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Abstract. We present Balloon, a forward-secure append-only persistent
authenticated data structure. Balloon is designed for an initially trusted
author that generates events to be stored in a data structure (the Bal-
loon) kept by an untrusted server, and clients that query this server for
events intended for them based on keys and snapshots. The data struc-
ture is persistent such that clients can query keys for the current or past
versions of the data structure based upon snapshots, which are generated
by the author as new events are inserted. The data structure is authenti-
cated in the sense that the server can verifiably prove all operations with
respect to snapshots created by the author. No event inserted into the
data structure prior to the compromise of the author can be modified or
deleted without detection due to Balloon being publicly verifiable. Bal-
loon supports efficient (non-)membership proofs and verifiable inserts by
the author, enabling the author to verify the correctness of inserts with-
out having to store a copy of the Balloon. We formally define and prove
that Balloon is a secure authenticated data structure.

1 Introduction

This paper is motivated by the lack of an appropriate data structure that would
enable the trust assumptions to be relaxed for privacy-preserving transparency
logging. In the setting of transparency logging, an author logs messages intended
for clients through a server : the author sends messages to the server, and clients
poll the server for messages intended for it. Previous work [21] assumes a forward
security model: both the author and the server are assumed to be initially trusted
and may be compromised at some point in time. Any messages logged before this
compromise remain secure and private. One can reduce the trust assumptions
at the server by introducing a secure hardware extension at the server as in [25].

This paper proposes a novel append-only authenticated data structure that
allows the server to be untrusted without the need for trusted hardware. Our data
structure, which is named Balloon, allows for efficient proofs of both membership
and non-membership. As such, the server is forced to provide a verifiable reply
to all queries. Balloon also provides efficient (non-)membership proofs for past
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versions of the data structure (making it persistent), which is a key property for
providing proofs of time, when only some versions of the Balloon have been time-
stamped. Since Balloon is append-only, we can greatly improve the efficiency
in comparison with other authenticated data structures that provide the same
properties as described above, such as persistent authenticated dictionaries [1].

Balloon is a key building block for privacy-preserving transparency logging
to make data processing by service providers transparent to data subjects whose
personal data are being processed. Balloon can also be used as part of a secure
logging system, similar to the history tree system by Crosby and Wallach [6].
Another closely related application is as an extension to Certificate Transparency
(CT) [12], where Balloon can be used to provide efficient non-membership proofs,
which are highly relevant in relation to certificate revocation for CT [11,12,18].

For formally defining and proving the security of Balloon, we take a similar
approach as Papamanthou et al. [19]. We view Balloon in the model of authenti-
cated data structures (ADS), using the three-party setting [24]. The three party
setting for ADS consists of the source (corresponding to our author), one or more
servers, and one or more clients. The source is a trusted party that authors a
data structure (the Balloon) that is copied to the untrusted servers together
with some additional data that authenticates the data structure. The servers
answer queries made by clients. The goal for an ADS is for clients to be able to
verify the correctness of replies to queries based only on public information. The
public information takes the form of a verification key, for verifying signatures
made by the source, and some digest produced by the source to authenticate the
data structure. The source can update the ADS, in the process producing new
digests, to which is further referred to as snapshots. The reply we want to enable
clients to verify is the outcome of a membership query, which proves membership
or non-membership of an event with a provided key for a provided snapshot.

After we show that Balloon is a secure ADS in the three party setting, we
extend Balloon to enable the author to discard the data structure and still per-
form verifiable inserts of new events to update the Balloon. Finally, we describe
how monitors and a perfect gossiping mechanism would prevent the an author
from undetectably modifying or deleting events once inserted into the Balloon,
which lays the foundation for the forward-secure author setting.

We make the following contributions:

– A novel append-only authenticated data structure named Balloon that allows
for both efficient membership and non-membership proofs, also for past ver-
sions of the Balloon, while keeping the storage and memory requirements
minimal (Sect. 3).

– We formally prove that Balloon is a secure authenticated data structure
(Sect. 4) according to the definition by Papamanthou et al. [19].

– Efficient verifiable inserts into our append-only authenticated data structure
that enable the author to ensure consistency of the data structure without
storing a copy of the entire (authenticated) data structure (Sect. 5).

– We define publicly verifiable consistency for an ADS scheme and show how
it enables a forward-secure source (Sect. 6). Verifiable inserts can also have
applications for monitors in, e.g., [3,10–12,22,27].



624 T. Pulls and R. Peeters

– In Sect. 7, we show that Balloon is practical, providing performance results
for a proof-of-concept implementation.

The rest of the paper is structured as follows. Section 2 introduces the back-
ground of our idea. Section 8 presents related work and compares Balloon to
prior work. Section 9 concludes the paper. Of independent interest, Appendix B
shows why probabilistic proofs are insufficient for ensuring consistency of a Bal-
loon without the burden on the prover increasing greatly.

2 Preliminaries

First, we introduce the used formalisation of an authenticated data structure
scheme. Next, we give some background on the two data structures that make
up Balloon: a history tree, for efficient membership proofs for any snapshot,
and a hash treap, for efficient non-membership proofs. Finally we present our
cryptographic building blocks.

2.1 An Authenticated Data Structure Scheme

Papamanthou et al. [19] define an authenticated data structure and its two
main properties: correctness and security. We make use of these definitions and
therefore present them here, be it with slight modifications to fit our terminology.

