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Abstract. Attribute-based encryption has the potential to be deployed
in a cloud computing environment to provide scalable and fine-grained
data sharing. However, user revocation within ABE deployment remains
a challenging issue to overcome, particularly when there is a large num-
ber of users. In this work, we introduce an extended proxy-assisted app-
roach, which weakens the trust required of the cloud server. Based on an
all-or-nothing principle, our approach is designed to discourage a cloud
server from colluding with a third party to hinder the user revocation
functionality. We demonstrate the utility of our approach by presenting a
construction of the proposed approach, designed to provide efficient cloud
data sharing and user revocation. A prototype was then implemented to
demonstrate the practicality of our proposed construction.

1 Introduction

Cloud storage services (e.g. Dropbox, Microsoft’s Azure storage, and Amazon’s
S3) enable users to upload and store their data remotely in the cloud environ-
ment as well as accessing and downloading the remotely stored data in real-
time using a web browser or a mobile application [24]. To ensure the security
and privacy of user data [9], particularly against an untrusted cloud service
provider, one could encrypt the data prior to uploading and storing the data
in the cloud [8,10,11,15,16,18,35]. In practice, data encryption often serves as
an access control mechanism in cloud data sharing, where end users’ decryption
capabilities are defined based on a specified access control policy. For instance,
a scientific research team may choose to share their research data and findings
(that are stored in a cloud server) in real-time with their team workers [19],
based on some pre-determined attributes or roles. To provide the scalability and
flexibility of real-time data sharing, a fine-grained access control is required.
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Attribute-based encryption (ABE) [4,13,14,20,28] has been identified as a suit-
able solution to enforce fine-grained decryption rights.

ABE can be broadly categorized into key policy ABE (KP-ABE) and cipher-
text policy ABE (CP-ABE). KP-ABE allows data to be encrypted with a set of
attributes, and each decryption key is associated with an access policy (defined in
terms of attributes); while CP-ABE is complementary — data are encrypted and
tagged with the pre-determined access policy, and a decryption key is associated
with the set of attributes. In either type, a ciphertext can be decrypted using
the corresponding decryption key only if the attributes satisfy the access policy.
ABE has been shown to be an effective and scalable access control mechanism for
encrypted data, but one key limiting factor is user revocation in an environment
where there are many users (e.g. in a cloud storage environment).

There are several possible approaches to address this challenge. For example,
one could implement an authentication based revocation mechanism in a con-
ventional access control system. However, such an approach requires the cloud
server to be fully trusted. This approach also imposes additional computational
requirements on both the users and the cloud server — the users are required to
possess another authentication secret and the cloud server needs to deal with the
additional authentication. Another potential approach is the key-update based
revocation, such as those proposed in [17,29,34], where key materials will be
updated to exclude a revoked user. This approach, however, suffers from limited
scalability as all data must be re-encrypted, and all non-revoked legitimate user
keys need to be either updated or re-distributed. This is prohibitive in a data-
intensive and high user volume environment, such as cloud storage. Although
in [17,29,34] the majority of data re-encryption workload is often performed by
the cloud server, it remains an attractive option to reduce the computational
requirements in a real-world implementation.

Several researchers have introduced an alternative approach for user revo-
cation by introducing an “expiry time” attribute such that a decryption key
is effective only for a period of time [4,13]. The shortcoming of this method
is that it is not possible to do real-time user revocation. Ostrovsky et al. [23]
employ negative constrains in access policy, such that a revocation of certain
attributes amounts to negating the attributes. The system does not scale well in
the revoking of individual users, because each encryption requires the informa-
tion of all revoked users and each of which is treated as a distinctive attribute.
Attrapadung et al. [1] aim to solve the revocation problem by incorporating
the broadcast encryption revocation mechanism [22] into ABE. The resulting
scheme, however, generates the public system key in size proportional to the
total number of users. Consequently, such a scheme has limited scalability. The
scheme introduced in [21] attempts to leverage revocation and traceability to
ABE in real-world applications, such as Pay-TV, where a decryption key is con-
tained in a black-box. The scheme is, unfortunately, not practical as the size
of each of public key, private key and ciphertext is O(n), where n is the total
number of users.
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More recently, proxy-assisted user revocation was introduced in [32,33,35]
as a potential solution. In this approach, a cloud server acts as a proxy, and
each user’s decryption capability is split and represented by two parts, namely:
the first part is held by the cloud server (i.e. cloud-side key), and the other is
held by the user (i.e. user-side key). A decryption requires a partial decryption
using the cloud-side key by the cloud server, and a final/full decryption using the
user-side key by the user. In user revocation, the cloud server will erase the key
associated with the user to be revoked. This method is particularly promising, as
it supports immediate revocation, without compromising efficiency as it does not
require data re-encryption or key update. The idea of recurring to a third party
for immediate user revocation could be traced back to mediated cryptography,
where a mediator is introduced for the purpose of user revocation (e.g. [3]). The
difference between proxy-assisted user revocation (e.g. [32,33,35]) and mediated
cryptography will be clarified in Sect. 2.

However, we observe that both proxy-assisted and mediated cryptography
approaches require the cloud server to be trusted, which as pointed out in [5]
that ‘there are legitimate concerns about cloud service providers being com-
pelled to hand over user data that reside in the cloud to government agencies
without the user’s knowledge or consent due to territorial jurisdiction by a for-
eign government’. In the aftermath of the revelations by Edward Snowden that
the National Security Agency has been conducting wide-scale government sur-
veillance, including those targeting cloud users - see http://masssurveillance.
info/, the requirement of a honest cloud server (in this context, the cloud server
is assumed not to disclose users’ cloud-side keys) may limit the adoption of the
proxy-assisted approach or the mediated cryptography approach. Key disclosure
could also be due to unscrupulous employees of the cloud service provider or an
attacker who has successfully compromised the cloud system.

