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    Chapter 9   
 Antimicrobial Peptides in Host Defense: 
Functions Beyond Antimicrobial Activity                     

       Kim     Alan     Brogden      ,     Amber     M.     Bates    , and     Carol     L.     Fischer   

    Abstract     Antimicrobial peptides are well known for their important roles in 
host defense by enhancing the barrier function and limiting microbial popula-
tions of the skin and mucosa. However, many of these peptides are now known to 
have additional roles assisting innate and adaptive immune functions. To facili-
tate innate immunity, antimicrobial peptides activate complement, chemoattract 
cells (e.g., monocytes, macrophages, T cells, neutrophils, immature dendritic 
cells, and mast cells), enhance phagocytosis, and modulate the production of 
chemokines and proinfl ammatory cytokines in other cells. At local sites of initia-
tion, antimicrobial peptides can act as opsonins to enhance phagocytosis by 
monocytes and phagocytes and can activate cells. In the latter, for example, treat-
ment of osteoblasts and osteoblast- like MG63 cells with human beta-defensin 
(HBD)2 increases their proliferation rates. Treatment of osteoblast-like MG63 
cells with HBD2 and HBD3 increases transcript levels of osteogenic markers for 
differentiation, increases antileukoprotease (ALP) levels, and enhances mineral-
ized nodule formation. To facilitate adaptive immunity, antimicrobial peptides 
assist the uptake of antigens by monocytes or other antigen-presenting cells and 
later direct the process toward a Th1 or Th2 adaptive immune response. More 
commonly though, antimicrobial peptides induce a mixed response characterized 
by Th1-/Th2-specifi c antibodies and Th1/Th2 cytokines from antigen-exposed 
splenocytes of immunized animals. Finally, antimicrobial peptides can be 
detected in the margins around both oral and cutaneous wounds, and there is 
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growing evidence to suggest they also play a dynamic role in wound healing by 
improving wound angiogenesis, vascularization, and reepithelialization.  

9.1         Introduction 

 Antimicrobial factors in normal tissues and fl uids were described as early as 1888 
(Skarnes and Watson  1957 ). These factors, isolated from extracts of tissues, serum, 
serous fl uids, and leukocytes, later became the well-known members of innate 
immunity: antibodies, complement, lysozyme, histones, and protamines (Skarnes 
and Watson  1957 ). Small, linear, basic peptides (called tissue basic polypeptides) 
with antimicrobial activity in normal tissues and fl uids were also described as early 
as 1947 (Bloom et al.  1947 ; Bloom and Prigmore  1952 ; Bloom and Blake  1948 ). 
These peptides contained lysine (29–30 %) and arginine (3.5 %) amino acid resi-
dues with isoelectric points between pI 10 and 11.2. They were thought to be 
attracted to the negatively charged surfaces of microbial cells via electrostatic bond-
ing and to alter microbial membrane integrity. These peptides are likely the group 
we now know as the antimicrobial peptides (Skarnes and Watson  1957 ). The early 
history of antimicrobial peptide discovery and research can be found in two excel-
lent reviews by Skarnes and Watson ( 1957 ) and Nakatsuji and Gallo ( 2012 ). 

 Almost immediately after the discovery of cationic peptides with antimicrobial 
activity, investigators began to assess their secondary functions, and many of these 
peptides did indeed have additional roles in innate and adaptive immunology 
(Nakatsuji and Gallo  2012 ). This was not an unusual fi nding as the inverse was also 
found to be true, and some other physiologically important peptides had antimicro-
bial activity. For example, some neuropeptides, peptide hormones, and chemokines 
were found to have antimicrobial activities (Brogden et al.  2005 ; Cole et al.  2001 ; 
Yang et al.  2003 ). These results clearly suggest that peptides with antimicrobial 
activity are multifunctional in a variety of situations. 

 In this chapter, we present the alternate functions of peptides with antimicrobial 
activity, a topic of a number of excellent comprehensive reviews (Yang et al.  2001 , 
 2002 ,  2004 ; Yang and Oppenheim  2004 ; Bowdish et al.  2005 ; Pingel et al.  2007 ; 
Rehaume and Hancock  2008 ; Semple et al.  2010 ; Semple and Dorin  2012 ; Greer 
et al.  2013 ). We start by presenting the roles of antimicrobial peptides in innate 
immunity and their ability to chemoattract and activate cells (Table  9.1 ). This 
includes recent discoveries that antimicrobial peptides infl uence the properties of 
human mesenchymal stem cells (hMSCs) and osteoblasts in addition to epithelial 
cells, keratinocytes, and immune cells of myeloid or lymphoid origin. We then pres-
ent the roles of antimicrobial peptides in adaptive immunity and their ability to 
infl uence Th1, Th2, and mixed Th1 and Th2 responses (Table  9.2 ). Third, we pres-
ent the ability and conditions of antimicrobial peptides to modulate chemokine and 
proinfl ammatory cytokine responses, an exciting area of current research by a vari-
ety of investigators (Table  9.3 ). Finally, we present the roles of antimicrobial pep-
tides in wound healing, angiogenesis, and autoimmune diseases.
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9.2          Antimicrobial Peptides in Innate Immunity 

