
Günther Pernul · Peter Y A Ryan
Edgar Weippl (Eds.)

 123

LN
CS

 9
32

7

20th European Symposium on Research in Computer Security
Vienna, Austria, September 21–25, 2015
Proceedings, Part II

Computer Security –
ESORICS 2015

Lecture Notes in Computer Science 9327

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Günther Pernul • Peter Y A Ryan
Edgar Weippl (Eds.)

Computer Security –

ESORICS 2015
20th European Symposium on Research in Computer Security
Vienna, Austria, September 21–25, 2015
Proceedings, Part II

123

Editors
Günther Pernul
University of Regensburg
Regensburg
Germany

Peter Y A Ryan
University of Luxembourg
Luxembourg
Luxembourg

Edgar Weippl
SBA Research
Wien
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24176-0 ISBN 978-3-319-24177-7 (eBook)
DOI 10.1007/978-3-319-24177-7

Library of Congress Control Number: 2015948157

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

It is our great pleasure to welcome you to the 20th European Symposium on Research
in Computer Security (ESORICS 2015).

This year’s symposium continues its tradition of establishing a European forum for
bringing together researchers in the area of computer security, by promoting the
exchange of ideas with system developers and by encouraging links with researchers in
related areas.

The call for papers attracted 293 submissions – a record in the ESORICS series –
from 41 countries. The papers went through a careful review process and were eval-
uated on the basis of their significance, novelty, technical quality, as well as on their
practical impact and/or their level of advancement of the field’s foundations. Each
paper received at least three independent reviews, followed by extensive discussion.
We finally selected 59 papers for the final program, resulting in an acceptance rate of
20 %.

The program was completed with keynote speeches by Sushil Jajodia, George
Mason University Fairfax, USA and Richard Clayton, University of Cambridge, UK.

Putting together ESORICS 2015 was a team effort. We first thank the authors for
providing the content of the program. We are grateful to the Program Committee, who
worked very hard in reviewing papers (more than 880 reviews were written) and
providing feedback for authors. There is a long list of people who volunteered their
time and energy to put together and organize the conference, and who deserve special
thanks: the ESORICS Steering Committee, and its chair Pierangela Samarati in par-
ticular, for their support; Giovanni Livraga, for taking care of publicity; Javier Lopez,
as workshop chair, and all workshop co-chairs, who organized workshops co-located
with ESORICS; and Yvonne Poul for the local organization and the social events.

Finally, we would like to thank our sponsors, HUAWEI, for the financial support
and SBA Research, for hosting and organizing ESORICS 2015.

A different country hosts the conference every year. ESORICS 2015 took place in
Vienna, Austria at the Vienna University of Technology. We are very happy to have
hosted the 20th edition of the symposium in Vienna and we tried to put together a
special social program for you, giving you the opportunity to share ideas with other
researchers and practitioners from institutions around the world and see all the beautiful
sights of Vienna.

We hope that you found this program interesting and thought-provoking and that
you enjoyed ESORICS 2015 and Vienna.

July 2015 Günther Pernul
Peter Y A Ryan
Edgar Weippl

Organization

General Chair

Günther Pernul Universität Regensburg, Germany

Program Chairs

Peter Y A Ryan University of Luxembourg, Luxembourg
Edgar Weippl SBA Research & Vienna University of Technology,

Austria

Workshops Chair

Javier Lopez University of Malaga, Spain

Program Committee

Alessandro Armando Università di Genova, Italy
Vijay Atluri Rutgers University, USA
Michael Backes Saarland University, Germany
Feng Bao Security and Privacy Lab, Huawei, China
David A. Basin ETH Zurich, Switzerland
Giampaolo Bella Università di Catania, Italy
Carlo Blundo Università degli Studi di Salerno, Italy
Stefan Brunthaler SBA Research, Austria
Ran Canetti Tel Aviv University, Israel
Liqun Chen HP Labs, UK
Michael Clarkson Cornell University, USA
Jason Crampton University of London, UK
Cas Cremers University of Oxford, UK
Frédéric Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Wenliang Du Syracuse University, USA
Hannes Federrath University of Hamburg, Germany
Simon Foley University College Cork, Ireland
Sara Foresti Università degli Studi di Milano, Italy
Felix Freiling Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Michael Goldsmith University of Oxford, UK

Dieter Gollmann TU Hamburg-Harburg, Germany
Dimitris Gritzalis AUEB, Greece
Joshua Guttman MTIRE Corp and Worcester Polytechnic, USA
Feng Hao Newcastle University, UK
Amir Herzberg Bar-Ilan University, Israel
Xinyi Huang Fujian Normal University, China
Michael Huth Imperial College, UK
Sotiris Ioannidis FORTH, Crete
Sushil Jajodia George Mason University, USA
Markus Jakobsson Qualcomm, USA
Sokratis K. Katsikas University of Piraeus, Greece
Stefan Katzenbeisser TU Darmstadt, Germany
Florian Kerschbaum SAP, Germany
Steve Kremer INRIA Nancy and LORIA, France
Adam J. Lee University of Pittsburgh, USA
Wenke Lee Georgia Institute of Technology, USA
Yingjiu Li Singapore Management University, Singapore
Peng Liu Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
Wenjing Lou Virginia Polytechnic Institute and State University,

USA
Haibing Lu Santa Clara University, USA
Antonio Maña Univeristy of Malaga, Spain
Roy Maxion Carnegie Mellon University, USA
Catherine Meadows Naval Research Laboratory, USA
Carroll Morgan University of New South Wales, Australia
John C. Mitchell Stanford University, USA
Martin Mulazzani SBA Research, Austria
David Naccache ENS, France
Rolf Oppliger eSecurity Technologies, Switzerland
Stefano Paraboschi Università degli Studi di Bergamo, Italy
Olivier Pereira UCL Crypto Group, Belgium
Günther Pernul University of Regensburg, Germany
Bart Preneel Katholieke Universiteit Leuven, Belgium
Jean-Jacques Quisquater UCL, Belgium
Kui Ren University at Buffalo, State University of New York,

USA
Mark Ryan University of Birmingham, UK
Ahmad-Reza Sadeghi TU Darmstadt, Germany
Pierangela Samarati Università degli Studi di Milano, Italy
Nitesh Saxena University of Alabama at Birmingham, USA
Andreas Schaad SAP, Germany
Steve Schneider University of Surrey, UK
Jörg Schwenk Ruhr University Bochum, Germany
Basit Shafiq Lahore University of Management Sciences, Pakistan
Dimitris E. Simos SBA Research, Austria

VIII Organization

Einar Snekkenes Gjovik University College, Norway
Philip Stark University of California, Berkeley, USA
Vanessa Teague University of Melbourne, Australia
Jaideep Vaidya Rutgers University, USA
Paulo Verissimo University of Luxembourg, Luxembourg
Luca Viganò King’s College London, UK
Michael Waidner TU Darmstadt, Germany
Cong Wang City University of Hong Kong, China
Lingyu Wang University of Concordia, Canada
Ting Yu North Carolina State University, USA
Meng Yu Virginia Commonwealth University, USA
Moti Yung Google, USA
Jianying Zhou Institute for Infocomm Research, Singapore
Sencun Zhu Pennsylvania State University, USA

Organization IX

Contents – Part II

Privacy

FP-Block: Usable Web Privacy by Controlling Browser Fingerprinting 3
Christof Ferreira Torres, Hugo Jonker, and Sjouke Mauw

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections. 20
Wenrui Diao, Xiangyu Liu, Zhe Zhou, Kehuan Zhang, and Zhou Li

Enabling Privacy-Assured Similarity Retrieval over Millions
of Encrypted Records . 40

Xingliang Yuan, Helei Cui, Xinyu Wang, and Cong Wang

Privacy-Preserving Link Prediction in Decentralized Online
Social Networks . 61

Yao Zheng, Bing Wang, Wenjing Lou, and Y. Thomas Hou

Privacy-Preserving Observation in Public Spaces. 81
Florian Kerschbaum and Hoon Wei Lim

Privacy-Preserving Context-Aware Recommender Systems: Analysis
and New Solutions . 101

Qiang Tang and Jun Wang

Cloud Security

Rich Queries on Encrypted Data: Beyond Exact Matches 123
Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen,
Marcel Rosu, and Michael Steiner

Extended Proxy-Assisted Approach: Achieving Revocable Fine-Grained
Encryption of Cloud Data . 146

Yanjiang Yang, Joseph K. Liu, Kaitai Liang, Kim-Kwang Raymond
Choo, and Jianying Zhou

Batch Verifiable Computation of Polynomials on Outsourced Data 167
Liang Feng Zhang and Reihaneh Safavi-Naini

CloudBI: Practical Privacy-Preserving Outsourcing of Biometric
Identification in the Cloud . 186

Qian Wang, Shengshan Hu, Kui Ren, Meiqi He, Minxin Du,
and Zhibo Wang

http://dx.doi.org/10.1007/978-3-319-24177-7_1
http://dx.doi.org/10.1007/978-3-319-24177-7_2
http://dx.doi.org/10.1007/978-3-319-24177-7_3
http://dx.doi.org/10.1007/978-3-319-24177-7_3
http://dx.doi.org/10.1007/978-3-319-24177-7_4
http://dx.doi.org/10.1007/978-3-319-24177-7_4
http://dx.doi.org/10.1007/978-3-319-24177-7_5
http://dx.doi.org/10.1007/978-3-319-24177-7_6
http://dx.doi.org/10.1007/978-3-319-24177-7_6
http://dx.doi.org/10.1007/978-3-319-24177-7_7
http://dx.doi.org/10.1007/978-3-319-24177-7_8
http://dx.doi.org/10.1007/978-3-319-24177-7_8
http://dx.doi.org/10.1007/978-3-319-24177-7_9
http://dx.doi.org/10.1007/978-3-319-24177-7_10
http://dx.doi.org/10.1007/978-3-319-24177-7_10

Protocols and Attribute-Based Encryption

Typing and Compositionality for Security Protocols: A Generalization
to the Geometric Fragment . 209

Omar Almousa, Sebastian Mödersheim, Paolo Modesti,
and Luca Viganò

Checking Trace Equivalence: How to Get Rid of Nonces? 230
Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune

Attribute Based Broadcast Encryption with Short Ciphertext
and Decryption Key . 252

Tran Viet Xuan Phuong, Guomin Yang, Willy Susilo, and Xiaofeng Chen

Accountable Authority Ciphertext-Policy Attribute-Based Encryption
with White-Box Traceability and Public Auditing in the Cloud 270

Jianting Ning, Xiaolei Dong, Zhenfu Cao, and Lifei Wei

Code Analysis and Side-Channels

DexHunter: Toward Extracting Hidden Code from Packed
Android Applications. 293

Yueqian Zhang, Xiapu Luo, and Haoyang Yin

Identifying Arbitrary Memory Access Vulnerabilities in Privilege-Separated
Software . 312

Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena

vBox: Proactively Establishing Secure Channels Between Wireless Devices
Without Prior Knowledge. 332

Wei Wang, Jingqiang Lin, Zhan Wang, Ze Wang, and Luning Xia

Detection and Monitoring

Accurate Specification for Robust Detection of Malicious Behavior
in Mobile Environments. 355

Sufatrio, Tong-Wei Chua, Darell J.J. Tan, and Vrizlynn L.L. Thing

A Bytecode Interpreter for Secure Program Execution in Untrusted
Main Memory . 376

Maximilian Seitzer, Michael Gruhn, and Tilo Müller

Learning from Others: User Anomaly Detection Using Anomalous Samples
from Other Users . 396

Youngja Park, Ian M. Molloy, Suresh N. Chari, Zenglin Xu, Chris Gates,
and Ninghi Li

XII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-24177-7_11
http://dx.doi.org/10.1007/978-3-319-24177-7_11
http://dx.doi.org/10.1007/978-3-319-24177-7_12
http://dx.doi.org/10.1007/978-3-319-24177-7_13
http://dx.doi.org/10.1007/978-3-319-24177-7_13
http://dx.doi.org/10.1007/978-3-319-24177-7_14
http://dx.doi.org/10.1007/978-3-319-24177-7_14
http://dx.doi.org/10.1007/978-3-319-24177-7_15
http://dx.doi.org/10.1007/978-3-319-24177-7_15
http://dx.doi.org/10.1007/978-3-319-24177-7_16
http://dx.doi.org/10.1007/978-3-319-24177-7_16
http://dx.doi.org/10.1007/978-3-319-24177-7_17
http://dx.doi.org/10.1007/978-3-319-24177-7_17
http://dx.doi.org/10.1007/978-3-319-24177-7_18
http://dx.doi.org/10.1007/978-3-319-24177-7_18
http://dx.doi.org/10.1007/978-3-319-24177-7_19
http://dx.doi.org/10.1007/978-3-319-24177-7_19
http://dx.doi.org/10.1007/978-3-319-24177-7_20
http://dx.doi.org/10.1007/978-3-319-24177-7_20

Authentication

Towards Attack-Resistant Peer-Assisted Indoor Localization. 417
Jingyu Hua, Shaoyong Du, and Sheng Zhong

Leveraging Real-Life Facts to Make Random Passwords More Memorable. . . . 438
Mahdi Nasrullah Al-Ameen, Kanis Fatema, Matthew Wright,
and Shannon Scielzo

The Emperor’s New Password Creation Policies:: An Evaluation
of Leading Web Services and the Effect of Role in Resisting Against
Online Guessing . 456

Ding Wang and Ping Wang

Policies

A Theory of Gray Security Policies . 481
Donald Ray and Jay Ligatti

Factorization of Behavioral Integrity . 500
Ximeng Li, Flemming Nielson, and Hanne Riis Nielson

Checking Interaction-Based Declassification Policies for Android
Using Symbolic Execution . 520

Kristopher Micinski, Jonathan Fetter-Degges, Jinseong Jeon,
Jeffrey S. Foster, and Michael R. Clarkson

Applied Security

Enhancing Java Runtime Environment for Smart Cards Against
Runtime Attacks . 541

Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes

Making Bitcoin Exchanges Transparent . 561
Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

Web-to-Application Injection Attacks on Android: Characterization
and Detection . 577

Behnaz Hassanshahi, Yaoqi Jia, Roland H.C. Yap, Prateek Saxena,
and Zhenkai Liang

All Your Voices are Belong to Us: Stealing Voices to Fool Humans
and Machines . 599

Dibya Mukhopadhyay, Maliheh Shirvanian, and Nitesh Saxena

Balloon: A Forward-Secure Append-Only Persistent Authenticated
Data Structure. 622

Tobias Pulls and Roel Peeters

Contents – Part II XIII

http://dx.doi.org/10.1007/978-3-319-24177-7_21
http://dx.doi.org/10.1007/978-3-319-24177-7_22
http://dx.doi.org/10.1007/978-3-319-24177-7_23
http://dx.doi.org/10.1007/978-3-319-24177-7_23
http://dx.doi.org/10.1007/978-3-319-24177-7_23
http://dx.doi.org/10.1007/978-3-319-24177-7_24
http://dx.doi.org/10.1007/978-3-319-24177-7_25
http://dx.doi.org/10.1007/978-3-319-24177-7_26
http://dx.doi.org/10.1007/978-3-319-24177-7_26
http://dx.doi.org/10.1007/978-3-319-24177-7_27
http://dx.doi.org/10.1007/978-3-319-24177-7_27
http://dx.doi.org/10.1007/978-3-319-24177-7_28
http://dx.doi.org/10.1007/978-3-319-24177-7_29
http://dx.doi.org/10.1007/978-3-319-24177-7_29
http://dx.doi.org/10.1007/978-3-319-24177-7_30
http://dx.doi.org/10.1007/978-3-319-24177-7_30
http://dx.doi.org/10.1007/978-3-319-24177-7_31
http://dx.doi.org/10.1007/978-3-319-24177-7_31

On the Fly Design and Co-simulation of Responses Against
Simultaneous Attacks . 642

Léa Samarji, Nora Cuppens-Boulahia, Frédéric Cuppens,
Serge Papillon, Waël Kanoun, and Samuel Dubus

Author Index . 663

XIV Contents – Part II

http://dx.doi.org/10.1007/978-3-319-24177-7_32
http://dx.doi.org/10.1007/978-3-319-24177-7_32

Contents – Part I

Networks and Web Security

Towards Security of Internet Naming Infrastructure 3
Haya Shulman and Michael Waidner

Waiting for CSP – Securing Legacy Web Applications with JSAgents. 23
Mario Heiderich, Marcus Niemietz, and Jörg Schwenk

Analyzing the BrowserID SSO System with Primary Identity Providers
Using an Expressive Model of the Web . 43

Daniel Fett, Ralf Küsters, and Guido Schmitz

System Security

A Practical Approach for Adaptive Data Structure Layout Randomization . . . 69
Ping Chen, Jun Xu, Zhiqiang Lin, Dongyan Xu, Bing Mao, and Peng Liu

Trustworthy Prevention of Code Injection in Linux on Embedded Devices . . . 90
Hind Chfouka, Hamed Nemati, Roberto Guanciale, Mads Dam,
and Patrik Ekdahl

Practical Memory Deduplication Attacks in Sandboxed Javascript 108
Daniel Gruss, David Bidner, and Stefan Mangard

Cryptography

Computational Soundness for Interactive Primitives. 125
Michael Backes, Esfandiar Mohammadi, and Tim Ruffing

Verifiably Encrypted Signatures: Security Revisited and a New
Construction . 146

Christian Hanser, Max Rabkin, and Dominique Schröder

Interleaving Cryptanalytic Time-Memory Trade-Offs on Non-uniform
Distributions. 165

Gildas Avoine, Xavier Carpent, and Cédric Lauradoux

Efficient Message Authentication Codes with Combinatorial Group Testing . . . 185
Kazuhiko Minematsu

http://dx.doi.org/10.1007/978-3-319-24174-6_1
http://dx.doi.org/10.1007/978-3-319-24174-6_2
http://dx.doi.org/10.1007/978-3-319-24174-6_3
http://dx.doi.org/10.1007/978-3-319-24174-6_3
http://dx.doi.org/10.1007/978-3-319-24174-6_4
http://dx.doi.org/10.1007/978-3-319-24174-6_5
http://dx.doi.org/10.1007/978-3-319-24174-6_6
http://dx.doi.org/10.1007/978-3-319-24174-6_7
http://dx.doi.org/10.1007/978-3-319-24174-6_8
http://dx.doi.org/10.1007/978-3-319-24174-6_8
http://dx.doi.org/10.1007/978-3-319-24174-6_9
http://dx.doi.org/10.1007/978-3-319-24174-6_9
http://dx.doi.org/10.1007/978-3-319-24174-6_10

Symmetric-Key Based Proofs of Retrievability Supporting Public
Verification . 203

Chaowen Guan, Kui Ren, Fangguo Zhang, Florian Kerschbaum,
and Jia Yu

DTLS-HIMMO: Achieving DTLS Certificate Security with Symmetric Key
Overhead . 224

Oscar Garcia-Morchon, Ronald Rietman, Sahil Sharma,
Ludo Tolhuizen, and Jose Luis Torre-Arce

Short Accountable Ring Signatures Based on DDH. 243
Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi,
Jens Groth, and Christophe Petit

Updatable Hash Proof System and Its Applications 266
Rupeng Yang, Qiuliang Xu, Yongbin Zhou, Rui Zhang, Chengyu Hu,
and Zuoxia Yu

Server-Aided Revocable Identity-Based Encryption 286
Baodong Qin, Robert H. Deng, Yingjiu Li, and Shengli Liu

Efficient Zero-Knowledge Proofs for Commitments from Learning
with Errors over Rings. 305

Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky,
and Krzysztof Pietrzak

Making Any Identity-Based Encryption Accountable, Efficiently 326
Aggelos Kiayias and Qiang Tang

Practical Threshold Password-Authenticated Secret Sharing Protocol 347
Xun Yi, Feng Hao, Liqun Chen, and Joseph K. Liu

On Security of Content-Based Video Stream Authentication 366
Swee-Won Lo, Zhuo Wei, Robert H. Deng, and Xuhua Ding

Oblivious Maximum Bipartite Matching Size Algorithm with Applications
to Secure Fingerprint Identification . 384

Marina Blanton and Siddharth Saraph

Practical Invalid Curve Attacks on TLS-ECDH. 407
Tibor Jager, Jörg Schwenk, and Juraj Somorovsky

Crypto Applications and Attacks

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? . . . 429
Alessandro Barenghi, Alessandro Di Federico, Gerardo Pelosi,
and Stefano Sanfilippo

XVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-24174-6_11
http://dx.doi.org/10.1007/978-3-319-24174-6_11
http://dx.doi.org/10.1007/978-3-319-24174-6_12
http://dx.doi.org/10.1007/978-3-319-24174-6_12
http://dx.doi.org/10.1007/978-3-319-24174-6_13
http://dx.doi.org/10.1007/978-3-319-24174-6_14
http://dx.doi.org/10.1007/978-3-319-24174-6_15
http://dx.doi.org/10.1007/978-3-319-24174-6_16
http://dx.doi.org/10.1007/978-3-319-24174-6_16
http://dx.doi.org/10.1007/978-3-319-24174-6_17
http://dx.doi.org/10.1007/978-3-319-24174-6_18
http://dx.doi.org/10.1007/978-3-319-24174-6_19
http://dx.doi.org/10.1007/978-3-319-24174-6_20
http://dx.doi.org/10.1007/978-3-319-24174-6_20
http://dx.doi.org/10.1007/978-3-319-24174-6_21
http://dx.doi.org/10.1007/978-3-319-24174-6_22

Transforming Out Timing Leaks, More or Less . 447
Heiko Mantel and Artem Starostin

Small Tweaks Do Not Help: Differential Power Analysis of MILENAGE
Implementations in 3G/4G USIM Cards. 468

Junrong Liu, Yu Yu, François-Xavier Standaert, Zheng Guo, Dawu Gu,
Wei Sun, Yijie Ge, and Xinjun Xie

Risk Analysis

Should Cyber-Insurance Providers Invest in Software Security? 483
Aron Laszka and Jens Grossklags

Lightweight and Flexible Trust Assessment Modules for the Internet
of Things . 503

Jan Tobias Mühlberg, Job Noorman, and Frank Piessens

Confidence Analysis for Nuclear Arms Control: SMT Abstractions
of Bayesian Belief Networks . 521

Paul Beaumont, Neil Evans, Michael Huth, and Tom Plant

Author Index . 541

Contents – Part I XVII

http://dx.doi.org/10.1007/978-3-319-24174-6_23
http://dx.doi.org/10.1007/978-3-319-24174-6_24
http://dx.doi.org/10.1007/978-3-319-24174-6_24
http://dx.doi.org/10.1007/978-3-319-24174-6_25
http://dx.doi.org/10.1007/978-3-319-24174-6_26
http://dx.doi.org/10.1007/978-3-319-24174-6_26
http://dx.doi.org/10.1007/978-3-319-24174-6_27
http://dx.doi.org/10.1007/978-3-319-24174-6_27

Privacy

FP-Block : Usable Web Privacy by Controlling
Browser Fingerprinting

Christof Ferreira Torres1, Hugo Jonker2(B), and Sjouke Mauw1

1 CSC/SnT, University of Luxembourg, Luxembourg, Luxembourg
2 Open University of the Netherlands, Heerlen, The Netherlands

hugo.jonker@ou.nl

Abstract. Online tracking of users is used for benign goals, such as
detecting fraudulent logins, but also to invade user privacy. We posit
that for non-oppressed users, tracking within one website does not have
a substantial negative impact on privacy, while it enables legitimate ben-
efits. In contrast, cross-domain tracking negatively impacts user privacy,
while being of little benefit to the user.

Existing methods to counter fingerprint-based tracking treat cross-
domain tracking and regular tracking the same. This often results in ham-
pering or disabling desired functionality, such as embedded videos. By
distinguishing between regular and cross-domain tracking, more desired
functionality can be preserved. We have developed a prototype tool, FP-
Block, that counters cross-domain fingerprint-based tracking while still
allowing regular tracking. FP-Block ensures that any embedded party
will see a different, unrelatable fingerprint for each site on which it is
embedded. Thus, the user’s fingerprint can no longer be tracked across
the web, while desired functionality is better preserved compared to exist-
ing methods.

1 Introduction

Online activities play an ever-growing role in everyday life. Consequently, com-
panies are increasingly tracking users online [14]. There may be various rea-
sons for such tracking, such as fraud prevention by identifying illegitimate usage
attempts [16], suggesting related content, and better targeting advertisements.
Where such tracking remains confined to the tracker’s own website, the balance
between privacy and functionality is (arguably) satisfied: the website learns a
user’s browsing habits on that particular website, which helps to improve the
website for this user. We will call this type of tracking regular tracking.

However, some companies offer online services that are embedded on a large
number of websites. Examples of such services are social sharing buttons, popular
JavaScript libraries, and popular web analytics services. Thanks to this ubiqui-
tous embedding, such companies can track users over large portions of the web.
According to various studies, plenty of different companies are embedded on a
sizable1 portion of the Web. For example, consider the Facebook “Like” button.
1 E.g. penetration rates for top 1 million sites according to BuiltWith.com (October

2014): DoubleClick.net 18.5 %, Facebook Like button 15.6 %, Google Analytics 46.6 %.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-24177-7 1

http://www.BuiltWith.com

4 C.F. Torres et al.

The embedding site includes a piece of code that triggers the user’s browser to
contact the Facebook servers to download the button. As browsers are made to
explain where a request originated (the HTTP Referer field), the browser will
tell Facebook exactly which URL triggered this request each time. This enables
Facebook to track the user across the web [15], irrespective of whether or not the
user even has a Facebook account. We will call this type of tracking third-party
tracking.

This tracking can be done using an HTTP cookie, but even if such (third
party) cookies are blocked, it is possible to infer a set of attributes (screen
resolution, HTTP user agent, time zone, etc.) that are often sufficient to uniquely
identify the user [5]. Note that such attributes were intended to benefit the user,
e.g. to present her the mobile version of a site when browsing from a phone, or
to present the page in the user’s preferred language. Yet even though personalia
such as name or age are not explicitly revealed, the tracker can learn far more
about the users than one realises2.

Identifying users by such means is called “fingerprinting”. Much like a fin-
gerprint belongs to one unique individual, a fingerprint of communication with
a server belongs to a unique browser.

Existing countermeasures combat such fingerprint-based tracking with little
regard for the impact on the user experience. The goal is then to find an approach
that ensures a better balance between user experience (that is: less impact on
desired embedded contents) and tracking. We address this with the concept of
web identity : the set of fingerprintable browser characteristics. A web identity is
generated for the main site visited (e.g., bbc.com), and that identity is then also
used for all interaction with embedded contents on that site (e.g. videos, social
media buttons, etc.). If the user visits a different site (e.g., cnn.com), a different
identity is used (the web identity for cnn.com). Thus, a party embedded on both
sites will first see the web identity for bbc.com, and later the web identity for
cnn.com. As we ensure that the generated identities are distinct, the two visits
can no longer be linked by means of their fingerprint. We focus on fingerprinters
that aim to re-identify as many users as possible. We do not target tools that
are seeking to track any one specific individual.

Contributions. The main contributions of our research are the following:

1. We argue that a distinction be made between regular and cross-domain track-
ing; we observe that current anti-tracking tools do not make this distinction.

2. We introduce the notion of a web identity to generalize the rather dynamic
notion of a fingerprint. We propose separation of web identities as an approach
to fingerprint privacy that prevents cross-domain tracking, while allowing
regular tracking.

3. We have developed a prototype browser extension, FP-Block, that supports
the automatic generation and management of web identities. A user’s web
identity remains constant across all his visits to the same domain, while his

2 E.g. by data aggregation, a supermarket can infer if a customer is pregnant, and
estimate her due date (Forbes.com, 2012).

http://www.bbc.com
http://www.cnn.com
http://www.cnn.com
http://www.bbc.com
http://www.cnn.com
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 5

web identities for different domains are not related. The tool has a user inter-
face that shows which third parties are embedded in the current page, which
fingerprintable attributes are requested by the website and how these are
spoofed by the tool. This allows the user to fine-tune the tool for individual
sites.

4. By deobfuscating the code of the most relevant fingerprinters, we compiled an
up-to-date list of the attributes used by current fingerprinters. Further, based
on a literature study, we compiled a list of the attributes affected by the most
relevant anti-tracking tools. These lists guided our design and helped us to
compare our work to existing tools.

5. We have tested our tool against six fingerprinters in two different scenarios:
first-party fingerprinting and third-party fingerprinting. In all cases, our tool
was successful in affecting the computed fingerprint.
As final validation, we tested our tool against a commercial fingerprinter’s
online tracking ID. Again the tool was successful: the tracking ID without
the tool was different from the ID when running the tool.

2 Related Work

We distinguish related work between work on fingerprinting and work on coun-
termeasures against tracking and fingerprinting.

2.1 Fingerprinting

The possibility of remotely inferring characteristics of devices has been known
for some time. E.g. Kohno et al. [6] use TCP clock skew to remotely fingerprint
devices. Eckersley [5] was the first to draw significant attention to the problem
of fingerprinting web browsers. His fingerprinting algorithm returned a unique
fingerprint for 83.6 % of the browsers considered. Subsequent papers established
how to fingerprint other aspects such as the user-agent string and IP address [17],
the HTML5 “canvas” element [10], the used Javascript engine [9,11], the fonts
present [3], etc. Other work has suggested approaches to combine several fin-
gerprintable attributes to arrive at unique fingerprints (e.g. [3,17]). Using such
techniques only on one site does not constitute a large invasion of privacy. How-
ever, as Mayer and Mitchel [8] and Roosendaal [15] have pointed out, social
plugins are embedded on many pages, which allows the social network to track
users across the Internet. Thanks to fingerprinting, such tracking does not even
require an account – anyone with a unique fingerprint can be traced.

Several recent studies have investigated the practice of fingerprinting in more
detail. Acar et al. [2] introduced a framework to detect online fingerprinters
by detecting activities typical of fingerprinters (e.g. requesting values of cer-
tain attributes, enumerating fonts, etc.). Their detection algorithm found several
fingerprinting techniques in action. Many of these were by companies offering
fingerprinting services to others: the fingerprinters were either embedded by
the visited site, or by a third party such as inside a third-party advertisement.

6 C.F. Torres et al.

In a followup study, Acar et al. [1] investigate the spread of three tracking mecha-
nisms, amongst which HTML5 canvas fingerprinting. They propose three heuris-
tics to estimate whether a canvas is being used to fingerprint; we adopt these
criteria in our tool. This paper also shows that canvas fingerprinting is being
used by a popular 3rd party service (AddThis.com). Nikiforakis et al. [13] pro-
vide a detailed study of the fingerprinting techniques of three online fingerprint
services (BlueCava, Iovation and ThreatMetrix). They found that fingerprinting
can be tailored to the detected browser, e.g. when detecting a browser as Inter-
net Explorer, the fingerprint would include Internet Explorer-specific attributes.
Moreover, Flash was used by all three to enrich the established fingerprint. Flash
allows access to many similar attributes as JavaScript, but may give a more
detailed response (e.g. including major and minor kernel version number). More-
over, Flash ignores a browser’s proxy settings for client-server communication.
This allows the fingerprint services to detect if the user is behind a proxy or not,
and correlate the IP address of the proxy with that of the user.

2.2 Countermeasures

Several existing plugins directly aim to stop trackers, including commercially
developed ones (e.g. Ghostery, AVG Do Not Track, etc.), and academically devel-
oped ones, such as FireGloves [3], ShareMeNot [14], PriVaricator [12], etc. Some
of these work by blocking trackers, either by using a predefined blacklist or
by updating the blacklist on the fly using heuristic rules. Krishnamurthy and
Wills [7] argue that blacklists are prone to being incomplete (not all trackers
blocked), and therefore ultimately fail at blocking trackers. A similar argument
holds against heuristically updated blacklists: the next tracker may well use
tracking methods not covered by the heuristics, and so escape notice. More
damning, however, Mowery et al. [9] show how an attacker can detect a blacklist
and use its content as an additional fingerprintable attribute.

Other plugins work by faking attributes (FireGloves, PriVaricator). As [5,13]
point out, such spoofing may lead to inconsistencies that paradoxically make the
user stand out more. Indeed, Acar et al. [2] argue this is the case for FireGloves-
equipped browsers. Even more strongly, Nikiforakis et al. [13] advice against the
use of any user-agent-spoofing extension.

We add the following observations. First of all, fingerprinting can be done
both passively and actively. Passive fingerprinting uses attributes inherent in
the communication (e.g. the order of HTTP headers), while active fingerprinting
executes attribute-gathering scripts on the client-side (e.g. determine JavaScript
engine speed). Anti-tracking tools should take into account both mechanisms.
Secondly, anti-tracking tools should consider “fingerprint consistency”, i.e., the
extent to which a fingerprint is perceived as genuine. By carefully tailoring the
spoofing system to account for known fingerprinters, their consistency checks
can be satisfied. Secondly, fingerprinting trackers take a fingerprint of each user,
and aim to link a new fingerprint to an existing fingerprint. If the new fingerprint
is sufficiently different, this link cannot be made – irrespective of how unique
this new fingerprint is. PriVaricator [12] uses similar ideas to these. In contrast,

http://www.AddThis.com

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 7

our approach addresses both active and passive fingerprinting, uses real-world
browser statistics to generate consistently spoofed fingerprints, and works as a
browser extension instead of modifying the browser itself.

The Tor Browser3, widely recognised as providing the best privacy, uses
another approach: it aims to keep one single set of attribute values across all its
instances. In ideal circumstances, this means that no two Tor Browser instances
can be distinguished from each other, however, users can install plugins or tweak
settings which undo this protection.

The Tor browser is strongly focused on preserving privacy, providing a level of
privacy believed to be sufficient for use under intense state scrutiny. This strong
privacy comes at the expense of some usability, most notably, that all data is
sent via an onion routing network. We posit that the strong privacy offered by
the Tor Browser exceeds the needs of non-oppressed users. Therefore, we will
focus on the prevention of third-party tracking.

3 Determining the Fingerprint Surface

In this section, we determine the relevant set of characteristics that are used
to fingerprint a user. Determining the full set of characteristics, the fingerprint
surface, is not practically possible. For example, as a plugin can change the
browser’s behaviour in ways that can be detected, constructing a complete set
of characteristics necessarily requires examining all browser plugins. Therefore,
we focus pragmatically on that part of the fingerprint surface that is being
used by fingerprinters. This implies that we use their definition of identity. As
fingerprinters equate a fingerprint of the device with a user identity, we will use
this (somewhat imprecise) abstraction as well.

To establish the fingerprint surface, we determine for four major commercial
fingerprinters which characteristics they use to fingerprint, i.e., their fingerprint
vector. We also examine four major anti-fingerprint tools and determine which
part of the fingerprint surface they consider. Together, this gives us a practical
approximation of the fingerprint surface. FP-Block then is built to ensure no
two fingerprints are fully coincide within this approximation.

3.1 Limitations of Preventing Fingerprint Tracking

There are two approaches to prevent fingerprint-based tracking: blocking track-
ers, and spoofing attribute values. However, neither by itself suffices to prevent
tracking, while both impact user experience.

Blocking Fingerprinters. A naive solution is to block any third party content.
However, many webpages embed such content, without which the webpage ren-
ders incorrectly (e.g. content delivery networks, embedded video). Other third
party content helps to sustain and improve the site (counters, advertisers, ana-
lytics,. . .). The impact of blocking all third party content on usability will be
3 https://www.torproject.org/projects/torbrowser.html.en.

https://www.torproject.org/projects/torbrowser.html.en

8 C.F. Torres et al.

far too great. Blocking known major trackers would provide some protection.
However, such a list will remain incomplete [7], irrespective of updates. Thus,
blocking by itself cannot fully address third party tracking without impacting
on desired functionality.

Spoofing Attribute Values. The attribute values that make up the fingerprint may
be faked. This changes the fingerprint, which in turn changes what the tracker
infers as the identity. There are many browser plugins that randomise a (sub)set
of attributes. However, not all attributes can be faked without substantially
impacting user experience (e.g. JavaScript engine speed). Moreover, faked data
often makes the user’s fingerprint stand out more [5,13], making the fingerprint
more easy to recognise. Finally, new fingerprintable characteristics keep on being
discovered. Thus, it is impossible in practice to determine and spoof the full set
of fingerprintable characteristics.

Thus, determining the entire fingerprint surface is impossible. As such, no
anti-fingerprint tool can prevent all fingerprinting. This motivates a pragmatic
approach: determine which characteristics are used by a set of fingerprinters,
and focus on those.

3.2 Fingerprint Vectors

To determine which characteristics are commonly used to fingerprint users, we
determine the fingerprint vectors of several widely-used fingerprinters. We ana-
lyze three commercial trackers: BlueCava (BC), IOvation (IO), and Threat-
Metrix (TM). Note that this part of our analysis builds on and expands the
results of [13]. We furthermore analyze one social plugin that fingerprints users:
AddThis (Add). We complement this with characteristics gathered from
Eckersley’s seminal work [5] (Pan) and from an open source fingerprint library,
FingerPrintJS (FPjs). The results are presented in the left part of Table 1 (legend
and footnotes in Table 2).

In Table 1, each row denotes a fingerprintable characteristic. A
√

sign indi-
cates that the fingerprinter uses this characteristic in determining a fingerprint.
Characteristics marked with � were previously reported in [13]; those marked
with were reported, but are no longer used.

Recall that in this work we only target the HTTP and JavaScript layer of
the communication stack. Fingerprinting can also occur at other layers, e.g. at
the TCP/IP layer, or at the Flash layer.

For FP-Block we only address HTTP and JavaScript characteristics that are
used by one ore more of the six analyzed fingerprinters.

3.3 Fingerprint Surface

To determine the minimum set of characteristics that needs to be protected, we
investigate four popular anti-fingerprinting tools: FireGloves [3] (FG), the Tor
Browser (Tor), PriVaricator [12] (PV), and Random Agent Spoofer4 (RAS). For
4 https://github.com/jmealo/random-ua.js.

https://github.com/jmealo/random-ua.js

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 9

Table 1. Comparison of attributes used by various fingerprinting libraries.

10 C.F. Torres et al.

Table 2. Legend and footnotes for Table 1

Fingerprinters Updated from Countermeasures
Pan Panopticlick [5] [13] FG FireGloves [3]
BC BlueCava [13] Tor Tor [4] Browser Bundle
IO Iovation [13] PV PriVaricator [12]
TM ThreatMetrix [13] RAS Random Agent Spoofer
Add AddThis new FPB FingerPrint-Block
FPjs FingerPrintJS new

1 Property can be checked passively, i.e., no client-side technology required.
2 Property specific to Internet Explorer.
3 Property is determined using a Windows DLL created by the fingerprinting company.
4 Out of scope – FP-Block only targets HTTP and Javascript layers.
5 Blocking or spoofing this attribute would break or limit important functionality.

each, we determine which characteristics are considered. The results are listed
on the right side of Table 1.

