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Preface

It has become a tradition to organize workshops in conjunction with the annual
SAFECOMP conferences. This year, we accepted proposals for 5 domain-specific
high-quality workshops. This resulted in 5 workshops where safety and safety-related
security formed the core content. This volume presents the proceedings of these
workshops at the Delft University of Technology on September 22, 2015, preceding the
SAFECOMP 2015 conference from 23 to 25 September. The SAFECOMP 2015
proceedings can be found in LNCS volume 9337.

The workshops allow for deep immersion into dedicated topics. This year’s
workshops are sequels to earlier workshops, which shows that the workshops are
relevant to the scientific society that deals with safety in programmable industrial
systems. The workshops maintained high-quality standards and were organized by
well-known chairs and respected Program Committees. The workshops constitute a
valuable addition to the SAFECOMP conference and the scientific society surrounding
it. This year’s workshops were the following:

• ASSURE 2015 - Assurance Cases for Software-Intensive Systems, chaired by Ewen
Denney, Ibrahim Habli and Ganesh Pai;

• DECSoS 2015 - EWICS/ERCIM/ARTEMIS Dependable Cyber-physical Systems
and Systems-of-Systems Workshop, chaired by Erwin Schoitsch and Amund
Skavhaug;

• ISSE 2015 - International Workshop on the Integration of Safety and Security
Engineering, chaired by Laurent Rioux, John Favaro, and Sanja Aaramaa;

• ReSA4CI 2015 - International Workshop on Reliability and Security Aspects for
Critical Infrastructure Protection, chaired by Silvia Bonomi and Ilaria Matteucci;

• SASSUR 2015 - International Workshop on Next Generation of System Assurance
Approaches for Safety-Critical Systems, chaired by Alejandra Ruiz, Tim Kelly and
Jose Luis de la Vara.

This year 36 papers were accepted, resulting in 3 full-day and 2 half-day challenging
workshops. The authors are from Austria, Canada, France, Germany, Hungary, Italy,
Ireland, Japan, the Netherlands, Norway, Portugal, Singapore, Slovakia, Spain,
Sweden, the UK, and the USA. Similar to the SAFECOMP conference, the workshops
provide a truly international platform where academia and industry meet.

It has been an honor and pleasure for us, as the SAFECOMP 2015 program chairs,
to work with the workshop chairs and the authors. We thank the workgroup chairs,
authors, the members of workshop Program and Steering Committees and the Local
Organizing Committee for doing a great job and for their pleasant cooperation. We also
thank Saba Chockalingam and Yamin Huang for their contribution in formatting and
completing the proceedings.

September 2015 Floor Koornneef
Coen van Gulijk
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ASSURE 2015

The 3rd International Workshop on Assurance
Cases for Software-Intensive Systems

Ewen Denney1, Ibrahim Habli2, and Ganesh Pai1

1 SGT/NASA Ames Research Center, Moffett Field, CA 94035, USA
{ewen.denney, ganesh.pai}@nasa.gov

2 Department of Computer Science, University of York, York YO10 5DD, UK
ibrahim.habli@york.ac.uk

1 Introduction

Software-intensive systems play a key role in high-risk applications. Increasingly,
regulations, standards, and guidelines now mandate and/or recommend that assurance
cases be developed as part of the process for certification/approval of such systems,
e.g., in defense, aviation, automotive, and healthcare systems. An assurance case is a
reasoned argument, supported by a body of evidence, that a system exhibits certain
behavior in a defined environment. Typically, assurance cases focus on a particular
property—e.g., safety, security, or more generally, dependability—and are developed
in a phased manner at the system level, with relations to the system development
activities, i.e., requirements development, design, implementation, verification, and
deployment. Ultimately, assurance arguments will form a core part of the assurance
case for the wider system.

This volume contains the papers presented at the 3rd International Workshop on
Assurance Cases for Software-intensive Systems (ASSURE 2015), collocated this year
with the 34th International Conference on Computer Safety, Reliability, and Security
(SAFECOMP 2015), in Delft, the Netherlands. As with the previous two editions of
ASSURE, this year’s workshop aims to provide an international forum for presenting
emerging research, novel contributions, tool development efforts, and position papers
on the foundations and applications of assurance case principles and techniques. The
workshop goals are to: i) explore techniques to create and assess assurance cases for
software-intensive systems; ii) examine the role of assurance cases in the engineering
lifecycle of critical systems; iii) identify the dimensions of effective practice in the
development/evaluation of assurance cases; iv) investigate the relationship between
dependability techniques and assurance cases; and, v) identify critical research chal-
lenges towards defining a roadmap for future development.



2 Program

ASSURE 2015 began with an invited keynote talk by Pippa Moore of the UK Civil
Aviation Authority (CAA). Nine papers were accepted this year, covering four themes
that address the workshop goals: foundations, methodology and patterns, tool support
and tool demonstrations, and applications. Papers under the ‘foundations’ theme
considered topics such as formalizing the structure of assurance arguments, and the
representation of confidence. The ‘methodology and patterns’ theme included papers
that dealt with argument patterns addressing security and safety, as well as lifecycle
approaches for safety and dependability. Papers concerning domain-specific
model-based tools for safety argumentation, systems for safety condition monitoring,
and building blocks for assurance cases comprised the ‘tool support and tool demon-
strations’ theme, whereas the ‘applications’ theme mainly dealt with medical device
assurance. Similar to the previous year’s workshop, ASSURE 2015 concluded with a
panel discussion, where researcher and practitioner panelists discussed the role of
argumentation in certification and safety risk management.

3 Acknowledgments

We thank all those who submitted papers to ASSURE 2015 and congratulate those
authors whose papers were selected for inclusion into the workshop program and
proceedings. For reviewing the submissions and providing useful feedback to the
authors, we especially thank our distinguished Program Committee members. Their
efforts have resulted in an exciting workshop program and, in turn, a successful third
edition of the ASSURE workshop series. Finally, we thank the organizers of SAFE-
COMP 2015 for their support of ASSURE 2015.

VIII ASSURE 2015
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DECSoS 2015

Introduction ERCIM/EWICS/ARTEMIS
Workshop on Dependable Embedded

and Cyber-Physical Systems
and Systems-of-Systems at SAFECOMP 2015

European Research and Innovation Initiatives in the Area
of Cyber-Physical Systems and Systems-of-Systems

(selective overview)

Erwin Schoitsch1 and Amund Skavhaug2

1 AIT Austrian Institute of Technology GmbH, Vienna, Austria
erwin.schoitsch@ait.ac.at

2 NTNU, Trondheim, Norway
Amund.Skavhaug@ntnu.no

1 Introduction

The DECSoS workshop at SAFECOMP follows already its own tradition since 2006.
In the past, it focused on the conventional type of “dependable embedded systems”,
covering all dependability aspects as defined by Avizienis, Lapries, Kopetz, Voges and
others in IFIP WG 10.4. To put more emphasis on the relationship to physics,
mechatronics and the notion of interaction with an unpredictable environment, the
terminology changed to “cyber-physical systems” (CPS). Collaboration and
co-operation of these systems with each other and humans, and the interplay of safety
and security are leading to new challenges in verification, validation and certification
and qualification respectively.

In a highly interconnected world of highly automated systems, a finite number of
independently operable and manageable systems including so-called “legacy systems”
is networked together for a period of time to achieve a certain higher goal as constituent
systems of a “system-of-systems” (SoS). Examples are the smart power grid with
power plants and power distribution and control, smart transport systems (rail, traffic
management with V2V and V2I facilities, air traffic control systems), advanced man-
ufacturing systems (“Industry 4.0”), mobile co-operating autonomous robotic systems,
smart buildings up to smart cities and the like.

Society as a whole strongly depends on CPS and SoS - thus it is important to
consider dependability (safety, reliability, availability, security, maintainability, etc.),
resilience, robustness and sustainability in a holistic manner. CPSs and SoS are a
targeted research area in Horizon 2020 and public-private partnerships such as ECSEL



(Electronic Components and Systems for European Leadership), which integrates the
former ARTEMIS (Advanced Research and Technology for Embedded Intelligence
and Systems), ENIAC and EPoSS efforts, where industry and research (“private”) are
represented by the industrial associations ARTEMIS-IA (for ARTEMIS, embedded
intelligence and systems), AENEAS (for ENIAC, semiconductor industry) and EPoSS
(for “Smart Systems Integration”), and the public part is represented by the EC and the
national public authorities of the member states which take part in the ECSEL Joint
Undertaking. Funding comes from the EC and the national public authorities
(“tri-partite funding”: EC, member states, project partners).

2 ARTEMIS/ECSEL:
The European Cyber-physical Systems Initiative

This year the workshop is co-hosted by the ARTEMIS projects:

• CRYSTAL (“Critical Systems Engineering Factories”, http://www.crystal-artemis.eu),
• ARROWHEAD1 (“Ahead of the Future”, http://www.arrowhead.eu/),
• EMC2 (“Embedded Multi-Core systems for Mixed Criticality applications in

dynamic and changeable real-time environments”, http://www.artemis-emc2.eu/)
and

• R5-COP (“Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating
Systems”, http://www.r5-cop.eu/)

and will as well present work from ARTEMIS projects, which has been finished
recently:

• MBAT (“Combined Model-based Analysis and Testing of Embedded Systems”,
http://www.mbat-artemis.eu) and

• nSafeCer (“Safety Certification of Software-intensive Systems with Reusable
Components”, http://www.safecer.eu).

ARTEMIS was one of the European, industry-driven research initiatives and is now
part of the ECSEL PPP. The current ARTEMIS projects will, however, be continued
according to the ARTEMIS rules, but managed by the ECSEL JU. The six co-hosting
ARTEMIS projects are described briefly:

MBAT was targeting at achieving better results by combining test and analysis
methods. The MBAT project strongly fostered the development of high-quality
embedded systems in the transportation sector at reduced costs (in short: higher quality
embedded systems at lower price). Higher quality embedded systems in turn increases
the overall quality and market value of the transportation products. Therefore, close
co-operation with related projects was envisaged, especially with those of the
ARTEMIS Safety & High-reliability Cluster (e.g. CESAR, MBAT, SafeCer, iFEST,
R3-COP, CRYSTAL).

nSafeCer aimed at increased efficiency and reduced time-to-market together with
increased quality and reduced risk through composable certification of safety-relevant
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embedded software-intensive systems in the industrial domains of automotive and
construction equipment, avionics, and rail. nSafeCer provided support for efficient
reuse of safety certification arguments and prequalified components within and across
industrial domains. This addresses the overarching goal of the ARTEMIS JU strategy
to overcome fragmentation in the embedded systems markets.

R5-COP focuses on agile manufacturing paradigms and specifically on modular
robotic systems. Based on existing and newly developed methods for a formal mod-
elling of hardware and software components, R5-COP will support model-based
design, engineering, validation, and fast commissioning. Using existing interface and
middleware standards R5-COP will strongly facilitate integration of components from
various suppliers.

CRYSTAL, a large ARTEMIS Innovation Pilot Project (AIPP), aims at fostering
Europe’s leading edge position in embedded systems engineering by facilitating high
quality and cost effectiveness of safety-critical embedded systems and architecture plat-
forms. Its overall goal is to enable sustainable paths to speed up the maturation, inte-
gration, and cross-sector reusability of technological and methodological bricks in the
areas of transportation (aerospace, automotive, and rail) and healthcare providing a critical
mass of European technology providers. CRYSTAL will integrate the contributions of
previous ARTEMIS projects (CESAR, MBAT, iFEST, SafeCer etc.) and further develop
the ARTEMIS RTP (Reference Technology Platform) and Interoperability Specification.

ARROWHEAD, a large AIPP addressing the areas production and energy system
automation, intelligent-built environment and urban infrastructure, is aiming at enabling
collaborative automation by networked embedded devices, from enterprise/worldwide
level in the cloud down to device level at the machine in the plant. The goal is to achieve
efficiency and flexibility on a global scale for five application verticals: production
(manufacturing, process, energy), smart buildings and infrastructures, electro-mobility
and virtual market of energy.

EMC2 is up to now the largest ARTEMIS AIPP with EMC2 bundling the power
for innovation of 100 partners from embedded industry and research from 19 European
countries and Israel with an effort of about 800 person years and a total budget of about
90 million Euro. The objective of the EMC2 project is to develop an innovative and
sustainable service-oriented architecture approach for mixed criticality applications in
dynamic and changeable real-time environments based on multi-core architectures.

It provides the paradigm shift to a new and sustainable system architecture which is
suitable to handle open dynamic systems:

• Dynamic Adaptability in Open Systems, scalability and utmost flexibility,
• Utilization of expensive system features only as Service-on-Demand in order to

reduce the overall system cost,
• Handling of mixed criticality applications under real-time conditions,
• Full scale deployment and management of integrated tool chains, through the entire

lifecycle.

The AIPPs ARROWHEAD and EMC2 are addressing “Systems-of-Systems”
aspects in the context of critical systems, whereas SafeCer, MBAT and CRYSTAL are
devoting their major efforts towards creating a sustainable eco-system of a CRTP
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(Collaborative Reference Technology Platform) based on an ARTEMIS common IOS
(Interoperability Specification).

3 This Year’s Workshop

The workshop DECSoS 2015 provides some insight into an interesting set of topics to
enable fruitful discussions during the meeting and afterwards. The mixture of topics is
hopefully well balanced, with a certain focus on cyber security & safety co-analysis
and on modelling, simulation and verification. Presentations are mainly based on the
ARTEMIS/ECSEL projects mentioned above and on basic research respectively
industrial developments of partners companies and universities.

The session starts with Introduction to the ERCIM/EWICS/ARTEMIS DECSoS
Workshop setting the European Research and Innovation scene. Safety & Cyber
security co-analysis and engineering are addressed in the first session (two from project
EMC2, one from ARROWHEAD). Robotics reconfiguration testing (R5-COP), motion
control certification and collision avoidance are topics in the session on robotics and
motion control. Contract modelling and verification in railway applications (MBAT),
multi-core motor drive control in aerospace (EMC2) and robustness testing with a
Flexray bus tester supporting automated safety certification (nSafeCer) are contribu-
tions in the Modelling and Verification session. Two particular papers are presented in
the last session on dependability: a perfectly scalable real-time system for automotive
vehicle engine and behavior test (EMC2) on the one hand and a students’ lab exper-
iment on how to build dependable Cyber-Physical Systems with redundant consumer
single-board Linux computers on the other hand.

As chairpersons of the workshop, we want to thank all authors and contributors
who submitted their work, and want to express our thanks to the SAFECOMP orga-
nizers who provided us the opportunity to organize the workshop at SAFECOMP 2015
in Delft. Particularly we want to thank the EC and national public funding authorities
who made the work in the research projects possible. We do not want to forget the
continued support of our companies and organizations, of ERCIM, the European
Research Consortium for Informatics and Mathematics with its Working Group on
Dependable Embedded Software-intensive Systems, and EWICS, the creator and main
sponsor of SAFECOMP, with its working groups, who always helped us to learn from
their networks.

We hope that all participants will benefit from the workshop, enjoy the conference
and accompanying programmes and will join us again in the future!

Erwin Schoitsch Amund Skavhaug
AIT Austrian Institute of Technology GmbH The Norwegian University
Safety & Security Department of Science and Technology
Vienna, Austria Trondheim, Norway
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2nd International Workshop on the Integration
of Safety and Security Engineering

Laurent Rioux1, John Favaro2, and Sanja Aaramaa3

1 THALES Research & Technology
1, av Augustin Fresnel, 91767 Palaiseau Cedex, France

laurent.rioux@thalesgroup.com
2 Intecs S.p.A. Via Umberto Forti 5, 56121 Pisa, Italy

john.favaro@intecs.it
3 Department of Information Processing Science,
University of Oulu P.O. Box 3000, 90014 Finland

sanja.aaramaa@olou.fi

1 Introduction

As safety-related systems are increasingly opened up to the outside world through
innovations in communication and value-added services, the need for introducing
security engineering practices into the process has emerged. Exacerbating the problem
is that the safety and security have the potential to interact with each other in mission
critical systems in ways that are often subtle and difficult to analyze separately.
Observations of this phenomenon has led to increasing interest in developing joint
approaches to safety and security engineering, culminating in their integration in a
unified approach.

At the First International Workshop on the Integration of Safety and Security
Engineering (ISSE 2014) in Florence, Italy, a forum was established for sharing ideas
and experience from research and practice. Keynote speakers from prominent stan-
dardization committees reported on the status of current standardization efforts.
A roundtable discussion brought out concerns and priorities within ongoing industrial
initiatives.

2 Workshop Format

Building upon the foundation laid by its predecessor, ISSE 2015 transitions to a full
conference format. The selected papers bring the latest pertinent results from integrated
safety and security engineering research and practice to the community. Methodologies
(A Combined Safety-Hazards and Security-Threat Analysis Method for Automotive
Systems), tools (Safety and Security Assessment of Behavioral Properties Using Alloy),
and techniques (Sequential and Parallel Attack Tree Modelling) are all represented.



Novel approaches are combined with existing standard approaches (Combining MILS
with Contract-Based Design for Safety and Security Requirements). New perspectives
on domain-specific application areas are provided (Security Analysis of Urban Railway
Systems: The Need for a Cyber-Physical Perspective). In summary, ISSE 2015 brings
the issues brought out in its predecessor workshop into a full research context,
establishing the basis for further progress in future editions of ISSE.

3 Acknowledgements

The ISSE 2015 workshop was supported by the following projects:

• Multi-Concerns Interactions System Engineering (MERgE). The ITEA 2 project
MERgE (www.merge-project.eu) aims to develop and demonstrate innovative
concepts and design tools to address multi-concerns interactions in systems, tar-
geting the elaboration of effective architectural solutions with a focus on safety and
security.

• Safety and Security Modelling (SESAMO). The recently completed ARTE-
MIS JU SESAMO project (www.sesamo-project.eu) addressed the root causes of
problems arising with convergence of safety and security in embedded systems. The
project delivered a complete methodology described in publicly available delive-
rables, together with fully elaborated and analyzed building blocks for use in the
construction of safety and security related systems. An extensive tool chain was
produced that supports all aspects of the combined methodology.
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ReSA4CI 2015

Introduction to the Safecomp 2015 Workshop:
Reliability and Security Aspects

for Critical Infrastructure Protection

Silvia Bonomi1 and Ilaria Matteucci2

1 Dipartimento di Ingegneria Informatica Automatica
e Gestionale “Antonio Ruberti”

Università degli Studi di Roma “La Sapienza”
Via Ariosto 25, 00185, Roma, Italy

2 IIT-CNR, Via G. Moruzzi, 1 Pisa, Italy
bonomi@dis.uniroma1.it, ilaria.matteucci@iit.cnr.it

1 Overview

The ReSA4CI workshop aims at providing a forum for researchers and engineers in
academia and industry to foster an exchange of research results, experiences, and
products in the area of reliable, dependable, and secure computing for critical systems
protection from both a theoretical and practical perspective. The ultimate goal of the
ReSA4CI workshop is to envision new trends and ideas about aspects of designing,
implementing, and evaluating reliable and secure solutions for the next generation
critical infrastructures.

Critical Infrastructures (CIs) present several challenges in the fields of distributed
systems, dependability and security methods and approaches crucial for improving
trustworthiness on ICT facilities. The workshop aims at presenting the advancement on
the state of art in these fields and spreading their adoption in several scenarios
involving main infrastructures for modern society. Indeed, CIs are at the hearth of any
advanced civilized country. These infrastructures include among others: finance and
insurance, transportation (e.g. mass transit, rails and aircrafts), public services (e.g., law
enforcement, fire and emergency), energy, health care. Hence, their destruction or
disruption, even partially, may, directly or indirectly, strongly affect the normal and
efficient functioning of a country. The global scope and massive scale of today’s
attacks necessitate global situational awareness, which cannot be achieved by the
isolated local protection systems residing within the IT boundaries of individual
institutions. This leads to foster the investigation of innovative methodologies for
gathering, processing and correlating huge amounts of data understanding anomaly
behaviors and learning automatically always-evolving cyber threats with the final aim
to prevent and/or mitigate their consequences.

The workshop is at its second edition. The first one has been held in Florence on
September 9th, 2014, co-located with the SAFECOMP 2014 conference, and it was



able to attract 20-30 participants that actively took part to the event by questioning the
speakers and participating to emerging discussions.

2 Workshop Program

The program of ReSA4CI 2015 consists of 5 high-quality papers, covering the
above-mentioned topics, grouped as follows:

1 Session 1: Security and Dependability Analysis of CI

– Jonas Wäfler and Poul Heegaard. “How to use Mobile Communication in
Critical Infrastructures: a Dependability Analysis”.

– Kateryna Netkachova, Robin Bloomfield, Peter Popov and Oleksandr Netkac-
hov. “Using Structured Assurance Case Approach to Analyse Security and
Reliability of Critical Infrastructures”.

2 Session 2. Evaluation methodologies for CI

– Andrea Ceccarelli and Nuno Silva. “Analysis of Companies Gaps in the
Application of Standards for Safety-Critical Software”

– Marco Tiloca, Francesco Racciatti and Gianluca Dini. “Simulative evaluation of
security attacks in networked critical infrastructures”

– Szilvia Varro-Gyapay, Dániel László Magyar, Melinda Kocsis-Magyar, Katalin
Tasi, Attila Hoangthanh Dinh, Ágota Bausz and László Gönczy. “Optimization
of reconfiguration mechanisms in Critical Infrastructures”

Each paper was selected according to at least three reviews produced mainly by
Program Committee members and a little percentage of external reviewers. Selected
papers come from several countries around the world. In addition, we are glad to host
Dr. Palmer Colamarino from RHEA Group. He has a huge expertise in the domain of
Critical Infrastructure protection, the core topic of our Workshop, and he will give a
talk highlighting main challenges and research issues in the field.

3 Thanks

We would like to thank the SAFECOMP organization committee and collaborators for
their precious help in handling all the issues related to the workshop. Our next thanks
go to all authors of the submitted papers who manifested their interest in the work-
shop. With their participation the second edition of the Workshop on Reliability and
Security Aspects for Critical Infrastructure Protection (ReSA4CI 2015) becomes a real
success and an inspiration for future workshops on this new and exciting area of
research. Special thanks are finally due to PC members and additional reviewers for the
high quality and objective reviews they provided.
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Informing Assurance Case Review Through
a Formal Interpretation of GSN Core Logic

Victor Bandur(B) and John McDermid

University of York, Heslington, UK
{victor.bandur,john.mcdermid}@york.ac.uk

Abstract. A formalization of a logical subset of Goal Structuring Nota-
tion (GSN) arguments is presented. The aim is to reveal the conditions
which must be true in order to guarantee that an argument thus formal-
ized is internally consistent. These conditions justify a number of system-
atic questions which must be answered in the affirmative if a standard
safety argument based on natural language is to be believed to be free
from inconsistencies. The relevance of these findings to the combination
of GSN and controlled natural language with first-order logic semantics
is discussed.

Keywords: GSN · Formalization · Assurance cases · Logic

1 Introduction

In practice, the core of assurance arguments is based on natural language, even if
formalisms are used in some aspects of the corresponding system development.
One of the tenets of computer science is that precision of expression can be
achieved through the use of formalized languages. Despite the need for precision
and lack of ambiguity in assurance arguments, the two have not yet been success-
fully brought together. In this work we focus on the popular Goal Structuring
Notation (GSN) [6] for assurance argument structuring to investigate how full
formalization of an assurance argument might look, what can be learnt from this
and what can be done to bridge the gap between logical formality and practical
assurance argumentation.

Our approach takes the view that the structure of the argument should be
such that the logic which binds the various elements of the argument together
could be formally verified and can not be compromized by reasoning flaws or
by inconsistencies in the information upon which the argument relies. The argu-
ment should nevertheless rely on inputs from various sources, be they formal
verification, testing or review by experts. This can be seen as formal assurance
argumentation modulo engineering expertise. Our proposal draws inspiration
from a hypothetical question: What if a fully formal assurance argument were
made about a refinement-driven development?

A fully formal assurance argument is not what is desired in practice. Rather,
the results of formal scrutiny of parts of the system (automatic code verification
c© Springer International Publishing Switzerland 2015
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with the aid of logical property annotations, formalization inside a theorem
prover etc.) are usually offered as evidence in support of the overall argument.
That is not to say, however, that with sufficient modelling, it is impossible to
offer a fully formal assurance argument for certain types of system, but this
is normally impractical. The value of such fully formal arguments lies in what
they can teach us about composing natural language arguments. We show that
in a formal setting the argument comes with a number of proof obligations
regarding its consistency. We believe that these obligations remain valid for
informal assurance arguments, and that discharging them – albeit informally,
but nevertheless with extreme objectivity – leads to increased confidence in the
correctness of the informal argument.

The rest of this work is structured as follows. First we give a high-level
overview of the role that formalization currently plays in assurance argumenta-
tion. Then we begin the technical discussion with an introduction to the funda-
mental GSN elements which form the backbone of our formal treatment (Sect. 3)
and continue with the formalization proper (Sect. 4). Argument consistency in
the formal setting is then discussed (Sect. 5), followed by a discussion of the rel-
evance of our findings to assurance arguments based on natural language, and
future work (Sect. 6).

2 Formalization in Assurance Argumentation

The question of what roles formalization can play in assurance argumentation has
been asked in the literature, but answers furnishing a general approach are not
common. At the most abstract end, Rushby [9] proposes a formalization of the
top-level structure of safety cases. His approach recognizes that the experience of
seasoned engineers should not be ignored or discarded in favour of a fully formal
safety argument. He argues that, since review is an accepted element of safety
argumentation, a “formal safety case” should make use of the outcomes of such
reviews, and that these results should be used as axioms of the formal framework
of the safety case. This allows the top-level argument to make claims that are
contingent on the favourable outcomes of such reviews. The argument structure
can thus be formalized, but its axioms come from judgment proclaimed through
the established review process. A far more detailed formal structuring of the
system development and safety argumentation process is proposed by Hall et al.
[7], which also integrates existing methods for safety assessment, but at much
finer resolution regarding the roles of the various steps of, and inputs to, the
process as a whole. At the least abstract end, but still allowing for qualitative
assessments, Giorgini et al. [4] similarly formalize the overall structure of the
argument, but allow for some flexibility in the logic used to make the case,
through notions of full and partial satisfaction and denial of goals. In the work
of Basir et al. [2] we find the role of safety arguments reversed, with the argument
used to abstract and elucidate detailed mechanized proofs.

At both extremes, the formalism proposed forms a method for evaluating the
soundness and completeness of the overall argument. Between the extremes we
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find that formalisms are not used for the sake of the argument itself, but rather
as a means of increasing the “strength” of a particular item of evidence offered
in support of a goal, e.g. a Z system model vs. a UML model, annotation-based
automatic code verification vs. implementation testing etc. However, the logic of
the argument, which links all the goals and evidence together, is under no formal
constraints, and is thus subjective. Such reasoning has been shown to have fallen
prey to common logical fallacies in a number of important safety cases [5].

Formal approaches sometimes appear in retrospective safety cases [3], where
a safety case must be created for a legacy system that has been in use for a long
time, and which has exhibited an unanticipated failure or fault. In the particular
instance cited above, the use of formal methods yields the potential modes of
failure of the system, rather than proving that (the model of) the system is
correct with respect to its specification. The authors argue that the use of formal
methods in this capacity makes it possible to discover more failure modes than
manual inspection would reveal. The resulting information is then used as the
starting point of risk analysis applied to each failure mode thus observed. Finally,
it is the results of these risk analyses that feed into the resulting safety case,
making the use of formal methods a means to an end. In such retrospective
safety cases it is expected that the original system documents can no longer be
located. This introduces a large amount of uncertainty in the process of creating
a safety case. The systematic identification of failure modes through the use of
formal methods alleviates this problem somewhat. Nevertheless, the logic of the
resulting safety case is not formalized.

3 Fundamental GSN Elements and Notions

Natural language is prone to errors in meaning and logic. Worse, embedding
natural language in a structured notation such as GSN does not ameliorate this
problem. The structure of GSN does nothing to enforce logical soundness, and so
the incorrect use of natural language, combined with faulty reasoning, can com-
promize such arguments. Fully formal arguments can therefore serve as an ideal
“gold standard” of argument soundness, against which the soundness of natural
language arguments can be evaluated. We consider this view to be correct for
the following reason. The key GSN elements Goal and Assumption constrain
the types of statement that can (or should) be made inside these elements to
statements of (what is believed to be) fact. Such statements correspond to the
type of statement that can be made in a fully formal setting, claims which are
either true or false (in a correct formal argument, all claims made as goals are
demonstrably true in the model). Because of this, reasoning inside natural lan-
guage GSN arguments follows the same pattern as reasoning with full formality,
that is, natural deduction of facts from supporting facts, inside a defined con-
text and under explicitly stated assumptions. What makes this difficult is the
use of natural language, but we believe that a “soundness checklist” derived from
formal natural deduction, which can be applied to the structure of an informal
argument, can increase confidence that the argument is sound. Of course this
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rests on the meaning of the natural language statements as understood by the
readers of the argument, which in turn crucially depends on these statements
being as precise as possible (we return to this issue at the end of the paper).

The following technical notions are fundamental to our formalization. The
definitions vary in the literature, but we use the following without compromiz-
ing correctness. A condition is a logical statement which contains free variables
and which is either true or false for the different valuations of those variables.
Conditions can also be regarded as definitions or axioms. A condition is said
to define those sets of values which make it true. A theory is a collection of
axioms, lemmas and other theorems. It defines a number of alternative entities,
all of which satisfy the theory (its models, in the model-theoretic sense). For this
reason, they are all considered equivalent with respect to what the theory means
to capture. For instance, a theory containing the definition, “A set S of integers
such that the size of S is at most 10” is satisfied by any subset of the integers
which contains at most ten integers. A theory is very seldom satisfied by a single
entity, and indeed this is not the intent of the formal approach. A context in
what follows is taken to be a theory.

Context refinement1 is the act of taking a given context and strengthening
its set of conditions such that the total number of entities which it defines is
strictly smaller. In the case of the set S above, the defining condition can be
strengthened as follows: “A set S of integers such that the size of S is at most 10,
and which does not contain the number 5.” This then eliminates, from all those
sets which satisfied the initial condition, all those which contain the number 5.
The intent of refinement is that through several refinement steps it is possible to
converge on a single system, the implementation. At each step of the refinement,
a commitment is made to a particular path toward the ultimate system. In a
formal argument these commitments legitimize claims about the implemented
system at the top of the argument, because the argument concerns a specific
concrete system, which is viewed at different levels of abstraction as one moves
up the argument structure. It is not incorrect to claim at the top of the argument
a property which is shown to be true farther down.

4 Semantics

We focus on a subset of GSN which forms the logical core of the notation. It
is comprised of the elements Goal, Assumption, Context, IsSupportedBy and
InContextOf. This set is chosen because its elements correspond very closely to
the basic elements of formal reasoning: theorems, axioms, deduction laws and
theories. The structuring elements of GSN can also be included in a discussion
such as this, but here they are not perceived to add to the expressivity of the
formalization (an arguable exception is the Strategy element, which is discussed
later.) The fundamental starting point of a formal semantics for this subset of
GSN is the meaning of so-called “goals”. A GSN goal is a statement that is
1 The notion of refinement used here is based on the notion from the Z [11] and B [1]

methods for systematic software development.
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believed to be true. The goal statement is not meant to be taken as being true,
but is rather postulated to be true, with the rest of the argument serving the pur-
pose of convincing the reader that the goal is true – that it is a theorem. Formally,
therefore, GSN goals are here taken to be logical postulates, or propositions, to
be proven true by the rest of the argument.

The next fundamental element to consider is the connection between GSN
goals. The IsSupportedBy relationship depicted in Fig. 1a is meant to convey
that if the goal G1 is shown to be true, then the goal G is also true. In the
absence of any other elements, the truth of G is only contingent on the truth of
G1. Formally, this is here taken to mean that G1 logically entails G:

G1 � G

The use of logical entailment instead of the more specific logical implication
makes it possible to argue in any logic without imposing any constraints on the
GSN argument structure. Basir et al. [2] also associate logical entailment with
the IsSupportedBy relationship. The general form of this construct is depicted
in Fig. 1b, where the top-level goal G is supported by n sub-goals, G1 to Gn.
Naturally, its meaning is taken to be that all the sub-goals G1 to Gn together
logically entail the top-level goal:

G1, . . . , Gn � G

In general a statement can not be determined to be true or false without a
context. In a refinement-oriented system development effort, the theory is the
system model at a given level of refinement. The purpose of a model verification
effort is to determine whether desired properties are in fact theorems of the
model. The second type of connection found in a GSN argument, the InContextOf
connection, makes it possible to explicitly state the context in which a statement
is made. These four elements, namely Goal, IsSupportedBy and InContextOf
connections, and Context are sufficient to compose a formally analyzable GSN
argument. An example is shown in Fig. 1c. It states that in the context Γ , the
formula G is logically entailed by the sub-formulae G1 to Gn:

Γ,G1, . . . , Gn � G

We consider such an argument to be “correct” if it is possible to prove the
top-level goal true. Short of this, and argument is considered to be “incorrect”,
owing for example to internal inconsistencies or insufficient information. It is
now possible to state the fundamental condition for the correctness of a GSN
argument of this form:

The GSN argument is correct if, and only if, it is possible to formally
prove the sequent,

Γ,G1, . . . , Gn � G

This condition reveals a number of possible ways in which the argument, as
stated, can be flawed.
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Fig. 1. Fundamental GSN logical elements.

For instance, the information contained in the argument structure may be
incomplete, making it impossible to prove the sequent. This does not mean that
G as stated is not a theorem, but that there simply is insufficient information
to demonstrate that it is. A proof attempt in this case will reveal a statement
that is clearly not provable from the premises. Usually this is valuable informa-
tion that reveals, at times directly, what information is missing in the argument.
Once this information is shown to exist, it can be incorporated in the argument
structure as an extra supporting goal and the proof reattempted. Formally it
is possible that the iteration of this prove-and-assert cycle will reveal the com-
plete set of supporting goals for G. In practice it may not be feasible to link
all the necessary information together, even though the information may exist.
A separate “sufficiency” argument may justify an axiomatic (i.e. without further
proof) inclusion of the necessary information in the goal structure.

A second type of flaw in the argument can be that G as stated is in fact
not a theorem. A proof attempt in this case will reveal a sequent in which the
goal is either clearly false, or clearly contradicts the premises. Depending on the
logic and proof calculus used, at this point the premises may be either the Gi

themselves, or, due to manipulation, may be modified forms of what is contained
in the original antecedent of the sequent, Γ,G1, . . . , Gn. In either case, it is the
fact that the proof attempt reaches a state where a clear contradiction exists
between the current goal and its premises that indicates that the original G
is in fact not a theorem. If the proof attempt reaches a state where it seems
impossible to make any progress, but a contradiction is not apparent, it does
not necessarily indicate that G is not a theorem, but rather that further lemmas
must be developed from Γ and the Gi in support of G.

Yet another flaw in the argument may be that there is a contradiction at the
starting point, in the antecedent clauses Gi. It may not be immediately apparent
that the Gi contain a contradiction. But in this situation the proof attempt will
go through a number of manipulations, both of the conclusion as well as of the
premises, and will eventually arrive at an inference step with a false premise.
Of course the goal can be proven at this point, but the fact remains that a
contradiction in the original premises of the goal has been revealed.
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5 Argument Consistency

This section elaborates on the issue of internal consistency (freedom from con-
tradiction) introduced by the use of the Context and Assumption elements. The
constraints imposed in this regard by the GSN standard are mainly structural in
nature, and ensure that elements are connected in a way which makes sense, but
they are not enough to prevent the construction of self-contradictory arguments.

We begin with a formal justification for a rule of GSN which is not always
adhered to, namely context inheritance. GSN allows the association of context
with any goal. However, in a fully formal setting, there must be a precise cor-
respondence between contexts. Figure 2a represents the familiar IsSupportedBy
relationship between two goals, but now each goal has its own context. The for-
mal statement of the goal relationship remains logical entailment under context
Γ . In the presence of context Γ1, the two goals must have compatible “vocab-
ularies”, that is, the entities (free variables) referenced by G must be a subset
of those referenced by G1. But if this is the case, and context Γ1 has a set of
axioms that is unrelated to the axioms of Γ , then the goal G1 may be true, but
it will bear no relation to goal G, since it is true in an unrelated context.

The best option, which is embodied in the inheritance rule, is for context Γ1

to refine, in an non-degenerate way, context Γ . Degeneracy would arise if the
refinement Γ1 is contradictory to Γ , so that no entity satisfies Γ1. In the for-
mal illustration here, context refinement corresponds exactly to system model
refinement, the fundamental formal modelling technique of evolving a model
through gradual introduction of more and more detail. The increasing level of
detail makes it possible to claim and prove properties about the high-level sys-
tem which can only be accomplished by reasoning over the finer details of a
more concrete version of the model. The key to refinement is that if context
Γ1 refines context Γ , then everything that is true in Γ1 is allowed to be true
by Γ . Refinement establishes the correspondence necessary between contexts to
allow the desired relationship of G1 to G to be demonstrated. The full soundness
condition for this argument then incorporates the context refinement condition:

Γ � Γ1 (Context Γ1 refines context Γ ), Γ1 � G1, Γ,G1 � G

In addition to context, the other GSN element that raises questions of argu-
ment consistency is Assumption. A GSN fragment with the example structure
so far used may contain a number of assumptions, as illustrated in Fig. 2b. As
ever, assumptions are simply taken as true statements. In a fully formal set-
ting, if given without justification, any such assumptions can only be taken as
additional axioms of the theory, or tier of model refinement, under considera-
tion. Formally, this is considered an enrichment of the context. The argument,
therefore, corresponds to the following sequent:

Γ,G1, . . . , Gn, Φ1, . . . , Φm � G

The soundness condition for the GSN argument is similar to that for the
argument of Fig. 1c, namely that the corresponding sequent must have a formal
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Fig. 2. Contexts and assumptions.

proof. Naturally, with the addition of further assumptions comes the possibility
of introducing inconsistencies. Depending on the size of the system model and
argument in question, the assumptions can be checked for mutual consistency
before the complete argument proof is attempted. Consistency of the assump-
tions means that their conjunction is true for at least one valuation of their free
variables. By free variables we mean labels in the GSN elements which refer to
aspects of the system model or wider context; they can be treated as free vari-
ables in the normal formal sense. Let v be the vector of all free variables of the
assumptions Φ1, . . . , Φm. Then it must be possible to show,

∃v • Φ1 ∧ . . . ∧ Φm

Additional assumptions can be not only mutually contradictory, but they
may contradict the context to which they are added. Let Γ ′ be all the axioms
(including, if necessary, defining axioms) of the context Γ , and v′ the union of
v and the free variables of the formulae of Γ . Then similarly it must be possible
to show,

∃v′ • Γ ′ ∧ Φ1 ∧ . . . ∧ Φm

Sub-goals can have not only context, but also their own assumptions, as
illustrated in Fig. 3. A setup such as this is even more prone to inconsistencies,
but it is one of the most common, as it is the most general argument structure
which also accommodates the crucial element of context refinement. According to
our stance on the relationship of the contexts Γ1, . . . , Γn to Γ , n ways of refining
context can be identified from G to each of G1, . . . , Gn. We have also stated that
any statement which is true in a context Γ ′, where Γ � Γ ′, is allowed to be
true by the context Γ . Nevertheless, Γ can be refined in different, potentially
contradictory ways. For instance, assume that Γ states x ≥ 0, for some quantity
x. This can be refined in Γ1 to x = 1, and in Γ2 to x = 2, meaning that the
trivial goal x = 1 can be asserted in the context Γ1, which is contradictory to the
trivial goal x = 2 that can be asserted in Γ2 (unlike a case-split on the value of
x, which can not be made across different contexts). These two trivial goals are
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Fig. 3. Context and assumptions at several levels.

only illustrative of the contradictions that can arise among the goals G1 . . .Gn,
which may be very subtle. This possibility forces us to insist that the contexts
Γ1 . . .Γn be mutually consistent :

It must not be possible to prove the sequent,

Γ1, . . . , Γn � false

Even if the contexts satisfy this condition, they are not guaranteed to bear
the correct refinement relation to Γ . As stated earlier, in a valid argument,
contexts at lower levels in the argument must refine, somehow, the context above.
This condition alone does not enforce this relationship. Each of the Γ1, . . . , Γn

can independently refine different aspects of Γ , or conversely, can break the
refinement relationship and generalize Γ instead. If they are taken together to
form a new context {Γ1, . . . , Γn}2, it is possible to guarantee that the refinement
relationship is not broken by showing that the new context itself refines Γ :

For mutually consistent contexts Γ1, . . . , Γn, it must be the case that,

Γ � {Γ1, . . . , Γn}

If the argument is a case split, e.g. argument over a functional decomposition,
then this refinement relationship trivially holds.

This condition can be generalized to account for the various assumptions
placed on the subgoals. If consistent, and under the same non-degeneracy require-
ment imposed earlier, the set of assumptions Ψ1, . . . , Ψj of a goal Gi in G1, . . . , Gn

will constrain the context Γi of that goal further, such that Γ � {Ψ1, . . . , Ψj , Γi}.

2 The context {Γ1, . . . , Γn} is formed by combining all the definitions and axioms of
the constituent contexts, many of which may be redundant.
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The complete set of assumptions, then, attached to the goals G1, . . . , Gn, if con-
sistent, constrain the context {Γ1, . . . , Γn} and define one new context for all
the goals G1, . . . , Gn, denoted {Γ1, . . . , Γn, Ψ1, . . . , Ψs, . . . , Ψ1, . . . , Ψt} such that,

Γ � {Γ1, . . . , Γn, Ψ1, . . . , Ψs, . . . , Ψ1, . . . , Ψt}

This aggregation reduces the structure of the argument to that shown in Fig. 2a
(but with n subgoals), and the soundness condition remains essentially the same,
albeit with the mutual consistency requirements on context and assumptions.

Other GSN Elements. There are three other fundamental GSN elements
which can not be used in a fully formal argument, in the sense that the infor-
mation contained in them can not be used ad literam to enable or facilitate the
proof of a goal from its sub-goals. They are the Justification, Strategy and Solu-
tion elements. The role of the Justification and Strategy elements in a natural-
language GSN argument is to guide the reader of the argument through the logic
or reasoning approach of the authors. In a fully formalized argument this type of
guidance is not necessary: the argument is structured strictly in accordance with
the laws of the logic used and its deduction calculus, such that logical inference
is the strategy. Nevertheless, these elements can be understood as follows in a
formal argument.

In the formalization proposed here, the argument represented by a bundle of
IsSupportedBy connections originating at a goal is justified by two things:

– An “AND” decomposition of the goal into a number of sub-goals which, if all
proven true, provide sufficient evidence that the parent goal is true.

– The claim itself is justified by the soundness of the logic, which guarantees
that it is impossible to arrive at a false conclusion from true premises.

Approaching arguments formally means that in every instance of this relation-
ship, the strategy for supporting a parent goal is an “AND” decomposition into
a complete set of sub-goals, justified by the soundness of the logic’s deduction
rules. In the formal setting this is intentionally the same at each level of the
argument, so we omit Justification and Strategy from the semantics. However,
strategy elements may be attached to formal GSN arguments in an informal
capacity in order to capture application-specific information or guidance. For
example, they can contain helpful hints or insights on using a particular verifi-
cation tool on that part of the argument, such as what tactics or rules to use
in order to move past a proof step. We do not elaborate on the formal role of
Solution elements, other than to note that Takeyama’s position that they jus-
tify turning the supported goal into an axiom [10] (necessarily subject to expert
review), is a sensible approach for the purpose of formalization, and is also in
accordance with Rushby’s principle that expert opinion should be incorporated
into any such formalization.
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6 Conclusions

We have presented a fully formal interpretation of a subset of GSN which is based
on notions from model-based system development. Our work fits the long-term
agenda of developing a full semantics for GSN which will enable the automatic
verification of GSN arguments for correctness. Fundamentally similar work by
Takeyama [10] goes a long way in this direction, but as most assurance argu-
mentation is not carried out formally, it is crucially important to review how
such formalization can benefit the informal approach, hence our hypothetical
question. The specific step proposed here is to understand what it is that a
GSN argument represents formally. This reveals a number of conditions, dic-
tated by strictly formal logic, which must be checked in order to ensure that
the argument is self-consistent. The use of natural language makes it impossible
to check arguments automatically against these conditions, but they can form
the basis of a battery of informal but systematic tests to which arguments must
be subjected. For instance, the conditions mandate that the following informal
judgments must be true:

1. Goals must be decomposed in such a way that it is possible to relate them
to the relevant subgoals, assumptions and context without further implicit
assumptions.

2. Context elements at all levels of the argument must bear the correct refine-
ment relationship to the context elements directly above.

3. Context elements across the same level must not refine the parent context in
contradictory ways.

4. Assumptions on any given element must not be contradictory.
5. The assumptions on any given goal must not contradict the context assumed

for that goal.

In practice, arguments in natural language may make “bigger leaps” than a
formal argument. For instance, a formal argument is adequate if it provides a
proof of a given claim, otherwise it is deficient in some way, as described earlier. In
natural language arguments, the question of adequacy is much more complicated,
especially in the presence of these large leaps, and we do not claim to address
this through formalization. But the intent of these judgments is nevertheless
appropriate.

If the argument elements currently given in natural language are instead
expressed in an increasingly rigorous form, such as controlled natural language
or a fully formal language, then automatic verification becomes possible. These
conditions are only necessary for the internal consistency of an argument: just
as violation of any of the formal conditions by a formal argument would render
it inconsistent, so violation of these informal but unambiguous conditions by
an argument based on natural language brings its correctness into question.
Additional conditions come with the introduction of other GSN elements, such
as Away Goals.

We see three viable avenues for investigation starting with the formal per-
spective proposed here. First, the complete set of GSN elements must be treated
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in this manner and further correctness conditions revealed. Second, the use of
a form of controlled natural language inside the GSN elements themselves must
be investigated. For ease of integration with GSN, the flavour of controlled nat-
ural language chosen should have a formal semantics in logic, as in the case, for
example, of IBM International Technology Alliance Controlled English [8]. With
a formal semantics for both argument structure and the information contained
within individual statements, it becomes possible to mechanize and automati-
cally verify argument claims and structure. Third, our perspective is based on
the application of classical logic to system development, where detail is added
incrementally through refinement. We have simply made use of the notion of
logical deduction, leaving open the choice of logic and using classical logic only
as an illustration. It may be far better to use a specialized modal logic instead,
depending on the system domain targeted.
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Abstract. When evaluating assurance cases, being able to capture the
confidence one has in the individual evidence nodes is crucial, as these
values form the foundation for determining the confidence one has in the
assurance case as a whole. Human opinions are subjective, oftentimes
with uncertainty—it is difficult to capture an opinion with a single prob-
ability value. Thus, we believe that a distribution best captures a human
opinion such as confidence. Previous work used a doubly-truncated nor-
mal distribution or a Dempster-Shafer theory-based belief mass to rep-
resent confidence in the evidence nodes, but we argue that a beta dis-
tribution is more appropriate. The beta distribution models a variety of
shapes and we believe it provides an intuitive way to represent confi-
dence. Furthermore, there exists a duality between the beta distribution
and subjective logic, which can be exploited to simplify mathematical
calculations. This paper is the first to apply this duality to assurance
cases.

Keywords: Opinion triangle · Beta distribtion · Subjective logic

1 Introduction

Certain safety critical systems must be demonstrated to be safe and certified
or approved by some regulatory body before they are allowed to be taken into
operation or sold to the general public. Typical examples are avionics software
for civil aviation and complex medical devices. Developing an assurance case (of
which a safety case is a subset) is one approach to documenting and demonstrat-
ing that a system has been adequately analyzed and is free from critical hazards
(i.e., the system is adequately safe). The UK Ministry of Defence describes a
safety case as “A structured argument, supported by a body of evidence that pro-
vides a compelling, comprehensible and valid case that a system is safe for a
given application in a given operating environment” [1].
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For an assurance case, the confidence (and uncertainty) that the reviewers—
as well as creators—have in the evidence and the case itself is crucially impor-
tant; how much trust can we put in the assurance case? To address this issue,
researchers have proposed different approaches. Hawkings et al. proposed the use
of a separate confidence case arguing why the assurance case can be trusted [2].
Others used Bayesian (Belief) Networks (BN) where nodes representing confi-
dence are quantified using a doubly-truncated normal distribution [3,4] that then
can be used to compute the confidence in the various claims in the case. Finally,
Ayoub et al. used a belief mass based on Dempster-Shafer theory [5] that can
be used similarly to the truncated normal distribution mentioned above.

Although these approaches allow the exploration of confidence and uncer-
tainty in assurance cases, we in this paper argue that there may be a more intu-
itive way to capture the confidence and uncertainty associated with evidence
and compute the confidence and uncertainty associated with claims relying on
that evidence. The beta distribution, a more versatile distribution, allows for
a better representation of human opinion. The beta distribution can also be
tied to the idea of subjective logic [6] to aid in the quantification of confidence.
Finally, the beta distribution can be represented as a point on an opinion trian-
gle (and vice versa) [6] to allow an alternate way of capturing and visualizing the
concept of confidence and uncertainty. Like the doubly-truncated normal distri-
bution approach, the beta distribution with subjective logic approach allows for
the combination of confidence in various evidence nodes in an assurance case,
ultimately arriving at the confidence in the top-level claim. We are the first to
propose using the beta distribution, with its correspondence to the opinion tri-
angle, to represent confidence in evidence and compute the resultant confidence
in claims supported by this evidence in an assurance case.

The remainder of the paper is organized as follows: Sect. 2 gives relevant
background information and briefly touches upon some related work. Section 3
shows, through a few examples, how subjective logic operators and the beta
distribution can be used to represent confidence in assurance cases. Section 4
offers some closing thoughts and anticipated future work.

2 Background and Related Work

An assurance case is a structured logical argument. Generally, it has a top-level
claim supported by evidence and the arguments that connect the two. Confidence
in an assurance case can viewed as confidence of two separate components—
the confidence one has in the individual evidence nodes and the confidence one
has in the argumentation used to combine the evidence nodes to ultimately
demonstrate the validity of a top-level claim. Hawkins et al. took a qualitative
approach through the use of a separate, but associated, confidence case [2].
Previous approaches to quantification of confidence and uncertainty have used
the doubly-truncated normal distribution for the nodes in a Bayesian Network
(BN) [3,4] or a Dempster-Shafer theory based triple of (belief, disbelief, and
uncertainty) [5,7]. Duan et al. provide a general survey that summarizes various
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approaches to confidence in assurance cases [8]. Whether implied or explicitly
stated, calculations are prudent and can aid in assessing confidence for a top-level
claim. There has been debate among law scholars (in the US) about whether or
not “probable cause” can and should be quantified. Kerr argues that it should not
be [9], since quantification can, ironically, lead to less accurate values. However,
his argument is for the legal domain and assumes the use of a single probability
value for probable cause.

Bayesian Network Approaches. A Bayesian Network (BN) or Bayesian
Belief Network (BBN) is a directed acyclic graph, usually similar in structure to
an assurance case. BNs provide an easy to read solution to combining qualitative
and quantitative data [10]. The qualitative information is encoded in the graphi-
cal connections between nodes (links) that indicate the flow of information. The
graphical connections aid in informing users how information “nodes” are con-
nected with each other and how they may be combined during evaluation. The
quantitative information is encoded in the nodes themselves. Though the nodes
of a BN when used for assurance cases are usually the evidence nodes, they also
can include elements that are usually found in the links of an assurance case—
e.g., whether or not the arguments are well developed, or how much trust one
has in the manufacturer. One possible approach to quantifying such information
is through the use of a probability value. How one determines this probability
value is an area of active research and a non-trivial issue.

The popular AgenaRisk software [11] quantifies the confidence of a node in
an assurance case by modeling the confidence using a doubly-truncated nor-
mal distribution, truncated to the interval [0, 1] [4]. This method allows for the
modeling of a variety of shapes of distributions, from an (approximate) uniform
distribution, to the standard Gaussian distribution, to a narrow spike, or, if the
mean were near the extremes (0 or 1), a sloped shape. However, there are a
couple of shapes that the truncated normal cannot approximate, such as a curve
where the mean and mode are not equal (a skewed Gaussian), a true uniform
distribution, or a true power distribution.

Hobbs and Lloyd use AgenaRisk to quantify and combine trustworthiness
in nodes of an assurance case [12]. They use logical-OR and logical-ANDs, as
well as the more realistic Noisy-OR and Noisy-AND [13], among others. Denney
et al. also have looked at quantifying confidence in assurance cases with a doubly-
truncated normal distribution, extending the work of Fenton and Neil [3]. Since
these researchers are using AgenaRisk, they are still using the truncated normal
distribution and are subject to the same limitations.

Dempster-Shafer Approaches. The Dempster-Shafer theory based approach
starts with the idea of an opinion, represented by a mass. As our opinion increases
positively, mass increases. This opinion can be bounded by a lower bound, belief,
and an upper bound, plausibility. An opinion can fall anywhere in this range.
Dempster-Shafer differs from traditional probability in that it has a separate
value for uncertainty. In traditional probability, there is a view that if one has
0.8 confidence, then one has 0.2 uncertainty. Dempster-Shafer might look at this
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as, for example, one has 0.8 confidence, 0.1 lack of confidence, and 0.1 uncer-
tainty, taking the view that lack of confidence is not necessarily the same thing
as uncertainty. Dempster-Shafer theory also provides a variety of methods to
combine evidence based on different situations. A Dempster-Shafer opinion can
be applied to an evidence node in an assurance case. The methods for combining
disparate evidence also can be used to combine opinions in an assurance case,
ultimately arriving at an opinion for the top level claim.

Cyra and Gorski developed their own plot of opinion versus confidence based
on linguistics and mapped their plot onto Jøsang’s opinion triangle [7]. They
used Toulmin’s argumentation structure [14] to combine the confidence nodes.
Their approach was adapted into a tool [15] which has been adopted by over
30 institutions in areas of healthcare, security, and public administration self-
assessment standards [16].

Beta Distribution. The beta distribution is a continuous version of the bino-
mial distribution. When one has two options (e.g., heads or tails in a coin flip,
or trust or distrust for an assurance case node), the binomial distribution is
generally used. When one desires a continuous distribution for the binomial dis-
tribution, the beta is used. The beta distribution has finite range, most often
between 0 and 1, which makes it ideal when dealing with probabilities. The beta
distribution is a second order distribution, so it is used to describe a probability
of probabilities. In statistics, the beta distribution is a popular choice for prior
information, due to its scalability, variety of shapes, and finite boundaries [17].

The doubly-truncated normal distribution does not allow for situations where
the mean and mode are different, and only can approximate the uniform and
power distributions. By using only a doubly-truncated normal distribution, pre-
vious researchers are committing themselves to the distribution of every opinion
being symmetrical. For instance, if the peak of a doubly-truncated normal dis-
tribution is at 0.8, the probability of an opinion at 0.7 and 0.9 would be exactly
equal. While this may be true some of the time, one cannot say it will be true all
of the time. Additionally, the doubly-truncated normal distribution can never
truly equal 0 at a confidence value of 100%. In some circumstances, such as with
testing, it is not realistic to ever have 100% confidence.

Merkle represents confidence using mixtures of beta distributions [18]. His
approach seeks to model confidence that has been elicited, and represents a
realistic view of what real confidence values would look like. His use of a beta
distribution to represent confidence supports our view of the same.

The beta distribution is not a new concept in the realm of assurance cases.
Bishop et al. use it in their work [19] to represent a “typical distribution” about
an expert’s belief. They, however, turn their focus to estimating conservative
claims about dependability.

Subjective Logic and the Opinion Triangle. In standard logic, there is
either true or false, with no ambiguity. There is absolute certainty and thus
probability is an appropriate measure for situations such as flipping a coin or
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Fig. 1. Jøsang’s opinion triangle

throwing a pair of dice. Jøsang argues that when humans are a factor, there is
never full certainty [6]. As such, we should use subjective logic, which deals with
the realm of opinions.

An opinion in subjective logic is represented by a four element tuple: belief
(b), disbelief (d), uncertainty (u), and relative atomicity (a). The first three are
located on the vertices of an opinion triangle (see Fig. 1(a)) and are constrained
by the boundaries of that triangle and each other. The three must have values
between 0 and 1 and must sum up to 1. The relative atomicity, representing the a
priori belief, is a known quantity with no uncertainty, so it is bounded to the base
of the triangle. In Fig. 1(a), the opinion is (0.7, 0.1, 0.2, 0.5). Jøsang’s work offers
a direct mapping between his opinion triangle and the beta distribution, making
it appropriate for use in assurance cases [6]. In Fig. 1(b), we see an example of
how the opinion in Fig. 1(a) would be represented by a beta distribution. When
one has multiple opinions, one can combine them in a variety of ways using
addition, multiple, and subtraction.

Jøsang has continued working on and expanding the uses of subjective logic,
but not in the assurance case area. Specifically, he has looked at multi-nomial
opinions via the Dirichlet distribution [20], trust networks using subjective
logic [21], and, with Whitby, reputation systems using the beta distribution [22].
Ettler and Dedecius apply subjective logic to a hierarchical model derived from a
condition monitoring system [23]. The hierarchical model has a structure similar
to assurance cases and consists of similar components—leaf nodes that can be
evaluated and combined to ultimately arrive at the top level. How their work
continues will be of interest to us as the two areas share some commonalities.
Han et al. use subjective logic and the beta distribution to fuse evidence that has
a subjective bias or uncertainty [24]. Their work, though not related to assurance
cases, represents another use for subjective logic and the beta distribution.

3 Application to Assurance Cases

Jøsang’s subjective logic deals with opinions held by a person. We argue that
a person’s level of confidence can be viewed as an opinion, and thus Jøsang’s



20 L. Duan et al.

opinion triangle is an appropriate way of representing the confidence one has
in an evidence node of an assurance case. Jøsang provides a direct, easy, and
intuitive mapping from the opinion triangle to the beta distribution, as well as
multiple operators for combining opinions based on different situations.

Subjective logic intuitively makes more sense than standard logic when one
is describing human opinions. The idea of uncertainty being a separate entity
in subjective logic, different from belief and disbelief, is also intuitively appeal-
ing. A logical question would be—what does full uncertainty mean? One could
answer “knowing nothing.” One also could answer “being fully split between two
options.” Both might be viewed as full uncertainty. Jøsang specifies a difference.
The former would be represented by an opinion of (0.0, 0.0, 1.0), meaning one
has no opinion whatsoever. For an assurance case, we can think of this as a situa-
tion where a reviewer has no experience or knowledge of anything—a completely
blank slate. This opinion would be represented as beta(1.0, 1.0), a uniform dis-
tribution where every value is equally likely. The latter would be represented by
an opinion of (0, 5, 0.5, 0.0), or having exactly equal arguments for both belief
and disbelief. For an assurance case, we can think of having exactly equal and
opposite information to contribute to a split opinion. This opinion would be
represented in a beta distribution with a spike, or discontinuity, at 0.5. Such an
example highlights exactly the importance of treating uncertainty—the lack of
information—as a separate entity. Cyra and Gorski took the view that when one
has high uncertainty, no decision can be made [7]. When one has high disbe-
lief, one can reject a piece of evidence. But when there is high uncertainty, that
uncertainty can be belief or disbelief. As such, no action can or should be taken.

Realistically, though, it is unlikely that either opinion will exist in the real
world, which is part of the appeal of using a distribution, specifically the beta
distribution, to represent confidence. The beta distribution can accommodate
a variety of shapes (Fig. 2) while Jøsang’s work ties the beta distribution into
subjective logic. For future work, operators in subjective logic then can be used
and represented as a beta distribution. The beta distribution parameters also
can be used and manipulated to better represent confidence.

Fig. 2. Sample beta distribution shapes



Representing Confidence in Assurance Case Evidence 21

3.1 Node Example

Elicitation of opinions from domain experts is still an active area of research.
It is our view that distributions should be used when representing confidence
instead of a single probability value. Human opinion is subjective in nature,
and fraught with uncertainty. A single probability value cannot be expected to
encompass all the nuances that comprise an opinion. Thus, a distribution more
accurately represents a person’s beliefs. A distribution models a probability of
probabilities—at each confidence value, what is the probability that this con-
fidence value is the one true confidence value for this person? When there is
no uncertainty, we have a single value. When we have uncertainty, we have a
distribution.

It makes intuitive sense to be able to provide an opinion triangle and have an
expert simply point to where his/her opinion lies on such a triangle. This opinion
then can be mapped onto a beta distribution to confirm that the distribution is
an accurate representation of their opinion. Going in the other direction is possi-
ble with the aid of a parameter finder/best-fit program for the beta distribution.
An expert can be asked to draw out a plot that best represents their opinion,
and this plot then can be mapped onto the opinion triangle to see if it matches
up to what the expert expected.

Suppose we want to quantify the confidence for an evidence node, specifically,
software testing results. The software has been tested (and the test passed) by
two different companies to the same test adequacy criterion, such as MC/DC [25].
This criterion is rigorous, but not perfect, so intuitively one expects the “peak”
of the beta distribution to be fairly high, for example, around 0.8. The standard
of testing, in this case, would affect where the peak belief or disbelief would be;
however, the companies themselves would affect the variance of the distribution.
Company A has documented and accounted for all of their testing meticulously,
and has communicated all information clearly. Company B has had poor docu-
mentation and communication, increasing our uncertainty in their work. So intu-
itively, we would expect the beta distribution representations of our confidence
in these companies’ testing to have similar peaks, but one has a wider spread
than the other. A sample plot is seen in Fig. 3—Company A’s distribution is
represented with a “–o” line while Company B’s distribution is represented with
a “–+” line. The two curves have peaks approximately at the same confidence
value, as we would expect since both companies have tested to the same crite-
rion; however, Company B’s plot has a lower peak value and a higher variance
due to the higher uncertainty we have in their testing.

3.2 Assurance Example

Figure 4 shows a sample assurance case, in GSN notation, based on an x-ray
backscattering machine that might be used at an airport. For illustrative and
clarity purposes, this assurance case is extremely simple.

We have a top-level claim that all causes of overradiation have been elimi-
nated. For purposes of this example, “all causes” is actually just two causes—
software errors and timer interlock errors. Each cause of overradiation has two
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Fig. 3. Confidence distribution for two testing companies

Fig. 4. Example assurance case

supporting evidence nodes. In Fig. 5, the assurance case has been modified to a
fault tree analysis-based format to represent how the components could be com-
bined via subjective logic operators in an intuitive way. Since we are dealing with
opinions on nodes, the most appropriate operator for combining evidence is the
consensus operator. Though testing results for the timer interlock or software
are empirical, there are always external factors that can affect an opinion on the
specific evidence node as mentioned in the previous section. When to use the
empirical data by itself, versus an opinion on the result itself, will be the subject
of a future work. The consensus operator for two opinions πA = bA, dA, uA and
πB = bB , dB , uB is:

bA,B = (bAuB+bBuA)
κ , dA,B = (dAuB+dBuA)

κ , uA,B = (uAuB)
κ

where κ = uA + uB − uAuB such that κ �= 0 [6]

After applying the consensus operator to an individual’s opinion about
the evidence nodes, we receive an intermediary opinion about whether or not
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Fig. 5. Logical argument for example assurance case

software or timer components will fail. We use the logical-OR operator on our
intermediary opinions to arrive at a final opinion about the claim. For overra-
diation to occur in a x-ray backscattering machine, both the software and the
timer interlock needs to fail. Thus, for no overradiation to occur, just one of the
two components needs to operate correctly—a logical-OR relationship. Such a
redundancy system necessarily increases our confidence in the top level claim.

From this logical argument, the next step is to assign opinion values to
the evidence nodes. There has been considerable research into the elicitation
of opinions, as seen in works by Renooji [26], Druzdel and van der Gaag [10],
O’Hagan [27], and van der Gaag et al. [28], but it is beyond the scope of this
work to address such issues in detail. Instead, we have assigned personal opin-
ions based on an informal survey of experts and what would give interesting and
informative results (Table 1). With no prior information of any type, the rela-
tive atomicity of all nodes will be 0.5. The opinions are then mapped to their
equivalent beta values based on Jøsang’s work.

Table 1. Opinion and corresponding beta values.

Software Node Opinion Values Beta Parameters

Ev1 - Formal Verification π(0.7, 0.2, 0.1) α = 8.0, β = 2.0

Ev2 - Testing π(0.5, 0.2, 0.3) α = 2.67, β = 1.67

Hardware Node

Ev3 - Fault Tree Analysis π(0.3, 0.5, 0.2) α = 2.5, β = 3.5

Ev4 - Testing π(0.9, 0.05, 0.05) α = 19, β = 2
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Fig. 6. Opinion triangle and beta distribution showing software node consensus

Fig. 7. Opinion triangle and beta distribution showing hardware node consensus

Fig. 8. Opinion triangle and beta distribution showing logical-OR for overradiation
node

Figure 6 shows the opinion triangle and beta distributions for the two pieces
of evidence that support the software node (Ev1 and Ev2) and the consensus of
their opinions. The two smaller dots, in red and blue, represent the two opinions
on Ev1 and Ev2. The larger black dot (partially covering the blue dot) represents
the consensus opinion. Similarly, the red and blue lines represent the correspond-
ing beta distribution of the opinions, while the black circled line represents the
consensus beta distribution.

Figure 7 shows the opinion triangle and beta distributions for the two pieces
of evidence that support the hardware node (Ev3 and Ev4) and the consensus
of their opinions. Lastly, Fig. 8 shows the opinion triangle and beta distributions
for logical-OR opinion of the two sub-claims—or the expected confidence for the
no overradiation claim.
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4 Conclusions

The use of a distribution to represent confidence in assurance cases makes intu-
itive sense and we claim that the beta distribution is the most appropriate one
to use. The beta distribution can assume a variety of shapes and exists only
on a finite range. The non-trivial mathematics that typically is associated with
the beta distribution are eliminated with the use of Jøsang’s subjective logic
that maps the beta distribution onto an opinion triangle. The opinion triangle
is not a new concept to assurance cases, but it is used in a new context here;
additionally, it can be an alternative way of eliciting opinions.

We believe that such a novel use of subjective logic and the beta distribution
to represent confidence will be of great benefit to assurance case evaluation and
review. The next step is to explore more in depth how to combine different
confidence values. We have started some of the work here with the use of the
consensus and logical-OR operator, but there are many more situations and
many more operators that can and will need to be used. Additionally, while
subjective logic has provided a variety of operators that have been well thought
out already, the assurance case domain is unique and a “pre-made” operator
might not fit what we need. Such situations will need to be examined in future
work.
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Abstract. Many industrial sectors, which manufacture safety intensive
systems e.g., automotive, railway, etc., now face technical challenges on
how to integrate and harmonize critical issues on safety in addition to
security for their systems. In this paper, we will explore a new way of
reconciling those issues in an argument form, which we call Safe & Sec
(Safety and Security) case patterns. They are derived from process pat-
terns identified from our literature survey on research and standards.
Safe & Sec case patterns in this paper will provide practitioners a wide
perspective and baseline on how they could provide an assurance frame-
work for their safety intensive systems with security focus.

Keywords: Safety · Security · Integration · Safety cases · Cybersecurity
cases · Patterns

1 Introduction

Many industrial sectors, which manufacture safety intensive systems e.g., auto-
motive, railway, etc., now face technical challenges how to integrate and har-
monize critical issues on safety in addition to security for their systems. After
the stuxnet incident, any safety intensive systems, even not linked to any net-
work are under the imminent threats for security vulnerabilities. We could now
assume that any safety-related hazardous events (such as car crash, derailing,
etc.,.) could be caused by hardware/software failures and/or malicious attacks,
thereby we need to identify and analyze potential hazards and/or threats, their
combinations and their associated risks in a systematic way, and build a new
assurance framework which ensures both safety and security.

In this paper, we will explore a new way of reconciling those critical issues on
safety and security in an argument form, which we call Safe & Sec (Safety and
Security) case patterns. We must emphasize that we do not intend to discuss
the very nature and/or differences between security and safety, and the aim
of the paper is to show some argument patterns derived from different view-
points when treating safety and security in the system development life-cycle.
We present them in a more general form than argument patterns used in GSN
(Goal Structuring Notation) by T. Kelly [11], so we call them case patterns.
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Fig. 1. Basic processes

We must admit that this work is still at the stage of the proof of concept
and needs further elaboration and justification based on real case studies. We do
hope that this work will provide some insight on how to deal with safety and
security in an argument form.

This paper is structured as follows: the next section presents process patterns
on interactions between safety and security, typically found in existing standards
and literatures. The third section presents Safe & Sec case patterns based on
those process patterns. The fourth section compares our work with related work.
Finally the fifth section concludes this paper.

2 Safe & Sec Process Patterns

Interplays between safety and security fall into broad range of issues found in the
whole system life-cycle. We only focus on early stages in the system life-cycle and
only deal with hazard identification/threat identification, risk assessment and
derivation of safety/security requirements, which we call risk reduction measures
and mitigation methods respectively.

We will show the following process patterns in this section:

– Basic
– Subordinate
– Interrelated

• Uni-directional Referencing
• Independent
• SafSec

First of all, we present two types of basic processes, each of which represents
that of safety and security respectively in Fig. 1. The Item Definition includes
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preliminary architecture of the target system, the Hazard Identification to iden-
tify potential hazards, the Hazard Risk Assessment to assess the risk involved
in hazards identified based on some safety risk metrics (e.g., ASIL in ISO 26262
[9] for automotive systems), and finally the Derivation of Risk Reduction Mea-
sures to derive safety requirements. The security side has identical activities
paraphrased in security terms instead.

We think that it is not too bold to assume that this is the basic safety/security
process in the initial phase of safety/security related activities in the system life-
cycle.

2.1 Subordinate Process Pattern

This process pattern in Fig. 2 shows that all activities on the security side is
subordinate to their counterparts in safety. For instance, threat identification
may be included in hazard identification, and so on. The typical example of this
process pattern can be found in the research project SEISES [2], in which safety
standards for airworthiness and security are integrated to provide a seamless
assurance framework.

Fig. 2. Subordinate process pattern

2.2 Uni-Directional Reference Process Pattern

This process pattern is called the uni-directional reference process pattern
depicted in Fig. 3. In this process pattern, the Threat Identification activity
refers to identified hazards, but not vice versa. In this diagram, the reference
relationship is indicated by the dashed line with an open-headed arrow and the
stereotype << reference >> attached above the line.
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This process pattern is drawn from the avionic security standard DO-326A
[15], where safety related activities do not refer to any work products produced
in the security life-cycle.

Fig. 3. Interrelated (Uni-directional reference) process pattern

It might look too extreme, but this is a typical view, which shows that safety
concerns are predominant over security. We can also point out that this type
of view is implicitly adopted in a railway standard for the open transmission
systems; IEC 62280 [7].

Looking at some existing research on integration of hazard analysis and threat
analysis, there are some works which fit into this type of process. Fault Trees
(FT) [8] and its security counterpart Attack Trees ([12,17]) are of particular
interest to researchers due to their syntactic similarities. For instance, Steiner
[19] proposed a combination of Fault Trees with attacks, in which attacks appear
as a cause of some fault. IEC 62280 also includes an example FT diagram, which
mixes faults and attacks (in the Figure D.1 in the Annex D).

We could not find any literature on bi-directional reference process pattern.
However, we think two processes referencing bi-directionally would be plausible,
since it places the same value to safety and security.

2.3 Interrelated (Independent) Process Pattern

Figure 4 shows that safety and security processes are independent but converged
on the trade-off analysis activity. The trade-off analysis could be carried out in
several ways. For instance, Born [5] proposed a process in the concept phase
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Fig. 4. Interrelated (Independent) process pattern

in ISO 26262 where the interference analysis is carried out on derived func-
tional safety requirements and security requirements. The aim of this interfer-
ence analysis is to identify potential feature interaction between functional safety
requirements and security requirements. For instance, timing constraints on a
functional safety requirement may be interfered by time-consuming encryption
mechanism on a security requirement, thereby they need to be re-considered.
The work is based on the research output of the FP7 research project SESAMO
(SEcurity and SAfety Modelling) [18].

2.4 Interrelated (SafSec) Process Pattern

This process pattern in Fig. 5 is based on the SafSec standard/guideline spon-
sored by UK MOD and carried out by Praxis [13,14]. The main aim of the SafSec
is the double/simultaneous certification of a security standard (in this case, CC
[10] and a safety standard (in this case Defence standard 00-56 [20]). The Saf-
Sec standard/guideline demonstrates compliance with both standard using the
common terminology for safety and security, and uses a dependability case for
assurance.

In this process pattern, after hazard analysis and threat analysis are carried
out separately, their results are converged as losses. The loss is the coined term
used in the SafSec, which represents both hazard and threat.

In the next sections, we will show case patterns based on those process pat-
terns presented in this section.
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Fig. 5. Interrelated (SafSec) process pattern

3 Safe & Sec Case Patterns

In this section, we will present several case patterns following the process pat-
terns presented in the previous section.

3.1 Independent Case Pattern

The first case pattern treats safety and security independently which reflects the
process pattern in Fig. 1.

This is rather naive view of safety and security, but we do not exclude this
pattern. This is mainly because it would show some case in real world where a
safety case and a security case would be separately mandated in an industrial
sector. For instance, in the automotive domain, ISO 26262 [9] requires a safety
case and SAE J3061 [16], a new cybersecurity guideline for automotive would
require a cybersecurity case [4] and currently none of these appears to require
any seamless integration of the two cases.

3.2 Subordinate Case Pattern

From the safety point of view, security is a part of safety. This view is plausible
as long as part of safety hazards are caused by security threats, and no-safety
related security issues including privacy are ignored. This view appears to be
predominant in the safety critical systems community. This type of case pattern
is depicted in Fig. 6, which corresponds to the process pattern in Fig. 2. Each
goal addresses safety issues but includes security part in them.
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Fig. 6. Subordinate case pattern

3.3 Uni-Directional Reference Case Pattern

Even though two different cases of different system attribute (in this paper,
safety and security) are separately built; they may be referencing each other.
As was already presented, the security standard for airworthiness, DO-326A
includes security development as part of safety assessment and system devel-
opment (Fig. 2-3 on page 14 [15]). In that figure, some outcomes in the safety
assessment process flows to security risk assessment but not vice versa (e.g., Air-
craft Failure conditions). This means that the reference relationship is supposed
to be uni-directional from safety to security in an argument form as well.

This case pattern is given in Fig. 7. This case pattern consists of two sub-
arguments and the left argument represents a safety case and the right argument
represents a security case. The solution UR-Sn1 in the left (safety) argument is
remotely referenced by the context UR-C1 in the right (security) argument.
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Fig. 7. Interrelated (Uni-directional reference) case pattern

Fig. 8. Interrelated (Independent) case pattern

3.4 Interrelated (Independent) Case Pattern

This case pattern corresponds to the process pattern in Fig. 4. In this case
pattern, the right-most argument represents the trade-off analysis part which
remotely refers the context I-Sn8 for the list of mitigation methods and the
context I-Sn7 for the list of risk reduction measures.
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Fig. 9. Interrelated (SafSec) case pattern

3.5 Interrelated (SafSec) Case Pattern

We show the SafSec case pattern in Fig. 9, which corresponds to the Fig. 5. In
this case pattern, the results of hazard analysis and threat analysis are referenced
when they are integrated into losses.

In the SafSec standard/guideline [13,14], a GSN diagram is provided to show
how compliance with Common Criteria [10] and Defence standard 00-56 [20] is
achieved. It must be noted that our SafSec case pattern is very simplied and
the sub-arguments about the target system and assurance requirements in the
original SafSec goal structure do not appear in our Interrelated (SafSec) case
pattern.

4 Related Work

There are so many works related to safety cases so we just omit them from
this paper. There are several research works which enhance assurance cases for
security. Alexander, et al., proposed an assurance case for security with the
use of practices about safety cases [1]. In the paper it was pointed out that
approaches to the goal descriptions are similar between safety and security. Thus
the authors proposed a security case described with GSN and discussed about its
advantages. Goodenough, et al., showed security cases and their patterns [6]. In
the article, security assurance was the main focus and structured security cases
typically depicted as diagrams were discussed. Common argument structures for
security were formalized to patterns and several expected benefits are explained.
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These works do not deal with any interactions between safety and security in an
argument form in Fig. 8.

The closest to our work is [3] by Bloomfield, et al. They call their assurance
cases Security Informed Safety Cases. They build a safety case first and analyze
impact of security on the safety case. This work would be classified under the
subordinate case pattern in our classification.

Our Safe & Sec case patterns do not support any detailed analysis on inter-
actions between safety and security but provide a wide spectrum of thoughts on
how we can build a case which integrates issues raised from safety and security.

5 Conclusion

In this paper, we presented several case patterns, which we call Safe & Sec
case patterns derived from process patterns which integrate safety and security
activities at the early stage of the system life-cycle. We hope this work would
be the first step stone when building a case which assures issues on interplays
between safety and security concerns.

Our future work includes more thorough survey on current practices and lit-
erature on interplays between safety and security. For instance, as was mentioned
previously, the bi-directional reference process pattern (and its case pattern) is
plausible but could not find any existing practice or literature. So there could
be more patterns which we could add to our work.

There are on-going standardization activities on security in several industrial
sectors such as automotive, medical devices amongst a few. Most of them do
not seem to take a thorough consideration into harmonization of their safety
counterparts. We hope our work on this Safe & Sec case patterns would provide
some insight into how to harmonize them.
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Abstract. CLASS is a novel approach to the safety engineering and manage-
ment of safety-critical systems in which the system safety case becomes the
focus of safety engineering throughout the system lifecycle. CLASS expands the
role of the safety case across all phases of the system’s lifetime, from concept
formation and problem definition to decommissioning. Having the system safety
case as the focus of safety engineering and management only has value if the
safety case is properly engineered and appropriately consistent with the system.
To achieve these properties, CLASS requires that a system and its safety case be
regarded as a single composite entity, always linked and always correctly rep-
resenting one another. CLASS introduces new techniques for the creation,
approval and maintenance of safety cases, a rigorous analysis mechanism that
allows determination of properties that relate to defect detection in subject
systems, and a set of software support tools.

Keywords: Safety case � Software assurance � System lifecycle

1 Introduction

The Comprehensive Lifecycle for Assuring System Safety (CLASS) is a
safety-engineering system lifecycle based on the subject system’s safety case. CLASS
extends the Assurance Based Development software concept [1, 2] to the system
lifecycle level. CLASS encompasses system development, approval, operation, main-
tenance and decommissioning, and integrates with the safety-management system.

The goal of CLASS is to ensure that all engineering elements in the system life-
cycle are justified by and contribute to the assurance of system safety. As in Assurance
Based Development, the concept is to make assurance a primary objective in the
system lifecycle, since functionality without assurance in a safety-critical system is of
marginal value. By design, CLASS process elements are derived from desired system
properties explicitly thereby obviating the need for indirect evidence.

CLASS is structured as a meta process that embodies a broad range of techniques,
an instantiation mechanism that tailors the meta process to the specific details of a
given application, and a repository that provides a wealth of resources such as
argument patterns, support tools, process patterns and guidance to support rigor-
ous development. In this paper, we present the rationale for and overall design of
CLASS.
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2 CLASS Principles

Specific artifacts are used to define many existing software development methodolo-
gies. For example, in test driven development, tests guide system development; in
requirements driven development, requirements are refined to system implementation;
and in enterprise architecture, architectural patterns that demonstrate useful system
properties guide development.

Each of these methodologies involves synchrony between a non-functional, ana-
lytic product (tests, requirements, architecture) and the functional system. This syn-
chrony is a co-informing relationship: the functional system informs the analytic
product, and the analytic product informs the functional system. Furthermore, the two
must not contradict each other, but are instead extrapolations of one another. Finally,
the analytic products must be coherent, just as the pieces of the functional system are
coherent.

These concepts have been adopted as a guiding principle for CLASS. In CLASS,
the non-functional, analytic product is the safety case, and the notion of synchrony that
is inherent in these advanced software development methodologies is a fundamental
principle of CLASS.

In view of the importance of synchrony in the CLASS approach, we define the term
as follows:

Synchrony. A safety case and the system about which it argues have the property of
synchrony if all elements of the safety case are current for the subject system and all
analytic products are coherent.

Failure of assurance can result from a failure of synchrony. In that case, there is an
underlying error in the safety case, implementation, or both, such that synchrony does
not hold between the two in a given system instance.

The principles upon which CLASS is built are:

• Composite Entity. The subject system and the associated safety case are treated as
a single, composite entity, the System and Safety Case Pair (SSCP).

• Synchrony. Synchrony between the subject system and the associated safety case is
maintained whenever they should be synchronized. Timing of synchronization is
determined by analysis. Synchrony will not be continuous– synchrony has to be
broken in a planned way in order to permit concurrent development of the system
and the safety case.

• Assured Properties. The CLASS lifecycle process structure precludes the intro-
duction of safety defects to the extent possible. Assurance of this process property is
by analysis.

• Monitoring. CLASS undertakes necessary and flexible monitoring of itself and
system artifacts in order to ensure that crucial process properties and state are
maintained. Necessary sensors and monitoring algorithms are determined by
analysis. Monitoring can include any aspect of the CLASS process and state
(including the subject system) over time. CLASS monitoring enables properties that
follow from the definition of the process to be assured.
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An outline of a CLASS instance in operation is shown in Fig. 1. The subject system
moves through a series of world states from initial concept and problem definition to
retirement, throughout which the CLASS instance operates continuously. At all times
during the system lifecycle, the system and its safety case are treated as a composite
entity. Assurance analysis of the composite entity indicates how properties of the
subject system will derive from the process and provides details of the necessary
monitoring of the process and the state.

The three major components of CLASS, the meta process, the instance process, and
the resource repository, are significantly interwoven. We discuss these three compo-
nents separately in the next three sections but note that the interweaving cannot be
discussed easily in this linear presentation.

3 The CLASS Meta Process

The CLASS meta process, referred to as metaCLASS, provides a variety of support for
the SSCP throughout the lifecycle. Figure 2 illustrates the basic metaCLASS instan-
tiation mechanism and the major outputs of the associated CLASS instance, referred to
as instanceCLASS.

Also shown in Fig. 2 is the Safety Information Repository (SIR). The SIR is a
structure that holds the safety case and all related assets that result from the creation and
use of an instanceCLASS for a subject system. The SIR is created as part of the
instantiation process and is a lifetime entity, i.e., the SIR accompanies the system
throughout the system’s lifetime. The SIR provides all of the artifacts needed to support
the instanceCLASS as changes become necessary during the system’s lifetime.

Fig. 1. CLASS instance outline
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MetaCLASS is composed of two basic components:

• Development Component. The development component of metaCLASS along
with the CLASS Resource Repository (CRR) supports creation of instanceCLASS
processes, both initially and over the system lifecycle.

• Update Component. The update component of metaCLASS along with the CRR
supports updates of instanceCLASS processes over the system lifecycle.

3.1 Development Component

An instanceCLASS is needed for any project using CLASS, and each instanceCLASS
is created from metaCLASS using resources from the CRR. Once the instanceCLASS
is created and the necessary activities needed for the system safety case are initiated,
metaCLASS remains in operation and available to provide lifecycle support. Additional
resources can be obtained from the CRR at any point.

MetaCLASS provides access to the CRR using a set of access protocols designed to
facilitate the location of useful resources and appropriate use of those resources.

As an example of an access protocol, consider the resources needed for approval or
certification. In an aviation context, the resources needed for approval will be influ-
enced by the application type (ground or airborne), the criticality level of the system,
the overall system requirements, and so on. The role of the access protocols in this case
is to provide a means of locating the right versions of standards, process support
entities, tools, regulatory mechanisms and so on.

3.2 Update Component

The update component of metaCLASS is responsible for ensuring that all instance-
CLASSs remain properly synchronized over time with all available resource infor-
mation. The resource update mechanism in CLASS is shown in Fig. 3. The issues that
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force interaction between instanceCLASS and metaCLASS arise from the temporal
dimension of SSCP support. The problem that the update component is designed to
address has two components:

• Meta Resource Updates. Updates to resources within the CRR and the availability
of new resources within the CRR need to be communicated to all instanceCLASSs
that might have an interest in those resources, e.g., an instanceCLASS that was
derived from those resources. This communication is especially important for
defects that are detected and repaired in the CRR. As an example, consider the
possibility of a defect in an argument pattern being detected. All safety cases relying
on that pattern would need to be checked and possibly updated.

• Instance Resource Updates. Necessary updates to CRR resources might be
detected by an instanceCLASS that was using those resources. The CRR needs to
be informed of such updates and then instanceCLASSs derived from those
resources need to be informed. As an example, again consider the possibility of a
defect in an argument pattern being detected by an instanceCLASS. Correcting that
defect in the CRR and all other derived instanceCLASSs is crucial.

Effecting an update to either the CRR or the resources being used by an in-
stanceCLASS in an unsynchronized manner could disrupt ongoing activities. Con-
versely, the CRR, metaCLASS and all instanceCLASSs need to be informed promptly
of an update. To accommodate these requirements, the CLASS update mechanism is
divided into a Notifications element and a Resources element.

A notification includes the details of an update but is merely to notify all interested
processes of the update. Processes can then decide on the relevance and importance of
the update. Notifications are “pushed” to all interested processes. The Resources ele-
ment of the update component provides the mechanism for interested processes to
acquire updated resources. Resources are “pulled” by the interested processes and so
the installation of an update in under the control of the processes.

Fig. 3. CLASS resource update mechanism.
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4 The CLASS Instance Process

4.1 InstanceCLASS Information Flow

The CLASS instance process, referred to as instanceCLASS, includes a wide variety of
types of information. Figure 4 is organized around these items of information and their
flows through an instanceCLASS.

The key elements of the information flow structure are:

• Approval assets and shared information for and from audits flow between devel-
opers and the approval agency.

• The evolving safety case design flows to and from a variety of sources and sinks
intended to inform and consult all system stakeholders.

• Details of process activities flow to the process monitoring system.
• Specification of essential state monitoring activities flow from the safety case design

to the state monitoring system.
• Assets flow to the SIR as they are completed and from the SIR for reference later in

the lifecycle.

4.2 Safety Information Repository

The Safety Information Repository (SIR) is a source and a sink for all of the infor-
mation that flows in a CLASS instance. The SIR expands the concept of a safety case to
include all relevant information that might have value across the lifecycle.

Fig. 4. CLASS instance information flow.
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The role of the SIR in the overall CLASS architecture is shown in Fig. 2. The
information flow of the subject system, the associated instanceCLASS, and the SIR is
shown in more detail in Fig. 4.

As examples of the role of the SIR, consider: (a) the safety case itself and (b) the
results of state monitoring of the subject system:

• The safety case has to be accessible and available for update and repair at any point
during the subject system’s lifecycle. The SIR provides this storage and access
facility for the safety case and all associated information.

