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    Chapter 3   
 Updating Genomic Data of Lepidoptera                     

       Carmen     Pozo     ,     Blanca     Prado     , and     América     Nitxin     Castañeda-Sortibrán    

    Abstract     Among the insects, lepidopterans form the second most diverse group, 
with over 155,000 described species. Research on Lepidoptera has a long tradition 
in several fi elds, including taxonomy, phylogeny, ecology, population genetics, evo-
lutionary biology, speciation, physiology, development and gene regulation, host–
plant and insect–parasite interactions, and, in recent decades, genomics. These 
studies and genomic resources for them are widely distributed and often widespread 
in various databases. In this chapter, we analyze the state of the art for genomic 
resources for Lepidoptera in GenBank for the following genes:  elongation factor-1α , 
 wingless ,  cytochrome c oxidase I ,  ribosomal DNA and RNA , and in general a num-
ber of other protein and enzyme entries; complete mitochondrial genomes; com-
plete nuclear genomes; and published work on barcode methodology. This 
information will help researchers fi nd gaps in the available resources and direct 
research efforts in these areas.  

  Abbreviations 

   cDNA    Complementary DNA   
  BAC    Bacterial artifi cial chromosome   
  CDS    Coding sequences   
   COI, COII, COIII      Cytochrome oxidase subunits I, II, III    
   cyt b      Cytochrome b    
   dsx      Doublesex    
   EF      Elongation factor-1α    
  EST    Expressed sequence tag   
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  mtDNA    Mitochondrial DNA   
   MT-ND4L     Mitochondrially encoded NADH dehydrogenase 4L   
   MT-ND1     Mitochondrially encoded NADH dehydrogenase subunit 1   
  ncDNA- 18S rRNA     Nuclear DNA of the small subunit ribosomal RNA   
  ncDNA- 28S rRNA     Nuclear DNA of the large subunit ribosomal RNA   
  NCBI    National Center for Biotechnology Information   
   rDNA      Ribosomal DNA    
   rRNA      Ribosomal RNA    
   tRNA-Leu     tRNA-leucine   
   tRNA-Val     tRNA-valine   
   Wg      Wingless    
  WGS    Whole-genome shotgun   

3.1           Introduction: Why Butterfl ies and Moths? 

 Lepidoptera is one of the largest groups of organisms in the world. This order com-
prises insects commonly known as butterfl ies and moths. Historically, the former 
have attracted the attention of professional and amateur entomologists, as well as 
the general public because of the beautiful colors and patterns present in their scaled 
wings. The moths are studied primarily not only because many species are eco-
nomically important pests of agriculture and forestry but also for silk production, 
with the mulberry silkworm,  Bombyx mori , considered one of the few “domesti-
cated” insects [ 1 ], reared at least since 2600 BC [ 2 ]. 

 The origin of the holometabolous order Lepidoptera is dated to the Late 
Carboniferous, but diversifi cation occurred in the Early Cretaceous at the same time 
as the radiation of fl owering plants [ 3 ]. Currently, the order Lepidoptera contains 
over 157,424 species including approximately 22 fossils; the living species 
(157,402) are classifi ed into 45 superfamilies, 134 families, and 15,562 genera [ 4 ]. 
This is the second most diverse group of animals after Coleoptera. 

 Insects have long been used as model systems, and the fruit fl y,  Drosophila mela-
nogaster , was the fi rst choice historically, primarily because of its short life cycle 
and ease of rearing in the laboratory [ 5 ]. Nevertheless, the importance of model 
systems is that discoveries and implications can be extended far beyond the particu-
lar organism under study [ 6 ]. Certain phenomena such as evolution, coevolution, 
and biogeographic and ecological mechanisms are better documented and explained 
within Lepidoptera because there is signifi cant background in the knowledge of this 
group, mostly due to its economic importance and attractiveness. This gives an 
advantage to Lepidoptera, as they are better known in many aspects than other 
diverse groups, and their genomic research will help to understand different kinds 
of processes.  
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3.2     GenBank Database: Lepidoptera Representation 

 In 1982, GenBank was offi cially released; by 1992, the National Center for 
Biotechnology Information (NCBI), which is part of the International Nucleotide 
Sequence Database Collaboration (INSDC), took responsibility for it. From August 
2011 to 2012, GenBank had an annual increase in records of 33.1 %, but inverte-
brates had a decrease of 1.7 % in the same year. The GenBank Dataset is divided 
into two main groups, taxonomic and functional. The functional division in GenBank 
sequences makes the data easy to handle and refl ects the methods used to obtain it 
[ 7 ]. Functional divisions in 2012 included transcriptome shotgun data, whole- 
genome shotgun (WGS) data, patented sequences, genome survey sequences, 
expressed sequence tags (ESTs), high-throughput genomics, sequence tagged sites, 
and high-throughput complementary DNA (cDNA). Transcriptome shotgun data 
was the fastest growing division, with more than 200 % growth that year [ 7 ]. The 
taxonomic division, GenBank Dataset, was useful only to know the species of 
Lepidoptera reported in GenBank. A search in GenBank with “Lepidoptera” on 
April 2, 2014, returned 1,093,006 sequences; 57,906 registers of these were not 
identifi ed, yielding 1,035,100 sequences representing a comprehensive landscape of 
Lepidoptera genomics. According to a recent classifi cation of Lepidoptera [ 4 ], 92 % 
of the 134 living families are represented in GenBank with at least one sequence 
(Fig.  3.1a ), and only 10 families are not present (Anomosetidae, Schistonoeidae, 
Syringopaidae, Coelopoetidae, Epimarptidae, Whalleyanidae, Simaethistidae, 
Ratardidae, Peleopodidae, and Metarbelidae). As we go to lower taxonomic catego-
ries, the representation in GenBank is reduced to 41 % at the genus level (Fig.  3.1b ) 
and only 13 % at the species level (Fig.  3.1c ). Additionally, there is a dissimilarity 
in the proportion of representation of genera and species from different families or 
what Wilson [ 8 ] observed as uneven taxonomic distribution. Almost 20 % of the 
families have all their genera represented in GenBank (26 families with 100 %, Fig. 
 3.2a ), including two butterfl y families and the rest moths (Table  3.1 ). Nearly 20 % 
of the families have less than 20 % of their genera represented. At the species level, 
representation is very low, with just two families, Carthaeidae and Prodidactidae 
(Table  3.2 ), with 100 % representation for only one species each ( Carthaea saturni-
oides  and  Prodidactis mystica , respectively), and 65 % of the families with less than 
10 % of the species represented (Fig.  3.2b ). The family Prodoxidae has proper 
 representation with nearly 80 % of the species, and seven families are 56.8 % 
 represented (Sphingidae, Aididae, Papilionidae, Agathiphagidae, Heterogynidae, 
Lophocoronidae, and Millieriidae) (Table  3.2 ).

