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Abstract In this chapter we review the main literature related to kernel spectral
clustering (KSC), an approach to clustering cast within a kernel-based optimization
setting. KSC represents a least-squares support vector machine-based formulation
of spectral clustering described by a weighted kernel PCA objective. Just as in the
classifier case, the binary clustering model is expressed by a hyperplane in a high
dimensional space induced by a kernel. In addition, the multi-way clustering can be
obtained by combining a set of binary decision functions via an Error Correcting
Output Codes (ECOC) encoding scheme. Because of its model-based nature, the
KSC method encompasses three main steps: training, validation, testing. In the
validation stage model selection is performed to obtain tuning parameters, like
the number of clusters present in the data. This is a major advantage compared to
classical spectral clustering where the determination of the clustering parameters is
unclear and relies on heuristics. Once a KSC model is trained on a small subset
of the entire data, it is able to generalize well to unseen test points. Beyond
the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky
Decomposition (ICD) and L0, L1; L0 CL1, Group Lasso regularization are reviewed.
In that respect, we show how it is possible to handle large-scale data. Also, two
possible ways to perform hierarchical clustering and a soft clustering method are
presented. Finally, real-world applications such as image segmentation, power load
time-series clustering, document clustering, and big data learning are considered.

1 Introduction

Spectral clustering (SC) represents the most popular class of algorithms based on
graph theory [11]. It makes use of the Laplacian’s spectrum to partition a graph
into weakly connected subgraphs. Moreover, if the graph is constructed based on
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any kind of data (vector, images etc.), data clustering can be performed.1 SC began
to be popularized when Shi and Malik introduced the Normalized Cut criterion to
handle image segmentation [59]. Afterwards, Ng and Jordan [51] in a theoretical
work based on matrix perturbation theory have shown conditions under which a
good performance of the algorithm is expected. Finally, in the tutorial by Von
Luxburg the main literature related to SC has been exhaustively summarized [63].
Although very successful in a number of applications, SC has some limitations.
For instance, it cannot handle big data without using approximation methods like
the Nyström algorithm [19, 64], the power iteration method [37], or linear algebra-
based methods [15, 20, 52]. Furthermore, the generalization to out-of-sample data
is only approximate.

These issues have been recently tackled by means of a spectral clustering
algorithm formulated as weighted kernel PCA [2]. The technique, named kernel
spectral clustering (KSC), is based on solving a constrained optimization problem
in a primal-dual setting. In other words, KSC is a Least-Squares Support Vector
Machine (LS-SVM [61]) model used for clustering instead of classification.2 By
casting SC in a learning framework, KSC allows to rigorously select tuning
parameters such as the natural number of clusters which are present in the data.
Also, an accurate prediction of the cluster memberships for unseen points can be
easily done by projecting test data in the embedding eigenspace learned during
training. Furthermore, the algorithm can be tailored to a given application by using
the most appropriate kernel function. Beyond that, by using sparse formulations and
a fixed-size [12, 61] approach, it is possible to readily handle big data. Finally, by
means of adequate adaptations of the core algorithm, hierarchical clustering and a
soft clustering approach have been proposed.

The idea behind KSC is similar to the earlier works introduced in [16, 17]. In
these papers the authors showed that a general weighted kernel k-means objective is
mathematically equivalent to a weighted graph partitioning objective such as ratio
cut, normalized cut and ratio association. This equivalence allows, for instance,
to use the weighted kernel k-means algorithm to directly optimize the graph
partitioning objectives, which eliminates the need for any eigenvector computation
when this is prohibitive. Although quite appealing and mathematically sound,
the algorithm presents some drawbacks. The main issues concern the sensitivity of
the final clustering results to different types of initialization techniques, the choice
of the shift parameter, and the model selection (i.e., how to choose the number of
clusters). Furthermore, the out-of-sample extension problem is not discussed. On the
other hand, as we will see later, these issues are not present in the KSC algorithm.

The remainder of the Chapter is organized as follows. After presenting the basic
KSC method, the soft KSC algorithm will be summarized. Next, two possible

1In this case the given data points represent the node of the graph and their similarity the
corresponding edges.
2This is a considerable novelty, since SVMs are typically known as classifiers or function
approximation models rather than clustering techniques.
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ways to accomplish hierarchical clustering will be explained. Afterwards, some
sparse formulations based on the Incomplete Cholesky Decomposition (ICD) and
L0, L1; L0 C L1, Group Lasso regularization will be described. Lastly, various
interesting applications in different domains such as computer vision, power-load
consumer profiling, information retrieval, and big data clustering will be illustrated.
All these examples assume a static setting. Concerning other applications in a
dynamic scenario the interested reader can refer to [29, 33] for fault detection, to
[32] for incremental time-series clustering, to [25, 28, 31] in case of community
detection in evolving networks and [54] in relation to human motion tracking.

