

We suggest that security analysis should treat attack behaviour and system
design as two separate, though interrelated, elements. Both elements are usually
highly complex constituents of security. Treating them separately provides their
more accurate elaboration, while both of them are clearly interdependent. One is
addressed in the research on methodologies for attack modelling, e.g. an attack
tree technique introduced1 by Weiss [24]. Another is supported by evaluating
a system design and identifying relevant assets [21]. This paper combines the
two ideas as components in a bigger picture: a generic engineering process that
exploits domain-specific security knowledge captured from security experts [22].

Attack and system behaviours are modelled as time-dependent stochastic
processes. The presence of the time dimension allows accounting for dynamic
aspects of potential attacks and a considered system: the probability of a suc-
cessful attack may change as time progresses, and a system may possess different
valuable data assets as its execution unfolds. The use of probabilistic modelling,
in turn, enables dealing with uncertainties that are present at the design phase.

One can potentially argue about difficulties of obtaining realistic data about
the timing aspects of an attack and system at the design phase, and there-
fore, question reliability of results of the proposed security analysis. Nonetheless
we propose that easier and more effective exploration of security threats and
impacts is already a valuable input to design decisions, even when subject to
some uncertainties. This enables asking ‘what if’ questions which help under-
standing the sensitivity of the system to potential attacks. Furthermore, the
research that enables quantitative estimations of timing aspects of attacks and
system at early design stages constantly progresses.

In Sect. 2, we discuss related works. Section 3 introduces two risk-based met-
rics by formalising the basic concepts and providing a method for their deriva-
tion. We illustrate the use of the proposed metrics in Sect. 4 on a real metering
device in a smart grid, and conclude the paper in Sect. 5.

2 Related Work

There are general methods that cover main steps of risk analysis, e.g. CRAMM
(CCTA Risk Analysis and Management Method) [1]. These methods prescribe
1 The term, however, was coined by Schneier.
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basic steps of risk analysis while leaving out details of their implementation.
Security risk management is also addressed by a set of standards, e.g. NIST
SP800-30 [20] and ISO 31010 [3]. NIST creates foundations of risk management
and contains basic guidance that broadly covers conducting risk assessment on
federal IT systems and organisations. As pointed out by Lund et al. [15], this
guidance should be complemented with a risk analysis process and cannot be
considered as a fully-fledged method. Similarly, ISO 31010 provides guidance for
risk assessment, but does not specify methods or techniques to be used in a spe-
cific application domain. Our work can be considered as complementary to these
guidelines and is specific for design phases of embedded system development.

Surveys of risk analysis methods and corresponding metrics are presented by
Verendel [23], among others. Verendel [23] analyses more than 100 approaches
and metrics to quantify security. The conclusion of the author, that is highly
relevant for our work, is that CIA (Confidentiality, Integrity, Availability) quan-
tification methods are under-represented.

Several models for risk evaluation exist that have slightly different ingredi-
ents. For example, risk for physical security is often modelled as R = P × V ×
D [4,9] where P is the probability of threat occurrence, V is vulnerabilities of
the system, and D is consequences. Another model represents security risks as
R = U × C [15,20] where U is the likelihood of unwanted incidents and C is
consequences. These models resemble each other, i.e. the unwanted incident com-
ponent in the latter model combines the first two components in the former. We
base our work on the second model and focus on evaluating the U component.

Model-based risk analysis encompasses methods such as CORAS [15] and
CySeMoL [19]. While following the same basic structure of risk analysis, these
methods provide richer support. CORAS [15] is a general approach for risk analy-
sis (already applied in numerous domains) specified as 8 steps. It uses graphical
notation to structure elicited assets and threat scenarios and is supported by for-
mal calculus that enables calculation of risks. Sommestad et al. [19] propose the
Cyber Security Modeling Language (CySeMoL) and framework for risk assess-
ment of IT systems. CySeMoL captures dependencies among different elements
of risk analysis and system architecture, so that a system engineer is aided in
deriving risks associated with an architecture. Similar to such works we use
formal models for deriving risks with a focus on the design phase.

