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    Chapter 1   
 Antimicrobial Peptides in Cutaneous 
Wound Healing                     

       Ole     E.     Sørensen    

    Abstract     Injury that breached the physical skin barrier increases the likelihood of 
infection. The wound healing process is divided into hemostasis, infl ammation, pro-
liferation, and tissue remodeling. Antimicrobial peptides play a major role for the 
antimicrobial defense at all these stages in wound healing, but the main sources of 
antimicrobial peptides vary with the different stages of wound healing coming from 
plasma proteins, neutrophils, and keratinocytes. Apart from being part of the antimi-
crobial defense, antimicrobial peptides play other important roles in wound healing 
as in angiogenesis, attraction of leukocytes, resolution of infl ammation, and prolif-
eration. Future studies will demonstrate whether antimicrobial peptides can be used 
therapeutically to improve the wound healing processes and reduce scar formation 
in chronic wounds.  

1.1         Introduction 

 The intact skin constitutes a very effi cient physical barrier toward surrounding 
microbes. Indeed, skin infections are rarely found in intact healthy skin. However, 
injury or wounding causes breach in the physical barrier of the skin increasing the 
likelihood of infections. Keeping the wound free of overt infection is a prerogative 
for successful wound healing (Edwards and Harding  2004 ). Indeed, chronic non-
healing cutaneous wounds are most often infected with  Staphylococcus aureus  or 
 Pseudomonas aeruginosa  (Edwards and Harding  2004 ). Antimicrobial peptides 
(AMPs) play a major role for the antimicrobial defense during wound healing. 
Indeed, studies of the remarkable ability of the African frog  Xenopus laevis  to keep 
its wounds free of infections under non-sterile conditions led to the fi rst identifi ca-
tion of antimicrobial peptides (AMPs) from the skin (Zasloff  1987 ). 
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 Wound healing following injury is traditionally divided into four stages: (1) hemostasis, 
(2) infl ammation, (3) proliferation, and (4) tissue remodeling (Singer and Clark  1999 ). 
AMPs are found at all stages of wound healing; however, the sources of AMPs are differ-
ent at each of these stages of wound healing.  

1.2     Generation of AMPs at the Different Stages of Wound 
Healing 

1.2.1     Injury 

 Injury by itself leads to generation of AMPs. In frog skin, the injury-induced ner-
vous stimulation leads to release of antimicrobial peptides from skin glands 
(Simmaco et al.  1998 ). Though similar mechanisms have not been described in 
mammals, injury does lead to activation of proteases that release membrane-bound 
growth factor like HB-EGF and amphiregulin that possess antimicrobial activity 
(Malmsten et al.  2007 ). Furthermore, these growth factors play a major role as 
inducers of the epidermal AMP expression at later stages in the wound healing pro-
cess (Sørensen et al.  2006 ,  2008 ; Roupé et al.  2010 ). Surely, tissue injury may gen-
erate additional AMPs but a systematic study of antimicrobial peptides released by 
tissue injury is still to come.  

1.2.2     Hemostasis 

 After injury, there is extravasation of plasma proteins into the wound with activation 
of complement and coagulation cascades. Activation of the complement system 
leads to generation of fragments of C3a with antimicrobial activity (Nordahl et al. 
 2004 ; Sonesson et al.  2007 ; Pasupuleti et al.  2007 ). The coagulation cascade is one 
of the principal host defenses in insects and activation of the human coagulation 
cascade leads to cleavage of several proteins like kininogen, fi brinogen, and throm-
bin involved in the coagulation cascade, which leads to generation of several anti-
microbial peptides (Frick et al.  2006 ; Påhlman et al.  2013 ; Papareddy et al.  2010 ). 
Thrombin knockout mice have increased susceptibility to infection with 
 Staphylococcus aureus  infection in their limited life span (Mullins et al.  2009 ), 
which may indicate an important role of the thrombin-derived AMPs.  

