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Abstract Target of cluster analysis is to group data represented as a vector of
measurements or a point in a multidimensional space such that the most similar
objects belong to the same group or cluster. The greater the similarity within a
cluster and the greater the dissimilarity between clusters, the better the clustering
task has been performed. Starting from the 1990s, cluster analysis has emerged as
an important interdisciplinary field, applied to several heterogeneous domains with
numerous applications, including among many others social sciences, information
retrieval, natural language processing, galaxy formation, image segmentation, and
biological data.

Scope of this paper is to provide an overview of the main types of criteria adopted
to classify and partition the data and to discuss properties and state-of-the-art
solution approaches, with special emphasis to the combinatorial optimization and
operational research perspective.

1 Introduction

Given a finite set of objects, cluster analysis aims to group them such that the most
similar ones belong to the same group or cluster, and dissimilar objects are assigned
to different clusters. In the scientific literature, the objects are also called entities
or patterns and are usually represented as a vector of measurements or a point
in a multidimensional space. Clearly, it can be easily guessed that the greater the
similarity within a cluster and the greater the dissimilarity between clusters, the
better the clustering task has been performed.

Starting from the 1990s, cluster analysis has emerged as an important inter-
disciplinary field, involving different scientific research communities, including
mathematics, theoretical and applied statistics, genetics, biology, biochemistry,
computer science, and engineering. It has been applied to several domains with
numerous applications, ranging from social sciences to biology. Starting from one
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of the pioneering paper of Rao, which appeared in 1971 [60], more recent surveys
on clustering algorithms and their applications can be found in [8–11, 21, 22, 40,
41, 49, 53, 53, 77], and very recently in [29, 45, 71]. Nice books and edited books
are [12, 56, 57, 76].

In cluster analysis, the criterion for evaluating the quality of a clustering strongly
depends upon the specific application in which it is to be used. The cluster
task can be mathematically formulated as a constrained fractional nonlinear 0–1
programming problem, and there are no computationally efficient procedures for
solving such a problem, which becomes computationally tractable only under
restrictive hypotheses.

This paper surveys the main types of clustering and criteria for homogeneity
or separation, with special emphasis to the optimization and operational research
perspective. In fact, first a few mathematical models of the problem are reported
under several different criterion adopted to classify the data and some classical
state-of-the-art exact methods are described that use the mathematical model of the
problem. Then, the most famous and applied state-of-the-art clustering algorithms
are reviewed, underlying and comparing their main ingredients.

The remainder of this paper is organized as follows. The next section lists
some among the most useful applications of the problem. In Sect. 3, the cluster
analysis task is formally stated and the most used distance measures between the
various entities are described. State-of-the-art mathematical formulations of the
problem along with some classical state-of-the-art exact methods are described in
Sect. 4. In Sect. 5, properties and state-of-the-art solution approaches are discussed.
Concluding remarks are given in the last section.

2 Applications

Cluster analysis applies in several heterogeneous domains with numerous appli-
cations, whose number grows increasingly in recent years. As the increasingly
sophisticated technology allows the storage of increasingly large amounts of data,
the availability of efficient techniques for generating new information by examining
the resulting large databases becomes ever more urgent.

Some of cluster analysis applications are listed in the following.

• Social sciences: in this context, clustering helps in understanding how people
analyze and catalogue life experiences.

• Information retrieval: in this context, clustering is used to create groups of
documents with the goal of improving the efficiency and effectiveness of the
retrieval, such as in the case of thousands of Web pages retrieved as a result of a
query to a search engine (see, e.g., [16–18, 74]).

• Natural language processing: typically, large vocabularies of words of a given
natural language must be clustered w.r.t. corpora of very high size [70].
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• Business: in this application, one can be interested in analyzing information
about potential customers, in order to cluster them for some sort of marketing
activities [58].

• Galaxy formation: in this context, a study has been conducted on the formation
of galaxies by gas condensation with massive dark halos [75].

• Image segmentation: in this case, the segmentation is achieved by searching for
closed contours of the elements in the image [73].

• Biological data: one among the most prominent interests of the biologists is the
analysis of huge data containing genetic information, such as to find groups of
genes having similar functions (see among others [3, 20, 28, 30, 50, 54, 55]).

3 Problem Definition and Distance Measures Definition

In cluster analysis, we are given

˘ a set of N objects (entities, patterns) O D fo1; : : : ; oNg;
˘ a set of M of pre-assigned clusters S D fS1; : : : ; SMg;
˘ a function d W O � O 7! R that assigns to each pair oi; oj 2 O a “metric distance”

or “similarity” dij 2 R (usually, dij � 0, dii D 0, dij D dji, for i; j D 1; : : : ; N)

and the objective is to assigning the objects in O to some cluster in S while
optimizing some distance criteria in such a way that the greater the similarity
(or proximity, homogeneity) within a cluster and the greater the difference between
clusters, the better or more distinct the clustering [38, 40].

According to [38] and [40], the problem involves the following five steps:

1. pattern representation (optionally including feature extraction and/or selection);
2. definition of a pattern proximity (or similarity) measure appropriate to the data

domain;
3. clustering or grouping;
4. data abstraction (if needed), and
5. assessment of output (if needed).