Definition 1 (ADS scheme). Let D be any data structure that supports
queries q and updates u. Let auth(D) denote the resulting authenticated data
structure and s the snapshot of the authenticated data structure, i.e., a constant-
size description of D. An ADS scheme A is a collection of the following six
probabilistic polynomial-time algorithms:

1. {sk, pk} ← genkey(1λ): On input of the security parameter λ, it outputs a
secret key sk and public key pk;

2. {auth(D0), s0}← setup(D0, sk, pk): On input of a (plain) data structure D0,
the secret key sk, and the public key pk, it computes the authenticated data
structure auth(D0) and the corresponding snapshot s0;

3. {Dh+1, auth(Dh+1), sh+1, upd} ← update(u,Dh, auth(Dh), sh, sk, pk): On
input of an update u on the data structure Dh, the authenticated data struc-
ture auth(Dh), the snapshot sh, the secret key sk, and the public key pk,
it outputs the updated data structure Dh+1 along with the updated authenti-
cated data structure auth(Dh+1), the updated snapshot sh+1 and some relative
information upd;

4. {Dh+1, auth(Dh+1), sh+1} ← refresh(u,Dh, auth(Dh), sh, upd, pk): On
input of an update u on the data structure Dh, the authenticated data structure
auth(Dh), the snapshot sh, relative information upd and the public key pk, it
outputs the updated data structure Dh+1 along with the updated authenticated
data structure auth(Dh+1) and the updated snapshot sh+1;
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5. {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): On input of a query q on data
structure Dh, the authenticated data structure auth(Dh) and the public key
pk, it returns the answer α(q) to the query, along with proof Π(q);

6. {accept, reject} ← verify(q, α, Π, sh, pk): On input of a query q, an
answer α, a proof Π, a snapshot sh and the public key pk, it outputs either
accept or reject.

Next to the definition of the ADS scheme, another algorithm was defined for
deciding whether or not an answer α to query q on data structure Dh is correct:
{accept, reject} ← check(q, α,Dh).

Definition 2 (Correctness). Let A be an ADS scheme {genkey,setup,
update,refresh,query,verify}. The ADS scheme A is correct if, for all λ ∈ N,
for all {sk, pk} output by algorithm genkey, for all Dh, auth(Dh), sh output by
one invocation of setup followed by polynomially-many invocations of refresh,
where h ≥ 0, for all queries q and for all Π(q), α(q) output by query(q,Dh,
auth(Dh), pk) with all but negligible probability, whenever algorithm check

(q, α(q),Dh) outputs accept, so does verify(q, α(q),Π(q), sh, pk).

Definition 3 (Security). Let A be an ADS scheme {genkey,setup,update,
refresh,query,verify}, λ be the security parameter, ε(λ) be a negligible func-
tion and {sk, pk} ← genkey(1λ). Let also Adv be a probabilistic polynomial-
time adversary that is only given pk. The adversary has unlimited access to all
algorithms of A, except for algorithms setup and update to which he has only
oracle access. The adversary picks an initial state of the data structure D0 and
computes D0, auth(D0), s0 through oracle access to algorithm setup. Then, for
i = 0, ..., h = poly(λ), Adv issues an update ui in the data structure Di and
computes Di+1, auth(Di+1) and si+1 through oracle access to algorithm update.
Finally the adversary picks an index 0 ≤ t ≤ h + 1, and computes a query q,
answer α and proof Π. The ADS scheme A is secure if for all λ ∈ N, for all
{sk, pk} output by algorithm genkey, and for any probabilistic polynomial-time
adversary Adv it holds that

Pr

[{q,Π, α, t}← Adv(1λ, pk); accept← verify(q, α,Π, st, pk)
reject← check(q, α,Dt)

]
≤ ε(λ). (1)

2.2 History Tree

A tamper-evident history system, as defined by Crosby and Wallach [6], consists
of a history tree data structure and five algorithms. A history tree is in essence
a versioned Merkle tree [15] (hash tree). Each leaf node in the tree is the hash
of an event, while interior nodes are labeled with the hash of its children nodes
in the subtree rooted at that node. The root of the tree fixes the content of
the entire tree. Different versions of history trees, produced as events are added,
can be proven to make consistent claims about the past. The five algorithms,
adjusted to our terminology, are defined as follows:
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– ci← H.Add(e): Given an event e the system appends it to the history tree H
as the i:th event and then outputs a commitment1 ci.

– {P, ei} ← H.MembershipGen(i, cj): Generates a membership proof P for the
i:th event with respect to commitment cj , where i ≤ j, from the history tree
H. The algorithm outputs P and the event ei.

– P ← H.IncGen(ci, cj): Generates an incremental proof P between ci and cj ,
where i ≤ j, from the history tree H. Outputs P .

– {accept, reject} ← P.MembershipVerify(i, cj , e
′
i): Verifies that P proves

that e′
i is the i:th event in the history defined by cj (where i ≤ j). Outputs

accept if true, otherwise reject.
– {accept, reject} ← P.IncVerify(c′

i, cj): Verifies that P proves that cj fixes
every event fixed by c′

i (where i ≤ j). Outputs accept if true, otherwise
reject.

2.3 Hash Treap

A treap is a type of randomised binary search tree [2], where the binary search
tree is balanced using heap priorities. Each node in a treap has a key, value,
priority, left child and right child. A treap has three important properties:

1. Traversing the treap in order gives the sorted order of the keys;
2. Treaps are structured according to the nodes’ priorities, where each node’s

children have lower priorities;
3. Given a deterministic attribution of priorities to nodes, a treap is set unique

and history independent, i.e., its structure is unique for a given set of nodes,
regardless of the order in which nodes were inserted, and the structure does
not leak any information about the order in which nodes were inserted.

When a node is inserted in a treap, its position in the treap is first determined by
a binary search. Once the position is found, the node is inserted in place, and then
rotated upwards towards the root until its priority is consistent with the heap
priority. When the priorities are assigned to nodes using a cryptographic hash
function, the tree becomes probabilistically balanced with an expected depth
of log n, where n is the number of nodes in the treap. Inserting a node takes
expected O(log n) operations and results in expected O(1) rotations to preserve
the properties of the treap [9]. Given a treap, it is straightforward to build a hash
treap: have each node calculate the hash of its own attributes2 together with the
hash of its children. Since the hash treap is a Merkle tree, its root fixes the entire
hash treap. The concept of turning treaps into Merkle trees for authenticating
the treap has been used for example in the context of persistent authenticated
dictionaries [7] and authentication of certificate revocation lists [18].