1.2.3     Infl ammation 

 After hemostasis follows infl ux of neutrophils followed by monocytes and lympho-
cytes to the wounds in the infl ammatory stage of wound healing (Singer and Clark 
 1999 ). Neutrophils contain large amounts of antimicrobial peptides (Levy  1996 ; 
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Borregaard and Cowland  1997 ; Borregaard et al.  2007 ) important for the microbici-
dal activity of these cells (Flannagan et al.  2009 ). During the infl ammatory phase, 
the major AMPs present in the wound will be derived from the neutrophils. The 
AMPs in neutrophils are found both in neutrophil granules and cytosol (Levy  1996 ; 
Borregaard and Cowland  1997 ). Neutrophils even produce an AMP like elafi n after 
migration to the skin (Theilgaard-Mönch et al.  2004 ); however, the main antimicro-
bial peptides found in neutrophils are the α-defensins (HNPs) in azurophil granules 
(Ganz et al.  1985 ), cathelicidins in specifi c granules (Sørensen et al.  1997 ), and 
calgranulins (S100A8/S100A9) in the cytosol (Hessian et al.  1993 ). 

 The main antimicrobial activity of neutrophil defensins is exerted in the neutro-
phil phagolysosome (Joiner et al.  1989 ), but neutrophil defensins are also secreted 
to the exterior (Ganz  1987 ; Faurschou et al.  2002 ). Apart from their direct antibacte-
rial and antiviral activity (Ganz et al.  1985 ; Daher et al.  1986 ), defensins also boost 
bacterial phagocytosis by macrophages (Soehnlein et al.  2008a ). Neutrophil defen-
sins have other functions of importance in wound healing. Human neutrophil defen-
sins have chemotactic activity toward monocytes (Territo et al.  1989 ), T cells 
(Chertov et al.  1996 ), and immature dendritic cells (Yang et al.  2000a ). Furthermore, 
these peptides are mitogenic for epithelial cells and fi broblasts (Murphy et al.  1993 ). 
Neutrophil defensins do not seem to have a nonredundant function in wound heal-
ing since mice neutrophils lack defensins (Eisenhauer and Lehrer  1992 ). 

 The cathelicidins present in specifi c granules (or large granules in rudiments) are 
stored as inactive proteins in the granules and the biological function is unleashed 
following extracellular cleavage with serine proteases from azurophil granules 
(Zanetti  2004 ). In porcine and bovine neutrophils, the cathelicidins are processed 
by elastase (Panyutich et al.  1997 ; Scocchi et al.  1992 ) while proteinase 3 is respon-
sible for the processing of the human cathelicidin hCAP-18 to the antimicrobial 
peptide LL-37 (Sørensen et al.  2001 ), a peptide with broad-spectrum antimicrobial 
activity (Turner et al.  1998 ). The elastase-mediated processing porcine cathelicidins 
has been shown to be important for clearance of bacteria from wounds (Cole et al. 
 2001 ). Cathelicidins have other important functions in wound healing, both in the 
recruitment of mononuclear cells and in the tissue regeneration. It has long be rec-
ognized that neutrophils play a major role for the subsequent recruitment of mono-
cytes (Ward  1968 ), and it has now been recognized that LL-37 plays a role for the 
recruitment of monocytes (Soehnlein et al.  2008b ). Indeed, LL-37 has been shown 
to be a chemotactic factor toward monocytes as well as T cells and neutrophils 
(Yang et al.  2000b ). Porcine and murine cathelicidins have importance for angio-
genesis (Li et al.  2000 ; Koczulla et al.  2003 ) and both the porcine PR-39 and the 
human LL-37 induce expression of VEGF (Rodriguez-Martinez et al.  2008 ). 
Furthermore, treatment of wounds with the gene delivery of the human cathelicidin 
LL-37 promotes wound healing (Jacobsen et al.  2005 ; Steinstraesser et al.  2014 ; 
Carretero et al.  2008 ). Transactivation of the epidermal growth factor (EGFR) 
occurs in cutaneous wound healing (Tokumaru et al.  2000 ) and LL-37 has been 
shown to cause EGFR transactivation (Tjabringa et al.  2003 ) and thereby induce 
keratinocyte migration (Tokumaru et al.  2005 ). Furthermore, LL-37 suppresses 
both keratinocyte and neutrophil apoptosis (Chamorro et al.  2009 ; Nagaoka et al. 
 2006 ). 
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 S100A8/S100A9 constitutes 40 % neutrophil cytosolic protein (Edgeworth et al. 
 1991 ) and is a potent antifungal agent (Steinbakk et al.  1990 ). In wounds, neutrophil- 
derived S100A8/S100A9 is probably released from dying neutrophils or from  n eu-
trophil  e xtracellular  t rap s  (NETs) and contributes to killing of  Candida albicans  
(Urban et al.  2009 ). Apart from the direct antifungal effect, S100A9 enhances 
microbicidal activity of neutrophils by enhancing phagocytosis (Simard et al.  2011 ) 
and S100A8/S100A9 is important for neutrophil accumulation in response to LPS 
(Vandal et al.  2003 ) and induces neutrophil chemotaxis and adhesion (Ryckman 
et al.  2003 ). S100A8/S100A9 mediates proinfl ammatory activities mediated by 
binding to TLR-4 (Vogl et al.  2007 ) or the receptor for advanced glycation end 
products (RAGE) (Hofmann et al.  1999 ). Additionally, calgranulins have functions 
that may limit tissue damage or are anti-infl ammatory. S100A8/S100A9 is very 
sensitive to oxidation (Raftery et al.  2001 ; Lim et al.  2008 ) and may, thus, act as 
oxidant scavenger. S100A8 induces expression of the anti-infl ammatory cytokine 
IL-10 and protects against tissue injury (Hiroshima et al.  2014 ) and may, thus, play 
a role in resolution of infl ammation.  