In more detail, the first step, usually referred to as pattern representation, refers
to the number of classes, the number of available patterns, and the number, type, and
scale of the features available to the clustering algorithm. Typical of this first step are
the process of feature selection, i.e., the identification of the most effective subset
of the original features to use in clustering, and the process of feature extraction,
i.e., the transformations of the input features to produce new salient features.

Pattern proximity (similarity) is usually measured by a distance function defined
on pairs of patterns. In the scientific literature, the patterns or data objects are usually
represented as a vector of measurements or a point in a multidimensional space.
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Formally, a data object oi, i D 1; : : : ; N can be represented as the following
numerical vector

�!
A i D faij j 1 � j � Lg;

where

• aij is the value of the jth feature for the ith data object and
• L is the number of features.

Then, the proximity dij between two objects oi and oj is measured by a proximity

function d of corresponding vectors
�!
A i and

�!
A j.

Several different scientific communities have used and discussed a variety of
distance measures (see, for example, [4, 37, 38, 41]). Some of them are listed in the
following.

3.1 Euclidean Distance

Given two objects oi and oj 2 O, their Euclidean distance in L-dimensional space is
defined as follows:

dij D
v
u
u
t

L
X

kD1

.aik � ajk/2 D kai � ajk2: (1)

Euclidean distance has an intuitive meaning and it is usually used to evaluate the
proximity of objects in two- or three-dimensional space. In general, it works well
when the data set has “compact” or “isolated” clusters [51].

3.2 Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient measures the similarity between the shapes of
two patterns, also known as profiles.

Given two objects oi and oj 2 O, their Pearson’s correlation coefficient is defined
as follows:

dij D
PL

kD1Œ.aik � �oi/ � ..ajk � �oj//�
q

PL
kD1 aik � �oi/

2 �
q

PL
kD1 ajk � �oj/

2

; (2)

where �oi and �oj are the mean value for
�!
A i and

�!
A j, respectively.
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This correlation coefficient views each object as a random variable with L
observations and measures the similarity between two objects by calculating the
linear relationship between the distributions of the two corresponding random
variables. One drawback of the Pearson’s correlation coefficient is that it assumes
an approximate Gaussian distribution of the patterns and may not be robust for non-
Gaussian distributions, as experimentally shown by Bickel in 2001 [7].

3.3 City-Block or Manhattan

City-block or Manhattan distance simulates the distance between points in a city
road grid. It measures the absolute differences between two object attributes.

Given two objects oi and oj 2 O, their City-block or Manhattan distance is
defined as follows:

dij D
L

X

kD1

jaik � ajkj: (3)

3.4 Cosine or Uncentered Correlation

Cosine or uncentered correlation is a geometric correlation defined by the angle
between two objects.

Given two objects oi and oj 2 O, their cosine or uncentered correlation is defined
as follows:

Dij D
PL

kD1 aik � ajk
PL

kD1 a2
ik

PL
kD1 a2

jk

: (4)

Note that,

• the larger the value of Dij, the lower the angle between the objects;
• Dij 2 Œ�1; 1�: Dij D �1 implies that the angle between vectors representing oi

and oj is a right angle; while Dij D 1 implies that the angle between oi and oj is 0;
• dij D 1 � jDijj.

4 Mathematical Formulations of the Problem

In 1971, Rao [60] presented several mathematical formulations of the clustering
problem, depending on several different criteria adopted to classify the data. Some
of them are reported in the following.
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4.1 Minimize (Maximize) the Within (Between)-Clusters
Sum of Squares

Defining a set of N � M Boolean decision variables xik 2 f0; 1g, i D 1; : : : ; N,
k D 1; : : : ; M, such that in a solution

xik D
�

1; if oi 2 O is in cluster SkI
0; otherwise;

the problem admits the following fractional nonlinear mathematical formulation:

.DC � 1/ min
M

X

kD1

( PN�1
iD1

PN
jDiC1 d2

ij xik xjk
PN

iD1 xik

)

s:t:

.DC � 1:1/

M
X

kD1

xik D 1; i D 1; : : : ; N

.DC � 1:2/ xik � 0 and integer; i D 1; : : : ; N; k D 1; : : : ; M:

Constraints (DC-1.1) assure that each oi, i D 1; : : : ; N, belongs to only one
cluster.

Since (DC-1) is a fractional nonlinear 0–1 programming problem, it is difficult
to solve. Exceptions are the two cases described in the following two paragraphs.

4.1.1 Cardinality of Each Cluster A Priori Known

A special case of problem (DC-1) occurs when the cardinality of each cluster is a
priori known, i.e., when

jSkj D nk; s:t:
M

X

kD1

nk D N:

In this case, mathematical formulation (DC-1) can be slightly modified to take
into account this further information as follows:

.DC � 2/ min
M

X

kD1

1

nk

8

<

:

N�1
X

iD1

N
X

jDiC1

d2
ij xik xjk

9

=

;

s:t:

.DC � 2:1/

M
X

kD1

xik D 1; i D 1; : : : ; N
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.DC � 2:2/

N
X

iD1

xik D nk; k D 1; : : : ; M

.DC � 2:3/ xik � 0 and integer; i D 1; : : : ; N; k D 1; : : : ; M:

In formulation (DC-2), the objective remains to minimize (maximize) the within
(between)-clusters sum of squares. As in (DC-1), constraints (DC-2.1) guarantee
that each object oi, i D 1; : : : ; N, belongs to only one cluster. The additional set of
constraints (DC-2.2) impose that for each cluster Sk, k D 1; : : : ; M, the number of
objects in Sk is equal to nk.