• State monitoring is designed to check on the conformance of the subject system to
the constraints upon which the safety case was built. Any deviations raise issues
about system and safety case consistency and validity. Details of the monitoring
record need to be available in an accessible and predefined form. The SIR provides
this storage and access facility for the monitoring data and all associated
information.

The preliminary content catalog of the SIR as defined in CLASS, either in the form
of the actual artifacts or links to the actual artifacts, is:

• A directory of the artifacts contained within the SIR.
• The system’s safety case.
• Source artifacts used to create the system’s safety case including:

• All items of evidence.
• Tools needed to reproduce the evidence.
• Safety arguments.

• All artifacts associated with the approval of the system via the safety case.
• Logs of system maintenance.
• Logs of system monitoring.

As shown in Fig. 4, the SIR has an API that supports access and management of the
SIR. For any lifecycle activity that involves safety-related information, processes that
use the SIR through the API will be available. The details of the SIR content, the API
access mechanism, the necessary tool support and the associated access process will be
elaborated as CLASS is applied.

5 The CLASS Resource Repository

The CLASS Resource Repository (CRR) supplies resources that metaCLASS uses to
build and maintain an instanceCLASS. The expectation is that the CRR will provide
resources of many types and permit a great deal of reuse across projects.

The CLASS Resource Repository cannot be unique, i.e., there cannot be a single
CRR that provides resources to all projects. Any organization that is using CLASS will
require organization-specific elements in the CRR. All instantiations of the CRR should
be (though need not be) derived from a central facility so as take advantage of the
common base of resources. Nevertheless, a tailoring mechanism is required to permit a
generic CRR to be adapted to the needs of a specific organization.
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To accommodate the various modifications necessary within the CRR and to permit
flexible use of those modifications, CLASS defines a hierarchy of CRRs. The CLASS
CRR hierarchy is illustrated in Fig. 5. The hierarchy begins with a generic CRR used
by metaCLASS. Along with the specific content designed to support CLASS, this
generic CRR includes domain specific resource repositories that are provided by other
sources.

Examples of this type of repository are:

• Standards and documentation repositories maintained by regulatory and standards
bodies.

• GSN pattern libraries maintained by organizations such as universities and research
organizations.

• Software libraries that provide common services such as those available from
system software and middle-ware vendors.

At the next layer of the hierarchy are a set of local CRRs, each designed to support
the metaCLASS operated by a specific organization, such as an aerospace system
supplier. Each local CRR is adapted from the generic CRR to support the particular
organization. Within a given organization, each instanceCLASS is created from the
local CRR. As shown in Fig. 5, a set of instanceCLASSs within an organization are
derived from the organization’s local CRR.

Fig. 5. CLASS Resource Repository hierarchy.
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The CLASS Resource Repository is not static. As shown in Fig. 3, updates or
additional materials derived from external sources might be entered into the CRR over
time. Other changes to the CRR might be motivated by either resource demands or
determination of defects in resources as a result of their use.

As discussed in the context of the update component of metaCLASS, no matter
what the cause, changes in the CRR must be handled carefully. Enhanced resources
might not be of immediate value to existing instanceCLASSs, and the decision about
their adoption must be the responsibility of the individual instanceCLASS. Declining
adoption of a new or enhanced resource entirely by the CRR might be preferable.
Similarly, defects identified in resources by an instanceCLASS must be made available
to other instanceCLASSs in order to protect the latter from the effects of the identified
defect. Nevertheless, each instanceCLASS must be able to exercise explicit individual
control over the action taken when resources are updated.

6 The CLASS Analysis Framework

The CLASS analysis framework is designed to analyze CLASS itself so as to provide
justification for rigorous statements about properties of the subject system that result
from the tools and techniques used in CLASS. The goal of the framework is:

• to enable examination of CLASS based on a list of desired properties of the subject
system, and

• to determine the extent to which CLASS can ensure these properties, i.e., the extent
to which CLASS precludes the introduction of defects that could make a property
false.

If the framework can show that CLASS avoids the introduction of or enables
significant reduction in a class of defects, then that result translates immediately into a
property of the desired system, i.e., elimination or limitation of a class of defects.

The basic approach used in the analysis framework is use of the Filter Model
introduced by Steele and Knight [3]. Based on the Filter Model, CLASS itself is treated
as a safety-critical system. In other words, allowing a defect to be introduced into or
allowing a defect to remain in a subject system is considered an accident.

The Filter Model was introduced to analyze approval processes and associated
standards. The model derives a mapping between the detailed content of a standard and
the intent of that detail; a mapping that is universally absent from standards. Applying
the model to CLASS yields the mapping between process elements in CLASS and the
associated intent. With that mapping, the content of a CLASS instance can be adjusted
and so that properties of systems built with CLASS can be inferred.

Treating the development process as a safety-critical system (entirely separately
from the system under development), i.e., the Filter Model principle, allows the
application of all of the techniques used in safety engineering to the process and
thereby to reduce the residual development risk associated with an instanceCLASS.
Techniques that can be applied include hazard identification, hazard analysis, fault-tree
analysis, failure-modes-effects-and-criticality analysis, and so on.
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As an example, suppose that installing the subject system with inconsistent soft-
ware components is defined to be a development hazard. Fault-tree analysis could be
applied to this hazard to identify process events that could cause the hazard. Changes to
both the process and the process monitoring system could then be developed to reduce
the associated development risk to an acceptable level.

The overall concept upon which the analysis framework rests is illustrated in Fig. 6.
This analysis permits much of an instanceCLASS process to be mapped to properties of
the subject system. By analyzing CLASS in this manner, everything undertaken in
CLASS leads to rigorous statements about the subject system and the necessary evi-
dence to support the associated claim. Thus, the framework feeds directly and
immediately into the safety case for the subject system. This mapping essentially
eliminates the need for indirect evidence, because the process is enabling strong
statements to be made about the system itself.

7 The CLASS Approval Process

CLASS addresses approval as a vital part of the entire lifecycle, from system concept
formation and problem definition to system decommissioning, and bases approval on
the system safety case. This explicit attention to approval across all of the lifecycle
phases is manifested in the following considerations:

• The development phase of the lifecycle must ensure that artifacts developed support
approval throughout the remainder of the lifecycle.

Fig. 6. CLASS analysis framework.
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• The operation and maintenance phases of the lifecycle must support approval of
revised versions of the subject system irrespective of the cause of the revision.

• The primary focus of approval will be with the lifecycle phase following devel-
opment and preceding deployment. The focus must be supported by both artifact
structures and processes that maximize the value and minimize the cost of approval
to all of the system stakeholders, including the regulating agency.

Although the safety case is the basis of approval, the entire approval process is
informed by the likely need to meet the requirements of a regulating agency. In the case
of aviation systems, for example, the regulating agency involved is the Federal Avi-
ation Administration (FAA). CLASS provides a framework within which adequacy of
protection of the public interest as defined by the FAA can be determined. CLASS is
designed specifically and deliberately to ensure that elements of CLASS can be
adjusted to meet the needs of the FAA.

In CLASS, the safety case combines and structures many items that would nor-
mally be identified and elicited separately as part of existing approval mechanisms. By
definition, the safety case documents the rationale for belief in the adequacy of the
safety of the subject system, and maintenance of the safety case across the complete
lifecycle facilitates the requisite approval activities.

Since the CLASS analysis framework allows indirect evidence about the subject
system to be minimized or eliminated, the majority of the doubts about the properties of
a system that are engendered by indirect evidence are avoided. The CLASS monitoring
mechanism provides a high level of confidence that the expected properties established
by the analysis framework will be true and either remain so or alert system stakeholders
to violations. Thus, the starting point for approval is a safety case for the subject system
with properties established by direct evidence in which stakeholders and certifiers can
have high confidence.

CLASS approval is composed logically of two significant audit phases that are
expected to be accomplished by experts from the regulating agency. The audit phases are:

• Process Audit. By design, CLASS attempts to preclude faults in a wide variety of
categories. Provided CLASS is used properly, faults in certain explicit categories
should be either eliminated or reduced to a tolerable level. The details of the
categories of faults that are precluded together with all the associated evidence for
the subject system are documented explicitly in the safety case. Despite the role of
both the analysis framework and the monitoring system, an audit is required to
confirm to the extent possible that the claimed properties of the subject system are
present.

• Safety Case Audit. By definition, the safety case describes the rationale for belief
in the safety of the subject system. Thus the second audit need not examine the
product. Rather, the safety of the subject system should be argued in a compelling
manner by the safety case. The second audit is of the safety case. Many aspects are
examined in the audit including a variety of simple yet important properties. The
main emphasis of the safety case audit is the assessment of the degree to which the
safety argument has the essential properties of being comprehensive, valid, and
compelling. The approach to audit in CLASS is based on previous work by
Graydon et al. [4].
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8 Conclusion

Safety cases are being used in practice and many benefits accrue from the approaches
used in current practice. The goal of CLASS is to take the use of the safety-case
concept to its practical limit by making the safety case the focus of the product
lifecycle.

The present design of CLASS has explored the role of process rigor derived from
the safety case, system approval based on a safety case within the larger framework of
the system lifecycle, the provision of rich resource libraries to support lifecycle
development and analysis, and the analysis of the lifecycle itself using the concepts of
the filter model. The result is a comprehensive approach to system safety that integrates
all phases of the lifecycle and provides safety assurance across those phases.
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Abstract. This paper describes a method to create assurance cases for the Open
Dependability through Assuredness (O-DA) standard of The Open Group
(TOG) based on ArchiMate. ArchiMate provides Enterprise Architecture
(EA) models to describe Business, Application and Technology Architectures.
Although O-DA shows the necessity of agreeing on the assuredness of EA using
assurance cases, O-DA does not mention how to create assurance cases for EA.
In this paper, an assurance case pattern is proposed to argue the assuredness for
these three kinds of architectures modelled by ArchiMate.
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1 Introduction

This paper describes a method to create assurance cases for the Open Dependability
Assuredness (O-DA) standard of The Open Group (TOG) based on ArchiMate.
ArchiMate provides Enterprise Architecture (EA) models to describe Business,
Application and Technology Architectures. Although O-DA shows the necessity
of agreeing on the assuredness of EA using assurance cases, O-DA does not mention
how to create assurance cases for EA. In this paper, an assurance case pattern is
proposed to argue the assuredness for these three kinds of architectures modelled by
ArchiMate.

Section 2 describes related work on argument pattern approaches for assurance
cases. The O-DA standard, the assured architecture development method (AADM), and
ArchiMate are also briefly described. Section 3 describes an assurance case pattern
which is proposed to formalize the argument decomposition structure from ArchiMate
models. In Sect. 4, an example case study using the pattern is presented. Discussions on
the effectiveness and appropriateness of the D-Case pattern are shown in Sect. 5. Our
conclusions are presented in Sect. 6.

2 Related Work

This section describes the related work on the assurance case, ODA (Open depend-
ability through Assuredness, and the Assured ADM.
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2.1 Assurance Case

The safety case, the assurance case, and the dependability case are currently the focus
of considerable attention for the purpose of providing assurance and confidence that
systems are safe. Methods have thus been proposed for representing these using Goal
Structuring Notation (GSN) [1–5]. GSN patterns were originally proposed by Kelly
and McDermid [2]. In the absence of any clearly organized guidelines concerning the
approach to be taken in decomposing claims using strategies and the decomposition
sequence, engineers have often not known how to develop their arguments. It is
against this backdrop that the aforementioned approaches to argument decomposition
patterns—architecture, functional, attribute, infinite set, complete (set of risks and
requirements), monotonic, and concretion—were identified by Bloomfield and Bishop
[6]. When applying the architecture decomposition pattern, claims of the system are
also satisfied for each constituent part of the system based on system architecture.
Despotou and Kelly [7] proposed a modular approach to improving clarity of safety
case arguments. Hauge and Stolen [8] described a pattern based safety case approach
for the Nuclear Power control domain. Wardzinski [9] proposed an approach for
assurance in the vehicle safety domain based on the assumption that hazardous
sequences of events. An experimental result of argument patterns was reported by
Yamamoto and Matsuno [10]. Argument pattern catalogue was proposed based on the
format of design patterns by Alexander, Kelly, Kurd and McDermid [11]. In their
paper, Alexander and others showed a safe argument pattern based on failure mode
analysis. Graydon and Kelly [12] observed that argument patterns capture a way to
argue about interference management. Ruiz and others [13] proposed an assurance case
reuse system using a case repository. Denney and Pai [14] proposed a Formal Basis for
Safety Case Patterns. They formalized pattern refinements such as (1) Instantiating
parameters (2) Resolving choices (3) Resolving multiplicities, and (4) Unfolding loops.
These are refinement rules of parameterized argument patterns.

Hawkins and others proposed a Model-Based Assurance Case development
approach by weaving reference information models and GSN argument patterns [15].
They used a script language to define precise weaving procedures. Gallina and others
[16] proposed a Safety Case Line approach to develop ISO 26262 compliant safety
cases based on Product Line Engineering by using GSN extensions. Lin [17] showed
how a safety case pattern can be applied to a manufacturers’ development process as
reusing strategies for building a new safety argument. These approaches assumes
specific adaptation mechanisms to generate assurance cases for reusing GSN patterns.

Assurance cases have been extended to handle modular architectures [18]. Ya-
mamoto and others proposed the d* framework to introduce responsibility of modules
in assurance cases [19–21].

2.2 Open Dependability Through Assuredness

The Open Group Real Time & Embedded Systems Forum focuses on standards for
high assurance, secure dependable and complete systems [22]. At the heart of this
O-DA (Open Dependability through Assuredness) standard, there is the concept of
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modeling dependencies, building assurance cases, and achieving agreement on
accountability in the event of actual or potential failures. Dependability cases are
necessary to assure dependable systems [22]. The DEOS process was proposed to
manage dependability of complex systems by using dependability cases [23–25].
The DEOS process is an integrated iterative process containing the change accom-
modation cycle and the failure response cycle.

Complex systems, especially where the boundaries of operation or ownership are
unclear, are often subject to change: objectives change, new demands are made, reg-
ulations change, business partners are added, etc. So when the failure of the system can
have a significant impact on lives, income or reputation, it is critical that a process is in
place to identify these changes and to update the architecture by using the assurance
cases and the agreements on accountability. It is also critical that a process is in place to
detect anomalies or failures, to understand the causes, and to prevent them from
impacting the system in the future.

The O-DA standard outlines the criteria for mitigating risk associated with
dependability of complex interoperable systems. It also outlines individual account-
ability. The Open Group announced the publication of the Dependability through
Assuredness™ Standard (O-DA) published by The Open Group Real-Time &
Embedded Systems Forum [26].

O-DA will benefit organizations relying on complex systems to avoid or mitigate
the impact of failure of those systems. O-DA includes the DEOS process mentioned
before. The Change Accommodation Cycle and the Failure Response Cycle that
together provide a framework for these critical processes. O-DA brings together and
builds on The Open Group vision of Boundaryless Information Flow. These concepts
include O-DM (Open Dependency Modeling) and Risk Taxonomy of The Open Group
Security Forum, and Architecture models of The Open Group ArchiMate® Forum.
However, the relationship between O-DA and ArchiMate concepts has not yet been
clear.

2.3 Assured ADM

TOGAF [27] is The Open Group Architecture Framework. TOGAF Architecture types
include business, data, application and technology architectures.

Business architecture describes business strategy, governance, organization, and
key business processes. Data architecture describes the structure of an organization’s
logical and physical data assets and data management resources. Application archi-
tecture describes a blueprint for the individual applications to be deployed, their
interactions, and their relationships to the core business processes of the organization.
Technical architecture describes the logical software and hardware capabilities that are
required to support the deployment of business, data, and application services. This
includes IT infrastructure, middleware, networks, communications, processing, and
standards. Architecture Development Method (ADM) is the core of TOGAF. Con-
stituents of ADM phases are Preliminary, Architecture Vision, Business Architecture,
Information Systems Architectures, Technology Architecture, Opportunities and
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Solutions, Migration Planning, Implementation Governance, Architecture Change
Management, and Requirements Management.

Table 1 summarizes AADM issues according to ADM phases. This paper focusses
on the assurance case development in the B, C, and D phases, respectively.

2.4 ArchiMate

The ArchiMate language [28] defines three layers. The Business Layer provides
products and services to external customers, which are realized in the organization by
business processes performed by business actors. The Application Layer describes
application services which are realized by (software) applications to support the
Business Layer entities. The Technology Layer offers infrastructure services (e.g.,
processing, storage, and communication services) that are realized by computers and
communication hardware and system software to support applications.

Table 1. Issues of assured ADM

ADM phase AADM

Preliminary (1) Architecture repository to store evidence and assurance case,
(2) Dependability board to agree on priority among claims

A. Architecture
vision

(1) Dependability scope definitions, (2) Quantitative evaluation index,
(3) Capability evaluation of dependability, (4) Dependability
parameter

B. Business
architecture

(1) Dependability principle definition
(2) BA assurance case development
(3) BA assurance case review

C. Information
system
architecture

(1) IA assurance case development,
(2) IA assurance case review

D. Technology
architecture

(1) TA assurance case development,
(2) TA assurance case review

E. Solution (1) Integration of BA, IA, TA assurance case,
(2) Integrity confirmation

F. Transition (1) Operation management assurance case development,
(2) Value analysis of operation assurance case

G. Implementation (1) Evidence development for assurance case, (2) Process evidence
development method, (3) Exhaustive relationship validation
between claims and evidences, (4) Operational assurance case
review

H. Architecture
change
management

(1) Evidence management of operational assurance case,
(2) Confirmation of measure for claim failures, (3) Risk
management by assurance case, (4) Failure analysis by assurance
case

Requirements
management

Traceability management of assurance case
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3 Assurance Case Patterns for Architecture

3.1 Dependability Argument and ArchiMate

A dependability argument constitutes the intra-dependability of Architecture layers and
the inter-dependability of layer interactions. It is necessary to assure the intra
dependability by using assurance cases for the business, application, and technology
layers. It is also necessary to assure the inter dependability by using assurance cases for
the interactions between the business, application and technology layers.

The decomposition pattern is based on the description in Table 2.

This pattern generally describes the transformation from an ArchiMate model to an
assurance case. An ArchiMate model consists of model elements and relationships
between elements. Therefore, the top goal of the assurance case for ArchiMate model is
decomposed into two sub-goals.

The first level sub-goal claims state that concept elements and relationships of the
ArchiMate model satisfy dependability principles. Figure 1 shows the decomposition
of the top goal into two sub-goals.

The second level sub-goal claim states that category of elements and their rela-
tionships among ArchiMate model satisfy dependability principles.

The third level goals are decomposed by instances of concepts and relationships of
ArchiMate notations.

The fourth level goals are decomposed by risks for the corresponding instances and
are supported by evidences to mitigate risks. Therefore, the fifth level of the assurance
case consists of evidences for the fourth level goals.

3.2 Assurance Case Derivation from ArchiMate Model

It is necessary to derive assurance cases from ArchiMate descriptions to assure
architectures described in ArchiMate. An assurance case derivation method from
ArchiMate model is as follows.

Table 2. Assurance case pattern for ArchiMate

Hierarchy Description

Root goal The root goal states that the ArchiMate model shall satisfy
dependability principles

Concepts and relationships Root goal is decomposed by concepts and relationships of
ArchiMate notations

Category of concepts and
relationships

Second level goals are decomposed by categories of
concepts and relationships of ArchiMate notations

Category instances of
concepts and relationships

Third level goals are decomposed by instances of concepts
and relationships of ArchiMate notations

Risk mitigation for
Instance risks

Fourth level goals are decomposed by risks for the
corresponding instances and are supported by evidence to
mitigate risks
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For each ArchiMate model A = <Concept Set, Relationship Set> , Concept Set and
Relationship Set are defined as follows.

Concept Set = {< Name, Cc > | Cc is a Concept category of ArchiMate}
Relationship Set = {< Name, Cr > | Cr is a Relationship category of ArchiMate}
Then, the following four sets are calculated.
Concept Category (A) = {C | < x, C > is in Concept Set of A}
Relationship Category (A) = {C | < r, C > is in Relationship Set of A}
Concept Instance (C, A) = {x | < x, C > is in Concept Set of A}
Relationship Instance (C, A) = {r | < r, C > is in Relationship Set of A}

Based on the above sets, the GSN model D is derived by the following steps. The root
goal can simply be developed such that ArchiMate model A satisfies dependability
principles. The second level goals are derived by Concept and Relationship. The third
level goals are derived by using Concept Category(A) and Relationship Category(A).
The fourth level goals are derived by using Concept Instance(C, A) and Relationship
Instance(C, A). Fifth level goals are derived by analyzing instance risks. The derivation
shall be conducted by eliciting risks for each instance element of A.

The assurance case decomposition hierarchy in Table 2 for ArchiMate can be
constructed by the above method. The steps of the method show the systematic
assurance case derivation procedure from an ArchiMate model.

4 Example Study

The example study was conducted to evaluate the effectiveness of the proposed
assurance case pattern for a realistic business application named Driving Diagnosis
Service.

ArchiMate model 
satisfies dependability 

principles

Argument over 
architecture

Dependability 
Principles 

ArchiMate
model

Elements of the 
ArchiMate model 
satisfy principles

Relationships among 
the ArchiMate model 

satisfy principles

Rationale of 
decomposition

Context of argument

Argument over 
each relationship

Argument over 
each element

Fig. 1. Assurance case structure of ArchiMate diagrams
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4.1 Driving Diagnosis Service

A gasoline sales company provides a driving diagnosis service to support safe driving
by the analysis of car driving information with a cloud service. The on-board car
devices gather all the information such as the number of immediate slowdowns, idling
time, and the quantity of injection. When a car enters the gas station and stops the
engine, the on-board device sends the car driving information to the communication
device at the gas station by using a wireless network. When the car driving information
is sent to the cloud server through the network from the communication device at the
gas station, the driving diagnosis service analyzes the car driving information and
provides the driving report to the drivers through smart phones.

The service can make a precise decision on the quality of the car driving technique
of drivers. The gasoline sales company provides motor vehicle insurance that varies the
payment according to the driving technique levels by collaborating with an insurance
company.

4.2 BA in ArchiMate

The business architecture of DDS (Driving Diagnosis Service) described in ArchiMate is
shown in Fig. 2. The figure shows an application process of the driving diagnosis
insurance service. The process is initiated by an event of the application of DDS by a
driver.

The assurance cases derived for the BA in Fig. 2 by using the above assurance case
pattern are shown in Figs. 3, 4, and 5. Figure 3 shows the top level assurance case for
assuring DDS. The top level assurance case decomposes the top level goal into two
sub-goals, G_2 “process elements are dependable,” and G_3 “relationships among
process elements are dependable.”

Fig. 2. Business architecture example of DDS
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Figures 4 and 5 are assurance cases for G_2 and G_3, respectively. In Figs. 4 and
5, risks and evidence are omitted for simplicity.

5 Discussion

In this section, we discuss on the effectiveness, applicability, generality, and limitations
of the proposed method.

Fig. 3. Top level assurance case for BA

Fig. 4. Assurance case sub-tree for G2
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5.1 Effectiveness

The case study on the DDS was executed to evaluate the effectiveness of the derivation
method proposed in Sect. 3. The result showed the derivation from the BA for DDS in
ArchiMate to assurance case is easy and traceable. This showed the effectiveness of the
derivation method. Although the derivation was only described for BA, it is clear the
same results can be derived for AA and TA of DDS.

5.2 Applicability

The applicability of the derivation pattern from ArchiMate to assurance case is also
clear by the above discussions. The proposed derivation pattern can be applicable for
BA, AA, and TA described in ArchiMate. Any architectures in ArchiMate contain
elements and relationships among elements. Therefore, the decomposition hierarchy
defined by Table 2 can be applied to AA and TA models of ArchiMate.

5.3 Generality

The proposed method to derive assurance cases from ArchiMate described in Sect. 3
can be extended to any models represented in graph structures. Every graph G can be
represented by nodes and relationships among nodes. Nodes and their relationships
may have categories. It is necessary to validate every instance of nodes and relation-
ships according to the sort of categories, if we validate the G.

For example, GSN can be described by a graph structure. GSN nodes are cate-
gorized into claim, context, strategy, and evidence nodes. GSN relationships are also
categorized into claim-context, strategy-context, strategy-claim, and claim-evidence

Fig. 5. Assurance case sub tree for G3
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relationships. An assurance case pattern for assuring the validity of GSN descriptions
can be derived by the method in Sect. 3, as shown in Fig. 6.

The pattern example omits claims and evidence for validating each instance of
nodes and relationships of GSN descriptions. The GSN pattern can be used to validate
GSN descriptions. The example shows the generality of the derivation method pro-
posed in Sect. 3. It is obvious that the derivation method can be applied to any model
represented by graphs, such as UML and BPMN.

5.4 Limitations

This paper only examines the effectiveness of the proposed method for a simple
example architecture described by ArchiMate. More evaluations are necessary to
validate the proposed method. This paper only examines the B phase of AADM for the
applicability of the proposed method, although the method can be applied to phases C
and D. Other AADM phases shall also be evaluated.

6 Conclusion

In this paper, an assurance case pattern is proposed to derive the argument decom-
position structure from ArchiMate models. The method solves O-DA issues for
assuring business, application, and technology architecture of TOGAF. An example
case study using the proposed pattern is also shown for the Driving Diagnosis Service
in the insurance domain.
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Fig. 6. Assurance case for GSN
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Discussions based on the case study showed the effectiveness and appropriateness
of the proposed methods. The proposed method can resolve the issues of B, C, and D in
Table 1.

Future work includes the formalization of assurance case derivation process from
ArchiMate models and the development of solutions for the issues other than B, C, and
D in Table 1.
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Abstract. This paper presents a tool for structuring arguments in assurance
cases. The tool is designed to support the methodology of Claims-Arguments-
Evidence (CAE) Building Blocks that provides a series of archetypal CAE frag‐
ments to help structure cases more formally and systematically. It assists with the
development and maintenance of structured assurance cases by providing facili‐
ties to manage CAE blocks and partially automate the generation of claim struc‐
tures. In addition to the tool, new visual guidelines called “Helping hand” is
provided to assist in applying the building blocks. The tool has been implemented
on the Adelard ASCE platform. The target users are assurance case developers
and reviewers. The tool and associated methodology can also be useful for people
learning how to structure cases in a more rigorous and systematic manner.

Keywords: Claims · Argument · Evidence · CAE building blocks · Helping hand ·
ASCE tool · Support

1 Introduction

Over the past ten years there has been a trend towards an explicit claim-based approach
to safety justification and considerable work has been done on developing and struc‐
turing assurance cases [1–3]. However, the practice of how to structure and present cases
is very varied. There are lots of different styles with different expressiveness and these
many approaches make it difficult to compare cases and hard to provide a more rigorous
semantics. To address these issues and provide a more rigorous approach to architecting
cases, we have defined specific rules that restrict the type of argument structures and
developed a collection of building blocks for assurance cases that help construct cases
more formally and systematically [4].

During the development of CAE building blocks, we reviewed a wide range of cases
from the defence, medical, financial and nuclear sector and the proposed set of building
blocks were able to capture most of what was being expressed. We wish to deploy these
CAE building blocks, evaluating their use and improving the methodology.
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The tool presented in this paper is designed to aid the research and practice of devel‐
oping structured formal and semi-formal assurance cases. There are other products [5, 6]
available to assist in the structured assurance case development. What makes our tool
unique is support for the CAE blocks as self-contained reusable configurable components.
It is a purpose-built tool designed specifically for the building blocks methodology, there‐
fore, it was essential to integrate it with a widely-used assurance case software to make an
impact. We implemented it on top of ASCE [7], which is a market-leading tool for the
development and maintenance of assurance cases across a wide range of industries. ASCE
is a commercial product but it is available free of charge for academic research purposes.

The paper is structured in the following way. The concept of CAE building blocks
needed to understand the idea and a new “helping hand” guidance are introduced in
Sect. 2. The software tool, which is the main focus of the paper, along with its technical
information and implementation details are described in Sect. 3. Some early experience
with the tool and the future directions of work are outlined in Sect. 4.

2 CAE Building Blocks and the “Helping Hand”

2.1 Building Blocks Concept

CAE building blocks are a series of archetypal CAE fragments, derived from an empir‐
ical analysis of real cases in various domains. They are created using a standardised
structure for combining CAE and are part of a stack of resources that we are developing
to support authors of assurance cases. These resources comprise the basic concepts of
claims, argument, evidence; building blocks with a set of specific CAE structures;
templates created out of the blocks to address particular classes of problems, and the
overall assurance case created using blocks and templates. The stack of CAE resources
is shown in Fig. 1, where arrows indicate the instantiation of elements to produce an
assurance case. The approach can be extended to support GSN notation [3] as well. In
that case, GSN elements will be used instead of CAE and GSN patterns will be
constructed out of the building blocks in a similar way as the CAE templates. This
extension will be implemented in due course.

Fig. 1. Schematic of the stack of CAE resources (left) instantiated into a specific case (right)
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The block structure contains enhancements to the classical CAE approach [1, 2].
One enhancement is to how arguments are addressed: a special side-warrant element is
introduced to explain and assist in a structured way whether the top-level claim can be
deduced from the subclaims and under which circumstances the argument is valid. The
five basic CAE building blocks that we have identified are:

• Decomposition – partitions some aspect of the claim
• Substitution – refines a claim about an object into another claim about an equivalent

object
• Concretion – gives a more precise definition to some aspect of the claim
• Calculation or proof – used when some value of the claim can be computed or proved
• Evidence incorporation – incorporates evidence that directly supports the claim

The summary and the structure of these basic block are provided in the Appendix A.
Additional information and guidance can be found in the paper [4].

2.2 “Helping Hand” for CAE Building Blocks

In order to support the teaching and deployment of CAE Building Blocks, we have
created a visual guidance shown in Fig. 2. We call it a “helping hand” as it is designed
to help people structure assurance cases in an easier and more intuitive way by providing
a “cheat sheet” on a hand with some hints and questions to answer. Instead of wondering
what to do next and how to better expand the case, this approach shifts the question to
an easier one: “which block is best to use?” and helps to find the answer by following
the provided guidance.

Fig. 2. “Helping hand” – high level guidelines for applying the building blocks
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3 Tool Description

The main focus of this paper is on the software tool that assists in using CAE building
blocks within the existing assurance case development processes. The tool we have
developed provides facilities for creating and managing block-based argumentation to
help create more formal, structured and maintainable assurance cases.

The usage of CAE Building Blocks is not isolated and in order to be effective our
tool should be integrated with the current processes and other tools used for the creation
and management of cases. To address this, we implemented it on top of the ASCE
platform, which is a widely-used powerful graphical and narrative hypertext tool for the
development, review and maintenance of assurance cases. The detailed description of
the ASCE tool can be found in the help file [8]. Below we only highlight the features of
ASCE that are used by our tool and needed to understand the rest of the paper.

• Graphical editor for creating and arranging arguments
• Support for different notations, including CAE
• A content editor for editing the narrative content of nodes in a HTML format
• Functionality to validate the resulting network against the logical constraints of the

notation being used
• Extensibility allowing support for specific applications and integration with other

technologies

The extensibility feature is particularly important for us as it is used to incorporate
our tool into the existing ASCE environment. The integration is performed through the
use of the ASCE mechanism of plugins and a customised “schema” file.

Therefore, the implementation of the tool involved two major activities: supporting
the Building Blocks methodology and integrating it into the ASCE tool. Each of them
is described in Sects. 3.1 and 3.2 below. The interaction between ASCE and both parts
of our tool is schematically shown in the sequence diagram provided in Fig. 3.

Fig. 3. Interaction sequence diagram
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3.1 Tool Support for CAE Building Blocks

The Building Blocks tool is developed as a DHTML application. The graphical user
interface (GUI) components are created using HTML5, CSS3 and JavaScript. The struc‐
ture of the GUI controls follows the Model-View-Controller architectural pattern: every
control has a model containing its internal state, HTML view reacting to any changes
of that model and controllers reacting to the user events and modifying the model based
on them. Examples of the GUI for the decomposition and concretion blocks are provided
in Fig. 4.

Fig. 4. GUI and sample CAE diagram for the concretion block

Most of the fields are completed automatically to save the user unnecessary typing.
For example, the top claim is parsed to locate the name of the object. As soon as the
values are completed, the subclaims titles, argument and side-warrant text are generated.
One of the design choices we made is the ability to grade the formality, e.g. the side-
warrant can be formulated informally or it can be generated by the tool in a more formal
way (math based side-warrant). All the inputs are editable and the users are free to alter
the text of the subclaims, side-warrants, etc. the way they want. The OK button at the
bottom of the dialog is used to apply the block. Of course, it is not a one way write as
the tool supports the evolution of CAE structures. If the users decide to change their
minds and delete or modify the nodes, this is reflected back in the tool. In that case the
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automatically created text is regenerated, while any custom modifications are preserved
(no user data is lost). A sample CAE structure and the tool GUI with dependencies
between auto-generated text values shown in red are provided in Fig. 4.

In terms of the implementation details, the following JavaScript libraries are used
by the GUI components: jQuery for DOM querying and manipulating, Backbone for
implementing the Observer pattern, Lo-Dash for general-purpose object model queries.
The standard HTML controls such as inputs and checkboxes are wrapped by the MVC
triads to keep GUI control set consistent. In addition to those wrappers, there are custom
application-specific controls, such as ListControl, which iterates over the collection of
items, rendering each of them into an independent row. The class diagram for the tool
is provided in Fig. 5.

Fig. 5. UML class diagram for the tool

All classes of the tool are grouped into three main packages:

• Block model - classes that represent Block elements
• GUI - user-interaction controls and Block editors, constructed from these controls
• Application engine - manages instantiation of Block editors, contains dependency

injection points for connector used for the integration with ASCE

The classes representing CAE Building Block elements (claims, argument, side-
warrant etc.) and links are included in the Block model package. This package also
contains rules for checking whether the model is well-formed by following the rules of
the CAE normal form, specifically:

• Claim nodes may only be connected to argument nodes
• Argument nodes may only be connected to claim and evidence nodes
• Each argument node may only have one outbound link to a claim node
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• Each claim is to be supported by only one argument
• Argument nodes must be supported by at least one subclaim or evidence node
• Evidence nodes represent the bottom of the safety argument and are not supported
• A claim, subclaim or evidence may support more than one argument

All modules within the packages conform to the CommonJS Modules specification.
To load these modules the execution environment should contain the implementation
of the CommonJS “require” function. The next section describes the integration part,
where this function is implemented by using the Windows Scripting Host components.

3.2 Integration with ASCE

The extensible architecture of ASCE allows users to implement new features on top of
the core functionality of ASCE using additional schemas and plugins. The developer
documentation is freely available and can be found at [9, 10]. Basically, ASCE plugins
are written as XML files which contain a mixture of configuration information, user
interface and code. The recommended approach is to use HTML forms with event
handlers created in one of the Windows Scripting compatible languages (VBScript or
JScript). The GUI approach used for our tool is suitable for this type of integration, so
we implemented the tool as an ASCE plugin that runs in the Web browser component.
The two major integration tasks we had to solve involved:

1. Implementation of CommonJS API in the plugin using Windows Scripting Compo‐
nents: As was mentioned above, ASCE uses Windows Scripting while our tool is

Fig. 6. Class diagram showing ASCE COM components
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built using CommonJS architecture. In order to use CommonJS with ASCE, we had
to implement CommonJS interfaces using objects available in Windows Scripting.

2. Implementation of the converter between the object models of the building blocks
and ASCE: Specific classes of the ASCE tool that are used by the converter are shown
in the Fig. 6.

Additionally, we also created a new ASCE schema file with a few custom node
properties used to store the block settings.

4 Conclusions and Future Directions

In this paper we have presented a software tool for structuring assurance cases using
CAE Building Blocks. The tool is integrated in the ASCE environment through the
use of additional schemas and plugins. Additionally, we have introduced a high level
guidance – a “helping hand” – to assist in the case structuring process. The tool and
the methodology are going through a progressive, iterative approach to deployment
and will continue to evolve. At the moment, CAE notation forms the basic blocks
of the approach. However, it can be extended to other graphical and tabular nota‐
tions and their tool support in the future.

We have already deployed the prototype tool and the methodology on a number of
projects. Some of the completed tasks include drafting of guidance for the IAEA on the
assessment of dependability of nuclear I&C systems important for safety, drafting of
templates for arguing about statistical testing as part of the EU Harmonics project,
developing cases to address probabilistic modelling of critical infrastructure and partic‐
ular how one addresses model doubt. We have also used CAE Blocks on a professional
Masters level course at City University London on Information Security and Risk in an
Assurance Case module.

The experience to date has shown the utility of the building blocks. However, there
is more research and development to be done. For example, we need to explore compo‐
sition of blocks into reusable domain-specific fragments or patterns, using GSN notation
elements [3] and a related formal basis [11]. We also plan on looking into links to
challenge and review checklists generated from the blocks, enhancing the default
evidence incorporation block to be a composite block for trusted evidence and providing
more support for the formal aspects of assurance cases. This is a very active and growing
area with a number of research trends on argumentation, confidence and model based
approaches and we plan to continue our research in this direction. In addition we will
reflect on how the experience of CAE Blocks can further support Assurance Case work‐
flows as well as what impact they might have on standardisation activities.

Acknowledgement. We acknowledge support from the Artemis JU SESAMO project (number
295354) and the UK EPSRC funded Communicating and Evaluating Cyber Risk and
Dependencies (CEDRICS) project which is part of the UK Research Institute in Trustworthy
Industrial Control Systems (RITICS).
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A Appendix Basic Building Blocks for Assurance Casesf

Structure Description

Decomposition block 

This block is used to claim that a 
conclusion about the whole object or 
property can be deduced from the 
claims or facts about constituent 
parts.

Substitution block

This block is used when a claim 
needs to be given a more precise 
definition or interpretation. The top 
claim P(X, Cn, En) can be replaced 
with a more precise or defined claim 
P1(X1, Cn, En), Cn and En are 
configuration and environment.

Concretion block

This block is used when a claim 
needs to be given a more precise 
definition or interpretation. The top 
claim P(X, Cn, En) can be replaced 
with a more precise or defined claim 
P1(X1, Cn, En), Cn and En are 
configuration and environment.

Calculation block

This block is used to claim that the 
value of a property of a system can 
be computed from the values of 
related properties of other objects. 
Show that the value b of property 
Q(X, b, E, C) of system X in env E
and conf C can be calculated from 
values

P(X)

Decomposition

- - -P(X2)P(X1) P(Xn)

(X = X1+X2+...+Xn) /\
(P(X1) /\ P(X2) /\ ... /\P(Xn)

=> P(X))

P(X)

Q(Y)

Substitution Q(Y) is equivalent
to P(X)

P1(X1)

P(X)

Concretion P:=P1, X:=X1

Q2(X2, a2)

b= F(a1, a2, ..., ai)

- - - - - -

Q(X,  b)

Q1(X1, a1) Qi(Xi, ai)

Calculation

Evidence incorporation block

This block is used to incorporate 
evidence elements into the case.

A typical application of this block is 
at the edge of a case tree where a 
claim is shown to be directly satis-
fied by its supporting evidence.

),,,(),...,,,,(),,,,( 222111 CEaXQCEaXQCEaXQ nnn

P(X)

evidence
incorporation

Results R

P(X)

Results R
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Abstract. Assurance cases capture the argumentation that a system is
safe by putting together pieces of evidence at different levels of abstraction
and of different nature. Managing the interdependencies between these
artefacts lies at the heart of any safety argument. Keeping the assur-
ance case complete and consistent with the system is a manual and very
ressource consuming process. Current tools do not address these chal-
lenges in constructing and maintaining safety arguments. In this paper
we present a tooling prototype called Safety.Lab which features rich and
deeply integrated models to describe requirements, hazards list, fault trees
and architecture. We show how Safety.Lab opens opportunities to auto-
mate completeness and consistency checks for safety argumentation.

Keywords: Model driven engineering · Safety-critical systems · Assur-
ance cases · Tooling

1 Introduction

Product based safety argumentation needs a holistic view over the system and
links heterogeneous artefacts from different development stages (requirements
specification, system design, implementation, verification & validation) [15]. In
the current practice, these artefacts are maintained in different heterogeneous
and loosely integrated tools if at all. The content of referenced artefacts from
within the argumentation is opaque and the references are only at a high gran-
ularity level, e.g. entire documents (see Fig. 1-left).

Developing assurance cases is not new, but is still imature in industrial prac-
tice [2]. Building assurance cases is entirely manual and with low tool support.
Checking that the safety argumentation is complete and consistent with the
system model is expensive and mostly a manual process done through reviews.
Moreover, the costs are amplified during the evolution of the system when the
safety argumentation needs to be evolved in order to keep up with the changes.

Model-based engineering promotes the use of models in all development
phases from requirements to code and deployment. This means that adequate
and rich models are used to describe different aspects of the system. Rich mod-
els spanning various abstraction levels of dependable systems allow to precisely
define the interdependancies of the model artefacts on different level concerning
c© Springer International Publishing Switzerland 2015
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Fig. 1. Safety argumentation is today (left) coarse granular, based on documents man-
aged by different tools. This limits the automation opportunities in building, quality
assuring and reviewing assurance cases. Model-based safety argumentation (right) puts
together fine granular elements of deep models. This increases the automation and
enables advanced consistency checks.

a particular safety feature. Tracing these interdependencies through the model
as well as the development process lies at the heart of any safety argument.
Such models ease the development, increase the quality and enable a system-
atic reuse. This opens new possibilities to build and maintain assurance cases
which involve different disciplines and directly reference fine granular model ele-
ments (see Fig. 1-right). Furthermore, having a deep integration of artefacts in
a tool, eases the development and verification of assurance cases by increasing
automation for building models and continuously checking their consistency.

However, in industrial practice model-based development is currently only
applied to isolated sub-systems (e.g. model-based testing or software modules).
The overall system development and safety assessment are mainly based on
multiple specification and analysis documents. Our long term goal is to move
away from documents-based development and analysis of safety critical systems
to a model-based world in which semantically rich models are used to describe
the system characteristics in an appropriate manner.

In this paper, we present our experiments to build a model-based tool that
supports development of safety cases and linking them to models developed in
early process phases. Based on these deep models we present a set of automatic
consistency checks between the safety argument structure and the structure of
the models of the developed product.

Language Engineering as Technological Basis: Our work uses language engineer-
ing technologies, which refer to defining, extending and composing languages and
their integrated development environments (IDEs). Language workbenches [3]
are tools that support efficient language engineering. Our implementation relies
on the JetBrains MPS1 language workbench, which, unlike most other language
1 https://www.jetbrains.com/mps/.

https://www.jetbrains.com/mps/
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workbenches, uses projectional editing. Projectional editing makes it possible to
easily combine models defined in different languages and notations [4].

One of the biggest projects developed using this technology is mbeddr [1],
a stack of extensible domain specific languages for model driven engineering
of embedded systems. Siemens is involved in the mbeddr project by building
commercial extensions for controls software development. Our work presented
here is part of our investigations on how can we extend the mbeddr technology
stack to enable deeply integrated safety engineering.

Structure of this paper: In the next section we present our vision for the next
generation of model-based tools for the development of assurance cases for safety
critical systems. Subsequently we describe tooling for a set of safety-domain
specific modeling languages and how are they integrated in order to achieve a
gapless landscape of models. We present how we integrate these languages with
requirements, architectural design, and safety analyses in order to provide a
holistic view over the safety of the system. We conclude the paper with related
work and presenting our plans for future work.

2 Long-Term Vision for Safety Argumentation Tooling

2.1 Use of Rich and Domain Specific Models

The input for safety analyses are models which capture safety relevant character-
istics of the system. These models are at different abstraction levels and captured
using different notations like text, tables or diagrams. Unfortunately, in practice
these models are captured only implicitly in tools providing weak structuring and
consistency enforcements mechanisms like spreadsheets in MS Excel, “boxes and
lines” drawn in MS Visio or plain natural language text written in MS Word.
Hence, constructing and maintaining assurance cases are currently manual tasks
which are performed mostly based on documents and with only spare tool sup-
port. The structure of artefacts referenced from assurance cases varies from a
domain to another. For instance, the certification of trains is different from the
certification of cars or medical equipment. Current tools are mostly agnostic with
respect to the business domain. Domain specific structures are encoded with the
help of modeling conventions if at all.

Safety.Lab targets to use domain specific models in order to fulfill the specific
needs of engineers working in specific business units.

2.2 Integration of System Design and Safety Analysis

A lot of safety argumentation relevant information is redundant and replicated
across different views, many times in different tools. Common practice today
is that weak and high-granular traceability links are present between develop-
ment artefacts. A deep integration between system design and safety analysis is
essential for the development of safety-critical systems because safety conditions
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such as hazards and failure modes are often an outcome of unintended system
functionalities and behaviours in a given environment.

The goal of Safety.Lab is to work with deeply integrated models in which
the artefacts are integrated with each other and referenced from the assurance
case. Functional system requirements are used as input in safety assessment and
this lead to a set of hazards and failure modes that the system needs to deal
with. These hazards must be mapped to the design and checked that indeed
they are addressed. Thereby, Safety.Lab aims to minimize redundancies between
artefacts and avoid inconsistencies in the safety argumentation and between the
safety argumentation and the system model.

2.3 Support the Construction of Assurance Cases

Safety assurance documents gather together heterogeneous information from dif-
ferent development stages. A safety case includes the system’s safety concept
which is build in an early stage of the development and is based as input for
further development. During later development stages a variety of evidence is
produced (e.g. test cases, FMEA tables, fault trees). This evidence is used to
support safety arguments which explain that the system is sufficiently safe.

Safety.Lab takes advantage of the deep models and modern IDE techniques
in order to support engineers building the safety cases. Building of safety cases
still remains a manual process but with modern IDE support.

2.4 Support the Evolution of Assurance Cases

Systems are evolving due to refinement and modification during the development
and consequently the assurance cases must also evolve. Thereby, it must be
enforced that changes in the system design lead to proper adaptions in the
safety analyses and assurance cases. Before changes are implemented, we need
to estimate the impact of such changes on the safety of the system. Performing
change impact analysis is currently a manual process and thereby very time-
consuming. Many times the costs are so high that changes are avoided and only
work-arounds are provided.

Safety.Lab aims to take advantage of rich models and their integration in
order to help engineers to keep their models consistent with the assurance case
and assess possible inconsistencies due to changes.

3 Safety.Lab

In this section we, present our tool Safety.Lab as a first step towards realiz-
ing our long-term vision of a fully model-based construction of critical systems
including their assurance cases. Our tool is based on a deeply integrated set of
languages that address early phases in the development process for safety crit-
ical systems. Our presentation is illustrated with a running example about the
braking function of a car.
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Fig. 2. A fragment of a requirements model.

System-level functional requirements. Functional requirements represent the
input in our process and are documented using a domain specific language (DSL)
for describing requirements. The requirements DSL integrates natural language
text with model fragments [13] (due to the lack of space, we present in this paper
only requirements as prose text and simple meta-data). In Fig. 2 we illustrate
an example high-level functional requirement about the braking function of a
car. The braking function has two sub-functions: manual brakes triggered by the
driver and emergency braking triggered by the onboard-computer in case when
an obstacle is detected to be too close to the car.

Hazards analysis. The next process step that we support is hazards analysis.
Input for the hazards analysis are the functional requirements. In our example,
from the set of functional requirements about braking we identify two hazards:
unintended braking and braking omission. The set of hazards along with their
attributes (severity, controllability, exposure) are captured using a domain spe-
cific language with tabular notation. The reference to the functional requirement
that is used as basis for the hazards analysis is a first class modeling construct
rather than a trace link.

In Fig. 3 we illustrate how Safety.Lab models a list of hazards. The table field
“BrakingFunctionRequirements” is a first-class reference to the requirements
module which contains the functional requirements of braking function.

High-level safety requirements. Safety requirements are derived based on the
hazards analysis. Each hazard leads to one or more safety requirements which
are captured using an extension of the requirements DSL. This extension allows
each safety requirement to reference the hazard it addresses and contains its
integrity level which is automatically derived (based on ISO26262) based on the
attributes of the corresponding hazard.
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Fig. 3. Hazards list for the braking function

Fig. 4. Safety requirements example

The safety requirements for our braking example are illustrated in Fig. 4.
The hazards analysis lead to two safety requirements for avoiding unintended
braking and for preventing accidents caused by missing braking function. These
requirements have ASIL B and D.

(Sub-)system architecture. The high-level architecture is used to structure the
system such that the requirements can be satisfied. During the design phase the
integrated safety analysis helps to find tailored solutions the mitigate threats origi-
nating from the relevant failure modes within the system. Architectural decisions
are thus motivated by the need to address safety requirements. In our example
(Fig. 3), we have two channels to implement the braking functionality - this is
required (cf. ISO26262) by the ASIL D of one of our safety requirements (Fig. 5).

Safety analysis. For example, fault trees are used to analyze possible fault prop-
agation at sub-system level that can lead to a hazard on the system level. The
fault tree represents a view (propagation of faults between different sub-systems)
on the system architecture. In Fig. 6 we illustrate an example of a fault tree for
the “ommision of braking” hazard.

Safety Case. Goal Structuring Notation (GSN) [6] is a modeling language
for capturing safety arguments. GSN has a diagramatic notation; the safety
argument is structured by a set of individual elements (claims, evidence and
contextual information) as well as the relationships between these elements
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Fig. 5. Braking subsystem architecture. This particular architecture is motivated by
the requirements which are directly referenced.

Fig. 6. Example of propagation of faults accross different subsystems. The subsystems
are directly referenced as sources for the basic events. The top event is dirrectly linked
to one of the hazards.
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Fig. 7. Each element of the GSN dirrectly references elements from the system model.
Thereby, navigating between argumentation and the system model is directly sup-
ported. Furthermore, when the system evolves, we can increase the automation of con-
sistency checks that the argumentation is consistent with the implemented changes.
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(i.e. how claims are supported by other claims and by evidences). From the point
of view of Safety.Lab, GSN is another modeling language whose elements refer-
ence other models from the modeling environment. A GSN represents a view over
the system under development which summarizes information already present in
the product model. This opens the possibility to define advanced consistency
checks for the entire model since the structure of the GSN should be consistent
with the structure of the product models whose elements are referenced from
within the GSN.

In Fig. 7 we present an example of a safety argumentation fragment for the
braking function by using a GSN diagram. This safety case is constructed by the
safety engineer manually. Safety.Lab supports deep linking of all needed artefacts
which are referenced by the safety argumentation. Based on the fact that the
GSN directly references the high-level functional requirement and hazards, we
can define consistency checks such as the fact that all identified hazards have
been eliminated or that the fault tree indeed leads to a low enough probability
for a hazard.

4 Related Work

Today, there is a number of tools in research and industry which provide an
integration of model-based system design and safety analysis, such as QuantUM
[7], medini analyze [8] or PREEvison [9]. However, none of the existing commer-
cial tools offer models for structuring the artefacts and link them with assurance
case models.

Sophia is a conceptual model and tooling, implemented as UML profiles, for
integrating safety analyses with model based systems engineering [12]. Sophia
has substantial overlapping with our work when integrating safety with system-
level models. The Eclipse Safety Framework (ESF) aims at providing a set of
tools based on the Eclipse tooling platform PolarSys for integrating safety tech-
niques within a model-driven engineering process based on the modeling stan-
dards SysML and MARTE. AutoFOCUS3 (AF3) is a model based development
tool which provides models for all phases of the system development from require-
ments to the low-level design. AF3 integrates the GSN notation and allows its
users to link elements of the GSN with parts of models [14]. Due to the use of
deep models, Safety.Lab has many similarities with Sophia, ESF and AF3. We
aim at a deeper integration of fine granular hazards list, fault trees with require-
ments and architecture and at defining automatic consistency checks between
the system model and the safety case.

Various large research project aim at delivering a tooling environment for the
model-based development of safety-critical systems. For instance, the CHESS
environment the SafeCer tools framework [11], the OPENCOSS platform [10].
Since all these tools are results of research projects only parts of the developed
concepts are actually implemented.

A different approach for the model-based development of assurance cases
is presented in [5]. In this approach, a weaving model is used, which allows
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integration between assurance case, design and process models, in order to auto-
matically generate assurance cases. However, a tool to support this approach
is not presented yet. Furthermore, Safety.Lab is focused on deep integration of
artefacts as basis for advanced consistency checks. Assurance cases are manually
created and linked to other artefacts and not automatically generated.

5 Conclusion and Future Work

Our long term goal is to get a holistic and deeply integrated product model that
allows mechanized reasoning about safety qualities of software intensive systems.
We use models to describe the system across several abstraction layers and to
model the safety aspects of the system. In our vision, the safety arguments mod-
els will put together fine granular model elements from the system. In this way,
the consistency and completeness of safety cases can be checked automatically
by using the information from within development models.

In the future, we plan to work along three directions. Firstly, to extend
Safety.Lab in the direction of mbeddr and link safety arguments with code mod-
ules or tests. Secondly, we plan to evaluate our tooling with real-world projects
from the Siemens business units. Thirdly, we plan to investigate the use of richer
models (e.g. state machines, contracts) in order to capture the semantics of
requirements and of other artefacts.
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Abstract. In any safety argument, belief in the top-level goal depends upon a
variety of assumptions that derive from the system development process, the
operating context, and the system itself. If an assumption is false or becomes false
at any point during the lifecycle, the rationale for belief in the safety goal might
be invalidated and the safety of the associated system compromised. Assurance
that assumptions actually hold when they are supposed to is not guaranteed, and
so monitoring of assumptions might be required. In this paper, we describe the
Safety Condition Monitoring System, a system that permits comprehensive yet
flexible monitoring of assumptions throughout the entire lifecycle together with
an alert infrastructure that allows tailored responses to violations of assumptions.
An emphasis of the paper is the approach used to run-time monitoring of assump‐
tions derived from software where the software cannot be easily changed.

Keywords: Safety argument · Safety assumption · Safety condition monitoring

1 Introduction

The Comprehensive Lifecycle for Assuring System Safety (CLASS) is a safety-engineering
system lifecycle that extends the Assurance Based Development software concept [1, 2] to
the system level. CLASS encompasses system development, approval, maintenance, and
decommissioning. An important element of CLASS is a system for monitoring safety
assumptions. In this paper, we present the overall design of the monitoring system together
with details of one complex part of the system, sensor technology for monitoring run-time
assumptions in software where the software cannot be easily changed.

The safety analysis that is undertaken when developing a new, safety-critical system is
predictive. The goal is to provide an estimate of the residual risk that remains as a result of
the system’s design, the planned operational context, and the planned mission profiles. In
classical safety analysis, a variety of techniques are used to provide an estimate of the
residual risk and associated variance. For safety-critical systems, decisions about deploy‐
ment and continued operation are based, in part, on assessment of whether the estimated
residual risk value and variance exceed that which is determined to be acceptable.

Inevitably, all safety analyses depend upon expectations about: (a) the system being
analyzed, (b) the way that the system was built and approved, and (c) the way that the
system will be used. Essentially, predictions are made about various aspects of the
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system, and its development and use. Then assumptions are made that these predictions
are correct. Predications are in areas such as:

• Conduct and reporting of development processes and analysis.
• Details of the context within which the system will operate, including ranges of input

variables.
• Failure rates and failure semantics of physical and software components.
• Physical capabilities such as strengths of elements, wear resistance, and corrosion

resistance.
• Computing capabilities such as computing rates, data transmission rates, and data

generation rates.
• Human performance in areas such as operator fault rates and response times.
• Maintenance timing and expected application of maintenance procedures.

Assumptions about topics such as these are often stated explicitly in safety arguments
or are implied by statements such as operational limitations. Irrespective of the source,
all assumptions become part of the rationale for belief in a safety goal. In the event that
an assumption is false or becomes false once the system is deployed, the rationale for
belief in a goal within a safety argument might be invalidated.

In summary, the effectiveness of any safety-engineering activity, and in particular
the effectiveness of CLASS, relies upon two conditions:

• That the detailed lifecycle (development, approval, maintenance, and decommis‐
sioning) process activities are conducted as defined.

• That the assumptions used in the safety analysis of the subject system (and therefore
the assumptions contained both explicitly and implicitly in the system safety case)
are true throughout the lifecycle of the subject system.

These two conditions imply predicates on the activities and state of a system
throughout the lifecycle. These predicates must maintain their assumed values, and the
role of monitoring is to check the values of the predicates. For purposes of discussion,
we refer to these predicates as lifecycle invariants or simply as invariants.

We note that these invariants are not system safety requirements, although violation
of an invariant could lead to a system hazard. System safety requirement derive from
the need to avoid hazardous states during operation. Invariants derive from the logical
basis of the basic safety argument. Leveson [3] and by Habli et al. [4] have presented
related ideas.

A fundamental aspect of CLASS is to support selective monitoring of both condi‐
tions. The application of monitoring has to be selective in order to control overhead, and
has to be adjustable over time to control measurement granularity. Monitoring in CLASS
plays two roles:

• Process Monitoring. Process monitoring supports monitoring of adherence to the
processes and procedures employed throughout the lifecycle.

• State Monitoring. State monitoring supports monitoring of adherence to the system
state assumptions made about the system artifacts in the lifecycle analysis.
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The CLASS Safety Condition Monitoring System (SCMS) implements invariant
monitoring and is identical for all invariants; only the platform, the sensors, and the
alerts that are used are different. The structure of the system is shown in Fig. 1.

Fig. 1. CLASS safety condition monitoring system

2 Monitoring System Design

Frequently, development environments for safety-critical systems and the systems
themselves are distributed, consisting of a number of components operating independ‐
ently. Each such component often implements more than one service. Such system
architectures lead to the need to: (a) monitor a number of different system elements, and
(b) to integrate the results of analyses in order to ascertain the state of complex condi‐
tions. The monitoring system accommodates this system architecture by operating as a
distributed system with the various elements of the system communicating in a manner
determined by the structure and details of the invariants being monitored.

As an example, the distributed structure of an SCMS and how the SCMS might be
integrated into a simple avionics architecture is shown in Fig. 2. In this example:
(a) sensors monitor a variety of applications, (b) predicates local to each application are
evaluated, (c) predicates distributed across the applications are evaluated, and (d) data
needed elsewhere in the SCMS (other instances) is transmitted as necessary.

The design of the monitoring system is shown Fig. 3. The design assumes that all
requisite sensors have been deployed through the relevant environments with which the
system has to operate. During development, these environments would include, mini‐
mally, asset libraries used in the system’s development, the subject system’s design and
analysis documentation, the process and workflow definitions, and the various assets in
use for development. After deployment, these environments would include the system’s
operational, maintenance, and decommissioning environments.
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2.1 Event Bus

Central to the design of the monitoring system is the Event Bus (see lower center of
Fig. 3). The Event Bus accepts event notifications from any part of the monitoring system
and delivers those notifications to any destination within the system. The purpose of the
Event Bus is to provide a comprehensive, asynchronous notification mechanism. Thus
changes sensed within one part of the monitoring system that require action elsewhere
result in event generation, transmission, delivery and processing.

Fig. 2. Example CLASS monitoring system in a hypothetical avionics system.

Fig. 3. The monitoring system design
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2.2 Monitoring Data Repository

Sensor data will arrive at intervals determined by the monitoring system but no polling
of sensors is assumed. Separate scheduling and timing control is provided either by the
host operating system or the sensors themselves. Sensor data is placed into the Moni‐
toring Data Repository as the data becomes available. As appropriate, events are gener‐
ated by agents within the data repository to signal the availability of sensor data.

Clocks within the system are treated as sensors so that logical timing information is
maintained within the Monitoring Data Repository. The passage of time that triggers
sensing is made known to the remainder of the monitoring system as necessary by the
generation of events.

2.3 State Predicates

The state predicates codify the safety conditions, and the monitoring system forms all
predicates so that the assumed value is always true. Thus, evaluation of a state predicate
to false indicates that a safety condition has been violated. State predicates are docu‐
mented using the standard operators from predicate and propositional logic with data
values from the Monitoring Data Repository, including time.

State predicates have to be evaluated when suitable data is available for their eval‐
uation and when evaluation is meaningful. A predicate referred to as a trigger controls
each state predicate (see Fig. 3). A trigger encodes details such as: (a) arrival of relevant
data in the data repository, (b) arrival of time for evaluation, and (c) system state as
determined by other state predicates requiring evaluation of the subject state predicate.
The evaluation of a state predicate to false causes the predicate to generate a token that
is transmitted to the state recognizers.

2.4 State Recognizers

The state recognizers encode the alert semantics that the system stakeholders require
for violations of any of the system’s invariants. The state of interest is any sequence of
invariant violations that requires some action. Possible actions include:

• No Action. There might be circumstances in which system stakeholders decide that
violation of an invariant does not impact the system’s safety.

• Indicate the Violation to a System Operator. Alerting an operator will allow human
intervention should that be indicated for the invariant violation.

• Change Monitoring Parameters. Violation of an invariant might be best handled
by more extensive or more detailed monitoring of the state. Thus, an action that might
be required is adjustment of the parameters controlling a subset of the sensors or
adjustment of the trigger(s) for one or more state predicates.

• Modify the State of the System. A violation might be sufficiently serious that the
preferred response to a violation is to modify the development state or the operating
state of the subject system, such as suspending development or shutting down all or
part of the system.
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• Record Details of the Violation. The response to violation of an invariant might
depend upon prior violations. To accommodate such sequential actions, a necessary
action might be merely to record details of a violation so as to modify the action taken
on future violations of invariants.

To deal with the variety of actions that might be required from a state recognizer,
the state recognizers are designed as finite-state machines and the actions they must take
are defined with regular expressions. Inputs to the finite-state machines are the tokens
generated by the state predicates. Each token that is generated is supplied to the subset
of finite-state machines that have registered an interest in the type of token.

Every action arises from a transition in a finite-state machine and is implemented as
an event. Each action event is sent to the required destination.

An example of a simple finite-state machine is shown Fig. 4. The example is for a
UAS that has a mission operational restriction of remaining below FL 300 and at speeds
less than 200 knots in order to limit exposure of onboard equipment to environmental
stress. The safety argument’s validity depends upon the assumptions that these limits
are respected. Systems analysis has determined that:

• A single violation of either assumption warrants a warning to the UAS operator.
• Two violations of the assumptions during a single mission warrant a warning to the

UAS operator and the UAS maintenance engineers.
• A third violation during a single mission requires that the UAS descend and slow

down under autonomous control.

Fig. 4. A monitoring system state recognizer example

The finite-state machine implements these policies. Changes of state of the machine
occur as a result of tokens that are generated by the state predicates. The state predicates
are defined in terms of the altitude and speed data supplied to the monitoring system by
sensors on the aircraft. The triggers for the state predicates are initiated by events gener‐
ated from the Monitoring Data Repository as new data arrives from the UAS sensors.

3 Sensors

In all lifecycle phases, the necessary monitoring system sensors might have to measure
a wide variety of signals with diverse characteristics and respond to demands to start
sensing, stop sensing or change the sensing frequency. In this section, we summarize
the characteristics of sensors and examine one particularly challenging type of sensor;
sensors needed for software systems that cannot be modified easily.
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3.1 Sensor Characteristics

The sensors used by the monitoring system in any particular circumstance have to be
tailored to the specific application of interest and to the associated invariants. In general,
sensors have to cover both periodic and aperiodic measurement, and have to handle a
wide range of sampling frequencies, data types and data volumes. All sensors operate
with the same basic interface to the associated monitoring repository.

Process invariants are tied closely to:

• Process - the various processes used throughout the lifecycle. Processes must be
executed as expected if appropriate value is to be obtained.

• Workflows - the workflows used by each process. Workflows have to be executed
by the expected entity (human, machine, or combination) and in the expected way.

• Reuse - the actions associated with use of the asset libraries, such as argument pattern,
process pattern, and software libraries. Reuse of assets must be based upon appro‐
priate selection and instantiation.

• Updates - updates to the asset libraries. If defects are detected in an asset after the
asset has been used, one or more revisions to the subject system’s artifacts might be
required.

Sensors for process monitoring are merged into the tools and resources used to
manage the various process elements. Process templates are defined in the Business
Process Model and Notation 2 (BPMN2) [5]. BPMN2 is a graphical language that is
easily read by humans and is executable on a wide range of common workflow engines.
BPMN2 processes consist of activities that must be performed by particular roles and
can involve humans or be automated. They follow partially ordered sequences and are
often separated by decision points that execute flow control. Process monitoring sensors
can be integrated relatively simply into BPMN2 specifications.

State monitoring requires sensors that capture data from the system artifacts and
could include state information about development activities, approval activities, opera‐
tional activities, maintenance activities and so on. Sensed data could be a record of
human action as observed by a computer system, details of component failures or
performance, calculated values within a software component, etc.

Many, perhaps most, state sensors will be implemented in software, and the sensor
implementation will need access to the state so that the requisite data can be captured.
As an example of state sensing, in the next section we discuss details of the monitoring
system’ approach to a particularly difficult type of state sensor, the state of software that
cannot be easily modified.

3.2 Sensors and Unmodifiable Software Systems

In general, a sensor that samples data from a software system necessitates the introduc‐
tion of additional software into the system, i.e., modifying the subject software. Such a
modification usually requires access to the subject software’s source code and subse‐
quent rebuilding of the system. Modifications of this type might not be desirable, might
be inconvenient, or might not be possible for several reasons including:
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• Inaccessible Source Code. In some cases, the source code of an element of the
system software might not be accessible. The source code for reusable libraries and
software obtained from independent suppliers is frequently unavailable and so
required sensors have to be installed in a different way.

• Temporary Requirement. A circumstance might arise in which monitoring an
element of the state for which no sensor exists becomes necessary. This situation
might arise if, through exceptional circumstances such as an emergency, concern
arises that the system might need to operate outside of the planned environment.
Introducing a sensing capability without having to modify the source code and rebuild
the software is highly desirable in such a case.

• Change in Data Demand. Sensors would typically be installed as part of system
development, and sensing rates would be determined and set as part of the design.
Unplanned changes in sensing parameters might arise if field observations indicate
the need. Again, modifying the sensing parameters such as the sampling rate without
modifying the source code is highly desirable.

We characterize these situations as needing to modify software that is not easily
modified. Though unusual, we expect such situations to arise, and the monitoring system
deals with the difficulties of this type using dynamic binary translation. In effect, the
binary version of the software is modified dynamically during execution to effect the
desired change without having to modify the source code. Assurance of desired system
properties is achieved by relying on formalism to a large extent.

Dynamic binary translation operates by executing the subject software in an appli‐
cation virtual machine. The translator is an execution-time fetch-execute loop that
fetches a fragment of the binary program, examines and optionally modifies the frag‐
ment, and then executes the fragment. For monitoring system sensing, this translator
can modify the binary by inserting sensing instructions into a fragment as part of the
fetch-execute loop. Modern dynamic binary translation systems add very little overhead
to the program. The monitoring system uses a specific system called Strata [6]. Strata
does not require adaptation for a particular application. Rather, Strata uses formal spec‐
ifications of the desired changes to machine instructions to generate sensing instructions.

Software invariants in safety arguments span a wide range of application semantic
levels and application timeframes. At the highest level of abstraction, invariants are
based upon quantities that are closely related to real-world entities such as aircraft oper‐
ating parameters related to flight dynamics. At the lowest level of abstraction, invariants
are based upon machine-level detail arising from the implementation.

For practical purposes, the software-state monitoring task can be divided into three
semantic levels corresponding to:

• The model level, i.e., the application specification level. Software at this level derives
from the application of tools such as MathWorks Simulink® that synthesize the asso‐
ciated high-level-language software.

• The source-code level, i.e., the level of the data structures and algorithms within the
application. Outside of synthesis, software at this level derives from custom code
developed by application engineers.
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• The binary-code level, i.e., system implementation level. Software at this level
derives from libraries and possibly other reused assets.

From the perspective of sensor changes in software that is hard to modify, the model-
based-development level is the most complex of these semantic levels, and we discuss
the use of dynamic binary translation for that case and give an example of the process.

The sensing technique for model-based development is shown in Fig. 5. High-level-
language source code is generated for the subject model by synthesis. The monitoring
system supports models specified in Simulink® running under Linux on Intel X86 plat‐
forms. For Simulink®, the synthesis is provided by MathWorks tools that generate C.
The source code is compiled and linked to form the binary program.

Fig. 5. Monitoring system sensing technique for model-based development.

For the monitoring system, the binary program is further processed by a utility called
the Stratafier that installs Strata in the binary program. The semantics of the resulting
program are unmodified although a modest overhead is introduced. Separately: (a) the
Simulink® model is processed to extract the details of the variables used in the model,
(b) the C code is processed to extract the variables used in the C program, (c) the binary
program is processed to determine the locations of variables in the binary program, and
(d) a variable model is built.

The variable model links the three sets of variables. The link between a Simulink®

variable and the associated variable in C is derived from the naming convention that
Simulink® uses in the generated code. The link between a variable in C and the associated
memory and instructions in the binary program is derived from the symbol information
placed in the binary file by the compiler.
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The invariants are determined from the safety case arguments and contexts. The
execution-time actions that Strata takes to effect the necessary sensing (machine instruc‐
tion insertion and modification) are defined by specifications derived from the invariants
and the variable model. These specifications are defined using Strata’s translation spec‐
ification infrastructure and are translated into Strata sprockets, low-level commands that
control Strata during execution.

3.3 An Example of Sensing in a Simulink® Model

To illustrate the ideas outlined in the previous section, we present an example based on
a hypothetical anti-lock braking system (ABS). In the example, we assume a requirement
has arisen for temporary sensing of the vehicle speed (variable Vehicle Speed in
the model) after deployment and that installing the sensor using dynamic binary trans‐
lation is the preferred approach.

Part of the Simulink® model of the ABS is shown in Fig. 6, and part of the C code
synthesized from the Simulink® model that includes an assignment to the C variable
VehicleWithABS_B.Vs corresponding to the Simulink® variable Vehicle-
Speed is shown in Fig. 7. The associated machine instructions are shown in Fig. 8.
Based on a symbolic specification for the required sensing, Strata inserted a branch to
a predefined instruction sequence that transmitted the value of the register holding the
vehicle speed to the monitoring data repository.

Fig. 6. Part of a hypothetical ABS defined using Simulink®.

Inevitably, dynamic binary translation will disturb the timing characteristics of a
system and impact real-time performance. Various techniques can be used to mitigate
the effects of the timing disturbance including: (a) using models to predict worst-case
execution time (WCET) of monitored software given the WCET of the unmonitored
software, (b) selective monitoring for much of the system’s operating time could be
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disabled thereby eliminating the disturbance to real-time processing, and (c) static trans‐
lation of the binary, where possible – static binary translation allows traditional WCET
techniques to be applied.

4 Conclusion

Monitoring safety conditions is important, because belief in safety goals frequently
depend upon them. We have presented the Safety Condition Monitoring System

Fig. 7. Part of the synthesized code for the hypothetical ABS.

Fig. 8. Part of the binary code for the hypothetical ABS.
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(SCMS), a system designed to provide comprehensive, lifecycle monitoring of safety
conditions. A key feature of the monitoring system is its ability to sense software state
using dynamic binary translation without requiring any modifications to the subject
software.
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Abstract. Medical Application Platforms (MAPs) are an emerging
paradigm for developing interoperable medical systems. Existing
assurance-related concepts for conventional medical devices including
hazard analyses, risk management processes, and assurance cases need
to be enhanced and reworked to deal with notions of interoperability,
reuse, and compositionality in MAPs.

In this paper, we present the motivation for a framework for defin-
ing and refining error types associated with interoperable systems and
its relevance to safety standards development activities. This framework
forms the starting point for the analysis and documentation of faults,
propagations of errors related to those faults, and their associated haz-
ards and mitigation strategies—all of which need to be addressed in risk
management activities and assurance cases for these systems.

Keywords: Interoperable medical systems · Hazard analyses · Faults ·
Errors · Reusable components and assurance

1 Introduction

Modern medical devices are increasingly network-aware, and this offers the
potential to use middleware infrastructure to form systems of cooperating com-
ponents. Initial integration efforts in industry are focused on streaming device
data into electronic health records and integrating information from multiple
devices into single customizable displays. However, there are numerous motiva-
tions for moving beyond this to frameworks that enable devices to automate
clinical workflows, provide clinical “dashboards” that fuse multiple physiological
data streams to provide composite health scores, generate alarms / alerts derived
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from multiple physiological parameters, provide automated clinical decision sup-
port, realize “closed loop” sensing and actuating scenarios, or even automatically
construct and execute patient treatments.

Emerging Computational Paradigms and Dependable Architectures:
In previous work, we have introduced the notion of a medical application plat-
form. As defined in [6] a MAP is “a safety- and security-critical real-time com-
puting platform for: (a) integrating heterogeneous devices, medical IT systems,
and information displays via a communication infrastructure, and (b) hosting
application programs (i.e., apps) that provide medical utility [beyond that pro-
vided by the individual devices] via the ability to both acquire information from
and control integrated devices. . . and displays.”

Platform-based approaches to integrated systems have a number of benefits,
but they also introduce a number of safety and security challenges not addressed
by current medical safety standards. While conventional approaches to develop-
ment and deployment of safety-critical systems typically involve assessment and
certification of complete systems, with a platform approach there is a need for
(a) reuse of risk management artifacts, supporting hazard analyses, and assur-
ance cases for both infrastructure implementations and components, and (b)
compositional approaches to risk management, assurance, and certification.

Reliability Analysis and the Assurance Case Paradigm: In development
and deployment of medical devices and other safety-critical systems, hazard
analyses play a key role in achieving safety. A hazard is often defined as “a
source of harm,” and system hazard analyses focus on identifying how hazards
may arise in the context of system development and execution. The results of
hazard analyses are typically reflected in an assurance case for a safety critical
system. For example, an assurance case will often argue that appropriate haz-
ards have been identified and that each hazard has been designed out, its risks
controlled, or it has been otherwise dealt with in a manner that will result in an
acceptable level of residual risk. A hazard analysis may proceed in a “bottom-up”
fashion as in a Failure Modes and Effects Analysis (FMEA) which considers how
each component may fail and how effects of component failure may propagate
forward and outward to the system boundary, giving rise to hazards; alterna-
tively, a hazard analysis may proceed in a “top-down” fashion as in a Fault
Tree Analysis (FTA) which starts from hazardous state or event at the system
boundary and reasons in a backward fashion to determine events and failures
within the system that could cause the top-level unwanted event [5]. Concepts
that cross-cut most hazard analyses are the notions of fault : the root cause of
a component’s failure to satisfy its specification and error : the deviation from
a component’s specified behavior [12]1. In a bottom-up analysis, consideration
of possible faults initiates the analysis and leads to an enumeration of the ways
in which a component may produce errors (e.g., corrupted values, inappropriate
timing of message transmittal, inability to perform a requested service, etc.) that

1 Though these definitions are sourced from the AADL EM standard document, we
note that they align well with, e.g., the taxonomy in [4].
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may end up propagating outward to the system boundary and exposing hazards.
In a top-down analysis, the analyst works backward through causality chains,
considering how different types of errors could flow through the system, until
faults that correspond to root causes are identified.

Certification, Standards, and Regulation: To support the development,
assurance, and certification of integrated medical systems, including systems
built using platform concepts, the Association for the Advancement of Medical
Instrumentation (AAMI) and Underwriters Laboratories (UL) are developing the
2800 family of standards for safe and secure interoperable medical systems. It has
been proposed that AAMI / UL 2800 will provide a framework for specifying sys-
tem and component-level safety and security requirements and guiding vendors
in constructing objective evidence and assurance cases that demonstrate that
their components, architectures, and integrated clinical systems comply with
those requirements. 2800 is proposed to be organized as (a) a base “general”
standard that provides architecture- and application-independent requirements
and (b) “particular” standards that introduce application and architecture spe-
cific requirements by inheriting and refining the standard. It has been proposed
that particular standards will specify how the generic risk management process
and notions of faults, errors, failures, hazards, etc., in the base standard are
specialized and allocated to the associated architectures, component kinds, and
clinical applications. Vendor assurance cases that are used to demonstrate com-
pliance with particular standards must provide evidence that their implementa-
tions account for, mitigate, or otherwise achieve an acceptable level of residual
risk for the error types inherited through the standard hierarchy.

Reuse and Modularization: In this standards framework, there is a significant
need for a flexible nomenclature framework for faults/errors. Interoperable sys-
tems include components produced by different vendors. When risk management
and assurance case artifacts are reused among vendors as systems are composed
from components, component vendors need to be able to disclose what types
of errors may propagate out of their components and what types of errors their
components mitigate. There needs to be a standard vocabulary with a consistent
semantic interpretation for faults and errors to ensure proper composition. Some
errors are relevant to some types of components but not others (e.g., those asso-
ciated with failure to achieve message transmittal in accordance with declared
real-time and quality of service constraints are relevant to middleware but not
to medical device components). Taxonomy mechanisms are needed to organize
errors into categories according to kinds of components found in interoperable
medical systems. Safety is ultimately expressed in terms of the notions of harm
associated with a particular clinical application. Accordingly, there is a need to
extend and specialize generic errors to specific clinical applications while pro-
viding a mechanism to facilitate traceability back to generic errors to support
standard requirements that guide vendors to consider all appropriate generic
error categories.
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Our Contributions: The contributions of this paper are as follows:

– we identify overall goals for organizing and standardizing error types in the
context of hierarchically organized standards for platform-based interoperable
medical systems,

– we illustrate how the SAE standard Architecture and Analysis Design Lan-
guage (AADL) Error Modeling framework, its open error type hierarchy, and
its built-in error library can potentially support the desired notions of orga-
nization, extensibility, and refinement described above, and

– we describe how this open error type hierarchy would be used in the context
of broader risk management, assurance case development, and certification
regimes for platform-based interoperable medical systems.

2 Background

2.1 AAMI / UL 2800

Fig. 1. The AAMI / UL 2800 Family of
Standards

AAMI / UL 2800 aims to define
safety and security requirements to
support the paradigm of construct-
ing integrated systems from hetero-
geneous interoperable components.
These requirements address compo-
nent interfaces, implementations of
components, middleware and net-
working infrastructure, and architec-
tures that constrain the interactions
between components as they are
integrated to achieve system safety
objectives. The standard is not antic-
ipated to prescribe specific technolo-

gies or interface specifications for achieving integration and interoperability.
Instead, it is expected to provide a framework for specifying system and
component-level safety requirements and guiding vendors in constructing evi-
dence and assurance cases that demonstrate that their components, architec-
tures, and integrated clinical systems comply with those requirements.

The structure for the 2800 family of standards aims to accommodate the
following (sometimes conflicting) goals2:

– Generality: 2800 aims to provide safety requirements that are applicable to
multiple architectures and a variety of clinical systems/applications.

– Application Specificity: Hazards and top-level system safety constraints, which
typically drive risk management and safety assurance processes, are applica-
tion specific. Thus, 2800 is expected to provide a framework for introduc-
ing specific standards that address particular systems/applications and state
requirements on how vendors develop and assure specific systems.

2 Some text in this section has been excerpted from unpublished communications as
part of ongoing standardization efforts within the 2800 committee.



Error Type Refinement for Assurance of Families of Platform-Based Systems 99

– Architecture Specificity: 2800 is expected to provide a framework for docu-
menting architectures and the role that a specific architecture plays in (a)
controlling potentially hazardous emergent properties by constraining inter-
actions between components, and (b) providing safety-related services used to
mitigate common errors.

To reconcile these potentially conflicting goals and to enable reuse of
application- and architecture-independent requirements, 2800 is proposed to be
organized into a collection of linked standards (see Fig. 1). The organization
strategy is similar to that of IEC 60601 where a core set of requirements is
refined along multiple dimensions to create requirements that are specialized to
particular applications or implementation aspects. Specification-, application-
and architecture-independent requirements are presented in the core 2800-0
General Requirements standard while additional standards refine and extend
core requirements for particular architectures (the 2800-1-x series) or particu-
lar applications (the 2800-2-y series). The 2800-3-x-y series proposes to define
application-specific requirements that are specialized for a particular architec-
ture’s approach to interoperability. The 2800 family’s open, refinement-based
approach allows for extension to address additional architectures and applica-
tions as new interoperability technologies and clinical needs arise. This enables
manufacturers to specify an interoperable system’s behavior but does not con-
strain how it should be implemented.

2.2 The Integrated Clinical Environment Architecture

The Integrated Clinical Environment (ICE) standard (ASTM F2761-2009 [3])
defines one particular architecture for MAPs. ASTM F2761 identifies an abstract
“functional model” that includes components such the Supervisor, Network Con-
troller, etc. with brief high-level descriptions of the role of these components
within the architecture. Future implementation standards are envisioned that
provide detailed implementation requirements and interface specifications for
these components. 2800-1-1, currently being drafted, complements and provides
guidance for the planned ASTM F2761 implementation standards by defining
safety and security requirements for the ICE architecture. The Medical Device
Coordination Framework (MDCF) is a prototype implementation of ICE jointly
developed by researchers at Kansas State University and the University of Penn-
sylvania [9]. The MDCF provides a middleware substrate and associated services
[8], tools for authoring apps, generating executable APIs [11], and performing
risk management activities [10].

2.3 PCA Safety Interlock Scenario

We describe one example of the MAP approach—a PCA safety interlock
scenario—here as a motivating example. After major trauma, hospital patients
are often provided pain relief via patient-controlled analgesia (PCA) pumps.
These allow a patient to press a button and request an analgesic (often an opioid
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narcotic) to manage pain. Standard safety mechanisms such as button timeouts
fail to account for potential problems (e.g., opioid tolerance or human error),
so various ways exist for an overdose to occur [7]. This can lead to respiratory
depression and even death.

An ICE app can be used to implement a safety interlock that sets the PCA
pump to a known safe state (i.e., infusion disabled) if—according to monitor-
ing devices typically used in critical care situations—the patient shows signs of
respiratory distress. While the exact set of monitored physiological parameters
can vary, our example implementation uses the patient’s blood-oxygen satura-
tion (SpO2), ratio of exhaled carbon-dioxide (EtCO2) and respiratory rate (RR).
After determining the respiratory health of the patient using some physiological
model, the app can issue enable or disable commands to the pump. This app
has been studied extensively in prior work, e.g., [2].

2.4 AADL’s Error Model’s Error Types

AADL enables the design of a system’s architectural aspects including hardware
and software components and the bindings between the two [13]. AADL adds
a number of language annexes such as the error modeling annex, which enables
the modeling of failure-related aspects of their systems [12]. One useful aspect
of this error modeling annex is its error definition and propagation mechanisms
derived from Wallace’s fault propagation and transformation calculus [14].

In the AADL error model, errors are represented as error types, instances
of which can be propagated between components over their existing ports and
channels (i.e., those specified in the core AADL language). The error model
comes with a pre-built type hierarchy—the error library—that is composed of
five “root” types (ServiceError, TimingRelatedError, ValueRelatedError,
ReplicationError, and ConcurrencyError) that can be refined (through a full
type lattice, created via extension, renaming, and type sets) down to more spe-
cific errors. Consider Fig. 2, for example, which shows the hierarchy of the error
library’s TimingRelatedError (full hierarchies for the other types are avail-
able in [12]). The root type TimingRelatedError is a union of three types,
including ItemTimingError, which is refined (through type extension) to both

Fig. 2. AADL EM Base Error Types for timing related errors
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EarlyDelivery and LateDelivery; i.e., if a single item (e.g., a message) has
incorrect timing, it must be either early or late—it cannot be both, nor can it be
neither. Finally, if the given root error types are insufficient for some purpose,
completely new ones can be created.

3 Error Refinement

3.1 Supporting 2800 Goals

Developing a framework for error types within 2800 addresses multiple assurance-
related needs: (a) libraries of error types to guide hazard analyses, risk man-
agement processes, and aspects of assurance case construction, (b) appropriate
coverage and document traceability targets (embedded in error libraries) that
vendors can trace to as part of their compliance obligations, (c) a common
interpretation/semantics for errors across vendors in order to support interop-
erability, (d) machine-readable specification of error types for automation of
hazard analyses, and (e) systematic specification of error types within formal
architecture descriptions to provide the basis for fault-injection testing.

Addressing (d) and (e) are beyond the scope of this paper; we propose goals
for addressing (a-c) across the 2800 hierarchy below.

Identifying Common Error Types: 2800-0 would provide a library of error
types in an Informative Annex that supports the 2800 risk management process.
The 2800-0 Risk Management requirements would specify that these error types
should be considered in the initiating activities for bottom-up hazard analyses
such as FMEA and would form the leaf nodes for top-down analyses such as FTA.
Compliance requirements would specify that vendors should state how error
types are accounted for in their analyses (e.g., they must use each error type or
document why any that were left out were not applicable). Authors of standards
that refine 2800-0 would be required to trace, via refinement mechanisms, newly
introduced error types to those provided in the Informative Annex.

Allocation of Error Types to Common Component Categories Found
in Interoperable Systems: 2800-0 would also identify Interoperability Com-
ponent Categories—common categories found in interoperable medical systems,
e.g., medical devices (which may be further subdivided by role, e.g., into sen-
sors and actuators), communication infrastructure, application hosting compo-
nents, health IT systems, network gateways, etc. In the 2800-1-x series, 2800-
1-x authors would indicate how their architectural components align with 2800
Interoperability Component Categories. Based on this association, they would be
required to specify how each component in the architecture accounts for the error
types associated with that category. This “accounting” may involving refining
the errors into more specific categories for the particular architecture.

Allocation of Error Types to Application Components and Hazards:
In the 2800-2-x series, 2800-2-x authors would associate error types with specific
devices or systems used in a particular application context. This would provide
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vendors seeking to comply with 2800-2-x a more precisely contextualized collec-
tion of errors, and a more accurate basis of accounting for appropriate “coverage”
of errors associated with a particular context.

3.2 Refinement by Component Category

How can we leverage the concept of error refinement (via extension, renaming,
or aggregation) from Sect. 2.4 given our goals from Sect. 3.1 (i.e., allocating error
types to component categories and implementations)? We should focus on the
“leaf” error types—i.e., the fully refined error model types. For example, authors
of a 2800-1-x standard can decide whether a error type applies to a particular
component role in the system architecture. If it does, they can extend it to one
or more subtypes that better describe how the error might occur in a generic
version of the component. If it does not apply, the standard can justify exclud-
ing it so that users of the architecture-specific error type library can understand
the rationale. Consider Fig. 3, which shows our timing errors from Fig. 2 after
their refinement to apps (different refinements would exist for other architec-
tural elements, e.g., devices, networking components, supervisor components,
etc.). Consider line 2 of Fig. 3: since early delivery of messages is impossible, we
eliminate it from consideration by simply not extending it. We expect that MAP
apps will receive two types of input: physiological data from patient monitoring
devices (e.g., SpO2 and EtCO2) and commands to the application from other
apps or clinicians. Lines 3 and 4 show that these two message types could both
be late, and should be considered separately.

Of course, other types of components will have their own refinements. For
example, the networking middleware (i.e., the in ASTM F2761) is agnostic to
message types, so its refinements to, e.g., the HighRate error type would be
generic to the types of messages being transmitted. We expect some real-time
network controllers (such as MIDAS [8]) to provide guarantees against any par-
ticular component saturating the network, so errors refined to these network
controllers would reflect this.