Not all characteristics are equal: some can be used by the fingerprinter with-
out using JavaScript (e.g. HTTP headers), some are specific to Internet Explorer,
others require additional client-side software (e.g. Windows DLL), etc. For the
implementation, we do not focus on these characteristics. Furthermore, some
characteristics are intrinsic to the communication or the user experience (HTTP
accept header, date & time), and cannot be blocked or spoofed without adverse
effects. Taken together, these considerations lead us to formulate the intended
fingerprint surface of our tool FP-Block in the rightmost column of Table 1.
Consequently, FP-Block only generates web identities which are distinct with
respect to this fingerprint surface.

4 Design

Our goal is to prevent third-party fingerprint-based tracking. To this end, we
generate distinct web identities (i.e., sets of fingerprintable characteristics) and
then use these web identities in such a fashion as to be untraceable. More pre-
cisely, for each new site visited, we use a freshly generated web identity that is
distinct from all previous web identities. This web identity is then used for all
interactions due to this site, be they with the site itself or with any of its third
parties.

4.1 Balancing Usability vs. Privacy

The approach of separating web identities is not meant to interfere with regular
tracking (tracking by the main site itself). It even allows third parties to track a
user on a particular site – but it prevents third parties from linking that user to
another user on a different site. Thus, this approach has the advantage that it

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 11

Fig. 1. Third-party fingerprinting.

does not affect local login processes, nor is it affected by such a process. Moreover,
third parties that embed site-specific codes (e.g. of the form http://facebook.
com/FROM-SITE-A/) are free to do so. We remark that the defensive paradox,
i.e. defenses make the user stand out more, strongly impacts regular tracking.
With regards to third-party tracking, however, there is a great difference. Our
approach focuses on linkability between different sites, not on distinguishing
users on one site. A user that stands out on one website is not necessarily the
same person as a user that stands out on another website, even if both stand
out due to the defensive paradox. Hence, third-party tracking is affected less
severely by the defensive paradox.

The approach of separating web identities thus stays very close to a normal
user experience. However, when visiting a different site, a different web identity is
used, and the user cannot be tracked to this new site by third-party fingerprint-
based tracking. Figure 1a depicts the normal functioning of the web: embedded
third parties (shown by the dashed arrows) can fingerprint the site’s visitors and
match a fingerprint on site A to a fingerprint on site B. Figure 1b depicts our
approach: each website visited sees another fingerprint. Consider that sites A
and C embed a social media plugin of site B. Then when the user visits site A,
the web identity as seen by B is IDA. When the user visits site C, however, the
web identity as determined by B is IDC . Finally, if the user visits B directly, yet
another web identity is used. This allows B to track the user locally on site A
and on C, but not from site A to C.

4.2 Generating Web Identities

To prevent fingerprint-based tracking, we need to ensure that two distinct web
identities are seen as different by a fingerprinter. This is not necessarily as
straightforward as it may seem: computers and browsers are regularly updated

http://facebook.com/FROM-SITE-A/
http://facebook.com/FROM-SITE-A/

12 C.F. Torres et al.

(changing their characteristics), and fingerprinters need to account for this. Thus,
merely ensuring that the set of characteristics of one web identity do not coincide
with any other web identity is not sufficient. Moreover, we recall the fingerprint-
ing countermeasure paradox: the use of a countermeasure impacts fingerprint-
able characteristics in such a way that the resulting set of characteristics is more
unique (thus, more traceable) than if no countermeasure was used. An example
of this is a client that claims to be an iPhone 2, that is capable of running Flash
(real iPhones do not run Flash).

This leads to two design requirements: web identities must be “enough” dif-
ferent, and a generated web identity must be “consistent”.

Ensuring Sufficient Difference. Updating a browser affects browser-specific
attributes, updating the operating system affects OS-specific attributes, etc.
To ensure a freshly generated web identity is sufficiently different from previ-
ously generated web identities, accounting for anticipated updates, we group the
attributes into the following classes:

– Browser, e.g. user agent, browser name, vendor, accept-encoding.
– Language, e.g. language, system language, user language.
– OS/CPU, e.g. platform, cpu class, oscpu.
– Screen, e.g. width, height, color depth.
– Timezone. i.e. time zone offset.

Ideally, a freshly generated web identity is different in all classes to all previous
web identities. This impacts the time required to generate a new web identity.
For FP-Block, we chose to require every newly generated web identity to have
at least two different attributes from at least two different classes. This allows a
decent trade off between time needed to generate a web identity and uniqueness.
In future versions, the generation algorithm could be optimised to require more
differences.

Consistency of Web Identity. A randomly generated web identity is unlikely to
be consistent, that is, have no contradictory attributes (such as Flash running
on an iPhone). To ensure consistency, web identities need to be generated using
a realistic distribution of attribute values. For instance, the chance that a Fire-
fox user is on a Linux computer is greater than the chance that an Internet
Explorer user is. In effect, the process to generate a consistent web identity can
be modelled as a Markov chain. As usage of different browsers and operating
systems varies over time, such a Markov chain needs to be updatable to remain
current. To this end, we identified classes of states (operating system, processor,
screen properties, etc.). Any Markov chain for a web identity needs to contain
these classes. Moreover, these can be ordered (operating system and processor
are determined before the user agent is). In this way, we model a construction
process for Markov chains generating web identities (see Fig. 2).

States and transition probabilities for Markov chains are derived from
J. Mealo’s data5, based on actual usage statistics from Wikimedia. An excerpt
5 https://github.com/jmealo/random-ua.js/commits/master/random ua.js.

https://github.com/jmealo/random-ua.js/commits/master/random_ua.js

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 13

Fig. 2. Generic model of Markov chains for web identities.

of this data is shown in Table 3, and an example of how this translates into a
Markov chain is shown in Fig. 3. In this figure, where no weights are indicated,
the uniform distribution is implied. Remark that for windows operating systems,
one of the attribute values for processor is the empty string ‘’.

Table 3. Example attribute distributions, due to J. Mealo

Win Mac Linux

chrome .89 .09 .02
firefox .83 .16 .01
opera .91 .03 .06
safari .04 .96
iexplorer 1.00

Platform Processor string probability

Linux ‘i686’: .5
‘x86 64’: .5

Mac ‘Intel’: .48
‘PPC’: .01
‘U; Intel’: .48
‘U; PPC’: .01

Windows ‘’: .3̄
‘WOW64’: .3̄
‘Win64; x64’: .3̄

5 Development and Implementation

5.1 Development

We developed FP-Block as a Firefox plugin. This ensures that FP-Block is pub-
licly available and easy to install for a large group of users. To limit the scope of
the project, FP-Block focuses on two communication layers: JavaScript, illustrat-
ing application of our approach to active fingerprinting, and HTTP, illustrating
application to passive fingerprinting. In principle, tracking at other layers was
not considered. An exception to this was made for Flash: all commercial finger-
printers use Flash to fingerprint and store information. To be effective, the tool
hides Flash (i.e., removed from detected plugins). Another exception is made
for ActiveX. As FP-Block does not include a full ActiveX implementation, it

14 C.F. Torres et al.

Fig. 3. Partial Markov chain for web identities for the Chrome profile.

cannot consistently pretend to be an Internet Explorer browser. Therefore, FP-
Block never pretends to be Internet Explorer. Finally, FP-Block is designed for
desktop browsers, and simulates only desktop browsers.

FP-Block is available from http://satoss.uni.lu/software/fp-block/, and is
open source6.

5.2 Implementation

FP-Block intercepts and modifies all outgoing requests and incoming responses.
This is done by adding observers for the “topics” http-on-modify-request
and http-on-examine-{cached-}response, respectively. For requests, first the
existing web identity for the domain is retrieved, or, if none exists, a fresh web
identity is generated and stored. Then HTTP headers like Accept-Encoding and
Accept-Language are set according to the web identity. E-tag headers (which
are intended to aid caching) can easily be exploited to track users, and are thus
deleted (cf. Table 1). Finally, requests for social plugins that are explicitly blocked
by user preference are cancelled. Currently, FP-Block can block the social plugins
of Facebook, Twitter, Google Plus, LinkedIn, Tumblr, and Pinterest.

For incoming responses, the observer evaluates the fingerprint and constructs
a Javascript script that enforces the fingerprint. Blocking access to blocked and
spoofed attributes is handled by replacing the access functionality of Javascript
using navigator. defineGetter (), for attributes such as userAgent, app
Name, cookieEnabled, battery, geolocation, oscpu, etc. (cf. Table 1). Screen
properties are protected analogously using screen. defineGetter (). Detec-
tion events are inserted in a similar way to detect when scripts use code that is
typically used to fingerprint the user, such as enumerating mimetypes or plug-
ins, using DOM storage, font detection, etc. Canvas fingerprinting is thwarted
by adding random noise and the FP-Block logo to a random position on the

6 Source available from GitHub repository FP-Block under the GPL v3 license.

http://satoss.uni.lu/software/fp-block/

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 15

canvas. This is then stored with the fingerprint to be reused in future visits.
Finally, a few lines are added to remove the constructed script after execution,
using removeChild() on the script’s parent node. This ensures that the script
cannot be found in the source by other scripts.

The thusly constructed script is then injected into the response at the very
top, ensuring it is run before any other script sent by the server.

6 Experiments and Validation

We tested FP-Block in two different settings:

– First-party fingerprinting : the visited site uses fingerprinting, and
– Third-party fingerprinting : the visited site embeds a third-party fingerprinter.

We ran three main variations of the tests:

1. without FP-Block.
This is to verify that the test setup is functioning correctly.

2. with FP-Block,
a. with the test site using an open source fingerprinting script, Finger

PrintJS.
This allows us to verify that FP-Block affects fingerprinting.

b. with the test sites using any one of the four commercial fingerprinting
scripts.
This is to test the effectiveness of FP-Block against real-life fingerprinters.

We updated each fingerprinting script to add the fingerprint it computed to the
test page. This allows us to execute the tests as described by simply opening the
test sites in a browser (see e.g. Fig. 4).

Test 1: First-party Fingerprinting. After successfully verifying that the test was
set up correctly (Fig. 4a), we executed the test shown in Fig. 4b using Finger-
PrintJS. The result was that FP-Block correctly ensures that a browser visiting
the two sites has a different fingerprint on each site.

Test 2: Embedded Fingerprinting. We created a test page on site A which embeds
fingerprinting content from site B, and vice versa (cf. Fig. 1). Both test sites
also ran the same fingerprint scripts locally. We then visited each page with and
without our tool. In both cases, we first tested this set up with the FingerPrintJS
script.

Without FP-Block ’s protection, the fingerprint is the same in all cases
(cf. Fig. 1a). With FP-Block, however, this changes (Fig. 1b). The fingerprint
script running on site A sees web identity IDA if the user visits A, but if the
user visits B (which embeds the script from A), the same fingerprint script sees
web identity IDB . The script returns different fingerprints for these web identi-
ties.

16 C.F. Torres et al.

Fig. 4. First party fingerprinting tests.

Testing Against Commercial Fingerprinters. We then repeated tests, using the
fingerprint scripts of the commercial fingerprinters (BlueCava, IOvation, Threat-
Metrix, and AddThis). These scripts all compute a hash which seems to serve
as the fingerprint. However, each of them also communicates the entire set of
attributes and values used in this fingerprint back to the fingerprinter’s servers.
Our tests showed that, without FP-Block, the hash as computed by each script
does not change – the behaviour is equivalent to that in Fig. 1a. With FP-Block,
the hashes were different if they were computed by B’s script embedded on site
A, or by the same script of B computed when visiting site B. In short, the tests
show that FP-Block successfully affects the fingerprint.

However, affecting the fingerprint does not necessarily mean that tracking
is stopped. Given that commercial fingerprinters communicate the determined
attribute values back to the fingerprinter, the fingerprinter may match such a set
offline to previously seen sets. To test whether FP-Block is able to prevent such
offline fingerprinting, we need to know the web identity which the fingerprinter
attributes to us.

BlueCava provides such a service (the BlueCava advertising ID, available on
BlueCava’s “opt-out” page). Our final validation was to check our BlueCava
advertising ID with and without FP-Block. The ID changed, which leads us to
conclude that FP-Block successfully prevented BlueCava from tracking us. As
can be seen in Table 1, BlueCava uses the most attributes for its fingerprint –
they are by far the most advanced fingerprinters listed. As such, we believe that
success against BlueCava provides a good estimate of success against other offline
fingerprint algorithms.

Update Frequency of Fingerprinters. Finally, we monitored the rate of change of
fingerprinters listed in Table 1. We downloaded each fingerprinter’s script once
an hour from September 2014 until June 2015. In this period, Panopticlick’s
script did not change. The open source script FingerPrintJS changed once, which
turned out to be support for detecting screen orientation.

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 17

With respect to the commercial fingerprinters: the scripts of BlueCava and
AddThis have not changed since we began monitoring them. The scripts for
IOvation and ThreatMetrix include time and date of the download, ensuring
that every downloaded script is different. Since both scripts are heavily obfus-
cated, verifying that there are no changes other than embedded time and date
is difficult. However, the file size of IOvation’s script remained constant since
September 2014. We take this as an indication that the script has not changed.
Finally, ThreatMetrix’ script started changing on 27 October, 2014, and still con-
tinues to evolve swiftly. An initial analysis revealed that there are large changes
to the code base. Once ThreatMetrix seems to be more stable, we intend to
re-analyse the new code.

Stability and Compatibility Testing. To determine the robustness of our plugin,
we have been using the plugin in our main browser since June 2014. Where early
versions occasionally crashed or gave unexpected results, since October 2014
only Javascript-heavy and Flash pages are noticeably affected. FP-Block blocks
Flash to prevent Flash side channels, but Flash can be enabled in FP-Block ’s
menu. Javascript-heavy pages are slow to load. A refresh solves this.

Lastly, we tested how the plugin cooperates with several popular privacy-
focused plugins: AdBlock Plus, Privacy Badger, Ghostery, and Disconnect. FP-
Block perfectly cooperates alongside all in default settings. We note two caveats
to this. First, Disconnect blocks social media plugins, similar to FP-Block. This
functionality is implemented similarly in the two plugins. When both are run-
ning, social media plugins are blocked by both. Enabling a social media plugin
thus requires enabling it in both plugins. Second, AdBlock Plus is a generic
blocking plugin, into which blocklists can be loaded. There exist blocklists for
social plugins. Loading such a blocklist inherently causes interference between
AdBlock Plus and FP-Block.

7 Conclusions

Ubiquitous tracking on the web is a reality, enabled by the proliferation of embed-
ded content and effective fingerprinting techniques. Currently available counter-
measures against fingerprinting work by either blocking embedded content or
faking a web client’s characteristics. Not only does this break benign applica-
tions of fingerprinting (such as detecting session hijacking), but it also reduces
the user experience. In order to achieve a more practical balance between pri-
vacy and usability, we have introduced the notion of a web identity that allows
for re-identification within a web site, while it prevents tracking across websites.
Such a web identity is a set of fingerprintable characteristics that can be tweaked
on the user side.

We have developed a prototype web browser extension that supports the use
and management of web identities. In order to design our tool’s capabilities,
we investigated the fingerprint vector, i.e., the set of characteristics used for
fingerprinting, of the major fingerprint tools. This led to an up-to-date overview
of four major fingerprinters’ abilities.

18 C.F. Torres et al.

The web identities generated by our tool are distinct and consistent. This
means that two generated web identities are sufficiently different to prevent being
linked by current fingerprint tools and that the attributes are being spoofed in
such a way that their combination doesn’t stand out. Consistency is achieved by
implementing a Markov model for the generating of attribute values.

Fingerprint tools will be able to re-identify users even after minor changes or
regular updates of their computing environment. Therefore, our tool should not
generate web identities that can be linked in this way. Our current approach,
consisting of classifying attributes, is a rather crude heuristic. We consider a
refinement of this approach as interesting future work. Thereto, we propose to
collect data on the evolution of client side attributes, in order to build a Markov
model that will decide if two generated web identities are sufficiently distinct.

Finally, our prototype implementation only addresses the HTTP and Java
Script layers of communication. Given the focus of the current fingerprinting
tools, this already provides a significant level of practical privacy. Nevertheless,
the arms race between fingerprinters and anti-tracking tools will continue, so
we consider extending the current fingerprint vector of our tool as an ongoing
activity.

References

1. Acar, G., Eubank, C., Englehardt, S., Juárez, M., Narayanan, A., Dı́az, C.: The
web never forgets: Persistent tracking mechanisms in the wild. In: Proceedings of
21st ACM Conference on Computer and Communications Security (CCS 2014),
pp. 674–689. ACM Press (2014)

2. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel,
B.: FPDetective: Dusting the web for fingerprinters. In: Proceedings of 20th ACM
SIGSAC Conference on Computer and Communications Security (CCS 2013), pp.
1129–1140. ACM Press (2013)

3. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via
cross-browser fingerprinting. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161,
pp. 31–46. Springer, Heidelberg (2012)

4. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington (2004)

5. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010)

6. Kohno, T., Broido, A., Claffy, K.: Remote physical device fingerprinting. IEEE
Trans. Dependable Secure Comput. 2(2), 93–108 (2005)

7. Krishnamurthy, B., Wills, C.E.: Generating a privacy footprint on the internet. In:
Proceedings of 6th ACM SIGCOMM Conference on Internet Measurement (ICM
2006), pp. 65–70. ACM Press (2006)

8. Mitchell, J.C., Mayer, J.R.: Third-party web tracking: Policy and technology. In:
Proceedings of IEEE Symposium on Security and Privacy (S&P 2012), pp. 413–427
(2012)

9. Mowery, K., Bogenreif, D., Yilek, S., Shacham, H.: Fingerprinting information in
JavaScript implementations. In: Proceedings of Web 2.0 Security & Privacy (W2SP
2011). IEEE Computer Society (2011)

FP-Block : Usable Web Privacy by Controlling Browser Fingerprinting 19

10. Mowery, K., Shacham, H.: Pixel perfect: Fingerprinting canvas in HTML5. In:
Proceedings of Web 2.0 Security & Privacy (W2SP 2012). IEEE Computer Society
(2012)

11. Mulazzani, M., Reschl, P., Huber, M., Leithner, M., Schrittwieser, S., Weippl, E.R.:
Fast and reliable browser identification with Javascript engine fingerprinting. In:
Proceedings of Web 2.0 Security & Privacy (W2SP 2013), May 2013

12. Nikiforakis, N., Joosen, W., Livshits, B.: PriVaricator: Deceiving fingerprinters
with little white lies. Technical report MSR-TR-2014-26, Microsoft Research,
February 2014

13. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In: Proceedings of 34th IEEE Symposium on Security and Privacy (S&P 2013),
pp. 541–555. IEEE Computer Society (2013)

14. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party
tracking on the web. In: Proceedings of 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2012), pp. 155–168. USENIX (2012)

15. Roosendaal, A.: We are all connected to facebook ... by facebook!. In: Gutwirth,
S., Leenes, R., De Hert, P., Poullet, P. (eds.) European Data Protection: In Good
Health, pp. 3–19. Springer, The Netherlands (2012)

16. Unger, T., Mulazzani, M., Fruhwirt, D., Huber, M., Schrittwieser, S., Weippl, E.R.:
SHPF: Enhancing http(s) session security with browser fingerprinting. In: Proceed-
ings of Eighth International Conference on Availability, Reliability and Security
(ARES 2013), pp. 255–261. IEEE Computer Society (2013)

17. Yen, T.-F., Xie, Y., Yu, F., Yu, R.P., Abadi, M.: Host fingerprinting and tracking
on the web: Privacy and security implications. In: Proceedings of 19th Annual
Network & Distributed System Security Symposium (NDSS 2012). The Internet
Society (2012)

Mind-Reading: Privacy Attacks Exploiting
Cross-App KeyEvent Injections

Wenrui Diao1, Xiangyu Liu1, Zhe Zhou1, Kehuan Zhang1(B), and Zhou Li2

1 Department of Information Engineering, The Chinese University of Hong Kong,
Hong Kong, China

{dw013,lx012,zz113,khzhang}@ie.cuhk.edu.hk
2 IEEE Member, Boston, MA, USA

lzcarl@gmail.com

Abstract. Input Method Editor (IME) has been widely installed on
mobile devices to help user type non-Latin characters and reduce the
number of key presses. To improve the user experience, popular IMEs
integrate personalized features like reordering suggestion list of words
based on user’s input history, which inevitably turn them into the vaults
of user’s secret. In this paper, we make the first attempt to evaluate the
security implications of IME personalization and the back-end infrastruc-
ture on Android devices. In the end, we identify a critical vulnerability
lying under the Android KeyEvent processing framework, which can be
exploited to launch cross-app KeyEvent injection (CAKI) attack and
bypass the app-isolation mechanism. By abusing such design flaw, an
adversary is able to harvest entries from the personalized user dictionary
of IME through an ostensibly innocuous app only asking for common
permissions. Our evaluation over a broad spectrum of Android OSes,
devices, and IMEs suggests such issue should be fixed immediately. All
Android versions and most IME apps are vulnerable and private infor-
mation, like contact names, location, etc., can be easily exfiltrated. Up
to hundreds of millions of mobile users are under this threat. To miti-
gate this security issue, we propose a practical defense mechanism which
augments the existing KeyEvent processing framework without forcing
any change to IME apps.

Keywords: Mobile security · Smart IME · Privacy leakage · System
flaw

1 Introduction

Smartphone is becoming the major device for handling people’s daily tasks like
making calls, sending/receiving messages and surfing the Internet. Of partic-
ular importance in supporting these features are input devices. Among them,

Responsible disclosure: We have reported the CAKI vulnerability and the corre-
sponding exploiting schemes to the Android Security Team on January 7th, 2015.
The video demos can be found at https://sites.google.com/site/imedemo/.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 20–39, 2015.
DOI: 10.1007/978-3-319-24177-7 2

https://sites.google.com/site/imedemo/

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 21

Fig. 1. Smart IME on Android
Fig. 2. Warning message

keyboard, either hardware keyboard integrated within mobile phone or soft key-
board displayed on touch screen, receives a significant volume of users’ input.
These keyboards are mostly tailored to users speaking Latin languages. Users
in other regions like Chinese and Japanese have to use Input Method Editor (or
IME) to type non-Latin characters. In fact, a large number of IME apps1 have
emerged since the advent of smartphone and been installed by enormous pop-
ulation. The capabilities of IME are continuously extended to optimize users’
typing experience. The present IME (see Fig. 1) is able to learn the words a user
has inputted, customize the suggested words, and predict the words the user
plans to type. These user-friendly features help the IME gain popularity even
among Latin-language users.

The wide adoption of IME, however, does not come without cost. Previ-
ous research has raised the privacy concerns with shady IMEs which illegally
spy on users’ input [30,34,35,38]. Indeed, they could cause security and privacy
issues if installed by common users, but their impact is limited as the major-
ity of IMEs are well-behaved and there have been efforts in warning the risk of
enabling a new IME (see Fig. 2). The question not yet answered is whether legit-
imate IMEs are bullet-proof. If the answer is negative, they can be exploited
by adversary as stepping stones to breach the privacy of mobile users. In this
work, we examine smart IMEs (the ones supporting optimization features) and
the back-end framework in an attempt to verify their security implications. We
choose Android as a target platform given its popularity and openness.

KeyEvent Processing. We first look into the underlying framework which
handles input processing. In short, each key press on hardware keyboard trig-
gers a sequence of KeyEvents [11] on Android. As for the purpose of automated

1 We use IME and IME app interchangeably in this paper.

22 W. Diao et al.

testing, a mobile app can also simulate key presses by directly injecting
KeyEvents. Without a doubt, such behavior should be confined to prevent a
malicious app from illegally injecting KeyEvents to another victim app. Android
consolidates KeyEvent dispatching by ensuring that either the KeyEvent sender
app and receiver app are identical or sender app has a system-level permission
(INJECT EVENTS) which cannot be possessed by third-party apps. Failing to pass
such check will cause KeyEvent being discarded and an exception thrown.

Our Findings. Unfortunately, this seemingly invulnerable framework can be
cracked. If a malicious app injects KeyEvents to its owned EditText widget
with IME turning on, the KeyEvents will be redirected to the IME, resulting in
cross-app KeyEvent injection (CAKI) attack. Following this trail, attacker
can peep into IME dictionary (usually stored in the internal storage protected
by app-isolation mechanisms) and know user’s favorite words or even the words
taken from other sensitive sources, like phone contact. The root cause of this
vulnerability is that Android only performs security checks before KeyEvent is
dispatched but misses such when KeyEvent is delivered. For this special case,
because of the discrepancy between the point of checking and the point of deliv-
ering, IME is turned into the final receiver on the fly when KeyEvent is delivered,
therefore the security check at the beginning is bypassed. Since this issue exists
in the system layer, all IMEs are potentially under threat.

Attack Against IME. Even knowing this vulnerability, a successful attack
against IME is not trivial. The challenges include how to efficiently extract
words related to personal information or interest and how to hide the mali-
cious activities from user. Towards solving the first challenge, we devise new
technique to automatically enumerate the combinations of prefix letters and use
differential analysis to infer the words private to user. This technique can be
adapted to different language models and all achieve good results. To address
the second challenge, we combine several well-founded techniques to make the
attack context-aware and executed till user is absent.

We implemented a proof-of-concept malicious app named DicThief and eval-
uated it against 11 very popular IMEs and 7 Android OS versions. The result is
quite alarming: all the Android versions we examined are vulnerable and most
of the IMEs we surveyed are not immune. The population under threat is at
a scale of hundreds of millions (see IME popularity in Table 3). Towards
mitigating this urgent issue, we propose an origin-checking mechanism which
augments the existing Android system without forcing any change to IME apps.

Contributions. We summarize this paper’s contributions as below:

• New Vulnerability. We discovered a fundamental vulnerability in the Android
KeyEvent processing framework leading to CAKI attack.

• New Attack Surface. We show by launching CAKI attack, an attacker can steal
a variety of private information from IME dictionary. Differing with previous
IME-based attacks, our attack is the first to exploit the innocent IMEs.

• Implementation, Evaluation, and Defense. We implemented the attack app
DicThief and demonstrated the severeness of this problem by testing under
different real-world settings. We also propose a defense scheme as a remedy.

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 23

2 Background and Adversary Model

2.1 IME and Personalized User Dictionary

IMEs have emerged to support users speaking different languages like English
and Chinese. A smartphone is usually shipped with pre-installed IMEs, but
alternatively, users could download and use other IME apps. IME have gained
massive popularity: top IMEs like Sogou Mobile IME [16,17] has more than 200
million active users.

The IMEs used today have been evolved from solely soft keyboard to ver-
satile input assistant with many new features to improve users’ typing experi-
ence. The goals of these new features are to reduce the number of keys a user
needs to type. For instance, current mainstream IMEs (such as SwiftKey [18],
TouchPal [21], Sogou Mobile IME, etc.) implement features like dynamic sug-
gestions order adjustment, contact names suggestions, next-word prediction and
new word saving to provide suggestions for current or subsequent words. Hence,
a user could select a word among them without typing the complete text. These
features are called “optimization features” and we elaborate them below:

Fig. 3. Dynamic order adjustment

– Dynamic Order Adjustment. This
feature adjusts the order of suggested
words dynamically according to user’s
input history. For example, as shown in
Fig. 3, two typed characters “ba” lead
to different lists of suggested words.
“bankruptcy” is the first suggestion in the
upper picture while “banquet” is the first
suggestion in the lower one.
– Contact Names Suggestion. IME can suggest a name from user’s phone
contact when part of the name is typed. In addition, suggestions also pop up
when an unknown name is typed for correction. The READ CONTACTS permission
needs to be granted to support this feature.

Fig. 4. Next-word prediction

– Next-Word Prediction. IME attempts
to predict the next word user wants to
input based on the previous words typed.
Figure 4 shows an example that IME gives
a prediction “Newcastle” based on the pre-
vious input “Fly to”.
– New Word Saving. When a word not existing in the dictionary is typed,
IME automatically adds this word to its dictionary.

To summarize, all the above features are driven by user’s personalized infor-
mation, like user’s input history. Furthermore, when the permissions shielding
user’s sensitive data are granted, IMEs can customize their dictionaries using
various data sources, including SMS, Emails, and even social network data. It
is very likely that the names of user’s family members and friends and nearby
locations are recorded by the IME after using for a while. We manually examined
the settings and permissions of several IMEs and summarizes the data sources

24 W. Diao et al.

Table 1. Data sources of mainstream IMEs for optimization features

Production name Version Input
history

Contacts Emails/
SMS

Social
network

Location

Go Keyboard [7] 2.18
√ √

TouchPal [21] 5.6
√ √ √ √

Adaptxt - Trial [1] 3.1
√ √ √ √ √

Google Keyboard [8] 4.0
√ √ √ √

SwiftKey Keyboard [18] 5.0
√ √ √ √

Swype Keyboard Free [19] 1.6
√ √ √

Fleksy Keyboard Free [5] 3.3
√ √ √ √

Google Pinyin Input [9] 4.0
√ √

Sogou Mobile IME [16] 7.1
√ √ √

Baidu IME [3] 5.1
√ √

QQ IME [14] 4.7
√ √

of mainstream IMEs (each of them has over 1 million installations) in Table 1.
Apparently, the personalized dictionary should be considered private assets and
protected in the safe vault. In fact, most of the IME apps we surveyed keep their
dictionaries in the internal storage of mobile phone which is only accessible to
the owner app.

2.2 Adversary Model

The adversary we envision here is interested in the dictionary entries of IME
deemed private to the user, like contact names, and aims to steal and exfil-
trate them to her side. We assume the user has installed a victim IME which is
“benign” and “smart”.

1. “Benign” means this IME exercises due diligence in protecting user’s private
data. The measures taken include keeping its dictionary in app’s private folder
(internal storage). This assumption differs fundamentally from previous IME-
based attacks which assume IME itself is malicious.

2. “Smart” means this IME can learn unique word-using habits and build a
personalized user dictionary based on user’s input history, contacts, etc.

At the same time, we assume this user has downloaded and installed a
malicious app named DicThief aiming to steal entries from victim IME. The
default (enabled) IME on the device could be identified through the system class
Settings.Secure [15]. This malware only claims two permissions: INTERNET and
WAKE LOCK. Both permissions are widely claimed by legitimate apps and unlikely
to be rejected by users: nearly all apps declare the INTERNET permission, and
WAKE LOCK is also widely claimed by apps like alarm, instant messenger (e.g.,
WhatsApp and Facebook Messenger), etc. With the WAKE LOCK permission, our

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 25

Fig. 5. Android KeyEvent processing framework and CAKI vulnerability

attack can be launched when the phone is in sleep mode and locked with
password.

3 Vulnerability Analysis

While direct access to the dictionary of IME is prohibited if coming from a dif-
ferent and non-system app, our study shows this security guarantee can be vio-
lated. By revisiting the keystroke processing framework of Android, we discover
a new vulnerability lying under Android OS, allowing us to launch Cross-App
KeyEvent Injection (CAKI) attack. In essence, by exploiting such vulnerability,
a malicious app can simulate user keystrokes on an IME, and read the suggested
words. Below we describe the mechanism of keystroke processing in Android and
the new vulnerability we identified.

3.1 Android KeyEvent Processing Flow

The internal mechanism of input processing in Android is quite sophisticated
and here we only overview how KeyEvents2 are processed. At a high level, when
a key is pressed on hardware (built-in) keyboard, a sequence of KeyEvents will
be generated by wrapping the raw input, and then sent to the corresponding
handlers (e.g., IME). These two steps are called KeyEvent pre-processing and
KeyEvent dispatching. We illustrate the process in Fig. 5 and then elaborate the
details below3:

2 IME accepts another kind of input event – MotionEvent [12], coming from soft
keyboard (see Fig. 1). Its processing flow is different and not covered in this paper.

3 Our descriptions are based on Android 4.4.4 r2.0.1 [2]. For other versions, the flows
are mostly the same. Only the paths of source code could be different.

26 W. Diao et al.

1 bool checkInjectionPermission (...) {
2 if (injectionState
3 && (windowHandle == NULL
4 || windowHandle ->getInfo ()->ownerUid !=

injectionState ->injectorUid)
5 && !hasInjectionPermission (injectionState ->

injectorPid , injectionState ->injectorUid)) {
6 ... // Code omitted due to space limit

7 return false; // Permission denied

8 }
9 return true; // Pass checking

10 }

KeyEvent Pre-processing. As soon as a hardware key (e.g., built-in key-
board) is pressed, a raw input event is sent to a system thread InputReader
(initiated by WindowManagerService) and encapsulated into an object of type
NotifyKeyArgs. Then, this object is passed to thread InputDispacher (also ini-
tiated by WindowManagerService) and a KeyEntry object is generated. Lastly,
this object is converted to EventEntry object and posted to the message queue
(InboundQueue) of InputDispacher to be distributed to right handlers. If a key
press is simulated by an app, the corresponding KeyEvents are initiated directly
and finally sent to the message queue (in the format of EventEntry).

KeyEvent Dispatching. Before event dispatching, there is a permission check-
ing process on the corresponding EventEntry to ensure its legitimacy. The code
undertaking such check is shown below (excerpted from the Android code repos-
itory [24]):

This routine first verifies whether the event is generated by a hardware device
(checking injectionState). If injectionState is NULL, the check is passed and
the event is directly sent to handlers. Otherwise (the event is generated by an
app), this routine verifies whether the sender app owns the required permission
or if it is identical to the receiver app (we fill in the details in Sect. 3.2).

An input event passing the above check will be dispatched via a system IPC
mechanism InputChannel to the receiver app, which should run in the fore-
ground and take the input focus. In particular, the WindowInputEventReceiver
component belonging to the receiver app process will be notified and then for-
ward the received KeyEvent to other components of ViewRootImpl, a native OS
class handling GUI updates and input event processing, for further processing.
When an IME is activated and also brought to the foreground (see Fig. 1), there
exists a special policy: ViewRootImpl will redirect the KeyEvent to the IME,
which absorbs the event and renders the resulting text (suggested word or the
raw character) on the client app’s view. This policy guarantees the KeyEvents
are processed by IME with high priority.

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 27

3.2 Cross-App KeyEvent Injection Vulnerability

Since the simulated key-presses could come from a malicious app, Android
enforces much stricter checking. Still, the checking routine is not flawless. Below,
we elaborate a critical vulnerability in this routine:

KeyEvent Injection. An app can simulate various input events using the
APIs provided by Android instrumentation library [10]. This is supposed to
support automated app testing. For example, an app can invoke the function
Instrumentation.sendKeyDownUpSync() to simulate user’s keystrokes, such as
“d”, “7”, “!”, and the corresponding KeyEvents will be injected into the message
queue subsequently.

Verification. Injected KeyEvent needs to be vetted. Otherwise, one app can
easily manipulate the input to the app taking focus. If a KeyEvent is not orig-
inated from hardware keyboard, at least one of the security checks has to be
passed (see the code block of checkInjectionPermission in Sect. 3.1):

1. The KeyEvent injector and receiver are the same.
2. The KeyEvent injector is granted with the INJECT EVENTS permission.

As INJECT EVENTS is a system-level permission, a non-system-level app
(installed by user) simulating key-press has to meet the other requirement: the
receiver app is itself.

CAKI Vulnerability. At first glance, the above verification process is sound.
However, it fails when IME is in the picture, and as such, a malicious app can
launch Cross-App KeyEvent Injection (CAKI) attack.

A non-system-level malicious app (named appx) running in the foreground
first activates IME (named IMEy) set as default by user, which could be achieved
by setting the focus on an EditText widget [4] in appx’s window. After IMEy

is ready and its virtual keyboard is displayed, appx injects a KeyEvent to the
message queue. At this point (Time of Check), the KeyEvent receiver is also
appx as it takes input focus (another party, IME, cannot take focus by design).
The projected event flow turns out to be {appx → system → appx} and clearly
passes the check of routine checkInjectionPermission. Then (Time of Use),
the KeyEvent is sent to RootViewImpl of appx. Given IMEy is activated at this
moment, this KeyEvent is redirected to IMEy (see Sect. 3.1), turning the actual
event flow into {appx → system → RootViewImpl of appx → IMEy}. In this
stage, no additional checks are enforced and IMEy will respond to the KeyEvent.
Obviously, the security guarantee is violated because appx and IMEy are not
identical. This vulnerability allows a malicious app to send arbitrary KeyEvents
to IME.

This CAKI vulnerability can be attributed to a big class of software bugs,
namely time-of-check to time-of-use (TOCTTOU) [31,39,41,44]. How-
ever, we are among the first to report such bugs in Android platform4 and
4 We found only one vulnerability disclosure by Palo Alto Networks’ researchers [42]

regarding TOCTTOU in Android, which was reported in March 2015.

28 W. Diao et al.

our exploitation showcase indicates this CAKI vulnerability could cause serious
consequences.

4 Attack

In this section, we describe the design and implementation of the proof-of-
concept app DicThief, which exploits the CAKI vulnerability and steals dic-
tionary entries.

After DicThief is run by the victim user, it starts to flood KeyEvents to an
EditText widget which pops up the default IME when the owner app DicThief is
in the foreground. IME will commit words to the EditText and they are captured
by DicThief. When the number of stolen entries hit the threshold, DicThief will
stop flooding KeyEvents and exfiltrate the result (compressed if necessary) to
attacker’s server. Since KeyEvent injection has been discussed in the previous
section, here we elaborate how to harvest meaningful entries from the dictionary
and our context inference technique in making the attack stealthy.

4.1 Enumerating Entries from Dictionary

Given the huge size of IME dictionary (hundreds of thousands of words), the
biggest challenge is how to identify the entries comprehending user’s private
information efficiently. These entries could be added from user’s typed words,
imported from user’s private data (e.g., contact names) or reordered according to
user’s type-in history. We refer to such entries as private entries here. Through
manually testing several popular IME apps, we observed one important insight
regarding these private entries: they usually show up after 2 or 3 letters/words
typed and they are placed in 1st or 2nd position in the suggestion list. In other
words, by enumerating a small number of letter/word combinations, a large
number of private entries can be obtained. We design two attack modes based
on such insight:

– Attack Mode 1 – Word Completion: For each round, DicThief injects 2 or
3 letters and then injects the space key or number “1” to obtain the first word
from the suggestion list of IME, which is then appended to the list of collected
results. After all the valid combinations are exhausted or the threshold is
reached, the list is sent to attacker’s server. This attack works based on the
dynamic order adjustment feature of IME: e.g., if a user frequently chooses
“bankruptcy” from suggestion list, when she types “ba”, the suggestion list
will become {bankruptcy | ban | bank | bad}, and the private entry can be
easily determined.

– Attack Mode 2 – Next-Word Prediction: This time, DicThief injects a
complete word (or several words) for each round and selects the first word
prompted by IME. Similarly, the space key or number “1” is used to obtain
the first suggestion, and the attack ends when a certain number of rounds
is reached. This attack exploits IME’s next-word prediction feature: e.g., the
injected words “fly to” will trigger the list {Newcastle | the | be | get} if IME
concludes that “Newcastle” is user’s favorite choice.

