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Abstract. Searchable symmetric encryption (SSE) has been studied
extensively for its full potential in enabling exact-match queries on
encrypted records. Yet, situations for similarity queries remain to be
fully explored. In this paper, we design privacy-assured similarity search
schemes over millions of encrypted high-dimensional records. Our design
employs locality-sensitive hashing (LSH) and SSE, where the LSH hash
values of records are treated as keywords fed into the framework of SSE.
As direct combination of the two does not facilitate a scalable solution
for large datasets, we then leverage a set of advanced hash-based algo-
rithms including multiple-choice hashing, open addressing, and cuckoo
hashing, and craft a high performance encrypted index from the ground
up. It is not only space efficient, but supports secure and sufficiently
accurate similarity search with constant time. Our designs are proved
to be secure against adaptive adversaries. The experiment on 10 million
encrypted records demonstrates that our designs function in a practical
manner.
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1 Introduction

Massive datasets are being outsourced to public clouds today, but outsourc-
ing sensitive data without necessary protection raises acute privacy concerns.
To address this problem, searchable encryption, as a promising technique that
allows data encryption without compromising the search capability, has attracted
wide-spread attention recently [2,5,6,9,12,14,22, 24]. While these works provide
solutions with different trade-offs among security, efficiency, data update, etc.,
most of them only support exact-match queries over encrypted data. Although
useful in certain applications, they can be somewhat restrictive for situations
where exact matches rarely exist, and approximate queries, particularly simi-
larity queries are more desired. For instance, in multimedia databases or data
mining applications, heterogeneous data like images, videos, and web pages are
usually represented as high-dimensional records. In those contexts, finding sim-
ilar records or nearest neighbors with respect to a given query record are much
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more common and crucial to selectively retrieve the data of interest, especially
in very large datasets [1,10,16,19,23].

In this work, we study the problem of privacy-assured similarity search over
very large encrypted datasets. Essentially, we are interested in designing efficient
search algorithms with sublinear time complexity. This requirement excludes all
public key based approaches that usually demand linear search, and drives us to
only focus on symmetric key based approaches, in particular, efficient encrypted
searchable index designs. We first note that searchable symmetric encryption
(SSE) has wide applicability as long as one can access the data via keywords.
Thus, this problem could be theoretically handled by a direct combination of
locality-sensitive hashing (LSH) [1] and SSE [13]. More technically, LSH, a well-
studied algorithm for fast similarity search, hashes high-dimensional records such
that the close ones collide with much higher probability than distant ones. Then
by treating LSH hash value(s) as “keyword(s)”, one may directly apply known
SSE to realize private similarity search [15].

Such a straightforward solution, however, does not achieve practical efficiency
as the sizes of datasets are continuously growing. Take the work in [15] for
example: due to random padding, their proposed encrypted index needs to be
augmented quadratically in the size of dataset. Even by combining LSH with one
of the latest advancements of SSE [2] that achieves asymptotically optimal space
complexity, the resulting index can still be prohibitively large due to the inherent
issues from LSH [16] like its imbalanced structures and its demand of a large
number of hash tables for accurate search. Besides, those issues will also readily
turn most queries into a so-called “big query” [10,16], where almost every query
could comprise a large number of matched records, leading to substantial 1/O
resources and long search latency. Most of previous SSE constructions focused
on exact keyword search for document retrieval. They are generic primitives
without considering the above performance issues, and thus do not necessarily
scale well in the context of similarity retrieval over large number of records.

Therefore, rather than just assembling off-the-shelf designs in a blackbox
manner, we must consider security, space utilization, time efficiency, and search
accuracy simultaneously, and build a new construction from the ground up. As an
initial effort, we resort to recent advancements in high performance hash-based
structures [10,16,18,19] in the plaintext domain. Our goal is to intelligently
incorporate their design philosophies into our encrypted index structure so as to
make a practical design fully customized and thoroughly optimized. In particular,
we explore multiple choice hashing, open addressing, and cuckoo hashing [18] to
balance the index load, resolve the severe imbalance of LSH, and yield constant
search time with a controllable trade-off on accuracy. Each query only requires
O(1) lookup and retrieves a small constant number of similar records with low
latency. Such design also makes it possible that any form of post processing on
retrieved records (e.g., distance ranking) can be efficiently completed at local.

For security, we apply pseudo-random functions to protect sensitive LSH hash
values, use symmetric encryption to encrypt the index content, and implement
the above hash-based optimizations in a random fashion. Through crafted algo-
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rithm designs, our proposed encrypted index can perform favorably even over
a large number of data records. For completeness, we also propose a dynamic
version of the index design to support secure updates of encrypted data records.
We note that one trade-off of SSE is the compromise on security to pursue
functionality and efficiency. Similar to previous definitions for SSE, our secu-
rity strength is evaluated by capturing the controlled leakage in the context of
LSH-based similarity search, and we formally prove the security against adaptive
chosen keyword attacks. Our contributions are summarized as follows:

— We propose a novel encrypted index structure with optimal space complexity
O(n), where n is the number of the data records. It supports secure similarity
search with constant time while achieving good accuracy.

— We extend this index structure to enable the server to perform secure dynamic
operations over the encrypted index, i.e., Insert and Delete.

— We formalize the leakage functions in the context of LSH-based similarity
search, present the simulation-based security definition, and prove the security
against adaptive chosen-keyword attacks.

— We implement our schemes with practical optimizations, and deploy them
to Amazon cloud for 10 million 10,000-dimensional records extracted from
Common Crawl'. The evaluations show that our security designs are efficient
in time and space, and the retrieved records are desired with good accuracy.

The rest of the paper is organized as follows. The related works are summa-
rized in Sect. 2. The preliminaries are introduced in Sect. 3. The security defini-
tion is given in Sect.4. Then we present the proposed schemes in Sect.5. After
that, we formally define the leakage functions and prove our schemes achieve the
security against adaptive chosen-keyword attacks. Section 7 shows our experi-
ment results. Finally, Sect. 8 makes the conclusion.