2 Notation

xT Transpose of the vector x

AT Transpose of the matrix A

IN N � N Identity matrix

1N N � 1 Vector of ones

Dtr D fxigNtr
iD1 Training sample of Ntr data points

'.�/ Feature map

F Feature space of dimension dh

fApgk
pD1 Partitioning composed of k clusters

G D .V ; E / Set of N vertices V D fvigN
iD1 and

m edges E of a graph

j � j Cardinality of a set

3 Kernel Spectral Clustering (KSC)

3.1 Mathematical Formulation

3.1.1 Training Problem

The KSC formulation for k clusters is stated as a combination of k � 1 binary
problems [2]. In particular, given a set of training data Dtr D fxigNtr

iD1, the primal
problem is:

min
w.l/;e.l/;bl

1

2

k�1X

lD1

w.l/T
w.l/ � 1

2

k�1X

lD1

�le
.l/T

Ve.l/

subject to e.l/ D ˚w.l/ C bl1Ntr ; l D 1; : : : ; k � 1:

(1)
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The e.l/ D Œe.l/
1 ; : : : ; e.l/

i ; : : : ; e.l/
Ntr

�T are the projections of the training data mapped
in the feature space along the direction w.l/. For a given point xi, the model in the
primal form is:

e.l/
i D w.l/T

'.xi/ C bl: (2)

The primal problem (1) expresses the maximization of the weighted variances of the
data given by e.l/T

Ve.l/ and the contextual minimization of the squared norm of the
vector w.l/, 8l. The regularization constants �l 2 R

C mediate the model complexity
expressed by w.l/ with the correct representation of the training data. V 2 R

Ntr�Ntr is
the weighting matrix and ˚ is the Ntr�dh feature matrix ˚ D Œ'.x1/T I : : : I '.xNtr/

T �,
where ' W Rd ! R

dh denotes the mapping to a high-dimensional feature space, bl

are bias terms.
The dual problem corresponding to the primal formulation (1), by setting V D

D�1 becomes3:

D�1MD˝˛.l/ D �l˛
.l/ (3)

where ˝ is the kernel matrix with ijth entry ˝ij D K.xi; xj/ D '.xi/
T'.xj/. K W

R
d � R

d ! R means the kernel function. The type of kernel function to utilize is
application-dependent, as it is outlined in Table 1. The matrix D is the graph degree
matrix which is diagonal with positive elements Dii D P

j ˝ij, MD is a centering

matrix defined as MD D INtr � 1

1T
Ntr D�11Ntr

1Ntr1
T
Ntr

D�1, the ˛.l/ are vectors of dual

variables, �l D Ntr
�l

, K W Rd � R
d ! R is the kernel function. The dual clustering

model for the ith point can be expressed as follows:

e.l/
i D

NtrX

jD1

˛
.l/
j K.xj; xi/ C bl; j D 1; : : : ; Ntr; l D 1; : : : ; k � 1: (4)

The cluster prototypes can be obtained by binarizing the projections e.l/
i as sign.e.l/

i /.
This step is straightforward because, thanks to the presence of the bias term bl, both
the e.l/ and the ˛.l/ variables get automatically centered around zero. The set of
the most frequent binary indicators form a code-book CB D fcpgk

pD1, where each
codeword of length k � 1 represents a cluster.

Interestingly, problem (3) has a close connection with SC based on a random
walk Laplacian. In this respect, the kernel matrix can be considered as a weighted
graph G D .V ;E / with the nodes vi 2 V represented by the data points xi. This
graph has a corresponding random walk in which the probability of leaving a vertex
is distributed among the outgoing edges according to their weight: ptC1 D Ppt,
where P D D�1˝ indicates the transition matrix with the ijth entry denoting

3By choosing V D I, problem (3) is identical to kernel PCA [48, 58, 62].
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Table 1 Types of kernel functions for different applications

Application Kernel name Mathematical expression

Vector data RBF K.xi; xj/ D exp.�jjxi � xjjj22=�2/

Images RBF�2 K.h.i/; h.j// D exp.� �2
ij

�2
�

/

Text Cosine K.xi; xj/ D xT
i xj

jjxijjjjxjjj

Time-series RBFcd K.xi; xj/ D exp.�jjxi � xjjj2cd=�2
cd/

In this table RBF means Radial Basis Function, and � denotes
the bandwidth of the kernel. The symbol h.i/ indicates a color his-
togram representing the ith pixel of an image, and to compare two
histograms h.i/ and h.j/ the �2 statistical test is used [55]. Regarding
time-series data, the symbol cd means correlation distance [36],

and jjxi �xjjjcd D
q

1
2
.1 � Rij/, where Rij can indicate the Pearson

or Spearman’s rank correlation coefficient between time-series xi

and xj

the probability of moving from node i to node j in one time-step. Moreover, the
stationary distribution of the Markov Chain describes the scenario where the random
walker stays mostly in the same cluster and seldom moves to the other clusters
[14, 46, 47, 47].

3.1.2 Generalization

Given the dual model parameters ˛.l/ and bl, it is possible to assign a membership
to unseen points by calculating their projections onto the eigenvectors computed in
the training phase:

e.l/
test D ˝test˛

.l/ C bl1Ntest (5)

where ˝test is the Ntest � N kernel matrix evaluated using the test points with entries
˝test;ri D K.xtest

r ; xi/, r D 1; : : : ; Ntest, i D 1; : : : ; Ntr. The cluster indicator for a
given test point can be obtained by using an Error Correcting Output Codes (ECOC)
decoding procedure:

• the score variable is binarized
• the indicator is compared with the training code-book CB (see previous

Section), and the point is assigned to the nearest prototype in terms of Hamming
distance.