      In total, 124 families, 6336 genera, and 20,076 species of Lepidoptera are repre-
sented in GenBank; but a key question is, what functional sequences are docu-
mented for each one? We will present information on this using some well-represented 
sequences for Lepidoptera as a whole.  

3 Updating Genomic Data of Lepidoptera
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3.3     Global Lepidoptera Sequences 

 There are several uses for DNA sequences, such as phylogenetic studies, pest con-
trol applications, and analysis of evolutionary changes at the species level and even 
in particular gene families. Targets of analysis depend on the aims of the research. 
For instance, different regions of mitochondrial DNA such as  cytochrome oxidase 
subunits I ,  II , and  III  ( COI ,  COII ,  COIII ),  cytochrome b  ( cyt b ), or nuclear DNA 
sequences, e.g.,  ribosomal RNA  ( rRNA ),  ribosomal DNA  ( rDNA ), satellite DNA, 
introns, and nuclear protein-coding genes, can be used to delimit species, phylog-
eny, or functional genetics [ 9 ]. 

 Knowing the nature of the DNA can provide new insights into the biology of this 
order. The most represented Lepidoptera genes in GenBank are  elongation factor-1α  
( EF ),  wingless  ( Wg ),  rRNA ,  rDNA ,  COI , and selected proteins. In this chapter, 

  Fig. 3.1    Records of Lepidoptera in GenBank by taxonomic level. ( a ) Comparison between the 
number of families of Lepidoptera reported by Nieukerken et al. [ 4 ] and the families in GenBank 
as of April 2014. The data represent 92 % of the families of the order. ( b ) Representation at the 
genus level: only 41 % of the group is represented. ( c ) Representation at the species level: only 13 
% of all species of Lepidoptera are represented in GenBank       
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 proteins with a catalytic function are classifi ed as enzymes and the rest remain as 
proteins.  

3.4      Elongation Factor-1α  

  EF  is a slowly evolving nuclear gene which is involved in the production of pro-
teins, operating at the receptor site of the ribosome during the translation process 
[ 10 ]. In insects, when used in combination with mitochondrial genes [ 11 ,  12 ], it 
results in good resolution of high-level phylogenetic relationships, particularly in 
Lepidoptera [ 13 – 19 ]. Wahlberg et al. [ 20 ] resolved the polyphyletic nature of 

  Fig. 3.2    Records of lepidopteran families, genera, and species in GenBank sequence accessions. 
( a ) Number of families and average number of genera found in GenBank as of April 2014. There 
are 26 families containing 100 % of genera. ( b ) At the species level, 87 families have only 10 % of 
their total species       
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Limenitidinae in a cladistic analysis using one mitochondrial gene sequence ( COI , 
1450 bp) and two nuclear gene sequences ( EF , 1064 bp and  Wg , 412–415 bp). 

 The order Lepidoptera has 10,045 sequences of  EF  in GenBank; the Nymphalidae 
family is the most represented with 2982 entries, followed by Lycaenidae (850), 
Geometridae (704), Noctuidae (675), Gracillariidae (573), Prodoxidae (485), 
Erebidae (449), Papilionidae (397), Sphingidae (310), Nepticulidae (298), Pieridae 
(268), Cosmopterigidae (247), Hesperiidae (234), Tortricidae (173), Crambidae 
(156), Nolidae (141), and Saturniidae (120) (Fig.  3.3a , Table  3.3 ). Nymphalidae 
occupies the fi rst place in the number of genera and species (450 and 1555, respec-
tively). In the second place, Geometridae has only 25 % of the Nymphalidae spe-
cies, with 390 species in 215 genera (Fig.  3.3a ). Butterfl y families Papilionidae, 
Pieridae, and Nymphalidae have a high percentage of genera with  EF  in GenBank, 
with 90 %, 85 %, and 80 %, respectively.

3.5          Wingless  

  Wg  is a nuclear protein-coding gene involved in wing, gut, and nervous system 
development in insects. In Lepidoptera, it handles the color and spotted pattern of 
the wing and thus has a critical role in ecological and evolutionary processes [ 21 –
 24 ]. It was thought that  Wg  contributed to mimicry, but Kunte et al. [ 25 ] recently 
showed that  Doublesex  ( dsx ) is a mimicry “supergene” involved in female-specifi c 
mimicry in  Heliconius  and  Papilio  spp. 

  Wg  has been used to resolve species and subfamily relationships in Nymphalidae 
[ 26 ] and was useful at a tribe level in Riodinidae and Lycaenidae families [ 22 ]. For 
Hesperiidae, however, the resulting relationships are not congruent with those found 
using  EF  and  COI  [ 27 ]. In the Geometridae family, the use of  Wg  in combination 
with  EF  and three other nuclear genes helped to elucidate the evolution of female 
fl ightlessness in the tribe Operophterini [ 28 ]. 