Our Contributions. We are, thus, motivated to address this problem; extend-
ing the proxy/mediator assisted user revocation approach (based on an ‘all-or-
nothing’ principle) to mitigate the risk due to a dishonest cloud server. More
specifically, the private key of the cloud server is also required for the cloud-
side partial decryption. Consequently, in order for the cloud server to collude
with another user to disclose a user’s cloud-side key, the cloud server would
also have to reveal its private key in order to perform a partial decryption. We
coin this approach as an extended proxy-assisted user revocation. We regard the
contributions of this work to be three-fold: (1) We formulate the definition and
threat model for cloud data encryption using the extended proxy-assisted user
revocation; (2) We propose a concrete construction instantiating our extended
proxy-assisted approach, which demonstrates the utility of this approach; and
(3) We implement a prototype of our construction, which demonstrates the prac-
ticality of our proposed construction.
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2 Related Work

Cloud Data Encryption with ABE. Over the last decade, a large num-
ber of cloud data encryption schemes have been proposed in the literature. Of
particular relevance are those that utilize ABE. As an one-to-many encryption
scheme, ABE is required to provide user revocation. However, the various pro-
posed attribute revocation mechanisms for ABE, such as “expiry time” attributes
and negative attributes [1,4,13,21,23], are generally not suitable for cloud data
encryption deployment as discussed below and in the preceding section.

Yu et al. [34] suggested adopting KP-ABE to achieve fine-grained data shar-
ing. To support user revocation, they proposed using proxy re-encryption (PRE)
[2] in the updating of user’s decryption key. In this approach, the bulk of the com-
putationally expensive operations (e.g. re-generation of encrypted cloud data due
to user revocation) are performed by the cloud server. Although a cloud generally
has significantly more computational resources, each user’s quota is cost-based.
Similar limitation is observed in the scheme proposed by Wang et al. [29]. Sahai
et al. [26] proposed an attribute revocable CP-ABE scheme, using ciphertext
delegation and the piecewise property of private keys. In particular, the system
proceeds in epochs, and in each epoch, the attribute authority generates a set
of update keys (as the other piece of each private key) according to the revoca-
tion list. All the ciphertexts are then re-encrypted with a new access policy (the
principal access policy remains unchanged, but the extra access policy changes
in each epoch). A similar attribute revocation method has also been explored in
the multi-authority setting [30,31], where users’ attributes are issued by multi-
ple independent attribute authorities. Similar to other ABE schemes with built-
in attribute revocation support (such as expiry time and negative attributes),
these schemes face the challenge of transforming attribute revocation into effi-
cient revocation for individual users. In addition, the overheads introduced by
these schemes in the re-generation of encrypted data should be addressed. In our
extended proxy-assisted approach, however, the overhead imposed upon both the
cloud server and users due to user revocation is relatively less.

Mediated Cryptography. Boneh et al. proposed “mediated RSA” to split
the private key of RSA into two shares; one share is delegated to an online
“mediator” and the other is given to the user [3]. As RSA decryption and signing
require the collaboration of both parties, the user’s cryptographic capabilities are
immediately revoked if the mediator does not cooperate. Recently, Chen et al. [7]
presented a mediated CP-ABE scheme, where the mediator’s key is issued over
a set of attributes. The scheme in [12] can also be viewed as mediated ABE,
although its purpose is to outsource the costly ABE decryption to the mediator.
This does now result in immediate revocation. A common issue associated with
existing mediated cryptographic schemes is key escrow. In other words, there
is a party responsible for generating the key shares such that the party knows
both shares. Similar to our proposed extended proxy-assisted approach, mediated
cryptography is intended to provide immediate user revocation (we remark that
mediator and proxy are essentially the same concept). However, a key difference
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between the (extended) proxy-assisted approach and the mediated cryptography
is that the former approach does not suffer from the key escrow problem, since
the shares are generated by different parties and no single party knows both
shares. This is a particularly attractive option in the current privacy conscious
landscape.

Unlike other mediated schemes, the mediated certificateless encryption [6]
avoids key escrow by employing a combination of identity-based encryption
and conventional public key encryption; the private key corresponding to the
identity-based encryption held by the mediator is generated by a key generation
authority, and the private key of public key encryption can be generated by the
user. Unfortunately, such an approach cannot be straightforwardly used in the
(extended) proxy-assisted approach by simply replacing identity based encryp-
tion with ABE. This is due to the fact that using ABE for data encryption,
the encryptor does not have any particular recipients. Both the mediated certifi-
cateless encryption (as well as other mediated cryptographic schemes) and the
proxy-assisted approach (such as those in [32,35]) require the mediator/proxy to
be honest in maintaining user’s key shares. As mentioned earlier, this may not
be a realistic assumption to privacy conscious (or paranoid) users. Our extended
proxy-assisted approach exactly is designed to address this issue.

3 Proposed Revocable Cloud Data Encryption Model

3.1 System Overview

A cloud storage system allows an owner to remotely store the data at a cloud
storage server, and the data can be accessed by a group of users authorized by
the data owner. As an example, the data owner could be an organization and
the authorized users are the organization employees. Without fully trusting the
cloud server, the data owner encrypts the data to ensure the security and privacy
of the data. Here, data encryption serves as a measure of fine-grained access
control, and users have different decryption capabilities based on the specified
need-to-know basis. In particular, a user’s decryption capability is delineated by
a set of attributes according to the user’s functional role. Each data encryption
is associated with an access control policy (specified with respect to attributes),
such that a user can successfully decipher the encrypted record, if, and only
if, the user’s attributes satisfy the access policy. As the system is in a multi-
user setting, user revocation is a critical requirement (e.g. when a user leaves
the organization or is no longer involved in the project). User revocation would
allow the data owner to revoke a user’s ability to decipher the data.

3.2 Notations

We use the definitions of “attribute” and “access structure” from [4,13].

Attributes. Let A denotes the dictionary of descriptive attributes used in the
system. Each authorized cloud storage user, u, is assigned with a set of attributes
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A, C A, which defines the user’s functional role. The attribute assignment
procedure is application specific and is beyond the scope of this paper.

