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Abstract. The distributed MILS (D-MILS) approach to high-assurance
systems is based on an architecture-driven end-to-end methodology that
encompasses techniques and tools for modeling the system architecture,
contract-based analysis of the architecture, automatic configuration of
the platform, and assurance case generation from patterns. Following
the MILS (“MILS” was originally an acronym for “Multiple Indepen-
dent Levels of Security”. Today, we use “MILS” as a proper name for an
architectural approach and an implementation framework, promulgated
by a community of interested parties, and elaborated by ongoing MILS
research and development efforts.) paradigm, the architecture is pivotal
to define the security policy that is to be enforced by the platform, and
to design safety mechanisms such as redundancies or failures monitoring.
In D-MILS we enriched these security guarantees with formal reasoning
to show that the global system requirements are met provided local poli-
cies are guaranteed by application components. We consider both safety-
related and security-related requirements and we analyze the decompo-
sition also taking into account the possibility of component failures. In
this paper, we give an overview of our approach and we exemplify the
architecture-driven paradigm for design and verification with an example
of a fail-secure design pattern.

Keywords: MILS · Contract-based design · Safety and security ·
Formal verification

1 Introduction

The MILS architectural approach [6] to the design and implementation of critical
systems involves two principal phases: the development of an abstract architec-
ture intended to achieve the stated purpose, and the implementation of that
architecture on a robust technology platform. During the first phase, essential
properties are identified that the system is expected to exhibit, and the con-
tributions to the achievement of those properties by the architectural structure
and by the behavioural attributes of key components are analyzed and justified.
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Safety and security are more and more intertwined problems. The poten-
tial impact of security threats on safety-critical systems is increasing due to the
interconnections of systems. Safety, security, and dependability are emergent
behavioural properties of a system interacting with its environment. The MILS
approach leverages system architecture to support vital system-level properties.
The architecture reflects an intended pattern of information flow and causality
referred to as the policy architecture, while key components of the architecture
enforce local policies through specific behavioural properties. By reasoning com-
positionally over the components about the policy architecture and the local
policies, many useful system-level properties may be established.

The MILS platform provides the technology for the concrete realisation of
an abstract system architecture. A separation kernel [31,33], the underlying
foundational component of the MILS platform, is used to establish and enforce
the system architecture according to its configuration data.

The assurance of a system’s properties depends not only on the analysis of its
design but on the correct implementation and deployment of that design. The
configuration of the separation kernel must faithfully implement the specified
architecture. This is guaranteed by the MILS platform configuration compiler
that is driven by a model of the architecture and the constraints of the tar-
get platform to synthesize viable and semantically correct configuration data
corresponding to the specified architecture.

In this paper, we give an overview of the integration of the MILS approach
with contract-based reasoning developed in the D-MILS project [1]. The app-
roach relies on the OCRA tool [13] to formally prove that the global system
requirements are met, provided local policies are guaranteed by application com-
ponents. We consider both safety-related and security-related requirements and
we analyze the decomposition also taking into account the possibility of com-
ponent failures. We exemplify the architecture-driven approach on the Starlight
Interactive Link example [5], extended with a safety mechanism in order to take
into account the possibility of component failures.

The rest of the paper is organized as follows: in Sect. 2, we give an overview of
D-MILS project; in Sect. 3, we detail how the MILS approach has been extended
with a contract-based design of the architecture and the related tool support;
in Sect. 4, we describe how we extended the Starlight example and the related
analysis of contract refinement; in Sect. 5, we give an overview of the related
work, while we conclude in Sect. 6.

2 Overview of D-MILS

The D-MILS concept extends the capacity of MILS to implement a single uni-
fied policy architecture to a network of separation kernels [28,29]. To accomplish
this, each separation kernel is combined with a new MILS foundational compo-
nent, the MILS networking system (MNS), producing the effect of a distributed
separation kernel. In the D-MILS Project [1] we have employed Time-Triggered
Ethernet (TTE) [32] as the MILS “backplane”, permitting us to extend the
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robustness and determinism benefits of a single MILS node to the network of
D-MILS nodes, referred to as the distributed MILS platform1 [26,27].