 GenBank has 6272 records of lepidopteran  Wg  sequences; Nymphalidae has 
approximately 40 % of the records, followed by Lycaenidae, Hesperiidae, Erebidae, 
and Pieridae, with just 5 %. The best-known families based on the number of genera 
and/or species with records of  Wg  in GenBank are Papilionidae, which have 78.1 % 
of their genera and 11.2 % of species, and Nymphalidae, with 77 % of their genera 
and 24 % of species (Fig.  3.3b ).  

3.6     Enzymes and Proteins 

 Work with nuclear coding genes such as acetylcholine esterase, alcohol dehydroge-
nase, actin, chorion, silk genes, and histones, among many others [ 9 ], has been 
signifi cant in Lepidoptera for economic reasons, from silk production in  B. mori  [ 6 , 
 29 ,  30 ] to biological control in pest species like the Asian rice borer,  Chilo 
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  Fig. 3.3    Records of  EF  and  Wg  sequences of Lepidoptera in GenBank. ( a ) Families with  EF  
sequenced in GenBank. ( b ) Families with  Wg  sequenced in GenBank.  Numbers  in  brackets  refer 
to numbers of genera and species       
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suppressalis  [ 31 ], and the tobacco hornworm,  Manduca sexta  [ 32 – 34 ], another 
important lepidopteran model for basic research (see below). It has also been very 
important in the study of metabolism associated with life history traits such as dia-
pause and eclosion, as well as the study of metabolic pathways and the structure of 
proteins [ 6 ]. However, even more importantly, protein-coding genes are essential 
for the resolution of deep phylogenetic branches in Lepidoptera [ 35 – 37 ] and study 
of evolution in families of genes or domestication events, as in the  Bombyx  genus 
[ 38 ]. 

 GenBank contains 33,268 enzyme sequences for Lepidoptera; the family 
Nymphalidae is the most represented with 8053 sequences in 382 genera and 978 
species, followed by Bombycidae (5581 sequences, 14 genera, and 18 species), 
Noctuidae (2581 sequences, 236 genera, and 329 species), Papilionidae (1855 
sequences, 39 genera, and 225 species), Gracillariidae (1276 sequences, 48 genera, 
and 77 species), Crambidae (1100 sequences, 338 genera, and 799 species), and 
Pieridae (1078 sequences, 23 genera, and 85 species) (Fig.  3.4a ).

   Proteins other than enzymes are documented in GenBank with twice the number 
of enzyme sequences (67,334 sequences); again, the most represented is Nymphalidae, 
with 26,852 sequences corresponding to 73 genera and 215 species, followed by 
Bombycidae (26,515 sequences, 15 genera, and 19 species), Papilionidae (5387 
sequences, 5 genera, and 21 species), Noctuidae (2064 sequences, 32 genera, and 53 
species), and Crambidae (1072 sequences, 32 genera, and 40 species) (Fig.  3.4b ).  

3.7     Ribosomal DNA and RNA 

 Ribosomes are involved in protein synthesis. Eukaryotes contain two major cyto-
plasmic rRNA subunits, 28S and 18S; tandem arrays of rDNA genes encoding both 
subunits are located on the nuclear chromosomes, but there are also rDNA genes in 
the mitochondria (16S and 12S). Genes encoding rRNA have been widely used in 
phylogenetic analysis because their different regions have distinct rates of evolu-
tion, giving diverse resolution for phylogenetic inference [ 9 ,  39 ]. In Lepidoptera, 
diverse phylogenetic analyses have included mitochondrial  rDNA  to construct phy-
logeny [ 40 – 42 ]. The term ribosomal is used here to report either mitochondrial or 
nuclear  rRNA  and  rDNA  sequences,. 

 GenBank has 11,652 ribosomal accessions, but these include less than 5 % of the 
total sequences for Lepidoptera. Nymphalidae has the highest numbers of ribosomal 
records in GenBank (2891), followed by Lycaenidae (1143), Noctuidae (922), and 
Zygaenidae (895) (Fig.  3.5a ). Additionally, Nymphalidae has the highest number of 
genera and species represented (383 and 1129, respectively), and Papilionidae has 
90 % of their genera and 33 % of species represented in GenBank, followed by 
Nymphalidae (68.5 % genera and 18 % species). Being a small family, it is interest-
ing that Zygenidae appears in the 4th place for the number of accessions for ribo-
somal sequences in GenBank, where it is represented by 18 genera and 108 species 
with 895 records. One genus,  Zygaena , comprises 826 records of ribosomal 
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  Fig. 3.4    Records of enzyme sequences of Lepidoptera in GenBank. ( a ) Records of Lepidoptera 
by family that have sequenced enzymes in GenBank and ( b ) families with sequenced proteins in 
GenBank. The fi rst number between  brackets  refers to the number of genera, and the second is the 
number of species       
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sequences for 85 species, including 344 records for  Zygaena transalpine  and 125 
records for  Z. angelicae  [ 43 ]; Niehuis et al. [ 44 ] contributed, with the complete 
sequences of mitochondrially encoded NADH dehydrogenase subunit 1 ( MT-ND1) , 
tRNA-leucine ( tRNA-Leu ), 16S rRNA, tRNA-valine ( tRNA-Val ), and, with large 
fragment of 12S rRNA, nuclear DNA of the small and large subunits ribosomal 
RNA (ncDNA- 18S rRNA  and ncDNA- 28S rRNA ) for a phylogenetic study of the 
zygaenoid group.