2 Related Works

Song et al. first introduce the notion of searchable encryption [21]. Then Goh
develops a per-file index design via Bloom filter [7], and Chang et al. [4] also give
a per-file index design. Curtmola et al. improve the security notions known as
SSE and introduce new constructions against non-adaptive and adaptive chosen-
keyword attacks [6]. Chase et al. generalize SSE by introducing the notion of
structured encryption and give the first efficient scheme (i.e., sublinear time)
with adaptive security [5]. Afterwards, Kamara et al. propose a dynamic SSE
scheme with sublinear time and introduce the security framework that cap-
tures the leakage of dynamic operations [14]. Then Kamara et al. give the first
dynamic SSE scheme supporting parallelizable search [12]. Meanwhile, several
works extend SSE to support sophisticated functionalities. Cash et al. propose

! Common Crawl Corpus: an open repository of web crawl data, on line at http://
commoncrawl.org/.
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an SSE scheme for boolean queries that firstly achieves the asymptotically opti-
mal search time [3], and Jarecki et al. extend that scheme in the multi-client
scenario [11].

Very recently, Cash et al. implement a dynamic SSE for large databases when
the index is stored in the hard disks [2]. The proposed hybrid packing approach
considers the locality of documents, and improves I/O parallelism. Stefanov et al.
propose a dynamic SSE that achieves forward privacy [22]. Yet, their design relies
on an ORAM:-like index with hierarchical structure. The search time complexity
is polylogarithmic, and the client needs to rebuild the index periodically. Naveed
et al. present a building block called blind storage as a sub-component of SSE
for the privacy of document set, i.e., hiding the number of documents and the
document sizes [17]. Their design splits each document into blocks and randomly
inserts them into a huge array. The required storage cost is several times larger
than the original document set. Besides, multiple round interactions are also
needed when retrieving a large document. Hahn et al. propose an SSE scheme
with secure and efficient updates, where the update operations leak no more
information than the access pattern [9]. Specifically, an encrypted file index is
built in advance, which stores encrypted keywords for each file. When one sends
search queries, an inverted index will be built gradually. Because adding files
only updates the file index, the server will not know whether those files contain
the keywords searched before or not. The search cost is initially linear, then
amortized over time.

SSE is applicable for any forms of private retrieval based on keywords [13].
Built on locality-sensitive hashing (LSH) or other distance embedding tech-
niques, similarity search will be transformed to keyword search. Kuzu et al. [15]
build an encrypted index from a LSH-based inverted index. Each distinct LSH
hash value is associated with an n-bit vector, where n is the total number of
records in a dataset, and each bit indicates a matched record. In their encrypted
index, a large amount of random padding is added to hide the number of dis-
tinct LSH hash values and the imbalance in the number of matched records.
Consequently, the index has a quadratic space overhead as worst as O(n?).

3 Preliminaries

Cuckoo Hashing: Cuckoo hashing [18] is a variant of multiple choice hashing.
It allows items moving between hash tables so as to achieve high load factors?.
Let X be the universal domain, and cuckoo hashing is defined as:

Definition 1 (Cuckoo Hashing). Given two hash tables Ty and Ty with w
capacity, two independent and random hash functions uy,us : X — {0,w — 1}
are associated to T1 and Ty. Item x € X can be placed either in bucket T1[u1(x)]
or in bucket To[ug(x)].

2 The load factor refers to the ratio between the number of items and the number of
buckets in the index.
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When inserting an item without a vacancy, the item in one of those two occu-
pied buckets will be kicked out and moved to another hash table. We denote such
operation as cuckoo-kick. cuckoo-kick will not stop until all “kicked” items are
re-inserted within a threshold of iterations. When the number of such iterations
exceeds the threshold, rehash will be activated such that all items are inserted
again by newly selected hash functions. To reduce the probability of rehash, it is
natural to extend cuckoo hashing from two hash tables to multiple ones so that
each item has more buckets to place.

Locality-Sensitive Hashing: Locality-sensitive hashing (LSH) [1] is the state-
of-the-art algorithm to solve the problem of approximate nearest neighbors in
high-dimensional spaces. The functions in the LSH family project
high-dimensional records such that the hashes of similar records collide with
much higher probability than those of distant ones. From [1], the LSH family is
defined in Appendix A.

Cryptographic Primitives: A private-key encryption scheme SE(Gen, Enc, Dec)
consists of three algorithms: The probabilistic key generation algorithm Gen takes
a security parameter k to return a secret key K. The probabilistic encryption
algorithm Enc takes a key K and a plaintext M € {0,1}* to return a ciphertext
C € {0,1}*; The deterministic decryption algorithm Dec takes k and C' € {0,1}*
to return M € {0,1}*. Define a pseudo-random function (PRF) family is a family
F of functions such that it is computationally infeasible to distinguish any func-
tion in F from a uniformly random function.

4 Notations and Definitions

This section gives the notations and the security definitions used throughout the
paper. D is defined as a y-dimensional record, and D* is the ciphertext of D.
A is the record identifier, which can also be its physical address. D is a record
set {D1,---,D,}, and n is its cardinality. V represents a vector, where v; is its
j-th component. We denote T as the hash table, w as its capacity, and T[i] as
its i-th bucket, where i € [0,w). 01! denotes a string with |a| bits of ‘0’. Given
two strings z and y, their concatenation is written as z||ly. P, G, and F are
the pseudo-random function (PRF). Our scheme contains the functions for key
generation, index construction, and query operations. We give the definitions
with specified inputs and outputs as follows:

K « GenKey(1%): takes as input a security parameter k, and outputs a secret
key K.

7 « Build(K,D): takes as input K and a record set D, and outputs an
encrypted index 7.

t « GenTpdr(K, D): takes as input K and D, and outputs a trapdoor t.

A — Search(Z,t): takes as input Z and ¢, and outputs a set of identifiers A.

T’' — Insert(Z,t, D): takes as input Z, ¢, and D for insertion, and outputs the
updated index 7’.

T’ — Delete(Z,t, D): takes as input Z, t, and D for deletion, and outputs the
updated index 7’.
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Our scheme follows the security notion of SSE stated in [6,14]: the server
cannot infer any sensitive information of data records from the encrypted index
before search; the server can only learn the limited information about the
requested queries and the results. Like prior SSE schemes, there will be the
leakage of access pattern and query pattern, for enabling search and updates
over the encrypted index. Explicitly, the access pattern includes the results of
queries; the query patten indicates not only the equality of query records but
also the similarity between each other, where the latter is additional in contrast
to other SSE schemes for exact keyword search (also recognized in [15]). Based
on the simulation-based model [8] and the definition verbatim from [6,14], we
give the formal security definition in Appendix B.