We define the following algorithms on our hash treap, for which we assume
that keys k are unique and of predefined constant size cst:
1 A commitment ci is the root of the history tree for the i:th event, signed by the

system. For the purpose of this paper, we omit the signature from the commitments.
2 The priority can safely be discarded since it is derived solely from the key and

implicit in the structure of the treap.
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– r ←T.Add(k, v): Given a unique key k and value v, where |k| = cst and |v| > 0,
the system inserts them into the hash treap T and then outputs the updated
hash of the root r. The add is done with priority Hash(k), which results in
a deterministic treap. After the new node is in place, the hash of each node
along the path from the root has its internal hash updated. The hash of a
node is Hash

(
k||v||left.hash||right.hash

)
. In case there is no right (left) child

node, the right.hash (left.hash) is set to a string of consecutive zeros of size
equal to the output of the used hash function 0|Hash(·)|.

– {PT , v} ← T.AuthPath(k): Generates an authenticated path PT from the
root of the treap T to the key k where |k| = cst. The algorithm outputs PT

and, in case of when a node with key k was found, the associated value v. For
each node i in PT , ki and vi need to be provided to verify the hash in the
authenticated path.

– {accept, reject} ← PT.AuthPathVerify(k,v): Verifies that PT proves that
k is a non-member if v ?

= null or otherwise a member. Verification checks that
|k| = cst and |v| > 0 (if �= null), calculates and compares the authenticator
for each node in PT , and checks that each node in PT adheres to the sorted
order of keys and heap priority.

Additionally we define the following helper algorithms on our hash treap:

– pruned(T) ← T.BuildPrunedTree(< PT
j >): Generates a pruned hash treap

pruned(T) from the given authenticated paths PT
j in the hash treap T . This

algorithm removes any redundancy between the authenticated paths, resulting
in a more compact representation as a pruned hash treap. Note that evaluating
pruned(T).AuthPathVerify(k, v) is equivalent with evaluating PT .AuthPath
Verify(k, v) on the authenticated path PT through k contained in the pruned
hash treap.

– r ← PT .root(): Outputs the root r of an authenticated path. Note that
pruned(T).root() and PT .root() are equivalent for any authenticated path
PT contained by the pruned tree.

2.4 Cryptographic Building Blocks

We assume idealised cryptographic building blocks in the form of a hash func-
tion Hash(·), and signature scheme that is used to sign a message m and ver-
ify the resulting signature: {accept, reject} ← Verifyvk

(
Signsk(m),m

)
. The

hash function should be collision and pre-image resistant. The signature scheme
should be existentially unforgeable under known message attack. Furthermore,
we rely on the following lemma for the correctness and security of a Balloon:

Lemma 1. The security of an authenticated path in a Merkle (hash) tree reduces
to the collision resistance of the underlying hash function.

Proof. This follows from the work by Merkle [16] and Blum et al. [5]. ��



628 T. Pulls and R. Peeters

3 Construction and Algorithms

Our data structure is an append-only key-value store that stores events e con-
sisting of a key k and a value v. Each key ki is assumed to be unique and of
predefined constant size cst, where cst ← |Hash(·)|. Additionally, our data struc-
ture encodes some extra information in order to identify in which set (epoch)
events were added. We define an algorithm k ← key(e) that returns the key k
of the event e.

Our authenticated data structure combines a hash treap and a history tree
when adding an event an event e as follows:

– First, the event is added to the history tree: ci ← H.add
(
Hash(k||v)

)
. Let i

be the index where the hashed event was inserted at into the history tree.
– Next, the hash of the event key Hash(k) and the event position i are added to

the hash treap: r ← T.Add(Hash(k), i).

Figure 1 visualises a simplified Balloon with a hash treap and a history tree. For
the sake of readability, we omit the hash values and priority, replace hashed keys
with integers, and replace hashed events with place-holder labels. For example,
the root in the hash treap has key 42 and value 1. The value 1 refers to the leaf
node in the history tree with index 1, whose value is p42, the place-holder label
for the hash of the event which key, once hashed, is represented by integer 42.

By putting the hash of the event key, Hash(k), instead of the key into the
hash treap, we avoid easy event enumeration by third parties: no valid event
keys leak as part of authenticated paths in the treap for non-membership proofs.
Note that when H.MembershipGen returns an event, as specified in Sect. 2.2, the
actual event is retrieved from the data structure, not the hash of the event as
stored in the history tree (authentication). We store the hash of the event in
the history tree for sake of efficiency, since the event is already stored in the
(non-authenticated) data structure.

Fig. 1. A simplified example of a Balloon consisting of a hash treap and history tree.
A membership proof for an event e = (k, v) with Hash(k) = 50 and Hash(e) denoted
by p50 (place-holder label) consists of the circle nodes in both trees.
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3.1 Setup

Algorithm. {sk, pk} ← genkey(1λ) : Generates a signature key-pair {sk, vk}
using the generation algorithm of a signature scheme with security level λ and
picks a function Ω that deterministically orders events. Outputs the signing key
as the private key sk = sk, and the verification key and the ordering function
Ω as the public key pk = {vk, Ω}.

Algorithm. {auth(D0), s0} ← setup(D0, sk, pk): Let D0 be the initial data
structure, containing the initial set of events < ej >. The authenticated data
structure, auth(D0), is then computed by adding each event from the set to the,
yet empty, authenticated data structure in the order dictated by the function
Ω ← pk. The snapshot is defined as the root of the hash treap r and commitment
in the history tree ci for the event that was added last together with a digital
signature over those: s0 = {r, ci, σ}, where σ = Signsk({r, ci}).