Access Policy. In the system, an access control policy is expressed by an access
tree, where each leaf node represents an attribute and we use att(¢) to denote the
attribute associated with leaf node ¢. Each non-leaf node of the tree represents
a threshold gate, described by its children and a threshold value. Let num, be
the number of children of a non-leaf node n, and t,, be its threshold value, where
1 <t, < num,. When t, = 1, the threshold gate is an OR gate, and when
t, = num,, it is an AND gate. The parent of a node n in the tree is denoted
by parent(n). The tree also defines an ordering among the children of a node —
i.e. the child nodes of a node n are numbered from 1 to num,,. The function
index(n) calculates the unique number associated with a node n. The access tree
can express any access policy in the form of monotonic formula.

Satisfying an Access Tree. Let 7 be an access tree with root rt. The subtree of
T rooted at node n is denoted as 7,,; hence, 7 = 7,;. When a set A of attributes
satisfy the access tree 7, it is denoted as 7,(A) = 1. 7,(A) is computed in a
recursive way as follows: if n is a non-leaf node, then compute 7, (A) for all
child nodes n’; 7,,(A) returns 1 if, and only if, at least t,, children return 1; if n
is a leaf node, then 7,,(A) returns 1 if and only if att(n) € A.

3.3 Extended Proxy-Assisted User Revocation Approach

To strengthen key revocation and to reduce the possibility of a dishonest cloud
server, our approach requires the cloud server to use its own private key in the
partial decryption phase. In other words, unless the cloud server is willing to
disclose its private key, the exposure of a user’s cloud-side key (referred to as
proxy key in this paper) to a third party (e.g. a foreign government agency)
does not help in deciphering the encrypted cloud data. As our approach is an
extension of the proxy-assisted approach, it inherits the advanced features of
the latter, such as immediate user revocation, small amount of overhead for
revocation, light computation cost for user side, and key escrow-free.

3.4 Formulation of Revocable Cloud Data Encryption

A revocable cloud data encryption system involves three types of entities, namely:
data owner (denoted as DO), a set of users, and a cloud server (denoted as CS).
Each user and CS have their respective public/private key pairs. To authorize a
user, DO generates a proxy key based on the user’s attributes, the user’s public
key, and CS’s public key; the proxy key is given to and held by CS. Therefore, CS
maintains a Proxy Key list, with each entry containing a user’s identity and the
corresponding proxy key. When a user requests to retrieve a data record from
the cloud, CS executes a proxy decryption operation over the data with the user’s
proxy key and its own private key to generate an intermediate value. The value
is then returned to the user, who is able to obtain the underlying plain data by
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running a user decryption operation with his/her private key. Specifically, the
system consists of the following algorithms.

Definition 1. Let A denote the universe of attributes. A revocable cloud data
encryption system (RCDE) is defined as a collection of the following algorithms.

Setup(1®) — (params,msk): Taking as input a security parameter 1%, DO
executes the algorithm to set up public parameters, params, and a master
secret key, msk. Below, we assume that params is implicit in the input of
the rest algorithms unless stated otherwise.

UKGen(u) — (pky, sky): The user key generation algorithm takes as input a

user identity, u, and outputs a pair of public/private keys, (pk., sk.), for u.
Note that (pk., sky) is a pair for a standard public key cryptosystem.
Each system entity (including users and CS) runs this algorithm to generate
a key pair. As (pkcs, skcs) — the key pair of CS —is a standard public key
cryptosystem, we assume that (pkcs, skcs) is for long term use, and CS does
not expose the private key, skcs.

PxKGen(msk, pkcs, pku, Ay) — PzK,: The prozy key generation algorithm
takes as input msk, the server’s public key, pkcs, a user u’s public key, pk.,
and the user’s attributes, A, C A, and outputs a proxy key, PxK,, for u.
DO runs this algorithm to authorize a user based on the user’s attributes.
The proxy key, Pz K, will be given to CS who adds a new entry in its Proxy
Key list Lp,x —ie. Lprx = Lprx U {’LL, Pl'Ku}

Encrypt(m,7T) — c: The encryption algorithm takes as input a message, m,
and an access tree, T, specifying an access policy, and outputs a ciphertext,
¢, under T .

DO runs this algorithm to encrypt data to be uploaded to CS.

PxDec(skcgs, PrKy,,c) — v: The prozy decryption algorithm takes as input
CS’s private key, skcs, a user’s proxy key, PxK,, and a ciphertext, ¢, and
outputs an intermediate value, v.

The CS runs this algorithm to help a user, u, partially decrypt an encrypted
record requested by the user with the corresponding proxy key.

UDec(sk,,v) — m: The user decryption algorithm takes as input a user private
key, sk, , and an intermediate value, v, and outputs a message, m.

An authorized user runs this algorithm to obtain the data with the interme-
diate value returned by CS and his/her private key.

Revoke(u, Lpyr) — Lp, it Taking as input a user identity, u, and the Prozy
Key list, Lpyx, the algorithm revokes u’s decryption capability by updating
and outputting an updated Prozy Key list, L'p,. i -

Correctness. Correctness of the system stipulates that UDec(sk,, PxDec(skcs,
PzK,, ¢)) = mif T(A) = 1, for all (pk,, sk,) — UKGen(u), PxK, < PxKGen
(msk, pkcs, pky, A) and ¢ <+ Encrypt(m, 7 ), where (params, msk) < Setup(17).

Remark. The separation of the algorithms, UKGen and PxKGen, highlights the
distinction between our key-escrow-free approach and the mediated cryptogra-
phy with key escrow. For the latter, the two algorithms are combined into one,
which is executed by a single party (e.g., DO in our case).
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Security Requirements. We define the security requirements for our system.

Data Privacy Against Cloud Server. The primary purpose of data encryption is
to protect data privacy against CS. It guarantees that CS cannot learn any useful
information about the data in its storage system even with the knowledge of all
users’ proxy keys (as well as its own private key).

Definition 2. [Data Privacy Against Cloud Server] A revocable cloud data
encryption system (RCDE) achieves data privacy against the cloud server if for
any probabilistic polynomial time (PPT) adversary, the probability of the follow-
ing game returns 1 is 1/2 + e(k), where €(.) is a negligible function with respect
to the security parameter, K.

