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Abstract. The need to accurately specify and detect malicious behav-
ior is widely known. This paper presents a novel and convenient way
of accurately specifying malicious behavior in mobile environments by
taking Android as a representative platform of analysis and implementa-
tion. Our specification takes a sequence-based approach in declaratively
formulating a malicious action, whereby any two consecutive security-
sensitive operations are connected by either a control or taint flow. It
also captures the invocation context of an operation within an app’s
component type and lifecycle/callback method. Additionally, exclusion of
operations that are invoked from UI-related callback methods can be
specified to indicate an action’s stealthy execution portions. We show
how the specification is sufficiently expressive to describe malicious pat-
terns that are commonly exhibited by mobile malware. To show the use-
fulness of the specification, and to demonstrate that it can derive stable
and distinctive patterns of existing Android malware, we develop a sta-
tic analyzer that can automatically check an app for numerous security-
sensitive actions written using the specification. Given a target app’s
uncovered behavior, the analyzer associates it with a collection of known
malware families. Experiments show that our obfuscation-resistant ana-
lyzer can associate malware samples with their correct family with an
accuracy of 97.2 %, while retaining the ability to differentiate benign apps
from the profiled malware families with an accuracy of 97.6 %. These
results positively show how the specification can lend to robust mobile
malware detection.

Keywords: Behavior specification · Mobile security · Malware detec-
tion

1 Introduction

Recent years have seen smart mobile devices becoming increasingly pervasive in
our world. The threat posed by malicious mobile applications (apps), however,
seriously undermines the security and privacy of mobile users [16], who are usu-
ally not even aware of any incidents occurring on their own devices. To deal with
this, a mechanism that can accurately specify malicious behavior of mobile mal-
ware is important and necessary. Using such a specification, malware detectors
can subsequently be built to help ascertain the presence of malicious apps.
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This paper presents a novel way of accurately specifying malicious behavior
in mobile environments. The specification is concise, convenient to write, and
sufficiently expressive to capture a wide range of malicious behavior patterns
that are commonly exhibited by mobile malware. Our specification declaratively
expresses a malicious behavioral action as a sequence of security-sensitive oper-
ations, where any two consecutive operations are connected by either a control
or taint flow. It also captures the invocation context of an operation, including
the one that intercepts a broadcast-based system event, within its Android app-
component type and lifecycle/callback method. Additionally, exclusion of oper-
ations that are invoked from UI-related callback methods can be specified on
selective parts of a malicious action to indicate the absence of user involvement.
We show how our specification is at least as expressive as existing specification
schemes in describing malicious behavior in mobile environments.

To demonstrate the usefulness of our specification, we use it to compile an
initial list of malicious and security-relevant behavior patterns in Android, which
serves as a representative platform of our analysis and implementation. We then
develop a static analyzer to utilize the pattern base and characterize apps in
terms of their applicable pattern entries. Based on the uncovered entries of target
apps, the analyzer associates the apps with a set of known malware families.
Our goal here is to empirically demonstrate that the specification can facilitate
a compilation of malicious pattern base, which can be used by an analyzer to
derive stable, distinctive and obfuscation-resistant behavior patterns of existing
malware families. Experiments show that the analyzer can associate malware
samples with their correct family with an accuracy of 97.2 %. When tested on
presumably-benign top free apps from Google Play, it can differentiate the apps
from profiled malware with an accuracy of 97.6 %. App similarity techniques [7,
19,20] can additionally be employed for a higher combined association accuracy.

In summary, our work makes the following contributions to mobile security:

– We propose a novel malware specification language, which can handily capture
a wide range of malicious behavior in mobile environments (see Sect. 2).

– We analyze and compare the scheme’s expressiveness and usage convenience
with other existing specification techniques (see Sect. 3).

– We build a static analyzer that utilizes a database of malicious and security-
sensitive patterns, which are declaratively written using the specification, to
characterize an app and correlate it with known malware families (see Sect. 4).

– Using a set of experiments, we demonstrate how the analyzer can perform an
association of malware samples with their correct family with a high accuracy
of 97.2 % (see Sect. 5). Benign apps are deemed different from the profiled
malware families with an accuracy of 97.6 %. We additionally show how the
analyzer is robust against various code obfuscation attacks, which significantly
reduce the average detection rate of 55 other anti-malware systems connected
to VirusTotal from 70.8 % to 34.4 %.

The remainder of this paper is organized as follows. Section 2 elaborates our
specification scheme. Section 3 analyzes and compares it with other schemes.
Section 4 explains the design and implementation of our static analyzer, while
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Sect. 5 reports its experiments. Section 6 gives additional discussions on our spec-
ification and analyzer. Section 7 mentions related work and Sect. 8 concludes this
paper.

2 Malicious Behavior Specification for Mobile
Environments

2.1 Goals, Rules and Notation of Specification Scheme

In Android, operations that access protected resources are invoked through
permission-guarded API calls. To accomplish a certain security-sensitive action,
multiple security-sensitive operations may be required. For instance, to record
audio, an app needs to successively invoke the following methods of an object
of android.media.MediaRecorder class: setAudioSource(), setOutputFor-
mat(), setOutputFile(), and start(). Throughout its execution, an untrusted
Android app may execute a number of possibly independent security-sensitive
actions.