Vasilevskaya et al. [21] provide a model-based method for security analysis
(referred to as SEED [22]). SEED is described at two levels of abstraction: foun-
dation and realisation. At the foundation level the method prescribes system
modelling and domain-specific security modelling. At the realisation level, the
method is refined to provide support for embedded systems by employing mod-
elling languages specific for the domain. Risk estimation to support quantitative
security analysis has yet to be elaborated in SEED [22]. This paper fills this gap
applying and extending the ideas of the model-based risk analysis.

Another group of methods for security quantification is based on attack mod-
elling. A comprehensive survey of these approaches based on direct acyclic graphs
is presented by Kordy et al. [14]. We briefly mention some approaches that are
not in the scope of this survey, but still relevant to our work. Almasizadeh and
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Azgomi [5] define a state-based stochastic model to quantify different aspects
of security. A system is abstracted away as a set of defender transitions, i.e. as
backward transitions in an attack model. Madan et al. [16] propose a method to
quantify security attributes of intrusion-tolerant systems. The analysis is done
based on an interwoven model of the intrusion-tolerant system, encompassing
both attack and system behaviours, as well as countermeasure reactions.

The novelty of our approach for quantification of risks is that it explicitly
accounts for both elements (system and attacks), but avoids mixing them in
a single model specifically created for security analysis. Such an approach has
several benefits. A system engineer and a security expert can work separately
on the artefacts belonging to their own fields of responsibility and professional
expertise. In addition, the approach enables the reuse of self-contained attack
models across several systems in one application domain (e.g. different designs
of metering devices from the smart grid domain), because these systems can face
the same attacks. To our knowledge this is the first method that aims to support
system engineers in quantifying risks to data assets in the context of embedded
system design models from multiple stakeholder perspectives.

In line with current attack-based analysis frameworks, our methodology deals
with known attacks as opposed to unknown zero-day attacks. Preparing a system
for zero-day attacks is also an important concern, but most embedded systems
fail to resist even known attacks due to a lack of security considerations at the
design phase. Bilge and Dumitras [7] demonstrate that the number of occurrences
of an attack when it is transformed from a zero-day to a known attack only grows.

Acquiring quantitative estimations (e.g. execution time) already at the design
phase in embedded systems is a recognised challenge. Model-based engineering
provides methods for design-based estimations to support early design-space
exploration, e.g. COMPLEX [11], among others. We capitalise on such methods
in order to decorate our models with probability distributions for execution time.

Our approach rests on input data that may be uncertain to some degree. For
example, this is the case due to incomplete knowledge about attacks or uncer-
tainty connected to estimates given by experts. Today, there are methods and
tools to deal with limited certainty of data used for decision making.
A comprehensive classification of different kinds of imperfect information and
tools to deal with it are discussed by Parsons [18]. In our work, we adopt proba-
bilities and probability distributions to capture inherent uncertainty of used data.

3 Quantifying Risks to Data Assets

We start this section by introducing two probabilistic risk-based metrics to quan-
tify confidentiality and integrity of data assets. Thereafter, we present a method
to calculate these metrics using formal system and attack models as inputs.

3.1 Proposed Metrics and Risks

Risk is frequently modelled by the likelihood of a successful attack and the
severity of its consequences. Different ways of handling assets within a particular
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system imply different exposure of these assets to confidentiality and integrity
breaches associated with a certain attack vector. The likelihood of a successful
disclosure and alteration of assets is, therefore, conditioned by the ways assets
are handled (similar to [4]). Since assets are objects of value, their violation will
imply different costs for different stakeholders [22]. As a result, confidentiality
and integrity losses can be naturally defined as risk-based metrics parameterised
by different stakeholders. Additionally, since both an attack and a system are
dynamic entities, whose behaviour includes different exposure degrees at different
states over time, the proposed metrics should be time-dependent.