The KSC method, comprising training and test stage, is summarized in
Algorithm 1, and the related Matlab package is freely available on the Web.4

4http://www.esat.kuleuven.be/stadius/ADB/alzate/softwareKSClab.php.

http://www.esat.kuleuven.be/stadius/ADB/alzate/softwareKSClab.php
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Algorithm 1: KSC algorithm [2]

Data: Training set Dtr D fxigNtr
iD1, test set Dtest D fxtest

m gNtest
mD1 kernel function

K W Rd � R
d ! R positive definite and localized (K.xi; xj/ ! 0 if xi and xj belong to

different clusters), kernel parameters (if any), number of clusters k.
Result: Clusters fA1; : : : ;Akg, codebook CB D fcpgk

pD1 with fcpg 2 f�1; 1gk�1.
1 compute the training eigenvectors ˛.l/, l D 1; : : : ; k � 1, corresponding to the k � 1 largest

eigenvalues of problem (3)
2 let A 2 R

Ntr�.k�1/ be the matrix containing the vectors ˛.1/; : : : ; ˛.k�1/ as columns
3 binarize A and let the code-book CB D fcpgk

pD1 be composed by the k encodings of
Q D sign.A/ with the most occurrences

4 8i, i D 1; : : : ; Ntr, assign xi to Ap� where p� D argminpdH.sign.˛i/; cp/ and dH.:; :/ is the
Hamming distance

5 binarize the test data projections sign.e.l/
m /, m D 1; : : : ; Ntest, and let sign.em/ 2 f�1; 1gk�1

be the encoding vector of xtest
m

6 8m, assign xtest
m to Ap� , where p� D argminpdH.sign.em/; cp/.

3.1.3 Model Selection

In order to select tuning parameters like the number of clusters k and eventually
the kernel parameters, a model selection procedure based on grid search is adopted.
First, a validation set Dval D fxigNval

iD1 is sampled from the whole dataset. Then, a grid
of possible values of the tuning parameters is constructed. Afterwards, a KSC model
is trained for each combination of parameters and the chosen criterion is evaluated
on the partitioning predicted for the validation data. Finally, the parameters yielding
the maximum value of the criterion are selected. Depending on the kind of data, a
variety of model selection criteria have been proposed:

• Balanced Line Fit (BLF). It indicates the amount of collinearity between
validation points belonging to the same cluster, in the space of the projections.
It reaches its maximum value 1 in case of well-separated clusters, represented as
lines in the space of the e.l/

val (see, for instance, the bottom left side of Fig. 1)
• Balanced Angular Fit or BAF [39]. For every cluster, the sum of the cosine

similarity between the validation points and the cluster prototype, divided by the
cardinality of that cluster, is computed. These similarity values are then summed
up and divided by the total number of clusters.

• Average Membership Strength abbr. AMS [30]. The mean membership per cluster
denoting the mean degree of belonging of the validation points to the cluster is
computed. These mean cluster memberships are then averaged over the number
of clusters.

• Modularity [49]. This quality function is well suited for network data. In the
model selection scheme, the Modularity of the validation subgraph correspond-
ing to a given partitioning is computed, and the parameters related to the highest
Modularity are selected [26, 27].

• Fisher Criterion. The classical Fisher criterion [8] used in classification has been
adapted to select the number of clusters k and the kernel parameters in the KSC
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Fig. 1 KSC partitioning on a toy dataset. (Top) Original dataset consisting of three clusters (left)
and obtained clustering results (right). (Bottom) Points represented in the space of the projections
Œe.1/; e.2/� (left), for an optimal choice of k (and �2 D 4:36 � 10�3) suggested by the BLF criterion
(right). We can notice how the points belonging to one cluster tend to lie on the same line. A perfect
line structure is not attained due to a certain amount of overlap between the clusters

framework [4]. The criterion maximizes the distance between the means of the
two clusters while minimizing the variance within each cluster, in the space of
the projections e.l/

val.

In Fig. 1 an example of clustering obtained by KSC on a synthetic dataset is
shown. The BLF model selection criterion has been used to tune the bandwidth of
the RBF kernel and the number of clusters. It can be noticed how the results are
quite accurate, despite the fact that the clustering boundaries are highly nonlinear.

3.2 Soft Kernel Spectral Clustering

Soft kernel spectral clustering (SKSC) makes use of Algorithm 1 in order to
compute a first hard partitioning of the training data. Next, soft cluster assignments
are performed by computing the cosine distance between each point and some
cluster prototypes in the space of the projections e.l/. In particular, given the



142 R. Langone et al.

projections for the training points ei D Œe.1/
i ; : : : ; e.k�1/

i �, i D 1; : : : ; Ntr and the
corresponding hard assignments qp

i we can calculate for each cluster the cluster
prototypes s1; : : : ; sp; : : : ; sk, sp 2 R

k�1 as:

sp D 1

np

npX

iD1

ei (6)

where np is the number of points assigned to cluster p during the initialization step
by KSC. Then the cosine distance between the ith point in the projections space and
a prototype sp is calculated by means of the following formula:

dcos
ip D 1 � eT

i sp=.jjeijj2jjspjj2/: (7)

The soft membership of point i to cluster q can be finally expressed as:

sm.q/
i D

Q
j¤q dcos

ijPk
pD1

Q
j¤p dcos

ij

(8)

with
Pk

pD1 sm.p/
i D 1. As pointed out in [7], this membership represents a subjective

probability expressing the belief in the clustering assignment.
The out-of-sample extension on unseen data consists simply of calculating

Eq. (5) and assigning the test projections to the closest centroid.
An example of soft clustering performed by SKSC on a synthetic dataset is

depicted in Fig. 2. The AMS model selection criterion has been used to select the
bandwidth of the RBF kernel and the optimal number of clusters. The reader can
appreciate how SKSC provides more interpretable outcomes compared to KSC.

The SKSC method is summarized in Algorithm 2 and a Matlab implementation
is freely downloadable.5

Algorithm 2: SKSC algorithm [30]

Data: Training set Dtr D fxigNtr
iD1 and test set Dtest D fxtest

m gNtest
mD1, kernel function

K W Rd � R
d ! R positive definite and localized (K.xi; xj/ ! 0 if xi and xj belong to

different clusters), kernel parameters (if any), number of clusters k.
Result: Clusters fA1; : : : ;Ap; : : : ;Akg, soft cluster memberships sm.p/; p D 1; : : : ; k,

cluster prototypes SP D fspgk
pD1, sp 2 R

k�1.
1 Initialization by solving Eq. (4).
2 Compute the new prototypes s1; : : : ; sk [Eq. (6)].