In this work, we call a sequence of API calls that can independently realize a
security-sensitive action as a malicious behavior pattern. Our proposed specifica-
tion scheme, called Sequence-based MaliciousBehavior Specification (SeqMalSpec),
declaratively specifies malicious behavior patterns that are commonly or poten-
tially exhibited by mobile malware in an accurate and convenient manner.
Although we specifically target the Android platform1, our specification scheme
in principle can be easily adapted to other systems employing permission-guarded
API calls for accessing protected resources.

We specifically take a sequence-based specification approach in order to
yield a semantically-aware scheme that is both convenient for formulation and
interpretation by human analysts, and is amenable to processing by automated
analyzers. The specification intentionally avoids referring to any user-supplied
identifiers so that it is robust against identifier renaming attacks [14]. App behav-
ior characterization using SeqMalSpec is defined in a top-down fashion as follows.

– A malicious app (maliciousApp) is defined in terms of a set of its applicable
malicious behavior patterns.

– A malicious behavior pattern (maliciousPattern) represents a path (sequence)
of security sensitive operations, where any two consecutive operations in the
path are connected by either:
�: a control-flow based sub-path of length≥ 1, which may contain non

security-sensitive operations in between;
→: a control-flow based sub-path of length 1;
≈�: a taint-flow based sub-path of length ≥ 1, which may contain non security-

sensitive operations;
⇒: a taint-flow based sub-path of length 1.

1 We limit the scope of our behavior specification in this paper to operations at the
Java/Dalvik code level. Operations that are performed by native code are thus beyond
the scope of this paper, and may be addressed by future work.



358 Sufatrio et al.

As can be seen above, our specification allows multiple occurrences of a taint-
flow based sub-path. Based on analyzing the attack threat in Android, we
however observe that taint-flow related behavior of Android malware is mostly
pertinent to private information leakage. Hence, in practice, only one taint-
flow based sub-path is present at the end of a malicious pattern. It links
up a private-information access operation with the corresponding exfiltration
operation. Notice that this taint-flow sub-path, however, can be part of a
longer pattern containing multiple preceding control-flow based sub-paths.

– A security-sensitive operation (sensitiveOp) is defined as a tuple 〈x, y, z〉, with:
x: a non-empty element of the set of all possible combinations of Android app-

component types from which operation z is invoked. We can thus write
x ∈ P(X)−{∅}, where X = {activity , service, broadcastReceiver}. When
x = X, we can write a notational shorthand “*” instead.

y: a non-empty element of the set of all possible combinations of lifecycle and
callback methods. That is, y ∈ P(Y)−{∅}, where Y is the set of all lifecycle
and callback methods. When y = Y, we can write “*”. For convenience,
we can also specify the set of lifecycle or callback methods m that should
not be present as !m. In other words, y = Y−m. This shorthand is useful,
for instance, to exclude API invocations from a particular set of methods,
such as UI-related callback methods.

z: either an API call (APICall), a similar API call set (similarAPICallSet),
or a system-event interception (eventInterception) operation.

– An API call (APICall) is defined based on its class type, method signature,
and possible argument values to match. It is expressed as the following tuple:

APICall = 〈className, returnType,APICallName

(parameterType1 = value1, . . . , parameterTypen = valuen)〉.

For valuei, where 1≤ i≤ n, we can specify a special generic value “any” if the
corresponding parameter does not need to bematched.An example of a security-
sensitiveoperationofAPICall type is 〈{service, broadcastReceiver},∗, 〈android.
telephony.TelephonyManager, java.lang.String, getDevice-Id()〉〉.Thiscor-
responds to an invocation of getDeviceId() from any lifecycle method of a ser-
vice or broadcast receiver, which runs in the background.

– A similar API-call set (similarAPICallSet) is a set of API calls sharing the
same functionality, or an API call that has different argument signatures.
Multiple API calls can have the same functionality in Android, for instance,
when a new API call is used to replace deprecated one(s). An API can have
different argument signatures when it is overloaded with different arguments.

– A system-event interception operation (eventInterception) is defined for each
broadcast intent that is related to a system event, such as for android.provi-
der.Telephony.SMS RECEIVED intent. Since such an event interception occurs
within the onReceive() method of a broadcast receiver, the tuple of a system-
event interception operation is set with x= {broadcastReceiver} and y =
{onReceive()}. In an analyzed app, the presence of a system-event inter-
ception operation is assumed whenever:
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1. There exists a broadcast receiver that is registered, either statically in
AndroidManifest.xml or dynamically by invoking registerReceiver(),
to receive the corresponding system intent in its intent filters.

2. The onReceive() lifecycle method is present (i.e. overridden) within that
broadcast receiver.

A static analyzer that analyzes an app for malicious behavior patterns, such
as ours described in Sect. 4, may assume these system-event interception oper-
ations at the beginning of the pertinent onReceive() methods.

– A method-exclusion constraint (methodExclusionConstraint) can be defined
on a control- or taint-flow based sub-path of length ≥ 2 by specifying a set
of methods to be excluded along the sub-path. That is, along the sub-path,
the constraint disallows the presence of any operations that are invoked from
within any methods in the set.2 While we can specify any methods to be
excluded in a sub-path, in practice we are concerned only with UI callback
methods, such as onClick(), onLongClick() or onKey(). By specifying a set
of all UI callback methods, referred to as UICallbackSet , on a sub-path, we thus
require the sub-path to consist of operations that are performed without any
user interactions. Notationally, we can write a method-exclusion constraint c
with its excluded method set m by putting !m on top of the control-flow based

sub-path (i.e. !m�) or taint-flow based sub-path (i.e.
!m≈�).

