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    Chapter 8   
 The Little Known Universe of Short Proteins 
in Insects: A Machine Learning Approach                     

       Dan     Ofer     ,     Nadav     Rappoport     , and     Michal     Linial    

    Abstract     Modern genomics and proteomics technologies are turning out 
immense quantities of sequenced proteins. The only feasible way to assign func-
tions to this fl ood of sequences is by applying state-of-the-art computational 
methods for automated functional annotation. We illustrate the signifi cance of 
machine learning tools in identifying and annotating short bioactive proteins and 
peptides from insect genomes. Over 500,000 full-length proteins from insects are 
currently archived in databases, of which ~15 % are short proteins. Currently, 
most short sequences remain uncharacterized. We developed a platform to 
 systematically identify the functional class of short toxin-like peptides in meta-
zoa. We present data from eight representative genomes (140,000 proteins) that 
cover the main phylogenetic branches of Hexapoda. The platform is a trained 
machine-predictor that successfully identifi ed ~800 toxin-like candidates, 250 of 
them predicted with high confi dence. These proteins’ functions include ion chan-
nel inhibition, protease inhibitors, antimicrobial peptides, and components of the 
innate immune system. Our systematic approach can be expanded to new genomes 
and other biological classes of proteins. Using similar methodologies, we  illustrate 
the success of identifying overlooked neuropeptide precursors. The systematic 
discovery of insect neuropeptides and short toxin-like proteins allows developing 
new strategies for pest control and manipulating insects’ behavior. The overlooked 
secreted short peptides are discussed with respect to their evolution and potential 
applications in biotechnology.  
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  Abbreviations 

   ANN    Artifi cial neural network   
  AUC    Area under ROC curve   
  CAFA    Critical automatic functional annotation   
  ClanTox    Classifi er of animal toxins   
  CNS    Central nervous system   
  CV    Cross validation   
  ETH    Ecdysis-triggering hormone   
  HMM    Hidden Markov model   
  ICI    Ion channel inhibitor   
  MFS    Major facilitator superfamily   
  ML    Machine learning   
  MS    Mass spectrometry   
  nAChR    Nicotinic acetylcholine receptors   
  NGF    Nerve growth factor   
  NP    Neuropeptide   
  NPP    Neuropeptide precursor   
  OCLP    ω-Conotoxin-like protein   
  PSSM    Position-specifi c scoring matrix   
  SP    Signal peptide   
  SVM    Support vector machine   
  TIL    Trypsin inhibitor like   
  TOLIPs    Toxin-like proteins   
  TLS    Toxin-like stability   

8.1           Automated Functional Classifi cation of Proteins: 
Sequence Similarity 

 In recent years, there has been an exponential increase in biological data, particu-
larly of gene and protein sequences. The rapid growth rate of protein sequence data 
cannot be handled by performing individual experimental studies to determine the 
function(s) of every single protein, as was traditionally the case. Therefore, compu-
tational prediction is currently the only feasible approach for high-throughput iden-
tifi cation of protein function [ 1 ]. 

 Generally, functional classifi cation is performed using a supervised approach, 
i.e., inferring functional classifi cation for a sequence according to existing sequences 
whose functions are known. The most naïve, supervised approach is the  nearest- 
neighbor  search [ 2 ]. In practical terms, a database of sequences is searched for a 
query sequence with the goal of identifying similar sequences. The most common 
algorithms and search engines that perform this task are BLAST and FASTA [ 3 ]. If 
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a signifi cantly similar sequence is found, the query sequence will be considered to 
possess a similar function; this concept is often considered as “guilt by association.” 
The “rule of the thumb” for this inference has been defi ned as the  twilight zone  
concept [ 4 ]: for a sequence at least 100 amino acids long, it is most likely to be a 
homologue if at least 30 % of the amino acids are identical. Below this value, the 
sequence is in the “twilight zone,” where the similarity cannot be separated from 
randomly occurring similarity. 

 Although this direct inference approach is useful for many sequences, it suffers 
from critical caveats:

    1.    In order to learn about a sequence, there must exist a signifi cantly similar 
sequence whose function is known, essentially precluding function prediction 
for unknown protein families.   

   2.    Many proteins with similar sequences have different functions and would 
 therefore be mistakenly classifi ed as having the same function. Such cases are 
common for  paralogs .   

   3.    Many proteins exist that share functionalities and active sites or domains but 
possess signifi cantly different sequences, despite having similar functions.      

8.2     Functional Classifi cation of Proteins: 
An Ill-Defi ned Term 

 There is an obvious connection between the “granularity” of a function (general or 
specifi c) and the evolutionary diversity of the proteins that share it [ 5 ]. Typically, 
groups of proteins that share a high-level functionality (i.e., enzymes) are much 
more diverse than low-level (e.g., urease enzymes) functionality groups [ 6 ]. This 
simple notion serves to defi ne a scoring method for functional similarities [ 7 ]. The 
critical automatic functional annotation (abbreviated CAFA) initiative serves to set 
a measure for the success and failure in functional assignment. Open competitions 
for functional assignment over thousands of proteins show that there is considerable 
room for improvement [ 8 ]. 

 There is an obvious interest in having classifi cation machines successfully learn 
 high - level functionality . If the training set consists of proteins that share a low-level 
functionality, the classifi er would only be able to detect proteins that belong to 
the narrow function that was learned. Essentially, this would reproduce the main 
caveat of the nearest-neighbor search, i.e., the need to have a known, near-identical 
 representative of every possible biological functional group. However, if the train-
ing set consists of proteins that share a high-level function, the classifi er will be able 
to detect any protein that belongs to a very broad class, even if “close” representa-
tives are unknown. 

 The point can best be demonstrated via an example: Consider the case of the 
major facilitator superfamily (MFS). This superfamily includes over 300,000 proteins 
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capable of transporting small solutes in response to ion gradients [ 9 ]. In  general 
terms, proteins of the family belong to the transmembrane transport system. 
However, if we use classifi ers of low-level functionality, we would have a set of 
classifi ers that classify the different types of MSFs (including polyol permease, 
nitrate transporter, multidrug resistance protein, sialic acid transporter, and many 
more). If a sequence of a novel subtype of MSF were found, we would not be able 
to identify its function at the lower level as it would not belong to any known trans-
porter family. However, if we had access to an MSF classifi er, we could identify the 
sequence as a novel type of MSF transporter. An illustration of such an instance is 
shown in Fig.  8.1 .