 By defi nition, innate immunity is a nonspecifi c defense against mechanical injury 
and damage, chemical exposure, or microbial infection in barrier surfaces like the 
skin or mucosa. It also protects from internal exposure to abnormal cells (Martin 
 2014 ). Cellular components such as macrophages, dendritic cells, neutrophils, and 
granulocytes and humoral components such as lactic acid, fatty acids, lysozyme, 
and complement are often involved. Cells produce inducible humoral components 
after stimulation of surface receptors with microbe-associated molecular pattern 
(MAMP) or pathogen-associated molecular pattern (PAMP) molecules that include 
lipopolysaccharides, peptidoglycans, or nucleic acids. Exposed cells release che-
mokines and proinfl ammatory cytokines via a variety of receptor signaled path-
ways. Cells also release antimicrobial peptides after exposure to PAMPs directly or 
can release antimicrobial peptides after exposure to chemokines and proinfl amma-
tory cytokines (Liu et al.  2013b ; Jan et al.  2006 ). Antimicrobial peptides activate 
complement, attract neutrophils, enhance phagocytosis, and complete the cycle by 
enhancing the production of chemokines and proinfl ammatory cytokines in other 
cells (Yang et al.  2002 ). 

 Antimicrobial peptides can enhance the barrier function of the skin or mucosa. 
For example, in the skin, HBD3 regulates cell permeability and membrane tight 
junctions in keratinocytes. HBD3 enhances the expression of claudins (e.g., 1–5, 9, 

     Table 9.1    Antimicrobial peptides regulate innate immunity by chemoattracting infl ammatory 
cells, enhancing phagocytosis, enhancing the production of proinfl ammatory mediators, and 
regulating complement activation   

  Chemoattract cells  
   Cathelicidins LL-37 and CRAMP chemoattract monocytes, neutrophils, macrophages, and 

peripheral blood leukocytes (Kurosaka et al.  2005 ; An et al.  2005 ) 
   α-, β-defensins chemoattract monocytes, immature dendritic cells, neutrophils, macrophages, 

CD4+ T cells (CD45 RA+), and CD8+ T cells (Chertov et al.  1996 ; Fleischmann et al.  1985 ; 
Ichinose et al.  1996 ; Territo et al.  1989 ; Yang et al.  1999 ,  2000 ; Li et al.  2014 ) 

  Enhance phagocytosis  
   α-defensins enhance macrophage phagocytosis in a variety of species (Ichinose et al.  1996 ; 

Fleischmann et al.  1985 ) 
  Enhance the production of proinfl ammatory mediators  
   α-, β-defensin-treated epithelial cells and monocytes produce IL-1, IL-8, IL-10, and TNF-α 

(Chertov et al.  1996 ; Van Wetering et al.  1997 ; Chaly et al.  2000 ) 
   HBD3 induces production of Gro-α, MDC, MCP-1, MIP-1α, MIP-1β, and VEGF in 

monocytes and macrophages (Petrov et al.  2013 ) 
   LL-37 induces production of Gro-α, MDC, MCP-1, MIP-1α, MIP-1β, and VEGF in 

monocytes and macrophages (Petrov et al.  2013 ) 
  Degranulate mast cells  
   α-, β-defensins degranulate mast cells and release histamine and prostaglandin D2 (Yamashita 

and Saito  1989 ; Befus et al.  1999 ; Chertov et al.  2000 ; Niyonsaba et al.  2001 ) 
  Regulate complement  
   Defensins regulate complement activation (Prohaszka et al.  1997 ; van den Berg et al.  1998 ) 
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11, 14–17, 20, 23, and 25) and the location of claudins in cell membranes and ele-
vates transepithelial electrical resistance (Kiatsurayanon et al.  2014 ). This occurs 
via HBD3-mediated pathways involving Rac1, atypical protein kinase C, glycogen 
synthase kinase, and phosphatidylinositol 3-kinase (Kiatsurayanon et al.  2014 ). 

 Once produced, cathelicidins and defensins then attract a variety of cells to their 
sites of induction (Table  9.1 ). LL-37, CRAMP, α-defensins, and β-defensins all are 
reported to chemoattract monocytes, macrophages, T cells, neutrophils, immature 
dendritic cells, and mast cells. 

 At the site of initiation, antimicrobial peptides then can act as opsonins 
(Fleischmann et al.  1985 ), enhance phagocytosis by monocytes and phagocytes 
(Ichinose et al.  1996 ), and activate cells. They can also degranulate mast cells. For 
example, human, rabbit, and guinea pig α-defensins activate and degranulate mast 
cells releasing histamine and prostaglandin D2 (Yamashita and Saito  1989 ; Befus 
et al.  1999 ; Niyonsaba et al.  2001 ). 