We define confidentiality loss (CL) of a valuable data asset given an attack by
time t as a risk metric that characterises the damage potentially caused by this
attack on the asset. It is calculated as a product of the likelihood that the attack
would disclose the asset by t and the cost of this breach for a stakeholder R. In
turn, confidentiality loss of a system Y is a function (denoted by the symbol ⊗)
of confidentiality losses for each data asset oi that is subject to an attack A. The
actual function will depend on the properties of the data assets in question and
stakeholder’s take on them.

CL(Y, A, R, t) = ⊗iCL(oi, A, R, t) (1)

Similarly, integrity loss (IL) of a data asset from an attack by time t is a risk
metric that characterises the effect from the potential alteration of the affected
data asset. The notion is analogously extended to the system level. In the rest
of this paper, we focus on confidentiality and integrity losses (CL and IL) for a
single asset. Note that the definitions of confidentiality and integrity losses can
be extended to the case when several attacks are present. However, for the sake
of simplicity, we consider the case of one attack in this paper.

3.2 Basic Terms: Domain, Attack, and System

A domain is a notion that creates a common ground for system engineers and
security experts. It is a broad concept in domain-specific modelling that includes
many aspects. However, in this work, we say that a security expert and a system
engineer work in the same application domain when they refer to a common set
of components and objects while modelling respectively a system and attacks.

Definition 1. A domain M is a tuple2 (C,O) where C is a set of components
and O is a set of data objects accessible in an application area. A set of assets
is a subset of O, i.e. Assets ⊆ O.

Attack modelling is a technique to capture behaviour of attacks. It can be
formalised with attack trees or graphs. The basic elements of attack trees and
graphs are attack steps and relations on them. Trees, additionally, have special
elements such as gates, which are logical operations applied on attack steps (e.g.

2 We use the term “tuple” as a finite ordered list (a sequence) of elements. Each
element is addressed by its name in this paper.
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AND and OR), and root, which represents the goal of an attack. Thus, attack
trees resemble fault and event trees in other dependability analyses. An alterna-
tive language for modelling attacks is (classes of) Petri Nets. Quantitative time
aspects of attack models can be captured by assigning a probability distribution
of execution time to attack steps. In our work, we use the term basic attack
model (which is neutral w.r.t. above languages) that captures the basic elements
of an attack model needed for our analysis.

Definition 2. A basic attack model is a tuple (AS,AR, lAS) where: AS is a
finite set of attack steps; AR ⊆ AS × AS is a relation between attack steps; and
lAS : AS → F is a labelling function that associates execution time distributions
from the set F to attack steps (AS).

We extend this basic definition of an attack model with the attack step anno-
tation concept. It enriches the definition of a basic attack model with what, where,
and how information: what assets are targeted; where in a system (i.e. on which
parts of a system platform); and how these assets are compromised, meaning
which security attributes are violated.

Definition 3. An attack step annotation is a tuple (TA, TC, AV) where: TA ∈
2O is a set of targeted assets; TC ∈ 2C is a set of targeted components; AV ∈
2Attr is a set of security attributes violated by the attack step where Attr =
{Cnf, Int,Avl}. We denote a set of such annotations by N and we refer to each
element x of the attack step annotation as by as.x (e.g. as.TA).

For example, if an attack step reads message m ∈ O from a network com-
ponent link ∈ C then an annotation for this step is ({m}, {link}, {Cnf}); if
an attack step only connects to some link then its annotation is (∅, {link}, ∅).
These annotations allow relating an attack model to relevant elements of a sys-
tem model. This enables combining attack models with system models. A basic
attack model enriched with annotations is called an annotated attack model.

Definition 4. An annotated attack model A is a tuple (AS,AR, lAS , lN ) where
(AS, AR, lAS) is a basic attack model and lN : AS → N is a labelling function
that assigns an annotation to each attack step.

For our analysis, we need to capture three aspects of a system: its functional-
ity, execution platform and allocation information, and data object dependencies.
These aspects are represented by state model and data model.

Definition 5. A state model SM of a system is a tuple (S, s0, P,H, lO, lS) where:

– S is the set of system states related to each other by a set of transitions;
– s0 is the initial state;
– P : S × S → [0, 1] associates a probability with a transition;
– H : S → F associates a probability distribution with a state;
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– lO : S → 2O is a labelling function that associates a set of objects from domain
M with each state;

– lC : S → 2C is a labelling function that associates a set of components from
domain M with each state.