SeqMalSpec can be described in the Extended Backus-Naur Form (EBNF)
notation as shown in Table 1 of Appendix A.

2.2 Sample Specified Malicious Patterns

The following are two commonly-exhibited malicious behavior patterns in
Android environment that are expressed using SeqMalSpec. For easier reading,
we omit the parameters of some API calls (denoted as “. . .”) in these patterns:

– An automatic opening of the camera that is followed by the trigger of an image
capture within the onReceive() method of a broadcast receiver, without any
user interaction in between:
〈{broadcastReceiver}, {onReceive()}, 〈android.hardware.Camera, android.
hardware.Camera, open()〉〉 !UICallbackSet� 〈{broadcastReceiver},{onReceive()},
〈android.hardware.Camera, void, takePicture(. . .)〉〉.

– A sending of the phone’s IMEI number to the Internet upon receipt of an
SMS without any user interaction, which represents a behavior pattern of
GoldDream malware that is previously specified using predicates in [8]:
〈{broadcastReceiver}, {onReceive()}, SMS RECEIVED INTERCEPTION()〉

2 If desired, one can define variations of exclusion constraint depending on which part
of a sub-path that must satisfy the exclusion. That is, we may have !prefix (n,m)
and !suffix (n,m), which disallow operations that are invoked from methods in set m
within the first and last n operations of the sub-path, respectively. Our constraint
that disallows all operations throughout a sub-path can be renamed as !all(m).
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!UICallbackSet� 〈{broadcastReceiver}, {onReceive()}, 〈android.content.Con-
text, android.content.ComponentName, startService(. . .)〉〉 !UICallbackSet�
〈{service}, {onStartCommand()}, 〈android.telephony.TelephonyManager,
java.lang.String, getDeviceId()〉〉 !UICallbackSet≈� 〈{service}, {onStartCom−
mand(), 〈org.apache.http.client.HttpClient, org.apache.http.HttpRes-
ponse, execute(. . .)〉〉.

3 Expressiveness of SeqMalSpec and Its Comparison

3.1 Expressiveness of SeqMalSpec

We give an analysis of the expressiveness of SeqMalSpec by asserting the following
two claims, whose (sketch of) proof is given in Appendix B.

Claim 1. In a system where accesses to protected resources are invoked through
a finite set of well-defined API calls, SeqMalSpec is able to express the following
types of malicious action3:

1. A finite series of API calls that realizes an action to a protected resource;
2. A finite series of API calls that obtains a piece of information from a pro-

tected resource and subsequently performs other operations on it, including
ultimately releasing it out of the system via a communication channel.

Defining a malicious action in terms of the Android-level API calls as in our
specification allows us to express a more accurate semantic description than that
based on the OS-level API/system calls in the traditional desktop environment.
This is because the Android-level API calls are defined with more relevant oper-
ational semantics, which are directly pertinent to the protected resources on a
mobile device and their access permission models. As a result, our specification
can yield a more accurate and clearer behavior specification of Android malware
compared to schemes that operate on the OS-level API calls.

Claim 2. Suppose we have an event-driven system, where each user interaction
with an app raises a UI event. For each raised UI event, the system invokes a
registered UI callback method, which is either an overridden correspondingly-
named method of a registered event-handler object, or other arbitrarily-named
handler method that is registered to process the event. On such a system model,
on which Android is based, SeqMalSpec is able to express variants of malicious
action described in Claim 1, whose any two API calls are executed through a
series of operations that involve no user interaction.
3 We remark that the use of Java reflection, together with string encryption, in Android

may hinder static malware detectors in determining an invoked API call. As such,
they may not be able to match a pattern whose series of API calls are explicitly
named, thus apparently limiting the use of the specification. This is, in fact, a widely
known limitation of static analyzers. To deal with it, one can incorporate a dynamic
analyzer to uncover the invoked API calls. A static analyzer with such a runtime
information feedback then would be able to inspect the app and match the pattern.
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With regard to Claim 2, we would like to make the following important
remarks. A pattern in SeqMalSpec whose all API calls are invoked from non UI-
related callback methods, and also specifies UI-related method exclusion con-
straint, means that no user interaction should appear along the pattern. This is
used to specify stealthy actions. An execution path involving a user interaction,
however, does not necessarily mean that the action is intended or consented by
the user. This is because a malware may perform malicious actions while the user
is legitimately interacting with its activities. This subtle point highlights that a
flow connector with an added UI-related exclusion constraint is a stricter version
of its unconstrained one. It is to be specified when we know that a particular
malware sample performs the pertinent patterns in a totally stealthy manner.

3.2 Comparison with Other Malware Specification Schemes

We now compare SeqMalSpec with other existing malware specification schemes.
There exist various ways of specifying malicious behavior. Most of them [2,4–
6,9,12,13], however, pre-date modern mobile OSes and are designed primarily for
desktop security. As such, they work mostly at the native code level, where the
higher-level operational semantics at the mobile OS level cannot be fully utilized.
Below, we compare SeqMalSpec with other schemes that are specifically proposed
for mobile setting with respect to expressiveness power and usage convenience.