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 29

The generated list comprehends both private entries and the entries irrelevant
to customization. We need to filter out the latter ones. To this end, we carry
out a differential analysis. We run DicThief against a freshly installed IME app
which has not been used by anyone and compile all the first words in two modes.
Next, we find the different words between the list collected from victim’s phone
with ours. The words left are deemed private entries. This procedure runs on
attacker’s server, but it can be executed on victim’s phone instead to save the
bandwidth.

4.2 Attack in Stealthy Mode

When DicThief is launched, it has to be displayed and run in the foreground in
order to turn on IME. If user is using the phone at the same time, the malicious
activities will be noticed easily. In this section, we propose several techniques to
reduce the risks of notice.

Context Inference. DicThief is designed to run when user falls asleep. At that
time, the phone should be placed on a flat platform (no acceleration observed),
the screen should be dimmed, and the time should be at night. All of these
information can be retrieved using APIs from system classes (SensorManager
for accelerator metrics, PowerManager for screen status and Calendar for current
time respectively) without any permission. These techniques are also exploited
by other works [28,36] to make their attacks stealthy.

When DicThief is opened by user, it stays in the background and is period-
ically awakened to infer the running context. DicThief will not start to inject
key-presses until the current context meets the attack criteria.

Circumventing Lock Screen. Our attack has to be executed even if the phone
is asleep and locked with password. To proceed the attack, DicThief requires
the WAKE LOCK permission being granted first. As discussed in Sect. 2.2, user
will not reject such request in most cases. Besides, DicThief needs to add the
FLAG SHOW WHEN LOCKED flag in its window setting, making it take precedence
over other lock screens [22].

Yet, common apps will not be brought to the top of foreground when phone is
locked. Each app has a corresponding object WindowState, which stores Z-order
regarding its order of layer in display. The window with the bigger Z-order will be
shown in a higher layer. A general app window is set to 2 while key guard window
(lock screen) is set to 13, therefore, key guard window will always display in front
of other general apps. WindowState is managed by WindowManagerService and
Z-order cannot be tweaked by app. Nevertheless, when an app invokes an IME,
it will be brought to the top of the client app disregarding its assigned Z-order
due to one policy of Android [25]. Hence, our attack can succeed even when the
screen is securely locked with password.

4.3 Case Study of IMEs for Non-Latin Languages

Not only is our attack effective against IMEs for English, IMEs for non-Latin
languages are vulnerable as well. Apart from English users, the users who type in

30 W. Diao et al.

Fig. 6. Example of Chinese Pinyin
Fig. 7. One-to-many mapping

non-Latin words have to rely on alternative IMEs since the language characters
are not directly mapped to English keys. In this section, we demonstrate a case
study on attacking Chinese IMEs. It turns out just a few adjustments need to
be applied to the enumeration algorithm and private entries can be effectively
obtained, albeit the complexity of such language.

Chinese and Pinyin. Pinyin is the official phonetic system for transcribing
the Mandarin pronunciations of Chinese characters into the Latin alphabet [13].
Pinyin-based IMEs are, in fact, the most popular IMEs used by Chinese users.
Except for some special cases, every Chinese syllable can be spelled with exactly
one initial followed by one final [13,23]. In total, there are 23 initials5 and 37
finals. Figure 6 describes an example.

Each Chinese character has a unique syllable, but one syllable is associated
with many distinct characters. Each Chinese word is composed of multiple char-
acters (usually two to three). An example is shown in Fig. 7. The character
combination poses a big challenge in harvesting meaningful Chinese entries: a
prefix (e.g., “ji”) might only reveal one Chinese character, far from meaningful
words. On the other side, a prefix in English (e.g., “mis”) can yield the the list
of meaningful words with viable size.

Attack. Fortunately, Pinyin-based IME optimizes the input experience. By pro-
viding several syllable initials, the suggestion list of words with the same initials
will be produced. For instance, typing “j’h” (initial j plus initial h) will yield the
list of 5 Chinese words shown in Fig. 7. It motivates us to enumerate the combina-
tion of initials instead of the leading Pinyin letters. Here, we show the algorithm
of attacking word-completion mode of Pinyin-based IME in Algorithm 1.

5 Evaluation

We analyzed the scope of attacks (the vulnerable Android versions and IMEs)
and evaluated the effectiveness of the two attack modes described in Sect. 4.1.

5 The initial set: {w, y, b, p, m, f , d, t, n, l, g, k, h, j, q, x, zh, ch, sh, r, z, c, s}.

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 31

Algorithm 1. Enumerating 2-character words of Pinyin-based IMEs
1 for Key 1=InitialSet.first; Key 1<=InitialSet.last; Key 1=Key 1.next() do
2 for Key 2=InitialSet.first; Key 2<=InitialSet.last; Key 2=Key 2.next() do
3 injectKeyEvent(Key 1) ; // initial of the first character

4 injectKeyEvent(APOSTROPHE) ; // divide two characters

5 injectKeyEvent(Key 2) ; // initial of the second character

6 injectKeyEvent(KEYCODE SPACE) ; // commit the suggestion

7 end

8 end

5.1 Scope of Attack

The CAKI vulnerability discovered in this paper derives from the design flaw
of Android framework. Thus, in theory, all Android devices should suffer from
this vulnerability. We examined 7 different versions of Android OS on 4 physical
Android phones and 2 Android images on an emulator, and it turns out all
versions ranging from very old (2.3.7) to the latest (5.0) are vulnerable without
exception. The list of vulnerable phones and OS versions is shown in Table 2.

Table 2. Evaluation against Android OSes

Phone model Android version Attack
result

Nexus 6 (Genymotion
Emulator [6])

AOSP Android 5.0 success

Sony Xperia Z3 Sony official 4.4.4 success
Samsung Galaxy S3 CyanogenMod 4.4.4 success

Samsung official 4.3 success
Meizu MX2 Meizu official 4.2.1 success
Sony Xperia ion Sony official 4.1.2 success
Nexus S (Genymotion

Emulator)
AOSP Android 2.3.7 success

Also, our attack
is not limited to a
specific language or
a specific IME. All
smart IMEs equipped
with optimization fea-
tures should be poten-
tially vulnerable. We
tested our attack on
11 popular IMEs and
8 among them are
vulnerable, as shown
in Table 3. Our attack
does not succeed on
3 IMEs because they
only respond to taps
on soft keyboard, but
ignore the key-presses simulated by app. These IMEs, however, may have com-
patibility issues since hardware keyboard is not supported well. We suspect such
lucky escape is probably due to design flaw rather than protection enforced.

5.2 Experiment on Word Completion Attack Mode

In this mode, DicThief injects 2 or 3 random letters and selects the first word
suggested by IME. The victim IME we chose is Sogou Mobile IME [16], a domi-
nant Pinyin-based IME in China with 200 million monthly active users [17]. The
information leakage and overhead caused by DicThief are assessed separately:

32 W. Diao et al.

Information Leakage. We conducted a user study6 to portrait and quantify the
leaked information. We recruited 5 Sogou Mobile IME users (labeled as User1 –
User5) to participate in our experiments. All of them are native Chinese speakers
(the mother tongue of User5 is Cantonese, which is a dialect of Chinese). Their
basic information and the final results are shown in Table 4.

All the participants installed a modified version of DicThief on their phones
before the experiment. All 2-initial combinations are probed, counting up to 529
rounds (23 × 23 combinations, see Sect. 4.3). To address the privacy concerns
of our human subjects, we did not collect any word entries from their phones.
Instead, we asked them to report the type and quantity of personalized entries
(calculated by DicThief). The detailed result is presented in two aspects:

1. Intuition: Severity of Leaked Information. DictThief shows the extracted
words to the volunteers directly after the attack finishes and then the volunteers
are asked to fill a survey. Questions include: how much sensitive information are
extracted [“Many” /“Some” /“None”]? which categories can be used to sum-
marize the leaked information [1©“Occupation”/ 2©“Contacts”/ 3©“Location”/
4©“Hobby”/ 5©“Other personalized information”]? The result is shown in the
5th & 6th columns of Table 4.

2. Quantification: Percentage of Personalized Entries. For each
volunteer, MD5 for all extracted words (529 entries total) are generated and
compared with the MD5 of extracted words from the IME freshly installed.
Personalized entry is counted if discrepancy identified. The result is shown in
the last two columns of Table 4.

Apparently, a plenty of sensitive information will be leaked if the CAKI
vulnerability is exploited by real attackers. On average, 58.8 % of the words

Table 3. Evaluation against IMEs

Production name Version Language(s) Vulnerable Installations

Go Keyboard [7] 2.18 Multi-language Yes 50,000,000+

TouchPal [21] 5.6 Multi-language Yes 10,000,000+

SwiftKey Keyboard [18] 5.0 Multi-language Yes 10,000,000+

Adaptxt - Trial [1] 3.1 Multi-language Yes 1,000,000+

Google Pinyin Input [9] 4.0 Chinese, English Yes 10,000,000+

Sogou Mobile IME [16,17] 7.1 Chinese, English Yes 200,000,000+

Baidu IME [3] 5.1 Chinese, English Yes 1,000,000+

QQ IME [14] 4.7 Chinese, English Yes 1,000,000+

Swype Keyboard Free [19] 1.6 Multi-language No 1,000,000+

Fleksy Keyboard Free [5] 3.3 Multi-language No 1,000,000+

Google Keyboard [8] 4.0 Multi-language No 100,000,000+

6 The experiments have followed the IRB rules, and all human subjects fully under-
stood the privacy implication of the experiments and agreed to participate.

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 33

Table 4. User study – word completion attack mode

User Age Gender Installation
time

Feeling of
info leakage

Category of
info leakage

Personalized
entries

% of Person-
alization

1 25∼30 Male 1 year+ Many 1© 2© 3© 5© 416 78.6%

2 25∼30 Male 8 months+ Many 1© 2© 239 45.2%

3 25∼30 Male 1 year+ Some 2© 5© 358 67.7%

4 18∼25 Male 2 months+ Many 2© 3© 5© 107 20.2%

5 18∼25 Male 2 months+ Some 2© 5© 436 82.4%

extracted are indeed personalized. Besides, all volunteers report that contact
names are listed in the result, which are definitely sensitive to users.

Time and Battery Consumption. The time spent for KeyEvent injection is
negligible, but DicThief has to pause for a while after a round of key injection
till the IME renders its UI. The actual time overhead depends on the implemen-
tation of IME apps and the performance of phone’s hardware. We measure it on
Samsung Galaxy S3 and set the waiting period to 70 ms based on manual testing
a priori. The total time consumed adds up to 221 s for all 2-initial combinations
injections against Sogou Mobile IME. Meanwhile, the battery consumption is
also slim, costing less than 1 % of total battery life. The whole attack process
will hardly be detected by victim user if DicThief runs under the right context.

5.3 Experiment on Next-Word Prediction Attack Mode

In this mode, DicThief injects one or more words and choose the first word from
the list of predictions provided by IME. The IME evaluated is TouchPal [21],
an English IME with over 10 million installations worldwide. Since it is hard
for us to recruit enough native English speakers as volunteers in our region, we
decided to use public web resources to create virtual user profiles and customize
IME dictionary with them. It brings the extra benefit that now we are allowed
to look into what exact private entries are leaked. We document the steps for
generating user profiles as below:

1. In a real-world scenario, an IME is customized by the text a user inputs or
information left by the user. Likewise, for each virtual user, we compile the
text she could enter and dump it to IME. In all, we create 5 users (labeled
as Sample1 – Sample5) and use content scraped from 5 blogs to externalize
them separately. The blogs are carefully chosen so that the topic focused on
by each one is different. Table 5 shows statistics of the prepared data.

2. Since TouchPal is able to read messages and customize itself, we dump the col-
lected blog content into the SMS sent box of the test phone (Samsung Galaxy
S3) using an Android app developed by ourselves. We use one paragraph to
fill one text message.

3. Now, TouchPal can proceed to customize its dictionary. We tick the options
“Learn messages automatically” and “Only learn sent messages”, and run the

34 W. Diao et al.

Table 5. Simulation experiment – next-word prediction attack mode

Sample Crawled

words

Author info

&

Blog topics

Personalized

entries

% of personal-

ization

Blog

URL

1 31581 Female,

professor,

work

experi-

ence

273 63.3% http://ge***hd.blogspot.com/

2 31661 Male,

cooking,

food

39 9.0% http://ff***od.blogspot.com/

3 35606 Male,

American

football

73 17.0% http://fo***og.blogspot.com/

4 40913 Male,

personal

life

54 12.5% http://li***gy.blogspot.com/

5 32347 Female,

traveling

208 48.3% http://www.st***ls.com/

“Learn from messages” function of TouchPal. It takes one hour on average
for the customization process to end.

When a predicted word is selected, TouchPal will prompt a new predicted word.
Hence, a user can type one word and continuously choose the words provided by
TouchPal to build a long phrase. We leverage this feature to carry out 3-level pre-
diction attack. For example, DicThief injects one word “want” and then chooses
three predicted words – “to”, “go” and “shopping” – prompted consecutively
(through injecting number “1”). A meaningful phrase “want to go shopping” will
be revealed. Our empirical study suggests that starting from a verb, we have
higher chances to capture a meaningful phrase. Therefore, we select 431 words
from 1000 frequently used English verbs [20] (from “is” to “wrap”) to bootstrap
our attack. The remaining 569 words are not selected as they are either other
tenses of the selected verbs or largely used as nouns.

Information Leakage. We followed the same leakage quantification method
used in the last experiment and the result is shown in Table 5. Since the data
comes from virtual users, we take a close look at the personalized words this
time. We use Sample1 as an example and show its leaked information in the list
below. (Another example is described in Appendix).

For a sequence of injected keys, we compare the phrase generated from fresh
IME (left-side of “→”) and Sample1’s IME (right-side of “→”) (see Table 6).
One can easily find words related to Sample1’s occupation, such as “tenure”,
“professional editor”, “advise”, “university” and “recent talk”. Expectedly, the
privacy of a real-world user will be under severe threat if such attack is launched.

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 35

Table 6. Examples of private entries – Sample1

– know what to do → know I always advise

– want to go to → want to publish an

– become a better place → become a professional editor

– relate to the gym and → relate to the New York

– create a new one → create a gmail account

– invest in a few days → invest in a recent talk

– rely on the way → rely on the tenure

– buy a new one → buy a new university

– wish I could have → wish I could write

Time and Battery
Consumption. The
time overhead is also
small. Injection of
single key costs 35
ms (counting wait-
ing time) and the
whole attack takes
around 401 s. The
battery consumption
is also negligible (less
than 1 %).

6 Defense

Our reported attack exploits a critical vulnerability of Android KeyEvent process-
ing framework as the security checks fail to cover the complete execution path.
However, it is not a trivial task to fix this vulnerability due to the highly
sophisticated design of Android. Adding a new permission to limit such behav-
ior is unhelpful. Injecting KeyEvent to the app itself should be permitted as usual
for the purpose of automated testing unless IME is involved in the process. Yet,
there is no way to ensure this when app installation. Simply modifying IME app
code and rejecting all the injected KeyEvents is not a viable solution either, as the
injections from system-level apps owning the INJECT EVENTS permission should
be allowed.

To mitigate such threat, we propose to augment the current KeyEvent
processing framework. Currently, the information about KeyEvent sender is lim-
ited. It only tells whether KeyEvent is injected by one app or coming from
hardware-keyboard, turning out to be too coarse-grained. We argue that the
identity of the source app (i.e., package name, signature) should be enclosed in
KeyEvent as well, which can be fulfilled by adding a new field to its data struc-
ture. Before a KeyEvent is dispatched, Android OS automatically attaches the
sender’s identity to it. Prior to forwarding KeyEvents to IME, Android OS veri-
fies the sender and discard the injected KeyEvents if the sender is neither system
app owning the INJECT EVENTS permission nor hardware-keyboard. Attaching
origin has also been explored by Wang et al. [40] to prevent one app from send-
ing unauthorized intents to another app in Android. Their approach requires
modifications to Android OS and app’s code, and the policy setting process is
delegated to the app side. In contrast, our approach only calls for modification
to Android OS, as the policy should be identical to all IME apps, which protects
them transparently.

Meanwhile, we examine other possible countermeasures, but they all come
with the loss of usability or compatibility. One possible solution is to prohibit
IME being invoked when the phone is securely locked, but this will disable the
quick-reply feature of the default SMS app and third-party IM apps. We can also

36 W. Diao et al.

force IME to commit words to text controls only if the word displayed on touch
screen is tapped, which, however, will block the input from hardware keyboard.

7 Related Works

IME Security Issues. All user typed text can be collected by IMEs, and user’s
privacy will be breached if an IME sends out the collected key presses out of
malice. In fact, there have been questionable behaviors of IMEs observed in the
wild [34,35]. Suenaga [38] and Mohsen et al. [30] also studied key-logging threats
of malicious IMEs on Windows and Android platform respectively. In this work,
we identify a totally different venue to abuse IME: rather than enticing users to
install malicious IME, an adversary is able to exfiltrate the sensitive information
through a new system design flaw and a novel IME probing technique.

Key-Logging Attacks. A non-system app on Android cannot obtain keystrokes
directly. However, previous works show that it is possible to infer keystrokes
through various side-channels. A touch on the phone surface, especially the soft
keyboard will cause vibrations and touching on different positions will intro-
duce distinctive vibration patterns. Previous works monitor the motion sen-
sor like accelerometers to collect vibration statistics and infer what keys are
pressed [26,27,33,43]. Besides, other sources are also exploited for keystrokes
inference, including sound collected by microphone [32] and video camera [37].
On the other hand, our work steals user’s input history in plain text and a large
amount of typed text can be unveiled in a short time.

Untrusted Input. A plethora of key functionalities in mobile devices are driven
by user’s input and the modules handling such data are usually entailed with
very high privileges. A natural path for a malicious app to elevate its privileges
is impersonating human and injecting false input. Diao et al. [28] discovered that
an adversary can inject prerecorded voice commands to the built-in voice assis-
tant module (Google Voice Search) of Android and bypass permission checks.
Jang et al. [29] investigated accessibility (a11y) support framework of popular
desktop and mobile platforms and identified a number of system vulnerabilities
in handling user’s input. In this work, we identify a new channel to inject fake
input and bypass permission checks. We believe this type of threats is not yet
over and encourage future research in identifying other exploitable sources and
building better input validation mechanisms.

8 Conclusion

In this paper, we identify a new cross-app KeyEvent injection vulnerability
against IMEs installed on Android devices. By exploiting such flaw, an adversary
can infer words frequently used by a user or coming from other sensitive sources.
We implement DicThief, a prototype app and evaluate it under real-world set-
tings. The result shows that all Android versions and most of popular IMEs are
vulnerable, putting a large amount of users into danger. Such issue should be

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 37

fixed immediately and we propose a solution only requiring changes to Android
system. In the end, we believe this vulnerability is only the tip of the iceberg,
and the security of input processing framework and IME needs to be further
studied.

Acknowledgments. We thank anonymous reviewers for their insightful comments.
This work was supported in part by Internal Grants C001-4055006 and C001-2050398
from The Chinese University of Hong Kong.

Appendix: Additional Data for Experiments on Next-Word
Prediction Attack Mode

Table 7. Examples of private entries – Sample5

– see you soon then → see the stars and

– supply of the day → supply of our trip

– prepare for the first → prepare for the flight

– intend to do it again → intend to do in Utah

– behave like a good → behave like a packing

– rest of the day → rest of the city

– use the bathroom and → use the Sky train

– travel to the gym → travel tips for the

– search for the first → search for the flight

For Sample5, several
terms related to trav-
eling could be found.
They reflect what top-
ics the author often
types. Especially, they
point to a location –
“Utah” and a type of
transportation – “Sky
train” which is the rapid
transit railroad system
operating in Bangkok,
Thailand. After exam-
ining the blog content of
Sample5, we found the location was visited and the transportation was boarded
before (Table 7).

References

1. Adaptxt - Trial. https://play.google.com/store/apps/details?id=com.kpt.adaptxt.
beta

2. Android Open Source Project: android-4.4.4 r2.0.1. https://android.googlesource.
com/platform/frameworks/base/+/android-4.4.4 r2.0.1

3. Baidu IME. https://play.google.com/store/apps/details?id=com.baidu.input
4. EditText. http://developer.android.com/reference/android/widget/EditText.html
5. Fleksy Keyboard Free. https://play.google.com/store/apps/details?id=com.

syntellia.fleksy.kb
6. Genymotion. http://www.genymotion.com/
7. GO Keyboard. https://play.google.com/store/apps/details?id=com.jb.gokeyboard
8. Google Keyboard. https://play.google.com/store/apps/details?id=com.google.

android.inputmethod.latin
9. Google Pinyin Input. https://play.google.com/store/apps/details?id=com.google.

android.inputmethod.pinyin

https://play.google.com/store/apps/details?id=com.kpt.adaptxt.beta
https://play.google.com/store/apps/details?id=com.kpt.adaptxt.beta
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1
https://play.google.com/store/apps/details?id=com.baidu.input
http://developer.android.com/reference/android/widget/EditText.html
https://play.google.com/store/apps/details?id=com.syntellia.fleksy.kb
https://play.google.com/store/apps/details?id=com.syntellia.fleksy.kb
http://www.genymotion.com/
https://play.google.com/store/apps/details?id=com.jb.gokeyboard
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.pinyin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.pinyin

38 W. Diao et al.

10. Instrumentation. http://developer.android.com/reference/android/app/Instrumen
tation.html

11. KeyEvent. http://developer.android.com/reference/android/view/KeyEvent.html
12. MotionEvent. https://developer.android.com/reference/android/view/MotionEve

nt.html
13. Pinyin. http://en.wikipedia.org/wiki/Pinyin
14. QQ, IME. https://play.google.com/store/apps/details?id=com.tencent.qqpinyin
15. Settings.Secure. http://developer.android.com/reference/android/provider/Settin

gs.Secure.html
16. Sogou Mobile IME. https://play.google.com/store/apps/details?id=com.sohu.

inputmethod.sogou
17. SOUHU.COM Annual Report. http://mfiles.sohu.com/corp/2013%20Annual%

20Report.pdf
18. SwiftKey Keyboard. https://play.google.com/store/apps/details?id=com.touch

type.swiftkey
19. Swype Keyboard Free. https://play.google.com/store/apps/details?id=com.nuan

ce.swype.trial
20. Top 1000 Verbs. http://www.talkenglish.com/Vocabulary/Top-1000-Verbs.aspx
21. TouchPal. https://play.google.com/store/apps/details?id=com.cootek.

smartinputv5
22. WindowManager.LayoutParams. http://developer.android.com/reference/

android/view/WindowManager.LayoutParams.html
23. ISO 7098:1991 Romanization of Chinese. ISO/TC 46 Information and Documen-

tation (1991)
24. Android Open Source Project: InputDispatcher.cpp. https://android.googlesource.

com/platform/frameworks/base/+/android-4.4.4 r2.0.1/services/input/InputDisp
atcher.cpp

25. Android Open Source Project: PhoneWindowManager.java. https://android.
googlesource.com/platform/frameworks/base/+/android-4.4.4 r2.0.1/policy/src/
com/android/internal/policy/impl/PhoneWindowManager.java

26. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on smartphones. In: Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC) (2012)

27. Cai, L., Chen, H.: TouchLogger: inferring keystrokes on touch screen from smart-
phone motion. In: Proceedings of the 6th USENIX Workshop on Hot Topics in
Security (HotSec) (2011)

28. Diao, W., Liu, X., Zhou, Z., Zhang, K.: Your voice assistant is mine: how to
abuse speakers to steal information and control your phone. In: Proceedings of the
4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices
(SPSM) (2014)

29. Jang, Y., Song, C., Chung, S.P., Wang, T., Lee, W.: A11y attacks: exploiting acces-
sibility in operating systems. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS) (2014)

30. Mohsen, F., Shehab, M.: Android keylogging threat. In: Proceedings of the 9th
International Conference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom) (2013)

31. Mulliner, C., Michéle, B.: Read it twice! a mass-storage-based TOCTTOU attack.
In: Proceedings of the 6th USENIX Workshop on Offensive Technologies (WOOT)
(2012)

http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/reference/android/view/KeyEvent.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/view/MotionEvent.html
http://en.wikipedia.org/wiki/Pinyin
https://play.google.com/store/apps/details?id=com.tencent.qqpinyin
http://developer.android.com/reference/android/provider/Settings.Secure.html
http://developer.android.com/reference/android/provider/Settings.Secure.html
https://play.google.com/store/apps/details?id=com.sohu.inputmethod.sogou
https://play.google.com/store/apps/details?id=com.sohu.inputmethod.sogou
http://mfiles.sohu.com/corp/2013%20Annual%20Report.pdf
http://mfiles.sohu.com/corp/2013%20Annual%20Report.pdf
https://play.google.com/store/apps/details?id=com.touchtype.swiftkey
https://play.google.com/store/apps/details?id=com.touchtype.swiftkey
https://play.google.com/store/apps/details?id=com.nuance.swype.trial
https://play.google.com/store/apps/details?id=com.nuance.swype.trial
http://www.talkenglish.com/Vocabulary/Top-1000-Verbs.aspx
https://play.google.com/store/apps/details?id=com.cootek.smartinputv5
https://play.google.com/store/apps/details?id=com.cootek.smartinputv5
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/services/input/InputDispatcher.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/services/input/InputDispatcher.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/services/input/InputDispatcher.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/policy/src/com/android/internal/policy/impl/PhoneWindowManager.java
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/policy/src/com/android/internal/policy/impl/PhoneWindowManager.java
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/policy/src/com/android/internal/policy/impl/PhoneWindowManager.java

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections 39

32. Narain, S., Sanatinia, A., Noubir, G.: Single-stroke language-agnostic keylogging
using stereo-microphones and domain specific machine learning. In: Proceedings of
the 2014 ACM conference on Security and Privacy in Wireless and Mobile Networks
(WiSec) (2014)

33. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference
using accelerometers on smartphones. In: Proceedings of the Twelfth Workshop on
Mobile Computing Systems & Applications (HotMobile) (2012)

34. Rowe, I.: Chrome OS to warn users of privacy risks in alternate keyboard lay-
outs, June 2014. http://www.linuxveda.com/2014/06/20/chrome-os-warn-users-
privacy-risks-alternate-keyboard-layouts/

35. Sanders, J.: Japanese government warns Baidu IME is spying on
users, January 2014. http://www.techrepublic.com/blog/asian-technology/
japanese-government-warns-baidu-ime-is-spying-on-users/

36. Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: a stealthy and context-aware sound trojan for smartphones. In: Proceed-
ings of the 18th Network and Distributed System Security Symposium (NDSS)
(2011)

37. Simon, L., Anderson, R.: PIN skimmer: inferring PINs through the camera and
microphone. In: Proceedings of the Third ACM Workshop on Security and Privacy
in Smartphones & Mobile Devices (SPSM) (2013)

38. Suenaga, M.: IME as a possible keylogger. Virus Bull. 6–10 (2005)
39. Tsafrir, D., Hertz, T., Wagner, D., Silva, D.D.: Portably solving file TOCTTOU

races with hardness amplification. In: Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST) (2008)

40. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized origin crossing on mobile
platforms: threats and mitigation. In: Proceedings of the 20th ACM Conference
on Computer and Communications Security (CCS) (2013)

41. Wei, J., Pu, C.: TOCTTOU vulnerabilities in UNIX-style file systems: an anatom-
ical study. In: Proceedings of the FAST 2005 Conference on File and Storage Tech-
nologies (FAST) (2005)

42. Xu, Z.: Android Installer Hijacking Vulnerability Could Expose Android
Users to Malware (2015). http://researchcenter.paloaltonetworks.com/2015/03/
android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/

43. Xu, Z., Bai, K., Zhu, S.: TapLogger: inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proceedings of the Fifth ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec) (2012)

44. Yang, J., Cui, A., Stolfo, S.J., Sethumadhavan, S.: Concurrency attacks. In: Pro-
ceedings of the 4th USENIX Workshop on Hot Topics in Parallelism (HotPar)
(2012)

http://www.linuxveda.com/2014/06/20/chrome-os-warn-users-privacy-risks-alternate-keyboard-layouts/
http://www.linuxveda.com/2014/06/20/chrome-os-warn-users-privacy-risks-alternate-keyboard-layouts/
http://www.techrepublic.com/blog/asian-technology/japanese-government-warns-baidu-ime-is-spying-on-users/
http://www.techrepublic.com/blog/asian-technology/japanese-government-warns-baidu-ime-is-spying-on-users/
http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/

Enabling Privacy-Assured Similarity Retrieval
over Millions of Encrypted Records

Xingliang Yuan, Helei Cui, Xinyu Wang, and Cong Wang(B)

City University of Hong Kong, Kowloon, Hong Kong
{xl.y,helei.cui}@my.cityu.edu.hk
{xinywang,congwang}@cityu.edu.hk

Abstract. Searchable symmetric encryption (SSE) has been studied
extensively for its full potential in enabling exact-match queries on
encrypted records. Yet, situations for similarity queries remain to be
fully explored. In this paper, we design privacy-assured similarity search
schemes over millions of encrypted high-dimensional records. Our design
employs locality-sensitive hashing (LSH) and SSE, where the LSH hash
values of records are treated as keywords fed into the framework of SSE.
As direct combination of the two does not facilitate a scalable solution
for large datasets, we then leverage a set of advanced hash-based algo-
rithms including multiple-choice hashing, open addressing, and cuckoo
hashing, and craft a high performance encrypted index from the ground
up. It is not only space efficient, but supports secure and sufficiently
accurate similarity search with constant time. Our designs are proved
to be secure against adaptive adversaries. The experiment on 10 million
encrypted records demonstrates that our designs function in a practical
manner.

Keywords: Cloud security · Encrypted storage · Similarity retrieval

1 Introduction

Massive datasets are being outsourced to public clouds today, but outsourc-
ing sensitive data without necessary protection raises acute privacy concerns.
To address this problem, searchable encryption, as a promising technique that
allows data encryption without compromising the search capability, has attracted
wide-spread attention recently [2,5,6,9,12,14,22,24]. While these works provide
solutions with different trade-offs among security, efficiency, data update, etc.,
most of them only support exact-match queries over encrypted data. Although
useful in certain applications, they can be somewhat restrictive for situations
where exact matches rarely exist, and approximate queries, particularly simi-
larity queries are more desired. For instance, in multimedia databases or data
mining applications, heterogeneous data like images, videos, and web pages are
usually represented as high-dimensional records. In those contexts, finding sim-
ilar records or nearest neighbors with respect to a given query record are much

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 40–60, 2015.
DOI: 10.1007/978-3-319-24177-7 3

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 41

more common and crucial to selectively retrieve the data of interest, especially
in very large datasets [1,10,16,19,23].

In this work, we study the problem of privacy-assured similarity search over
very large encrypted datasets. Essentially, we are interested in designing efficient
search algorithms with sublinear time complexity. This requirement excludes all
public key based approaches that usually demand linear search, and drives us to
only focus on symmetric key based approaches, in particular, efficient encrypted
searchable index designs. We first note that searchable symmetric encryption
(SSE) has wide applicability as long as one can access the data via keywords.
Thus, this problem could be theoretically handled by a direct combination of
locality-sensitive hashing (LSH) [1] and SSE [13]. More technically, LSH, a well-
studied algorithm for fast similarity search, hashes high-dimensional records such
that the close ones collide with much higher probability than distant ones. Then
by treating LSH hash value(s) as “keyword(s)”, one may directly apply known
SSE to realize private similarity search [15].

Such a straightforward solution, however, does not achieve practical efficiency
as the sizes of datasets are continuously growing. Take the work in [15] for
example: due to random padding, their proposed encrypted index needs to be
augmented quadratically in the size of dataset. Even by combining LSH with one
of the latest advancements of SSE [2] that achieves asymptotically optimal space
complexity, the resulting index can still be prohibitively large due to the inherent
issues from LSH [16] like its imbalanced structures and its demand of a large
number of hash tables for accurate search. Besides, those issues will also readily
turn most queries into a so-called “big query” [10,16], where almost every query
could comprise a large number of matched records, leading to substantial I/O
resources and long search latency. Most of previous SSE constructions focused
on exact keyword search for document retrieval. They are generic primitives
without considering the above performance issues, and thus do not necessarily
scale well in the context of similarity retrieval over large number of records.

Therefore, rather than just assembling off-the-shelf designs in a blackbox
manner, we must consider security, space utilization, time efficiency, and search
accuracy simultaneously, and build a new construction from the ground up. As an
initial effort, we resort to recent advancements in high performance hash-based
structures [10,16,18,19] in the plaintext domain. Our goal is to intelligently
incorporate their design philosophies into our encrypted index structure so as to
make a practical design fully customized and thoroughly optimized. In particular,
we explore multiple choice hashing, open addressing, and cuckoo hashing [18] to
balance the index load, resolve the severe imbalance of LSH, and yield constant
search time with a controllable trade-off on accuracy. Each query only requires
O(1) lookup and retrieves a small constant number of similar records with low
latency. Such design also makes it possible that any form of post processing on
retrieved records (e.g., distance ranking) can be efficiently completed at local.

For security, we apply pseudo-random functions to protect sensitive LSH hash
values, use symmetric encryption to encrypt the index content, and implement
the above hash-based optimizations in a random fashion. Through crafted algo-

42 X. Yuan et al.

rithm designs, our proposed encrypted index can perform favorably even over
a large number of data records. For completeness, we also propose a dynamic
version of the index design to support secure updates of encrypted data records.
We note that one trade-off of SSE is the compromise on security to pursue
functionality and efficiency. Similar to previous definitions for SSE, our secu-
rity strength is evaluated by capturing the controlled leakage in the context of
LSH-based similarity search, and we formally prove the security against adaptive
chosen keyword attacks. Our contributions are summarized as follows:

– We propose a novel encrypted index structure with optimal space complexity
O(n), where n is the number of the data records. It supports secure similarity
search with constant time while achieving good accuracy.

– We extend this index structure to enable the server to perform secure dynamic
operations over the encrypted index, i.e., Insert and Delete.

– We formalize the leakage functions in the context of LSH-based similarity
search, present the simulation-based security definition, and prove the security
against adaptive chosen-keyword attacks.

– We implement our schemes with practical optimizations, and deploy them
to Amazon cloud for 10 million 10, 000-dimensional records extracted from
Common Crawl1. The evaluations show that our security designs are efficient
in time and space, and the retrieved records are desired with good accuracy.

The rest of the paper is organized as follows. The related works are summa-
rized in Sect. 2. The preliminaries are introduced in Sect. 3. The security defini-
tion is given in Sect. 4. Then we present the proposed schemes in Sect. 5. After
that, we formally define the leakage functions and prove our schemes achieve the
security against adaptive chosen-keyword attacks. Section 7 shows our experi-
ment results. Finally, Sect. 8 makes the conclusion.

2 Related Works

Song et al. first introduce the notion of searchable encryption [21]. Then Goh
develops a per-file index design via Bloom filter [7], and Chang et al. [4] also give
a per-file index design. Curtmola et al. improve the security notions known as
SSE and introduce new constructions against non-adaptive and adaptive chosen-
keyword attacks [6]. Chase et al. generalize SSE by introducing the notion of
structured encryption and give the first efficient scheme (i.e., sublinear time)
with adaptive security [5]. Afterwards, Kamara et al. propose a dynamic SSE
scheme with sublinear time and introduce the security framework that cap-
tures the leakage of dynamic operations [14]. Then Kamara et al. give the first
dynamic SSE scheme supporting parallelizable search [12]. Meanwhile, several
works extend SSE to support sophisticated functionalities. Cash et al. propose
1 Common Crawl Corpus: an open repository of web crawl data, on line at http://

commoncrawl.org/.

http://commoncrawl.org/
http://commoncrawl.org/

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 43

an SSE scheme for boolean queries that firstly achieves the asymptotically opti-
mal search time [3], and Jarecki et al. extend that scheme in the multi-client
scenario [11].

Very recently, Cash et al. implement a dynamic SSE for large databases when
the index is stored in the hard disks [2]. The proposed hybrid packing approach
considers the locality of documents, and improves I/O parallelism. Stefanov et al.
propose a dynamic SSE that achieves forward privacy [22]. Yet, their design relies
on an ORAM-like index with hierarchical structure. The search time complexity
is polylogarithmic, and the client needs to rebuild the index periodically. Naveed
et al. present a building block called blind storage as a sub-component of SSE
for the privacy of document set, i.e., hiding the number of documents and the
document sizes [17]. Their design splits each document into blocks and randomly
inserts them into a huge array. The required storage cost is several times larger
than the original document set. Besides, multiple round interactions are also
needed when retrieving a large document. Hahn et al. propose an SSE scheme
with secure and efficient updates, where the update operations leak no more
information than the access pattern [9]. Specifically, an encrypted file index is
built in advance, which stores encrypted keywords for each file. When one sends
search queries, an inverted index will be built gradually. Because adding files
only updates the file index, the server will not know whether those files contain
the keywords searched before or not. The search cost is initially linear, then
amortized over time.

SSE is applicable for any forms of private retrieval based on keywords [13].
Built on locality-sensitive hashing (LSH) or other distance embedding tech-
niques, similarity search will be transformed to keyword search. Kuzu et al. [15]
build an encrypted index from a LSH-based inverted index. Each distinct LSH
hash value is associated with an n-bit vector, where n is the total number of
records in a dataset, and each bit indicates a matched record. In their encrypted
index, a large amount of random padding is added to hide the number of dis-
tinct LSH hash values and the imbalance in the number of matched records.
Consequently, the index has a quadratic space overhead as worst as O(n2).

3 Preliminaries

Cuckoo Hashing: Cuckoo hashing [18] is a variant of multiple choice hashing.
It allows items moving between hash tables so as to achieve high load factors2.
Let X be the universal domain, and cuckoo hashing is defined as:

Definition 1 (Cuckoo Hashing). Given two hash tables T1 and T2 with w
capacity, two independent and random hash functions u1, u2 : X → {0, w − 1}
are associated to T1 and T2. Item x ∈ X can be placed either in bucket T1[u1(x)]
or in bucket T2[u2(x)].

2 The load factor refers to the ratio between the number of items and the number of
buckets in the index.

44 X. Yuan et al.

When inserting an item without a vacancy, the item in one of those two occu-
pied buckets will be kicked out and moved to another hash table. We denote such
operation as cuckoo-kick. cuckoo-kick will not stop until all “kicked” items are
re-inserted within a threshold of iterations. When the number of such iterations
exceeds the threshold, rehash will be activated such that all items are inserted
again by newly selected hash functions. To reduce the probability of rehash, it is
natural to extend cuckoo hashing from two hash tables to multiple ones so that
each item has more buckets to place.

Locality-Sensitive Hashing: Locality-sensitive hashing (LSH) [1] is the state-
of-the-art algorithm to solve the problem of approximate nearest neighbors in
high-dimensional spaces. The functions in the LSH family project
high-dimensional records such that the hashes of similar records collide with
much higher probability than those of distant ones. From [1], the LSH family is
defined in Appendix A.