Setup. The game challenger runs the Setup algorithm, and returns params to
the adversary.

Phase 1. The adversary generates its own pair of public/private keys, and gives
the public key to the challenger. It then makes repeated queries to the proxy key
generation oracle by querying sets of attributes A1, ..., Ay, . For each queryi, (1)
the challenger runs the UKGen algorithm to get a user public/private key pair;
(2) with the adversary’s public key, the user public key, and the attribute set A,
the challenger runs the PrKGen algorithm to get a proxy key; (3) the challenger
returns the proxy key along with the user public key to the adversary.

Challenge. The adversary submits two equal-length messages, mg and m1, along
with a challenge access tree, T*. The challenger flips a random coin, b, runs
the Encrypt algorithm on my and T, and returns the ciphertext, c*, to the
adversary.

Phase 2. The adversary continues to make proxy key generation queries, and
the challenger responds as in Phase 1.

Guess. The adversary outputs a guess, ', on b. If b/ = b, then the challenger
returns 1; otherwise returns 0.

Data Privacy Against Users. From the perspective of access control over cloud
data, a user should not be able to decrypt data beyond the user’s authorized
access rights issued by DO. In particular, a collusion of a set of malicious users
will not afford these users’ decryption capabilities beyond those authorized.

Definition 3. [Data Privacy against Users] A revocable cloud data encryption
system (RCDE) achieves data privacy against users if for any PPT adversary,
the probability of the following game returns 1 is 1/2 + €(k).

Setup. The challenger runs the Setup algorithm, and returns params to the
adversary.

Phase 1. The adversary makes repeated queries to the proxy key generation ora-
cle (PrKGen) by issuing sets of attributes, Ay, ..., Ay, . To respond the queries,
the challenger first generates a public/private key pair as the CS’s key by execut-
ing the UKGen algorithm, and gives the key pair to the adversary; then for each
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query i, the challenger (1) first generates a user public/private key by executing
the UKGen algorithm and gives the key pair to the adversary; (2) then generates
a proxy key by executing the PxKGen algorithm upon the CS’s public key, and
the user public key and A;, and returns the resulting proxy key to the adversary.

Challenge. The adversary submits two equal-length messages, my and m1, along
with an access tree, T*, subjecting to a restriction that none of the A’s satisfies
T*. The challenger flips a random coin, b, runs the Encrypt algorithm on my
and T*, and returns the ciphertext, ¢*, to the adversary.

Phase 2. The adversary continues to make proxy key generation queries by
submitting attribute sets as in Phase 1, with the restriction that none of the
attribute sets satisfies T*.

Guess. The adversary outputs a guess, b, on b. If b/ = b, then the challenger
returns 1; otherwise returns 0.

Remark. This definition depicts a stronger adversarial capability as it allows users
to gain access to the cloud server’s key and the proxy keys.

User Revocation Support. The extended proxy-assisted user revocation approach
guarantees that without knowing CS’s private key, any user cannot decipher
encrypted data even given the corresponding proxy key (in addition to the user
key pair).

Definition 4. [User Revocation Support] A revocable cloud data encryption sys-
tem (RCDE) supports user revocation if for any PPT adversary, the probability
of the following game returns 1 is 1/2 + e(k).

Setup. The challenger runs the Setup algorithm, and returns params to the
adversary.

Phase 1. The challenger generates a public/private key pair as CS’s key by
executing the UKGen algorithm, and gives the public key to the adversary. The
adversary makes repeated queries to the proxy key generation oracle by issuing a
set of attributes Aq, ..., Ay, . For each query i, the challenger (1) generates a user
public/private key pair and gives the key pair to the adversary; (2) generates a
proxy key by executing the PrKGen algorithm upon the CS’s public key, the user
public key and A;, and returns the resulting proxy key to the adversary.

Challenge. The adversary submits two equal-length messages, my and my, along
with an access tree, T*. The challenger flips a random coin, b, runs the Encrypt
algorithm on my and T*, and returns the ciphertext, c*, to the adversary.

Phase 2. The adversary continues to make proxy key generation queries, as in
Phase 1.

Guess. The adversary outputs a guess, b', on'b. If b’ = b, the challenger returns
1; otherwise returns 0.
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4 Our Construction

In this section, we present a concrete construction of our novel extended proxy-
assisted user revocation approach described in Sect.3. The construction is
adapted from the CP-ABE scheme in [4], and it achieves the same expressiveness
for access policy as in [4,13]. We state that it is not difficult to extend the fol-
lowing construction idea to other ABE schemes with more expressive attributes,
such as the scheme in [28].

4.1 Construction Details

The main challenge in our construction is the generation of a user’s proxy key
by seamlessly incorporating the cloud server’s public key and the user’s public
key into the decryption key generation algorithm of the CP-ABE scheme in [4].
Let s €g S denotes an element s randomly chosen from a set S. The details of
our construction are described as follow.

Setup(1©): On input a security parameter 1%, the algorithm: determines a
bilinear map, e : Gg x Gy — G, where Gy and Gr are cyclic groups of
k-bit prime order p. Selects g, which is a generator of Gy. Selects a cryp-
tographic hash function, H : {0,1}* — Gy. Picks o, 8 €r Z,, and sets
params = (e, Go, g, h = g°,Go = e(g,9)%) and msk = (a, 3).

UKGen(u): On input a user identity w, the algorithm chooses z,, €r Z,, and
sets (pk, = g**, sk, = x,). It can be seen that (pk.,,sk,) is a standard
ElGamal type key pair. CS also uses this algorithm to generate a key pair,
(pkcs = g*<, skcs = wcs)-

PxKGen(msk, pkcs, pky, Ay ): On input msk = («, 3), pkcs = g%, pky, = g™
and A, the algorithm chooses r1,72,7; €r Zp,Vi € A, and sets PrK, =
(k = (pkfipkog™)? K = g™ and Vi € Ay : {ki = g™ H(i)™ iy = g™ }).