Predicate Based Specification. Feng et al. [8] recently proposed Apposcopy,
which specifies the signatures of Android malware in Horn-clause based Data-
log language. For this purpose, a number of unary and binary predicates are
introduced. A malicious pattern is considered present in an app if all its spec-
ified predicates evaluate to true, possibly through a unification process. While
Datalog-based predicates are suitable to identify relations, usually between two
API operations, our sequence-based specification allows us to naturally express
a chain of any number consecutive operations, together with the context of each
operation invocation. As a result, we can easily specify multiple context-based
operations that must appear in order, including affixing possible UI-exclusion
constraints on selective parts of a sequence. Since Apposcopy can define new
predicates, it can extend its specification to mimic our newly-proposed invoca-
tion context and constraints. Yet SeqMalSpec, in our view, look more natural
to human analysts since a pattern’s operations are expressed using the orig-
inal Android API calls rather than newly-defined predicate-based expressions.
Section 7 additionally mentions further differences between our work and [8] with
respect to the signature derivation and static analyzer implementation.

Temporal-Logic Based Specification. Model checking systems use a behav-
ior signature expressed as a temporal logic formula. This formula can be based
on Computational Tree Logic (CTL) or Linear Temporal Logic (LTL); or their
extensions, such as CTPL [12] or SCTPL/SLTPL [15]. While previous model-
checking based detectors work at the native code level [12] or on a generic plat-
form [2], a recent work [15] applies model checking to Android apps.
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Although a temporal logic formula can describe various temporal-based cor-
relation of events, its usage in specifying malicious behavior, including the one
in [12,15], is typically limited to describing the existence of a sequence of related
operations. Consequently, the relevant formulae employ linear-time temporal
operators F (finally/eventually) and U (until); or appear as a CTL-based formula
in the form of EF(φ1,EF(φ2)) or E(φ1 Uφ2). As reasoned above, SeqMalSpec is
able to express such formulae using a more intuitive notation. While the extended
temporal logic used in [15] can deal with variables to identify the reading of a
private information and its subsequent exfiltration, we instead use the notion of
taint-flow relationship between a set of source and sink API calls as in [1]. The use
of API call sequence in SeqMalSpec additionally allows us to selectively encode
the context of an API call invocation (i.e. using sensitiveOp) and to impose the
exclusion of UI-related operations (i.e. using methodExclusionConstraint), which
are both lacking in the existing logic-based specifications.

4 StaticAnalyzerUtilizingSeqMalSpec

4.1 Goal and Approch

To demonstrate the usefulness of SeqMalSpec and how one can leverage on it, we
have developed a static analyzer that uncovers the presence of behavior patterns
within Android apps by taking a list of SeqMalSpec-based specifications as an
input. Unlike the static analyzer in [8], which determines if an app exhibits the
behavior patterns of a particular malware family that are manually-specified by
human experts, we instead devise our analyzer to automatically derive behavior
patterns of each existing malware family. To this end, using SeqMalSpec, we com-
pile a list of security-sensitive behavior patterns that are commonly exhibited
by Android malware. We also include other behaviors that are potentially rel-
evant from the security analysis viewpoint, such as inter-component activation
operations. Given this compiled pattern database, our static analyzer inspects
an app and reports the presence/absence of each pattern entry in the database.

Following this app characterization, the analyzer then associates an app with
a set of known malware families by reporting the app’s similarity distance to

Fig. 1. Profiling a malware family for its malicious behavior pattern profile.
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Fig. 2. Analysis of an untrusted app to determine its closest existing malware family.

the closest profiled malware family. This association is carried out to empirically
show that the proposed specification, which is our main contribution in this work,
allows for a derivation of stable, distinctive and obfuscation-resistant behavior
profile of existing malware families. Figure 1 illustrates the process workflow of
profiling an existing malware family. Figure 2 depicts how an association of an
untrusted app is performed. The details of all these steps are elaborated below.

4.2 System Design and Implementation

Compilation of Malicious Pattern Database. We compile a behavior pat-
tern database by examining how Android malware can launch various attack
modalities on a device. For this, we analyze numerous existing security advi-
sories on existing Android malware, as well as examine Android permissions
to see how they can possibly be abused by apps. Our approach to identifying
these patterns is thus a human-determined one. We take this approach since we
specifically want the patterns to be accurate, accountable and explainable.

While this compilation effort requires the enumeration of all potentially rel-
evant sensitive operations, we argue that producing a relatively comprehensive
pattern database for Android is feasible owing to the following reasons:

– Android permissions, which guard a device’s protected resources, are limited.
– Apps invoke a known set of API calls to access these permission-guarded

resources. While malware writers may craft their samples to perform various
processing steps, including for obfuscation purposes, the API calls represent
a well-guarded gateway to performing the samples’ payloads.

We remark that once such a pattern database is compiled, it can be shared with
the security community for a crowd-sourcing based extension or refinement.4

The database used in our experiments includes patterns that perform the fol-
lowing types of operations: system-event interception, broadcast-intent related
processing (e.g. android.content.BroadcastReceiver:abortBroadcast()),
4 Correspondingly, we do not assume that the uncovered patterns of a malware family

in our experimentation give a complete specification of the family. This is because
the completeness level depends on the employed pattern database.
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incoming message processing (e.g. android.os.Bundle:get("pdus")), app com-
ponent activation, audio/video/camera processing, access of private information,
information release through SMS and data network, network management oper-
ations (e.g. reconnecting a WiFi network), and alarm-related operations.