3.3 Refinement by Component Implementation

The behavior of medical devices and apps will vary considerably based on actual
component implementation. For these components, the error types should be

Fig. 3. Error types, refined for MAP Apps
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further refined. The process specified in the previous section can be continued
with our new architectural information, i.e., the actual architecture of a given
component. Consider the error types from Fig. 3 (associated with 2800-2-1 and
2800-3-1-x ) as they might be applied to the PCA interlock app from Sect. 2.3.
As the app uses three physiological parameters (SpO2, EtCO2, and RR) and
one control action (PumpShutoff), the generic app error types can be refined to
be specific to these parameters, as in Fig. 4. These fully refined error types are
application specific and traceable to both the component’s category (i.e., app)
and the AADL EM library. The app’s developer had a starting point for deriving
hazards (i.e., Fig. 3) rather than the much more ambiguous starting position of
the status quo.

3.4 Using Error Types in Hazard Analysis and Testing

Hazard analyses include reasoning about where errors originate, what failures
may result, and how errors propagate through the system. While the error
type framework can aid in a more consistent presentation of these concepts,
when combined with formal architectural descriptions of systems, it can also
enable automation of some hazard analysis steps. The AADL EM error propaga-
tion mechanisms (see Fig. 6) enable developers to specify how their components

Fig. 4. Error types, refined for the PCA Interlock app

Fig. 5. A graphical view of the example error hierarchy, base types are in black (text
given in Fig. 2), generic MAP app types are in red (Fig. 3), and PCA Interlock specific
types are in blue (Fig. 4) (Color figure online)
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Fig. 6. An example of AADL’s Error propagation, from [12]

create, propagate, transform and consume errors. In Fig. 6, for example, the out-
going NoData error type can result either from an incoming NoResource error
(i.e., NoResource is transformed by the component into NoData) or it can simply
be propagated from a predecessor component. The component is a source of the
BadValue error type, meaning that it can produce the error even if its input is
error-free. Note that both top-down and bottom-up analyses leverage AADL’s
error propagation mechanisms (Fig. 5).

There are two benefits to using the error types we have identified with the EM
error propagation mechanism. First, component developers will know what kind
of errors they’ll receive simply as a function of declaring what kind of component
they are creating (e.g., device, app, network controller, etc.). Second, they will
also know what kind of errors they are allowed to propagate. In the assurance
case arguing for a component’s safety-related properties, they can explain how
their component handles (or fails to handle) each incoming error, and under
what conditions their component propagates particular errors. This explanation,
unlike in the status quo, will not be narrative in form, but rather can be written
in the much more precise, machine-readable format of the AADL EM error types.
Tooling can leverage these precise specifications of error creation, propagation
and compensation for a range of purposes, e.g., the hazard analysis report from
[10] or even fault-injection testing [1].

3.5 Allocation of Related Concepts to 2800 Standard Documents

Table 1 provides examples of how the error type framework might be used in 2800.
Table entry names that appear in square brackets represent standards content
that complies with requirements in standards higher in the hierarchy, whereas
names in parentheses represent requirements that are refined (made more spe-
cific to a particular application or architecture). The table is not exhaustive; other
requirements may compel, for example, vendors to capture error-related propa-
gation or mitigation properties on component boundaries (following the concepts
but not necessarily the AADL tooling in Sect. 3.4), specify how errors at lower
levels of abstraction (e.g., at the network or middleware layer) are manifested in
terms of errors in application layers, and assign occurrence likelihood rankings to
errors at particular points in the architecture.



Error Type Refinement for Assurance of Families of Platform-Based Systems 105

Table 1. Examples of 2800 contents related to error type framework

2800-0: General Requirements
Error Type Framework Common categories of system and clinical process errors and semantics
System Topology Common interoperability components kinds and allocation of 2800 errors
Risk Management Requirements that vendors address 2800 error types in risk management
Testing Requirements for fault injection testing to test for effectiveness of mitigation strategies
Assurance Cases Requirements for arguing for safety in the presence of error handling and mitigation

strategies
2800-1: Process/Requirements for Specifying Interoperability Architectures
Traceability Requirements that refining 2800-1-X standards map interoperability component kinds

and errors to specified architectures
Arch. Specification Requirements that refining 2800-1-X standards associate error types to standardized

architectural viewpoints
2800-1-1: Safety and Security Requirements for ICE Interoperability Architecture
[Traceability] Map interoperability component kinds and refine error types to ICE Architecture

components
[Arch. Specification] Associate error types to standardized architectural viewpoints for ICE Architecture
(Risk Management) Requirements that vendors address refined 2800-1-1 error types in risk management
(Testing) Requirements for fault injection testing to test for effectiveness of mitigation

strategies for refined 2800-1-1 error types
(Assurance Cases) Requirements for arguing for safety in the presence of error handling and mitigation

strategies for refined 2800-1-1 error types
2800-2: Process/Requirements for Specifying Clinical Scenarios
Appl. Proc. Spec. Requirements that refining 2800-2-X standards associate clinical error

types to instantiations of common processes in the clinical application’s context
Appl. Sys. Spec. Requirements that refining 2800-2-X standards refine 2800-0 system error types to

kinds of system components relevant to application
Appl. Proc. Mitigation Informative Annex of common design / mitigation strategies for common clinical

process error types.
2800-2-1: Safety/Security Requirements for PCA Infusion Monitoring and Safety Interlock
[Appl. Proc. Spec.] Associate clinical error types to instantiations of common processes in

the clinical application’s context.
[Appl. Sys. Spec.] Refine 2800-0 system error types to kinds of system components relevant to application
(Testing) Requirements for fault injection testing to test for effectiveness of mitigation

strategies for refined 2800-2-1 error types
(Assurance Cases) Requirements for arguing for safety in the presence of error handling and mitigation

strategies for refined 2800-2-1 error types

4 Conclusion

Safety-critical medical systems are being developed using platform-based archi-
tectures that emphasize multi-vendor component reuse. Work is needed to adapt
existing risk management and assurance case techniques to support this para-
digm of system development. In this paper, we have argued that there is a need
for a refinement-based framework that enables defining error types to support
safety standards for interoperable systems.

We are working with the 2800 standards committee to align these concepts
with the 2800 risk management processes. We are integrating the framework
with our AADL-based risk management tooling environment for ICE apps [10]
and collaborating with US Food and Drug Administration (FDA) engineers as
part of the US National Science Foundation FDA Scholar-in-Residence program
to ensure that the concepts are oriented to support regulatory submissions for
MAP infrastructure implementations and apps. Although we have focused on the
medical domain, the same motivation and solution strategy is relevant to other
domains including avionics (e.g., the Open Group’s Future Airborne Capability
Environment3) and the industrial internet.

3 https://www.opengroup.us/face/.

https://www.opengroup.us/face/
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Abstract. Component fault trees that contain safety basic events as
well as security basic events cannot be analyzed like normal CFTs. Safety
basic events are rated with probabilities in an interval [0,1], for security
basic events simpler scales such as {low, medium, high} make more sense.
In this paper an approach is described how to handle a quantitative safety
analysis with different rating schemes for safety and security basic events.
By doing so, it is possible to take security causes for safety failures into
account and to rate their effect on system safety.

Keywords: Safety analysis · Security analysis · Quantitative combined
analysis · Component fault trees · Attack trees · Security enhanced com-
ponent fault trees

1 Introduction

Embedded systems are networked more and more, they evolve into cyber-physical
systems, even if the initial design did not anticipate this. This networking cre-
ates new security problems that can lead to safety problems which have to
be analyzed. The effects of such security problems are not taken into account
in a traditional safety analysis. Thus consequences cannot be estimated cor-
rectly, which results in either insufficient or unnecessary and too expensive
countermeasures.

This paper shows how to conduct a qualitative and quantitative safety analy-
sis using component fault trees (CFTs), including the effects of security problems
on system safety. In [16] the process as a whole was described. In this current
paper the focus lies on the analysis of the security enhanced component fault
trees (SECFTs). To achieve that, safety analysis methods of CFTs are extended
to incorporate security problems as basic causes.

The paper is structured in the following way: After a short overview of related
work, the overall analysis process is recalled. Then the foundations of an analysis
are set by discussing rating scheme and calculation rules. And finally the qual-
itative and quantitative analysis procedure is shown using an example analysis
of a generic patient controlled analgesia (GPCA) pump.
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2 Related Work

The SECFTs used in this approach are CFTs [11] extended with additional
elements from attack trees (ATs) [15] to model the effects of security attacks on
the safety of a system. Based on established analysis methods for CFTs that are
described in [18], adaptations were made to encompass the analysis of safety as
well as security properties.

Other works concerning quantitative analysis of ATs like Mauw et al. [12]
describe general calculating rules for predicates in ATs to compute the values
for the (TE). Jürgenson and Willemson use those rules to calculate ratings in
an AT in [10]. They use a combination of probabilities and costs/gain of the
attacks. Fovino et al. propose in [6] a way how to combine quantitative analysis
of (FTs) and ATs under the precondition that probabilities for all basic events
(BEs) are available. But determining accurate probabilities for security attacks is
often difficult or sometimes even not possible [17]. To circumvent that problem,
Casals et al. use a scale with discrete values to rate security attacks in [5]. By
those ratings they can compare different attack scenarios. The downside is that
the accuracy is not as good as with probabilities for BFs in FTs.

Therefore, we decided to use a hybrid approach for the rating of the events
to avoid the problem of assigning probabilities to security-related events. The
overall process of the combined analysis was described in [7,16]. It is based on
recommendations of standards as IEC 61025 [3] or IEC 60300–3–1 [2] to use a
combination of inductive and deductive techniques to minimize the potential of
omitted failure modes. Inductive techniques as failure mode and effects analysis
(FMEA) [9] or hazard and operability study (HAZOP) [1] can be used to find
the TEs. Deductive techniques as fault tree analysis (FTA) [3] are used to refine
the analysis and to find causes and moreover combinations of causes that lead
to the TE. The resulting graph is used to conduct qualitative and quantitative
analyses.

The approach to introduce security aspects into safety analysis proposed
in this work is based on CFTs. It extends the process described earlier by an
additional step and modifies the analysis step [16]. After developing the CFT,
it is extended by security attacks as additional causes that also could lead to
the safety-related TE. Those security attacks are found by analyzing data flow
and interface specifications, because most attacks are made at communication
interfaces. Techniques such as STRIDE [8] and FMVEA [14] can be used to find
possible attacks.

3 Analysis

To be able to conduct a quantitative analysis, a comprehensive rating of all of
the events in a (SECFT) has to be available. Using a comprehensive rating for
all events the individual impact of an attack on the occurrence of the (TE) can
be determined.
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3.1 Ratings

In component fault trees (CFTs) typical ratings for basic events (BEs) are prob-
abilities or reliability values. These are used to calculate the respective values
for minimal cut sets (MCSs) and the TE.

In an attack tree (AT) the same basic elements exist as in a CFT. Either
Boolean or continuous values can be assigned to BEs. As Boolean values pairs
such as possible – impossible or expensive – not expensive are used. Continuous
values for BEs can be costs to execute an attack, probability of success of a given
attack or probability that an attack is actually conducted.

A probability that an attack is successful could be determined from expert
knowledge and experienced data just like failure probabilities. But even the
success probability is difficult to determine. There is only a small portion of the
data about successful attacks available. Most successful attacks are not published
because companies fear the loss of trust of their customers.

The bigger problem is determining the probability that an attacker actually
conducts an attack. First of all, this probability depends on different aspects: the
attacker’s motivation and experience, availability of assets/money, and accessi-
bility of the system. And second of all, if this attack requires several distinct
actions that are modeled as separate security events, these events are not inde-
pendent, as it would be required for most calculation algorithms for CFTs.

Figure 1 shows an example of an attacker modeled as a component with two
output ports out1 and out2. For the output port out2 it is basically an AT which
consists of 4 gates and 5 BEs. Two MCSs for out2 are present which represent
two different attack scenarios: {e1, e2, e5} and {e3, e4, e5}.

If an attack is consisting of several actions an attacker has to perform, like
the ones for output port out2 in the example, these actions are not stochasti-
cally independent. If an attacker plans to attack a given system and that attack
requires him to execute different actions (security events, sub-attacks), it is most
likely that he will at least try all sub-attacks that are necessary to reach his goal.
In terms of the given example this means if an attacker chooses to try BE e1 and
he succeeds, he most probably will also try e2 and e5. In general this means, in
an AT the events in a MCS are not independent from each other.

Therefore, it makes more sense to assign a probability to a whole MCS, which
represents the attack, instead of the BEs. The other rating values (other than
probabilities) can be calculated for the MCSs from their respective BEs. For the
TE the same conditions hold than for CFTs: ratings are calculated from BEs or
MCSs.

A first result from a safety analysis based on SECFTs is the set of MCSs as
they are all combinations of BEs that lead to the analyzed system failure. To
decide which of these combinations have to be mitigated to reach a certain safety
level, this set of MCSs has to be prioritized. And of course to decide whether a
system is complying to a given safety level from a standard or a requirement,
the TE rating of the CFT has to be calculated.

Instead of trying to assign probabilities to security events, it is a better idea
to use a more coarse scale with only a few discrete values. IEC 61025 [3] states
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Fig. 1. Example attacker component.

for fault tree analysis that in case when probabilities cannot be assigned to BEs,
a “descriptive likelihood of occurrence” can be used with values such as: “highly
probable”, “very probable”, “medium probability”, “remote probability”, etc.
Likelihood is defined as a qualitative probability for the occurrence of a security
event. Security events are in most cases attacks conducted by an attacker. This
likelihood can be used to rate security events in a SECFT.

The approach described in this paper can work with different numbers of
distinct values. In the following a three-value scale is selected for simplicity. More
fine-grained scales only make sense if more distinct values are needed explicitly.
One has to keep in mind that assigning more precise numerical values might
only add fictitious precision which can be misleading in the interpretation of the
results. This also has to be considered when calculating values for combinations
of events that are rated with likelihood values.

The values of that likelihood are determined from several indicators as: attack
cost, attack resources, attacker motivation, accessibility, or attacker type. Casals
et al. describe in [5] one possibility to determine likelihood values. The scale
represents the likelihood of a security event to occur. To each value a numerical
value is assigned for easier comparisons. From this follows that the likelihood
would be mapped to integer values from the interval [1,m], where m ∈ N is the
number of discrete values.

One possibility to achieve a common rating, other than probabilities, is to use
the likelihood for both safety and security events. The advantage of this approach
is that values for all BEs can be determined relatively easy and comparisons of
likelihood are easily performed. The disadvantage is that the accuracy coming
from rating safety events with probabilities is lost.

To use the advantages of both, probabilities for safety events and likelihood
for security events, an approach using a combination of both probability and like-
lihood is used. Hence in a SECFT there can be both likelihoods and probabilities
for different events.
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When MCSs are determined in a SECFT that includes safety as well as
security events, there can be three types of MCSs as defined in the following:

Definition 1 MCS types:

1. A safety MCS contains only safety events (BEs which occur due to random
faults in the system).

2. A security MCS contains only security events (BEs which are triggered from
outside the system by a malicious attacker or a random fault).

3. A mixed MCS contains safety events as well as security events.

The TE will most certainly depend on safety as well as security events. There-
fore a combination of both probabilities and likelihood is needed to calculate
ratings for MCSs and TEs.

Events in a safety MCS are rated with probabilities. Therefore, the overall
rating of a safety MCS is also a probability. Events in a security MCS are rated
with likelihoods. So the overall rating of a security MCS is also a likelihood.
In a mixed MCS however, there are both probabilities and likelihoods. As they
are not directly comparable, the rating of a mixed MCS is a tuple consisting of
the overall probability of all included safety events and the overall likelihood of
all included security events. For TEs in a SECFT, the same holds as for mixed
MCSs.

The next section will introduce the extensions for the calculation rules needed
for a SECFT to handle the tuples of probabilities and likelihoods.

3.2 Calculation Rules for Likelihood and Probability
Values in SECFTs

For the calculation of the ratings from Sect. 3.1 at least calculation rules for the
gates AND, OR, and NOT are required. Other gates such as XOR or voter gates can
be constructed from these three basic gates. Their calculation rules result from
the combination accordingly.

Definition 2 (Likelihood of an AND-gate). All subordinate events have to
occur in order that the combined event occurs. Therefore, the event with the low-
est likelihood determines the likelihood L of the combined event. This is explained
by the fact, that if all events of an AND-gate have to occur, the one with the lowest
likelihood also has to occur, which then determines the overall likelihood of the
AND-gate.

Definition 3 (Likelihood of an OR-gate). At least one subordinate event
has to occur in order that the combined event occurs. If there are alternatives to
attack a system to trigger the same event, an attacker will execute the one that
has the highest outcome while requiring the lowest effort. In other words he will
execute the attack action with the highest likelihood.
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Definition 4 (Likelihood of a NOT-gate). A subordinate event must not
occur in order that the resulting event occurs. If the likelihood L is defined as an
interval [1,m] of integer values with m ∈ N, the value of a NOT gate is defined
as follows: L(A) = (m + 1) − L(A)

The outcome of AND, OR and NOT gates with independent input events A,B,
or more general n independent input events Xi, is calculated as follows in Table 1
with i, n,m ∈ N:

Table 1. Probability and likelihood calculation for AND, OR, and NOT-gates.

probability likelihood

AND P (A ∧ B) = P (A) · P (B) L(A ∧ B) = min[L(A), L(B)]

P
(∧n

i=1 Xi

)
=
∏n

i=1 P (Xi) L
(∧n

i=1 Xi

)
= minn

i=1[L(Xi)]

OR P (A ∨ B) = P (A) + P (B) − P (A) · P (B) L(A ∨ B) = max[L(A), L(B)]

P
(∨n

i=1 Xi

)
= 1 −∏n

i=1(1 − P (Xi)) L
(∨n

i=1 Xi

)
= maxn

i=1[L(Xi)]

NOT P (A) = 1 − P (A) L(A) = (m + 1) − L(A)

If the NOT gate is used it has to be considered that it has an unusual semantics
in CFTs: The lower the probability/likelihood of occurrence of an event that is
attached to a NOT gate, the higher is its effect on the TE, and vice versa. Whereas
normally high probabilities of single events lead to a higher probability for the
TE. From this follows that to reduce the TE probability/likelihood, an event
or even a whole component that is connected via a NOT has to fail with high
probability/likelihood.

To have a uniform rating scheme over all events in a CFT, all ratings of BEs
are interpreted as tuples (P,L), where P is a probability and L a likelihood.
For safety events there is no likelihood leading to (Pe,−) with an undefined Le,
and for security events there is no probability value leading to (−, Le) with an
undefined Pe. Undefined values will be ignored in the calculation of the rating.

This has to be explained further: The alternative to undefined values would
be values that do not influence the order between the events. To achieve this,
an identity element or neutral element for all possible gate-operations would be
needed. This would mean in terms of probabilities, a value is needed, which is
the identity element for addition and multiplication. Such a value does not exist
because the identity element for the addition is 0, and the identity element for
the multiplication is 1. The same problem arises for the likelihood operations:
The identity element of the min-function is the maximum value, and the identity
element of the max-function is the minimum value. These values exclude each
other, so no value is selected and the undefined values are ignored during the
calculation.

The tuple elements of a combination of events by logic gates are calculated
independent of each other according to the rules established earlier. The follow-
ing example illustrates this in more detail. Figure. 2 shows a high-level view of
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Fig. 2. High-level SECFT model of a generic infusion pump.

a SECFT of a generic patient controlled analgesia pump [4] with all modeled
components. The security part is inspired from the security flaw of the infusion
pump Hospira PCA3 that was published recently [13]. To include the attack,
extra input ports were added to vulnerable components. The actual attack is
modeled in component Attacker. Suitable ratings for all basic events were cho-
sen. The required Safety Integrity Level for the individual components was esti-
mated and used as order of magnitude for the rating of the safety events. The
rating of the security events was chosen due to the simplicity of the physical
access (attach an Ethernet cable) and telnet access (no authentication necessary
to get root access). The likelihood for the security events in this example is a
three-level scale of {low, medium, high} with corresponding values of {1,2,3}.
The model has 7 MCSs. Their resulting ratings are shown in Table 2.

The rating of the TE can be calculated as a conservative estimate from a
disjunction of all MCSs. The undefined values P2 and L1, L3, L4, L5, L6, L7 are
ignored in this calculation.

PTE = P (
∨

i MCSi)
= 1 − ∏

i(1 − P (MCSi)), i ∈ 1, 3, 4, 5, 6, 7
= 1.00000103975262 · 10−7

LTE = max(L(MCS2))
= max(3) = 3
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Table 2. Minimal cut sets and ratings.

id basic events BE rating MCS rating

1 PumpUnit.pump unit sets wrong values 10−7 (10−7,−)

2 Attacker.physical access the Ethernet interface of the pump 3 (high) ( − , 3)

Attacker.access telnet service of the pump 3 (high)

3 UserInput.user sets wrong values 10−6 (10−13,−)

PumpUnit.check of user input fails 10−7

4 PumpDriver.pump driver fails 10−8 (10−15,−)

Alarm.alarm fails 10−7

5 PumpDriver.pump driver fails 10−8 (10−15,−)

ErrorHandler.error handler fails 10−7

6 PumpDriver.pump driver fails 10−8 (10−15,−)

FlowRateMonitor.flow rate monitor fails 10−7

7 PumpDriver.pump driver fails 10−8 (10−15,−)

PumpSensors.sensors provide wrong values 10−7

That results in a rating of (PTE , LTE) = (1.00000103975262 · 10−7, 3) for the
TE wrong dosage and no alarm.

3.3 Qualitative Analysis

The most important activity of a qualitative analysis in CFTs and SECFTs is the
determination of MCSs. MCSs also are used to derive a coarse classification of the
criticality of failure scenarios and BEs, and they allow to make statements about
the general endangerment of the analyzed system. MCSs are also an important
starting point for a following quantitative analysis. Based on the MCSs also a
basic importance analysis of BEs and MCSs can be conducted.

This Section deals with necessary extensions of the qualitative analysis of
CFTs to cope with additional security events in the SECFT. The first step of
the analysis is the determination and analysis of the MCSs. The interpretation
of a MCS is the same as in CFTs: a MCS is a minimal safety failure scenario (but
possibly depending also on security attacks). A CFT (and therefore a SECFT as
well) can be transformed into a set of MCSs that represents all failure scenarios
which are relevant for the system. In general, a tree contains multiple MCSs
corresponding to different failure scenarios.

In addition to size, an analysis of MCSs of a SECFT takes also the type of
the MCSs into account. The result of a qualitative analysis are ordered lists of
MCSs.

As discussed in detail in Sects. 3.1 and 3.2, ratings of safety and security
events cannot be compared directly. Therefore, it makes sense to sort them
according to safety events and security events. Then, one receives three lists of
MCSs (Definition 1):



Qualitative and Quantitative Analysis of CFTs Taking Security 117

1. safety MCS
2. security MCS
3. mixed MCS

Safety MCSs are analyzed as usual: A qualitative analysis starts with an
ordering according to the size of the MCS. The smaller a MCS the more critically
it should be analyzed. This is explained by the fact that all events in a MCS
have to occur, so that the TE occurs and the system fails. The lesser events have
to occur, the more the TE depends on individual events. So events in smaller
MCSs deserve more attention in an analysis. An especially critical case is a MCS
with only one event – a single point of failure which itself can directly lead to
the system failure.

Security MCSs are a more special case: In this case a system failure only
depends on external influences and does not depend on failures of internal sys-
tem components. Pure security MCSs are not more critical per se than pure
safety MCSs, but the uncertainty of the modeling of an attack is relatively
high. Depending on the threat scenario and the attacker type the likelihood
value changes. Necessary tools become better available and cheaper over time
which can make an attack more probable in the future. Also, the attacker
type, the attacker’s motivation and capabilities can and will change over time –
potentially to the disadvantage of the system. This is why pure security MCSs
should be avoided by adding suitable countermeasures which convert security
MCSs to mixed MCSs.

Mixed MCSs on the other hand can be managed better: For the occurrence
of the TE all events of a mixed MCS have to occur, which means regular safety
events have to occur. These occurrences of safety events can be managed with
the usual methods like redundancy or monitoring. The probability for a mixed
MCS to cause the TE has an upper bound: the probability of the contained
safety events. This way the criticality of security events can be mitigated by
safety events with low probability. That means, the more statistically indepen-
dent safety events a MCS contains the less probable it is to cause the TE.

To summarize the qualitative analysis of MCSs: There are three types of
MCSs which differ in the level of controllability of their BEs. Controllability in
this context means how much a failure scenario (a MCS) depends on faults of
the system as opposed to external factors as e.g. attacks. In descending order
according to their controllability these are: safety MCSs, mixed MCSs and secu-
rity MCSs. Resulting from that, additionally to MCSs containing only one event
(single points of failure) also plain security MCSs should be avoided by adding
more (safety) BEs. Also, the more MCSs exist in a given SECFT, the more
opportunities for the TE exist, which indicates a higher vulnerability of the
system with respect to this TE.

Another goal of an analysis is to determine the importance of BEs. The
importance shows how much of an impact a BE has on a TE. BEs that are part
of more than one MCS are more important than the ones that are only part of
one MCS. But the size of MCSs is also a factor. BEs in smaller MCSs are more
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important than the ones in larger MCSs. More accurate importance analysis is
possible within a quantitative analysis.

3.4 Quantitative Analysis

A quantitative analysis is conducted if more accurate statements about the sys-
tem safety are necessary than the results from a qualitative analysis, which are
mainly the determination and preliminary ordering of MCSs. A quantitative
analysis, therefore, has several goals [3,18]:

– to determine the rating of the TE under consideration to compare it to the
given requirements from standards or customers,

– to determine ratings of the individual MCSs to determine the MCS that has
the biggest contribution to the TE (the most probable failure scenario),

– and derived from the previous ones: to determine where countermeasures
would have the most effect.

A quantitative analysis of a SECFT starts with a quantitative evaluation
of its MCSs. The first step here is to assign probabilities to safety events and
likelihoods to security events. (During the assignment of likelihood values to
security events it should be kept in mind that those security events belonging to
the same MCS can influence each other.)

After the determination of the MCSs there are two possibilities to order them:
according to size and type (see qualitative analysis in Sect. 3.3) or according to
type and ratings (probability and likelihood). An ordering simply according to
the ratings is not possible for all MCSs in general because of the incomparability
of probabilities and likelihoods (see also Sect. 3.1). For each MCS a tuple rating
(P,L) is calculated according to the rules described in Sect. 3.2. For probabilities
this means the value for the MCS is the product of all probabilities of the con-
tained events. (Under the precondition that all events are independent, which is
usually given for safety events.) For the likelihood of a MCS the minimum of all
likelihoods of the included events is determined.

Each type of MCSs can be ordered by itself. To compare two minimal cut
sets MCS1 and MCS2 with tuple ratings (P1, L1) and (P2, L2), the ordering has
to be prioritized either according to probability or to likelihood. The resulting
ordered list of MCSs reflects the relative criticality of the represented failure
scenarios. Higher ratings here correspond to a higher criticality and vice versa.
To find out if the system complies with the given requirements, the list of MCSs is
filtered according to the requirements (e.g.: “show me all MCSs with size ≤ 2”,
“P > 10−7” or “L ≥ 2(medium)”). The results are the failure scenarios that
require countermeasures.

As mentioned earlier, requirements can define boundary values for MCSs in
size or rating, but usually the main requirement is a boundary value for the rating
of the TEs: “the system shall not fail with a probability more than . . . ” The TE
probability can be calculated as the sum of the probabilities of all MCSs if only
AND and OR gates are used. This defines an upper bound for the probability:
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P (TE) ≤
n∑

i=1

P (MCSi), i, n ∈ N, n number of MCSs (1)

The other variant is to calculate P (TE) using the binary decision diagram (BDD)
algorithm which returns the exact probability value. To adapt the BDD algo-
rithm to SECFTs only the BEs with an assigned probability value are considered
for the calculation as already discussed in Sect. 3.2.

The likelihood of the TE L(TE) is simply calculated as the maximum of the
likelihoods of all MCSs as defined in the equations for the OR-gate:

L(TE) = L

(
n∨

i=1

Xi

)

=
n

max
i=1

[L(Xi)], i, n ∈ N, n number of MCSs (2)

With the described extensions of the calculation rules and the different types
of MCSs SECFTs can be used to conduct safety analysis with additional con-
sideration of security problems.

4 Conclusion

Based on SECFTs a qualitative and quantitative safety analysis is extended to
include influences of security problems on the safety of a system. To avoid the
problem how to assign probabilities to security events, a scale of discrete values
(e.g. {low, medium, high}) is used to rate security events while retaining the
higher accuracy of probabilities for safety events. Existing analysis techniques
are extended to work with probabilities for safety events as well as discrete
likelihoods for security events. As a result, a hybrid rating scheme is used to rank
the different MCSs according to the tuple of probability and likelihood, and to
calculate TE ratings that can be used to check the compliance of requirements.
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Abstract. The society is nowadays increasingly controlled through
embedded systems. The certification process of such systems is often
supported by tree based approaches like fault trees. Nevertheless, these
methodologies have some crucial drawbacks when it comes to dynamic
systems. In the standard fault tree analysis it is not possible to model
dependent events as well as timing behavior. To deal with these dis-
advantages state/event fault trees (SEFTs) were developed. However,
this method is mainly restricted to academic problems due to its poor
analysis procedures. To overcome this problem, this paper introduces a
new qualitative analysis technique for SEFTs based on event sequences
that can be identified out of their reachability graphs. To analyze these
sequences an event sequence minimization schema similar to minimal cut
sets of normal fault trees is proposed. Afterwards, a sequence algebra is
used to further minimize these temporal expressions and transform them
as far as possible into static ones.

Keywords: State event fault tree · Fault tree · Sequential logic · Reli-
ability analysis · Cyber physical system

1 Introduction

Due to its effectiveness, fault tree analysis (FTA) is a widely accepted method
to determine the failure behavior of safety critical systems. Since fault trees
(FTs) are originally designed to model the failure behavior of mechanical as well
as electrical parts it is hard to apply them on dynamic system parts, like e.g.
software-controlled modules. This relies on the fact that they are not able to
model dependencies or timing relations of the underlying system. FTs describe
the failure relations via a hierarchical decomposition of the involved failure events
through logical gates. This results in Boolean logic expressions. It is obvious that
such simple Boolean formulas cannot describe temporal relations. Furthermore,
modeling of dependent events leads to wrong evaluations, which is intolerable
in modern systems where designs like warm stand-by situations are ubiquitous.
In [8] Kaiser et al. introduced state/event fault trees (SEFTs) to overcome these
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problems. SEFTs can be seen as a combination of state charts to model the
temporal dependencies and fault tree similar gates to model the causal rela-
tions. The wide spread of standardized FTs could be mainly attributed to their
variety of evaluation methods. It is possible to analyze FTs quantitatively as
well as qualitatively. An often used qualitative analysis method is the minimal
cut set (MCS) analysis. MCS analysis determines the smallest sets of events that
trigger the tree’s root by their simultaneous occurrence. The root node is also
called top event (TE). By such a MCS analysis it is possible to identify the most
critical events early in the life-cycle since there is no need for any quantification.
This is easily possible by the length of the cut sets or via the involvement of
a specific basic event in different minimal cut sets. The first measure identifies
the most critical events by their participation in short cut sets whereas the sec-
ond method identifies critical events by their frequent occurrence in different cut
sets. This paper shows a quantitative analysis approach for SEFTs similar to the
MCS analysis of standard fault trees. It is based on the reachability graph which
represents a SEFT’s state-space. Based on this reachability graph this work pro-
pose a subsequent sequential analysis that identifies pure failure event sequences
through a differentiation of the involved events. A second innovation is given by
the introduction of a sequential algebra which is able to deal with these pure
failure event sequences by transforming them into temporal expressions. This
approach could be seen as a further development of the ideas introduced in [12].

2 Related Work

FTs were first introduced in the 1960’s by H. R. Watson [16]. In the last few
decades FTs were consequently improved and adapted to changing requirements
and domains. One way to do this, was by introducing new gates to adopt FTs to
the growing demands of system engineering [3,14]. The introduction of smarter
gates, however, require more advanced analysis approaches, on the quantita-
tive [9,10,13] as well as the qualitative [6,17] side. The major drawback of
these extended fault tree approaches remains however their inability to deal
with repairable systems.

A technique that is especially developed for modeling temporal failure depen-
dencies in dynamic systems is the so-called temporal fault tree (TFT) approach,
introduced in 2001 by Palshikar [11]. TFTs are able to improve the temporal
expressiveness of origin fault trees via special gates that are strongly related to
the backward operators of linear temporal logic. Thus, it is possible to iden-
tify traces that trigger the TE of the tree. Especially their analysis procedures
are very immature and it is necessary to spend additional effort in developing
customized analysis techniques. To the best of our knowledge, there is no quan-
titative analysis approach available whereas the proposed qualitative analysis
approaches are insufficient to analyze complex tree models.

The next kind of temporal fault trees are invented by Martin Walker [15]. In
comparison to DFTs, this approach is more concerned about an accurate time
model instead of modeling dependencies. Similar to the approach proposed in
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this paper, Walker’s fault trees can be transformed into temporal expressions.
These expressions can then be reduced by temporal laws. However, this approach
focused on non-repairable systems, which is an assumption that is untenable
in most of the today’s technical environments. Other approaches to model the
dynamic behavior of systems are Markov chains [4] or Petri-nets [2].

Another approach is proposed by Bozzano and Villaorita [1]. They use a sym-
bolic model checker to determine ordering information of basic events. There-
fore, it is necessary to describe the system as a formal model whereas its failure
behavior is modeled as a static fault tree. The model checker determines event
sequences of the tree’s MCSs. In contrast to that, our approach uses only one
model to produce similar event sequences. This is more intuitive, especially for
people from the safety domain. The major drawback of this approach, however,
is its suitability only for persistent failures which is equal to the non-reparability
assumption of the most fault tree based approaches.

3 State/Event Fault Trees

This section gives a deeper introduction to SEFTs. SEFTs are, roughly spoken,
a combination of state charts and fault tree gates which can be connected via
so-called ports. A state chart exists out of states (Fig. 1a-V) and events (Fig. 1a-
IV) connectable through edges that are called temporal connections (Fig. 1a-
VII) because of their ability to express the timing information within a SEFT.
These states and events can be connected via causal edges (Fig. 1a-VIII) with
gates (Fig. 1a-VI) to express combinatorial failure-behavior. The gates are sim-
ilar to the static gates of standard FTs drawn as rectangles with the difference
that there exist state and event inlets and -outlets. This gives the modeling of
failures completely new possibilities. To combine elements of one state chart
(also called component) with those from another one an effective port concept
is available. State ports (Fig. 1a-II) as well as event port (Fig. 1a-III) could be
used as input (Fig. 1a-III.I,III.II) or output ports (Fig. 1a-II.I,II.II) of a compo-
nent. Their connection with gates allow the application of pure causal relations
between different components. Constructs like triggered events (Fig. 1a-VI.III)
or guarded events (Fig. 1a-IV.IV), however, can also be used to express depen-
dencies between two components. A triggered event could be understood as an
externally controlled event. This means that one component triggers the switch-
ing process of a second one. Additionally, it is possible to use guarded events to
model events that become enabled in case of the activation of a specific state.
Typically, these state is a member of another component. To describe the inner
relations in a component there exist different event types. The first class are
immediate events (Fig. 1a-IV.V), which fire directly in case of their enabling and
are mostly used as so-called initialize (init) events. One init event is manda-
tory in each state chart and defines its starting state. Another event class are
timed events that could either fire after a deterministic timespan (Fig. 1a-IV.II)
or after an exponentially distributed one (Fig. 1a-IV.I). As already mentioned
before, there exist different types of gates in SEFTs. These gates are defined
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through the type of their inlets. Thus, there exist pure state gates (only state
inlets), pure event gates (only event inlets) and, finally, mixed gates. An example
of a state gate is an AND-gate. It is activated if all states connected to its inlets
are activated. Other gates can be found in the gate dictionary of [8, Appendix].
It also defines temporal gates that are able to model dynamic behavior on their
own. To get an overview of all modeling elements in SEFT see Fig. 1.

Fig. 1. SEFT elements Primary stand-by system modeled as SEFT

An example of a simple SEFT is depicted in Fig. 1b. Therein a primary stand-
by system is showed that consists out of two redundant controller units, named
unit A and unit B. The switch component is responsible for shifting the workload
to the secondary unit (unit B) in case of a failure of the primary unit (unit A).
The switch has also a failed state (defect state). If it fails, the system is not able
to perform the switching process after a failure of the primary unit. This also
leads to a system failure. The controllers are both modeled as a proxy of type
controller that includes an off state, a running state and a defect state. Due to
the assumption that a component can only fail under a specific workload there
exists no direct transition between the off state and the defect state. Since there
is the need of a trigger impulse from the component’s environment to switch
it on, the transition between the off state and the running state is modeled as
immediate transition (start transition). The primary unit is directly connected
with the initial event of the system by which it is transfered into its running state
at system start. For the secondary unit these triggering relation is executed by
the switch element through the switch-over transition. Due to simplicity reasons,
all components are modeled without a repair strategy. The hazardous situation
of the system is reached whenever both controllers are not in their running
states, expressed by the negated event-out-ports connected via the AND-gate.
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The gate’s outlet represents the top element of the model that can be expressed
by the boolean equation unitA.running ∧ unitB.running.

4 Sequence Logic of SEFTs

In the original design of SEFTs it is only possible to analyze them quantitatively
by the use of the tool TimeNet [18]. Therefore it is necessary to translate an
SEFT into a Petri-net, more precisely into a deterministic and stochastic Petri-
net (DSPN). [12] proposes an multi-step approach which is able to analyze such a
DSPN qualitatively as well, via a reduced reachability graph (RRG). A four step
reduction process compresses the RRG afterwards. This results in an intuitive
and understandable graph which represents the event sequences that lead to
a hazardous reachability state graphically. If it comes, however, to much more
complex system models it could be hard to evaluate their sequences manually.
In this case it could be beneficial to transform them automatically into event
sequences. We provide an recursive deep-first search algorithm to derive the
event sequences from a RRG. This algorithm delivers event sequences starting
from a RRG’s initial state and ending in one of its top element afflicted nodes.
In relation to the work of Liu et al. [9] we call the total set of sequences the
standard event sequence set (SSS). The temporal relations in a standard event
sequence are represented through the sequential operator → which expresses the
situation that an event on its left side is in direct sequence to the event on its
right side. The RRG of the primary stand by system results in a SSS with two
sequences shown in (1).

System.Init → A.start → A.failure → S.switchover → B.start → B.failure

System.Init → A.start → S.failure → A.failure

(1)

Large state-spaces mostly deliver long standard event sequences that include
a series of insignificant events. To be able to represent a SSS more user friendly,
our approach distinguishes between different event classes: failure events, repair
events and other events. By this it is possible to filter out complete sets of events.
For evaluation proposes the SSS can be transformed into a so-called failure
event sequence set (FSS). Thereby, only the events that are typed as failure
events remain in the sequences. This can be done by a simple operation that
connects the first failure event of a standard event sequence with the following
one, disregarding events of other types in between. Thus, the original SSS of (1)
can be transfered into the FSS of (2) under the assumption that every involved
component has one failure event named failure.

A.failure → B.failure

S.failure → A.failure
(2)

It is imaginable to extend this classification schema into a structure similar
to an inheritance hierarchy. This allows a more fine grained distinction between
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events, e.g. splitting up the failure events into safety and security related failure
events. Thus, it is possible to build a cross domain model which could be of
major interest for the certification process of upcoming systems.

To remove redundancies in the resulting event sequence set, we propose a
set of mathematical reduction rules which are derived from Boolean logic. These
rules are represented in Table 1. First of all, it is possible to use the rule of
minimization to delete all sequences that represent detours in the graph. This
results in a minimal event sequence set (MSS) which could be seen as the tem-
poral counterpart to a MCS of a static fault tree.

Theorem 1. A standard sequence is called minimal if it does not include any
other sequence of the SSS. A sequence S1 includes the sequence S2 if all events
of S2 represent a subset of the events of S1 and if these subset have the same
ordering schema as the events of S2.

Thus, it is obvious that a failure event sequence is always a minimization of its
origin standard sequence. The sequence System.Init → A.start → S.failure →
A.failure includes the sequence S.failure → A.failure as well as the sequence
System.Init → S.failure → A.failure. Applying this rule to the SSS of
(2) results in an unmodified sequence since all involved sequences are already
minimal.

Further reductions can mainly be achieved though the use of the sequence
algebra’s distributive law by setting equal subsequences into brackets. This allows
removing equal parts of different sequences by combining all members of a SSS

Table 1. Sequential logic inference rules
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via OR-gates since they represent independent paths that end in a critical system
state. This rule could be used to eliminate the redundant starting sequence of
both members of the SSS of (1). Thus, the subsequence System.Init → A.start
can be bracket out resulting in the following expression:

System.Init → A.start → (A.failure → S.switchover →
B.start → B.failure ∨ S.failure → A.failure)

(3)

Another reduction could be achieved by the use of the conjunction rule. It
allows the reduction of two so-called temporal redundant expressions into a static
one. The two sequences: S1 : E1 → E2, S2 : E2 → E1 can be combined via an
AND operation since these two events are no longer in a temporal relationship.
A first occurrence of E1 followed by an occurrence of E2 completes the sequence
S1 whereas the vice versa situation completes S2. To express this relation, the
static AND-gate seems to be insufficient due to the presence of events which have,
in contrast to basic events of static fault trees, infinitesimal short occurrence
times. Basic events of static fault trees could be understood as a transition of a
failure free state to a fail state of the corresponding system part whereas events
in a SEFT follows Definition 2.

Theorem 2. An event is the occurrence of an observable thing that happen at
a random point in time which, itself, has no duration.

Thus, the formal AND-gate definition would never recognize the activation of the
gate since there exist no point in time where both inlets are triggered simulta-
neously. For this reason a history-AND-gate (H&-gate) is proposed to overcome
this problem. The H&-gate allows the detection of events and produces an event
at its outlet whenever all input events have occurred at least once since the last
occurrence of the output event. To be able to describe the H&-gate formally
correct in our sequence algebra it is necessary to introduce a second temporal
operator - the before/after-relation expressed by <. It describes the situation
that its left sided expression has to occur before the expression on the right side.
This allows the decomposing of a static expression that includes a H&-gate into
a set of temporal ones. Two sequences separated by the before/after operator
result in a set of sequences by a stepwise merging operation. This concept is
exemplified in (4) for the sequences S1 : E1 → E2 and S2 : E3 → E4.

S1 < S2 = (E1 → E2) < (E3 → E4)

= E1 → E2 → E3 → E4 ∨ E1 → E3 → E2 → E4 ∨ E3 → E1 → E2 → E4
(4)

This concept allows the use of the sequence algebra in both directions: either
to reduce a SSS into a more compact static expression or to decompose a reduced
static expression in its SSS. To hold the temporal expressions intuitive and com-
prehensible, the conjunction rule is only partially implemented in our analysis
tool, the qualitative SEFT analyzer [12]. It only converts simple permutations
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into static expressions. This allows a reduction only if every permutation of a sub-
sequence is available. Since the identification of permuted subsequences is an NP
complete problem it is realized by a brute force approach. The algorithm starts
with removing all equal sequences in the corresponding sequence set. Afterwards,
it compares all sequence members with each other and retains only the sequences
with equal member sets. This results in a sequence set with equal members but
different sequences which claims that all remaining sequences are permutations
of each other. Finally, a simple comparison of the total amount of sequences
(sequence count with the faculty of the number of sequence members (sequence
member count) is used to proof the existence of a complete permutation set (cf.
Equation (5)). A successful proof allows the replacing of the sequence set by a
H&-linked expression of the sequence members. Thereby, the member ordering
does not play a role due to the commutative rule of the H&. In the SEFTAn-
alyzer is also a test class implemented which allows a maximal reduction of a
given SSS. First evaluation results, however, confirm that a maximal reduction
mostly ends in complex expressions that are hard to interpret.

sequencecount
!= sequencemembercount! (5)

The next rule which should be considered in more detail is the rule of absorp-
tion. By this rule it is possible to remove the input sequence S1 of a H&-gate (S1
H&S2) if S1 is included in S2. This rule represents the counterpart to the rule
of minimization. Due to its AND relation of two sequences it is obvious that a
H&-gate’s outlet is triggered only if the longer sequence is completely executed.
This means, however, that the shorter one is also entirely executed since it is
included in the longer one. This allows disregarding of the included sequence.
Against that, the minimization rule could be seen as a similar operation applied
to an OR-gate. In case of an inclusion relation of both input sequences (S1 ⊆ S2),
the gate is activated as soon as its shorter input sequences S1 is complete.

A strict application of this sequence algebra could end in so-called illegal
expressions. Such expressions can be directly removed from the set of sequences
since they could never be completely executed due to their logical inadequacies.
The expression (E1 → E2) < (E2 → E3) for example ends in the sequence
E2 → E1 → E2 → E3 which can be neglected due to the fact that all repair
strategies are eliminated during the development of the origin SSS. Thus, it
is impossible that E2 fires at two different point in times. The remaining two
sequences include subsequences of equal events (E1 → E2 → E2 → E3) which
can be simplified through the idempotent rule by removing equal sequencing
events. This ends in the reduced sequence E1 → E2 → E3 which is, by the way,
the only valid outcome of the given expression.

5 Evaluation

In this section we present the application of our approach with an example sys-
tem. We decided to use a hypothetical dynamic system (HDS) which is already
used in other case studies [7,9]. By the use of this system it is easy to compare
the results of our approach with them of [9]. Since the origin version of the
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HDS is modeled as a dynamic fault tree (DFT) there are some changes neces-
sary to represent it as a SEFT. The HDS is a complexer version of the already
introduced primary stand-by system of Fig. 1b. It is extended by one additional
control unit. In case of the HDS, however, it is necessary that at least two con-
troller units are available to ensure a working system. The third unit, named
unit C, is a cold stand-by part that take over the workload of one of the two
main controllers depending on which fails first. For this reason the switch has to
be extended by an OR-gate (for events) to be able to monitor failures of both
main units simultaneously.

To be able to apply our methodology to the HDS it was necessary to remodel
it as a SEFT without any loss of accuracy (cf. Fig. 2). The three controllers
therein are proxies of the controller element of Fig. 1b. The repair strategies
were omitted on purpose of comparability and simplicity. The inner structure
of the unknown components, like the switch and the voter, can be found on the
right side of Fig. 2. The two out of three voter gate (2oo3) has an activated outlet
whenever two of its three inlets are in a fail state, respectively in a not-working
state. This is modeled via a NOT-gate at the controllers running state-out-port.
Consequently, its TE can be expressed as the Boolean expression (A∧B)∨ (A∧
C) ∨ (B ∧ C) where X represents a controller which is not in its running state.
The origin version of the HDS can be found in [9] [Fig. 5].

We use the modeling tool ESSaRel [5] to build the SEFT model of the HDS
which is depicted in Fig. 2. The complete MSS analysis is done with an extension
of the SEFT-Analyzer tool [12] which is origin developed for state-space analysis

Fig. 2. SEFT model of the hypothetical dynamic system
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of SEFTs. It uses the RRG of the model to extract its MSS. (6) shows a cutout
of the raw sequence set of the HDS. There are 12 standard sequences in total
for the model.

I. System.Init → A.start → B.start → A.failure →
S.switchover → C.start → B.failure

II. System.Init → B.start → A.start → A.failure →
S.switchover → C.start → B.failure

III. System.Init → A.start → B.start → A.failure →
S.switchover → C.start → C.failure

...
XII. System.Init → B.start → A.start → S.failure →

B.failure

(6)

A major reduction can be achieved by filtering out all non-failure events. In
case of the given SEFT only the .failure events remains in the sequences. The
resulting FSS is given afterwards in (7). This ends in six sequences in total due
to the start sequence variation (System.Init → (A.start → B.start∨B.start →
A.start)) which could be replaced by the static expression System.Init →
(A.start H& B.start) (conjunction rule). The substitution of the start sequence
of every SSS ends in six duplicated failure event sequences (cf. I. and II. in (6))
where one sequence of every duplicate can be neglected (rule of minimization).

I. A.failure → B.failure IV. B.failure → C.failure

II. A.failure → C.failure V. S.failure → A.failure

III. B.failure → A.failure VI. S.failure → B.failure

(7)

A comparison of (7) with the results of [9] (6) allows the assumption that
the SEFT model of the HDS is defined correctly due to the equal results.
A further simplification can be achieved through the application of the infer-
ence rules on the FSS. A stepwise adoption of the sequential logic laws is shown
in the expression (8).

(A.failure → B.failure) ∨ (A.failure → C.failure)∨
(B.failure → A.failure) ∨ (B.failure → C.failure)∨
(S.failure → A.failure) ∨ (S.failure → B.failure)

=(A.failure H& B.failure) ∨ (A.failure → C.failure) ∨ (B.failure → C.failure)∨
(S.failure → A.failure) ∨ (S.failure → B.failure) (8)

=(A.failure H& B.failure) ∨ ((A.failure ∨ B.failure) → C.failure)∨
(S.failure → A.failure) ∨ (S.failure → B.failure)

=(A.failure H& B.failure) ∨ ((A.failure ∨ B.failure) → C.failure)∨
(S.failure → (A.failure ∨ B.failure))
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The sequential analysis of the model determines a total set of three independent
failure sequences for the HDS. The first reduction in (8) has been achieved through
the application of the conjunction rule. By applying the distributive law it is pos-
sible to achieve the second as well as the third simplification. This removes all
temporal redundancies in the resulting temporal expression. There are also other
reductions imaginable which ends in different solutions. The SEFT Analyzer, how-
ever, searches for the solution with the smallest sequence set. In case of two or more
sequence sets of the same size, the tool searches for the solution with the shortest
members. This is done by the determination of the average sequence length. But
again, the main focus lays not in the maximum reduction of the expressions. As
already discussed in the previous sections, our approach rather aims on maximal
simplification of the expressions w. r. t. the understandability. For this reason not
every inference rule is implemented in our tool.

6 Conclusion

In this paper we presented a qualitative approach to determine a compact and
simplified sequence set of a SEFT. As a basis we use the state-space of the cor-
responding DSPN. We proposed a sequential logic for the failure event sequences
which can be derived from the Petri-net’s reachability graph. By a set of inference
rules, it is possible to summarize the sequences to compact temporal expressions.
This is helpful if it comes to complex state-spaces where it is hard to identify the
important failure event sequences by hand. The sequential logic aims to remove
the temporal redundancies in the sequence set what could be seen as the major
benefit of the approach. Therefore, it uses specific rules that transform a temporal
expression into a static one (distributive law, conjunction rule, etc.). In total, we
presented seven temporal rules for the simplification of the event sequences and
exemplified illegal expressions that have to be removed in the resulting sequence
set. To evaluate the approach, we use an hypothetical example system which is
already used in other dynamic fault tree approaches to validate their results. Due
to the fact that this approach is tested only under academic conditions, we plan
to apply it to larger systems as the next step. Therefore, we actually work on a
methodology that determines the RRG of an SEFT without a DSPN–translation
to restrict the state-space explosion. The analysis strategy shown in this paper
extend the range of SEFT evaluation and could be helpful to push SEFTs a little
further to real industrial use cases. We are of the opinion that SEFTs can strongly
enrich the failure modeling of dynamic systems and can support the certification
process of software-controlled systems as well as cyber physical systems.
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Abstract. Modern automotive systems increasingly rely on software
and network connectivity for new functions and features. Security of the
software and communications of the on-board system of systems becomes
a critical concern for the safety of new generation vehicles. Besides meth-
ods and tools, safety and security of automotive systems requires frame-
works of standards for holistic process and assurance. As a part of our
ongoing work, this paper investigates the possibility of a combined safety
and security approach to standards in the automotive domain. We exam-
ine existing approaches in the railway and avionics domain with similar
challenges and identify specific requirements for the automotive domain.
We evaluate ISO 15408 as a potential candidate for a combined safety
and security approach for complementing automotive safety standard
ISO 26262, and discuss their points of alignment.

Keywords: Safety · Security · Standard · ISO 26262 · ISO 15408 ·
Common criteria · Automotive · ASIL · EAL

1 Introduction

State of the art automotive systems are becoming increasingly software depen-
dent and interconnected. It is estimated that around 90 % of new features are
enabled by programmable systems and connectivity, which transforms automo-
tive from mechanical devices to complex cyber-physical systems where multiple
networks interconnect up to 100 Electronic Control Units (ECU) within a vehi-
cle [1]. Communications enable vehicles to interact with each other (V2V) and
with the outside environment (V2I) for new functions and increase driver safety
and comfort. The benefits are obvious, from applications such as remote tracking,
unlocking the doors, remote diagnosis, over the air updates (OTA), to automated
e-call in case of emergency.

The complexity of in-vehicle system of systems (SoS) and the inter-
connectivity are growing. While the number of ECU’s is increased only by a
factor of 1.45 over the last five years, the total size of application software is
increased by a factor of 4.5 during the same period [1]. A survey showed that
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in the next years connectivity will be a distinguishing feature for automotive
systems. Consumers expect connectivity with their private devices and with the
outside environment [18]. This will add additional complexity to the automotive
system of systems, where currently up to 4 Km of wiring are used to connect
up to 10 different types of on-board networks with multiple forms of outside
connectivity [15]. Such connectivity enables new application classes for automo-
tive systems, which includes eco/green/mobility, convenience, crash avoidance,
safety awareness and emergency applications [17].

At such a scale of complexity and connectivity, serious security concerns
arise in the automotive domain. Recent events and analysis demonstrated that
the current ad-hoc approach towards security engineering in the automotive
domain delivers sub-optimal results. A recent survey by the U.S. Senate showed
that most car manufactures did not follow a structured and systematic approach
towards security engineering [20]. While all responding car manufactures stated
that their vehicles offer one or more wireless connections, only one of them was
able to provide information on threats and vulnerabilities. Experimental analysis
of systems like the wireless tire pressure monitoring system (TPMS) [13], the
external automotive attack surfaces [3], surveys of potential security threats [21]
and telematics unit [7] all support the conclusion in the survey. Furthermore, the
capability and processes to address vulnerability and conduct security testing are
also underdeveloped.

Being safety-critical, the automotive domain has a set of established safety
standards, which are used to design safety-critical components and systems and
ensure that all safety risks are reduced to a tolerable level. However, security
for safety-critical systems is a relatively new challenge. As safety can no longer
guaranteed if security fails, the question is how to take security into consid-
eration in the existing safety standards. For adding security to safety in the
automotive domain, it is worthwhile to look at similar issues in railway and
avionics. As shown by a recent study [2] in the railway domain, where similar
security challenges arise [19], solving them is not restricted to identifying a need
for security and safety and defining new methods. Systematic approaches that
address safety and security equally are needed. In the railway domain, the ISO
15408 (Information technology - Security techniques - Evaluation criteria for
IT security (Common Criteria)) [12] and the IEC 62443 (Industrial communica-
tion networks - Network and system security - Security for industrial automation
and control systems) [9] have the potential to address security. The author of the
study [2] proposed to use IEC 62443 as a suitable addition to established safety
standards. It was also proposed to add the requirements for security level 1 to
the EN 5012x standards series. The avionics domain takes a different approach
and started to develop its own security standards. The generic safety standard
IEC 61508 [10] was extended with security related requirements in the second
edition and there is ongoing activity to extend this in the third edition.

In the automotive domain, ISO 26262 [11] is the established safety standard.
It is currently in revision. The focus is on the addition and identification of
safety-cybersecurity interface points, points in the safety lifecycle for information
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exchange or combined activities and work products1 with security. As a part of our
ongoing work on safety and security co-engineering for the automotive domain,
this paper investigates how to extend existing safety standards to address secu-
rity concerns. Given the complexity of the problem, we envision a standard frame-
work with several standards cover the whole area of safety and security. Our main
contributions in this paper include:

– we identify requirements for suitable security standards for automotive safety,
review and compare automotive safety standard ISO 26262 and security stan-
dard ISO 15408,

– we identify important work products and approaches in both standards for
points of alignment,

– we propose an alignment of Automotive Safety Integrity Level (ASIL) and
Evaluation Assurance Level (EAL), and discuss its feasibility.

In the following, Sect. 2 briefly discusses related work; Sects. 3 and 4 review
the ISO 26262 and ISO 15408 standard, respectively; Sect. 5 presents our compar-
ison and a proposal for alignment; Sect. 6 concludes the paper with a discussion
of potential challenges and further steps.

2 Related Work

Automotive industry has a long history of following and implementing strin-
gent safety requirements. With the rapid development and integration of ICT
components, the need for a tighter coupling of safety and security for connected
safety-critical systems becomes necessary. The issue has attracted attentions in
recent years. Macher et al. [16] developed a security extended hazard analysis
and risk assessment methodology for the automotive domain and reported that
they were able to identify 34 % more hazardous situations in industrial use cases.
Multiple studies demonstrated the different possibilities of interactions between
safety and security [6,8,22]. A survey of safety and security for the industrial
domain [14] listed 37 methods for co-engineering.

Furthermore, specific challenges for the safety engineering in the automotive
domain have been identified in [5]. A domain independent approach towards a
combined safety and security lifecycle is proposed in [4].

3 ISO 26262

ISO 26262 is a domain specific instantiation of IEC 61508, the generic safety
standard [10]. It follows a risk based approach and is mainly based around safety
integrity levels, safety goals and safety concepts.

Figure 1 gives an overview of the safety lifecycle defined in ISO 26262. Devel-
opment of a new item starts in the concept phase with the item definition, ini-
tiation of the safety lifecycle, hazard analysis and risk assessment and definition
1 A work product is the result of an activity related to a requirement.
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Fig. 1. Safety lifecycle according to ISO 26262

of the functional safety concept. During hazard analysis and risk assessment,
potential hazards are identified and the risks are investigated. The risk rating
depends on the driving situation in which a hazard occurs, the potential con-
trollability of the situation and the severity of the caused harm. Depending on
the risks, safety goals are defined. An automotive safety integrity level (ASIL) is
assigned to each safety goal. ASIL ranges from D for the most stringent level of
safety measures to A for the most lenient level of safety measures. For systems
with lower risks, quality management activities are sufficient.

Based on the safety goals, functional safety requirements are derived and
assigned to preliminary architectural elements. The functional safety concept is
compromised of all functional safety requirements and describes the functionality
to achieve the safety goal.

Next step is the product development on system level. During this step the
technical safety requirements are specified, the system is designed, hardware and
software of the item are integrated and tested, compliance and correctness of the
safety goals and their implementation is validated and the functional safety is
assessed. Complementary to the functional safety concept, the technical safety
concept consists of all technical safety requirements and describes how the func-
tional safety requirements are implemented in hardware or software. The system
development includes hardware and software development. During the hard-
ware development, hardware safety requirements are specified, the hardware is
designed, observation of hardware architectural metrics in regard to fault han-
dling is assessed and potential violation of safety goals due to random hardware
failures are evaluated. The hardware development is concluded with integration
and testing. In a similar manner software design starts with the specification
of software safety requirements, the design of the software architecture, and the
design and implementation of the individual software units. It is concluded by
testing of the units, software integration and integration testing and verification
of the software safety requirements.
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Additional parts of ISO 26262 are concerned with production and operation
and safety analysis for determining the ASIL. The final evidence for the func-
tional safety of an item is the safety case which summarizes all work products
from the ISO 26262. A particularity in the ISO 26262 is the Safety Element out
of Context (SEooC). A SEooC is an element for which the final item and oper-
ating environment is not known during design and development. It is therefore
developed using assumptions and hypothesis. This assumptions have to be con-
firmed in order to safely integrate a SEooC in a item. A SEooC can be verified,
the validation occurs during the item development.

4 ISO 15048, Common Criteria

Comparing with most safety standards, the ISO 15048 follows a different app-
roach. While safety defines a system lifecycle and an engineering approach, ISO
15048 focuses on the evaluation and assurance of the system security.

The Target of Evaluation (ToE) is evaluated based on security specifications
with different levels of generality. A Protection Profile (PP) is a implementa-
tion independent specification of security requirements for a class of systems.
A Security Target (ST) is the implementation specific specification of security
requirements for a system. Since automotive protection profiles are more of an
idea for future work, we will focus on the security target definition. An ST
consists of the definition of the ST, the conformance claim to any protection
profiles, the definition of the security problem and the security objectives, the
extended components definition, the security requirements and the TOE sum-
mary specification. Figure 2 gives an overview about the contents of an security
target.

An ST is intended as a specification of the security properties of a TOE and
as a definition for the scope of the evaluation. It is not intended as a detailed
or complete specification for the design or implementation of a system. It is
explicitly mentioned in the ISO 15408: “This means that in general an ST may
be part of a complete specification.”[12].

The assumptions in the security problem definition (cf. Fig. 2) describe
assumptions about the operating environment of a TOE. If a TOE is placed in
operational situations where these assumptions are not true, the TOE may not
be able to provide its security functionality. ISO 15408 differs between the Secu-
rity Functional Requirements (SFR) and the Security Assurance Requirements
(SAR). The SFRs are a formalized and implementation independent specifica-
tion how the security objectives are achieved. The SARs describe how and to
which strictness a TOE is evaluated. Evaluation assurance levels (EAL) describe
seven sets of SARs with rising strictness. The TOE summary specification finally
describes how a TOE implements the SFRs.

Using properly, ISO 15408 can increase software and hardware security assur-
ance level. It provides the assurance by enforcing good and comprehensive doc-
umentation during the system design and development phase, including system
specification, system internals, system tests, and development tools. It also forces
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Fig. 2. Security target contents according to ISO 15408

a development team to take security as the main objective from the beginning
of the project. It raises awareness of the security problems throughout the sys-
tem’s design and development phase, in which both security and non-security
team members are invovled. The specification of PP, SFRs, and SARs, defined in
accordance with ISO 15408 will provide comprehensive and clear specifications
on the requirements of critical parts in the automotive system. Such an intensive
practice can force the project team to identify ambiguities early on and solve
the identified problems accordingly.

5 Comparison and Points for Interaction

To complement automotive safety standard ISO 26262 and to promote a com-
bined approach to safety and security, we identified the following requirements
for the evaluation of candidate security standards:

1. There should be an overlap in required work products for safety and secu-
rity argumentation. It should be possible to build a holistic assurance case
which reuses and extends existing work products for safety argumentation
and combine them with security related work products.

2. Assurance levels between safety and security should be translatable. Verifica-
tion activities for safety and security should be on a similar level. Strictness
of required documentation, design, testing and verification should be similar
between pure safety goals and security motivated safety goals.
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3. Approaches and concepts from the ISO 26262 should be mirrored by the
security standard. ISO 26262 supports some automotive specific approaches,
like the Safety Element out of Context. Such approaches and concepts should
be representable by the security standard.

Based on these requirements, we investigate the feasibility of using ISO 15408
to complement ISO 26262 for safety and security.

5.1 Work Products

Table 1 shows a comparison of work products from the two standards. It can be
seen that for the required parts of a security target, existing work products from
the ISO 26262 contain similar, or in some parts, overlapping content. However,
it does not imply a complete overlap between safety and security work products.
Numbers in the ISO 15408 column refer to part 1 of the standard. The reference
to parts of ISO 26262 are given for each specific requirement.

Table 1. Work products from ISO 15408 and ISO 26262

ISO 15408 ISO 26262

A.4.1 ST reference and TOE reference Part3–5: Item definition

A.4.2 TOE overview

A.4.3 TOE description

A.5 conformance claims -

A.6.2 Threats Part3–7.5.1: Hazard analysis and risk assessment

A.6.3 Organisational security policies Part2–5: Overall safety management,

Part2–5.5.1: Organization specific rules and processes for

functional safety

Part2–7: Safety management after release for production,

Part2–7.5: Evidence of a field monitoring process

A.6.4 Assumptions Only for Safety element out of Context

A7.2.1 Security objectives for the TOE Part3.7.5.2: Safety Goals

A7.2.2 Security objectives for the

operational environment

-

A7.3. Relation between security objectives

and the security problem definition

Part3–7.5.3: Verification review of hazard analysis and risk

assessment and safety goals

A.8 Extended components definition -

A.9.1 Security functional requirements Part3–8.5.1: Functional safety concept

A.9.2 Security assurance requirements Part2–6: Safety management during development of the item,

Part2–6.5.5: Confirmation plan

Part6–11:Verification of software safety requirements

Part6–11.5.1: Software verification plan

A.9.3 Security requirements rationale

A.10 TOE summary specification Part2–6.5.3: Safety Case

The table lists safety work products from ISO 26262 that are best suited to be
extended with their security specific counterpart from ISO 15408. It will define
a holistic assurance case, which integrates required parts for the safety case with
the mandatory parts for a security target. For example, the item definition of
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ISO 26262 contains mission, functional and non-functional requirements, depen-
dencies between the item and its outside and already known safety requirements
from familiar items. In addition, the boundaries, interfaces, elements, distribu-
tion of functions, operating scenarios and requirements from and on other items
are described. The item description already contains most required parts of the
TOE reference, TOE overview and TOE description. It needs to be extend with
an overview of the included security features and the functionality of the item.

While the conformance claim has no direct counterpart in ISO 26262, the next
row demonstrates how a safety work product may be extended. The goal of the
hazard analysis and risk assessment is to identify and evaluate all hazards for an
item and to formulate the safety goals to achieve the necessary risk reduction.
The intention of ISO 15408 is similar, in which a list of all undesired actions
from a threat agent may have negatively influence on one or more properties.
Extending the hazard analysis and risk assessment with a list of potential threat
scenarios that negatively influence the safety of the item can be used for safety
and security argumentation.

5.2 Assurance Levels

ISO 15408 follows a strict assignment of measures to levels, while ISO 26262 has
levels of highly recommend, recommend and methods without recommendation.
The different EAL can be summarized as:

– EAL1: functionally tested
– EAL2: structurally tested
– EAL3: methodically tested and checked
– EAL4: methodically designed, tested and reviewed
– EAL5: semi-formally designed and tested
– EAL6: semi-formally verified design and tested
– EAL7: formally verified design and tested.

Since EAL and security in general relates mostly to software design, imple-
mentation and testing, we based our structuring of the ASIL mostly on the
ASIL dependent requirements for this part of the complete system engineering.
However, at the moment, there is no absolute direct translation and mapping.
For example, formal methods are only recommend for the highest ASIL, while
semi-formal methods are highly recommend for ASIL D and C.

Based on a examination of the ISO 26262 requirements, a translation between
EAL and ASIL, based on their strictness and degree of formalism is proposed as
following (Table. 2).

Similar to the conversion from SIL to ASIL, where the highest SIL is more
critical than the highest ASIL, in a summarized translation, EAL7 would be out
of reach. A more elaborate approach might be to build a specific set of SAR
tailored according to the requirements from ISO 26262. ISO 15408 allows such
an approach with the EALx+ specification. It describes a set of requirement
which exceeds EALx in strictness in some parts but does not reach the next
EAL. This would allow a more accurate translation.
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Table 2. Comparison of integrity and assurance levels

ASIL EAL

ASIL A ∼ EAL3

ASIL B ∼ EAL4

ASIL C ∼ EAL5

ASIL D ∼ EAL6

5.3 Automotive Domain Specific Concepts

Compared to the generic safety standard IEC 61508, the automotive domain
has defined a few domain-specific concepts in ISO 26262. As described in [2], it
becomes challenging to add security to safety if attack probabilities are to be
considered. Probability estimation in ISO 26262 is based on the concept of “how
frequently and for how long individuals find themselves in a situation where the
aforementioned hazardous event can occur.” In ISO 26262, this is defined to be
a measure of the probability of the driving scenario taking place in which the
hazardous event can occur (E = exposure) [11]. As shown in [16], the risk rating
for ISO 26262 is therefore well suited for an integration of security threats. One
can simply redefine exposure as probability that a driving scenario takes place
in which a cyber attack is possible and therefor causes a hazardous event. The
determined ASIL for security motivated safety goals can then be translated to
an EAL for the corresponding security objective.

An important concept in the ISO 26262 is the SEooC. It enables supplier
to develop components for different OEMs and to carry out safety engineering
based on the assumed usage and operational environment of the component.
ISO 15408 supports a similar concept with the dependency on the operational
environment for security. The final assessment depends in both cases on the
operational environment.

6 Conclusion

Automotive systems become increasingly software-intensive and interconnected.
This makes security a burning issue and attracts many attentions in recent
years. Cooperation between safety and security standards is urgently needed in
the automotive domain. As a part of our on-going work on safety and secu-
rity co-engineering, we investigate the possibility of a framework of standards
that addresses safety and security in automotive domain in a holistic and co-
operative way. We investigate domains with similar safety-critical requirements
and evaluate ISO 15408 and ISO 26262 to find points that have the potential
for combinations.

As a work-in-progress, out next step is to conduct more in-depth analyzes of
existing automotive safety and security standards. Specifically, we will address
the challenge of how to align and harmonize assurance levels on safety and
security in different standards.
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Abstract. In order to verify reconfiguration of interacting autonomous agents to
be exclusively beneficial and never hazardous to cyber-physical systems, this
article suggests a systematic approach based on incremental model-based testing
and illustrates its application to cooperating mobile robots.
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Reconfiguration · CPN modelling · Incremental testing

1 Introduction

Cyber-physical systems increasingly tend to rely on the pro-active cooperative
behaviour – or at least on the safe co-existence – of autonomous systems, e.g. mobile
robotic agents, singularly developed and validated beforehand. The major purpose of
systems-of-systems resulting from aggregation and cooperation of individual agents in
a common environment is the provision of higher service performance or efficiency than
can be expected from the mere union of their parts. In particular, such improvement may
involve autonomous decision-making on proper counteractions to be activated upon
detection of anomalous operational conditions by means of suitable reconfiguration
strategies.

Evidently, the additional behaviour emerging from interaction of cooperating agents
must be verified to be exclusively beneficial and never hazardous to the cyber-controlled
physical world, especially in case of safety-relevant applications. For this purpose, the
present article suggests a systematic approach to incremental testing of reconfiguration
behaviour for cooperating mobile robots by defining objective metrics of structural
coverage to be successively fulfilled by automatic test case generation.

The article is structured as follows: after this introduction, the stages characterizing
individual and cooperative robot activities are presented and analysed in terms of poten‐
tial fault and failure modes (Sect. 2). Successively, these stages are further considered
in the light of reconfiguration strategies (Sect. 3). For the purpose of modelling and
verifying increasing levels of reconfiguration, the selection of Coloured Petri Nets is
justified in Sect. 4 and its application illustrated in Sect. 5 by means of an example
inspired by a hospital logistics system involving cooperating trolleys. Finally, Sect. 6
proposes a novel structural testing concept based on the incremental generation of test
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case sets targeted at covering all consecutive state pairs of corresponding CPN models
capturing increasing degrees of reconfiguration.

2 Processing Stages

2.1 Individual Behaviour

The typical processing scheme of a robot deployed in a given environment is structured
along the following successive stages.

• Sensing. Measurement of raw data by means of appropriate (e.g. electric, electro‐
magnetic or optical) sensors [1] concerning contextual information about environ‐
mental conditions (e.g. distance to next obstacle, external temperature, brightness,
GPS-coordinates) or robot attributes (e.g. energy, internal temperature, speed).

• Perception. Interpretation of sensed data for the purpose of gaining insight about
properties of the real world surrounding the perceiving robot such as to allow to
represent it by means of environmental models providing a solid knowledge base for
further decision-making, e.g. by visual pattern recognition algorithms for object
identification.

• Reasoning. Application of decision-making algorithms based on pre-defined logic
rules to the current perception of reality for the purpose of determining how to
proceed, i.e. which actions to instantiate next, typically involving trade-off optimi‐
zation w. r. t. alternative options.

• Action. Execution of action(s) previously identified during decision-making, where
super-ordinate actions, e.g. target next charging station, may involve further sensing,
perception and reasoning activities concerning corresponding sub-ordinate actions,
e.g. in the above case the sub-actions find shortest path, move, recharge and resume
original mission.

2.2 Cooperative Behaviour

In case each robot disposes of own local sensors, the initial sensing phase may be usually
assumed to rely on exclusively individual behaviour of interacting agents, while all later
processing stages (s. Figure 1) may involve cooperative behaviour:

• Perception-based Cooperation. Fusion of data sensed by multiple robots for the
purpose of extracting more information than achievable by the sum of its parts, e.g.
robots gathering visual information from different view angles such as to obtain
consistent stereo-vision.

• Reasoning-based Cooperation. Coherent decision-making of robots working in a
common environmental context, such that the global behaviour emerging from indi‐
vidual actions is beneficial to cooperation. For example, facing robots aiming at
switching their position must avoid symmetrical evasive manoeuvre in order to
exclude mutual blockades.
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• Action-based Cooperation. Efficient and effective coordination of individual robot
actions in order to achieve a common task. For example, the cooperative lifting of a
heavy load requires synchronicity of movement and balanced application of forces
in order to avoid tilting effects.

Fig. 1. Individual and cooperative processing stages

Evidently, each of these stages may be affected by specific faults or inaccuracies
potentially jeopardizing the performance of the corresponding activity as well as that of
later stages relying on it (s. Table 1). As sensing, perception and action represent classical
challenges in robot design and construction which may rely on long research and indus‐
trial experience, in the following they are assumed to have been trained and verified
before deployment with respect to a wide range of target environments.

On the other hand, the real challenges arising after robotic construction are felt to be
especially related to the verification of reasoning, cooperation and reconfiguration tasks
which depend on plant-specific design concepts and therefore must (and can only) be
explicitly addressed in later testing phases.

While systematic testing of cooperative behaviour based on autonomous reasoning
has been the subject of investigations on which we reported in the past [2, 3], the present
article poses the focus of its considerations on the particular issue of testing reconfigu‐
ration of autonomous cooperating agents.

3 On-Line Fault and Anomaly Handling

3.1 Fault Detection and Fault Tolerance

In case the acceptable system behaviour can be specified in advance in a unique and
precise way, classical fault tolerance approaches may be applied to enforce this behav‐
iour (possibly allowing for some degree of degradation) even in the sporadic occurrence
of component failures.

This can be achieved by activating during runtime appropriate counter-measures
based on different redundancy classes:
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• fault masking, where a majority is selected by comparison checking (voting) among
structurally redundant components;

• error recovery, where a predefined acceptable state is (re-)established upon detec‐
tion of an error by a functionally redundant component (acceptance test);

• error correction, where errors resulting from transmission or storage failures are
corrected thanks to the information redundancy provided by additional data.

Table 1. Fault classes and failure modes

Stage
Fault Classes / Failure modes

Individual behaviour Cooperative behaviour

Sensing

flawed sensor(s) resulting in
- delivery of distorted data,
- data delivery outside required time slots,
- (partial) omission of data delivery.

----

Perception

inaccurate interpretation of sensed data by
- inaccuracy of environmental model,
- lack of significant sensed data,
- inappropriate perception algorithm.

incorrect representation 
by

inconsistent data fusion

Reasoning

incorrect decision-making due to
- inadequate specification,
- flawed design,
- incorrect implementation.

conflicting decisions
by

non-concerted reasoning

Action

incapability of completing action due to
- inappropriate use of instruments,
- flawed instruments,
- lack of energy resources,
- environmental constraints.

inefficient / ineffective / 
unsafe behaviour by

uncoordinated actions

3.2 Anomaly Detection and Reconfiguration

In general, the behavioural multiplicity of robotic applications, induced by varying
missions and operational conditions, does not allow for the determination of one single
target behaviour. Upon detection of anomalies preventing them from carrying out a
standard functionality, robots must rather evaluate alternative procedures and select one
of them on the basis of their current perception by reconfiguration, i.e. by adjusting their
future physical and/or logical activities. Reconfiguration, therefore, goes beyond fault
tolerance by permitting to adapt the behaviour to anomalous operational conditions; it
includes the following classes:

• Adjusted Sensing. Upon detecting that sensed information does not offer acceptable
quality, be it due to environmental conditions or to sensor defects, a robot may replace
its current sensing technique by an alternative one revealing as more suitable under
the present circumstances, e.g. by switching to infrared-based sensors if the light
conditions are insufficient to rely on daylight camera sensors.
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• Adjusted Perception. Upon detecting that the perception technique currently
applied does not provide for satisfactory quality, a robot may switch to an alternative
algorithm, e.g. a different image filtering technique for identifying object patterns.

• Adjusted Reasoning. Upon detecting that the targeted action cannot be carried out
satisfactorily due to anomalous conditions, a robot may revise its reasoning stage
under the constraints just identified, e.g. by adapting its current route planning to
allow for an intermediate stop at the closest opportunity if recharging is required.

• Adjusted Action. Upon detecting that the targeted action cannot be carried out satis‐
factorily by means of the techniques currently applied, a robot may select an alter‐
native physical or logical instrument to achieve the same task, e.g. by switching
between continuous and discontinuous gait modes for moving depending on the
conditions of the terrain and of the robot leg joints [4].

• Adjusted Autonomy. Upon detecting that an intended task cannot be carried out at
an acceptable level of efficiency, a robot may temporarily transfer part of its
autonomy to another entity, be it another robot or a central controller, e.g. by
proceeding in a coordinated formation or platoon [5, 9].

The fault and anomaly handling strategies just mentioned are summarized in Table 2.

Table 2. On-line fault / anomaly handling strategies

Technique Examples

Fault 
Tolerance

fault masking
by structural redundancy

N-version programming
by majority voting

error recovery
by functional redundancy

recovery block programming
by acceptance testing

error correction
by information redundancy

error-correcting codes,
cyclic redundancy checks

Reconfiguration

adjustment
of sensing instruments

switch between infra-red and 
daylight camera sensing

adjustment
of perception algorithms

change of filtering algorithms 
for object patterns identification

adjustment
of decision-making

route replanning for recharging 
or collision avoidance

adjustment
of action

adaptation of movement mode 
in case of joint failure

adjustment
of autonomy degree

platooning,
delegation

4 Modelling Reconfiguration by Coloured Petri Nets

This section focuses on the representation of reconfiguration behaviour by an appropriate
formal notation capable of capturing multiplicity of runtime behaviour including both time-
varying, scenario-based operational properties and time-invariant, plant-specific design
concepts.
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4.1 Multiplicity of Runtime Behaviour

For the purpose of capturing multiplicity of runtime behaviour by appropriate models,
the following scenario-dependent attributes must be taken into account:

Robots. Agents are characterized by current information on

• sensing capabilities providing in particular continuous feedback on their locations,
• functional capabilities reflecting the degree of acceptance of their performance,
• energy resources available.

Missions. Tasks are characterized by

• required functional capabilities to be provided by entrusted robots,
• working area(s) to be accessed /traversed to carry out the mission,
• current processing status (available, allocated, completed, degraded).

Environment. Working areas are characterized by

• sensing and functional complexity, concerning a. o. visibility or slipperiness,
• resource consumption, e.g. depending on path steepness,
• mobility, especially concerning the presence of obstacles hindering access.

4.2 CPN Modelling of Behaviour Allowing for Reconfiguration

Based on the positive experiences gained in the past w. r. t. non-reconfigurable robots
[2, 3], the notation used in the following to capture both plant-specific reconfiguration
concepts and multiple operational conditions is CPN (Coloured Petri Nets [6, 7]), a well-
known extension of the more classical Place/Transitions Petri Nets [8]. The main
advantage offered by CPN lies in its high compactness and scalability providing appro‐
priate modelling elements to allow to represent both

• permanent, plant-specific reconfiguration concepts by the static CPN part, i.e. by the
net structure consisting of CPN places, transitions and arcs, and

• time-varying, scenario-dependent information by the dynamic CPN part, i.e. by the
marking capturing the momentary state by means of flowing CPN tokens.

5 Example

The following application is inspired by a robot-based logistics system for hospitals
consisting of a number of trolleys moving autonomously along predefined lanes for the
purpose of transporting household linen to predetermined places.
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5.1 Requirements Concerning Regular Behaviour

Plant Topology. The plant is structured in concentric rings (s. Figure 2) partitioned
into numbered segments, where

• for safety reasons at most one trolley can traverse a segment at any time;
• the two internal circular lanes are used for clockwise traffic movement (inner lane)

and for anticlockwise traffic movement (outer lane);
• the two external circular lanes (inner border and outer border) are used as parking

lots and partly also as battery-loading areas.

Fig. 2. Plant topology with initial robot positions, obstacle and mission targets

Mission Allocation. Missions are

• characterized by the target segments to be reached;
• allocated to idle trolleys providing the functional capabilities required;
• completed as soon as a border of their target segment is reached.

Robot Movement. Whenever possible, trolleys try to move towards their target:

• once a mission is assigned, the trolley entrusted with it determines its direction
(clockwise or anticlockwise) such as to allow for the shortest path to its target;

• successively, the trolley moves forward by accessing segments as long as they are
perceived to be free from obstacles;

• the energy required to traverse a segment amounts to 5 % of a full charge;
• upon reaching its target segment, the trolley moves to the right margin and stops.

5.2 Requirements Concerning Reconfiguration

Upon perception of particular internal anomalies or external anomalous conditions,
robots can react by changing their current target behaviour as follows:
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Reconfiguration Strategy 1 (R1): Battery Recharging. As soon as their energy level
is sensed to be below a predefined threshold, robots will

• target the closest charging station to be encountered in their current direction;
• after conclusion of energy recharging, resume their mission.

Reconfiguration Strategy 2 (R2): Route Replanning. Upon perceiving an obstacle
(passive object or human) immediately preceding them on their moving lane, robots

• move to the opposite traffic lane and
• change their moving direction accordingly.

Reconfiguration Strategy 3 (R3): Platooning [5, 9]. For reasons of safety, traffic
efficiency and energy saving, if disposing of sufficient energy and entrusted with yet
incomplete missions, queuing robots build formations by

• temporarily delegating decision-making to the front robot and following their pred‐
ecessor, hereby reducing energy consumption to 2 % of a full charge per segment
traversal;

• as soon as its energy level is under a predefined threshold, a formation-building robot
will abandon the platoon to target the closest charging station (s. above), hereby
giving rise to a splitting of the platoon;

• as soon as a formation-building robot reaches its target segment, it will abandon its
platoon to stop at the margin, hereby giving rise to a splitting of the platoon.

5.3 CPN Models for Increasing Levels of Reconfiguration

The CPN model developed to represent the behaviour illustrated above is shown in
Fig. 3. It consists of the following 3 CPN places to store state information:

• MissionPool captures information on the current mission state,
• RobotPlatoons captures information on the current lists of moving formations,
• Areas captures information on the current environmental conditions,

as well as of the following 7 CPN transitions reflecting generic atomic actions:

• AssignMission denotes entrusting a given robot with a given mission,
• MoveForward denotes accessing the next segment,
• ChangeLane denotes moving to the next closest traffic lane,
• JoinPlatoon denotes releasing of autonomy by following the preceding robot,
• LeavePlatoon denotes resuming of autonomy w.r.t. movement decisions,
• Park denotes moving to the right border to stop there,
• Charge denotes recharging the battery.

The CPN net structure G shown in Fig. 3 includes all 3 reconfiguration behaviours
R1, R2, R3 mentioned before. By removing the 2 transitions JoinPlatoon and Leave‐
Platoon it can be easily degraded to a simplified CPN net structure G’ representing the
same regular behaviour without allowing for building formations. Assuming the
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Fig. 3. CPN model of reconfigurable cooperating robots
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common mission assignment shown in Table 3, these 2 net structures give rise to the
following 4 different Coloured Petri Nets:

• CPN0 based on net G’, fully charged robots and no obstacles;
• CPN1 based on net G’, robots charged for one third (33 %) and no obstacles;
• CPN2 based on net G’, robots charged for one third (33 %) and an obstacle in segment

#10 (outer lane);
• CPN3 based on net G, robots charged for one third (33 %) and an obstacle in segment

#10 (outer lane).

Table 3. Series of CPN models capturing incrementing reconfiguration levels

CPN0 CPN1 CPN2 CPN3
reconfiguration no R1 R1, R2 R1, R2, R3

net structure G’ G’ G’ G

initial
marking

r1: #1(inner parking lane)→#10
r2: #2 (outer parking lane)→#9
r3: #3 (inner parking lane)→#8

a full charge 33% of a full charge
no obstacles obstacle in #10 (outer lane)

The number of corresponding CPN entities is shown in Table 4, where events denote
variable bindings enabling transition firing and state pairs denote pairs of consecutive
markings.

Table 4. Size and complexity of CPN models considered

CPN0 CPN1 CPN2 CPN3

# transitions 5 5 5 7

# events 23 42 70 1966

# states 454 1265 3581 17325

# state pairs 981 2508 7537 30824

Within the set of all state pairs of CPNi (i ∈ {1, 2, 3}) we may further distinguish
the subset of Ri-state-pairs initiating reconfiguration Ri, more precisely:

• R1-state-pairs traversed by firing transition Park for charging purposes, i.e. when the
parking segment differs from the mission target;

• R2-state-pairs traversed by firing transition ChangeLange upon sensing an obstacle
on the next segment to be accessed by the robot considered;

• R3-state-pairs traversed by firing transition JoinPlatoon.

The number of the Ri-state-pairs (i ∈ {1, 2, 3}) is shown in Table 5.
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Table 5. Number of state pairs involving corresponding reconfiguration levels

i 1 2 3

#Ri-state-pairs in CPNi 198 294 1448

6 Incremental Reconfiguration Testing

This section is devoted to the definition of a systematic procedure for the determination
of CPN test cases targeted to the verification of the 3 reconfiguration strategies illustrated
above. Hereby, a CPN test case is defined as an initial marking followed by a sequence
of events occurring during its execution such as to represent behaviour from mission
assignment to mission accomplishment. As Ri-state-pairs are defined to initiate recon‐
figuration, their coverage suffices to test the complete corresponding reconfiguration
behaviour.

It is envisaged to reduce testing effort by avoiding to retest behaviour already verified
beforehand. The testing procedure proposed for this purpose addresses increasing levels
of reconfiguration; at each level, appropriate test cases must traverse all pairs of consecu‐
tive states involving corresponding reconfiguration behaviour. Evidently, the advantage of
proceeding incrementally is the stepwise inclusion of anomalous operational conditions.
In other words, after regular behaviour has been verified by extensive coverage of CPN0,
additional reconfiguration testing requires further test cases covering Ri-state-pairs in CPNi
for the purpose of addressing reconfiguration strategies Ri (i ∈ {1, 2, 3}).

Depending on the state transition graph generated by CPN Tools [7], appropriate test
cases may be determined by analytical [10] or heuristic approaches [11, 12]. In the
present case, appropriate test cases were analytically generated by hot-spot prioritization
[10] based on the successive identification of test cases providing the maximum number
of state pairs yet uncovered. Their number is shown in Table 6.