 An additional and well-known function is the ability of antimicrobial peptides, 
particularly defensins, to regulate complement activation (Prohaszka et al.  1997 ; 
van den Berg et al.  1998 ). Here, C1q of C1 binds to HNP-1, HNP-2, and HNP-3, 

    Table 9.2    Antimicrobial peptides infl uence Th1, Th2, and mixed Th1/Th2 adaptive immune 
responses, often with adjuvant-like activities   

  Enhance Th1 responses  
   Murine β-defensin 2 (mDF2β) induces potent cell-mediated responses and antitumor 

immunity when genetically fused with nonimmunogenic tumor antigens (Biragyn et al. 
 2001 ,  2002 ; Biragyn  2005 ) 

   Mice receiving L1210 cells expressing mDF2β have responses strong NK and CTL responses 
with enhanced IL-12 and IFN-γ production, protecting them from lethal challenge with 
L1210 cells (Ma et al.  2006 ) 

   Zebra fi sh immunized with zebra fi sh β-defensin 2 (zfBD2) develops a Th1 immune response 
with an upregulated IFN-γ response (Garcia-Valtanen et al.  2014 ) 

  Enhance Th2 responses  
   Cationic peptide KLKL5KLK with ovalbumin induces a Th2 response. Immunized mice 

produce ovalbumin-specifi c IgG1, but not IgG2, and splenocytes from immunized mice, 
stimulated with ovalbumin, produce IL-4 and IL-5, but not IFN-γ (Fritz et al.  2004 ) 

  Enhance mixed Th1 / Th2 responses  
   Melittin enhances a mixed Th1/Th2 response to tetanus toxoid in mice. Total IgG and IgG2a 

responses are increased (Bramwell et al.  2003 ) 
   CRAMP enhances ovalbumin-specifi c IgG1, IgG2a, IgG2b, and IgG3 and Th1/Th2 cellular 

ovalbumin-specifi c responses in mice (Kurosaka et al.  2005 ) 
   LL-37 enhances Th1 and Th2 humoral, cytotoxic, and protective responses in mice when 

fused with M-CSF receptor cloned from J6-1 leukemia cells (M-CSFRJ 6-1 ). Splenocytes 
from immunized mice, stimulated with M-CSFRJ 6-1 , produce IFN-γ (An et al.  2005 ) 

   HNP-1, HNP-2, HNP-3 enhance keyhole limpet hemocyanin-specifi c and ovalbumin- 
specifi c IgG1, IgG2a, and IgG2b responses, and splenocytes from immunized mice 
stimulated with keyhole limpet hemocyanin produce KLH-specifi c IFN-γ (Th1 cytokine) 
and IL-4 (Th2 cytokine), and splenocytes from immunized mice stimulated with 
ovalbumin produce greater amounts of IL-5, IL-6, IL-10, and IFN-γ (Th1 and Th2 
cytokines) (Lillard et al.  1999 ; Tani et al.  2000 ) 
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   Table 9.3    Peptides and proteins in oral secretions with antiinfl ammatory and proinfl ammatory 
properties   

 Antiinfl ammatory activities 
  LL - 37  
   Attenuates agonist-induced, chemokine, and proinfl ammatory cytokine responses in 

macrophages (Scott et al.  2000 ), lung epithelial cells (Scott et al.  2000 ), peripheral blood 
mononuclear cells (Molhoek et al.  2009 ), and whole blood leukocytes (Walters et al.  2010 ) 

   Attenuates MAPK pathway activation of p38 and ERK responses in gingival fi broblasts 
(Inomata et al.  2010 ) 

  α - defensins  
   Inhibit the production of proinfl ammatory cytokines from macrophages (Miles et al.  2009 ) 
   Attenuate a chemokine and proinfl ammatory cytokine response in mice (Kohlgraf et al.  2010 ) 
  β - defensins  
   HBD3 attenuates agonist-induced, chemokine, and proinfl ammatory cytokine responses in 

dendritic cells (Pingel et al.  2008 ; Harvey et al.  2013 ), in THP-1 human myelomonocytic 
cells (Semple et al.  2010 ), peripheral blood monocyte-derived macrophages (Semple et al. 
 2010 ), and in RAW264.7 murine macrophages (Semple et al.  2010 ) 

   DEFB114 attenuates MAPK pathway p42/44 response and attenuates an agonist-induced 
TNF-α response in RAW264.7 murine macrophages (Yu et al.  2013 ) 

   DEFB123 attenuates an agonist-induced MAPK pathway activation of p42/44 and p38 and 
attenuates an agonist-induced TNF-α response in RAW264.7 murine macrophages 
(Motzkus et al.  2006 ) 

   DEFB126 attenuates an agonist-induced proinfl ammatory response in RAW264.7 murine 
macrophages (Liu et al.  2013a ) 