A state in S can be seen as a basic element of behaviour (e.g. an action) of a
system. P and H formalise the probability of moving from one state to another
and the probabilistic measure of execution time of each system state respectively.
Thus, the first four elements of our state model form a semi-Markov chain [12]
(SMC). The latter two elements extend a SMC with additional information that
is utilised to automatically combine system and attack models. Function lO
allows capturing the information about data objects which exist at a certain
state. Function lC associates the states with components of an execution plat-
form.

Definition 6. A data model DM of a system is a tuple (D, lD) where: D ⊆ O×O
is a relation that captures immediate object dependency; lD : D → 2S \ ∅ is a
labelling function that associates a set of states from S with each tuple in D.

The relation D represents dependencies between data objects in a system.
In particular, (oi, oj) ∈ D means that an asset oj depends on an asset oi, e.g.
oj = f(oi) where f is some function. In this paper, we omit the nature and
strength of such dependencies, but this information can also be used. Function
lD captures at which system state the dependencies in D occur. Thus, if lD(oi, oj)
returns state {s} then it means that oj is derived from oi in s. Implicitly, a well-
formed data model associates a non-empty state set to every element in D.

Finally, a system model is a combination of state and data models.

Definition 7. A system model Y is a tuple (SM, DM) where SM is a state
model and DM is a data model.

Table 1 summarises the notation and terms used in this paper.

3.3 Metrics and Their Derivation

Confidentiality loss (CL) caused by an attack A to each valuable data asset o
by time t is a product of the likelihood that A would disclose o by t, and the cost
of this disclosure to stakeholder R. In our context, the likelihood is a probability.

CL(o, A, Y, R, t) = p(o, A, Y, t) cost(o, R) (2)

In Eq. (2), the cost of an asset, cost(o,R), is a subjective estimate expressed
by a stakeholder. In general case, the cost can also be time-dependent, but in
this work we assume that it is time-agnostic. In turn, probability of a disclosure,
p(o,A, Y, t), can be broken down into a product of two events: (E1) an attack A
is in a step that can disclose o by time t; and (E2) an asset o actually exists in
system Y when it is attacked by time t.

p(o, A, Y, t) = p(E1(o, A), t) p(E2(o, Y ), t) (3)
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Table 1. Summary of the used notation

Sets and subsets
C – components AV – security attributes violated
O – objects N – attack step annotations
Assets – assets, Assets ⊆ O S – system states
F – probability distributions Ωo,o′ – all state sequences between o′ and o
AS – attack steps S〈o〉 – system states where object o exists
TA – targeted assets Ctarget – system components targeted by an

attack
TC – targeted components AS〈Cnf,o〉 – attack steps violating confidential-

ity of an object o

Functions, dependencies and relations
lAS – assigns execution time probability distributions to attack steps, lAS : AS → F
lN – assigns an annotation to an attack step, lASN : AS → ASN
P – associates a probability with a transition, P : S × S → [0, 1]
D – a dependency relation between data objects, D ⊆ O × O
lD – associates a set of system states with a data dependency, lD : D → 2S

H – associates a probability distribution of execution time with a state, H : S → F
lO – associates a set of existing objects with a state, lO : S → 2O

lC – associates a set of components with a system state, lC : S → 2C

AR – a relation between attack steps, AR ⊆ AS × AS
cost – a cost of asset disclosure or alternation expressed by a stakeholder
κ – a function that checks whether there is a transitive dependency between two objects

Tuples
SM = (S, s0, P, H, lO, lC) – a state model M = (C, O) – an application domain
DM = (D, lD) – a data model Y = (SM, DM) – a system model
A = (AS, AR, lAS , lASN ) – an annotated attack model

Other
R – a stakeholder PE – propagation effect ω – sequence of states
CL – confidentiality loss DE – direct effect γ – sequence of data objects
IL – integrity loss φ – interval transition probability

In other words, the E1 event accounts for a subset of attack steps AS〈Cnf,o〉 ⊆
AS that compromise an asset o and violate its confidentiality; and the E2 event
accounts for a subset of system states S〈o〉 ⊆ S that are associated with asset o.
Additionally, the attack steps from AS〈Cnf,o〉 should target a set of components
that are used for allocation of system states from S〈o〉. This simply means that,
for the attack to be successful, a system should have components with certain
targeted vulnerabilities exploited by the attack steps from AS〈Cnf,o〉. We refer
to this subset of targeted components as Ctarget.