(DC-2) is still a nonlinear 0–1 formulation, but its objective function has lost
the fractional characteristics, since here fnkgM

kD1 are known in advance. Among
the first approaches to solve this problem are to be counted the Boolean methods
proposed by Hammer and Rudeanu in [35] to be applied once the clustering problem
is interpreted as a constrained nonlinear Boolean programming problem. Another
pioneering approach has been described by Rao in [60]. It first linearizes the
objective function by adding a further set of constraints. Then, it solves the resulting
problem by applying any known method for linear integer problems. The resulting
linearized 0–1 problem admits the following formulation:

.DC0 � 2/ min
M

X

kD1

1

nk

8

<

:

N�1
X

iD1

N
X

jDiC1

d2
ij yk

ij

9

=

;

s:t:
.DC0 � 2:1/ xik C xjk � yk

ij � 1; i D 1; : : : ; N � 1; j D i C 1; : : : ; N;

k D 1; : : : ; M

.DC0 � 2:2/

M
X

kD1

xik D 1; i D 1; : : : ; N

.DC0 � 2:3/

N
X

iD1

xik D nk; k D 1; : : : ; M

.DC0 � 2:4/ xik; yk
ij � 0 and integer; i; j D 1; : : : ; N; k D 1; : : : ; M:

It must be underlined that, although easier to solve formulation (DC0-2) presents
a number of constraints that grows rapidly with N and M and therefore can only be
used for small instances of the problem.
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4.1.2 Bipartition of the Patterns

Another special case occurs when M D 2, i.e., when there are only two pre-assigned
clusters S1 and S2. In this particular scenario, introducing N Boolean decision
variables xi 2 f0; 1g, i D 1; : : : ; N, such that in a solution

xi D
�

1; if oi 2 O is in cluster S1I
0; if oi 2 O is in cluster S2;

the clustering task can be modeled as the following fractional nonlinear 0–1
programming problem with no additional constraints:

.DC � 3/ min

8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

N�1
X

iD1

N
X

jDiC1

d2
ij xi xj

N
X

iD1

xi

C

N�1
X

iD1

N
X

jDiC1

d2
ij .1 � xi/ .1 � xj/

N�
N

X

iD1

xi

9

>
>
>
>
>
=

>
>
>
>
>
;

s:t:
.DC � 3:1/ xi 2 f0; 1g; i D 1; : : : ; N:

Based on the above mathematical formulation, Rao [60] designed an exact
method that he presented as a Branch and Bound algorithm, but that is quite a
method of exploring the feasible region making use of appropriate lower bounds
obtained by means of any relaxation. The root of the decision tree corresponds
to the empty solution in which any object has been assigned yet. An object oi

is selected and a branch is emanated: for convenience, the assignment of oi to
cluster S1 corresponds to the right branch and that to cluster S2 to the left branch.
At a generic iteration, each current leaf of the tree corresponds to a partial solution
characterized by some objects assigned to S1, some assigned to S2, while others are
yet to be assigned.

Generally speaking, in order to design any Branch and Bound approach, it is
necessary to specify the following key issues:

• the branching rule;
• the bounding strategy;
• the fathoming criterion.

About the branching rule, let us suppose that at a generic iteration t the algorithm
is visiting node t of the tree that corresponds to a partial solution, where we have a
set (possibly empty) of objects in S1 and a set (possibly empty) of objects in S2. Let
O D OnfS1 [S2g be the set of objects that are still to be assigned and let xbest be the
incumbent solution, i.e., the best feasible solution found so far (at the beginning, xbest

either is a known feasible solution or it is empty). If O D ;, then a complete solution
has been found and xbest is eventually updated. Otherwise, a branching operation
should be performed. Before performing a further branching, the so-called bounding
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criterion is tested, i.e., a lower bound for the objective function is computed (see
hereafter how to compute a valid lower bound) and if the lower bound is greater than
or equal to the objective function value corresponding to xbest, then no branching is
performed since any feasible solution that can be generated from node t will be
no better than the incumbent solution itself. Conversely, if the bounding criterion
fails, a branching operation is performed by assigning to cluster S1 an object k 2 O
such that

ok D arg min
j2O

X

Oi2S1

dOij;

i.e., ok is a not yet assigned object that corresponds to the minimum sum of the
distances to all other objects already assigned to cluster S1.