5 Owur Proposed Schemes

5.1 Main Scheme

In this section, we present the main scheme for secure and scalable similarity
search on encrypted high-dimensional records. Our core design is a high per-
formance encrypted index built from the scratch. It supports secure and non-
interactive search with constant time while preserving good accuracy of search
results. Below, we give our design rationale before introducing the details.

Design Rationale: As mentioned, one can treat LSH hash values as keywords
and employ any known SSE to make secure similarity search functionally cor-
rect [13,15]. However, directly applying existing SSE indices [2,6,12,14,15,22,24]
will cause large space consumption and long query latency. First, the number of
matched records varies for different LSH hash values. Such imbalance will make
the space complexity as worst as quadratic in the size of dataset [15], because of
random padding used in the inverted index based SSE schemes [6,14,24]. Sec-
ond, the query latency scales with the number of matched records. It could be
painfully long for large datasets. Third, multiple composite LSH functions are
usually applied to each record for good accuracy. For [ composite LSH func-
tions, each record will have [ hash values. Therefore, even the latest key-value
pair based SSE indices [2,22] will result in an index with space complexity O(in),
where n is the number of the records. It might still be huge since [ can be as large
as several hundred [16]. As analyzed, combining LSH and SSE directly appears
to be neither practically efficient nor scalable for large datasets.

To address the above issues, we propose to build an advanced encrypted
index, which aims to inherit the design benefits of LSH indices in the plain-
text domain for performance while minimizing the extra overhead incurred by
security. In particular, we resort to recent advancements on hash-based indices,
which utilize high performance hashing algorithms such as multiple choice hash-
ing [16,19], open addressing [16], and cuckoo hashing [10]. We also observe that
most applications of similarity search suffice for an approximate result, e.g., high-
value statistics such as nearest neighbors and Top-K analysis [1,15]. Besides, an
appropriate approximation algorithm will improve search efficiency by orders of



46 X. Yuan et al.

Build(K,D):
CLIENT:
1. Setup stage:
(a) call GenKey(1¥) to generate the key set K = (K1, Ko, K3);
(b) set the index load factor 7 and initiate [ hash tables: {T%,--- ,T;} with the
capacity w = [ %] for each;
(c) assign a universal hash function u;: U — {0, w — 1} to T}, Vj € [1,1];
(d) set the cuckoo-kick threshold « and the initial random probing step d;
(e) VD € D, compute IshV (D) = {v1,--- ,v}, where v; = g;(D).
2. Insertion stage, VD € D:
(a) set 8 =0 to mark the iterations of cuckoo-kick;
(b) select T; randomly from {T%,---,7;} and compute {G(K,}j,i)}d, where
Kij = P(K1,v;) and i is from 1 to d;
(c) scan {T}[u; (G(K},j,i))]}d from T} to the rest of tables incrementally and
place A to the very first vacant bucket;
(d) if none of those buckets is empty, randomly select one of them and cuckoo-
kick A’ inside by replacing it with A; increment 8 and re-insert A’ via step
b), ¢) and d) iteratively;
(e) if B reaches a, randomly select T; and increment the cached d of v;. Place
A to Tjlu; (G(Kij ,d))] if it is empty; iterate this step until A is inserted.
3. Encryption stage:
(a) encrypt occupied buckets: B* = A||0/*! @, where |a] is the length of check
tag, r = F(Kfj ,0), Kij = P(K2,v;), and b is the address offset of bucket.
(b) fill empty buckets with random strings: B* = Enc(K3, 017 1.

GenTpdr(K, D):
CLIENT:
1. compute {v; = g;(D)}; for j from 1 to ;
2. generate t = ({Kij}l, {KSJ}Z), where K, = P(K1,v;), and Kfj = P(K2,v;).

Search(Z,t): for each ng in {Ki] h

SERVER:
1. locate {T}[u; (G(Kij,i))]}dmam for ¢ from 1 to dmaz;
2. compute r = F(K/?,j,b) and r @ B* for each, where B* =T} [u]'(G(ng,i))};
3. if the least significant |a| bits are all ‘0’, push A to A.

Fig. 1. Index Build function and Search operation in the main scheme

magnitude while only introducing a small loss in accuracy [1,10,16]. Therefore,
we incorporate this design philosophy into the framework of SSE and show how
to build a provably secure and space efficient index with constant search time
and good accuracy.

Main Scheme in Detail: Essentially, the client will build the index in three
stages, i.e., setup, insertion, and encryption. The setup stage initializes the index
structure and the prerequisite system parameters tuned on the input dataset;
The insertion stage places all record identifiers to the buckets of index in a
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Fig. 2. The example illustrates three cases when inserting an identifier A;. The number
of hash functions [ is 3. The random probing step d is 2. The one in purple is an adaptive
probing bucket.

random manner; The encryption stage encrypts the identifiers inside and fills
empty buckets with random padding. The Build function is presented in Fig. 1,
and an example in Fig. 2 illustrates how an identifier is inserted. For easy pre-
sentation, we describe the insertion stage and the encryption stage, along which
the system parameters are introduced.

In the insertion stage, the identifiers are sequentially inserted to the index
buckets without loss of data confidentiality. We first introduce secure multiple
choice hashing to balance the index load, and then combine it with random open
addressing to handle the LSH imbalance. Moreover, we apply cuckoo hashing to
build a very compact index. For security and correctness, those techniques are
realized by utilizing different PRF's.

It is known that multiple choice hashing provides multiple positions for each
inserted item so as to achieve load balance. It can be naturally extended in LSH
indices [10,16,19], i.e., I composite LSH functions {g¢1,---,¢;} are associated
with [ hash tables {T},--- ,T;} respectively. The record identifiers are inserted
into those hash tables which are indexable by LSH hash values. Given a record
D, the bucket of its identifier A is determined by IshV (D) = {v1,--- , v}, where
vj = gj(D). Yet, such procedure does not consider security. Because LSH func-
tions are not the cryptographic hash function, D could be leaked from where
it is stored. Thus, we use PRF to protect IshV(D): {P(K1,v1), -+, P(K1,v)}
shown at Stage 2.b of Build function in Fig. 1, where P is PRF. The transformed
hash values are now used to find available buckets. We note that such treatment
is also seen in prior works [15,20]. Besides, multiple choice hashing can elimi-
nate redundancy compared to the inverted index. It is not necessary to store all
I copies for each identifier to have good search accuracy. This advantage enables
flexible approximate algorithms to make a trade-off between efficiency and accu-
racy [10,16,19]. In our case, we pursue practical efficiency at large scale and
store a single copy of each identifier to achieve O(n) space complexity. The size
of index only scales with the number of data records.