   It is diffi cult to learn high-level functionality computationally, particularly when 
we might barely understand them on the theoretical level. While we might expect 
nitrate transporters from different organisms to share similar sequences due to evo-
lutionary homology, we would not expect this of a high-level group such as all 
transmembrane transporters. “Statistical modeling” methodologies can then be 
applied [ 10 ]. Central to the success of these methods is construction of multiple 
sequence alignments [ 11 ]. It is plausible to characterize a new sequence with direct 
sequence-based techniques such as position-specifi c scoring matrices (PSSMs) and 
hidden Markov models (HMMs) [ 12 ]. These methods are widely used for sequence 
classifi cation and identifi cation. A large resource for families and domains in pro-
teins is structural knowledge (often reliant on experimental sources), together with 
statistical modeling of each family [ 12 ]. A resource that relies entirely on automatic 
learning schemes provides a complementary view [ 13 ]. These methods were suc-
cessfully applied to characterize features such as conserved positions and active 

  Fig. 8.1    Assigning functional annotation to a novel protein. Functional classes are represented as 
 colored circles  (i.e., the protein sequences that are similar and functionally related appear next to 
each other in this space). The level of functionality is relative to the diameter of the  dashed circles . 
The  black dot  represents a novel sequence of unknown function. In this example, the sequence 
does not belong to any low-level functional classes (marked as  circles ) but does belong to a 
high- level function class (the  dashed circle )       
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sites in enzymes and other binding sites in proteins [ 14 ]. However, there are cases 
in which multiple sequence alignment is unfeasible or simply uninformative.  

8.3      Functional Classifi cation of Proteins: Machine Learning 

 When sequence alignment is meaningless (e.g., only a small number of sequences 
can be aligned, or the information content of the multiple alignment is minimal), 
other methodologies have to be adapted. Some methods produce function classifi ers 
that are not directly sequence based, but rather rely on “global” sequence-derived 
quantitative features that are extracted from the sequence and typically do not take 
amino acid sequential positions into consideration (e.g., the length of the protein, 
the amino acid frequencies, the weight of the protein) [ 15 ]. In such instances, the 
sequences are transformed into multidimensional space where each protein is 
 represented by vectors of features in that space. Then, a classifi er is learned by a 
statistical approach such as a support vector machine (SVM) [ 16 ] or a decision tree 
classifi er method such as random forests [ 17 ]. Such methods which avoid the 
requirement for sequence alignments have shown success in learning high-level 
functional traits (such as the high level of protein family structural folds) while 
often being far more computationally effi cient. While both the direct sequence- 
based approaches and the sequence-derived feature approaches may use the same 
information as input, namely, the sequence itself, they can perform very differently 
due to the manner in which they exploit the data and the information they extract 
from it. There are cases in which an intelligent choice of numerical features (i.e., 
those that can best capture the characteristics of the relevant sequences) can signifi -
cantly outperform popular alignment models (e.g., HMM and PSSM) and can be 
extended for a variety of other data structures such as gene co-expression data. 

 We have now set the stage and background on the diffi culties and solutions for 
functional inference of novel protein sequences. In this chapter, we show how for 
large sets of insect proteins we applied statistical learning methods to annotate 
unknown sequences as belonging to distinct, high-level functional classes. We con-
sidered sequences that are impossible to characterize by existing direct sequence- 
based methods (because the sequences are not alignable), but for which global, 
sequence-derived features can successfully characterize them exceptionally well. 

 The statistical learning technique framework is based on the notion of supervised 
machine learning methods, in which a group of known, annotated sequences serve 
for the  learning / training  phase. This group of sequences is referred to as the  training 
set . Once the learning stage is complete, the characterization that was computation-
ally learned, known as the  hypothesis , can be used to classify unidentifi ed sequences. 
The advantage of machine learning methods over the sequence similarity, nearest-
neighbor approach (described above) is in the fact that the learning methods can 
identify the minimal conserved set of characteristics in each family of proteins and 
focus on searching only for these characteristics. This makes the learning methods 
much more powerful than the naïve sequence similarity approach. 
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 The principal goal in the machine learning approach is to regard the problem as 
one of supervised classifi cation or prediction in a binary (i.e., “Yes/No,” “True/
False,” Positive/Negative) or a multi-class prediction problem. In a binary classifi -
cation problem setting (such as SVM classifi cation) [ 18 ], the goal is to classify two 
classes of points (indicated as positives and negatives) by constructing an optimal 
separator according to distinguishing features of items belonging to those sets so as 
to distinguish optimally between them and to classify new instances as belonging to 
one class or the other. The separator is set to ensure a maximal margin to the points 
(Fig.  8.2 ). The separator does not have to be linear and derives from a class of simi-
larity measures (so-called kernel functions). The use of such a technique provides a 
set of “classifi ers” that can then be tested and then used to predict “unlabeled” new 
instances [ 19 ].

   The fi eld of machine learning is immense with a strong impact on predictive 
biology [ 20 ,  21 ]. Machine learning technologies cover supervised methods of 
binary classifi cation including various SVMs and kernels, decision trees, artifi cial 
neural networks (ANNs), ensembles of classifi ers (such as random forests and 
AdaBoost) [ 17 ], and unsupervised methods for clustering [ 22 ].  

8.4     Short Proteins: An Overlooked Niche 

 The ability to learn about a protein by comparing it to its (inferred) homologues has 
been used in functional prediction, secondary structure prediction, three- dimensional 
fold prediction, and several other applications. However, the power of sequence 
similarity-based tools is greatly diminished for short protein sequences. This is 
because when comparing short sequences it is diffi cult to distinguish genuine 
homology from mere evolutionary noise/coincidence. For example, submitting a 
short amino acid sequence to a sequence similarity search server such as BLAST 

  Fig. 8.2    Support vector machine (SVM) classifi cation between labeled instances ( red  and  blue ). 
The  black line  represents the separator. The scenarios show a linear and a nonlinear SVM 
classifi cation       
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will usually result in matches with barely signifi cant or insignifi cant e-values (a 
statistical measure of signifi cance for the expectation value), even for sequences 
with high percentages of identity. Therefore, the detection of homologues for short 
proteins by using sequence similarity tends to fail. 

 The diffi culty in the identifi cation of homologues is only one of the problems 
associated with short proteins [ 23 ]. Let us consider newly sequenced genomes. The 
fi rst task is identifying potential (putative) gene products. The main steps for iden-
tifying the encoded proteins include:

    1.    Sequence similarity: While this method is the most powerful computational 
approach, as indicated, it fails to detect short proteins.   