Detection of Behavior Patterns. To uncover the presence of entries of the
compiled behavior pattern database, we leverage on FlowDroid [1], which is built
on top of the Soot framework. FlowDroid is a precise static analysis for Android
apps, which finds potential privacy leaks between a list of source and sink API
calls. We use FlowDroid to obtain the callgraph and all intra-procedural graphs
of an Android app, as well as to perform a taint-flow analysis between a given
source and sink method within a behavior pattern.

Note that by making use of our expressive behavior specification, which covers
both control- and data-flow aspects of an app, our analyzer can characterize
malware behavior more precisely than FlowDroid. In addition, we also made the
following enhancements to FlowDroid in order to detect the compiled patterns:

– Identification of system-event interception operations of an app by scanning
both its statically- and dynamically-registered broadcast receivers. All iden-
tified dynamic broadcast receivers are added as the app’s entry points.

– Control-flow based, i.e. � sub-path, reachability analysis of a pattern entry.
– Utilization of control-flow based reachability to filter out any source and sink

pairs that are known to be unconnected. This avoids extra taint-flow checking
by FlowDroid, which is computationally more expensive.

– Argument value determination of a number of parameterized API calls, pos-
sibly through a number of preceding intermediary assignment statements.

Our current prototype does not impose any method-exclusion constraints.
Yet, it can be extended to apply the constraints as discussed in Sect. 6.

Profiling of Existing Malware Families. As can be seen in Fig. 1, we profile
a malware family by having the static analyzer check all the samples within the
family. For each sample, we generate its bit vector v of length �, where � is the
number of pattern entries in the database. An entry at index i, i.e. v[i], is set to
1 if the i-th pattern is present in the analyzed sample; or it is set to 0 otherwise.

Once we produce the bit vectors for all the samples of a malware family,
we can derive the profile vector for that family, whose entries are real numbers
between 0 and 1 (inclusive), as follows. Let us denote k as the number of sam-
ples in the family; and vi as the bit vector of the i-th sample in the family, with
1≤ i≤k. The malware family’s profile vector p is derived by setting its entry at
index j, for all 1≤ j ≤ �, as follows:

p[j] =
1
k

·
k∑

i=1

vi[j]. (1)
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An entry p[j] thus quantifies the presence rate of a malicious behavior pattern j
across all the samples within the malware family.5

Association of Apps with Profiled Malware. Figure 2 shows how an asso-
ciation of an untrusted app is performed by comparing its bit vector against the
profile vectors of all known malware families. Its detailed steps are as follows.

First, we want to associate each behavior pattern entry with a weight that
indicates its usage prevalence for solely malicious purposes. The more a pattern
is used more exclusively by malicious apps, the higher its weight is to be set. To
achieve this, we take an automated weight-generation approach to determine bi,
with 0≤ bi ≤ 1, as the occurrence rate of pattern i among (presumably) benign
apps. Then, we can derive a vector w of length �, where w[i] = 1−bi, for 1≤ i≤ �.

Let us now denote f as the number of all known malware families. The profile
vectors of all malware families can be considered as a real-valued matrix M of
dimension f × �. A cell entry M [i][j] represents the index j (with 1≤ j ≤ �) of
the profile vector belonging to malware family i (with 1≤ i≤ f).

We calculate the weighted Euclidean distance between the input app (with
its bit vector a) and malware family i (with its profile vector M [i]) as follows:

distanceai =

√√√√
�∑

j=1

w[j] · (a[j] − M [i][j])2 . (2)

Once we have calculated the target app’s distance scores against all malware
families, which form a multiset {distanceai, 1≤ i≤ f}, we can determine the set
of the closest malware families for the app, called closestFamilySeta , as follows:

closestFamilySeta = {x, 1≤x ≤ f | ∀y, 1≤y≤f : distanceax≤distanceay}. (3)

Note that while we define closestFamilySeta as a set, which may have multiple
elements that all share a common similarity score, we however expect it to be
a singleton, i.e. |closestFamilySeta | = 1. In the case where distanceax > τ , with
τ serving as a distance threshold, we then view the app to be sufficiently differ-
ent from all the profiled malware families. Note, however, that we only compare
apps and known malware solely based on their exhibited malicious patterns.
Our similarity checking thus can be complemented by other app similarity tech-
niques [7,11,19,20], which analyze different app modalities, to further ascertain
if an app is really similar to a known malware family. Section 7 further discusses
this point.

We build our analyzer module that generates the profiles of existing malware
as in (1) and associates app with the profiled malware as in (2–3) in Python.

5 In the case where a malware family actually consist of a few sub-families with signif-
icantly different behavior (see our empirical findings in Sect. 5.1), we may thus want
to first perform a clustering on the family to partition it into several sub-families.
Hence, each sub-family will have its own more accurate profile vector. The similarity
checking step is then done against the profile vectors of the formed sub-families.
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5 Experimentation Results

This section reports the experimentation results of our analyzer with regards to
its association results. In the following, we successively explain the used malware
dataset, experimentation objectives, taken methodology, and obtained results.