3.2 Update and Refresh

Algorithm. {Dh+1, auth(Dh+1), sh+1, upd} ← update(u, Dh, auth(Dh), sh,
sk, pk): Let u be a set of events to insert into Dh. The updated data structure
Dh+1 is the result of appending the events in u to Dh and indicating that these
belong the (h + 1)th set. The updated authenticated data structure, auth(Dh+1),
is then computed by adding each event from the set to the authenticated data
structure auth(Dh) in the order dictated by the function Ω ← pk. The updated
snapshot is the root of the hash treap r and commitment in the history tree ci

for the event that was added last together with a digital signature over those:
sh+1 = {r, ci, σ}, where σ = Signsk({r, ci}). The update information contains
this snapshot upd = sh+1.

Algorithm. {Dh+1, auth(Dh+1), sh+1} ← refresh(u, Dh, auth(Dh), sh, upd,
pk): Let u be a set of events to insert into Dh. The updated data structure
Dh+1 is the result of appending the events in u to Dh and indicating that these
belong the (h + 1)th set. The updated authenticated data structure, auth(Dh+1),
is then computed by adding each event from the set u to the authenticated data
structure auth(Dh) in the order dictated by the function Ω ← pk. Finally, the
new snapshot is set to sh+1 = upd.

3.3 Query and Verify

Algorithm. {Π(q), α(q)} ← query(q, Dh, auth(Dh), pk) (Membership): We
consider the query q to be “a membership query for an event with key k in the
data structure that is fixed by squeried”, where queried ≤ h. The query has two
possible answers α(q): {true, e} in case an event e with key k exists in Dqueried,
otherwise false. The proof of correctness Π(q) consists of up to three parts:
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1. An authenticated path PT in the hash treap to k′ = Hash(k);
2. The index i of the event in the history tree;
3. A membership proof P on index i in the history tree.

The algorithm generates an authenticated path in the hash treap, which is part of
auth(Dh), to k′: {PT , v} ← T.AuthPath(k’). If v ?

= null, then there is no event
with key k in Dh (and consequently in Dqueried) and the algorithm outputs
Π(q) = PT and α(q) = false.

Otherwise, the value v in the hash treap indicates the index i in the his-
tory tree of the event. Now the algorithm checks whether or not the index i is
contained in the history tree up till auth(Dqueried). If not, the algorithm out-
puts α(q) = false and Π(q) = {PT , i}. If it is, the algorithm outputs α(q) =
{true,ei} and Π(q) = {PT , i, P}, where {P, ei} ← H.MembershipGen(i, cqueried)
and cqueried ← squeried.

Algorithm. {accept, reject} ← verify(q, α,Π, sh, pk) (Membership):
First, the algorithm extracts {k, squeried} from the query q and {PT , i, P} from Π,
where i and P can be null. From the snapshot it extracts r ← sh. Then the algo-
rithm computes x ← PT .AuthPathVerify(k, i). If x ?

= false ∨ PT .root() �= r,
the algorithm outputs reject. The algorithm outputs accept if any of the fol-
lowing three conditions hold, otherwise reject:

– α ?
= false ∧ i ?

= null ;
– α ?

= false ∧ i > queried[−1]3 ;
– α ?

= {true, e} ∧ key(e) ?
= k ∧ y ?

= true,
for y ← P .MembershipVerify(i, cqueried, Hash(e)) and cqueried ← squeried .

4 Security

Theorem 1. Balloon {genkey,setup,update,refresh,query,verify} is a cor-
rect ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 2, assuming the collision-resistance of the underlying
hash function.

The proof of correctness can be found in the full version of our paper [20].

Theorem 2. Balloon {genkey,setup,update,refresh,query,verify} is a
secure ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 3, assuming the collision-resistance of the underlying
hash function.

The full proof of security can be found in Appendix A.

3 queried[−1] denotes the index of the last inserted event in version queried of the
authenticated data structure.
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Proof (Sketch). Given that the different versions of the authenticated data struc-
ture and corresponding snapshots are generated through oracle access, these are
correct, i.e., the authenticated data structure contains all elements of the data
structure for each version, the root and commitment in each snapshot correspond
to that version of the ADS and the signature in each snapshot verifies.

For all cases where the check algorithm outputs reject, Adv has to forge
an authenticated path in the hash treap and/or history tree in order to get the
verify algorithm to output accept, which implies breaking Lemma 1.

5 Verifiable Insert

In practical three-party settings, the source typically has less storage capabilities
than servers. As such, it would be desirable that the source does not need to
keep a copy of the entire (authenticated) data structure for update, but instead
can rely on its own (constant) storage combined with verifiable information
from a server. We define new query and verify algorithms that enable the con-
struction of a pruned authenticated data structure, containing only the nodes
needed to be insert the new set of events with a modified update algorithm. The
pruned authenticated data structure is denoted by pruned

(
auth(Dh), u

)
, where

auth(Dh) denotes the version of the ADS being pruned, and u the set of events
where this ADS is pruned for.

Algorithm. {Π(q), α(q)} ← query(q, Dh, auth(Dh), pk) (Prune): We consider
the query q to be “a prune query for if a set of events u can be inserted into
Dh”. The query has two possible answers: α(q): true in case no key for the
events in u already exist in Dh, otherwise false. The proof of correctness Π(q)
either proves that there already is an event with a key from an event in u, or
provides proofs that enable the construction of a pruned auth(Dh), depending
on the answer. For every kj ← key(ej) in the set u, the algorithm uses as a sub-
algorithm {Π ′

j(q), α
′
j(q)} ← query (q′

j ,Dh, auth(Dh), pk) (Membership) with

q = {kj , sh}, where sh fixes auth(Dh). If any α′
j(q)

?
= true, the algorithm outputs

α(q) = false and Π(q) = {Π ′
j(q), kj} and stops. If not, the algorithm takes PT

j

from each Π ′
j(q) and creates the set < PT

j >. Next, the algorithm extracts the
latest event ei inserted into the history tree from auth(Dh) and uses as a sub-
algorithm {Π ′(q), α′(q)} ← query(q′,Dh, auth(Dh), pk) (Membership) with
q’ = {key(ei), sh}. Finally, the algorithm outputs α(q) = true and Π(q) = {<
PT

j >,Π ′(q)}.