   2.    Comparative genomics: This method requires the aligned genomes of related 
species. Additionally, this method is likely to fail to detect short proteins for 
similar reasons to the sequence similarity approach.   

   3.    Ab initio gene prediction: The default parameters require a minimal length for 
potential ORFs (open reading frames), which may further hinder the detection of 
short proteins.   

   4.    High coverage of the transcriptome and proteome by high-throughput experi-
mental technologies.    

  Some experimental methods focus on detection of mRNA expression and others 
on detection of protein expression [ 24 ]. High-throughput experiments for the 
 detection of evidence for mRNA expression are perhaps the best source of data for 
detecting new proteins but are often far from comprehensive due to the fact that 
many genes are only expressed under certain conditions and technical reasons [ 25 ]. 
Deep sequencing technologies (e.g . , RNA-Seq of the transcriptome) can overcome 
the problem of low coverage. However, a fl ood of short noncoding and fragmented 
transcripts are also detected with the potential to mask the transcripts of short 
 proteins. The most direct approach is mass spectrometry (MS) proteomics. 
Nevertheless, this high-throughput protein expression technology requires special 
tweaking in order to detect short proteins and is limited to the detection of highly 
expressed proteins. Furthermore, if a short protein is not already a known candidate, 
it will not be found [ 26 ]. As a consequence of these computational and experimental 
diffi culties, it is conceivable that short proteins represent a relatively understudied 
and neglected niche [ 23 ].  

8.5     Short Proteins: Why Do We Care? 

 Considering the identifi cation of short proteins as a possibly underrepresented 
group, one might pause to ask how many short proteins are there and what kinds of 
functions can be associated with them. Examination of the SwissProt database [ 27 ] 
shows that 2 % of the registered sequences (excluding fragments) are less than 50 
amino acids in length and 10 % are shorter than 100 amino acids. Clearly, the 
 cellular machinery is capable of producing many functioning small proteins, and 
these proteins are involved in biological activities. 

8 The Little Known Universe of Short Proteins in Insects: A Machine Learning…



184

 What biological functions do these proteins fulfi ll? To answer this question, we 
performed a simple statistical enrichment test for biological functions on the group 
of all SwissProt proteins shorter than 100 amino acids [ 28 ]. The enrichment test is 
aimed at fi nding biological groups that appear signifi cantly more often than expected 
for a random selection of proteins. Several biological groups and functions are 
highly overrepresented among short proteins. The signifi cance of being short for 
neuropeptides (NPs) is evident; of 1430 annotated proteins, 1170 were shorter than 
100 amino acids [ 29 ]. Other enriched keywords include “signal peptide,” “secre-
tion,” and more. The functional groups that had the highest statistical enrichment 
value include “toxin,” “neurotoxin,” “ion channel inhibitor” (ICI), “sodium channel 
inhibitor,” and “scorpion long-chain toxin.” For example, from the 2080 proteins 
that are annotated as being ICIs, 1900 are less than 100 amino acids long. This 
group includes most animal toxins. 

8.5.1     The ID of Animal Toxins 

 Toxins are animal venom proteins aimed at infl icting harm to the organism on which 
the venom acts. They are extremely varied in terms of function and effect and 
include ion channel inhibitors (ICIs), phospholipases, protease inhibitors, disinteg-
rins, membrane pore inducers, and more [ 30 ]. 

 ICIs constitute the most widely studied group of toxins. Even specifi c groups of 
ICIs which inhibit the same channel type are varied in sequence and structural folds 
[ 31 ]. One group of ICIs whose evolution has been previously studied is the potas-
sium ion channel inhibitors (K +  ICIs). K +  ICIs are found in a wide variety of venom-
ous species and possess at least ten different structural folds [ 32 ]. In spite of this, all 
K +  ICIs possess two residues that are critical for function, a Lys and a Tyr or Phe, 
which are known as the functional dyad [ 33 ]. Surprisingly, even though these resi-
dues appear in very different positions in the sequences of K +  ICIs, the solved struc-
tures show they are closely aligned in space relative to each other. 

 On the other hand, some scorpion toxins, while sharing the same structural fold, 
act to inhibit different ion channels, including Ca 2+ , K + , Na + , and Cl − . This surprising 
observation shows that although there are many toxin folds, none is defi nitively asso-
ciated with any particular ion channel selectivity [ 31 ]. This raises interesting ques-
tions regarding evolutionary convergence, divergence, and functional conservation.  

8.5.2     TOLIPs: Endogenous Toxin-Like Proteins 

 Toxins appear only in very specifi c branches of the evolutionary tree. However, 
these branches are widely dispersed, including insects, snakes, sea anemones, 
 spiders, the marine cone snail, and even mammals. Still, many toxins possessing 
similar functions (e.g., ICIs) appear in several unrelated venomous species. The 
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possibility to detect endogenous toxin-like proteins (called TOLIPs) is attractive for 
a number of reasons. For example, maintaining their function as ion channel block-
ers provides a new layer of regulation at the protein activity level (i.e., blocking ion 
fl ux through the channel). Additionally, an extensive search through the literature 
shows that toxin-like proteins exist in multiple species and are expressed in a wide 
range of nonvenomous organisms and tissues. Two striking examples are 
LYNX1-Ly6 [ 34 ] and SLURP-1 [ 35 ] from mammals. These are human proteins that 
not only possess similarity to snake α-neurotoxins but also modulate nicotinic ace-
tylcholine receptors (nAChR) as do α-neurotoxins. The identifi cation of SLURP-1 
as an epidermal neuromodulator has helped explain the phenotype of the Mal de 
Meleda disease, a skin disease that results from improper activation of TNF-α [ 35 ]. 
A crucial question that arises in the fi eld of insect genomics and proteomics is how 
many of the potential TOLIPs have actually been discovered.  

8.5.3     Neuropeptides: Master Regulators of Insect Life 

 NPs regulate most aspects of insect life, from growth to behavior. The effect of NPs 
can only be fully appreciated by taking in the complementary view of their recep-
tors and the underlying signaling network [ 36 ]. Due to the central role of insect NPs 
in mating behavior, growth, and reproduction, they are attractive targets for man-
agement of pests in agriculture. In our study, we addressed NPs as short neuro-
modulatory peptides that possess fundamental physiological roles [ 29 ,  37 ]. 