3.8         Cytochrome C Oxidase Subunit I (COI)  

 Cytochrome c oxidase is a protein complex (subunits 1–3) located in the mitochon-
dria that plays an important role as a terminal enzyme in the respiratory chain, 
transferring electrons and reducing oxygen to water. This process is carried out by 
subunit 1 ( COI ) of the complex [ 45 ,  46 ]. Genes encoding  COI  form part of the 
mitogenome, and analysis of its complete sequence shows that different regions 

  Fig. 3.5    Records of sequenced ribosomal (nuclear and mitochondrial rDNA and rRNA) genes of 
Lepidoptera in GenBank by family. The fi rst number between  brackets  refers to the number of 
genera, and the second is the number of species       
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evolve at distinct rates, making  COI  very useful for insect phylogenetic studies [ 47 ]. 
In Lepidoptera,  COI  by itself has a better resolution at lower levels, such as species 
and species groups [ 48 ]. At higher levels, it is recommended to use  COI  together 
with other gene sequences (e.g.,  Wg ,  EF ) for phylogenetic analysis and dating of 
divergence times [ 20 ,  42 ,  49 ,  50 ]. Given that  COI  has low intraspecifi c variability 
and high interspecifi c variability, it is suitable for species recognition, and in 2003, 
it was proposed to be used for a universal barcoding system in species identifi cation 
[ 51 ,  52 ]. The critical sequence consists of an approximately 600 bp long fragment 
of  COI  which is amplifi ed by PCR and sequenced. Then, this sequence is compared 
to a library of  COI  sequences of species identifi ed previously by taxonomists. The 
advantages of using  COI  as a barcoding system include the large number of DNA 
copies per cell, its maternal inheritance, and lack of introns. In Lepidoptera, the 
barcoding system works very well, especially for the discovery of new species in 
groups with crypticism [ 53 – 57 ] and overlooked species [ 58 ]. Since the barcoding 
proposal in 2003,  COI  sequences have been increasing, and as of April 2014, 
GenBank had 215,074 accessions, which represent 22 % of all the sequences within 
families of Lepidoptera. 

 Wilson [ 8 ] used a fragment of  COI  (DNA barcode) and two other gene regions 
( EF  and  Wg ) of 977 species from Lepidoptera to probe phylogenetic signal and 
concluded that the DNA barcode fragment has low signal for levels above genus. In 
the fi rst quarter of 2014, there were 19,279 named species belonging to 6147 genera 
for  COI  alone; the huge increase in the number of species found in GenBank repre-
sents the widespread use of this marker in taxonomic and phylogenetic studies. In 
fact, GenBank contains 92 % of the lepidopteran families reported by Nieukerken 
et al. in 2011 [ 4 ] and 39.5 % of the genera, but just 12.25 % of the number of spe-
cies. The Geometridae family has the largest number of genera represented by this 
gene, followed by Erebidae, Noctuidae, and Nymphalidae. Although Geometridae 
has the highest number of species, Nymphalidae has more species represented than 
Erebidae or Noctuidae (Fig.  3.6a ). Considering the number of genera reported for 
each of the families with relatively high numbers of sequences registered in 
GenBank, coverage of Sphingidae is 99.5 %, followed by Papilionidae, Nymphalidae, 
Pieridae, and Noctuidae (94 %, 86 %, 77 %, and 67 %, respectively). This pattern is 
similar at the species level, but Erebidae, with the largest species number reported 
[ 4 ], has only 8.5 % representation in GenBank (Table  3.3  and Fig.  3.6a ).

3.8.1        COI  and Barcode Publications in ISI Web 
of Science and Scopus 

 In the period from 2003 to 2013, the total number of publications returned in the ISI 
Web of Science and Scopus based on a search using keywords “barcode/barcoding 
Lepidoptera” was 352. The year with the largest number of publications is 2012 (56 
papers). The number of publications using barcodes appears to cycle, the fi rst being 
bigger than the second, with a tendency to increase from 2003 to 2008 with 47 
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  Fig. 3.6    Records of lepidopteran mitochondrial sequences in GenBank. ( a )  COI  records in 
GenBank by family of Lepidoptera as of April 2014. ( b ) Families that have a complete mitochon-
drial genome in GenBank. The fi rst number in  brackets  refers to the number of genera, and the last 
is the number of species in each family       

 

C. Pozo et al.



57

publications. The second cycle starts in 2009 with a reduction of 36 % and reaches 
the maximum in 2012 (Fig.  3.7a ). These fl uctuations are explained by the discovery 
of new species with crypticism using barcoding and the large inventories of newly 
detected species, all waiting for a taxonomist to name them in a publication. The 
type of journal confi rms the latter hypothesis, with the largest number of articles on 
the subject published in  Zootaxa  (28), followed by  Molecular Phylogenetics and 
Evolution  (24) and  Annals of the Entomological Society of America  (20) (Fig.  3.7b ).

  Fig. 3.7     Publications of lepidopteran   COI   sequences . ( a ) Number of publications of Lepidoptera 
using  COI  by year. ( b ) Number of publications of Lepidoptera using  COI  by journal       
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   The scientifi c publications of this information cover 73 families, with just 60 % 
of the families with sequences registered in GenBank. Families with the highest 
number of scientifi c publications are Nymphalidae (66) and Noctuidae (66). All 
butterfl y families have publications (from Hedylidae with 4 to Nymphalidae with 
66), but only 51 % of moth families are present in the barcode literature (66 fami-
lies, Table  3.4 ). The Noctuidae family contains the majority of moth barcode publi-
cations (66), followed by Tortricidae, Geometridae, Erebidae, and Crambidae (39, 
37, 25, and 18 studies, respectively).

   The publications with  COI  sequences for barcoding are mainly related to topics 
in taxonomy, evolution, biogeography, and biodiversity. Considering authors with 
the highest number of publications, 21 authors have fi ve or more publications in this 
area (Fig.  3.8 ). N. Wahlberg currently has the most publications; his main area of 
research includes the systematics and evolution of the butterfl y family Nymphalidae.