3 Calculate the test data projections e.l/
m , m D 1; : : : ; Ntest, l D 1; : : : ; k � 1.

4 Find the cosine distance between each projection and all the prototypes [Eq. (7)] 8m, assign
xtest

m to cluster Ap with membership sm.p/ according to Eq. (8).

5 http://www.esat.kuleuven.be/stadius/ADB/langone/softwareSKSClab.php.

http://www.esat.kuleuven.be/stadius/ADB/langone/softwareSKSClab.php
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Fig. 2 SKSC partitioning on a synthetic dataset. (Top) Original dataset consisting of two clusters
(left) and obtained soft clustering results (right). (Bottom) Points represented in the space of the
projection e.1/ (left), for an optimal choice of k (and �2 D 1:53 � 10�3) as detected by the AMS
criterion (right)

3.3 Hierarchical Clustering

In many cases, clusters are formed by sub-clusters which in turn might have
substructures. As a consequence, an algorithm able to discover a hierarchical
organization of the clusters provides a more informative result, incorporating several
scales in the analysis. The flat KSC algorithm has been extended in two ways in
order to deal with hierarchical clustering.
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Algorithm 3: HKSC algorithm [4]

Data: Training set Dtr D fxigNtr
iD1, Validation set Dval D fxigNval

iD1 and test set
Dtest D fxtest

m gNtest
mD1, RBF kernel function with parameter �2, maximum number of

clusters kmax, set of R�2 values f�2
1 ; : : : ; �2

Rg, Fisher threshold � .
Result: Linkage matrix Z

1 For every combination of parameter pairs .k; �2/ train a KSC model using Algorithm 1,
predict the cluster memberships for validation points and calculate the related Fisher
criterion

2 8k, find the maximum value of the Fisher criterion across the given range of �2 values. If
the maximum value is greater than the Fisher threshold � , create a set of these optimal
.k

�
; �2

�

/ pairs.
3 Using the previously found .k

�
; �2

�

/ pairs train a clustering model and compute the cluster
memberships for the test set using the out-of-sample extension.

4 Create the linkage matrix Z by identifying which clusters merge starting from the bottom of
the tree which contains max k

�
clusters.

3.3.1 Approach 1

This approach, named hierarchical kernel spectral clustering (HKSC), was proposed
in [4] and exploits the information of a multi-scale structure present in the data given
by the Fisher criterion (see end of Sect. 3.1.3). A grid search over different values of
k and �2 is performed to find tuning parameter pairs such that the criterion is greater
than a specified threshold value. The KSC model is then trained for each pair and
evaluated at the test set using the out-of-sample extension. A specialized linkage
criterion determines which clusters are merging based on the evolution of the cluster
memberships as the hierarchy goes up. The whole procedure is summarized in
Algorithm 3.

3.3.2 Approach 2

In [42] and [41] an alternative hierarchical extension of the basic KSC algorithm
was introduced, for network and vector data, respectively. In this method, called
agglomerative hierarchical kernel spectral clustering (AH-KSC), the structure of the
projections in the eigenspace is used to automatically determine a set of increasing
distance thresholds. At the beginning, the validation point with maximum number
of similar points within the first threshold value is selected. The indices of all
these points represent the first cluster at level 0 of hierarchy. These points are then
removed from the validation data matrix, and the process is repeated iteratively
until the matrix becomes empty. Thus, the first level of hierarchy corresponding
to the first distance threshold is obtained. To obtain the clusters at the next level of
hierarchy the clusters at the previous levels are treated as data points, and the whole
procedure is repeated again with other threshold values. This step takes inspiration
from [9]. The algorithm stops when only one cluster remains. The same procedure
is applied in the test stage, where the distance thresholds computed in the validation
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Fig. 3 AH-KSC algorithm. Steps of AH-KSC method as described in [42] with addition of the
step where the optimal � and k are estimated

phase are used. An overview of all the steps involved in the algorithm is depicted in
Fig. 3. In Fig. 4 an example of hierarchical clustering performed by this algorithm
on a toy dataset is shown.

3.4 Sparse Clustering Models

The computational complexity of the KSC algorithm depends on solving the
eigenvalue problem (3) related to the training stage and computing Eq. (5) which
gives the cluster memberships of the remaining points. Assuming that we have
Ntot data and we use Ntr points for training and Ntest D Ntot � Ntr as test set, the
runtime of Algorithm 1 is O.N2

tr/CO.NtrNtest/. In order to reduce the computational
complexity, it is then necessary to find a reduced set of training points, without
loosing accuracy. In the next sections two different methods to obtain a sparse
KSC model, based on the Incomplete Cholesky Decomposition (ICD) and L1 and
L0 penalties, respectively, are discussed. In particular, thanks to the ICD, the KSC
computational complexity for the training problem is decreased to O.R2Ntr/ [53],
where R indicates the reduced set size.