5.1 Used Malware Dataset

We evaluate our static analyzer using real-world malware samples from the
Android Malware Genome Project [21], which in its entirely consists of 1,260
malware samples from 49 families. The distribution of malware samples among
the families are, however, unequal. There are families that contain very few sam-
ples. Since we need to evaluate the analyzer by dividing each family’s samples
into profiling and testing samples, we thus omit malware families that have only
six or less samples. We also exclude BaseBridge and Asroot, which perform an
update attack and a root exploit with no observable payload execution within
its Java code, respectively [21]. The following 22 families constitute our exper-
imental dataset: ADRD, AnserverBot, BeanBot, Bgserv, DroidDream, Droid-
DreamLight, DroidKungFu1, DroidKungFu2, DroidKungFu3, DroidKungFu4,
Geinimi, GoldDream, Gone60, jSMSHider, KMin, Pjapps, Plankton, RogueSP-
Push, SndApps, YZHC, zHash and Zsone. Out of 1,083 total samples from these
22 families, 125 (11.5 %) samples apparently did not run to completion dur-
ing the taint-flow analysis using FlowDroid (see additional discussion in Sect. 6).
Hence, 958 samples, or 76 % of the total samples in the Android Malware Genome
Project, form our analyzed malware samples.

When we characterized the listed families to build their profile vectors, we
observed that some families seem to consist of different sub-families. From [21],
we learn that among the 1,260 malware samples in the Android Malware Genome
Project, 1,083 (86.0 %) of them are repackaged. Thus, while the samples under
the same family share a common payload, they may actually stem from a few
variants of repackaged apps. The carrier apps may have other additional oper-
ations, including those security-sensitive ones. We, however, cannot fully ascer-
tain this inference since the information of the exact mechanisms used to classify
the samples into families is unavailable to us. To capture the existence of sub-
families, we thus performed a clustering on the bit vectors of malware samples
within a family. Based on our experimentation with the employed parameter-
ized clustering technique, we empirically formed a cluster for each five samples
within a family.6 We found that the performed clustering on the families gave
well-partitioned sub-families, thus supporting our hypothesis of the existence of
sub-families.
6 Notice that, for our purpose of associating an app with a set of profiled malware

sub-families, separating samples belonging to the same malware sub-family into two
different clusters will not affect the association result. This is because the derivation
of the set closestFamilySeta in (3) will yield either a single sub-family or multiple
(possibly separated) sub-families with the same smallest distance score.
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5.2 Experimentation Objectives and Obtained Results

We aim to evaluate our developed analyzer with the following three objectives:

1. To test the association of malware samples with their correct families;
2. To test the association of presumably benign apps with the malware families;
3. To test the robustness of the analyzer against code obfuscation.

Objective 1 (Associating Malware Samples into Correct Families). For
each malware family in the dataset, we randomly select 80 % of the samples
to derive the profile of the family, and leave the remaining 20 % to form the
testing set. Since we form sub-families of malware, we compare each test sample
against all sub-families, and report the family whose sub-family produces the
smallest distance. We empirically set τ = 2.45 as an approximate midpoint
that separates the results of malicious samples (objective 1) and benign apps
(objective 2). Using this threshold value, our analyzer can correctly associate
the test samples with an accuracy of 97.18 %. The weighted Euclidean distances
of the test samples range from 0.00 to 7.03, with an average distance of 0.64.

Objective 2 (Association of Benign Apps with Profiled Families). We
also test if presumably benign apps listed as the top free apps on Google Play
can be sufficiently similar to any of the profiled malware families. Analyzing 546
apps using the same threshold value gives an accuracy of 97.62 %. In other words,
only 2.38 % of the tested benign apps is inaccurately determined to be similar to
one of the profiled malware families. Upon inspection, we find that these apps are
all inaccurately associated with Gone60 malware family. The generated profile
vectors reveal that Gone60 exhibits only a few applicable patterns. A malware
characterization in [21] lists Gone60 to perform only an SMS-based personal
information stealing. This may explain why a number of benign apps can share
similar patterns with Gone60. The weighted Euclidean distances of the tested
benign apps range from 2.42 to 25.47, with an average distance of 7.03.

Objective 3 (Robustness Against Transformation Attacks). To show the
robustness of our analyzer against malware transformation attacks, we compare
the bit vectors of original malware samples with those of the transformed ones. If
each vector pair always matches, that means our analyzer is resistant against the
applied transformations. For this, we select 8 families from our dataset (i.e. Bean-
Bot, Bgserv, DroidDream, Geinimi, GoldDream, Pjapps, Sndapps, Zsone), each
with 4 random samples, for variant generation and detection. We use apktool
to produce an app’s disassembled smali code, and then modify the code to apply
a sequence of transformations as listed in Table 2 of Appendix C.

The results show that our analyzer always produces the same bit vector for
each transformed and original sample pair. The robustness of our analyzer stems
from the following two important features of SeqMalSpec:

– Its avoidance of using any developer-supplied identifiers.
– The control- or taint-flow reachability property between two operations, which

is robust against possible control-flow based obfuscation.
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While the applied obfuscation methods are still limited, they are sufficient
to deceive many anti-malware systems connected to VirusTotal (https://www.
virustotal.com). Table 3 in Appendix D shows the results of transforming
randomly-selected 5 malware families, with 2 samples in each family.

6 Discussions

6.1 Threats to Validity

We now address possible threats to the validity of our analyzer evaluation:

– The used features of SeqMalSpec: Our compiled pattern database exercises
a simplified usage of SeqMalSpec in that only a single taint-flow connec-
tor (≈�) is present to link a source and sink API call. We can implement
a more expressive usage of the taint-flow connector by allowing a succes-
sive occurrences of taint-flow connected operations, where: (i) its beginning
and end API calls represent the source and sink operations, respectively; and
(ii) the intermediary API calls represents the ‘pass-through’ operations along
the taint flow. In our implementation, we however choose to see how the sim-
plified scheme can work in profiling and associating malware samples.