  Table 3.4    Number of 
publications with  COI  by 
family of Lepidoptera 
returned in ISI Web of 
Science and Scopus based on 
a search using keywords 
“barcode/barcoding 
Lepidoptera”  

 Family  Number of publications 

  Butterfl ies   Nymphalidae  66 
 Papilionidae  38 
 Hesperiidae  27 
 Pieridae  27 
 Lycaenidae  26 
 Riodinidae  5 
 Hedylidae  4 

  Moths   Noctuidae  66 
 Tortricidae  39 
 Geometridae  37 
 Erebidae  25 
 Crambidae  18 
 Gracillariidae  18 
 Pyralidae  18 
 Saturniidae  13 
 Sphingidae  12 
 Gelechiidae  10 
 Prodoxidae  10 
 Bombycidae  9 
 Coleophoridae  9 
 Elachistidae  8 
 Notodontidae  8 
 Oecophoridae  8 
 Lasiocampidae  7 
 Cosmopterigidae  6 
 Drepanidae  6 
 Sesiidae  6 
 Yponomeutidae  6 
 Choreutidae  5 
 Tineidae  5 
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3.9         The Complete Mitochondrial Genome 

 The mitochondrial genome is the most extensively studied genomic system in 
insects because of its maternal inheritance, lack of recombination, small size, and an 
accelerated mutation rate compared to nuclear DNA. Mitochondrial DNA (mtDNA) 
is considerably smaller than nuclear DNA; animal mitochondria are 16–20 kb 
length, comprising 37 genes and lacking introns [ 9 ]. 

 There are distinct regions within mtDNA that diverge at different rates (e.g., 
 COI ,  COII ,  COIII ,  MT-ND4L  [mitochondrially encoded NADH dehydrogenase 
4L],  Cyt b ); as a result, it is very useful at diverse taxonomic levels, even to deter-
mine relationships among close species [ 59 ]. As noted previously,  COI , a mitochon-
drial region of approximately 650 bp, was formally proposed as a barcode system 
for species identifi cation in 2003 [ 51 ,  52 ]. This and other regions of mtDNA have 
been used extensively in studies of phylogenetics, comparative and evolutionary 
genomics, population genetics, molecular evolution, and phylogenomic analysis 
[ 60 ,  61 ]. 

 Lepidoptera has 361 records of complete mtDNA in GenBank, representing 111 
species (as accessed on April 2, 2014). Figure  3.6b  shows the proportional 
 representation for families that comprise 90 % of the accessions and the number of 
genera and species with a mitogenome: Nymphalidae (19/23), Bombycidae (2/3), 
Crambidae (10/12), Papilionidae (5/9), Noctuidae (7/9), Tortricidae (8/9), 
Saturniidae (6/8), Pieridae (8/9), Lycaenidae (7/7), and Erebidae (4/4). Nine  families 
represent only 10 % of the accessions. The rapid increase of complete  mitochondrial 

  Fig. 3.8    Number of publications of Lepidoptera using  COI  by fi rst authors       
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studies is important; in only 1 month, Wu et al. [ 62 ] contributed data for 29 recog-
nized species of Nymphalidae, resulting in a total of 82 species for Papilionoidea 
and 58 for moths. Now, the largest number of species with complete mitochondrial 
genomes is Nymphalidae:  Abrota ganga ,  Acraea issoria ,  Apatura ilia ,  A. metis , 
 Argynnis childreni ,  A. hyperbius ,  Athyma asura ,  A. cama ,  A. kasa ,  A. opalina ,  A. 
perius ,  A. selenophora ,  A. sulpitia ,  Bhagadatta austenia ,  Bicyclus anynana , 
 Calinaga davidis ,  Danaus plexippus ,  Dichorragia nesimachus ,  Dophia evelina , 
 Euploea core ,  E. mulciber ,  Euthalia irrubesens ,  Fabriciana nerippe ,  Heliconius 
erato ,  H. melpomene ,  H. numata ,  Hipparchia autonoe ,  Issoria lathonia ,  Junonia 
almanac ,  J. orithya ,  Kallima inachus ,  Libythea celtis ,  Lexias dirtea ,  Melanitis leda , 
 M. phedima ,  Melitaea cinxia ,  Neptis philyra ,  N. soma ,  Neope pulaha ,  Pandita sin-
ope ,  Pantoporia hordonia ,  Parantica sita ,  Parasarpa dudu ,  Parthenos sylvia , 
 Polyura arja ,  Sasakia charonda ,  S. funebris ,  Sumalia daraxa ,  Tanaecia julii , 
 Timelaea maculate ,  Yoma sabina , and  Ypthima akragas . The second largest family 
is Crambidae, a moth family with 12 species:  C. suppressalis ,  Cnaphalocrocis 
medinalis ,  Diatraea saccharalis ,  Dichocrocis punctiferalis ,  Elophila interruptalis , 
 Glyphodes quadrimaculalis ,  Maruca vitrata ,  Ostrinia furnacalis ,  O. nubilalis , 
 Paracymoriza distinctalis ,  P. prodigalis , and  Scirpophaga incertulas . 

 Nymphalidae represents the most diverse butterfl y family, with 559 genera and 
6152 species, which is one-third of all butterfl y species [ 4 ]. This family has been 
extensively studied because it includes several species of economic importance as 
crop pests or potential agents for the biological control of weeds. It is widely distrib-
uted in diverse habitats worldwide, and several species have been used as models for 
ecological, conservation, evolutionary, and developmental studies [ 63 – 66 ]. 
Nevertheless, the relatively large number of genomic accessions for Nymphalidae is 
primarily due to many projects related to butterfl y phylogeny [ 62 ]. 

 Crambidae is a family with some pest species of sod grasses, maize, sugar cane, 
rice, and other Poaceae, including the sugarcane borer,  D. saccharalis , which is an 
economically important pest of several major crops in North and South America. 
Whole mitogenome sequencing in 2011 was a major step providing molecular 
markers to monitor changes in population structure associated with acquisition of 
resistance to  Bacillus thuringiensis , a class of bacterial endotoxins which is com-
monly used for pest control [ 67 ].  