3.4.1 Incomplete Cholesky Decomposition

One of the KKT optimality conditions characterizing the Lagrangian of prob-
lem (1) is:

w.l/ D ˚T˛.l/ D
NtrX

iD1

˛
.l/
i '.xi/: (9)

From Eq. (9) it is evident that each training data point contributes to the primal
variable w.l/, resulting in a non-sparse model. In order to obtain a parsimonious
model a reduced set method based on the Incomplete Cholesky Decomposition
(ICD) was proposed in [3, 53]. The technique is based on finding a small number
R � Ntr of points R D f OxrgR

rD1 and related coefficients �.l/ with the aim of
approximating w.l/ as:
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w.l/ � Ow.l/ D
RX

rD1

�.l/
r '. Oxr/: (10)

As a consequence, the projection of an arbitrary data point x into the training
embedding is given by:

e.l/ � Oe.l/ D
RX

rD1

�.l/
r K.x;bxr/ C bbl: (11)

The set R of points can be obtained by considering the pivots of the ICD performed
on the kernel matrix ˝. In particular, by assuming that ˝ has a small numerical
rank, the kernel matrix can be approximated by ˝ � Ő D GGT , with G 2 R

Ntr�R.
If we plug in this approximated kernel matrix in problem (3), the KSC eigenvalue
problem can be written as:

OD�1M ODU	 2UT Ǫ .l/ D b�l Ǫ .l/; l D 1; : : : ; k (12)

where U 2 R
Ntr�R and V 2 R

Ntr�R denotes the left and right singular vectors
deriving from the singular value decomposition (SVD) of G, and 	 2 R

Ntr�Ntr is
the matrix of the singular values. If now we pre-multiply both sides of Eq. (12) by
UT and replace Oı.l/ D UT Ǫ .l/, only the following eigenvalue problem of size R � R
must be solved:

UT OD�1M ODU	 2 Oı.l/ D b�l
Oı.l/; l D 1; : : : ; k: (13)

The approximated eigenvectors of the original problem (3) can be computed as
Ǫ .l/ D U Oı.l/, and the sparse parameter vector can be found by solving the following
optimization problem:

min
�.l/

k w.l/ � Ow.l/ k2
2D min

�.l/
k ˚T˛.l/ � �T�.l/ k2

2 : (14)

The corresponding dual problem can be written as follows:

˝��ı.l/ D ˝�
˛.l/; (15)

where ˝
��
rs D K.Qxr; Qxs/, ˝

�

ri D K.Qxr; xi/, r; s D 1; : : : ; R; i D 1; : : : ; Ntr and

l D 1; : : : ; k � 1. Since the size R of problem (13) can be much smaller than the
size Ntr of the starting problem, the sparse KSC method6 is suitable for big data
analytics.

6A C implementation of the algorithm can be downloaded at: http://www.esat.kuleuven.be/stadius/
ADB/novak/softwareKSCICD.php.

http://www.esat.kuleuven.be/stadius/ADB/novak/softwareKSCICD.php
http://www.esat.kuleuven.be/stadius/ADB/novak/softwareKSCICD.php


148 R. Langone et al.

3.4.2 Using Additional Penalty Terms

In this part we explore sparsity in the KSC technique by using an additional penalty
term in the objective function (14). In [3], the authors used an L1 penalization term
in combination with the reconstruction error term to introduce sparsity. It is well
known that the L1 regularization introduces sparsity as shown in [66]. However, the
resulting reduced set is neither the sparsest nor the most optimal w.r.t. the quality
of clustering for the entire dataset. In [43], we introduced alternative penalization
techniques like Group Lasso [65] and [21], L0 and L1 CL0 penalizations. The Group
Lasso penalty is ideal for clusters as it results in groups of relevant data points.
The L0 regularization calculates the number of non-zero terms in the vector. The
L0-norm results in a non-convex and NP-hard optimization problem. We modify
the convex relaxation of L0-norm based on an iterative re-weighted L1 formulation
introduced in [10, 22]. We apply it to obtain the optimal reduced sets for sparse
kernel spectral clustering. Below we provide the formulation for Group Lasso
penalized objective (16) and re-weighted L1-norm penalized objectives (17).

The Group Lasso [65] based formulation for our optimization problem is:

min
ˇ2RNtr�.k�1/

k˚|˛ � ˚|ˇk2
2 C �

NtrX

lD1

p
�lkˇlk2; (16)

where ˚ D Œ
.x1/; : : : ; 
.xNtr/�, ˛ D Œ˛.1/; : : : ; ˛.k�1/�, ˛ 2 R
Ntr�.k�1/ and ˇ D

Œˇ1; : : : ; ˇNtr �, ˇ 2 R
Ntr�.k�1/ . Here ˛.i/ 2 R

Ntr while ˇj 2 R
k�1 and we set

p
�l as

the fraction of training points belonging to the cluster to which the lth training point
belongs. By varying the value of � we control the amount of sparsity introduced in
the model as it acts as a regularization parameter. In [21], the authors show that if
the initial solutions are Ǒ

1; Ǒ
2; : : : ; Ǒ

Ntr then if kX|
l .y � P

i¤l Xi
Ǒ
i/k < �, then Ǒ

l is

zero otherwise it satisfies: Ǒ
l D .X|

l Xl C �=k Ǒ
lk/�1X|

l rl where rl D y � P
i¤l Xi

Ǒ
i.

Analogous to this, the solution to the Group Lasso penalization for our problem
can be defined as: k
.xl/.˚

|˛ � P
i¤l 
.xi/ Ǒ

i/k < � then Ǒ
l is zero otherwise

it satisfies: Ǒ
l D .˚|˚ C �=k Ǒ

lk/�1
.xl/rl where rl D ˚|˛ � P
i¤l 
.xi/ Ǒ

i.
The Group Lasso penalization technique can be solved by a blockwise co-ordinate
descent procedure as shown in [65]. The time complexity of the approach is
O.maxiter � k2N2

tr/ where maxiter is the maximum number of iterations specified
for the co-ordinate descent procedure and k is the number of clusters obtained via
KSC. From our experiments we observed that on an average ten iterations suffice
for convergence.