Given a set of states S and a set of attack steps AS of an attack A, we define
a set of targeted components (Ctarget), a set of attack steps disclosing an object
o (AS〈Cnf,o〉), and a set of states where an object o is potentially compromised
(S〈o〉):

Ctarget ={c | s ∈ S, as ∈ AS, c ∈ lC(s) ∩ as.TC} (4)

AS〈Cnf,o〉 ={as | as ∈ AS, as.TC ∩ Ctarget �= ∅, o ∈ as.TA, Cnf ∈ as.AV } (5)
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S〈o〉 = {s | s ∈ S, lC(s) ∩ Ctarget �= ∅, o ∈ lO(s)} (6)

To put it another way, execution of any attack step in AS〈Cnf,o〉 leads to
disclosure of a given object o, which is essentially the E1 event. This corresponds
to construction of an attack tree with attack steps from AS〈Cnf,o〉 which are all
connected by the OR gate. This is expressed in Eq. (7).

p(E1(o, A), t) = 1 −
∏

as∈AS〈Cnf,o〉

(
1 − p(as, t)

)
(7)

Finally, the probability of E2 is the sum of probabilities that the system Y
will transit to each state from S〈o〉 where asset o exists. Thus,

p(E2(o, Y ), t) =
∑

s∈S〈o〉

φ(s0, s, t) (8)

In Eq. (7), p(as, t) is a probability of success of an attack step as by time t. It
is returned by lAS given t that is, in turn, calculated from a selected modelling
formalism for attack step relations (e.g. attack trees or graphs). In Eq. (8),
φ(s0, s, t) is a so-called interval transition probability of the system Y transiting
from a state s0 to a state s in interval (0, t) [12]. It is calculated from the system
equation that describes the dynamics of an underlying SMC.

Integrity loss (IL) is a metric that defines the risk of alterations to an asset
o, and should account for two aspects: the direct effect (DE ) – the loss caused by
the direct influence of an attack A on asset o; and the propagation effect (PE )
– the loss caused by spreading corrupted data and further contaminating the
computations dependent on asset o.

IL(o,A, Y,R, t) = DE(o,A, Y,R, t) + PE(o,A, Y,R, t) (9)

The reason to include the propagation effect in the IL metric, but not in the
CL metric can be explained with the following rationale. Whether a breach of
confidentiality will propagate depends on specific attack capabilities, i.e. if an
attack is capable of learning additional data when it has observed a part of it.
This learning is a self-contained attack step and should be explicitly included
in an attack model. For example, the sole fact that an attack compromises an
encryption key does not directly imply that all data encrypted by this key is
compromised; it is compromised if an attack actually reads this data. In contrast,
a breach of integrity propagates independently from an attack, but it depends on
the system behaviour. For example, if a public key is modified, then data signed
by this key can not be decrypted if the decryption state is part of a system.

The direct effect DE is calculated in analogy to CL, where AS〈Int,o〉 is defined
by Eq. 5 and Int ∈ as.AV replaces Cnf ∈ as.AV .

The intuition for the propagation effect is as follows: if an object o′ ∈ O is
computed in a state s′ ∈ S based on an object o that has already been corrupted
in a state s ∈ S〈o〉 then o′ is also considered corrupted. To derive this effect PE
with respect to each such object o′ we consider the four aspects described below.
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First, we need to check whether o′ immediately or transitively depends on o.
The immediate dependency is already captured in the data model DM by
(o, o′) ∈ D. We say that transitive dependency exists, if it is possible to construct
such a sequence of objects γ of length n that γ = (γk | γ1 = o, γn = o′, 1 ≤ k <
n : (γk, γk+1) ∈ D). We formalise this test as a function κ : O × O → {0, 1} that
returns 1 if such a sequence γ exists, otherwise it returns 0.