1.2.4     Proliferative Phase 

 As the infl ammatory cells recede from the wound, the epidermal keratinocytes 
become a major source for AMPs during the proliferative phase of wound healing. 
While non-injured epidermis contains constitutively expressed AMPs like hBD-1 
and RNase 7, the expression of many AMPs is induced during wound healing and 
infl ammation. Indeed, many AMPs like hBD-2, hBD-3, RNase 7, and psoriasin 
were originally isolated from infl amed epidermis (Gläser et al.  2005 ; Harder et al. 
 1997 ,  2001 ; Harder and Schröder  2002 ). Though some epidermal expression of the 
human cathelicidin hCAP-18/LL-37 may also be found in the infl ammatory stage of 
wound healing (Dorschner et al.  2001 ), the peak expression of epidermal AMPs is 
found during the proliferative phase of wound healing (Roupé et al.  2010 ). The 
AMPs with increased epidermal expression during the proliferative phase of wound 
healing include hBD-2 (Schmid et al.  2001 ), hBD-3 (Sørensen et al.  2006 ), psoria-
sin (S100A7) (Lee and Eckert  2007 ), S100A8/S100A9 (Thorey et al.  2001 ), 
S100A15 (Roupé et al.  2010 ), elafi n (vanBergen et al.  1996 ), SLPI (Schmid et al. 
 2001 ; Wingens et al.  1998 ), lactoferrin (Roupé et al.  2010 ), midkine (Frick et al. 
 2011 ), and NGAL (Sørensen et al.  2006 ). Since the various defensins arise from a 
common ancestral gene (Bevins et al.  1996 ), it is remarkable that neutrophils and 
keratinocytes share many of the same AMPs and antimicrobial proteins (see 
Table  1.1 ); however, the AMPs in keratinocytes are induced only during wound 
healing and infl ammation while the AMPs in neutrophils are synthesized during 
normal neutrophil differentiation in the bone barrow (Borregaard et al.  2005 ). 
However, this means that the antimicrobial proteins and peptides are present in the 
wound over and extended time, though the cellular source varies.
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   The expression of some AMPs during wound healing is dependent on infl amma-
tion, i.e., cytokines from infi ltrating infl ammatory cells as in the case of the IL-1- 
dependent hBD-2 expression (Liu et al.  2003 ; Sørensen et al.  2005 ). However, the 
expression of other AMPs, like hBD-3, is induced by the injury-induced EGFR 
activation in epidermal keratinocytes, even in the absence of infl ammatory cells 
(Sørensen et al.  2006 ; Roupé et al.  2010 ), thus directly linking growth and tissue 
regeneration with AMP expression. Defi ciency in the injury-induced hBD-3 expres-
sion has been linked to the severity of skin infections and nasal carriage of  S. aureus  
(Zanger et al.  2010 ,  2011 ; Nurjadi et al.  2013 ). Additionally, many AMPs like 
S100A8/S100A9, SLPI, and NGAL are induced both by injury-induced GFR acti-
vation and proinfl ammatory cytokines (Roupé et al.  2010 ; Mork et al.  2003 ; 
Sørensen et al.  2003 ; Liang et al.  2006 ). 