   Attenuate a chemokine and proinfl ammatory cytokine response in mice (Kohlgraf et al.  2010 ) 
 θ- defensins  
   Retrocyclin RTD-1 attenuates agonist-induced, chemokine, and proinfl ammatory cytokine 

responses in human peripheral blood leukocytes (Schaal et al.  2012 ) 
  Histatins  
   Histatin 5 attenuates agonist-induced, chemokine, and proinfl ammatory cytokine responses in 

gingival fi broblasts (Imatani et al.  2000 ) and dendritic cells (Borgwardt et al.  2014 ) 
  CEMA  ( cecropin - melittin hybrid ) 
   CEMA blocks the binding of LPS to LPS-binding protein, attenuates agonist-induced, 

chemokine, and proinfl ammatory cytokine responses in murine macrophages (Scott et al. 
 2000 ) 

 Proinfl ammatory activities 
  LL - 37  
   50–100 μg/ml enhances an agonist-induced IL-8 response in epithelial cells (Scott et al.  2002 ) 
  β - defensins  
   Pre-stimulation or post-stimulation of dendritic cells and mice with HBD3 enhances an 

agonist-induced chemokine and proinfl ammatory cytokine response (Harvey et al.  2013 ) 
   Pre-stimulation of macrophages with MBD14 enhances an agonist-induced chemokine and 

proinfl ammatory cytokine response (Barabas et al.  2013 ) 
   HD5 upregulates expression of genes involved in cell survival and infl ammation in an 

NF-kB-dependent fashion in epithelial cells (Lu and de Leeuw  2013 ) 
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and complement in normal human serum is activated by HNP-released C4b 
(Prohaszka et al.  1997 ). 

 Antimicrobial peptides clearly infl uence the properties of a variety of cell types 
including epithelial cells, keratinocytes, and immune cells of myeloid or lymphoid 
origin, and these properties are listed in Table  9.1 . They also infl uence the properties 
of hMSCs and osteoblasts. Treatment of hMSCs, osteoblasts, and osteoblast-like 
MG63 cells with HBD2 increases their proliferation rates (Warnke et al.  2013 ; Kraus 
et al.  2012 ), and treatment of osteoblast-like MG63 cells with HBD2 and HBD3 
increases their transcript levels of osteogenic markers for differentiation, increases 
ALP levels, and enhances mineralized nodule formation (Kraus et al.  2012 ).  

9.3     Antimicrobial Peptides in Adaptive Immunity 

 Adaptive immunity is an acquired resistance produced after antigenic exposure in 
the form of antibody production together with the development of cell-mediated 
immunity. The adaptive immune system is organized around highly specialized 
cells including antigen-presenting cells and two classes of specialized lymphocytes, 
T and B cells, with a variety of functions (Dunkelberger and Song  2010 ). These 
cells display a diverse repertoire of antigen-specifi c recognition receptors. This 
enables specifi c identifi cation and elimination of pathogens, tailoring of immune 
responses, and long-lived immunological memory. 

 Antimicrobial peptides are known to play roles in adaptive immune responses and 
exert their infl uence at numerous steps in the process. Early in the process, antimi-
crobial peptides can facilitate the uptake of antigen by monocytes or other antigen-
presenting cells (Fritz et al.  2004 ) and later direct the process toward a Th1, Th2, or 
mixed Th1/Th2 adaptive immune response (Table  9.2 ). 

9.3.1     Induced Th1 Responses 

 Cells expressing defensins or vaccines containing defensins induce strong Th1 
responses resulting in protection from lethal cell challenges and appear to have 
clinical promise in combating cancer (Biragyn  2005 ). There are three nice examples 
of antimicrobial peptide-induced Th1 responses. In one example, mice receiving 
L1210 cells expressing murine β-defensin 2 (mDF2β) developed strong CTL and 
NK cell responses with enhanced IL-12 and IFN-γ production, which protected 
them from lethal challenge with L1210 cells (Ma et al.  2006 ). In another example, 
mDF2β-based vaccines elicited potent cell-mediated responses and antitumor 
immunity when genetically fused with another nonimmunogenic tumor antigen 
(Biragyn et al.  2001 ). The fusion proteins, consisting of mDF2β linked to a tumor 
antigen, acted directly on immature dendritic cells as an endogenous ligand for 
TLR-4 and upregulated co-stimulatory molecules, induced dendritic cell matura-
tion, and induced the production of lymphokines (Biragyn et al.  2002 ). 
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 Zebra fi sh immunized with a plasmid encoding zebra fi sh β-defensin 2 (zfBD2), 
and the glycoprotein G of the spring viremia of carp virus (gpG svcv ) developed a Th1 
immune response with an upregulated IFN-γ response (Garcia-Valtanen et al.  2014 ). 
Expression of zfBD2 upregulated IS  mx  genes related to the activation of the type I 
IFN system. It also induced the transcription of proinfl ammatory cytokine genes 
 tnf α and  il 1β, increased the presence of  mhc 2 transcripts related to MHC class II 
presentation of antigens, enhanced granzyme and NK lysine transcripts related to 
immune cytotoxic responses cytotoxic responses, and mediated recruitment of Th 
cells at the injection site.  