Secure multiple choice hashing balances the load of index, but it might still
not provide sufficient vacant buckets to handle the imbalance of LSH, i.e., a
large number of records matched with the same LSH hash value could readily
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exist. One straightforward solution is to introduce more bucket choices by adding
more hash tables, but accessing a large number of hash tables will degrade
the performance. Therefore, we adopt open addressing to resolve LSH collisions
[10,16]. The key idea is to seek a number of alternative buckets within each hash
table. But applying basic mechanisms of open addressing will disclose the locality
of similar records. For example, if linear probing is used, the server will learn that
similar records are placed next to each other. To hide such information, a probing
sequence should be scrambled. Thus, we utilize random probing to generate a
random probing sequence, {G(K;j,l), e ,G(K;j,d)}, where K,}j denotes the
transformed LSH hash value P(K7,v;), G is PRF, and d is the probing step.

To compact our encrypted index, we further utilize the idea of cuckoo hash-
ing, a variant of multiple choice hashing. It allows the identifiers to relocate,
moving across different hash tables. In our design, when inserting a record D,
if all [ * d probing buckets are occupied, one of them will be randomly selected.
The identifier A’ inside will be kicked, and A will be placed. Then A’ is re-
inserted back. Such cuckoo-kick operation will loop until no identifier is not
placed. We observe that cuckoo-kick will facilitate the refinement of clustering
similar records and improve the search accuracy. Less similar records will be
excluded via iterative cuckoo-kick. The empirical results will be shown later in
Sect. 7.

It is worth noting that rehash may happen in cuckoo hashing when relocating
items in an endless loop. Consequently, all identifiers should be re-inserted, which
could be quite expensive for a large dataset. To sidestep this issue, we propose
adaptive probing to seek more vacant buckets at each hash table in a heuristic
way. When the number of cuckoo-kick reaches a given threshold «, we start to
randomly select v; € IshV(D) and increment its probing step d in Tj so that
one more bucket can be used for relocation. As a result, each d for a given v; is
cached, and the maximum probing step d,,q, Will be notified to the server after
the index is built. It is used for search operations in such a way that each table
will process constant d,,q; buckets for a given query.

To achieve the security guarantees stated in Sect. 4, we have to encrypt the
entire index and make each bucket indistinguishable. Considering security, effi-
ciency, and correctness, we investigate the underlying data structure on bucket
encryption. As introduced in Sect. 3, cuckoo hashing uses weak hash functions
for a compact index. At Stage 1.c of Build function in Fig. 1, the output range of
universal hash is [0,w — 1], where w is the hash table capacity. Because a weak
hash function is not collision-resistant, two different LSH hash values might col-
lide at the same bucket. To get correct results, one may append an encrypted
LSH hash value with its identifier in the bucket, but it introduces additional
storage overhead.

Tactfully, we embed LSH hash values into random masks for bucket encryp-
tion, so the matched results will be found on the fly. In particular, we con-
catenate the identifier with a check tag A[|0/%/, and encrypt the concatenated
string by XORing a random mask r: B* = A[|01% @ r, where r = F(ng,b),
Kﬁj = P(K>,v;), and b is the address offset of bucket from the base address of
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index. Only if 0/%! is correctly recovered, the bucket will be the matched one. And
because b is unique for each bucket, each bucket is encrypted with different ran-
dom mask even the same LSH hash value is embedded. Finally, the rest of empty
buckets are filled with random padding to make all buckets indistinguishable.

Search Operation: Based on the index construction, the server can perform
Search to return a constant number of encrypted similar records for a query
record. In Search of Fig. 1, the client generates the trapdoor ¢ = ({K }1, {K} }1)
for a query D, which enables the server to locate and unmask the matched
buckets. Upon receiving {ng }i, the server locates dp,q, buckets in each hash

table via PRF G(K%j,i) for i from 1 to dyaz, Where dp,qe is the maximum
probing step of all distinct LSH hash values. Then it computes random masks
from {KEJ } via PRF F(KEJ ,b), where b is the bucket address offset. Only if the
identifiers inside are associated with matched v;, the check tag will be all “0”
and the identifier will be considered as the correct result. Meanwhile, the server
cannot unmask the identifiers inside if they have different LSH hash values to
the query record’s.

Regarding security, the random mask is generated from the unique address
offset of bucket, and thus each bucket is encrypted via a different mask. Such
design ensures that the server knows nothing before search. We also note that
multiple choice hashing is designed for parallel search. The buckets in [ inde-
pendent hash tables can be processed in parallel. Thus, the time complexity can
achieve O(c/min(p,l)), where p is the number of processors, and c is a constant
I * dppqaz. The number of retrieved ciphertext is bounded by O(c).

5.2 Dynamic Scheme

To support secure dynamic operations, we design a variant of bucket construc-
tion. Accordingly, Insert and Delete are proposed to add and remove an identifier
from the encrypted index, respectively. We note that updating a given record
causes the change of its LSH hash values. As a result, its identifier will be relo-
cated by first triggering Delete and then Insert.

Explicitly, we store the state information of ciphertext at the server, and ask
the client to use fresh random masks generated from the state information to
re-encrypt all the buckets which have been accessed in a given query. During
the update, the bucket, whose underlying content is truly modified, is hidden
due to the re-encryption. In particular, we design the bucket in the format such
as: B* = (P(Ks,s) ® Al|v;, Enc(Ky,s)), where Ky and K5 are private keys, v;
is used to guarantee the correctness of Search, and the fresh random mask is
generated by updating a random seed s. We note that the setup phase and the
insertion phase remain unchanged when building the dynamic index. Only the
encryption phase is different.