The next two elements are the cost of o′ as expressed by a stakeholder R and
the probability that o will be actually attacked by time τ ≤ t.

Finally, the propagation effect occurs only when the system Y will transit
from a state s ∈ S〈o〉 to a state s′ where o′ is computed from o immediately
or transitively. Such a state s′ can be returned by the labelling function lD,
if immediate dependency between o and o′ exists. However, if an immediate
dependency does not exist, but a transitive dependency exists then we need
to consider a sequence of states ω (of length n − 1) along which the transitive
dependency, captured by a sequence of objects γ, occurs. We construct ω in such
a way that ω = (ωk | 1 ≤ k < n − 1 : ωk ∈ lD((γk, γk+1))). Since there can be
several valid sequences of states relating o and o′, we denote by Ωo,o′ the set of
such state sequences. In other words, Ωo,o′ is the set of all state sequences along
which o′ can be compromised when o is attacked.

The propagation effect given the four elements above is calculated as follows:

PE(o, A, Y, R, t) =
∑

o′∈O

κ(o, o′) cost(o′, R)
∑

s∈S〈o〉

p(E1(o, A), τ)
∑

ω∈Ωo,o′

P (s0, s, ω, t)

(10)

In Eq. (10), P (s0, s, ω, t) is the interval transition probability that the system
that starts at s0 will first pass the state s (where asset o is attacked by A), and
then will go through each state from (any possible) sequence ω. This probability
can be computed recursively as follows:

P (s0, s, ω, t) = φ(s0, s, τ) P (s, ω1, ω[2..], t − τ) (11)

We denote by ω1 the first element of the sequence ω and by ω[2..] a suffix of this
sequence starting from the 2nd element. The validity of Eq. (11) can be proven
by induction (omitted due to space restrictions).

4 An Illustrative Example

In this section we apply our methodology on an open platform device developed
based on the design from the European project SecFutur [2], where a Trusted
Sensor Network (TSN) was a case study. We illustrate how confidentiality and
integrity losses capture the security risks associated with data assets.

The TSN consists of a set of meters, servers, and a communication infrastruc-
ture. TSN collects measurements of energy consumption at households for billing
purposes. This infrastructure has a range of diverse security considerations and
data assets: measurements, user account data, a set of certificates, commands,
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Table 2. Stakeholder costs expressed for measurements

User Utility provider National regulatory agency

Confidentiality Major Minor Insignificant

Integrity Moderate Major Minor

etc. Here we study a metering device and, for simplicity, we focus on measure-
ments as an asset under analysis.

We consider three stakeholders: user, utility provider, and national regu-
latory agency. The stakeholder costs of losing confidentiality or integrity for
measurements are shown in Table 2. We adopt a common linguistic scale [15]
{insignificant, minor, moderate, major, catastrophic} to encode these costs,
which we further map to a numerical vector {0, 0.1, 0.5, 0.8, 1}. Note that we
use this simplified numerical scale only for exemplification. In practice, one can
use intervals or even continuous scales, as our methodology does not impose
specific requirements on the form of the scale.

4.1 System and Attack Modelling

Figure 1(a) depicts a system model for a metering device from the TSN sce-
nario. The system expects a command (cmd) from an administrator of a utility
company. On receipt, it proceeds to registration, configuration, or calibration
procedures. When the device is calibrated it starts collecting data (raw msr),
processing it into ready measurements (msr), writing them into the memory and
creating a unique id (id msr), sending them to the server, and waiting for an
acknowledgement (ack). If ack has not arrived a meter continues to collect mea-
surements; otherwise, it proceeds to the verification procedure. If verification
succeeds the device searches for the measurement by id (id msr), deletes this
measurement from storage, and waits for the next command from the server. If
verification fails, the device reads the measurement from storage and resends it.