9.3.2     Induced Th2 Responses 

 In the presence of an antigen, some cationic peptides induce immunized animals to 
produce primary Th2-specifi c antibodies and Th2 cytokines from antigen-exposed 
splenocytes of immunized animals. Cationic peptide KLKL 5 KLK is one of these 
peptides. Mice immunized with KLKL 5 KLK with ovalbumin produce ovalbumin- 
specifi c IgG1, but not IgG2, and splenocytes from immunized mice, stimulated with 
ovalbumin, produce IL-4 and IL-5, but not IFN-γ (Fritz et al.  2004 ).  

9.3.3     Induced Th1/Th2 Responses 

 More commonly than the above two examples, antimicrobial peptides induce 
immunized animals to produce a mixed response characterized by producing Th1-/
Th2-specifi c antibodies and Th1/Th2 cytokines from antigen-exposed splenocytes 
of immunized animals. Melittin from bees enhances a mixed Th1/Th2 response to 
tetanus toxoid in mice. Melittin increases tetanus toxoid total IgG and IgG2a anti-
body responses (Bramwell et al.  2003 ). Similarly CRAMP enhances mixed Th1/
Th2 antigen-specifi c immune responses to ovalbumin in mice. CRAMP increases 
ovalbumin IgG1, IgG2a, IgG2b, and IgG3 antibody responses (Kurosaka et al. 
 2005 ). LL-37 enhances a mixed Th1/Th2 humoral, cytotoxic, and protective 
response in mice when LL-37 was fused with M-CSFRJ 6-1 , an M-CSF receptor 
cloned from J6-1 leukemia cells (M-CSFRJ 6-1 ). Splenocytes from immunized mice, 
stimulated with M-CSFRJ 6-1 , produced IFN-γ (An et al.  2005 ). 

 A mixed Th1/Th2 response is also induced by defensins. HNP-1, HNP-2, and 
HNP-3 enhance keyhole limpet hemocyanin (KLH) IgG1, IgG2a, and IgG2b anti-
body responses (Tani et al.  2000 ), and HNP-1, HNP-2, and HNP-3 and human 
β-defensins enhance ovalbumin-specifi c IgG1, IgG2a, and IgG2b antibody 
responses (Lillard et al.  1999 ; Brogden et al.  2003 ). T cells from KLH-immunized 
mice, stimulated with KLH, produce KLH-specifi c IFN-γ (Th1 cytokine) and IL-4 
(Th2 cytokine) (Tani et al.  2000 ). T cells from ovalbumin immunized mice, stimu-
lated with ovalbumin, produce greater amounts of CD4 +  Th1 and Th2 cytokines 
(IFN-γ, IL-5, IL-6, and IL-10) (Lillard et al.  1999 ; Brogden et al.  2003 ). 
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 More recently, a human adenovirus vector expressing mDF2β (e.g., HAd- 
mDF2β) was found to chemoattract murine bone marrow-derived immature den-
dritic cells and increase their surface expression levels of CD40, CD80, and CD86 
activation markers (Vemula et al.  2013 ). Immunization with the HAd-mDF2β vec-
tor prior to immunization with a human adenovirus-hemagglutinin-nucleoprotein 
vaccine signifi cantly increases hemagglutinin inhibition antibody titers and 
increases nucleoprotein-147 epitope-specifi c CD8 +  T cells. Immunization also 
decreases virus titers of VNH5N1-PR8/CDC-RG in the lungs of challenged mice.   

9.4     Antimicrobial Peptides Modulate Chemokine 
and Cytokine Responses 

 Cells treated with antimicrobial peptides alone or with a microbial antigen have 
both proinfl ammatory and antiinfl ammatory activities: a dichotomy that is not 
entirely well understood (Harvey et al.  2013 ). These proinfl ammatory and antiin-
fl ammatory activities appear to be dependent upon a number of conditions that 
include antimicrobial peptide concentration, antimicrobial peptide association with 
proinfl ammatory agonists, or the temporal order of peptide exposure to cells, with 
respect to agonist exposure to cells. 

9.4.1     Exposure of Cells to Low Concentrations 
of Antimicrobial Peptides Is an Antiinfl ammatory Event 

 Generally, cells exposed to <1.0–10.0 μg/ml antimicrobial peptide do not produce 
much of a chemokine and proinfl ammatory cytokine response.  0.003–0.03 μg/ml  
HNP alone does not induce TNF-α or IL-1β expression in resting monocytes (Chaly 
et al.  2000 ), and  5.0 μg/ml  mBD14, HBD2, or HBD3 does not produce TNF-α in 
murine bone marrow-derived macrophages (Barabas et al.  2013 ).  