Encrypt(m,7): Taking as input a message, m, and 7, the algorithm works
as follows: Firstly, it selects a polynomial, ¢,, for each node, n, (including
the leaf nodes) in 7. These polynomials are chosen in a top-down manner
starting from the root node, rt. For each node n, set the degree d,, of the
polynomial ¢, to be d,, = t,, — 1, where t,, is the threshold value of node n.
Starting with the root node, rt, the algorithm chooses an s €r Z,, and sets
¢rt(0) = s. Tt next selects d,+ other random points to define ¢+ completely.
For any other node n, it sets ¢,(0) = gparent(n)(index(n)), and chooses d,,
other points to define ¢,,. Let L be the set of leaf nodes in 7. The algorithm
sets the ciphertext, ¢, as ¢ = (7,C =m - G5, C' = h5,C" = g5Vl € L :
{Cp = g1 Cpy = H(att(£))2(0}).

PxDec(skcs, PrK,,c): On input skcs = xcs, and PxK, = (k,k',Vi € A, :
{ki1,ki2}) associating with a set of attributes, A,, and a ciphertext, ¢ =
(7,C,C",C" ¥t € L : {Cp,Cp}), the algorithm outputs an intermedi-
ate value, v if 7(A,) = 1, and L otherwise. Specifically, the algorithm is
recursive. We first define an algorithm, DecNd,, (PzK,,c), on a node, n,
of 7. If node, n, is a leaf node, we let z = att(n) and define as follows:
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z ¢ A,, DecNd,(PxK,,c) = L; otherwise DecNd,,(PzK,,c) = F,, where
. e(a™2 H(z)™= gn ()

F, = eEIZZgZB - (g(gf,(H)(z)ﬁmo))) = e(gag)m'q"(o)-

We now consider the recursive case when n is a non-leaf node. The algorithm,
DecNd,,(PzK,, ¢), then works as follows. For each child node ch of n, it calls
DecNd.,(PxzK,, ¢), and stores the output as Fij. Let S, be an arbitrary ¢,,-
sized set of child nodes, ch, such that F., # L. If such a set does not exist,
then the node is not satisfied and DecNd,,(PxK,,c) = F,, = L. Otherwise,
we let the Lagrange coefficient, A\; s for i € Z,, and a set S of elements in

Zp be N s(x) =[ljes,j2 5=7- We next compute
A s1,(0) i=index(ch),
Fn = H Fch ’Where S;Ln:{eindex(ch):chesn}
ch€Sn,
_ 72400 (0)\ D451 (0) _ T2-dparent(ch) (index(ch))y&; 57 (0)
(e(g,9) )"HEn (e(g,9) )7 En
cheS, cheS,
ro.qn (1)L 57 (0) T2.qn
= I1 (elg. @) )2es0 @ = e(g, g)2an®
cheS,

In this way, DecNd,;(PzK,,c) for the root node rt can be computed if
T,+(A,) = 1, where DecNd,+(PzK,,c) = e(g, g)"> %) = e(g, g)">* = F,.
Next, the proxy decryption algorithm computes

e(k,C")  e((pklspkeg™)? h?)
e(k',C")*sFyy — e(g™, g°)"se(g, g)r

= e(pku, 9)”".

Finally, it sets v = (C = m - G2, e(pku, g)*%).
UDec(sk,,v): On input a user private key, sk, = x,, and an intermediate
value, v = (C = m-G2, e(pky, g)**), the user decryption algorithm computes
m-G

(e(phu,g)*-) ™
Revoke(u, Lp,k): On input a user identity, u, and the Proxy Key list, Lp,k,

the user revoking algorithm deletes the entry corresponding to u from the
list —i.e. L, = Lpsix \{u, PxK,}. In areal world application, an interface
should be provided to DO for DO to perform the updating in real-time.

=m.

4.2 Functional Analysis — Features

Our construction enjoys a number of features as described below.

Efficient and Immediate User Revocation. The only overhead incurred due
to user revocation is the deletion of the revoked user’s proxy key from the cloud
server. Once the proxy key of a user is eliminated, the cloud server is no longer
able to perform the proxy decryption for the revoked user.

Mitigation against Cloud-User Collusion. The primary purpose of the
extended proxy-assisted user revocation is to reduce the likelihood of proxy keys
disclosure (e.g. the cloud server may collude with some revoked users to reveal
their proxy keys). In our construction, the leakage of a proxy key does not lead
to the success of proxy decryption.
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We note that there exists another way of colluding to invalidate user revoca-
tion. More specifically, the cloud server keeps a copy of a revoked user’s proxy
key before it is deleted by the data owner, and then continues to service the
revoked user’s data access with the retained proxy key. Unfortunately, such col-
lusion cannot be prevented by any proxy/mediator based system. However, it is
not difficult to detect collusion of this nature in practice (compared to the proxy
keys disclosure collusion), as it requires ongoing engagement of the cloud server.

Free of Key Escrow. Each user generates its own key pair, and the data owner
generating each authorized user’s proxy key does not need to know the user’s
private key.

Cloud Transparency. Although the cloud server’s key is involved in the autho-
rized users’ proxy keys, encrypting data only needs the access policy associated
with the data to be encrypted, without the need to involve the cloud server. In
other words, data encryption works as a regular CP-ABE encryption algorithm.

Minimal User Side Owverhead. The bit-length of an intermediate value, v,
output by the algorithm, PxDec, is 2|Gr|, independent of the complexity of access
policy. In addition, the main computation overhead of the algorithm, UDec,
includes just a single exponentiation in Gp (unlike Go, G is a regular finite
field) without any bilinear pairing operation. Thus, the complexity overhead at
the user side is relatively low in terms of both communication and computation.

No User Authentication. The cloud server is not require to check the authen-
ticity of a requesting user, as the intermediate value output by the proxy decryp-
tion algorithm can only be decrypted by the user being impersonated (i.e. the
impersonator will not be able to decrypt the intermediate value output).

4.3 Security Analysis

We have the following theorem asserting the security of our construction, and
the security proof is deferred to the Appendix.