To insert a new record, one straightforward solution is to follow the insertion
stage in Build. However, such procedure could trigger cuckoo-kick and cause many
interactions between client and server. Besides, the client needs to re-encrypt all
accessed buckets in each interaction, which will introduce computational burdens.
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Alternatively, we employ a similar approach of adaptive probing to moderate the
communication and computation overhead. To insert an identifier A of given D,
the client generates the trapdoor to enable the server to iteratively return [ buck-
ets (one for each hash table) until A finds a vacancy to stay. As we only notify
dmaz t0 the server, it is required to use a map to record the latest probing step
dy; for each distinct K. ij, where §,; starts from dq. + 1. We also note that set-
ting a less aggressive index load factor will help to insert A. As a result, the client
can retrieve the latest probing buckets {T[u; (G(ng ;0;))]}1 in each table. If no
bucket is empty, the client will keep on asking the server to return [ new prob-
ing buckets by incrementing each ¢, for j from 1 to [, i.e., one bucket in each of
[ tables. To hide the location of A, the last [ buckets are re-encrypted via fresh
random masks.

To delete A, the client generates the trapdoor to retrieve the corresponding
Z;Zl d»; buckets, where one of them stores A. After decryption, the client locates
the bucket of A and replaces it with 1. Likewise, it re-encrypts the accessed
buckets with fresh random masks to hide the emptied one. Compared to our
main scheme, Search now needs to return 22‘:1 dy; encrypted buckets for a given
trapdoor. The decryption is conducted at the local client. v; that matches the
LSH hash value of the query record is considered as the correct result.

6 Security Analysis

In this section, we evaluate the security strength of main scheme {2; and dynamic
scheme {25 under the security framework of SSE. We first define the leakage in
search and update operations, and specifically discuss the security for LSH-based
similarity search. Based on well-defined leakage functions, we prove that both
schemes are secure against adaptive chosen-keyword attacks.

Security on the Main Scheme: Our scheme endows the server with an abil-
ity to find encrypted similar records by borrowing techniques from SSE. As a
result, it does have the same limitation as prior SSE constructions. In partic-
ular, the server initially knows certain attributes of index without responding
any Search query; that is, the capacity of encrypted index, the number of hash
tables, and the bit length of encrypted bucket. As long as Search begins, the
access pattern and the query pattern are subsequently revealed. Essentially, the
access pattern for each query includes a set of identifiers of similar records and
the accessed encrypted buckets of index. While for the query pattern, the notion
in our scheme extends from the notion of SSE for keyword search, but it reveals
more information, the similarity between each query. In keyword search, each
query produces one single trapdoor. The query pattern is captured by recording
those deterministic trapdoors, where the repeated ones indicate the keywords
searched before. While in our scheme, each query generates a trapdoor that con-
sists of multiple sub trapdoors. Therefore, if two trapdoors have an intersection,
it will indicate that they are similar; that is, their underlying query records have
matched LSH hash values. Accordingly, we quantify this similarity by 6 defined
as the size of the intersections between the two composite LSH hash values.
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Formally, we define the leakage L, and L3, as follows: L{, (D) = (N, 1,|B*|),
where N is the index capacity, [ is the number of hash tables, and | B*| is the length
of encrypted bucket; £3, (D) = (accpo, (D), simpg, (D)). accpg, (D) is the access
pattern for a query record D defined as ({A},, {B*}14,,..), where {A},, is the
identifiers of returned m similar records, and {B*};4,.. is the accessed buckets.
simp(D) g, is the query pattern defined as ({8 = |lshV (D) N IshV (D;)|}q,7 €
[1,q]), where D; is one of ¢ queried records, and € is the size of the intersections
between [ composite hash values of D and D;.

Regarding the access pattern accpg,, for a given query record D, the server
decrypts dp,q. buckets at each hash table, total [d,,,, buckets for [ tables, to
recover the result identifiers {A},,, where m < ld;,q,. Therefore, the server
knows where the identifiers are stored and how many identifiers are correctly
recovered at each table. From the perspective of security, revealing d,,,, does
not appear to be harmful. It only informs the server when to stop random probing
in each hash table. Regarding the query pattern simpgq, , the similarity of query
records is known in addition to the equality. A trapdoor t for a given D contains
I sub trapdoors: {P(K1,¢g1(D)), -+, P(K1,9/(D))}. Considering another D;, if
t; = {P(K1,91(D;)), -+, P(K1,q:(D;))} has at least one matched sub trapdoor
as t, D; and D are likely similar. From the definition of LSH [1], the 6 between
D and D; will further tell their closeness. The bigger 6 is, the closer they are.

We adopt the simulation-based definition in [6]. Given the leakage functions
[’}21 and ,C?Zl, a probabilistic polynomial time (P.P.T.) simulator S can simulate
an index, respond a polynomial number of Search queries, and generate corre-
sponding trapdoors. To prove the adaptive security defined in Appendix B, we
show that any P.P.T. adversary A cannot differentiate: (1) the real index and
the simulated index; (2) the real search results and the simulated results, the
real trapdoors and the simulated trapdoors for a polynomial number of adaptive
queries. We present Theorem 1 and the formal proof in Appendix C.

Security on the Dynamic Scheme: The dynamic scheme is built on the
design of the main scheme. The underlying index structure is exactly the same,
which does not show extra information. Thus, the leakage function L, is the
same as Lf, . Regarding £, , the trapdoors for Search, Insert, and Delete are
transformed via PRF from the LSH hash values of query records, so the simi-
larity between inserted, deleted and searched records are also known. Therefore,
the query pattern simpgq,(D) is the same as simpg, (D). For the access pat-
tern accpg, (D), the server needs to maintain the state information §,; for each
distinct LSH hash value to enable Insert and ensure the correctness of Delete
and Search. We note that revealing ¢, does not compromise on security. Newly
allocated probing sequences all start from d,,q, + 1 and each Insert interaction
is a batch update on [ buckets. Thus, the server does not know which buckets
are truly modified.

Most of efficient dynamic SSE schemes on exact keyword search leak the
information such that: a keyword belongs to a newly added encrypted file if
that keyword is searched before; a keyword belongs to a deleted encrypted file
if that keyword is searched later. The former is defined as forward leakage, and
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the latter is defined as backward leakage in [22]. In our scheme, the server knows
that the records are similar to a newly inserted D, if those records appear in
search results before, since their LSH hash values have intersections with D; the
server also knows that the records are similar to a deleted D, if those records
appear in search results later. Formally, we define the leakage as 5?’22(D) =
(addp(D),delp(D)), where addp(D) = ({VA; : IshV (D) NIshV(D;) # 0}4.i €
[1,¢]) and delp(D) = ({VA; : IshV (D) NIshV (D;) # 0}4,% € [1,4q]). Given the
leakage functions, we give Theorem 2 and prove it in Appendix C to demonstrate
that our dynamic scheme is secure against an adaptive adversary.