 NPs are key modulators in behavior, sensation, and homeostasis [ 38 ]. Similar to 
endogenous TOLIPs, these peptides function in biological communication for a 
wide range of metazoans, from cnidarians to bilaterians, including mammals. The 
NPs are very short active peptides (5–30 amino acids) produced from parts of longer 
precursor molecules that are subjected to multiple cleavages. The posttranslational 
end products are subsequently modifi ed and secreted. It is estimated that there are 
tens of NP precursor (NPP) genes in  Drosophila  and the honeybee. This rough esti-
mation is based on annotations derived from only a small number of model organ-
isms [ 39 ]. Similar to TOLIPs, the NP sequences are mostly non-alignable. Sequence 
similarity methods fail to predict or provide a comprehensive catalogue of NP bio-
active peptides or their precursors. Active NPs in insects are diverse in terms of the 
site of action, the pattern of modifi cation, and the specifi city [ 40 ]. For example, the 
same NP may act both in the central nervous system (CNS) and as a hormone in the 
hemolymph, leading to different physiological responses.  

8.5.4     From Features to Predictors 

 The goal of this section is to present a systematic approach for identifying insect 
TOLIPs as well as candidate NPs. We provide the analysis for a large number 
of insect proteomes that are archived in insect genomic resources and in central 
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resources such as the UniProtKB protein database. Many NPs play roles in regulat-
ing the behavior and physiology of larger animals, notably in terms of metabolism, 
pain regulation, and social behavior. Generating a catalogue of the proteome’s short 
bioactive peptides (i.e., functional peptidome) will benefi t the biotechnological 
community that seeks new directions for pest management and manipulating insect 
behavior in general. 

 We set out to construct two machine learning classifi ers that are trained on: (1) 
animal ICI toxins and (2) NPs and NPP genes. For both types of short protein active 
modulators, characterization by sequence alignment-based methods is ineffective. 
Hence, the main logic in our approach is to identify the features that capture the 
characteristics of the types of proteins we seek to identify. 

 The scheme we present is composed of three main parts: (1) data analysis from 
genomes to short proteins, (2) the (supervised) machine learning approach and 
 prediction, and (3) the annotation and functional validation phase. 

 The workfl ow for data mining and prediction using machine learning is  composed 
of several steps: (1) acquiring the appropriate data in the form of protein sequences 
of the desired class and selecting “negative” sequences; (2) extracting features 
derived from the selected sequences; (3) constructing the training sets, training the 
classifi er(s) according to the data and the generated features, and validating the 
predictions; (4) testing the classifi er and comprehending its predictions; and (5) applying 
the classifi ers to new proteins and selecting top predictions for further validation. 

 The result of all this is the discovery and subsequent annotation of new TOLIPs 
and NPPs (Fig.  8.3 ). While we discuss here the application in the context of insects, 
the protocol is applicable to any genome or proteome.

   We will illustrate the protocol for the case of the animal toxin classifi er. The ICIs 
share a general characteristic that can be described as structural stability (in short, 
toxin-like stability, TLS). Importantly, in most instances, the TLS is governed by 
the presence of disulfi de bridges that are formed from cysteine residues along the 
sequence in question. The apparent rigidity of the scaffold of the proteins, together 
with posttranslational modifi cations (e.g., glycosylation), imposes rigid structural 
constraints. 

 One of the keys for a successful prediction when using machine learning is the 
selection of those features that may best characterize the targets we wish to predict 
(namely, to best separate TOLIPs from non-TOLIPs). The choice of features here 
was guided by the notion of stability, which is known to be associated with a large 
number of disulfi de bridges. Therefore, the features were constructed so that they 
could refl ect cysteine-mediated stability by encoding properties such as the fre-
quency and the spread of cysteine residues within the sequence. In the predictor, 
called ClanTox (classifi er of animal toxins), we used 545 features, many of which 
captured the TLS [ 41 ]. However, these were not restricted to cysteine-related fea-
tures and were applied to all amino acids and other structural and sequence-derived 
qualities. The method used here represents each sequence as a vector that contains 
various numerical sequence features. 
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 The general properties we examined that applied to all proteins included amino 
acid frequencies (20 features), amino acid pair frequencies (400 features), and 
sequence length (1 feature), among others. These features were shared between the 
two predictors (for TOLIPs and for NPPs). We will not discuss the selection and 
removal of redundancy from the training set, compiling alternative negative sets, 
tuning of the machine learning model parameters, or the cross-validation protocol. 

 UniProtKB and specifi cally the SwissProt database remain reliable sources of 
annotated sequences of complete proteomes and also for collecting information on 
toxins [ 42 ]. Eight thousand seven hundred insect proteins from UniProtKB were 
used as a background for testing the ClanTox predictor [ 41 ]. The results of testing 
short insect proteins (length <120 amino acids) from the SwissProt database (used 
as the input) are summarized in Table  8.1 .

   Using only the SwissProt database, we identifi ed ~270 proteins ranked as puta-
tive TOLIPs, ~60 of them at a high level of predictive confi dence. For example, the 
prediction from  Bombyx mori  includes a large number of bombyxins (types B, C, D, 
and G), chorion class high-cysteine proteins, fungal-chymotrypsin-trypsin inhibi-
tors, and eclosion hormone. While each of these proteins is activated under different 
stimuli and at a specifi c developmental stage, there is only a limited set of functions 
that are enriched among the top-scoring predictions (Table  8.1 ). These functions 
include signaling of the innate immune system, serine protease inhibitors, and 

  Fig. 8.3    The fl ow from an unannotated insect genome to the discovery of functional bioactive 
peptides. The scheme shows the training of the machine learning tools ClanTox and 
NeuroPID. These are two prediction platforms for the discovery of TOLIPs and NPs + NPPs       
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 antimicrobial functions. Considering that the training process was performed only 
on ICIs, it is remarkable to note that high-confi dence TOLIPs share modulatory and 
signaling functions in development (e.g., bombyxins), the immune system (e.g., 
defensins, antimicrobial), and modulating tissues (e.g., protease inhibitors).   

8.6      Test Case: TOLIPs in the Curated  D. melanogaster  
Genome 

 From a set of thousands of sequences, we seek the predictor to announce for each 
sequence whether or not it is a toxin (or TOLIP). Discovery of overlooked TOLIPs 
calls for validating the top predictions (Fig.  8.3 ). 