CryptographicPrimitives:A private-key encryption scheme SE(Gen,Enc,Dec)
consists of three algorithms: The probabilistic key generation algorithm Gen takes
a security parameter k to return a secret key K. The probabilistic encryption
algorithm Enc takes a key K and a plaintext M ∈ {0, 1}∗ to return a ciphertext
C ∈ {0, 1}∗; The deterministic decryption algorithm Dec takes k and C ∈ {0, 1}∗

to return M ∈ {0, 1}∗. Define a pseudo-random function (PRF) family is a family
F of functions such that it is computationally infeasible to distinguish any func-
tion in F from a uniformly random function.

4 Notations and Definitions

This section gives the notations and the security definitions used throughout the
paper. D is defined as a y-dimensional record, and D∗ is the ciphertext of D.
A is the record identifier, which can also be its physical address. D is a record
set {D1, · · · ,Dn}, and n is its cardinality. V represents a vector, where vj is its
j-th component. We denote T as the hash table, w as its capacity, and T [i] as
its i-th bucket, where i ∈ [0, w). 0|a| denotes a string with |a| bits of ‘0’. Given
two strings x and y, their concatenation is written as x||y. P , G, and F are
the pseudo-random function (PRF). Our scheme contains the functions for key
generation, index construction, and query operations. We give the definitions
with specified inputs and outputs as follows:

K ← GenKey(1k): takes as input a security parameter k, and outputs a secret
key K.

I ← Build(K,D): takes as input K and a record set D, and outputs an
encrypted index I.

t ← GenTpdr(K,D): takes as input K and D, and outputs a trapdoor t.
A ← Search(I, t): takes as input I and t, and outputs a set of identifiers A.
I ′ ← Insert(I, t,D): takes as input I, t, and D for insertion, and outputs the

updated index I ′.
I ′ ← Delete(I, t,D): takes as input I, t, and D for deletion, and outputs the

updated index I ′.

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 45

Our scheme follows the security notion of SSE stated in [6,14]: the server
cannot infer any sensitive information of data records from the encrypted index
before search; the server can only learn the limited information about the
requested queries and the results. Like prior SSE schemes, there will be the
leakage of access pattern and query pattern, for enabling search and updates
over the encrypted index. Explicitly, the access pattern includes the results of
queries; the query patten indicates not only the equality of query records but
also the similarity between each other, where the latter is additional in contrast
to other SSE schemes for exact keyword search (also recognized in [15]). Based
on the simulation-based model [8] and the definition verbatim from [6,14], we
give the formal security definition in Appendix B.

5 Our Proposed Schemes

5.1 Main Scheme

In this section, we present the main scheme for secure and scalable similarity
search on encrypted high-dimensional records. Our core design is a high per-
formance encrypted index built from the scratch. It supports secure and non-
interactive search with constant time while preserving good accuracy of search
results. Below, we give our design rationale before introducing the details.

Design Rationale: As mentioned, one can treat LSH hash values as keywords
and employ any known SSE to make secure similarity search functionally cor-
rect [13,15]. However, directly applying existing SSE indices [2,6,12,14,15,22,24]
will cause large space consumption and long query latency. First, the number of
matched records varies for different LSH hash values. Such imbalance will make
the space complexity as worst as quadratic in the size of dataset [15], because of
random padding used in the inverted index based SSE schemes [6,14,24]. Sec-
ond, the query latency scales with the number of matched records. It could be
painfully long for large datasets. Third, multiple composite LSH functions are
usually applied to each record for good accuracy. For l composite LSH func-
tions, each record will have l hash values. Therefore, even the latest key-value
pair based SSE indices [2,22] will result in an index with space complexity O(ln),
where n is the number of the records. It might still be huge since l can be as large
as several hundred [16]. As analyzed, combining LSH and SSE directly appears
to be neither practically efficient nor scalable for large datasets.

To address the above issues, we propose to build an advanced encrypted
index, which aims to inherit the design benefits of LSH indices in the plain-
text domain for performance while minimizing the extra overhead incurred by
security. In particular, we resort to recent advancements on hash-based indices,
which utilize high performance hashing algorithms such as multiple choice hash-
ing [16,19], open addressing [16], and cuckoo hashing [10]. We also observe that
most applications of similarity search suffice for an approximate result, e.g., high-
value statistics such as nearest neighbors and Top-K analysis [1,15]. Besides, an
appropriate approximation algorithm will improve search efficiency by orders of

46 X. Yuan et al.

Fig. 1. Index Build function and Search operation in the main scheme

magnitude while only introducing a small loss in accuracy [1,10,16]. Therefore,
we incorporate this design philosophy into the framework of SSE and show how
to build a provably secure and space efficient index with constant search time
and good accuracy.

Main Scheme in Detail: Essentially, the client will build the index in three
stages, i.e., setup, insertion, and encryption. The setup stage initializes the index
structure and the prerequisite system parameters tuned on the input dataset;
The insertion stage places all record identifiers to the buckets of index in a

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 47

A2

A4 A1

A3

G(K1
v2
, 2),v2 = g2(Di)

G(K1
v3
, 1),v3 = g3(Di)

Ai

(a) Random probing

A2 A6

A4 A1

A3A5

Ai

G(K1
v2
, 1),v2 = g2(D3)

(b) Cuckoo-kick

A2 A6

A4 A1

A3A5

G(K1
v2
, 3),v2 = g2(Di)

Ai

(c) Adaptive probing

Fig. 2. The example illustrates three cases when inserting an identifier Ai. The number
of hash functions l is 3. The random probing step d is 2. The one in purple is an adaptive
probing bucket.

random manner; The encryption stage encrypts the identifiers inside and fills
empty buckets with random padding. The Build function is presented in Fig. 1,
and an example in Fig. 2 illustrates how an identifier is inserted. For easy pre-
sentation, we describe the insertion stage and the encryption stage, along which
the system parameters are introduced.

In the insertion stage, the identifiers are sequentially inserted to the index
buckets without loss of data confidentiality. We first introduce secure multiple
choice hashing to balance the index load, and then combine it with random open
addressing to handle the LSH imbalance. Moreover, we apply cuckoo hashing to
build a very compact index. For security and correctness, those techniques are
realized by utilizing different PRFs.

It is known that multiple choice hashing provides multiple positions for each
inserted item so as to achieve load balance. It can be naturally extended in LSH
indices [10,16,19], i.e., l composite LSH functions {g1, · · · , gl} are associated
with l hash tables {T1, · · · , Tl} respectively. The record identifiers are inserted
into those hash tables which are indexable by LSH hash values. Given a record
D, the bucket of its identifier A is determined by lshV (D) = {v1, · · · , vl}, where
vj = gj(D). Yet, such procedure does not consider security. Because LSH func-
tions are not the cryptographic hash function, D could be leaked from where
it is stored. Thus, we use PRF to protect lshV (D): {P (K1, v1), · · · , P (K1, vl)}
shown at Stage 2.b of Build function in Fig. 1, where P is PRF. The transformed
hash values are now used to find available buckets. We note that such treatment
is also seen in prior works [15,20]. Besides, multiple choice hashing can elimi-
nate redundancy compared to the inverted index. It is not necessary to store all
l copies for each identifier to have good search accuracy. This advantage enables
flexible approximate algorithms to make a trade-off between efficiency and accu-
racy [10,16,19]. In our case, we pursue practical efficiency at large scale and
store a single copy of each identifier to achieve O(n) space complexity. The size
of index only scales with the number of data records.

Secure multiple choice hashing balances the load of index, but it might still
not provide sufficient vacant buckets to handle the imbalance of LSH, i.e., a
large number of records matched with the same LSH hash value could readily

48 X. Yuan et al.

exist. One straightforward solution is to introduce more bucket choices by adding
more hash tables, but accessing a large number of hash tables will degrade
the performance. Therefore, we adopt open addressing to resolve LSH collisions
[10,16]. The key idea is to seek a number of alternative buckets within each hash
table. But applying basic mechanisms of open addressing will disclose the locality
of similar records. For example, if linear probing is used, the server will learn that
similar records are placed next to each other. To hide such information, a probing
sequence should be scrambled. Thus, we utilize random probing to generate a
random probing sequence, {G(K1

vj
, 1), · · · , G(K1

vj
, d)}, where K1

vj
denotes the

transformed LSH hash value P (K1, vj), G is PRF, and d is the probing step.
To compact our encrypted index, we further utilize the idea of cuckoo hash-

ing, a variant of multiple choice hashing. It allows the identifiers to relocate,
moving across different hash tables. In our design, when inserting a record D,
if all l ∗ d probing buckets are occupied, one of them will be randomly selected.
The identifier A′ inside will be kicked, and A will be placed. Then A′ is re-
inserted back. Such cuckoo-kick operation will loop until no identifier is not
placed. We observe that cuckoo-kick will facilitate the refinement of clustering
similar records and improve the search accuracy. Less similar records will be
excluded via iterative cuckoo-kick. The empirical results will be shown later in
Sect. 7.

It is worth noting that rehash may happen in cuckoo hashing when relocating
items in an endless loop. Consequently, all identifiers should be re-inserted, which
could be quite expensive for a large dataset. To sidestep this issue, we propose
adaptive probing to seek more vacant buckets at each hash table in a heuristic
way. When the number of cuckoo-kick reaches a given threshold α, we start to
randomly select vj ∈ lshV (D) and increment its probing step d in Tj so that
one more bucket can be used for relocation. As a result, each d for a given vj is
cached, and the maximum probing step dmax will be notified to the server after
the index is built. It is used for search operations in such a way that each table
will process constant dmax buckets for a given query.

To achieve the security guarantees stated in Sect. 4, we have to encrypt the
entire index and make each bucket indistinguishable. Considering security, effi-
ciency, and correctness, we investigate the underlying data structure on bucket
encryption. As introduced in Sect. 3, cuckoo hashing uses weak hash functions
for a compact index. At Stage 1.c of Build function in Fig. 1, the output range of
universal hash is [0, w − 1], where w is the hash table capacity. Because a weak
hash function is not collision-resistant, two different LSH hash values might col-
lide at the same bucket. To get correct results, one may append an encrypted
LSH hash value with its identifier in the bucket, but it introduces additional
storage overhead.

Tactfully, we embed LSH hash values into random masks for bucket encryp-
tion, so the matched results will be found on the fly. In particular, we con-
catenate the identifier with a check tag A||0|a|, and encrypt the concatenated
string by XORing a random mask r: B∗ = A||0|a| ⊕ r, where r = F (K2

vj
, b),

K2
vj

= P (K2, vj), and b is the address offset of bucket from the base address of

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 49

index. Only if 0|a| is correctly recovered, the bucket will be the matched one. And
because b is unique for each bucket, each bucket is encrypted with different ran-
dom mask even the same LSH hash value is embedded. Finally, the rest of empty
buckets are filled with random padding to make all buckets indistinguishable.

Search Operation: Based on the index construction, the server can perform
Search to return a constant number of encrypted similar records for a query
record. In Search of Fig. 1, the client generates the trapdoor t = ({K1

vj
}l, {K2

vj
}l)

for a query D, which enables the server to locate and unmask the matched
buckets. Upon receiving {K1

vj
}l, the server locates dmax buckets in each hash

table via PRF G(K1
vj

, i) for i from 1 to dmax, where dmax is the maximum
probing step of all distinct LSH hash values. Then it computes random masks
from {K2

vj
}l via PRF F (K2

vj
, b), where b is the bucket address offset. Only if the

identifiers inside are associated with matched vj , the check tag will be all “0”
and the identifier will be considered as the correct result. Meanwhile, the server
cannot unmask the identifiers inside if they have different LSH hash values to
the query record’s.

Regarding security, the random mask is generated from the unique address
offset of bucket, and thus each bucket is encrypted via a different mask. Such
design ensures that the server knows nothing before search. We also note that
multiple choice hashing is designed for parallel search. The buckets in l inde-
pendent hash tables can be processed in parallel. Thus, the time complexity can
achieve O(c/min(p, l)), where p is the number of processors, and c is a constant
l ∗ dmax. The number of retrieved ciphertext is bounded by O(c).

5.2 Dynamic Scheme

To support secure dynamic operations, we design a variant of bucket construc-
tion. Accordingly, Insert and Delete are proposed to add and remove an identifier
from the encrypted index, respectively. We note that updating a given record
causes the change of its LSH hash values. As a result, its identifier will be relo-
cated by first triggering Delete and then Insert.

Explicitly, we store the state information of ciphertext at the server, and ask
the client to use fresh random masks generated from the state information to
re-encrypt all the buckets which have been accessed in a given query. During
the update, the bucket, whose underlying content is truly modified, is hidden
due to the re-encryption. In particular, we design the bucket in the format such
as: B∗ = (P (K5, s) ⊕ A||vj , Enc(K4, s)), where K4 and K5 are private keys, vj

is used to guarantee the correctness of Search, and the fresh random mask is
generated by updating a random seed s. We note that the setup phase and the
insertion phase remain unchanged when building the dynamic index. Only the
encryption phase is different.

To insert a new record, one straightforward solution is to follow the insertion
stage in Build. However, such procedure could trigger cuckoo-kick and cause many
interactions between client and server. Besides, the client needs to re-encrypt all
accessed buckets in each interaction, which will introduce computational burdens.

50 X. Yuan et al.

Alternatively, we employ a similar approach of adaptive probing to moderate the
communication and computation overhead. To insert an identifier A of given D,
the client generates the trapdoor to enable the server to iteratively return l buck-
ets (one for each hash table) until A finds a vacancy to stay. As we only notify
dmax to the server, it is required to use a map to record the latest probing step
δvj

for each distinct K1
vj

, where δvj
starts from dmax + 1. We also note that set-

ting a less aggressive index load factor will help to insert A. As a result, the client
can retrieve the latest probing buckets {Tj [uj(G(K1

vj
, δvj

))]}l in each table. If no
bucket is empty, the client will keep on asking the server to return l new prob-
ing buckets by incrementing each δvj

for j from 1 to l, i.e., one bucket in each of
l tables. To hide the location of A, the last l buckets are re-encrypted via fresh
random masks.

To delete A, the client generates the trapdoor to retrieve the corresponding∑l
j=1 δvj

buckets, where one of them stores A. After decryption, the client locates
the bucket of A and replaces it with ⊥. Likewise, it re-encrypts the accessed
buckets with fresh random masks to hide the emptied one. Compared to our
main scheme, Search now needs to return

∑l
j=1 δvj

encrypted buckets for a given
trapdoor. The decryption is conducted at the local client. vj that matches the
LSH hash value of the query record is considered as the correct result.

6 Security Analysis

In this section, we evaluate the security strength of main scheme Ω1 and dynamic
scheme Ω2 under the security framework of SSE. We first define the leakage in
search and update operations, and specifically discuss the security for LSH-based
similarity search. Based on well-defined leakage functions, we prove that both
schemes are secure against adaptive chosen-keyword attacks.

Security on the Main Scheme: Our scheme endows the server with an abil-
ity to find encrypted similar records by borrowing techniques from SSE. As a
result, it does have the same limitation as prior SSE constructions. In partic-
ular, the server initially knows certain attributes of index without responding
any Search query; that is, the capacity of encrypted index, the number of hash
tables, and the bit length of encrypted bucket. As long as Search begins, the
access pattern and the query pattern are subsequently revealed. Essentially, the
access pattern for each query includes a set of identifiers of similar records and
the accessed encrypted buckets of index. While for the query pattern, the notion
in our scheme extends from the notion of SSE for keyword search, but it reveals
more information, the similarity between each query. In keyword search, each
query produces one single trapdoor. The query pattern is captured by recording
those deterministic trapdoors, where the repeated ones indicate the keywords
searched before. While in our scheme, each query generates a trapdoor that con-
sists of multiple sub trapdoors. Therefore, if two trapdoors have an intersection,
it will indicate that they are similar; that is, their underlying query records have
matched LSH hash values. Accordingly, we quantify this similarity by θ defined
as the size of the intersections between the two composite LSH hash values.

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 51

Formally, we define the leakage L1
Ω1

and L2
Ω1

as follows: L1
Ω1

(D) = (N, l, |B∗|),
where N is the index capacity, l is the number of hash tables, and |B∗| is the length
of encrypted bucket; L2

Ω1
(D) = (accpΩ1(D), simpΩ1(D)). accpΩ1(D) is the access

pattern for a query record D defined as ({A}m, {B∗}ldmax
), where {A}m is the

identifiers of returned m similar records, and {B∗}ldmax
is the accessed buckets.

simp(D)Ω1 is the query pattern defined as ({θ = |lshV (D) ∩ lshV (Di)|}q, i ∈
[1, q]), where Di is one of q queried records, and θ is the size of the intersections
between l composite hash values of D and Di.

Regarding the access pattern accpΩ1 , for a given query record D, the server
decrypts dmax buckets at each hash table, total ldmax buckets for l tables, to
recover the result identifiers {A}m, where m ≤ ldmax. Therefore, the server
knows where the identifiers are stored and how many identifiers are correctly
recovered at each table. From the perspective of security, revealing dmax does
not appear to be harmful. It only informs the server when to stop random probing
in each hash table. Regarding the query pattern simpΩ1 , the similarity of query
records is known in addition to the equality. A trapdoor t for a given D contains
l sub trapdoors: {P (K1, g1(D)), · · · , P (K1, gl(D))}. Considering another Di, if
ti = {P (K1, g1(Di)), · · · , P (K1, gl(Di))} has at least one matched sub trapdoor
as t, Di and D are likely similar. From the definition of LSH [1], the θ between
D and Di will further tell their closeness. The bigger θ is, the closer they are.

We adopt the simulation-based definition in [6]. Given the leakage functions
L1

Ω1
and L2

Ω1
, a probabilistic polynomial time (P.P.T.) simulator S can simulate

an index, respond a polynomial number of Search queries, and generate corre-
sponding trapdoors. To prove the adaptive security defined in Appendix B, we
show that any P.P.T. adversary A cannot differentiate: (1) the real index and
the simulated index; (2) the real search results and the simulated results, the
real trapdoors and the simulated trapdoors for a polynomial number of adaptive
queries. We present Theorem 1 and the formal proof in Appendix C.

Security on the Dynamic Scheme: The dynamic scheme is built on the
design of the main scheme. The underlying index structure is exactly the same,
which does not show extra information. Thus, the leakage function L1

Ω2
is the

same as L1
Ω1

. Regarding L2
Ω2

, the trapdoors for Search, Insert, and Delete are
transformed via PRF from the LSH hash values of query records, so the simi-
larity between inserted, deleted and searched records are also known. Therefore,
the query pattern simpΩ2(D) is the same as simpΩ1(D). For the access pat-
tern accpΩ2(D), the server needs to maintain the state information δvj

for each
distinct LSH hash value to enable Insert and ensure the correctness of Delete
and Search. We note that revealing δvj

does not compromise on security. Newly
allocated probing sequences all start from dmax + 1 and each Insert interaction
is a batch update on l buckets. Thus, the server does not know which buckets
are truly modified.

Most of efficient dynamic SSE schemes on exact keyword search leak the
information such that: a keyword belongs to a newly added encrypted file if
that keyword is searched before; a keyword belongs to a deleted encrypted file
if that keyword is searched later. The former is defined as forward leakage, and

52 X. Yuan et al.

the latter is defined as backward leakage in [22]. In our scheme, the server knows
that the records are similar to a newly inserted D, if those records appear in
search results before, since their LSH hash values have intersections with D; the
server also knows that the records are similar to a deleted D, if those records
appear in search results later. Formally, we define the leakage as L3

Ω2
(D) =

(addp(D), delp(D)), where addp(D) = ({∀Ai : lshV (D) ∩ lshV (Di) �= ∅}q, i ∈
[1, q]) and delp(D) = ({∀Ai : lshV (D) ∩ lshV (Di) �= ∅}q, i ∈ [1, q]). Given the
leakage functions, we give Theorem 2 and prove it in Appendix C to demonstrate
that our dynamic scheme is secure against an adaptive adversary.

7 Implementation and Evaluation

Implementation: Most of SSE schemes do not specifically address the cost for
building the encrypted index when the size of dataset goes large. Such cost could
be prohibitively expensive for the client with limited resources. To address this
issue, we carefully select system parameters and optimize the implementation
for Build. Given a dataset with n records, the index load factor τ should be
pre-set to determine the index capacity N . We set τ as 90% based on empirical
experience of cuckoo hashing based designs [10] to build a very compact index.
Then we create l arrays with continuous addresses as the underlying structure
of hash tables, where l is the number of composite LSH functions, trained via
E2LSH package3 on a sample dataset. The array capacity w is set by n

τl�.
We allocate a shared memory with total |A| ∗ N bits, excluding the check

tag or the state information, so as to increase the capacity of index held in
client’s memory. We encrypt each bucket in memory, and dump it to the hard
disk simultaneously or send it directly to the server as long as it is encrypted.
Such method will avoid memory overflow at the clients with restricted physical
memory. Meantime, we carefully set the cuckoo-kick threshold α and the initial
random probing step d. If α is set as a large number, the chance of rehash can be
reduced. As a trade-off, the insertion will take more time due to the expensive
cuckoo-kick. Here, we pursue efficiency and set α = 50 instead of hundreds. We
note that the value of d also has a trade-off on building efficiency and querying
efficiency. If we set a large d, our index can have a large number of bucket choices
to handle LSH collisions so as to reduce the iterations of cuckoo-kick, but search
will process a large number of buckets and thus increase the latency.

Experiment Setup: we implement the main scheme and the dynamic scheme
in Java to demonstrate the feasibility of our design at a large scale. We eval-
uate the performance and the search accuracy on a dataset with 10 million
high-dimensional records. For cryptographic primitives, we use OpenSSL toolkit
(version 1.0.1h) to implement the symmetric encryption via AES-128, and
pseudo-random function (PRF) via HMAC-SHA1. Our source code is available
at Git4. To demonstrate the practicality, we deploy our implementation on a
3 E2LSH package: online at http://web.mit.edu/andoni/www/LSH.
4 SimSSE: on line available at https://github.com/harrycui/SimSSE.

http://web.mit.edu/andoni/www/LSH
https://github.com/harrycui/SimSSE

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 53

5 6 7 8 9 10
1

1.5

2

2.5

Pseudo random probing step

In
de

x
bu

ild
in

g
tim

e
(1

03 s)

Fig. 3. Build time

100 200 300 400 500
0

1

2

3

4

5

Number of search queries

A
ve

ra
ge

 s
ea

rc
h

tim
e

(m
s)

d=5
d=6
d=7

Fig. 4. Search time in Ω1

100 200 300 400 500
0

1

2

3

4

5

Number of search queries

A
ve

ra
ge

 s
ea

rc
h

tim
e

(m
s)

Dynamic scheme
Main scheme

Fig. 5. Search comparison

AWS EC2 large instance “r3.4xlarge”. We generate 10 million records from a
public dataset on AWS, “Common Crawl Corpus”, which contains over billions
of web pages. Because it is stored on Amazon S3, we directly launch map-reduce
jobs on AWS Elastic MapReduce (EMR) to process these web pages on a cluster
of EC2 instances. For each web page, we generate a 10, 000-dimensional Bag-of-
Words (BoW) vector according to a dictionary with 10, 000 top frequent words,
where such BoW model is commonly used in methods of web page clustering and
similar web page detection. Here, we apply Euclidean distance as the distance
metric and use the E2LSH package to train the parameters l and m defined
in Appendix A. For training, 10% vectors are randomly selected and the dis-
tance threshold r is set to 0.5. Accordingly, tunable LSH parameters l and m
are derived as 20 and 8 respectively.

Performance Evaluation: We evaluate our proposed schemes on index build-
ing cost, index space consumption, bandwidth cost, search and dynamic opera-
tion performance, and search accuracy. Figure 3 reports the index building time.
For a fixed number of hash tables l, if the random probing sequence d is small,
few buckets can be used to resolve the imbalanced LSH collisions. Thus, more
iterations of cuckoo-kick will be required. In fact, the building cost is propor-
tional to the iterations of cuckoo-kick. As shown, increasing d will reduce the
iterations of cuckoo-kick, shortening the overall time, but it will introduce more
bandwidth cost because the number of retrieved records is related to d for fixed
l. Although the building time is not moderate, over 2, 000 s in Fig. 1, it is a
one-time cost, and we will improve it via concurrent programming in future.

Because we encrypt and dump the bucket simultaneously, the client only
needs to allocate 4 bytes, the length of identifier, for each bucket in memory. In
Table 1, for a dataset with 1 billion records, client only needs to allocate 4.4GB
for our index with a load factor 90%. In our main scheme, an encrypted bucket
is in the format as: A||0|a| ⊕ r. The mask r is an output of HMAC-SHA1. Thus,
each encrypted bucket is 20 bytes long. In our dynamic scheme, an encrypted
bucket is in the format as: A||vj ⊕P (K5, s), Enc(K4, s), where the mask P (K5, s)
is also 20 bytes long, and Enc(K4, s) is 16 bytes long with AES-128. We show
the space consumption for different scales of datasets in Table 1. For datasets
with 4 billions of records, our index consumes 160GB memory, which can fit into
the main memory (244GB) of the largest Amazon EC2 instance. As mentioned,
directly applying the implementations of prior SSE will consume much more

54 X. Yuan et al.

Table 1. Index space (GB) with a load factor τ = 90%.

Schemes n = 107 n = 108 n = 109 n = 4 ∗ 109

Ω1, Ω2 at client 0.04 0.4 4.4 17.8

Ω1 at server 0.22 2.2 22.2 88.9

Ω2 at server 0.40 4.0 40.0 160.0

space due to inherent issues of LSH. The comparison of space complexity is
shown in Table 2 in Appendix E. Those indices will contain ln key-identifier
pairs at least, where l is a tunable LSH parameter based on a predetermined
distance threshold and selected training datasets, usually at scale of tens or
hundreds. Such constant factor could result in an excessively huge index, e.g.,
more than 1000GB for l = 20 on 1 billion records. Our design is highly space
efficient. The size of proposed index only scales with the size of dataset.

The bandwidth evaluation for Search is shown in Table 3 in Appendix D. For
comparison, we build an inverted index with same LSH parameters. Then we
randomly sample hundreds of search queries and calculate the average number
of returned identifiers for each. In Table 3-(a), the statistics of LSH imbalance
are reported for our selected 10 million records. We can see that the largest
number of matched records is nearly 20 thousand. And most of LSH hash values
have hundreds of matched records. In Table 3-(b), the size of results from the
inverted index is over thousands which is huge and not scalable. In our design,
Search costs a small sized bandwidth. For l = 20 and d = 5, the number of
retrieved encrypted records is 100 at most. From Table 3-(b), comparing with
an inverted index, our Search saves dozens of times of bandwidth cost. Because
cuckoo hashing utilizes weak hash functions, records with different LSH hash
values might be grouped. Recall that a specialized random mask and a check
tag are used to enable the server to get the correct search results. Therefore, the
number of result identifiers is less than 100 in Table 3-(b). From the parameter
setting, 20 trapdoors (20 bytes for each) and 100 encrypted records (40 KB for
each record) totally cost approximate 4 MB.

As proposed, Search only accesses a constant number of encrypted buckets,
so our design can scale well when dealing with a “big query”. Figure 4 reports
Search performance of the main scheme. We randomly sample different numbers
of queries and evaluate the average time for different probing step d. When the
number of accessed buckets is equal to 100, it takes less than 1ms. Figure 5
compares Search performance of the main scheme and the dynamic scheme.
Because Search in the dynamic scheme asks the client to perform the decryption
of random masks, it needs more time than computing random masks directly
at the cloud in the main scheme. Therefore, it is slower, but it still achieves
millisecond latency, less than 3ms to process 100 encrypted buckets.

Multiple choice hashing is designed to enable lookup in each hash table con-
currently. To measure the concurrency, we implement Search of our main scheme

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 55

20 30 40 50
0

2

4

6

8x 10
5

Number of hash tables

N
um

be
r

of
 q

ue
ri

es
 p

er
 m

in
ut

e

Fig. 6. Throughput

100 200 300 400 500
0

2

4

6

8

10

Number of dynamic queries

A
ve

ra
ge

 o
pe

ra
tio

n
tim

e
(m

s)

Insert operation
Delete operation

Fig. 7. Insert and Delete

5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

Top K nearest neigbours

Se
ar

ch
 a

cc
ur

ac
y

Inverted index

Our index w. cuckoo kick

Our index w.o. cuckoo kick

Fig. 8. Search accuracy

in parallel threads. In particular, we create 16 threads simultaneously and mea-
sure the throughput for various number of hash tables in Fig. 6. It shows that
our implementation can handle over 60 thousands of queries per minute. When
the number of hash table increases, the throughputs will decrease. The reason is
that accessing too many hash tables degrades the search performance. Therefore,
the parameter l should be kept relatively small for high concurrency.

The performance of Insert and Delete is shown in Fig. 7. The total time con-
sists of the time for locating encrypted buckets at the server, and the time for
decrypting and re-encrypting them at the client. For Insert, we conduct hundreds
of Insert queries on the index with a load factor 90%. Because it adopts adap-
tive probing to find available buckets by open addressing rather than expensive
cuckoo-kick. The results show that even the index load is heavy, Insert can be
fast. Insert succeeds in one interaction by only accessing 20 buckets for l = 20
and the average time is less than 1ms. Delete has to retrieve, decrypt, and re-
encrypt all related

∑l
j=1 δvj

buckets. Therefore, the time is much longer. We do
not perform Insert before Delete, so δvj

can be treated as dmax +1, which is equal
to 12 for this dataset. As shown in Fig. 7, the average time for Delete is around
4ms.

The search accuracy is measured based on the definition of 1
K

∑K
i=1

||D′
i−Dq||

||Di−Dq||
in [23], where Dq is the query record and Di is the i-th closest record to Dq. This
metric reflects a general quality of Top-K neighbors. It quantifies the closeness
between the Euclidean distances of Top-K records from LSH-based indices and
the ground truth nearest records via linear scan. For comparison, we also com-
pute the accuracy of Top-K results from an inverted index. Figure 8 shows that
the results of inverted index are closer to the ground truth. We note that our
design introduces a little loss in accuracy, because our index employs an approx-
imation such that only one copy of each record identifier is stored and the search
results do not include all the matched records. But we can see that cuckoo-kick
improves accuracy a bit. The reason is that even if one of two similar records is
kicked, it is probably still moved back to one of previous corresponding buckets.
On the contrary, the less similar one might be kicked out since they have fewer
matched LSH hash values. As a result, our design still achieves acceptable accu-
racy and saves dozens of times on the index space consumption, and the query
latency and bandwidth.

56 X. Yuan et al.

8 Conclusion

We investigated secure and fast similarity search over large encrypted datasets.
Our design starts from two building blocks, LSH and SSE. As we target for the
high performance index design, we have explored practical hashing schemes,
including multiple choice hashing, open addressing, and cuckoo hashing, to
achieve a construction with superior space efficiency and low query latency.
Adapting from the security framework of SSE, we carefully capture the infor-
mation leakage and prove the security against adaptive chosen keyword attacks.
We have implemented our schemes over 10 million encrypted high-dimensional
data records at Amazon AWS. The experimental results are indeed promising.

Acknowledgment. This work was supported in part by Research Grants Council of
Hong Kong (Project No. CityU 138513), grant from City University of Hong Kong
(Project No. 7004279), and an AWS in Education Research Grant award.

A Definition of Locality-Sensitive Hashing

Definition 2 (LSH Family H). Given the distance r, cr, where c > 1, and
the probability value p1, p2, where p1 > p2, a function family H is (r, cr, p1, p2)-
sensitive if for any points D,D′ ∈ Rd and any h ∈ H: if distance dist(D,D′) ≤
r, P [h(D) = h(D′)] ≥ p1; if distance dist(D,D′) > cr, P [h(D) = h(D′)] ≤ p2;

In practice, the composite LSH function {g1, · · · , gl} is applied to enlarge the
gap between p1 and p2. One explicit composite function gi contains m indepen-
dent LSH functions, which are randomly selected from H: gi = (h1, . . . , hm). As
a result, for any D,D′ ∈ Rd: if dist(D,D′) ≤ r, P [∃i ∈ [1, l] : gi(D) = gi(D′)] ≥
1 − (1 − pm

1)l; dist(D,D′) > cr, P [∃i ∈ [1, l] : gi(D) = gi(D′)] ≤ 1 − (1 − pm
2)l.

B Simulation-Based Security Definition

Definition 3. Let Ω = (GenKey, Build, GenTpdr, Search, Insert, Delete) be our
scheme for secure similarity search, and let L1

Ω, L2
Ω, and L3

Ω be the stateful
leakage function. Given an adversary A and a simulator S, define the following
probabilistic games RealA(k) and IdealA,S(k):

RealA(k): a challenger calls GenKey(1k) to output a key K. A selects D and
asks the challenger to build I via Build. Then A adaptively performs a polynomial
number of Search, Insert or Delete queries, and asks for the trapdoor t of each
query q from the challenger. Finally, A returns a bit as the game’s output.

IdealA,S(k): A selects D, and S generates Ĩ based on L1
Ω(D). Then A adaptively

performs a polynomial number of queries. From L2
Ω(D) and L3

Ω(D) of each query
q, S returns the ciphertext and generates the corresponding t̃. Finally, A returns
a bit as the game’s output.

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 57

Our proposed scheme Ω is (L1
Ω ,L2

Ω ,L3
Ω)-secure against adaptive chosen-

keyword attacks if for all probabilistic polynomial time adversaries A, there exists
a probabilistic polynomial time simulator S such that

Pr[RealA(k) = 1] − Pr[IdealA,S(k) = 1] ≤ ε(k)

where ε(k) is a negligible function in k.

C Security Proofs

Theorem 1. Ω1 is (L1
Ω1

,L2
Ω1

)-secure against adaptive chosen-keyword attacks
in the random oracle model if SE is CPA-secure, and F , P , G are PRF.

Proof. We will demonstrate that, based on L1
Ω1

, S can first simulate an index Ĩ,
which is indistinguishable from I. Then S can simulate result identifiers {{Ã}m}q

and trapdoors {t̃}q based on L2
Ω1

for q adaptive queries, which are also indis-
tinguishable from {{A}m}q and {t}q. To achieve the indistinguishability, {Ã}m

should be correctly recovered via t̃ from Ĩ for all q queries. It means {t̃}q should
also be consistent with each other, which implicitly asks S to trace the depen-
dencies between each query. The simulation is presented as follows:

• Simulate Ĩ: given L1
Ω1

(D) = (N, l, |B∗|), S initializes an empty index Ĩ with l
hash tables and total N capacity, which are exactly the same as I. After that,
S generates K̃B via Gen(1k). Each bucket in Ĩ is filled with Enc(K̃B , 0|B∗|),
where |B∗| is the bit length of bucket in I.

• Simulate the first Search query: given accpΩ1(D) from L2
Ω1

(D), S outputs
{Ã}m which is identical to {A}m, and then generates the trapdoor t̃ =
({K̃1

j }l, {K̃2
j }l), where K̃1

j and K̃2
j are random strings with equal length of

K1
vj

and K2
vj

. By operating random oracles, S can use t̃ to recover {A}m. In
particular, PRF G and F are replaced by two random oracles H1 and H2. We
note that L2

Ω1
also tells S where the identifiers are stored and how many iden-

tifiers are correctly recovered at each table. Thus, on the input t̃ and {Ã}m,
S can locate the buckets {B̃∗}ldmax

with identical locations of B̃∗
ldmax

via
{H1(K̃1

j ||d)}ldmax
, where d ∈ [1, dmax], and outputs {H2(K̃2

j ||b)}ldmax
such

that H2(K̃2
j ||b) ⊕ B̃∗ = A for buckets that can be correctly decrypted.

• Simulate subsequent Search queries: given simpΩ1(D) from L2
Ω1

(D), S can
know whether there are similar query records that appear before or not. If
{θ}q are all 0, which means D is a record which is distant to others, S follows

58 X. Yuan et al.

the same way for the first query to simulate trapdoors and search results. As
long as there exists θ which is larger than 0, S uses the same random strings
K̃1

j and K̃2
j of Di based on the intersection, and accesses the same buckets in

T̃j . Meanwhile, S generates fresh random strings for sub trapdoors which did
not appear before, and outputs the accessed buckets and the result identifiers
from L2

Ω1
as described above.

We emphasize that I and Ĩ have an identical structure with N buckets and
l hash tables. The bucket B∗ and B̃∗ are filled by ciphertext with equal length.
Thus, I and Ĩ are indistinguishable. For a given query, the result identifiers {A}m

and {Ã}m are identical, and the accessed buckets {B̃∗}ldmax
locates identically

as {B∗}ldmax
. Due to the pseudo-randomness of F , P and G, the trapdoors t

and t̃ are indistinguishable. Meanwhile, the simulated {t̃}q are consistent with
each other, and the intersections among {t̃}q are identical to the intersections
{t}q. Therefore, the outputs of RealA(k) and IdealA,S(k) are computationally
indistinguishable.

Theorem 2. Ω2 is (L1
Ω2

, L2
Ω2

, L3
Ω2

)-secure against adaptive chosen-keyword
attacks in random oracle model if SE is CPA-secure, and P , G are PRF.

Proof. As stated in the proof of Theorem 1, simulator S can simulate an indistin-
guishable index Ĩ from L1

Ω2
. It can also generate consistent trapdoors, the access

pattern and the query pattern from L2
Ω2

, which are indistinguishable from real
ones. For Search, Insert and Delete, S returns {B̃∗}∑l

j=1 δvj
with identical loca-

tions of real buckets via operating random oracle H1(K̃1
j , dj), where dj ∈ [1, δvj

].

Meantime, S can operate random oracle H2(K̃2
j , s̃) to recover the result identi-

fier A = H2(K̃2
j , s̃) ⊕ B∗, and update the encrypted bucket B∗ = H2(K̃2

j , s̃) ⊕ A

or B∗ = H2(K̃2
j , s̃) ⊕ ⊥ so that the subsequent search results will be consistent.

Note that for Insert and Delete, the buckets accessed by the server will be re-
encrypted. S can generate new buckets via Enc(K̃B , 0|B∗|). From L3

Ω2
, addp(D)

and delp(D) show the identifiers in some of those updated buckets if they are
searched either before or after, so S can generate the consistent trapdoors and
masks via H2 on the input of B∗, A and ⊥. Due to the CPA-secure of SE and the
pseudo-randomness of P and G, the adversary A cannot differentiate Ĩ and I,
t̃ and t, and B̃∗ and B∗ respectively. Therefore, the outputs of RealA(k) and
IdealA,S(k) are indistinguishable (Table 2).

Privacy-Assured Similarity Retrieval over Millions of Encrypted Records 59

D Comparison with Prior Work

Table 2. We compare existing SSE schemes with our schemes by treating LSH hash
values as keywords. #w is the number of keywords, #idw is the number of matched
identifiers for a given keyword w, Mw is the maximum number of matched identifiers
over all the keywords, n is the number of records, c is the retrieval constant, (c � #idw

shown in our experiment), p is the number of used processors, and l is the number of
composite LSH functions.