Construction of state and data models (introduced in Sect. 3.2) can be accom-
plished by traversing and transforming control and data flows of the UML activ-
ity model. UML activity diagrams can be directly transformed into a state
model [17]. Alternatively, UML activities can be first transformed into some
variant of Stochastic Petri Nets (SPNs) [8]. They offer easier translation from
UML activity diagrams and also provide great capabilities such as dealing with
concurrency and various forms of dependency. These variants of SPNs can be
further used to generate Markov and none-Markov models, i.e. SMC in our case.
For the purpose of this illustration we directly move on to the state model and
omit intermediate steps. A data model can be obtained by traversing the UML
activity and utilising its built-in data flows. Note that we use the UML activity
as an example. Our approach is not limited to this choice.

Figure 1(b) depicts the state model (SM ). The numbers on arcs are probabil-
ities of the transitions (P) and the numbers on states are mean state execution
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Fig. 1. Illustration of the formalised system model for the metering device

times from normal distributions (H ). To obtain this data, design phase estima-
tion methods outlined in Sect. 2 exist, but we employ prototyping as a viable
alternative. The object references next to each state correspond to the labelling
function lO. Our metering device model includes a simplified execution plat-
form built of two components: a link and a device. The link is a communication
network, and the device is the basic meter. The init, package, send, wait for
acknowledgement, resend, and wait for command states are allocated on the
link, and the rest of the states are executed on the device. This corresponds
to the labelling function lC . Figure 1(c) depicts the data model (DM ), where
the labels on dependency arcs are names of corresponding states from the state
model (SM ). This corresponds to the labelling function lD.

Privacy and integrity of measurements are two serious concerns for smart
meters [13]. Privacy can be violated by eavesdropping energy consumption mea-
surements passed over the communication network. Integrity of measurements
can be broken by spoofing the original data sent by a meter. Here we consider
these two types of attack. Respective annotated attack models in the form of
attack graphs are depicted in Figs. 2(a) and (b). To eavesdrop an attacker should
intercept the data packets (pkt) sent over the network (link), i.e. to sniff, filter
and decode them. To perform a spoof attack the data packets should also be
intercepted and then inserted back into the network in a modified form.

Connect
(    , link,    )

Capture
(pkt, link,    )

Filter 
(pkt, link,    )

Idle

Decode&Read
(pkt, link, Cnf)

(a) Eavesdropping

Connect
(    , link,    )

Capture
(pkt, link,    )

Filter 
(pkt, link,    )

Idle

Decode&Read
(msr, link, Cnf)

Modify&Insert
(msr, link, Int)

(b) Spoofing

Fig. 2. Two attacks against measurements

In addition to annotations, each attack step is associated with a probability
distribution (the labelling function lAS). Arnold et al. [6] discuss two alternative
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approaches to obtain such distributions: (1) based on historical or empirical data;
and (2) based on expert opinions. For our illustrative example, we employ the
former approach by running experiments with the constructed prototype. We
use kernel density estimations [10] to obtain the needed distribution functions.

4.2 Calculating Metrics

A combination of the attack and system models gives the following sets of com-
promising attack steps and system states (from Eqs. (4)–(6)): AS〈Cnf,msr〉 =
{Decode&Read}, AS〈Int,msr〉 = {Modify&Insert}, and S〈msr〉 = {package, send,

resend}.
In this section we show only the values observed when confidentiality (CL)

and integrity losses (IL) stabilise. In reality the risks can still change over time,
which is also the case in our illustrative example, but for brevity we do not show
the whole trend since the risks stabilise relatively fast.

Fig. 3. CL and IL in the initial design and after mitigation by modification

Figure 3(a) shows that confidentiality loss for the user is about 9 times higher
than for the utility provider (0.035 against 0.004), integrity loss is highest for
the utility provider (0.031), and the national agency bears the lowest risk both
in terms of confidentiality and integrity losses. It should be mentioned that due
to a narrowed down set of considered assets (i.e. measurements only) in our
example, stakeholder-wise comparison of the confidentiality and integrity loss
metrics is not as informative as it could be in a general case with multiple
assets. However, what our example demonstrates distinctly is how the proposed
metrics reflect reduction of risks when mitigation measures are applied. That, in
turn, indicates how each stakeholder benefits when the initial design is modified
for strengthening its security aspects [22].