Algorithm. {accept, reject} ← verify(q,α,Π, sh, pk) (Prune): The algo-
rithm starts by extracting < ej > ← u from the query q. If α ?

= false, it gets
{Π ′

j(q), kj} from Π and uses as a sub-algorithm valid ← verify(q′, α′,Π ′, sh,
pk) (Membership), with q’ = {k, sh}, α′ = true and Π ′ = Π ′

j(q), where

k ← kj . If valid ?
= accept and there exists an event with key k in u, the

algorithm outputs accept, otherwise reject.
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If α ?
= true, extract {< PT

j >,Π ′(q)} from Π. For each event ej in u, the
algorithm gets kj ← key(ej), finds the corresponding PT

j for k′
j = Hash(kj), and

uses as a sub-algorithm valid ← verify(q′, α′,Π ′, sh, pk) (Membership), with
q′ = {kj , sh}, α′ = false and Π ′ = PT

j . If no corresponding PT
j to k′

j is found

in < PT
j > or valid ?

= reject, then the algorithm outputs reject and stops.
Next, the algorithm uses as a sub-algorithm valid ← verify(q′, α,Π ′, sh, pk)
(Membership), with q′ ={key(ei), sh} and Π ′ = Π ′(q), where ei ∈ Π ′(q). If
valid ?

= accept and i ?
= h[−1] the algorithm outputs accept, otherwise reject.

Algorithm. {sh+1, upd} ← update*(u, Π, sh, sk, pk): Let u be a set of events
to insert into Dh and Π a proof that the sub-algorithm verify(q, α,Π, sh, pk)
(Prune) outputs accept for, where q = u and α = true. The algorithm extracts
{< PT

j >,Π ′(q)} from Π and builds a pruned hash treap pruned(T ) ← T.Build

PrunedTree(< PT
j >). Next, it extracts P from Π ′(q) and constructs the pruned

Balloon pruned (auth(Dh), u) ← {pruned(T), P}. Finally, the algorithm adds
each event in u to the pruned Balloon pruned

(
auth(Dh), u

)
in the order dictated

by Ω ← pk. The updated snapshot is the digital signature over the root of the
updated pruned hash treap r and commitment in the updated pruned history
tree ci for the event that was added last: sh+1 = {r, ci}, Signsk({r, ci}). The
update information contains this snapshot upd = sh+1.

Lemma 2. The output of update and update* is identical with respect to the
root of the hash treap and the latests commitment in the history tree of sh+1 and
upd4.

The proof of Lemma 2 can be found in the full version of our paper [20]. As a
result of Lemma 2, the update algorithm in Balloon can be replaced by update*
without breaking the correctness and security of the Balloon as in Theorems 1
and 2. This means that the server can keep and refresh the (authenticated) data
structure while the author only needs to store the last snapshot sh to be able to
produce updates, resulting in a small constant size storage requirement for the
author.

Note that, in order to reduce the size of the transmitted proof, verify
(Prune) could output the pruned authenticated data structure directly. Since
pruned(T). AuthPathVerify(k, v) and PT .AuthPathVerify(k, v) are equiva-
lent, the correctness and security of verify (Prune) reduce to verify (Mem-
bership). Section 7 shows the reduction in the size of the proof with pruning.

6 Publicly Verifiable Consistency

While the server is untrusted, the author is trusted. A stronger adversarial model
assumes forward security for the author: the author is only trusted up to a certain
point in time, i.e., the time of compromise, and afterwards cannot change the
4 Note that the signatures may differ since the signature scheme can be probabilistic.
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past. In this stronger adversarial model, Balloon should still provide correctness
and security for all events inserted by the author up till the time of author
compromise.

Efficient incremental proofs, realised by the IncGen and IncVerify algo-
rithms, are a key feature of history trees [9]. Anyone can challenge the server to
provide a proof that one commitment as part of a snapshot is consistent with all
previous commitments as part of snapshots. However, it appears to be an open
problem to have an efficient algorithm for showing consistency between roots of
different versions of a treap (or any lexicographically sorted data structure) [8].
In AppendixB, we show why one cannot efficiently use probabilistic proofs of
consistency for a Balloon. In absence of efficient (both for the server and verifier
in terms of computation, storage, and size) incremental proofs in hash treaps,
we rely on a concept from Certificate Transparency [12]: monitors.

We assume that a subset of clients, or any third party, will take on a role
referred to as a “monitor”, “auditor”, or “validator” in, e.g., [3,10–12,22,27].
A monitor continuously monitors all data stored at a server and ensures that
all snapshots issued by an author are consistent. We assume that clients and
monitors receive the snapshots through gossiping.

Definition 4 (Publicly Verifiable Consistency). An ADS scheme is pub-
licly verifiable consistent if anyone can verify that a set of events u has been cor-
rectly inserted in Dh and auth(Dh), fixed by sh to form Dh+1 and auth(Dh+1)
fixed by sh+1.

Algorithm. {α,Dh+1, auth(Dh+1), sh+1} ← refreshVerify(u, Dh, auth(Dh),
sh, upd, pk): First, the algorithm runs {Dh+1, auth(Dh+1), sh+1} ← refresh(u,
Dh, auth(Dh), sh, upd, pk) as a sub-algorithm. Then, the algorithm verifies the
updated snapshot {r, ci, σ} ← sh+1 ← upd:

– verify the signature: true ?
= verifypk(σ, {r, ci}) ; and

– match the root of the updated hash treap r′ ?
= r ; and

– match the last commitment in the updated history tree c′
i

?
= ci .