Scheme Index size Search time Security Index leak

CGKO’06 [6] O(
∑

w #idw + #w) O(#idw) NonAd #w

CK’10 [5] O(#wMw) O(#idw) Ad #w

vLSDHJ’10 [24] O(#wMw) O(log #w) Ad #w

KPR’12 [14] O(
∑

w #idw + #w) O(#idw) Ad #w

KIK’12 [15] O(ln2) O(l) Ad -

KP’13 [12] O(#wn) O((#idw log n)/p) Ad #w

SPS’14 [22] O(
∑

w #idw) O(#idw + log
∑

w #idw) Ad -

CJJJKRS’14 [2] O(
∑

w #idw) O(#idw/p) Ad
∑

w #idw

Our scheme O(n) O(c/min(p, l)) Ad -

E Bandwidth Consumption Switch Appendix D
with Appendix E

Table 3. Bandwidth evaluation.

Matched IDs < 1K 1K − 4K > 4K

lshV 15465K 1861 68

(a) Statistics of LSH imbalance.

#Samples 100 200 300 400 500

#Ainv 2652 3730 4280 5285 3824

#A 95 96 93 90 95

Saving 27 × 38 × 45× 58 × 39 ×
(b) Bandwidth comparison and saving.

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51, 117–122 (2008)

2. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very large databases: Data structures and
implementation. In: Proceedings of NDSS (2014)

3. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

60 X. Yuan et al.

4. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

5. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010)

6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of ACM CCS
(2006)

7. Goh, E.J.: Secure indexes. Cryptology ePrint Archive (2003)
8. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, vol. 2.

Cambridge University Press, New York (2009)
9. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.

In: Proceedings of ACM CCS (2014)
10. Hua, Y., Xiao, B., Liu, X.: Nest: Locality-aware approximate query service for

cloud computing. In: Proceedings of IEEE INFOCOM (2013)
11. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric

private information retrieval. In: Proceedings of ACM CCS (2013)
12. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-

tion. In: Proceedings of Financial Cryptography (2013)
13. Kamara, S., Papamanthou, C., Roeder, T.: CS2: A searchable cryptographic cloud

storage system. Microsoft Research, Technical report MSR-TR-2011-58 (2011)
14. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-

tion. In: Proceedings of ACM CCS (2012)
15. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted

data. In: Proceedings of IEEE ICDE (2012)
16. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: Efficient

indexing for high-dimensional similarity search. In: Proceedings of VLDB (2007)
17. Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via

blind storage. In: Proceedings of IEEE S&P (2014)
18. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
19. Panigrahy, R.: Entropy based nearest neighbor search in high dimensions. In:

Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm
(SODA) (2006)

20. Rane, S., Boufounos, P.T.: Privacy-preserving nearest neighbor methods: compar-
ing signals without revealing them. IEEE Sig. Process. Mag. 30(2), 18–28 (2013)

21. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE S&P (2000)

22. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable symmetric
encryption with small leakage. In: Proceedings of NDSS (2014)

23. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional
nearest neighbor search. In: Proceedings of ACM SIGMOD (2009)

24. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010)

Privacy-Preserving Link Prediction
in Decentralized Online Social Networks

Yao Zheng(B), Bing Wang, Wenjing Lou, and Y. Thomas Hou

Virginia Polytechnic Institute and State University, Blacksburg, USA
{zhengyao,bingwang,wjlou,thou}@vt.edu

Abstract. We consider the privacy-preserving link prediction problem
in decentralized online social network (OSNs). We formulate the problem
as a sparse logistic regression problem and solve it with a novel decentral-
ized two-tier method using alternating direction method of multipliers
(ADMM). This method enables end users to collaborate with their online
service providers without jeopardizing their data privacy. The method
also grants end users fine-grained privacy control to their personal data
by supporting arbitrary public/private data split. Using real-world data,
we show that our method enjoys various advantages including high pre-
diction accuracy, balanced workload, and limited communication over-
head. Additionally, we demonstrate that our method copes well with link
reconstruction attack.

Keywords: Distributed algorithms · ADMM · Mobile computing · Pri-
vacy · Social networks

1 Introduction

The last decade has witnessed the rise of online social network (OSNs). Start-
ing from the late 2000s, OSNs have seen a rapid growth in their popularity.
In 2014, two most profitable OSNs, Facebook ($140 billion) and Twitter ($35
billion) [1], jointly hold 1.3 billion active users worldwide [2]. These people con-
duct their personal lives and house their personal data via OSNs. They sync
valuable information such as profiles, microblogs and photos with OSN websites
every day. This situation raises serious privacy concerns among general public.
The privacy control mechanisms provided by OSNs are cumbersome and ineffec-
tive [3]. It does not stop unauthorized parties from peeking into users’ private
data. More important, the OSNs privacy agreements state that the OSNs own
the content that users upload. This allows OSNs to monetize users’ personal
information for commercial purposes such as advertising [4]. Such invasive act
exacerbates the public distrust.

In order to address such concerns, a decentralized architecture for OSNs was
recently proposed [5–7]. Instead of storing users’ data in the OSNs’ centralized
database, the new architecture advocates decentralized data storage to avoid
personal data monetization. In a decentralized OSN, users’ data exists as a
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 61–80, 2015.
DOI: 10.1007/978-3-319-24177-7 4

62 Y. Zheng et al.

collection of private files stored on their personal cloud storage service. Any
action upon these files must be directed to the private repositories and consented
by the users. This way, users retain full control of their personal data.

However, decentralized data storing precludes useful functionalities com-
monly seen in centralized OSNs. For instance, link prediction [8, chap. 1] is a
common OSN analysis problem that helps to discover entities with whom a user
might wish to connect. It operates by mining users’ friendship and affiliation
preferences from their personal data. The mining is usually done on powerful
OSN servers. In decentralized OSNs, the mining functionality is difficult to pro-
vide due to the users’ dilemma between privacy and usability. On the one hand,
they wish to limit the personal data exposure. On the other hand, they lack the
computing resources to analyze their personal data locally.

In this work, we study the link prediction problem in decentralized OSNs. We
assume users’ personal data can be split into two parts, private and public. The
public part can be accessed directly whereas the private part must remain secret.
For instance, consider a user who owns two twitter accounts, one is open for
public and the other one has access restriction. The user wishes to determine how
likely he will follow another user’s tweets by correlating the target user’s tweets
with the textual materials in both of his accounts. Due to limited computing
resources, the user can only process the materials in his private account and
authorizes his online service provider to process the materials reside in the public
account. Such split pose a challenge for training. On the one hand, the prediction
accuracy will be poor if the user and his online service provider train their
prediction models separately and try to merge the result together by voting. On
the other hand, naive collaborative trainings reveal private information to online
service providers.

We propose a novel privacy-preserving training method to solve the dilemma.
The method allows users and their online service providers to collaboratively
train link prediction models without revealing users’ private data. We grant
users fine-grained privacy control by supporting arbitrary public/private data
split. We prove that the workload is properly balanced between users and their
online service providers according to their computation capabilities. We apply
our method to a real-world social network dataset to prove its validity. Addi-
tionally, we study the security risk of our method. We evaluate the possibility
of the link reconstruction attack when adversaries can access users’ public data.

2 Related Work

Our work is targeted on decentralized OSNs that allow users to maintain their
data on their personal cloud server [9]. A typical decentralized OSN consists of
independent servers that communicate with each other. Users can either register
on an existing server or create their own. In the later case, users stay in control
of their data because they are the administrators of their servers. The personal
data initially resides on users’ own servers. If friends from other servers request
this information, it will be transfered to their servers through a server-to-server

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 63

protocol. Ideally, a decentralized OSN can completely eliminate personal data
monetization if different servers reside on different cloud platforms. In practice, a
decentralized OSN may rely on additional cryptographic mechanisms to protect
users’ data since multiple servers may belong to the same cloud service provider.

There has been a substantial amount of work to enhance decentralized OSNs.
The early researches use advanced cryptographic mechanisms to protect users’
privacy. Two examples are Persona [10] and Safebook [11]. Persona combines
attribute-based encryption (ABE) with traditional public key cryptography to
offer flexible and fine-grained access control to data. Safebook combines a peer-
to-peer architecture with a certification distribution system based on distributed
hash table to avoid unauthorized access to users’ data. These methods usually
work at the cost of limiting OSN functionalities. Later works shift focus in adding
new services to decentralized OSNs. Musubi [5], for instance, provides a toolkit
for decentralized OSNs to support application development for multi-party inter-
action. Omlet [7] is a commercial decentralized OSN based on Musubi. Despite
of their efforts, most functionalities that rely on data analysis are still not sup-
ported in decentralized OSNs.

Link prediction is a common OSN analysis problem that forms the basis
of numerous OSN functional features. In [8, chap. 1], Aggarwal gives a com-
prehensive survey on the methods used for link prediction. These methods can
be divided into two categories, i.e., structured-based prediction methods and
attributes-based prediction methods. The former is applicable to large scale
networks consist millions of nodes [12]. The latter analyzes median, personal
networks with detailed node descriptions [13]. Most of these methods must be
redesigned to fit into the decentralized architecture. In this work, we mainly
focus on users’ personal social networks, a method commonly known as egocen-
tric [14]. We use an attributes-based prediction method due to the nature of
decentralization.

The method we use falls into the categories of privacy-preserving machine
learning and distributed optimization. The most noteworthy idea for privacy-
preserving machine learning is the ε-differential privacy proposed by Dwork [15],
in which carefully calibrated noise is injected into the dataset to achieve indistin-
guishability. However, ε-differential privacy is unnecessary when data is owned
by a single user. Perhaps the closest to our work is done by Yu et al. [16]. They
use a distributed algorithm to train a support vector machine such that it pre-
serves the privacy of different data blocks. But their method cannot protect the
feature privacy within the same data block, which we address in Sect. 4.

3 System Model and Privacy Goals

Here we describe the link prediction problem. The set-up for this problem is a
variation of Guha’s framework [17]: We consider a decentralized OSN involving
both positive and negative links. The positive links are formed due to friendship,
support, or approval whereas the negative links are formed due to disapproval,
disagreement, or distrust. We consider a privacy conscious user, Alice, who is

64 Y. Zheng et al.

unwilling to reveal part of her personal data. We are interested in predicting
the link of Alice’s personal social network. We consider an honest-but-curious
system, Sara, that can only access Alice’s public data. We allow Alice and Sara
to jointly learn a prediction model. Alice’s privacy is violated if Sara learns her
private data or part of the prediction model that is associated with the private
data.

3.1 Network Abstraction

Here we show how we model Alice’s social network. We take an egocentric app-
roach [14] and examine only Alice’s immediate neighbors and associated intercon-
nections that are commonly stored as part of Alice’s personal data. We interpret
this network as a directed graph G = (V,E). The ith link is associated with
two node vectors ti ∈ Rn and hi ∈ Rn that characterize the tail and head node
of the link. These features are extracted from the materials shared through the
group sharing services supported by decentralized OSNs [5]. The ith link is also
associated with a label qi ∈ {−1, 1}. We define the sign of qi to be positive or
negative depending on whether the tail node expresses a positive or negative
attitude toward the head node.

To facilitate the problem formulation, we use K − 1 scoring functions fk :
Rn × Rn → R to construct the link vector. Let pi,k = fk(ti, hi) be the score
between the tail node ti and the head node hi calculated by the kth scoring
function. Let pi = (pi,1, pi,2, . . . , pi,K−1) be the link scores. We can represent
each visible links in Alice’s network with a vector (pi, qi). For reasons we will
show later, we define the link vector to be ai = (qipi, qi). We use a matrix
A ∈ R|E|×K to represent all the link vectors in Alice’s network.

Alice can define her privacy preferences by veiling part of A. For instance,
Alice may regard certain scores or the link sign as private, which corresponds
to cloaking a particular column of A. Alice may also choose to hide certain link
entirely, which corresponds to cloaking a particular row of A. Without loss of
generality, we divide A into three parts1

where the public features are within
←
A ∈ R|E|↑ ×←

K , the private features are

within
→
A ∈ R|E|↑ ×→

K and the private links are within A↓ ∈ R|E|↓ ×K . Note
that |E|↑ + |E|↓ = |E| and

←
K +

→
K = K. In practice, an implicit condition is

|E|↑ � |E|↓ and
←
K � →

K, though our method can be applied to
←
A,

→
A and A↓

with arbitrary sizes.
1 We can rearrange the columns and rows of any A to separate the public features

from the private features and the private links.

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 65

3.2 Training Goal

Here we describe our training goal. We consider two learning modules, A and
S, owned by Alice and Sara. Assume that A only processes

→
A and A↓ due to

limited resources whereas S is powerful but is only allowed to access
←
A. Using

A and S, Alice and Sara jointly fit a sparse logistic regression model

minimize 1
|E|

|E|∑

i=1

log
(
1 + exp

(−qi(pT
i w + v)

))
+ λ‖w‖1, (1)

where w ∈ RK−1 is the weights for the link scores and v ∈ R is the intercept.
Let x ∈ RK equals (w, v). The problem is equivalent to

minimize 1
|E|

|E|∑

i=1

log (1 + exp (−Ax)) + λr(x) , (2)

where r(x) = ‖w‖1. Let x equals (←
x,

→
x) where ←

x is the weights of the public
features and

→
x is the weights of the private features. The method preserves

Alice’s privacy if Sara is oblivious of
→
A, A↓ and

→
x .

There exists a plethora of network link prediction models. The learning
architectures range from shallow ones such as support vector machine [18] and sta-
tistical regressions [19] to deep ones such as graphical model [20] and deep neural
networks [21].The reasonwe choose a sparse logistic regressionmodel are threefold:
(1) The performances of all models are comparable given the appropriate feature
set [8, chap. 1]. There is no clear and convincing evidence indicating that one model
supersedes the others. (2) A sparse logistic regression model is representative of
the types of shallow learning architectures that produce reliable and reproducible
results [22, Sect. 4.4]. (3) More important, a sparse logistic regression model can be
viewed as a regularized logistic neuron, which is the building block of deep learning
architectures such as deep belief nets [23] and restricted Boltzmann machines [24].
Designingaprivacy-preserving learningmethod for it opens thepossibilityof assem-
bling more complicated privacy-preserving learning models.

3.3 Prediction Goal

Here we summarize our prediction goal. Once the model is jointly trained, we
use it to predict the sign of any unknown link in which Alice is interested.
Specifically, let x� = (←

w
�
,

→
w

�
, v�) where ←

w
�

and →
w

�
are the optimal weights of

the public and private link scores; v� is the optimal intercept. Let pu = (
←
pu,

→
pu)

be the link scores of the unknown link where
←
pu and

→
pu are the public and

private scores. Let q̂u be the predicted link sign. Alice and Sara should be able
to assemble the logistic function

Prob(q̂u = 1 | x�) =
1

1 + exp
(
−(

←
p

T

u
←
w

�
+

→
p

T

u
→
w

�
+ v�)

) , (3)

without Sara knowing
→
pu,

→
x

�
and q̂u. To constitute a good prediction model,

we also require q̂u to equal the true link sign qu with high probability.

66 Y. Zheng et al.

4 Methodology

We now present our method for the link prediction problem. We first give a short
introduction of the core algorithm we use, i.e., alternating direction method of
multipliers (ADMM). Following that, we describe a two-tier training method.
Specially, we show how we separate

→
A and A↓ from

←
A to protect Alice’s privacy.

We give a complexity analysis of the training method to show that the workload
is properly divided base on the computation resources available for Alice and
Sara. Finally, we show that our training method is capable of protecting Alice’s
prior knowledge about x�.

4.1 ADMM

ADMM, also known as the Douglas-Rachford splitting, is a decomposition pro-
cedure, in which the solutions to small local subproblems are coordinated to
find a solution to a large global problem. It was first introduced in the mid-
1970s by Glowinski and Marrocco [25] and Gabay and Mercier [26]. Originally,
ADMM was designed to decouple the objective functionals to achieve better
convergence. Later analyses [27] show that it is also well suited for large-scale
distributed computing and massive optimization problems.

Let f : Rn → R and g : Rm → R be two functionals that are convex. The
basic ADMM is an iterative method that solves problems in the form

minimize f(x) + g(z)
subject to Ax + Bz = c,

with variable x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp.
The augmented Lagrangian for the problem is

Lρ(x, z, y) = f(x) + g(z) + yT (Ax + Bz − c) + (ρ/2)‖Ax + Bz − c‖22
where y is the dual variable or Lagrange Multiplier, ρ is the penalty parameter.
Let u = (1/ρ)y be the scaled dual variable. We can express each ADMM iteration
as a full Gauss-Seidel iteration between x, z and u

xk+1 := argmin
x

(
f(x) + (ρ/2)‖Ax + Bzk − c + uk‖22

)

zk+1 := argmin
z

(
g(z) + (ρ/2)‖Axk+1 + Bz − c + uk‖22

)

uk+1 := uk + Axk+1 + Bzk+1 − c.

The algorithm fully splits the objective into two terms, i.e., the x-update and
z-update, which involve evaluating the proximal operators [28] with respect to f
and g. If at least one of them is separable, we can run the algorithm in parallel
fashion. Generally, evaluating such operators requires solving a convex optimiza-
tion problem. But, depending on the nature of f and g, simpler or faster spe-
cialized methods usually exist. Due to the smoothing of the proximal operators,
ADMM can deal with the case when f and g are not differentiable. For a more
detailed discussion on ADMM, we refer the readers to Boyd’s work [27].

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 67

4.2 Two-Tier Training

Here we describe the two-tier training method for the link prediction problem.
To protect Alice’s privacy, we formulate problems into two specific canonical
forms, i.e., consensus and sharing, and solve them using ADMM. At the first
tier, we split A↓ from

←
A and

→
A to protect the private links. At the second tier,

we split
→
A from

←
A to protect the private features.

Link Split. At the first tier, we split A by rows in order to protect the private
links within A↓ . Let A↑ ∈ R|E|↑ ×K represents both

←
A and

→
A. We first split A

into A↑ and A↓

Define

l↑ (A↑ x↑) =
1

|E|↑

|E|↑
∑

i=1

log(1 + exp(−A↑ x↑)),

l↓ (A↓ x↓) =
1

|E|↓

|E|↓
∑

i=1

log(1 + exp(−A↓ x↓)).

We can explicitly convert the sparse logistic regression problem (Eq. 2) into con-
sensus form [27]

minimize l↑ (A↑ x↑) + l↓ (A↓). + λr(z�)
subject to x↑ − z� = x↓ − z� = 0,

with local variable x↑ , x↓ ∈ RK and global variable z� ∈ RK .
The problem can be solved using the following ADMM algorithm

xk+1
↑ := argmin

x↑

(
l↑ (A↑ x↑) + (ρ/2)‖x↑ − zk

� + uk
↑ ‖22

)
(4)

xk+1
↓ := argmin

x↓

(
l↓ (A↓ x↓) + (ρ/2)‖x↓ − zk

� + uk
↓ ‖22

)
(5)

zk+1
� := argmin

z�

(
r(z�) + (ρ/λ)‖z� − xk+1

� − uk
� ‖22

)
(6)

uk+1
↑ := uk

↑ + xk+1
↑ − zk+1

� (7)

uk+1
↓ := uk

↓ + xk+1
↓ − zk+1

� , (8)

68 Y. Zheng et al.

where u↑ and u↓ are the scaled local dual variables correspond to x↑ and x↓ ;
x� = (1/2)(x↑ +x↓) and u� = (1/2)(u↑ +u↓) are the averages of the local primal
variables and scaled local dual variables. The termination criterion is that the
primal and dual residuals must be small, i.e.,

√
‖xk

↑ − xk
� ‖22 + ‖xk

↓ − xk
� ‖22 < εpri�

and
2ρ‖xk

� − xk−1
� ‖2 < εdual� ,

where εpri� > 0 and εdual� > 0 are feasibility tolerances for the primal and dual
feasibility conditions [27].

The algorithm is very intuitive. The local primal variables, x↑ and x↓ , and
dual variables, u↑ and u↓ , are separately updated through Eqs. 4, 5, 7 and 8.
The local result are collected and brought into consensus through Eq. 6. When
the algorithm terminates, x↑ and x↓ should both agree with z� .

Let x↑ equals (←
x↑ ,

→
x↑); x↓ equals (←

x↓ ,
→
x↓); u↑ equals (←

u↑ ,
→
u↑); u↓ equals

(←
u↓ ,

→
u↓); z� equals (←

z � ,
→
z �). The variables that should be private to Alice are

→
x↑ , →

x↓ , →
u↑ , →

u↓ and →
z � . To protect A↓ , →

x↓ and →
u↓ , we assign Eqs. 5 and 8

to A such that Alice can handle A↓ , x↓ and u↓ exclusively. Equation 5 involves
a �2 regularized logistic regression problem that can be efficiently solved by
Quasi-Newton methods like L-BFGS [29]. To further reduce her efforts, Alice can
mandate the maximum L-BFGS iterations to be small and rely on the second
tier for accuracy.

To protect →
z � , we split Eq. 6. Since r(z�) is essentially the proximal operator

of a �1 norm, we can calculate it using the soft thresholding operator [30]

Sκ(x) = (x − κ)+ − (−x − κ)−,

which is separable at the component level. We can split Eq. 6 into
←
z

k+1
� := (1/2)Sλ/ρ(

←
x

k+1
↑ + ←

x
k+1
↓ + ←

u
k
↑ + ←

u
k
↓) (9)

→
z

k+1
� := (1/2)Sλ/ρ(

→
x

k+1
↑ + →

x
k+1
↓ + →

u
k
↑ + →

u
k
↓), (10)

We assign Eq. 9 to S but reserve and Eq. 10 to A2. We allow Sara to send ←
z �

back to Alice since She need it to compute x↓ and u↓ . To protect →
u↑ , we split

Eq. 7 into
←
u

k+1
↑ := ←

u
k
↑ + ←

x
k+1
↑ − ←

z
k+1
� (11)

→
u

k+1
↑ := →

u
k
↑ + →

x
k+1
↑ − →

z
k+1
� . (12)

We assign Eq. 11 to S but reserve and Eq. 12 to A.
Finally, Eq. 4 contains data and variable that should be private to Alice, i.e.,

→
A and →

x↑ , which we will handle at the second tier.
2 Note that the intercept v is not regularized. Equations 9 and 10 can be modified to

incorporate the intercept by dropping the soft thresholding operator on the corre-
sponding element in z� .

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 69

Feature Split. At the second tier, we split A↑ by columns in order to protect
the private features within

→
A and the corresponding weight →

x↑ . Recall that

Define

←
r (←

x↑) = (ρ/2)‖←
x↑ − ←

z
k
� + ←

u
k
↑ ‖22,

→
r (→

x↑) = (ρ/2)‖→
x↑ − →

z
k
� + →

u
k
↑ ‖22.

we can explicitly convert Eq. 4 into sharing form [27]

minimize l↑ (
←↔
z +

→↔
z) + ←

r (←
x↑) + →

r (→
x↑)

subject to
←
A

←
x↑ − ←↔

z =
→
A

→
x↑ − →↔

z = 0,

with partial predictors
←↔
z ,

→↔
z ∈ R|E|

↑ .

Let
↔
u ∈ R|E|

↑ be the single dual variable. The problem can be solved using
the following ADMM algorithm

←
x

k′+1
↑ := argmin

←
x ↑

(
←
r (←

x↑) + (ρ′/2)‖ ←
A

←
x↑ − ←

A
←
x

k′
↑ −

−−↔
z

k′

+ A↑ x↑
k′

+
↔
u

k′

‖22
)

(13)

→
x

k′+1
↑ := argmin

→
x ↑

(
→
r (→

x↑) + (ρ′/2)‖ →
A

→
x↑ − →

A
→
x

k′
↑ −

−−↔
z

k′

+ A↑ x↑
k′

+
↔
u

k′

‖22
)

(14)

−−↔
z

k′+1

:= argmin
−−↔
z

(

l↑ (2
−−↔
z) + ρ′‖

−−↔
z − A↑ x↑

k′+1 − ↔
u

k′

‖22
)

(15)

↔
u

k′+1
:=

↔
u

k′

+ A↑ x↑
k′+1 −

−−↔
z

k′+1

, (16)

where A↑ x↑ = (1/2)(
←
A

←
x↑ +

→
A

→
x↑) and

−−↔
z = (1/2)(

←↔
z +

→↔
z) are the averages of

the partial predictors. The termination criterion is that the primal and dual
residuals must be small, i.e.,

2‖A↑ x↑
k′

−
−−↔
z

k′
‖2 <

↔
ε
pri

and

ρ′
√

‖←
A

T

(
←↔
z

k′
− ←↔

z
k′−1

)‖22 + ‖→
A

T

(
→↔
z

k′
− →↔

z
k′−1

)‖22 <
↔
ε
dual

70 Y. Zheng et al.

where ↔
ε
pri

> 0 and ↔
ε
dual

> 0 are feasibility tolerances for the primal and dual
feasibility conditions [27].

The algorithm is also intuitive. The local primal variables ←
x↑ , and →

x↑ and
dual variable

↔
u are separately updated through Eqs. 13, 14 and 16. The partial

predictors are collected, averaged then updated through a �2 regularized logistic
regression problem (Eq. 15).

To protect
→
A and →

x↑ , we can assign all but Eq. 14 to S. The reason is that

only
←↔
z =

←
A

←
x↑ and

→↔
z =

→
A

→
x↑ are shared throughout the algorithm. From Eq. 1,

we see that these partial predictors are in fact the margin of the training data,
which is a monotonically decreasing function of the sub-optimality. Assuming the
label q is within

→
A, sharing these partial predictors reveals neither

→
A nor →

x↑ .
Using this two-tier training method, Alice, who processes A↓ and

→
A, learns

the entire model coefficient x�. Sara, who processes
←
A, only learns ←

x
�

while
remains oblivious about A↓ ,

→
A and

→
x

�
. When predicting a link with unknown

sign, Alice can either assemble Eq. 3 by herself, or outsource
←
p

T

u
←
w

�
to Sara

without jeopardizing her privacy.

4.3 Complexity Analysis

Here we analyze the complexities of the tasks assigned to A and S. We show
that the workload is properly divided between A and S such that Sara handles
a majority of work.

For each training iteration, the dominate tasks for A are Eqs. 5 and 14. Equa-
tion 5 is a �2 regularized logistic regression with a wide matrix A↓ . Assuming we
solve it with L-BFGS, the most expensive operations for each L-BFGS iteration
are evaluating the function value, the gradient and approximating the Hessian
matrix with a limited memory BFGS matrix [29]. The complexities for the first
two are both O(|E|↓ K). The complexity for the last one is m2|E|↓ , where m is
the number of BGFS corrections3 [29]. Equation 5 is a �2 regularized least squares
problem with a tall matrix

→
A. The most expensive operations for that are form-

ing and factoring the Gramian matrix
→
A

T →
A. If we cache the factorization result,

the total complexity for that is O(
→
K |E|↑) [31, Sect. 4.2].

For each training iteration, the dominate tasks for S are Eqs. 15 and 13.
Equation 15 is essentially |E|↑ s scalar �2 regularized logistic regressions, which
can be solved using a lookup table for the approximate value, followed by one or
two Newton steps [27]. The overall complexity for that is O(|E|↑). Equation 13
is a �2 least squares problem with a large matrix

←
A. If we cache the factorization

result, the total complexity to solve that is O(
←
K |E|↑).

Assume the implicit condition that |E|↑ � |E|↓ and
←
K � →

K holds, the
workload ratio between A and S is approximately c|E|↓ /|E|↑ , where c is the
maximums L-BFGS iterations controlled by Alice.

3 In practice, we assume m to be small.

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 71

4.4 Protecting Prior Knowledge

Here we present two variations of the original learning model to incorporate
Alice’s prior knowledge. We assume that Alice knows a priori certain private
features have higher influence on the link signs than the others within her net-
work. To compensate that, we adjust the learning model by changing the regu-
larization function. We show we can properly train the new model and protect
Alice’s prior knowledge using the same two-tier training method.

In practice, it is common to assume Alice vaguely knows the underlying
reason of her link sign decisions. Although not wishing to reveal such reason,
Alice would prefer a model that take her prior knowledge into account. Such
preference can be expressed by swapping the �1 regularization function for a
generalized �1 regularization function in Eq. 2,

minimize 1
|E|

|E|∑

i=1

log (1 + exp (−Ax)) + λ‖Fx‖1 , (17)

where F ∈ R|E|×|E| is an arbitrary linear transformation matrix. Alice can define
different regularization strengths for different feature combinations through F .
If F is a diagonal matrix or a block diagonal matrix, i.e.,

Equations 6, 13 and 14 are separable. Therefore, we can still split the links and
features through ADMM.

Another interesting variation is when Alice knows a priori that most private
features affect her link sign decisions, i.e., ←

w is sparse but →
w is dense. Instead of

�1 regularization, Alice can apply �2 regularization to →
w. The problem becomes

minimize 1
|E|

|E|∑

i=1

log (1 + exp (−Ax)) + λ‖→
w‖22 + ‖←

w‖1 , (18)

where the �2 regularization ensures that →
w is a dense vector. Since the regular-

izations are separable by →
w and ←

w, The �2 regularization is not revealed to Sara
during training. Therefore, Alice’s prior knowledge privacy is still protected.

5 Experimentation and Evaluation

Here we evaluate the performance of our method with real-word OSN data.
Our experiments is conducted on the Wikipedia Request for Adminiship (RfA)
dataset [19,32], which contains a directed, signed network with rich textual fea-
tures. We use it to assess the prediction accuracy, the privacy-preserving prop-
erty, and the efficiency of our method.

72 Y. Zheng et al.

5.1 Wikipedia RfA Dataset

Leskovec et al. [19] created the Wikipedia RfA dataset by crawling and pars-
ing the Wikipedia RfA process webpages from 2003 to 2013. The dataset con-
tains votes casted by Wikipedia members for promoting individual editors to
the role of administrator. To apply for adminship, a request for adminship must
be submitted either by the candidate or another community member [19]. Any
Wikipedia member can cast a supporting, neutral, or opposing vote along with
a short comment for the RfA. The comment explains the reason of the vote. For
instance, A comment for a supporting vote may read, ‘I have seen him around,
a trustworthy editor with a good knowledge of policy ’, whereas a comment for an
opposing vote may read, ‘This candidate’s lack of experience in the en:Wikipedia
administrative arena’.

This induces a directed, signed network in which nodes represent Wikipedia
members and links represent votes. The vote comments provide rich textual
features, which makes the dataset well-suited for our experiments. West et al. [32]
post-processed the dataset to exclude all neutral votes. The current dataset
contains 10,835 nodes, 159,388 links (76 % positive). The average length of vote
comments is 34 characters.

5.2 Experimental Setup

We follow the same training and testing paradigm in [32]. We randomly select
10 focal nodes. For each focal node we carry out a breadth-first search (following
both in-link and out-link) until we have visited 350 nodes. This gives us 10
subgraphs, each has 350 nodes. For each subgraph, we randomly select 10 %
links and mark them as unknown. We use the rest 90 % links to train a sparse
logistic model and test its performance using the unknown links. Just to make
a fair comparison about prediction accuracy, we also train a model for each
subgraph i and test it using subgraph i + 1 without any link masking, which
follows the same setting in [32].

We use the term frequencies of the 10,000 most frequent words as link fea-
tures, We excludes words that paraphrase link labels, i.e., support or oppose,
or words whose prefixes paraphrase link labels, i.e., support or oppos. For fea-
ture split, we pre-train a regular sparse logistic model using a random sample
of 10,000 comments without testing. We choose the 100 words that have highest
weights and 900 random samples of the from the rest of the words as private
features and the remaining 9000 words as public features. For link split, we
choose half the opposing links as private links and the other half along with all
supporting links as public links.

We train the model by solving a sparse logistic regression with different
regularization parameters for ←

w and →
w, i.e.,

r(x) = λ1‖←
w‖1 + λ2‖→

w‖1,
where λ1 = 0.1 and λ1 = 0.01. We use a Python implementation to perform the
two-tier training in parallel. The parallelism is provided by the IPython parallel

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 73

engine. We use the fmin l bfgs b in SciPy to update Eqs. 4, 5, and 15, which
is essentially Nocedal’s Fortran 77 implementation of L-BFGS [29]. We set the
maximum L-BFGS iterations to 10 to limit Alice’s effort. To verify the result,
we also train the model without ADMM using a MATLAB implementation with
CVX [33] and Gurobi [34]. All experiments are conducted on a Cray CS-300
cluster with 2.60 GHz octa-core Intel Sandy Bridge CPUs.

5.3 Evaluation Metrics

The metrics we use to evaluate the prediction accuracy are the areas under the
curve (AUC) of the receiver operating characteristic (ROC) curves as well as the
precision-recall (PR) curves. We only report the PR curve of the opposing links
because it better describes the prediction accuracy [32]. The reason is because
the class imbalance of 76 % supporting links. Even random guessing can achieve
an AUC of 0.76 for supporting links comparing to an AUC of 0.24 for opposing
links.

We show the privacy-preserving property by reporting the AUC/PR curves
and the classification margins for the joint model, a model solely uses private
features and a model solely uses public features. The last one represents the
model Sara attains after the two-tier training. The differences between the three
models signifies the information leakage due to exposing the public features.

The metrics we use to evaluate the algorithm efficiency and the communica-
tion overhead are the iteration versus suboptimality (IVS) curve and the cumu-
lative runtime versus suboptimality (CRVS) curve. We consider one iteration
as a complete cycle of both tiers. Due to parallelism, we report the cumulative
runtime for both A and S. The optimal value was verified using CVX [33] and
Gurobi [34].

5.4 Results

We first verify that our training objective produces high quality prediction
model. In Fig. 1, we compare our model with the sentiment model used in [32],
which is trained through a �2 regularized logistic regression. We randomly mask
a set of links and train both models using the comments of the remaining links.
Even with data rearrangement and splitting, the performance of our model is
comparable to the sentiment model in terms of AUC/ROC curve and AUC/PR
curve. The sentiment model slightly edges ours at the fourth decimal point, due
to the sparsity constrain in our objective. The two models agree on 95 % of
the signs among the top 100 weights. Interestingly, the improvement through
increasing the visible link ratio is not significant for both models. This suggests
that the kurtosis of the feature weights distributions is high. Most weights have
small correlation with the link sign.

Our second experiment examines the privacy-preserving property of the two-
tier training method. We compare the prediction accuracies of three models, the
joint model that uses both public and private features, a private model that
solely uses private features and a public model that solely uses public features.

74 Y. Zheng et al.

20% 60%

0.8875

0.888

0.8885

Visible link ratio

A
re

a
u
n
d
er

th
e

cu
rv

e �2 logistic

�1 logistic

(a) AUC/ROC

20% 60%

0.5985

0.6

0.6015

Visible link ratio

�2 logistic

�1 logistic

(b) AUC/PR

Fig. 1. Assess the model quality by comparing our model with the �2 regularized logistic
regression model used in [32]. (a) The AUC/ROC curves are comparable between the
two models. (b) The AUC/PR curves are comparable between the two models.

Figure 2a shows the AUC/ROC curves of the three. Consider a baseline model
that predicts link signs through random guess. The AUC/ROC for the baseline
model is exactly 0.5. The public model’s performance is 10 % better than the
baseline model whereas the other two are 76 % and 50 % better than the baseline
model. Since Sara only learns

←
x

�
, her prediction accuracy is 86.8 % lower than

Alice.
The public model does enjoy a slight performance bump when increasing the

visible link ratio. That is because the corresponding increases of nonzero entities
in

←
A, which enlarge the classification margin. But, such improvement is limited.

Figure 2b shows the classification margin of the three models. We normalized
the margins according to the largest one, i.e., the margin of the joint model.
The classification margin of the public model is the lowest among all three. It
indicates that most predictions the public model makes are borderline cases with
low confidence.

Finally, we report the training efficiency and workload for Alice and Sara.
Using the experimental setup described earlier, the average number of links for
each subgraph is 5000, among which 1000 are negative and 4000 are positive.
This produces a matrix A of size 5000 by 10,000, which divides into three parts,
a matrix A↓ of size 500 by 10,000, a matrix

←
A of size 4500 by 9900 and a matrix

→
A of size 4500 by 100.

We measure the training process using the objective suboptimality. Let õk

be the objective value at the kth iteration

õk =
1

|E|
|E|∑

i=1

log
(
1 + exp

(
−Azk

�

))
+ r(zk

�).

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 75

20% 60%

0.6

0.7

0.8

Visible link ratio

A
re

a
u
n
d
er

th
e

cu
rv

e

Joint

Private

Public

(a) AUC/ROC

0 0.5 1

Public

Private

Joint

0.29

0.92

1

Normalized margin

(b) Classification margin

Fig. 2. Observe the private preserving property by comparing the prediction accuracies
and the classification margins. (a) Using only public features, Sara’s prediction accu-
racy is 86.8 % lower than Alice. (b) Using only public features, Sara’s classification
margins (prediction confident) is 71.0 % lower than Alice.

Let o� be the optimal objective value

o� =
1

|E|
|E|∑

i=1

log (1 + exp (−Ax�)) + r(x�).

The objective suboptimality is the difference between õk and o�, i.e., õk − o�.
The optimal value o� = 0.9752 × 105 is verified by our MATLAB implementa-
tion. Figure 3a shows the training progress by iteration. The dashed line marks
the iteration when the stopping criterion is satisfied. The algorithm only takes
24 iterations to reach the optimal, which greatly reduces the communication
overhead between Alice and Sara.

Figure 3b shows the CRVS curves for Alice and Sara. The dashed line marks
convergence. The main task for Alice is to compute Eq. 5 using L-BFGS. We
use L-BFGS with warm starting to reduce Alice’s workload. This approach is
effective in later iteration when the iterates approach consensus. The main task
for Sara is to compute Eqs. 13, 15 and various matrix-vector multiplications. We
cache the matrix factorization to reduce Sara’s workload. However, Sara still
need to compute large back-solves to produce the result. For both Alice and
Sara, the runtime of early iterations is significantly longer than the latter ones.
Overall, Sara’s workload is approximately 10 times larger than Alice’s workload.

To summarize, the experiments show three points: (1) Our decentralized
method achieves equally high predication accuracy as the sentiment model used
in [32]. Using data splitting to protect private data does not affect the modal
quality. (2) Sara is oblivious of Alice’s private data and their corresponding
weights. Without Alice’s help, Sara’s prediction accuracy is fairly poor. Alice,
on the other hand, enjoy the full benefit of the collaboration and is able to
acquire high prediction accuracy with minimal efforts. (3) The data splitting

76 Y. Zheng et al.

Fig. 3. Convergence analysis of the two-tier training method. The stopping criterion
is satisfied at iteration 24, marked by the dashed lines. (a) X axis is the number of
iterations, Y axis it the suboptimality measured by õk−o�. (b) X axis is the cumulative
runtime measured in seconds. The total runtime for Alice is 90.4 % lower than Sara.

assigns appropriate workload for Alice and Sara to fully utilize their computation
resources.