Since D-MILS systems are intended for critical applications, assurance of the
system’s critical properties is a necessary byproduct of its development. In such
applications, evidence supporting the claimed properties must often be presented
for consideration by objective third-party system certifiers. To achieve assurance
requires diligence at all phases of design, development, and deployment; and, at
all levels of abstraction: from the abstract architecture to the details of config-
uration and scheduling of physical resources within each separation kernel and
within the TTE interfaces and switches. Correct operation of the deployed sys-
tem depends upon the correctness of the configuration details, of the component
composition, of key system components2, and of the D-MILS platform itself.
Configuration is particularly challenging, because the scalability that D-MILS is
intended to provide causes the magnitude of the configuration problem to scale
as well. The concrete configuration data and scheduling details of the numerous
separation kernels and of the TTE are at a very fine level of granularity, and
must be complete, correct, and coherent.

The only reasonable prospect of achieving these various aspects of correct-
ness, separately and jointly, is through pervasive and coordinated automation as
embodied in the D-MILS tool chain. Inputs to the tool chain include, a declar-
ative model of the system expressed in our own MILS dialect of the Architec-
ture Analysis and Design Language (AADL) [18], facts about the target hard-
ware platform, properties of separately developed system components, designer-
imposed constraints and system property specifications, and human guidance
to the construction of the assurance case. Components of the tool chain per-
form parsing of the languages [19], transformations among the various internal
forms [20,21], analysis and verification [24], configuration data synthesis and
rendering [25], and pattern-based assurance case construction [22,23]. Outputs
of the tool chain include, proofs of specified system properties, configuration
data for the D-MILS platform, and an assurance case expressed in Goal Struc-
turing Notation (GSN) [2]. We say that D-MILS provides not only a robust and
predictable platform for system implementation, but also an end-to-end and
top-to-bottom method supported by extensive automation.

3 Architecture-Driven Integration of the MILS Approach
and Contract-Based Design

In this paper we focus on the integration of the MILS architectural approach with
contract-based design and analysis. Both MILS and contract-based approaches

1 Our D-MILS Platform is composed of the LynxSecure Separation Kernel from Lynx
Software Technologies, France, and TTE from TTTech, Austria.

2 The D-MILS Project regards proof of component correctness to a specification as a
“solved problem” and focusses on the correctness of the composition of components’
specifications, and of the configuration of the D-MILS platform.
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focus on architecture, and do so in a complementary way. MILS regards infor-
mation flow policy as an abstraction of architecture, and seeks to maximize the
correspondence between architectural structure and the desired information flow
policy of a system, which may rely on the behavior of key components to enforce
local policies that further restrict the maximal information flow permitted by the
architecture. The contract-based approach employs formalization and a method
to prove that the architecture decomposition represented in the set of contracts
of the components is a proper refinement of the system requirements. Contracts
specify the properties that the components individually, and the system as a
whole, are expected to guarantee, and the assumptions that their respective
environments must meet. Formal verification techniques are used to check that
the derivation of the local policies from the system requirements is correct.

An architecture is only as valuable as the integrity of its components and
connections. Recognizing the importance of integrity, MILS provides an imple-
mentation platform that can be configured to the “shape” of the architecture
by initializing it with specific configuration data compiled to embody the global
information flow policy.

The two methods are complementary and their combination yields a strong
result. The contract-based method proves that the composition of components
that satisfy their contracts will meet the system requirements, provided that
their integrity is protected. The MILS platform guarantees the integrity of com-
ponents and their configured connections, preventing interference that could
cause a verified component to fail to satisfy its contract3.

In Fig. 1, we show the approach applied to an abstract example. The system
A is decomposed into subsystems B and C, and B in turn is decomposed into
D and E. Each component is enriched with a contract (represented here by
green scrolls). If the contract refinement is correct, we have associated with the
architecture a formal proof that the system is correct provided that the leaf
components (D, E, and C) satisfy their contracts. Namely, if D and E satisfy
their contracts (D |= PD, E |= PE) and the contract refinement of B is correct
(γB(PD, PE) � PB), then the composition of D and E satisfies the contract of
B (γB(D,E) |= PB). Moreover, if C satisfies its contract (C |= PC) and the
contract refinement of A is correct (γA(PB , PC) � PA), then the composition of
B and C satisfies the contract of A (γA(B,C) |= PA).