Theorem 1. Our construction is a revocable cloud data encryption system
achieving Data Privacy Against Cloud Server (in the sense of Definition 2), Data
Privacy Against Users (in the sense of Definition 3), and User Revocation Sup-
port (in the sense of Definition 4), in the generic group model [25].

5 Implementation of Our Construction

5.1 Proof-of-Concept

To demonstrate the practicality of the construction described in Sect.4, we
present a Web-based proof-of-concept.

Architecture. The prototype consists of a Web application representing a cloud
server (running the algorithm PxDec), a data owner application, and a user appli-
cation running the algorithm UDec. The data owner application takes charge of
the algorithms Setup, PxKGen and Encrypt. A cloud-data-owner interface is pro-
vided, allowing the data owner application to upload encrypted data to the Web
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server. A cloud-user interface is also provided for the user to access and down-
load data from the Web server. The Web server runs on a desktop with 2.66 GHz
Intel Core2Duo and 3.25 GB RAM, the data owner application runs on a lap-
top with 2.10 GHz Intel Core i3-5010U Processor and 4 GB RAM, and the user
application runs on a smartphone configured with a 1.2 GHz CPU and 2GB
RAM.

The implementation is based on the Pairing-Based Cryptography (PBC)
library (https://crypto.stanford.edu/pbc/). The bilinear map in our construc-
tion is instantiated with a 512-bit supersingular curve of embedding degree 2,
with |p| = 160. For the cryptographic hash function H : {0,1}* — Gy, a sim-
plified realization of choosing random values from Gg is used, as there is no
off-the-shelf hash function of this nature. The data encryption follows the com-
mon practice of data encapsulation + key encapsulation, namely, an encryption
of a message, m, is of the form (AESg(m),Encrypt(k,7)), where k is a random
encryption key. To achieve the security level guaranteed by the 512-bit super-
singular curve, 128-bit AES is chosen. Since Gt is an ordinary finite field, the
AES keys can be directly encrypted by the algorithm Encrypt.

Reducing Storage Overhead. In the prototype, we are concerned with reduc-
ing the storage overhead. Recall that the ciphertext size in our construction is
linear with the number of leaf nodes in a given access tree - for a payload mes-
sage m € G, a ciphertext introduces an extra storage overhead of 2 + 2¢ group
of elements in Gy, where / is the total number of leaf nodes of the access tree.
When / is large, the complexity overhead dominates the storage cost.

The mode of hybrid data/key encapsulation offers us a possibility to amortize
the above complexity overhead. Specifically, all data sharing the same access
policy are encrypted with the same encryption key. The high ciphertext overhead
resulting from the encapsulation of the encryption key by the algorithm Encrypt is
amortized by all these data. Note that the data owner is not necessarily involved
in the management of the encryption keys. Instead, the data owner can obtain the
key by retrieving and decrypting the corresponding ciphertext from the cloud
server, if the access policy has already been used. We also remark that the
decryption process by the data owner is very simple. With «, the data owner only
needs to retrieve the C, 0" elements of the ciphertext, and computes W to
recover the encryption key. If the data owner chooses to keep ¢g® as a part of the
master secret key, msk, the computation overhead is a single pairing operation.
Figure 1 illustrates the logical structure of encrypted data records, where each
ciphertext of the algorithm Encrypt serves as an index, pointing to all encrypted
payload data that are governed by the same access policy.

The role played by this overhead amortization mechanism in user revocation
is as follows. Once a user is revoked, the data owner will use a new key for
every access policy when encrypting new data. This guarantees that the newly
generated cloud data cannot be decrypted by the revoked user even if it is given
the corresponding payload part. In practice, it is usually not a concern that a
revoked user can decrypt the data it has been entitled to before its revocation.
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Payload

E(k1,m1)
Indexing E(k1,my)
Encrypt(ki) Elki,ms)

E(kz,m4)

Encrypt(kz)
Encrypt(ks) % ::;Zs;
2,7,
: Elkemy)

Fig. 1. A snapshot of the encrypted cloud data structure

5.2 Performance Results

We evaluated the performance of PxKGen, Encrypt, PxDec, and UDec, respec-
tively, on their corresponding platforms. The experimental results are shown in
Fig. 2. As observed in Fig.2(a) and (b), the runtimes of the algorithms, PxKGen
and Encrypt, are linear to the number of attributes. In our implementation, we
had not undertaken any optimization on multi-exponentiation operations; there-
fore, the runtime of PxKGen is slightly more costly than that of Encrypt given
the same number of attributes.

(¢) Puiee ) UDec

(#) PrGen

25+ [ -+ Alland Paie
FRandam Poi

Timw [Seconds)
Tima [Seconds)
Tima :chu
Temw (Seconds) 5

Fig. 2. Experimental results

We experiment the algorithm, PxDec, with two types of access policies. The
first type consists of access trees whose non-leaf nodes are all “and” gates (we call
them all-and access trees). Access trees in such a form ensure that all attributes
(leaf nodes) are needed in PxDec. Thus, the access trees are expected to impose
the heaviest workload, among access trees with the same number of leaf nodes.
The second type includes access trees that are constructed randomly (we call
them random access trees). It is clear that for a random access tree whose non-
leaf nodes are “or” or “threshold” gates, not all of the leaf nodes are necessary
in order to satisfy the tree. The actual leaf nodes needed in PxDec are tree-
specific. Figure 2(c) corroborates this fact. In the case of all-and access trees, the
computation overhead is basically linear with the number of leaf nodes. It can
also be seen that PxDec is more efficient than Encrypt given the same number
of attributes (i.e. the same access tree). This is because the former is dominated
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by the exponentiation operations in G, whereas the latter is dominated by the
exponentiations in Gy.

Figure 2(d) shows that a UDec operation costs about 80 milliseconds on the
experimenting smartphone platform. Considering in addition that the communi-
cation overhead for user is merely 2|G7| = 1K bits in our implementation, this
could be deployed on a smart mobile device (e.g. Android or iOS device).