Table 6. Number of test cases required by different test coverage criteria

test coverage criterion in CPNi i = 0 i = 1 i = 2 i = 3
# test cases covering all state pairs 133 270 614 3981

# test cases covering Ri-state-pairs n.a. 111 239 1011

The incremental testing approach proposed reveals as beneficial in terms of testing
effort, as it requires only 1494 test cases (the sum of the shaded entries in Table 6) instead
of the 3981 test cases required by non-incremental reconfiguration testing.

7 Conclusion

In order to verify reconfiguration behaviour potentially emerging from interacting
autonomous agents to be exclusively beneficial and never hazardous to cyber-physical
systems, this article proposed a systematic approach based on incremental model-based
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testing and illustrated its application to cooperating mobile robots involving 3 different
reconfiguration strategies.

The testing procedure derived is based on the automatic generation of test cases
covering a series of CPN models capturing increasing degrees of reconfiguration. An
exemplifying application confirmed both the practicality and the cost-effectiveness of
the approach developed.
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Abstract. For technical systems, which perform highly automated or so-called
autonomous actions, there exist a large demand to evaluate their operational safety
in a uniform way at runtime based on the combination of environmental threats
and the conditions of subordinated system modules. To guarantee a safe motion
based on autonomous decisions we have introduced a universal and transparent
certification process which not only takes functional aspects like environment
detection and collision avoidance techniques into account but especially identifies
the associated system condition itself as a key aspect for the determination of
operational safety and for an automated optimization of operating parameters.
Similar to a feedback loop possible constraints for environment perception of
sensor components or the ability of actuator components to interact with their
environment have to be taken into account to introduce a generalized safety
evaluation for the entire system. Therefore, a model is derived to evaluate the
operational safety for the autonomous driving robot RAVON from TU
Kaiserslautern based on an integrated behavior-based control (IB2C).

Keywords: Condition monitoring · Safety · Autonomous vehicles · Conditional
safety certificates · Modularity · Adaptive systems · Mobile robots

1 Introduction

In an industrial environment, technical systems act more and more autonomously to
improve their efficiency in automation due to better adaption to environment and
processes. Systems, which are able to make decisions autonomously, can react to a much
greater range of unforeseeable situations and are in this sense able to expand their range
of applications. Currently the capabilities from driving assistance systems become more
and more extended. There is an ongoing trend towards entirely autonomous vehicles. In
industrial processes, robot arms should act autonomously in the presence of human
co–workers and work more and more closely with them together.

But many of these potential application areas are strongly limited due to questions
of operational safety. For the introduction of autonomous systems they are in the light
of unsolved liability issues but also for system performance aspects what is explained
later of crucial importance.
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In recent years when considering motion safety of autonomous systems the safety
research was mainly focused on topics like environment detection or collision avoid‐
ance. The importance of the system condition itself as the counterpart to environmental
aspects for the overall operational safety wasn’t a focus of the safety researchers, even
though changes in the conditions of components like sensors and actuators could have
big influence on generating, processing and executing data in the autonomous system.
With the general expression “condition” we want to summarize this uncertainty to handle
data for different kinds of components. With terms like condition monitoring as self-
diagnosis this expression is well established in the scientific community and provides
the idea of a somehow “smart” component, which gives feedback about its own status.

But considering present autonomous cars they are mainly based on regular cars and
require a lot of manual checks of safety related components, especially the mechanical
ones. So in some cases safety related data is simply not available to the autonomous
system. For most other safety relevant components the only distinction is drawn between
a normal correct working data-processing component according to the specifications or
a defect one. Obviously this is not the nature of real-world technical components
especially as we talk about wear parts from mobile autonomous systems or components
which are more or less degraded in their functionalities based on environmental aspects.
This could be wear parts like chassis, steering and brakes or temporarily deterioration
from sensors like stereo cameras through contamination with dust or through        tempo‐
rarily occurring fog in the surrounding area. So if we want to ensure the operational
safety for the autonomous systems at runtime, the impact of such environmental aspects
as well as the wear of components on component specific safety related functions should
be displayed with a more detailed component condition as uncertainty rating.

The advantages of using more safety related data for the overall system safety and
system performance are illustrated with an example of an expected idealized behavior
of a regular car driver. Such a driver would probably consider for his driving behavior
that the tires of his car are slightly worn in the sense of a safety related component
condition. From a driver safety training he knows that the combination of bad tires, a
wet surface and a high speed could lead to aquaplaning, which finally leads to a total
loss of the reaction capability of his car to obstacles. Based on this knowledge he would
hopefully consider such environmental aspects and ensure a sufficient reaction capability
to obstacles due to limiting the top speed depending on environmental aspects. In this
example the current driving speed should be seen as the only performance factor. So
from a theoretical point of view the driver’s intention would always be to drive as fast
as possible. On the other hand the driver wants to ensure that the hazard to collide with
obstacles is sufficiently low. So if the driver takes such additional safety related aspects
into account, he could always provide a situation specific sufficiently low risk to collide
with obstacles and could extent the system performance due to driving always the
maximum allowed speed in each environmental situation. In reality this behavior is of
course error-prone because of subjective decisions of the driver.

This example shows that also slightly degraded functions of components like the
grip of the tires have to be considered for autonomous systems to ensure the overall
system safety, because in combination with other factors like the wet surface the grip
becomes even lower which finally leads to a catastrophic loss of control.
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Another conclusion is that allowing a graceful degradation of performance like the top
speed as a preventive measure of safety based on the detailed knowledge of component
condition, the driver has always the ability to recover a specific safety level. As a result
the system availability could be raised to an appropriate level.

This is especially appreciated for autonomous systems, where a high availability is
required during operation. In such an application a fail-safe system would be unsatis‐
factory because in case of failures the system would always stop operating and give the
control back to the driver. Due to economical reasons there is typically no other way to
raise the system availability with additional redundant components.

To introduce the idea of graceful degradation of performance in autonomous systems
the main question is how to determine the uncertainties for the operational safety at
runtime. We believe that this safety evaluation has to be done bottom-up based on the
component condition. Each component provides a certain basic function for the super‐
ordinate level in an autonomous system. The complex autonomous system behavior is
than hierarchical derived from these basic functions. So to understand the extent of
uncertainty in the autonomous system behavior we have to keep track of this function
fusion and simultaneously evaluate uncertainties for each function.

To guarantee the optimal situational uncertainty rating for a function, this uncertainty
evaluation should be supported with data or provided as a whole by the developer of
this function or more general the component manufacturer, because he should have the
maximum knowledge about it.

Without considering this knowledge of component conditions in a proper way for
the safety evaluation the autonomous motion would either be unsafe or too conservative
regarding the system design. For this reason there is a strong demand for an improved
use of the scope of service of a component to increase the cost effectiveness and also to
guarantee a safe motion considering more safety related aspects based on component
conditions at runtime.

Clear and generally binding rules for the described evaluation of the overall
motion safety are necessary. How could we ensure a safe motion or action based on
the combination of environmental aspects and system condition? How should a
consistent evaluation for the introduction of general and mandatory standards be
displayed, which also take into account the different perspectives of the various
participants like the system configurator, the sensor- or actuator manufacturer, the
developer of evaluation software for sensor signals, the developer of the control or
the safety engineers?

To overcome the simplification of component conditions we have introduced a
certification concept, which enables more realistic description of components but also leads
to much wider scope for specifications of system properties and analytical techniques for
autonomous systems.

In Sect. 2 the requirements for safety evaluation for autonomous motions are shown.
In Sect. 3 the state of the art for safety evaluation is shown. In Sect. 4 is based on the
previous sections a new concept for safety certified motion presented.
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2 Safety Evaluation Requirements for Autonomous Motions

The operational safety for technical systems is guaranteed through the verification of
the proper condition and appropriate use [2]. Till now the operational safety for auton‐
omous systems is reached due to strong limitations of the degrees of freedom, such as
the limitation of the activity space, the velocity or the surveillance through an operator.
The responsibility for the proper condition lies with the operator and the appropriate use
is simply ensured by the limitation of degrees of freedom.

Regardless of these limitations the performance of autonomous systems rises poten‐
tially more and more because of various aspects. On the one hand the possibilities of
environment detection rises because of a constantly improved measurement accuracy
as well as improved self-diagnostic functions of sensors and sinking prices, which
simply enable the use of more sensors. On the other hand the possibilities for evaluation
of the dataset rises through better software algorithms and the constantly rising
processing power according to Moore’s law. Combining these technical trends the
possibilities of autonomous systems increase to recognize their environment and to
enhance their self-diagnostic for a better self-perception.

In comparison to systems, which are immobile, the safety evaluation for autonomous
movements are far more complex. This is mainly based on the fact that we have not only
to consider the system itself but also the environment and the interaction between system
and environment. As an additional demand this safety evaluation has to be done at
runtime due to several reasons.

One important argument for runtime analysis for modern technical systems are
commonly the requirements, which should according to concepts like “industry 4.0”
enable an integration of additional or modified components at runtime [2]. Therefore an
open interface for the integration of components from various manufacturers is neces‐
sary and also an additional safety evaluation at runtime to analyze the impact of the
afterwards added or modified components to the entire system.

Besides the demands from concepts like “industry 4.0”, which don’t have to be
necessarily supported by autonomous systems in safety critical domains, the high hazard
potential of autonomous motions itself is a main reason against considering the safety
just at development time. While for a stationary system like a desktop-PC a blackout
would be acceptable, for an autonomous motion it would not be allowed, because the
consequences of a system failure would be less predictable and so potentially more
hazardous.

A very detailed safety evaluation is needed whose complex fault model cannot be
displayed in a sufficient way at development time. The extension of the fault models to
the unforeseeable environment as well as the interrelation from the technical system to
this, while considering the time dependent relationships, results in a too complex model
where faulty assumptions or uncertainties cannot be excluded.

For the safety of the technical system the environment can be seen similar to the
requirements of “industry 4.0” as a previously unknown component, which changes at
runtime and influences the operational safety. In comparison to a technical component
it has considerably more degrees of freedom and should interact concerning safety issues
with the technical system similar to a feedback loop to lower existing threats.
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A comprehensive view of all safety related components like sensors and actuators
based on statistical data at development time can lead to strong deviations of the system
behavior at runtime. So it would be best to reduce the possible fault model based on a
runtime diagnosis to current hazards. Nevertheless, strict rules for the evaluation of
operational safety as well as the definition of the evaluation scale should be determined
at development time to limit the uncertainties in system behavior at runtime.

The term system behavior indicates already that the main reason for the safety eval‐
uation is no longer only a passive evaluation of the motion situation rather an active
influence of the motion behavior. Therefore fast reactions of the autonomous system to
threats and short computation times of the operational safety at runtime are needed.
Similar to the definition of safety evaluation rules, short computation times also demands
for a maximal shift of the safety evaluation to the development time.

Thereby keeping in mind that the evaluation of the proper condition through the
system itself at runtime is important. If the proper condition of components would be
evaluated by a responsible person like the driver of a car, which is not autonomous, this
information would not or only insufficient be available for the system. As stated in the
previous section this safety related runtime information is an essential part for deter‐
mining the autonomous behavior based on preventive measures of safety.

However, if the system has access to environment data and its own condition in the
way described before, there is at the moment no uniform concept available to evaluate
the operational safety in a standardized way. This limits the possibilities of autonomous
decisions and increases possible liability risks. And because a modular concept for the
safety evaluation is missing, an overall system operator like the manufacturer of auton‐
omous vehicles takes the whole responsibility for all part systems, which can lead him
to too conservative assumptions for the system performance. Furthermore, a missing
unified frame concept leads to strong diversification in research for autonomous systems,
which in case of safety issues is unfavorable.

According to that a concept is needed which guarantees independent from a specific
function a safe motion for the autonomous system. For the transmission to concrete
applications a component oriented approach is needed, which allows a transparent eval‐
uation of the states of the entire system based on the classification of part components
and the interaction to the environment at runtime. The modular structure needs precisely
defined interfaces for responsibilities and functions of subcomponents. Subsystems
should be certified regarding their safety level and depending on that the subordinate
functional level. Based on this evaluation the motion control should be influenced
according to safety benchmarks.

In the next section methods for the modular safety analysis as well as the determi‐
nation of the overall system safety at runtime based on variable component conditions
are introduced.

3 State of the Art for Safety Evaluation

When considering safety related aspects for safe autonomous motions we focused on
three main topics: Firstly the state-of-the-practice for safety evaluation of technical
systems is discussed. Secondly an innovative safety evaluation method for modular and
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adaptive systems is shown. Thirdly the available techniques for the determination of a
safe motion based on runtime evaluation are explained in more detail.

In industrial environment fault trees are still state of the art to analyze technical
systems in detail. For an undesired state of a system all possible causes are deductively
derived in a hierarchical way according to their cause-event chain of effects based on
Boolean logic. With the resulting fault tree it is then possible based on statistical data
to calculate the probability of occurrence of the analyzed undesired state.

However a disadvantage of the standard fault tree is that only the causal relationships
of fault propagation in the system are considered where each cause of a fault is only
displayed once. If a safety engineer wants to analyze the failure emergence based on the
real system architecture, he has to derive the cause-event chain based on causes in the
real existing subcomponents. This requires a component oriented fault tree with the
option to display similar faults repeated, according to their real occurrence within the
system components.

Therefore, Kaiser [3] introduced the Component Fault Trees (CFT), which exactly
fulfill these requirements. In Fig. 1 such a CFT is shown. In comparison to a standard
fault tree for a CFT it is possible to display faults of the same kind in different compo‐
nents and derive from that a common cause fault based on the system architecture.

The fault propagation for the component model is again based on Boolean logic.
However in another work from [4] it was pointed out that the use of CFT is not limited
to the level of technical realization. CFT could also be used to describe the hierarchical
connection of components and with a uniform interface specifications it could be used
for an extended modularized description of system functions. The idea that components

Fig. 1. Component Fault Tree
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have related faults and that they could provide failure rates based on their internal logic
and their input data is very important for the later on introduced concept based on
component conditions.

An alternative approach for safety evaluation is the Failure Mode and Effects Analysis
(FMEA) [5] where for each component the failure modes and the resulting effects on the
system are systematically derived. The various failure modes are, as part of the quality
management in the design- and development phase of a technical system, rated according
their extent of damage, their probability of failure occurrence as well as the probability of
fault detection during runtime. Later on the system is optimized based on these results.
Within the modularized system function both evaluation methods FMEA and fault tree
analysis can be beneficially matched to combine the bottom-up and top-down approach.
The FMEA concept is well suited for the approach in Sect. 2 to shift most of the motion
safety analysis to development time due to safety and computational reasons. If the
resulting effects of different combinations of failure modes to the system safety are derived
at development time, there is at runtime only the need to monitor the component condi‐
tions and their influencing factors and to conclude from that to the whole system safety.

Nevertheless the described analysis methods have in common that they were intro‐
duced for safety evaluation at development time. A simple transfer to runtime is for the
FMEA not possible or in case of the CFT not suitable because of the complex evaluation
model and the resulting long processing times. Because if we think about a runtime
evaluation all system parameters would have to be evaluated in specified short intervals
according to real time requirements as even minimal parameter variations could have
impact on the entire system reliability.

With the “Condition-based fault tree analysis” (CBFTA) [6] a method to evaluate
the condition of a system with a fault tree at runtime was introduced. Empirical data and
runtime data are combined in a simplified fault tree to determine the condition of the
entire system. Compared to the standard fault tree the probability rating of an occurring
top level event based on a CBFT is more realistic. Nevertheless, with this condition-
based fault tree the possibilities to analyze failure emergence and propagation are also
limited because of the missing possibility to illustrate the system architecture and the
top down approach.

As mentioned in the previous sections for a runtime analysis it is necessary to eval‐
uate the current system condition based on the condition of subcomponents. An illus‐
trative example for the modification of a useful signal during propagation through
components depending on their conditions is the so called “health signal” [7]. This value
is always given additionally to the sensor signal for processing in different component
levels to determine the remaining reliability of the signal. The “health signal” seems to
be an easy way to propagate a reliability guarantee through components at runtime.
Based on this the impact of a less reliable signal could be easily determined, in each
component, with a previous FMEA evaluated at development time. Obviously the ability
of the “health signal” to guarantee their reliability is restricted to a single signal. So in
the following a more sophisticated evaluation method called ConSerts is introduced.

This procedure allows to guarantee the reliability for arbitrary system functions,
concentrates on the modular component idea and introduces an appropriate way to
segregate the propagated reliability values based on guarantee/demand combinations.
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With “Conditional Safety Certificates” (ConSerts) [8] it’s possible to reduce the recal‐
culation time during system changes to a minimum and to determine the entire system
condition based on components and their conditions at runtime. System and safety
specifications were as far as possible shifted to development time, so that at runtime
only the component conditions have to be evaluated with Boolean logic.

The components are therefore linked with demand/guarantee combinations. For each
component a “Conditional Safety Tree” based on Boolean logic is determined at devel‐
opment time with demands as input and guarantees depending on the Boolean logic as
output. This means a component is able to provide guarantees to other components based
on the existing guarantees from other components.

But ConSerts were introduced for stationary systems with a static functionality, where
there are only a few modifications for the CST of a component at runtime mainly based on
shared resources. Similar to the approach of “System of Systems” the main changes of
safety properties of the entire system happen due to adding or removing subcomponents
with specific safety properties. For the concept of safety certified motion the component
model and the relationship of components is determined at development time and not
changed at runtime. The changes happen inside the components because of the wear of
components or environmental aspects, which influence components. As explained before
if we change the safety evaluation from a stationary system to a dynamical and reactive one
also the passive safety evaluation changes to an active influencing of system behavior
according predefined safety regulations, which has to be considered additionally.

4 A Safety Certified Motion Sequence

The ConSerts are most suitable for the derived requirements stated in Sect. 2 for the
certification of autonomous motions mainly because of their open and modular concept
as well as their efficient runtime evaluation and bottom-up approach. For the safety
evaluation of autonomous motion the environment as well as the interaction between
system condition and environment at runtime have to be considered additionally. So the
ConSert approach is extended in a way that the environment is rated at runtime similar
to component conditions based on safety critical factors like distance and angle to
unpredictable obstacles.

Based on CSTs a generally valid reaction to specific combinations of environment
scenario and condition of sensor-/actuator components could be defined at development
time. A fundamental finding is that the allocation of certificates for the safety evaluation
of the nearer environment not only depends on the actual sensor signals but also from
the condition of sensor components itself as well as the reliability rate for the obstacle
detection. Consequently, the component which allocates certificates based on the envi‐
ronment analysis has to be subordinated to the sensor-/actuator components.

In the derived entire system in Fig. 2 are sensors and actuators as independent
elements in separate component modules integrated. The additional benefit is that they
introduce besides the propagation of a certain signal an evaluation level and could so
provide additional information for the safety evaluation based on certificates. These
could be safety relevant specifications of certain sensors or actuators, but also data from
condition monitoring or interpretation of measurement results with firmware.
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For a uniform presentation and safety evaluation of the entire system at development
time a frame concept with the name “Mobile Robot Safety Framework” is introduced.
This frame concept segregates the different components and emphasizes the separation
of the regular control, in this case the behavior-based control (IB2C) and the level of
safety certification. The IB2C network processes sensor signals based on the planning
task and calculates adaptively the optimal actuator activation for a specific environ‐
mental situation. Concerning safety issues it’s sometimes difficult to understand the
actuator activation of an IB2C network in specific situations. The “Motion Safety Certif‐
ication” component doesn’t consider those planning tasks. The main objective for this
module is the safety evaluation based on sensor signals and the available certificates,
which is according the actuator activation, dominantly overlaid to the regular IB2C
network. In case of a malfunction the causing component could be easily derived by
analyzing the present certificates at that point of time.

The operational safety is guaranteed through the proper condition as well as the
appropriate use. At development time the composition of components is proved based
on the demand/guarantee combinations. With this at the point of commissioning from
formal point of view the proper condition is guaranteed. During runtime the proper
condition is proved based on certificates. If a component deteriorates the system reacts
based on actions determined at development time. The appropriate use is checked at
runtime based on the analysis of environment hazards and the interaction of system with
the environment. The appropriate use is ensured through defined reactions to environ‐
mental aspects determined at development time. In Fig. 3 the safety evaluation mecha‐
nism based on runtime certificates is shown and explained in the following.

Fig. 2. Safe motion with conditional safety certification through condition monitoring

164 S. Müller and P. Liggesmeyer



To ensure a sufficiently low risk to collide with obstacles the safety evaluation takes
the conditions of sensors as the capability to detect obstacles into account. In combina‐
tion with the detected obstacles the environmental situation is rated according their
hazards. The effective remaining hazards from obstacles to the autonomous system is
then rated based on the reaction capability of the autonomous system to the obstacles.
Therefore the conditions of actuators in combination with properties of the driving mode
(like current speed) are considered additionally. Based on this hazard analysis the current
driving mode is influenced due to the limitations for the IB2C-control or the execution
of safe sequences. The adapted driving mode increases the reaction capability to obsta‐
cles and reduces the overall hazard of a collision.

The advantages of considering the conditions of components in contrast to distinct
only correct working or defect components next to environmental aspects are stated in
the following based on an autonomous vehicle with Fig. 3.

On the one hand there is the possibility of compensation of uncertainties to raise
the whole system availability. If the reaction capability to hazards is low because of poor
brakes it’s possible to drive slowly forward if there is no obstacle detected in the closer
surroundings and the sensors are in a good condition. The other way round if it’s very
difficult to detect obstacles because of fog, good actuator condition could enable slowly
forward driving. In other words the more information about the component condition
are available the more performance potential of the autonomous system can be used. As
stated in Fig. 3 the driving mode influences like a feedback loop the reaction capability
to hazards in combination with the condition of actuators for example a steering system.
As a result with rising speed the reaction capability to hazards becomes lower and the
entire safety evaluation becomes more critical. Also the relevance of safety aspects for
the entire system safety becomes more visible considering bad sensors on the rear side
while forward driving.

Fig. 3. Safety evaluation with feedback
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5 Conclusion

With the concept of safety certified motions it’s possible to bring the various disciplines
with their specific knowledge such as the sensor-/actuator manufacturer, the developer
of software (for example to evaluate sensor measurements), safety experts and the
system configurator closer together. The uniform interface between them are the certif‐
icates. Each participant guarantees with specific certificates for a certain function. The
determination of certificates for a specific functional scope or a component condition
should be done similar to the admission of regular technical systems in cooperation with
safety authorities to guarantee reliability. As a result a car manufacturer only has to think
about a black box for a sensor component which provides reliable certificates according
to his requirements. The effects of changing certificates in the system behavior at runtime
are defined with the Conditional Safety Trees at development time. So all in all, a system
is introduced whose safety concept is determined at development time and checked at
runtime.
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Abstract. For many years, the Digital Safety and Security Department of the
Austrian Institute of Technology has been developing stereo vision algorithms
for various application purposes. Recently, these algorithms have been adapted
for use in a collision avoidance system for tramways. The safety validation of
such a system is a specific challenge as - like in the automotive domain - the rate
of false positives cannot be lowered to zero. While automotive suppliers typically
tackle with this problem by reducing the sensitivity of the system and validating
it in hundreds of thousands of test kilometres, this paper presents an approach
how it is possible to demonstrate safety with a carefully chosen functionality and
less field test kilometres.

Keywords: Safety · Validation · Driver assistance system · Collision avoidance
system · Stereo vision algorithm · Tramway · Tramcar

1 Introduction

Public transport providers operating tramway lines incur high cost in terms of casualties,
material loss and also in image damage as a consequence of accidents. During the past
years or almost decades, increased traffic safety awareness has caused authorities to take
measures for road traffic safety, in particular for individual car traffic. But also public
transport has reacted and lowered the rates of personal damage by targeted safety meas‐
ures. As an example, the Wiener Linien1 reduced the accident rate between 2010 and
2014 from 91 down to 63 events per million km, which corresponds to a decrease by
31 %. But there are still casualties and even fatalities through tramway accidents, and
also material damage is considerable, for instance collisions with tramway depot gates
during shunting.

According to statistics, between 80 and 90 % of the tramway accidents are caused
by other road users: This leaves between 10 and 20 % of the hazardous cases for
improvement, and driver assistance systems which detect and warn about imminent
collisions can be an essential step forward towards more safety.

The potential of an automated collision warning or avoidance system lies mainly in
two aspects:

1 http://www.wienerlinien.at/eportal2/.
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• The Shorter Reaction Time: While the driver typically has a reaction time of around
one second, the system needs only a few tenths of a second.

• The Absence of Fatigue and Inattentiveness: The driver may be tired, distracted by
a passenger, brood about private problems or - although prohibited - type on his
smartphone. At 50 km/h, one second of inobservance corresponds to a “blind” drive
of 14 m.

It is therefore obvious that an assistance system that warns the driver early or wakes
him up from his daydream bears great potential for safety improvement. An intervening
system, which activates the brake, can be even more beneficial.

In the automotive domain, driver assistance systems like collision avoidance systems
have found their way into cars from the luxury class down to small cars with the expect‐
ation of improving road traffic safety. So the question arises why they are not yet used
in tramways.

From a market perspective it is evident that the expected number of tramway driver
assistance systems sold is smaller by several orders of magnitude compared to the figures
in the automotive domain. In Vienna, as an example, Wiener Linien statistics for 20142

give a number of 519 tramcars while, according to Statistik Austria3, there were 683.258
passenger cars registered in Vienna by end of 2014. Consequently, development cost for a
tramway driver collision warning system must be considerably lower than in the automo‐
tive domain in order to be economic. One approach can be to simply re-use an automotive
driver assistance system. Another one can be re-using sensory knowhow gained in a
comparable or even in essentially other domains and porting the pre-developed algorithms
with according adaptations and parameterizations for the specific application purpose on a
COTS (commercial off-the-shelf) computer.

As will be described later in this paper, there are moreover essential differences between
motorcars and tramways regarding technical properties. But also the risks for passengers
vary between cars and trams, and finally the expectations with respect to the reliability of a
professional driver in a tramway deviates from the one of a potentially unexperienced and
less well trained private driver. These differences define limits for choosing the approach
how the system is used and influence in particular its safety properties. In the following, the
particularities of a tramway collision warning and avoidance system will be presented,
based on the system currently (2015) being developed at AIT, and an approach will be
drafted how safety of such a driver assistance system can be demonstrated.

2 State of the Art

2.1 Collision Warning and Avoidance Systems

Collision warning systems detect obstacles in front of the vehicle and warn the driver
by acoustic or optic signals. Collision avoidance systems intervene additionally into the

2 http://www.wienerlinien.at/media/files/2015/betriebsangaben_2014_151135.pdf.
3 http://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/strasse/

kraftfahrzeuge_-_bestand/index.html.
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vehicle control or braking systems. In the way they are devised today, these systems aim
at compensating possible inattentiveness of the driver or occasional overestimation of
his capabilities. But they do not exempt him from his duties and merely support him.

For obstacle detection, most of these systems use short range radar sensors in parallel
to a mono camera or an ultrasonic or laser sensor. All these systems, however, come up
with comparably unreliable obstacle detection, partly due to inherent weaknesses of the
sensor technologies used, but also because even the definition of what is to be considered
as an obstacle is fundamentally imprecise. Despite of these deficiencies, driver assis‐
tance systems have become a standard in luxury cars for a few years and collision
warning and avoidance systems are today penetrating the market down to the middle-
sized or even compact car class.

For tramways, however, there is to our knowledge no commercially available collision
warning or avoidance system on the market yet. But there are prototypes under evalua‐
tion; [1] describes shortly two such systems. One of them is based or a collision warning
system for motorcars using a radar sensor for obstacle detection and a video camera for
determining the track layout, the other one is the system developed by AIT, which uses
three cameras and a stereo vision algorithm for detecting both the obstacles and the track
geometry. For this system, more details are given further below in this paper.

In addition, we found two papers proposing a collision avoidance system for tram‐
ways which was derived from an automotive system and is based on digital maps and a
laser-scanner [2, 3].

2.2 Safety Validation Strategies for Collision Warning and Avoidance Systems

The sensors which the driver assistance systems are using are not very reliable in the
sense that they more or less frequently signal potential collision objects where there are
none. These false positives can cause unnecessary emergency brake activations. One
important reason is that the spatial resolution of radar and ultrasonic sensors is compa‐
rably low.

On the other hand, not all relevant obstacles are detected (false negatives). Here the
reflection properties for microwaves and sound waves of the objects to be detected by
the respective sensors play an essential role. For this reason, continuous driver attention
and - in case of a false negative - his immediate intervention are indispensable for safety.

In order to avoid nasty false positives with increased rear-end collision risk, these
systems often fuse the output of different sensors, mostly radar or supersonic sensors
and video cameras. This goes, however, at the cost of the false positives rate, and only
a mediocre proportion of all actually relevant obstacles is eventually signalled.
Figure 1 illustrates the failure of a collision avoidance system when the collision object
doesn’t reflect microwaves [4].

Collision warning and avoidance systems for the automotive domain have to be
developed according to ISO 26262 [5]. These complex systems are, however, based on
inherently incomplete models, and a complete verification is therefore infeasible. It is
state of the art that for the overall system safety validation of driver assistance systems
extensive field tests are conducted, typically in the magnitude of hundreds of thousands
or millions of km. For fully autonomous driving, i.e. without driver controllability,
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the amount of required tests would be extreme, as Prof. Winner and W. Wachenfeld
stated “More than 100 Mio km of road driving are required for fully automatic vehicle
release” [6]. As for the undetected obstacles in our case, i.e. the false negatives rate, the
controllability argument helps reduce the necessary amount of tests. Controllability
means that the driver is constantly alert while driving and is able to take over control at
any instant when the system fails to detect a potential collision.

False positives in an automatically intervening collision avoidance system, in
contrast, induce the hazard of rear-end collisions. It is improbable that the private (non-
professional) driver will be able to quickly interrupt an unnecessary automatic emer‐
gency braking action caused by a system failure, thus the controllability argument is
certainly not fully applicable. Actually, in the automotive domain unintended braking
is rated much more critical (ASIL C) than no braking (ASIL A or QM). Therefore the
false positives rate has to be reduced to such an extent that the resulting rear-end collision
risk is within the tolerable range, and system validation has to prove this by sufficiently
extensive field tests.

When we consider tramways, there is an additional, non-negligible risk caused by
false positives (unnecessary emergency braking), namely injury of passengers inside the
vehicle. This risk doesn’t apply to passengers in motorcars as they are supposed to have
the safety belts fastened. For tramways, by contrast, this is the most important risk arising
from false positives.

3 Stereo-Vision-Based Collision Warning/Avoidance System

For about a decade a research group in AIT has been developing stereo vision algorithms
for different application areas [7, 8], among them an obstacle detection system prototype
validated on an autonomous train [9] and an obstacle detection and route determination
system for an autonomous off-road vehicle [10]. Recently, the algorithms have been
adapted for a tramway driver assistance system [11].

The system consists of three parallel cameras mounted in a horizontal line, two of
them in a distance of a bit less than 1 m from each other, and the third one between them,
at about one third of the wide distance. The stereo vision algorithms running on a COTS
computer receives the three camera signals. It computes the track geometry and detects
obstacles within the clearance gauge of the train. Figure 2 illustrates typical results of
the stereo vision algorithm: The clearance gauge (conic shape symmetric to the track)
and smaller rectangles marking detected obstacles reaching into the clearance gauge.

Fig. 1. Collision avoidance system not detecting an inflatable car dummy (Source: ÖAMTC
(Österreichischer Automobil-, Motorrad- und Touring-Club))
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Fig. 2. Tramcar clearance gauge and detected obstacles marked with rectangles

The technical structure of the stereo-vision-based collision warning/avoidance
system is shown in Fig. 3.

Fig. 3. Technical structure of the stereo-vision-based collision warning/avoidance system

Based on the result of the obstacle detection algorithm as shown in Fig. 2, the
Computer unit evaluates whether the detected obstacles are within a hazardous distance.
This is determined in the decision module and depends on the distance to the obstacle,
which is computed by the stereo matching algorithm, and on the vehicle speed, which
is calculated based on scene flow analysis.

The system can be configured to act as a merely warning system; in this case the
warning is signalled by an acoustic (e.g. buzzer or bell) or an optical signal (warning
lamp) or both; it is the responsibility of the driver to make the right decision, i.e. to
decide whether to brake or not, and - if so - with which deceleration.

The alternative is an intervening system, where the system activates the brake via
the Brake command signal (see lower dashed arrow in Fig. 3). Tramcars usually provide
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different levels of braking force; it is a safety-relevant design decision which brake type,
i.e. which maximum deceleration is triggered by the driver assistance system.

4 Approach for Safety Demonstration

4.1 Applicable Functional Safety and Security Standards

In the area of tramcars and light rail vehicles it is - unlike in the railway domain - not
clear which functional safety standard has to be applied for E/E/PE4 systems. One of the
first suggestions we got was surprisingly the application of the machine directive [12]
and the IT security standard EN 27001 [13]. For the E/E/PE systems this would addi‐
tionally imply the harmonized standard IEC 62061 [14]. We collected informal infor‐
mation from people involved in standardization, who confirmed that the regulation is
currently not clear. Actually, there are national regulations like for instance in Germany
BOStrab [15], and German public transport operators rely primarily on this legal act.
But the trend goes towards the CENELEC railway norms [16–18], and so we decided
for them, too.

As for security aspects, we can rely on the fact that the system has no physical
or wireless connection to the outside world. Therefore cyber-attacks are unfeasible;
a perpetrator would have to get physical access to the driver assistance system. And
in this case he can cause damage or casualties more effectively by manipulating for
instance the brakes. One kind of attack is, of course, conceivable: Influencing the
system with high-power electromagnetic waves. Such an attack would, however,
probably compromise the vehicle control systems as well and cause unpredictable
effects. The stereo-vision system would most probably suffer some malfunction in
the system logic and - as a consequence - the watchdog function would set the system
into the safe state (collision avoidance system switched off and warning lamp turned
on). So a detailed security management seems dispensable.

4.2 Under Which Conditions Is the System Safety-Critical?

The minimum safety goal is that the system does not decrease safety compared to a
tramcar without this driver assistance system. When it comes to safety we have to
distinguish two basic variants of the driver assistance system:

• Warning system, and
• Intervening system

Warning System. The mere collision warning system is generally accepted as safe
because the system cannot cause any hazard; it only avoids or mitigates risks. One
issue, however, needs to be considered: The potential learning process of the driver,
i.e. his confidence in the system, may grow and reduce his attendance with the
consequence that the false negatives rate of the system plays an increasing role.

4 Electrical / Electronic / Programmable Electronic.
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Generally, a professional driver, who passes extensive trainings, should be able to
control himself. A respective instruction should be included in the learning material.

Intervening System. In a motorcar, where all passengers are supposed to have their
seat belts fastened, an unnecessary emergency braking event does not pose a major
additional risk to them5. The intervening tramway collision avoidance system, in
contrast, is potentially safety-critical because passengers may be hurt when the tramcar
suddenly brakes. Braking is, on the other hand, an absolutely normal manoeuvre. To get
a clearer picture, we have to distinguish different deceleration levels with different asso‐
ciated injury risk for passengers. The following sub-chapter gives more details.

4.3 Tramcar Brake Systems and Their Influence on Passenger Safety

The Tramcars usually provide at least three brake types, among them the emergency
brake, for which 4 levels are distinguished. Table 1 shows the deceleration limits and
the brake response times as defined in EN 13452-1 [19].

Table 1. Theoretical dynamic limits of deceleration and brake response time

Service brake Emergency

brake 1

Emergency

brake 2

Emergency

brake 3

Emergency

brake 4

Safety

brake

Minimum deceleration ae

in m/s2

variable 0.. 1.2 1.2 1.2 2.8 2.8 1

Maximum response time te in s 1.5 1.5 2 0.85 0.85 2

This standard gives furthermore details on who may activate which type and level
of brake and in which way.

• The service brake is the one which the driver applies usually in normal tramway line
operation. The associated brake deceleration and jerk are considered safe. So if our
system activates the service brake only it can still be considered safe.

• All emergency brake levels are considered safety-critical, but the benefit from
avoiding or mitigating accidents is considered higher than the injury risk of
passengers.
– Level 1 is related to the dead man’s handle,
– level 2 is activated when a passenger pulls the red handle in the tramcar,
– level 3 can be activated by the driver in a special position of the brake lever, and
– level 4 is reserved for special purposes.

• The safety brake is activated when the driver pushes the emergency button

5
The Automotive domain accepts quite high deceleration values for automatic braking. The
standard for Adaptive Cruise Control (ACC) systems [20], for instance, proposes a deceleration
limit of 3.5 ms−2 and a limit of 2.5 ms−3 for the jerk.
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As one can see, the selection of a brake type for use in an intervening collision
avoidance system is safety-relevant. Basically, the system is planned such that the driver
can intervene also into the automatic brake activation through the assistance system, i.e.
he can also reduce the imposed brake force and is then responsible for the effect.

In order to reduce risk, we furthermore considered different ways of automated brake
activations:

• Activate only the service brake but so early that a standstill is possible with the service
brake only.

• Activate the service brake early and, if the driver doesn’t react, activate in addition
emergency brake level 3.

• Another approach would be warning the driver early via the dead man circuitry. In
case he shows no quick reaction the dead man function integrated in the vehicle
activates emergency brake level 1.

The way of intervening, and if an automatic brake activation is desired at all, is
moreover influenced by the requirements of individual public transport providers. It can
be expected that first versions of the system are deployed as warning-only systems
followed by moderately intervening systems.

4.4 Operation on a COTS Hardware with Safety Requirements

As mentioned earlier, the software is intended to run on a COTS computer for economic
reasons. It is evident that the failure rate of such a hardware, which lies typically in the
magnitude of 10−4 h−1 is not adequate for a safety-relevant system. The problem is no
so much that hardware faults could result in additional unnecessary braking actions -
these happen anyway, but rather that the system could stop working without the driver
being informed about that. As a consequence, we planned to use an independent fail-
safe watchdog, which sets the system into a safe state in case a fault is detected. This
applies to hardware faults of the processor and the peripherals causing the system to
stop working as well as to permanent failures of the software running on it like endless
loops or deadlocks. The safe state is switching off the driver assistance system and
signalling the failure to the driver with an acoustic or optic signal (or both).

For the intervening system, another safety requirement must be realized: The
connection to the vehicle brake systems, whichever is used, must be constructed such
that the system can never, not even in a faulty state, reduce or inhibit the driver’s control
over the brakes.

As for the cameras, we exploit the fact that the stereo vision matching algorithm runs
twice, once for the camera pair with narrowest distance and in parallel for the pair with
the widest distance. The fact that there is a dependence between the two image
processing results allows for a mutual failure detection of the software algorithms as
well as of the cameras including cabling.

4.5 Safety Argumentation for a Software with Inherent False Positives

The aforementioned CENELEC standards mandate that the software be developed
according to EN 50128 [17]. The stereo-vision software, however, is the result of a long
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development process throughout years, integrating experience from different domains
gained by trial and error. A continuously standard-conformant re-development of the
software would be economically unfeasible.

Yet another point has to be mentioned: The CENELEC standards are intended for
safety-relevant control systems in infrastructure-based railway signalling systems and on
the rolling stock. They are reasonably not directly applicable to highly-complex stereo-
vision-based assistance systems like ours. So our approach to demonstrate software safety
is not primarily process-based, as EN 50128 prescribes, but our safety argumentation relies
on logical considerations and an adequate safety validation by field tests.

The applicable approach in this case is to consider the image processing software as
pre-validated and use the proven-in-use argument in conformance with EN 50128. This
is in particular adequate to the problem as the remaining false positives rate is not mainly
a result from flaws in the algorithm but from the inherently incomplete model of how
an obstacle representing a hazard is defined.

4.6 Safety Validation

The proven-in-use argument implies that we have to conduct sufficient field tests with
the software in the concrete target environment and system context. Apart from the
functional validation of the system, field tests are also necessary to prove that the safety
goal as stated earlier is met. We have to get confidence that the collision warning or
avoidance system doesn’t endanger safety. For this purpose we collect video data during
field tests. This allows us to “play” with that data, and when we detect that a certain
situation may result in a false positive, we can improve the algorithm. Furthermore the
same collected data can then be used for the regression test.

Actually much of the video data is not very relevant because there are no people or
vehicles around and the tram is running undisturbed straight forward. We can therefore
concentrate the stored data focusing on interesting situations where the stereo algorithm
can “see” something potentially relevant. Interesting situations are around the moments
where our system detects something and when the driver brakes. This increases effi‐
ciency by reducing data volume as well as testing time.

5 Conclusions and Further Work

In the previous chapters we have drafted an approach for the demonstration of safety
for the special case of a tramway collision avoidance system. The work is still ongoing
(June 2015) and we hope to finalize it within the coming months. We are working in an
area where previous experience or proven approaches are not yet available, in particular
because the conditions for a tramcar with respect to safety differ from those applicable
to a motorcar. Economic margins are much smaller due to the low number of tramcars.
Neither can we simply use approaches taken in the automotive industry nor is our
approach simply transferable to that domain.

Future work will bring more field experience and further improvement of the algo‐
rithms. We expect to determine a sound value for the - positive - safety improvement
and look forward to publishing results.
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With respect to test scenarios, we can try to get ideas from the automotive sector.
ISO 15622:2010 [20], for example, provides guidance for test procedures for Adaptive
Cruise Control (ACC) systems, which can be partly adapted to our problem domain.

We have yet another option for future research: A group in AIT is developing a
method called VITRO [21, 22] for artificially generating test images, which can be used
to produce scenario-based test data with defined scenario or situation coverage. This
allows testing all conceivable situations with potential collision objects of different kind
under various light conditions or track geometries.
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Abstract. Motivated by the emergent research on mixed techniques of analysis
and testing, we focus our attention on producing analysis results that can effi-
ciently reduce the effort in testing a modern metro system. In particular, we
promote contract-based design to formalize requirements and support different
kind of analyses on hazards, coverage and signal independency. This work is
carried out on the following three different levels: at the application level, the
system under development is specified and modeled by the experts of the rail-
way industrial domain; at the methodology level, the contract-based paradigm
was adopted to join the application requirements with a rigorous formal view
necessary for enabling an automated verification process; at the machinery level,
the utilization of the FSV tool suite for aiding the design represents a twofold
gain for its developers since, first, it provides a new occasion to validate and
improve their technology for automatic analyses and, second, it lets them to
identify the analysis technique of the equivalent model checking, to match the
industrial need in reducing the effort of testing.

Keywords: Contract-based design � Requirement engineering � Technologies
for formal methods � Embedded systems

1 Introduction

To cope with the complexity and the evolution of embedded system design a formally
strong and innovative methodology is paramount. With Contract-based Analysis and
Testing (CBA&T) we aim to find a solution to verify and validate the system under
development in the early phases of the design flow. The final goal is to minimize the
effort of testing along with identifying the parts of the system where testing is necessary
but it can be mitigated if applied in combination with a formal verification technique.
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This semi-formal verification approach is based on two necessary methodology
ingredients: a correct unambiguous requirements formalization, that permits an univ-
ocal interpretation of the specifications, and a careful system partitioning, that allows a
consistent definition of the interfaces through different layers of abstraction from the
early conceptual view till the final implementation view. The contract theory [1] pre-
cisely hits the above two items.

In this work we describe and complete the application of Contract-based Design to
the specifications of the ASTS CBTC system [2] performed as part of the MBAT
European Project [3]. MBAT aims at exploiting synergies between formal analyses and
testing for the verification and validation of complex embedded systems. We analyze a
part of the on-board sub-system of the ASTS CBTC, which commands the passengers’
doors of a metro train. Keeping in mind the goal of minimizing the expensive effort of
the latest design steps, we model the system following a component-based approach
and elaborate its requirements by formalizing them as contracts. Then, we identify the
set of analyses to perform and the techniques to adopt for formally verifying the
contracts against the model. We develop and use the ALES tool suite Formal Specs
Verifier (FSV) [4, 5] to model the contracts and making the analyses. The main
contributions of the paper can be summarized as follows (1) a ASTS workflow was
identified for combining analysis and testing in order to leverage formal verification to
reduce the effort of the testing phase (2) the contract-based theory was adopted to
formalize the requirements and the FSV-BCL toolbox was further developed for
modeling contracts as composition of graphical blocks (3) a formal analysis was
derived to be executed using FSV-Formal Verification tool and (4) the results provided
by FSV on the CBTC modeled system were collected to show the applicability of the
workflow and the analyses.

This paper is organized as follows: Sect. 2 resumes related works on
Contract-based design principles. Section 3 presents the railway use case and the
functional models under analysis. In Sect. 4 the technology developed is briefly
described. Section 5 is dedicated to the detail of how this technology is used for
modeling the requirements as contracts, performing analyses and interpreting the
collected results. Finally, Sect. 6 summarizes and comments the produced work.

2 Related Work

SPEEDS [6] and SPRINT [7] European projects defined theory, methodology and tools
to support Contract-based Design (CBD). CBD methodology was proposed in [8] and
[9] to facilitate the development of the work among different design groups. The
definition of contract [1] relies on the concept of system/component interface in a
component-based model. A system/component is a hierarchical entity that represents a
unit of design and components are interconnected and communicate through ports
carrying discrete or event values. The interface of a system/component is defined by its
ports. Moreover, implementations and requirements can be attached to components.
Requirements are expressed as contracts. Finally, a contract formalizes expectations
between the system/component and its environment. In this context, the models are
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“rich” - not only profiles, types, or taxonomy of data, but also models describing the
functions, performances of various kinds (time and energy), and safety [2].

Formally, a contract C is represented as a pair of assertions (A, G), where A
corresponds to the assumption, and G to the promise. The promise is an assertion on the
behaviors of the system/component under the associated assumption on the behaviors of
its environment. This Assume/Guarantee reasoning is used as verification mean for the
design of the embedded systems. The contract (A, G) is satisfied by an implementation
of the system M if during its operation the promise G under assumption A is not
violated. Of course, a component’s contract can be trivial, i.e. the universal assertion for
the assumption and the empty assertion for the promise. The following three relations on
contracts for checking consistency of the specifications throughout the design flow can
be distinguished: compatibility ensures that when composing different contracts the
resulting contract admits an implementation; dominance expresses substitutability for
contracts: if a contract dominates another one, it can safely substitute it; and satisfaction
allows checking whether a given implementation complies with a given contract.
Compatibility, satisfaction and dominance together ensure a safe integration process of
the component, effectively reducing test and validation efforts and improving the quality
of the integrated system. The formal definitions of these contract relations are provided
in [8–10]. The impact of the contract theory in the traditional system engineering “V”
diagram is visually depicted in Fig. 1. In Contract-based Analysis only the left side of
the diagram is considered. At the beginning, the team of the system developers and the
team of the requirements engineers process the same informal document of requirements
written in natural language to derive a common system interface. Then, the developers
produce the design document of the system specifications; meanwhile the requirements
engineers formalize the system functional requirements as contracts and check if there
are some incompatibilities among them. During the system decomposition phase, the

Fig. 1. Contract-Based Design flow in traditional “V” diagram.
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developers decompose the system identifying its first-level components and the relations
among them through the definition of their interfaces. The second team takes the
resulting system architecture as input for the modeling of the component-level contracts.
The contracts are then allocated to the related components. At this level, in addition to
the analysis of the compatibility relation, the dominance relation is checked with the aim
of respecting the contracts defined at the above level of abstraction. In the component
implementation phase, the developer team enriches the structural view of the system by
specifying for each component the internal structure in terms of its atomic behavior or
the interconnection of further sub-components. In the second case, the requirements
team will produce the related contracts and the process will cycle until all the leaves of
the system tree will be modeled. Finally, the satisfaction relation can be verified by
processing the modeled system against its contracts.

3 Rapid Transit Metro System Use Case

The model provided by ASTS derives from Communication-Based Train Control
(CBTC) technology, CBTC ensures that the trains stop at the right position at the
stations, open and close the doors, leave the stations, keep the correct speed and the
secure distance between the trains, and so on, by means of subsystems integrated in the
trains, on the tracks, on the stations and in the control room, which have the capability
to exchange real-time data in continuous way. The main system architecture is shown
in Fig. 2.

The correct integration of these different sub-systems and the consequent proper
operation of the final system in compliance with the given requirements, involves deep
and extensive activities of verification & validation [11–14].

Fig. 2. CBTC overview – architecture.
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In this work we focus on a sub-function, called Determine Doors Opening Side, of
the system under development. The role of this combinatorial function is to determine
on which side of the train its doors should open and on which side of the platform its
screen doors should open, when a train is stopped at a platform. This safety check
ensures that the driver does not select the wrong opening side of the doors.

Following the design methodology described in Sect. 2, this function was modeled
in the MATLAB Simulink/Stateflow environment [15]. Figure 3 shows the top view of
the model, constituted of seven inputs and nine outputs. For proprietary reasons the
content of the model is not described. However since contracts rely on the component
interface definition, the identification of the I/O ports is enough to describe the
Contract-based analysis performed in Sect. 5.

4 Formal Specs Verifier (FSV)

ALES laboratory has recently started up the development of the Formal Specs Verifier
(FSV) tool-suite [4] to meet the emerging industrial request of having an instrument
that applies the methodology described in Sect. 2 for the verification of embedded
systems. FSV is thought to be a dynamic platform for analysis and testing. Concretely,

Fig. 3. Simulink model of the determine doors opening side model.
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once the model is available in the FSV format, FSV offers the possibility to the user of
applying traditional formal verification techniques on his/her system, such as model
checking, and, at the same time, it encourages the ALES developers to think about,
combine, and define new methods for efficiently achieving specific design needs. The
present version of FSV supports a rich subset of the language constructs provided by
MATLAB Simulink and Stateflow [15] with the aim of automatically processing the
schematics modeled with this professional design software. This process translates the
Simulink schematics in an equivalent internal model representation that is used to feed
the following developed backend tools: FSV-Automatic Test Generation [5] and
FSV-Formal Verification. In particular, FSV-Formal Verification takes as inputs the
model of the system under development and a description of the requirements speci-
fication, i.e. the expected behavior. The requirements are formalized as contracts by
modelling the assumptions and the promises using a user friendly graphical language
called Block-based Contract Language (BCL). For this purpose, FSV provides the
FSV-BCL toolbox that is a Simulink implementation of BCL. Once the designer has
selected the contract to be verified, FSV-Formal Verification automatically checks if
this contract is not violated. When the implemented component behaves correctly with
respect to a contract specification we say that the component satisfies that contract.
Checking satisfaction, therefore, amounts to making sure that a component will provide
the stated promises when used in a context that does not violate the assumptions. If the
contract is violated the tool provides an executable counter-example, technically named
harness model, composed by the original system model connect to a tool-generated
input trace. The trace exercises the model provoking the undesired behavior. Being
confident that the requirement was correctly specified and formalized then we can
conclude that the model is flawed and needs to be corrected. On the contrary, if the
check performed by FSV gives a positive answer then the model can be considered
correct and used in the next design steps.

5 Requirements, Formalization and Analysis

In this section we use the technology of Sect. 4 to perform the Contract-based Analysis
(CBA) on the modeled functions of Sect. 3.

5.1 Formalization of the ASTS Requirements

The first block of requirements, related to the first function under investigation, is
specified in natural language and belongs to the independency category (Table 1). In
applying the contract formalization, the first step consists in finding out the signals
included in each requirement; signal labels are included in brackets after the relevant
text object. For clarity and brevity in description, in the next we illustrate the work
done only on the RI01requirement. Table 2 details RI01 translated in the contract
formalization: the assumption is done on the input signals to check the set of admissible
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values, while the promise is done on the output signals to verify that the model respects
the stated requirement. Thanks to the capability offered by our developed tool
FSV-BCL, we are able to replace the effort of writing for all the analyzed requirements
the formal notation of Table 2, necessary for machine processing, with a user-friendly
graphical composition of pattern blocks. FSV takes care of the automatic translation
from the user graphical notation to the machine notation. Figure 4 shows the top view
of the model of Contract CI01. The green inputs to the assumption block are linked to
some of the input signals of the model from Fig. 3; the red inputs to the promise block
are linked to some outputs of the same model; the logic inside the assumption and
promise blocks was modeled using the FSV-BCL library; the “A” and “P” blocks are
used to set the expected logic value. In this particular case there are two different
tonalities of green and red because some inputs and outputs signals are duplicated since
they come from two equal models of the same system. This is justified by the adopted
analysis technique to verify independency among some I/O signals. This technique is
described in the next section.

Table 1. Independency.

Req. ID Natural Language Description

RI01 the output signals: the first platform side to be opened (psd_1st_side) and the
second platform side to be opened (psd_2nd_side) are independent from the
input signals: train’s polarity (TP_train_polarity), the driver has commanded
the doors on the right side of the train to open (driver_door_open_rqst_right),
the driver has commanded the doors on the left side of the train to open (driver_
door_open_rqst_left), the driver has commanded the doors on the right side of
the train to close (driver_door_close_rqst_right), the driver has commanded the
doors on the left side of the train to close (driver_door_close_rqst_left).

RI02 the two operations of the first train side to be opened (td_1st_side) and the second
train side to be opened (td_2nd_side) are independent from the following facts:
platform is in the line direction (platform_tp_line_direction); the driver has
commanded the doors on the right side of the train to open (driver_door_
open_rqst_right), the driver has commanded the doors on the left side of the
train to open (driver_door_open_rqst_left), the driver has commanded the doors
on the right side of the train to close (driver_door_close_rqst_right), the driver
has commanded the doors on the left side of the train to close (driver_door_
close_rqst_left).

RI03 the four operations of the manual door open right selection (manual_door_open
_right_selection_error), the manual door open left selection (manual_door_
open_left_selection_error), the manual door close right selection (manual_door_
close_right_selection_error), the manual door close left selection (manual_door_
close_left_selection_error) are independent from the following fact: platform is
in the line direction (platform_tp_line_direction).
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Table 2. Independency contract CI01.

Contract ID Formal Language Description

CI01 ASSI01 TP_train_polarity in {“positive”,”negative”,“unspecified”} &&
current_platform_side in { “left”,”right”, ”left_then_right”, “right_
then_left”,”none”} && platform_tp_line_direction in {“TRUE”,
“FALSE”} && driver_door_open_rqst_right in {“TRUE”, “FALSE”}
&& driver_door_open_rqst_left in {“TRUE”, “FALSE”} &&
driver_door_close_rqst_right in {“TRUE”, “FALSE”} &&
driver_door_close_rqst_left in {“TRUE”, “FALSE”}.

PRMI01 psd_1st_side(TP_train_polarity, driver_door_open_rqst_right,
driver_door_open_rqst_left, driver_door_close_rqst_right,
driver_door_close_rqst_left) = psd_1st_side &&

psd_2nd_side(TP_train_polarity, driver_door_open_rqst_right,
driver_door_open_rqst_left, driver_door_close_rqst_right,
driver_door_close_rqst_left) = psd_2nd_side

Fig. 4. Independency Contract (CI01).
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5.2 Reduction Rules Analysis

Reduction Rules Analysis on the requirements of the independency category completes
the analyses already started in [2], where safety and reachability categories were
considered. In this analysis we want to prove independency of some system outputs
from some inputs such that the effort spent during the dynamic testing phase can be
reduced once we state that the required rules are verified [16]. In Fig. 5 the concept of
reduction rule is sketched. With the intention of testing requirements Req2 and Req3 in
Fig. 5, we have to consider all the possible combinations of the inputs (i3, i4 and i5)
involved into these requirements both with all the possible values for the other inputs
(up to i7) which contribute to the definition of the output o1. On the contrary, as far as
concerns the other inputs (i8, i9, etc.) generating the outputs o2 and o3, if the system
has been correctly designed, their behavior will not impact on the generation of the
output o1.

This consideration allows a priori of discarding specific input combinations by
fixing some input values during the generation and execution of tests, saving hence
time and costs. The point is that the hypothesis of input/output independence has to be
verified to ensure the correctness of the reduction of the number of tests. To achieve
this result we adopt the equivalent model checking technique, consisting in the fol-
lowing steps: first, duplication of the part of the model under analysis with its relative
inputs, second, restriction to a fix value for each input of the cloned part which is
supposed not to affect the output under test (e.g.: i8, in Fig. 5), third, construction of the

Fig. 5. Reduction Rules: explanatory diagram.
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contracts that state the equivalence between the outputs of the two models, using
FSV-BCL, as the contract reported in Fig. 4. In synthesis, each reduction rule is
modeled as a contract and the resulting input model for FSV-Formal Verification is
represented in Fig. 6. FSV is able to process all the contracts in one shot in order to
formally check their satisfaction and consequently verify the effectiveness of the
reduction rules.

6 Conclusion and Future Work

In this work, we made use of the contract-based design methodology for analyzing a
specific part of the ASTS CBTC system for the door control of a train arriving at the
metro stop. The methodology was successfully stressed both in the project management
and in the design development. At project level, the team who developed the system
model was different from the one who formalized and modeled the requirements. Both
teams worked independently under some agreed assumptions and promises.

Fig. 6. FSV-Formal Verification: enriched model for the analyses of the reduction rules.
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At design level, we formalized the related requirements as contracts for accom-
plishing reduction rule analysis using FSV, a tool suite that ALES is presently
developing for the verification of the embedded systems. FSV aided us to automatically
verify the contract satisfaction against the modeled system through the equivalent
model checking technique. In the future, we will continue to work on the formal
analysis of large systems and, in particular, to tackle the well-known state explosion
problem that limits the use of the model checking technique by compensating it with
the adoption and the refinement of our methodology.
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Abstract. It is a known fact that development of models on the design
stage of a product, constitutes a highly important stage proving early
evidence of error absence for the proposed artifact. Meanwhile, advances
in the embedded systems domain push for rapid architecture product
changes based on current state-of-the-art solutions. Multicore systems
have exhibit enormous benefits due to parallelization of task execu-
tion, increasing availability of resources in multiple domains such as the
automotive and telecommunication. Such a premise creates the need to
invest into new verification methodologies that will re-assure the safe
and efficient transition of new solutions like multicores, especially in
the demanding aerospace world. In this paper we describe current chal-
lenges and trends on the development of safe and efficient methods for
power controllers’ verification in multicore-based hardware platforms,
such as motor-drive applications. We outline current industrial practices
and describe common toolsets, workflows and techniques used in the
aerospace domain. Then our discussion focus on formal verification tech-
niques that could provide efficient solutions for verifying power control
algorithms in aerospace applications. We conclude with remarks about an
ongoing verification effort for power control of a multicore-based motor
drive towards producing certification evidence.

Keywords: Aerospace · Motor-drives · Multicore · Power control ·
Safety · Verification

1 Introduction

In the most challenging domain of aerospace applications where certification
proof is needed from system till component level, model based design and formal
verification techniques is considered a necessity in the product’s lifecycle. The
development of new methodologies for automating verification and accelerating
certification is currently an important agenda being pursued by major aerospace
companies operating in highly regulated environments [1]. Whether it is a single
avionics sub-system or an integrated aerospace platform, the related embedded
firmware and hardware plays a critical role in safety and performance, increasing
the importance of attaining evidence that the system will behave as desired
throughout its operational profile.
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An emerging approach that could help achieve this goal is model-based certi-
fication, where system designer is supported by automated tool assisted model-
based verification approaches that span through the complete system lifecy-
cle from development till operation. Formal verification, hybrid system analysis
and testing are all likely to form part of this approach. In the specific stages
where formal verification constitutes a finite-time operation it may successfully
complement the model based techniques for interim verification of the product.
Meanwhile the rising trend of multicore architectures into ’everywhere’ com-
puting industry is already a reality. General-purpose multicore processors are
being accepted in all segments of industry as the need for more performance and
general-purpose programmability has grown.

But is the aerospace domain ready to adapt multicore devices ? Aerospace
regulations such as the ARP4754A [23] and DO-178B [4] urge aerospace indus-
tries to certify their products to a certain acceptable degree of assurance. In
the multicore case, controlling access to the shared resources like memory and
proving that no conflict will occur when the device has to execute a critical oper-
ation, is the major challenge. Currently, model-based design tools and techniques
primarily allow control engineers to design their control strategy in mature sim-
ulation environments, such as in Simulink. In a later stage, control artifact is
coded either using tool-aided single-core code generation (e.g. through Math-
Works Embedded coder or HDL Coder) or by manual coding activities, leaving
open questions of producing certifiable, conflict-free native code for multicore
systems.

This paper aims to describe design and verification advances towards the
establishment on model-based certification (MBC) principles, in order to sup-
port compositional “design-for-certification” methods of safety-critical aerospace
systems. As multicore solutions become an attractive power-efficient solution,
we focus on evaluating their usage into future aerospace applications provided
that all regulations should be respected. Thus, it is of paramount importance
that validated frameworks and workflows will be in place and tested for their
applicability, in verifying conflict-free parallel execution of motor-drive opera-
tions. Additional modelling techniques to overcome the foreseen model complex-
ity challenge in multicore artifacts should also be inspected. Those can include
new (i) model transformation mechanisms for model integration within the certi-
fication framework, (ii) combination of random simulation and statistical model
checking, (iii) partitioning and smart model-slicing for compositional verification,
(iv) reusability of verified models and (v) model-based pattern identification in
order to reduce and prune the resulted state space and so on.

Rest of the paper is organized as follows: in Sect. 2 we define the problem
area of multicore certification concerning the aerospace domain. Later on, in
Sect. 3 we present the state of the practice related to model-based design tech-
niques and tools and describe modelling solutions being used when developing
critical systems. As a use-case, in Sect. 4 we focus on a power control strat-
egy for a multicore-based motor drive, depicting basic power control operations.
Verification framework of the motor-drive power control is presented describing
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anticipated results and challenges that we face. Finally we conclude this paper
with remarks and ongoing research activities.

2 Problem Definition and Challenges

The increasing concern of society on CO2 emission and the air traffic market
expectations, with a grow at 5 % per year until 2020, has made the aerospace
industry to look for alternative technologies to decrease energy consumption
while reducing design, operation and maintenance costs [16]. One of the alter-
natives proposed for achieving this target is based on the increase of electrical
power in the mix of power generation, distribution and consumption in the air-
craft. But the latter require also an evolution in the computational power even
at the component level of aerospace devices, boosting additional prognostic and
processing services. Aerospace research and development efforts face great chal-
lenges to enter new markets, as qualification and certification requires exuberant
effort [2], both in time and cost. System verification and certification are the main
problems to be solved [10] especially when the system has to comply with a vari-
ety of FAA and avionics regulations [3,7,12–14]. In addition to that, current
certification practices do not support reusability of existing designs, implemen-
tations, and already certified components. On the other hand, the ever increas-
ing list of regulations including international standards such as DO-178C and
ARP-4754 for aerospace recommended practices, force additional delays to the
development cycles of aerospace products. Current challenges towards multicore
certification can be summarized as follows:

– Research challenges in the area of multicore model based certification and
verification techniques include complexity of the system under-certification,
scalability of the verification process or accuracy of the derived results when
using hybrid verification techniques

– Aerospace systems and components will always require software certification
following the guidelines of DO-178B/C in order to manage Safety Integrity
Levels (SILs) activities and objectives during the implementation

– Process models in current aerospace development cycles follows a traditional
development V cycle that progress linearly from requirements through design
and code to integration and final testing, forced to be completed in a top-down
approach

– Verification processes mainly focus on test coverage of functional require-
ments, and traceability enablers following each high-level software requirement
to it(s) low level requirements. For the multicore case, low-level requirements
verification challenges have to be mapped into device safety requirements in
a bottom-up manner

– From current state of the practice toolsets, their is no or minimum support
for automated generation of certifiable multicore code

It should be also noted that product development cycles in safety critical
domains involve a large number of diversified engineers working into different
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components of the same device. To this end, when considering the develop-
ment, integration -and later on- testing of the developed prototype, embedded
systems engineers, control engineers, systems architects and firmware/software
developers need to jointly assess their own requirements towards high level sys-
tem requirements. Thus, when incorporating a new multicore architecture to be
the basis of a product, overall verification and certification of the new artifact
will have to overcome time-consuming requirements traceability and validation
processes. We argue that an automated traceability framework allowing tool
integration and model intra-collaboration should be in place, in order to enable
traceability of requirements among the different engineers and along the lifecycle.

3 Model Based Design for Aerospace Verification

Formal methods and model-based certification have matured considerably in
the last decade attracting in this way a great interest from aerospace companies.
Regulation standard DO-178B [4] has treated the use of automated formal ver-
ification as a supplement for the certification of software products. Its successor
though, DO-178C, specify detail guidelines on how these techniques can enhance
and improve testing while minimizing the overall cost. Recent experiences from
previous studies [1,8] adopted by major aerospace companies have shown that
the application of model-based certification and formal verification can be a prac-
tical and cost-effective solution against the certification requirements. Developing
new methodologies that will combine and in some cases replace testing processes
throughout the development cycle of the product, is certain to become a research
area that will help to advance further current certification practices. As it has
been mentioned earlier model-based certification, analysis, validation and veri-
fication tools and techniques for the aerospace domain, have to take into con-
sideration the regulations and guidelines. Moreover, those enablers/tools should
take into account the end-user applications aimed to be serviced at the end
by the device. It is obvious thus, in the multicore case, that single core per-
formance characteristics needs not only to be respected, but also, considerably
outperformed by the new platform.

For example, considering a highly integrated motor drive actuator, require-
ments are derived from different groups of specifications, both having a same
criticality factor. As shown in Fig. 1, a prototypical certification framework has
to be directly combined with requirements traceability at all product develop-
ment stages. Requirements elicitation and traceability functionality is consid-
ered to be of paramount importance for generating certification evidence for the
safety and robustness of the developed artifact. In general, requirements can be
gathered through:

System Requirements: High level requirements that include integration and
communication constraints of the system components

Component Requirements: Device specific requirements and constraints for
performance and safety of the device
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Fig. 1. Certification framework enabling traceability of requirements

Regulation Requirements: Requirements obtained by DO-178C and ARP-
4754A for an embedded device that wish to be certified for safe and secure
usage in the aerospace domain

In the the case of verifying a power controller of a motor drive actuator, different
tools and techniques can be used to categorize and decompose the requirements,
specifying domain-driven characteristics where is possible. Domain-specific
modelling approaches can utilize mature and standard tools for requirements
capturing such as Unified Requirements Modelling Language (UML), Systems
Modelling Language (SysML), Embedded Systems Modelling Language (ESML),
Systems Description Language (SDL), Architecture Analysis and Design Lan-
guage (AADL) and Architecture Description Language (EAST-ADL) that offers
an integrated approach based on UML/SysML- and so on [5,6,9]. Selected
model-based approaches should also include co-simulation options for compo-
nent interaction, resource allocation, hardware configuration, scheduling policies
and other aspects that will be relevant for the system designer, the control and
the software engineer.

Upon selection of system modelling tools, the core control modules of the motor
drive needs to be designed and implemented. The current trend in the motor-drive
domain is model development of power control modules using some of the most
popular model-based suites (e.g. MathWorks Simulink). Using model-based tools
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early in the design phase of a product cycle and having a clear definition of the
architecture and requirements of the product to be developed on the previous step,
will not only reduce the cost of building separate analysis models but also, aid in
the consistency of the models with the software or hardware realization. At this
point, formal verification tools [15] will immediately applied in order to provide
automatic proofs of correct, exhaustive verification or counterexamples in case an
error has been detected. The latter incident can prove fundamental in such analy-
sis, as the designer will be able to refine and improve his model in order to overcome
the error detected by verification where analytical analysis and testing could not
reveal it. Moreover, early detected errors and producing exhaustive verification
results will be the major advantage introducing the cost of certification.

4 Verification of Motor-Drive Power Control Applications

In order to achieve verification of the multicore-based motor-drive power control,
formal verification techniques and tools has to be reviewed, down-selected and
applied. We aim to use SPIN model checker [15] as the primary verification tool.
Furthermore, integration of model-based design and verification toolsets should
enable also multilayered analysis and verification process on the design phase
of the product that, according to the complexity of the system, the designer
will have the flexibility to switch to different analysis techniques favorably to
accuracy and time-finite analysis completion [11].

4.1 Motor-Drive Power Control

In the aerospace domain, current trend for motor-drive power control evolu-
tions is governed by the More Electric Aircraft (MEA) initiative [16–18]. MEA
main objective is to progressively substituting the hydraulic, pneumatic and
mechanical power by electrical power. In the MEA scenario, the hydraulic actu-
ators are replaced by electro-mechanical ones. An electro-mechanical actuator is
based on an electrical motor attached to the mechanical surface to be displaced
(e.g. a flap). In order to achieve the required actuation action, the electrical
motor interfaces the electrical power distribution network with a power elec-
tronics device. The power electronics device can be controlled by an embedded
controller, which hosts the control algorithms and the operation logic providing
the correct operation and safety according to mission profiles [19]. Figure 2 shows
the basic architecture of the electro-mechanical actuator, where the embedded
controller represents the multi-core platform presented in this paper. The con-
troller receives the sensing stage output, processes the data, and generates a
control action that allows the power electronics stage to process the energy at
the input to feed the electrical motor.

The typical control architecture of the motor drive is shown in Fig. 3, where
the PI blocks represent the proportional + integral control action, the block
to dq is the Park transformation, and the block abc to is the Clarke transfor-
mation, according to 1, 2 and 3 respectively. The block dq to is the inverse
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Fig. 2. Basic electro-mechanical actuator

Fig. 3. Simplified schematic of a field oriented control of an electrical motor

of 3. Finally, the block related to the position and speed estimation could
be implemented through different algorithms depending upon performance and
complexity requirements [20].

y(t) = Kp · x(t) + Ki

∫

x(t)dt (1)

Tdq =
[

cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

]

(2)
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The power electronics stage is composed of semiconductors devices switching
at a frequency higher than the fundamental one (i.e. depending upon the rota-
tional speed of the machine and the number of poles). In order to obtain the
switching pattern, the space vector modulation (SVM) is a well-known modula-
tion strategy [21] with a wide application to motor drives. The basic switching
pattern depends upon the required output voltage at the terminals of the con-
verters. The time that the switches stay at a certain position allows the modu-
lation strategy to achieve that target.

Based on a multicore motor-drive, we aim to validate different modulation
strategies that will be executed in conjunction with advanced prognostic and
health management services for the motor’s operational status. In more detail,
critical tasks containing power control instructions for the motor can be dedi-
cated to the FPGA, while additional data analytics and prognostic services can
be allocated to the Cortex A9 cores. Scheduling mechanisms based on real-time
information have to be in place to ensure mutual exclusion of the cores to the
shared resources, while ensuring that the FPGA registers will contain up-to-date
prognostic information originated by the cores.

4.2 Verification Approach

The majority of our efforts for addressing verification of the designed power
motor control strategies is depicted in the use-case shown in Fig. 4. Based on a
formal framework, we model the cores functionality of a multicore architecture
derived from the real platform that is composed of two A9-Cortex hard coded
units and an FPGA programmable logic component, provided by Xilinx [22]. Our
engineering approach to design and analyze complex hardware designs is based
upon decomposing the artifact into sub-designs of atomic message dispatch, each
of which has to be verified in an independent manner. Using abstraction-based
modeling techniques of control modules, we transform control strategies and
allocate tasks to cores keeping motor operation execution to the FPGA. Using
model-based design simulation results, we can extract time estimates of the task
execution, composing the effectively a scheduler mechanism to assure shared
resource access within the platform. Crucial part of the verification is based
upon the creation of abstraction models in PROMELA, the input language of
the SPIN model checker. PROMELA models will be exhaustively verified for
deadlock detection of the task scheduling mechanism; in the meantime verifica-
tion will include also time estimation of the task execution, assuring that certain
performance requirements will be met upon implementation.

Overall goal for the model-based certification and verification will be to test-
in practice the usefulness of the framework. Taking into account that a variety of
heterogeneous models will be developed from the first steps of the requirements of
the power system, analysis and verification results will be evaluated and drive the
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Fig. 4. Motor-drive multicore based use-case verification

overall process of the certification of the product, both at the component and the
system level. With respect to the aerospace regulations, automatic verification
and certification of systems compliance to a series of properties (e.g. detecting
conflicting constraints or shared process deadlocks) will be executed and at the
end documented. Results can prove the correctness of the software embedded
in the controllers of the power control device, certifying not only the product
itself but more importantly the new processes followed for the completion of the
certification.

5 Conclusions and Look Ahead

Automated verification and fast certification is currently important milestones
pursued by major aerospace companies for certifying their products. Whether it
is a single aerospace device or an integrated aerospace platform, embedded com-
ponents verification will play a critical role in safety, thus, placing an increased
importance on its confidence to behave as desired. One of the technology enablers
that will help to ensure efficient and complete testing during all the stages of
the product development is model-based certification. Aforementioned technique
will provide automated tool-assisted model-based techniques that will span in
the complete development cycle for early and accurate early detection prior to
the testing of the product. On the other hand, formal verification must be utilized
towards this end. As multicore architectures tend to expand today it is presaged
that a transfer of multicore devices will be placed in the aerospace domain [8];
such a premise will state the multicore analysis and verification a prerequisite
for its safer and verified transition. As a look ahead, ongoing research activities
will focus on evaluating and developing new abstraction modeling techniques,
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compiler re-design and certification as well as, standardization efforts of current
multicore solutions towards achieving higher TRL levels with increased assur-
ance levels.
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Abstract. Software development work flows for safety relevant software require
that each artefact is tested by at least one test case. An automatic overnight test
case execution process supplying the newest results every morning makes this
time-consuming process more efficient.

This paper describes a tool framework consisting of the BusScope, the TCBP
(Test Case Batch Processor) and WEFACT (Workflow Engine For Analysis,
Certification and Test). It manages all necessary steps: initialization of the test
objects, execution of the test cases by applying test patterns and test evaluation
to find the test verdict – Passed or Failed. It supports automation of the certification
process by managing requirements and collecting evidences for the safety case.

A demonstrator, a steering actuator of a steer-by-wire application with redun‐
dant components, implemented on a real hardware and software platform, shows
the proposed fully automated test case execution.

The demonstrator was developed in the EU-funded research project SafeCer
(Research partly funded by ARTEMIS-JU Call 2011 project no. 295373
(nSafeCer)).

Keywords: Safety · Certification · Automated certification · Flexray · Safecer ·
Robustness testing

1 Motivation

This chapter introduces the reader into the engineering domain of safety relevant
systems, the challenges to ensure safety and how scientific research can help to find
solutions for a suitable safety certification process.

1.1 Why Research in Safety Certification Is Indispensable

A central goal of mankind is to find ways to let tedious and monotonous work be done
by machines. A well-known example would be the invention of the steam engine, which
freed people from heavy labour and introduced both an industrial and a technological
revolution. Other ones followed such as electricity, and private mobility (pushed by the
combustion engine and the availability of private vehicles). In many cases every 
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technological revolution creates new types of dangers to life and limb, lot of them unex‐
pected in the first time. Necessarily new regulations and construction methods are
defined to make the new technologies safer.

To avoid any risk of injury in advance, all new technological inventions and systems
must be considered regarding harmfulness first before release to commercial usage. In
general every new technology product contains the potential to be unsafe and should be
classified as a safety relevant system. Safety relevant systems need additional precau‐
tions to prevent harm by the system itself.

A new safety relevant application which gets more and more attention is the auton‐
omous acting vehicles for future mobility. These vehicles do not need a human driver
anymore who controls the vehicle. They take reasonable decisions to prevent accidents
in case of a dangerous situation and they navigate autonomously on the road. To release
these types of vehicles, all safety relevant aspects must be analysed in advance. And the
complete product life cycle must be adapted by handling it as a high safety relevant
system.

1.2 Outline of the Paper

This paper documents a safety related research work, realized in the research project
SafeCer [1]. The goal of the project was to define a seamless and consistent work process
flow for the certification of safety relevant systems.

Section 2 gives an overview of the process for the certification of safety relevant
systems. Additionally, the researched process extensions from SafeCer are explained in
a theoretical way.

Section 3 describes a demonstrator of a test bed to perform automatic test execution,
an important process part in the safety certification process.

Section 4 shows the tool framework used in this research work. The tools of the
framework are under development by AIT and are introduced in the following list:

• BusScope: The BusScope test platform analyses the data on the FlexRay bus in the
data and time domain according a verification description. On the other hand the
BusScope test platform simulates on the same FlexRay bus test patterns to observe
the reaction of the test object by analysis.

• TCBP: The BusScope test platform is controlled by the TCBP (Test Case Batch
Processor) which coordinates the complete test case execution process flow.

• WEFACT: WEFACT (Workflow Engine For Analysis, Certification and Test)
controls the processing of the test, e.g. it provides the test case input files for each
test case and collects the evidence for the safety case.

Section 5 describes the test cases examples of the BOLDI demonstrator including
the test case definition and the test case results.

Section 6 provides the conclusions and gives an outlook for future work for the
BOLDI demonstrator.
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2 The Safety Certification Process

Companies involved in the design of safety relevant systems must meet safety process
requirements which are defined in the functional safety standards (e.g. IEC 61508 in a
general form and ISO 26262 for the automotive domain) and must align their business
processes according to the mandatory given regulations.

Figure 1 shows the activity pattern for the development flow of safety relevant
systems. As we can recognize there are some activities (the green ones) that are included
in any development process for safety relevant systems while some other activities (the
blue ones) are specifically added to describe SafeCer specific activities [1].

• Contract Definition: Each artefact (component, design, function and feature) is
supplied with a contract which describes the necessary actions and precautions to
guarantee a given safety level. The contract is part of the artefact description.

• Certificate Preparation: The precautions (both by hardware and by software) and
the actions (both for implementation and for tests) must be prepared for the full life
cycle of the artefact according to the contract.

• Argumentation: By documentation and/or with test methods the actions and precau‐
tions defined in the contract must be augmented for a successfully safety certification
of the desired artefact.

Fig. 1. Development flow activity pattern

3 The BOLDI Demonstrator

The activity patterns, which are covered by the yellow box in Fig. 1, are demonstrated
by the test bed demonstrator. In SafeCer it is named BOLDI (Bus OnLine DIagnosis)
demonstrator [3]. The BOLDI demonstrator supports efficient robustness testing [4] of
FlexRay bus systems. It shows a system validation process for an electronic controlled
steering actuator, used for steer-by-wire applications. The goal of the demonstrator is
to show a tool framework to perform test case deduction from the requirements, the test
preparation, the test processing and finally the test result evaluation to find a validation
verdict as an input for a safety case.
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Let us reduce the activity pattern configuration from Fig. 1 to the simpler, one line
process model description as shown in Fig. 2.

Fig. 2. SafeCer process model activity pattern

The BOLDI demonstrator focuses on the confirmation of the challenge number one
defined in SafeCer: reduction of the cost of qualification, certification and verification -
by a high automated validation process at the test bed. The challenge joins the following
two SafeCer objectives:

• Reduce the cost of system design.
• Shorten the lead-time for re-validation and re-certification.

Figure 3 shows the instantiation of the SafeCer process model activity pattern for
the BOLDI demonstrator and the associated tools of the tool framework. The design
activity denotes the electronic steering actuator from the BOLDI demonstrator.

• Requirements definition (WEFACT)
• Contract definition (WEFACT)
• Verification (TCBP, BusScope)
• Certificate Preparation (TCBP, WEFACT)
• Argumentation (WEFACT)

Fig. 3. Instantiation of the SafeCer process model activity pattern

Figure 4 shows the setup of the BOLDI demonstrator in a carrying case. It consists
of a FlexRay cluster of four FlexRay nodes, a mechanical steering actuator, the
BusScope test equipment, a computer unit with a display and an Ethernet connection.

4 The Tool Framework

In the following sub chapters the tools of the tool framework, BusScope, the TCBP and
WEFACT are presented in detail.
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4.1 BusScope

The BusScope test platform analyses the data on the FlexRay bus in the data and time
domain according to a verification description. On the other hand the BusScope test
platform simulates on the same FlexRay bus test pattern to observe the reaction of the
test object by analysis.

In the BOLDI demonstrator the BusScope generates test pattern on the FlexRay bus
according to the definitions in the test case script files. The BusScope supports test case
types both in the data and the timing domain. Additionally, the BusScope traces all data
on the FlexRay bus to form the input for the test case verdict evaluation. The BusScope
test platform is controlled by the BusScope Control Host.

4.2 TCBP

On the BusScope Control Host the TCBP is installed and coordinates the complete test
case execution process flow in four steps, PARSE, INIT, RUN and EVAL which are
illustrated in Fig. 5 and are described in detail in Table 1.

Table 1. TCBP steps

Step Comment

PARSE Parses all configuration script files of the test case.

INIT Initializes the test object to bring the test object in a defined state.

RUN Runs the test pattern on the test object and records all relevant data for the test
report.

EVAL Explores the test report to find the test case verdict “PASSED” or “FAILED”.

Fig. 4. BOLDI demonstrator in carrying case
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These steps are controlled by a configuration script file set (“.cnf”, “.ini”, “.sim”,
“.run”, “.eva”) which is provided for each test case. The trace file (“.dat”) contains the
measured signal values of the RUN step which is evaluated in the EVAL step. The report
file (“.rep”) collects the test results and the error messages.

4.3 WEFACT

WEFACT [2] has the goal to facilitate validation, verification (V&V) and certification
of safety relevant systems in a modular (component based) manner.

Figure 6 illustrates the WEFACT framework which provides a flexible infrastructure
for defining and executing V&V processes. External resources – external processes,
tools and standards – are integrated into the WEFACT framework by well-defined
interfaces.

The safety case is the central output of WEFACT. It summarizes the information of
the V&V process and provides a basis for the certification of the Artefact Under Test
(AUT).

The validation plan (V-plan) consists of the requirements for the AUT as well as the
V&V activities which are necessary in order to satisfy those requirements. A V&V
activity is the application of a V&V method by means of an appropriate V&V tool. It is
possible to integrate various external tools such as simulation tools.

Positive results of the V&V activity are used to establish evidence for the require‐
ments, while negative results are fed back to the developer team.

The WEFACT framework is implemented in IBM Rational DOORS® and extends
the basic DOORS functionality by implementing a work flow for the V&V processes,
e.g. for V&V activity processing and safety case generation.

Fig. 5. TCBP test process steps
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TCBP Tool Server. WEFACT was adapted for the BOLDI demonstrator by providing
the V&V tool integration for TCBP. This was realized by implementing a TCBP tool
server which is based on the message queuing (MQ) technology and which supports the
automatic execution of the tool.

Once started the TCBP tool server periodically polls the input queue of the MQ
server. When a V&V activity is processed which uses the TCBP, an appropriate message
is generated and put on this queue. The TCBP tool server decodes the message and
automatically downloads the TCBP configuration script file set from the document
repository and starts the TCBP. After the TCBP has finished, the TCBP tool server
uploads the TCBP report file to the document repository, creates an overall result using
the verdict created by the TCBP, generates an appropriate message and puts in the output
queue. WEFACT polls the output queue and updates the status of the V&V activity
according to the overall result stated above.

Fig. 6. WEFACT framework

Fig. 7. Tool entry for the TCBP
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DOORS Elements. In WEFACT we define a set of DOORS elements to start the
BOLDI demonstrator.

• We define a tool entry for the TCBP where we specify the properties of the tool, see
Fig. 7.

• We define a set of requirements which shall be tested by the BOLDI demonstrator,
see Fig. 8.

Fig. 8. Requirements for the BOLDI demonstrator

• We define a V-plan which contains the V&V activities which shall verify the require‐
ments, see Fig. 9. For each test case we define one V&V activity. A V&V activity
entry contains (a) the links to the requirements for the BOLDI demonstrator, (b) the
link to the TCBP tool entry and (c) the parameters for the test case execution, e.g.
the TCBP configuration script file set.

Fig. 9. V-plan for the BOLDI demonstrator
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Test Automation. Using the elements defined above, we are now able to automate the
execution of the test cases using the WEFACT functions for processing V&V activities.

5 Test Case Examples

This chapter documents test case examples deployed in the BOLDI demonstrator. The
test cases focus on the steering actuator control mechanism and verify the specified
function both in the data and the timing domain.

5.1 Test Case Definition

In the steering actuator control application the BusScope transmits command frames on
the FlexRay bus. The frames include the target steering angle (SET) value which the
steering mechanism shall approach.

The electronic control units receive the steering angle command and drive the motors
of the steering mechanism until the SET value is reached. This is performed with a delay,
because the command must be interpreted and the motors must operate to reach the SET
value.

The following requirements describe the specified function:

Dead Time Requirements 

• When a steering command value is applied to the steering controller, the steering
actuator shall start to move with a dead time of maximal 150 ms.

• When a steering command value is applied to the steering controller, the steering
actuator shall start to move with a dead time of minimal 50 ms.

Steering Actuator Moving Speed Requirements 

• The requested steering angle shall be reached with a maximal average speed of 30
angular degrees per second.

• The requested steering angle shall be reached with a minimal average speed of 10
angular degrees per second.

Angle Deviation Requirement 

• When the set angle is reached the maximal angle deviation shall be equal or smaller
than 2 angular degrees.

Figure 10 shows the SET value and the measured steering angle (ACTUAL) value
signal waveform which fulfils the given five requirements (numbers ). The red
line is the SET value signal. The value of the signal is normalized to 100. In this case
the SET value for the steering angle was 30 angular degrees.

The blue line shows the ACTUAL value over the time. The signal starts with a dead
time of 100 ms (see requirements 1 and 2), and then the signal rises with an average
speed of 20 angular degrees per second (see requirements 3 and 4) till the requested
angle is reached with a tolerance of 1 angular degrees (see requirement 5). The same
behaviour is shown when the SET value returns to 0 angular degrees.
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In these examples the BOLDI demonstrator is commanded to apply three test cases
by moving the steering actuator mechanism for 10°, 20° and 30° steering angle.

Fig. 10. SET and ACTUAL value signal waveform

5.2 Test Case Results

The expected test results for all three tests are that the EVAL signal may never
excess the upper and lower borders (grey coloured areas). Additional the #VERDICT
string in the report file must be PASSED.

Fig. 11. Test case results for 10°, 20° and 30° steering angle
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Figure 11 shows the three test result graphics each for 10°, 20° and 30° steering angle.

6 Conclusions and Future Work

Using the implemented tool framework as described in the realm of this paper, the test
cases for FlexRay robustness testing are processed fully automated without any
manually interaction by the test engineering team. Especially for iterated test cycles the
automated test process reduces the cost of system design.

Furthermore, when the test case definition is already available in an early develop‐
ment phase, some design decisions can be proven in advance by early test runs. A design,
pre-proven in this way, reduces and assures design quality, too.

In case of a design change or design expansion needs a re-validation to ensure that
no requirement is violated by the design change. An automated test process helps to
shorten the lead-time for re-validation and re-certification.

The SafeCer challenge number one, the reduction of the cost of qualification, certif‐
ication and verification, is therefore successfully demonstrated.