Concerning the re-weighted L1 procedure, we modify the algorithm related to
classification as shown in [22] and use it for obtaining the reduced set in our
clustering setting:
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min
ˇ2RNtr�.k�1/

k˚|˛ � ˚|ˇk2
2 C �

NtrX

iD1

�i C k
ˇk2
2

such that kˇik2
2 � �i; i D 1; : : : ; Ntr

�i � 0;

(17)

where 
 is matrix of the same size as the ˇ matrix i.e. 
 2 R
Ntr�.k�1/. The term

k
ˇk2
2 along with the constraint kˇik2

2 � �i corresponds to the L0-norm penalty
on ˇ matrix. 
 matrix is initially defined as a matrix of ones so that it gives
equal chance to each element of ˇ matrix to reduce to zero. The constraints on
the optimization problem forces each element of ˇi 2 R

.k�1/ to reduce to zero.
This helps to overcome the problem of sparsity per component which is explained
in [3]. The � variable is a regularizer which controls the amount of sparsity that is
introduced by solving this optimization problem.

In Fig. 5 an example of clustering obtained using the Group Lasso formula-
tion (16) on a toy dataset is depicted. We can notice how the sparse KSC model
is able to obtain high quality generalization using only four points in the training
set.

4 Applications

The KSC algorithm has been successfully used in a variety of applications in
different domains. In the next sections we will illustrate various results obtained
in different fields such as computer vision, information retrieval and power load
consumer segmentation.

4.1 Image Segmentation

Image segmentation relates to partitioning a digital image into multiple regions,
such that pixels in the same group share a certain visual content. In the experiments
performed using KSC only the color information is exploited in order to segment
the given images.7 More precisely, a local color histogram with a 5 � 5 pixels
window around each pixel is computed using minimum variance color quantization
of 8 levels. Then, in order to compare the similarity between two histograms h.i/

and h.j/, the positive definite �2 kernel K.h.i/; h.j// D exp.��2
ij

�2
�

/ has been adopted

7The images have been extracted from the Berkeley image database [45].
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Fig. 5 Sparse KSC on toy dataset. (Top) Gaussian mixture with three highly overlapping
components. (Center) clustering results, where the reduced set points are indicated with red circles.
(Bottom) generalization boundaries
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Fig. 6 Image segmentation. (Left) original image. (Right) KSC segmentation

[19]. The symbol �2
ij denotes the �2

ij statistical test used to compare two probability
distributions [55], �� as usual indicates the bandwidth of the kernel. In Fig. 6 an
example of segmentation obtained using the basic KSC algorithm is given.

4.2 Scientific Journal Clustering

We present here an integrated approach for clustering scientific journals using KSC.
Textual information is combined with cross-citation information in order to obtain
a coherent grouping of the scientific journals and to improve over existing journal
categorizations. The number of clusters k in this scenario is fixed to 22 since we
want to compare the results with respect to the 22 essential science indicators (ESI)
shown in Table 2.

The data correspond to more than six million scientific papers indexed by the
Web of Science (WoS) in the period 2002–2006. The type of manuscripts considered
is article, letter, note, and review. Textual information has been extracted from titles,
abstracts and keywords of each paper together with citation information. From these
data, the resulting number of journals under consideration is 8305.

The two resulting datasets contain textual and cross-citation information and are
described as follows:

• Term/Concept by Journal dataset: The textual information was processed
using the term frequency—inverse document frequency (TF-IDF) weighting
procedure [6]. Terms which occur only in one document and stop words were not
considered into the analysis. The Porter stemmer was applied to the remaining
terms in the abstract, title, and keyword fields. This processing leads to a term-by-
document matrix of around six million papers and 669; 860 term dimensionality.
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Table 2 The 22 science fields according to the essential science indicators (ESI)

Field Name

1 Agricultural sciences

2 Biology and biochemistry

3 Chemistry

4 Clinical medicine

5 Computer science

6 Economics and business

7 Engineering

8 Environment/Ecology

9 Geosciences

10 Immunology

11 Materials sciences

Field Name

12 Mathematics

13 Microbiology

14 Molecular biology and genetics

15 Multidisciplinary

16 Neuroscience and behavior

17 Pharmacology and toxicology

18 Physics

19 Plant and animal science

20 Psychology/Psychiatry

21 Social sciences

22 Space science

The final journal-by-term dataset is a 8305�669; 860 matrix. Additionally, latent
semantic indexing (LSI) [13] was performed on this dataset to reduce the term
dimensionality to 200 factors.

• Journal cross-citation dataset: A different form of analyzing cluster informa-
tion at the journal level is through a cross-citation graph. This graph contains
aggregated citations between papers forming a journal-by-journal cross-citation
matrix. The direction of the citations is not taken into account which leads to an
undirected graph and a symmetric cross-citation matrix.

The cross-citation and the text/concept datasets are integrated at the kernel level by
considering the following linear combination of kernel matrices8:

˝ integr D �˝cross � cit C .1 � �/˝ text

where 0 � � � 1 is a user-defined integration weight which value can be obtained
from internal validation measures for cluster distortion,9 ˝cross � cit is the cross-
citation kernel matrix with ijth entry ˝cross � cit

ij D K.xcross � cit
i ; xcross � cit

j /, xcross � cit
i

is the ith journal represented in terms of cross-citation variables, ˝ text is the textual
kernel matrix with ijth entry ˝ text

ij D K.xtext
i ; xtext

j /, xtext
i is the ith journal represented

in terms of textual variables and i; j D 1; : : : ; N.
The KSC outcomes are depicted in Tables 3 and 4. In particular, Table 3 shows

the results in terms of internal validation of cluster quality, namely mean silhouette
value (MSV) [57] and Modularity [49, 50], and in terms of agreement with existing
categorizations (adjusted rand index or ARI [23] and normalized mutual information
(NMI [60]). Finally, Table 4 shows the top 20 terms per cluster, which indicate a
coherent structure and illustrate that KSC is able to detect the text categories present
in the corpus.