7 Implementation and Evaluation

Implementation: Most of SSE schemes do not specifically address the cost for
building the encrypted index when the size of dataset goes large. Such cost could
be prohibitively expensive for the client with limited resources. To address this
issue, we carefully select system parameters and optimize the implementation
for Build. Given a dataset with n records, the index load factor 7 should be
pre-set to determine the index capacity N. We set 7 as 90 % based on empirical
experience of cuckoo hashing based designs [10] to build a very compact index.
Then we create [ arrays with continuous addresses as the underlying structure
of hash tables, where [ is the number of composite LSH functions, trained via
E2LSH package® on a sample dataset. The array capacity w is set by [Z].

We allocate a shared memory with total |A| * N bits, excluding the check
tag or the state information, so as to increase the capacity of index held in
client’s memory. We encrypt each bucket in memory, and dump it to the hard
disk simultaneously or send it directly to the server as long as it is encrypted.
Such method will avoid memory overflow at the clients with restricted physical
memory. Meantime, we carefully set the cuckoo-kick threshold o and the initial
random probing step d. If « is set as a large number, the chance of rehash can be
reduced. As a trade-off, the insertion will take more time due to the expensive
cuckoo-kick. Here, we pursue efficiency and set a = 50 instead of hundreds. We
note that the value of d also has a trade-off on building efficiency and querying
efficiency. If we set a large d, our index can have a large number of bucket choices
to handle LSH collisions so as to reduce the iterations of cuckoo-kick, but search
will process a large number of buckets and thus increase the latency.

Experiment Setup: we implement the main scheme and the dynamic scheme
in Java to demonstrate the feasibility of our design at a large scale. We eval-
uate the performance and the search accuracy on a dataset with 10 million
high-dimensional records. For cryptographic primitives, we use OpenSSL toolkit
(version 1.0.1h) to implement the symmetric encryption via AFES-128, and
pseudo-random function (PRF) via HMAC-SHA1. Our source code is available
at Git*. To demonstrate the practicality, we deploy our implementation on a

3 E2LSH package: online at http://web.mit.edu/andoni/www/LSH.
4 SimSSE: on line available at https://github.com/harrycui/SimSSE.
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AWS EC2 large instance “r3.4xlarge”. We generate 10 million records from a
public dataset on AWS, “Common Crawl Corpus”, which contains over billions
of web pages. Because it is stored on Amazon S3, we directly launch map-reduce
jobs on AWS Elastic MapReduce (EMR) to process these web pages on a cluster
of EC2 instances. For each web page, we generate a 10, 000-dimensional Bag-of-
Words (BoW) vector according to a dictionary with 10,000 top frequent words,
where such BoW model is commonly used in methods of web page clustering and
similar web page detection. Here, we apply Euclidean distance as the distance
metric and use the E2LSH package to train the parameters [ and m defined
in Appendix A. For training, 10 % vectors are randomly selected and the dis-
tance threshold r is set to 0.5. Accordingly, tunable LSH parameters [ and m
are derived as 20 and 8 respectively.

Performance Evaluation: We evaluate our proposed schemes on index build-
ing cost, index space consumption, bandwidth cost, search and dynamic opera-
tion performance, and search accuracy. Figure 3 reports the index building time.
For a fixed number of hash tables [, if the random probing sequence d is small,
few buckets can be used to resolve the imbalanced LSH collisions. Thus, more
iterations of cuckoo-kick will be required. In fact, the building cost is propor-
tional to the iterations of cuckoo-kick. As shown, increasing d will reduce the
iterations of cuckoo-kick, shortening the overall time, but it will introduce more
bandwidth cost because the number of retrieved records is related to d for fixed
[. Although the building time is not moderate, over 2,000s in Fig.1, it is a
one-time cost, and we will improve it via concurrent programming in future.
Because we encrypt and dump the bucket simultaneously, the client only
needs to allocate 4 bytes, the length of identifier, for each bucket in memory. In
Table 1, for a dataset with 1 billion records, client only needs to allocate 4.4GB
for our index with a load factor 90 %. In our main scheme, an encrypted bucket
is in the format as: A]|01%l @ r. The mask r is an output of HMAC-SHA1. Thus,
each encrypted bucket is 20 bytes long. In our dynamic scheme, an encrypted
bucket is in the format as: A||v;® P (K5, s), Enc(Ky, s), where the mask P(K5, s)
is also 20 bytes long, and Enc(Ky, s) is 16 bytes long with AES-128. We show
the space consumption for different scales of datasets in Table 1. For datasets
with 4 billions of records, our index consumes 160GB memory, which can fit into
the main memory (244GB) of the largest Amazon EC2 instance. As mentioned,
directly applying the implementations of prior SSE will consume much more
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Table 1. Index space (GB) with a load factor 7 = 90 %.

Schemes n=10"|n=10% |n=10° |n=4%10°
(1, 22 at client | 0.04 0.4 4.4 17.8
(21 at server 0.22 2.2 22.2 88.9
{25 at server 0.40 4.0 40.0 160.0

space due to inherent issues of LSH. The comparison of space complexity is
shown in Table2 in Appendix E. Those indices will contain In key-identifier
pairs at least, where [ is a tunable LSH parameter based on a predetermined
distance threshold and selected training datasets, usually at scale of tens or
hundreds. Such constant factor could result in an excessively huge index, e.g.,
more than 1000GB for [ = 20 on 1 billion records. Our design is highly space
efficient. The size of proposed index only scales with the size of dataset.

The bandwidth evaluation for Search is shown in Table 3 in Appendix D. For
comparison, we build an inverted index with same LSH parameters. Then we
randomly sample hundreds of search queries and calculate the average number
of returned identifiers for each. In Table 3-(a), the statistics of LSH imbalance
are reported for our selected 10 million records. We can see that the largest
number of matched records is nearly 20 thousand. And most of LSH hash values
have hundreds of matched records. In Table 3-(b), the size of results from the
inverted index is over thousands which is huge and not scalable. In our design,
Search costs a small sized bandwidth. For [ = 20 and d = 5, the number of
retrieved encrypted records is 100 at most. From Table 3-(b), comparing with
an inverted index, our Search saves dozens of times of bandwidth cost. Because
cuckoo hashing utilizes weak hash functions, records with different LSH hash
values might be grouped. Recall that a specialized random mask and a check
tag are used to enable the server to get the correct search results. Therefore, the
number of result identifiers is less than 100 in Table 3-(b). From the parameter
setting, 20 trapdoors (20 bytes for each) and 100 encrypted records (40 KB for
each record) totally cost approximate 4 MB.