In MILS terms, the architecture defines three subjects (D, E and C) and
prescribes that the only allowed communications must be the ones between D
and E and between E and C. This is translated into a configuration for the
D-MILS platform (taking into account other deployment constraints in terms of
available resources), which in this example encompasses two MILS nodes.

3.1 Tool Support for Contract-Based Reasoning

In D-MILS, the architecture is specified in a variant of AADL, called MILS-
AADL, similar to the SLIM language developed in the COMPASS project [7].
3 For the purpose of our work we assume that components can be constructed and

verified to satisfy their contracts.
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Fig. 1. The architecture is used for (1) formal reasoning to prove that the system
requirements are assured by the local policies, (2) configuration of the platform to
ensure the global information flow policy and the integrity of the architecture.

The COMPASS tool set has been extended in order to support the new language
and to enrich the components with annotations that specify different verifica-
tion properties such as contracts. The language used to specify the component
contracts is the one provided by the OCRA tool [13]. It consists of a textual
human-readable version of a First-Order Linear-time Temporal Logic. The logic
has been extended in D-MILS to support uninterpreted functions, i.e. functional
symbols that do not have a specific interpretation but are used to abstract pro-
cedures and the related results (such as CRC checksum or encryption), or to
label data with user-defined tags (such as “is high” or “low-level”, etc.).

Such a very expressive language required the development of effective tech-
niques to reason about the contracts. To this purpose the engine undertakes to
prove the contract refinement. The refinement is first translated by OCRA into
a set of entailment problems in temporal logic. nuXmv [11] translates this into a
liveness model-checking problem with a classic automata-theoretic approach [37].
The resulting problem requires proving that a certain liveness condition can be
visited only finitely many times along an (infinite) execution. This problem is in
turn reduced to proving an invariant on the reachable states with the K-liveness
techniques described in [17]. This has been extended to infinite-state systems and
to take into account real-time aspects in [15]. Finally, the invariant is proved with
an efficient combination of induction-based reasoning, explicit-state search, and
predicate abstraction, extending the IC3 algorithm [9] to the infinite-state case,
as described in [14].
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4 Starlight Example

4.1 Architecture

In this section, we exemplify the approach on an example taken from the lit-
erature [5,12]. The Starlight Interactive Link is a dispatching device developed
by the Australian Defense Science and Technology Organization to allow users
to establish simultaneous connections to high-level (classified) and low-level net-
works. The idea is that the device acts as a switch that the user can control
to dispatch the keyboard output to either a high-level server or to a low-level
server. The user can use the low-level server to browse the external world, send
messages, or have data sent to the high-level server for later use.

Fig. 2. Architecture of the D-MILS Starlight example.

Figure 2 shows the architecture of the Starlight Interactive Link as formal-
ized in D-MILS. The components H and L represent respectively the high-level
and low-level networks. The low-level network can exchange information with
the external world. The component D represents the Starlight device, which
receives commands from the user and dispatches the commands to H or to L
based on an internal state. The state is changed with two switch commands,
namely switch to low and switch to high. The original architecture has only the
blue components, with D in place of E . We extended this architecture with a
safety mechanism to make the system “fail-secure” with respect to failures of
the dispatcher: the dispatcher is extended with a monitor M ; the communication
of the dispatcher to L is filtered by M that in case of failure of D blocks the
communication. To avoid confusion we refer to the actual device that is filtered
by M as the dispatcher (D), while to the component consisting of D and M as
the extended dispatcher E .
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4.2 System Contract

The architecture has been enriched with contracts that formalize the functional
requirements to ensure that the system responds correctly to the user commands,
and the security requirement that there is no leakage of high-level data. Here,
we focus on the latter, which says:

Req-Sys-secure: No high-level data shall be sent by L to the external world.
The architecture ensures Req-Sys-secure assuming the following requirement
on the user:

Req-User-secure: The user shall switch the dispatcher to high before entering
high-level data.
Moreover, we consider the following safety requirement:

Req-Sys-safe: No single failure shall cause a loss of Req-Sys-secure.