9.4.2     Exposure of Cells to High Concentrations 
of Antimicrobial Peptides Is a Proinfl ammatory Event 

 Generally, cells exposed to 10.0 to >100.0 μg/ml antimicrobial peptide produce 
higher amounts of chemokines and proinfl ammatory cytokines in a dose-related 
fashion. Monocytes and macrophages treated with  20.0 μg/ml  HBD3 or 20.0 μg/ml 
of LL-37 produce Gro-α, MDC, MCP-1, MIP-1α, MIP-1β, and VEGF (Petrov et al. 
 2013 ). Keratinocytes treated with  30 μg/ml  HBD2, HBD3, or HBD4 produce ele-
vated IL-6, IL-10, IP-10 (CXCL10), MCP-1 (CCL2), MIP-3α (CCL20), and 
RANTES (CCL5) (Niyonsaba et al.  2007 ). RAW264.7 murine macrophages treated 
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with  50.0–100.0 μg/ml  LL-37 produce 200, 400, and >1,000 pg/ml MCP-1 (CCL2) 
(Scott et al.  2002 ); and A549 human epithelial cells treated with  10–100 μg/m l 
LL-37 produce 300–1,200 pg/ml IL-8 (Scott et al.  2002 ). Epithelial cells treated 
with  100.0 μg/m l HNP-1, HNP-2, and HNP-3 induce ~17,000 pg/ml IL-8 (Van 
Wetering et al.  1997 ).  

9.4.3     Antimicrobial Peptide Binding to Proinfl ammatory 
Agonists Is an Antiinfl ammatory Event 

 Antimicrobial peptides readily bind to microbial lipopolysaccharides, adhesins, and 
toxins with rapid association rate constants, slower dissociation rate constants, and 
high affi nity (Caccavo et al.  2002 ; Wang et al.  2003 ,  2006 ; Owen et al.  2004a ,  b ; Liu 
et al.  2013a ; Yu et al.  2013 ; Dietrich et al.  2008 ; Pingel et al.  2008 ). This binding 
generally alters the physiological properties of the agonist (Gough et al.  1996 ; 
Bowdish and Hancock  2005 ; Motzkus et al.  2006 ; Scott et al.  2011 ; Kim et al.  2005 , 
 2006 ; Giesemann et al.  2008 ; Yeom et al.  2011 ). 

 The binding of antimicrobial peptides to microbial lipopolysaccharides, adhes-
ins, and toxins also alters binding of these agonists to cell surface receptors (Gallo 
and Hooper  2012 ). Lactoferrin is a good example. It inhibits the interaction of LPS 
with CD14 on cell surfaces by competing with the LPS-binding protein (Molhoek 
et al.  2009 ), and it blocks DC-SIGN-gp120 interaction and prevents dendritic cell- 
mediated HIV type 1 transmission (Groot et al.  2005 ). HBD3 alters the binding of 
 Porphyromonas gingivalis  hemagglutinin B (HagB) to the surface of dendritic cells 
(Van Hemert et al.  2012 ) and HNP-1, HBD1, HBD2, HBD3, DEFB104, and LL-37, 
all inhibit binding of Alexa Fluor 546-labeled  P. intermedia  and  T. forsythia  LPS to 
THP-1 human monocytes (Lee et al.  2010 ). 

 It also appears that this changes agonist-induced signal transduction. 
Antimicrobial peptides can selectively attenuate agonist-induced signal transduc-
tion including MAPK pathways involving p38, c-Jun NH 2 -terminal protein kinases 
(JNK), or extracellular signal-regulated kinase (ERK). DEFB114 attenuates an 
LPS-induced activation of p42/44 responses in RAW264.7 murine macrophages 
(Yu et al.  2013 ), and DEFB123 (Motzkus et al.  2006 ) and DEFB126 (Liu et al. 
 2013a ) attenuate an LPS-induced activation of p42/44 and p38 responses in 
RAW264.7 murine macrophages. LL-37 attenuates a  P. gingivalis  extract-induced 
activation of p38 and ERK responses in human gingival fi broblasts (Inomata et al. 
 2010 ). Modulation of the TLR response by LL-37 occurs at least partly through 
inhibition of p38 phosphorylation (Walters et al.  2010 ). 

 The resulting chemokine and proinfl ammatory cytokine output is noticeably 
reduced, and this is a very popular area of research. Lactoferrin attenuates an LPS- 
induced IL-1β, IL-6, and ICAM-1 mRNA response in bovine aortic endothelial 
cells (Yeom et al.  2011 ). Cathelicidins also attenuate chemokine and proinfl amma-
tory cytokine output. LL-37 attenuates periodontopathogenic LPS-induced IL-8 
responses in human periodontal ligament fi broblasts and gingival fi broblasts 
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(Suphasiriroj et al.  2013 );  P. aeruginosa  LPS-induced IL-8 response in THP-1 
human monocyte cells (Scott et al.  2011 ); LPS-induced TNF-α response in mouse 
bone marrow-derived macrophages and tissue macrophages (Brown et al.  2011 ); 
LPS-induced,  S. aureus  lipoteichoic acid-induced, and  Mycobacterium  
lipoarabinomannan- induced TNF-α response in RAW264.7 murine macrophages 
and IL-8 and MCP-1 (CCL2) response in A549 human lung epithelial cells (Scott 
et al.  2000 ); and  P. gingivalis  extract-induced IL-6, IL-8, and IP-10 (CXCL10) 
responses in human gingival fi broblasts (Inomata et al.  2010 ). 