6 Conclusion

In this paper, we presented an extended proxy-assisted approach in order to over-
come the limitation of needing to trust the cloud server not to disclose users’
proxy keys inherent in proxy/mediator assisted user revocation approaches. In
our approach, we bind the cloud server’s private key to the data decryption
operation, which requires the cloud server to reveal its private key should the
cloud server decide to collude with revoked users. We then formulated a prim-
itive, ‘revocable cloud data encryption’, under the approach. We presented a
concrete construction of the primitive and implemented the construction using
a proof-of-concept. The experimental results suggested that our construction is
suitable for deployment even on smart mobile devices.
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dation of China (61472083). Kaitai Liang is supported by privacy-aware retrieval and
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Appendix: Security Proof for Theorem 1

Proof. We prove that our construction satisfies the three security requirements.

Lemma 1. The construction satisfies Data Privacy Against Cloud, as defined
in Definition 2 in the generic group model.

Proof. In the definition, the attributes, A;, submitted by the adversary could or
could not satisfy the challenge access tree 7*. To consider the strongest adversary
possible, we assume every A; satisfy 7*. We then prove under the generic group
model, no efficient adversary can output b’ = b in the security game defined in
Definition 2 noticeably better than a random guess. Note that a random guess, b’,
by the adversary equals b with probability 1/2, thus we often call € the advantage
of the adversary if b = b with probability 1/2 + €.

In the generic group model [25], each element of groups, Go, Gr, is encoded
as a unique random string; thus, the adversary can directly test no properties
other than equality. The opaque encoding of the elements in G is defined as the
function &y : Z, — {0,1}*, which maps all a € Z, to the string representation
&o(a) of g* € G. Likewise, & : Z, — {0,1}* maps a € Z, to the string represen-
tation &r(a) of e(g,g9)* € Gr. The adversary communicates with the oracles to
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perform group action on Gy, Gr and bilinear map e : Gg x Gy — G, by way of
the &y-representation and &p-representation only.

For simplicity, the original game is slightly modified: in the challenge phase of
the original security game, the adversary is given a challenge ciphertext, whose
C' component is either mg - e(g, g)*® or my - e(g, g)* . We modify C' to be either
e(g,9)** or e(g,g)?, for a random ¥ in Z,. Indeed, any adversary that has a
advantage € in the original game can be transformed into an adversary having
advantage €/2 in the modified game (consider two hybrids: one in which the
adversary is to distinguish between mg - e(g,9)**, e(g,9)”), and the other in
which the adversary is to distinguish between m; - e(g, g)** and e(g, g)”.

Hereafter, we consider the adversary in the modified game. In the Setup
phase, the challenger sends the public parameters £y(1),&0(8),&r(a) to the
adversary. To simulate the hash function H, the challenger maintains a table,
which is initially empty. Whenever a query 4 is asked on H, if ¢ has never been
asked before, the challenger selects a random value t; €r Z,, and adds an entry
(i,t;,&0(t;)) to the table and returns &y (t;); otherwise, returns the already defined
So(ti).

In Phase 1, the adversary starts by selecting « € Z,, and getting &, (x) from
the challenger. Then, the adversary makes a set of proxy key generation queries.
For a jth query A;, the challenger first picks 2; €r Z, and computes &y(z;).
Then the challenger picks ri,72,7; €r Z, for all i € A;, and sets PrK; =
(k = &o(Mmg ) B = &o(r), Vi € Ay = {kin = &olra + ti - 13), kia = &o(r)}),
where t; is obtained by querying ¢ upon the random oracle H as described above.
Finally, the challenger gives £y(¢;),&o(z;) and PzK; to the adversary.

In the Challenge phase, the adversary submits two equal-length challenge
messages mgp, m; and a challenge access tree 7*. The challenger responds as
follows. Select s €r Z,, and compute shares g; of s for each attribute ¢ contained
in T* (represented by 7’s leaf nodes) along the tree as described in the Encryp
algorithm. Note that ¢;’s are random values subject to the underlying secret
sharing induced by 7*. Finally, the challenger chooses ¥ €r Z,, and returns to
the adversary the challenge ciphertext ¢* as C' = &p(9), 0" = &(8-5), C" = &(s),
and Cyi1 = &o(s;), Cia = &o(ti - ;) for each attribute ¢ in 7.

In Phase 2, the challenger responds to the proxy key generation queries from
the adversary, just as in Phase 1.

Analysis of the Simulated Game. Let ¢ bound the total number of group
elements the adversary receives during the game from the queries it makes to
the oracles for Gy, G, the bilinear map, and the hash function (including the
hash function queries implicitly invoked by the proxy key generation and the
challenge ciphertext generation). We will show that with probability 1—O(q?/p),
the adversary’s view in this simulated game is identically distributed to what
its view could be if it has been given C' = {r(a - s) in the game. Note that in
the current game, the adversary’s advantage is 0, as & (9) is independent of the
encryption of the challenge messages. We thus conclude that the advantage of
the adversary, when given C' = &7 (av - s), is at most O(q?/p), which proves the
theorem if ¢2/p is negligible.
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Table 1. Rational functions in Gy

System setup I
. 5] L) IS ) I ) 5]
Proxy key queries x zV L S ALacalALS Sy P
t; ré” +t; - rl[j] rgj]
Challenge ciphertext | B-s |s Syt t;r
tir - Gyt

We assume that the adversary communicates with group oracles, only with
values it has already received from the oracles. Note that each query the adver-
sary makes is of the form of a rational function m = x/v in the variables of
a, (3, 1:,:r[j],r[lj],rgj],ti,rlm, s, and ¢;, where the subscript variable ¢ denotes the
attribute strings and the superscript variable [j] is the index of the proxy key
queries. We now place a condition on the event that no “unexpected collisions”
occur in either Gg and G7. An unexpected collision is one when two queries of
two distinct rational functions x /v # x’/4’ coincide in value, due to the random
choices of the values of the involved variables. For any pair of queries corre-
sponding to x/v and x’/v/, a collision occurs only if the non-zero polynomial
X/v — X' /7 evaluates to be zero. In our case, the degree of x/v — x'/v is a
small number; thus, the probability of a collision is O(1/p) [27,36]. By a union
bound, the probability of any unexpected collision happens is at most O(q?/p)
for ¢ queries. As a result, we have probability 1 — O(g?/p) that no unexpected
collisions happen.