If the verify succeeds, the algorithm outputs {α = true,Dh+1, auth(Dh+1),
sh+1}. Otherwise, the algorithm outputs α = false.

Theorem 3. With refreshVerify, Balloon is publicly verifiable consistent
according to Definition 4, assuming perfect gossiping of the snapshots and the
collision-resistance of the underlying hash function.

The proof of publicly verifiable consistency can be found in the full version
of our paper [20]. Note that for the purpose of verifying consistency between
snapshots, it is not necessary to keep the data structure D. Moreover, the
storage requirement for monitors can be further reduced by making use of
pruned versions of the authenticated data structure, i.e., by using a refresh∗

sub-algorithm, similar to the update∗ algorithm. Finally, to preserve event pri-
vacy towards monitors, one can provide the monitors with ũ =< ẽj >, where
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ẽj =
(
Hash(kj), Hash(ej)

)
, and not the actual set of events. However, in this

case, one must ensure that the ordering function Ω ← pk provides the same
output for u and ũ.

7 Performance

We implemented Balloon in the Go5 programming language using SHA-512 as
the hash function and Ed25519 for signatures [4]. The output of SHA-512 is trun-
cated to 256-bits, with the goal of reaching a 128-bits security level. The source
code and steps to reproduce our results are available at http://www.cs.kau.se/
pulls/balloon/. Our performance evaluation focuses on verifiable inserts, which
are composed of performing and verifying |u|+1 membership queries, since these
algorithms presumably are the most common. Figure 2 shows the size of the proof
from query (Prune) in KiB based on the number of events to insert ranging
from 1–1000 for three different sizes of Balloon: 210, 215, and 220 events. Figure 2a
includes redundant nodes in the membership query proofs, and shows that the
proof size is linear with the number of events to insert. Figure 2b excludes redun-
dant nodes between proofs, showing that excluding redundant nodes roughly
halves the proof size with bigger gains the more events are inserted. For large
Balloons the probability that any two authenticated paths in the hash treap
share nodes goes down, resulting in bigger proofs, until the number of events
get closer to the total size of the Balloon, when eventually all nodes in the hash
treap are included in the proof as for the 210 Balloon.

Table 1 shows a micro-benchmark of the three algorithms that enable veri-
fiable inserts: query(Prune), verify(Prune), and update*. The table shows
the average insert time (ms) calculated by Go’s built-in benchmarking tool that
performed between 30–30000 samples per measurement. The update* algorithm
performs the bulk of the work, with little difference between the different Bal-
loon sizes, and linear scaling for all three algorithms based on the number of
events to insert.

Fig. 2. The size of the proof from query (Prune) in KiB based on the number of
events to insert |u| for different sizes of Balloon.

5 golang.org, accessed 2015-04-10.

http://www.cs.kau.se/pulls/balloon/
http://www.cs.kau.se/pulls/balloon/
https://www.golang.org
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Table 1. A micro-benchmark on Debian 7.8 (x64) using an Intel i5-3320M quad core
2.6 GHz CPU and 7.7 GB DDR3 RAM.

Average time (ms) Balloon 210 Balloon 215 Balloon 220

# Events |u| # Events |u| # Events |u|
10 100 1000 10 100 1000 10 100 1000

query (Prune) 0.04 0.37 3.64 0.04 0.37 3.64 0.06 0.37 3.62

verify (Prune) 0.07 0.72 6.83 0.07 0.73 6.84 0.07 0.72 6.85

update* 0.75 4.87 40.1 1.22 5.26 43.7 1.24 9.33 56.7

8 Related Work

Balloon is closely related to authenticated dictionaries [18] and persistent authen-
ticated dictionaries (PADs) [1,7,8]. Balloon is not a PAD because it does not
allow for the author to remove or update keys from the data structure, i.e., it is
append-only. By allowing the removal of keys, the server needs to be able to con-
struct past versions of the PAD to calculate proofs, which is relatively costly. In
Table 2, Balloon is compared to the most efficient tree-based PAD construction
according to Crosby & Wallach [8]: a red-black tree using Sarnak-Tarjan ver-
sioned nodes with a cache-everywhere strategy for calculated hash values. The
table shows expected complexity. Note that red-black trees are more efficient
than treaps due to their worst-case instead of expected logarithmic bounds on
several important operations. We opted for using a treap due to its relative sim-
plicity. For Balloon, the storage at the author is constant due to using verifiable
inserts, while the PAD maintains a copy of the entire data structure. To query
past versions, the PAD has to construct past versions of the data structure,
while Balloon does not. When inserting new events, the PAD has to store a copy
of the modified authenticated path in the red-black tree, while the storage for
Balloon is constant. However, Balloon is less efficient when inserting new events
with regard to the proof size due to verifiable inserts.

Miller et al. [17] present a generic method for authenticating operations on
any data structure that can be defined by standard type constructors. The prover
provides the authenticated path in the data structure that are traversed by
the prover when performing an operation. The verifier can then perform the
same operation, only needing the authenticated paths provided in the proof.

Table 2. Comparing Balloon and an efficient PAD construction [8]. The number of
events in the data structure is n and the size of the version cache is v.

Expected

complexity

Total

storage

size (A)

Query time

(current)

Query

time (past)

Insert

storage

size (S)

Insert

time (A)

Insert

time (S)

Insert

proof size

Balloon O(1) O(logn) O(logn) O(1) O(logn) O(logn) O(logn)

Tree-based

PAD

O(n) O(logn) O(log v ·
logn)

O(logn) O(logn) O(logn) O(1)
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The verifier only has to store the latest correct digest that fixes the content of
the data structure. Our verifiable insert is based on the same principle.