 The most studied insect,  Drosophila melanogaster , serves as a “testing ground.” 
We applied the prediction platform to the complete proteome (almost 20,000 
annotated genes in UniProtKB). One hundred sixty-one proteins were predicted to 
be TOLIPs by the ClanTox platform, with half of them ranked at the top confi dence 
scale. Despite the high level of curation for  D. melanogaster , about 60 % of the 
predictions were uncharacterized. However, most of these TOLIPs carry the signa-
ture of protease inhibitors (e.g., Kazal domain). Apparently, some TOLIPs with 

   Table 8.1    Statistically 
enriched keywords among the 
TOLIP predictions from 
SwissProt short proteins from 
insects  

 SwissProt keywords 
 Enrichment 
(Bonferroni) a  

 Disulfi de bond  1.0E-55 
 Defensin  8.0E-16 
 Secreted  4.9E-08 
 Ion channel inhibitor  1.1E-07 
 Signal  1.1E-06 
 Cleavage on pair of basic 
residues 

 1.3E-06 

 Neurotoxin  2.4E-05 
 Protease inhibitor  9.0E-05 
 Serine protease inhibitor  9.0E-05 
 Toxin  6.7E-04 
 Knottin  7.7E-04 
 Hormone  3.2E-03 
 Zinc  1.0E-02 
 Antimicrobial  1.8E-02 
 Fungicide  2.1E-02 
 Calcium channel inhibitor  3.7E-02 
 Metal binding  3.9E-02 

   a Enrichment of keywords ( p -value <0.05, 
Bonferroni correction), with all insect 
sequences of length <120 amino acids as the 
background set  
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Kazal domains have antibacterial and antifungal activities [ 43 ]. The rest are proteins 
belonging to drosomycins, sperm and seminal fl uid, and metallothioneins [ 44 ]. 

 The drosomycin family (seven sequences positively predicted) demonstrates the 
diversity of TOLIPs. Drosomycins are short, secreted proteins that possess antifun-
gal activity. Similar to classical toxin ICIs, after removal of the signal peptide (SP), 
the mature peptides circulate in the hemolymph [ 45 ]. There, as part of the innate 
immune system, they act as ligands to alter intracellular signaling pathways.  

8.7      Overlooked TOLIPs in Honeybee 

 The honeybee ( Apis mellifera ), the fi rst sequenced genome of a venomous insect, 
was used for testing such a discovery phase, as its annotation level is only partial. 

 Among the 66 positive predictions, 26 suggest a higher level of confi dence for 
being TOLIPs. Among them 73 % are named “uncharacterized.” We observed that 
almost all possess a signal peptide (cleavable 20–25 amino acids at the N-terminal) 
[ 46 ]. About 50 % of the predicted proteins share a trypsin inhibitor-like (TIL) 
domain. The predictions with the highest scores are listed in Table  8.2 . Structural 
representatives are shown in Fig.  8.4 .

    Once a top candidate TOLIP is detected, traditional state-of-the-art (albeit lim-
ited) sequence similarity methods can be activated. As illustrated for the sequence 
of H9KQJ7, applying sensitive tools for detecting remote homologues revealed a 
rich and a surprising resemblance to ω-conotoxins and to a set of related sequences. 
The multiple sequence alignment (Fig.  8.5 ) shows conservation of the several 

      Table 8.2    A sample of the top predictions of TOLIPs from  Apis mellifera    

 Entry  Protein names  Len a   SP b  
 Family/PDB 
model  New discovery 

 P56587  Tertiapin (TPN)  21  Sec  PDB: 1TER  Tertiapin toxin like 
 H9K243  Uncharacterized  29  Frag  PDB: XU1  TNF and conotoxin 
 P01500  Apamin  46  Yes  PDB: 1TER  Tertiapin toxin like 
 B7UUK0  Apamin protein  46  Yes  PDB: 1TER  Tertiapin toxin like 
 H9KCD7  Uncharacterized  47  Yes  IPR: Zn-Fg  Zinc fi nger 
 P01499  Degranulating  50  Yes  PDB: 1TER  Tertiapin toxin like 
 H9K853  Uncharacterized  50  Yes  PDB: 1TER  Tertiapin toxin like 
 H9K3H8  Uncharacterized  58  Yes  PDB:1HP8  p8MTCP1 oncogene 
 P83563  Allergen Api m 6  71  Sec  PDB:1CCV  Trypsin inhibitor like 
 H9KEA0  Uncharacterized  71  Yes  TIL  Trypsin inhibitor like 
 H9KQJ7  Uncharacterized  74  Yes  PDB: 2WH9  ICI, OCLP, ω-conotoxin 
 Q27SJ8  Allergen Api m 6-1  92  Yes  TIL  Trypsin inhibitor like 

   Sec  secreted,  Frag  fragment 
  a  Len  length in amino acids 
  b  SP  signal peptide  
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 cysteines, which are critical in terms of structure. In addition, some positions are 
also conserved. Most notable is the Phe/Tyr in position 46 (F/Y numbered by the 
full- length H9KQJ7 sequence). It is known that the aromatic F/Y followed by 
N/A/R comprises the key amino acids for binding specifi city to several ion channels 

  Fig. 8.4    Representatives of the top predictions for TOLIPs. The PDB accession ID is shown. The 
3D structures were determined by NMR.  Connecting lines  indicate disulfi de bonds; copper ions 
are shown as  black balls . Sequences are colored ( rainbow ) from N- to C-terminals. For details, see 
text and Table  8.2        

  Fig. 8.5    Multiple sequence alignment of H9KQJ7 from  Apis mellifera . The most similar sequences 
are from Hymenoptera including several bees, a wasp, and a number of ants. The most conserved 
amino acids are shown in  red . These sequences are best modeled to PDB: 2WH9. This 3D proto-
type is a neurotoxin which was isolated from  Plesiophrictus guangxiensis  (tarantula) venom. The 
active peptide inhibits the Kv2.1 channel in human pancreatic β-cells       
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[ 47 ]. From the structural perspective, H9KQJ7 resembles a classical ICI from 
 tarantula (PDB: 2WH9) as well as a large collection of structurally solved ICIs 
including omega-conotoxin, jingzhaotoxin, hanatoxin, huwentoxin-I, hainantoxin-
I, and heteropodatoxin. Interestingly, a reversible effect of the honeybee H9KQJ7 
protein on Ca 2+  channel activity has been confi rmed experimentally [ 48 ].

   Several cDNAs provide supporting evidence for the expression pattern of such 
ω-conotoxin-like proteins (called OCLP, omega-conotoxin-like protein). OCLP- 
related cDNAs are found in  Anopheles gambiae ,  A. funestus ,  Aedes aegypti ,  D. 
melanogaster ,  Manduca sexta , and  Heliconius erato . None of these sequences had 
been previously characterized as ICI.  