A concept for the future usage of the BOLDI demonstrator could be a laboratory
equipment and demonstration unit for education and training purposes.
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Abstract. Verification and Validation (V&V) systems used in automotive engi‐
neering typically face two potentially contradicting design constraints: real-time
capability versus scalability. While there has been substantial research on deter‐
ministic timing behavior [1, 2], the software of such systems is usually designed
statically to satisfy requirements available at design time only. If those require‐
ments change due to new V&V applications, a complete redesign might be neces‐
sary. This paper suggests a design methodology and architecture as a step towards
perfectly scalable real-time systems, i.e. systems with deterministic timing
behavior and the ability to be structurally modified even at run-time, including
the ability to add, re-configure, re-connect or remove existing components
without affecting timing correctness of the remaining system. A component model
is introduced which allows to easily extract signal dependencies of software
components instantiated by the run-time system, as well as to control and manage
changes in system composition automatically. As an additional benefit, modula‐
rization allows component isolation equivalent to sand boxing of modern general-
purpose operating systems, thus improving system robustness. We conclude with
an outlook on how to extend scalability from multi-core to many-core hardware
platforms.

Keywords: Scalable software system · Real-time system · Automotive testing ·
Reconfiguration

1 Introduction

By a perfectly scalable real-time system we mean hard- and software of a time-deter‐
ministic computational system, satisfying a set of time constraints comprised of guar‐
anteed upper-bound response time, specific cycle time etc., which can be adapted to
different applications (within a defined range) easily by simple (re)configuration at run-
time, without the need for redesign or re-build. In this paper we suggest a software
architecture and runtime for such a system called COBRA (COmponent Based Runtime
Architecture), applied to the domain of automotive test systems, typically comprised of
a plurality of real-time I/O, control, simulation and automation tasks. We assume suffi‐
cient hardware support by hardware parallelization, which is available in current multi-
core solutions, and concentrate on industrial PC platforms powered by e.g. INTEL Xeon
series CPU’s.
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The following sections are structured as follows: Sect. 2 summarizes our vision of
a future automotive testing system and some of its consequences, followed by a short
overview on current technologies to achieve configurability and scalability for
embedded real-time systems in Sect. 3. In Sect. 4 we outline a proposed architecture.
Section 10 focusses on communication network aspects, followed by first results of
applying a prototypical implementation to a typical automotive test application
(Sect. 11). The paper ends with an outlook on derived research topics in Sect. 12 and
conclusions in Sect. 13.

2 Challenges for Next Generation Automotive Test Systems

Commoditized systems based on x86/x64 and PCI still provide a very cost-efficient and
performant hardware platform with lots of choices of mature real-time and general-
purpose operating systems and frameworks available.

A typical automotive V&V application as depicted in Fig. 1 includes a large set of
systems, aggregating

• data acquisition systems collecting data from typically several hundreds of sensors
(speed, torque, pressure, temperature, vibration, gas or fluid flow, …)

• actuators including dynamometers exerting torque/speed at vehicle shafts, combined
with valves, pumps, linear motors, conditioning systems etc. to effect the unit under
test (UUT) directly or indirectly by emulating specific environment conditions

• communication between sensors and subsystems, typically via analog and digital
signals, automotive networks like CAN or FlexRay, standard Ethernet and real-time
Ethernet like EtherCAT etc., and wireless connectivity like IEEE 802.11 and
802.15.x becoming more and more important.

Fig. 1. Vehicle test bed for automotive V&V
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Software of such a test system is typically a heterogeneous and complex combination
of mixed criticality real-time tasks, taking care of communication and data handling,
signal processing, process monitoring, simulation, verification and validation and
overall test automation, as well as storage and system control. In automated testing, test
cases will be executed sequentially, typically requiring to reconfigure parts of the system,
activating diverse signal flows through the system, alternative simulation models, or
modifying test profiles, as an example. In order to be able to do this during run-time
(e.g. while the engine is running), parts of the real-time system need to continue oper‐
ation, while others might need to be modified, deleted or created in a deterministic way,
without effecting the remaining system.

Next-generation test systems need to support flexibility in configuration, parame‐
terization, and diagnostics, while at the same time delivering high performance and
robustness. Therefore, the suggested architecture supports fine-granular configuration
changes on level of individual instances of software components, without impacting
function or time determinism of the remaining application.

With the approach of the connected powertrain we expect to see a further significant
increase of complexity in V&V systems for simulation and data processing require‐
ments, as described in [3], as well as security oriented challenges. For example, to test
a hybrid control strategy considering GPS and V2x information, the vehicle test bed will
need to simulate appropriately these signals on a test bed, requiring high-performance
scenario simulation and signal emulation. As a prerequisite, we assume hardware
providing sufficient resources like processor cores, main memory and I/O bandwidth,
which appears to become available in upcoming hardware generations (e.g. INTEL i7
Broadwell and beyond). As an additional constraint, we want a system architecture to
be efficient, minimize the computation overhead during runtime, and to allow imple‐
mentation of systems with minimal resource requirements.

3 Reconfigurable Real-Time Systems

Reconfigurable systems have been a research topic for some time (e.g. [4]), also for
automotive systems (e.g. [5]), and are commercially deployed in solutions from small
toy-like “intelligent bricks” [6], to mainframe or server-farms running large scale busi‐
ness applications. However, reconfiguration of real-time systems, especially allowing
such reconfiguration during operation, i.e. at run-time, without interrupting the rest of
the system, with a wide range of adaptability spanning from single CPU to multi-core/
multi-CPU systems, are rare.

Some work has been published on optimizing resource scheduling for reconfigurable
systems, suggesting new scheduling strategies and resource management for underlying
operating systems. In [7], Steiger et al. focus on establishing a component and system
architecture able to run on standard, commercially available real-time operating systems
(RTOS), taking re-configurable hardware into account.

Some proposals discuss HW/SW co- synthesis (e.g. CRUSADE, see [8]) to achieve
re-configurability. While heterogeneous systems comprised of GP-CPU’s and configu‐
rable hardware like FPGA can be highly optimized to achieve challenging performance
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goals for specific applications, re-configuration might require re-design and thus might
become a complex task. Especially in our domain of automotive verification and vali‐
dation (V&V), large sets of test cases and configurations might be required to be
executed in short time, requiring frequent re-configuration also during tests without
effecting run-time behavior of the remaining system, as described in [9].

4 Architectural Considerations

4.1 General

Assuming simple AMP (asynchronous multi-processing) RTOS design, a methodology
for automated distribution of configurations to multiple CPU cores is suggested. For
sake of performance and simplicity, only in-machine parallelism is exploited. Distrib‐
uted systems networked via standard communication links suffer latencies one or more
orders of magnitude higher than inter-CPU communication, and are therefore less
appropriate for our intended use.

V&V applications typically require high cyclic runtime performance with cycle rates
of 10 kHz and above, and might be running hundreds of tasks. Therefore our architecture
defines as a first step a central, offline configuration analysis and optimization, compa‐
rable to a just-in-time compile step done on the target system before runtime. This helps
to minimize runtime overhead inevitably required by online management described in
[5], as well as a need for interface negotiation, respectively search & discovery, self-
configuration, self-optimization or even self-optimization. It is not intended to support
dynamic load balancing, but to avoid load imbalance to begin with.

4.2 Identify Dependencies to Achieve Scalability

A software architecture matching these requirements must support run-time
compose-ability while at the same time allowing high performance, scalable and
therefore parallelizable, robust software-execution of (a multitude of) real-time
tasks. Composing tasks to form a system can be straightforward, as long as enough
resources are available and all tasks run independently. However, there may be
several sources of explicit or implicit coupling, which might defy the purpose, and
need to be taken care of. For a clear definition of what constitutes a task, and at
which point interaction with the rest of the world occurs, the notion of component
was proposed e.g. in [4]. In COBRA, a component includes coding for the intended
behavior and collections of objects it requires for its operation, like data-ports for
data exchange and message-ports for communication with other components. It is
important that these objects cannot be created by the component itself, but must be
requested from the runtime system. This allows controlling, managing and thereby
optimizing execution from a system-global view, as will be shown below. As an
additional layer of isolation, requested and created data ports cannot be inter-
connected (“wired”) by the component itself. In fact, the component has no knowl‐
edge about the other components it is wired to. Component have no way to modify
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the overall system, cannot act outside their own boundaries. This approach mimics
aspects of sandboxing available to browsers or operating-systems using kernel-mode
functionality for process isolation [10]. In order to achieve perfect scalability,
dependencies between components (both class and instance) need to be identified,
in order to be managed. Dependencies like data flow (example: input of component
B depends on output of component A), required resources etc. are explicitly declared
in a configuration based on component manifests, and is processed during system
configuration. Analysis of data dependencies results in detection of data paths and
is therefore used to generate the sequence of execution. Data paths found to be inde‐
pendent are perfect candidates to be mapped to parallel computing resources like
multiple CPU cores. Thus, any identified independent data path forms a sequence
called Trigger-Sequence (TS). By definition a TS is the smallest possible sequence
of components to run in order to satisfy all data dependencies of its members, there‐
fore in can be called atomic. As we assume a consistent data flow through this path,
all components along it are to be executed with the same cycle time, in the sequence
given by the data path. Signal flow analysis of an application results in a set of one
or more TS, and each TS is in turn an ordered collection of references to compo‐
nents, which need to be executed in this very sequence.

In Fig. 2, an example for a simple signal flow implemented in the test system is
depicted: Ci denotes software components, Vi labels variables, which underpin the
channels connecting in- and out ports of components. In this example, C1 might represent
software importing an external value, e.g. sampled via an ADC, while C4 and C5 repre‐
sent software handling outputs, e.g. messages sent on a CAN bus to the unit under test.
If there are no other constraints, several alternatives for valid TS would be possible, e.g.
the sequence {C1, C2, C3, C4, C5}.

Fig. 2. A simple signal flow

In cases where signal flow forms a loop (example: Fig. 3), the extraction of TS will
need additional information in order to be able to cut it in a linear sequence. As has been
shown by Olberding [11] this can be done by considering component behavior (feed-
through characteristic). For nested loops, iterative solver algorithms are described. Each
TS has its cycle time specified, which is static and for the sake of simpler scheduling
defined from a discrete set of frequencies (e.g. 10/100/1000/10000 Hz). Running a
sequence once per cycle time requires execution of all of its members in the specified
order within that time. From here on, each TS can be treated like a cyclic task. Driven
by this analogy, we apply the principles as described for software tasks in [12] now to
TS. Each one will be statically assigned a run-time priority based on RMS, resulting in
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equal priorities for all TS of the same cycle time, and higher priorities for TS of shorter
cycle times.

Fig. 3. Nested signal flow: controller for a two-mass spring damper system

As no other data dependencies exist, each TS can be executed independently from
other TS, as long as it honors the timing requirement of its members. This makes TS a
perfect candidate for parallelization: it can be assigned to any core for execution,
assuming a consistent timing (synchronization) across all cores. For a real system
however, such assignment of a TS to a core needs to fulfill rules like

• the core shall provide sufficient computation resources
• the core shall provide all required system resources, e.g. access to interrupts, I/O,…,

which is in fact often a constraining factor in asymmetric systems
• strategic considerations like functional safety, which might require TS driving redun‐

dant signals to be deliberately assigned to different cores

In order to guarantee sufficient computing resources before assigning a TS to a core,
the system needs to be aware of the execution time of the TS and available computation
time on its cores. This can be done in providing WCET for each component, and appro‐
priate bookkeeping across all TS and cores. However, realistic WCET values might be
hard to determine, and overly pessimistic values would lead to inefficient use of hardware
resources. In certain cases WCET estimation might allow a reasonable approximation,
see [13]. For the execution platform we assume current hardware based on x86/x64
multi-core/multi-CPU architecture in standard PC/PCI architecture, supported by a suit‐
able RT OS like INtime™ [14], offering virtual memory management and pre-emptive
multi-tasking in a AMP system.

5 Modifying Systems in Runtime

Reconfiguration of a system includes re-wiring of ports of components, changing
parameters and thus behavior in components, but also more structural change like adding
or deleting components. In order to allow exchange of one or more components, without
impacting the remainders, a copy-modify-switch-delete strategy is implemented. Beside
the actual switch-over, which needs to be done with highest priority after the associated
TS has finished, all other steps are not time critical and can therefore be done at idle
priority level. Modifiability without affecting the residual system is limited by non-
symmetric properties (see Sect. 12) and potentially the need to transfer component-
inherent information like signal history or state.

Towards Perfectly Scalable Real-Time Systems 217



6 Mapping of Software to Hardware

A perfectly scale-able system shall be able to distribute and map its tasks to the executing
hardware automatically, i.e. without human intervention. This assumes the underlying
hardware is accurately enough described, including execution capabilities, and available
hardware resources. As hardware changes between system boots might be possible, an
analyze, discover and register mechanism runs at least during system startup, storing
properties like number and type of cores, power modes, RAM, IO, DMA, interrupts,
peripheral configuration etc. in a registry available to the configuration and mapping
algorithms. This is used by a constrained-based solver to find a valid (in later versions:
optimal) mapping pattern between the applications to run (in the granularity of TS) and
available hardware, satisfying described dependency constraints.

7 Inter-process Communication and Run-Time Dependencies

Shared memory has proven to be a very versatile architecture for inter-process commu‐
nication, also for cyclic operation. Without taking cache into account, shared memory
allows random access to values at constant time, independent of data size, which is why
it is used in COBRA to connect data between components. In order to allow re-wiring
between value producing components and value-consuming components, and more
importantly, to manage exact timing when a value is written and when it is read, a port
is used as mediator. Ports are solely managed by the runtime system. Components access
the ports from the “inner” side, while a runtime management controls the outside. Non-
cyclic communication between components and the runtime system in COBRA is based
on synchronous and asynchronous message-passing.

8 Component Development Considerations

COBRA relies on strongly componentized software to allow compose-ability to a
perfectly scalable system. Explicit declaration of dependencies allows even to use
components from different software versions in a common configuration, enabling
partial and “hot” updates of systems. This however requires rigid interface management,
verified and ensured by the runtime system.

9 Robustness Considerations

Automotive test systems govern devices like combustion engines and high-power elec‐
trical drives, posing potential hazards to humans or facility, and are therefore subject to
functional safety regulations. Typically, not all parts of e.g. automation, simulation and
control software are certified to higher safety integrity levels (SIL), which is why an
additional dedicated safety system monitors and controls the whole test setup including
the V&V system described in Sect. 2. As mentioned in Sect. 4, COBRA contributes to
system dependability by providing a sandbox-like isolation of (potentially buggy)
components in at least three aspects:
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• all system resources are managed centrally by the run-time system; components can
only access and use resources as described in the system configuration description,
which needs to be carefully verified before being applied. Malicious component to
component interaction is thereby minimized.

• Component execution is highly deterministic as is fully described in the TS.
• In case a component exceeds its specified runtime causing a cycle time violation (e.g.

spinning thread), it can be easily identified and consequently be de-activated. As the
signal flow is clearly defined and represented in the TS, the impact of such a scenario
is obvious as well, and limited to components directly depended on the malfunction
component, but not more.

10 Parallelized, Mixed Criticality Aware Networking

Another important aspect in V&V relates to networking between test system and the UUT,
respectively its one or more electronic control units (ECU, also called xCU). One of the
goals of the joined European research project EMC2 [15] is leveraging multi-core CPU’s
also for ECU’s in cars, allowing to consolidate different modules and functions within a
single system, thus reducing complexity, costs and weight of vehicles. However, this
requires to be able to deal with multiple applications of diverse (mixed) criticality in one
system, quite similar to the challenges we face in the testing system. Current work focusses
on how to provide communication for mixed-criticality applications on multicore automo‐
tive control units to the relating tasks of the V&V systems via unified, standardized, low
latency real-time capable networks (CAN, CAN-FD, automotive Ethernet).

Time-determinism (e.g. cyclic real-time requirements), data consistency and
synchrony will be have to be addressed, considering specific design constraints of auto‐
motive systems (robustness, safety requirements, cost efficiency, etc.), implementing on
hardware platforms and software frameworks with standards like AUTOSAR and proto‐
cols like XCP. We suggest a multi-platform capable “connectivity manager” (see Fig. 4)
to control connections for described multiple endpoints in different tasks and diverse
contexts, managing various life-cycles, timing requirements, criticality and underlying
protocol as well as software architectures, which we plan to publish later in the project.

Fig. 4. Proposed connectivity manager handling networking in complex AMP-based V&V
systems for automotive control units
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11 Example: Four-Wheel Test Application

In order to validate the scalability of the proposed COBRA architecture, a simple all-
wheel test application based on the setup depicted in Fig. 1 was configured, combining
four sets (one per wheel) of input and output components and a computationally reason‐
ably intensive model-based controller component. This results in a structure shown in
Fig. 5(a) and (c), potentially a good candidate for distribution to several cores. Each of
the four instances of the model-based controller (with a design based on [16]) is supposed
to govern one axle/dyno of the vehicle under test.

The test was done on a PC equipped with two CPU’s with quad core each (type:
INTEL Xeon E5607), 24 GB RAM, INtime 4.20.14 running on 5 cores, Windows 7 64
bit running on the remaining cores. Note that one core was exclusively used for system
management including clocking, synchronization and timing and general housekeeping
(marked “Task System” in Fig. 5). Measurements were done using Microsoft’s PerfMon
tool with an INtime plugin from tenAsys to measure consumed CPU cycles, expressed
in per cent of overall cycles. This provides a first overview; for a more detailed analysis
we work on a tool providing exact invocation and runtime measurements.

a) Test application on a single core    b) Test application on two cores

c) Test application on four cores

Fig. 5. Scaling a four-wheel test application for a one, two and four core system
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As the result (Table 1) indicates, the scaling effect follows pretty much the expected
parallelization benefit (considering the limited resolution of the measurement method).
The steep incline of CPU load of the management core in relation to the number of
execution cores appears to be caused by the RTOS and is currently being analyzed
together with the vendor in more detail.

Table 1. Comparing CPU load values (in % of overall cycles) for three parallelization scenarios

Number of executing cores 1 2 4

Core A (management node) 6 % 11 % 19 %

Execution Core B 71 % 38 % 18 %

Execution Core C 36 % 18 %

Execution Core D 18 %

Execution Core E 18 %

12 Outlook

Further research is suggested to deal with some “foes of perfect scalability” which have
been identified so far.

• Complex dependencies of components (e.g. nested loops in signal paths with only
direct feed-through components, or dependencies between components based on e.g.
states or resources rather than signal paths)

• Non-linear scaling effects due to system asymmetry (e.g. hardware resources dedi‐
cated to certain cores only; or data access via levels of cache vs. main memory)

• As described, configurations may be changed during run-time, which potentially
could cause a TS to grow. As there is currently no TS migration from one core to
another supported, imbalances (which could be seen as fragmentation of executing
cores) might occur

• Assuming non-symmetric properties like cache hit/miss or access to low-level DMA,
system clock etc., can we find the optimal distribution of TS to cores, for example
also considering data locality and size?

• COBRA relies on a central management of system configuration, which for combined
or highly complex systems might become a bottleneck. Parallelization and therefore
distributing control over several CPU’s might solve this issue. However it requires
mechanisms to ensure consistency, like encapsulating configuration modifications
like transactions, followed by synchronization.

• The proposed strategy is based on static models (descriptions) of hardware and soft‐
ware, therefore a feed-forward method. Further research to include feed-back
strategies, e.g. adjusting WCET values to current measurements, or to the specific
hardware used, need to be considered.
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13 Summary and Conclusion

In this paper an architecture for highly scale-able real-time systems is proposed, appli‐
cable to complex combinations of measurement, control, simulation, communication
and automation tasks as required in automotive verification and validation testing. The
underlying software component model allows highly flexible system composability,
with ridged means of resource control for the system management. Explicit declaration
of resources and dependencies allows amongst other benefits to extract graphs of data
and resource dependencies. In a next step, so-called Trigger Sequences (TS) are
computed, to partition complex configurations into independent, thus parallel executable
pieces. Finally these TS can be automatically distributed for execution on multi-core
CPU’s. A first analysis of complex V&V systems indicate that the proposed method
allows to identify and exploit enough parallelism even to utilize upcoming many-core
hardware platforms sufficiently. However, potential issues like resource asymmetry,
cache-interdependence, inaccurate execution time information and system fragmenta‐
tion caused by unthrifty reconfigurations at runtime have been identified and require
additional research.
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Abstract. There are a large number of small and inexpensive single-board
computers with Linux operating systems available on the market today. Most of
these aim for the consumer and enthusiast market, but can also be used in research
and commercial applications. This paper builds on several years of experience
with using such computers in student projects, as well as the development of
cyber-physical and embedded control systems. A summary of the properties that
are key for dependability for selected boards is given in tabulated form. These
boards have interesting properties for many embedded and cyber-physical
systems, e.g. high-performance, small size and low cost. The use of Linux for
operating system means a development environment that is familiar to many
developers, and the availability of many libraries and applications. While not
suitable for applications were formally proven dependability is necessary, we
argue that by actively mitigating some of the potential problems identified in this
paper such computers can be used in many applications where high dependability
is desirable, especially in combination with low-cost. A solution with redundant
single-board computers is presented as a strategy for achieving high dependa‐
bility. Due to the low cost and small size, this is feasible for applications were
redundancy traditionally would be prohibitively too large or costly.

Keywords: Dependability · Cyber-physical systems · Linux · Single-board
computer · Redundancy

1 Introduction

Since the release of the Raspberry Pi in 2012 [1], a large number of similar single-board
computers has been released. Most of these have hardware very similar to what are used
in smart phones, which means high computation power, low power consumption, small
size and low cost. In this paper, we will use the name consumer-grade single-board Linux
computer (CSBLC) to reference such computers, due to the lack of a commonly used
name. This definition includes all development board type computers that are widely
available and used. As the name implies, only boards capable of running Linux are
included, i.e. not Arduino and other boards that use microcontrollers without a real
operating system.
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A typical CSBLC uses an ARM CPU in the range from a single core with 700 MHz
to 1.8 GHz quad cores, and RAM between 500 MB and 2 GB. Due to the graphical
nature of smart phones, they tend to have connectors for graphical user interfaces and
powerful graphical processing units for processing HD video. In this respect, they are
similar to regular desktop computers and can often be used as a low-powered alternative
for these.

CSBLCs usually have low-level I/O signals, such as UART, I2C, SPI, GPIO
etc., available for the user. This makes them attractive for use in embedded and
cyber-physical systems that have to interface with low-level electronic components.
Figure 1 illustrates how CSBLCs can be considered a hybrid between desktop
computers and lower level microcontrollers.

Fig. 1. I/O capabilities of CSBLCs

This paper considers a cyber-physical system [2] or embedded control system that
interacts with the real world with sensors and actuators. It is also assumed that the system
communicates with users or with other parts of a distributed system via a network
connection, either wired or wireless. Dependability, safety and security are often
mentioned as challenges for such systems [2–4], both because these are systems we rely
on, and that repairs can be challenging in a distributed and/or remotely located system.

Dependability can be defined as a system’s ability to deliver a service that can be
justifiable trusted, and can be divided into the attributes of availability, reliability, safety,
integrity, and maintainability [5]. CSBLCs are not considered suitable for systems that
have formal dependability demands, or where a failure has catastrophic consequences.
However, this does not mean that they cannot be dependable when used correctly, espe‐
cially when a combination of high dependability and low cost is desirable. Linux as an
operating system is suitable for embedded development [6] that is a well-known envi‐
ronment with good support communities and commonly used libraries and development
tools. All these factors contribute to reducing the development cost.

We have used CSBLCs in the development of a system for remote inspection and
maintenance of offshore wind turbines [7]. This is an example of a system where a failure
is not catastrophic, since the turbine will continue to work. However, dependability is
still of importance, since functionality is lost if the system fails, and difficult access
makes repairs expensive.

The experience that this paper builds on is the previously mentioned development
with CSBLCs and the supervision of multiple master student projects using CSBLCs.
The most important advantages and disadvantages for dependability of using such
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devices are described, and how the disadvantages can be mitigated. Redundancy is
suggested as a method for increasing dependability, and a solution suitable for CSBLCs
with sensors and actuators for interacting with the real world is described.

2 Dependable CSBLCs

2.1 Hardware

CSBLCs are not specifically designed for dependability. However, since most of the
users are relatively inexperienced, and the boards encourage for experimenting with
connecting different sensors and electronic components, they must be durable enough
to survive rough treatment. Due to an abundance of competing products, it would be
difficult for an unreliable board to survive in the market. Manufacturers would therefore
have to have reliability in mind, for it to be a viable commercial product.

The ARM CPUs that are commonly found in CSBLCs are low powered chips.
Devices like Raspberry Pi and Beaglebone Black have no heat sinks and the CPU still
do not feel warm to the touch. Operating at such low temperatures is in general beneficial
for the reliability of electronics. In addition, no cooling fans that can fail are needed,
and it is easier to encapsulate the system.

2.2 Software and Development

Most CSBLCs support at least one of the leading Linux distributions, as Ubuntu, Arch
and Debian. This is a significant advantage for a developer that is used to work within
these environments, which will result in shorter development time and thus costs. Linux
is a well-used environment that many developers are comfortable with, and it has a large
collection of libraries and tools that are widely used and extensively tested.

Most default distributions contain a large number of software packets, including a
full graphical desktop with applications. Large portions of this will not be used by
embedded systems, thus there will be large amount of unused code and programs that
bring no benefit to the system. There can also be several services running in the back‐
ground that are not used. This is disadvantageous for the dependability. Best-case is that
memory and CPU resources are wasted [8], while worst case is that there is a fault in
this otherwise unused code that cause a failure in the system, or used as leverage for
breaking into the system. When it comes to dependability, it is beneficial that the soft‐
ware is as small as possible. This also has an effect on the system’s ability interact with
the real world in real-time, which will be discussed in more detail in Sect. 3.

To reduce this problem it is important to remove as much of the unused programs
as practically possible. An extreme variant of this would be to build your own Linux
system from open source programs, but this is likely to be very time consuming, and
not necessarily without its own problems.

2.3 Concerns Regarding Dependability

Some common properties with CSBLCs that can be a concern for the dependability is
listed below:

226 Ø. Netland and A. Skavhaug



• Most CSBLCs use a 5V power supply, from either a power jack or USB, without any
protection circuits. The power supply is connected directly to an on-board power
management chip that generates the different lower voltage levels needed by the CPU
and peripherals. This chip can be damaged by reverse voltage, over-voltage, or over-
current, which could happen, either if an incorrect power supply is connected during
development or if there is a fault in the power supply while in use.

• On CSBLCs, many of the individual pins of the CPU are exposed as I/O headers,
which is something that is not seen on other consumer computers. The advantages
of this are obvious, since direct access to headers with I/O signals makes it easy to
interact with other electronic components. Unfortunately, there are no protection
circuits between the headers and the CPU pins, and any voltage outside the commonly
used 0-3.3 V range, or in some cases 0-1.8 V range, will likely damage the board.
Developers that are used to significantly more tolerant devices with low-level micro‐
controllers, as the Arduino, have to be more careful when handling CSBLCs.

• Most CSBLCs use an ARM CPU, which is a different architecture than desktop
computers (x86 or x86-64). This means that all software must be ported to this archi‐
tecture. Linux have supported ARM for a long time, and can be considered stable.
However, drivers are often a problem, since driver development for ARM often is
normally prioritized lower than for x86 and x86-64. Our experience has been that
especially USB WiFi drivers have been problematic for ARM devices. Some USB
WiFi devices do not have drivers for ARM at all, while others can be unstable.
Unstable WiFi drivers can reduce the availability of CSBLCs that depend on WiFi
for communication with users or other parts of a distributed system.

• SD or mirco SD cards are often used as storage media for CSBLCs. These are inex‐
pensive and widely available devices, but can be a problem for reliability. There are
significant quality differences between SD cards, thus it is important to use one that
is known to be reliable. In addition, the physical SD socket can be vulnerable to
vibrations and similar. Some CSBLCs have onboard eMMC instead for or in addition
to SD cards. This is preferable for dependability, as eMMC memory usually have
longer expected life. Read and write speeds are usually higher as well.

2.4 Practical Experience with CSBLCs

Our experience with CSBLCs comes from several years of development with different
such computers, and with supervising multiple master student projects using them. The
findings presented here are some example observations from this, but since dependa‐
bility related events were not systematically registered, this is not guaranteed to be a
complete list.

We have observed a large number of failures due to faults during software and hard‐
ware development with CSBLCs. Software faults are normally easy to recover by
flashing the SD card or eMMC memory to a known working state, while hardware faults,
especially incorrect wiring of I/O signals, can often do fatal damage to the computer.
We have seen multiple fatal failures, e.g. only two of ten Beaglebone Black computers
survived being used in multiple master projects over a period of one and a half years.
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Exactly how the eight computers were damaged is unknown, but incorrect wiring of
I/O wires or power supply is the most likely explanation.

Such failures during development are expected, especially since a large portion of
the developers was relatively inexperienced students. These errors do not describe the
dependability of the computer systems themselves, but their susceptibility to failures
due to incorrect handling. Therefore, we have not focused on these types of error in this
paper.

Failures occurring during normal operation, not development, are of more concern
for dependability. We have only experienced one such failure that did permanent
damage, when two Beaglebone Black computers both failed while being left on over a
weekend. The two computers were set up in a redundant configuration, and only shared
a few signal wires. They had separate switched power supplies that were connected to
the power outlet. Since the two boards were damaged during the same period, it is likely
that both have a common cause, which could be from the shared power outlet or the
shared I/O signals.

In addition, we have seen multiple problems with CSBLCs losing their wireless
network connection and failing to reconnect. This is probably caused by unstable wire‐
less drivers and a failure of the system to reconnect. To resolve this problem would
normally be simple, except if the wireless network connection is the only method of
communicating with the computer.

2.5 Dependability of Selected CSBLCs

We have selected twelve of the most popular CSBLCs from the comprehensive list in
[9], and presented a summary of key properties related to dependability in Table 1.
Different models of the same board and producer have been grouped for readability.
Boards that we have experience with ourselves has been marked with a ‘*’.

The table can be used as a reference when considering any of these devices, and
consist of information from [9] and the web sites for the different board. More specific
information for evaluating whether the different computers are suitable for an application
can also be found at these sources. An “unknown” power protection means that specific
information regarding this was not found, which in most cases is expected to mean
“none”.

2.6 Security

Security of a system is its availability for authorized actions only, confidentiality and
the absence of unauthorized system alterations [5]. Since cyber-physical systems usually
have some type of network connection, they are vulnerable to unauthorized access and
eavesdropping. This makes it important to consider security, and communication should
be encrypted, for confidentiality. Each end of the communication should be able to
identify the other party securely for authorization.
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Table 1. Properties that are relevant for dependability of selected CSBLCs.

Name CPU Cooling Power protec‐
tion

Storage
options

WiFi

Banana Pi ARM A7 None Unknown SD, SATA USB

*Beaglebone ARM A8 None None Micro SD,
eMMC

USB

Cubieboard ARM
(various)

None Unknown Micro SD,
eMMC,
SATA

Model
dependent

Intel Galileo x86 None Unknown Micro SD USB

Marsboard ARM
(various)

None Unknown Micro SD,
eMMC,
SATA

Onboard

*Odroid ARM
(various)

Model
dependent

Yes Micro SD,
eMMC
module

USB

OLinuXino ARM
(various)

None Unknown Micro SD,
eMMC
(some
models)

USB

*Pandaboard ARM A9 None None SD Onboard

Pcduino ARM
(various)

None Unknown Micro SD,
eMMC

USB

*Raspberry
Pi

ARM
(various)

None None SD or Micro
SD

USB

UDOO ARM None or
passive

Unknown Micro SD,
SATA
(some
models)

USB

Wandboard ARM A9 None Unknown Micro SD,
SATA
(some
models)

Model
dependent

Correct implementation of secure communication is notoriously difficult, which is
demonstrated by the constant flow of software security updates in commonly used soft‐
ware. One of the advantages of using Linux is that a large number of open source libraries
are available, among them different security and encryption libraries. These libraries
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have been used, improved, and hardened over long periods, and although there is no
guarantee that they are without faults, they are likely more secure than a custom solution.

3 Real-Time Performance

A real-time computer system must be able to guarantee a response within a specified
time constraint or deadline [10]. We divide this in hard, firm and soft real-time. If a hard
real-time deadline is missed, it will result in a, possibly catastrophic, system failure. For
firm and soft real-time, a missed deadline will only reduce the overall quality of the
system. The differences between the two are that the results from a soft real-time task
still have some value after the deadline, while the results from a firm task are useless.

Real-time performance is important when interacting with the real world, as cyber-
physical systems often will do. A real-time operating system provides guaranties that a
task with a high priority will be executed in a timely manner even if other lower priority
tasks are running. The ability to react to external events is also important, e.g. to have
a known response time to a change in a sensor value.

Most operating systems, including Linux, are not considered real-time operating
systems. It is possible to assign priorities to a task in Linux, but even the highest priority
can be prevented from running by a system call, interrupt etc. The probability of this
will increase the busier the CPU is. This means that the ability to perform a specific task
at a specific time is highly dependent on how many other processes and services that are
running on the system. Linux distributions on desktop computers and on CSBLC, often
have an overwhelming amount of software, thus the probability that something can
interfere with a time-critical task can be higher than acceptable. Two commonly used
strategies for improving the real-time performance of Linux is presented here.

3.1 Real-Time Addition to Linux

Although Linux itself is not a real-time operating system, there are multiple methods
for adding real-time capabilities to Linux. There are two strategies for this, which are
described in detail in [11]. The first strategy is to alter the Linux kernel to give it better
real-time capabilities, the most common being the RT_PREEMPT patch. The second is
to have a real-time microkernel that runs between the hardware and the Linux kernel
[12]. Xenomai is an example of the second of these two that has official support for both
Raspberry Pi and Beaglebone. Using Xenomai (or a similar solution) require the use
their API for accessing the real-time capabilities of the microkernel, and real-time access
to the I/O, require custom developed real-time I/O drivers. Both of these will increase
development time.

3.2 Slave Microcontroller

The other possible method for achieving necessary real-time properties is to
“outsource” the real-time tasks to a slave microcontroller. Since only a few, known
tasks will run on the slave, the feasibility of reaching the assigned deadlines can be

230 Ø. Netland and A. Skavhaug



determined analytically. This also have the added benefit of using the I/O pins of the
slave microcontroller, which often will be more tolerant than the I/O pins of the
CSBLC.

Disadvantages with this approach are that there will be some time delay from the
communication between the CSBLC and the slave microcontroller, and that two devices
instead of one will have to be considered during the development.

4 Increased Reliability with Redundancy

By having two or more redundant computers that are able to do the same task, the
dependability can be increased. Figure 2 illustrate how two computers, with shared or
computer-specific sensors and actuators can be organized in a 1oo2 architecture. This
is intended to provide redundancy for one system or for one node in a distributed system.
There could in addition be redundancy from several nodes being able to do the same
tasks, but this is not considered here.

Fig. 2. Redundancy solution with two CSBLCs and individual and shared sensors and actuators

CSBLCs make it possible to implement redundancy at a low-cost and with a small
physical size. The use of redundancy can to some degree, and if implemented correctly,
compensate for assumed lower dependability of CSBLCs.

4.1 Computer Redundancy

The system described in Fig. 2 show two (1oo2) CSBLCs that are identical aspects of
the same system. Internally they would have to share the responsibility of their tasks,
e.g. with a typical active/standby method were both collect information from the sensors,
but only one of the computers control the actuator at any given time. A user or another
node in the distributed system can then communicate with either of the two computers
and get the same information. If one of the CSBLCs, or the computer-specific resources
are unavailable, it can instead be accessed from the other. A similar solution could be
designed with more than two CSBLCs if even better redundancy is required.
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To be able to share responsibility, the two CSBLCs will have to communicate,
preferably through a reliable channel with minimal latency. Most CSBLCs have
multiple UART signals, and one can be used as a dedicated communication channel
between the two that will be operational as long as both computers are available.
Network communication can be down or have delays, thus it is considered a less
suitable solution. Busses as I2C and SPI are generally not suitable for communica‐
tion between two Linux computers due to lack or limited support in the Linux kernel
for acting as a slave on the bus.

Most CSBLCs use a console UART as the main terminal of the system, meaning
that through this interface you can follow messages from the kernel during boot, and
access a Linux terminal as root. In a redundant solution, each of the CSBLCs can use
an UART to listen to the console UART of the other, for debugging purposes. This is a
valuable ability if one of two remote computers is unavailable. The problem can be found
and possibly solved remotely. For security reasons, the access to the UART debug should
be limited to only the root user; otherwise, it could be used as a method of gaining root
access without permission.

4.2 Resource Redundancy

A redundant pair of CSBLCs that interact with resources, as sensors and actuators, has
to be organized so all information and actuation options are available to both computers.
In Fig. 2, two possible solutions for resources are shown, either computer-specific or
shared. Computer-specific sensors or actuators mean that each of the computers has its
own. For sensors, this requires two of the same type and at the same location for
observing the same phenomena, e.g. two temperature sensors next to each other. For
actuators this requires two that can be used to generate the same effect, e.g. two heating
elements in the same location. Both computer-specific sensors and actuators can be used
interchangeably in case of a failure.

Computer-specific actuators can be difficult to implement, e.g. two motors that
perform the same motion. Figure 3 illustrates a simplified method of how this can be
achieved. If such a solution is used it is important that only one motor tries to move or
hold the position at the time, while the other motor remain inactive. The active motor
has to turn the inactive one, thus this solution is not suitable for motors that require high
torque to turn when inactive, e.g. a motor with a high ratio gearbox. Stepper motors are
suitable for this solution, because only a very small torque is needed to rotate a motor
that is not turned on. It is also possible to have a solution where the motor gears can be
disconnected from the common gear when not used. If it is difficult to rotate one motor
with the other, this will be necessary. However, this will introduce new possible failures,
e.g. failure to connect or disconnect a motor.

It will not always be practical to have computer-specific resources, either because
of cost constraints, or because it is difficult to implement. A shared resource can be used
instead. The downside is that there will be no backup if this resource fails. For some
actuators it could also be challenging to make a driver that can be controlled by two
different computers.
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4.3 Common-Cause Failures

To have effective redundancy, the number of possible common-cause failures should be
minimized. This means single failures that are capable of causing failures in all parts of
a redundant system. Some possible common-cause failures that have not been consid‐
ered in this limited description are listed here. How these can be addressed will depend
on the application and is outside the scope of this paper.

• If a common power-supply is used, a failure will cause both computers to fail. In
addition, over voltage or current can damage both computers.

• If both computers use the same network, or connect to the same wireless access point,
then an error can make both inaccessible.

• Any electrical contact between the two computers can cause a failure to propagate
from one computer to the other.

• A failure in one computer that causes it to send uncontrollable commands to its
resources can cause problems that the other computer is unable to mitigate.

• A failure in a shared resource will be a common-cause failure.

5 Conclusion

Single-board Linux computers aimed for the consumer market have high computing
capacity in spite of their small size and low cost. Since their capabilities include low-
level I/O signal and busses, they are suitable for interacting with other electronic devices
and for use in control systems. The Linux operating system can simplify development
with a many well-tested development tools, libraries, and applications.

A table with a summary of the properties that are considered especially relevant for
dependability of specific single-board computers has been presented and can be used as
a reference. These computers are often not considered for use in systems with high
dependability requirements, due to an, often unfounded, assumption that they cannot be
reliable enough. We argue that this often is not the case, and that high reliability can be
achieved by addressing potential problems, as the ones mentioned in this paper.
However, in applications where failures have particularly large consequences, or there
are specific or formalized requirements for documentation of all hardware and software,
a system based on these computers is not advisable.

One method for increasing the reliability is to use multiple, redundant single-board
computers. Redundancy is an especially useful technique for these types of computers

Fig. 3. Two motors both acting on the same common gear
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since they are small, inexpensive and can be seen as a single and possibly replaceable
component. The outline of a 1oo2 redundancy solution with redundant control
computers and individual or shared resources has been presented. The low-cost and
small size of these single-board Linux computers make it possible to use redundancy
for increased dependability in applications where a traditional redundant solution would
be too expensive or physically too large.
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Abstract. Safety and Security appear to be two contradicting overall
system features. Traditionally, these two features have been treated sepa-
rately, but due to increasing awareness of mutual impacts, cross domain
knowledge becomes more important. Due to the increasing interlacing
of automotive systems with networks (such as Car2X), it is no longer
acceptable to assume that safety-critical systems are immune to security
risks and vice versa.

This paper presents the application and method description of a novel
approach for combined safety hazard and security threat analysis. In this
paper we present a detailed description of the SAHARA method and an
application of this method for an automotive system. We analyze the
impact of this novel method and highlight the impacts of security threats
on safety targets of the system. The paper describes the experiences
gained at application of the method and how safety-critical contribution
of successful security attacks can be quantified.

Keywords: ISO 26262 · HARA · STRIDE · Automotive systems ·
Safety/Security co-engineering

1 Introduction

Embedded systems are already integrated into our everyday life. For the automo-
tive industry embedded systems components are responsible for 25 % of vehicle
costs, while the added value from electronics components ranges up to 75 %
for electric and hybrid vehicles [17]. The complexity of embedded systems has
grown significantly in recent years. Current premium cars employ more than 90
electronic control units (ECU) with close to 1 Gigabyte software code [2] imple-
mented. This trend is also strongly supported by the ongoing replacement of
traditional mechanical systems by modern embedded systems. This enables the
deployment of more advanced control strategies, thus providing additional ben-
efits for the customer and environment. At the same time, the higher degree
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of integration and the safety- and security-criticality of the control application
raise new challenges.

Future automotive systems will require appropriate systematic approaches
to support dependable system engineering. This means, among other factors,
applying combined approaches for system dependability features (such as safety
and security). System dependability attributes have a major impact on prod-
uct development and product release as well as for company brand reputation.
Mutual impacts, similarities, and interdisciplinary values are in common and a
considerable overlap among methods exists. Besides this, standards, such as ISO
26262 [4] in safety and Common Criteria [5] in security domain, have been estab-
lished to provide guidance during the development of dependable systems and
are currently reviewed for similarities and alignment. For this paper we employed
an approach which classifies the probability and impact of security threats using
the STRIDE approach [9] and safety hazards using hazard analysis and risk
assessment (HARA). This SAHARA concept [8] quantifies the security impact
on dependable safety-related system development on system level. Within this
work we describe the SAHARA concept in more detail and show how the con-
cept has been accomplished to an early development phase safety-hazards and
security-threat analysis.

This paper is organized as follows: Sect. 2 assesses the relation to related
works dealing with (automotive) safety and security related topics. In Sect. 3
provides a description of the applied SAHARA method and its accomplish-
ment to an early development phase safety-hazards and security-threat analysis.
The application of the method for an automotive battery management system
(BMS) use-case is presented in Sect. 4. Finally, Sect. 5 concludes this work with
an overview of the presented approach.

2 Related Work

Safety and security of control systems are challenging research domains inher-
iting continuous development and growing importance. For this reason, many
researchers and industrial experts have recently made efforts to combine secu-
rity and safety.

Although only safety standards, such as the road vehicles functional safety
norm ISO 26262 [4] and its basic norm IEC 61508, exist in the automotive indus-
try, several safety and security norms and guidelines have been established in
aeronautics industry. In addition to DO-178C [19], which addresses aeronautics
software safety, ARP4754 [14] provides guidance for system level development
and defines steps for the adequate refinement and implementation of require-
ments. Safety assessment techniques, such as failure mode and effects analysis
(FMEA) and functional hazard assessment (FHA), among others, are specified
by ARP4761 [13]. Security concerns in aeronautics industry are tackled e.g., by
the Common Criteria [5,21] approach respectively ED202 specification.

The common basic analysis method for the related works is hazard analy-
sis and risk assessment (HARA) [4], which identifies and categorizes hazardous
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events of components of the system under development (SuD). It furthermore
specifies high-level safety goals and measures related to the prevention or miti-
gation of the safety hazards in order to avoid unreasonable risk. These measures
determine the criticality of the SuD and define requirements and strategies to
be applied for the rest of the systems lifecycle. For more details on HARA we
recommend ISO 26262 part 3 Annex B [4].

The work of Gashi et al. [3] focuses on redundancy and diversity, and their
effects on safety and security of embedded systems. This work is part of the
SeSaMo (Security and Safety Modeling for Embedded Systems) project which
focuses on synergies and trade-offs between security and safety in concrete use-
cases.

Security concerns of safety-critical systems are also focused by aerospace
domain. Paulitsch et al. [10] outline issues in assessing the reliability of avion-
ics software for safety and security perspectives. The authors aim at collecting
evidence and finding indicators of effectiveness of existing safety-related and
security-related processes in terms of effects on aircraft security.

A security-informed risk assessment is mentioned in the work of Bloomfield
et al. [1]. Focus of this publication is a ‘security-informed safety case’ and the
impact of security on an existing safety case. The authors mention the require-
ment of such an assessment methodology and describe a risk assessment process
briefly, but neither provide guidance as how such an assessment is done, nor do
they propose an approach to it.

Kath et al. [7] state model-based approaches as a promising approach to guar-
antee safety and security features. The authors present a model driven approach
to security accreditation of service-oriented architectures in their work.

An overall security threat analysis of an unmanned aerial vehicle (UAV)
is done by Javaid et al. [6]. Although their analysis summary calculates the
likelihood, impact, and risk of a security threat analog to the SAHARA approach,
this work does not focus on the impact of security threats on safety goals.

A threat analysis framework for critical infrastructures is proposed by Simion
et al. [18]. This framework applies the same procedure as the SAHARA method,
(1) identification and definition of threat attributes and (2) usage of attributes
to characterize the threat potential. The authors also consider the required
resources and attackers commitment for determining the threat attributes. Nev-
ertheless, the SAHARA method is more focused towards the automotive domain
and safety-critical automotive systems, which implies a completely different
determination of threat attributes and potential threat impacts.

Some recent publications in the automotive domain also focus on security in
automotive systems. On the one hand, the work of Schmidt et al. [15] presents
a security analysis approach to identify and prioritize security issues, but solely
provides an analysis approach for networked connectivity.

The work of Ward et al. [22], on the other hand, also mentions a risk assess-
ment method for security risk in the automotive domain called threat analysis
and risk assessment, based on HARA. This work identifies potential security
attacks and the risk associated with these attacks. The work also describes how
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such a method has been developed based on the state-of-the-art HARA method.
Nevertheless, the work does not combine hazard and threat analysis within one
approach to acknowledge threats that may contribute to the safety-concept or
lead to violation of safety goals.

The works of Roth et al. [12] and Steiner et al. [20] also deal with safety
and security analysis, but focus on state/event fault trees for modeling of the
system under development, while Schmittner et al. [16] present a failure mode
and failure effect model for safety and security cause-effect analysis. This work
categorizes threats also with the help of the STRIDE threat model in focus of
an IEC60812 conform FMEA approach. Nevertheless this work characterizes the
attack probabilities in a more complex way than the SAHARA method, which
requires higher analysis efforts and more details of the SuD.

Raspotnig et al. [11] also combine safety and security methods for combined
safety and security assessments of air traffic management systems. The app-
roach of their publication relies on modeling misuse cases and misuse sequence
diagrams within a UML behavior diagram, which implies a lot of additional
modeling expenses for the early development phase.

The STRIDE threat model approach [9] developed by Microsoft Corporation
can be used to expose security design flaws. This approach uses a technique
called threat modeling. With this approach the system design is reviewed in
a methodical way, which makes it applicable for integration into the HARA
approach. Threat models, like STRIDE approach, may often not prove that a
given design is secure, but they help to learn from mistakes and avoid repeating
them, which is another commonality with HARA in safety domain.

Finally, the SAHARA concept [8] quantifies the security impact on depend-
able safety-related system development on system level. This concept classi-
fies the probability and impact of security threats using the STRIDE approach
[9]. Derived from the SAHARA concept, this method represents a systematic
approaches towards concurrent safety and security development and is described
in more detail in the next section.

3 SAHARA Approach

This section describes the basics of the SAHARA concept [8] and the derived
method, which will be applied in the next section.

Due to the increasing impact of the internet of things also in the auto-
motive domain, it is no longer acceptable to assume that safety systems are
immune to security risks. Automotive engineers require appropriated systematic
approaches and cross-domain knowledge of safety and security to appropriate
support security-aware safety development. Therefore, the SAHARA method
combines the automotive HARA [4] with the security domain STRIDE approach
[9] to trace impacts of security issues on safety concepts on system level.

Threat modeling using STRIDE can be seen as the security equivalent to
HARA. STRIDE is an acronym for spoofing, tampering, repudiation, informa-
tion disclosure, denial of service, and elevation of privileges. Key concept of this
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Fig. 1. Conceptual overview of the SAHARA method

threat modeling approach is the analysis of each system component for suscep-
tibility of threats and mitigation of all threats to each component in order to
argue that a system is secure.

Figure 1 shows the conceptual overview of the novel SAHARA method. As
can be seen in the figure, an ISO 26262 conforming HARA analysis (right part
of the overview figure) can be performed in a conventional manner. Besides
this, attack vectors of the system can be modeled using the STRIDE approach
independently (left part of Fig. 1) by specialists of the security domain. The
two-stage SAHARA method then combines the outcome of this security analysis
with the outcomes of the safety analysis. Therefore, a key concept of the HARA
approach, the definition of automotive safety integrity level (ASILs) is applied
to the STRIDE analysis outcomes. Threats are quantified aligned with ASIL
analysis, according to the resources (R), know-how (K) required to exert the
threat, and the threats criticality (T). The second stage is the hand-over of
information of security threats that may lead to a violation of safety goals for
further safety analysis. This improves completeness of safety analysis in terms
of hazardous events initiated due to security attacks, related to the ISO 26262
requirement of analysis of ‘foreseeable misuse’.

First step of the SAHARA approach to combining security and safety analysis
is to quantify the STRIDE security threats of the SuD in an analog manner as
done for safety hazards in the HARA approach. Therefore, we use the HARA
approach to quantify the STRIDE security threats of the SuD.
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Table 1. Required Resource ‘R’ Classification - determination of ‘R’ value for required
resources to exert threat

Level Required resource Example

0 no additional tool or everyday
commodity

randomly using the user interface, strip fuse,
key, coin, mobile phone

1 standard tool screwdriver, multi-meter, multi-tool

2 simple tool corrugated-head screwdriver, CAN sniffer,
oscilloscope

3 advanced tools debugger, flashing tools, bus communication
simulators

Table 2. Required know-how ‘K’ Classification - determination of ‘K’ value for required
know-how to exert threat

Level Required know-how Example

0 no prior knowledge
(black-box
approach)

average driver, unknown internals

1 technical knowledge
(gray-box
approach)

technician, basic understanding of internals

2 domain knowledge
(white-box
approach)

person with technical training and focused
interests, internals disclosed

Table 1 classifies the required resources -‘R’ to threaten the SuDs secu-
rity and gives some examples of tools required to successfully exert the security
threat. Level 0 covers threats not requiring any tools at all or an everyday com-
modity, available even in unprepared situations. Level 1 tools can be found in any
average household, while availability of level 2 tools is more limited (such as spe-
cial workshops). Tools assigned to level 3 are advanced tools whose accessibility
is very limited and are not wide-spread.

Table 2 does the same classification for the required know-how -‘K’. Here
level 0 requires no prior knowledge at all (the equivalent of black-box approach).
Level 1 covers persons with technical skills and basic understanding of internals,
representing the equivalent of gray-box approaches, while level 2 is tantamount to
white-box approaches and represents persons with focused interests and domain
knowledge.

An overview of the criticality of a security threat -‘T’ is given in Table 3.
Level 0 indicates in this case a security irrelevant impact, such as raw data which
can be visualized but whose meaning cannot be determined. The threat impact
of level 1 threats is limited to annoying, maybe reduced, availability of services,
but does not imply any damage of goods or manipulation of data or services;
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Table 3. Threat criticality ‘T’ classification - determination of ‘T’ value of threat
criticality

Level Threat Criticality Example

0 no security impact no security relevant impact

1 moderate security relevance annoying manipulation, partial reduced
availability of service

2 high security relevance damage of goods, invoice manipulation, non
availability of service, possible privacy
intrusion

3 high security and possible
safety relevance

maximum security impact and life-threatening
abuse possible

such threats belong to level 2. Level 3 threats imply privacy intrusion or impacts
on human life (quality of life) as well as possible impacts on safety features.

SecL =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if T = 0
> 0 if T = 3
4 if 5 − K − R + T ≥ 7
3 if 5 − K − R + T = 6
2 if 5 − K − R + T = 5
1 if 5 − K − R + T = 4

(1)

These three factors determine the resulting security level (SecL). The SecL
determination is based on the ASIL determination approach and is calculated
according to (1). A depiction of this SecL determination in matrix form is shown
in Table 4.

The quantification of required know-how and tools instead of any likelihood
estimation (e.g. of the attacks success or fail) is beneficial due to the fact that the
classification of these factors is more common in the automotive domain and is
more likely to remain the same over the whole life-time of the SuD. Besides this,
the quantification of these two factors can be seen as equivalent to a likelihood
estimation of an attack to be carried out. The quantification of the threats
impact, on the one hand, determines whether the threat is also safety-related
(threat level 3) or not (all others). An information which is handed over to the
safety analysis method in the second stage of the SAHARA approach. On the
other hand, this quantification enables the possibility of determining limits of
resources spent to prevent the SuD from a specific threat (risk management for
security threats). After this quantification these threats may then be adequately
reduced or prevented by appropriate design and countermeasures.

In the case of safety-related security threats, the threat can be analyzed
and resulting hazards evaluated according their controlability, exposure, and
severity. This improves, as mentioned earlier in this document, the completeness
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Table 4. SecL determination matrix - determination of the security level from R, K,
and T values [8]

Required
Resources ’R’

Required
Know-How ’K’

Threat Level ’T’

0 1 2 3

0 0 3 4 4
1 0 2 3 40
2 0 1 2 3

0 0 2 3 4
1 0 1 2 31
2 0 0 1 2

0 0 1 2 3
1 0 0 1 22
2 0 0 0 1

0 0 0 1 2
1 0 0 0 13
2 0 0 0 1

of the required situation analysis of the HARA approach by implying factors of
reasonably foreseeable misuse (security threats) in a more structured way.

4 Application of the Approach

This section describes the application of the SAHARA approach for an auto-
motive battery management system (BMS). The BMS use-case is an illustrative
material, reduced for training purpose of both students and engineers. Therefore,
technology-specific details have been abstracted for commercial sensitivity and
presented analysis results are not intended to be exhaustive.

BMS are control systems inside of high-voltage battery systems used to power
electric or hybrid vehicles. The BMS consists of several input sensors, sensing
e.g. cell voltages, cell temperatures, output current, output voltage, and actua-
tors (the battery main contactors). Figure 2 depicts the general structure, main
hardware components, and software modules of the high-voltage battery with
BMS. The illustration shows the main features of a BMS:

– Power contactors - connection with vehicle HV system
– Interlock - de-energizing HV system when tripped
– CAN - automotive communication interface
– Relay - main contactor and output unit of the BMS
– Temperature sensors - feedback of actual cell temp
– Voltage/current sensors - feedback of actual cell voltages / current flows
– Fuse - protective circuit breaker in case of fault
– Cells - electro-chemical energy storage
– BMS controller - monitoring and control unit
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Fig. 2. Depiction of the general BMS use-case structure

Fig. 3. Screenshot of a common HARA spreadsheet

The BMS is a safety related system intended for installation in series pro-
duction passenger cars and therefore within the scope of ISO 26262. For this
reason, ISO 26262 aligned development processes are required. For the scope of
this work the focus is set on hazard analysis and risk assessment (HARA) to
elaborate a functional safety concept, which has been done with the SAHARA
approach.
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Fig. 4. Screenshot of application of SAHARA method

As already mentioned in the description of the SAHARA approach, a HARA
safety analysis can be done in a conventional manner. Figure 3 shows a common
spreadsheet approach for an ISO 26262 aligned HARA. As can be seen in this
figure, a description of the hazard and the worst situation in which this hazard
may occur is provided in a first step. This ‘hazardous situation’ is classified by
an ASIL via severity, exposure, and controllability in step two. An high-level
safety target (safety goal) and safety function (safe state) description concludes
the conventional analysis.

In comparison, the SAHARA method, as an excerpt shows in Fig. 4, follows
this concept. As first step the components of the system and their possible
attack vector groups (taken from initial system design and STRIDE approach)
used generate a list of possible attacks (see Fig. 4 column two and three). This
list is refined with a general situation description in which this attack may be
performed and the system service (high level service provided by the system, also
from initial design phase) malfunction to which the attack will lead (see Fig. 4
column four and five). The first phase of the SAHARA method is concluded
by the classification of the security risk by a SecL via resource, know-how, and
threat level of the security attack. This SecL classification provides means for
assigning adequate efforts to mitigate the security risk and also states high-level
security requirements to close these attack vectors.

Figure 4 also shows a highlighting of threat levels 3. These security threats
are handed over to the safety analysis for further analysis of their safety impact
(step two of the SAHARA method).

An excerpt of the SAHARA analysis of the BMS use-case is shown in Fig. 5.
The SAHARA of the BMS use-case covers 52 hazardous situations, quantifies the
respective ASIL and assigns safety goals fully in line with the ISO 26262 stan-
dard. Additionally, 37 security threats have been identified using the STRIDE
approach and quantified with their respective SecL. 18 security threats have
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Fig. 5. Application of the SAHARA approach for the BMS use-case

Fig. 6. Analysis of SAHARA approach for the BMS use-case - representation of safety
hazards (identified with common HARA approach) plus additional hazards resulting
from security threats (newly identified with SAHARA approach)

been classified as having possible impacts on safety goals and have therefore
been further analyzed for their impacts on safety of the SuD. Figure 6 presents
the number of hazardous situations which have been analyzed and quantified
with ASILs and highlights the additional portion of additional safety hazards
derived from security threats.

5 Conclusion

In conclusion, safety and security are two challenging research domains for future
automotive systems. Although these two features have been treated separately
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it is becoming increasingly relevant to exploit commonalities and tackle safety
and security development with concurrent methods.

This paper therefore presents an application of the SAHARA method for
an automotive use-case. This safety-aware hazard analysis and risk assessment
(SAHARA) approach combines the automotive HARA (hazard analysis and risk
assessment) with the security domain STRIDE to trace impacts of security issues
on safety goals on system level. The SAHARA approach is fully in line with the
requirement of a HARA analysis from the automotive safety standard for road
vehicles ISO 26262 [4] and implies a quantification scheme for security threats.

The feasibility and usefulness of the SAHARA approach for ISO 26262 aligned
development has been demonstrated on a battery management system use-case.
The application of the SAHARA approach identified 34% more hazardous situ-
ations than the application of a traditional HARA approach. The applied app-
roach conjointly combines concurrent safety and security co-development and
supports the considerable overlap of in-place safety and security methods.

While the authors do not claim completeness of the analysis of the use-case
(due to confidentiality issues), the benefits of the approach are already evident.
First, the dependencies between safety and security analysis are made explicit
and can be handed over from one domain to the other. Second, and maybe
the most important, the proposed cooperative safety and security evaluation
enables consolidation of the different system attributes in a consistent way and
at an early design phase.
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Abstract. In this paper, we propose a formal approach to support-
ing safety and security engineering, in the spirit of Model-Based Safety
Assessment, using the Alloy language. We first implement a system mod-
eling framework, called Coy, allowing to model system architectures and
their behavior with respect to component failures. Then we illustrate
the use of Coy by defining a fire detection system example and analyz-
ing some safety and security requirements. An interesting aspect of this
approach lies in the “declarative” style provided by Alloy, which allows
the lean specification of both the model and its properties.

1 Introduction

In the context of critical systems engineering, formal approaches have been used
for a long time with great successes. In particular, in order to support safety
analyses, an approach called Model-Based Safety Assessment (MBSA) [3] has
been proposed. The language AltaRica [1] and associated tools is one the main
techniques used in MBSA. It allows to model system architectures as a set of
communicating automata (one automaton per function or system, depending on
the level of abstraction retained for the system under study) and then to study
the impact of failure or erroneous events. Then, for instance, fault trees may
be generated, the impact of events can be simulated or some property can be
assessed exhaustively using a model-checker. Besides, some security properties
can also be addressed with the same kind of approach as the language is in fact
agnostic with respect to the nature of feared events.

Following earlier work, we propose here to address the question of safety
and security assessment using the Alloy language and the Alloy Analyzer free-
software tool. Alloy [9] is a formal modeling language amenable to automatic
analyses. Alloy has recently been used in the context of security assessment, for
instance to model JVM security constraints [11], access control policies [12], or
attacks in cryptographic protocols [10]. Besides, we proposed in earlier works a
study of the safety and security assessment of an avionic system supporting an
approach procedure [4–6].

Our motivation for relying on Alloy instead of, say, AltaRica is to take benefit
from the model-based aspect of Alloy and its expressiveness for the specification
of the properties to check. Indeed, Alloy allows to define metamodels easily,
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which allows for instance to devise domain-specific metamodels. Here, as will
be seen, we develop in Alloy a modeling framework called Coy which can be
partly seen as the embedding of the general concepts of AltaRica into Alloy
(ignoring concepts we do not need). Furthermore, with Alloy, the specification
of the properties we check is expressed in relational first-order logic, with many
features adapted to model-based reasoning.

With respect to our previous propositions around using Alloy for MBS&SA,
we devise here a richer architectural framework and, more importantly, we for-
malize a notion of behavior so as to be able to check properties of the considered
system along time.

Thus, this paper is organized as follows: in Sect. 2, we give a very brief account
of Alloy. Then, in Sect. 3, we describe the Coy modeling framework that we
implemented in Alloy to model system architectures and their behavior. We
show how Alloy is well adapted to designing domain-specific metamodels and
to getting some flexibility in the modeling of time and behavior. In Sect. 4,
we illustrate our approach on a fire detection example that we model in Alloy
following the Coy metamodel. In particular, we show how using Alloy allows
to express “in one shot” properties ranging over a set of elements selected by
navigating in the model structure.

2 Alloy in a Nutshell

Alloy is a formal modeling language that is well adapted to the following (non-
exhaustive) list of activities: abstract modeling of a problem or of a system;
production of a metamodel (model corresponding to a viewpoint); analysis of a
model using well-formedness or formal semantic rules; automatic generation of
an instance conforming to a model, possibly according to supplementary con-
straints; finding interesting instances of a model. Models designed in Alloy can
deal with static aspects only, or integrate also dynamic aspects, so as to check
behavioral properties.

We now give a brief glance at the main concepts of the language using a
simple example. The most important type of declaration is that of a signature
which introduces a structural concept. It may be seen as a class or entity in
modeling parlance. A signature is interpreted as a set of possible instances; and
it can also come with fields that may be seen, as a first approximation, as class
attributes or associations.

sig Data { consumedBy : some System }
sig System {}
sig Criticality {

concernedData : one Data,
concernedSystem : one System

}
Here, we defined 3 concepts: Data, System and Criticality. Alloy advocates

not to delve into unnecessary details and only give information on things we
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want to understand or analyze. Thus, here, a system is just defined to be a set
of “things”, but we do not say anything about the exact nature of its elements.

The keywords some or one give details on the multiplicity of the relation,
as 1..* and 1 in UML. Here the field declarations mean that: every datum is
consumed by at least one (some) system; every criticality concerns exactly one
(one) data and one system. Other possible multiplicities are: lone which means
at most one (0..1); and set which means any number (0..*).

Then, we can add constraints on possible instances of our model. For instance,
we would like to state that every system consumes at least one datum. This can
be done by writing additional facts (facts are axioms, so as few facts as possible
should be stated in order to avoid over-specification):
fact {

// every system consumes at least one datum
all s : System | some consumedBy.s
// for any system which consumes a given datum, the said datum and system
// should belong to a same unique criticality
all d : Data | all s : System | one c : Criticality |

c.concernedData = d and c.concernedSystem = s
}

The . operator yields the join of two relations, matching the last column
from the first one to the first column of the second one. Thus one may write
d.consumedBy to get the systems consuming a data d, but also consumedBy.s
to get the data consumed by the system s.

The formal foundation of Alloy is relational first order-logic, that is first-
order logic extended with relational terms (including the transitive closure of
a binary relation). Besides allowing navigation in models, this logic suffices to
encode various models of time (e.g. to go from a linear to a tree view of time, or
to give either an interleaving or a true-concurrency semantics).

Finally, although the language does not preclude unbounded verification in
principle, in practice the Alloy Analyzer works only on finite models, reducing
a given problem to a SAT instance the analysis of which is delegated to an off-
the-shelf SAT solver. Then Alloy may be used to carry out some explorations
(the command run builds instances that satisfy a given statement) or to check
whether a given assertion is satisfied by all instances of the model (command
check). Therefore, as analysis is sound but carried out on finite instances only,
the Alloy Analyzer is able to find counter-examples up to a certain bound but
it cannot prove the validity of an assertion. This is not a problem in our case
because (1) the system architecture we consider is fixed in advance so its number
of instances may not vary and (2) only time (i.e. the size of the time model)
may be unbounded but, in our analyses, we do not aim at proving the absence
of errors but rather that a bounded number of events does not lead to a feared
situation (which induces that bounded time is sufficient).

3 The Coy Modeling Framework

We now present the Coy modeling framework, implemented as a metamodel in
Alloy (i.e. a model where each signature is abstract and only instantiated in a
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second model corresponding to the system under study). We take inspiration in
model-based safety assessment but our formalization is not specific to this sole
family of properties.

As will be seen hereafter, Coy models essentially represent hierarchical struc-
tures of transition systems communicating instantaneously through data ports.

The overall structure of the framework is presented graphically in Fig. 1.
Extension links are figured using black dashed arrows. As the metamodel con-
tains n-ary relations with n > 2, the figure shows these after projection on parts
of their domain (this is indicated using square brackets, as in conns[Port] for
instance). Furthermore, the metamodel contains a Time signature: its purpose is
that every signature field with Time as its last column can be conceptually seen
as mutable field, i.e. its value may change (discretely) over time. Notice that the
metamodel in Fig. 1 is projected over Time, hence it is not shown in the diagram.

Fig. 1. Graphical depiction of the coy metamodel (projected over Time)

3.1 Composite Structure

Let us now delve into more details in the metamodel (in what follows, for the
sake of readability, we do not show all Alloy facts enforcing the well-formedness
of instance models or just classical properties). The basic architectural element
is a node. Nodes are arranged hierarchically as a tree, so we use the classical
Composite design pattern and devise a notion of AbstractNode which is inher-
ited by signatures CompositeNode and LeafNode, the former pointing back to
abstract nodes.

Every node comes with a set IPort of input ports and a set OPort of output
ports. These sets are disjoint and every port belongs to a single node. Every port
carries a value at every instant (possible values may differ for distinct ports).
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Connections (between ports) are constrained so that they cannot cross a
parent node boundary or many levels of composition. In other words, nodes are
arranged as trees and connections can only happen between siblings or between
a parent and a child. Furthermore, connected ports always carry the same value.

abstract sig Port { // a port carries one value at every instant
val : Value one →Time }

abstract sig IPort, OPort extends Port {}
abstract sig AbstractNode { // input and output ports

input : set IPort,
output : set OPort }

abstract sig CompositeNode extends AbstractNode {
// a composite node contains at least one sub−node
subs : some AbstractNode,

// port connections with siblings and between sub−nodes and this node
conns : subs.@output →subs.@input +input →subs.@input

+subs.@output →output,
} { // connected ports always carry the same value

all t : Time, po, pi : Port | po→pi in conns implies po.val.t = pi.val.t
// +other structural properties
... }

abstract sig LeafNode extends AbstractNode { ... }

3.2 Behavior

As Coy is mainly aimed at describing systems where atomic nodes are endowed
with behavior, we now introduce a notion of state (for leaf nodes) and of events
that may happen. One approach to deal with such models could be to rely on
classical model-checkers, such as Spin [8] or NuSMV [7], the modeling languages
of which are well-suited to describing transition systems. While this is of course
a possibility, our aim with using Alloy is:

– to be able to easily adapt the Coy metamodel depending on the domain of
study (e.g. to add a notion of connectors as in many architecture-description
languages);

– as explained earlier, to change the model of time if need be (e.g. to go from
a linear to a tree view of time, or to give either an interleaving or a true-
concurrency semantics);

– and above all to allow the use of logic for specification, which brings two
interesting aspects:
1. it provides a single language to specify both models and expected

properties;
2. the logic allows for the expression of rather abstract properties (e.g. rely-

ing on under-specification) or to navigate through elements of a model to
specify a given property in only one formula.
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Thus, every leaf node is in one given state at any time (the set of possible
states may vary for two different nodes). Besides, such nodes may undergo events.
An event is an instance of an event type that happens at a certain instant and
concerns a given node: this distinction between events and event types then
allows to consider events of a certain type only, for instance to characterize their
effects.

Notice also we impose the end-user to give, for any leaf node, the set of its
possible states and the set of event types that concern it: this is a bit redundant
from the theoretical point of view but it provides a sort of additional safety check
akin to a poor man’s typing that we deem important from a methodological point
of view.

abstract sig LeafNode extends AbstractNode {
possibleStates : some State,
state : possibleStates one →Time,
possibleEventTypes : set EventType,

}
abstract sig EventType {}
abstract sig Event { // event occurrence

instant : one Time,
node : one LeafNode,
type : one EventType

} { type in node.possibleEventTypes }
Finally, as Alloy does not feature a native notion of time, we encode it by

characterizing finite traces of instants. The fact accounting for this says how
states change depending on events, at every instant.

fact traces { // if a node state changed, there was an event concerning this node
all t : Time, t’ : t.next, n : LeafNode {

n.state.t �=n.state.t’ implies some e : Event {
e.instant = t

e.node = n } } }

4 Fire Detection Example

In this section, we provide an illustration of Coy with a fire detection system in
facility such as, for example, an airport or a port.

4.1 Presentation of the System

The system consists of the following components: a smoke detector and a heat
detector, which are part of the automatic fire alarm system; a manual fire alarm
pull station; the local firemen, inside the facility; and the city firemen, in the
nearest city.
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The automatic fire alarm system, which is activated by either of the two
detectors, directly calls the city firemen. The manual pull station, triggered by
a human present on site, calls both the local and the city firemen.

We also represent two possible failures for each of the components: (1) the
loss of a component: once a component is lost, it does not send any information,
(2) an erroneous failure of a component: after this kind of failure, a component
sends a corrupted data (in the case of a fire detector, for instance, it can be
a false alarm or a false negative). Lastly, we represent three security threats:
(1) intentional wrong activation of the pull station, (2) the deactivation of the
smoke detector and (3) of the heat detector.

Notice that the loss of a component and the deactivation of the smoke detec-
tor (or of the heat detector) have the same effect on a component (the availability
is not ensured) although they do not have the same nature (the former is a fail-
ure, the latter is a security threat). The same applies to an erroneous failure
and the intentional wrong activation of the pull station, which both affect the
integrity of the information. Nevertheless, it is important to distinguish between
these failure and threat events in order to allow a pure safety analysis, a pure
security analysis, and a combined analysis.

4.2 Coy Model

The Coy model of this system imports the Coy metamodel, declares signatures
instances and relates them. Components of the system are modeled as Coy nodes.
Figure 2 illustrates a particular instance of the fire detection model at a given
instant. As can be seen, at this instant, all nodes are in the state OK and all
ports yield a correct data (modeled by OKVal). The occurrence of an event of
type failLoss (see the declaration of event types below) can be observed on the
node pullStation.

Regarding the possible failures and threats mentioned above, we use the
following event types, node states and possible values for the node ports.
one sig failLoss, failErr, threatBlock, threatPull extends EventType {}
one sig OK, Lost, Err extends State {}
one sig OKVal, LostVal, ErrVal extends Value {}

Then, we can declare the components and ports, as instances of the cor-
responding Coy concepts. For instance, here is the declaration of the fire pull
station.
one sig pullStation extends LeafNode {} {

input = none and output = oPullStation
possibleStates = OK +Lost +Err and possibleEventTypes = failLoss +threatPull

}

The model also comprises axioms stating what happens to nodes depending
on observed events. An interesting point here is that this description is declara-
tive and does not depend on the effective nodes and ports. Concerning an event
of type failLoss:

– the event can only occur on a node which is not in the state Lost,
– after the occurrence of the event, the node moves to the state Lost.
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Here, we chose to model events of type threatBlock in the same way (the
node also moves to the state Lost). So, they have the same effect (but they do
not occur on the same components). In further analysis, if we want to distinguish
between the effects of both kinds of events, we just have to use a specific node
state and a specific port value corresponding to the occurrence of threatBlock.

The behavior of events of type failErr and threatPull are specified in a
similar way.
fact behaviour {

all e : Event | e.type in failLoss +threatBlock
implies e.node.state.(e.instant) �=Lost and e.node.state.(e.instant.next) = Lost

all e : Event | e.type in failErr +threatPull
implies e.node.state.(e.instant) = OK and e.node.state.(e.instant.next) = Err

}

The propagation of values is also described by an Alloy fact. For example,
here is the description of the value propagation for leaf nodes with one input:

// leaf nodes w/ 1 input
all n : LeafNode, t : Time | {

one n.output // tautology for this specific model, but useful if we extend it
one n.input

} implies {
n.state.t = OK implies n.output.val.t = n.input.val.t
n.state.t = Err implies n.output.val.t = ErrVal
n.state.t = Lost implies n.output.val.t = LostVal

}

4.3 Properties Verification

Now we can express the safety and security properties that we want to check as
Alloy assertions. We have mainly expressed properties related to the consequence
of some failures/threats or to the robustness of the system to a given number of
failures/threats. For instance, the following assertion states that whenever the
smoke detector is lost (and all other nodes are OK) then the firemen can still
act.
assert smokeDetectorLoss {

all t : Time | {
all n : LeafNode − smokeDetector | n.state.t = OK
smokeDetector.state.t = Lost

} implies (localFiremen +CityFiremen).output.val.t = OKVal
}

The following assertion expresses that whenever the pull station is attacked,
(and all other nodes are OK) then at least one firemen department is able to
act.
assert pullStationThreatPull{

all t : Time | {
all n : LeafNode − heatDetector | n.state.t = OK
heatDetector.state.t = Err

} implies OKVal in (localFiremen +CityFiremen).output.val.t
}

Notice that the first-order quantifiers and the object-oriented syntax allows
to navigate easily through the model and is convenient to state safety properties.

The following assertion expresses that whenever the smoke detector is erro-
neous and the pull station is attacked threatPull, then both local and city
firemen are unable to act.
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Fig. 2. Fire detection model example (see also Fig. 3 for following time steps); leaf
nodes are beige rectangles, output ports are red trapeziums, input ports are green
trapeziums and connections between ports are blue arrows (Color figure online).
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assert smokeDetectorFailErrPullStationThreatPull {
all t : Time | {

all n : LeafNode − (smokeDetector +pullStation) | n.state.t = OK
smokeDetector.state.t = Err
pullStation.state.t = Err

} implies OKVal not in (localFiremen +CityFiremen).output.val.t
}

The following assertions express the robustness of some parts of the system
to possible failures/threats. We took benefit from the possibility to reason about
a set cardinality in Alloy. Here, we count the number of events (corresponding
to failures/threats) that occurred before the system enters a bad situation. For
instance, the following assertion expresses that in order to make both local and
city firemen unable to act properly, either the threat threatPull has occurred,
or there has been at least two distinct failures/threats. Remark that it would
have been also possible to reason independently about the number of failures
and about the number of threats.
assert noSingleFailureThreatLeadsToFiremenNotOK {

all t : Time | OKVal not in (localFiremen +CityFiremen).output.val.t
implies some e : Event | e.type = threatPull and lt[e.instant, t]

or let events = { e : Event | lt[e.instant, t] } | #events ≥ 2
}

In order to check assertions, Alloy Analyzer searches for counter-examples
up to a certain bound (i.e. the counter-examples are such that their signatures
have a cardinality less than the bound). The bound can be given by the user or
chosen by the tool. In general, this bounded verification is thus incomplete: the
tool may not find counter-examples whereas there are some. But in our case, the
cardinality of all the signatures (nodes, ports, etc.) is fixed by the model itself.
Therefore, the verification performed by Alloy Analyzer is complete.

The last four assertions have been validated by Alloy Analyzer (it does not
find any counter-example).

The following assertion expresses that in order to make both local and city
firemen unable to act, there has to be at least three failures/threats in the
architecture.
assert noDoubleFailureThreatLeadsToFiremenNotOK {

all t : Time | OKVal not in (localFiremen +CityFiremen).output.val.t
implies let events = { e : Event | lt[e.instant, t] } | #events ≥ 3

}

This last assertion is not satisfied by the model. Alloy Analyzer exhibits a
counter-example where the pull station and the city firemen are lost after two
events (Fig. 2 shows the first time step of this counter-example, Fig. 3 shows the
next time steps).

5 Conclusion and Future Work

In this article, we presented a framework, called Coy, to model and assess safety
and security properties of behavioral models. We have chosen to embed it in Alloy
so that we can benefit from its model-based features and its expressiveness for
the specification of the properties to check. A Coy model essentially describes
transition systems communicating through data ports (note that other means
of communication, such as synchronization of transitions, are also possible).
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Fig. 3. Counter-example for assertion noDoubleFailureLeadsToFiremenNotOK (follow-
up from Fig. 2)
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We illustrated Coy through an example of a fire detection system, and showed
it is suited to the specification of failures and threats propagation along the sys-
tem. We were able to check properties over this system, and to generate counter
examples for the violated properties.

In this work, the security aspects are not developed (we have just considered
three threats that have the same kind of effects as failures). However, recent
works have showed the relevance of Alloy to assess more advanced security prop-
erties [6,10,11]. Moreover, it was shown that using AltaRica, one can specify the
effect of richer security threats over a system architecture [2] and check related
security properties. This is in favor of using Coy to model and assess security of
more complex systems architectures, where both concerns are rich and interact
with each other.
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Abstract. The distributed MILS (D-MILS) approach to high-assurance
systems is based on an architecture-driven end-to-end methodology that
encompasses techniques and tools for modeling the system architecture,
contract-based analysis of the architecture, automatic configuration of
the platform, and assurance case generation from patterns. Following
the MILS (“MILS” was originally an acronym for “Multiple Indepen-
dent Levels of Security”. Today, we use “MILS” as a proper name for an
architectural approach and an implementation framework, promulgated
by a community of interested parties, and elaborated by ongoing MILS
research and development efforts.) paradigm, the architecture is pivotal
to define the security policy that is to be enforced by the platform, and
to design safety mechanisms such as redundancies or failures monitoring.
In D-MILS we enriched these security guarantees with formal reasoning
to show that the global system requirements are met provided local poli-
cies are guaranteed by application components. We consider both safety-
related and security-related requirements and we analyze the decompo-
sition also taking into account the possibility of component failures. In
this paper, we give an overview of our approach and we exemplify the
architecture-driven paradigm for design and verification with an example
of a fail-secure design pattern.

Keywords: MILS · Contract-based design · Safety and security ·
Formal verification

1 Introduction

The MILS architectural approach [6] to the design and implementation of critical
systems involves two principal phases: the development of an abstract architec-
ture intended to achieve the stated purpose, and the implementation of that
architecture on a robust technology platform. During the first phase, essential
properties are identified that the system is expected to exhibit, and the con-
tributions to the achievement of those properties by the architectural structure
and by the behavioural attributes of key components are analyzed and justified.
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Safety and security are more and more intertwined problems. The poten-
tial impact of security threats on safety-critical systems is increasing due to the
interconnections of systems. Safety, security, and dependability are emergent
behavioural properties of a system interacting with its environment. The MILS
approach leverages system architecture to support vital system-level properties.
The architecture reflects an intended pattern of information flow and causality
referred to as the policy architecture, while key components of the architecture
enforce local policies through specific behavioural properties. By reasoning com-
positionally over the components about the policy architecture and the local
policies, many useful system-level properties may be established.

The MILS platform provides the technology for the concrete realisation of
an abstract system architecture. A separation kernel [31,33], the underlying
foundational component of the MILS platform, is used to establish and enforce
the system architecture according to its configuration data.

The assurance of a system’s properties depends not only on the analysis of its
design but on the correct implementation and deployment of that design. The
configuration of the separation kernel must faithfully implement the specified
architecture. This is guaranteed by the MILS platform configuration compiler
that is driven by a model of the architecture and the constraints of the tar-
get platform to synthesize viable and semantically correct configuration data
corresponding to the specified architecture.

In this paper, we give an overview of the integration of the MILS approach
with contract-based reasoning developed in the D-MILS project [1]. The app-
roach relies on the OCRA tool [13] to formally prove that the global system
requirements are met, provided local policies are guaranteed by application com-
ponents. We consider both safety-related and security-related requirements and
we analyze the decomposition also taking into account the possibility of com-
ponent failures. We exemplify the architecture-driven approach on the Starlight
Interactive Link example [5], extended with a safety mechanism in order to take
into account the possibility of component failures.

The rest of the paper is organized as follows: in Sect. 2, we give an overview of
D-MILS project; in Sect. 3, we detail how the MILS approach has been extended
with a contract-based design of the architecture and the related tool support;
in Sect. 4, we describe how we extended the Starlight example and the related
analysis of contract refinement; in Sect. 5, we give an overview of the related
work, while we conclude in Sect. 6.

2 Overview of D-MILS

The D-MILS concept extends the capacity of MILS to implement a single uni-
fied policy architecture to a network of separation kernels [28,29]. To accomplish
this, each separation kernel is combined with a new MILS foundational compo-
nent, the MILS networking system (MNS), producing the effect of a distributed
separation kernel. In the D-MILS Project [1] we have employed Time-Triggered
Ethernet (TTE) [32] as the MILS “backplane”, permitting us to extend the



266 A. Cimatti et al.

robustness and determinism benefits of a single MILS node to the network of
D-MILS nodes, referred to as the distributed MILS platform1 [26,27].

Since D-MILS systems are intended for critical applications, assurance of the
system’s critical properties is a necessary byproduct of its development. In such
applications, evidence supporting the claimed properties must often be presented
for consideration by objective third-party system certifiers. To achieve assurance
requires diligence at all phases of design, development, and deployment; and, at
all levels of abstraction: from the abstract architecture to the details of config-
uration and scheduling of physical resources within each separation kernel and
within the TTE interfaces and switches. Correct operation of the deployed sys-
tem depends upon the correctness of the configuration details, of the component
composition, of key system components2, and of the D-MILS platform itself.
Configuration is particularly challenging, because the scalability that D-MILS is
intended to provide causes the magnitude of the configuration problem to scale
as well. The concrete configuration data and scheduling details of the numerous
separation kernels and of the TTE are at a very fine level of granularity, and
must be complete, correct, and coherent.

The only reasonable prospect of achieving these various aspects of correct-
ness, separately and jointly, is through pervasive and coordinated automation as
embodied in the D-MILS tool chain. Inputs to the tool chain include, a declar-
ative model of the system expressed in our own MILS dialect of the Architec-
ture Analysis and Design Language (AADL) [18], facts about the target hard-
ware platform, properties of separately developed system components, designer-
imposed constraints and system property specifications, and human guidance
to the construction of the assurance case. Components of the tool chain per-
form parsing of the languages [19], transformations among the various internal
forms [20,21], analysis and verification [24], configuration data synthesis and
rendering [25], and pattern-based assurance case construction [22,23]. Outputs
of the tool chain include, proofs of specified system properties, configuration
data for the D-MILS platform, and an assurance case expressed in Goal Struc-
turing Notation (GSN) [2]. We say that D-MILS provides not only a robust and
predictable platform for system implementation, but also an end-to-end and
top-to-bottom method supported by extensive automation.

3 Architecture-Driven Integration of the MILS Approach
and Contract-Based Design

In this paper we focus on the integration of the MILS architectural approach with
contract-based design and analysis. Both MILS and contract-based approaches

1 Our D-MILS Platform is composed of the LynxSecure Separation Kernel from Lynx
Software Technologies, France, and TTE from TTTech, Austria.

2 The D-MILS Project regards proof of component correctness to a specification as a
“solved problem” and focusses on the correctness of the composition of components’
specifications, and of the configuration of the D-MILS platform.
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focus on architecture, and do so in a complementary way. MILS regards infor-
mation flow policy as an abstraction of architecture, and seeks to maximize the
correspondence between architectural structure and the desired information flow
policy of a system, which may rely on the behavior of key components to enforce
local policies that further restrict the maximal information flow permitted by the
architecture. The contract-based approach employs formalization and a method
to prove that the architecture decomposition represented in the set of contracts
of the components is a proper refinement of the system requirements. Contracts
specify the properties that the components individually, and the system as a
whole, are expected to guarantee, and the assumptions that their respective
environments must meet. Formal verification techniques are used to check that
the derivation of the local policies from the system requirements is correct.

An architecture is only as valuable as the integrity of its components and
connections. Recognizing the importance of integrity, MILS provides an imple-
mentation platform that can be configured to the “shape” of the architecture
by initializing it with specific configuration data compiled to embody the global
information flow policy.

The two methods are complementary and their combination yields a strong
result. The contract-based method proves that the composition of components
that satisfy their contracts will meet the system requirements, provided that
their integrity is protected. The MILS platform guarantees the integrity of com-
ponents and their configured connections, preventing interference that could
cause a verified component to fail to satisfy its contract3.

In Fig. 1, we show the approach applied to an abstract example. The system
A is decomposed into subsystems B and C, and B in turn is decomposed into
D and E. Each component is enriched with a contract (represented here by
green scrolls). If the contract refinement is correct, we have associated with the
architecture a formal proof that the system is correct provided that the leaf
components (D, E, and C) satisfy their contracts. Namely, if D and E satisfy
their contracts (D |= PD, E |= PE) and the contract refinement of B is correct
(γB(PD, PE) � PB), then the composition of D and E satisfies the contract of
B (γB(D,E) |= PB). Moreover, if C satisfies its contract (C |= PC) and the
contract refinement of A is correct (γA(PB , PC) � PA), then the composition of
B and C satisfies the contract of A (γA(B,C) |= PA).

In MILS terms, the architecture defines three subjects (D, E and C) and
prescribes that the only allowed communications must be the ones between D
and E and between E and C. This is translated into a configuration for the
D-MILS platform (taking into account other deployment constraints in terms of
available resources), which in this example encompasses two MILS nodes.

3.1 Tool Support for Contract-Based Reasoning

In D-MILS, the architecture is specified in a variant of AADL, called MILS-
AADL, similar to the SLIM language developed in the COMPASS project [7].
3 For the purpose of our work we assume that components can be constructed and

verified to satisfy their contracts.
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Fig. 1. The architecture is used for (1) formal reasoning to prove that the system
requirements are assured by the local policies, (2) configuration of the platform to
ensure the global information flow policy and the integrity of the architecture.

The COMPASS tool set has been extended in order to support the new language
and to enrich the components with annotations that specify different verifica-
tion properties such as contracts. The language used to specify the component
contracts is the one provided by the OCRA tool [13]. It consists of a textual
human-readable version of a First-Order Linear-time Temporal Logic. The logic
has been extended in D-MILS to support uninterpreted functions, i.e. functional
symbols that do not have a specific interpretation but are used to abstract pro-
cedures and the related results (such as CRC checksum or encryption), or to
label data with user-defined tags (such as “is high” or “low-level”, etc.).