 Though AMP expression mainly is induced during wound healing and infl amma-
tion, infl ammatory stimuli seem to downregulate the expression of certain AMPs 
during wound healing. The antimicrobial chemokine CXCL14 is normally expressed 
in the epidermis (Maerki et al.  2009 ) but downregulated during wound healing and 
infl ammation (Frick et al.  2011 ; Maerki et al.  2009 ). Likewise, RNase 7 protects 
healthy skin from  Staphylococcus aureus  infection (Simanski et al.  2010 ). The 
expression of RNase 7 is induced both by IFN-γ/IL-17 (Simanski et al.  2013 ) and 
signifi cantly by EGFR activation in injured skin  ex vivo  (Wanke et al.  2011 ). Though 
RNase 7 is signifi cantly induced through EGFR activation in injured skin  ex vivo , 
the expression level of RNase 7 is the same in skin wounds  in vivo  as in non-injured 
skin (Roupé et al.  2010 ) indicating that some infl ammatory mediators may down-
regulate the injury-induced RNase 7 expression. 

   Table 1.1    Antimicrobial peptides and proteins present in both neutrophils and keratinocytes   

 AMPs in neutrophils and keratinocytes 

 Neutrophils  Keratinocytes 

  Azurophil granules  
 α-defensins (HNP-1-4)  β-defensins (hBD-1-3) 
 Lysozyme  Lysozyme 
  Specifi c and gelatinase granules  
 Lactoferrin, NGAL, hCAP-18/LL-37  Lactoferrin, NGAL, hCAP-18/LL-37 
 Transcobalamin, SLPI, lysozyme  Transcobalamin, SLPI, lysozyme 
  Cytosol  
 Calgranulins (S100A8/S100A9)  Calgranulins (S100A8/S100A9) 
  Produced following extravasation  
 Elafi n  Elafi n 

  Keratinocyte AMPs not present in neutrophils  
 Psoriasin, RNase7, S100A15 

  Since α- and β-defensins arise from an ancestral gene, it is remarkable how many other antimi-
crobial peptides and proteins found in keratinocytes are also found in neutrophils. See text for 
references  
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 The epidermal AMPs induced by wound healing generate a broad spectrum on 
antibacterial activity, e.g., hBD-3 against  S. aureus  and  S. pyogenes  (Harder et al. 
 2001 ), psoriasin against  E. coli  (Gläser et al.  2005 ), and calgranulins against  C. 
albicans  (Steinbakk et al.  1990 ). Though, for example, psoriasin has been impli-
cated in defense against  E. coli  (Gläser et al.  2005 ) and hBD-3 and RNase 7 against 
 S. aureus  (Zanger et al.  2010 ; Simanski et al.  2010 ), the appearance of AMPs during 
the proliferative phase of wound healing raises the question of whether these pep-
tides may play additional roles beyond antimicrobial defense of the wound. Notably, 
some AMPs seem to remain intracellular or cell associated while other AMPs are 
secreted. hBD-2 is readily secreted into the medium from multilayer epidermal 
keratinocyte cell cultures (Sørensen et al.  2005 ), while hBD-3 remains cell associ-
ated, both in multilayer epidermal keratinocytes cell cultures (Sørensen et al.  2005 ) 
and in whole epidermis (Sørensen et al.  2006 ). Though, the antimicrobial S100A 
proteins psoriasin (S100A7), calgranulins (S100A8/S100A9), and S100A15 are 
cytosolic, at least psoriasin is also found extracellularly (Gläser et al.  2005 ). For 
AMPs to interact with other cells, the AMPs must – at least partially – be found 
extracellularly. 