8.8      Evolutionary Diversity of ω-Conotoxin-Like Proteins 
in Insects 

 OCLP from honeybee has strong support for being a TOLIP: (1) It possesses a 
 signal peptide; (2) it shares sequence similarity with assassin bug voltage-gated 
Ca 2+  ICIs; (3) and structural modeling assigned the sequence to ω-conotoxin and 
related toxins with very high confi dence (see Fig.  8.5 ). The expression of OCLP is 
exclusive to the brain (Linial and Bloch, unpublished). 

 A remote homologue search identifi ed proteins in  A. gambiae  and  Ae. aegypti  
containing multiple units of the OCL (omega-conotoxin-like) domain. Such organi-
zation is actually the hallmark of neuropeptides but was also noted for toxins (e.g., 
sarafotoxin; [ 49 ]). Remarkably, other toxins and functional motifs share the core of 
the OCL motif, specifi cally, covalitoxin II from tarantula and POI (phenol oxidase 
inhibitor) from  Musca domestica  [ 48 ]. The OCLP in honeybee is similar to these 
toxins but also to Ptu1 and ADO1, two related toxins from the assassin bugs  Peirates 
turpis  and  Agriosphodrus dohrni , respectively. The function of Ptu1 as an effective 
Ca 2+  channel blocker has been confi rmed [ 50 ]. The OCL domain is conserved also 
in the freshwater planarian ( Schmidtea mediterranea)  sequence [ 48 ]. Focusing on 
the expansion of OCL domain in insects reveals duplication events in distinct 
branches along the insects’ phylogeny (Fig.  8.6 ). There are nine OCL domains from 
 Nasonia vitripennis  that appear in fi ve proteins. The repeated nature of OCL 
domains occurs also in proteins from  A. gambiae  and  Ae. Aegypti  (Fig.  8.6 ).

   The short proteins discussed here raise the question of the evolutionary origin of 
proteins that share the OCL domain. The evolutionary relatedness that combines 
insects, the cone snail, and the fl atworm planaria strongly argues for the importance 
of this fold in a diverse ecological setting. The possibility of de novo evolution for 
short proteins has been presented [ 51 ] and was supported by tracing the recent 
expansion of short immune-related proteins in mammals. Although evolutionary 
divergence is the most plausible explanation, convergent evolution for toxin-like 
proteins cannot be excluded.  
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8.9      Overlooked TOLIPs in Fully Sequenced Insect Genomes 

 Application of the same protocol applied for the honeybee (Table  8.2 ) to all other 
insects whose genomes have been completed reveals that hundreds of overlooked 
TOLIPs can be traced across the entire phylogenetic tree. It is important to note that 
the sequences of the honeybee were not included in the training set for prediction of 
honeybee proteins. The same is true for the other recently sequenced genomes 
which were practically unavailable when the ClanTox predictor was trained. The 

  Fig. 8.6    Homology distance tree of insect proteins that contain the OCL domain. OCLP from the 
honeybee and a collection of other insects are shown. The OCL domains share an identical  structure 
to ω-conotoxins with three cysteine bridges that govern the stable and compact structure of the 
OCL domains. The protein identifi er is based on NCBI protein database       
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high-confi dence predictions for these genomes reach a total of 235 (from 790 posi-
tive predictions). The most dominant functions associated with ClanTox predictions 
are the trypsin/chymotrypsin inhibitors, metallothioneins, TGF like, growth factor 
domains, defensin like, ICIs, and membrane-disrupting peptides. 

  Acyrthosiphon pisum  (pea aphid) is represented by almost 40,000 protein 
sequences. The many short proteins (~9500) refl ect the high number of fragmented 
sequences. When all the short proteins were tested using the ClanTox platform, only 
18 sequences were predicted at a high level of confi dence; another 112 sequences 
were predicted with only moderate confi dence. One short sequence (J9KHE3, 63 
amino acids) is a secreted protein that resembles a cysteine-rich secretory protein 
domain of Tpx-1 which is related to ion channel toxins and regulates ryanodine 
receptor Ca 2+  signaling (PDB: 2A05, Fig.  8.4 ). The rest of the proteins from pea 
aphid are unlikely to act as secreted cell modulators. 

 The complete genome of the silk moth  B. mori  provides a glimpse of a different 
branch of the insect tree. There, several neurohormone proteins, including the 
insulin- like bombyxins, were positively predicted as being TOLIPs. The main 
 functions of bombyxins are as growth factors for wing imaginal disks [ 52 ] and for 
general promotion and regulation of growth and metabolism [ 53 ]. The  B. mori  
protein H9JHN8 is another example of a secreted protein which is uncharacterized 
and captures the characteristics of an overlooked TOLIP. A structural view identifi ed 
numerous proteins that resemble the following functions: (1) spaetzle protein from 
 Drosophila , which acts in development and in the immune system; (2) a protein 
from horseshoe crab involved in hemostasis and host defense; and (3) classical 
 neurotrophins including β-nerve growth factor, brain-derived neurotrophic factor, 
and neurotrophin 3/4. 

 A surprisingly high number of positively predicted TOLIPs were associated with 
 A. gambiae . There were 51 high-confi dence predicted TOLIPs, many characterized 
by a trypsin inhibitor-like (TIL) domain (Table  8.2 ). Several other domains were 
also detected including EGF like, WAP (whey acidic protein), and elafi n. A repre-
sentative of the elafi n family is a short secreted protein (Q7Q332) that resembles a 
large number of snake toxin proteins. The similarity to the 3D structure of nawaprin 
(PDB: 1UDK) from the venom of the spitting cobra,  Naja nigricollis , is striking. 
The nonconventional circular structure is stabilized by the presence of four disulfi de 
bonds. Interestingly, the nawaprin and elafi n proteins (represented by the human 
leukocyte elastase-specifi c inhibitor) share several unique structural features but 
minimal sequence similarity. The functions of nawaprin or Q7Q332 from the 
 mosquito are still not known. 

  Rhodnius prolixus  is the most important vector of the Chagas parasite in Africa 
[ 54 ]. The complete genome was determined, but it is poorly annotated. Overlooked 
TOLIP detection using ClanTox identifi ed T1H9H6. The sequence resembles a 
three-fi ngered fold that is abundant in snake venoms including cardiotoxins, 
 denmotoxin, and α-bungarotoxin. These sequences belong to the diverse family 
named Upar/Ly6 [ 55 ]; many of the proteins are membrane markers of cells that 
belong to the innate immune system. The protein resemblance to snake neurotoxin 
(e.g., cobra) has been reported [ 56 ]. 
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 In sum, the fraction of predicted TOLIPs among the short proteins varies drasti-
cally among insect genomes (Fig.  8.7 ). We attribute these large differences to the 
quality of the genome assembly. From a biological perspective, it may refl ect vary-
ing complexities in the modulation of cell communication, the immune system, and/
or neuronal functions.