3.10     Genome Projects for Lepidoptera 

 Knowing the complete genome of Lepidoptera has made it a valuable model system 
in several ways, including the explanation of key processes such as the immune 
response, neurophysiology, olfaction, protein biochemistry, evolutionary mecha-
nisms within species (e.g., evolving host–plant utilization) and between species and 
populations (e.g., wing pattern mimicry), the establishment of phylogenetic rela-
tionships, and as a reference for evolutionary comparisons with other insect orders. 
As of January 2015, eleven lepidopteran genome projects were reported: six 
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butterfl ies, of which three are Nymphalidae ( H. melpomene ,  D. plexippus , and  M. 
cinxia ) and three Papilionidae ( P. glaucus ,  P. xuthus , and  P. polytes ), and fi ve moths 
from diverse families (silk moth,  B. mori  [Bombycidae]; diamondback moth, 
 Plutella xylostella  [Plutellidae]; rice borer,  C. suppressalis  [Crambidae]; fall army 
worm,  Spodoptera frugiperda  [Noctuidae]; and tobacco hornworm,  M. sexta  
[Sphingidae]) (Table  3.5 ). The  M. sexta  genome project will be published shortly, 
along with many other lepidopteran genome projects now in progress (Table  3.6 ).

    Lepidopteran genomes comprise approximately 31 chromosomes [ 68 ,  69 ] with 
an average size of ~645 Mb, ranging from ~283 Mb ( Danaus plexippus ) to ~1897 Mb 
( Euchlaena irraria ) [ 70 ]. Sequencing and assembling complete genomes from dif-
ferent lepidopteran species has taken considerable effort compared with the 
 Drosophila  genome, which has a genome size of ~180 Mb distributed on four chro-
mosomes [ 71 ,  72 ]. Nevertheless, rapid improvements in the actual sequencing tech-
niques and the signifi cance of this group (economical, biological, and ecological) 
are likely to accelerate sequencing of lepidopteran genomes in order to use them in 
several ways, such as functional genomics, mutant analysis, bioinformatics, and 
other post-genomic applications that increase our biological and economical knowl-
edge of Lepidoptera. However, it is important to solve the disaggregation of the 
community studying Lepidoptera as the great diversity of this group makes it diffi -
cult to consolidate operation of a Lepidoptera Consortium, limiting access to major 
funding [ 73 ]. 

3.10.1      Bombyx mori  

 The silkworm,  B. mori  (Bombycidae), has been domesticated for silk production for 
the past 5000 years. It is the most well-studied lepidopteran model system because 
of its relatively short life cycle [ 74 ,  75 ] and its rich repertoire of well-characterized 
mutations that affect virtually every aspect of the organism’s morphology, develop-
ment, and behavior. Additionally, it has considerable economic importance.  B. mori  
was the fi rst lepidopteran insect genome to be fully sequenced. 

 In 2004, a Japanese and a Chinese group performed analyses of a WGS draft 
genome sequence of  B. mori  [ 76 ,  77 ], suggesting that the number of protein-coding 
genes was 18,000–20,000. The full genome of the silkworm was published in 2008 
by the International Silkworm Genome Consortium [ 78 ], including a new genome 
assembly with 16,329 genes. This was made possible by the use of new fosmid- and 
BAC-end sequence data anchored to a fi ne genetic map, resulting in an increase in 
the scaffold size, which made possible a good assembly with low polymorphism 
(0.2 %) at the nucleotide level. 

 Based on an extensive database of expressed sequence tags (ESTs) [ 79 ] and full- 
length cDNAs [ 80 ], many  Bombyx -specifi c genes have been found and annotated, 
showing the value of transcriptome sequencing for the molecular biology of the 
silkworm and the whole lepidopteran group.  
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3.10.2      Danaus plexippus  

 The monarch butterfl y,  D. plexippus  (Nymphalidae), is the most well-recognized 
species of butterfl y, which migrates up to 3000 km from central Mexico to eastern 
North America [ 81 ]. The initial assembly of the monarch genome was made by 
Zhan et al. in 2011 [ 82 ], reporting a genome draft of 273 Mb encoding 16,866 
protein- coding genes and suggesting that Lepidoptera is the fastest evolving insect 
order. In 2013 Zhan et al. [ 83 ] established MonarchBase to make the genome data 
accessible. By 2014, Zhan et al. [ 84 ] reported the genetics of monarch butterfl y 
migration and warning coloration, sequencing 80 genomes of  D. plexippus  and nine 
samples from four additional  Danaus  species. Among other fi ndings, they noted 
that North American populations are the most basal lineages, with population struc-
ture indicating gene fl ow across North America, and likely origin in the southern 
USA or northern Mexico. They also found evidence for recurrent, divergent selec-
tion on fl ight muscle function and wing color variation mediated by a myosin gene 
with no prior known role in insect pigmentation, but an analogous effect in verte-
brates. These studies illustrate the power of a genome project to enhance under-
standing of important biological processes.  