Secure logging schemes, like the work by Schneier and Kelsey [23], Ma and
Tsudik [13], and Yavuz et al. [26] can provide deletion detection and forward-
integrity in a forward secure model for append-only data. Some schemes, like
that of Yavuz et al., are publicly verifiable like Balloon. However, these schemes
are insufficient in our setting, since clients cannot get efficient non-membership
proofs, nor efficient membership-proofs for past versions of the data structure
when only some versions (snapshots) are timestamped.

All the following related work operates in a setting that is fundamentally
different to the one of Balloon. For Balloon, we assume a forward-secure author
with an untrusted server, whereas the following related work assumes a (mini-
mally) trusted server with untrusted authors.

Certificate Transparency [12] and the tamper-evident history system by
Crosby & Wallach [6] use a nearly identical6 data structure and operations.
Even though in both Certificate Transparency and Crosby & Wallach’s his-
tory system, a number of minimally trusted authors insert data into a history
tree kept by a server, clients query the server for data and can act as audi-
tors or monitors to challenge the server to prove consistency between commit-
ments. Non-membership proofs require the entire data structure to be sent to the
verifier.

In Revocation Transparency, Laurie and Kasper [11] present the use of a
sparse Merkle tree for certificate revocation. Sparse Merkle trees create a Merkle
tree with 2N leafs, where N is the bit output length of a hash algorithm. A leaf
is set to 1 if the certificate with the hash value fixed by the path to the leaf
from the root of the tree is revoked, and 0 if not. While the tree in general is
too big to store or compute on its own, the observation that most leafs are zero
(i.e., the tree is sparse) means that only paths including non-zero leafs need to
be computed and/or stored. At first glance, sparse Merkle trees could replace
the hash treap in a Balloon with similar size/time complexity operations.

Enhanced Certificate Transparency (ECT) by Ryan [22] extends CT by using
two data structures: one chronologically sorted and one lexicographically sorted.
Distributed Transparent Key Infrastructure (DTKI) [27] builds upon the same
data structures as ECT. The chronologically sorted data structure corresponds
to a history tree (like CT). The lexicographically sorted data structure is similar
to our hash treap. For checking consistency between the two data structures,
ECT and DTKI use probabilistic checks. The probabilistic checking verifies that
a random operation recorded in the chronological data structure has been cor-
rectly performed in the lexicographical data structure. However, this requires
the prover to generate past versions of the lexicographical data structure (or
cache all proofs), with similar trade-offs as for PADs, which is relatively costly.

CONIKS [14] is a privacy-friendly key management system where mini-
mally trusted clients manage their public keys in directories at untrusted key
servers. A directory is built using an authenticated binary prefix tree, offering

6 The difference is in how non-full trees are handled, as noted in Sect. 2.1 of [12].
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similar properties as our hash treap. In CONIKS, user identities are presumably
easy to brute-force, so they go further than Balloon in providing event privacy
in proofs by using verifiable unpredictable functions and commitments to hide
keys (identities) and values (user data). CONIKS stores every version of their
(authenticated) data structure, introducing significant overhead compared to
Balloon. On the other hand, CONIKS supports modifying and removing keys,
similar to a PAD. Towards consistency, CONIKS additionally links snapshots
together into a snapshot chain, together with a specified gossiping mechanism
that greatly increases the probability that an attacker creating inconsistent snap-
shots is caught. This reduces the reliance on perfect gossiping, and could be used
in Balloon. If the author ever wants to create a fork of snapshots for a subset of
clients and monitors, it needs to maintain this fork forever for this subset or risk
detection. Like CONIKS, we do not prevent an adversary compromising a server,
or author, or both, from performing attacks: we provide means of detection after
the fact.

9 Conclusions

This paper presented Balloon, an authenticated data structure composed of a
history tree and a hash treap, that is tailored for privacy-preserving transparency
logging. Balloon is a provably secure authenticated data structure, using a similar
approach as Papamanthou et al. [19], under the modest assumption of a collision-
resistant hash function. Balloon also supports efficiently verifiable inserts of new
events and publicly verifiable consistency. Verifiable inserts enable the author
to discard its copy of the (authenticated) data structure, only keeping constant
storage, at the cost of transmitting and verifying proofs of a pruned version of the
authenticated data structure. Publicly verifiable consistency enables anyone to
verify the consistency of snapshots, laying the foundation for a forward-secure
author, under the additional assumption of a perfect gossiping mechanism of
snapshots. Balloon is practical, as shown in Sect. 7, and a more efficient solution
in our setting than using a PAD, as summarised by Table 2.

Acknowledgements. We would like to thank Simone Fischer-Hübner, Stefan Lind-
skog, Leonardo Martucci, Jenni Reuben, Philipp Winter, and Jiangshan Yu for their
valuable feedback. Tobias Pulls has received funding from the Seventh Framework Pro-
gramme for Research of the European Community under grant agreement no. 317550.
This work was supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007).

A Proof of Security

Theorem 2. Balloon {genkey,setup,update,refresh,query,verify} is a
secure ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 3, assuming the collision-resistance of the underlying
hash function.
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Proof. The adversary initially outputs the authenticated data structure
auth(D0) and the snapshot s0 through an oracle call to algorithm setup. The
adversary picks a polynomial number i = 0, . . . , h of updates with ui insertions
of unique events and outputs the data structure Di, the authenticated data
structure auth(Di), and the snapshot si through oracle access to update. Then
it picks a query q = “a membership query for an event with key k ∈ {0, 1}|Hash(·)|

in the data structure that is fixed by sj , with 0 ≤ j ≤ h + 1”, a proof Π(q),
and an answer α(q) which is rejected by check(q, α(q),Dj) as incorrect. An
adversary breaks security if verify(q, α(q),Π(q), sj , pk) outputs accept with
non-negligible probability.