   The discovery of TOLIPs in insects led to an unexpected fi nding that showed the 
abundance of TOLIPs in viruses [ 57 ]. A cross talk of insects and their viruses was 
proposed. For example, protein B6S6X8 (113 aa) from  Betabaculovirus  is similar 
to many of the short peptides in  Drosophila  proteomes [ 57 ]. In another instance, a 
cysteine-rich encoding region was transferred from the endoparasitic wasp 
 Campoletis sonorensis  to a symbiotic polydnavirus (CsPDV) [ 58 ].  

8.10     Neuropeptide Precursors in Insects 

 The ideas that exemplifi ed TOLIPs and the methods used were successfully applied 
to identify neuropeptide precursor (NPP) genes. Neuropeptides are the products of 
a posttranslational regulated process of cleavage and modifi cation from NPPs. The 
mature peptides are secreted from neurons and thus are collectively called neuro-
peptides (NPs). NPs act through their direct interaction with their receptors on pre-
synaptic or postsynaptic cells [ 59 ]. In insects, NPs function in cell communication 
and affect social behaviors, including mating, food uptake, and metabolism [ 60 ]. 

 Insects have evolved a large repertoire of NPs. Figure  8.8  (left) shows the num-
ber of annotated NPs from major taxonomical groups. We considered only the data 

  Fig. 8.7    A histogram showing the fraction (in %) of positive predictions with respect to short 
proteins in the indicated genomes. Several insect representatives from complete proteomes are 
listed. The number of high-confi dence predictions ranges from 9 to 66 for  Pediculus humanus  and 
 Drosophila melanogaster , respectively       
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associated with “complete proteomes” (defi ned by UniProtKB). The proportion of 
NPs from all annotated protein sequences is maximal in insects when compared to 
worms and mammals (Fig.  8.8 , right).

8.10.1       A Neuropeptide Precursor Prototype 

 Studying the molecular processing of NPs is essential for designing a collection of 
relevant features extracted from sequences. These features should capture the 
essence of discriminating properties of the “true”  vs.  “false” sets (see Sect.  8.3 ). The 
predictor can be used to classify new instances of unknown sequences. 

 A prototypical example of NPs is the allatostatin family from  A. mellifera  [ 61 ]. 
Approximately 500 neurons in the honeybee brain produce allatostatins [ 62 ] which 
act to inhibit juvenile hormone biosynthesis and reduce food intake. The precursor 
protein (UniProtKB: P85797, 197 amino acids) produces after cleavage ten active 
NPs which were identifi ed by MS experiments [ 61 ]. The allatostatin NPP of the 
Pacifi c beetle cockroach ( Diploptera punctata ) contains 13 identifi ed NPs (Fig.  8.9 ). 

  Fig. 8.8    Partition of annotated neuropeptides from major taxonomical groups. Number of anno-
tated neuropeptides (NPs,  left ). Fraction (%) of SwissProt keyword “neuropeptide” from the 
sequences of “complete proteomes” ( right ). The fraction of NPs from insects is 6.7-fold relative to 
the fraction of NPs in mammals       

  Fig. 8.9    Sequence of neuropeptide precursor P12764 (ALLS_DIPPU, 370 aa) from  Diploptera 
punctata  (Pacifi c beetle cockroach). The repeated nature of the sequence is shown. The repeated 
segments account for 13 bioactive NPs, called allatostatin-1 to allatostatin-13. The NPs are consecu-
tively colored  red  and  blue . The dibasic residues (cleavage sites) are highlighted in  yellow        
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Though each peptide has a unique sequence, all share the  Tyr/Phe-Xaa-Phe- Gly-
Leu/Ile-NH2 consensus sequence. Furthermore, each active NP is amidated on the 
terminal Leu/Ile. Evidently, the above properties cannot be captured by methods for 
remote homology detection that are based on sequence alignments.

8.10.2        Neuropeptide Precursors: Feature Extraction 

 Similar to the arguments raised for identifi cation of TOLIPs (Sects.  8.6 ,  8.7 ,  8.8 , 
and  8.9 ), Fig.  8.9  illustrates the diffi culty in using sequence alignment for iden-
tifying NPPs. We thus set out to train a predictor using supervised machine learn-
ing. To this end, we compiled nonredundant “positive” and “negative” sets. The 
nonredundant “positives” included all annotated sequences from SwissProt as 
well as the automatically inferred sequences from UniProtKB. The “negative” 
sets included sequences that are basic in nature (i.e., enriched with basic resi-
dues) as well as randomly selected proteins from Metazoans with an identical 
length distribution. 

 A characteristic “feature” for the majority of NPs is their production from larger 
precursor proteins (NPP) [ 63 ]. In most cases, NPPs produce different NPs that 
may participate in executing a behavior [ 64 ]. A dominant feature is the presence of 
clusters of dibasic residues that specify these proteolytic cleavage sites. Nevertheless, 
some NPPs do not use dibasic residues as a cleavage signal. 

 The goal of extracted features from the training sets is to capture the particular 
traits and variance between the “positive” and “negative” sets. The information 
collected to construct a predictor covers:

    (A)    Biophysical quantitative properties [ 65 ] including: (1) the length and molecu-
lar weight, (2) frequency of the amino acids or their grouping (e.g., charged 
amino acids) and dipeptide frequencies (400 features), and (3) quantitative 
indices, such as aromaticity, instability index, hydropathy, and PI (i.e., isoelec-
tric point).   

   (B)    Binary features that capture the nonrandomized appearance of certain amino 
acids in short, overlapping windows. This features grouping stems from the 
occurrence of certain residues near known cleavage sites such as G-KR (Gly, 
Lys, Arg), lack of fl anking proline at cleavage sites, and structural consider-
ations (e.g., disordered, accessible regions).   

   (C)    Appearance and frequency of known sequence motifs. The most important 
motifs stem from conservation by the processing endopeptidases, such as 
fl anking pairs of basic residues [ 66 ]. In addition, we considered potential 
 amidation, hydroxylation, and N-glycosylation sites.   