Now, we illustrate how a modification of a design can act as a mitigation
against the two attacks. We modify the state “collect”, so that the system in
Fig. 1 sends measurements in chunks of 10 readings. By this, the mean execution
time of this state is changed from 155 to 1550 ms. Figure 3(b) shows results
for an improved system, and we observe a significant drop in original risks. In
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particular, confidentiality loss for the user and utility provider drops down by a
factor 4 in comparison with the risks derived from the initial design. Similarly,
a significant drop is observed for integrity loss, i.e. IL for all stakeholders is 3–4
times lower than in the original design.

Once the risks for the stakeholders are calculated as confidentiality and
integrity losses, they should be assessed. This is an extensive decision problem
that typically involves other criteria (e.g. resource footprint of countermeasures,
quality of service requirements, etc.). The following steps in risk assessment are
out of the scope of this paper and are treated elsewhere.

5 Conclusion and Future Work

In this paper we formalised confidentiality and integrity losses as two proba-
bilistic metrics that quantify risks associated with data assets within embedded
systems. Our proposed metrics account for system design, attack scenarios, and
different stakeholder preferences regarding data assets. We applied the metrics
on a smart metering device and showed their use for visualising of and reason-
ing about security risks. In addition, we illustrated how our methodology allows
analysing the impact of design decisions on the risks in question, demonstrating
their potential to increase security awareness of engineers within early design
stages. For future work, we aim to extend the tool set developed for the SEED
process [22] by integrating this methodology, and enable trading off risks against
other criteria, e.g. resources efficiency, when selecting suitable security measures.
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16. Madan, B.B., Goševa-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S.: A method
for modeling and quantifying the security attributes of intrusion tolerant systems.
Perform. Eval. 56(1–4), 167–186 (2004). (Elsevier)

17. Ouchani, S., Mohamed, O., Debbabi, M.: A formal verification framework for
SysML activity diagrams. J. Expert Syst. Appl. 41(6), 2713–2728 (2014)

18. Parsons, S.: Current approaches to handling imperfect information in data and
knowledge bases. IEEE Trans. Knowl. Data Eng. 8(3), 353–372 (1996)

19. Sommestad, T., Ekstedt, M., Johnson, P.: A probabilistic relational model for
security risk analysis. Comput. Secur. 29(6), 659–679 (2010). (Elsevier)

20. Stoneburner, G., Goguen, A.Y., Feringa, A.: SP 800–30. Risk Management Guide
for Information Technology Systems. In: NIST (2002)

21. Vasilevskaya, M., Gunawan, L.A., Nadjm-Tehrani, S., Herrmann, P.: Integrat-
ing security mechanisms into embedded systems by domain-specific modelling. J.
Secur. Commun. Networks 7(12), 2815–2832 (2013). (Wiley)

22. Vasilevskaya, M., Nadjm-Tehrani, S.: Model-based security risk analysis for net-
worked embedded systems. In: Conference on Critical Information Infrastructures
Security. Springer (2014)

23. Verendel, V.: Quantified security is a weak hypothesis: a critical survey of results
and assumptions. In: New Security Paradigms Workshop. ACM (2009)

24. Weiss, J.: A system security engineering process. In: National Computer Security
Conference. National Institute of Standards and Technology/National Computer
Security Center, pp. 572–581 (1991)


	Quantifying Risks to Data Assets Using Formal Metrics in Embedded System Design
	1 Introduction
	2 Related Work
	3 Quantifying Risks to Data Assets
	3.1 Proposed Metrics and Risks
	3.2 Basic Terms: Domain, Attack, and System
	3.3 Metrics and Their Derivation

	4 An Illustrative Example
	4.1 System and Attack Modelling
	4.2 Calculating Metrics

	5 Conclusion and Future Work
	References