Assume a probabilistic polynomial time adversary Adv that breaks security
with non-negligible probability. Given that the different versions of the authenti-
cated data structure and corresponding snapshots are generated through oracle
access, these are correct, i.e., the authenticated data structure contains all ele-
ments of the data structure for each version, the root and commitment in each
snapshot correspond to that version of the ADS and the signature in each snap-
shot verifies.

The tuple (q, α(q),Dj) is rejected by check in only three cases:

Case 1. α(q) = false and there exists an event with key k in Dj ;
Case 2. α(q) = {true, e} and there does not exists an event with key k in Dj ;
Case 3. α(q) = {true, e} and the event e∗ with key k in Dj differs from e:

e = (k, v) �= e∗ = (k, v∗) or more specifically v �= v∗;

For all three cases where the check algorithm outputs reject, Adv has to forge
an authenticated path in the hash treap and/or history tree in order to get the
verify algorithm to output accept:

Case 1. In the hash treap that is fixed by sh+1, there is a node with key k′ =
Hash(k) and the value v′ ≤ j[−1]. However for the verify algorithm to
output accept for α(q) = false, the authenticated path in the hash treap
must go to either no node with key k′ or a node with key k′ for which the
value v′ is greater than the index of the last inserted event in the history tree
that is fixed by sj : v′ > j[−1].

Case 2. In the hash treap that is fixed by sh+1, there is either no node with
key k′ = Hash(k) or a node with key k′ for which the value v′ is greater than
the index of the last inserted event in the history tree that is fixed by sj :
v′ > j[−1]. However for the verify algorithm to output accept for α(q) =
{true, e}, the authenticated path in the hash treap must go to a node with
key k′, where the value v′ ≤ j[−1]. Note that, in this case, A also needs to
forge an authenticated path in the history tree to succeed.

Case 3. In the hash treap that is fixed by sh+1, there is a leaf with key k′ =
Hash(k) and the value v′ ≤ j[−1]. In the history tree, the leaf with key v′ has
the value Hash(e∗). However for the verify algorithm to output accept for
α(q)={true, e}, the authenticated path in the hash treap must go to a leaf
with key k′, where the value v′ ≤ j[−1], for which the authenticated path in
the history tree must go to a leaf with key v′ and the value Hash(e).
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From Lemma 1 it follows that we can construct a probabilistic polynomial
time adversary Adv∗, by using Adv, that outputs a collision of the underlying
hash function with non-negligible probability. ��

B Negative Result on Probabilistic Consistency

Probabilistic proofs are compelling, because they may enable more resource-
constrained clients en-mass to verify consistency, removing the need for monitors
that perform the relatively expensive role of downloading all events at a server.
Assume the following pair of algorithms:

– P ← B.IncGen(si, sj , rand): Generates a probabilistic incremental proof P
using randomness rand between si and sj , where i ≤ j, from the Balloon B.
Outputs P .

– {accept, reject} ← P.IncVerify(si, sj , rand): Verifies that P probabilisti-
cally proves that sj fixes every event fixed by si, where i ≤ j, using randomness
rand.

B.1 Our Attempt

Our envisioned B.IncGen algorithm shows consistency in two steps. First, it uses
the H.IncGen algorithm from the history tree. This ensures that the snapshots
are consistent for the history tree. Second, it selects deterministically and uni-
formly at random based on rand a number of events E = < ej > from the
history tree. Which events to select from depend on the two snapshots. For each
selected event, the algorithm performs a query (Membership) for the event
key kj ← key(ej) to show that the event is part of the hash treap and points to
the index of the event in the history tree.

The P.IncVerify algorithm checks the incremental proof in the history tree,
verify (Membership) ?

= accept for each output of query (Membership), and
that the events E were selected correctly based on rand. Next, we explain an
attack, why it works, and lessons learnt.

B.2 Attack

The following attack allows an attacker to hide an arbitrary event that was
inserted before author compromise. The attacker takes control over both the
author and server just after snapshot st. Assume that the attacker wants to
remove an event ej from Balloon, where j ≤ t[−1]. The attacker does the fol-
lowing:

1. Remove the event key k′
j = Hash(kj), where kj ← key(ej), from the hash

treap, insert a random key, and rebalance the treap if needed. This results is
a modified ADS auth(Dt)

∗.
2. Generate a set of new events u and update the data structure: update(u,Dt,

auth(Dt)
∗
, st, sk, pk), resulting in a new snapshot st+1.
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It is clear that the snapshot st+1 is inconsistent with all other prior snapshots,
sp, where p ≤ t.

Now, we show how the attacker can avoid being detected by P.IncVerify
in the case that the verifier challenges the server (and therefore the attacker)
to probabilistically prove the consistency between sp and st+1, AND that the
randomness rand provided by the verifier selects the event ej that was modi-
fied by the attacker. The attacker can provide a valid incremental proof in the
history tree, using H.IncGen, since the history tree has not been modified. How-
ever, the attacker cannot create a valid membership proof for an event with key
kj ← key(ej) in the ADS, since the key k′

j = Hash(kj) was removed from the
hash treap in auth(Dt+1). To avoid detection, the attacker puts back the event
key k′

j in the hash treap and rebalances the treap if needed. By inserting a set
of events using update, a new snapshot st+2 is generated, which is then used to
perform the membership query against that will now output a valid membership
proof.

B.3 Lessons Learnt

This attack succeeds because the attacker can, once having compromised the
author and server, (a) create snapshots at will; and (b) membership queries are
always performed on the current version of the hash treap.

In settings where snapshots are generated periodically, e.g., once a day, the
probability of the attacker getting caught in this way is non-negligible given a suf-
ficient number of queries. However, as long as the attacker can create snapshots
at will, the probability that it will be detected with probabilistic incremental
proofs is zero, as long as it cannot be challenged to generate past versions of
the hash treap; and there are no monitors or another mechanism, that prevent
the attacker from modifying or deleting events that were inserted into the ADS
prior to compromise.
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