   (D)    Information-based statistics. The intuition is to trace the entropy, the autocor-
relation of the potential cleavage sites, and the repeated nature of the sequences 
(see an example in Fig.  8.9 ).      
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8.10.3     Prediction of Insect Neuropeptide Precursors 

 Testing the performance of the machine learning approach for identifying known 
and novel NPPs was carried out using a cross-validation (CV) protocol. Accordingly, 
a substantial fraction of the data (i.e., 10–40 %) was removed and excluded during 
the training phase and used as a test set. The protocol is repeated multiple times 
using a different subset of the data each time. The results of the CV tests for each of 
the NPP candidates were summed up to estimate the accuracy, sensitivity, precision, 
and AUC (area under ROC curve). The accuracy rate for NPP identifi cation reached 
a level of 82–89 % for insect NPPs. The class of random forest [ 17 ] ensemble 
 decision tree method performed best. Slightly lower performance was recorded for 
gradient boosting decision trees and linear and nonlinear SVM models [ 29 ]. 

 By increasing the thresholds of the prediction tools, we fi ltered the number of 
NPP candidates to a few tens. For example, the random forest protocol at a 
“ certainty” threshold of 0.99 reduced the predictions for  B. mori  from ~4000 to only 
16. All NPPs are secreted proteins, and thus each has a signal peptide sequence in 
the N-terminal which is removed prior to the production of the precursor protein. 
This is a strong feature that was used to remove many of the false positives of the 
prediction machine.  

8.10.4     Identifying Candidate NPPs in Insect Proteomes 

 Two hundred ninety-seven proteins (total of 20,600 protein sequences) in  A. pisum  
include a signal peptide (SP) and are thus candidates for being NPPs. A test of our 
NPP machine learning platform (NeuroPID) yielded about one-third as potential 
candidates and 13 as high-probability NPPs. Experimental information on these 
sequences is lacking. The ETH (ecdysis-triggering hormone) precursor was identi-
fi ed among these poorly characterized predicted proteins (Table  8.3 ). In most insect 
species, the ETH precursor produces two active peptides [ 67 ]. ETH genes and their 
receptors have also been identifi ed in tick (Arachnida) and water fl ea (Crustacea). 
Notably, several of these sequences, while marked as uncharacterized, are highly 
expressed (Table  8.3 ). The task of validating these as NPPs calls for functional 
experimentation and independent evidence (e.g., using MS).

8.11         Insect Short Active Peptides for Human Health 
and Agriculture 

 The effi ciency and quality of experimentally validated proteins lag behind the 
explosive growth in sequencing. We expect that the analysis presented in this study 
will be useful for leveraging the expansion of protein space. In this chapter, we 
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introduced machine learning approaches for large-scale protein classifi cation of 
short peptides that resemble animal toxins as well as NPPs and cell modulators. 

 The therapeutic potential of toxins has been realized and has led to the develop-
ment of toxin-based drugs, with ICI toxins being the lead for such development 
[ 68 ]. Insect peptides that act in the innate immune system (e.g., defensins) and 
antibacterial proteins [ 69 ] are additional classes of potential drugs which can also 
be developed as pesticides. Below we outline some of the benefi ts and applications 
of these molecules for human health and agriculture. 

 There are several benefi ts for the pharmaceutical industry to focus on biological 
active peptides in general and on toxins and TOLIPs in particular. For example, the 
3D high stability of the backbones makes them appealing for drug design, and sev-
eral toxin-based drugs are already available on the market in synthetic form. A well- 
known example takes advantage of the mimicry of the MVIIA ω-conotoxin from 
the marine cone snail  Conus magus  which acts as a blocker of the voltage-gated 
Ca 2+  channel [ 70 ]. The clinical application of this drug is for chronic, uncontrollable 
pain. Utilization of the classifi ers described earlier in this chapter such as ClanTox 
and NeuroPID may expand the range of known insect modulators. ProFET (Protein 
Feature Engineering Toolkit) is another such framework for the machine learning 
approach to protein function, offering an easy to use, universal platform as well as 
state of the art results in classifi cation of high-level functions [ 72 ]. 

 Another benefi t for drug design is that most toxins and the TOLIPs are resistant 
to proteolysis. This is not only a by-product of their structural compactness but also 
because many TOLIPs are actually protease inhibitors [ 56 ]. This property ensures 
stability in use as a drug, which is refl ected in the protein half-life. Posttranslational 
modifi cations on most of these toxins provide an additional layer of stability in the 
cell and most importantly in the extracellular space. 

    Table 8.3    Top predictions of neuropeptide precursors from  Acyrthosiphon pisum    

 Protein name a   Function/expression  Domains b  

 Chemosensory protein-like prec  Pheromone-BP 
 Ecdysis-triggering hormone prepro  ETH novel NPP 
 Miple protein prec  GF, heparin binding  PTN/MK, C-ter. 
 Mitochondrial TIM14-like prec  Chaperone -HSP70  DNAJ 
 Odorant-binding protein 7 prec  GPCR BP 
 Odorant-binding protein 8 prec  GPCR BP 
 UC protein LOC100159063 prec  Expression—high 
 UC protein LOC100161501 prec  Expression—low 
 UC protein LOC100162497 prec  Expression—high  TMEMB_9 
 UC protein LOC100166422 prec  Expression—low 
 UC protein LOC100169149 prec  Highly conserved 
 UC protein LOC100302326 prec  Expression—medium 
 UC protein LOC100574827 prec 

   a  Prepro  preprotein,  prec  precursor,  UC  uncharacterized,  GF  growth factor 
  b Domains are listed according to the Pfam abbreviations  
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 Insects populate many ecological niches and some of them are considered pest 
species. Management of pests has signifi cant economic implications. With the 
increase in environmental awareness, new insecticidal compounds must be explored. 
The coevolution of insects and plants for millions of years argues that hundreds of 
TOLIPs are attractive candidates for screening novel targets in plants and animals. 
Potentially, different folds of TOLIPs can be used in a rational design for as yet 
unknown targets. Through mimetic approaches, the scaffold of these short proteins 
can be reduced and directed toward protecting diverse hosts from pests by disturb-
ing and damaging selected membranes of pathogens and even altering mating 
behavior to control the balance in the ecosystem. 

 Novel NPPs from insects can play a biotechnological lead in regulating social 
behavior, metabolic status, and communication. In this view, an exciting genomic 
initiative with the goal of sequencing 5000 arthropod genomes was recently 
announced [ 71 ]. The expectation is that prediction methods for short proteins will 
make a valuable contribution for identifying unexplored modes of insect communi-
cation, among other features. The power of our method increases with the increase 
in sequenced genomes, transcriptomes, and proteomes of related species. We expect 
that the analysis presented in this study will be useful in leveraging future expan-
sions of protein space.     
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