8Here we use the cosine kernel described in Table 1.
9In our experiments we used the mean silhouette value (MSV) as an internal cluster validation
criterion to select the value of � which gives more coherent clusters.
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Table 4 Text clustering results

Best 20 terms

Cluster 1 Diabet therapi hospit arteri coronari
physician renal hypertens mortal
syndrom cardiac nurs chronic infect
pain cardiovascular symptom serum
cancer pulmonari

Cluster 2 Polit war court reform parti legal
gender urban democraci democrat
civil capit feder discours economi
justic privat liber union welfar

Cluster 3 Diet milk fat intak cow dietari fed
meat nutrit fatti chees vitamin
ferment fish dry fruit antioxid breed
pig egg

Cluster 4 Alloi steel crack coat corros fiber
concret microstructur thermal weld
film deform ceram fatigu shear
powder specimen grain fractur glass

Cluster 5 Infect hiv vaccin viru immun dog
antibodi antigen pathogen il pcr
parasit viral bacteri dna therapi mice
bacteria cat assai

Cluster 6 Psycholog cognit mental adolesc
emot symptom child anxieti student
sexual interview school abus
psychiatr gender attitud mother
alcohol item disabl

Cluster 7 Text music polit literari philosophi
narr english moral book essai write
discours philosoph fiction ethic
poetri linguist german christian
religi

Cluster 8 Firm price busi trade economi invest
capit tax wage financi compani
incom custom sector bank organiz
corpor stock employ strateg

Cluster 9 Nonlinear finit asymptot veloc
motion stochast elast nois turbul ltd
vibrat iter crack vehicl infin singular
shear polynomi mesh fuzzi

Cluster 10 Soil seed forest crop leaf cultivar
seedl ha shoot fruit wheat fertil
veget germin rice flower season irrig
dry weed

Cluster 11 Soil sediment river sea climat land
lake pollut wast fuel wind ocean
atmospher ic emiss reactor season
forest urban basin

Best 20 terms

Cluster 12 Algebra theorem manifold let finit
infin polynomi invari omega
singular inequ compact lambda
graph conjectur convex proof
asymptot bar phi

Cluster 13 Pain surgeri injuri lesion muscl bone
brain ey surgic nerv mri ct syndrom
fractur motor implant arteri knee
spinal stroke

Cluster 14 Rock basin fault sediment miner ma
tecton isotop mantl volcan
metamorph seismic sea magma faci
earthquak ocean cretac crust
sedimentari

Cluster 15 Web graph fuzzi logic queri schedul
semant robot machin video wireless
neural node internet traffic
processor retriev execut fault packet

Cluster 16 Student school teacher teach
classroom instruct skill academ
curriculum literaci learner colleg
write profession disabl faculti
english cognit peer gender

Cluster 17 Habitat genu fish sp forest predat
egg nest larva reproduct taxa bird
season prei nov ecolog island breed
mate genera

Cluster 18 Star galaxi solar quantum neutrino
orbit quark gravit cosmolog decai
nucleon emiss radio nuclei relativist
neutron cosmic gaug telescop hole

Cluster 19 Film laser crystal quantum atom ion
beam si nm dope thermal spin
silicon glass scatter dielectr voltag
excit diffract spectra

Cluster 20 Polym catalyst ion bond crystal
solvent ligand hydrogen nmr
molecul atom polymer poli aqueou
adsorpt methyl film spectroscopi
electrod bi

Cluster 21 Receptor rat dna neuron mice
enzym genom transcript brain mutat
peptid kinas inhibitor metabol
cancer mrna muscl ca2 vitro
chromosom

Cluster 22 Cancer tumor carcinoma breast
therapi prostat malign chemotherapi
tumour surgeri lesion lymphoma
pancreat recurr resect surgic liver
lung gastric node

Best 20 terms per cluster according to the integrated results (LSICcross-citation) with � D 0:5.
The terms found display a coherent structure in the clusters
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4.3 Power Load Clustering

Accurate power load forecasts are essential in electrical grids and markets partic-
ularly for planning and control operations [5]. In this scenario, we apply KSC for
finding power load smart meter data that are similar in order to aggregate them
and improve the forecasting accuracy of the global consumption signal. The idea
is to fit a forecasting model on the aggregated load of each cluster (aggregator).
The k predictions are summed to form the final disaggregated prediction. The
number of clusters and the time series used for each aggregator are determined
via KSC [1]. The forecasting model used is a periodic autoregressive model with
exogenous variables (PARX) [18]. Table 5 (taken from [1]) shows the model
selection and disaggregation results. Several kernels appropriate for time series were
tried including a Vector Autoregressive (VAR) kernel [Add: Cuturi, Autoregressive
kernels for time series, arXiv], Triangular Global Alignment (TGA) kernel [Add:
Cuturi, Fast Global Alignment Kernels, ICML 2011] and an RBF kernel with
Spearman’s distance. The results show an improvement of 20:55 % with the
similarity based on Spearman’s correlation in the forecasting accuracy compared
to not using clustering at all (i.e., aggregating all smart meters). The BLF was also
able to detect the number of clusters that maximize the improvement (six clusters in
this case), as shown in Fig. 7.