6 Conclusion

In this paper, we studied the privacy-preserving link prediction problem in decen-
tralized OSNs. We proposed a novel decentralized two-tier method that allows
end users to collaborate with their online service providers without revealing
their private data. Using a real-world social network dataset, we showed that
our method produces high quality prediction model while eases users’ comput-
ing burden. Additionally, we showed that our method can be secure against the
link reconstruction attack. In the era of “Big Data”, our method bridges the gap
between the increasing volume of personal data and the insufficient analyzing
resources of privacy conscious users in decentralized OSNs.

Acknowledgment. This work was supported by US National Science Foundation
under grants CNS-1405747, CNS-1156318, CNS-1443889, and CSR-1217889.

A Appendix: Link Reconstruction Attack

Here we assess the possibility of link reconstruction attack. In a link reconstruc-
tion attack, we consider a passive adversary, Eve, tries to predict the link signs

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 77

of Alice’s network. Just like Sara, Eve can access the public data matrix
←
A. But,

unlike Sara, Eve cannot collaborate with Alice. We assume Eve knows the train-
ing method Alice and Sara use. The goal for Eve is to build a model that has
the same prediction power as the joint model. We evaluate the attack possibility
by measuring Eve’s prediction accuracy.

A.1 Experimental Setup

Our previous experiments assume that Alice makes rational decision and protects
features that have high correlation with the link sign. Although unlikely, Alice
can split the data in such a way that all private features are irrelevant to the
link sign. To consider different public/private splits, we shuffle the features of
the matrix A used in previous experiments.

Fig. 4. Weight vectors generated by random walking the nonzero entries in the initial
weight vector. The dashed line marks the feature split point. (a) The initial weight
vector is the same as the optimal weight vector w� learned from the Wikipedia RfA
dataset. (b) Private features and public features are partially mixed. (c) Private fea-
tures and public features are uniformly distributed.

78 Y. Zheng et al.

20% 60%

0.5

0.6

0.7

0.8

iteration (percentage)

A
re

a
u
n
d
er

th
e

cu
rv

e
Joint

Private

Eve

(a) protect q

20% 60%

0.5

0.6

0.7

0.8

iteration (percentage)

(b) reveal q

Fig. 5. AUC/ROCs of the public and private models versus shuffling iteration. The
shuffling iterations is represented as the percentage of the maximum iterations. (a)
Eve can not improve her prediction accuracy if Alice protect q. (b) Eve can improve
her prediction accuracy if Alice reveal q. The dashed line marks the tipping point where
Eve’s model surpasses the private model.

The shuffle is done by rearranging features that have nonzero weights. We use
a Monte Carlo random walk algorithm to shuffle matrix A. For each iteration,
the algorithm moves the features that have nonzero weights randomly to the
left or to the right. The resulting ‘true’ weight vectors are shown in Fig. 4. The
initial weight vector represents the split that assigns top weighted features to
the private data matrix

→
A. The random walk mixes the features in

→
A with the

features in
←
A. As the walking time increases, the ‘true’ weights approaches a

steady state uniform distribution.
We use the total variation mixing time [35], i.e., t = n log n, where n equals

10,000, as the maximum mixing iterations. For each 0.1t, we record the shuffled
matrix. This gives us 10 matrices whose ‘true’ weights gradually change from
unevenly distributed to uniformly distributed. We split these matrices at a fixed
index position. For each matrix, We train a prediction model for Eve solely using
←
A. We compare Eve’s model with the private model and the joint model trained
by Alice and Sara.

A.2 Results

Figure 5 shows the prediction accuracy of Eve’s model versus shuffling iteration.
The results are distinct for two different scenarios. If the link sign column q
is within

→
A, shown in Fig. 5a, Eve is forced to train her model with random

guesses. In that case, moving high weighted features into
←
A does not improve

Eve’s model. Eve’s prediction accuracy is exactly 0.5 regardless the features she
uses.

If the link sign column q is within
←
A, shown in Fig. 5b, Eve can properly train

her model using the same sparse logistic regression. In that case, Eve’s model

Privacy-Preserving Link Prediction in Decentralized Online Social Networks 79

can be improved if more high weighted features are within
←
A. In our experiment,

Eve is able to increase her prediction accuracy by over 50 % when the weights
are uniformly distributed.

Although the security properties are different, the impacts on Sara’s predic-
tion accuracy are the same. When the high weighted features are moved from
→
A to

←
A, the predication accuracy of the private model decreases; the predic-

tion accuracy of the public model increases; the prediction accuracy of the joint
model remains the same. Sara, who benefits from collaborating with Alice, is
able to make more accurate prediction using the public model.

To summarize, the experiments show: (1) that Alice can prevent the link
reconstruction attack by marking the link sign ground truth as private. (2)
Although not violating Alice’s privacy, inappropriate data split could acciden-
tally increases Sara’s prediction power.

References

1. Google finance. Accessed 19 June 2014. https://www.google.com/finance
2. Statistic brain. Accessed 20 June 2014. http://www.statisticbrain.com
3. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social

networks with mixed public and private user profiles. In: Proceedings of the 18th
International Conference on World Wide Web, pp. 531–540 (2009)

4. Facebook. Data use policy. Accessed 25 June 2014. https://www.facebook.com/
about/privacy

5. Dodson, B., Vo, I., Purtell, T., Cannon, A., Lam, M.: Musubi: disintermediated
interactive social feeds for mobile devices. In: Proceedings of the 21st International
Conference On World Wide Web, pp. 211–220 (2012)

6. Diaspora Inc. Accessed 28 May 2014. http://diasporaproject.org
7. Omlet Inc. Accessed 28 May 2014. http://www.omlet.me
8. Aggarwal, C.C.: Social Network Data Analytics. Springer, US (2011)
9. Datta, A., Buchegger, S., Vu, L.-H., Strufe, T., Rzadca, K.: Decentralized online

social networks. In: Furht, B. (ed.) Handbook of Social Network Technologies and
Applications, pp. 349–378. Springer, US (2010)

10. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online
social network with user-defined privacy. ACM SIGCOMM Comput. Commun.
Rev. 39(4), 135–146 (2009)

11. Cutillo, L.A., Molva, R., Strufe, T.: Safebook: a privacy-preserving online social
network leveraging on real-life trust. IEEE Commun. Mag. 47(12), 94–101 (2009)

12. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommend-
ing links in social networks. In: Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, pp. 635–644 (2011)

13. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks.
Adv. Neural Inf. Process. Syst. 25, 539–547 (2012)

14. Fisher, D.: Using egocentric networks to understand communication. IEEE Internet
Comput. 9(5), 20–28 (2005)

15. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

16. Yu, H., Jiang, X., Vaidya, J.: Privacy-preserving svm using nonlinear kernels on
horizontally partitioned data. In: Proceedings of the 2006 ACM Symposium on
Applied Computing, pp. 603–610. ACM (2006)

https://www.google.com/finance
http://www.statisticbrain.com
https://www.facebook.com/about/privacy
https://www.facebook.com/about/privacy
http://diasporaproject.org
http://www.omlet.me

80 Y. Zheng et al.

17. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and dis-
trust. In: Proceedings of the 13th International Conference on World Wide Web,
pp. 403–412 (2004)

18. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised
learning. In: Proceedings of SDM Workshop on Link Analysis, Counter-terrorism
and Security (2006)

19. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links
in online social networks. In: Proceedings of the 19th International Conference on
World Wide Web, pp. 641–650 (2010)

20. Kim, M., Leskovec, J.: Latent multi-group membership graph model. In: Proceed-
ings of the 29th International Conference on Machine Learning, pp. 1719–1726
(2012)

21. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collab-
orative filtering. In: Proceedings of the 24th International Conference on Machine
Learning, pp. 791–798 (2007)

22. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2009)

23. Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

24. Hinton, G.: A practical guide to training restricted boltzmann machines. Momen-
tum 9(1), 926 (2010)

25. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet
non linéaires. ESAIM: Math. Model. Numer. Anal. Modélisation Math. Anal.
Numérique 9(R2), 41–76 (1975)

26. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40
(1976)

27. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

28. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231
(2013)

29. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

30. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3),
613–627 (1995)

31. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore (2013)

32. West, R., Paskov, H.S., Leskovec, J., Potts, C.: Exploiting social network structure
for person-to-person sentiment analysis. Trans. Assoc. Comput. Linguist. 2, 297–
310 (2014)

33. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 2.1 (2014). http://cvxr.com/cvx

34. Gurobi Optimization Inc., Gurobi optimizer reference manual, version 5.6 (2014).
http://www.gurobi.com/documentation

35. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Mathematical Society, Providence (2009)

http://cvxr.com/cvx
http://www.gurobi.com/documentation

Privacy-Preserving Observation in Public Spaces

Florian Kerschbaum1(B) and Hoon Wei Lim2

1 SAP, Karlsruhe, Germany
florian.kerschbaum@sap.com

2 Singtel R&D Laboratory, Singapore, Singapore
limhoonwei@singtel.com

Abstract. One method of privacy-preserving accounting or billing in
cyber-physical systems, such as electronic toll collection or public trans-
portation ticketing, is to have the user present an encrypted record of
transactions and perform the accounting or billing computation securely
on them. Honesty of the user is ensured by spot checking the record for
some selected surveyed transactions. But how much privacy does that
give the user, i.e. how many transactions need to be surveyed? It turns
out that due to collusion in mass surveillance all transactions need to
be observed, i.e. this method of spot checking provides no privacy at all.
In this paper we present a cryptographic solution to the spot checking
problem in cyber-physical systems. Users carry an authentication device
that authenticates only based on fair random coins. The probability can
be set high enough to allow for spot checking, but in all other cases pri-
vacy is perfectly preserved. We analyze our protocol for computational
efficiency and show that it can be efficiently implemented even on plat-
forms with limited computing resources, such as smart cards and smart
phones.

1 Introduction

Cyber-physical systems are starting to permeate our daily lives. They record time
and location information – together with sensory data – of ourselves and this
data is, in turn, used to analyze our behavior in the physical world. A common
application of such cyber-physical systems is billing, e.g. for toll collection [2,
22,26], public transportation [11,17,28], or electric vehicle charging [21]. The
cyber-physical sensor records our identity, time, location and consumption. This
data is then used to bill us based on the recorded transactions.

An obvious problem with this approach is privacy. All our transactions in the
physical world are recorded and can be also analyzed for purposes other than
billing. Every search engine or web-based e-mail user already gets displayed a
huge amount of personalized ads.

Instead of centrally collecting all transactions they can be stored on user-
owned devices. The user then presents its collected record of transactions and
pays its bill. While this would remove the central data storage, the service
provider observes all transactions during payment and could theoretically retain
a copy. An approach for protecting privacy is to have the user present an
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 81–100, 2015.
DOI: 10.1007/978-3-319-24177-7 5

82 F. Kerschbaum and H.W. Lim

encrypted record of transactions. A computation on the encrypted transactions
then results in the billing amount. No information – in the clear – is revealed
during this process. This approach has been taken in [2,11,17,21,22,26,28]. Sim-
ilar approaches can be realized using secure multi-party computation [4,5,13–
16,18,19,30].

The problem is, of course, that the billed person could cheat and present
an incomplete, tampered or even empty record of transactions. A solution is
to record some transactions of the user in the physical world and spot check
whether he honestly included them in the presented transactions during bill
payment. Popa et al. [26] and Balasch et al. [2] recently presented systems for
road toll pricing that follow this model. Yet, the problem is still not solved,
since the users may collude in order to determine where and when they have
been observed. Meiklejohn et al. [22] therefore proposed to keep the spots that
are checked secret.

A problem that arises in the approach of [22] is that collusion among dishon-
est users is still possible, even if the spot checks are kept secret. A dishonest user
may risk paying the penalty, if he gains from the information obtained. If this
user is caught, he must be presented evidence that he cheated which reveals the
observed spot. Dishonest users may therefore collude by submitting incomplete
records of transactions and share the obtained information and the penalties for
getting caught. We show in Sect. 3 that mass surveillance cannot prevent this
collusion under reasonable penalties and all transactions need to be observed in
order to prevent collusion. Clearly, this method then provides no privacy at all.
Moreover, we argue that the proposal of [22] does not solve the problem of enforc-
ing honesty vs. privacy. The question one has to ask is how many transactions
need to be surveyed. Too few transactions may enable cheating and too many
violate privacy. We investigate whether there is a privacy-compliant trade-off in
public spot checking.

We propose a cryptographic solution to this problem. Particularly, we present
a protocol for a privacy-preserving spot checking device. The basic idea is to
run a randomized oblivious transfer of the trace of an authentication protocol
and a random message. This device may authenticate the carrier (due to the
authentication protocol) with a random probability that cannot be tweaked by
the carrier (if the oblivious transfer sends the authentication trace). The observer
learns nothing with a probability that cannot be tweaked by the reader (if the
oblivious transfer sends the random message). The probability of authentication
can be set high enough to allow for spot checking, but low enough to provide
reasonable privacy. Since it is a personal device authenticating only its carrier,
no information can be shared, and thus completely preventing collusion attacks.

We emphasize that the construction of our protocol is very efficient. We
neither need any secure hardware nor verifiable encryption using zero-knowledge
proofs. We achieve this by using a definition of fairness secure against one-sided
malicious adversaries only restricting the attacks to incentive-compatible ones.

All our security objectives are provably achieved using efficient, established
building blocks and assumptions. A secure device could be built from the

Privacy-Preserving Observation in Public Spaces 83

specification by anyone – even suspicious citizens. Furthermore, we optimize
the protocol for performance and present an implementation analysis of the
optimized version for weak computation devices. We estimate that the protocol
can be run in roughly half a second on very weak smart cards. As a conclu-
sion it is likely that the protocol can be run even on flowing traffic without any
disruptions.

In this paper we contribute

– an economic analysis of collusion in spot checked cyber-physical systems;
– a protocol for privacy-preserving spot checking;
– an implementation analysis of this protocol for weak computational devices.

The remainder of this paper is structured as follows. In the next section, we
give a brief overview of related work on privacy-preserving electronic billing or
accounting systems. In Sect. 3 we present our economic analysis of collusion in
these systems. Then, we describe our privacy-preserving spot checking proto-
col in Sect. 4. We also give an implementation analysis and discuss the trade-off
between privacy and enforcement of honesty. In Sect. 5 we give an example appli-
cation and we present our conclusions in Sect. 6.

2 Related Work

2.1 Privacy-Preserving Billing

Toll Collection. Cryptographic privacy-preserving toll collection systems [2,
22,26] have been proposed to resolve the tension between the desire for sophis-
ticated road pricing schemes and drivers’ interest in maintaining the privacy of
their driving patterns. At the core of these systems is a monthly payment and
an audit protocols performed between the driver, via an on-board unit (OBU),
the toll service provider (operating the OBU) and the local government. Each
driver commits to the road segments she traversed over the month and the cost
associated with each segment. To ensure honest reporting, the systems rely on
the audit protocol, which in turn, makes use of unpredictable spot checks by
hidden roadside cameras. At month’s end, the driver is challenged to show that
her committed road segments include the segments in which she was observed,
and that the corresponding prices are correct. (More description of such an
audit protocol for privacy-preserving toll collection is given in Sect. 5.) As long
as the spot checks are done unpredictably, any driver attempting to cheat will
be caught with high probability. Meiklejohn et al. [22] proposed a system called
Milo, which employs an oblivious transfer technique based on blind identity-
based encryption [9] in its audit protocol, such that spot checks on a driver’s
committed road segments can be performed without revealing the checked loca-
tions. Nevertheless, privacy is preserved with respect to only the toll service
provider. The cameras can actually observe all vehicles at all times, and thus,
there is completely no privacy against the local government (audit authority),
which can trace any vehicle and learn its driving patterns through the cameras.

84 F. Kerschbaum and H.W. Lim

e-Ticketing in Public Transportation. The use of contactless smart cards as
electronic tickets (e-tickets) is popular in public transportation systems in many
countries world-wide [11,17,28]. However, majority of existing e-ticketing sys-
tems are not designed to protect user privacy, i.e. travel records leak commuters’
location information. In fact, transportation companies collect commuters’ travel
history in order to analyze traffic patterns and detect fraudulent transactions.
However, this clearly is a privacy breach. Kerschbaum et al. [17] recently pro-
posed a cryptographic solution for bill processing of travel records while allowing
privacy-preserving data mining and analytics. However, privacy is achieved at
the expense of high processing overhead of encrypted travel records and the need
for an independent key management authority. Also, no notion of spot checking
is used in their system.

Electric Vehicle Charging. Electric vehicles have been used as a more
environmental-friendly alternative to traditional gasoline-based vehicles. How-
ever, electric vehicles require frequent recharging at dedicated locations. If not
done properly, information of a driver’s whereabouts can be leaked through the
underlying payment system. Liu et al. [21] designed an anonymous payment
protocol for enhancing the location privacy of electric vehicles. While a driver’s
location privacy is preserved against the power grid company, a malicious local
government is still able to reveal any past transactions.

Variants of Oblivious Transfer. Oblivious transfer is a protocol between a
sender and a receiver. In its most simple form, the sender has two messages and
the receiver learns one without learning anything about the other one. Oblivious
transfer has been introduced by Rabin [27] where the message received was a
joint random choice between sender and receiver. Even et al. generalized this to
a setting where the receiver could choose which message he receives [7].

Oblivious transfer is a very powerful primitive. Kilian showed that all cryp-
tographic primitives can be based on oblivious transfer [20]. Also many variants
of oblivious transfer exist. In priced oblivious transfer [1] a price is deducted
from an encrypted account for each message received. In k-out-of-n oblivious
transfer [3] k messages can be chosen amongst n. We employ oblivious trans-
fer in a new setting with authentication. Private information retrieval (PIR) is
incompatible with our setting, since it may reveal information about the non-
transferred message.

2.2 Threat Model

In privacy-preserving billing systems, the goal is to protect the location infor-
mation of users while ensuring that the users behave in an honest manner.

We assume that there exist various semi-honest parties who may be interested
in garnering information about users’ travel patterns and location information;
for example, service providers may do this for business reasons, local government

Privacy-Preserving Observation in Public Spaces 85

for social or political reasons, and even users themselves may attempt to learn
other users’ whereabouts for malicious motives.

Moreover, there are dishonest users who may find every opportunity to cheat,
including colluding with other users or deviating arbitrarily from the associated
payment protocol. That is, they would attempt to avoid paying or paying less
than they should for the services they have received.

3 Collusion Attack

Meiklejohn et al. [22] claim for their system Milo that it prevents collusion
attacks, since it does not reveal the spot checked locations to an honest user.
In this section we investigate the economic feasibility of a collusion attack for
dishonest users. We consider a simplified model where the penalties and costs
are linear in the number of transactions, but conjecture that similar solutions
can be found in the non-linear case. Our conclusion is that in mass surveillance
possible collusion leads to the need for observing all transactions.

3.1 Model

We divide time and space into discrete spots. Spots have a certain duration –
usually as long as an observation period. Not all spots of a location must be
observed, imagine, for example, mobile cameras.

A spot can be either observed, i.e. all transactions of users are recorded, or
unobserved, i.e. no transaction is recorded. We assume that a fraction 1

α of spots
are to be observed. For the user the state of the spot may also be unknown, i.e. he
does not know whether it is observed or unobserved.

During the duration of each spot on average m transactions of different users
are observed. Imagine a camera that records the flowing car traffic and recognizes
the license plates. In an hour on a busy street one can observe probably thousands
of cars.

When the user reports his transactions, he has to pay cost d for each reported
transaction. He may also choose to cheat and not report some transactions. For
every transaction where he gets caught doing so he has to pay penalty p (p > d).

3.2 Collusion Strategy

We consider the following strategy. For every spot where the user knows that he
is unobserved, he does not report his transaction. For every spot where the user
knows that he is observed, he, of course, reports, since p > d and he will get
caught. The question is whether he reports spots where the state is unknown to
him.

For this we need to consider how a spot becomes known to be observed or
unobserved. If a user does not report a spot and is charged with a penalty for
that spot, the provider must present some evidence. From this evidence we can
conclude that the spot is observed. If a user does not report a spot and is not

86 F. Kerschbaum and H.W. Lim

charged with a penalty for that spot, he can likely conclude that the spot is
unobserved.

We assume perfect information sharing about states of spots between all
colluders, i.e. if one party is charged with a penalty all others know the spot is
observed. We furthermore reward users for testing the states of the spots by not
submitting transactions. If a user does not report a spot and is not charged with
a penalty, he marks it as known unobserved and attaches his name to it. From
now on, all other users also do not report this spot and pay a reward e (e < d) to
this user. Clearly, these users will save some money compared to being honest.
For each known observed spot they pay d, for each known unobserved spot they
pay e. Since e < d, this saves them some money.

3.3 Analysis

The utility of reporting a transaction for a spot whose state is unknown is

U =
1
α

p − (1 − 1
α

)me. (1)

If U > 0, then the user reports honestly (and will not learn any information).
We can compute the necessary penalty for discouraging dishonesty as

d > e ∧ p > (α − 1)md ⇒ U > 0.

If we consider mass surveillance (say m on the order of thousands) and rea-
sonable privacy (say α on the order of hundreds), the penalty p needs to be
significantly (on the order of several hundreds of thousands) higher than the
cost d for a transaction. Loosely speaking, this is roughly equivalent to a life
sentence for getting caught riding on the bus without a ticket. Otherwise, it is
rational to collude and cheat in our model.

Another solution to this problem is to observe every spot and transaction
(α = 1). This complete surveillance incentivizes honesty, but completely removes
any privacy. The transactions of the user are known anyway, such that he does
not need to report them in a privacy-preserving way, i.e. even the privacy-
preserving measures are led ad absurdum. Our solution preserves privacy, but
does single user privacy-preserving spot checking, i.e. m = 1. Surveillance moni-
tors should still be at every spot, i.e. every spot is potentially observed, but the
spot checking is random and cannot be forced.

Of course, the toll service provider could randomize spot checking by himself,
but the user would have no guarantee and it is more economical for the provider
to observe all spots. We eliminate this option of mass surveillance by proven
privacy guarantees for the users.

Privacy-Preserving Observation in Public Spaces 87

Fig. 1. Black-box protocol Π for privacy-preserving spot checking

4 Privacy-Preserving Spot Checking

We have a user who needs to be randomly spot checked. In the spirit of zero-
knowledge proofs1 we call him prover P . We have a provider who needs to
perform the spot checking. We call him the verifier V .

Privacy-preserving spot checking is a protocol Π between P and V . P ’s inputs
to Π are a secret key SK, a public identifier PK and a collection of random
coins s. V ’s inputs to Π are random coins t. V ’s outputs is whether z = s−t = 0.
If z = 0, V obtains the public identifier PK of the prover; otherwise, he obtains
nothing more. P obtains no output – not even whether z = 0. Figure 1 displays
the black-box input and output behavior of protocol Π.

4.1 Setup and Registration

There is a separate registration and verification phase. Each prover chooses a
secret key SK or has it chosen for him by some authority. He then computes the
public identifier PK.

We operate in some finite group G of prime order. Let v be the secret key.
Then the public identifier is gv. Clearly, we can assume that it is difficult to
compute the secret key from the public identifier due to the hardness of the
discrete logarithm problem. Since we only rely on the confidentiality of the secret
key for authentication, we do not need any secure hardware in constructing our
device.

The authority registers the personal identity of the prover along with public
identifier gv. Then, whenever presented with gv the authority can personally
identify the prover. Moreover, the authority can detect forged spot checking
devices, if there is no record for a presented public identifier.

Fig. 2. Protocol 1: standard schnorr identification

1 Our protocol is not a full-fledged zero-knowledge protocol, but more efficient.

88 F. Kerschbaum and H.W. Lim

4.2 Security Properties

We demand a number of security properties from our privacy-preserving spot
checking protocol.

Authenticity: In case z = 0, i.e. the verifier obtains public identifier PK,
the prover cannot have produced PK without knowing the corresponding secret
key SK. Hence, the prover is authenticated. We formalize this security notion
equivalent to the soundness notion of zero-knowledge protocols. Let EP (PK) be
an extractor that given rewinding access to P extracts the secret key SK from
P given that z = 0 and the public identifier PK has been revealed. We say a
protocol is authentic, if

P
Π←→ V : z = 0, PK ⇒ 1 − Pr[EP (PK) = SK] < 1/poly(κ).

Privacy: In case z �= 0, i.e. the verifier does not obtain PK, the verifier cannot
extract any information about the identity of the prover from the protocol. We
formalize this security notion equivalent to zero-knowledge. Let S(s, t)P be a
simulator of the protocol view of the verifier – the messages of P – in case
s−t �= 0. We denote computational indistinguishability as cind∼ . We say a protocol
is private, if

SP (s, t) cind∼ ΠP
s−t�=0.

Fairness: Let V (Π) denote the verifier’s output from the protocol, i.e. whether
the prover cheated. The verifier V should only be able to force the case z = 0
with probability less than 1

α + 1
poly(κ) . The prover P should only be able to force

the case z �= 0 with probability less than 1− 1
α + 1

poly(κ) without being detected.
Let AV and AP be the adversary taking the role of the verifier and prover,
respectively. We say a protocol is fair, if

Pr[P Π←→ AV : z = 0] <
1
α

+ 1/poly(κ)

Pr[AP Π←→ V : z �= 0, V (Π) = 1] < 1 − 1
α

+ 1/poly(κ).

Reverse Unobservability: The prover P should not learn whether z = 0,
i.e. whether he was observed or not. Let SV be a simulator of the protocol view
of the prover – the messages of V . We say a protocol is reverse unobservable, if

SV cind∼ ΠV .

4.3 Protocol

We present the protocol in incremental steps in order to show the necessity and
effect of individual messages. Let g denote a group generator. We begin with a
regular Schnorr identification protocol [29] in Fig. 2.

The verifier accepts if gr+av = (gv)agr, else he rejects. Clearly, this already
achieves authenticity, since it is a standard Schnorr identification protocol. We
can construct an extractor in the usual way.

Privacy-Preserving Observation in Public Spaces 89

Fig. 3. Protocol 2: schnorr identification with fair coin flip

Theorem 1. Protocol 1 is authentic.

Proof. The extractor proceeds as follows. It waits for the prover to send gr.
Then, it first sends a1 and waits for r + a1v. Second, it rewinds P to the second
protocol step and sends a2. From r + a1v and r + a2v, it computes v. Since
the probability of randomly choosing a valid public identifier is negligible, the
verifier can also verify the authenticity.

The protocol can be made completely non-interactive using the weak Fiat-
Shamir heuristic [8]. The challenge a is then computed using a collision-resistant
hash function H(gr).

Protocol 1 so far does not include a random choice, i.e. the identity of P is
always revealed. The verifier receives gv in the protocol. We now modify Protocol
1 to obtain Protocol 2. Here we incorporate a fair flip of a coin with probability
Pr[coin = 0] = 1/α (and the Fiat-Shamir heuristic). Note that r + av does
not reveal the public identifier gv, if also gr is unknown. Therefore the prover
commits to gv and gr using a cryptographic commitment scheme and only opens
if the coin turns up z = 0.

A cryptographic commitment scheme consists of two operations:

– γ = Commit(x, c): A commitment γ to x using the random coins c.
– Open(γ) = x, c: An opening of the commitment revealing the value x and the

random coins c.

A cryptographic commitment scheme enjoys two properties:

– Binding: The probability that one can successfully open to a different x′ is
negligible.

– Blinding: The probability to compute x from γ is negligible.

A possible commitment scheme is that by Pedersen [25], but in practical
implementations one can use, e.g. HMAC (secure in the random oracle model).
For clarity of the description we leave out the random coins in the description
of the commitment of the protocol, i.e. we write Commit(x) and Open(x). The
protocol proceeds as in Fig. 3.

90 F. Kerschbaum and H.W. Lim

Theorem 2. Protocol 2 is private.

Proof. In case z �= 0, the verifier receives the following messages Commit(s),
Commit(gv), Commit(gr), r + H(gr)v and Open(s). The simulator proceeds
as follows. It chooses random s and the corresponding coins and computes
Commit(s). It can already simulate two messages. It simulates Commit(gv)
and Commit(gr) using two random commitments, since the commitments are
never opened and blinding. It simulates r + H(gr)v using a random value, since
gr is unknown and hence H(gr) is pseudo-random.

Theorem 3. Protocol 2 is fair.

Proof. The protocol embeds a regular fair coin flip. The prover first chooses and
commits to its value s and at the end of the protocol he opens the commitment.
Due to the binding property of commitments, he must be honest or get caught,
because either the commitment is not correctly opened or he chose an invalid
value. He can only achieve z �= 0 when s �= t or when he opens the commitment
to a different value (in [0, α − 1]). Hence the prover cannot force z �= 0 with
probability higher than 1 − 1

α + negl(κ).
The verifier chooses and sends his value t after the choice of s. He must do so

without knowledge of s, since the commitment is blinding. He can only achieve
z = 0 when t = s and he has no influence on s. Hence, he cannot force z = 0
with probability higher than 1

α .
Note that the previous statement also holds when t is encrypted, since an

invalid encryption of t can only achieve z �= 0.

The problem with this protocol is that the prover still learns the outcome
of the fair coin flip, i.e. he knows whether he is being observed. In our scenario
this leads to the problem that he can now easily choose which transactions to
report, since he knows all observed spots. We therefore introduce a technique we
call blind decommitment where the prover opens (decommits) his commitment
without knowing whether he does that. The decommitment is probabilistic and
opening occurs only with probability 1

α , but the prover cannot influence this
probability nor can he determine the type of event – decommitment or not.

We use a semantically secure and additively homomorphic encryption scheme,
e.g. Paillier’s [24], for this purpose. Let EV () denote the encryption in this homo-
morphic scheme under the verifier’s key and DV () the corresponding decryption.
Then the following homomorphism properties hold:

DV (EV (x)EV (y)) = x + y

DV (EV (x)y) = xy.

The verifier sends its random value t encrypted and the prover computes the
decommitment homomorphically. We denote “Open(x)” as the encoding in G of
the opening of x for homomorphic encryption. The prover needs to ensure that
in case z �= 0 the decommitment is safely blinded, i.e. using sufficient random-
ness although α is small. In case z = 0, the verifier can check the validity of the

Privacy-Preserving Observation in Public Spaces 91

Fig. 4. Protocol 3: schnorr identification with fair coin flip and blind decommitment

authentication trace and hence the correctness of the homomorphic computa-
tion. As a consequence we do not need verifiable encryption by the prover. The
protocol proceeds as in Fig. 4.

Theorem 4. Protocol 3 is reverse unobservable.

Proof. The prover only receives one message EV (−t). The simulator simulates
this message using a random ciphertext due to the semantic security of the
encryption scheme.

If z �= 0, then the terms (s − t)u1 and (s − t)u2 are independently uniformly
random, since u1 and u2 are independently uniformly random. Hence, we can
simulate these messages using randomly chosen ciphertexts and the commit-
ments are never opened. The other messages are as in the proof of Theorem 2.
Note that we employ a weaker notion of fairness. The verifier could force z �= 0,
since he could choose t > α, but that does not seem rational in our scenario and
is hence not included in the security definitions. As a consequence we do not
need verifiable encryption by the verifier.

The prover’s ciphertext can be checked for correctness after decryption, if
z = 0, since it then needs to contain a correct authentication trace. If z �= 0,
the plaintext is random and must not be checkable. Since the verifier receives s
and can check this against the commitment, he reliably knows z and can hence
decide whether to check the plaintext. Consequently, also the prover does not
need use verifiable encryption.

4.4 Optimization

There are a few tricks we can use to make the protocol more efficient. First,
we translate our Protocol 3 to the elliptic-curve (EC) setting and employ the
EC-ElGamal additively homomorphic encryption scheme [6]. This way, we can
avoid computationally expensive modular exponentiation (e.g. required by the
Paillier scheme) on the prover-side, which potentially uses a device with limited
computation resource. Let P be a point on an elliptic curve over a finite field and

92 F. Kerschbaum and H.W. Lim

Fig. 5. Protocol 4: optimized protocol 3 in the EC setting

that generates the required cyclic subgroup. The prover’s public identifier is then
translated into Q = vP for some random v and gr is represented as rP. Hence,
let V = xP be the public encryption key of V , where x is the corresponding
secret key, EC-ElGamal encryption of −t is of the form (wP,−tP + wV) for a
randomly chosen w. In the last step of the protocol, P encrypts s in the form of
(yP, sP + yV) for a random y, homomorphically adds the ElGamal encryption
of s to the encryption of −t from V , and blinds the sum with u and adds an
encoding K4 as a point on the elliptic curve of some random symmetric key K4.
This symmetric key is used to encrypt and protect the openings in a symmetric
authenticated encryption mode like GCM. The complete protocol is illustrated
in Fig. 5.

Moreover, we notice that Commit(rP) does not need any random coins. It
has sufficient entropy. Hence, Open(rP) can be just rP. Also, we do not need
to encrypt s, but simply use a MAC that takes as input s and a freshly chosen
random seed K.

We note that although EC-ElGamal decryption can be very slow (on the
orders of seconds and minutes) even for small messages [12], such an operation
is not required in our protocol. Given s (in the last step of the protocol), the
verifier checks if z = 0. If so (s = t), V recovers K using its secret key v (to
compute the term uwV+uyV). Otherwise, it simply does nothing and terminates
the protocol.

4.5 Efficiency Analysis

We now analyze the computational and communication overhead of our EC-
based protocol. We use a standard 160-bit elliptic curve secp160r1, which offers
roughly the same security level as 1024-bit RSA. It is known that the dom-
inant cost in EC-based cryptographic operations is point multiplications [10].
On the other hand, modular addition, modular multiplication, SHA-1 and AES
operations are roughly three to four orders of magnitude faster than a point
multiplication evaluation [31]. Hence, in our analysis, we consider only elliptic
curve point multiplication (such as r ·P) and elliptic curve double multiplication
(such as r · P + w · V). Also, we believe that our analysis below represents a
fairly conservative estimate for the amount of computational cost required by
our protocol, since the actual processors used in real life would likely to be more
powerful.

Privacy-Preserving Observation in Public Spaces 93

Table 1. Estimated computation time (in ms) for the prover and the verifier

Offline Online Total

Prover

− Smart card 1075 654 1729

− Smart phone 404 246 650

Verifier (z �= 0) (z = 0) (z �= 0) (z = 0) (z �= 0) (z = 0)

− Auditor 0.98 0.98 0 0.9 0.98 1.88

Prover. We consider two popular embedded microprocessors: 8-bit Atmel
ATmega AVR and 32-bit ARM Cortex-M0+ microprocessors. The former repre-
sents a low-end contactless smart card (potentially used as an e-ticket in public
transportation [17]), while the latter represents a low-end smart phone (poten-
tially used as an OBU for toll collection [21]) in comparison with today’s fast-
evolving phone market with increasingly more powerful devices emerging.

According to recent implementations by Wenger et al. [32], the computation
time required for a point multiplication is 327 ms with the 8-bit microprocessor
and 123 ms with the 32-bit microprocessor; while a double multiplication takes
roughly 421 ms and 158 ms, respectively. Their implementations are optimized
based on set-instruction modification. The measurements are taken at a clock
rate of 10 MHz. From these, we can estimate that the computation time required
by the prover for one protocol run is roughly 1.7 s on a smart card and roughly
0.7 s on a smart phone. With (offline) pre-computation of some parameters used
in the protocol, the computation time can be reduced by almost 60 % for both
platforms. The computational cost of our protocol is summarized in Table 1.

In terms of communication cost, the prover sends two messages to the veri-
fier during each protocol run. With our choice of elliptic curve, each message’s
length is only approximately 3×160 = 480 bits, and hence, the total bandwidth
requirement is 960 bits per protocol run.

Verifier. We assume that the verifier is an auditor (local government), who
will perform spot checks, and has much higher computational resources than
the prover. A point multiplication and a double multiplication in the EC setting
take 0.45 ms and 0.53 ms, respectively, using MIRACL compiled with GCC (with
standard level-2 compiler optimization) and running on an Intel Single Core i5
520M 64-bit processor at 2.40 GHz. Given this, we estimate that in a protocol
run, the computation time taken by the verifier is roughly 0.98 ms when z �= 0,
and 1.88 ms when z = 0.

On the other hand, the communication overhead incurred by the verifier is
minimal. It sends out only one message of 2 × 160 = 320 bits.

In summary, our performance analysis shows that our protocol is very effi-
cient using practical parameters. Using the toll collection scenario, assuming
that the prover can pre-compute the necessary parameters before approaching a

94 F. Kerschbaum and H.W. Lim

surveillance monitor2, and without considering the communication latency
between the verifier and the prover (via an OBU), our protocol can perform
spot checks on up to roughly 4 vehicles in a second. We reiterate that our esti-
mate is somewhat conservative. Newer ARM-based microprocessors and smart
phones are likely to have even better computing speed.

Our protocol is designed to be lightweight. We omit verifying the recorded
time and location by including a trustworthy GPS sensor and clock on the spot
checking device. Hence, this information by the verifier is trusted. The verifier
is not trusted to observe the privacy rights of the prover. Our protocol ensures
this.

4.6 Rate Limiting

The frequency at which the spot checking identification device can be queried
needs to be rate limited. Since we do not use any verifier authentication, any-
one can query the device potentially tracking the user. If we assume a time τ
between any two protocol initiations, we can estimate the average time tid until
a successful identification in a non-stop querying attack as

tid =
α

2
τ

This delay τ needs to be traded against potential denial-of-service attacks.
A driver (in the toll collection example) can be delayed until the spot checking
protocol has been completed. Hence, a malicious reader can read the device just
before a spot checking point and delay the driver and traffic. We estimate values
between 5 and 30 s to be good choices for τ .

Another solution to this problem would be reader authentication. The reader
could sign his message using a public key. The verification of the signature on the
spot checking device would require at least one ECC multiplication for a fixed
public key or at least two for public key certificates plus certificate handling. We
opt against this design choice rather increasing the speed of our protocol.

4.7 Disposal

A simple idea of the prover to evade spot checking could be to remove or damage
the spot checking device. Fortunately, this is very simple to detect: at any time,
the verifier initiates a protocol, it is not completed by the prover. The security
guarantees of our protocol design ensure that if the protocol is completed a valid
public identifier is revealed with probability 1/α. Hence, a simple physical strat-
egy can be employed to pursue provers without working spot checking devices.
For example, a prover could not be allowed to proceed at a gate, photographed
in flowing traffic as in many US toll collection sites or even chased by the police.
Once caught, the police can even verify that the device is not working properly
by re-running the protocol.
2 The time required to travel from one spot to another spot, i.e. the distance between

two surveillance monitors, would be abundant for our pre-computation purpose.

Privacy-Preserving Observation in Public Spaces 95

5 Example Application

For completeness, we give a sketch on how our privacy-preserving spot checking
approach can be integrated with the Milo protocol for electronic toll collec-
tion [22].

We first describe a simplified version of the original Milo protocol3 between
the driver, toll service provider and the toll charger (local government):

Setup: The OBU generates the necessary key material and publishes the unique
identifier id, including a signing key. The toll service provider and the toll charger
each stores a copy of the OBU’s verification key and its corresponding id. Hidden
cameras are installed at random road segments and operated by the toll charger.