– Malicious behavior database compilation: Our compiled pattern database
might not be sufficiently comprehensive. In fact, generating a sufficiently com-
plete database may require a collective and cumulative effort. We however
believe that a sufficiently good database is feasible to be constructed, which
can then be refined over time, preferably in a crowd-sourced manner.

– The developed analyzer: Our analyzer relies on FlowDroid to perform its taint-
flow analysis. While FlowDroid represents a state-of-the-art tool in perform-
ing taint analysis for Android apps, we encountered some apps that took a
rather long time (i.e. hours or even a few days) of taint analysis process-
ing on our machine. A number of apps throwed exceptions, including the
memory-insufficiency related ones. In addition, the FlowDroid’s option to out-
put multiple paths between a detected source and sink pair seems to be very
time- and memory-consuming. Any extensible tools that can give the same or
even higher level of analysis precision as FlowDroid’s, but with lower process-
ing and memory footprint, will thus be useful. Since our specification and app
association technique are independent of any implementation platforms, they
can be realized using other tools as they become available.

– Testing methodology: For the experimentation, there is always a concern of not
having sufficient samples in the dataset. We have tested our analyzer against
most malware samples in the Android Malware Genome Project as well as
more than five hundreds widely-used top free apps from Google Play. Further
testing with more samples, especially recent ones, however will always be good
to be carried out. We also assume that the top free apps downloaded from
Google Play are benign, which may not always be the case. As mentioned
in Sect. 5.1, the observed need for partitioning malware families into their

https://www.virustotal.com
https://www.virustotal.com
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sub-families may warrant manual inspection to ascertain the presence of sub-
families in the dataset. Lastly, we set the distance threshold value τ as an
approximate midpoint that gives almost equal distance separation on both
the malicious samples (objective 1) and benign apps (objective 2). Deciding
a more fitting threshold value warrants further investigation, and is ideally to
be done on a large number of analyzed apps.

– Known challenges to static analysis: Lastly, we also mention the widely-known
challenges that may hinder any static analysis systems, namely the use of
native code and Java reflection. Our system currently does not deal with
these challenges, which may be best handled by dynamic analysis or other
security techniques.

6.2 Future Work

Our experiments show that our specification and analyzer can derive patterns
that form a stable and distinctive profile of a malware family. Nonetheless, they
are less useful in profiling malware families that perform update attacks or
dynamic code loading, such as BaseBridge. They also cannot effectively char-
acterize malware families that do not execute their malicious payloads at the
Java-based Android code, such as Asroot. To deal with this issue, our associa-
tion can be complemented by another round of similarity checking that examines
app structure similarity. Our app association, however, are useful in establishing
app similarity with respect to the compiled pattern base, with an added benefit
of being able to report explainable and comprehensible uncovered patterns.

Other possible future work that can improve our prototype system include:

– Our current prototype does not implement the UI-method exclusion con-
straints yet. We can implement the defined !m (i.e. !all(m)) constraint rather
easily by removing all excluded methods in the callgraph of an analyzed app.
To implement !prefix (n,m) and !suffix (n,m), however, we need to ensure that
a constructed path must avoid using any operations in the excluded methods,
either in the beginning or ending part of the path as desired.

– As mentioned earlier, we can implement an analyzer that detects a pattern
with multiple occurrences of the taint-flow connector (≈�). For this, we need
to ensure that a taint-flow must pass a number of intermediary operations.

– We can further measure the robustness of our prototype system against obfus-
cation attacks by applying and testing more app transformations.

7 Related Work

The comparison of SeqMalSpec with other existing mobile malware specification
schemes is given in Sect. 3.2. Below, we highlight further differences with other
specification work with regard to the associated detector implementation.

The design and implementation of our static analyzer differs from that in
Apposcopy [8] in the two following aspects:
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1. Apposcopy implements its own custom static analyzer, with a significant effort
spent on developing its taint-flow tracker. In contrast, we leverage on Flow-
Droid [1], which is known to perform a highly precise static taint analysis
for Android apps. We additionally perform a number of enhancements to
FlowDroid as described in Sect. 4.2.

2. Apposcopy requires its authors to manually inspect malware samples and
craft the signature for each malware family. Its experimentation was then
carried out to check whether a set of existing malware samples and benign
apps match all the predicates in the manually-crafted signatures. In contrast,
we need to compile a generic pattern base only once, from which our analyzer
then automatically profiles all existing malware families. Hence, our analyzer
not only checks the existence of certain behavior patterns within target apps,
but also profiles all existing malware families and then associates a sample
with its correct family in an automated manner as reported in Sect. 5.

DroidMiner [17] generates a behavior graph in order to mine segments of
the graph that might correspond to known suspicious behavior, which are called
modalities in the work. While our specification makes use of declarative, human-
formulated operation sequences to be searched on samples from the control- and
taint-flow viewpoints, DroidMiner extracts graph-reduction based modalities to
be further processed by a classifier or associated with the rule mining process.
Due to this, our approach in specifying malicious behavior is thus more in line
with how human analysts work in analyzing a malicious app.

RiskRanker [10] detects malware samples, including possible zero-day ones,
that invoke known root exploit, illegal cost creation and privacy-violation exploit
patterns. DroidRanger [22] analyzes apps based on their permission-based behav-
ioral footprint. While the two systems describe and scan for behavior patterns,
they however lack a generic declarative behavior model that can concisely specify
behavior patterns, and is also robust against transformation attacks.