4.4 Big Data

KSC has been shown to be effective in handling big data at a desktop PC scale. In
particular, in [39], we focused on community detection in big networks containing
millions of nodes and several million edges, and we explained how to scale our

Table 5 Kernel comparisons for power load clustering data

Kernel Cluster number (BLF) Cluster number (MAPE) MAPE (%)

VAR 7 13 2.85

TGA 5 8 2.61

Spearman 6 6 2:59
RBF-DB6-11 4 5 3.02

kmeans-DB6-11 � 16 2.9

Random � 3 2:93 ˙ 0:03

Model selection and forecasting results in terms of the mean absolute percentage
error (MAPE). RBF-DB6-11 refers to using the RBF kernel on the detail coefficients
using wavelets (DB6, 11 levels). The winner is the Spearman-based kernel with a
improvement of 20:55 % compared to the baseline MAPE of the disaggregated forecast
equal to 3:26 %. For this kernel, the number of clusters k found by the BLF also
coincides with the number of aggregators needed to maximize the improvement
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Fig. 7 Power load clustering results. Visualization of the six clusters obtained by KSC. (Top)
aggregated load in summer. (Bottom) aggregated load in winter. The daily cycles are clearly visible
and the clusters capture different characteristics of the consumption pattern. This clustering result
improves the forecasting accuracy by 20:55 %

method by means of three steps.10 First, we select a smaller subgraph that preserves
the overall community structure by using the FURS algorithm [38], where hubs in
dense regions of the original graph are selected via a greedy activation–deactivation
procedure. In this way the kernel matrix related to the extracted subgraph fits the
main memory and the KSC model can be quickly trained by solving a smaller
eigenvalue problem. Then the BAF criterion described in Sect. 3.1.3, which is
memory and computationally efficient, is used for model selection.11 Finally, the
out-of-sample extension is used to infer the cluster memberships for the remaining
nodes forming the test set (which is divided into chunks due to memory constraints).

In [42] the hierarchical clustering technique summarized in Sect. 3.3.2 has been
used to perform community detection in real-life networks at different resolutions.
In the experiment conducted on seven networks from the Stanford SNAP datasets
(http://snap.stanford.edu/data/index.html), the method has been shown to be able
to detect complex structures at various hierarchical levels, by not suffering of

10A Matlab implementation of the algorithm can be downloaded at: http://www.esat.kuleuven.be/
stadius/ADB/mall/softwareKSCnet.php.
11In [40] this model selection step has been eliminated by proposing a self-tuned method where
the structure of the projections in the eigenspace is exploited to automatically identify an optimal
cluster structure.

http://snap.stanford.edu/data/index.html
http://www.esat.kuleuven.be/stadius/ADB/mall/softwareKSCnet.php
http://www.esat.kuleuven.be/stadius/ADB/mall/softwareKSCnet.php
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any resolution limit. This is not the case for other state-of-the-art algorithms like
Infomap [56], Louvain [9], and OSLOM [24]. In particular, we have observed that
Louvain method is often not able to detect high quality clusters at finer levels of
granularity (< 1000 clusters). On the other hand, OSLOM cannot identify good
quality coarser clusters (i.e. number of clusters detected are always > 1000),
and Infomap method produces only two levels of hierarchy. Moreover, in general
Louvain method works best in terms of the Modularity criterion, and it always
performs worse than hierarchical KSC w.r.t. cut-conductance [35]. Regarding
Infomap, in most of the cases the clusters at one level of hierarchy perform good
w.r.t. only one quality metric. Concerning OSLOM, this algorithm in the majority
of the datasets has poorer performances than KSC in terms of both Modularity and
cut-conductance.

An illustration of the community structure obtained on the Cond-mat network of
collaborations between authors of papers submitted to Condense Matter category
in Arxiv [34] is shown in Fig. 8. This network is formed by 23; 133 nodes and
186; 936 edges. For the analysis and visualization of bigger networks, and the
detailed comparison of KSC with other community detection methods in terms of
computational efficiency and quality of detected communities, the reader can refer
to [42].

Finally, in [44], we propose a deterministic method to obtain subsets from big
vector data which are a good representative of the inherent clustering structure.
We first convert the large-scale dataset into a sparse undirected k-NN graph
using a Map-Reduce framework. Then, the FURS method is used to select a
few representative nodes from this graph, corresponding to certain data points in
the original dataset. These points are then used to quickly train the KSC model,

Fig. 8 Large-scale
community detection.
Community structure
detected at one particular
hierarchical level by the
AH-KSC method
summarized in Sect. 3.3.2,
related to the Cond-Mat
collaboration network
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Fig. 9 Big data clustering. (Top) illustration of the steps involved in clustering big vector data
using KSC. (Bottom) map-reduce procedure used to obtain a representative training subset by
constructing a k-NN graph

while the generalization property of the method is exploited to compute the cluster
memberships for the remainder of the dataset. In Fig. 9 a summary of all these steps
is sketched.

5 Conclusions

In this chapter we have discussed the kernel spectral clustering (KSC) method,
which is cast in an LS-SVM learning framework. We have explained that, like
in the classifier case, the clustering model can be trained on a subset of the data
with optimal tuning parameters, found during the validation stage. The model is
then able to generalize to unseen test data thanks to its out-of-sample extension
property. Beyond the core algorithm, some extensions of KSC allowing to produce
probabilistic and hierarchical outputs have been illustrated. Furthermore, two
different approaches to sparsify the model based on the Incomplete Cholesky
Decomposition (ICD) and L1 and L0 penalties have been described. This allows
to handle large-scale data at a desktop scale. Finally, a number of applications in
various fields ranging from computer vision to text mining have been examined.
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