Generally speaking, the strategy for selecting the next sub-problem to be
investigated determines how the Branch and Bound algorithm should proceed
through the search tree and can have a significant effect on the behavior of the
algorithm (fathoming rule). In [60], the proposed approach adopts a depth first
search (DFS, for short) strategy, where the node with the largest level in the search
tree is chosen for exploration. The algorithm continues branching until the end of the
tree is reached or the bounding criterion indicates any branching is further needed.
When this happens, the algorithm back-tracks along the tree until a node is reached
with an unexplored branch to the left. A graphical representation of the branching
rule is depicted in Fig. 1.

To obtain a lower bound, Rao [60] proposed several different strategies, based on
the following further definitions and notation.

At a given node t of the branching tree, let x be a Boolean partial solution defined
as in formulation (DC-3) and O D O n fS1 [ S2g. Moreover, let

Fig. 1 Graphical
representation of the
branching rule

(DC-3) t

i

(DC-3)  0Root of the 
Branching Tree

o in S io in S12

(DC-3)  1 (DC-3)  2

ko in S1

(DC-3)  t+1
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} K1 D
X

i; j2S1

dij;

} K2 D
X

i; j2S2

dij;

} D be the n � n symmetric distance matrix;
} F be a jOj � jS1j sub-matrix of D containing the distance between each currently

not yet assigned object k 2 O and an object in S1;
} Fi, i D 1; : : : ; jOj, be the sum of the distances in row i of matrix F;
} H be a jS2j � jS1j sub-matrix of D containing the distance between each object in

S2 and an object in S1;
} Hi, i D 1; : : : ; jS1j, be the sum of the distances in row i of matrix H;
} C be a jOj � jOj sub-matrix of D containing the distance between each pair

of unassigned objects, whose diagonal elements are assigned a very high value
(C1).

Without loss of generality, matrices F and H are assumed arranged in such a
way that

Fi < Fj; if i < jI
Hi < Hj; if i < j:

The objective function can be rewritten as follows:

Z D min

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

K1 C
X

i2S1; j2O

dij xi xj C
X

i; j2O

dij xi xj

jS1j C
X

i2O

xi

C
K2 C

X

i2S2; j2O

dij.1 � xi/.1 � xj/ C
X

i; j2O

dij.1 � xi/.1 � xj/

jS2j C
0

@jOj �
X

i2O

xi

1

A

9

>
>
>
>
>
>
=

>
>
>
>
>
>
;

; (5)

where xi 2 f0; 1g.
For any fixed value for n D

X

i2O

xi, by setting n0 D jOj � n, p D jS1j C n, and

t D jS2j C n0, Z in (5) can be rewritten as follows:

Z0 D min t �
2

4

X

i2S1; j2O

dijxixj C
X

i; j2O

dijxixj

3

5

C p �
2

4

X

i2S2; j2O

dij.1 � xi/.1 � xj/ C
X

i; j2O

dij.1 � xi/.1 � xj/

3

5 ; (6)

given that the denominator (equal to pt), K1t, and K2p are constant.
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By varying n in its range from 0 to jOj, jOj C 1 lower bounds for Z0 (6) are
computed and the minimum among them is kept as lower bound for Z (5). One way
to obtain such a lower bound is the following:

Z0 � u1 C u2 C u3;

where

u1 D t � min
X

i2S1; j2O

dijxixj D t �
n

X

iD1

FiI

u2 D p � min
X

i2S2; j2O

dij.1 � xi/.1 � xj/ D p �
n0

X

iD1

HiI

u3 D
2

4t � min
X

i; j2O

dijxixj

3

5 C
2

4p � min
X

i; j2O

dij.1 � xi/.1 � xj/

3

5 :

Note that, the number of addenda in the summation to compute u3 is v D
n�.n�1/Cn0.n0�1/

2
, lying either in the upper or in the lower triangular part of the

symmetric matrix C. Consequently, a lower bound for u3 can be obtained by
multiplying minft; pg by the sum of the v smallest elements of one of the triangle
of matrix C. The reader interested in learning further techniques to compute a lower
bound can refer to Rao’s paper [60].

4.2 Optimizing the Within Clusters Distance

If one is interested in minimizing the total within clusters distance, the clustering
task objective can be formulated as follows:

.DC � 4/ min
M

X

kD1

8

<

:

N�1
X

iD1

N
X

jDiC1

dij xik xjk

9

=

;

s:t:

.DC � 4:1/

M
X

kD1

xik D 1; i D 1; : : : ; N

.DC � 4:2/ xik � 0 and integer; i D 1; : : : ; N; k D 1; : : : ; M:

Note that, the objective function of (DC-4) is similar to the objective function of
(DC-2), with the only differences that here the factors 1

nk
, k D 1; : : : ; M, must not

appear and coherently constraints (DC-2.2) do not require to be imposed.
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A further useful possible target of a clustering task is to minimize the maximum
within cluster distance. In this case, one is basically interested in minimizing the
maximum distance within clusters and the problem can be modeled as a linear
integer programming problem as follows:

.DC � 5/ min Z
s:t:

.DC � 5:1/ dij xij C dij xjk � Z � dij; i D 1; : : : ; N � 1

j D i C 1; : : : ; N
k D 1; : : : ; M

.DC � 5:2/

M
X

kD1

xik D 1; i D 1; : : : ; N; k D 1; : : : ; M

.DC � 5:3/ xik � 0 and integer; i D 1; : : : ; N; k D 1; : : : ; M

.DC � 5:4/ Z � 0 and integer:

In the case of minimizing the distance between the objects inside the same
cluster, in 2010 Nascimento et al. [55] slightly modified Rao’s model (DC-4) as
follows:

.DC � 6/ min
N�1
X

iD1

N
X

jDiC1

dij

M
X

kD1

xik � xjk

s:t:

.DC � 6:1/

M
X

kD1

xik D 1; i D 1; : : : ; N

.DC � 6:2/

N
X

iD1

xik � 1; k D 1; : : : ; M

.DC � 6:3/ xik 2 f0; 1g; i D 1; : : : ; N; k D 1; : : : ; M:

Note that, a set of additional constraints (DC-6.2) are imposed to guarantee
that each cluster Sk, k D 1; : : : ; M, contains at least one object. In the attempt of
remedying to the nonlinearity of the objective function, Nascimento et al. proposed
a linearization of the model (DC-6). In more detail, by defining a further decision
vector y 2 RN�N , the linearized version of formulation (DC-6) is the following:
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.LDC � 6/ min
N�1
X

iD1

N
X

jDiC1

dij � yij

s:t:

.LDC � 6:1/

M
X

kD1

xik D 1; i D 1; : : : ; N

.LDC � 6:2/

N
X

iD1

xik � 1; k D 1; : : : ; M

.LDC � 6:3/ xik 2 f0; 1g; i D 1; : : : ; N; k D 1; : : : ; M

.LDC � 6:4/ yij � xikCxjk�1; i D 1; : : : ; N; j D i C 1; : : : ; N; k D 1; : : : ; M

.LDC � 6:5/ yij � 0; i D 1; : : : ; N; j D i C 1; : : : ; N:

Constraints (LCD-6.4) and (LCD-6.5) guarantee that yij D 1 if xik D xjk D 1,
i.e., if objects oi; oj 2 O are in the same cluster. Therefore, it can be easily seen
that the objective function of model (LCD-6) aims at minimizing the distance
between objects in the same cluster. Note that, model (LCD-6) has N�.N�1/�.MC1/

2

more constraints than (DC-6) but it is linear and therefore “easier” to be solved.
Exact methods [35, 60] and the above-described mathematical formulations of

the problem can be used only for small- sized instances, since the number of
constraints characterizing the models increases very rapidly with both the number
of objects N and the number of pre-assigned clusters M.

5 A Review of the Most Popular Clustering Techniques

According to Jain et al. [40] (see the taxonometric representation of clustering
methods in Fig. 2), state-of-the-art clustering algorithms can be mainly divided into
two families: partitioning and hierarchical algorithms.

A partitioning method partitions the set of data objects into non-overlapping
clusters such that each data object belongs to exactly one cluster. Instead, in a
hierarchical approach a cluster is permitted to have subclusters and the result of the
clustering task is a set of nested clusters that can be organized in a tree. Each node
of the tree corresponds to a cluster and it is the union of its children (subclusters).
Clearly, the leaves have no subclusters and the root node represents the cluster
containing all the objects.

Besides exclusive/non-overlapping versus overlapping clustering, in the liter-
ature several different further types of clusterings can be found, such as fuzzy
clustering and probabilistic clustering.
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CLUSTERINGCLUSTERING

Hierarchical

Single Link

Partitional

Complete Link Square error

K-means

Graph theory Mixture
resolving

Expectation
Maximization

Fig. 2 A taxonomy of clustering methods

In a fuzzy clustering, clusters are viewed as fuzzy sets and a membership weight
function W W O�S 7! Œ0; 1� is defined such that for each object oi 2 O, i D 1; : : : ; N,
and for each cluster Sk, k D 1; : : : ; M, Wik measures a “level” of membership of oi

to cluster Sk. Clearly, Wik D 0 corresponds to “absolutely oi … Sk, while Wik D 1

corresponds to “absolutely oi 2 Sk.
Similarly to fuzzy clustering, a probabilistic clustering requires the computation

of the probability pik with which each object oi 2 O, i D 1; : : : ; N, belongs to
each cluster Sk, k D 1; : : : ; M. Clearly, it must be imposed that these probabilities
must sum to 1. In general, probabilistic clustering are converted to an exclusive/non-
overlapping clustering, where each object is assigned to the cluster in which its
probability is highest.

5.1 Hierarchical Clustering Algorithms

The most popular hierarchical clustering algorithms are the single-link algorithm
[65], complete-link [46], and minimum-variance algorithms [72]. The single-link
and the complete-link approaches differ in how they define the similarity between
a pair of clusters: in the single-link approach, this distance is the minimum of the
distances between all pairs of patterns drawn from the two clusters (one pattern
from the first cluster, the other from the second); in a complete-link algorithm,
this distance is the maximum of all pairwise distances between patterns in the two
clusters. In either case, two clusters are merged to form a larger cluster based on
minimum distance criteria.
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5.2 Partitioning Clustering Algorithms

The most popular partitioning clustering algorithms are the squared error algorithms
(among them the most famous are the k-means method [52] and the k-medoid
method [43, 44]), graph-theoretic algorithms [78], and mixture-resolving and mode-
seeking algorithms [38].