FlowDroid [1] is a highly precise static taint analysis tool for Android apps,
which is context, flow, field and object sensitive. Our work extends FlowDroid,
which implicitly detects only privacy-leakage operations involving a pair of source
and sink, to deal with any general sequence-based operations. Our improved
analyzer not only reports privacy leakages, but also analyzes and characterizes
an untrusted app, and then associates it with a known malware family.

Pegasus [3] detects malicious behavior that violates the temporal properties
of safe interactions between an app and the Android event system. It thus can
detect, for instance, if an operation is invoked without the prerequisite GUI-
based interaction that indicates the user’s consent. Meanwhile, AppIntent [18]
checks if a data transmission in an app is intended by the user. Similar to
these two systems, our work considers operations that are invoked without user
involvement. Our analyzer can implement a feature that looks for a sequence
of operations, whose sub-path(s) exclude any operations from within UI-related
callback methods. The presence of these patterns, which are declaratively spec-
ified, are used by our analyzer to characterize and classify a malware sample.
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8 Conclusion

We have presented our sequence-based specification scheme called SeqMalSpec,
which is concise, convenient and sufficiently expressive to capture malicious
behavior in mobile environments. We have also demonstrated how SeqMalSpec
can be utilized by a static analyzer to characterize apps in terms of their mali-
cious behavior patterns. Experiments have shown that the analyzer can associate
a malicious app with its correct malware family with a high accuracy of 97.2 %,
while still being able to differentiate benign apps from the profiled malware fami-
lies with an accuracy of 97.6 %. Lastly, we have also demonstrated the analyzer’s
robustness against various code obfuscation attacks. The proposed SeqMalSpec,
as we foresee it, will thus open up various other effective approaches to mitigat-
ing malware in mobile environments, including the malware-plagued Android
platform that commands a huge user base.

Appendix A: SeqMalSpec Scheme in Extended BNF

Malicious behavior specification using SeqMalSpec can be described in the EBNF
notation as shown in Table 1. In the notation, we take the liberty of expressing
the terminals belonging to a defined set using a natural language description
(written within “[ ]”) instead of explicitly listing all the set elements.

Appendix B: Sketch of Proof of SeqMalSpec Expressiveness

The sketch of proof for the two expressiveness claims in Sect. 3 is as follows.

Proof of Claim 1: Suppose there exists a malicious action that is inexpressible
using SeqMalSpec. Due to the assumed system, where all protected resources are
guarded by a set of well-defined API calls, the malicious action must manifest
itself as a series, i.e. sequence, of security-sensitive API calls:

– If the action involves no taint flow: SeqMalSpec is able to express that action
using all control-flow based connectors. This leads to a contradiction.

– If it involves a taint flow from one operation to the other(s): SeqMalSpec is
also able to express that action using a combination of control- and taint-flow
based connectors. This also leads to a contradiction.

Hence, SeqMalSpec is able to express the actions described in Claim 1. �


Proof of Claim 2: Suppose there is an action that involves no user interaction.
We will show that SeqMalSpec is able to describe this action. Based on Claim 1,
we know that the action is expressible with a sequence of API calls that are con-
nected with the defined connectors. We can then add a non-UI method exclusion
constraint on each of the used control- or taint-flow based connector. We addi-
tionally specify that all the security-sensitive API calls are not invoked from any
UI-related callback methods. This means that no operation of the action is ever
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Table 1. The notation of SeqMalSpec in Extended Backus-Naur Form (EBNF).

invoked from UI-related callback methods, which are triggered by the assumed
event-driven system in the event of user interaction with the app. If the action
runs automatically upon a broadcast system event, SeqMalSpec is also able to
describe a system event interception in its pattern. This shows that SeqMalSpec
is able to express the stealthy action. �


Appendix C: Applied App Obfuscation Attacks

Table 2 lists a sequence of app obfuscations that are applied to malware samples
as discussed in Sect. 5.2.
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Table 2. The sequence of app obfuscations that are applied to a malicious sample in
order to generate its new variants.

Step Transformation Transformation details

1 Package name renaming Replace a sample’s package name, which can be
found in its AndroidManifest.xml, with
random English words found in the dictionary

2 Identifier renaming Replace all method names and strings with
random English words found in the dictionary.
We however do not rename identifiers with a
single and dual characters (e.g. ‘a’, ‘b’, ‘aa’,
‘ab’), which could have been subject to
previous obfuscation by ProGuard

3 Junk code insertion Insert junk code following arithmetical-operation
based opaque predicates

4 Control-flow obfuscation Relocate the invocation points of sensitive
Android API calls by using an indirect method
invocation

5 Reassembling and repacking Reassemble the transformed smali code into an
APK file using apktool, and then sign the file
with a new custom key

Appendix D: Evaluation Results of Obfuscation Attacks
on Other Anti-Malware Systems

Table 3 shows the results of evaluating 55 anti-malware systems that are con-
nected to VirusTotal (https://www.virustotal.com) as explained in Sect. 5.2.

Table 3. Detection comparison between the transformed and their original samples on
55 anti-malware systems connected to VirusTotal.

Malware family Average detection rate Detection rate reduction

Original samples Transformed samples

BeanBot 66% 35 % 31 %

Bgserv 70% 35 % 35 %

GoldDream 73% 45 % 28 %

Sndapps 70% 27 % 43 %

Zsone 75% 30 % 45 %

Average 70.8 % 34.4 % 36.4 %

https://www.virustotal.com
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