   Table 3.6    Species that have a database developed by working groups URLs are provided, although 
data in some of them could not be updated   

 Species  Database  URL 

  Bombyx mori   KAIKObase    http://sgp.dna.affrc.go.jp/
KAIKObase/     

 Silkworm Genome Database: 
SilkDB 

   http://silkworm.genomics.org.
cn/     

  Danaus plexippus   MonarchBase    http://monarchbase.umassmed.
edu/     

  Heliconius melpomene   Heliconius Genome Project    http://butterfl ygenome.org/     
  Plutella xylostella   KONAGAbase    http://dbm.dna.affrc.go.jp/px/     
  Chilo suppressalis   ChiloDB    http://ento.njau.edu.cn/

ChiloDB/     
  Melitaea cinxia   Glanville fritillary butterfl y 

genome project 
   http://www.helsinki.fi /science/
metapop/research/mcgenome.
html     

  Spodoptera frugiperda   SPODOBASE    http://bioweb.ensam.inra.fr/
spodobase/     

  Manduca sexta   Manduca Base    http://agripestbase.org/
manduca/     

  Papilio xuthus  and  P. polytes   PapilioBase    http://papilio.nig.ac.jp/     
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3.10.3      Heliconius melpomene  

 For many years, researchers of the Heliconius group (Nymphalidae) have been 
searching for the mechanisms underlying adaptive radiation phenomena and 
Müllerian mimicry. Martin et al. [ 85 ] reported interspecifi c gene fl ow between sym-
patric and allopatric populations of  H. melpomene ,  H. cydno , and  H. timareta , 
addressing the idea of evolution without isolation.  H. melpomene  is a model for this 
type of study, and increased genome research provides the opportunity to explain 
some of the pathways of adaptive radiation related to the Müllerian mimicry process 
[ 86 ]. The Heliconius Genome Consortium published the  H. melpomene genome  
sequence and predicted 12,657 gene models in 2012 [ 87 ] and, by comparison with 
 D. plexippus  and  B. mori , found the chromosomal organization to be broadly con-
served since the Cretaceous. Also, they reported [ 87 ] that the genomic region con-
trolling the mimicry pattern has evidence of hybrid exchange of genes between  H. 
melpomene ,  H. timareta , and  H. elevatus . Establishment of this butterfl y genome 
sequence has fuelled signifi cant research, culminating in the recent publication of 
more robust models for the genetic and mechanistic basis of these phenomena [ 88 ].  

3.10.4      Plutella xylostella  

 The diamondback moth,  P. xylostella  (Plutellidae), is one of the more serious pests 
of cultivated Brassicaceae worldwide [ 89 ,  90 ], which has rapidly evolved high 
resistance to conventional insecticides such as pyrethroids, organophosphates, 
fi pronil, spinosad,  B. thuringiensis  toxin, and diamides. You et al. [ 91 ] published the 
fi rst whole-genome sequence for this species in 2013, having 18,071 protein-coding 
and 1412 unique genes with an expansion of gene families related with perception 
and the detoxifi cation of plant defense chemicals. They found higher levels of  P. 
xylostella -specifi c genes compared with those from  B. mori  (463) and  D. plexippus  
(1184). The  P. xylostella -specifi c genes are associated with biological pathways 
essential to monitor and process environmental information, chromosomal replica-
tion and/or repair, transcriptional regulation, and carbohydrate and protein metabo-
lism. These authors had to develop special techniques to deal with the extensive 
polymorphism in the DNA samples because they could not inbreed, as was possible 
in the other species, or use a cell line, as with  S. frugiperda . Consequently, the 
genome was highly fragmented compared to other Lepidoptera genome assemblies. 
This will be a continuing problem as new sequences are developed for non-model 
Lepidoptera. 

 Jouraku et al. [ 92 ] developed KONAGAbase, a comprehensive transcriptome 
database for  P. xylostella , which can assist researchers in the analysis of genes 
related to insecticide resistance, allowing the development of more effi cient and less 
environmentally harmful insecticides through clarifying the mechanism of 
resistance.  
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3.10.5      Chilo suppressalis  

 The Asian rice stem borer,  C. suppressalis  (Crambidae), is one of the most eco-
nomically important pests of rice crops in Northeast China [ 93 ].  C. suppressalis  is 
a widespread species, extending from East Asia and Oceania into the Middle East 
and Europe [ 94 ]. Given its great economic importance, its metabolism and adapta-
tion to xenobiotics have been extensively studied. In 2014 Yin et al. [ 95 ] obtained 
the fi rst version of a draft genomic sequence for this species using an Illumina 
sequencing platform to generate WGS sequences that were subsequently assem-
bled. They also established ChiloDB, a database which contains genome and tran-
scriptome sequence data for  C. suppressalis . In December 2013, they reported the 
following information was available in ChiloDB: 80,479 scaffolds (length ≥ 2 Kb), 
10,221 annotated protein-coding sequences, 262 microRNAs, 82,639 predicted 
piwi-interacting RNAs, 37,040 midgut transcriptome sequences, 69,977 mixed 
sample transcriptome sequences, and 77 cytochrome p450 genes or gene fragments. 
ChiloDB group are working to improve the annotation quality to develop a compre-
hensive information system for the researchers [ 95 ].  

3.10.6      Melitaea cinxia  

 The Glanville fritillary butterfl y,  M. cinxia , belongs to the Nymphalidae family and 
has been studied to understand the ecological, genetic, and evolutionary conse-
quences of habitat fragmentation on metapopulation dynamics [ 96 ]. Vera et al. 
(2008) [ 97 ] reported one of the fi rst studies using 454 pyrosequencing of cDNAs as 
an approach to genome sequencing for a non-model species and used relatively 
short sequence assemblies to create a microarray for large-scale functional genom-
ics. However, it was not until 2014 that Ahola et al. [ 98 ] sequenced the complete 
genome of  M. cinxia , from which they predicted 16,667 gene models. Somervuo 
et al. (2014) [ 99 ] found that a large number of genes were differentially expressed 
between the landscape types, based on RNA-sequence data. The genome sequence 
from this lepidopteran, which has the putative ancestral chromosome number (31), 
provides additional evidence for the evolutionary conservation of lepidopteran 
chromosomes.  

3.10.7      Spodoptera frugiperda  

 The fall army worm,  S. frugiperda  (Noctuidae), is a polyphagous pest of economic 
importance in tropical and subtropical countries [ 100 ]. Casmuz et al. [ 101 ] con-
ducted a literature review of records for this species in North and South America, 
reporting 186 host plants belonging to 42 different families. This species has devas-
tating effects, damaging crops, and reducing food production [ 102 ]. 