5.2.1 Squared Error Algorithms and the k-Means/k-Medoid Algorithms

The squared error criterion is the most intuitive and used criterion among parti-
tioning clustering techniques. As the Euclidean distance, it tends to work well with
“isolated” and “compact” clusters.

Given a clustering S of a set of patterns O containing M clusters, the squared
error for S, also known as scatter, is defined as

E2.O; S/ D
M

X

jD1

nj
X

iD1

ka.j/
i � cjk2;

where

˘ nj is the number of objects in cluster j 2 f1; : : : ; Mg;

˘ a.j/
i the ith pattern belonging to cluster j 2 f1; : : : ; Mg;

˘ cj is the centroid of cluster j 2 f1; : : : ; Mg.

The framework of a generic squared error algorithm is described in Fig. 3.
The k-means algorithm [52] and the k-medoid algorithm [43] are the simplest

and maybe most famous approaches that use a squared error criterion. k-means
relies on the definition of a centroid usually as the mean of a group of objects and
it is typically applied to objects in a continuous n-dimensional space. Conversely,
k-medoid algorithm relies on the definition of a medoid as the most representative
object for a group of objects and in principle can be used in a wider range of contexts
compared to k-means, since it only requires a suitable definition of a proximity

Fig. 3 Framework of a general squared error algorithm
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Fig. 4 Framework of the k-means algorithm

Fig. 5 Framework of the bisection k-means algorithm

measure among objects. It has to be furthermore underlined that in a k-medoid
algorithm, the medoid is by definition an object of the given set of objects O, while
in a k-means approach this property is not necessarily satisfied by a centroid.

A typical k-means algorithm is described in Fig. 4. It starts with a random initial
partition of the data objects and keeps reassigning objects to “close” clusters until
a convergence criterion is met. The most used stopping criteria are no (or minimal)
reassignment of patterns to new cluster centers or minimal decrease in squared
error. In this latter case, when the stopping criterion is related to the squared error,
to evaluate a clustering it is generally used as objective function a function that
takes into account the squared error: among different clustering of the same set of
objects it is preferred the one corresponding to the minimum squared error, since
this means that its centroids better represent the objects in their own cluster.

The main drawback of the k-means algorithm is that the quality of the solution
it returns strongly depends upon the selection of the initial partition. If the initial
partition is not properly chosen, the approach may converge to a local minimum of
the criterion function value. In the attempt to overcome this important drawback of
the k-means approach, a variant of the method has been proposed called bisection
k-means [67, 68]. The bisection k-means initially splits the objects into two clusters,
then further splits one of the just created clusters, and so on, iteratively, until M
clusters are individuated (obtaining, as side effect, hierarchical clusters).

A typical bisection k-means approach is described in Fig. 5. In line 1, the
algorithm initializes the set of clusters to contain only one cluster S1 containing
all objects. Then, in the loop at lines 2–3, until a set S of M clusters is attained, the
algorithm iteratively selects and removes from the current set S a cluster St and for
a given in input number n of trials it bisects St into two clusters, retaining the best
bisection Sb1

t and Sb2
t (corresponding, for example, to the lowest squared error) and

adding it to the set S under construction.
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The study and the design of efficient initialization methods for the k-means
technique is still a research topic that attracts the efforts by various scientific
communities. A recent survey and comparative study of the existing methods has
been conducted by Celebi et al. [15], who cited as particularly interesting two
hierarchical initialization methods named Var-Part and PCA-Part proposed in 2007
by Su and Dy [69]. These two methods are not only linear, deterministic, and
order-invariant. Besides these nice characteristics, in a recent paper by Celebi
and Kingravi [13], a discriminant analysis-based approach has been proposed that
addresses a common deficiency of these two methods. A deep experimental analysis
showed that the two methods are highly competitive with state-of-the-art best
random initialization methods to date and that the proposed approach significantly
improves the performance of both hierarchical methods. Finally, in [14], Celebi and
Kingravi presented an in-depth comparison of six linear, deterministic, and order-
invariant initialization methods.

5.2.2 Graph-Theoretic Algorithms

Most of the graph-theoretic algorithms are divisive approaches, i.e., they start with
one cluster that contains all the objects and then at each step they split a cluster.
Specularly, agglomerative algorithms start with each pattern in a distinct (singleton)
cluster, and successively merge clusters together until a stopping criterion is
satisfied.

The graph-theoretic algorithms use a graph representation of the Data sets.
Formally, given the set of objects O D fo1; : : : ; oNg and the distance function
d W O � O 7! R, a weighted undirected graph G D .V; E; w/ can be defined such
that

• V D O;
• edges in E indicate the relationship between objects;
• wij D dij, 8 i; j 2 V (i.e., oi; oj 2 O).

The graph G is usually called proximity graph. It is very easy to see that each
cluster can correspond to a connected component of G, i.e., a subset of nodes/objects
that are connected to one another [63]. A further stronger possible graph-theoretic
approaches family looks for cliques in G, i.e., sets of nodes/objects in the graph that
are completely connected to each other [6, 55].