 Numerous cytokine-line functions have been attributed to hBD-2. hBD-2 acti-
vates dendritic cells through TLR-4 (Biragyn et al.  2002 ) and is a chemoattractant 
toward immature dendritic cells and memory T cells through CCR6 (Yang et al. 
 1999 ) and toward neutrophils, monocytes, and macrophages through CCR2 (Röhrl 
et al.  2010 ). hBD-2 has been found to promote intestinal wound healing  in vitro  
(Otte et al.  2008 ) and stimulate proliferation, migration, and cytokine production of 
epidermal keratinocytes (Niyonsaba et al.  2007 ). 

 Likewise, non-antimicrobial functions have been attributed to hBD-3 including 
chemoattractant properties (Röhrl et al.  2010 ), antagonism of CXCR4 (Feng et al. 
 2006 ), and activation of mast cells with increase of vascular permeability (Chen 
et al.  2007 ). However, the fact that hBD-3 appears to remain cell associated in the 
skin (Sørensen et al.  2005   2006 ) questions whether these functions play a major role 
during wound healing. 

 The non-antimicrobial functions of psoriasin include chemotactic activity toward 
T lymphocytes and neutrophils (Jinquan et al.  1996 ) mediated by binding to RAGE 
(Wolf et al.  2008 ). This also promotes proliferation of endothelial cells (Shubbar 
et al.  2012 ). Psoriasin induces VEGF (Shubbar et al.  2012 ) and the expression of 
keratinocyte differentiation markers (Hattori et al.  2014 ) as wells as strengthens the 
tight junction barrier in the skin (Hattori et al.  2014 ). 

 Though SLPI (secretory leukocyte protease inhibitor) is also found in neutro-
phils, keratinocytes are the major source of SLPI in wound healing (Jacobsen et al. 
 2008 ). SLPI is found to be secreted both in multilayer epidermal keratinocytes cell 
culture (Sørensen et al.  2003 ) and whole epidermis (Sørensen et al.  2006 ). SLPI has 
antimicrobial activity against bacteria (Hiemstra et al.  1996 ), fungi (Tomee et al. 
 1997 ), and HIV-1 (McNeely et al.  1995 ). During wound healing, the secreted SLPI 
has nonredundant functions (Ashcroft et al.  2000 ) by inhibiting the elastase- 
mediated cleavage the epithelial growth factor proepithelin to the growth-inhibitory 
epithelin (Zhu et al.  2002 ).  
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1.2.5     Tissue Remodeling Phase 

 Tissue remodeling in cutaneous wound healing involves increased expression of 
collagen VI (Betz et al.  1993 ) that has antimicrobial activity (Abdillahi et al.  2012 ). 
Interestingly, collagen VI expression in fi broblasts is induced by neutrophil defen-
sins (Li et al.  2006 ). The regulation of expression of antimicrobial proteins and 
peptides in the underlying connective tissue of skin will likely receive more interest 
after the fi nding that the normal skin microbiome extends to the connective tissue 
(Nakatsuji et al.  2013 ).  

1.2.6     Chronic Wounds 

 Though many studies demonstrate how microbial products induce AMP expression 
in keratinocytes mainly through TLR activation (Abtin et al.  2008 ; Büchau et al. 
 2007 ,  2008 ; Li et al.  2013 ; Nagy et al.  2005 ; Gariboldi et al.  2008 ; Gerstel et al. 
 2009 ; Liu et al.  2002 ), the possible signifi cance of this in acute wound healing in 
noninfected wounds is not clear. The bacteria-induced AMP expression may be 
more important in chronic wounds with infections (Edwards and Harding  2004 ). 
Furthermore, in this instance, the bacterial proteases could play contradictory roles, 
either by induction of AMP expression through protease-activated receptors (Chung 
et al.  2004 ) or by AMP degradation (Schmidtchen et al.  2002 ). Chronic wounds like 
chronic venous ulcers are characterized by chronic infl ammation with continuous 
recruitment of infl ammatory cells, and indeed neutrophil AMPs like neutrophils 
defensins are found in high amounts (Lundqvist et al.  2008 ). The epidermal expres-
sion of hBD-2 and psoriasin is induced in chronic venous ulcers (Butmarc et al. 
 2004 ; Dressel et al.  2010 ), while the expression of LL-37 is decreased (Heilborn 
et al.  2003 ). In diabetic wounds, the high glucose levels may suppress the expres-
sion of both hBD-2 (Lan et al.  2012 ) and hBD-3 (Lan et al.  2011 ) in keratinocytes. 
To understand the role of AMPs in chronic wound pathology or chronic wound 
infections, more detailed studies are needed to delineate the AMP expression in dif-
ferent types of chronic wounds and how this is related to wound infection or under-
lying disease such as diabetes.   