 Similarly, defensins attenuate agonist-induced chemokine and cytokine 
responses. HNP-1 attenuates an LPS-induced IL-1β, but not TNF-α, response in 
human monocytes (Shi et al.  2007 ); DEFA1-3 attenuates  P. aeruginosa -induced 
TNF-α, IL-8, IL-6, and IL-1β responses in human monocyte-derived macrophages 
(Miles et al.  2009 ); and HNP-1 and HNP-3 attenuate  P. intermedia  LPS-induced 
IL-1β, IL-8, and ICAM-1 responses in THP-1 human monocytes and HGF cells 
(Lee et al.  2010 ). HBD1, HBD2, HBD3, and DEFB104A attenuate  P. intermedia  
LPS-induced IL-1β, IL-8, and ICAM-1 responses in THP-1 human monocytes and 
HGF cells (Lee et al.  2010 ); HBD3 attenuates the IL-6, IL-10, GM-CSF, and TNF-α 
responses of HagB-induced human myeloid dendritic cells (Pingel et al.  2008 ); 
DEFB114 attenuates an LPS-induced TNF-α response in RAW264.7 murine mac-
rophages (Yu et al.  2013 ); and DEFB123 (Motzkus et al.  2006 ) and DEFB126 (Liu 
et al.  2013a ) attenuate an LPS-induced IL-6 (e.g., DEFB126) and TNF-α (e.g., 
DEFB123, DEFB126) response in RAW264.7 murine macrophages. Finally, 
θ-defensin retrocyclin RTD-1 inhibits a TLR2, 4, and 5 agonist-induced TNF-α, 
IL-1α, IL-1β, IL-6, IL-8, MCP-1 (CCL2), MIP-1α (CCL3), and MIP-1β (CCL4) 
responses in human peripheral blood leukocytes (Schaal et al.  2012 ). 

 Histatin 5 suppresses the induction of IL-6 and IL-8 in  P. gingivalis  outer mem-
brane protein-induced human gingival fi broblasts, and this activity is more effective 
when outer membrane protein is incubated with histatin 5 before addition to the cell 
culture (Imatani et al.  2000 ). Histatin 5 also attenuates a  P. gingivalis  hemagglutinin 
B (HagB)-induced chemokine and proinfl ammatory cytokine response in dendritic 
cells (Borgwardt et al.  2014 ). 20.0 mM histatin 5, mixed with 0.02 mM HagB, atten-
uates an HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNF-α responses.  

9.4.4     The Order of Peptide Exposure to Cells, with Respect 
to Agonist Exposure to Cells, Is a Proinfl ammatory Event  

 This, too, is a recent and very exciting area of research. Antimicrobial peptides 
given before or after a proinfl ammatory agonist induce cells to produce higher con-
centrations of proinfl ammatory mediators. When given together, LL-37 attenuates 
LPS-induced TNF-α responses (Scott et al.  2011 ; Brown et al.  2011 ). However, 
when THP-1 monocytes are treated with LL-37 for 1 h before the addition of LPS 
(Scott et al.  2011 ) or 3 h after incubation with LPS (Brown et al.  2011 ), attenuation 
is abolished. In yet another example, pre-mixing of leukocytes and  E. coli  for up to 
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2 h, followed by addition of retrocyclin RTD-1, led to a reduction of TNF-α levels 
(46–93 %) by RTD-1 at each time point (Schaal et al.  2012 ). 

 In our work, HBD3 given before or after a proinfl ammatory agonist induces 
human dendritic cells, murine JAWSII dendritic cells and mice to produce higher 
concentrations of proinfl ammatory mediators (Harvey et al.  2013 ). HBD3 (0.2, 2.0, 
or 20.0 μM) given to human myeloid dendritic cells pre- (1 h before), co-, or post- 
(1 h after) HagB treatment (0.02 or 0.2 μM) displayed a concentration-dependent 
ability to both attenuate and enhance the chemokine and proinfl ammatory cytokine 
response. Timing is important, and MIP-1α (CCL3), MIP-1β (CCL4), and TNF-α 
responses to 0.02 μM HagB are both enhanced and attenuated when 0.2 and 2.0 μM 
HBD3 is given pre-/post- or co-HagB exposure, respectively.   

9.5     Wound Healing and Angiogenesis 

 Wound healing occurs in three phases: an infl ammatory phase, a proliferative 
phase, and a maturational phase (Sinno and Prakash  2013 ), all involving multiple 
steps in hemostasis, infl ammation, remodeling, formation of granulation tissue, 
and reepithelialization (Ramos et al.  2011 ). The process involves various cells like 
fi broblasts, keratinocytes, endothelial cells, growth factors, extracellular matrix 
components, and chemokines and cytokines. Antimicrobial peptides can be 
detected in the margins around both oral and cutaneous wounds, and there is a 
growing body of evidence to suggest that they also play a dynamic role in the 
wound healing process at multiple steps. Furthermore, a large number of antimi-
crobial peptides do have properties that have the ability to speed wound healing 
and angiogenesis. 