Subject to the condition of no unexpected collisions, we need to show that
the adversary’s view is identically distributed if the challenger has set ¥ = « - s.
The view of the adversary can differ in the case of 9 = « - s only if there are two
queries 7,7’ into G, such that 7 # 7’ but 7 |9=a.s= T |9=a.s- We will show
that this will not happen.

Recall that ¢ only occurs as £p (1), which is an element of Gp. Thus, the
only difference that 7 and 7’ can have on ¥ is such that 7 — 7’ = nd — na - s,
for a constant 7. It suffices to show that the adversary can never construct a
query for &r(na - s = m — 7’ + n¥), given that no unexpected collisions occur.
This reaches a contradiction and establishes the theorem.

This follows from the following analysis, based on the information given to the
adversary during the game. For ease of reference, Table 1 enumerates all rational
functions in Gy known to the adversary by means of the system setup, proxy
key generation queries and challenge ciphertext query (¢, are possible attribute
strings, and j is the index of the proxy key generation queries). In addition, the
adversary also knows the value of x (which represents the cloud server’s key).
Any query in G is a linear combination of products of pairs of these rational
functions (of course, x or % can be the coefficients, as the adversary knows the
value of z). Observe from the table that the only rational function containing

R I o) S ) . .
« is % In order for the adversary to produce a rational function
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containing na - s, while at the same time canceling out other elements as much
). gpy o] [s) o
as possible, the only choice is multiplying % and - s. This will

create a polynomial of the form ng] cx-s+ablloa-s+ Téj] - s (for simplicity,

we always omit constant coefﬁcients Whenever possible). It is easy to cancel out

(5]

the term 7" - x - s by multiplying r I and s, together with the knowledge of z.

i}

Now, we have a polynomial zl/! - o - s + rs’ - s, and we need to eliminate the
[5] ]

term r;

- 8. There are two options: (1) Multiplying r[j +t;- rl[-j I'and s introduces

an additional term ¢; - rl[-] }'.'s. This additional term can be canceled out only
by an appropriate combination of the products of ¢;; - ¢, and s, following the
secret sharing induced by 7*. We are eventually left with the term zl/. - 5. To
construct a query for & (na- s) where 7 is a constant known to the adversary, we
must cancel out zl from zl7l- - s. This is not possible using any combination of
the rational functions in Table 1, as long as the adversary does not know z! and

m (2) Multiplying r[] ] +t; 7‘[ and ¢;/, which eventually leads to the canceling

out of rg] - s and other introduced terms (following the secret sharing induced

by T*) as desired. But again, we need to cancel out 2! from 2V -« - s, as in the
first case. This completes the proof. O

Lemma 2. The construction satisfies Data Privacy Against Users as defined in
Definition 3, if the CP-ABE scheme in [4] is CPA secure.

Proof. We prove that an adversary A to our scheme can be transformed to an
adversary B to the CP-ABE scheme [4] which is proven secure in the generic
group model. The construction of B is by means of invoking A, with the help of
its own chosen plaintext attack (CPA) game in terms of the CP-ABE scheme.
In particular, B has to answer A’s proxy key generation queries. We show that
within the context of the CPA game between B and its own challenger, B can
answer A’s proxy key generation queries, simulating A’s challenger.
Specifically, when the CPA game between B and its challenger starts, I3 starts
the Setup phase with A by passing the public system parameters it gets from its
own challenger (we do not consider the delegate functionality in [4]). In Phase
1, B first generates (¢%,x €r Z,) as the cloud server’s key pair. When receiving
an attribute set A from A as jth proxy key generation query, B first makes a
key generation (KeyGen in [4]) query on A to its own challenger, and upon it, B

gets a decryption key of the form (k = ga?2 Akin = g H@) " kia = " }ica)
(having been collated with the notations in our construction). The challenge of
the simulation is how to derive a valid proxy key for A from the decryption
key. To this end, B generates (¢, x; €r Zp,) as the user key pair; then picks

Q-xi+ro-T, .
r1 €r Zp, and computes k = k% =g a ],k’ =gn,VieA:ky=k;-
gt = gr2 TiTL I (§)1% kyy = kg = ¢""%, and the proxy key is set to
be (k,k',{ki1, ki2}ica). It remains to see that this is a valid proxy key Note

awjtry @) zr1+a @jfrg-w;—ary

that k = g B — B — ((g:v)n (g j)Otg’rz :cj—a;n) Hence
(k k: JAki1, kiztica) 18 1ndeed a valid proxy key, with “ro” being ry-x; —r; and
“r;” being r; - x;.
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In Challenge phase, when A submits mg, m; and 7*, B submits them to its
own challenger. As a response, B gets a challenge ciphertext of the form (7*,C =
my-GS,C" = hS VL € L:{Cp = g0, Cpp = H(att(£))%O}) according to the
encryption algorithm (i.e. Encrypt) in [4]. Note that this ciphertext is of the
same format as in our construction, except that it does not have the C” = ¢°*
element in our construction. Fortunately, g° actually can be computed from
Ve e L:{Cp = gnO}, following the secret sharing induced by 7*.

In Phase 2, B answers A’s proxy key generation queries as in Phase 1. Finally,
B outputs whatever bit A outputs. It can be seen that the simulation by B is
perfect. This completes the proof. O

Lemma 3. The construction satisfies User Revocation Support as defined in
Definition 4.

Proof. The proof will in general proceed in a similar way as in the proof for
Lemma 1. The main difference is that in this proof, the adversary knows the
value of zU/]’s, instead of z. This results in the effect that it cannot cancel out

the term ng] -z - s from the polynomial r:[Lj] xos+allas+ rgj] - 5. To avoid
repetition, we omit the details. O

Combining the proofs for the above three lemmas, we complete the proof of
Theorem 1. |
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