1.3     Concluding Remarks and Future Perspective 

 AMPs provide part of the antimicrobial defense during wound healing. Topical 
application of antimicrobials do not improve normal wound healing (Lipsky and 
Hoey  2009 ), demonstrating adequate antimicrobial defenses. While the AMPs orig-
inating from the coagulation and complement cascades, the neutrophils, and epi-
dermal keratinocytes undoubtedly contribute to the antimicrobial defense in the 
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wound healing process, it is diffi cult to decipher the role of individual AMPs due to 
overlapping antimicrobial activities. Apart from SLPI (Ashcroft et al.  2000 ), no 
AMP has been demonstrated to possess nonredundant functions during wound 
healing. 

 Though mice models provide useful insight, it is important to note that differ-
ences exist between humans and mice – also when it comes to both wound healing 
and AMPs. Wound contractions are important for wound healing in rodents such as 
mice, but not in humans (Davidson  1998 ). Neutrophils and keratinocytes are major 
sources of AMPs during wound healing, but mice have far fewer neutrophils than 
humans (Mestas and Hughes  2004 ) and the mouse epidermis contains far fewer 
keratinocytes than human epidermis. Accordingly, though no directly comparative 
studies exist, it seems reasonable that the mouse wounds will contain fewer AMPs 
than human wounds. There will also be qualitative difference in the AMPs. The 
mouse contains many more different β-defensins than humans (Schutte et al.  2002 ), 
while there will be no neutrophil α-defensins in mouse wounds (Eisenhauer and 
Lehrer  1992 ). The neutrophil α-defensins play a role for the antimicrobial function 
of the neutrophils (Sørensen et al.  2014 ), and this will undoubtedly be important for 
the antimicrobial defense also in wounds. 

 While even infected wounds only in some instances benefi t from topical treat-
ment with antibiotics (Lipsky and Hoey  2009 ), gene delivery of AMPs has been 
found to have benefi cial effects for wound healing (Jacobsen et al.  2005 ; 
Steinstraesser et al.  2014 ; Carretero et al.  2008 ). This clearly indicates that AMPs 
have benefi cial effects in wound healing beyond its antimicrobial properties. AMPs 
are generated at all stages of wound healing and it does seem like AMPs participate 
in the regulation of some aspects of the wound healing processes, for instance, 
LL-37 plays a role for recruitment of monocytes (Soehnlein et al.  2008b ). 
Resolution of infl ammation is now recognized as a regulated process (Serhan and 
Savill  2005 ; Ortega-Gomez et al.  2013 ), and in wounds, AMPs may play an impor-
tant role here. Dying and necrotic neutrophils are anti-infl ammatory due to the 
release of neutrophil defensins (Miles et al.  2009 ) and calgranulin S100A8, which 
induce the anti- infl ammatory cytokine IL-10. Later, IL-10 may play a role for 
downregulation of AMP expression in keratinocytes (Howell et al.  2005 ). Both 
defensins and LL-37 promote proliferation of keratinocytes (Niyonsaba et al.  2007 ; 
Heilborn et al.  2003 ). Accordingly, AMPs may play a role for infl ammation, resolu-
tion of infl ammation, and proliferation during wound healing. One of the para-
doxes of psoriasis, a disease with very prominent AMP expression (Harder and 
Schröder  2005 ), is the lack of scarring following the chronic infl ammation 
(Nickoloff et al.  2006 ). Future studies will further address the role of AMPs for 
regulation of the wound healing process and scar formation. This will hopefully 
pave the way for new treatment modalities for chronic wounds and wound 
infection.     
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