Payment Protocol: As the driver travels, the OBU picks up location (where)
and time (when) information. The OBU then calculates the toll fare d for each
road segment based on the received information. It also computes a commitment
to the d value and encrypts the (where, when, d) tuple.4 At the end of each
billing month, the OBU transmits the billing information, which comprises its
id and a set of signed, encrypted and committed (where, when, d) tuples, to
the toll service provider. The latter verifies the committed toll fares via zero-
knowledge proofs; if the check succeeds, it forwards the billing information to
the toll charger.

Audit Protocol: For each captured vehicle via a hidden camera, the toll charger
identifies the corresponding id and stores the (id, where, when) tuple. At month’s
end and upon receiving an audit request from the toll service provider (with the
relevant encrypted billing information submitted by the driver), the toll charger
randomly selects n tuples where the corresponding id matches the identifier for
the driver to be audited. It then requests for the decryption keys corresponding to
the selected (id, where, when) tuples in an oblivious manner (otherwise locations
of the cameras would be revealed to the driver.) Upon decryption, the toll charger
is convinced that the driver had behaved honestly only if the committed toll fares
are correct for the checked road segments.

Using our privacy-preserving spot checking technique, some level of user pri-
vacy can be preserved,5 while ensuring cheating drivers can be detected through
the above described audit protocol. This requires the following small modifi-
cation. Instead of using cameras, the surveillance monitors here are readers
installed at gantries or booths setup along the roadside for all segments within
an audit area. Moreover, we assume each vehicle uses an OBU to interact with
the spot checking reader. Whenever the reader detects an approaching vehicle, it
runs our proposed spot checking protocol. For each protocol run and if z = 0, the
reader recovers and transmits the public identifier PK of the interacted OBU

3 Many details of the Milo protocol have been omitted. See [22] for a complete descrip-
tion.

4 Anonymous identity-based encryption is used here. The encryption key for each
record is based on the (where, when) tuple.

5 We note that perfect privacy implies inability to detect dishonest users.

96 F. Kerschbaum and H.W. Lim

to a centralized server managed by the toll charger; otherwise, the reader sends
nothing to the server. The rest of the Milo protocol remains the same.

There are two advantages for using our privacy-preserving spot checking
mechanism. First, the toll charger provably sees only a fraction of the user’s
traveled road segments and spot checking is done randomly, i.e. the toll charger
has no influence to which road segments it wants to check. That is our protocol
actually preserves privacy and still discourages dishonest users from cheating by
preventing any form of information sharing. Second, our approach potentially has
lower operation cost. Particularly, the toll charger stores records associated with
only a small fraction of the vehicles detected by the reader. Spot checking via
cameras requires much higher storage and processing overhead. This is because
each camera typically stores information of all vehicles that it captures.

6 Conclusions

In this paper we investigate collusion attacks on privacy-preserving billing or
accounting systems. We show that in order to deter cheating all transactions
in the cyber-physical world need to be observed or extreme penalties need to
be imposed. This is not a sustainable choice for our society. We then present a
privacy-preserving spot checking protocol that allows privacy-preserving obser-
vations in public spaces and can be used to enforce honesty in billing while still
preserving privacy. For this we introduce a new variant of oblivious transfer:
blind decommitment. We show that it can be efficiently implemented on weak
computational devices such as smart cards or smart phones using a number of
optimizations.

Our technique allows a socially acceptable trade-off between necessary obser-
vation (in public spaces) and privacy. We conclude that it is feasible to build
cyber-physical billing systems that are economically dependable and privacy-
preserving at the same time.

A Privacy vs. Penalty Analysis

We first analyze the probability of cheating detection with our spot checking
mechanism. We then analyze how much privacy is achieved through our protocol
and the required penalty to discourage users from cheating.

A.1 Variables

Let us assume that an average user would commute for a distance that covers k
spots within a month. At each spot, only a fraction 1

α of users are observed. Here
we regard α as an “privacy indicator”. The higher the value of α, the higher the
level of user (location) privacy can be preserved. Let also C(k) denote the event
when a cheating user is caught (or detected) at least once after having traveled
k spots. (For simplicity, we ignore the cases where a cheating user is detected
more than once within a month.)

Privacy-Preserving Observation in Public Spaces 97

Fig. 6. (a) The relation between privacy parameter α and the probability Pr[C(k)]
of cheating detection at least once after k spots. (b) The relation between privacy
paramater α and the imposed penalty p for any cheating user.

A.2 Analysis

Using a probability analysis similar to that of [2,22], we have

Pr[C(k)] = 1 − (1 − 1
α

)k (2)

for α ≥ 1 and k ≥ 1. Clearly, when α = 1, there is no privacy; however, the
relevant surveillance monitor will detect any cheating user with probability 1.
On the contrary, the more user privacy we want to preserve, the harder it is for
the surveillance monitor to detect any cheating user. Clearly, users who have
traveled more spots (higher mileage) have higher chances of getting caught if
they cheat. Figure 6(a) shows that for a user with very low monthly mileage
(k = 10), α needs to be set very low (hence low privacy) between the range of
5 and 10, such that any cheating can be detected with probability 0.8. On the
other extreme, a user with high monthly mileage (k = 200) can still be detected
with high probability (> 0.8) if cheating, while enjoying a higher-level of privacy
(α = 100). For an average user (say k = 100), α needs to be set at most 60 in
order to have probability of cheating detection of at least 0.8.

We now quantify how much penalty p needs to be imposed for a cheating
user to alleviate dishonest behavior. Let d be the toll fare for each traveled spot.
From Eq. (1), we have

p(Pr[C(k)]) − dk(1 − Pr[C(k)]) ≥ ε

where ε is the minimal net loss6 that will incentivize a user to behave honestly.
(Clearly, if the net loss is close to zero, there is little incentive for the user not

6 Here net loss is assumed to be the difference between a fine (penalty) for being
caught cheating and the amount of money that a cheating user would have saved
should her dishonest behavior was not detected.

98 F. Kerschbaum and H.W. Lim

to cheat.) Setting d = 0.50 USD, ε = 50 USD and k = 100, we can then define
the relation between p and α as

p =
ε + dk(1 − Pr[C(k)])

Pr[C(k)]

=
50 + 0.5(100)(1 − Pr[C(k)])

Pr[C(k)]

= 50
(

1 + (1 − 1
α)100

1 − (1 − 1
α)100

)

(3)

It is clear from Eq. (3) that p increases when α grows. Figure 6(b) shows that for
the case of an average user (say k = 100), p grows at a lower rate for α < 30,
but at a much higher rate for α > 30. To achieve a reasonable level of privacy
while ensuring honesty for an average traveler (following our earlier probability
analysis that infers α ≤ 60 and Pr[C(k)] ≥ 0.8 for k = 100), we must impose
penalty of approximately $70 for users who cheat at least once within a month.

We would like to point out how difficult it is to achieve a similar level of pri-
vacy using mobile cameras. One can think of the following hypothetical mobile
camera. If we assume that a mobile camera (mounted on a special-purpose vehi-
cle) moves in an unpredictable direction at a speed much higher than traffic
and may stay at a specific spot for an unpredictably small amount of time, it
is roughly saying that the camera is installed (fixed) at a location for a small
fraction of time. Still, the mobile camera records a small fraction of users, but
likely more than one as in our case who appear at the location where the camera
is. Moreover, as analyzed by Meiklejohn et al. [22], the operational cost of even
existing mobile cameras is much higher than that of fixed cameras. Their analy-
sis shows that an audit vehicle costs at least 82, 500 US dollars per year. This
includes the cost for employing a driver, as well as purchasing, operating and
maintaining the audit vehicle. Our approach of spot checking offers more eco-
nomical and fine-grained control (only one is observed) of the levels of cheating
detection and user privacy by adjusting the relevant parameters.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digi-
tal goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 119.
Springer, Heidelberg (2001)

2. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.:
PrETP: privacy-preserving electronic toll pricing. In: Proceedings of the 19th
USENIX Security Symposium (2010)

3. Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Hei-
delberg (1987)

4. Catrina, O., Kerschbaum, F.: Fostering the uptake of secure multiparty computa-
tion in e-commerce. In: Proceedings of the International Workshop on Frontiers in
Availability, Reliability and Security (FARES) (2008)

Privacy-Preserving Observation in Public Spaces 99

5. Dreier, J., Kerschbaum, F.: Practical privacy-preserving multiparty linear program-
ming based on problem transformation. In: Proceedings of the 3rd IEEE Interna-
tional Conference on Privacy, Security, Risk and Trust (PASSAT) (2011)

6. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

8. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

9. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

10. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

11. Heydt-Benjamin, T.S., Chae, H.-J., Defend, B., Fu, K.: Privacy for public trans-
portation. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 1–19.
Springer, Heidelberg (2006)

12. Y. Hu.: Improving the efficiency of homomorphic encryption schemes. Ph.D thesis,
Worcester Polytechnic Institute (2013)

13. Kerschbaum, F.: Building a privacy-preserving benchmarking enterprise system.
Enterp. Inf. Syst. 2(4), 421–441 (2008)

14. Kerschbaum, F.: A verifiable, centralized, coercion-free reputation system. In: Pro-
ceedings of the 8th ACM Workshop on Privacy in the Electronic Society (WPES)
(2009)

15. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: Proceedings of the 7th ACM Symposium on Information, Computer and
Communication Security (ASIACCS) (2012)

16. Kerschbaum, F., Dahlmeier, D., Schrpfer, A., Biswas, D.: On the practical impor-
tance of communication complexity for secure multi-party computation protocols.
In: Proceedings of the 24th ACM Symposium on Applied Computing (SAC) (2009)

17. Kerschbaum, F., Lim, H.W., Gudymenko, I.: Privacy-preserving billing for e-
ticketing systems in public transportation. In: Proceedings of the 12th Annual
ACM Workshop on Privacy in the Electronic Society (WPES) (2013)

18. Kerschbaum, F., Terzidis, O.: Filtering for private collaborative benchmarking. In:
Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 409–422. Springer, Heidelberg
(2006)

19. Kerschbaum, F., Oertel, N.: Privacy-preserving pattern matching for anomaly
detection in RFID anti-counterfeiting. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010.
LNCS, vol. 6370, pp. 124–137. Springer, Heidelberg (2010)

20. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
20th ACM Symposium on Theory of Computing (STOC) (1988)

21. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Enhancing location privacy for elec-
tric vehicles (at the Right time). In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 397–414. Springer, Heidelberg (2012)

22. Meiklejohn, S., Mowery, K., Checkoway, S., Shacham, H.: The phantom tollbooth:
privacy-preserving electronic toll collection in the presence of driver collusion. In:
Proceedings of the 20th USENIX Security Symposium (2011)

100 F. Kerschbaum and H.W. Lim

23. MIRACL - Benchmarks and Subs. Certivox Developer Community (2014). https://
certivox.org/display/EXT/Benchmarks+and+Subs

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer,
Heidelberg (1999)

25. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

26. Popa, R.A., Balakrishnan, H., Blumberg, A.J.: VPriv: protecting privacy in
location-based vehicular services. In: Proceedings of the 18th USENIX Security
Symposium (2009)

27. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Memo TR-81,
Aiken Computation Laboratory (1981)

28. Sadeghi, A., Visconti, I., Wachsmann, C.: User privacy in transport systems based
on RFID e-tickets. In: Proceedings of the 1st International Workshop on Privacy
in Location-Based Applications (PilBA) (2008)

29. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

30. Schröpfer, A., Kerschbaum, F., Müller, G.: L1-an intermediate language for mixed-
protocol secure computation. In: Proceedings of the 35th IEEE Computer Software
and Applications Conference (COMPSAC) (2011)

31. Uhsadel, L., Poschmann, A., Paar, C.: Enabling full-size public-key algorithms on
8-bit sensor nodes. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.)
ESAS 2007. LNCS, vol. 4572, pp. 73–86. Springer, Heidelberg (2007)

32. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 Shades of elliptic curve cryp-
tography on embedded processors. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 244–261. Springer, Heidelberg (2013)

https://certivox.org/display/EXT/Benchmarks+and+Subs
https://certivox.org/display/EXT/Benchmarks+and+Subs

Privacy-Preserving Context-Aware
Recommender Systems: Analysis

and New Solutions

Qiang Tang(B) and Jun Wang

University of Luxembourg, Luxembourg, Luxembourg
{qiang.tang,jun.wang}@uni.lu

Abstract. Nowadays, recommender systems have become an indispens-
able part of our daily life and provide personalized services for almost
everything. However, nothing is for free – such systems have also upset
the society with severe privacy concerns because they accumulate a lot of
personal information in order to provide recommendations. In this work,
we construct privacy-preserving recommendation protocols by incorpo-
rating cryptographic techniques and the inherent data characteristics in
recommender systems. We first revisit the protocols by Jeckmans et al.
and show a number of security issues. Then, we propose two privacy-
preserving protocols, which compute predicted ratings for a user based
on inputs from both the user’s friends and a set of randomly chosen
strangers. A user has the flexibility to retrieve either a predicted rating
for an unrated item or the Top-N unrated items. The proposed protocols
prevent information leakage from both protocol executions and the pro-
tocol outputs. Finally, we use the well-known MovieLens 100k dataset to
evaluate the performances for different parameter sizes.

1 Introduction

As e-commerce websites began to develop, users were finding it very difficult to
make the most appropriate choices from the immense variety of items (products
and services) that these websites were offering. Take an online book store as
an example, going through the lengthy book catalogue not only wastes a lot of
time but also frequently overwhelms users and leads them to make poor deci-
sions. As such, the availability of choices, instead of producing a benefit, started
to decrease users’ well-being. Eventually, this need led to the development of
recommender systems (or, recommendation systems). Informally, recommender
systems are a subclass of information filtering systems that seek to predict the
‘rating’ or ‘preference’ that a user would give to an item (e.g. music, book, or
movie) they had not yet considered, using a model built from the characteristics
of items and/or users. Today, recommender systems play an important role in
highly rated commercial websites such as Amazon, Facebook, Netflix, Yahoo,
and YouTube. Netflix even awarded a million dollars prize to the team that

This paper is an extended abstract of the IACR report [32].

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 101–119, 2015.
DOI: 10.1007/978-3-319-24177-7 6

102 Q. Tang and J. Wang

first succeeded in improving substantially the performance of its recommender
system. Besides these well-known examples, recommender systems can also be
found in every corner of our daily life.

In order to compute recommendations, the service provider needs to collect a
lot of personal data from its users, e.g. ratings, transaction history, and location.
This makes recommender systems a double-edged sword. On one side users get
better recommendations when they reveal more personal data, but on the flip
side they sacrifice more privacy if they do so. Privacy issues in recommender
systems have been surveyed in [3,16,28]. The most widely-recognized privacy
concern is about the fact the service provider has full access to all users’ inputs
(e.g. which items are rated and the corresponding ratings). Weinsberg et al.
showed that what has been rated by a user can already breach his privacy [34].
The other less well-known yet equally serious privacy concern is that the outputs
from a recommender system can also lead to privacy breaches against innocent
users. Ten years ago, Kantarcioglu, Jin and Clifton expressed this concern for
general data mining services [15]. Recently Calandrino et al. [6] showed inference
attacks which allow an attacker with some auxiliary information to infer a user’s
transactions from temporal changes in the public outputs of a recommender
system. In practice, advanced recommender systems collect a lot of personal
information other than ratings, and they cause more privacy concerns.

1.1 State-of-the-Art

Broadly speaking, existing privacy-protection solutions for recommender sys-
tems can be divided into two categories. One category is cryptographic solutions,
which heavily rely on cryptographic primitives (e.g. homomorphic encryption,
zero knowledge proof, threshold encryption, commitment, private information
retrieval, and a variety of two-party or multi-party cryptographic protocols).
For example, the solutions from [2,7,8,11–14,19,23,24,27,31,36] fall into this
category. More specifically, the solutions from [2,7,8,11,14,19,31] focus on dis-
tributed setting where every individual user is expected to participate in the
recommendation computation, while those from [12,13,23,24,27,36] focus on
partitioned dataset, where several organizations wish to compute recommenda-
tions for their own users by joining their private dataset. These solutions typi-
cally assume semi-honest attackers and apply existing cryptographic primitives
to secure the procedures in standard recommender protocols. This approach has
two advantages: rigorous security guarantee in the sense of secure computation
(namely, every user only learns the recommendation results and the server learns
nothing) can be achieved, and there is no degradation in accuracy. The disad-
vantage lies in the fact that these solutions are all computation-intensive so that
they become impractical when user/item populations get large.

The other category is data obfuscation based solutions, which mainly rely
on adding noise to the original data or computation results to achieve privacy.
The solutions from [4,18,20–22,25,26,30,35] fall into this category. These solu-
tions usually do not incur complicated manipulations on the users’ inputs, so

Privacy-Preserving Context-Aware Recommender Systems 103

that they are much more efficient. The drawback is that they often lack rigor-
ous privacy guarantees and downgrade the recommendation accuracy to some
extent. With respect to privacy guarantees, an exception is the differential pri-
vacy based approach from [18] which does provide mathematically sound privacy
notions. However, cryptographic primitives are required for all users to generate
the accumulated data subjects (e.g. sums and covariance matrix).

1.2 Our Contribution

While most privacy-preserving solutions focus on recommender systems which
only take into account users’ ratings as inputs, Jeckmans, Peter, and Hartel [13]
moved a step further to propose privacy-preserving recommendation protocols
for context-aware recommender systems, which include social relationships as
part of the inputs to compute recommendations. Generally the protocols are
referred to as the JPH protocols, and more specifically they are referred to as
JPH online protocol and JPH offline protocol respectively. Interestingly, the JPH
protocols make use of the recent advances in somewhat homomorphic encryption
schemes [5]. In this paper, our contribution is three-fold.

Firstly, we analyze the JPH protocols and identify a number of security issues.
Secondly, we revise the prediction computation formula from [13] by incorporat-
ing inputs from both friends and strangers. This change not only aligns the
formula with standard recommender algorithms [17] but also enables us to avoid
the cold start problem of the JPH protocols. Security wise, it helps us prevent
potential information leakages through the outputs of friends. We then propose
two privacy preserving protocols. One enables a user to check whether a specific
unrated item might be of his interest, and the other returns the Top-N unrated
items. Therefore, we provide more flexible choices for users to discover their
interests in practice. Both protocols are secure against envisioned threats in our
threat model. Thirdly, we analyze accuracy performances of the new protocols,
and show that for some parameters the accuracy is even better than some other
well-known recommendation protocols, e.g. those from [17].

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we demonstrate the
security issues with the JPH protocols. In Sect. 3, we propose our new formu-
lation and trust assumptions for recommender systems. In Sect. 4, we present
two protocols for single prediction and Top-N recommendations respectively. In
Sect. 5, we present security and accuracy analysis for the proposed protocols. In
Sect. 6, we conclude the paper.

2 Analysis of JPH Protocols

When X is a set, x
$← X means that x is chosen from X uniformly at random, and

|X| means the size of X. If χ is a distribution, then s ← χ means that s is sampled

104 Q. Tang and J. Wang

according to χ. We use bold letter, such as X, to denote a vector. Given two
vector X and Y , we use X ·Y to denote their inner product. In a recommender
system, the item set is denoted by B = (1, 2, · · · , b, · · · , |B|), and a user x’s
ratings are denoted by a vector Rx = (rx,1, · · · , rx,b, · · · , rx,|B|). The rating value
is often an integer from {0, 1, 2, 3, 4, 5}. If item i has not been rated, then rx,i is
set to be 0. With respect to Rx, a binary vector Qx = (qx,1, · · · , qx,b, · · · , qx,|B|)
is defined as follows: qx,b = 1 iff rx,b �= 0 for every 1 ≤ b ≤ |B|. We use rx to
denote user x’s average rating, namely �

∑
i∈B rx,i∑
i∈B qx,i

�.

2.1 Preliminary of JPH Protocols

Let the active user, who wants to receive new recommendations, be denoted as
user u. Let the friends of user u be denoted by Fu. Every friend f ∈ Fu and
user u assigns each other weights wf,u, wu,f respectively, and these values can be
regarded as the perceived importance to each other. Then, the predicted rating
for an unrated item b ∈ B for user u is computed as follows.

pu,b =

∑
f∈Fu

qf,b · rf,b · (wu,f+wf,u

2)
∑

f∈Fu
qf,b · (wu,f+wf,u

2)
=

∑
f∈Fu

rf,b · (wu,f + wf,u)
∑

f∈Fu
qf,b · (wu,f + wf,u)

(1)

The JPH protocols [13] and the new protocols from this paper rely on the
Brakerski-Vaikuntanathan SWHE Scheme [5], which is recapped in the Appen-
dix. In [13], Jeckmans et al. did not explicitly explain their notation [x]u + y
and [x]u · y. We assume these operations are as [x]u + y = Eval∗(+, [x]u, y) and
[x]u ·y = Eval∗(·, [x]u, y). In any case, this assumption only affects the Insecurity
against Semi-honest Server issue for the JPH online protocol. All other issues
still exist even if this assumption is not true.

2.2 JPH Online Protocol

In the online scenario, the recommendation protocol is executed between the
active user u, the server, and user u’s friends. In the initialization phase, user
u generates a public/private key pair for the Brakerski-Vaikuntanathan SWHE
scheme, and all his friends and the server obtain a valid copy of his public key.
The protocol runs in two stages as described in Fig. 1.

It is worth noting that the friends only need to be involved in the first stage.
We observe the following security issues.

– Hidden assumption. Jeckmans et al. [13] did not mention any assumption
on the communication channel between users and the server. In fact, if the
communication channel between any user f and the server does not provide
confidentiality, then user u can obtain [nf,b]u, [df,b]u by passive eavesdropping.
Then, user u can trivially recover qf,b and rf,b.

– Insecurity against Semi-honest Server. With [df,b]u, the server can trivially
recover qf,b, i.e. if [df,b]u = 0 then qf,b = 0; otherwise qf,b = 1. After recovering

Privacy-Preserving Context-Aware Recommender Systems 105

Fig. 1. JPH online protocol

qf,b, the server can trivially recover rf,b = [nf,b]u
[df,b]u

. The root of the problem is
the homomorphic operations have been done in the naive way, with Eval∗(·, ,)
and Eval∗(+, ,).

– Encrypted Division Problems. The first concern is that it may not be able to
determine the predicted rating pu,b. As a toy example, let t = 7. In this case,
both � 2

3	 = 1 and � 3
1	 = 3 link to the index 2 · 3−1 = 3 · 1−1 = 3 mod 7.

If pu,b = 3, then user u will not be able to determine whether the predicted
rating is � 2

3	 = 1 or � 3
1	 = 3. The second concern is that the representation

of pu,b in the protocol may leak more information than the to-be predicted
value �nb

db
	. As an example, � 2

3	 = � 3
4	 = 1. Clearly, giving 2 · 3−1 or 3 · 4−1

leaks more information than the to-be predicted value 1.
– Potential Information Leakage through Friends. For user u, his friends may

not be friends with each other. For example, it may happen that some friend
f ∈ Fu is not a friend of any other user from Fu. Suppose that the users Fu\f
have learned the the value pu,b or some approximation of it (this is realistic
as they are friends of user u). Then, they may be able to infer whether user
f has rated the item b and the actual rating.

106 Q. Tang and J. Wang

Besides the above security issues, there are some usability issues with the
protocol as well. One issue is that, at the time of protocol execution, maybe
only a few friends are online. In this case, the predicted rating may not be
very accurate. It can also happen that pu,b cannot be computed, because none
of user u’s friends has rated item b. This is the typical cold start problem in
recommender systems [1]. The other issue is that the predicted rating needs to
computed for every b ∈ B even if user u has already rated this item. Otherwise,
user u may leak information to the server, e.g. which items have been rated.
This not only leaks unnecessary information to user u, but also makes it very
inefficient when user u only wants a prediction for a certain unrated item.

2.3 JPH Offline Protocol

In the offline scenario, the friends Fu need to delegate their data to the server
to enable user u to run the recommendation protocol when they are offline.
Inevitably, this leads to a more complex initialization phase. In this phase,
both user u and the server generate their own public/private key pair for the
Brakerski-Vaikuntanathan SWHE scheme and they hold a copy of the valid pub-
lic key of each other. Moreover, every friend f ∈ Fu needs to pre-process Rf ,
Qf , and wf,u. The rating vector Rf is additively split into two sets Sf and Tf .
The splitting for every rating rf,b is straightforward, namely choose r

$← Z∗
t and

set sf,b = r and tf,b = rf,b −r mod t. Similarly, the weight wf,u is split into xf,u

and yf,u. It is assumed that Tf and Qf will be delivered to user u through proxy
re-encryption schemes. Running between user u and the server, the two-stage
protocol is described in Fig. 2.

This protocol has exactly the same encrypted division, potential information
leakage through friends and usability issues, as stated in Sect. 2.2. In addition,
we have the following new concerns.

– Explicit Information Disclosure. It is assumed that the Qf values for all f ∈
Fu are obtained by user u in clear. This is a direct violation of these users’
privacy because it has shown that leaking what has been rated by a user can
breach his privacy [34].

– Key Recovery Attacks against the Server. Chenal and Tang [9] have shown that
given a certain number of decryption oracle queries an attacker can recover
the private key of the Brakerski-Vaikuntanathan SWHE scheme. We show
that user u can manipulate the protocol and recover the server’s private key
SKu. Before the attack, user u sets up a fake account u′ and a set of fake
friends Fu′ (e.g. through Sybil attacks [10]). The key recovery attack relies on
multiple executions of the protocol, and it works as follows in each execution.
1. User u′ chooses a carefully-chosen ciphertext c and replaces [zb+ξ1,b]s with

c. He also sets ξ1,b = 0 for [−ξ1,b]u.
2. When receiving [pu′,b]u′ , user u′ can recover the constant in Dec(SKs, c)

because he knows ab and d−1
b (note that user u′ forged all his friends Fu′).

It is straightforward to verify that, if c is chosen according to the specifics
in [9] then user u′ (and user u) can recover SKs in a polynomial number of

Privacy-Preserving Context-Aware Recommender Systems 107

Fig. 2. JPH offline protocol

executions. With SKs, user u can recover the weights from his real friends in
Fu and then infer their ratings. It is worth stressing that this attack does not
violate the semi-honest assumption in [13].

3 New Formulation of Recommender System

3.1 Computing Predicted Ratings

In our solution, we compute the predicted rating for user u based on inputs from
both his friends and some strangers for both accuracy and security reasons. In
reality friends like and consume similar items, but it might happen that very
few friends have rated the item b. If this happens, the predicated value from

108 Q. Tang and J. Wang

Eq. (1) may not be very accurate (cold start problem). In Sect. 2, we have shown
that the private information of user u’s friends might be leaked through user u’s
outputs. This is because the outputs are computed solely based on the inputs
of user u’s friends. We hope that, by taking into account some randomly chosen
strangers, we will mitigate both problems.

When factoring in the inputs from randomly chosen strangers, we will use the
simple Bias From Mean (BFM) scheme for the purpose of simplicity. It is worth
stressing that there are a lot of different choices for this task. Nevertheless,
as to the accuracy, this scheme has similar performance to many other more
sophisticated schemes, such as Slope One and Perason/Cosine similarity-based
collaborative filtering schemes [17]. Let the stranger set be Tu, the predicted
value p∗

u,b for an unrated item b is computed as follows.

p∗
u,b = ru +

∑
t∈Tu

qt,b · (rt,b − rt)
∑

t∈Tu
qt,b

(2)

When factoring in the inputs from the friends, we make two changes to Eq. (1)
from Sect. 2.2. One is to only take into account the weight value from user
u. This makes more sense because how important a friend means to user u is
a very subjective matter for u only. Jeckmans et al. averaged the weights for
the purpose of limiting information leakage [13]. The other is to compute the
predication based on both u’s average rating and the weighted rating deviations
from his friends. Let the friend set be Fu, the predicted value p∗∗

u,b for an unrated
item b is computed as follows.

p∗∗
u,b = ru +

∑
f∈Fu

qf,b · (rf,b − rf) · wu,f
∑

f∈Fu
qf,b · wu,f

(3)

In practice, the similarity between friends means that they tend to prefer to
similar items. However, this does not imply that they will assign very similar
scores to the items. For example, a user Alice may be very mean and assign a
score 3 to most of her favorite items while her friends may be very generous and
assign a score 5 to their favorite items. Using the Eq. (1), we will likely generate
a score 5 for an unrated item for Alice, who may just rate a score 3 for the item
even if she likes it. In this regard, Eq. (3) is more appropriate because ru reflects
the user’s rating style and

∑
f∈Fu

qf,b·(rf,b−rf)·wf,u∑
f∈Fu

qf,b·wf,u
reflects the user’s preference

based on inputs from his friends.
Based on the inputs from the strangers and friends, a combined predicted

value pu,b for an unrated item b can be computed as pu,b = ρ · p∗
u,b +(1−ρ) · p∗∗

u,b

for some 0 ≤ ρ ≤ 1. Due to the fact that cryptographic primitives are normally
designed for dealing with integers, we rephrase the formula as follows, where α, β
are two integers.

pu,b =
β

α + β
· p∗

u,b +
α

α + β
· p∗∗

u,b (4)

Privacy-Preserving Context-Aware Recommender Systems 109

3.2 Threat Model

As to communication, we assume all communications are mediated by the RS
server and the communication channels are integrity and confidentiality pro-
tected. Instead of making a general semi-honest assumption on all participants,
we distinguish the following.

1. Threat from Semi-honest RS Server. In the view of all users, the RS server
will follow the protocol specification but it may try to infer their private
information from openly collected transaction records.

2. Threat from a Semi-honest Friend. In the view of a user, none of his friends
will collude with the RS server or another party to breach his privacy. We
believe the social norm deters such colluding attacks, and the deterrence
comes from the fact that once such a collusion is known to the victim user
then the friendship may be jeopardized. Nevertheless, we still need to consider
possible privacy threats in two scenarios.
– In the view of f ∈ Fu, user u may attempt to learn his private information

when running the recommendation protocol. In the view of user u, his
friend f ∈ Fu may also try to infer his information as well.

– In the view of f ∈ Fu, user u’s output (e.g. a new rated item and predicted
rating value) may be leaked. If another party obtains such auxiliary infor-
mation, then user f ’s private information may be at risk. For example, the
Potential Information Leakage through Friends security issue in Sect. 2.2
falls into this scenario.

3. Threat from Strangers. We consider the following two scenarios.
– In the view of user u and his friends, a stranger may try to learn their

private information.
– In the view of a stranger, who is involved in the protocol execution of user

u, user u may try to learn his private information.

4 New Privacy-Preserving Recommender Protocols

In this section, we propose two privacy-preserving protocols: one for the active
user to learn the predicted rating for an unrated item, and the other is for
the active user to learn Top-N unrated items. Both protocols share the same
initialization phase.

In the initialization phase, user u generates a public/private key pair (PKu,
SKu) for the Brakerski-Vaikuntanathan SWHE scheme and sends PKu to the
server. For the purpose of enabling strangers to validate his public key, user u
asks his friends to certify his public key and puts the certification information
on the server. In addition, user u assigns a weight wu,f to each of his friend
f ∈ Fu. All other users perform the same operations in this phase. Besides the
user-specific parameters, the global system parameters should also be established
in the initialization phase. Such parameters should include α, β which determine
how a predicated rating value for user u is generated based on the inputs of
friends and strangers, and they should also include the minimal sizes of friend
set Fu and stranger set Tu.

110 Q. Tang and J. Wang

4.1 Recommendation Protocol for Single Prediction

When user u wants to figure out whether the predicted rating for an unrated
item b is above a certain threshold τ in his mind, he initiates the protocol in
Fig. 3. In more details, the protocol runs in three stages.

1. In the first stage, user u generates a binary vector Ib, which only has 1 for
the b-th element, and sends the ciphertext [Ib]u = Enc(PKu, Ib) to the server.
The server first sends PKu to some randomly chosen strangers who are the
friends of user u’s friends in the system. Such a user t can then validate
PKu by checking whether their mutual friends have certified PKu. After the
server has successfully found a viable stranger set Tu, it forwards [Ib]u to
every user in Tu. With PKu and (Rt,Qt), user t can compute the following
based on the homomorphic properties. For notation purpose, assume [Ib]u =
([I(1)b]u, · · · , [I(|B|)

b]u).

[qt,b]u =
∑

1≤i≤|B|
Eval(·,Enc(PKu, qt,i), [I

(i)
b]u), [Rt · Ib]u

=
∑

1≤i≤|B|
Eval(·,Enc(PKu, rt,i), [I

(i)
b]u)

temp =
∑

1≤i≤|B|
Eval(·,Enc(PKu, qt,i), [I

(i)
b]u)

[qt,b · (Rt · Ib − rt)]u = Eval(·, temp,Eval(+, [Rt · Ib]u,−Enc(PKu, rt)))

2. In the second stage, for every friend f ∈ Fu, user u sends the encrypted weight
[wu,f]u = Enc(PKu, wu,f) to the server, which then forwards [wu,f]u and [Ib]u
to user f . With PKu, [Ib]u, [wu,f]u and (Rf ,Qf), user f can compute the
following.

[qf,b]u =
∑

1≤i≤|B|
Eval(·,Enc(PKu, qf,i), [I

(i)
b]u), [Rf · Ib]u

=
∑

1≤i≤|B|
Eval(·,Enc(PKu, rf,i), [I

(i)
b]u)

temp =
∑

1≤i≤|B|
Eval(·,Enc(PKu, qf,i), [I

(i)
b]u)

[qf,b · (Rf · Ib − rf) · wu,f]u

= Eval(·,Eval(·, temp, [wu,f]u),Eval(+, [Rf · Ib]u,−Enc(PKu, rf)))

3. In the third stage, user u sends his encrypted average rating [ru]u =
Enc(PKu, ru) to the server. The server first computes [nT]u, [dT]u, [nF]u, [dF]u
as shown in Fig. 3, and then compute [X]u, [Y]u as follows.

temp1 = Eval(·,Eval(·,Eval(·, [dF]u, [ru]u), [dT]u),Enc(PKu, α + β))

Privacy-Preserving Context-Aware Recommender Systems 111

temp2 = Eval(·,Eval(·, [nT]u, [dF]u),Enc(PKu, β))

temp3 = Eval(·,Eval(·, [nF]u, [dT]u),Enc(PKu, α))

[X]u = Eval(+,Eval(+, temp1, temp2), temp3)

[Y]u = Eval(·,Eval(·, [dF]u, [dT]u),Enc(PKu, α + β))

Referring to Eqs. (2) and (3), we have p∗
u,b = ru + nT

dT
and p∗∗

u,b = ru + nF

dF
.

The ultimate prediction pu,b can be denoted as follows.

pu,b =
β

α + β
· p

∗
u,b +

α

α + β
· p

∗∗
u,b =

(α + β) · dT · dF · ru + β · nT · dF + α · nF · dT

(α + β) · dT · dF

=
X

Y

Due to the fact that all values are encrypted under PKu, user u needs to run
a comparison protocol COM with the server to learn whether pu,b ≥ τ . Since
X,Y, τ are integers, COM is indeed an encrypted integer comparison protocol:
where user u holds the private key sku and τ , the server holds [X]u, [Y]u, and
the protocol outputs a bit to user u indicating whether X ≥ τ · Y . To this
end, the protocol by Veugen [33] is the most efficient one.

4.2 Recommendation Protocol for Top-N Items

When the active user u wants to figure out Top-N unrated items, he initiates
the protocol in Fig. 4. In more details, the protocol runs in three stages.

1. In the first stage, the server sends PKu to some randomly chosen strangers
who can then validate PKu as in the previous protocol. Suppose that the
server has successfully found Tu. With PKu and (Rt,Qt), user t ∈ Tu

can compute [qt,b · (rt,b − rt)]u = Enc(PKu, qt,b · (rt,b − rt)) and [qt,b]u =
Enc(PKu, qt,b) for every 1 ≤ b ≤ |B|. All encrypted values are sent back to
the server.

2. In the second stage, to every friend f ∈ Fu, user u sends the encrypted
weight [wu,f]u = Enc(PKu, wu,f). With PKu, [wu,f]u and (Rf ,Qf), user f
can compute [qf,b]u and

[qf,b · (rf,b − rf) · wu,f]u = Eval(·,Enc(PKu, qf,b · (rf,b − rf)), [wu,f]u)

for every 1 ≤ b ≤ |B|. All encrypted values are sent back to the server.
3. In the third stage, user u generates two matrices MX ,MY as follows:

(1) generate a |B| × |B| identity matrix; (2) randomly permute the columns
to obtain MY ; (3) to obtain MX , for every b, if item b has been rated then
replace the element 1 in b-th column with 0.
⎡

⎢
⎢
⎢
⎣

1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

⎤

⎥
⎥
⎥
⎦

column−−−−−−−−−−→
permutation

MY =

⎡

⎢
⎢
⎢
⎣

0 1 · · · 0

0 0 · · · 1

· · · · · · · · · · · ·
1 0 · · · 0

⎤

⎥
⎥
⎥
⎦

zeroing−−−−−−−−−→
rated items

MX =

⎡

⎢
⎢
⎢
⎣

0 1 · · · 0

0 0 · · · 0

· · · · · · · · · · · ·
1 0 · · · 0

⎤

⎥
⎥
⎥
⎦

User u encrypts the matrices (element by element) and sends [MX]u, [MY]u
to the server, which then proceeds as follows.

112 Q. Tang and J. Wang

Fig. 3. Single prediction protocol

(a) The server first computes [nT,b]u, [dT,b]u, [nF,b]u, [dF,b]u, [Xb]u, [Yb]u for
every 1 ≤ b ≤ |B| as shown in Fig. 4, in the same way as in the previous
protocol. Referring to Eq. (4), we see that ru appears in pu,b for every b.
For simplicity, we ignore this term when comparing the predictions for
different unrated items. With this simplification, the prediction pu,b can
be denoted as follows.

pu,b =
β

α + β
· nT,b

dT,b
+

α

α + β
· nF,b

dF,b
=

β · nT,b · dF,b + α · nF,b · dT,b

(α + β) · dT,b · dF,b
=

Xb

Yb

(b) The server permutes the ciphertexts vector (([X1]u, [Y1]u), ([X2]u, [Y2]u),
· · · , ([X|B|]u, [Y|B|]u)) in an oblivious manner as follows.

([U1]u, [U2]u, · · · , [U|B|]u) = [MX]u · ([X1]u, [X2]u, · · · , [X|B|]u)T

([V1]u, [V2]u, · · · , [V|B|]u) = [MY]u · ([Y1]u, [Y2]u, · · · , [Y|B|]u)T

Privacy-Preserving Context-Aware Recommender Systems 113

Fig. 4. Top-N protocol

The multiplication between the ciphertext matrix and ciphertext vector
is done in the standard way, except that the multiplication between two
elements is done with Eval(·, ,) and the addition is done with Eval(+, ,).
Suppose item b has been rated before and ([Xb]u, [Yb]u) is permuted to
([Ui]u, [Vi]u), then Ui = 0 because the element 1 in b-th column has been
set to 0.