Such a very expressive language required the development of effective tech-
niques to reason about the contracts. To this purpose the engine undertakes to
prove the contract refinement. The refinement is first translated by OCRA into
a set of entailment problems in temporal logic. nuXmv [11] translates this into a
liveness model-checking problem with a classic automata-theoretic approach [37].
The resulting problem requires proving that a certain liveness condition can be
visited only finitely many times along an (infinite) execution. This problem is in
turn reduced to proving an invariant on the reachable states with the K-liveness
techniques described in [17]. This has been extended to infinite-state systems and
to take into account real-time aspects in [15]. Finally, the invariant is proved with
an efficient combination of induction-based reasoning, explicit-state search, and
predicate abstraction, extending the IC3 algorithm [9] to the infinite-state case,
as described in [14].
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4 Starlight Example

4.1 Architecture

In this section, we exemplify the approach on an example taken from the lit-
erature [5,12]. The Starlight Interactive Link is a dispatching device developed
by the Australian Defense Science and Technology Organization to allow users
to establish simultaneous connections to high-level (classified) and low-level net-
works. The idea is that the device acts as a switch that the user can control
to dispatch the keyboard output to either a high-level server or to a low-level
server. The user can use the low-level server to browse the external world, send
messages, or have data sent to the high-level server for later use.

Fig. 2. Architecture of the D-MILS Starlight example.

Figure 2 shows the architecture of the Starlight Interactive Link as formal-
ized in D-MILS. The components H and L represent respectively the high-level
and low-level networks. The low-level network can exchange information with
the external world. The component D represents the Starlight device, which
receives commands from the user and dispatches the commands to H or to L
based on an internal state. The state is changed with two switch commands,
namely switch to low and switch to high. The original architecture has only the
blue components, with D in place of E . We extended this architecture with a
safety mechanism to make the system “fail-secure” with respect to failures of
the dispatcher: the dispatcher is extended with a monitor M ; the communication
of the dispatcher to L is filtered by M that in case of failure of D blocks the
communication. To avoid confusion we refer to the actual device that is filtered
by M as the dispatcher (D), while to the component consisting of D and M as
the extended dispatcher E .
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4.2 System Contract

The architecture has been enriched with contracts that formalize the functional
requirements to ensure that the system responds correctly to the user commands,
and the security requirement that there is no leakage of high-level data. Here,
we focus on the latter, which says:

Req-Sys-secure: No high-level data shall be sent by L to the external world.
The architecture ensures Req-Sys-secure assuming the following requirement
on the user:

Req-User-secure: The user shall switch the dispatcher to high before entering
high-level data.
Moreover, we consider the following safety requirement:

Req-Sys-safe: No single failure shall cause a loss of Req-Sys-secure.

We formalized the requirements of the system and of the components using
OCRA contracts. In the following, we use the concrete syntax accepted by the
tool. We briefly clarify the used notation: “and”, “or”, “not”, “implies” are stan-
dard Boolean operators; “always”, “never”, “since”, “in the past” are standard
temporal operators of LTL with past also referred to with the mathematical
notation G, G¬, S, O; “last data” is a built function to refer to the last data
passed by the event of a event data port; italics names refer to ports or uninter-
preted functions declared in the model.

The requirements Req-Sys-secure and Req-User-secure have been formalized
into the FO-LTL formulas:

Formal-Sys-secure: never is high(last data(outL))
Formal-User-secure: always ((is high(last data(cmd))) implies ((not

switch to low) since switch to high))

Note that the formalization of Req-User-secure improves the informal require-
ment, which is not precise. A literal formalization would be:

Formal-User-secure-wrong: always ((is secure(last data(cmd))) implies (in
the past switch to high))

but this is wrong, because we have to ensure that the last switch was a
switch to high, without a more recent switch to low4. We can actually improve
the informal requirement as:

Req-User-secure-new: Whenever the user sends commands with high data,
she shall previously issue a switch to high and no switch to low since the last
switch to high.

which is formalized by Formal-User-secure.

4 As suggested by one of the reviewers, in an alternative model, we could use only one
event data instead of two switch events and ensure that the last switch was low.
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Note that while Req-Sys-secure is a requirement on the implementation of the
Starlight system, Req-User-secure is actually a requirement on its environment
(the user). This is reflected by the system contract specification, which sets
Formal-Sys-secure as the guarantee and Formal-User-secure as the assumption
of the system contract.

4.3 Component Contracts

The dispatcher ensures the system security requirement with the following local
requirement:

Req-D-low-mode: The dispatcher shall send commands to L only if the last
switch was a switch to low and the input command has been received after.

formalized into:

Formal-D-low-mode: always (cmdL implies (((not switch to high) since
switch to low) and ((not switch to low) since cmd)))

In order to fulfill requirement Req-Sys-safe, we also filter the commands to L
by a monitor M , which has a requirement Req-M-low-mode identical to Req-
D-low-mode, and formalized in the same way. Thus, D passes also the switches
to the monitor and must ensure the following requirement:

Req-D-fw-switch: Whenever the dispatcher receives a switch to high, it shall
pass it to M before doing any other actions and it sends a switch to low to
M only if the last received switch was a switch to low.

formalized into:

Formal-D-fw-switch: always ((switch to high implies ((not (cmdH or cmdL or
return or monitor switch to low)) until monitor switch to high)) and (mon-
itor switch to low implies ((not switch to high) since switch to low)));

Finally, in order to make the refinement correct, we must require all compo-
nents to not invent high data. We express this by requiring that D , M , and L
only pass the data that they have received. Thus, for D , we require that:

Req-D-data: D shall pass to cmdL only the data that has been received with
last cmd.

formalized into:

Formal-D-data: always ((cmdL implies ((in the past cmd) and (last data
(cmdL) = last data(cmd)))))

The requirements Req-M-data and Req-L-data, of M and L respectively,
are analogous. Note that these formulas are actually guarantees of corresponding
contracts, without assumptions (i.e. assumptions equal to true).
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4.4 Analysis Results

Given the above contract specifications, OCRA can prove the system Req-Sys-
secure assuming Req-User-secure is correctly refined by the contracts of D , M ,
and L (see [16] for more details on the technique). One can also show that by
using Formal-User-secure-wrong instead of Formal-User-secure the refinement is
not correct and yields a counterexample trace execution.

Fig. 3. Fault-tree generated from the contract refinement. Events are labeled with the
name of the component instance followed by the name of the contract, followed either
by FAILURE O, which represents the failure of the component to satisfy the contract,
or by FAILURE I, which represents the failure of the component environment to satisfy
the contract assumption.

In order to prove Req-Sys-safe, we use OCRA to produce a fault tree showing
the dependency of the system failure on the failure of the components (see [8] for
more details on the technique). The generated fault tree is exhibited in Fig. 3.
It shows that neither Req-D-low-mode nor Req-M-low-mode are single points
of failure. Instead, Req-D-data, Req-M-data, Req-L-data are single points of
failure. While the failure of Req-L-data does not represent real threats since L
never receives high data, the failure of Req-D-data and Req-M-data could result
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in D or M sending information that had been temporary stored in a buffer used
for handling multiple requests or in a cache for improving performance. This can
be solved for example by ensuring that such memories are deleted before every
switch to low is completed.

5 Related Work

Security-by-contract is an approach proposed in [30] to increase the trust in
code downloaded on mobile applications. The work proposes a framework where
downloaded code can be checked according to a security contract. With respect
to this work, there is no focus on the system architecture, the refinement of
contracts, or safety analysis taking into account component failures.

Information flow contracts are supported in SPARK, a safety-critical subset
of Ada [3,4]. The SPARK contracts are specified at software level on procedures.
So, in principle, they are complementary to our approach, which focuses more
on the system-level architecture. As for future work, we will consider to extend
the approach with information flow contracts. Currently, the information flow
can be specified only at coarse level with the connections in the architecture. To
our knowledge, there are no works combining SPARK information flow contracts
with safety analysis.

In [10], an avionic case-study architecture is formalized in Alloy and analyzed
with respect to safety and security requirements. Similarly to our approach, first-
order logic is used to formalize the requirements, although Alloy does not support
temporal operators. The case study formalizes also security attacks that are
not present in our example. Different to our approach, the failures and security
attacks are explicitly modeled, while in our case we exploit a feature of OCRA to
automatically inject the failures starting from the nominal contract specification.
Our conjecture is that the same case study of [10] can be formalized in MILS-
AADL or directly in OCRA with the possibility of checking contract refinement
and performing contract-based fault-tree analysis.

Another case study on validation of safety and security requirements has
been presented in [35], but it focuses on testing.

Fault trees and FMEA have been extended in [34,36] to consider also secu-
rity aspects. Different to our approach and other model-based safety analysis
techniques, these works are not based on the automatic generation of fault trees
and FMEA tables from the system design.

6 Conclusions

In this paper, we briefly overview the approach to safety and security undertaken
in D-MILS and we describe a small example of the D-MILS approach to the ver-
ification of the system architecture with respect to safety and security require-
ments. The example is based on the Starlight device that switches commands
between high-level and low-level servers. The requirements of the system and its
components have been formalized using OCRA contracts, their refinement has
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been verified and analyzed taking into account the failure of components. This
is a preliminary application of the methodology, which will be further evaluated
in the D-MILS project demonstrators. In the future, we would like to integrate
contracts and their analysis with finer-grained information flow properties as do
the SPARK contracts discussed in [3,4].
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Abstract. Urban railway systems are increasingly relying on infor-
mation and communications technologies (ICT). This evolution makes
cybersecurity an important concern, in addition to the traditional focus
on reliability, availability, maintainability and safety. In this paper,
we examine two examples of cyber-intensive systems in urban rail-
way environments—a communications-based train control system, and
a mobile app that provides transit information to commuters—and use
them to study the challenges for conducting security analysis in this
domain. We show the need for a cyber-physical perspective in order to
understand the cross-domain attack/defense and the complicated phys-
ical consequence of cyber breaches. We present security analysis results
from two different methods that are used in the safety and ICT security
engineering domains respectively, and use them as concrete references to
discuss the way to move forward.

Keywords: Security analysis · Urban railway systems · Cyber-physical
systems

1 Introduction

Information and communications technologies (ICT) play a vital role in help-
ing railway operators improve their system safety and service reliability, pro-
vide higher transit capacity, and keep the costs of building, operating, and main-
taining their infrastructure in check. For example, many urban transportation
systems around the world have deployed some form of communications-based
automatic train control (e.g., [1,2]). In those systems, multiple cyber compo-
nents, including wireless communication, software-defined control logic, and near-
real-time data visualization at control centers, have been introduced to replace
their conventional physical counterparts. As another example, with smart phones
becoming ubiquitous, transit operators (e.g., [3,4]) are introducing mobile apps
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to provide consumers with information about train schedules, as well as push-
notifications about emergency events or other relevant information.

While the benefits of digitizing urban railway systems are obvious, the poten-
tial implications of this evolution could be multi-faceted and profound, especially
when it comes to the issue of security. For older railway systems, where train
protection is based on track circuits and mechanical relay signaling, the secu-
rity concerns reside primarily in the physical domain. In comparison, the ICT
components used in newer automatic train control systems expose additional
cyber attack surfaces, which could allow sophisticated attackers to combine
cyber attack vectors with physical attack means to achieve malicious goals. This
makes it difficult to assess the security of digitized urban railway systems using
traditional approaches (e.g., safety analysis methods) that are most familiar to
transit operators and other stakeholders. At the same time, security analysis
approaches used in other ICT systems (e.g., enterprise networks) are also not
readily applicable to urban railway systems, since cyber components can have
complicated interactions with the physical assets, or even passengers (e.g., with
a false notification through a mobile app).

In this work, we take a close look at two concrete examples of cyber-intensive
systems used in urban railway environments—a communications-based train
control (CBTC) system and a mobile transit information app—and use them
to analyze the cyber-physical security challenges introduced by the digitization
of urban railway systems. At the high level, we identify two key challenges:

– Cross-domain Attack and Defense: For a digitized urban railway system,
with its many components that span a large geographic area in the physical
domain and interconnect with each other in the cyber domain, attack and
defense can manifest in multiple stages, involving both cyber and physical
actions.

– Physical-domain Consequences from Cyber Breaches: Security
breaches in the cyber domain, such as falsified information or malicious con-
trol logic, can have a complicated impact on the physical domain, which is
also subject to an urban railway system’s underlying design features, such as
fail-safe mechanisms.

The evolution of urban railway systems requires the corresponding evolution
of security analysis methodologies—in particular, the need for encompassing
a systematic cyber-physical perspective. In the second part of this work, we
make an initial attempt to apply existing security analysis approaches for the
CBTC and mobile transit information app cases. We use these two examples to
illustrate the implications of the two challenges mentioned above. In particular,
we find that in the CBTC example, the Failure Modes, Vulnerabilities and Effects
Analysis (FMVEA) approach [5], which originates from the safety engineering
domain, provides a convenient starting point, since the primary concern in train
signaling is avoiding “hazards” such as train collisions or derailments, regardless
of whether they are caused by cyber or physical means. However, new extensions
are needed to better model the complicated cross-domain multi-stage attacks.
On the other hand, in the second example of a mobile transit information app
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where the delivery of accurate, relevant, and timely information is the key, we
find attack tree analysis [6], which is used widely in ICT systems, can serve as
a natural starting point, although further extension to better understand the
physical consequences of cyber security breaches is necessary.

In summary, we analyze the cyber-physical security implications of the ongo-
ing evolution of urban railway systems, present analysis results obtained from
two different methods, and use them as concrete references to discuss the way
to move forward. We begin by discussing features of urban railway systems and
describing the two example cases in Sect. 2. In Sect. 3 we present our efforts to
apply different methods to analyze the security risk in the two cases. In Sect. 4
we summarize our findings and provide additional recommendations for future
work. We then conclude in Sect. 5.

2 Railway Security Risks and Implications

To provide safe, dependable, and efficient transportation service, a rail transport
operator needs to coordinate dozens of different systems, including, e.g., the
railway signalling system, fire detection/suppression system, ventilation system,
traction power system, passenger information system, and fare collection system.
The increasing reliance of such systems on ICT introduces cybersecurity risks
with complex cyber-physical implications, as exemplied by the two scenarios we
describe next.

2.1 Scenario 1: Risks in CBTC Systems

The train control/railway signaling system is a safety-critical system that lies
in the core of a railway infrastructure. It can be implemented in diverse forms:
from a purely manual form as in the early days, to a fully automatic form as in
the communications-based train control (CBTC) systems that serve many cities
today. Traditionally, fixed block signaling is used, where the track is divided

Fig. 1. An example CBTC system and its simplified data flow for LMA determination.
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into physical sections, and no more than one train is allowed in each section.
Today’s urban railway systems increasingly use a moving block design, which
gets rid of the fixed blocks so the block locations and lengths can be dynamically
changed according to train location, weight and speed. One primary advantage
of a moving block system is that the spacing between trains is reduced, allowing
for higher capacity for transit operators.

Broadly speaking, a CBTC system [7] consists of trainborne systems, way-
side systems, and a central management system, which are all connected contin-
uously through high-speed data communication networks, as shown in the left
subfigure of Fig. 1. They implement automatic train protection (ATP), auto-
matic train operation (ATO), and automatic train supervision (ATS) functions.
The right subfigure of Fig. 1 shows a simplified data flow diagram for some key
CBTC operations. The train determines its position and speed based on data
from onboard sensors (tachometer, Doppler) and data from the absolute position
reference (APR) beacons located on the track. It submits train data (including
position and speed) via the radio-based communication link to the wayside sys-
tem, which is further connected with the central ATS system located at the
operations control center (OCC). In a fully-automated CBTC system, zone con-
trollers use the high-resolution train information to determine for trains their
limit of movement authority (LMA), which describes the distance on the tracks
until the next obstacle. A zone controller sends individual commands to each
train under its control. The trainborne ATP and ATO systems then use the
LMA information in conjunction with local train data to issue appropriate train
control commands to the train, typically through some driver machine interface
(DMI). Many CBTC systems also include auxiliary wayside systems (AWS),
which implement auxiliary functionalities (e.g., interlocking) that can provide a
“fall-back” signaling system if some other CBTC components become faulty.

Cyber-physical Challenges for Analyzing CBTC’s Security Risk. By
using radio-based digital transmission (instead of track circuits) to determine
train location and perform train-trackside data communications, CBTC can
increase the capacity, reduce the amount of wayside equipment needed, and
improve the reliability. However, the new digital elements in CBTC — the pas-
sive APR beacons that provide accurate localization to trains, the trainborne
and wayside systems that implement control logic in software, the radio-based
communication system, and the central ATS at the OCC all present poten-
tial new attack surfaces. These components are interconnected, and engineered
with various safety-enhancing mechanisms, e.g., physical access control, redun-
dant data sources and networks, and fault-response procedures. This complexity
makes it challenging to analyze the security level of such a system. In particular,
an attacker can start from a physically less protected component (e.g., devices
used by system maintenance staff), exploit a series of system vulnerabilities to
compromise more critical ones, along the way leveraging or bypassing various
safety-enhancing mechanisms, and finally use the compromised critical compo-
nents to cause physical consequences.
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2.2 Scenario 2: Risks in Mobile Transit Information Apps

The complicated coupling of different systems in an urban railway can lead
to security implications with cascading effects. For example, while the public
address (PA) or public information display (PID) systems do not directly impose
safety issues, abusing those systems can potentially lead to overcrowding which
could indirectly impact the passengers’ safety. Also, for a rail transit operator,
there are important non-safety-related security concerns: for example, whether
an attack will cause interruption or degradation of service, leakage of informa-
tion, loss of fare revenue, or damage to their reputation. This is the focus of our
second risk scenario.

Traditionally in public transit systems, the operators at the operations con-
trol center and individual train stations broadcast traffic update information to
commuters via the PID and PA systems. Beyond ordinary information such as
train arrival times, those systems are also used to inform commuters of incidents,
delays and even the crowdedness of certain routes, to advise them on alternative
routes and means of transportation. Recently, urban rail systems have started to
extend such information updates to mobile apps installed on commuters’ mobile
devices (e.g., [3,4]). For simplicity, we call them PID apps in this paper. PID
apps can also push messages to end users regarding specific incidents, enabling
commuters to plan adjustments to their route ahead of time. However, such
extended PID or PA channels could be misused.

Cyber-physical Challenges for Analyzing PID Apps Security Risk.
As Fig. 2 illustrates, the emerging adoption of PID apps has complicated the
landscape of passenger traffic updates with additional channels and terminals
that are much harder to properly secure. Although traditional PID/PA systems
are clearly not immune from cyber threats, attackers would have to gain non-
trivial physical access to well-guarded control rooms or direct connections with
in-station PID or PA systems before they could launch attacks. These physical
proximity requirements limit the time, venue, as well as scale of the attacks, and
can easily expose attackers to monitoring systems and security personnel. On the
other hand, the traffic update messages pushed to PID apps are potentially more
susceptible to cyber attackers. The primary cause is that the communication
channel for them is outside the premise and control of typical public transport

Fig. 2. Railway PA/PID systems, simplified from [8].
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operators. The PID app server has to deliver the messages to the mobile apps via
internet, which makes it a much more accessible target for cyber attackers than
control servers well protected in the OCC. As we describe in Sect. 3.2, there
are various vectors that cyber attackers can utilize to compromise the traffic
update messages pushed to commuters’ PID apps, with no or reduced reliance
on physical access to the system.

In addition to examining cyber-physical intrusions, a systematic security
analysis also needs to assess the physical consequence of possible cyber inci-
dents in such systems. For example, announcing to all passengers that a certain
train service has broken down, or that they can enjoy free rides on a certain route
could cause abnormal and even unsafe crowding (e.g., stampeding) at stations
or on trains.

3 Applying Existing Security Analysis Approaches

It is important to conduct a thorough and systematic analysis to understand
the security postures of urban railway systems. There is a clear gap in this
regard. In particular, in current railway safety standards like EN 5012X Series [9]
for general railway systems and IEEE 1474 Series [7] for CBTC systems, secu-
rity is still a lesser concern. Meanwhile, there is also a large body of research
work and industrial experience to draw upon. On the one hand, there are well-
established approaches for safety-critical system engineering (e.g., HAZOP [10]
and FMEA [11]), and noticeable efforts (e.g., [5,12]) have been devoted to
extending some of those methodologies to also consider the security aspect. On
the other hand, security assessment methodologies for ICT systems have been
studied and applied for a few decades (e.g., [6,13,14]), with several recent efforts
focusing on cybersecurity issues of critical infrastructures (e.g., [15,16]).

3.1 Analysis of Scenario 1 with FMVEA Method

With the increasing awareness of the security implications for safety-critical
systems, safety assessment methodologies and standards are being extended to
explicitly take security into account. A recent example is the Failure Modes,
Vulnerabilities and Effects Analysis (FMVEA) approach [5], which extends the
well-established Failure Mode and Effects Analysis (FMEA) methodology [11]
to include security related risks. Since safety remains the top concern for CBTC
systems, we start our security analysis of Scenario 1 by using this safety engi-
neering methodology extended with security features.

FMEA starts by dividing the studied system into elements. One then analyzes
each of the elements one by one to identify potential failure modes. Afterwards,
based on the functions of elements and their interactions, one rates the effects
of each failure mode on the system’s safety. For failure modes with intolerable
system effects, one further identifies the causes. If enough information is avail-
able, one can further determine the risk based on the severity of the system
effect and the probability of the causes. As its security generalization, FMVEA
considers both failure modes and threat modes. While a failure mode describes
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Table 1. Excerpt of FMVEA results for a CBTC system

the manner in which a component fails, a threat mode describes the manner in
which a component can be misused by a potential attacker. Failure causes are
also extended to include vulnerabilities and intentional malicious actions. The
risk of a mode is determined not only by the system attributes, but also by the
properties of potential attackers.

FMVEA Based Security Analysis. We follow the FMVEA approach to con-
duct a systematic analysis of various failure and threat modes of a CBTC system.
For each element in Fig. 1, potential failure and threat modes, their direct and
system effects, and causes are identified. Due to space limitation, we report a
selected subset of our FMVEA results in Table 1. Column S depicts the sever-
ity, and column P depicts the susceptibility against potential attacks, based on
reachability and knowledge about the element.

As shown in the table, a potential threat mode for APR beacon is forged mes-
sages. This causes incorrect position data for the train, which would lead to an
inconsistency between the position data from the APR beacon and the position
data inferred from the tacho and track geometry. When such an inconsistency
is detected, the train will send an alarm to the wayside system and switch to a
fail-safe state. We also identify potential causes in order to assess the risks. For
example, forged data from an APR beacon could be caused by manipulating an
existing APR beacon or installing additional APR beaconing devices, both of
which require cyber and physical actions.

Our FMVEA result shows that no single failure or threat mode directly leads
to a safety hazard, due to the built-in safety-assured design features, specifically,
redundancy checking and triggering of fail-safe mode under lost communication
or inconsistent information. However, we do identify cases (e.g., case 6) where
an attacker may be able to gradually influence measured position and speed to
manipulate the system into a hazardous situation. Launching such an attack,
however, requires access to the trainborne network and the manipulation of
multiple measured values.
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While our analysis does not identify major safety risks, there are multiple
single events that can lead to degradation of functionality and system availabil-
ity. For example, manipulations of the APR beacons in the tracks (see cases
1–4) can lead to missing or inconsistent data for the determination of the train
position and cause a switch to a fail-safe mode. If an attacker is able to compro-
mise the signaling network via direct access or via the installation of additional
wireless antennas, she could cause the whole system to switch to a fail-safe mode
(see case 7). The built-in safety-assured mechanisms makes such denial-of-service
attacks easier to launch. This suggests some potential issue with the EN 50129
approach, which considers the overloading of the transmission system out-of-
scope. While the EN 50129 approach is sound from a safety-centric perspective,
its potential implications to the system’s resilience and availability under mali-
cious threat scenarios require systematic investigation.

Gaps in Analyzing Multi-stage Cross-domain Attacks. While the
FMVEA approach helps an analyst to systematically consider failure and threat
modes, their effects (i.e., physical consequences) and potential causes in an
element-by-element manner, it does not provide support for the analysis of multi-
stage cross-domain attacks. For example, consider a cyberattack on signaling net-
work (case 7) that might cause critical incidents, the analysis does not include
information about how such attacks could be launched. Also, in a multi-stage
cross-domain attack an attacker may gain control of multiple elements. It does not
readily provide the consequence analysis for such joined threat/failure modes.

3.2 Analysis of Scenario 2 with Attack Tree Method

Since the delivery of accurate, relevant, and timely information is the key for a
mobile transit information app as described in our Scenario 2, we approach its
analysis through the application of methods that have been more widely adopted
in ICT systems security analysis context.

Assessment Methodologies used in ICT Security Domain. ICT security
analysis methods are often used to identify potential weaknesses (e.g., software
vulnerabilities) in the systems under inspection, and evaluate the likelihood of
these weaknesses being misused by an assumed attacker to penetrate the system.
Such analysis can also include assessing the consequences of successful attacks
in terms of confidentiality, integrity, and availability. Here we take attack tree
analysis [6] as an example: this is a widely-used technique to model attacker
behaviour and deduce attack paths to a specific malicious goal, which is usually
associated with a certain asset. In the railway security domain, the American
Public Transportation Association [17] has recently proposed to use attack trees
to analyze “narrow and deep” security questions in railway systems.

Attack Tree Based Analysis. Figure 3 shows an attack tree that illustrates
a selected subset of possible attack vectors that can lead to the delivery of fake
transit information to passengers. We focus on the information integrity here,
since such fake messages can be used by attackers to mislead passengers into
overcrowded stations, which could cause safety hazards, e.g., stampedes.
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Fig. 3. An attack tree on announcing fake messages. Branches are OR gates by default,
unless marked as AND gates. Bold italics denote attacks from PID apps.

The root node on top of the tree denotes the end goal of the threats, while the
subsequent nodes along the branches represent the sub-attacks that attackers can
launch to achieve the goal of the sub-attacks in the parent nodes. For instance,
one of the ways attackers can push fake transit information to passengers is to
compromise the official PID app, which in turn can be achieved by installing
a malicious app on users’ phones that are rooted. Furthermore, there can be
various ways to install such a malicious app, e.g., by uploading it to app stores,
or by exploiting a drive-by download vulnerability on victim users’ phones.

The attack tree here includes both traditional threats to the electronic display
boards in stations via physical attacks, as well as new threats brought in by PID
apps (bold italics). As we can see, PID apps can potentially open up a larger
attack surface for attackers to send fake transit information messages. With
traditional display systems, in order to achieve this, the attackers would have to
physically go to the station or control center, and manipulate either display board
or server inside the control room. With modern CCTV monitoring systems, the
chances of an attacker being caught and stopped is high. However, with PID apps
in use, the attackers immediately gain access to such transit messages with much
greater “convenience”. For instance, they could sit at home and launch remote
attacks against the official rail transit operator’s PID server, or set up a rogue
WiFi access point (AP) in a backpack when taking the train. Making matters
worse, attackers have many other means to penetrate commuters’ mobile devices
directly and at a larger scale, e.g., by uploading a malicious app on Android or
iOS app store, which may appear as an interesting game app, but surreptitiously
push transit messages mimicking those from official PID apps.
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Attack trees provide a convenient and intuitive way for security analysts to
construct an overview on how attackers can take steps to achieve their goals. It
is also a generic methodology that can model the blend of cyber and physical
attacks in a unified way. For example, Fig. 3 models both traditional physi-
cal threats as well as emerging cyber threats, and how they may be exploited
together by an attacker. With attack trees, one can also associate each individual
attack step (regardless of whether it is cyber or physical) with some success prob-
ability (or more qualitative judgement about its likelihood). While it is much
harder to obtain such quantitative data for security analysis as compared to fault
analysis with fault trees, rough estimation based on empirical attacker models
can help identifying more plausible attack paths. In particular, the overall attack
success probability for the whole tree can be computed according to the logical
(combinatorial) relationship among the different attack steps.

Note that the attack tree is only one example of the ICT security analy-
sis methodologies available today. If necessary, more advanced security assess-
ment tools are available, including, e.g., attack graph [13,14], ADVISE [15],
CyberSAGE [18], attack-defense tree [19], etc. These tools support features
such as automatic generation of likely attack scenarios based on vulnerability
and system information, and more detailed modeling of attacker behavior and
attacker/defender interactions.

Gaps in Analyzing Physical Consequences of Cyber Breaches. While
attack tree analysis provides support for modeling multi-stage cross-domain
attacks, it provides little aid and guidance in analyzing physical consequences of
attacks, especially in terms of quantifying the severity of the consequences along
with the likelihood of attack steps. We find that existing ICT security assessment
methods generally lack in this aspect. They do not have mechanisms to analyze
physical consequences of cyber breaches, nor do they provide support to incor-
porate such analysis results from other analysis methods. To meet the domain
requirement of urban railway systems, it is important to extend ICT security
analysis methodologies, such as attack trees, with the necessary mechanisms to
have better capabilities of modeling physical consequences of cyber attacks.

4 Moving Forward

As illustrated in Sect. 3, the cyber-physical nature of modern railway systems
presents new challenges for the analysis of their security posture. In particular:

– Threat Prioritization. Modern urban railway systems present large attack
surfaces. In risk-driven analysis, security analysts need to understand what
attacks are more likely to happen, considering factors like attacker motivation,
skills, access, and traceability of the attacks.

– Physical Consequences. Attacks on railway systems often ultimately aim
at the physical world. Security and safety analysts need to understand how
cyber breaches can lead to various physical consequences.
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Addressing the above challenges demands an integrative cyber-physical per-
spective. For example, if an attacker wishes to manipulate LMA commands in
a covert way, she might consider different combinations of cyber and physical
attack steps to find a better attack sequence. In fact, in a recently published rail-
way security analysis exercise [17], the experts analyze different attack sequences
for compromising a trackside programmable logic controller (PLC) and argue
that a multi-stage cross-domain attack is among the most likely to happen since
it reduces the traceability of malicious insiders. Supposing a cyber breach has
been made, security analysts need a cyber-physical perspective to understand
how relevant factors (e.g., safety-enhancing mechanisms and human behaviors)
affect the outcomes of potential attacks, and how the consequences vary with
time, location, and other physical context. One also need to consider non-safety-
critical risks (e.g., degradation of service) together with safety-critical risks.

Existing approaches for security and safety analysis only partially fulfil such
needs. In particular, while the FMVEA analysis in Sect. 3.1 provides a systematic
way to examine individual components and reason about both the consequence
(effect) and the likely cause, we see a clear need to further improve its support
for analyzing more complicated causes (e.g., those spanning both cyber and
physical domains and involving multiple stages) and consequences (e.g., those
could be resulted from manipulation of multiple components in a coordinated
manner). In comparison, while the attack tree analysis in Sect. 3.2 allows one
to conveniently construct different possible combinations of attack sequences, it
provides little aid and guidance in systematically analyzing the consequence of
the attacks or exploring all potential attacks. Some safety standards for electronic
systems (e.g., the automotive standards ISO26262 [20]) are already defined in a
more extensible way that allows the inclusion of physical (such as mechanical)
aspects. However, most existing ones (e.g., those from EN 5012X Series) often
treat the physical aspect as “out of scope”.

Hence, we need a cyber-physical integrative approach to address the two chal-
lenges in threat prioritization and physical consequences of cyber breaches. In par-
ticular, analyzing the security of urban railway systems requires the consideration
of many different cyber and physical factors. Multiple approaches and techniques
are often needed to fulfil the purpose, which calls for a framework to tie different
parts in a consistent and meaningful way. Figure 4 illustrates a new framework that

Fig. 4. Analyzing railway systems security with an integrative cyber-physical approach.
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we are working on to integrate various security assessment results. The proposed
framework is inspired by existing methods on risk analysis, such as [21]. As shown
in the center of Fig. 4, the analysis will be anchored around a possible failure/threat
mode induced by cyber breach (e.g., the manipulation of the LMA), or a set of such
modes. The left hand side of Fig. 4 shows various attack sequences that lead to the
cyber breach, which are enriched with more details about relevant information.
Specifically, different attack steps are mapped to either cyber or physical domain.
As shown by the dashed edges, each attack step further associates with various sys-
tem and attacker properties, which can be integrated to estimate the overall attack
likelihood. On the right hand side of Fig. 4, the physical consequences of the cyber
breach are evaluated based on an impact model (e.g., through high-fidelity simula-
tion) that considers physical context, as well as various cyber/physical procedures,
measures, safety requirements, and human factors. A unified view of the cyber and
physical domains, as provided in Fig. 4, can contribute to a more thorough security
analysis of railway systems. It can also potentially enable the use of quantitative
metrics to better understand the scenarios.

We envision such a framework can address the two challenges we highlight
earlier by providing the capabilities for “cross-over” analysis for cyber-physical
threats and multi-factor analysis for physical consequences.

Analysis of “Cross-over” Attacks in the Cyber and Physical Domain.
Threats from physical attacks will continue to be of primary concern in urban
transportation systems, especially in regions where control on weapons and explo-
sives are relatively weak. Nevertheless, threats from the cyber space are increas-
ingly yielding alternative and often complementary means to physical attacks.

Our new framework aims to provide an integrative way to analyze attacks,
by explicitly associating attack steps to properties like requirement on attack-
ers’ proximity (physical or via a network), the knowledge or tools necessary to
cause harm, and the level of attribution that may be possible to discourage an
attack. For example, if a would-be attacker needs to be physically on a train
at the time of the incident to disrupt a CBTC/signaling system, this scenario
may be less risky than another scenario where an attacker remotely hacks into
passengers’ laptops or mobile phones and causes a train disruption. While our
approach focuses on the threat modes, it also can be extended to model the
typical operational processes and information flows in the system and analyze
their implications on the system’s security level (e.g., similar to [16]).

Multi-factor Analysis of Physical Consequences. Unlike cyber attacks on
ICT systems that target information, attacks on urban railway systems often tar-
get passengers and physical assets, with an aim to cause safety hazards or wide-
spread panics. Hence, our proposed framework incorporates detailed analysis of
the physical impact of cyber breaches. High-fidelity modeling and simulation are
needed to understand how the consequences change as a function of the time,
location, and various cyber-physical resilience measures and response procedures.
More empirical data is needed to back up any assumption or model used. The long
term effects of such attacks on the railway system as a whole are also largely unex-
plored. We plan to incorporate realistic traffic models for human passengers in
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urban transit systems into our framework. This will strengthen security analysts’
capabilities of understanding the consequences of such attacks [22]. In addition,
we will develop methodologies and tools to incorporate empirical data, as well as
advanced modeling and simulation techniques to estimate the potential physical
consequences and correlated or cascading effects under different attack scenarios.

5 Conclusion

While the importance of cybersecurity in urban railway systems has become
increasingly recognized, the exact roadmap to ensuring it is still largely an
open problem. To shed some light into this topic, we examine two concrete
examples of cyber-intensive systems in urban railway environments. One is a
communications-based train control system, which is a modernized form of a
classic safety-critical system. The other is a mobile app that provides transit
information to commuters, which is a good example of how new information
and communications technologies change the way critical information is prop-
agated between systems and users. We use these two urban railway scenarios
to illustrate the strengths of two widely adopted methods (FMVEA and attack
trees), and potential gaps present in leveraging them to analyzing cybersecurity
of urban railway systems. Our study highlights the need for a cyber-physical
perspective in order to understand the cross-domain attack and defense, as well
as complicated consequences of cyber breaches in physical domains.

To address the complex security engineering challenges in these safety-critical
cyber-physical systems, we believe new security assessment methods and tools
are needed. We outline a new framework for analyzing failure and threat modes
that can link together attack and impact analysis, and embed the analysis in
both cyber and physical domain contexts. We plan to further refine and apply
this framework as part of our future work on urban railway security.
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Abstract. The intricacy of socio-technical systems requires a careful
planning and utilisation of security resources to ensure uninterrupted,
secure and reliable services. Even though many studies have been con-
ducted to understand and model the behaviour of a potential attacker,
the detection of crucial security vulnerabilities in such a system still
provides a substantial challenge for security engineers. The success of a
sophisticated attack crucially depends on two factors: the resources and
time available to the attacker; and the stepwise execution of interrelated
attack steps. This paper presents an extension of dynamic attack tree
models by using both, the sequential and parallel behaviour of AND-
and OR-gates. Thereby we take great care to allow the modelling of any
kind of temporal and stochastic dependencies which might occur in the
model. We demonstrate the applicability on several case studies.

Keywords: Attack trees · Security analysis · Sequential and parallel

1 Introduction

Modern institutions in the business, governmental and research sector have to
rely more and more on highly complex socio-technical systems. The complexity
in these systems arises from the continuous interplay between actors, IT-systems
and the physical infrastructure. Sophisticated attacks against these systems try
to exploit this complexity by targeting several components at once. For instance,
an attacker can use a combination of malware and social engineering to steal
important data, or simply steal the laptop. A most impressive example for this
kind of socio-technical attacks is the famous Stuxnet attack [16].

Thus, the challenge for modern security engineering is to predict possible
attack vectors and identify the severest vulnerabilities by taking a holistic view
of the whole organization. This task requires to identify, model and quantify
complex attack scenarios. The formal tool which is widely used in practice to
satisfy these needs are attack trees.

Classical attack tree models allow to present multi-step attacks in a concise
way while also offering a straight-forward analysis kit to compute important
static metrics, such as the probability and execution costs of attack paths [15,24].
These metrics allow security practitioners to take well-informed decisions with
c© Springer International Publishing Switzerland 2015
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respect to a systems vulnerability and can thus support the decision-making
process to determine which countermeasures are most cost-efficient. However,
static approaches fail to interpret results in the security context and have to
be underpinned with many conditions and constraints. The result that a certain
attack succeeds with 34 % is meaningless without a close definition of the precise
scenario: What is the time frame of the attack, how many resources does the
attacker have, and which attack vector does he choose?

Our Approach. To compute these metrics on attack trees, we deploy compo-
sitional aggregation, a powerful techniques that yields an efficient and flexible
attack tree analysis framework. That is, we translate each attack tree element
into a interactive Input/Output Markov Chain (I/O-IMC), which are basically
continuous-time Markov chains, augmented with action labels that can be used
for synchronization between various models. By parallel composing these indi-
vidual I/O-IMCs, we obtain one I/O-IMC for the entire attack tree, which can
then be analysed by standard stochastic model checking techniques [4]. How-
ever, we do not obtain the entire I/O-IMC in one step; rather we compose two
I/O-IMCs at a time, and then deploy minimization techniques to ensure that
our state spaces remain compact. In this way, we obtain an attack tree analysis
framework that is efficient, flexible and extendible: if we choose to introduce a
new attack tree gate, then we only have to provide the I/O-IMC translation for
that gate. As we show here, we can easily handle sequential versions of the AND
and OR gates. Also, we are capable of analysing trees with shared sub-trees,
which is not the case for many other frameworks [8,12,20,21].

Related Work. The idea of attack tees (ATs) originates from threat logic trees
[27] and they are formally introduced in [24]. ATs closely resemble fault trees,
a popular model in reliability analysis [5]. ATs can be classified in static mod-
els, which do not take the evolution of time into account, and dynamic models
which reason about the temporal evolution of an attack. Static ATs have been
rigorously formalized in [18], and other static approaches refine the expressive-
ness like multi-parameter ATs [13]. Most approaches in the field of dynamic ATs
are directed graph-based and evaluated with Markov models, for instance com-
promise graphs [19]. Piètre-Cambacédès and Bouissou [21] introduced an attack
tree model based on Boolean logic driven Markov processes, while a computa-
tional model based on acyclic phase-type distributions was introduced in [3]. An
overview about the diversity of ATs can be found in [14].

Petri-nets and its variants [11] such as GSPNs (Generalized stochastic petri-
nets) [7] and SANs (Stochastic activity networks) [23] are another popular
approach in security modelling [10,26]. Much of its popularity stems from its
capability of exhibit concurrency and synchronization characteristics (though at
the expense of complex graphical representation). Some other approaches are
to model the system description and attacker behaviour via attack graphs [25]
and adversary based security analysis [6,9,12]. Moreover, there exist formalisms
such as SysML-Sec [1] which are aiming on integrating security engineers in all
stages of the design and development process.
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2 Attack Trees

An attack tree (AT) is a tree — or more generally, a directed acyclic graph — that
describes how combinations of attack steps can lead to a system breach. The root
node of an AT represents the goal of the attacker and can be reached via different
branches, where each branch represents one possible attack scenario. The basic
attack steps (BASs) are represented by leaves. Gates model how successful attack
steps propagate through the system, and thereby form a logical sequence of
individual steps within a complex scenario.

Gates. The classical attack tree model uses AND- and OR-gates to describe
the conjunctive and disjunctive composition of their child nodes. That is, to
succeed in an AND-gate, the attacker has to succeed in all of its child nodes,
whereas the OR-gate requires the attacker to execute at least one child node
successfully. The SAND- and SOR-gate are the sequential versions of the classical
AT gates and model a temporal dependency between their child nodes. The
SAND-gate represents attacks that are conducted in a specific order: only after
the primary attack step (the first child node of the gate from the left-hand side)
has been successful, the attacker will start with the next BAS. Similarly, a SOR-
gate models that the attacker first executes the primary BAS, and only if that
fails, he falls back to the next option.

Example 1. The attack tree depicted in Fig. 1 models an attack on a password
protected file [21] with a sequential extension. The BASs in the leaves are anno-
tated with a rate λ which specifies an exponentially-distributed execution time,
as well as the BAS success probability p. The goal is to obtain a password by
executing a brute force attack as well as a more sophisticated password attack,
as modelled by the root node as a parallel OR-gate. For the password attack a
sequential attack is executed as modelled by the SOR-gate, where the attacker

Password attack success

Brute force
λ = 0.0333; p = 1

Password attack

Social Engineering

Email trap
Execution
and User
trapped

λ = 1; p = 0.33

Phone trap
Execution
and User
trapped

λ = 0.5; p = 0.33

Key logger

Password Intercept
λ = 1; p = 1

Key logger instal-
lation alternatives

Remote

Generic Re-
connaissance
λ = 1; p = 1

Payload Crafting
λ = 0.5; p = 1

Email file
Execution

λ = 0.5; p = 0.1

Physical

Physical Re-
connaissance
λ = 1; p = 1

Keylogger local
Installation
λ = 1; p = 1

Fig. 1. Dynamic Attack Tree modelling the attack on password protected file.
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Fig. 2. Representation of a BAS.

first tries a social engineering approach and only when this fails he proceeds to
install a key logger. The social engineering is a sequential execution as modelled
by the SAND-gate, where the attacker first has to apply some generic recon-
naissance which leads to a phone trap and finally an email trap, in case that all
previous steps are successful. Note that the generic reconnaissance is a shared
BAS; once it has been completed it can be used in both connected attack vectors.

Basic Attack Steps. Basic attack steps (BASs) represent individual steps
within the execution of a more complex attack. We consider their success prob-
abilities and execution times. That is, we equip each BASwith basic attack step
information (BAI), consisting of (1) a probability p ∈ [0, 1] that quantifies the
attacker’s overall success rate independent of execution time t; (2) The relation-
ship between a successful attack and progressing time. The general assumption
is that the chances of an attack success increases when the attacker is given a
longer execution time. Thus, we are interested in the cumulative distribution
function (CDF) f(t) = P[X ≤ t] that represents the probability that the attack
step is executed successfully within t time units. A graphical representation of a
BAS is given in Fig. 2.

Sequential and Parallel Execution. Complex multi-step attacks are mod-
elled by the composition of multiple BASs via gates. Whereas in classical attack
tree models the description via AND- and OR-gates is sufficient, in a temporal
context it is necessary to reason about sequential and parallel behaviour. Con-
sider the password attack in Fig. 1 with the key logger attack. Obviously, one
cannot intercept the password before having installed the key logger. This causal
dependency induces a temporal order: certain steps can only be taken after other

activated? activateA!

successA?

failA?
activateB!

successB?

failB?

success!

fail!

Fig. 3. A SOR-gate with children A and B.
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steps have been successfully executed. In contrast to this sequential execution,
other BASs can be executed independently from each other and, thus, can be
executed at the same time if a sufficient number of attackers are involved. An
example for this parallel execution is parallel execution of the brute force attack
and the sophisticated password attack.

In [22] the authors introduced a trigger element to model the causal depen-
dency between two or more actions. However, no existing model has so far offered
a solution for the modelling of the sequential case for the OR-gate, depicted in
Fig. 3. The sequential interpretations of the OR-gate is that the attacker starts
with the execution of a first attack option. If he fails, he continues with the sec-
ond option and so forth, until he runs out of options or succeeds in one. There are
two challenges when using this gate in a model. From a practical point of view
one needs to determine the attacker’s preferred order of attack steps, whereas
from an analysis point of view it is difficult to handle the inherent stochastic
dependency.

Measures on ATs. Our framework can analyse ATs with respect to (1) proba-
bilistic questions from static models, (2) time-dependent questions from dynamic
models and (3) comprehensive questions from both models. For a static analysis
the probability that the attack succeeds eventually given an unlimited amount of
time can be computed by Pr(♦Success), using model-checking syntax. The prob-
ability of an successful attack within a certain time horizon t can be analysed
with Pr(♦≤tSuccess), while the expected attack time is given by ET(♦Success).
Compositional Aggregation. We exploit the compositional aggregation tech-
nique introduced for dynamic fault trees (DFTs) in [5]. The general idea is to
have a modular framework, where each element of the AT is represented by the
corresponding input/output interactive Markov chain (I/O-IMC). These mod-
els interact through synchronisation on their input and output signals. Thus,
we compose the I/O-IMC models of the AT elements to obtain an I/O-IMC
which represents the whole AT. To combat a state-space explosion, rather than
composing the whole tree at once, we compose smaller sub-trees in a stepwise
fashion and minimise the state space after each composition step. A graphical
representation of the approach is given in Fig. 4.

(a) AT (b) Transformation (c) Composition (d) Minimisation (e) Model

Fig. 4. Graphical overview of compositional aggregation for AT models.
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3 Case Studies

We show the applicability of our approach by the means of two case studies
from literature. They demonstrate that the use of I/O-IMCs accompanied by
compositional aggregation techniques enable a highly-efficient analysis of the
underlying attack tree. We use the ATCalc tool-chain1, an extension of DFTCalc
[2] with AT gates, to conduct our case studies.

Attack of a Password Protected File. The AT depicted in Fig. 1 models
the attack of a password protected file and is described in Example 1. The
parameters are based on the intrinsic difficulty, available resources, estimated
skills and the level of protection as provided in [21].

Stuxnet Attack. The Stuxnet attack has been one of the most studied attack
scenario given its serious implication on control systems of critical infrastruc-
ture. The goal of an attacker is to target the SCADA system, which hosts the
industrial control system, and to reprogram the PLCs such that they slow down
the centrifugal machines. The AT is presented in Fig. 5, and the rates and prob-
abilities are based on [3,16].

Stuxnet

Compromise corporate network

Injection via
compromised USB Self installation

Main module execution

P2P Com-
munication

C&C server
commu-
nication

Propagation

Removable
mediaLAN

User opens
WinCC file

projects

Network
shares

Print
server vuln.

Service server
RPC vuln.

Attack industrial system

Cascade centrifuges SCADA system compromised

Infection of
control PC

Run modified
code on PLC

Sys 300

Collect data
PLC sends false
data to motors

Sys 400

Intercept
in/out signals

Modify
out signals

Fig. 5. Dynamic Attack Tree model of the Stuxnet attack.

Experimental Results. All experiments were computed on an Intel Xeon CPU
E5335 at 2.00 GHz with 22 GB RAM under Linux. In order to derive valuable
information about the system security, we perform a sensitivity analysis. We
run the analysis multiple times, and in each run, we slightly change one of the
BAS attributes while keeping the others fixed. We will observe the percentage
change in probability of the attack goal caused by small changes in the attacks
by using the Birnbaum importance measure [17].
1 http://fmt.ewi.utwente.nl/puptol/atcalc/.

http://fmt.ewi.utwente.nl/puptol/atcalc/
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Fig. 6. Sensitivity analysis and attack probability of the case studies.

The sensitivity analysis is depicted in Figs. 6(a) and (b). In each analysis
we double the mean time to attack of one BAS. The average runtime for one
experimental run for each case study is: (1) 76.57 s for the password protected
file; and (2) 113.61 s for Stuxnet. Figure 6(c) and (d) depict the probability of a
successful attack over time. In the first case study, the attacker succeeds with
about 61.9% after one week while the mean time of an successful attack is 13.2
days. In the Stuxnet scenario, the attacker penetrates the root node with about
75 % after 130 and more days.

4 Conclusion

We presented a novel modelling approach for dynamic ATs and broadened the
sequential expressiveness of attacks to the OR-gate. The complete approach is
implemented in a prototypical tool, with which we showed the applicability of
the analysis in two case studies. We firmly believe that the presented approach
provides a substantial ground for the analysis of more complex and accurate
attack scenarios for security engineering. Future work will focus on the integra-
tion of countermeasures within this framework as well as the determination of
the correct order of sequential attacks based on the attackers profile.
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Abstract. The introduction of a new standard for safety-critical systems in a
company usually requires investments in training and tools to achieve a deep
understanding of the processes, the techniques and the required technological
support. In general, for a new standard that is desired to be introduced, it is both
relevant and challenging to rate the capability of the company to apply the
standard, and consequently to estimate the effort in its adoption. Additionally,
questions on the maturity in the application of such standard may still persist for
a long time after its introduction. Focusing on prescriptive software standards for
critical systems, this paper presents a framework for gap analysis that measures
the compliance of a company’s practices, knowledge and skills with the require‐
ments of a standard for the development of safety-critical systems. The framework
is exercised in a company to rate its maturity in the usage of the avionic standard
DO-178B.

Keywords: Gap analysis · Standards · Certification · Safety-critical systems ·
Aerospace · DO-178B

1 Introduction

Companies working in safety-critical domains have mandatorily to comply with standards,
regulating the system development, the techniques to be applied and the requirements to be
fulfilled in the different lifecycle phases. A company working in compliance with a standard
needs skills to exploit the required techniques, often with the support of tools developed
within the company or from third parties. Several of such standards exist; for example, the
DO-178B/C [2] is the mandatory international standards for software in the avionics
domain while the European railway domain uses a set of standards to regulate railway
equipment [7, 11]. When changing (certification) domain we can encounter several issues,
such as different definitions, level of expectations, level of details of the required tasks,
maturity level, tool qualification requirements [6, 10].

As a consequence, a company wanting to adopt a different standard, e.g., to enter the
market in a new safety-critical domain, must necessarily (i) gain the skills, techniques and
tools necessary to appropriately operate in compliance with the standard, (ii) have a
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different mindset and (iii) acquire the necessary expertise. The question that is naturally
raised is the required effort, both in time and cost, for the adoption of such new standard.
Such effort can be considerable, if the company never worked with similar standards or
domains.

Gap analysis is a renowned concept that finds application in several fields, including
the area of safety critical systems, where new standards are being introduced [13]. Specif‐
ically to such area, gap analysis is part of the Software Process Improvement and
Capability Determination (SPICE, [8]), to afford the process capability level evaluations
of suppliers, which may result useful to select the cheapest supplier amongst those with
sufficient qualification or to identify gaps between the supplier current capability and the
level required by a potential customer. Similarly, the Automotive SPICE (ASPICE, [9])
starts from SPICE but is specific to the automotive industry. Furthermore, the Capability
Maturity Model Integration (CMMI, [4]) includes the Standard CMMI Appraisal Method
for Process Improvement (SCAMPI, [4]) that is aimed to appraise compliance of organi‐
zation processes, activities and outcomes with CMMI; however evaluating performance
lies outwith its scope [12]. CMMI compliance is not a guarantee of good performance per
se, i.e., there is high variance in performance results within a maturity level [12].

In this paper we propose an intuitive, easily applicable methodology to support the
introduction in a company of a new prescriptive standard for critical systems. The meth‐
odology traces the current status of knowledge available, identifies lacks and allows
tracking the evolution of competences. Metrics are proposed to help spotting elements
which may need further attention. Ultimately, the framework aims to estimate the
required time to achieve an adequate level of confidence with techniques and tools that
are relevant (for a specific company) to execute a specific standard. Noteworthy, our
gap analysis is not necessarily related to a whole standard but it can be applied to part
of it or to individual techniques and tools. Ultimately, we can note that it is specifically
tailored for the characteristics of standards for critical systems. In the case study, the
framework is applied to investigate the verification and validation phases of the
DO-178B [2] standard in the company CRITICAL Software S.A.

2 Framework for Gap Analysis

We present the overall framework with the support of Fig. 1. It is structured in three
main blocks: Processes, Techniques and Tools, and Personnel. The standard given as
input to the first two blocks represents the standard under examination.

Processes. This block is devoted to the identification and matching of the processes. It
contains (i) internal processes, that are defined and applied in a company (e.g., internal
quality management systems, or internal processes that are required for having certifi‐
cations like ISO 9001 [5] or CMMI [4]); and (ii) standard processes, that are instead
the processes or requirements defined in standards (examples at a macro level are design,
development, verification, validation, or integration processes).

For each standard, a corresponding traceability matrix must be created and populated;
its aim is to check that internal processes are compliant to standard processes. One or
more internal processes should be matched to each process of each individual standard.
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If the matching is not complete, there may be the necessity to review internal processes;
otherwise, the applicability of the standard may be compromised.

The identification and matching of such processes are inputs to the block Techniques
and Tools.

Techniques and Tools. Both standard processes and internal processes typically list
recommended or mandatory techniques. A whole list of techniques in the standard (tech‐
niques in standard) and techniques available in the company (techniques in company) is
required. The list of the techniques in standard needs to be compiled for each standard; the
list of techniques in company needs to be compiled only once, and updated when a new
technique is learnt. A traceability matrix can match techniques in company and techniques
in standard, to identify the correspondence between the two or possible mismatches e.g., a
technique discussed in a standard that has no correspondence among the techniques avail‐
able in the company know-how. One or more techniques in company may be matched to
each technique in standard. Techniques in standard and techniques in company must be
also matched to, respectively, standard and internal process.

Tools are connected to the techniques in the company as they can support their
execution. Similarly, training materials (e.g., slides from courses or tutorials), whenever
available, are enlisted and mapped to the company tools and techniques. Noteworthy,
techniques or tools not explicitly mentioned in internal processes may be available in
the company and useful to support the execution of such internal processes: in this case,
it is required to add such techniques or tools and create the appropriate connections to
the internal processes.

It is fundamental to understand the confidence in using a technique or a tool, e.g.,
this can be done via a questionnaire, when done not on individual basis to rate the single
worker, but as a collective exercise between expert workers.

Personnel. Our approach cannot be dissociated from the personnel that are operating
in the company. In fact, the personnel is actually holding the background knowledge
and is in charge of acquiring new knowledge. The personnel block relates the company’s
personnel to the know-how available on the listed techniques and tools. In fact, the block
contains information on the personnel as the available roles, the desired aptitude skills
for each specific role, and the required competences. Roles are matched directly to the
techniques, while competences are matched to training. Aptitude skills [1] are instead

Fig. 1. Overall view of the gap analysis and introduction cost framework.
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soft skills as behavioral skills; they have an ancillary role in the framework but allow
providing a more complete characterization of personnel.

The steps to be executed when using the framework are the same for gap analysis of
standards already in use and for the introduction of a new standard. For simplicity, we
refer only to this last case. We suppose that the standards S1, …, Sn-1 are already part of
the framework, and that data on internal processes, techniques in the companies and
personnel is already available. When a new standard Sn is introduced, the approach is
the following.

Step 1. The list of standards is updated with Sn, and the corresponding traceability matrix
of Sn w.r.t. internal processes is created. Considering for example the processes in the
DO-178B standard, the process requirement “SW high level requirements comply with
system requirements” can be matched to the hypothetical internal processes Verification
Process and Requirements Analysis.

Step 2. The list of techniques in standards is updated with techniques that are mentioned
in Sn; consequently, the match with techniques in company is updated. For example, the
techniques “reviews, inspections, analysis” that are mentioned in several standards [3]
could be matched to several company techniques, as reviews, inspections, HW/SW
interaction analysis (HSIA), traceability analysis. If in Sn there is a technique with no
matches amongst the list of techniques in company, it is sufficient to add the same exact
name to such list. As a result, a very low rating on the maturity in using such technique
will be assigned in step 4; this will be further discussed also in Sects. 3 and 4. Ultimately,
tools are listed and matched to the techniques in company.

Step 3. The data acquisition process in this step allows gathering information on the
confidence in using the techniques and tools.

Step 4. Data is analyzed, and gap analysis and learning time are computed.

In the case above, the standards S1 … Sn-1 are already part of the framework: this
means that before Sn can be examined, it is required to populate the three blocks
processes, techniques and tools, and personnel with information from the standards S1

… Sn-1 and from the company. This can be done iterating the above steps for the standards
S1 … Sn-1, until the dataset is up-to-date.

3 Dataset Structure and Population

We comment on the most relevant elements of the dataset that is needed to populate in
order to apply the methodology. The dataset is structured in tables and relations between
tables. For brevity, we summarize on the three main areas of the dataset, which contain
respectively (i) information on the standards, (ii) internal processes, and (iii) the defi‐
nition and characterization of the personnel.

The first area contains three main tables: standards, requirements, techniques in
standards. Table standards enlists the standards in use in the company including general
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information, for example release date, involved industrial domain, and emitting agency.
Table requirements enlists the requirements described in each standard. It has to be
remarked that the requirements in a standard usually contain the processes and suggest
specific techniques: table techniques in standards enlists the techniques named in each
standard. It is also possible to specify if a technique is a replacement or alterative to
others that are mentioned in the standard. This is useful for the successive mapping with
the second area, to favor the matching of techniques in standards with those applied in
a company. Also, it has to be noted that many concepts in the standards are the same or
similar but they are described using different terms.

The second area includes the table company processes, which describes the
processes available in the company. Usually, these are described in the internal docu‐
mentation of a company. Table techniques in company enlists the techniques available.
Again, such list can be extracted from the internal documentation. Table tools contains
the list of tools available in the company. To perform the gap analysis, it is also required
to score the relevance of the technique and tool in the daily work, its frequency of use,
the complexity from the point of view of the personnel, the experience of the team in
using such technique, the learning time (learning time provides indication on how much
training time and hands-on-the-job time is required to gather confidence in applying a
specific technique). To achieve such scores, we propose a questionnaire that can be
distributed between personnel expert in the area (e.g., V&V expert to comment on V&V
standards) and acquire anonymous data. We propose the following entries and scores:

– Relevance: high relevance = 4, medium relevance = 3, limited relevance = 2;
– Frequency of use: often = 4, rarely = 3, never = 2;
– Complexity: complex = 4, affordable = 3, easy = 2;
– Experience: high experience = 4, medium experience = 3, low or no experience = 2;
– Learning time: less than 1 month = 0.5, ~ 1 month = 1, ~ 2 months = 2, ~ 3 months = 3,

more than 3 months = 4.

The possibility to select the option “unknown” is offered, meaning that the expert
filling the questionnaire was unable to decide on a rating. The questionnaire is supposed
to be filled only by personnel expert on safety-critical processes, so that they can
adequately judge on the techniques and tools, even when they had limited opportunities
to get confident with them. Once all questionnaires are available, for each technique and
tool we select the following values to be computed and added in the dataset: average,
standard deviation, mode, and the number of unknowns (number of answers in which
the “unknown” option was selected).

The third area is devoted to the identification of personnel. We propose the following
minimum set of tables to describe the personnel, although our approach is open to
improvements or adjustments in case companies offer different or enhanced character‐
izations of personnel. Table roles enlist the different roles. Roles are related to the tech‐
niques and tools, because it is expected that people having different roles are able to
apply different techniques and tools, or take responsibility over different processes.
Table aptitude skills is structured in [1] behavioral skills (for example, personal integrity,
interpersonal skills), underpinning knowledge (knowledge on the system, required to
successfully apply a technique), underpinning understanding (general knowledge on the
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area of work), statutory and legislation knowledge. Table competences lists the required
competences as the number of years of experience, or the expertise in a specific topic
or domain. Intuitively, the tables competences and aptitude skills are connected to table
roles. A classification of the main personnel roles requested in critical software standards
can be used as reference to populate table roles.

Relations between tables from the same or different areas allow connecting and
extracting the relevant information from the dataset. For example, the dataset can be used
to verify the matching between the standards requirements and company processes, or to
differentiate techniques that are similar but used in a different way from domain to domain.

4 Metrics for Gap Analysis

4.1 Qualitative Analysis

Qualitative analysis is proposed to rapidly identify potential weaknesses and get an
overall grasp on the results achieved.

Although several approaches can be envisioned, we propose in this paper an intuitive
one, based on a simple binary tree that can be easily executed for each technique or tool.

The first four levels of the tree correspond to the attributes relevance, experience,
frequency of use, complexity. The fifth level is a comment in natural language. Starting
from the root, at each node, the left or right branch is selected if the score (extracted
from the dataset) assigned to the attribute is below or above a given threshold. The leaves
of the tree include conclusive judgments on the technique or tool under examination.
As example, we discuss the binary tree that we also adopted in our case study. An extract
is reported in Table 1. We suppose that the thresholds are set to 3 for relevance, expe‐
rience, frequency of use, complexity. The final leaf includes a qualitative comment,
resulting from the path of the tree, which may suggest the necessity of further investi‐
gation. In case this investigation results in the need of improving team experience, the
estimation of the learning time can help to understand how long and expensive it will
be to fill the identified gap.

4.2 Quantitative Analysis

The data acquired may contain information that is not grasped during the above analysis.
We define the quantities Q1, Q2, Q3 in order to seek the appropriate balance between
complexity, relevance, frequency of use (called also applied below for simplicity) and
team experience. The score 0 represents a balance between the different attributes; the
higher such score is, the higher is the necessity of further investigating the technique or
tool. Obviously different quantities could be identified and applied, without introducing
any limitation to the applicability of the framework.

Q1 = (complexity)2 - applied × experience. This quantity intends to raise awareness
of misalignment between difficulty and confidence. Intuitively, Q1 is intended to heavily
penalize complex techniques.

Q2 = (relevance + applied) - (experience × 2). Q2 aims to favor experience, evalu‐
ating if experience is sufficient w.r.t. the relevance and application of a technique/tool.
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In other words, a small Q2 means that the personnel feels confident with the application
of the technique/tool, also considering its relevance in the safety-critical processes
usually performed in the company.

Q3 = (relevance × complexity) - (applied × experience). Intuitively, Q3 compares
the confidence in using a technique or tool to its relevance and complexity. Q3 is a
summarizing quantity that relates the four attributes. High values of Q3 indicate gaps
that are challenging and urgent to recover, because the technique/tool is identified rele‐
vant and complex to use, while confidence in its use is somehow limited.

4.3 Driving Conclusions

Whenever from the analysis above it emerges that the experience in some techniques or
tools must be raised to achieve an adequate coverage of the (recommended) techniques
in the standard, the learning time can estimate the time required to fill the gaps. The
resulting learning time for all the identified gaps offers indications on the overall effort
needed to acquire an adequate confidence in the usage of the standard. It has to be noted
that once results are available, additional interviews with personnel may be required
before drafting final conclusions, to achieve a full understanding of the questionnaire
results, and to identify possible overlaps between techniques, thus defining a minimum
set of techniques that is required to operate in compliance with the standard.

Table 1. The binary decision diagram.

Level 0 Level 1 Level 2 Level 3 Qualitative comment

Relevance Experience Frequency of usage Complexity

≥ 3 ≥ 3 ≥ 3 Any Relevant, applied, and
experienced

≥ 3 ≥ 3 < 3 ≥ 3 Relevant and large experience,
but not applied, maybe
because of complexity. May
require further investigation.

… … … … …

5 Case Study: Gap Analysis for DO-178B

The framework was applied within CRITICAL Software S.A. on the (outdated)
DO-178B standard for avionic systems. Both for space constraints and non-disclosure
agreements with CRITICAL Software, we report only a synthesis on the procedure and
the resulting analyses, that is here limited to the sections of the DO-178B devoted to
verification and validation. It has to be noted that CRITICAL Software has long-term
experience with DO-178B applied successfully in several projects for many years.
Consequently, it is evident that the objective of this case study is not to identify lacks
in CRITICAL Software processes, while it is to exercise the framework in a real context
and show its potential.
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For the population of the dataset, the list of techniques in standard was acquired from
[3], and matched to company’s techniques described in the documentation available at
CRITICAL Software as processes, use cases, and V&V plans. Questionnaires were
distributed and filled independently by eight experts at CRITICAL Software, operating
as V&V, RAMS engineers or having managerial responsibilities, prevalently in the
context of verification and validation and certification projects. The engineers had been
selected with different experiences and expertise in order to make the questionnaires
results more representative of the company level.

Step 1. Relating DO-178B processes and company’s. Matching between standard’s
and company’s processes was performed by manual inspection of the standard and the
company internal processes.

Step 2. Relating DO-178B techniques and company’s. For each verification and
validation requirement in the standard processes, one or more techniques were identified
at CRITICAL Software. Tools were also identified from ancillary material that is avail‐
able at CRITICAL Software (these ranged from training material, to publications, leaf‐
lets, V&V plans for different projects, V&V reports, case studies and specific tools
reports) as well as by directly interviewing the experts, and then matched to the compa‐
ny’s techniques. Summarizing main results, at least one technique in company was
matched to each verification and validation technique in the standard. For example the
entry “reviews, inspections, analysis” [3] from the techniques in standard is matched to
reviews, inspections, HW/SW interaction analysis (HSIA), traceability, static analysis
from the techniques in company. Similarly, the “requirements-based testing” [3] enlisted
amongst techniques in standard, is matched to coding/unit testing, system testing, func‐
tional testing and black box testing from techniques in company.

The techniques in the examples above present significant overlaps e.g., between
functional and system testing. However such overlaps are not affecting the methodology
as they can be analysed independently, offering summarizing results at step 4.

Step 3. Acquire data on confidence from personnel. The questionnaire was submitted
and filled by eight people experts in the verification and validation of aerospace systems;
data were acquired and processed.

Step 4. Data analysis. For most of the techniques, the standard deviation was
computed below 0.5, showing that despite the limited number of questionnaires (eight),
there was a high convergence of answers. Thus we preferred to use the average rather than
the mode in our case study. We first comment individually on relevance, frequency of
use, complexity and team experience, and then we compute the quantitative indicators.

Relevance and Frequency of Use. For these two quantities, the smallest scores were
assigned to model checking/formal verification. The main reason is that these techniques
have not been considered highly relevant for the company business up to now. Amongst
testing, security testing was considered of little relevance and seldom applied. The
reason is mostly due to the standards in use, which only sparingly require security testing.

Complexity. Lowest scores, i.e., less complex techniques, were assigned to reviews,
inspections (e.g., Fagan, or walk-through), static analysis as traceability, code analysis,
HW/SW interaction, and in general all testing techniques. Formal methods and modeling
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were instead acknowledged as the most complex techniques, with an average complexity
of 3.8 (we remember from Sect. 3 that the maximum is 4). The number of unknowns
was very limited, with at the highest 3 for formal methods.

Team Experience. Highest scores were assigned to reviews and inspections, Failure
Mode and Effect Analysis (FMEA), fault trees, dependence diagrams, testing. In partic‐
ular, although several kinds of testing are enlisted, team experience was high for all of them.

Quantitative Indicators. The two highest scores for Q1 are 10.50 for formal methods and
10.87 for model checking. This is in line with the above observations. Similarly and not
surprisingly, the lowest scores are assigned to reviews and inspections (lower than -10 in
both cases), confirming that they were considered techniques with low complexity.

Most of the results for Q2 are within the interval [-1.5; +1.5], i.e., in a near of 0. This
means that there is a good balance between the relevance of a technique, its application,
and the experience of the team. Few techniques are slightly outside such interval,
although no techniques are significantly exceeding it. The highest number for Q2 is
assigned to safety analysis: the reason is that a proper and unified process for safety
analysis does not exist, although the companies are constantly applying techniques that
are part of safety analysis.

Regarding Q3, we noticed that most of the techniques are in the interval [-7; +7]. For
techniques outside such interval, relevant differences were identified between the
couples [relevance; complexity] and [frequency of use; experience]. Most balanced
scores, close to 0, are HW/SW interaction analysis (HSIA) and functional analysis
(FFPA), considered in general with average scores of approximately 3 for all attributes.

Learning Time. The shortest learning time was assigned (i) amongst verification tech‐
niques, to reviews, inspections, traceability, static analysis, and (ii) amongst validation
techniques, to coding/unit testing, regression testing, input-based testing, boundary
value analysis, smoke testing, ad hoc testing. Longest learning time was assigned to
formal methods, model checking, and (automatic) theorem proving.

Tools, related to the techniques above, were evaluated although no specific issues
were identified. In general, some tools were identified as little relevant for a specific
technique, but this was due to the fact that the tools list included also obsolete tools.

Concluding the analysis, as expected, no issues can be raised from the gap analysis
of the DO-178B in CRITICAL Software. In general, the outcomes which suggest smaller
confidence are those related to formal methods, model checking, and theorem proving,
although other replacement techniques are used and this does not really constitutes a
gap in what concerns the standard application. Mostly, it is relevant that a long learning
time (above 3 months) is assigned to these techniques, meaning that it is considered not
easy to acquire proficiency with them. However, this is mostly due to the fact that the
company has a limited focus in such activities, thus having a limited number of people
skilled in such area. The learning time indicates the effort required to train people on
such topics. The real overall cost should also consider additional costs as tools licenses,
subscriptions to courses, etc.; however, this is currently not included in the methodology
and it is part of our future work.
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As further observation, the fact that formal methods and modeling are not -for the
particular case study- well ranked has at least three main reasons. First, engineers
are often not prepared for these techniques from prior working experience. Second,
formal methods and modeling are not yet widely accepted in industries, especially
from customers. Last, formal methods and modeling are perceived more complex
than others, and with limited easy-to-use tools support.

6 Concluding Remarks

This work provides a gap analysis to help understand the ability of a company to
comply with a standard for safety-critical systems, and determine the actual level of
knowledge and resources that can be reused instead of doing it in an ad hoc and less
supported manner. The methodology is kept sufficiently intuitive in order to be
applicable with limited effort and supporting tools; the analysis is relatively easy to
perform provided that qualified personnel able to understand the standard is
available.
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Abstract. ICT is becoming a fundamental and pervasive component
of critical infrastructures (CIs). Despite the advantages that it brings
about, ICT also exposes CIs to a number of security attacks that can
severely compromise human safety, service availability and business inter-
ests. Although it is vital to ensure an adequate level of security, it
is practically infeasible to counteract all possible attacks to the maxi-
mum extent. Thus, it is important to understand attacks’ impact and
rank attacks according to their severity. We propose SEA++, a tool for
simulative evaluation of attack impact based on the INET framework
and the OMNeT++ platform. Rather than actually executing attacks,
SEA++ reproduces their effects and allows to quantitatively evaluate
their impact. The user describes attacks through a high-level description
language and simulates their effects without any modification to the
simulation platform. We show SEA++ capabilities referring to different
attacks carried out against a traffic light system.

Keywords: Security · Attack simulation · OMNeT++ · INET

1 Introduction

ICT is a fundamental component in monitoring and controlling critical
infrastructures (CIs) such as electricity, railway and traffic systems. CIs are
essential in the proper functioning of our daily life and their security is extremely
important. In fact, a security infringement may have severe adverse consequences
in terms of human being safety, service availability and business interests. In the
past, CIs were somewhat secure as they had limited connectivity. However, the

(This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme. The research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7/2007-2013 ) under
grant agreement n◦ 246016.)

c© Springer International Publishing Switzerland 2015

F. Koornneef and C. van Gulijk (Eds.): SAFECOMP 2015 Workshops, LNCS 9338, pp. 314–323, 2015.

DOI: 10.1007/978-3-319-24249-1 27



Simulative Evaluation of Security Attacks 315

increased connectivity to the Internet and the corporate network, as well as the
use of commodity hardware, off-the-shelf protocols and software components
make CIs no longer immune to cyber-security attacks.

In order to better understand the protection of CIs, it is important to analyze
the security risks of such systems and develop appropriate solutions to protect
them from malicious attacks. Unfortunately, addressing all the possible attacks
is not viable, either from a practical or from an economical viewpoint. It is thus
necessary to identify the attacks that have a more severe impact and focus on
them. A possible approach to achieve this goal is via simulation. Simulations are
important due to the fact that it is impractical to conduct security experiments
on a real system, because of the scale and the cost of implementing standalone
systems, as well as the potential risk of system downtime. On the other hand,
although well consolidated, an analytical approach based on system theory does
not provide a complete modeling of the ICT infrastructure [13].

In this paper, we present SEA++, a simulation tool aimed at quantitatively
evaluating the impact of security attacks against the ICT infrastructure of a CI.
We consider both cyber and physical attacks, where the former are addressed to
messages, whereas the latter are addressed to nodes composing the infrastruc-
ture. A distinctive feature of our tool is that it allows us to simulate the effects
of an attack by reproducing the events that the attack generates. This implies
that we do not need to implement or port an attack, with clear advantages in
terms of analysis time.

The tool is based on an off-the-shelf network simulator that we extend, but
not modify, by integrating components for the processing of attack events. Good
simulators are always the result of a large effort, and therefore any modification is
preferably avoided. In particular, we use the INET Framework, an open-source
model library for the OMNeT++ simulation environment, that contains net-
working models including those for the Internet stack, wired and wireless link
layer protocols, and mobility [1,2]. Finally, our tool is also flexible, in that it
allows us to describe attacks by means of a simple attack specification language.
In order to simulate the effects of an attack, it is sufficient to provide a descrip-
tion of the events that it generates in that language.

The rest of the paper is organized as follows. In Sect. 2, we discuss related
works. In Sect. 3, we illustrate the main concepts behind the simulation tools,
briefly introduce the attack description language and sketch the simulator archi-
tecture. In order to show the tool capabilities and potentialities, in Sect. 4 we
discuss a case study based on attacks against a traffic light control system.
Finally in Sect. 5 we draw our conclusions.

2 Related Work

A number of different approaches to attack impact analysis have been presented
so far. For instance, [10,12,15] discuss analytical models aimed at detecting and
contrasting attacks, and rely on simulation to validate their own correctness and
efficiency. In [3], Genge et al. presented AMICI, an assessment/analysis platform
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for multiple interdependent critical infrastructues. AMICI relies on simulation
for the physical system components and an emulation testbed based on Emulab
to recreate cyber components [5].

Wang and Bagrodia proposed SenSec, a framework that simulates the occur-
rence of security attacks in Wireless Sensor Networks (WSNs) by injecting events
into real application simulators [14]. The framework NETA for simulation of com-
munication network attacks based on INET has been presented in [7]. It relies on
implementing attacker nodes, which can strike attacks when triggered at runtime
through dedicated control messages. In [4], Queiroz et al. present SCADASim,
a simulation tool to test the effect of attacks in SCADA systems.

Although it displays similarities with SenSec, NETA, and SCADASim, our
simulation framework results more flexible and easier to use. In fact, SEA++
assumes that attacks have been successfully performed, and reproduces their
effects on the network and application, rather than their actual performance.
Also, SEA++ does not require the user to implement or customize any com-
ponent of the simulation platform. This is particularly important for two rea-
sons. First, it allows us to use off-the-shelf simulators. Second, good simulators
are always the result of many man-years effort and therefore any modification
is preferably avoided. In [6], we have presented ASF++, a framework akin to
SEA++ but especially targeted to WSNs. A prototype implementation is avail-
able at [8]. In contrast, SEA++ provides a simulation framework for a conven-
tional networking setting.

3 SEA++: Simulative Evalution of Attacks

The tool SEA++ is composed of the following three components. First, an Attack
Specification Language (ASL) which allows the user to describe an attack to be
evaluated, in terms of their practical and final effects. Second, an Attack Specifi-
cation Interpreter (ASI) that converts the attack descriptions into configuration
files for the attack simulation. Finally, an Attack Simulator that simulates the
effects of specified attacks on the system under investigation, so making it pos-
sible to quantitatively evaluate their impact on the network and application.

Practically, the user first describes the effects of attacks to be evaluated by
means of the high-level Attack Specification Language. Such descriptions can
possibly be stored for later reuse. After that, the user runs the Attack Specifica-
tion Interpreter, to convert the attack descriptions into an attack configuration
file, which is provided as input to the Attack Simulator. Finally, the user runs
the Attack Simulator and simulates the execution of the system affected by the
described attacks. Note that the user is not required to further implement or
customize any component of the Attack Simulator, with particular reference to
application and communication modules.

3.1 The Attack Specification Language

The high-level Attack Specification Language allows users to describe attacks to
be evaluated. It is worth noting that here we are not interested in how an attack
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can actually be mounted and carried out. Such an issue attains to the feasibility
of the attack, i.e. the likelihood of a given threat to occur. Feasibility is the
other dimension of risk assessment and is not the focus of SEA++. Instead, we
are interested in evaluating the impact of successful attacks, i.e. their resulting
consequences on the system. Practically, we quantitatively evaluate the effects
of successful attacks. To fix ideas, let us consider a deception attack such as
message injection. Then, we are not interested in how the adversary can inject
fake messages in the system or in reproducing the actual message injection.
Instead, our goal consists in understanding and evaluating what are the final
effects of such messages on the network and application, once they have been
successfully injected.

From this standpoint, we assume that the successful execution of an attack
produces a sequence of events that takes place atomically. The ASL consists in
a collection of primitives that allow us to specify the sequence of events related
to a given attack. Primitives are organized into two sets, as described below.

(i) Node primitives, that account for physical attacks performed against nodes,
and allow us to describe alterations in node behavior. In particular, the node
primitives are:

– destroy(nodeID, t) removes node nodeID from the network at time t, preventing
it from taking part in further communication.

– move(nodeID, pos, t) moves node nodeID to position pos at time t.

(ii) Message primitives, that account for cyber attacks, and allow us to describe
actions on network messages, including eavesdropping, altering, injection and
dropping. In particular, the message primitives are:

– drop(pkt) discards the packet pkt.
– create(pkt, fld, content, ...) creates a new packet pkt and fill its field fld with
content. A single invocation makes it possible to specify the content of multiple
fields.

– clone(srcPkt, dstPkt) clones packet srcPkt into packet dstPkt.
– change(pkt, fld, newContent) writes newContent into field fld of packet pkt.
– retrieve(pkt, fld, var) copies the content of the field fld of packet pkt into variable
var.

– put(pkt, dstNodes, TX | RX, delay) puts packet pkt either in the TX or RX
buffer of all nodes in the dstNodes list after a delay delay.

The ASL provides additional statements that allow us to specify the occur-
rence of a list of events described through message primitives. For instance, the
statement from T every P do {<list of events>} specifies that the list of
events takes place periodically, with period P, on the declared list of nodes since
time T.

Also, the ASL allows us to specify the conditional occurrence of events
described through message primitives, depending on specific conditions eval-
uated by nodes at runtime. For instance, the following statements specify that
the list of events takes place on the declared list of nodes if condition is evaluated
as TRUE.
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from T nodes = <list of nodes> do {
filter(<condition>) <list of events>

}

By means of the statements shown above, the ASL makes it possible to
describe even complex attacks in a concise although clear way. For instance, let
us consider a wormhole attack [11] starting at time 200 s, where node 9 tunnels
MAC packets sent by node 5 to a remote area of the network containing nodes
10, 11 and 15. The attack can be described as follows:

dstList={10,11,15};
from 200 nodes ="9" do {

filter(MAC.source==5 and MAC.type==DATA)
put(packet,dstList,RX,0);

}

Note that we have used the dot notation packet.layer.field, in order to specify
the field field of packet packet in the header of layer layer. It follows that the
user must be aware of the actual specific network protocols that are adopted at
each communication layer. Also, for each of them, the user must be aware of the
packet header structure and fields, and the specific capabilities possibly offered
by the simulation platform. For instance, the OMNeT++ platform [2] and the
INET framework [1] considered by SEA++ provide a set of objects, namely
descriptors, which allow us to handle packets of a given communication layer
and conveniently access their header fields.

3.2 The Attack Simulator

The Attack Simulator module considers every node as implemented by a Enhanced
Network Node module. The latter is in turn composed of an Application mod-
ule, a Communication Stack module, and a Local Event Processor (LEP) module.
The Application module may be composed of different sub-modules modelling the
actual node application. Similarly, the Communication Stack module may include
an arbitrarily complex combination of protocols for different communication lay-
ers, e.g. transport, routing and MAC. All sub-modules but LEP can be off-the-
shelf.

The LEP module is responsible for the management of events related to
attacks, and operates transparently with respect to the other components of
the Enhanced Network Node module. In particular, the LEP module intercepts
all application and network packets traveling through a node’s communication
stack. Then, depending on the considered attacks to be evaluated, it can inspect
and alter packets’ content, inject new packets, or even discard intercepted ones.
Finally, the LEP module can also alter the node behavior at different layers,
change its position in space, or even neutralize the node by making it inactive.

A systemcomposed ofmultiple nodes is simulatedby instantiating anEnhanced
Network Node module for each node, and a single Global Event Processor (GEP)
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Fig. 1. The Attack Simulator architecture

module that connects all the Enhanced Network Node modules with one another.
In particular, the GEP module is separately connected with every LEP mod-
ule, so allowing them to synchronize and communicate with one another in order
to implement complex distributed attacks, such as a wormhole attack. Figure 1
depicts the architecture of the Attack Simulator component, with reference to a
system composed of two interconnected nodes.

3.3 Prototype Implementation for INET

We have implemented and released a prototype of SEA++. The Attack Specifi-
cation Interpreter and Attack Simulator components are available at [9]. With
reference to Fig. 1, as to the Application and Communication Stack modules we
used INET [1], an off-the-shelf simulator for wired, wireless and mobile networks,
based on the discrete-event simulation platform OMNeT++ [2].

In the original INET architecture, network nodes are composed of different
sub-modules. Also, nodes comprise a full communication stack composed by a
transport, routing and MAC layer. INET provides the implementation of differ-
ent communication protocols for each of such layers, as well as different network
communication interfaces and physical channels. Thanks to the available com-
munication stack, application running on the nodes can send/receive packets
to/from the considered physical channel.

In our implementation of SEA++, we integrated the Local Event Processor
and the Global Event Processor within the INET simulator. In particular, the
Local Event Processor has been adapted to INET, in order to correctly manage
simulation events and network packets. With reference to Fig. 1, the Local Event
Processor intercepts incoming and outgoing packets traveling through a node’s
Communication Stack, between every pair of layers.

4 Case Study: A Traffic Light System

In this section, we consider a traffic light application scenario, and use SEA++ to
evaluate the impact of two security attacks. In particular, we refer to the
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T-intersection depicted in Fig. 2, including a secondary one-way road that inter-
sects a main road. The vehicular traffic in the intersection is managed by means of
three traffic lights, i.e. TL1 and TL2 on the main road, and TL3 on the secondary
road. We assume that a single Traffic Controller node periodically sends control
messages to the three traffic lights (every 2.5 s in our setting), with the intent to
adapt their behavior to the experienced vehicular traffic. Furthermore, the three
traffic lights periodically send a feeedback message to the Traffic Controller (every
0.2 s in our setting), reporting about the actual traffic light time experienced dur-
ing the last time interval. So doing, the Traffic Controller can check the correct
behavior of traffic lights, and possibly adjust them by means of additional control
messages. We assume that the regular traffic light timing has a period of 10 s, and
is set as {5s; 1s; 4s}. That is, the red light is on for 5 s, followed by the yellow light
active for 1 second, after which the green light is on for 4 s before concluding the
period. This is shown in the graph reported in Fig. 2, where values 5, 0 and −5
stand for green light on, yellow light on and red light on, respectively.

(a) Example of traffic flow
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(b) Regular traffic light timing

Fig. 2. Traffic light scenario (Color figure online)

Hereafter, we consider an adversary who has managed to compromise the
traffic light TL3, so being able to drop and alter feedback messages intended
to the Traffic Controller. Also, the considered adversary is able to perform a
number of attacks against the network. For instance, she can inject fake control
messages intended to TL3. Having said that, the final goal of the adversary
consists in altering the behavior of TL3, in order to create inconsistent traffic
light configurations, which can be dangerous or prone to traffic stalemate, when
both directions have red and green light, respectively. Besides, the adversary is
insterested in concealing the effects of performed attacks to the Traffic Controller.

4.1 Attack Impact and Ranking

In the following, we consider two distinct attacks. In the first attack, namely
Injection, the adversary regularly injects faked control messages intended to
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the traffic light TL3, specifying a traffic light timing {2s; 2s; 2s}. Then, upon
receiving a fake control message, TL3 sets the traffic light period to 6 s, and
starts to observe a traffic light timing {2s; 2s; 2s}, i.e. 2 s are assigned to each
one of the red, yellow and green light. We refer to different injection periods, i.e.
different time intervals between two consecutive transmissions of fake control
messages. Note that, upon receiving a genuine control message from the Traffic
Controller, TL3 starts again the regular traffic light period of 10 s, according to
the regular traffic light timing {5s; 1s; 4s}.

In the second attack, namely Bypass, TL3 ignores some genuine control mes-
sages received from the Traffic Controller. Specifically, TL3 may bypass some
control messages upon their reception, and instead set the traffic light period to
6 s and start to observe a traffic light timing {2s; 2s; 2s}. That is, 2 s are assigned
to each one of the red, yellow and green light. We refer to different Bypass inter-
vals, i.e. the number of control messages before the next one to be bypassed.
Note that, in case a control message is regularly accepted and processed, TL3
starts again the regular traffic light period of 10 s, according to the regular traffic
light timing {5s; 1s; 4s}.

In both attacks, TL3 keeps on regularly sending feedback messages to the
Traffic Controller, although always specifying the expected regular traffic light
timing, i.e. {5s; 1s; 4s}. As a consequence, the Traffic Controller is not able to
recognize that the observed traffic light timing differs from the expected one.
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Fig. 3. Traffic light timing under attack

Figure 3a and b report the behavior of the traffic light system when the Injec-
tion attack or the Bypass attack are performed. Specifically, Fig. 3a considers
an Injection period of 1 s, whereas Fig. 3b considers a Bypass interval of 2 mes-
sages. In both cases, the considered attack starts at time t = 30 s and is then
performed throughout the simulation experiment. The two lines in the graphs
depict the evolution of the traffic light configuration over time, separately for
the main and the secondary road. Besides, every overlap of the two lines denote
a misbehavior due to the considered attack, i.e. the occurrence of an undesired
configuration.
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Table 1. Attack ranking

Incorrect GG GY YY RR Correct

Bypass (all messages) 51 % 14 % 17 % 3 % 17 % 49 %

Injection (Period 0.5 s) 41 % 11 % 14 % 3 % 13 % 59 %

Injection (Period 1 s) 36 % 9 % 12 % 3 % 12 % 64 %

Injection (Period 1.5 s) 35 % 9 % 9 % 3 % 14 % 65 %

Bypass (every 2 messages) 24 % 8 % 8 % 0 % 8 % 76 %

Bypass (every 3 messages) 9 % 1 % 6 % 0 % 2 % 91 %

Table 1 sorts the considered attacks according to their severity. In particular,
attacks are sorted according to the amount of time that the system under attack
experiences in a misbehavior state (see column Incorrect). Results are expressed
as the percentage of time when the system observes a given traffic light config-
uration, while being under attack. In particular, the column Incorrect refers to
all possible undesired configurations observed on the main and secondary road,
i.e. Green-Green (GG), Green-Yellow (GY), Yellow-Yellow (YY) and Red-Red
(RR). Separate results for each undesired configurations are reported in the rel-
ative dedicated columns. Finally, the Correct column refers to all possible licit
configurations, i.e. Red-Green and Red-Yellow. We considered Injection peri-
ods 0.5 s, 1 s and 1.5 s for the Injection attack, and Bypass intervals 1, 2 and 3
messages for the Bypass attack.