The easiest and maybe most famous graph-theoretic divisive clustering algorithm
is based on the construction of a minimal spanning tree (MST) of the graph G [78].
Once obtained a MST, it generates clusters by deleting from the MST the edges with
the largest weights.
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5.2.3 Mixture-Resolving Algorithms

The idea behind this family of clustering algorithms is that the objects in O are
drawn from one of several distributions (usually, Gaussian) and the goal is to
identify the parameters of each distribution (e.g., a maximum likelihood estimate).
Traditional approaches to this problem involve obtaining (iteratively) a maximum
likelihood estimate of the parameter vectors of the component densities.

Among these techniques, it has to be cited the Expectation Maximization (EM)
algorithm [19], a general purpose maximum likelihood algorithm for missing-
data problems. The EM algorithm has been applied to the problem of parameter
estimation.

5.3 Efficient Metaheuristic Approaches

Metaheuristics for data clustering have been designed only in the last 20 years. They
include artificial neural networks [39, 64], evolutionary approaches such as genetic
algorithms [42, 59], simulated annealing [47], and tabu search [2, 31].

Starting from 2010, GRASP (Greedy Randomized Adaptive Search Procedure)
algorithms [24, 30, 55] have also been proposed that model the problem of pattern
clustering as a combinatorial optimization problem defined on the weighted graph
G D .V; E; w/ representing the data sets, as also used by graph-theoretic algorithms.
GRASP, originally proposed by Feo and Resende [23] for set covering, has been
applied in a wide range of problem areas [25–27, 61, 62]. It is a multi-start process,
where at each iteration, a greedy randomized solution is constructed to be used as
a starting solution for local search. Local search repeatedly substitutes the current
solution by a better solution in the neighborhood of the current solution. If there is
no better solution in the neighborhood, the current solution is returned as a local
minimum and the search stops. The best local minimum found over all GRASP
iterations is output as the final solution.

In 2010, Nascimento et al. [55] proposed a GRASP algorithm to cluster
biological data sets. The greedy randomized solution is iteratively built, starting

from a complete graph
�

jEj D N�.N�1/

2

�

, indicating that the data set forms a unique

cluster. Then, at each iteration of the construction procedure edges are gradually
eliminated from the graph, creating unconnected full subgraphs (cliques), each
representing a cluster. The edge elimination follows a greedy randomized criterion
that selects at random one edge in a subset (RCL—Restricted Candidate List) of
higher weighted edges. Once a greedy randomized clustering S D fS1; : : : ; SMg
has been obtained, a local search procedure is applied starting from S to attempt to
improve it. The local search works in an iterative fashion, until no better solution is
found in the neighborhood. At each iteration, it replaces the current solution S by
a better solution in the neighborhood N.S/ obtained by transferring in S an object
from a cluster to another one.
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In 2011, Frinhani et al. [30] described several hybrid GRASP with path-
relinking heuristics [32, 48, 62] for data clustering. In a GRASP with path-relinking
[1, 48, 62], at each GRASP iteration an elite set of good-quality solutions is stored
and eventually updated. In fact, the local optimal current solution is combined with
a randomly selected solution from the elite set using the path-relinking operator.
The best of the combined solutions is a candidate for inclusion in the elite set and is
added to the elite set if it meets quality and diversity criteria. The path-relinking
procedure proposed in [30] applies to a pair of solutions Ss (starting solution)
and St (target solution). Initially, the procedure computes the symmetric difference
�.Ss; St/, i.e., the set of moves needed to reach St (target solution) from Ss (initial
solution). A path of solutions in the solution space is generated linking Ss and St

and the best solution S� in this path is returned by the algorithm. At each step, the
procedure examines all moves m 2 �.S; St/ from the current solution S and selects
the one corresponding to the least cost solution, i.e., the one which minimizes the
objective function evaluates in S ˚ m, the solution resulting from applying move
m to solution S. The best move m� is made, producing solution S ˚ m�. The set
of available moves is updated. If necessary, the best solution S� is updated. The
procedure terminates when St is reached, i.e., when �.S; St/ D ;.

In 2013 [28], a Biased Random-Key Genetic Algorithm (BRKGA) has been
proposed for data clustering. It is well known that in the attempt of finding good
quality solutions for a combinatorial optimization problem, Genetic Algorithms
(GAs) [33, 36] implement the concept of survival of the fittest, making an analogy
between a solution and an individual in a population. In particular, each individual
of the current population represents a feasible solution, that is encoded by a
corresponding chromosome that consists of a string of genes. Each gene can take
on a value, called an allele, from some alphabet. For each chromosome it is
possible to evaluate its fitness level, which is clearly correlated to the corresponding
objective function value of the solution it encodes. GAs keep proceeding over a
number of iterations, called generations, evolving a population of chromosomes.
This evolution is implemented by simulating the process of natural selection through
mating and mutation.

Genetic algorithms with random keys, or random-key genetic algorithms
(RKGA), were introduced by Bean [5]. In a RKGA, chromosomes are represented
as vectors of randomly generated real numbers in the interval .0; 1�. A deterministic
algorithm, called a decoder, takes as input a solution vector and associates with it a
solution of the combinatorial optimization problem for which an objective value or
fitness can be computed.