3 Updating Genomic Data of Lepidoptera



66

 In 2014, the International Centre for Genetic Engineering and Biotechnology 
(India) used a cell line (Sf9) from the ovary of  S. frugiperda  to obtain a draft 
sequence of this species. This novel approach gives good results but needs to be 
validated. Noctuidae is one of the largest families of Lepidoptera containing many 
of the agriculture pests, and this study represents the fi rst complete genome publica-
tion in this family. The genomic DNA was sequenced and assembled into 37,243 
scaffolds, 358 Mb in length, with 11,595 predicted genes, of which 36.4 % were 
assigned a functional characteristic. Repeat elements represent 20.28 % of the total 
genome. Having the complete genome sequence for this representative of a highly 
destructive taxonomic group will yield new insights into the evolution of such func-
tions as host–plant specialization, detoxifi cation of allelochemicals, insecticide 
resistance, and the existence of lepidopteran- and species-specifi c genes, ultimately 
helping to understand its biology for improving food production by controlling this 
species and its close relatives [ 102 ].  

3.10.8      Papilio glaucus  

 Species of the genus  Papilio  have been the subject of many evolutionary studies that 
address issues ranging from population genetics, speciation, and conservation to 
phylogeny [ 50 ]. The North American butterfl y, the Eastern tiger swallowtail,  P. 
glaucus  (Papilionidae), has remarkable morphological and behavioral features that 
have been described in evolutionary studies, such as Batesian mimicry [ 103 ,  104 ]. 
High levels of heterozygosity have been a problem in sequencing the genomes of 
species of Lepidoptera which cannot be easily inbred; the  P. glaucus  genome also 
has high levels of heterozygosity, similar to  P. xylostella  [ 105 ]. Nevertheless, in 
2015 Cong et al. [ 105 ] succeeded in publishing the complete genome sequence for 
 P. glaucus  using a single wild-caught individual using a novel assembly strategy. 
Reporting a genome size of 376 Mb, they predicted 15,695 protein-coding genes 
and reported the function for 11,975 of them, with repeats constituting 22 % of the 
genome, values typical of other butterfl ies.  

3.10.9      P. polytes  and  P. xuthus  

 The common Mormon swallowtail butterfl y,  Papilio polytes  (Papilionidae), presents 
two adult forms, products of a female-limited Batesian mimicry: one mimetic form 
resembles  Pachliopta aristolochiae  and the other ( cyrus ) is non-mimetic [ 106 ]. In 
2014, the  dsx  gene was reported by Kunte et al. [ 25 ] as a supergene that controls this 
mimetic expression. This was confi rmed in 2015 by Nishikawa et al. [ 106 ], who 
determined whole-genome sequences of  P. polytes  (227 Mb, encoding 12,244 
protein- coding genes) and the Asian swallowtail,  P. xuthus  (244 Mb, encoding 
13,102 protein-coding genes). Comparison of the sequenced genomes of  P. xuthus  
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and  P. polytes  led to the discovery of an extended, highly heterozygous chromosom-
ally inverted region encompassing the genetically mapped locus responsible for the 
mimetic polymorphism in  P. polyetes  females. The heterozygous, inverted region 
includes  dsx , consistent with its proposed involvement in expression of the mimicry 
pattern. The  Papilio  genome projects are the most recent ones registered in GenBank 
and the fi rst reports of an association of such a chromosome change with a histori-
cally signifi cant phenotype in Lepidoptera. Such a phenomenon is unlikely to have 
been found without access to the genome sequences.  

3.10.10      Manduca sexta  

 The tobacco hornworm,  M. sexta  (Sphingidae), has been used as a model system for 
many different fundamental studies of insect and lepidopteran biology, including 
behavior, immune response, transcription factors, olfaction, biochemistry, physiol-
ogy, growth, and phylogenetic studies [ 33 ,  34 ,  107 – 112 ]. Recently, in 2012, a WGS 
genome project of  M. sexta  was registered in GenBank by M. Kanost, G. Blissard, 
J. Qu, S. Richards, et al. (accession number AIXA00000000.1) The genome 
sequence of this species will lead to an advanced understanding of many basic 
mechanisms in insect interactions with plants, other insects, and microbes, with 
potential applications in the areas of biomedicine (insect-vectored diseases) and 
agriculture (insect–plant interactions). As yet no publications concerning this 
sequencing project are available but are anticipated in the near future.   

3.11     Lepidoptera Genomics Enlightens the Biological 
Sciences 

 Butterfl y and moth sequences for individual mRNAs were fi rst submitted to 
GenBank database in the early 1980s [ 113 ,  114 ]. Butterfl y and moth genomes, par-
ticularly the  B. mori  genome, were among the fi rst insect genomes to be sequenced; 
the  B. mori  genome was sequenced because of the importance of this insect in silk 
production, which researchers were focused on improving. Subsequent sequencing 
of Lepidoptera has targeted other economically signifi cant species, such as  S. frugi-
perda  and  P. xylostella . Despite the many GenBank entries (over one million) for 
the order Lepidoptera, the richness and biological diversity of this order remain 
underrepresented. The primary aim of current research is to explain complex pro-
cesses, such as evolution, from a whole-genome perspective, for which lepidopter-
ans are excellent models because many of their ecological and evolutionary traits 
are known. This potential has already been noticed, and now is the time to use deep 
genomics to understand these processes. New sequencing technologies are simpli-
fying this task. Further work should focus on obtaining additional species with com-
plete genomes to gain a better representation of the order Lepidoptera in the 
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GenBank database. Additionally, taxonomists have an important task regarding 
sequenced specimens that remain unnamed because of the way in which barcoding 
with  COI  has accelerated the discovery of greater biodiversity. With greater collabo-
rations among ecological, biological, biogeographical, evolutionary, and genomic 
researchers using Lepidoptera, new fi ndings that will affect fundamental knowledge 
in all biological sciences can be discovered.     
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