As reported in Table 1, bypassing all control messages from the traffic con-
troller results to be the most effective attack against the traffic light system.
This suggests that this attack, especially when mounted at its maximum extent,
is the one which deserves more to be addressed and counteracted. The Injection
attack follows right after. In particular, as expected, the shorter the injection
period, the more the attack is effective. Similarly, the Bypass attack is more
effective when larger Bypass intervals are considered.

5 Conclusions

We have presented SEA++, a tool for simulative evaluation of attack impact
based on the INET framework and the OMNeT++ platform. SEA++ allows the
user to describe cyber-physical attacks and quantitatively evaluate their effects
on the network and application. SEA++ does not require the user to modify
any component of the simulation platform. As a case-study, we have showed the
use of SEA++ to evaluate the impact of two different attacks on a traffic light
management application scenario. In future work, we will integrate additional
off-the-shelf simulators (e.g., Castalia, Simulink) to apply SEA++ to more
complex systems such as smart grids and industrial plants. Finally, we intend to
introduce the node primitive disable which complements destroy and disables
every application activity of a node.
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Abstract. Recently, the protection of critical infrastructures became a core
problem due to their importance in the everyday life and the attacks that may
affect these systems. In order to ensure the safety and the efficient operation of
such systems, a method together with an integrated framework is proposed to
find a solution to the problem to deliver a system with cost-optimal operation by
reconfiguration. Reconfiguration is possible via redundant structures of crucial
resources while optimization aims at the minimization of the cost of the
reconfiguration and the operational cost of the modified system. The method is
illustrated by a SCADA control system case study.

Keywords: Redundancy � Reconfiguration � Optimization

1 Introduction

Due to the increasing demand for reliable systems with efficient operation, the
simultaneous assurance of safety and optimality became a key problem in critical
infrastructures. The delivery of the correct and cost-optimal operation of a system is
crucial since unexpected external events may occur that can alter the parameters (e.g.
cost of resource usage or supply) and also the structure of the system during their
operation.

There exist several methods to describe how to improve the fault tolerance prop-
erties of a system or how to optimize the execution of a process. However, it is still an
interesting question how to combine the best practices of these two fields.
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Our goal was to design a method that (i) provides a model-based solution for
system reconfiguration in case of failure(s) (ii) by introducing redundancy for the
crucial components (iii) such that it takes into account the cost of the reconfiguration
and the operation of the delivered system to keep it minimal.

In our approach, at first the crucial components have to be identified. This will be
based on the ontological representation of the infrastructure and the processes of the
system. The aim of the ontology is to provide a metamodel-like representation of
critical infrastructure protection (CIP) systems from which a formal model can be
generated. This model is appropriate to capture reconfiguration and to support opti-
mization of the operation of CIP systems according to dynamic changes. The ontology
is motivated by the Security Ontology [1] and the ASTER data model [2].

In addition to the ontology model, we use Xtext language [7] to define the front-end
infrastructure and process models that are transformed into mathematical models. Xtext
is a framework for development of domain specific languages. In the current work,
Alloy models and P-graphs provide the mathematical models for the analysis.

Alloy is a tool developed by the Software Design Group at MIT [9] that aims at the
description and analysis of complex structure models by its expressive and flexible
first-order logic based declarative language with relational algebra. P-graphs are the
input models of Process Network Synthesis problems and algorithms that were
developed to optimize process networks [6]. Alloy is responsible for the delivery of a
sound model structure regarding to failures while Process Network Synthesis
(PNS) methods [6] are used to deliver a reconfiguration solution with minimal cost.

The current paper focuses on an integrated method for the generation of a correct
model with minimal cost of reconfiguration and system operation after dynamic
changes.

Related Work. In [4] an error isolation and system recovery technique was proposed
to satisfy optimization and fault tolerance needs simultaneously. The method used
Alloy and PNS-based methods to analyze business processes with potential failures.
The current paper focuses on a further development and extension presenting an
integrated framework to tackle the optimization and reconfiguration problem. Another
novelty of the current work is that the integrated framework provides not only the
analysis of business processes as in [4] but also of critical infrastructures.

[3] proposed an approach to optimize fault tolerant architecture. Their solution is
different from our one in the sense that they decide between the redundancy options
based on the cost of the architecture according to the cost of the component structure
not considering process activities.

[5] introduces on-line optimization for fault tolerant flight control. The aim of the
method is to guarantee the correct operation of the flight control in case of actuator
failures. Similarly to our solution, the presented optimization solution takes into
account the remaining operational elements (actuators) and performs reconfiguration
according to the given constraints, however it considers neither the cost of the
reconfiguration nor the cost of the further operation after the reconfiguration.
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[10] presents a new concept for automated reconfiguration control in SCADA
systems based on fault isolation and service restoration within the power grid. This
approach does not take into account the failures of the IT infrastructure of the SCADA
system.

Structure of the Paper. At first, related work is overviewed briefly. Then the
approach and an integrated analysis tool is introduced. This part is followed by a case
study to illustrate the approach through a SCADA example and finally, we conclude
our work.

2 Proposed Solution

2.1 Structure and Workflow of the Integrated Analysis Tool

Figure 1 shows the structure of the integrated analysis tool which is capable to describe
redundant infrastructure with behavior patterns and able to calculate the cost of the
reconfiguration and the operational cost of the modified system if any error is occurred
(or injected). The process consists of the following steps:

1. At first, the infrastructure and process models are defined in the Xtext grammar.
2. The definition of these models is followed by the generation of Alloy structures.
3. Then the models are imported by the integrated analysis tool and the Alloy code

is run.
4. The Alloy tool generates feasible system structures (reconfiguration possibilities).
5. The operation costs of the system elements are added to the feasible structures in the

integrated analysis tool, and they are transformed into a PNS model.
6. The PNS solver calculates the costs of the individual feasible solutions, and
7. The optimal solution is selected by integrated analysis tool.

Fig. 1. The structure of the integration tool
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2.2 The Model Definition Language

In order to model infrastructure with redundancy, dependencies and behavior patterns,
an own grammar was defined for infrastructure and process description in Xtext
language. The grammar consists of (see Fig. 2):

• a general ElementType concept which is used to describe the resources (for example
servers or workstations),

• a Redundancy concept which is used to describe the redundancy structures, and
• an Activity concept which is used to describe the business process.

The main advantage of such a definition language is that it can be easily extended
to support complex element models, deployment relation between HW and SW ele-
ments of the infrastructure and complex process models with alternative routes.

3 Case Study

In the following the operation of the integrated analysis tool is illustrated through an
example SCADA system. SCADA systems are used to supervise critical infrastruc-
tures. Usually they contain at least one control center, several control units on the field
site of the controlled infrastructure and the network between these elements.

The control center consists of at least one workstation used by a human operator in
order to control the infrastructure such that workstations are redundant in most cases.
Workstations can be used by operators to monitor and control the system.

The monitored data is collected and stored by servers that are redundant in most
cases. In large systems there is a dedicated database server as well.

The local network in the control center is also redundant, and each workstation is
connected to all of the servers.

The field sites are connected primarily to the servers through a field network that
should be redundant as well. The field sites are equipped with RTUs and PLCs which
are connected to the controlled/monitored unit of the actual infrastructure through
actuators and sensors.

Fig. 2. The class diagram of the grammar

Optimization of Reconfiguration Mechanisms in Critical Infrastructures 327



3.1 The SCADA System Model and the Control Process

In our example the controlled infrastructure is a power grid (see Fig. 3). For the sake of
presentation, we use graphical notation to present the textual models.

The control center consists of two workstations, a local network, two switches and
two redundant servers. The servers are configured to implement hot-standby
redundancy.

The field network consists of the two switches in the control center, one router on
every field site, and two parallel optical cables between the sites.

The field site SCADA consists of one router and one RTU on every field site.
The RTU is connected to the actuators and sensors of the controlled infrastructure
element.

In this example only the generators and substations of the power grid are equipped
with RTUs while the consumers are not. On the consumer side, smart meters can be
used to measure and control power consumption. The sample control process in Fig. 4
is used for demonstration purposes in the following: the operator sends a control
message to a substation to change its state. The activities of the process are the fol-
lowing: (1) send control message, (2) process message, (3) issue command and
(4) execute command.

The process activities are linked to those infrastructure elements which execute the
activity representing the dependencies between the resources (or redundancy
structures).

Fig. 3. The SCADA system model

Fig. 4. The control process
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Several errors may occur in this system. Typically the control center includes
redundant infrastructure elements to assure that the system remains operational if any
resource is failed. The redundancy also provides reconfiguration in the sense of load
balancing between the operational elements and repairing of the failed one.

3.2 The Infrastructure and the Process Model

The infrastructure model is constructed in the model definition grammar (visualized as
a P-graph hereafter). The internal behavior of a server element is represented by its
internal states and transitions between them. This model describes the dependability of
a resource representing the operational and faulty states [8]. Additional states are used
to count the number of start and repair operations (see Fig. 5). These states are used
later in the PNS model to ensure the existence of a transition in a reconfiguration
structure. This behavior model is defined for each resource type. The definition of an
element (e.g. server1) contains (i) dependency information that describes which process
activity is completed by the element and (ii) the cost of the transitions.

The redundancy structures are also defined within the grammar. The definition of
the structure refers to element type information, number of redundant elements and the
type of the redundancy structure (e.g. hot-standby). Dependent process activities are
linked to the redundancy structure instead of individual elements.

The control process is also represented by the grammar. The definition contains the
name of the control process, the initial activity and the chain of the activities. The
graphical process model (see Fig. 6) is constructed by multiplying the activities
(_using_server1, _using_server2) according to the redundant elements (server1, ser-
ver2). This way the process model is extended with independent routes for each
redundant resource modeling the reconfiguration possibilities.

3.3 The Alloy Model

Alloy is used for three purposes in the current workflow: for model verification, model
construction and state space reduction. In order to create an Alloy metamodel the

Fig. 5. Internal states of a server element
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constraints and verification possibilities are discovered and built into the model. Then
whenever an instance model is generated that satisfies the metamodel, these constraints
are automatically checked.

The Alloy representations are generated by Eclipse from the Xtext model. The
generation is based on an Alloy metamodel that contains the definitions of the element
types, elements, activities and the process similarly to the Xtext grammar.

For model verification, only the predefined constraints are checked. For model
construction, Alloy is used to deliver a model in which the number of resources is
minimal and the process still can be completed. For state space reduction Alloy is used
to find feasible structures regarding to the starting state of the system defined by
constraints (expressing e.g., the presence of faults).

Infrastructure and Process Definition. Based on the generated Alloy structure, the
defined model can be visualized and additional checks can be run for the reconfigu-
ration scenario.

In order to ease the model construction, state types are assigned to the element
states to make possible the construction of such models in which elements may have
any number of operational and faulty states. These state types are used during the
reconfiguration, e.g. one of the operational states has to be reached to complete the
process.

The process definition in Alloy is very similar to the definitions used in the
grammar. The process contains the activities connected by “next” transitions to each
other.

Figure 7 shows the Alloy model generated from the Xtext models. For space
consideration only the visualization theme (graphical notation) is summarized in
Table 1.

After the definition of the metamodel, Alloy can be used to construct instance
models as follows. The code below first defines a predicate with an empty body that
always evaluates to true (example), then specifies a scope that bounds the search for
instances, satisfying the constraints of the metamodel.

pred example{}run example for exactly 1 ElementType, 2 Element,
3 State, exactly 1 Redundancy, 3 Transition, 1 Activity, 1
Process

Fig. 6. Process model with redundancy structures
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Fig. 7. The infrastructure model generated by Alloy

Table 1. Alloy visualization theme

Model element Represents Graphics

State Internal state of an element ellipse
FaultState Fault state of an element (shall be repaired before

usage)
red ellipse

InternalState Optional state for counting the number of transitions yellow ellipse
OperationalState Online state of an element (can be used) green ellipse
PrepareState Offline state of an element (shall be started before

usage)
blue ellipse

Transition Transition between two states white
rectangle

Element Container of an element grey trapezoid
ElementType Type reference of an element grey house
Redundancy Redundancy structure of elements grey rhombus
Process Business process yellow rect.
Activity Activities of the process yellow rect.
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The Alloy tool delivers one or more feasible structures according to the states of the
elements, e.g. for instance, all elements with FaultState are excluded from the structure.

In the following the next step of the analysis is discussed.

3.4 The PNS Model

The integrated analysis tool is responsible for gathering all information about the
defined infrastructure, control process and Alloy results. In order to deliver an optimal
or near optimal solution for the underlying system the feasible structures generated by
the Alloy tool are (i) traced back to the original model and (ii) they are extended by the
cost parameters defined in the Xtext grammar. The P-graph representation is then
generated by the integrated analysis tool using these cost parameters. Finally, the
optimal cost of the P-graph is calculated by the PNS Solver and one solution can be
chosen from the delivered possible solutions.

3.5 Results

The analysis in Alloy determines the possible reconfiguration steps, i.e. to alter the
infrastructure from its initial (faulty) state-configuration to the set of reachable oper-
ational state-configurations that allows the processes to be executed. The result of the
analysis is the reconfiguration workflow which is a directed graph of the steps. Each
step of this workflow can be either (i) an activity of a process assigning an activity to an
infrastructure element, or (ii) a transition that reconfigures a depending element to an
operational state, so it can be used by an activity. Precedence constraints between steps
are satisfied in the workflow, e.g. a depending element is reconfigured preceding its
actual usage.

The workflow generation considers the initial state configuration; first unnecessary
transitions are excluded, i.e. transitions that do not change the state of an element to
operational state, then the required subset of transitions are included, i.e. transitions that
repair a faulty dependent element or start an offline one. This process is carried out by
the Alloy analyzer, and consists of a CNF (Conjunctive Normal Form) problem rep-
resentation generation step and adherently finding a solution by using an off-the-shelf
SAT solver on this representation. The measured average analysis runtime of a sample
model like the presented one is shown in Table 2. The average runtime is linear for
typical models. However, further evaluation of the average runtime of the workflow
generation analysis is necessary for larger models.

Table 2. Average runtime of workflow generation analysis on a 2.19 GHz Intel Core i7 CPU
under 1 GB memory limit, using MiniSat solver. Input model size is defined in the form: number
of Activities/Elements/Transitions

7a/8e/24t 14a/16e/64t 14a/24e/96t

CNF generation 1145.8[ms] 3434.9[ms] 5676.8[ms]
Analysis 75.4[ms] 180.50[ms] 264.8[ms]
Total 1221.2[ms] 3615.40[ms] 5941.6[ms]
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The cost optimization of the feasible structures (representing reconfiguration pos-
sibilities) can be done using the PNS solver. The PNS model is built from the result of
the Alloy analysis. This model contains a reconfiguration possibility for the failed
elements. However, if there are redundancy structures in the model, one operating
element is enough to complete the business task. PNS solver selects the optimal
solution from the given possibilities with respect to reconfiguration cost and cost of
the system operation. The cost parameters of each element are defined separately. The
optimal solution describes the used elements in each redundancy structure and the
reconfiguration actions to be performed (that is not discussed here in details for space
consideration).

4 Conclusion and Further Work

The current paper introduced an approach and an integrated analysis tool (i) to model
critical infrastructures with redundant resources and processes and (ii) to deliver a
correct system with minimal operational and reconfiguration cost if an error occurs.

The main advantage of the proposed method and architecture is that the structure
and also its dynamic behavior (both operational and repair activities) are modeled
together. In the current implementation, dependencies and internal states of SCADA
elements are modeled which can be extended in the future thanks to the modular
structure of the tool and the definition language.

As a future work, the extendable Alloy representation can be used to check further
requirements against the system and also the definition language or the Alloy models
can be transformed into other analysis models.
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Abstract. Critical infrastructures, like the future power grid, rely str-
ongly on a reliable communication infrastructure. Mobile communica-
tion seems an attractive candidate, as the entry costs are low and,
provided the coverage, the new devices have immediate communication
access upon installation. However, considering the long time-frame of this
investment, it is important to think about the constraints in mobile net-
works and also potential challenges waiting in the future. In this study,
which is based on the situation in Norway, we discuss four important
future challenges: policy change, contract change, change of Quality of
Service and network failure. We show that a clever use of mobile com-
munication like multihoming or using a mobile virtual network operator
may meet the challenges. In the second part, we quantify the availability
of the different mobile communication usages with the help of analyti-
cal models and show that already a small increase of additional battery
capacity in the mobile network improves the availability significantly.

Keywords: Mobile communication · Critical infrastructure · Battery
backup · Smart grid · Availability · Interdependencies · Markov model

1 Introduction

Like other critical infrastructures, the future power grid is going to rely strongly
on a reliable communication infrastructure. Intelligent electronic devices (IED)
are going to be deployed throughout the power grid and are in need of a flexible
communication platform [1]. The requirements concerning latency, availability
and security [2,3] are very diverse and might be covered by either a flexible
middleware framework for data communication like GridStat [4] or a mixture
of different technologies. Among the considered technologies, mobile communi-
cation is regarded as a pragmatic choice for services like smart metering and
monitoring in remote locations. It is a tempting candidate, because the entry
costs are relatively low and, provided adequate coverage, the device has imme-
diate communication access upon installation. However, there are many pitfalls
to avoid, not least because of the long term nature of the investment.

The mobile networks conduct an access control based on the mobile device’s
subscription. A device is usually only allowed to use the network of the operator,
c© Springer International Publishing Switzerland 2015
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which issued the subscription. National roaming, i.e. the communication over
networks of other operators, is technically possible but commonly not permitted.
There are exceptions for special numbers like police and fire department and
for special groups of customers, e.g. in Norway the regulator stipulated national
roaming for a limited set of prioritized customers from rescue organizations [5]. If
a utility wants to use a different operator because the reception has deteriorated
or it changed the contract, it has to manually exchange the SIM card in the
device, which may be very costly as the potential number of devices for smart
metering and monitoring is very large.

An important property for the suitability of a communication infrastructure
is its dependability. Only few public studies exist [6–8] as the access to data is
usually restricted. The first two studies focus on operator internal incidents, the
third one [8], however, takes a different approach: it is based on measurements
done by mobile devices distributed over 300 different places in whole Norway.
The logged connectivity to the different UMTS networks show the distribution
of time between failures, down time and unavailability. This study measures the
Quality of Service exactly how a user would perceive it.

In this paper we suggest several alternatives on how a power utility may use
mobile communication; we single out the four main future challenges and analyze
how the alternatives react to those. After this qualitative analysis we analyze the
availability of the alternatives quantitatively based on measurement data from
the study from [8]. And finally, we analyze the availability improvement when
equipping the base stations in the mobile network with more battery capacity.

2 System Description

We consider the case, in which a company wants to roll-out a large number
of mobile devices. These devices could be smart meters or monitoring devices
inside the power grid. The study focuses on the implication of using mobile
communication for these smart devices, this is done by concentrating on the
communication between a single smart device and the company. The mobile
communication is provided by two mobile network operators (MNO): MNO A
and MNO B. It is assumed, that there is no national roaming agreement between
MNO A and MNO B, i.e. subscribers of one network have no access to the
other network. As in real networks, the two infrastructures are not completely
independent and thus their failures manifest some dependencies. The reason is
twofold. First, shared infrastructure or geographical collocation of infrastructure
in certain parts of the network, e.g. A leases a communication line from B in
rural and sparsely populated areas or A and B have their cables in the same
ditch. Second, dependence on the same service like for example power supply. In
both cases one failure can cause a failure in the two MNOs.

The MNOs are considered as black boxes, no internal state is known, the
mobile device only knows whether a connection to an MNO is possible and, on
a higher network level, if it has a connection to the power utility. It is assumed,
that only the MNOs can fail, as they are the main focus of the study.
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In order to connect to the mobile network any device needs a SIM card. On
each SIM card there is a number (IMSI) which uniquely identifies each device.
Part of this number is the mobile network code (MNC), which identifies the
mobile company that issued the SIM card. Access control is based on the MNC,
an MNO allows only connections from devices with its own MNC or with an
MNC belonging to an MNO with a roaming agreement. In Norway, these roaming
agreements are scarce and limited to foreign MNOs or mobile companies owning
no or only a very limited network on their own.

2.1 Challenges

Any mobile solution faces challenges over its lifetime. In the following we list the
challenges, which are in our opinion the most important once.

Challenge 1: Policy Change. Mobile communication depends on policies from
the national regulator and also on policies from the MNO. The national regulator
may for example forbid international roaming fees or impose national roaming;
the MNO may change national and international roaming agreements.

Challenge 2: Contract Change. The contract between the subscriber and the
MNO is subject to changes over time. Examples are an increase of the subscrip-
tion fee above an acceptable price level, required services that are discontinued,
bankruptcy of the MNO or its acquisition.

Challenge 3: Change of QoS. The Quality of Service (QoS) at a device may
change over time. Examples are a reduced signal strength or increased blocking
probability because of structural changes between the mobile device and the
base station (e.g. new walls, new buildings) or changes in the usage pattern of
the base station (e.g. increased number of subscribers).

Challenge 4: Network Failure. A network failure in this context is defined as
service outage, i.e. communication from sender to receiver over this specific net-
work is not possible. The mobile device always tries to connect to a base station
of its prioritized MNO. If no base station of its prioritized MNO is available, it
may try to connect to a base station of another MNO, but a connection is only
established if a roaming agreement with that MNO exists.

The time granularity is very different and decreases from the first to the
last challenge, i.e. the reaction time for the operator is getting shorter. Policy
and contract changes have to be announced with a certain lead time and the
operator can look for a solution well in advance. A change of QoS, however, may
happen without notice and network failures usually come without warning and
the system has to immediately react to mitigate the failure.

3 Usage Alternatives

The ordinary way is to buy regular SIM cards from an existing MNO, denoted
in the following as ordinary subscription. This comes with a carrier lock-in:
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a change of MNO can only be achieved by replacing the SIM card in each and
every device. This is costly, as the number of devices is likely to be high and
some of the devices may be located in remote areas or in places difficult to reach.
Also a network failure has a strong impact, as a national roaming is usually not
allowed, i.e. only the network of your own MNO can be used.

MVNO. The utility takes the role of a mobile virtual network operator
(MVNO), buying a certain amount of services from an MNO. Utilities may
collaborate nationally to reduce the operational costs.

The MNO can be changed by changing roaming agreements. There are
already many MVNOs, so this is a proven solution and it can be implemented
quickly by out-sourcing almost everything if desired. A precondition for this solu-
tion is that existing MNOs allow roaming by MVNOs. A policy change by the
national regulator or the MNOs may therefore have an impact on this solution.
An MVNO has usually only an agreement with one MNO and it may happen
that no MNO can provide a satisfactory QoS for all the devices. In this case,
changing the MNO does not help. This threat is higher for geographically wide
spread utilities. In case of a network failure, this solution has the same weakness
as the Ordinary Subscription, because the network cannot be changed on short
notification but needs longer negotiations.

The MVNO may issue several series of SIM cards with different MNCs. It
can then make individual roaming agreements for each MNC. This way some of
the discussed problems can be mitigated.

Multihoming. Certain devices allow the use of multiple SIM cards. Using a
SIM card from each MNO implements a national roaming without dependencies
on policy changes by the regulator or the MNOs. An application on the device
probes the different networks and chooses the one with the most favorable QoS.
There is a carrier lock-in, however, by using several SIM cards the risk is mini-
mized. Using a SIM card from an MVNO especially for utilities may increase the
flexibility of this solution even more. A new MNO can only be used by inserting
their SIM card. The cost per device is higher, as it needs multiple SIM card slots
and multiple subscriptions per device.

International Subscription. Interestingly, users with a foreign subscription
can have an advantage over those with a national subscription when the foreign
MNO has roaming agreements with several national MNOs. In this case, the
foreign subscription implements a national roaming.

The advantages are that it is very easy to implement and several mobile
networks can be used, depending on the roaming agreements. The switchover to
another network may be fast, depending on the network failure. International
roaming depends strongly on the policies of the regulator and the MNOs that
are in place. If the roaming costs are abolished for good, the MNOs may restrict
roaming agreements or make international coalitions with roaming agreements.
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But all depends strongly on what is de fined as legal by the European and the
national regulator. Additionally, this solution leads again to a carrier lock-in.

4 Unavailability

The availability of the alternatives can be grouped in three classes.
Asingle: only one single network is used, if it fails the connection fails as well;
Astandby: there is a standby network, which is used in the case of a failure in
the primary one, the switchover time varies between the solutions;
ADMR: (DMR: dual modular redundancy): two networks are used at the same
time and a failure in one does not interrupt the connection.

The ordinary subscription and MVNO (with one MNC) are in the class Asingle

because they can only use the network of a single MNC, namely the one having
issued the SIM card or the one having a roaming agreement, respectively. The
solution MVNO (with multiple MNCs) is either in the class Asingle or Astandby,
depending on whether the MNC is fix or whether it can be changed dynamically
in case of a network failure. Multihoming is in the class ADMR if the SIM cards are
used in parallel and in class Astandby if one is in a standby state. The international
subscription is in the class Astandby because the device can only be connected to
one network at a time and needs to reconnect in the case of a network failure.

We compute the unavailability U of the classes, given by U = 1 − A, where
A is the availability defined as “readiness for correct service” [9].

4.1 Quantification of Asingle and ADMR

Table 1. Used parameters from study [8].
Unavailability U Failure rate

λi,total [s
−1]

Restoration
rate μi [s−1]

Asingle 3.3 × 10−4 1.11 × 10−5 3.33 × 10−2

Asingle 5.0 × 10−3 2.01 × 10−6 4 × 10−4

ADMR 2.0 × 10−5 – –

The mentioned study [8], con-
tains data for our classes Asingle

and ADMR. Additionally, it also
contains the distributions for
time between failure and down
time when using a single net-
work. Assuming the distributions to be negative exponential, the failure and
restoration rates are computed with the approximated mean time between fail-
ure (MTBF) and mean down time (MDT) by λ = 1/(MTBF-MDT) and
μ = 1/MDT. The parameters are given in Table 1. The two networks have very
different properties: MNO A has more failures than MNO B, but due to its short
restoration time it has a lower overall unavailability.

4.2 Quantification of Astandby

There are no numbers for Astandby, however, we show how it can be computed
with a Markov model and the given parameters. But first, we note, that the mea-
surements in Table 1 indicate, that MNO A and MNO B are not independent,
they are subject to common cause failures. In order to compute this common
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Fig. 1. Model for class ADMR

cause failure rate the Markov model in Fig. 1 is
used. The round states are system up states and
the square states system down states. The state
of the whole system is defined by the states of
the two MNOs (iA : iB) with iA, iB ∈ {ok,d,cf}.
The states for each MNO are working (ok),
down (d) or down because of a common cause
failure (cf). Common cause failures from states
other than (ok:ok) are omitted for the sake of
readability; the introduced error is negligible,
as the ok:ok state has by far the highest state probability. The λis are computed
by λi = λi,total − λcf in order to keep the total failure rates λi,total constant
when varying λcf . Setting λcf = 0, i.e. making the networks independent, we
get an unavailability of 1.67 × 10−6, i.e. around 12 times smaller than the mea-
sured unavailability in Table 1, showing that the networks are in fact dependent
as mentioned above.

Table 2. Common cause rates
after parameter fitting.

λcf [s−1] μcf [s−1]

6.34 × 10−7 4 × 10−4

Details about shared infrastructures and ser-
vices in MNO A and MNO B are not known.
However, leased line and power incidents are pos-
sibly large contributors to failures [6], therefore,
we assume a restoration time of μcf = 2500s,
which is in the order of a longer mobile restoration time and a power outage
restoration [10]. Solving the model with the unavailability and rates given in
Table 1 yields a common cause failure rate λcf as listed in Table 2. The failure
rate λcf makes around 5% of the total failure rate of MNO A λA,total and around
30% of MNO B λB,total.
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Fig. 2. Model for class Astandby

Finally, the unavailability for Astandby is
computed by extending the state definitions to
(jA : jB) with jA, jB ∈ {ok,OK, d,D, cf,CF},
which yields the model depicted in Fig. 2.
Uppercase letters indicate that the mobile
device is currently using that network. E.g,
state (ok : D) means network B is used, but
down and network A is ok. It is a down state
(square), only after switching the network, lead-
ing to state (Ok : d) is the system up and run-
ning again.

In a business oriented setting it can be
advantageous to prefer one MNO over the other
because of special price models based for exam-
ple on data volume. The other MNO is only
used if the preferred one is down. For that, the
model in Fig. 2 is adjusted to always switch over
to the preferred network if it is working. i.e. if MNO A is preferred, adding a
new transition from (ok:OK) to (OK:ok) and marking the former state as down
state because of the unavailability during the switchover.
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4.3 Discussion
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The results of a steady-
state analysis are given
in Fig. 3. They show
clearly the large differ-
ence in unavailability of
the different solutions.
Class Asingle has two
results depending on
which MNO is chosen.
The difference between
the two MNOs is big
because of the large dif-
ference in restoration
time.

In the class Astandby,
the unavailability is lin-
early increasing with
the mean switching time.
The unavailability is
lower than the unavail-
ability of Asingle if the
mean switching time
is lower than 95 s or
1485 s for MNO A and MNO B, respectively. The first number is surprisingly
small, it is explained by the very short average restoration time in MNO A of
1/μA = 30 s. The switching time itself depends strongly on the used alterna-
tive and implementation. Two alternatives belonging to the class Astandby may,
therefore, not necessarily have the same unavailability.

Preferring one MNO leads to a higher unavailability. MNO B is here the
better choice of the two, as this solution benefits from the longer uptime of MNO
B and the shorter restoration time of MNO A. Preferring one MNO creates
additional interruptions, i.e. a lower mean time between failure (MTBF) and
should be avoided. However, as stated above there might be other considerations
that need to be taken into account. We consider the system as down during the
switchover, if it is performed without downtime, then preferring MNO B has a
lower unavailability than the standard standby class.

5 Improving Availability with Batteries

Today, batteries are available in some base stations. Depending on the MNO the
number of equipped base stations as well as capacity varies strongly. In Norway
there are discussions between the national regulator and MNOs about stipulating
a required battery installation in base stations in mobile networks [11]. So far,
installed batteries in the power grid were already included implicitly, because
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we used measurements of actual networks. In the following we study the effect
of installing additional battery capacity.

okbd

(1 − p)λi

μi

pλi

μi

λbat

Fig. 4. Model for class
Asingle with limited battery
capacity.

Batteries allow the communication system to
keep on working in case of a power failure, if it is
bridgeable by battery. We assume that this is the
case for p % of all failures, valid for both individ-
ual failures and common cause failures. The battery
capacity is assumed to be negative exponentially dis-
tributed with mean 1/λbat. This assumption is jus-
tified by the variation of capacity due to different
battery types, battery ages, working conditions and
charging states.
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Fig. 5. Model for the class ADMR with limited battery capacity.

The extended
models for the
classes Asingle and
ADMR are depicted
in Figs. 4 and 5.
The state defini-
tion is extended by
the network state
b, indicating that
the network suf-
fered a power fail-
ure and parts of it
is running on bat-
tery. The dashed
arrows indicate a
transition caused by
battery depletion.
The model for
Astandby is not depicted but is constructed as before by duplicating the model
for ADMR, adding an indication for which MNO is active and adding two new
transitions with rate λswitch between ok:D to OK:d and D:ok to d:OK.

5.1 Discussion

Figure 6(a) shows the results for the class Asingle when using MNO A. The
unavailability is most sensitive to a mean battery capacity in the order of the
mean down time, i.e. 1/μA = 30 s. For the MNO B the plot would look similar,
but shifted towards its mean down time of 1/μB = 2500 s.

Figure 6(b) shows the results for the class ADMR. The two parameters λcf

and μcf are set to the values used previously, noted in Table 2, which equals to
a mean common cause restoration time of 2500 s. As expected are the absolute
values lower than in the class Asingle; the plot is in fact almost the same as for
MNO B, except the y values are much lower. The reason being, that of the two
down states in the model, the state cf:cf is responsible for the highest fraction
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of the down time. The mean sojourn time for this state is given by 1/λcf and is
equal to the restoration time in MNO B.

Figure 7 shows the results for the class Astandby. The simulation is done for
two scenarios with different pairs for λcf and μcf . In scenario 1, 1/μcf is chosen
to be very short, i.e. 30 s, which corresponds to the restoration rate of MNO A.
As before, λcf is given indirectly by the model in Fig. 1 by solving the steady
state equations for it. In scenario 2, the two parameters λcf and μcf are set to
the values used previously, i.e. 1/μcf of 2500 s. Additionally, it is done for two
different switching times. For a switching time of 1 s the difference between the
two scenarios is big, i.e. the downtime caused by the common cause failure is
dominant. When increasing the switching time to 60 s, however, the downtime
caused by the switching itself becomes dominant and the difference between the
two scenarios is minimal.

The numbers show that the availability gain can already be large for a small
battery capacity bridging a time of 1–3 min. However, it depends strongly on the
restoration times and switching times between the networks.
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6 Conclusion

We list different alternatives of how to use mobile communication in this paper.
By combining them, more are possible, but they are not fundamentally different
to the presented ones. As the machine-to-machine communication (M2M) is
likely to increase in the future, new technologies and especially new regulations
may change the way mobile communication is used. For example, a decoupling
of the SIM card and the operator by issuing carrier-free SIM cards would allow
the switching between different networks and subscription contracts with only a
short switching delay. This would inexpensively implement a virtual multihoming
belonging to the availability class Astandby as discussed above.

This study is based on the regulation status and availability statistics in
Norway. Details might be different in other countries. If and how mobile com-
munication should be used depends on what service is run over it and its require-
ments concerning availability, performance and costs. In this paper we only
focused on future challenges, usage alternatives and the availability; performance
and costs are important factors but were outside the scope.
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Abstract. The evaluation of the security, reliability and resilience of critical
infrastructures (CI) faces a wide range of challenges ranging from the scale and
tempo of attacks to the need to address complex and interdependent systems of
systems. Model-based approaches and probabilistic design are fundamental to the
evaluation of CI and we need to know whether we can trust these models. This
paper presents an approach we are developing to justify the models used to assure
CI using structured assurance cases based on Claims, Arguments and Evidence
(CAE). The modelling and quantitative evaluation of the properties are supported
by the Preliminary Interdependency Analysis (PIA) method and platform applied
to a case study – a reference power transmission network enhanced with an
industrial distributed system of monitoring, protection and control. We discuss
the usefulness of the modelling and assurance case structuring approaches, some
findings from the case study, and outline the directions of further work.

Keywords: Assurance cases · CAE building blocks · Critical infrastructures ·
Power transmission network · Preliminary interdependency analysis

1 Introduction

Reliable and resilient critical infrastructures are of vital importance to the society.
Modern infrastructure components often depend on the information systems, which
control their operation, monitor activities, provide real-time response to incidents and
events. These information systems frequently become the target for cyber-attacks and
can pose significant risks to the critical infrastructures (CI).

In this paper we present a systematic practical approach to justifying the models used
to assure CI, taking into consideration the possibility of cyber-attacks. Building on the
assurance case approach, we are creating a structured security-informed reliability case
with the use of specially designed building blocks [1] that are based on the CAE notation
[2, 3] and provide means for developing a more rigorous justification in assurance cases.
The analysis of dependencies between elements of critical infrastructures as well as the
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quantitative evaluation of reliability properties are performed using the Preliminary
Interdependency Analysis (PIA) method and tool [4, 5].

The proposed approach addresses three key issues: considerantion of security attacks
on the critical infrastructures, system model and assumption justification, and quantita‐
tive evaluation of reliability properties for the system under attack. We use the results
of PIA to support decisions about the critical infrastructure. The PIA approach deals
with the stochastic properties and addresses the aleatory uncertainty. There are also
epistemic doubts arising from our lack of knowledge of the world e.g. about the systems
being modeled, the attackers. These types of doubts are interrelated and both need to be
taken into account in the decision making. In this research we explore how combining
the CAE Assurance Case approach with the PIA modeling allows us to do that.

Our approach is demonstrated with aspecific case study – an advanced power trans‐
mission network – butit is not by any means confined to the power grids and can be used
for a wide variety of industrial systems with complex topology and different functional,
spatial and other stochastic dependencies between elements.

The paper is organized in the following way: In Sect. 2 we provide a brief overview
of the main approaches used. Section 3 introduces the case study. Section 4 demonstrates
how the approaches are applied to the case study to create a structured security-informed
reliability case. Section 5 summarises the key findings and Sect. 6 concludes the paper
indicating the directions of future research.

2 Overview of the Approaches

2.1 Structured Assurance Cases

An explicit claim-based approach to reasoning about safety, security, reliability and
assurance, influenced by the basic model of argumentation developed by Toulmin [6],
has been in use for many years. There are various solutions to structure assurance cases
[3, 7, 8], and to increase rigour and confidence in them [9–11]. In this study we use a
CAE approach, which provides an effective means for presenting and communicating
cases. A graphical notation ASCAD [12] is used to describe the interrelationship of the
claims, argument and evidence.

We extend the approach by developing a set of CAE building blocks that restrict the
types of argument structures used in a case and help architect cases in a more systematic
and rigorous way. Additional information on the building blocks including their defi‐
nitions, application and guidance can be found in papers [1]. In this paper the building
blocks are used to create a structured assurance case fragment for analysing reliability
properties of power transmission system under cyber attack.

2.2 Preliminary Interdependency Analysis Method and Tool

Preliminary Interdependency Analysis (PIA) [4] is an analysis activity that helps to
understand the range of possible interdependencies between the components of critical
infrastructures. The objectives of PIA are to develop an appropriate service model for
the infrastructures, and to document assumptions about resources, environmental
impact, threats and other factors. PIA is used for both qualitative and quantitative
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assessment by accounting for both static (topology) and dynamic (behavioural) aspects
of the modelled systems. The key concept of the PIA methodology is representing the
system components as continuous-time state machines.

The simulation of the state machines by the PIA tool produces series of events that
are then aggregated by a subroutine to calculate the metric of interest. Typically, the
metrics are various “loss functions”, e.g. the number of failed components, the duration
of non-working state of a particular component or a combined characteristic of many
components’ states. Statistical analysis of the metric data is enabled by repeating the
simulation multiple times.

3 Case Study

The case study is based on a reference topology of a Nordic32 electric power transmis‐
sion system. The network consists of 32 substations operating at different voltage levels:
400 kV, 220 kV and 130 kV. Every substation is organised as a collection of bays. There
are four different elements: a line, a transformer, a generator or a load. Each bay connects
one of these elements with the bus bar of the substation. Bays also include protection
and control units, which are responsible for switching on and off the connected elements.
The control devices are typically used by operators or by a special purpose software
(SPS) designed to undertake some of the operators’ functions automatically and can
both connect and disconnect the element from the bus bar. Each protection and control
function (with respect to the individual bays) is available when the minimal cut set of
equipment supporting the function is available. If the entire minimum cut set becomes
unavailable, then the function itself also becomes unavailable.

A structure of the Nordic32 network and the architecture of one of the substations
are shown in the Fig. 1. Other substations have similar architecture but with a different
number of bays. The figure is only meant to provide a high-level overview, detailed
discussion of the components is not necessary to understand the rest of the paper.

Fig. 1. Overview of Nordic32 system topology (left) and the architecture of a substation (right)
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The substations are connected via a sophisticated information and communication
technology (ICT) infrastructure, which includes a number of communication channels,
control centres and data centres. Every substation has a Local Area Network (LAN),
and a firewall protecting the LAN normally ensures that only legitimate traffic can pass
through into the LAN from the rest of the world.

The modelled system can be studied with operational environment where only acci‐
dental failures are considered as well as those with cyber-attacks. In the later case,
a model of Adversary is added in which the Adversary is tightly coupled with the assets.
Further details about the case study and the various modeling assumptions can be found
in papers [13, 14].

4 Analysis of the Case Study

In this study, our main focus is on the system’s reliability. We need to provide assurance
that the system’s critical reliability properties are satisfied – this makes our top level
claim. In order to support the top claim, we expand it in a more detailed case using the
CAE building blocks structuring approach and eventually demonstrate that the proper‐
ties are satisfied by using the results from the PIA method and tool. The assurance case
is created with the ASCE tool [15].

4.1 Establishing the Environment

As was mentioned earlier, we need to take cyber-security into account when assessing
the reliability of critical infrastructures. Cyber-attacks can pose various risks and thus
the top claim is too general to be demonstrated by a convincing argument that it is valid.
We need to define the claim more precisely by making the adverse environment explicit
and considering specific cyber-attacks. This is done by using a Concretion block, and
the concreted claim states that “the critical reliability properties of Nordic32 are satisfied
under specific design-basis attacks”. The instantiated block is shown in Fig. 2.

Making environment and attacks explicit in the claim highlights the need to consider
various types of attacks, define them in terms of capability, frequency and justify that
they adequately represent the possible attacks on the system. For our study, we analysed
the effect of a single type of attack on system behavior: a cyber-attack via the firewall
of a sub-station. The detailed model of Adversary and attack scenarios we developed
are outside the scope of this paper and are described in recent publications [13, 16]. The
justification of the models are performed in the side-warrant of the Concretion block. It
can be supported by other documents and sources of attack information, e.g. scientific
papers, insider knowledge, external expert analysis, and so forth.

At this point, the case could also be decomposed to consider each type of attacks in
a separate branch. This could be useful if the case was going to be communicated to
stakeholders who are particularly interested in different types of attacks, or if the case
is likely to be changed in the future by introducing new types of attacks that could lead
to different critical properties to be considered depending on the attacks.
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4.2 Substitution of a Model for the Real System

Once the top claim is concreted, the case continues with a Substitution block. For most
complex systems, especially the critical ones, it is impossible to perform live analysis.
Instead, a model of a system operating in a simulated environment is constructed.
Therefore, we substitute the claim about the real Nordic32 system under its design-basis
attacks by a model M(N32) under the simulated attacks M(DBA). PIA is used as a
platform to create the model. The substitution is shown in Fig. 3.

Critical reliability properties of
N32 system are satisfied under

specific design basis attacks
(DBA)

Substitution of the model for
the real system and real

attacks

Critical reliability properties are
satisfied in the modeled system
M(N32) under simulated attacks

M(DBA)

M(N32) running in simulated
environment is equivalent to

N32 operating in real life

Fig. 3. Substitution of the model for the real system

Critical reliability properties
of N32 system are satisfied

DBA adequately characterises
the possible attacks

Other sources discussing
the plausible attack

scenarios etc.

Critical reliability properties of
N32 system are satisfied under

specific design basis attacks
(DBA)

Design basis attacks
document

Concretion of
environment

Fig. 2. Concretion making the attacks explicit in the claim
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When such a substitution is made, it is essential to justify that the model is
adequate for the specific purpose it is being used for. We start with the side-claim
stating that the modelled system running in simulated environment is equivalent to
the real system operating in real life. “Equivalent” is of course context dependent and
will need further justification. Therefore, the side-warrant is expanded to justify that
all the models adequately represent the reality and that the PIA simulation platform
itself is trustworthy. Each model is analysed separately: the model of the system
should adequately represent the actual Nordic32 system, the model of the usage
should be realistic and the model of the environment should be adequate. The latter
includes the models of attacks identified at the previous stage of the analysis, as
cyber-attacks are part of the overall adverse environment. The justifications are
presented in Fig. 4, where the argument nodes of evidence incorporation blocks
explain why the findings of the PIA report and research paper are taken as supporting
the claim. There may also be further elaboration in terms of CAE, if needed. We used
the IEEE research paper [16] as one of the evidence supporting the adequacy of the
constructed models. The interaction of the models is considered within the validity
of the platform as composing models together is part of the platform requirements.
The expanded side-warrant structure with supporting evidence from PIA and other
sources are shown in the Fig. 4.

4.3 Analysis of Critical Properties

At this stage, we expand the case further by considering specific reliability properties
that are to be satisfied. In our case, these are the properties important from the customer
point of view, concerning the power loss and availability of the service to consumers.
The system must ensure that all consumers are connected to the grid most of the time
(consumers should have 99 % or better availability of the supply) and the losses do not
exceed 20 % of the nominal value. The property values should be calculated for indi‐
vidual consumers, not the average one, otherwise some users could be disconnected all
the time. The decomposition by the reliability properties is shown in Fig. 5.

We used PIA to perform the calculations and justify that the modelled system meets
these reliability requirements under the identified cyber-attacks. The effect of cyber-
attacks on the service provided by the system was measured using different rewards
(utility function) linked to the supplied power. The length of a simulation run was
selected be the equivalent of 10 years of operation. The details of our evaluation can be
found in papers [13, 14]. Evidence Incorporation blocks are used to feed the results from
PIA into the assurance case. PIA results returned in the form of JSON file were addi‐
tionally processed using special aggregation functions (linked to the argument nodesof
the blocks) to demonstrate that they indeed support the corresponding subclaims.

5 Findings and Discussions

Overall, we found that structuring case method with the use of CAE building blocks,
has enabled us to gain a clear understanding of the key issues that need to be addressed,
identify the factors having the major effect on the analysis, and choose the best approach
to achieving confidence in the results.
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Some of the challenges and observations from our analysis are summarized below:

• Making environment and attacks explicit in the assurance case was essential for the
analysis. As cyber-attacks have a great impact on the reliability, we needed to revisit
the case study documents with the types of cyber-attacks toward the infrastructure.
Some of the attack scenarios were identified by our in-house analysis and the assur‐
ance case challenged the justification of our decisions. Other sources discussing the
plausible types of attacks also had to be reviewed to provide convincing evidence
that they are relevant in a particular context and are indeed part of the security-
threatened environment. We’ll be continuing investigations into the specific adver‐
sary models that need to be considered. Ultimately, the critical properties will only
be satisfied for the specific set of attacks so it is important to make an informed well-
reasoned decision at this stage of assessment.

• Another crucial factor underpinning the success of analysis was the construction of
an adequate model that represents the real system operating in its security-threatened
environment. At this stage the assurance case required us to provide convincing
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system use is

realistic
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Fig. 4. Justification of the model
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evidence that the models of system, its usage and the environment are realistic.
In doing so, it was identified that the usage model was not actually realistic and did
not correctly represent the use of the system in real life. Specifically, the model of a
load had a property defining the power consumed, and the property was set a constant
value ignoring the natural fluctuations over time of the consumed power. In reality
the power consumption is not constant and the model ideally should reflect this. The
model is simplified since the fluctuations are managed by the power utilities, which
are not part of the system model. Clearly, the model of the system must be scrutinized
and the assumptions it is built upon – validated.

• In terms of the modelling platform (PIA tool), the assurance case also required us to
conduct a thorough analysis and provide a validation report for PIA, which has been
produced.

• The property evaluation part was substantial and took a considerable amount of time.
The studied system is non-trivial, the model consists of more than 1500 state
machines. With the chosen parameterisation we observed a significant number
(~ 4000 to 32000) of events over a single simulation run of the system over 10 years
of operation. Many of these events require power flow calculations, which take lots
of time to complete. Similarly, following overloads or generator failures, active
“control” is required to find a new stable system state, which is another time

Critical properties are
system power and

availability to consumers

Decomposition by
properties

Critical reliability properties are
satisfied in the modeled system
M(N32) under simulated attacks

M(DBA)

The lost power does not
exceed 20% of nominal
capacity of the system

The service achieves
99% availability to

individual consumers

Evidence
incorporation

Evidence
incorporation

Simulations and calculation
results from PIA

Requirements from
the consumer point of

view

Fig. 5. Demonstration of the critical properties

352 K. Netkachova et al.



consuming process. As a result, a single simulation run takes approximately 5 min
to complete and obtaining results with high confidence requires a very large number
of simulation runs.

6 Conclusions and Next Steps

In the paper we presented an approach to analysing critical reliability properties of a
power transmission system under cyber-attacks using structured assurance cases and
preliminary interdependency analysis method and tool. The paper is centred on the case,
which articulates how one should address cyber-attacks and perform the validation of
the model before the evidence in support is supplied by the modelling tool.

We believe the presented approach provides a good overview of the important
concerns and efforts in assuring the reliability of any complex industrial systems. It
discusses the need to explicitly identify adverse environment considering various types
of cyber-attacks, justify that the system model can be trusted and show that the model
has the required critical properties. Coupled with the PIA method and tool, the approach
provides support addressing both aleatory and epistemic aspects of the integrated
security and reliability analysis. It can be used for a wide variety of systems and
infrastructures.

The future steps will be taken to develop an integrated tool support for the PIA and
ASCE assurance case tools. In parallel, we are developing the CAE Building Blocks
methodology and resources further, looking into the composite blocks and how these
are defined, linking to challenge and review checklists generated from the blocks and
more support for the formal aspects of assurance cases. In terms of justifying critical
infrastructures properties we have indicated where the case presented in the case study
could be expanded for a real industrial system. This is a very active and growing area
with a number of research trends on argumentation, confidence and model based
approaches and we plan to continue our research in this direction.
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Abstract. Over the last 20 years, embedded systems have evolved from closed,
rather static single-application systems towards open, flexible, multi-application
systems of systems. While this is a blessing from an application perspective, it
certainly is a curse from a safety engineering perspective as it invalidates the base
assumptions of established engineering methodologies. Due to the combinatorial
complexity and the amount of uncertainty encountered in the analysis of such
systems, we believe that more potent modular safety approaches coupled with
adequate runtime checks are required. In this paper, we investigate the possibility of
an integrated contract-based approach covering vertical dependencies (between
platform and application) and horizontal dependencies (between applications) in
order to efficiently assure the safety of the whole system of systems through modu‐
larization. We integrate both concepts using state-of-the-art research and showcase
the application of the integrated approach based on a small industrial case study.

Keywords: Safety · Assurance · Contracts · Multi-core · Conserts

1 Introduction

In recent years we have witnessed two different, very strong trends in the domain of
embedded systems: collaboration between systems and more cores per chip.

The trend towards more collaboration has been prevalent for rather closed
systems, such as communicating ECUs within a car, for over 20 years now. But
roughly since the 2000s, it has been extended towards open systems such as dynamic
compositions of different cars, traffic infrastructure, and Internet-based services. New
computing paradigms have been coined along the way, most notably pervasive
computing, ubiquitous computing, ambient intelligence, and cyber-physical systems.
All these notions have in common that different types of systems from different
manufacturers are integrated dynamically into so-called systems of systems, which
can then render higher-level services based on their collaboration. This clearly bears
huge potential for future applications and is bound to make a significant impact on
our daily lives. However, from a safety perspective, this trend also brings huge chal‐
lenges that could well prove to be a show stopper. One key challenge in this regard
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is the uncertainty regarding dynamic compositions and reconfigurations, which can
hardly be foreseen and analyzed at development time already. A corresponding solu‐
tion idea is to shift parts of the safety certification activities into runtime, where all
relevant information can be obtained and uncertainty can be resolved.

The other trend goes is about incrementing the number of CPU cores per chip.
This trend has existed for about ten years and leads to higher computing power at
lower cost. As a consequence, ECUs can host a higher number of applications at a time
or applications that merely require much higher computing power. New kinds of
applications are enabled that were previously unfeasible due to high hardware cost
or lack of processing power. An example is camera-based recognition applications
like those required for autonomous driving. However, from a safety perspective, the
rise of multicore architectures has led to the problem of mixed criticalities. Different
applications on a multicore processor share the same platform resources, resulting in
potentially dangerous interdependencies and interferences. These need to be analyzed
thoroughly, measures need to be introduced and their sufficiency needs to be shown.
A particular challenge in this regard is cases where applications are developed by
different parties or where there is a possibility of dynamic application downloads.

We expect future systems of systems to consist of different collaborating systems
(i.e., entities consisting of hard- and software) that might in turn be built upon multicore
technology and host several applications. Moreover, dynamic application updates are
probably a feature future systems will possess. From a safety engineering perspective,
we thus face uncertainties with respect to a system’s environment (e.g., other collabo‐
rating systems; “horizontal dependencies”) as well as regarding different applications
of one system (i.e., via common shared resources; “vertical dependencies”).

In this paper, we investigate the possibility of runtime safety support covering both
horizontal and vertical dependencies. To this end, we will first elaborate these notions
in more detail and provide a brief overview of related research. We will then go into a
bit more detail regarding two specific approaches, each of which will be focused on
regarding one of these two aspects. The main contribution of this paper is an initial
concept regarding the integration of these two approaches, leading to the new notion of
multidirectional modular conditional certificates. The concept is illustrated based on an
industrial use case from the context of the EMC2 project.

2 Related Research

In the automotive domain, ISO 26262 [7] is the functional safety standard. It demands
that the safety requirements for a function and the functions be allocated to systems and
subsequently to items. Some critical functions are supposed to work independently on
a single core with their dedicated resources. When this is not the case, partitioning and
shared resource techniques are used. Ruiz [9] state: “The safety assurance argument that
these techniques should address is that the presented items of evidence should show
sufficiently spatial and temporal independence between each partition.” With the intro‐
duction of multi-core computers, multiple partitions may run concurrently on a single
computing card, all accessing memory or I/O interfaces at the same time and needing
to share processing time and resources in a ‘safe’ way.
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Kotaba [8] analyzed the low-level temporal effect from sharing the on-chip resources
that impact the determination of execution time. In the “multicore domain, the applica‐
tions compete for resource access, typically arbitrated in a non-explicit manner by the
specific hardware implementation. This causes non-deterministic temporal delays to the
execution”. They analyzed the effects and suggest mitigation techniques for resources
such as system bus, bridges, memory bus and controller, memory (DRAM), shared
cache, local cache, TLBs, addressable devices, pipeline stages, or logical units.

In SPEEDS [14] a formal meta-modeling language and the syntax of component
contracts were developed and implemented. These contracts define the premises and
promises of the component regarding its behavior in a specific way as well as an attribute
designating its viewpoint. Another project that pursued this idea, CESAR [3], defined
the CESAR Meta-Model (CMM), which includes the concept of ‘rich’ components that
can be connected and integrated into hierarchies. Different kinds of rich components are
possible depending on the perspective, such as operational actors, functions, logical
components, or technical components. The CMM is based on the integration of
component-based design with contracts based on input from the SPEEDS project,
EAST-ADL2 (traceability, verification and validation) from the ATESST project, and
its own CESAR Requirements Management Meta-Model (RMM). All these propose a
metamodeling language for components dealing with safety-critical systems.

From another perspective, the FRESCOR project (Framework for Real-time
Embedded Systems based on COntRACTS) [5] proposed contract-based resource
management in distributed systems. It uses service contracts as a mechanism for dynam‐
ically specifying execution requirements. To accept a set of contracts, the system has to
check as part of the negotiation whether it has enough resources to guarantee all the
minimum requirements specified, while upholding guarantees on all previously accepted
contracts negotiated by other application components. If successful, the system reserves
enough capacity to guarantee the requested resources and will adapt any spare capacity
available to share it among the different contracts that have specified their desire or
ability to use additional capacity.

Sljivo [17] introduced the concept of weak/strong assumptions/guarantees when
formalizing. They propose contracts in which all properties that an environment shall
satisfy are defined separately from those required only in some contexts. This allows
their contracts to be used for components and in different contexts.

Ruiz [10] propose “to formalized contracts through a well-defined and structured
contract ‘grammar’ to support how users may systematically assure the safety of their
system while integrating components through the definition of a BNF (Backus Normal
Form or Backus–Naur Form) grammar”. Ruiz proposes this grammar for design time
contracts.

3 Use Case Description

In the context of the next generation of hybrid powertrains, our goal is to reduce the
efforts and timing due to software updates in order to reduce time to market. This gener‐
ation needs to satisfy the ISO 26262 compliance requirements such as the need to include
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“measures relating to detection, indication and control of faults in the system itself”.
This means that we need to provide corresponding capabilities for the diagnosis function.
To achieve this in a safety-critical context, we propose the use of contract-based runtime
assurance mechanisms for checking the safety of new updates in a standard and cost-
efficient way.

In the figure below, the scenario for our use case is presented. The scenario represents
the next-generation hybrid powertrains which is provided by AVL1 and being framed
under the EMC22 project. An electric motor is accessed by an accelerator pedal via a
set of software applications. A brief overview of the technical background of the system
is given in Fig. 1.

Fig. 1. Powertrain use case context

The System Model located on Core 2 is in charge of receiving data from the accel‐
erator pedal and sends it to Field Oriented Control FOC and Torque Monitoring through
the Torque Set Point signal.

The Field Oriented Control (FOC) component allocated in core 0 controls the
speed of the electric motor (E-Motor) based on the Torque Set Point signal received
from the system model. In addition, the FOC gets feedback from the electric motor
(motor voltage, current, temperature, and rotor position) and communicates with the
Torque Monitoring block regarding safety-related information.

Torque Monitoring performs a plausibility check of the Torque Set Point value
based on the signals from the electric motor (voltage and current). It checks if the set
value or the FOC violate the system safety by overloading the electric motor. In the case
of a potential overload, the monitor sends safety-related information back to the FOC
and disables the electric motor.

1 http://www.avl.com/.
2 http://www.artemis-emc2.eu/.
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All these applications need to be safely integrated in order to provide a function that
is critical for the vehicle. The objective of the use case is to integrate an update of the
torque monitoring functionality into the powertrain system and to ensure that this update
is safe and free from interferences with other functionalities. An upgraded functionality
should undergo an impact analysis in order to be included. A quick and effective way
to verify the impact of this upgrade is the use of a contract-based approach to verify the
feasibility of this new development and the lack of unwanted interferences between
applications through the platform.

4 Vertical and Horizontal Dependencies

The concept of vertical and horizontal interfaces was first introduced by Zimmer [16].
The authors distinguish between two types of interfaces: the vertical interface between
the application and the underlying platform, and the horizontal interface between appli‐
cations (regardless of whether they are running on the same platform or not).

A platform consists of components that provide function-independent services. It
enables the hardware that runs the application and the required software to execute the
applications independent of the hardware and according to the application’s require‐
ments. On the technical level, the vertical interface is not clearly separated into software
and hardware relations. However, the overall viewpoint of our work is the software point
of view. Implying that we consider the hardware as a resource used by the software, we
do not focus on hardware-specific aspects such as manufacturing technology or special-
purpose hardware components. Examples of platforms from the software point of view
are AUTOSAR [2] and the ARINC 653 [1] Integrated Modular Avionics standard.
Applications are software components that provide system-level functions to end users
or other applications and are not related to services provided by the platform.

The vertical interfaces describe the safety-relevant relations between an application
and a platform service. Platform services are typically developed for reuse, e.g., libraries,
communication protocols, or operating systems. Platform developers do not know all
future systems that a platform service will be a part of and they do not know in which
way the service will be part of the application functionality. Therefore, it is impossible
to perform a hazard and risk analysis for a standalone platform service. To overcome
this challenge, we propose a vertical interface description according to [15] following
a modular, contract-based approach for the specification of demands and guarantees to
form a vertical safety interface. The demands describe the safety-related behavior of the
platform as required for the safe execution of the application. Consequently, a demand
is linked to a specific application. The guarantees, on the other hand, are linked to a
specific platform and define the actual safety-related capabilities of the platform.
Whether an application demand is satisfied by a service guarantee depends on the
consumed service guarantees from other applications. Mitigation and arbitration are
needed to realize safe use of the vertical interface and mitigate application demands and
platform guarantees.

The horizontal interfaces describe relevant (e.g., safety-relevant) relations between
applications that enable emergent functionalities that applications would not be able to

Multidirectional Modular Conditional Safety Certificates 361



perform on their own, such as Platooning of Autonomous Vehicles [4] and Tractor
Implement Automation [6]. In horizontal relations, there exist the roles of service
consumer (which establishes demands to be fulfilled by the consuming services) and
service provider (which states guarantees for the provided services). An application can
play both roles, being the consumer of some application services while being the
provider of services for others. If the guarantees are fulfilled by the demands, the appli‐
cations can function in the way they were designed; otherwise, the available system
safety level will be below the designed level.

4.1 Vertical Safety Dependencies

In this subsection, we describe VerSaI, our approach for dealing with vertical safety
dependencies. Zimmer [15] proposed a classification of safety-related demand-guarantee
dependencies. The dependency classes are platform service failures, health monitoring,
service diversity, and resource protection.

Platform service failures focus on the detection or avoidance of platform failure, e.g.,
a value failure of a service signal larger than a specified threshold must be detected
within a defined period of time.

Health monitoring is the opposite of platform service failure. Application and execu‐
tion failures get trapped and encapsulated by health monitoring. As an example, the
platform has to detect and arbitrate an execution time overrun.

Service diversity, also called dissimilarity or independence, aims at reducing the
likelihood of common-cause systematic failures in redundant components. Service
diversity focuses on the independence of input services, communication links, and
output services. An example is the need to develop the analog input channel that is used
to read the accelerator pedal in a different way to avoid an analog input value failure as
a common-cause failure.

Resource protection focuses on protection from interferences. We define interference
as a cascading failure via a shared resource that potentially violates safety requirements.
The interference propagates between several software components via a commonly used
resource instead of a private resource for every software component, e.g., the torque
mo.nitoring component must be protected from interferences via the analog-to-digital
converter software component that is shared with the FOC.

The demands and guarantees are applied to a probability attribute. The attribute states
the integrity achieved by a guaranty or requested by a demand. Examples are the auto‐
motive safety integrity levels (ASILs) or the design assurance levels (DALs) in avionics.

In the case of an open system like the hybrid powertrain, it is possible to integrate new
applications, e.g. torque monitoring, during the product’s lifetime. In such a scenario, we
assume that the application developer has specified all the demands that are needed to
guaranty safety from the application point of view and that the platform service developer
has specified guarantees that can be given by the platform. Both guarantees and demands
can be described using a semi-formal language such as VerSaI (Vertical Safety Interface)
[15], which allows automated evaluation if demands and quarantines are compatible. Plat‐
form service failure, health monitoring, and service diversity are vertical dependency
classes that arise even for a federated system (with separate platforms for applications).
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We assume that for systems that integrate applications into a commonly used platform,
especially in the context of mixed criticality, the resource protection class is of major
interest. For this reason, besides the VerSaI guarantees and demands, we focus on an auto‐
mated platform service interference analysis in combination with a protection assignment.
This allows safe and automated integration of additional applications during a product’s
lifetime.

4.2 Horizontal Safety Dependencies

In this subsection, we describe ConSerts as a solution for horizontal dependencies.
ConSerts stands for Conditional Safety Certificates. It is an approach presented in [11–13]
that utilizes modular conditional certificates and operates between horizontal interfaces of
systems. ConSerts are post-certification artifacts (i.e., certification has been conducted in
the traditional way) equipped with variations points bound to formalized external depend‐
encies that are meant to be resolved at runtime. This characteristic is what makes the certif‐
icates “conditional” and provides the flexibility in the certificates that is required to be
useful for a sufficiently wide range of concrete integration scenarios. The conditional
certificates must also be modular in order to conduct the certification process at the level
of the units composing the targeted systems of systems.

The conditional certificates are to be evaluated automatically and autonomously by
the system at the moment of integration at runtime, based on runtime representations of
the certificates of the involved compositional units. This certificate evaluation can be
realized off-board (performed by an extra system) and/or on-board (the systems support
runtime evaluation). Once all conditions have been resolved and the evaluation is
finished, an overall certificate variant can be determined for the actual composition that
has been formed. In a sense, the final certification step has thereby been postponed to
runtime and we can thus speak of “runtime certification”.

Whenever the overall system composition changes or the system adapts itself, a re-
evaluation of the conditional certificates must be conducted and the overall certificate for
the composition must be updated. Such a re-evaluation might well be triggered by a minor
dynamic adaptation in one of the subsystems or even an update, which, however, can easily
trigger a chain reaction in related components leading to complex reconfiguration
sequences. Therefore, there is a strong interdependency between dynamic adaptations and
the dynamic evaluations of the conditional certificates. An adaptation might lead to an
invalidation of the current certificate and thus to re-evaluation and the determination of a
new one. This might then violate given top-level trust requirements, which might again
trigger additional adaptations in order to regain sufficient trust guarantees (e.g., via graceful
degradation, which could imply a loss of application features).

5 Multidirectional Modular Conditional Certificates

The vertical interface has direct influence on the performance of the application since it
is the platform that provides the physical resources to run the application. If the required
application demands are not completely fulfilled by the platform guarantees, the appli‐
cation cannot deliver its full capabilities with the designed confidence. Thus, this has a
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direct impact on the horizontal services guarantees provided by the application to other
applications. In other words, the horizontal guarantees of the application are influenced
by the fulfillment of its vertical demands.

The mediation of horizontal and vertical interfaces becomes highly relevant if
different applications are integrated in the same platform, consequently influencing the
horizontal guarantees provided by the application services. This occurs in the context
of mixed criticality and dynamic updates where re-evaluation is required to assess
whether the overall demands, both vertical and horizontal, are properly satisfied.

To address the aforementioned issues, we introduce Multidirectional Modular
Conditional Certificates (M2C2), a runtime certification approach that addresses both
vertical and horizontal interfaces. The approach is realized through the synergy between
VerSaI (in the context of vertical interfaces) and ConSerts (in the context of horizontal
interfaces).

In ConSerts, a service guarantee can be correlated to demands and their fulfillment
by other application services’ guarantees. In M2C2, the services are additionally influ‐
enced by the guarantees of the platform. This relation is illustrated in Fig. 2. During
M2C2 contract resolution, the vertical application demands shall be fulfilled by platform
guarantees before resolving the horizontal relations. If some of the vertical demands are
not fulfilled, some of the application-service guarantees at the horizontal interfaces
might not get validated.

Fig. 2. Relations between ConSerts guarantees and VerSaI demands

Resolving vertical dependencies on a single application running on a platform is very
straightforward. The platform guarantees and application demands are compared and
either match or do not match. However, if a platform hosts more than one application
(several single core platforms being combined in one multi-core), the applications might
influence each other’s behavior, even if there are no horizontal interfaces between them.
Interferences as described in Sect. 4 can occur. To guarantee segregation between the
integrated applications, the platform needs to allocate its resources consequently consid‐
ering the tradeoff between the demands of each application and the required rendered
services/safety levels.

In a situation where the vertical application demands cannot be satisfied for a given
configuration of applications, a new configuration needs to be identified. This results in
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an iterative approach in which the platform resources are re-allocated to critical appli‐
cations while non-critical or less critical ones get to share what is left. This can even
lead to the removal of existing applications.

Besides the capability to address dependencies between applications as well as
between applications and their platform, the M2C2 approach presented in this section
exhibits two important synergies.

First, the combination of the horizontal and vertical contracts in one considera‐
tion allows additional flexibility. For instance, if the platform’s guarantees are not
sufficient, due to an accidental or intended alteration such as a partial platform
service breakdown or an application download, the information can be propagated
to the horizontal interface. Subsequently, the alteration propagates through the guar‐
antee-demand relationships of affected applications, potentially resulting in an alter‐
ation of the “top-level” guarantees of the current overall system configuration. This
kind of propagation could either be fostered by means of the Boolean logic employed
by ConSerts or, alternatively, there might be a dedicated centralized mediator
component as part of a corresponding runtime framework. This mediator would then
be responsible for monitoring the established contracts and, in case of deviations,
would calculate a new safe set of vertical and horizontal contracts based on the
current conditions.

Second, as part of the vertical interface we want to detect and address all poten‐
tial interferences between applications. Besides interferences, there are intended
interactions between applications as well. The interference analysis can point out
such intended interactions in addition and forward them as a warning to the hori‐
zontal interface. Hence, unconsidered interactions between applications can be
revealed. For instance, in the use case from Sect. 3, the DIO (Digital Input/Output)
is used by the torque monitoring and the FOC applications. This could either be
intentional or an error in the integration design, e.g., if the FOC as a less safety-
critical component could enable the motor when the torque monitor application tries
to disable the motor.

6 Applying the M2C2 Framework to the Use Case

To provide a better understanding of the aforementioned approach, we will describe a
practical application with the help of the use case scenario described in Sect. 3. The use
case describes a processor with three cores running applications that control an electric
powertrain. These applications are distributed among the cores and share several
resources such as communications channels, which implies possible influences between
those applications. Besides, some applications must interact with each other on the
horizontal level and require (from its peers) services with a minimal integrity level. The
M2C2 framework can be used to address these issues.

We assume that the vertical application demands are specified by the application devel‐
opers and the platform guarantees are specified by the platform developer. An example is
that the FOC and the Torque Monitoring applications specify demands regarding the
analog-to-digital converter (ADC) service, which does, for instance, comply with the
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AUTOSAR specification. Our vertical approach then consists of two steps. First, health
monitoring and service diversity will be performed to examine if all application demands
can be fulfilled by the ADC service guarantees. Second, the resource protection depend‐
encies will be evaluated. Consequently, it will be evaluated if the shared use of the service
is without interferences between the applications.

After the vertical dependencies have been assessed positively, the next step is the
resolution of the horizontal dependencies. The System Model (SM), Torque Monitoring
(TM), and Field Oriented Control (FOC) are the applications that participate in the
presented use case and their relations are depicted with arrows in Fig. 3. Their certificates
are defined with ConSerts, which is described using EBNF grammar in order to facilitate
runtime resolution. An example of a service guarantee is SystemModel.SMTorque (1):
ASIL = c, Late {10 ms;}.ASIL.d. This guarantee is bound (e.g., via the Boolean logic of
ConSerts; cf. [13]) to a demand directed at the platform. The service in the example is
implemented in ASIL c and guarantees that the application passes the signal in less than
10 ms with a confidence level of ASIL d. The demand representation has a similar format.
The TM and FOC demands need to be lower or equivalent to the service guarantee
provided by the SM. The same happens between TM and FOC and vice-versa (since
they have a closed-loop relation and are provider and consumer of each other’s services
at the same time). Once all demands are fulfilled by the respective corresponding guar‐
antees, the overall system can be considered as safe. Due to space and scope limitations,
the syntax and semantics of the contracts will not be further detailed, for more infor‐
mation, the reader shall refer to [13] and [15].

Fig. 3. M2C2 certificate verification applied to the use case (The direction of the arrows
represents a guarantee (from) being provided to a demand (to)).

An overview of the M2C2 certificate assessment is illustrated in Fig. 3. Note that
although the applications Torque/Energy/Thermo Management (T/E/TM) and Driver
Interfacing (DI) do not participate in the horizontal interface assessment, they are
considered in the vertical interface step. In case of a change in the initial application
configuration, i.e. if new applications are added or applications are replaced by
others with more functionality, a new assessment needs to take place to guarantee
that the change will not jeopardize the intended integrity level.
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7 Conclusions

In this paper, we presented an approach aimed at supporting systems that are able to
assure dependability of the whole system of systems through modularization of safety
assessment. The proposed Multidirectional Modular Conditional Certificates (M2C2)
framework is a novel runtime certification approach because it addresses both vertical
and horizontal safety interfaces. Vertical interfaces describe dependencies between
applications and a platform and horizontal interfaces describe dependencies on the
system level between applications or systems of systems. Besides a detailed discussion
of horizontal and vertical aspects, we presented a first idea for merging ConSerts, an
approach for the horizontal safety interface, and VerSaI, an approach for the vertical
safety interface.

The resulting M2C2 framework allows negotiating whether a system consisting of
applications integrated on common platforms is safe or not. In addition, the combination
of the two perspectives allows mitigating interferences between applications and plat‐
forms at runtime in such a way that safety can be ensured in combination with maximal
application service availability instead of a failsafe. The applicability of the framework
ranges from applications running within a processor core (like the presented use case)
to coarse-grained systems of systems (such as cyber-physical systems).

The work we presented in this paper is on a conventional level. As future work, we
plan to refine the concepts regarding the mitigation and the implementation of the
presented approach in a demonstrator to evaluate and demonstrate that M2C2 can be
proposed. Considering other properties related to the certificates (such as security) is
also a path to be explored. Another point that can be explored is strategies in case of the
run time check failing completely. Some initial ideas are self-adaptation of the appli‐
cations or graceful degradation.
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Abstract. This paper describes the development and verification of a
competitive parachute system for Micro Air Vehicles, in particular focus-
ing on verification of the embedded software. We first introduce the over-
all solution including a system level failure analysis, and then show how
we minimized the influence of faulty software. This paper demonstrates
that with careful abstraction and little overapproximation, the entire
code running on a microprocessor can be verified using bounded model
checking, and that this is a useful approach for resource-constrained
embedded systems. The resulting Emergency Recovery System is to our
best knowledge the first of its kind that passed formal verification, and
furthermore is superior to all other existing solutions (including commer-
cially available ones) from an operational point of view.

Keywords: Remotely-piloted aircraft systems · Multicopter · Safety ·
Parachute · Software verification · Formal analysis

1 Introduction

In the recent years, Micro Air Vehicles (MAVs) such as quadrocopters, hexa-
copters, etc., are a rapidly growing class of airspace users. As of January 2015,
we estimate the number of light MAVs (< 5 kg) to be at least 1.6 million in
Europe1, possibly even one magnitude higher due to the plethora of manufac-
turers and custom builds. In comparison, this is more than quadruple the number
of aircraft in general aviation worldwide [1], and soon, if not already, the daily
flying hours will also catch up, thanks to a growing number of civil use cases.

However, in contrast to aircraft in general aviation, MAVs are usually not
subject to in-depth safety considerations, but tend to have a high probability

1 Based on the number of DJI sales and their growing business figures over the last
years. This is also supported by the number of and growth rate of registered MAVs
at the federal agencies around Europe, and their estimated number of unreported
vehicles [18].
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of failure. This comes from the nature of these systems: They are open for
modifications, little analyzed, and often not fully understood by their operator.
Together with the omnipresence of those vehicles, this results in a considerable
potential of MAVs endangering their environment.

Whatever solution is chosen to increase the level of safety, it has to be tailored
towards those low-cost, mass-market systems. Imposing certification rules on
the entire MAV, such as DO-178C for civil A/C software, could eventually hold
back a number of desirable use cases. For example, certification could require
redundancy in the flight controls, which would decrease payload capacity and
thus render some applications infeasible. Last but not least, low cost is also a
key for those platforms, which generally contradicts a full-system certification.

In this paper, we describe our experiences in developing a light-weight recov-
ery system which increases the operational safety of MAVs and is nevertheless
amenable to certification, independently from the internal structure of the MAV.
It is a hardware-software solution based on a parachute, which can bring down
the MAV safely, avoiding loss of the MAV in case of malfunctions, and minimiz-
ing collateral damage. Our system is a “plug and play” solution, i.e., it can be
retrofitted to existing MAVs with only one single interface (the power connector)
and has little impact on the flight performance.

In the following we first explain the overall solution, and then focus on the
verification of the embedded software, which is the most complex part, and mean-
while the main contributor towards the effectiveness of the proposed solution.

2 Related Work

MAV Safety Systems: In general, the safety systems available by today are
either specific to the MAV brand, incomplete, or require radical modifications
to the existing MAV. For example, there are MAVs that ship with a parachute
system, such as the MCFLY-Helios [9], or others which can be extended with
OEM parachute systems, such as the “DropSafe” for the DJI Phantom [8]. How-
ever, being tightly integrated with their specific MAVs, the trigger conditions are
not made public, and there is no formal proof illustrating the increased overall
safety. Moreover, they require CO2 capsules and a backup battery, as opposed
to our solution. Other available systems are “operated” solutions, such as the
Opale [15], SKYCAT [17] or MARS [13] parachute systems. They only support a
manual release, do not switch off the MAV propulsion and require, as the others
before, a working power supply in case of emergency.

There are also more local approaches to increase the safety of subsystems,
such as robust control algorithms by Mueller and D’Andrea [14]. Their algo-
rithms can cope with partial loss of propulsion whilst keeping the MAV in a
controlled flight. However, not only do they require a lot of insight into and
modification of the MAV, they also demand significant non-local changes, as for
example the provisioning of safety margins in the propulsion (e.g., more thrust
per motor, higher peak current etc.). Eventually, those margins make the MAV
inefficient under normal conditions, but still only cover a subset of all possible
MAV failures.
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The parachute solution that we propose offers similar operational limits than
the mentioned automatic systems, but is MAV-independent and covers the maxi-
mum number of failure conditions among the mentioned solutions, and at a lower
weight. Additionally, through the verification shown here, we have evidence that
the overall MAV safety is indeed increased, as opposed to all other solutions.

Verification of Code Running on Microprocessors: Model-checking the
entire C code running on microprocessors has been reported only a couple of
times, e.g., with cbmc on an ATmega16 processor in [16] and on an MSP430
in [4], but either it failed because of state space explosion and missing support
for concurrency, or succeeded only for smaller programs.

However, recent developments that turn concurrency into data nondeter-
minism [11], spot race conditions [20] and support for interrupts in cbmc [4] can
solve the concurrency issues and make bounded model checking an interesting
approach. In this paper we take together all these ideas, point out problem
with those, and propose abstractions which mitigate the state space explosion,
enabling a workflow which allows verifying an entire real-world program running
on a microcontroller.

3 Challenges

The main design challenge for this system is to maintain a low weight, since
this directly translates into flight time. This however means we can introduce
redundancy only where inevitable for safety.

Second, to make the system work independently of MAV internals, it implies
that the interface to the MAV must be minimalist. Standard approaches known
from avionics like triplex controllers (see [2, p. 88]) with its internal data con-
solidation are too intrusive and therefore not an option.

The biggest challenge however, is deciding whether there is an emergency, and
triggering the recovery independently of the pilot. A software implementation is
the natural choice, since this allows for iterative development and parametriza-
tion for the specific MAV. This software is then safety-critical, since it directly
influences whether crashes can be avoided or not. Through this, the quality of
the software will drive the quality of the overall solution. That is why in this
paper our main concern is a formal verification of the software, which is known
to be challenging, especially because this software interacts with its physical
environment.

4 Proposed Emergency Recovery System for MAVs

Our proposed Emergency Recovery System (ERS) is shown in Fig. 1, both on a
quadrocopter and a hexacopter. It is a parachute system, designed to increase
the overall safety of the MAV. In case of an emergency (what constitutes an
emergency is described later), the ERS automatically turns off the propulsion
and deploys a parachute. The technical specifications are given in Table 1.
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Parachute

Ejection Sensor

Spring

Lock Pin

Fig. 1. Prototypes of our Emergency Recovery System mounted on a hexacopter (left)
and deployed on a quadrocopter (right).

Table 1. Specifications of the Emergency Recovery System.

Property Value

total weight 320 g

input voltage 6. . . 25.2 V (2. . . 6 LiPo cells)

power consumption <3 W depending on propulsion state

worst-case trigger time ≤140 ms

terminal speed & min. altitude 4.5m/s within 10 m

No modifications to the existing MAV are required, e.g., neither altering the
flight controller nor the propulsion system. Our system effectively acts as a power
proxy between MAV battery and MAV. The only (necessary) interface for our
ERS is the power connector, which is why we call it a “plug and play” solution.
A second optional interface is for one RC channel, allowing the pilot to trigger
the parachute manually.

4.1 Internal Structure

The ERS consists of the following three components, also illustrated in Fig. 2:

– Emergency Detection Unit (EDU): A Printed-Circuit Board (PCB) with
sensors and a microprocessor running software to detect emergencies. In case
it detects an emergency, it can trigger the ejection of the parachute.

– Power Switch (PS): A PCB with power electronics, acting as a proxy
between the MAV’s battery and the propulsion. In case of emergency, it cuts
off the power.

– Parachute Unit (PU): This is a housing holding the parachute. It is also
comprising an ejection sensor and an electro-magnetic (EM) lock, which, when
opened or powerless, releases a compressed spring, which in turn ejects the
parachute.
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Fig. 2. Internal structure of our Emergency Recovery System: The Emergency Detec-
tion Unit on the top right is running the to-be-verified software.

Mode of Operation: The EDU features an Atmel ATmega 328p microproces-
sor (Harvard, 8 MHz, 32 kB Flash, 2 kB RAM, no caches), a barometer sensor
and an accelerometer sensor. The embedded software evaluates those sensors
periodically, and estimates the MAV’s air state. When it detects emergency con-
ditions, it triggers the parachute ejection by emitting a RELEASE signal, which
opens the EM lock. This releases a compressed spring, which can now eject the
parachute from its housing. Simultaneously, when the parachute is pushed out,
an ejection sensor detects this and sends a POWEROFF signal to the Power Switch.
This ensures, that the MAV’s propulsion is deactivated as soon as the parachute
is ejected.

Emergency Conditions: The root causes for failure in MAVs are wide-spread.
Due to tight integration of functionality and – as explained before – the impera-
tive minimalism in redundancy, even errors in non-critical components can evolve
quickly into fatal failures. Therefore, it seems more efficient to apply a holistic
monitoring, instead of monitoring single components. Accordingly, an emergency
is considered as the MAV being uncontrolled, that is, when the pitch or roll angles
exceed user-defined thresholds, or when the descent rate gets too high. These
conditions cover the most important malfunctions, such as FCS failure (e.g.,
badly tuned controllers or error in software logic), electrical or mechanical fail-
ure of propulsion (propeller, ESC), loss of power and partially even human error
(in the form of initiating an uncontrolled state).

5 System Level Failure Analysis

Although this paper focuses on software verification, we briefly explain the failure
analysis at system level, to show the influence of the software on the overall safety.

We designed our ERS to make it fail-safe together with the MAV w.r.t. any
single-failure event, i.e., a MAV equipped with our ERS can tolerate at least
one statistically independent failure without leading to a crash. Towards that,
we repeatedly conducted a Fault Tree Analysis during the design process of
the ERS.
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Fig. 3. Fault tree for the top event “crash”, valid for any electric Micro Air Vehicle
equipped with our Emergency Recovery System (Color figure online).

In Fig. 2 we highlighted a built-in fail-safe loop between power switch, EM
lock, parachute and ejection sensor. It creates a circular dependency between
its components. If any of them fails (e.g., broken power switch), then this also
leads to the ejection of the parachute, thus covering failures that may occur in
the ERS itself. The effects of different failure scenarios can be seen in the Fault
Tree in Fig. 3.

Considered MAV Failures: The MAV was treated as a black box with two
possible failures (grey in the figure) “MAV failure with power” and “MAV failure
without power”. The first one means, that the MAV is in an uncontrolled state
but still powered (e.g., broken propeller and resulting loss of control), whereas
the latter one means, that the MAV lost power (e.g., due to battery failure or
electronic defects), which naturally results in an uncontrolled state as well. We
are not concerned with the MAV being powered up in a controllable state (no
error), or being in a controllable but unpowered state (impossible for multicopter
configurations).

Influence of the Software: The Fault Tree is depicted in Fig. 3. It can be
seen, that the three uncontrolled system states which lead to a crash, can only
be reached if at least two failures occur at the same time. As indicated with
the color coding, there are four categories of failures: (a) mechanical failure in
ERS (red), (b) electronics failure in ERS (orange), (c) software failure in ERS
(green) and (d) MAV failure (white). Although there are many kinds of errors
possible in software, from a system point of view we are only interested in the
two consequences depicted in the Fault Tree:

1. Emergency Detection False Negative: The embedded software does not
trigger the emergency sequence despite emergency conditions.

2. Emergency Detection False Positive: The embedded software does trig-
ger the emergency sequence without emergency conditions.
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While both software failure events can have the same impact at system level
(both can lead to crash if a second failure occurs), the case of a False Negative
is practically more critical, since MAV failures with power are more likely than
a second independent failure occurring in the ERS. Furthermore, the ERS runs
self-checks during initialization, reducing the probability of being used in the
presence of internal failure. For these reasons, our verification efforts that we
explain in the next section, focused on (but were not limited to) finding defects
that lead to False Negatives.

6 Software Verification

Safety-critical systems in general must be free of defects that can lead to errors
in behavior. Here, traditional testing is not favorable, since only a full cover-
age of all possible executions could guarantee absence of defects, which implies
modeling the system’s environment in a test harness. That especially holds true
for our ERS, where the functionality strongly depends on timing and the inter-
action with its environment. Testing specific cases would require simulating the
environment, as well as the sensors and the microprocessor running the software.
On top of that, in our system we cannot afford any redundancy due to weight
reasons, which is why we need to identify all defects in the software.

Consequently, we aimed for a toolchain that supports formal verification of
C code based on static analysis. While there are multiple tools that one could
choose for that task (e.g., Frama-C [7], Astrée [6], BLAST [10], Polyspace, etc.),
we have selected cbmc and related tools [5], because they support concurrency
to some extent, are freely available (and thus can be extended if necessary) and
also widely used. More model checkers for C code were compared in [3,16].

Software Structure: The software running on the EDU can be partitioned
into four sequential parts:

1. Initialization: Initializes all sensors, and captures environmental conditions
(e.g., pressure at ground level). When completed, the ERS switches to self-
check mode.

2. Self-Check: To ensure that there is not already a failure in the ERS during
start-up, we added built-in self tests covering the major subsystems of the
ERS. When completed, the ERS switches to detection mode.

3. Detection: The software periodically reads all sensors and estimates the
MAV’s air state. If the emergency conditions apply, the EM lock is released
and the software switches to emergency handling mode.

4. Emergency Handling: Current sensor data and decision conditions are
written to EEPROM, to enable a post-flight analysis.

The sensors and actuators are connected to the microcontroller as depicted in
Fig. 4 on the left. The interfaces impose some concurrency in the software, which
is shown on the right. For example, the maintenance console and manual trigger
signal both require interrupts (polling would be too slow), thus each introduces
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Fig. 4. Microprocessor with interfaces to its environment (left) and the resulting con-
currency in the software (right).

one thread concurrent to the main program. Additionally, a timer interrupt is
used to support a time-triggered execution of the detection loop, contributing
one further thread.

Proper Timing: The mentioned concurrency poses the first verification task.
To ensure that the detection loop always runs at the desired rate – which is
important for correctness of computed data, e.g., the descent rate – we need to
show that the required computations can be completed before the next period
begins.

Towards that, the worst-case execution time (WCET) of the main loop must
be determined. Here we took a dual approach: On one hand, we performed a
static WCET analysis with a freely available analyzer tool [19], but we also
monitor the execution time on the microprocessor with a high watermark.