 Early steps involve cell migration and proliferation. Histatins and LL-37 induce 
fi broblast migration, HBD2 promotes keratinocyte migration (Niyonsaba et al. 
 2007 ), and LL-37 induces human microvascular endothelial cell and human umbili-
cal vein endothelial cell migration (Ramos et al.  2011 ). Histatins and LL-37 also 
induce fi broblast proliferation, HBD2 increases keratinocyte proliferation 
(Niyonsaba et al.  2007 ; Warnke et al.  2013 ), and LL-37 induces human microvascu-
lar endothelial cell and human umbilical vein endothelial cell proliferation (Ramos 
et al.  2011 ). 

 Later steps involve wound angiogenesis, vascularization, and reepithelialization, 
and LL-37 again is particularly active. LL-37 stimulates angiogenesis (Nakatsuji 
and Gallo  2012 ) and induces the formation of tubule-like structures (Ramos et al. 
 2011 ). Another cathelicidin CRAMP has angiogenic properties, too (Kurosaka 
et al.  2005 ). LL-37 also stimulates reepithelialization (Heilborn et al.  2003 ; Ramos 
et al.  2011 ; Nakatsuji and Gallo  2012 ). 

 One unique mechanism, discussed in detail below, involves LL-37 produced by 
keratinocytes in injured skin (Lande et al.  2007 ). Here LL-37 combines with self- 
DNA released from injured or dead tissues and initiates immune responses in dam-
aged skin enhancing resistance to infection and initiating wound healing.  
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9.6     Autoimmune Functions 

 Defensins and LL-37 bind to CpG, self-DNA, and RNA (Tewary et al.  2013 ; Frasca 
and Lande  2012 ; Lande et al.  2007 ; Gilliet and Lande  2008 ). This interaction forms 
complexes. HBD3 + human genomic DNA forms large complex DNA nets (Tewary 
et al.  2013 ), and LL-37 + DNA forms aggregated and condensed structures (Lande 
et al.  2007 ). These complexes are readily taken up by plasmacytoid dendritic cells in 
a TLR9 (e.g., HBD3/DNA; LL-37/DNA)-dependent manner in the endocytotic path-
way and induce the production of IFN-α (Tewary et al.  2013 ; Lande et al.  2007 ). In 
mice, CpG + HBD3 complexes administered intravenously alone induce proinfl am-
matory cytokines in serum, administered subcutaneously alone induce the formation 
of local infl ammatory cell infi ltrates, and administered intraperitoneally with an 
immunogen like ovalbumin enhance both cellular and humoral responses to ovalbu-
min. Nakatsuji and Gallo suggest that this is an important normal physiological and 
immunological function leading to the attraction of various immune cells (Nakatsuji 
and Gallo  2012 ). Tewary and colleagues suggest that these complexes could improve 
vaccine formulations and enhance immune responses (Tewary et al.  2013 ). However, 
they also point out that these complexes are found to be a constituent of circulating 
immune complexes isolated from sera in patients with autoimmune diseases (Tewary 
et al.  2013 ). Frasca and Lande ( 2012 ) and Gilliet and Lande ( 2008 ) also suggest that 
this mechanism may lead to autoimmune and autoinfl ammatory diseases. 

 There is a growing body of evidence that suggests defensins and LL-37 have 
roles in autoimmune and autoinfl ammatory diseases like psoriasis, rosacea, ulcer-
ative colitis, rheumatic joint disease, and systemic lupus erythematosus (Frasca and 
Lande  2012 ; Vordenbaumen et al.  2010 ). Subjects with autoimmune disease have 
increased circulating concentrations of α- and β-defensins (Vordenbaumen et al. 
 2010 ). In the sera of subjects with systemic lupus erythematosus, concentrations of 
HBD2 correlate with red blood cell count, dsDNA antibody titers, systemic lupus 
erythematosus disease activity index, and clinical transverse myelitis and myositis 
(Vordenbaumen et al.  2010 ). Similarly, serum HNP concentration correlates with 
subject white blood cell counts and clinical transverse myelitis and rash 
(Vordenbaumen et al.  2010 ). The relative amounts of HNP mRNA from neutrophils 
correlate with C3c concentrations, systemic lupus erythematosus disease activity 
index, and clinical renal involvement and rash (Vordenbaumen et al.  2010 ). 

 Clearly these are interesting fi ndings, and further work is needed to clarify the 
roles of defensins and LL-37 (and other antimicrobial peptides) in the pathophysiol-
ogy of autoimmune and autoinfl ammatory diseases (Frasca and Lande  2012 ; Gilliet 
and Lande  2008 ).     
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