As proposed, Search only accesses a constant number of encrypted buckets,
so our design can scale well when dealing with a “big query”. Figure4 reports
Search performance of the main scheme. We randomly sample different numbers
of queries and evaluate the average time for different probing step d. When the
number of accessed buckets is equal to 100, it takes less than 1lms. Figureb
compares Search performance of the main scheme and the dynamic scheme.
Because Search in the dynamic scheme asks the client to perform the decryption
of random masks, it needs more time than computing random masks directly
at the cloud in the main scheme. Therefore, it is slower, but it still achieves
millisecond latency, less than 3ms to process 100 encrypted buckets.

Multiple choice hashing is designed to enable lookup in each hash table con-
currently. To measure the concurrency, we implement Search of our main scheme
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in parallel threads. In particular, we create 16 threads simultaneously and mea-
sure the throughput for various number of hash tables in Fig.6. It shows that
our implementation can handle over 60 thousands of queries per minute. When
the number of hash table increases, the throughputs will decrease. The reason is
that accessing too many hash tables degrades the search performance. Therefore,
the parameter [ should be kept relatively small for high concurrency.

The performance of Insert and Delete is shown in Fig. 7. The total time con-
sists of the time for locating encrypted buckets at the server, and the time for
decrypting and re-encrypting them at the client. For Insert, we conduct hundreds
of Insert queries on the index with a load factor 90 %. Because it adopts adap-
tive probing to find available buckets by open addressing rather than expensive
cuckoo-kick. The results show that even the index load is heavy, Insert can be
fast. Insert succeeds in one interaction by only accessing 20 buckets for | = 20
and the average time is less than 1ms. Delete has to retrieve, decrypt, and re-
encrypt all related Z;Zl dy; buckets. Therefore, the time is much longer. We do
not perform Insert before Delete, so ,, can be treated as dy,qz + 1, which is equal
to 12 for this dataset. As shown in Fig. 7, the average time for Delete is around

4ms.
The search accuracy is measured based on the definition of = > 1IDi=Dg||
y K 24i=1 ||D;—D,]|

in [23], where D, is the query record and Dj is the i-th closest record to Dy. This
metric reflects a general quality of Top-K neighbors. It quantifies the closeness
between the Euclidean distances of Top-K records from LSH-based indices and
the ground truth nearest records via linear scan. For comparison, we also com-
pute the accuracy of Top-K results from an inverted index. Figure 8 shows that
the results of inverted index are closer to the ground truth. We note that our
design introduces a little loss in accuracy, because our index employs an approx-
imation such that only one copy of each record identifier is stored and the search
results do not include all the matched records. But we can see that cuckoo-kick
improves accuracy a bit. The reason is that even if one of two similar records is
kicked, it is probably still moved back to one of previous corresponding buckets.
On the contrary, the less similar one might be kicked out since they have fewer
matched LSH hash values. As a result, our design still achieves acceptable accu-
racy and saves dozens of times on the index space consumption, and the query
latency and bandwidth.
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8 Conclusion

We investigated secure and fast similarity search over large encrypted datasets.
Our design starts from two building blocks, LSH and SSE. As we target for the
high performance index design, we have explored practical hashing schemes,
including multiple choice hashing, open addressing, and cuckoo hashing, to
achieve a construction with superior space efficiency and low query latency.
Adapting from the security framework of SSE, we carefully capture the infor-
mation leakage and prove the security against adaptive chosen keyword attacks.
We have implemented our schemes over 10 million encrypted high-dimensional
data records at Amazon AWS. The experimental results are indeed promising.

Acknowledgment. This work was supported in part by Research Grants Council of
Hong Kong (Project No. CityU 138513), grant from City University of Hong Kong
(Project No. 7004279), and an AWS in Education Research Grant award.

A Definition of Locality-Sensitive Hashing

Definition 2 (LSH Family H). Given the distance r, cr, where ¢ > 1, and
the probability value py, p2, where p1 > pa, a function family H is (r,cr,p1,p2)-
sensitive if for any points D, D’ € R and any h € H.: if distance dist(D, D’) <
r, Plh(D) = h(D")] > p1; if distance dist(D,D’) > cr, P[h(D) = h(D")] < po;

In practice, the composite LSH function {g1,--- , ¢;} is applied to enlarge the
gap between p; and ps. One explicit composite function g; contains m indepen-
dent LSH functions, which are randomly selected from H: g; = (h1, ..., hy). As
a result, for any D, D' € R%: if dist(D,D’) < r, P[3i € [1,1] : gi(D) = g:(D")] >
1—(1—p™Y dist(D,D’) > er, P[Fi € [1,1] : g;(D) = ¢;(D")] <1— (1 —p5).

B Simulation-Based Security Definition

Definition 3. Let {2 = (GenKey, Build, GenTpdr, Search, Insert, Delete) be our
scheme for secure similarity search, and let L}, L%, and L3, be the stateful
leakage function. Given an adversary A and a simulator S, define the following
probabilistic games Real 4(k) and Ideal 4 s(k):

Realy(k): a challenger calls GenKey(1%) to output a key K. A selects D and
asks the challenger to build T via Build. Then A adaptively performs a polynomial
number of Search, Insert or Delete queries, and asks for the trapdoor t of each
query q from the challenger. Finally, A returns a bit as the game’s output.

Ideal 4 s(k): A selects D, and S generates 7 based on L4,(D). Then A adaptively
performs a polynomial number of queries. From L% (D) and L,(D) of each query
q, S returns the ciphertext and generates the corresponding t. Finally, A returns
a bit as the game’s output.
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Our proposed scheme §2 is (L}, L%, L3))-secure against adaptive chosen-
keyword attacks if for all probabilistic polynomial time adversaries A, there exists
a probabilistic polynomial time simulator S such that

Pr[Real 4(k) = 1] — Pr[Ideal 4 s(k) = 1] < ¢(k)

where e(k) is a negligible function in k.