For the static analysis we made the assumption that the sensors are healthy,
and follow their datasheets’ timing specification. The resulting WCET was 2.7 ms
for the detection loop, which is well below the 5 ms-period in the EDU. However,
interrupts also need to be considered. The worst-case response time (WCRT) is
(in this context) the maximum amount of time that the detection loop needs to
finish processing, under the preemption of interrupts. Only if the WCRT is less
than the period, then it can be concluded that the timing is correct.

However, without further provisions the minimum inter-arrival time (MINT)
for the event-based interrupts (manual trigger from RC, UART) have no lower
bound, i.e., it would be possible that a broken RC receiver or UART peer could
induce so many interrupts, that the detection could never execute, resulting
in an unbounded WCRT. To avoid this situation, the inter-arrival times of all
event-driven interrupts are also measured in the microcontroller. If an interrupt
occurs more often than planned, the attached signal source is considered failing,
and the interrupt turned off.

With these bounded MINTs and the WCET values from the static analysis,
a standard response time analysis yielded a WCRT of 2.89 ms for the detection
loop. Again, this is for the case of healthy sensors.

The purpose of the high watermark is to detect those cases when sensors
are failing, but also to gain confidence in the above analysis. The response time
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of the detection loop is continuously measured using a hardware timer, and
maximum values are written to EEPROM. With rising number of flying hours,
the watermark should approach the WCRT. If it exceeds the statically computed
WCRT, then a sensor failure is likely, which triggers the emergency sequence.

In practice, the watermark measurements were observed approaching the
statically computed WCRT up to a few hundred microseconds with healthy
sensors, thus giving confidence in the analysis. By construction of the software,
it can be concluded that the timing of the detection loop is correct, unless
the parachute is deployed. However, there are more timing-related issues to be
considered, namely, the time-sensitive effects of interrupts upon the control flow
in the main program. This was addressed later during the verification process.

Proper Logic: The ultimate goal of the software verification is to ensure that
the emergency detection algorithm works as intended. As explained before, the
main concern was to avoid False Negatives, i.e., the error that the embedded
software does not trigger the emergency sequence, despite emergency conditions.

An obvious reason for such failure is, that the software is not running because
it crashed or got stuck. This can be a consequence of divisions by zero, heap or
stack overflow2, invalid memory writes, etc. Note that a reboot during flight is
not possible, since the initialization and self-checks need user interaction (open
and re-close the ejection sensor to ensure it works correctly), and making them
bypassable is not desirable for practical safety reasons. Therefore, crashes and
stuck software have to be avoided.

The second reason for not recognizing an emergency is an incorrectly imple-
mented detection algorithm. This entails both an error in decision taking (i.e.,
which sensor has to tell what in order to classify it as emergency), and also
numerical problems (e.g., overflows) in data processing. Identifying these kinds
of problems also decreases the number of False Positives.

The majority of those defects is checked automatically by cbmc, if requested
during instrumentation. The correctness of the decision taking part, however,
must be encoded with user assertions. Since our detection loop runs time-
triggered, properties such as “latest 100 ms after free fall conditions are recog-
nized, the parachute shall be deployed” can be encoded with some temporary
variables. With that, verification of arbitrary properties of the decision algo-
rithm follows the same workflow as the automatically instrumented properties,
which is why we do not elaborate on the specific properties that were eventually
verified, but rather show how we set up the workflow correctly.

6.1 Verification Workflow

The toolchain that we set up around cbmc is shown in Fig. 5. We start with a C
program, written for the target. First, we run fast static checkers such as splint
on the program, to identify and remove problems like uninitialized variables,
problematic type casts etc. Not only does this help to avoid defects early during

2 Heap was not used, and stack size was checked with Bound-T.



378 M. Becker et al.

Fig. 5. Workflow for formal verification of the embedded software written in C.

development and thus to reduce the number of required verification runs later
on, but also it complements the verification. For example, the semantics of an
uninitialized variable depends on the compiler and the used operating system (if
any); cbmc, however, regards these variables as nondeterministic and therefore
overapproximates the program without a warning.

After passing the fast checks, the C code is given to goto-cc, which translates
it into a GOTO-program, basically a control flow graph. During this process, all
the macros in the C code are resolved by running the host compiler up to the
preprocessing stage.

The GOTO-program is subsequently fed into goto-instrument, which adds
assert statements according to user wishes. For example, each arithmetic mul-
tiplication can be checked for overflow, array bounds can be ensured, etc. Note
that the original code may contain user-defined assert statements, which are
preserved.

The resulting instrumented GOTO-program is finally handed over to cbmc,
which performs loop unwinding, picks up all assert statements, generates VCCs
for them and – after optional simplifications such as slicing – passes the problem
to a solver back-end (we use MiniSat2 ; SMT solvers like Z3 and Yices, are recent
additions to cbmc).

After the back-end returns the proofs, cbmc post-processes them and provides
a list of verified properties, and for each refuted one a counterexample. These
lists can be used to fix defects in the original code, clearing the way for the next
iteration.

6.2 Missing Architectural Information

A problem in static verification is implicit semantics that depends on the target,
for example that certain functions are set up as interrupt service routines (ISRs)
and thus their effect needs to be considered, although they never seem to be
invoked. Another example is memory-mapped I/O, which may seem like ordinary
reads from memory, but in fact could inject nondeterministic inputs from the
environment.
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Neglecting such context can easily lead to a collapsing verification problem
and result in wrong outcomes. In our program, there were initially 351 proper-
ties, from which 349 were unreachable due to missing contextual information.
Annotating all the necessary places manually is an error-prone labour, which
bears the risk of having wrong or missing annotations and more importantly it
is practically infeasible for our small program already. In the following we discuss
how we addressed this problem.

Accounting for Interrupts: The preprocessed C code contains the ISR defini-
tions, but naturally no functions call to them. The ISR is only called because its
identifier is known to the cross compiler, and because particular bits are being
written to registers at the start of the program; something that the model-checker
lacks knowledge of. Consequently, it concludes that the ISR is never executed,
and – through data dependencies – our detection algorithm seems to be never
executed. This makes all properties within that algorithm unreachable and thus
incorrectly evaluates them as “verified”.

To overcome this, a nondeterministic invocation of the ISR must be con-
sidered at all places where shared variables are being evaluated, as described
in [4]. This can be done with goto-instrument as a semantic transformation
(flag--isr). Figure 4 shows the respective data that depends on interrupts in
our case. Unfortunately, this technique not only grows the to-be-explored state
space, but it even overapproximates the interrupts: The ISR could be consid-
ered too often in the case when the minimum inter-arrival time is longer than
the “distance” of the nondeterministic calls (e.g., ISR for periodic timer over-
flow) that have been inserted. However, even if we would include execution time
and scheduling information from parts of the main thread (to be computed by
WCET and WCRT tools), the points in time where the ISR is called could be
drifting w.r.t. to the main thread. This is true even for perfectly periodically
triggered programs, solely due to different execution paths in the main thread.

Nondeterminism from Frequency-Dependent Side Effects: There exists
another problem with interrupts that has not been addressed in [4] nor in
goto-instrument. It stems from the frequency-dependent side effects of ISR
invocation: In general, interrupts could also execute more often than the places
where nondeterministic calls have been considered before. If there exist side
effects other than changes to shared variables (i.e., if the ISR is non-reentrant
in general), this can break the correct outcome of the verification. For exam-
ple, ISRs that on each invocation increment some counter variable which is not
shared with any other thread, could then in reality have a higher counter value
than seen by the model checker3. In other words, all persistent variables that
are manipulated by the ISR have to be modeled as nondeterministic, not only
shared variables. In our case there were only three such variables (one was for
the time-triggered release of the detection loop), which have been identified and
annotated manually.

3 A lower value is not possible, because all considered invocations are nondeterministic
possibilities, and not enforced invocations.
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Memory-Mapped I/O: All I/O variables (the sensor inputs) must be anno-
tated to be nondeterministic. One option for that would be using the flag -
nondet-volatile for goto-instrument to regard all volatiles as nondeterminis-
tic, however, this results in overapproximation for all shared variables (which are
volatile as well), allowing for valuations which are actually infeasible due to the
nature of the algorithms operating on the shared variable. Furthermore, this can
override user-defined assumptions on the value domain of sensors, considering
actually impossible executions and thus produce False Negatives on the verified
properties.

In our case the microcontroller runs bare-metal code and uses memory-
mapped I/O to read sensors, i.e., accesses show up in the preprocessed C code as
dereferencing an address literal. In principle, it is therefore possible to identify
such reads after the C preprocessing stage. However, in general it is a non-trivial
problem to identify all these places, since indirect addressing is possible, which
would require a full value analysis of the program to figure out whether the
effective address is in the I/O range. At the moment we do not have a practical
solution to this problem, which is why we instrumented all inputs manually. To
support this process, we developed a clang-based [12] tool which generates a list
of all dereferencing operations, suggesting the places that should be considered
for annotating nondeterminism in the C code. Since we minimized the use of
pointers to keep verification effort lower, the majority of the entries in this list
is indeed reading input registers.

6.3 Preprocessing Against State-Space Explosion

After all architectural information has been added, the next big challenge is
to verify the instrumented properties. A problem here is, that the state space
grows rapidly from the architectural features, especially from the ISRs. In our
case, the program has around 2,500 lines of C code, and running cbmc already
fails for two reasons: (1) the program contains unbounded loops and (2) even if
the loops were somehow bounded, there would be too many SAT variables to be
considered (millions in our case).

Building Sequential Modes: The original structure of our program could not
be verified, because the initialization and self-checks, were implemented as part of
one hierarchic state machine, executed in main loop. The necessary loop unwind-
ing then expanded the entire state machine as a whole. This resulted in too many
SAT variables and could not be processed on our machine (we run out of memory
after hours, having done only a fraction of the necessary unwinding).

To overcome this state space problem, we first partitioned our program into
sequential modes, see Fig. 6. Each the initialization, the self-tests and the detec-
tion were refactored into their own loops, which take place one after another. Inter-
rupts were enabled as late as possible, reducing the number of states to explore.

Assume-Guarantee Reasoning: However, at this point it turned out, that the
initialization and self-checks still contributed too many variables for the program
to be analyzed as a whole. As a countermeasure, the modes should now be
analyzed independently and reasoning on the overall correctness should be done



Approaches for Software Verification of An Emergency Recovery System 381

Fig. 6. Partitioning of software into strictly sequential modes, each verified individually
and cascaded using assume-guarantee reasoning.

using assume-guarantee reasoning. Towards that, it was necessary to identify
all possible program states between the modes, e.g., the detection mode can
only be properly analyzed, if all possible program states after initialization and
self-check are considered. One concrete example is, that the ERS determines the
air pressure at ground level during the initialization, which is used later during
detection. Verifying the detection mode thus involves considering all possible
pressure levels, by assuming nondeterministic values for them.

To reduce the complexity of assume-guarantee reasoning, we first turned each
mode into a potentially infinite loop which can only exit, if everything works as
expected These “guards” reduce the number of program states to be considered
for the postdecessor modes. For example, when analyzing the detection mode, we
only need to consider program states corresponding to successful initialization
and self-checks.

To construct the program states between modes, we identified all live vari-
ables between each two successive modes, i.e., all variables which are written
in one mode and possibly being read in its successor modes. As this is another
error-prone work that should not be done manually, we extended our clang-based
tool to take this step automatically.

After having identified the live variables at the end of each mode, we instru-
mented them as illustrated in Listing 1: First, we added a nondeterministic
assignment to each variable just before the new mode starts (line 6). This allows
for all possible values, once the analysis on the new mode starts. Then, if due to
some logical reason the value range could be limited, we used an assume state-
ment to restrict analysis to this value range (line 7). However, to guarantee that
the value domain is indeed complete, i.e., ensuring that no possible execution
has been neglected, we added a matching assert statement at the exit of the
predecessor mode (line 3).

Listing 1. Illustration of assume-guarantee reasoning using cbmc at the program
point between two sequential modes X → Y, sharing one live variable sharedvar.

1 // end of mode X
#ifdef ANALYZE_MODE_X

assert(sharedvar > -10.f && sharedvar < 50.f);
#endif
#ifdef ANALYZE_MODE_Y

6 sharedvar = nondet_float (); // introducing nondeterminism
assume(sharedvar > -10.f && sharedvar < 50.f);

#endif
// beginning of mode Y
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A successful verification of the predecessor mode (here: X) means the asserts
hold true, therefore guarantees that live variables indeed satisfy the assumptions
we make at the beginning of the new mode (here: Y). Assume-guarantee reasoning
therefore is sound. Finding the value ranges is currently done manually; in doubt
one can omit the ranges, which leads to a safe over-approximation. However,
tool support would be favorable, since tight ranges means no false alerts during
verification.

In summary, this mode-building reduced the number of properties from 458
to below 250 in each mode, with 31 shared variables between them that were
subject to assume-guarantee process (see Table 2).

Removing Dead Code: When going through the verification process shown
in Fig. 5, it is desirable to entirely remove dead code (especially after mode-
building and analyzing the modes separately), otherwise a lot of unreachable
properties will be there, slowing down the analysis and cluttering the results.
Although goto-instrument offers two slicing options, none of them removes dead
code. This task is not trivial, since in our case the modes share code, e.g., both
self-check and detection use a function that reads out the accelerometer. Again,
we used our clang-based tool for this task, which operates on the C code that
is equivalent to the GOTO-program and removes dead functions and variables
(see Fig. 5).

Bounding Non-local Loops: A complexity-increasing problem for verification
are nested, stateful function calls, as they occur in hierarchical state machines.
Our program uses such hierarchical state machines to interact with the barom-
eter and accelerometer peripherals. If one of the inner states has transition
guards, then the entire hierarchy needs unrolling until these guards evaluate
to true. In our case, we have guards like waiting for ADC conversion to finish.
Unfortunately, hierarchic state machines are a popular design pattern in model-
based design (e.g., Statemate, Stateflow, SCADE), which therefore needs to be
addressed rather than avoided.

We found that some guards in the inner state machines can be removed safely,
reducing costly unrolling. Assume that the guard will eventually evaluate to true
(even if there is no upper bound on the number of steps it takes): If all live data
that is written after this point is invariant to the number of iterations, then the
guard can be removed. Consequently, such irrelevant guards can be identified by
first performing an impact analysis (find all variables that are influenced by the
guard), followed by a loop invariance test (identify those which are modified on
re-iteration) followed by a live variable analysis on the result (from the influenced
ones, identify those which are being read later during execution). If the resulting
set of variables is empty, then the guard can be removed safely. This technique
is of great help for interacting with peripherals, where timing may not influence
the valuations, but otherwise contribute to state space explosion. The technique
is easily extended, if there are multiple guards.

On the other hand, if a guard potentially never evaluates to true, e.g., due to
a broken sensor, then there are two ways to treat this: If this is valid behavior,
then this guard can be ignored for the analysis (no execution exists after it).
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Table 2. Complexity of the verification before and after preprocessing. Unlike the full
program, which cannot be analyzed, assume-guarantee reasoning between sequential
modes Initialization, Self-Check and Detection was computationally feasible.

Mode → Initialization Self-Check Detection All

lines of code 1,097 976 1,044 2,513

#functions 36 29 43 94

#persistent variables 36 38 59 72

#live variables at exit 31 31 n.a. n.a.

#properties 249 221 175 458

#VCCs 11,895 35,001 15,166 330,394

#SAT variables 5,025,141 8,616,178 6,114,116 n.a.

SAT solver run-timea 16 min 14 min 28 min infeasibleb

aOn an Intel Core-i7 vPro at 2.8 Ghz and 4 GB RAM.
bOut of memory after 3 hours; #VCCs and SAT variables were still growing.

If it is invalid behavior, then the guard should be extended by an upper re-try
bound and this new bounded guard can then be treated as explained above.
After these transformations all state machines could be successfully unrolled.

6.4 Keeping Assumptions Sound

We made use of assumptions for limiting value domains where possible, and to
perform assume-guarantee reasoning. Assumptions are a powerful tool in cbmc,
however, it is easy to add assumptions which are not satisfiable (UNSAT). Those
rule out all executions after the assume statement and thus might lead to wrong
verification results.

Therefore, we have to ensure that the composite of all annotations is sound,
otherwise the verification outcome may be wrong despite the individual annota-
tions being correct. To check whether assumptions can be satisfied, we added a
new check to cbmc, which does the following: It inserts an assert(false) after
each assumption and subsequently runs the SAT solver on it. If the solver yields
UNSAT for the assertion, it means it is reachable and thus the assumption is
valid. If it yields SAT, then all executions were ruled out and thus the assump-
tion is UNSAT and thus unsound. Finally, we warn the user for each UNSAT
assumption.

6.5 Verification Results

With our extensions of existing tools we were able to set up a correct verifi-
cation workflow for the software of the ERS. The complexity of the analysis
(for each mode: run-time, number of variables etc.) is summarized in Table 2.
During the process we identified several trivial and non-trivial defects, some of
them were one deadlock in a state machine, multiple overflows in sensor data
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processing and even one timing-related error (barometer update took more steps
than anticipated, which lead to wrong descent rate). Interestingly enough, dur-
ing flight tests we sporadically experienced some of these errors, which by then
could not be explained. One of the reasons for this is, that there was little infor-
mation about these errors due to limited logging and debugging facilities on the
microcontroller, and that we could not reproduce the environmental conditions
in the lab.

7 Conclusion

In this paper we described our approaches in developing a safety-critical emer-
gency recovery system for MAVs, in particular our efforts in applying methods
and tools for formal verification of embedded software. This study has shown
that formal verification of the entire, original software running on a microcon-
troller is possible, if appropriate preprocessing techniques are applied. The state
space can be reduced to a size that can be covered by existing tools, but careful
handling is necessary to obtain correct results. The efforts did pay off in our
case. Not only could we identify defects in the software, but we obtained coun-
terexamples for the defects, which can be the only useful source of debugging
information for resource-constrained embedded systems.

As future work, we are planning to extend our clang-based tool to perform
not only some, but all the steps we have taken automatically, as well as a com-
plementary software supporting the described iterative workflow.
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Abstract. Agile development is getting more and more used, also in the
development of safety-critical software. For the sake of certification, it is
necessary to comply with relevant standards – in this case IEC 61508 and EN
50128. In this paper we focus on two aspects of the need for configuration
management and SafeScrum. First and foremost we need to adapt SafeScrum
to the standards’ needs for configuration management. We show that this can
be achieved by relative simple amendments to SafeScrum. In addition – in
order to keep up with a rapidly changing set of development paradigms it is
necessary to move the standards’ requirement in a goal based direction – more
focus on what and not so much focus on how.

Keywords: Safety critical systems · Agile software development · Configuration
management · IEC61508 · EN 50128

1 Introduction

It is always a challenge to change software – safety critical or not. In this paper we will
discuss challenges related to changes and change processes when using agile develop‐
ment. We will do this from two perspectives – IEC 61508: 2010 (a generic standard
often used in industrial automation) and EN 50128: 2011 (railway signalling systems).
Change is always tightly connected to configuration management (CM) which is a well-
known process. The challenge is more important for agile development that in any other
development paradigm since agile development promises to “embrace change”. The
challenges related to CM will, however, increase when we use agile development since
changes will be more frequent – possibly several changes included in each sprint.
Changes during agile development come from several sources, e.g.:

• New requirements added after the development process has started
• Changes to existing requirements due to new knowledge or new customer needs
• New risk and hazards due to changes in the operating environment
• Refactoring – tidy up the code, which is important in agile development
• Not-accepted user story implementation from a sprint

© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-24249-1_33



All changes, irrespective of source, represent challenges for both the developers and
for the system’s integrity, e.g.:

• Testing. Which tests need to be re-run after the changes – the need for regression
testing has to be evaluated

• Change impact analysis. How will the change affect system
• Complexity – both IEC 61508 and EN 50128 require that the system complexity

shall be controlled
• Safety – which safety and hazard analyses should be checked or repeated

The CM process is well known and there is a plethora of tools available to support
it. However, none of the proposed methods handle the problems pertaining to change
impact analysis. Traditionally, the processes have been heavy on management and on
documentation. None of these concepts fit well with agile development.

2 Related Works

First and foremost, there exist a well-known standard for CM – IEEE Std. 828 [10] which
should be used as a reference document. When searching for existing work related to agile
configuration management, we note that there exist few academic articles and that the
few that exist mostly can be summarized in one sentence: “CM is important, also for agile
development”. If we look for papers on how to do CM during agile development, we find
that the majority of relevant articles are published on blogs – e.g., [1, 2], although there
are exceptions, e.g., [3, 4]. It is important to note the conclusion from [1]: “CM can be
adapted to an agile iterative process without any problems” and the summary from [4]:
“Modern CM tools can handle any number of configuration items without any problems
and, therefore, controlling everything should be the tendency in agile methods”.

In addition, there exist some books on the topic, e.g., [5–7]. The current conventional
wisdom is best summed up in [1] – edited by the authors:

• Add support for parallel multiple development branches
• Avoid centralized Change Control Boards (CCB) that controls all changes. Control

non-strategic decisions on changes in the distributed organization of Scrums. Reserve
centralized decisions for changes that impact the whole program or organization.

• Let the agile team assumes the CM role instead of a dedicated Configuration
Manager.

• Use automated tools – Automated continuous integration helps to reduce the inte‐
gration and testing delays and allow quick feedback about the product quality.

• Continuously observe and adapt the CM tools and process.

3 Agile Development and SafeScrum

SafeScrum [8] is an adaptation of Scrum to make the development process comply with IEC
61508, EN 50128 and IEC 60880 – 2006, ed. 2. The main adaptations are shown in Fig. 1.
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Fig. 1. The SafeScrum development process.

A complete description of Scrum and its development into SafeScrum can be found
in [9]. The other important adaptation is the introduction of separation of concerns – see
Fig. 2. The main message here is that SafeScrum cannot handle everything – we have
decided to only handle software development, which is thus separated from the rest of
the process described in IEC 61508 and EN 50128. The term “separation of concerns”
stems from software design and we found this to be a useful and descriptive term when
we designed the SafeScrum process.

Fig. 2. Separation of concerns
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SafeScrum gets its requirements from the system’s SSRS and incorporate methods
and techniques described in annex A, part 3 of the standard as required by the designated
SIL. Each increment from SafeScrum goes through a RAMS validation and the result
is either that it is OK, that it needs to be modified in another sprint or that it requires a
new hazard analysis.

4 CM in Two Standards

4.1 CM in IEC 61508

The following sections of IEC 61508 are related to CM:

• Part 1 – Sects. 6.2.10 and 7.14.2.3. These two sections states that the project shall
have a procedure for CM and the project needs configuration identification of items
under test, the procedure applied for testing and the test environment

• Part 2 – Sects. 7.8.2.1 and D.2.1. These two sections are concerned with the CM of
the complete E/E/PE system – hardware and software

• Part 3 – Sects. 6.2.3, 7.4.4.13, 7.4.4.15 – 17 and 7.8.2.8. Section 6.2.3 is the most
important one since this section defines the requirements for the CM process to be
used. We will look at this process in some more details below also because part 3 is
the part of the standard that is concerned with software development. The other
sections are concerned with CM history and CM for tools of categories T2 and T3

• Part 4 – 3.7.4 defines the term configuration data and also defines configuration
baseline as “the information that allows the software release to be recreated in an
auditable and systematic way

• Parts 5 and 6 – no relevant sections on CM
• Part 7 – appendix C.4.3 and C.5.24. The first of these two appendices state that the

CM tools shall be certified and the second one describes the goals of CM

Part 1, part 2, part 4 or part 7 will have an impact on the chosen development
method while part 3 is important. According to 6.2.3 Software configuration manage‐
ment shall:

(a) apply administrative and technical controls throughout the software safety life‐
cycle, in order to manage software changes and thus ensure that the specified
requirements for safety-related software continue to be satisfied

(b) guarantee that all necessary operations have been carried out to demonstrate that
the required software systematic capability has been achieved

(c) maintain accurately and with unique identification all configuration items which
are necessary to meet the safety integrity requirements of the E/E/PE safety-related
system. Configuration items include at least the following: safety analysis and
requirements; software specification and design documents; software source code
modules; test plans and results; verification documents; pre-existing software
elements and packages which are to be incorporated into the E/E/PE safety-related
system; all tools and development environments which are used to create or test,
or carry out any action on, the software of the E/E/PE safety-related system
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(d) apply change-control procedures:
• to prevent unauthorized modifications; to document modification requests
• to analyse the impact of a proposed modification, and to approve or reject the

request
• to document the details of, and the authorisation for, all approved modifications;
• to establish configuration baseline at appropriate points in the software devel‐

opment, and to document the (partial) integration testing of the baseline
• to guarantee the composition of, and the building of, all software baselines

(including the rebuilding of earlier baselines).
(e) ensure that appropriate methods are implemented to load valid software elements

and data correctly into the run-time system
(f) document the following information to permit a subsequent functional safety audit:

configuration status, release status, the justification (taking account of the impact
analysis) for and approval of all modifications, and the details of the modification

(g) formally document the release of safety-related software. Master copies of the
software and all associated documentation and version of data in service shall be
kept to permit maintenance and modification throughout the operational lifetime
of the released software.

The majority of these requirements will not be influenced by a choice of using an
agile approach – in this case SafeScrum. Even most of the requirements in part 3,
Sect. 6.2.3 will not be influenced by agile development. The mail challenges are point
c and f. There is nothing there that cannot be fulfilled when using agile development
but the resources needed may be large, depending on the tools used. It is thus impor‐
tant to agree on when we define a new configuration. This decision should be reached
with the assessor – and may be with the customer – before development starts.

According to requirement 6.2.3 c, we need CM for the following documents:
safety analysis and requirements, software specification and design documents, soft‐
ware source code modules, test plans and results, verification documents. We could
for instance define configurations to be the result of:

• Each sprint. Use CM to recreate the status of the system after any chosen sprint.
• Separate CM-item sprints. The system’s state can be recreated only to the states at

these points
• The complete system. Only the final, delivered system can be recreated

4.2 CM in EN 50128

Even though both EN 50126 and EN 50128 also are relevant for railway applications,
we have decided to only look at EN 50128 since we focus on software. The following
sections in EN50128 are related to CM:

• Section 4 – requirement 4.1, which specifies that development environment shall
contain a system for CM

• Section 5 – requirement 5.3.2.4, which specifies that the project shall have a CM
plan, drawn up from the start of the project
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• Section 6 – requirement 6.1.4.4 and 6.1.4.5 are related to tests. Requirements 6.5.3
and 6.5.4 handles quality assurance requirements, while requirements 6.6.2 and 6.6.3
handles change control. Each project needs a CM plan.
• All software documents and deliverables shall be placed under CM control and

changes to these documents shall be authorized and recorded. The CM system
shall cover the software development environment used during a full lifecycle.

• Each test specification shall document test environment, tools, configuration and
programs, requirement and that we need to identify the configuration of all items
involved in a test report.

• All changes shall be done according to the CM plan and deliver a new CM record.
• Section 7 – requirements 7.4.4.2, 7.5.4.4, 7.6.4.5, 7.6.4.9 and 7.7.4.10

• Requirement 7.4.4.2 requires that each component shall have a CM history
attached

• Requirement 7.5.4.4 requires that each component shall be under CM before we
start documented testing

• Requirements 7.6.4.5, 7.6.4.9 and 7.7.4.10 require that the software and hardware
integrations shall identify the configurations of the elements involved and the
validation report

• Section 8 has configuration requirements for configuration data of the system. In our
opinion, this is outside the scope of this paper except for requirements 8.4.7.1 and
8.4.7.5 which requires that the configuration data shall be placed under configuration
control

• Section 9 contains requirements for deployment and maintenance, which both are
topics outside the scope of this paper. It is, however, important to note that require‐
ment 9.1.4.8 opens up for incremental deployment

Note that EN 50128 does not mention regression testing. This should, however, be
included in the next version of the standard.

4.3 Prescriptive vs. Goal Based Standards

The most convenient way to start this discussion is to use a definition of CM. In order
not to favour any of the two standards that we discussed here, we will use the definition
given by IEEE [12] which states that configuration management is the process of

• Identifying and defining the items in the system
• Controlling the change of these items throughout their lifecycle
• Recording and reporting the status of items and change requests
• Verifying the completeness and correctness of items

In order to make standards more robust when techniques and methods change, we
work to make as many as possible of the standards goal-based. I.e., instead of saying
what you shall do, we want to focus on what you shall achieve. To show what we mean,
we will show a possible goal-based approach for some of the CM requirements for the
two standards discussed above. The main goal for both standards is to be able to recreate
a consistent set of documentation, code, test data and tools that is maintained throughout
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the development project. This goal alone covers IEC 61508, part 1, part 2 and part 7
plus EN 50128, Sects. 4, 5 and 6.

For IEC 61508, only part 3 is important, since it describes a set of concrete
requirements to CM while part 4 only contains relevant definitions and parts 5 and
6 have no relevant sections pertaining to CM. A closer look at part 3, Sect. 6.2.3
shows that it only says that you should be able to recreate the complete project state
at any defined time.

For EN 50128, Sects. 4 and 5 just say that a project shall have a plan and a system for
CM. Section 6 adds that the CM shall cover the software development over a full lifecycle.

We have earlier stated that all the development requirements stated in annex A
and B of IEC 61508 only contains sound software engineering practices. It would
not be unreasonable to claim the same for the two standards’ requirements for CM.

5 The SafeScrum Approach to CM

5.1 Some General Considerations

First and foremost: CM is more important when using an agile development approach
then when using a waterfall process. There are several reasons for this:

• Builds baselines more frequent
• Have more frequent deliveries/releases
• Have more and more frequent changes

If we look at the table supplied by [4], we see that software CM is not a part of Scrum
and thus needs to be added also to SafeScrum (Table 1).

Table 1. CM in agile development methods

Method Software configuration
management approach

Practices related to SCM

Adaptive Software Development SCM not explicitly considered –

Crystal family of methodologies Tool viewpoint on SCM –

Dynamic System Development
Method

SCM explicitly considered All changes during the
development must be
reversible

Extreme Programming SCM partially considered Collective ownership,
small releases and
continuous integration

Feature Driven development SCM explicitly considered Configuration manage‐
ment, regular builds

Pragmatic Programming Tool viewpoint on SCM Source code control

Scrum SCM not explicitly considered –

Note that [1] advices us to avoid a centralized Change Control Boards and to reserve
centralized decisions for changes that impacts the whole program or organization.
The rest should be handled by the SafeScrum team.
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The term “component” is often used both in IEC 61508 and in EN 50128. From the
definition given in EN 50128 – “…well-defined interfaces and behaviour with respect
to the software architecture…” it is reasonable to interpret component as a functional
unit – see IEC 61508-4, 3.2.3. Functional unit: entity of hardware or software, or both,
capable of accomplishing a specified purpose.

5.2 Regression Testing

One important issue not explicitly related to CM but important for each change – which
is the reason why we need CM – is regression testing. When we do test-first, e.g. TDD,
we make a set of tests based on the current set of requirements (user stories) and develop
software with the goal that the piece of code currently developed shall pass the tests.
However, we will also have a lot of tests developed for previous requirements. In addi‐
tion, the tests developed for a user story will in most cases depend on a set of stubs,
fakes or mocks. It is not obvious that these tests can be run on any later version of the
system without much ado. We see two practical ways out of this:

• Organize the user stories in such a sequence that we avoid – or at least minimize –
the need for stubs, fakes and mocks. See for instance [11]

• Have two sets of tests – one for the total system and one for each increment. The first
will be a system test that is increased for each sprint while the other one is a set of
tests only relevant for the designated sprint – see Fig. 1. The system test could be
maintained and run by the same persons who do the RAMS validation in the current
SafeScrum model while the other tests could by the responsibility of the development
team – see Fig. 2

Another important consideration is the need to retest only what was affected by the
last sprint. To achieve this we will use two important mechanisms (1) connecting tests
to user stories and (2) using the trace information. We need traces from user stories to
code and from user stories to tests. This will give us information about which tests are
related to which code units. We only need to retest components that are changed or
receive input (directly or indirectly) from changed components. By having efficient tools
for automation, it is possible to enable regression testing of relevant parts of the system,
with increased frequency.

When developing safety-critical systems, changes may have effects that are outside
the changed modules or components. This challenge is handled by change impact anal‐
ysis. Even though this is important it is not part of CM. We have, however, discussed
this problem and the suggested SafeScrum solutions extensively in [9]. The interested
read should consult this paper and its references.

5.3 SafeScrum CM in IEC 61508 and EN 50128

The most important statement related to CM is that the Software Quality Assurance
Plan, Software Verification Plan, Software Validation Plan and Software Configu‐
ration Management Plan shall be drawn up at the start of the project (i.e., outside
SafeScrum) and be maintained throughout the software development life cycle. For

The Role of CM in Agile Development of Safety-Critical Software 393



IEC 61508, this holds also for hardware and for tools of category T2 and T3 plus the
documents listed in part 3, Sect. 6.2.3. The important thing for SafeScrum is to have
a procedure at the start of each sprint where all plans are updated when necessary.
This can be done either by the SafeScrum team itself as part of the sprint planning
process or by the people who developed the plans, using information from the SafeS‐
crum team.

EN 50128 also requires that all information related to testing – e.g., environ‐
ment, tools and software – shall be included in CM. Note also that the standard
requires all components to be under CM before we start documented testing. Testing
done during development using e.g., TDD does not need to be included. In most
projects, documented testing only includes integration testing and system testing.

The only part that we need to go through in some detail is IEC 61508, part 3,
Sect. 6.2.3. This section specifies that we shall

• Have administrative and technical control throughout the lifecycles
• Apply the correct change control procedures and document all relevant information

for later safety audits – i.e., that the CM job is done properly
• Have control over all identified configuration items
• Formally document the releases of safety-related software

An important challenge to the SafeScrum process is the first statement: administra‐
tive control throughout the lifecycles. For the other CM requirements, the challenge for
SafeScrum is not to fulfil the requirements but to decide how often and under what
circumstances. Most of the information needed for efficient CM is created automatically
by tools. We suggest the following approach:

• Management decides at which milestones a new configuration should be defined.
This is done before the project starts and is mentioned in the CM plan.

• The responsibility for managing the CM is normally assigned to the quality assurance
department (QA).

• All code and data are tagged during check-in. The tags are administrated by the QA
but used by the SafeScrum team.

• The QA and the SafeScrum team have regular meetings that focus on CM and other
QA-related issues.

EN 50128 adds some requirements – all components shall have a CM history
attached to it and that the validation report and configuration data shall be included in
the documents under CM. In addition, the integrations shall identify the hardware and
software components used. It is also worth mentioning that EN 50128 requires that each
component shall be under CM before we start documented testing. Thus, the components
need not be under CM during test-driven development.

To sum up; we have considered all requirements to CM in IEC 61508 and EN 50128.
There are no practises in SafeScrum that prevent or hinder the use of standard CM
methods and procedures. SafeScrum needs two add-ons (1) tagging of code and data at
check-in and (2) regular meetings between the SafeScrum tam and the company’s
QA-department.
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5.4 Threats to Validity

As always with this type of discussions, there are two threats to the validity of our
discussions and conclusion: (1) have we understood the standards and (2) have we
understood CM. We claim that we have understood

• The two standards, based on the practical experiences the two authors have with the
standards – one is a certified assessor for EN 50128 while the other author has worked
with IEC 61508 in industrial settings.

• CM, based on the practical experience of one of the authors with software develop‐
ment

6 Summary and Conclusions

We have had a detailed walk-through of the two standards IEC 61508 and EN 50128 with
focus on CM and change management when we use an agile development process – in this
case SafeScrum. The challenges related to CM increase when we use agile development
since changes will be more frequent. There are just a few requirements in either of the
standards that prevent the use of SafeScrum as is. The following changes (additions) are
needed:

• A new process at the start of each sprint to do necessary updates to the CM plan when
needed. The SafeScrum team should cooperate with QA in this process.

• A separation of testing into development tests – e.g., TDD – which is the responsi‐
bility of the SafeScrum team and system – and integration tests, which are the
responsibility of the RAMS process

• All tools used, all documents generated and all plans should be under CM.
• An efficient tracing tool is needed, e.g., to keep track of the relationships between

user stories, test cases and code

In addition we suggest changes to the two standards under discussion in order to
make the requirements goal-based in order to be able to keep up with new ideas and
concepts in software engineering.
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Abstract. Incremental design is an essential part of engineering. With-
out it, engineering would not likely be an economic, nor an effective, aid
to economic progress. Further, engineering relies on this view of incre-
mentality to retain the reliability attributes of the engineering method.
When considering the assurance of safety for such artifacts, it is not sur-
prising that the same economic and reliability arguments are deployed
to justify an incremental approach to safety assurance. In a sense, it is
possible to argue that, with engineering artifacts becoming more and
more complex, it would be economically disastrous to not “do” safety
incrementally. Indeed, many enterprises use such an incremental app-
roach, reusing safety artifacts when assuring incremental design changes.
In this work, we make some observations about the inadequacy of this
trend and suggest that safety practices must be rethought if incremental
safety approaches are ever going to be fit for purpose. We present some
examples to justify our position and comment on what a more adequate
approach to incremental safety assurance may look like.

Keywords: Incremental design improvement · Incremental safety
assurance

1 Introduction

Incremental design improvement, a.k.a. normal engineering design [23], has a
long history and proven value as a way for constructing improved versions of
artifacts. This engineering praxis caters for time and budget constraints, ensures
an artifact’s effectiveness, fitness for purpose, and the reliability of its production.

We consider that the same considerations guiding incremental design
improvement have fostered a practice of incremental safety assurance which relies
heavily on the reuse of existing safety artifacts, e.g., safety related evidence and
arguments. However, in contrast to incremental design improvement, we argue
that incremental safety assurance, as presently viewed and practiced, is not nec-
essarily sound. An important reason for this is the global nature of safety as a
property of a system. Focusing the safety assurance efforts in a localized fashion,
e.g., on the slice of the system where the design change occurred, may ignore
newly created global hazards or the re-emergence of those that are otherwise
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F. Koornneef and C. van Gulijk (Eds.): SAFECOMP 2015 Workshops, LNCS 9338, pp. 397–408, 2015.

DOI: 10.1007/978-3-319-24249-1 34



398 V. Cassano et al.

mitigated. Complicating things further, safety artifacts cannot be straightfor-
wardly composed, as the context and the assumptions in one safety artifact may
undermine safety claims established in another. Though these considerations
may seem well-known, that certain current safety practices fail to tackle them
properly indicates that they are neither entirely understood nor easily dealt with.

In this paper, we put forward some observations on why incremental safety
assurance, when understood from the perspective of incremental design improve-
ment, is problematic, and in fact inherently deficient (that is the bad news!). Our
discussion hinges on two main points: compositionality and the defeasibility of
safety arguments, and locality and emergent properties. By elaborating on these
points, we hope to bring to the foreground what we believe is an important issue
of safety practice: the reuse of safety artifacts. While we believe that there is
certainly great practical value in the reuse of safety artifacts, we offer a view
of what a more sound approach to incremental safety assurance might look like
(that is the good news!), this needs of a great deal of caution.

Structure of the paper : In Sect. 2, we explain what incremental safety assurance
means from the perspective of incremental design improvement, commenting on
its underlying philosophy and the necessity for its existence. In Sect. 3, we elabo-
rate on our reservations about such an incremental approach to safety assurance.
In Sect. 4, we substantiate our claims by providing examples from the automo-
tive and medical domains. In Sect. 5, we discuss the challenges and opportunities
presented by an incremental approach to safety assurance. In Sect. 6, we com-
ment on some related work. In Sect. 8, we offer some conclusions and talk about
our next steps.

2 Incremental Safety Assurance

When faced with a problem, engineers tend to build on experience, best prac-
tices, and already existing artifacts, analyzing their pros and cons in order to
try to adapt them (incrementally) to the problem at hand. This approach is
key for guaranteeing an artifact’s reliability and the reliability of its production.
This commonly accepted view of engineering praxis is, among other places, dis-
cussed by Vincenti in [23] under the name of normal design. In Vincenti’s terms,
a design is normal if both the operational principle, i.e., “how the device works”,
and the normal configuration, i.e., “the general shape and arrangement that are
commonly agreed to best embody the operational principle”, are known and used
[23, pp. 208–209]. If either the operational principle or the normal configuration
are largely unknown, or, if known, are left unused, then, the design is radical
[23, p. 8]. Radical design is then to be thought of as based on engineering princi-
ples that are wholly different from those guiding normal design. This said, Vin-
centi remarks that “though less conspicuous than radical design, normal design
makes up by far the bulk of day-to-day engineering enterprise” [23, p. 8].

The difference between normal design and radical design is easily illustrated
in the automotive domain. A case can be made that majority of current vehicles
are based on, reuse, or extend, design elements existing in other vehicles of the
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same kind, i.e., normal design. This applies both to the software and hardware
components of a vehicle and enables the automotive industry to rely on well-
tested systems while being up-to-date with technological advances. On the other
hand, the development of an autonomous car would exemplify a radical design.

The inherent practicality of normal design, i.e., of incremental design
improvement, has lead to its enduring prevalence. We consider that it is this
prevalence, as well as the striving for efficiency and resource preservation, that
has fostered an incremental approach to safety assurance. It is a given that
designs often become more complex and sophisticated as they evolve from one
version to the next. We are then naturally loathe to discard the immense amount
of safety knowledge collected during the production of a previous version of the
system, and documented in safety artifacts such as safety arguments, hazard
analyses, test data, etc. In analogy with incremental design, it appears both rea-
sonable and practical to take advantage of these safety artifacts and, whenever
possible, e.g., if design changes are deemed “small” or systems are “sufficiently”
similar, to reuse them so that safety engineers may focus their attention specifi-
cally on the effects of what has changed. This attempt to localize and focus safety
assurance efforts by reusing safety artifacts is what we call an incremental app-
roach to safety assurance, something that we further make clear in Sect. 4, where
we present some real-life examples from the automotive and medical domains.

3 The Pitfalls of Incremental Safety Assurance

In this section we discuss some pitfalls associated with what we call an incre-
mental approach to safety assurance. Our conclusion is that this approach to
safety assurance cannot simply rely on principles analogous to those of incre-
mental design improvement. If it does, it is unsound. This conclusion hinges
on two main points. First, in contrast to what happens in incremental design
improvement, safety assurance artifacts are not compositional. Second, while
incremental design improvement is conducive to localization in terms of design
parts, safety assurance requires a holistic view of the system. We elaborate on
these points in Sects. 3.1 and 3.2, respectively.

3.1 Compositionality of Safety Artifacts

Regarding compositionality, the general idea of a safety argument provides us
with a necessary context for discussion.

It is well-known lore that an argument is a series of assertions, in which
the last element, the conclusion, follows from some foregoing assertions in this
series, the premisses. More precisely, from an inferential standpoint, to ‘follow
from’ means that the conclusion is obtained from the premisses by virtue of
some judiciously chosen rules of inference. The bar against which an argument
is then judged as being well-formed or not, i.e., right or fallacious, rests on an
analysis of the properties that are satisfied by these rules of inference. In that
respect, classical logical studies restrict their attention to the rules of inference
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of the propositional and the predicate calculus, or some of their variants, such as
those dealing with modalities. Rules of inference of this sort, henceforth called
classical, enjoy the desirable property of being definite, i.e., they are not subject
to rebuttal. This entails that if a conclusion follows from some premisses and
some other conclusion follows from some other premisses, then, both conclusions
follow from the union of their sets of premisses. In other words, if arguments are
formulated in terms of classical rules of inference, then, they are compositional.

A safety argument is an argument whose main concern is the safety of an engi-
neered artifact. Now, by looking at a safety argument, we can readily conclude
that the rules of inference used in its formulation are far from being adequately
captured as classical rules of inference (after all, we have yet to see definite safety
claims). On the contrary, our view is that, whenever made explicit, safety argu-
ments are formulated using defeasible rules of inference, i.e., rules of inference
that are open to revision or annulment, e.g., as made precise in Toulmin’s notion
of a rebuttal [22]. This view of safety arguments makes them radically different
from classical arguments; it makes them non-compositional. More precisely, as is
well-known in the field of defeasible reasoning, in the presence of defeasible rules
of inference, while a conclusion follows from some premisses, and while some
other conclusion follows from some other premisses, neither of these conclusions
may follow from the union of their sets of premisses [11].

In short, the preceding discussion indicates that composing safety arguments
incrementally suffers from the inherent problem that this composition step is
clearly unsound. In consequence, if safety arguments are built resorting to defea-
sible rules of inference, then, their compositionality requires principles that are
radically different from those underpinning what can be done incrementally.

3.2 Localization of Safety Assurance Efforts

Regarding localization, the general idea of a safety goal decomposition provides
us with the necessary context for discussion.

In essence, safety goal decomposition involves the mapping of safety claims
across different levels of the design hierarchy. At the highest levels of design,
some general safety claims are made. At lower, more detailed, levels of design,
these general safety claims are refined into more specific safety claims, e.g., as
safety claims concerning design parts. Fundamental to the soundness of safety
goal decomposition is the assumption that any refinement step encompasses a
full knowledge of the design elements it involves, how these elements interact,
how these interactions may fail, and what measures can be put in place so that
safety claims are not violated. When looked at from this perspective, safety goal
decomposition requires a holistic view of the design at hand.

This said, the design hierarchy reflected in safety goal decomposition has led
some to believe that design parts may be straightforwardly replaced by others
which are substantially equivalent in terms of the safety properties they satisfy.
For us, this is a serious misconception. What the previous chain of reasoning
fails to take into account is that safety claims are not obtained in a localized
fashion, but instead are the result of a refinement mechanism which accounts for
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a holistic view of the design hierarchy. If any design part were to be replaced in
any refinement step, not only would it be required to reassess the safety of the
design parts involved in this refinement step, but also to reassess the safety of the
design as a whole. The latter is largely due to the emergent properties, i.e., those
arising from unexpected interactions between the replaced part and the rest of
the system [17]. Because of their implications for safety, and given that they
are not easily identified in the functional decomposition of a design, emergent
properties are to be dealt with explicitly and seriously; failing to consider them
is a serious omission in incremental safety assurance.

In short, safety assurance efforts cannot easily be limited to the modified
design parts without considering a holistic view of the system. This means
that, whether design parts and their corresponding safety artifacts may be
replaced, or “plugged-in”, modularly, without completely undermining what has
thus far been deemed safe, requires principles that are radically different from
those underpinning incremental design improvement. The approach is otherwise
unsound.

4 Substantiating Our Claims

Focused on what we view are some of paradigmatic examples of safety gone
wrong, in Sect. 4.1 we discuss the case of GM’s faulty ignition switch, and in
Sect. 4.2 we discuss the case of J&J’s DePuy Orthopedics all-metal hip implants.
We argue that these two real-life examples illustrate how what we call an incre-
mental approach to safety assurance presents itself in practice.

4.1 Automotive Domain: The Ignition Switch Case

Not long ago, GM was faced with the recall of 2.6 million cars because of a
defective ignition switch. The problem? The defective ignition switch would
unintendedly move out of the “run” and into the “accessory” position during
driving, leading to a partial loss of electrical power and turning off the car’s
engine. Why is this a problem? Under certain conditions, this accidental turn
off of the car’s engine resulted in an unfortunate series of events, which caused
serious harm or death for car occupants; e.g., in a number of cases, this failure
disabled the power steering, the anti-lock brakes, and the airbags, causing some
fatal car crashes.

For us, GM’s defective ignition switch problem is a glaring example of what
may go wrong with an incremental approach to safety assurance. Why? GM
found out that the problem with the ignition switch was the result of a new
switch indent plunger that did not supply enough torque to keep the ignition
from accidentally changing position [20]. It seems that, GM first became aware of
the problem in 2001 and started to make incremental changes to the plunger part
to address the issue in 2006 [13]. What went wrong with these changes? At least
two things. First, our view is that when making the design change, GM engineers
focused on meeting the specifications of an ignition switch, deeming unlikely that
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this would introduce any new system level hazards. In a sense, the emphasis was
placed on the physical and structural aspects of the design of the ignition switch.
Second, this seemingly physical modification had a bearing on the the overall
safety of the car. Most likely, the software requirements at the conceptual level
of the car assumed that the car is not in motion when the key is in “accessory”
mode. If the car is assumed not to be moving when the key is in “accessory”
mode, it is reasonable to deactivate the airbags in order to prevent unintended
deployment (in a parked car the accidental deployment of airbags could seriously
injure passengers as they enter or exit the car). With the defective ignition
switch, the assumptions underlying these software requirements are undermined.
It was indeed possible for the car to be in motion with the key in “accessory”
mode, e.g., as a result of hitting a bump on the road. (To be noted, the latter
did not occur in cars prior to the problematic ignition switch design, where
more torque was required to change the key position, virtually eliminating the
possibility of the key accidentally changing position).

Can safety be assured locally? Replacing an indent plunger, a seemingly
local issue, has global safety implications, exactly because of the intervention
of a software-based control system. Concentrating solely on the physical or the
software based aspects of the ignition switch may miss the real safety conse-
quences. What the defective ignition switch misses is a global impact analysis of
the design changes. This may have allowed an assessment of which other elements
might have been affected and what new hazards this design change could have
introduced. But this is easier said than done. It was not trivial for GM engineers
to link the infrequent cases of airbags not deploying in an accident after loss of
power steering and power brakes to the defective ignition switch [4,24].

As a final remark, touching on the notion of what has been proven in use and
its potential contribution to the safety of a newer car, the determination of what
is safe is intrinsically an evolving notion. Namely, small design changes, such as
changing an indent plunger, may have worked well in the past. Yet, in the past,
losing power to the car may have not been considered to be a catastrophic failure.
E.g., in the past, failure of power steering and brakes would still leave the driver
with some measure of control via manual steering and the mechanical connection
to the brakes. In this past, an engineer dealing with mechanical components may
view the change of the key position as an undesirable event that could result
in a hazardous situation, but the hazard ‘loss of control leads to an accident’
would have been seen as being mitigated by the manual system. Supporting
these claims, at a lawsuit resulting from a fatal accident, an engineer testified
that the car was “safe” because it “could still be maneuvered to the side of the
road” [13]. People have different expectations nowadays.

4.2 Medical Domain: The All-Metal Hip Implant Case

The FDA 510(k) substantially equivalent (SE) criterion for clearance of a new
medical device is another example of what may go wrong with an incremental
approach to safety assurance. Why? By its definition, the SE criterion relies on
a comparison of a to-be-marketed with an already marketed medical device. In
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essence, if changes in design are deemed to be “minor” or “small”, inferences
about the safety of the newer device can be made based on the safety artifacts
of the device already marketed. Framed somewhat differently, the 510(k) SE
criterion assumes that a small change in design will not likely bring about a
major safety concern. As shown below, this assumption is, at least, problematic.

As reported in [12], in 2005, Johnson & Johnson’s DePuy Orthopedics intro-
duced a new all-metal design for their hip implants. A predecessor version of
these hip implants was made of metal and plastic. The newer hip implants were
cleared for market with the older hip implants being used as a predicate device
using the 510(k) SE criterion. The new all-metal hip implants were cleared for
market based on the fact that their predecessor had been cleared for market. No
clinical trials nor additional tests were performed on the all-metal hip implants.
Thus far, nothing seems to be wrong from an incremental safety assurance per-
spective (more so, a case can be made that the operational principle and the
normal configuration are likely to be sufficiently similar, if not the same, for
both the all-metal hip implant and its predecessor). The problem? It turned out
that for the case of the all-metal hip implant “[t]he metal was eroding, releasing
metallic particles into the blood and surrounding tissue of the joint and causing
tremendous pain” [12]. This did not occur with the predicate device. It seems
that drawing analogies between designs being substantially equivalent bears no
obvious relationship to their safety. How can such a threat to safety be discovered
if not by re-examining and carrying a thorough re-conceptualization of previously
produced safety artifacts? Moreover, the all-metal hip implant is interesting for
its ancestry, which can be traced back “more than five decades through a total
of 95 different devices, including 15 different femoral heads and sleeves and 52
different acetabular components” [21]. It seems reasonable to assume that, even
in the presence of impeccable initial safety artifacts, the compounded effects of
design changes led up to a point where a new hazard was indeed present. This
raises the question: do the small tweaks eventually get you?

5 Discussion

In hindsight, the threats to safety mentioned in Sects. 3 and 4 could have been
mitigated with a proper preparation, revision, and perhaps re-conceptualization
of the previously produced safety artifacts. Special attention must be given to
impact that design changes may have on safety (potentially having to conduct
new hazard analyses, reevaluate safety assumptions and the contexts in which
these assumptions were made, etc.). Being able to count on a framework enabling
the tracing of design changes to safety artifacts is a MUST, since it is precisely
this framework that may enable the assessment of the effects of localized design
changes on safety related artifacts. It is at this point where the notion of a
safety case comes into play (a notion popular in some domains, but not so much
in others). We believe that there is a version of incremental safety assurance
that can take the necessary holistic view of safety assurance and perhaps offer a
sort of middle ground between the present practices in many industries and the
uneconomic approach of building all safety artifacts from scratch. Our hypothesis
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is that this middle ground would need an explicit safety case in terms of which
to assess the impact that an incremental design change may have on safety. Such
an explicit safety case may then lead to some ability to localize required changes
to safety artifacts, yet not necessarily in the sense of localization to design parts.
The moral of the story? Reuse of safety artifacts can only be sound if we are
able to trace the global effects that design changes may have on the system.

This said, having a well-defined notion of a safety case is only a part of the
big picture. As we have argued above, an incremental approach to safety assur-
ance cannot be based on principles similar to those of incremental design improve-
ment. We are of the view that reusing safety artifacts requires rely/guarantee-like
engineering principles, as understood by the formal methods community [7]. Intu-
itively, these principles may be understood as: the guarantee properties of this
safety artifact are met only if the rely properties of a safety artifact are met. How
hazard analyses, safety related evidence and arguments, test libraries, etc., are to
be dealt with in a rely/guarantee fashion is something largely to be explored.

In summary, while we acknowledge that there is great practical value in the
reuse of safety artifacts, this has to be done with a great deal of caution. We take as
foundational that any incremental approach to safety assurance cannot be based
on those engineering principles underpinning incremental design. Insofar as its
soundness is concerned, what is then needed are engineering principles allowing
for an analysis of the effect that a design change may have on safety artifacts.
Among many things, these principles must involve a careful and thorough review
of the validity of safety arguments. This would enable us to identify whether a
safety argument contains some fallacious inferential steps and to assess the degree
of certainty of the safety claims it involves. As usually conveyed in safety discus-
sions, we view a safety argument as a cornerstone in safety assurance. Without
a safety argument that links safety evidence with safety claims, it is well-nigh
impossible to establish either the relevance and the sufficiency of the provided evi-
dence, or how this evidence contributes to the safety claims. For us, this needs, as
a first step, a precise definition of a safety argument, i.e., there is a need of a logic
for safety argumentation (this logic need not be a formal logic, but it must be a
logic nonetheless). Moreover, it is our view that emergent properties require spe-
cial attention in safety assurance, as these pose one of the greatest threats to safety
being assured in an incremental fashion. All in all, what is needed is a framework
allowing for safety artifacts to be traced back to the design parts under considera-
tion, enabling an analysis of effect propagation of localized changes, such as those
caused by the addition of a new functionality or the replacement of a design part.
An explicit safety case is a first step in the right direction.

6 Related Work

The need for an explicit and properly defined safety case is well-recognized in the
safety community. There is, however, some disagreement regarding what counts
as a “properly” defined safety case. In this respect, we are pluralists: maybe there
is no THE properly defined safety case, but properly defined domain specific
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safety cases. This said, we take as basic that a properly defined safety case shall
consist of explicit safety goals, evidence of their fulfillment, acceptance criteria
for the evidence, and a structured argument linking evidence to safety goals.

Among other places, the need for having an explicit safety case is commented
on by Holloway in [15]. Holloway stresses that this is indispensable for evaluat-
ing the reasons why safety assurance practices in the aeronautics domain have
thus far been adequate. Holloway makes this claim in reference to compliance
with DO-178C, a standard which regulates the use of software on commercial
airplanes, in an industry considered to be mature when it comes to safety mat-
ters. Our standpoint here is somewhat similar: without an explicit and adequate
representation of a safety case, its analysis is close to impossible, as is the impact
that design changes may have on safety. Works such as [2,3,8,19] also stress the
importance of having an explicit representation of a safety case. However, in
comparison to ours, these works are focused on what a safety case should look
like, not on the problems with an incremental approach to safety assurance.

Particularly interesting in the context of incremental safety assurance is [18].
The authors of this work comment on how refinement, as understood by the for-
mal methods community, allows for a much needed feature in incremental safety
assurance: the introduction of more detail into the decomposition of safety goals.
As a challenge of adopting such a technique for decomposing safety goals they
point out that refinement leaves little room for revision. This is a consequence
of refinement being conceived in a (logically) monotonic setting. The situation
is radically different once one assumes safety properties are defeasible, as we
have discussed in Sect. 3. In such a setting, the traditional ideas of refinement do
not apply straightforwardly (e.g., it may be the case that refining a safety goal
into two safety subgoals results in one of the subgoals undermining the other).
Considering this phenomenon is crucial if safety assurance is to be thought of
incrementally.

Works such as [1,6,9,14] are also related to incremental safety assurance. All
of these works have in common with ours a discussion of safety being assured
in an incremental fashion. However, in comparison with ours, their approach is
presented from the point of view of techniques rather than principles. In that
respect, they do not seem to discuss the issues that we have commented on in
Sects. 3 and 4. Though they address and suggest a component based approach to
safety assurance, they do not discuss how such components may be put together
in a property preserving manner.

7 Some Final Remarks

Given that incremental design improvement is prevalent as an engineering prac-
tice, it is no surprise that matters related to the associated idea of incremental
safety assurance appear in various safety standards and guidelines via the reuse
of design elements.

The automotive domain incorporated the notion of proven in use in the
recently published ISO 26262 standard for the functional safety of vehicles.
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In ISO 26262 defines proven in use as “an alternate means of compliance [...]
that may be used in the case of reuse of existing items or elements when field
data is available” [16, Part 8, Clause 14]. ISO 26262 also introduces the concept
of safety element out of context (SEOoC). A SEOoC is “intended to be used in
multiple different items when the validity of its assumptions can be established
during integration of the SEOoC” [16, Part 10, Clause 9]. Both ‘proven in use’
and SEOoC fall within an incremental approach to safety assurance under the
assumption that they involve the reuse of the safety artifacts attached to a design
element, with the purpose of contributing to the safety of a newly developed car.

The medical domain has its well-known 510(k) process. The US FDA defines
the so called ‘510(k) program’ as “a premarketing submission made to FDA to
demonstrate that the [medical] device to be marketed is as safe and effective, that
is, substantially equivalent (SE), to a legally marketed device that is not subject
to premarket approval (PMA)” [5]. The SE condition indicates that the changes
incorporated into the new medical device are somewhat “small” in relation to
the already marketed medical device, from which the new device’s safety follows.
If looked at from this perspective, the FDA’s 510(k) program is another instance
of an incremental approach to safety assurance: small design changes cause no
effect on the artifact’s safety.

In avionics, an incremental approach to safety assurance may be seen as being
present in the FAA’s AC 20-148: Reusable Software Components [10]. In this
advisory circular, the FAA comments that “because of economic incentives and
advances in software component technology, software developers want to develop
a reusable software component (RSC) that can be integrated into many systems’
target computers and environments with other system software applications”,
all while still showing compliance with avionics safety regulations. As with ISO
26262’s notion of a SEOoC, if we agree that a RSC involves the reuse of safety
artifacts, then, it is more or less clear that this falls within the scope of what we
call an incremental approach to safety assurance.

Following from the observations just made, to be noted is that, while the
definitions and practices may vary across domains, a great deal of care should
be taken so that these safety standards and guidelines are not undermined by
the pitfalls and deficiencies that we discussed in Sects. 3 and 4.

8 Conclusions and Next Steps

Incremental design improvement, a.k.a. normal design, is a reliable and standard
foundation for engineering practice. It is well understood, generally economic,
and it supports the need and desire to see improvements in the artifacts that
we use. When these are safety critical, the question becomes: how are safety
related issues, arising due to changes in design, to be incorporated into the safety
assurance scheme? We have argued that the obvious analogy to incremental
design improvement encounters serious difficulties related to identifying new or
re-emerging safety issues.

We have also discussed some of the principles and examples of an incremen-
tal approach to safety assurance. Resorting to the latter, we have shown that
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safety related issues were missed, leading to some catastrophic results. In our
view, shared by some, the fundamental problem, the root cause of the mistakes,
is that, even though design changes might be local, as in the ignition switch
example, their effects on safety assurance are of a global nature. More generally,
mistaking incremental design change for limited effects on safety has resulted
in essential difficulties related to safety, and serious damage to people, com-
pletely undermining claims about safety. This has been worsened by the fact
that the safety cases often remain implicit, making it very difficult to determine
the global safety effects of the localized design change. Of course, we do recognize
that when safety engineers have a great deal of experience, and they devote suf-
ficient attention to the effects of design modifications on safety artifacts, things
appear to run smoothly, even if approached incrementally. The problem is that
this is difficult to evaluate externally, i.e., without the inside knowledge these
safety engineers may have. If looked at from this perspective, rather than an
engineering discipline, safety assurance becomes something that falls within the
realm of obscurantism and practiced by safety gurus.

Conversely, our position is that, incremental safety assurance needs principles
other than those underpinning incremental design improvement. These princi-
ples will define the basis for analyzing how incremental design changes impact
existing safety artifacts. Thus, our recommendation goes beyond that of produc-
ing an explicit safety case. This said, safety cases are definitely necessary. It is
with respect to them that the effects that design changes may have on safety
may be tracked down more easily, establishing a foundation for eliciting sound
engineering principles for incremental safety assurance. In any case, our proposal
is not the one usually put forward in the context of safety assurance: start afresh
from the ground up. We recognize that while perhaps viable in domains where
changes in design seldom occur, this is economically and logistically infeasible
when changes in design are frequent, as is the case in the automotive and med-
ical domains. As future work, we need to rigorously develop and systematize our
hypotheses, so that they can be evaluated in carefully conducted experiments.
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Abstract. Today’s situation in operating theaters is characterized by many
different devices from various manufacturers. Missing standards for device
intercommunication lead to the fact that inter-device communication in most
cases is either difficult or even impossible. A system oriented approach with
networked devices is envisioned to improve this heterogeneous situation. Every
device in the operating theater shall be able to interchange data with every other
device in the network. Even remote control of other devices shall be possible.
Therefore, concepts for safe and secure dynamic networking of components in
operation theaters and hospitals have to be provided. This paper will show
methods to test such systems of systems and provide a way to increase the
robustness of the interfaces. This will be part of the evidence described in
multidimensional dependability arguments provided to certification authorities.

Keywords: Safety-critical medical devices � Systems of systems � Device
interoperability � Robustness of interfaces � Dependability arguments �
Fuzz-testing � Scenario-based testing

1 Introduction

In operation theaters and intensive care units many different devices from various
different manufacturers are used. Some examples are camera systems, operation tables,
endoscopes, infusion pumps, patient monitors, and other measurement devices. Today
such solutions use proprietary protocols and interfaces. In most cases it is difficult to
include devices from different manufacturers in the proprietary networks. Interopera-
bility is only given if all devices are from the same manufacturer. For other devices a
way has to be found to let them exchange data. In addition, to guarantee for interop-
erability, the hospital has to take the responsibility for the installation and manage
possible risks appropriately.

To overcome the limitations mentioned, standardized interfaces and data structures
are required. Interfaces and data structures have to be flexible enough to allow for
additional functions, quality, and features for product diversification. This will lead to
cost reduction both on the side of hospitals and on the side of manufacturers. Hospitals
will be more flexible in buying new devices and delivering best possible treatment.
Manufacturers can increase quality of treatment and even provide new therapies
because they can include devices and access data they previously weren’t able to access
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or include. Though, there are still some standards missing, medical devices manufac-
turers have to react on this demand. They have to provide concepts for safe and secure
dynamic networking of components in operation theater (OR) and hospital.

This paper will show methods to test such systems of systems and provide a way to
increase the robustness of the interfaces. The rest of the paper will be organized as
follows: The next chapter gives information on the state of the art, followed by an
introduction to fuzz-testing. Examples show how the dependability of systems of
systems is increased by the results obtained by fuzz-testing. The results provide evi-
dence aggregated in dependability-arguments as shown in the chapter “Evaluation”.
The paper concludes with a short summary.

2 Testing Systems of Systems

System oriented approaches including software and IT applications require
inter-operable data structures to guarantee that data can be exchanged without loss,
providing additional benefit (semantic interoperability). Systems have to be reasonable
mature before they are brought into a system of systems. For each system the individual
features have to be tested first. This includes testing of combinations of related features
and the required input variables. If this prerequisite is given, the end-to-end check
on a benefit the system or program is supposed to deliver has to be done [8].
A scenario-based test approach should be used as it can help discover problems in the
relationships among the features. In addition, scenario-based test approaches provide
an early warning system for problems that may haunt the project later. The more
complex a scenario is, the more likely it will show up compelling bugs because the
tests provide more complex conditions than would otherwise have been tested. Nev-
ertheless, it is essential that the tests are easy to evaluate. The more complex the test,
the more likely will the tester accept a plausible-looking result as correct. Reports from
IBM show that about 35 % of the bugs found in the field were bugs that had been
exposed by tests but were not recognized as such by the testers [8].

Ryser and Glinz [9] convert natural language requirements and use-cases into
statecharts thereby formalizing the scenarios. Some scenarios require certain prereq-
uisites, e.g. the completion of another scenario or some other dependency. It is good
practice not to test only the so-called “happy-day” scenario with all dependencies
satisfied but also those with none or only a few of them fulfilled. This ensures that test
cases for dependencies and interrelations between scenarios are obtained.
Scenario-based testing is not suited for testing early or unstable code or systems. Each
feature has to be tested in isolation otherwise the bugs they contain will block the
scenarios.

3 Fuzz-Testing

Fuzz-testing is a test method that uses input values selected randomly or by heuristics.
In general, each test-run would provide different input values to the system under test
(SUT). The simplest type of test pattern generators (called “fuzzers”) performs black
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box testing using random patterns. A large number of test pattern is generated to gain
suitable test coverage. This kind of test pattern generators is very easy to use but can
obviously find simple errors only. If the SUT requires the input to be protected by
check-sums, encryption, and/or compression, simply providing random data at the
inputs will not find any errors, since the SUT will assess the input being invalid and
reject it. In order to generate sophisticated test pattern and to check test responses some
information on the SUT is required. A model is required to both check test responses
and generate test pattern for sophisticated protocols. Model-based fuzzers can cope
with SUTs that require the input to be protected e.g. by check-sums. The model
provides information on input ranges of variables and required sequences of operations.
This is demonstrated on the protocol example below. Let the protocol have the
structure: <“command”>, <“device ID”>, <“string”>, <“check-sum”>.

A stateful fuzzer is required to generate valid protocol packets with an appropriate
check-sum. Providing random patterns, even with correct check-sum, may not find
many errors because packets with unknown or invalid commands will be rejected.
Depending on the command structure, this may result in most packets been rejected.
A stateful, scenario-based fuzzer will provide packets with valid command, valid
device ID, and appropriate check-sum. It will fuzz the string part of the protocol. This
will provide packets with valid strings but also with empty ones, strings with many
spaces, with spaces only, with special characters, etc. The random strings will show the
robustness of the protocol implementation.

Fuzz-testing as such is not meant to supplant “more systematic testing”. It rather is
an additional tool for testing. Fuzz-testing can be automated to a high degree and can
be applied to a wide range of problems [1]. Its use as black box testing approach is
especially useful when evaluating proprietary systems. Fuzz-testing has become a
crucial tool in security evaluation of software. Its effectiveness is based on how
thoroughly the input space of the tested interfaces is covered. In addition, the effec-
tiveness depends on how good the representative malicious and malformed inputs for
testing each element or structure within the tested interface definition are (quality of
generated inputs). Fuzzers should be model-based and stateful to insert malformed or
unexpected data into quite specific areas of the input data stream.

4 System Testing and Optimization

Lot of work and research has been done on protocol testing and robustness testing for
closed components [3, 6, 7]. Some effort has been spent on interoperability testing
between two or more components. However, less work has been published on the
robustness of concurrent and networked systems. The potential risk of being attacked
makes the robustness of such systems become more and more important. One com-
ponent can impact or even crash the whole system. In this paper robustness is defined
as the degree to which a system will function correctly in the presence of invalid inputs,
or stressful environmental conditions [4, 5]. In that sense, a robust system can be used
without crashing even when it is used inappropriately. Testing for robustness [4, 7] tries
to find inputs or behavior that possibly can jeopardize the system. In a system of
systems (SoS) concurrent components are networked and work together as if they were
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a single component. Each component of the SoS has its own specification and is tested
and approved separately. To increase the robustness of the SoS all components have to
be analyzed together. To have the system operate in defined conditions, certain pro-
cedures have to be followed and certain conditions be fulfilled. Sometimes users do not
follow the procedures required, thus introducing vulnerabilities. Therefore, to optimize
the SoS as a whole, not only the internal communication but also the user interfaces
and the operation procedures have to be tested and evaluated.

Until recently, in order to acquire certification, it was sufficient to argument
development was done in an appropriate way according to certain prescriptive
process-based standards. This included the adherence to defined processes, regular
reviews, personnel competence, and a risk-management process [2]. Recent commu-
nication with certification authorities (e.g. the FDA) shows that now there is a pref-
erence for more than just safety arguments. Therefore, we propose five-dimensional
dependability arguments which include safety but also other aspects such as security.

5 Dependability Arguments

There is a trend in the development of safety-critical software towards the use of safety
cases [12]. Safety cases require evidence specifically tailored to the system and soft-
ware development. Arguments based on safety only may not be enough to describe a
system adequately. Especially networked systems require security cases as well.
Therefore, dependability arguments consisting of the five dimensions “safety”,
“security”, “dependability”, “availability”, and “resilience” are proposed:

Safety. It is the condition of being protected against types or consequences of failure,
damage, error, accidents, harm, or any other event considered non-desirable.

Security. It is the degree of resistance to, or protection from, harm. It describes the
degree of data protection and the ability of the system and its internal communication to
withstand cyber-attacks.

Availability. It is the degree to which a system or subsystem is in a specified operable
and committable state, i.e. a functioning condition, at any time.

Resilience. It is the ability to absorb or avoid damage without suffering complete
failure.

Dependability. In general is a measure of a system’s availability, reliability, and its
maintainability. In this paper it means the readiness for and continuity of correct service
as well as the degree of reliability of conveyed information. Dependability of a system
defines the degree further decisions can depend on the information.

To increase robustness of the system a three step testing approach is proposed.
Basis of the method proposed is fuzz-testing, a well-established method to check and
improve robustness of communication interfaces. This testing method is also applied to
improve the reaction of the system on situations where users do not follow the defined
operating procedures. Information from test scenarios and previous tests is used to
increase quality of generated inputs during fuzz-testing. In addition, formalized
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scenarios are (re)used in testing [8, 9]. Fuzzer frameworks or commercially available
fuzzers usually are capable to use this information and to increase the quality of
generated inputs with information from previous test-runs. After performing the tests
according step 1 to step 3, information is obtained where the system of system, its
internal communication, and the operation procedures involved show vulnerabilities.
Fixing the vulnerabilities provides evidence for the dependability arguments.

Step 1 – Test the Interface Protocol Using Fuzz-Testing
In order to bring their medical devices to market, manufacturers test the external

interfaces against internal or external (public) standards. Testing against the
interface-standard will be comparable to tests against commercially available interfaces
such as the USB interface for instance. The tests ensure that after connecting the device
to the system it will function as desired. The device will just add its functionality to the
system. However, to achieve full functionality it may be necessary, to have some kind
of “driver”, which provides information on how to handle the device and its data.

Conformity tests for many standards just require that devices adhere to a certain
protocol. Proving that a certain piece of code or a device satisfies a given set of
properties may not be enough to prove correctness or to guarantee that it will be reliable
in any environment or under certain circumstances in the intended environment. There
is no information about malformed or invalid datagrams and various other off-nominal
conditions, which are of central importance in safety-critical systems [11]. The
off-nominal conditions do not necessarily have to be huge impacts but rather be an
aggregation of relatively small events. It turns out that in almost all cases where
safety-critical systems fail, the cause is an unexpected combination of relatively
low-probability events [14]. Therefore, in a first step the robustness of the interface
shall be increased. This is done by fuzzing the protocol.

Fuzzing the protocol involves sending malformed packets and unexpected data at
certain points in the protocol. With the information gained, the robustness of the pro-
tocol interface is increased against both other devices that do not function as expected
and attack scenarios. The higher the robustness of the interface, the more increases the
chance that the device continues to deliver its function even if another device in the
system of systems is faulty or the connection between the devices is unreliable.

Step 2 – Test the User Interfaces Using Fuzz-Testing
Defined operation and handling of the user interface is expected and sometimes

also required to perform certain operations or during special conditions of the system.
Occasionally though, users may find the required value they are ought to set too high or
otherwise inappropriate in the current situation. Sometimes it is just by the stress users
feel in a certain situation that they select and change the setting of a parameter not
expected to be changed at that moment.

Systems have to cope with such situations and such “unexpected” settings.
Therefore, fuzz-testing of the user interfaces is proposed. It will provide valuable
insight in the function and requirements of the user interface. Sometimes even hidden
requirements or implicit assumptions made by programmers can be discovered with
fuzz-testing. If users inadvertently change values because stress and misperception
makes them select a certain value, there may be a way to change the layout of the user
interface (e.g. placement of the value on the screen). Nevertheless, sometimes trade-offs
have to be made at this point. It may be that increasing the robustness of the user
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interface would mean to compromise safety. As the latter is not an option, the
dependability argument will have a smaller value for robustness than for safety.

Step 3 – Test System Operation Conditions Using Fuzz-Testing
Systems of systems increasingly become more complex and human-centered.

Resilient systems need flexible adjustments. It turns out that in many cases human
variability and flexibility is the core driver of the required adjustments. Therefore, it is
extremely useful and should not be eliminated. In some cases, human variability may
engender failure, in most cases, though, it ensures successful adjustment of the system
to internal or external disturbances [10]. Human variability keeps the systems operating
at the desired or at least at a satisfying level of performance [13]. The human intention
to keep the systems running leads to the fact that the specified guidelines are not
perfectly – or even not at all – followed. Tests for antifragile or resilient systems should
take this into account instead of relying on fixed values in response to certain events.
Responses to events are fuzzy values, at least as long as human beings are involved.

Having said this, it opens a different view on the often very stringent rules to be
followed when operating a system of systems. In some cases it may be difficult to
follow all the instructions specified. Even worse, instructions of different manufacturers
may be in contradiction to each other. Therefore, fuzz-testing the operating guidelines
is proposed to evaluate the consequences that arise from not perfectly following them.
This includes different scenarios such as normal operation but special operations as
well. When expanding the approach to other domains, operational procedures during
disaster/disaster recovery may also be included (with simulated values only).

6 Evaluation

In this chapter some examples will be given to show how the method proposed will
detect possible issues. The first example is based on the scenario that a therapy device
shall forward its alarm condition to a device in the network such as a pager or the like.
Let us assume that at first the communication is secured by a check-sum and that there
is some kind of keep alive signal to ensure that the device in the network is available.
The device sending the alarm information identifies itself by transmitting some
information about its position and/or its associated patient. This patient related data has
to be encrypted for security reasons and to ensure privacy. For safety and security
reasons a patient ID is transmitted together with bed and room information.

Using the assumptions above, the second column of Table 1 below shows the values
for the dependability argument prior to optimization using fuzz-testing. An average
value of 5 is given to “safety”, “security”, and “dependability”. There is no resilience
(1) and availability is low (3). The next step is to fuzz-test the alarm annunciation
interface and the complete transmission chain of the alarm from the device to the pager
of the nurse. Based on the shortcomings and/or vulnerabilities found, mitigation mea-
sures will be implemented. Fuzz-testing is performed again after implementing the
measures. The second testing step is done to check whether there are new or non-fixed
vulnerabilities. If the test is passed without findings, the respective parameter is
attributed with the highest value. The values to attribute the five dimensions of the
dependability arguments are in the range between 1 and 10. A value of 1 indicates that
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the parameter is more or less not fulfilled, e.g. no protection against attacks. Whereas a
value of 10 indicates that the parameter is covered by the measures implemented, e.g.
the system is immune against the defined/considered attack scenarios.

Testing of the alarm annunciation revealed many shortcomings and vulnerabilities.
When fuzzing the device identification it was found that every device could confirm
alarms. If a hacker would be able to get into the network and receive an alarm packet he
could confirm the alarm thus avoiding it to be conveyed to the nurse that ought to
receive it. Thereby causing danger for the patient. Therefore, it was decided to include
an authentication of the devices. In addition, only a defined set of devices was given the
right to confirm alarms. Fuzzing the alarm information showed that every device was
able to send every possible alarm with every possible alarm priority. If by an attack the
priority of an alarm could be altered, this could also be dangerous for the patient. The
decision therefore was that every device can only transmit a defined set of alarms with
predefined priorities. The alarm priority information not only increases security but can
also increase robustness against errors during transmission. The communication pro-
tocol was vulnerable against any kind of replay attack. To avoid this attack scenario, the
communication should include some kind of time stamp and packet ID. The receiver
should discard packets received twice or with unexpected time or packet IDs. The
description of the alarm in the communication packet should consist of multiple bytes.
To further secure the transmission, it should be checked if the device signaling the alarm
is really capable of generating such alarms. The same holds for the answer on the alarm.
The nurse receiving the alarm should confirm that she received it and will take
appropriate action. The receiver of the confirmation should check if the sending device
is capable and authorized to do so. It should reject packets from other devices. At this
point it is not intended to define further actions e.g. by network administrators if it is for
instance detected that a scale tries to confirm an alarm from an intensive care ventilator.

As explained above, fuzz-testing highlighted some weaknesses in the communi-
cation protocol. Any device could confirm or send an alarm. The transmission was not
robust against transmitting wrong alarm information to mention just a few. The issues
were resolved and the test was run again – now with the result that the transmission was
robust against the issues mentioned. The latter test provides evidence that the com-
munication is safe and secure. This information can be used to generate a dependability
argument for safe alarm annunciation which is shown in Table 1 below. It shows which
measures had been implemented (column 4) and how the values for the different
dimensions of the dependability argument changed (column 3). A set of measures was
defined to mitigate the vulnerabilities and shortcomings revealed by fuzz-testing. The
effect on the communication was very positive as the rating for every dimension could
be increased. Regarding the safety aspect the communication now covers the attack and
failure scenarios (value “10”). Security was increased too, but to reduce the overhead it
was decided not to cover all attack scenarios. The communication is still vulnerable to
sophisticated attacks. Nevertheless, security is rated sufficiently high (value “7”). The
degree the user can rely on the information received was increased to a sufficiently high
value (value “7”). There are, though, some cases in which the information is not
reliable. Resilience and Availability are rated to have reached the maximum possible
values (value “10”).
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The first example is based on a scenario in which a therapy device is source of
information and transmits it into the network. The second example is based on a
scenario in which a therapy device is the receiver of information transmitted from other
devices within the network. When treatment is performed to a patient, any device
around the patient (in the workplace) may sound an alarm e.g. caused by motion
artifacts. The user expects to silence all devices at once by pressing the “alarm silence”
button on the device nearest to her. In general, silencing an alarm is very sensitive and

Table 1. Dependability argument “safe alarm annunciation” with optimization

Alarm annunciation is safe

Confirmed authenticated transmission of alarms
Parameter Value Measures Comment

Safety 5 10 Check sum + answer
back + keep alive
signal + defined alarms
with predefined priorities
from defined devices
only + transmission with
time stamp, packet ID, and
patient ID

The communication is safe.
Safety is increased by
checking the alarm source
and priority (result from
fuzz-testing)

Security 5 7 Patient data (patient ID) is
encrypted, communication
only with authenticated
partners, only defined
alarms (including priority)
from defined
devices + transmission with
time stamp and packet
ID + one packet for each
alarm

Time stamp against replay
attack. Robustness against
attacks increased with
information gained from
fuzz-testing

Dependability 5 7 Receiver shows error if
connection to sender is lost.
Detection by use of a keep
alive signal

User can rely on displayed
alarm

Resilience 1 10 First alarm in network on
different devices, then on
nurse call interface, then
locally + time-out before
and after
confirmation + Alarm
shown after confirmation
until alarm is off

Alarm will be announced
even if some of the devices
fail.

Availability 3 10 Alarm on different network
devices + via nurse call
interface (including in
hallway) + local alarm to
increase availability

The alarm will be available.
Please note: This is for the
alarm itself not for the
alarm annunciators in the
network.
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potentially may become of high risk for the patient because even alarms indicating a
life threatening situation may be silenced.

Let us assume that at first the communication between the devices is secured by a
check-sum and that there is some kind of keep alive signal to ensure that the devices in
the network are available. The device sending the alarm silence information identifies
itself by transmitting some information about its position and/or its associated patient.
This patient related data has to be encrypted for security reasons and to ensure privacy.
The patient ID is transmitted together with bed and room information.

Column 2 of Table 2 above shows the values of the dependability argument prior to
optimization. An average value of 5 is given to “safety”, “security”, and

Table 2. Dependability argument “safe remote alarm silence” with optimization

Remote alarm silence function is safe

Confirmed authenticated transmission of alarm silence
Parameter Value Measures Comment

Safety 5 10 Confirmed transmission with
check-sums. Multi-bit
status, “Pairing” of devices
to identify a workplace,
Display shows “workplace
alarm silence” functionality

Content of transmission
protected against errors or
changes

Security 5 10 Only from defined and
authenticated devices,
transmission with time
stamp and packet ID. Only
two defined states allowed,
each alarm and each alarm
silence request in a separate
packet

Reduced attack surface by
reduced number of states
and authentication (result
from fuzz-testing)

Dependability 5 10 Alarm silence set if all
devices agree on “alarm
silence”. Device accepts
new alarms of equal or
higher priority. Signal is
only available within a
single workplace.

Signal is reliable. No alarm
silence if signal is given
too often (e.g. more than
10/minute) (result from
fuzz-testing)

Resilience 1 3 Alarm silence set locally or
based on status received
from other devices in the
workplace. Defaults to “no
silence”

The remote alarm silence
function still permits to
issue a local alarm silence.

Availability 1 1 Only accepted if not longer
than allowed by standards
(e.g. 2 min). Does not
change if alarm silence is
already active, defined
overall alarm behavior

Alarms have priority against
convenience function.
Standards may limit
availability.
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“dependability”. There is no resilience (1) and availability is very low (1). Fuzz-testing
of the implementation has been done to improve the transmission of the alarm silence
information. Again weaknesses in the initial protocol were discovered by fuzz-testing.

If the information is transmitted in a single bit only, it is relatively easy to change
the information e.g. by influence of EMC. To mitigate this issue the alarm silence
information has to be transmitted as multi-bit value. It turns out, that in the first
implementation every device could send an alarm silence information. Therefore, two
different measures have to be implemented. Only devices authenticated and allowed to
do so are accepted as sender of alarm silence information. This is a necessary but not
sufficient condition. It is required to introduce some kind of “pairing” to identify the
devices of a single workplace. Only devices that are identified to be around the same
patient as the receiving device are accepted as senders for alarm silence information. In
addition, some of the weaknesses found are the same as those in example 1. Therefore,
measures already implemented in example 1 are required here also.

A set of measures was defined to mitigate the vulnerabilities and shortcomings
revealed by fuzz-testing. The measures implemented have very positive effect on the
communication as the rating for most dimensions could be increased. Regarding the
safety aspect the remote silence function now covers the attack and failure scenarios
(value “10”). Security and the degree the devices can rely on the information received
were increased too (value “10”). If the alarm silence information is received, it can be
relied on. The communication of the information was immune to security breaches by
the predefined attack scenarios. The value for “Resilience” could only be increased by a
small value. The information is transferred more than once and there is the possibility
to silence the device locally. Therefore, the parameter is attributed with the value “3”.
Availability could not be increased. On any error not positively covered, the remote
silence functionality is lost and thus the parameter is still attributed with “1”.

The five dimensions of a dependability argument may be in competition or even in
contradiction to each other in the fulfillment of a certain safety-case. We see this as an
advantage of the arguments proposed. Furthermore, it may happen that not all vul-
nerabilities found during fuzz-testing can be fixed. Some information may be very
important but vulnerable. In such cases a trade-off between parameters has to be made.
The trade-off is evident in the dependability argument by the values attributed to the
parameters. Sometimes evidence from multiple teams with different backgrounds is
required. One team may provide evidence for security; another team may provide
evidence on safety and so on. The weights of the different dimensions in the argument
show the point of view from which the evidence is made. More than one evidence may
be given or even be required to adequately form the desired dependability argument, to
satisfy a certain safety case, or to fulfill a certain sub-goal respectively.

Figure 1 shows the graphical representation of the two examples mentioned. Such
graphical representation is also used to display the contribution of different depend-
ability arguments in fulfilling sub-goals. A net-diagram with values between 0 and 10
turns out to be well suited for this purpose. The graphical representation is especially
well suited to show how the respective arguments contribute to fulfill the goal. It also
highlights trade-offs made between different dimensions of the various dependability
arguments. If one would take the two dependability arguments from the examples as
required to fulfill a certain sub-goal, one would identify a trade-off been made between
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safety and availability in the second dependability argument. The first parameter is
attributed with the value “10” and the latter with the value “1” only.

7 Conclusion

There is a strong continuous development from autonomous devices and applications
towards system oriented approaches including software and IT applications. In the near
future complex and networked medical devices and medical procedures will
inter-operate with each other. This interoperability demands for inter-operable data and
data structures.

An overall test approach should exist that covers not only single devices but also
systems of systems. In this paper we propose scenario-based fuzz-testing to fulfill this
demand. Fuzz-testing is used to check the implementation of the communication
interfaces and the user interfaces. This concept can easily be extended even for the
procedures users have to follow when using the system of systems. The testing is used
to gain information on vulnerabilities and other issues of different parts of the system.
This information is used to improve the communication interfaces in a first step. In a
second step user interfaces of the system of systems are improved. In a third and last
step procedures users have to follow when operating the system are improved. These
procedures are described in much the same way communication protocols are descri-
bed. Therefore they are also optimized in the same way.

Networked systems of systems are not only required to be safe but also to be
secure. In most cases users want them also to be available. This paper proposes
multidimensional dependability arguments that include “safety”, “security”, “depend-
ability”, “availability”, and “resilience”. Each dimension is attributed with a value

Fig. 1. Graphical representation of dependability arguments
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showing its degree of fulfillment in the respective argument. Scenario-based
fuzz-testing and the implementation of identified optimization measures gives evi-
dence required by the dependability arguments.

Future work will include identification of potential for further optimization of
systems of systems according to the OR.net initiative. Optimizations will be in a way to
increase safety, security, and customer satisfaction. At this point it is unclear which
parameters the certification authorities will require for such systems of systems. It may
be possible that only a subset of the parameters of the dependability arguments pro-
posed will be made available for those certification authorities.
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