We formalized the requirements of the system and of the components using
OCRA contracts. In the following, we use the concrete syntax accepted by the
tool. We briefly clarify the used notation: “and”, “or”, “not”, “implies” are stan-
dard Boolean operators; “always”, “never”, “since”, “in the past” are standard
temporal operators of LTL with past also referred to with the mathematical
notation G, G¬, S, O; “last data” is a built function to refer to the last data
passed by the event of a event data port; italics names refer to ports or uninter-
preted functions declared in the model.

The requirements Req-Sys-secure and Req-User-secure have been formalized
into the FO-LTL formulas:

Formal-Sys-secure: never is high(last data(outL))
Formal-User-secure: always ((is high(last data(cmd))) implies ((not

switch to low) since switch to high))

Note that the formalization of Req-User-secure improves the informal require-
ment, which is not precise. A literal formalization would be:

Formal-User-secure-wrong: always ((is secure(last data(cmd))) implies (in
the past switch to high))

but this is wrong, because we have to ensure that the last switch was a
switch to high, without a more recent switch to low4. We can actually improve
the informal requirement as:

Req-User-secure-new: Whenever the user sends commands with high data,
she shall previously issue a switch to high and no switch to low since the last
switch to high.

which is formalized by Formal-User-secure.

4 As suggested by one of the reviewers, in an alternative model, we could use only one
event data instead of two switch events and ensure that the last switch was low.
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Note that while Req-Sys-secure is a requirement on the implementation of the
Starlight system, Req-User-secure is actually a requirement on its environment
(the user). This is reflected by the system contract specification, which sets
Formal-Sys-secure as the guarantee and Formal-User-secure as the assumption
of the system contract.

4.3 Component Contracts

The dispatcher ensures the system security requirement with the following local
requirement:

Req-D-low-mode: The dispatcher shall send commands to L only if the last
switch was a switch to low and the input command has been received after.

formalized into:

Formal-D-low-mode: always (cmdL implies (((not switch to high) since
switch to low) and ((not switch to low) since cmd)))

In order to fulfill requirement Req-Sys-safe, we also filter the commands to L
by a monitor M , which has a requirement Req-M-low-mode identical to Req-
D-low-mode, and formalized in the same way. Thus, D passes also the switches
to the monitor and must ensure the following requirement:

Req-D-fw-switch: Whenever the dispatcher receives a switch to high, it shall
pass it to M before doing any other actions and it sends a switch to low to
M only if the last received switch was a switch to low.

formalized into:

Formal-D-fw-switch: always ((switch to high implies ((not (cmdH or cmdL or
return or monitor switch to low)) until monitor switch to high)) and (mon-
itor switch to low implies ((not switch to high) since switch to low)));

Finally, in order to make the refinement correct, we must require all compo-
nents to not invent high data. We express this by requiring that D , M , and L
only pass the data that they have received. Thus, for D , we require that:

Req-D-data: D shall pass to cmdL only the data that has been received with
last cmd.

formalized into:

Formal-D-data: always ((cmdL implies ((in the past cmd) and (last data
(cmdL) = last data(cmd)))))

The requirements Req-M-data and Req-L-data, of M and L respectively,
are analogous. Note that these formulas are actually guarantees of corresponding
contracts, without assumptions (i.e. assumptions equal to true).
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4.4 Analysis Results

Given the above contract specifications, OCRA can prove the system Req-Sys-
secure assuming Req-User-secure is correctly refined by the contracts of D , M ,
and L (see [16] for more details on the technique). One can also show that by
using Formal-User-secure-wrong instead of Formal-User-secure the refinement is
not correct and yields a counterexample trace execution.

Fig. 3. Fault-tree generated from the contract refinement. Events are labeled with the
name of the component instance followed by the name of the contract, followed either
by FAILURE O, which represents the failure of the component to satisfy the contract,
or by FAILURE I, which represents the failure of the component environment to satisfy
the contract assumption.