A RKGA evolves a population of random-key vectors over a number of
generations. The initial population is made up of p > 0 vectors of random-keys.
Each component of the solution vector is generated independently at random in
the real interval .0; 1�. After the fitness of each individual is computed by the
decoder in generation t, the population is partitioned into two groups of individuals:
a small group of pe elite individuals, i.e., those with the best fitness values, and
the remaining set of p � pe non-elite individuals. To evolve the population, a new
generation of individuals must be produced. All elite individuals of the population
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Fig. 6 BRKGA: generation t C 1 from generation t

of generation t are copied without modification to the population of generation tC1.
RKGAs implement mutation by introducing mutants into the population. A mutant
is simply a vector of random keys generated in the same way that an element of the
initial population is generated. At each generation (see Fig. 6), a small number (pm)
of mutants are introduced into the population. With the pe elite individuals and the
pm mutants accounted for in population k C 1, p � pe � pm additional individuals
need to be produced to complete the p individuals that make up the new population.
This is done by producing p � pe � pm offspring through the process of mating or
crossover.

Bean [5] selects two parents at random from the entire population to implement
mating in a RKGA. A biased random-key genetic algorithm, or BRKGA [34],
differs from a RKGA in the way parents are selected for mating. In a BRKGA,
each element is generated combining one element selected at random from the elite
partition in the current population and one from the non-elite partition. Repetition in
the selection of a mate is allowed and therefore an individual can produce more than
one offspring in the same generation. As in RKGA, parametrized uniform crossover
[66] is used to implement mating in BRKGAs. Let �e > 0:5 be the probability
that an offspring inherits the vector component of its elite parent. Let m denote the
number of components in the solution vector of an individual. For i D 1; : : : ; m; the
ith component Ci of the offspring vector C takes on the value of the ith component
Ei of the elite parent E with probability �e and the value of the ith component NEi of
the non-elite parent NE with probability 1 � �e.

When the next population is complete, i.e., when it has p individuals, fitness
values are computed by the decoder for all of the newly created random-key vectors
and the population is partitioned into elite and non-elite individuals to start a new
generation.
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Fig. 7 BRKGA: flow chart

A BRKGA searches the solution space of the combinatorial optimization
problem indirectly by searching the continuous m-dimensional hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated. As underlined
in [34], it is evident then that any BRKGA heuristic is based on a general-
purpose metaheuristic framework (see Fig. 7), in which there is a portion totally
independent from the specific problem to be solved. The only connection to the
combinatorial optimization problem being solved is the problem-dependent portion
of the algorithm, where the decoder produces solutions from the vectors of random-
keys and computes the fitness of these solutions. Therefore, to describe a BRKGA
for a specific combinatorial optimization problem, one needs only to show how
solutions are encoded as vectors of random keys and how these vectors are decoded
to feasible solutions of the optimization problem. We report in the following
encoding and decoding schemes proposed in [28] for data clustering problems.

A solution is denoted as x D .x1; : : : ; xN/, such that for all i D 1; : : : ; N, xi 2
f1; : : : ; Mg, i.e.,

8 i D 1; : : : ; N; xi D k; iff oi 2 Sk; k 2 f1; : : : ; Mg:

5.4 Encoding

A solution is encoded as a random-key vector X D .X1; X2; : : : ; XN/, where for
i D 1; : : : ; N, component Xi is a real number in the interval .0; 1�.
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5.5 Decoding

Given an encoded solution X D .X1; X2; : : : ; XN/ and representing the set S as an
array of jSj D M elements, decoding consists of three steps and produces a string
x D .x1; x2; : : : ; xN/.

In the first step, the string x is computed such that, for each i D 1; : : : ; N,

xi D
�

Xi � 1

�

�

; � D 1

M
:

In the second step, starting from x, a locally optimal solution Ox D .Ox1; Ox2; : : : ; OxN/

with respect to the 2-swap neighborhood is computed.
Finally, in the third step, a chromosome adjustment is made to the encoded

solution such that the resulting chromosome OX decodes directly to Ox using only
the first step of the decoding process.

For j D 1; : : : ; jSj D M, let

lj D .j � 1/ � �I
uj D j � �:

Then, to complete the adjustment, for each i D 1; : : : ; N, it is simply computed

OXi D lj C Xi � �;

where j is the index of the subset in S to which object oi belongs according to
solution Ox.

6 Concluding Remarks

The scope of this paper is to provide an overview of the main types of clustering and
criteria for homogeneity or separation, with special emphasis to the optimization
and operational research perspective, providing a few mathematical models of the
problem under several different criterion adopted to classify the data.

Besides mathematical models that can be efficiently used to find exact solutions
only in case of small-sized instances, there are hundreds of approximate techniques,
proposed by researchers from several heterogenous communities, and more or less
efficient, depending on the input data and the type of information they contain.

The conclusion is that unfortunately there is no single best approach that wins
in every aspect. Given the intrinsic difficulties to be faced when clustering data, a
person interested in performing this task should select a group of algorithms that
seem to be the most appropriate, taking into account also the specific data set under
analysis.
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