C Security Proofs

Theorem 1. (2 is (Lbl,ﬁél)—secure against adaptive chosen-keyword attacks
in the random oracle model if SE is CPA-secure, and F', P, G are PRF.

Proof. We will demonstrate that, based on E})l, S can first simulate an index 7 ,

which is indistinguishable from Z. Then S can simulate result identifiers {{ A}, },
and trapdoors {tN}q based on £2 for ¢ adaptive queries, which are also indis-
tinguishable from {{A},,}, and {t}q To achieve the indistinguishability, {A},,
should be correctly recovered via ¢ from 7 for all q queries. It means {t}q should
also be consistent with each other, which implicitly asks S to trace the depen-
dencies between each query. The simulation is presented as follows:

e Simulate Z: given Ly (D) = (N,1,|B*[), S initializes an empty index 7 with [
hash tables and total N capacity, which are exactly the same as Z. After that,
S generates Kp via Gen(1¥). Each bucket in Z is filled with Enc(Kp, 05,
where |B*| is the bit length of bucket in Z.

e Simulate the first Search query: given accpgp, (D) from L3, (D), S outputs
{A}m which is identical to {A}m, and then generates the trapdoor t =
({Kl}l, {K2} ), where K1 and K2 are random strings with equal length of
Ki and K2 . By operatlng random oracles, S can use t to recover {A},,. I
partlcular PRF G and F are replaced by two random oracles H; and Hs. We
note that £% , also tells S where the identifiers are stored and how many iden-
tifiers are correctly recovered at each table. Thus, on the input ¢ and {A}m,

S can locate the buckets {B*}ld
{Hl(K}Hd)}lde
that Hy (I’(?Hb) @ B* = A for buckets that can be correctly decrypted.

e Simulate subsequent Search queries: given simpg, (D) from L3 (D), S can

know whether there are similar query records that appear before or not. If
{0}, are all 0, which means D is a record which is distant to others, S follows

with identical locations of B* 1d via

max max

where d € [1,dmaq], and outputs {HQ(I/(:;ZHb)}ld such

max
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the same way for the first query to simulate trapdoors and search results. As
long as there exists § which is larger than 0, S uses the same random strings

K Jl and Kj2 of D; based on the intersection, and accesses the same buckets in

T;. Meanwhile, S generates fresh random strings for sub trapdoors which did
not appear before, and outputs the accessed buckets and the result identifiers
from /3%21 as described above.

We emphasize that 7 and 7 have an identical structure with N buckets and
[ hash tables. The bucket B* and B* are filled by ciphertext with equal length.
Thus, Z and 7 are indistinguishable. For a given query, the result identifiers { A},,
and {A},, are identical, and the accessed buckets {B*},4  locates identically
as {B*}id,,,,- Due to the pseudo-randomness of F', P and G, the trapdoors ¢
and ¢ are indistinguishable. Meanwhile, the simulated {t}, are consistent with
each other, and the intersections among {t}, are identical to the intersections
{t}q. Therefore, the outputs of Real 4(k) and Ideal 4 s(k) are computationally
indistinguishable.

Theorem 2. (25 is (L}b, 92, EQ )-secure against adaptive chosen-keyword
attacks in random oracle model if SE is CPA-secure, and P, G are PRF.

Proof. As stated in the proof of Theorem 1, simulator S can simulate an indistin-
guishable index 7 from 5}22. It can also generate consistent trapdoors, the access
pattern and the query pattern from C_QQZ, which are indistinguishable from real

ones. For Search, Insert and Delete, S returns {E;}ZZ» .5, with identical loca-
Jj=1"vj

tions of real buckets via operating random oracle H; (K }, dj), where d; € [1,6,,].
Meantime, S can operate random oracle Hy (KJZ,E) to recover the result identi-
fier A = Hy(K?,5) @ B*, and update the encrypted bucket B* = Ha(K7,3) @ A

or B* = Hy(K7,3) @ L so that the subsequent search results will be consistent.
Note that for Insert and Delete, the buckets accessed by the server will be re-
encrypted. S can generate new buckets via Enc(Kp,0/5"). From 5?22’ addp(D)
and delp(D) show the identifiers in some of those updated buckets if they are
searched either before or after, so S can generate the consistent trapdoors and
masks via H3 on the input of B*, A and L. Due to the CPA-secure of SE and the
pseudo-randomness of P and G, the adversary A cannot differentiate Z and Z,
t and ¢, and B* and B* respectively. Therefore, the outputs of Real (k) and
Ideal 4 s(k) are indistinguishable (Table 2).
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D Comparison with Prior Work

Table 2. We compare existing SSE schemes with our schemes by treating LSH hash
values as keywords. #w is the number of keywords, #id,, is the number of matched
identifiers for a given keyword w, M,, is the maximum number of matched identifiers
over all the keywords, n is the number of records, ¢ is the retrieval constant, (¢ < #id.
shown in our experiment), p is the number of used processors, and [ is the number of
composite LSH functions.

Scheme Index size Search time Security | Index leak
CGKO’06 [6] O3, #idw + #w) |O(#idw) NonAd |#w
CK’10 [5] O(#wM,,) O(#idw) Ad H#w
vLSDHJ'10 [24] O(#wM,,) O(log #w) Ad H#w
KPR’12 [14] O3, #idw + #w) |O(H#idw) Ad H#w
KIK’12 [15] O(in?) o(l) Ad -

KP’13 [12] O(#wn) O((#idw logn)/p) Ad H#w
SPS’14 [22] o>, #idw) O(#idw +1logy " #idw) Ad -
CJJIKRS'14 [2]|O(>_,, #idw) O(#idw/p) Ad Do Fidw
Our scheme O(n) O(c/min(p,l)) Ad -

E Bandwidth Consumption Switch Appendix D
with Appendix E

Table 3. Bandwidth evaluation.

#Samples| 100 | 200 | 300 | 400 | 500
Matched IDs| < 1K |1K — 4K|> 4K #Aine [2652(3730(4280(5285|3824
# lshV  |15465K| 1861 68 #A 95 | 96 | 93 | 90 | 95
Saving |27 x|38 x|45x [58 x |39 X

(a) Statistics of LSH imbalance.

(b) Bandwidth comparison and saving.
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