In order to prove Req-Sys-safe, we use OCRA to produce a fault tree showing
the dependency of the system failure on the failure of the components (see [8] for
more details on the technique). The generated fault tree is exhibited in Fig. 3.
It shows that neither Req-D-low-mode nor Req-M-low-mode are single points
of failure. Instead, Req-D-data, Req-M-data, Req-L-data are single points of
failure. While the failure of Req-L-data does not represent real threats since L
never receives high data, the failure of Req-D-data and Req-M-data could result



Combining MILS with Contract-Based Design 273

in D or M sending information that had been temporary stored in a buffer used
for handling multiple requests or in a cache for improving performance. This can
be solved for example by ensuring that such memories are deleted before every
switch to low is completed.

5 Related Work

Security-by-contract is an approach proposed in [30] to increase the trust in
code downloaded on mobile applications. The work proposes a framework where
downloaded code can be checked according to a security contract. With respect
to this work, there is no focus on the system architecture, the refinement of
contracts, or safety analysis taking into account component failures.

Information flow contracts are supported in SPARK, a safety-critical subset
of Ada [3,4]. The SPARK contracts are specified at software level on procedures.
So, in principle, they are complementary to our approach, which focuses more
on the system-level architecture. As for future work, we will consider to extend
the approach with information flow contracts. Currently, the information flow
can be specified only at coarse level with the connections in the architecture. To
our knowledge, there are no works combining SPARK information flow contracts
with safety analysis.

In [10], an avionic case-study architecture is formalized in Alloy and analyzed
with respect to safety and security requirements. Similarly to our approach, first-
order logic is used to formalize the requirements, although Alloy does not support
temporal operators. The case study formalizes also security attacks that are
not present in our example. Different to our approach, the failures and security
attacks are explicitly modeled, while in our case we exploit a feature of OCRA to
automatically inject the failures starting from the nominal contract specification.
Our conjecture is that the same case study of [10] can be formalized in MILS-
AADL or directly in OCRA with the possibility of checking contract refinement
and performing contract-based fault-tree analysis.

Another case study on validation of safety and security requirements has
been presented in [35], but it focuses on testing.

Fault trees and FMEA have been extended in [34,36] to consider also secu-
rity aspects. Different to our approach and other model-based safety analysis
techniques, these works are not based on the automatic generation of fault trees
and FMEA tables from the system design.

6 Conclusions

In this paper, we briefly overview the approach to safety and security undertaken
in D-MILS and we describe a small example of the D-MILS approach to the ver-
ification of the system architecture with respect to safety and security require-
ments. The example is based on the Starlight device that switches commands
between high-level and low-level servers. The requirements of the system and its
components have been formalized using OCRA contracts, their refinement has
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been verified and analyzed taking into account the failure of components. This
is a preliminary application of the methodology, which will be further evaluated
in the D-MILS project demonstrators. In the future, we would like to integrate
contracts and their analysis with finer-grained information flow properties as do
the SPARK contracts discussed in [3,4].

Acknowledgments. This work was performed on the D-MILS project (“Distributed
MILS for Dependable Information and Communication Infrastructures”, European
Commission FP7 ICT grant no. 318772), with our partners fortiss, Verimag, RWTH
Aachen, U of York, Frequentis, Lynx, TTTech, and INRIA, funded partially under the
EC’s Seventh Framework Programme.

References

1. D-MILS Project. http://www.d-mils.org/
2. GSN community standard. Technical report, Origin Consulting (York) Limited

(2011)
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35. Sojka, M., Krec, M., Hanzálek, Z.: Case study on combined validation of safety &
security requirements. In: SIES, pp. 244–251 (2014)

36. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding
security problems that threaten the safety of a system. In: SAFECOMP Workshop
DECS (2013)

37. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) LC 1995. LNCS, vol. 1043, pp. 238–266. Springer,
Heidelberg (1995)


	Combining MILS with Contract-Based Design for Safety and Security Requirements
	1 Introduction
	2 Overview of D-MILS
	3 Architecture-Driven Integration of the MILS Approach and Contract-Based Design
	3.1 Tool Support for Contract-Based Reasoning

	4 Starlight Example
	4.1 Architecture
	4.2 System Contract
	4.3 Component Contracts
	4.4 Analysis Results

	5 Related Work
	6 Conclusions
	References