(c) Based on some COM protocol, e.g. that used in the previous protocol, the
server ranks Ui

Vi
(1 ≤ i ≤ |B)| in the encrypted form using any standard

ranking algorithm, where comparisons are done interactively with user u
through the encrypted integer comparison protocol COM.

(d) After the ranking, the server sends the “Top-N” indexes (e.g. the per-
muted Top-N indexes) to user u, who can then recover the real Top-N
indexes.

114 Q. Tang and J. Wang

The usage of matrix MX in the random permutation of stage 3 guarantees
that the rated items will all appear in the end of the list after ranking. As a
result, the rated items will not appear in the recommended Top-N items.

5 Evaluating the Proposed Protocols

Parameters and Performances. The selection of the global parameters α, β and
the sizes of Fu and Tu can affect the security, in particular when considering
the threat from a semi-trusted friend. If α

α+β gets larger or the size of Tu gets
smaller, then the inputs from friends contribute more to the final outputs of user
u. This will in turn make information reference attacks easier (for user u to infer
the inputs of his friends). However, if α

α+β gets smaller and Tu gets larger, then
we will lose the motivation of explicitly distinguishing friends and strangers in
computing recommendations, namely the accuracy of recommendations may get
worse. How to choose these parameters will depend on the application scenarios
and the overall distributions of users’ ratings.

In order to get some rough idea about how these parameters influence the
accuracy of recommendation results. We choose the MovieLens 100k dataset1

and define friends and strangers as follows. Given a user u, we first calculate
the Cosine similarities with all other users and generate a neighborhood for
user u. Then, we choose a certain number of users from the neighborhood as
the friends, and randomly choose a certain number of users from the rest as
strangers. For different parameters, the Mean Average Error (MAE) [29] of the
proposed protocols is shown in Table 1. Note that lower MAE implies more
accurate recommendations.

Table 1. MAE of experiments

From the numbers, it is clear that the more friends are involved the more
accurate recommendation results user u will obtain (i.e. the MAE is lower). There
is also a trend that the MAE becomes smaller when the contribution factor α

α+β

becomes larger. According to the accuracy results by Lemire and Maclachlan (in
Table 1 of [17] where the values are MAE divided by 4), their smallest MAE is
0.752 = 0.188 × 4. From the above Table 1, we can easily get lower MAE when
|Fu| ≥ 70 by adjusting α

α+β .

1 http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/

Privacy-Preserving Context-Aware Recommender Systems 115

Security Analysis. Informally, the protocols are secure based on two facts:
(1) all inputs are first freshly encrypted and then used in the computations; (2)
all computations (e.g. computing predictions and ranking) done by the server
and other users are in the encrypted form. As to the single prediction protocol
in Sect. 4.1, we have the following arguments.

1. Threat from Semi-honest RS Server. Given the COM protocol is secure
(namely, the server does not learn anything in the process). Then the server
learns nothing about any user’s private input information, e.g. b, τ,Ru,Qu,
Rf ,Qf , wu,f ,Rt,Qt for all f and t, because every element is freshly encrypted
in the computation and all left computations are done homomorphically.

Moreover, the server learns nothing about pu,b

?≥ τ based on the security
of COM.

2. Threat from a Semi-honest Friend. We consider two scenarios.
– Informally, a friend f ’s contribution to pu,b is protected by the inputs from

users Fu\f and the strangers Tu. Given a randomly chosen unrated item
for user u and a randomly chosen friend f ∈ Fu, we perform a simple
experiment to show how f ’s input influences the predicted rating. We set

α
α+β = 0.8 and the (|Fu|, |Tu|) = (30, 10) in all tests, and choose strangers
randomly in every test.

Table 2. Influence of a single friend

The results in Table 2 imply that a friend f ’s contribution to user u’s output
is obfuscated by the inputs from the stranger set. Simply from the output
of user u, it is hard to infer user f ’s input. Furthermore, it should be clear
that the larger the friend set is the less information of a single friend will
be inferred. With encryption, the friends learn nothing about user u.

– For similar reasons, it will be hard for Fu\f to infer user f ’s data even if
they learned user u’s output at the end of a protocol execution.

3. Threat from strangers. We consider the following two scenarios.
– In the view of strangers, all values are encrypted under user u’s public key,

so that they will not be able to derive any information about the inputs
and outputs of user u and his friends.

– For the strangers involved in a protocol execution, it does not leak much
information for several reasons. Firstly, user u does not know which
stranger is involved in the protocol execution. Secondly, the inputs of a
group strangers are blended in the output to user u. We perform a simple
experiment to show how strangers’ inputs influence the predicted ratings

116 Q. Tang and J. Wang

Table 3. Influence of strangers

for user u. We set α
α+β = 0.8 and the (|Fu|, |Tu|) = (30, 10). Table 3 shows

the rating differences for 5 unrated items, depending on whether a stranger
is involved in the computation or not. It is clear that very little information
about a stranger can be inferred from user u’s outputs.
Thirdly, the strangers are independently chosen in different protocol exe-
cutions, so that it is difficult to leverage on the accumulated information.

Similar analysis applies to the Top-N protocol in Sect. 4.2. As to user u’s
outputs, the matrices [MX]u, [MY]u randomly permuted the predictions so that
the ranking does not leak any information about the Top-N items.

6 Conclusion

Recommender systems are complex in the sense that many users are involved and
contributing to the outputs of each other. The privacy challenge is big because
it is difficult to reach a realistic security model with efficient privacy-preserving
protocols. This work, motivated by [13], tried to propose a realistic security
model by leveraging on the similarity and trust between friends in digital com-
munities. Compared to [13], we went a step further by introducing randomly
selected strangers into the play and make it possible to protect users’ privacy
even if their friends’ outputs are compromised. Moreover, we adjusted the rec-
ommendation formula and achieve better accuracy than some other well-known
recommender protocols [17]. Following our work, many interesting topics remain
open. One is to test our protocols on real dataset. Another is to implement the
protocols and see how realistic the computational performances are. Another is
to adjust the recommendation formula to reflect more advanced algorithms, such
as Matrix Factorizations [19], which however will have different requirements on
the involved user population. Another is to investigate stronger security models,
e.g. assuming a malicious RS server. Yet another topic is to formally investigate
the information leakages from the outputs. Our methodology, namely introduc-
ing randomly selected strangers, has some similarity with the differential privacy
based approach [18]. A detailed comparative study will be very useful to under-
stand their connections.

Acknowledgements. The authors are supported by a CORE (junior track) grant
from the National Research Fund, Luxembourg.

Privacy-Preserving Context-Aware Recommender Systems 117

Appendix: Brakerski-Vaikuntanathan SWHE Scheme

Let λ be the security parameter. The Brakerski-Vaikuntanathan public-key
SWHE scheme [5] is parameterized by two primes q, t ∈ poly(λ) ∈ N where
t < q, a degree n polynomial f(x) ∈ Z[x], two error distributions χ and χ′ over
the ring Rq = Zq[x]/〈f(x)〉. The message space is M = Rt = Zt[x]/〈f(x)〉. An
additional parameter is D ∈ N, namely the maximal degree of homomorphism
allowed (and to the maximal ciphertext length). The parameters n, f, q, t, χ, χ′,D
are public.

– Keygen(λ): (1) sample s, e0 ← χ and a0 ∈ Rq; (2) compute s = (1, s, s2,
. . . , sD) ∈ RD+1

q ; (3) output SK = s and PK = (a0, b0 = a0s + te0).
– Enc(PK,m): (1) sample v, e′ ← χ and e′′ ← χ′; (2) compute c0 = b0v+te′′+m,

c1 = −(a0v + te′); (3) output c = (c0, c1).
– Dec(SK, c = (c0, . . . , cD) ∈ RD+1

q): output m = (c · s mod q) mod t.

Since the scheme is somewhat homomorphic, it provides an evaluation algo-
rithm Eval, which can multiply and add messages based on their ciphertexts
only. For simplicity, we show how Eval works when the ciphertexts are freshly
generated. Let cα = (cα0, cα1) and cβ = (cβ0, cβ1). Note that the multiplication
operation will add an additional element for the ciphertext. This is why the Dec
algorithm generally assumes the ciphertext to be a vector of D + 1 elements (if
the ciphertext has less elements, simply pad 0s).

Eval(+, cα, cβ) = (cα0 + cβ0, cα1 + cβ1). Eval(·, cα, cβ)
= (cα0 · cβ0, cα0 · cβ1 + cα1 · cβ0, cα1 · cβ1).

When the evaluations are done to a ciphertext and a plaintext message, there
is a simpler form for the evaluation algorithm, denoted as Eval∗. This has been
used in [13].

Eval∗(+, cα,m′) = (cα0 + m′, cα1). Eval∗(·, cα,m′) = (cα0 · m′, cα1 · m′).

Throughout the paper, given a public/private key pair (PKu, SKu) for some
user u, we use [m]u to denote a ciphertext of the message m under public key
PKu. In comparison, Enc(PKu,m) represents the probabilistic output of running
Enc for the message m. When m is a vector of messages, we use Enc(PKu,m) to
denote the vector of ciphertexts, where encryption is done for each element inde-
pendently. We use the notation

∑
1≤i≤N [mi]u to denote the result of sequentially

applying Eval(+, ,) to the cipheretxts.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

118 Q. Tang and J. Wang

2. Aı̈meur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Alambic: a privacy-
preserving recommender system for electronic commerce. Int. J. Inf. Secur. 7, 307–
334 (2008)

3. Beye, M., Jeckmans, A., Erkin, Z., Tang, Q., Hartel, P., Lagendijk, I.: Privacy in
recommender systems. In: Zhou, S., Wu, Z. (eds.) ADMA 2012 Workshops. CCIS,
vol. 387, pp. 263–281. Springer, Heidelberg (2013)

4. Bilge, A., Polat, H.: A scalable privacy-preserving recommendation scheme via
bisecting k-means clustering. Inf. Process. Manag. 49(4), 912–927 (2013)

5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

6. Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “You
might also like:” privacy risks of collaborative filtering. In: 32nd IEEE Symposium
on Security and Privacy, S & P 2011, pp. 231–246 (2011)

7. Canny, J.F.: Collaborative filtering with privacy. In: IEEE Symposium on Security
and Privacy, pp. 45–57 (2002)

8. Canny, J.F.: Collaborative filtering with privacy via factor analysis. In: Proceed-
ings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 238–245 (2002)

9. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat homo-
morphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT
2014. LNCS, vol. 8895, pp. 239–258. Springer, Heidelberg (2015)

10. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

11. Erkin, Z., Beye, M., Veugen, T., Lagendijk, R.L.: Efficiently computing private
recommendations. In: International Conference on Acoustic, Speech and Signal
Processing (2011)

12. Han, S., Ng, W.K., Yu, P.S.: Privacy-preserving singular value decomposition. In:
Ioannidis, Y.E., Lee, D.L., Ng, R.T. (eds.) Proceedings of the 25th International
Conference on Data Engineering, pp. 1267–1270. IEEE, Shanghai (2009)

13. Jeckmans, A., Peter, A., Hartel, P.: Efficient privacy-enhanced familiarity-based
recommender system. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 400–417. Springer, Heidelberg (2013)

14. Jeckmans, A., Tang, Q., Hartel, P.: Privacy-preserving collaborative filtering based
on horizontally partitioned dataset. In: 2012 International Symposium on Security
in Collaboration Technologies and Systems (CTS 2012), pp. 439–446 (2012)

15. Kantarcioglu, M., Jin, J., Clifton, C.: When do data mining results violate privacy.
In: The Tenth ACM SIGMOD International Conference on Knowledge Discovery
and Data Mining, pp. 599–604. ACM (2004)

16. Lam, S.K.T., Frankowski, D., Riedl, J.: Do you trust your recommendations? An
exploration of security and privacy issues in recommender systems. In: Müller, G.
(ed.) ETRICS 2006. LNCS, vol. 3995, pp. 14–29. Springer, Heidelberg (2006)

17. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collabo-
rative filtering. In: Kargupta, H., Srivastava, J., Kamath, C., Goodman, A. (eds.)
Proceedings of the 2005 SIAM International Conference on Data Mining, SDM
2005, pp. 471–475. SIAM, California (2005)

18. McSherry, F., Mironov, I.: Differentially private recommender systems: build-
ing privacy into the Netflix prize contenders. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
627–636 (2009)

Privacy-Preserving Context-Aware Recommender Systems 119

19. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-
preserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 801–812 (2013)

20. Parameswaran, R.: A robust data obfuscation approach for privacy preserving
collaborative filtering. Ph.D. thesis, Georgia Institute of Technology (2006)

21. Polat, H., Du, W.: Privacy-preserving collaborative filtering using randomized per-
turbation techniques. In: Proceedings of the Third IEEE International Conference
on Data Mining, pp. 625–628 (2003)

22. Polat, H., Du, W.: Privacy-preserving collaborative filtering. Int. J. Electron. Com-
mer. 9, 9–36 (2005)

23. Polat, H., Du, W.: Privacy-preserving collaborative filtering on vertically parti-
tioned data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J.
(eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 651–658. Springer, Heidelberg
(2005)

24. Polat, H., Du, W.: Privacy-preserving top-n recommendation on horizontally par-
titioned data. In: 2005 IEEE/WIC/ACM International Conference on Web Intel-
ligence (WI 2005), pp. 725–731. IEEE Computer Society (2005)

25. Polat, H., Du, W.: SVD-based collaborative filtering with privacy. In: Proceedings
of the 2005 ACM Symposium on Applied Computing (SAC), pp. 791–795. ACM
(2005)

26. Polat, H., Du, W.: Achieving private recommendations using randomized response
techniques. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006.
LNCS (LNAI), vol. 3918, pp. 637–646. Springer, Heidelberg (2006)

27. Polat, H., Du, W.: Privacy-preserving top-N recommendation on distributed data.
J. Am. Soc. Inf. Sci. Technol. 59, 1093–1108 (2008)

28. Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A.Y.: Privacy risks in recom-
mender systems. IEEE Internet Comput. 5, 54–63 (2001)

29. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp.
257–297. Springer, USA (2011)

30. Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.: Preserving privacy
in collaborative filtering through distributed aggregation of offline profiles. In: Pro-
ceedings of the Third ACM Conference on Recommender Systems (RecSys 2009),
pp. 157–164 (2009)

31. Tang, Q.: Cryptographic framework for analyzing the privacy of recommender
algorithms. In: 2012 International Symposium on Security in Collaboration Tech-
nologies and Systems (CTS 2012), pp. 455–462 (2012)

32. Tang, Q., Wang, J.: Privacy-preserving context-aware recommender systems:
analysis and new solutions (2015). http://eprint.iacr.org/2015/364

33. Veugen, T.: Comparing encrypted data (2011). http://bioinformatics.tudelft.nl/
sites/default/files/Comparing

34. Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: BlurMe: inferring and obfuscat-
ing user gender based on ratings. In: Cunningham, P., Hurley, N.J., Guy, I., Anand,
S.S. (eds.) Sixth ACM Conference on Recommender Systems, RecSys 2012, pp.
195–202. ACM, New York (2012)

35. Yakut, I., Polat, H.: Arbitrarily distributed data-based recommendations with pri-
vacy. Data Knowl. Eng. 72, 239–256 (2012)

36. Zhan, J., Hsieh, C., Wang, I., Hsu, T., Liau, C., Wang, D.: Privacy-preserving
collaborative recommender systems. Trans. Sys. Man Cyber Part C 40, 472–476
(2010)

http://eprint.iacr.org/2015/364
http://bioinformatics.tudelft.nl/sites/default/files/Comparing
http://bioinformatics.tudelft.nl/sites/default/files/Comparing

Cloud Security

Rich Queries on Encrypted Data:
Beyond Exact Matches

Sky Faber, Stanislaw Jarecki, Hugo Krawczyk(B), Quan Nguyen,
Marcel Rosu, and Michael Steiner

Yorktown, USA
hugo@ee.technion.ac.il

Abstract. We extend the searchable symmetric encryption (SSE) pro-
tocol of [Cash et al., Crypto’13] adding support for range, substring,
wildcard, and phrase queries, in addition to the Boolean queries sup-
ported in the original protocol. Our techniques apply to the basic single-
client scenario underlying the common SSE setting as well as to the
more complex Multi-Client and Outsourced Symmetric PIR extensions
of [Jarecki et al., CCS’13]. We provide performance information based on
our prototype implementation, showing the practicality and scalability of
our techniques to very large databases, thus extending the performance
results of [Cash et al., NDSS’14] to these rich and comprehensive query
types.

1 Introduction

Searchable symmetric encryption (SSE) addresses a setting where a client out-
sources an encrypted database (or document/file collection) to a remote server
E such that the client, which only stores a cryptographic key, can later search
the collection at E while hiding information about the database and queries
from E . Leakage to E is to be confined to well-defined forms of data-access and
query patterns while preventing disclosure of explicit data and query plaintext
values. SSE has been extensively studied [4–7,9,11–14,16–19,24], particularly in
last years due to the popularity of clouds and data outsourcing, focusing almost
exclusively on single-keyword search.

Recently, Cash et al. [5] and Pappas et al. [19] presented the first SSE solu-
tions that go well beyond single-keyword search by supporting Boolean queries on
multiple keywords in sublinear time. In particular, [4,5] build a very scalable sys-
tem with demonstrated practical performance with databases containing indexes
in the order of tens of billions document-keyword pairs. In this work we extend
the search capabilities of the system from [5] (referred to as the OXT protocol) by
supporting range queries (e.g., return all records of people born between two given
dates), substring queries (e.g., return records with textual information containing
a given pattern, say ‘crypt’), wildcard queries (combining substrings with one or
more single-character wildcards), and phrase queries (return records that contain
the phrase “searchable encryption”). Moreover, by preserving the overall system

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 123–145, 2015.
DOI: 10.1007/978-3-319-24177-7 7

124 S. Faber et al.

design and optimized data structures of [4], we can run any of these new queries in
combination with Boolean-search capabilities (e.g., combining a range and/or sub-
string query with a conjunction of additional keywords/ranges/substrings) and we
can do so while preserving the scalability of the system and additional properties
such as support for dynamic data.

We also show how to extend our techniques to the more involved multi-client
SSE scenarios studied by Jarecki et al. [12]. In the first scenario, denoted MC-
SSE, the owner of the data, D, outsources its data to a remote server E in
encrypted form and later allows multiple clients to access the data via search
queries and according to an authorization policy managed by D. The system
is intended to limit the information learned by clients beyond the result sets
returned by authorized queries while also limiting information leakage to server
E . A second scenario, OSPIR-SSE or just OSPIR (for Outsourced Symmetric
PIR), addresses the multi-client setting but adds a requirement that D can
authorize queries to clients following a given policy, but without D learning the
specific values being queried. That is, D learns minimal information needed to
enforce policy, e.g., the query type or the field to which the keyword belongs,
say last name, but not the actual last name being searched.

We present our solution for range queries in Sect. 3, showing how to reduce
any such query to a disjunction of exact keywords, hence leveraging the Boolean
query capabilities of the OXT protocol and its remarkable performance. In the
OSPIR setting, we show how D can authorize range queries based on the total
size of the queried range without learning the actual endpoints of the range.
This is useful for authorization policies that limit the size of a range as a way
of preventing a client from obtaining a large fraction of the database. Thus,
D may learn that a query on a data field spans 7 days but not which 7 days
the query is about. Achieving privacy from both D and E while ensuring that
the authorized search interval does not exceed a size limit enforced by D, is
challenging. We propose solutions based on the notion of universal tree covers
for which we present different instantiations trading performance and security
depending on the SSE model that is being addressed.

The other queries we support, i.e. substrings, wildcards and phrases, are all
derived from a novel technique that allows us to search on the basis of position-
ing information (where the data and the position information are encrypted).
This technique can be used to implement any query type that can be reduced to
Boolean formulas on queries of the form “are two data elements at distance Δ?”.
For example, in the case of substring queries, the substring is tokenized (i.e., sub-
divided) into a sequence of possibly-overlapping k-grams (strings of k characters)
and the search is performed as a conjunction of such k-grams. However, to avoid
false positives, i.e., returning documents where the k-grams appear but not at
the right distances from each other, we use the relative positions of the tokens
to ensure that the combined k-grams represent the searched substring. Wildcard
queries are processed similarly, because t consecutive wildcard positions (i.e.,
positions that can be occupied by any character) can be implemented by setting
the distance between the two k-grams that bracket the string of t wildcards to

Rich Queries on Encrypted Data: Beyond Exact Matches 125

k+ t. Phrase queries are handled similarly, by storing whole words together with
their encrypted positions in the text.

The crux of this technique is a homomorphic computation on encrypted
position information that gives rise to a very efficient SSE protocol between client
C and server E for computing relative distances between data elements while
concealing this information from E . This protocol meshes naturally with the
homomorphic properties of OXT but in its general form it requires an additional
round of interaction between client and server. In the SSE setting, the resulting
protocol preserves most of the excellent performance of the OXT protocol (with
the extra round incurring a moderate increase in query processing latency).
Similar performance is achieved in the MC setting while for the OSPIR setting
we resort to bilinear groups for some homomorphic operations, hence impacting
performance in a more noticeable way which we are currently investigating.

We prove the security of our protocols in the SSE model of [5,7,9], and the
extensions to the MC-SSE and OSPIR settings of [12], where security is defined
in the real-vs-ideal model and is parametrized by a specified leakage function
L(DB,q). A protocol is said to be secure with leakage profile L(DB,q) against
adversary A if the actions of A on adversarially-chosen input DB and query set q
can be simulated with access to the leakage information L(DB,q) only (and not
to DB or q). This allows modeling and bounding the partial leakage incurred
by SSE protocols. It means that even an adversary that has full information
about the database and queries, or even chooses them at will, does not learn
anything from the protocol execution other than what can be derived solely
from the defined leakage profile. We achieve provable adaptive security against
adversarial servers E and D, and against malicious clients. Servers E and D are
assumed to return correct results (e.g., server E returns all documents specified
by the protocol) but can otherwise behave maliciously. However, in the OSPIR
setting, query privacy from D is achieved as long as D does not collude with E .

Practicality of our techniques was validated by a comprehensive implementa-
tion of: (i) the SSE protocols for range, substring and wildcard queries, and their
combination with Boolean functions on exact keywords, and (ii) the OSPIR-SSE
protocol for range queries. These implementations (extending those of [4,5,12])
were tested by an independent evaluator on DB’s of varying size, up to 10
Terabytes with 100 million records and 25.6 billion record-keyword pairs. Per-
formance was compared to MariaDB’s (an open-source fork of MySQL) perfor-
mance on the same databases running on plaintext data and plaintext queries.
Due to the highly optimized protocols and careful I/O management, the per-
formance of our protocols matched and often exceeded the performance of the
plaintext system. These results are presented in Appendix A.

Related Work. The only work we are aware of that addresses substring search
on symmetrically encrypted data is the work of Chase and Shen [8]. Their
method, based on suffix trees, is very different than ours and the leakage pro-
files seem incomparable. This is a promising direction, although the applicability
to (sublinear) search on large databases, and the integration with other query
types, needs to be investigated. Its potential generalization to the multi-client or

126 S. Faber et al.

OSPIR settings is another interesting open question. Range and Boolean queries
are supported, also for the OSPIR setting, by Pappas et al. [19] (building on the
work of Raykova et al [21]). Their design is similar to ours in reducing range
queries to disjunctions (with similar data expansion cost) but their techniques
are very different offering an alternative (and incomparable) leakage profile for
the parties. The main advantages of our system are the support of the additional
query types presented here and its scalability. The scalability of [19] is limited by
their crucial reliance on Bloom filters that requires database sizes whose resul-
tant Bloom filters can fit in RAM. A technique that has been suggested for
resolving range queries in the SSE setting is order-preserving encryption (e.g.,
it is used in the CryptDB system [20]). However, it carries a significant intrinsic
loss of privacy as the ordering of ciphertexts is visible to the holding server (and
the encryption is deterministic). Range queries are supported in the multi-writer
public key setting by Boneh-Waters [3] and Shi et al. [23] but at a significantly
higher computational cost.

2 Preliminaries

Our work concerns itself with databases in a very general sense, including rela-
tional databases (with data arranged in “rows” and “columns”), document col-
lections, textual data, etc. We use interchangeably the word ‘document’ and
‘record’. We think of keywords as (attribute,value) pairs. The attribute can be
structured data, such as name, age, SSN, etc., or it can refer to a textual field.
We sometimes refer explicitly to the keyword’s attribute but most of the time
it remains implicit. We denote by m the number of distinct attributes and use
I(w) to denote the attribute of keyword w.

SSE Protocols and Formal Setting (following [5]). Let τ be a security
parameter. A database DB = (indi,Wi)d

i=1 is a list of identifier and keyword-set
pairs, where indi ∈ {0, 1}τ is a document identifier and Wi = DB[indi] is a list of
its keywords. Let W =

⋃d
i=1 Wi. A query ψ is a predicate on Wi where DB(ψ) is

the set of identifiers of document that satisfy ψ. E.g. for a single-keyword query
we have DB(w) = {ind s.t. w ∈ DB[ind]}.

A searchable symmetric encryption (SSE) scheme Π consists of an algorithm
Setup and a protocol Search fitting the following syntax. Setup takes as input
a database DB and a list of document (or record) decryption keys RDK, and
outputs a secret key K along with an encrypted database EDB. The search
protocol Search proceeds between a client C and server E , where C takes as
input the secret key K and a query ψ and E takes as input EDB. At the end
of the protocol, C outputs a set of (ind, rdk) pairs while E has no output. We
say that an SSE scheme is correct for a family of queries Ψ if for all DB,RDK
and all queries ψ ∈ Ψ, for (K,EDB) ← Setup(DB,RDK), after running Search
with client input (K,ψ) and server input EDB, the client outputs DB(ψ) and
RDK[DB(ψ)] where RDK[S] denotes {RDK[ind] | ind ∈ S}. Correctness can be
statistical (allowing a negligible probability of error) or computational (ensured
only against computationally bounded attackers - see [5]).

Rich Queries on Encrypted Data: Beyond Exact Matches 127

Note (retrieval of matching encrypted records). Above we define the output of
the SSE protocol as the set of identifiers ind pointing to the encrypted documents
matching the query (together with the set of associated record decryption keys
rdk). The retrieval of the document payloads, which can be done in a variety of
ways, is thus decoupled from the storage and processing of the metadata which
is the focus of the SSE protocols.

Multi-Client SSE Setting [12]. The MC-SSE formalism extends the SSE syn-
tax by an algorithm GenToken, which generates a search-enabling value token
from the secret key K generated by the data owner D in Setup, and query ψ
submitted by client C. Protocol Search is then executed between server E and
client C on resp. inputs EDB and token, and the protocol must assure that C
outputs sets DB(ψ) and RDK[DB(ψ)].

OSPIR SSE Setting [12]. An OSPIR-SSE scheme replaces the GenToken pro-
cedure, which in MC-SSE is executed by the data owner D on the cleartext
client’s query q, with a two-party protocol between C and D that allows C to
compute the search-enabling token without D learning ψ. However, D should be
able to enforce a query-authorization policy on C’s query. We consider attribute-
based policies, where queries are authorized based on the attributes associated
to keywords in the query (e.g., a client may be authorized to run a range query
on attribute ‘age’ but not on ‘income’, or perform a substring query on the
‘address’ field but not on the ‘name’ field, etc.). Later, we will consider exten-
sions where the policy can define further constraints, e.g., the total size of an
allowed interval in a range query, or the minimal size of a pattern in a sub-
string query. An attribute-based policy for any query type is represented by a
set of attribute-sequences P s.t. a query ψ involving keywords (or substrings,
ranges, etc.) (w1, ..., wn) is allowed by policy P if and only if the sequence of
attributes av(ψ) = (I(w1), ..., I(wn)) ∈ P. Using this notation, the goal of the
GenToken protocol is to let C compute token corresponding to its query on ψ
only if av(w̄) ∈ P. Note that different query types will have different entries
in P. Reflecting these goals, an OSPIR-SSE scheme is a tuple Σ = (Setup,
GenToken,Search) where Setup and Search are as in MC-SSE, but GenToken is
a protocol run by C on input ψ and by D on input (P,K), with C outputting
token if av(ψ) ∈ P, or ⊥ otherwise, and D outputting av(ψ).

3 Range Queries

Our solution for performing range queries on encrypted data reduces these
queries to a disjunction of exact keywords and therefore can be integrated with
SSE solutions that support such disjunctions. In particular, we use this solution
to add range query support to the OXT protocol from [5,12] while keeping all
the other properties of OXT intact. This includes OXT’s remarkable scalability,
its support for different models (SSE, MC, OSPIR), and its boolean search capa-
bility. Thus, we obtain a protocol where range queries can be run in isolation or
in combination with boolean expressions on other terms, including conjunctive
ranges such as 30≤age≤39 and 50,000 ≤ income ≤ 99,999.

128 S. Faber et al.

Range queries can be applied to any ordered set of elements; our description
focuses on integer ranges for simplicity. We denote range queries with input an
interval [a, b], for integers a ≤ b, by RQ(a, b). We refer to a and b as the endpoints
and to the number b − a + 1 as the size of the range. Inequality queries of the
form x ≥ a are represented by the range [a, b] where b is an upper bound on
all applicable values for the searched attribute; queries of the form x ≤ b are
handled similarly.

We now describe the extensions to the OXT protocol (and its OSPIR version)
for supporting range queries. Thanks to our generic reduction of range queries to
disjunctions of exact keywords, our range-query presentation does not require a
detailed knowledge of the OXT protocol and basic familiarity with OXT suffices
(the interested reader can find more details on OXT in the above papers and
also in Sect. 4.1).

Pre-Processing (Setup). For concreteness, consider a database table with an
attribute (or column) A over which range queries are enabled. The values in the
column are mapped to integer values between 0 and 2t −1 for some number t. To
support range queries on attribute A we augment the given cleartext database
DB with t virtual columns which are populated at Setup as follows. Consider a
full binary tree with t + 1 levels and 2t leaves. Each node in the tree is labeled
with a binary string describing the path from the root to the node: The root is
labeled with the empty string, its children with strings 0 and 1, its grandchildren
with 00, 01, 10, 11, and so on. A node at depth d is labeled with a string of length
d, and the leaves are labeled with t-long strings that correspond to the binary
representation of the integer value in that leaf, i.e. a t-bit binary representation
padded with leading zeros.

Each of the t added columns correspond to a level in the tree, denoted
A′(1), A′(2), . . . , A′(t) (A′ indicates that this is a “virtual attribute” derived
from attribute A). A record (or row) whose value for attribute A has binary rep-
resentation vt−1, . . . , v1, v0 will have the string (vt−1, . . . , v1, v0) in column A′(t),
the string (vt−1, . . . v1) in column A′(t−1), and so on till column A′(1) which will
have the string vt−1. Once the above plaintext columns A′(1), . . . , A′(t − 1) are
added to DB (note that A′(t) is identical to the original attribute A), they are
processed by the regular OXT pre-processing as any other original DB column,
but they will be used exclusively for processing range queries.

Client Processing. To query for a range RQ(a, b), the client selects a set of
nodes in the tree that form a cover of the required range, namely, a set of tree
nodes for which the set of descendant leaves corresponds exactly to all elements
in the range [a, b] (e.g. a cover for range 3 to 9 in a tree of depth 4 will contain
cover nodes 0011, 01, 100). Let c1, . . . , c� be the string representation of the
nodes in the cover and assume these nodes are at depths d1, . . . , d�, respectively
(not all depths have to be different). The query then is formed as a disjunc-
tion of the � exact-match queries “column A′(di) has value ci”, for i = 1, . . . , �.
Note that we assume that the client knows how nodes in the tree are repre-
sented; in particular it needs to know the total depth of the tree. We stress
that this reduction to a disjunctive query works with any strategy for selecting

Rich Queries on Encrypted Data: Beyond Exact Matches 129

the cover set. This is important since different covers present different trade-offs
between performance and leakage. Moreover, since the pre-processing of data is
independent of the choice of cover, one can allow multiple cover strategies to
co-exist to suit different leakage-performance trade-offs. Later, we will describe
specific strategies for cover selection.

Interaction of Client C with Server E. The search at E is carried exactly as
in the Search phase of OXT as with any other disjunction. In particular, E does
not need to know whether this disjunction comes from a range query.

Server D′s Token Generation and Authorization. For the case of single-
client and multi-client) SSE, token generation and authorization work as with
any disjunction in the original OXT protocol. However, in the OSPIR setting,
D needs to authorize the query without learning the queried values. Specifically,
in the scenario addressed by our implementation, authorization of range queries
is based on the searched attribute (e.g., age) and the total size of the range (i.e.,
policy attaches to each client an upper bound on the size of a range the client is
allowed to query for the given attribute). To enforce this policy, we allow D to
learn the searched attribute and the total size of the range, i.e., b − a + 1, but
not the actual end-point values a, b. This is accomplished as follows.

Client C computes a cover corresponding to his range query and maps each
node in the cover to a keyword (d, c), where d is the depth of the node in
the tree and c the corresponding string. It then generates a disjunction of the
resultant keywords (di, ci), i = 1, . . . , �, where � is the size of the cover, di acts
as the keyword’s attribute and ci as its value. C provides D with the attributes
d1, . . . , d� thus allowing D to provide the required search tokens to C as specified
by the OXT protocol for the OSPIR setting [12] (OXT requires the keyword
attribute to generate such token). However, before providing these tokens, D
needs to verify that the total size of the range is under the bound that C is
authorized for. D computes this size using her knowledge of the depths d1, . . . , d�

by the formula
∑�

i=1 2t−di which gives the number of leaves covered by these
depths. This ensures the total size of the range to be under a given bound but the
range can be formed of non-consecutive intervals. Importantly, this authorization
approach works with any cover selection strategy used by the client.

Cover Selection. There remains one crucial element to take care of: Making
sure that the knowledge of the cover depths d1, . . . , d� does not reveal to D
any information other than the total size of the range. Note that the way clients
select covers is essentially independent of the mechanisms for processing of range
queries described above. Here we analyze some choices for cover selection. The
considerations for these choices are both performance (e.g. size of the cover) and
privacy. Privacy-wise the goal is to limit the leakage to server E and, in the
OSPIR case, also to D. In the latter case, the goal is to avoid leakage beyond the
size of the range that D needs to learn in order to check policy compliance. These
goals raise general questions regarding canonical covers and minimal over-covers
which we outline below.

130 S. Faber et al.

A natural cover selection for a given range is one that minimizes the number
of nodes in the cover (hence minimizes the number of disjuncts in the search
expression). Unfortunately, such cover leaks information beyond the size of a
range, namely, it allows to distinguish between ranges of the same size. E.g.,
ranges [0, 3] and [1, 4] are both of size 4 but the first has a single node as its
minimal cover while the latter requires 3 nodes. Clearly, if C uses such a cover,
D (and possibly E) will be able to distinguish between the two cases.

Canonical Profiles and Universal Covers. The above example raises the
following question: Given that authorization allows D to learn the depths of
nodes in a cover, is there a way of choosing a cover that only discloses the total
size of the range (i.e., does not allow to distinguish between two different ranges
of the same size even when the depths are disclosed)? In other words, we want
a procedure that given a range produces a cover with a number of nodes and
depths that is the same for any two ranges of the same size. We call such covers
universal. The existence of universal covers is demonstrated by the cover that
uses each leaf in the range as a singleton node in the cover. Can we have a
minimal universal cover? Next, we answer this question in the affirmative.

Definition 1. The profile of a range cover is the multi-set of integers represent-
ing the heights of the nodes in the cover. (The height of a tree node is its distance
from a leaf, i.e., leaves have height 0, their parents height 1, and so on up to
the root which has height t − 1.) A profile for a range of size n is universal if
any range of size n has a cover with this profile. A universal cover is one whose
profile is universal. A universal profile for n is minimal if there is a range of size
n for which all covers have that profile. (For example, for n > 2 the all-leaves
cover is universal but not minimal.)

Definition 2 (Canonical Profile). A profile for ranges of size n is called
canonical if it is composed of the heights 0, 1, 2, . . . , L−1, where L = �log(n + 1)�,
plus the set of powers (‘1’ positions) in the binary representation of n′ = n −
2L + 1. A canonical cover is one whose profile is canonical.

Example: for n = 20 we have L = 4, n′ = 5, and the canonical profile is
{0, 1, 2, 3, 0, 2} where the last 0, 2 correspond to the binary representation 101
of 5 (note that 20 = 20 + 21 + 22 + 23 + 20 + 22).

Lemma 1. For every integer n > 0 the canonical profile of ranges of size n is
universal and minimal (and the only such profile).

The proof of this lemma is presented in the full version [10] where we also present
a simple procedure to compute a canonical cover for any range. (A similar notion
has been used, independently and in a different context, in [15]).

3-node Universal Over-Covers. The canonical cover has the important prop-
erty of not leaking any information to D beyond the size of the range (that D
needs to learn anyway to authorize a query). However, the number of nodes in
a canonical cover can leak information on the range size to server E (assuming

Rich Queries on Encrypted Data: Beyond Exact Matches 131

that E knows that a given disjunction corresponds to a range query). Another
drawback is that canonical covers may include 2 log n nodes. Ideally, we would
like to use covers with a small and fixed number of nodes that also have universal
profiles, i.e., any two ranges of a given size will always be represented by covers
with the same depths profile. While we show this to be impossible for exact
covers, we obtain covers with the above properties by allowing false-positives,
i.e., covers that may include elements outside the requested range, hence we call
them over-covers. In the full version [10] we instantiate this approach for 3-node
universal over-covers.

4 Substring Queries

Our substring-search capable SSE scheme is based on the conjunctive-search
SSE protocol OXT of [5], and it extends that protocol as follows: Whereas
the OXT scheme of [5] supported efficient retrieval of records containing sev-
eral required keywords at once (i.e. satisfying a conjunction of several keyword-
equality search terms), our extension supports efficient retrieval of records con-
taining the required keywords at required relative positions to one another. This
extension of conjunctive search with positional distance criteria allows us to
handle several query types common in text-based information retrieval. To sim-
plify the description, and using the notation from Sect. 2, consider a database
DB = (indi, Ti) containing records with just one free text attribute, i.e. where
each record Ti is a text string. We support the following types of queries q:

Substring Query. Here q is a text string, and DB(q) returns all indi s.t. Ti

contains q as a substring.

Wildcard Query. Here q is a text string which can contain wildcard characters
′?′ (matching any single character), and DB(q) returns all indi s.t. Ti contains
a substring q′ s.t. for all j from 1 to |q|, qj =′ ?′ ∨ qj = q′

j , where qj and
q′
j denote j-th characters in strings q and q′. If the query should match only

prefixes (suffixes) of Ti, the query can be prefixed (suffixed) with a ′ˆ′ (′$′).

Phrase Query. Here q is a sequence of words, i.e. text strings, q = (q1, . . . , ql),
where each qi can equal to a wildcard character ′?′. Records Ti in DB are also
represented as sequences of words, Ti = (T 1

i , . . . , Tn
i). DB(q) returns all indi s.t.

for some k and for all j from 1 to l, it holds that qj =′ ?′ ∨ qj = T k+j
i . (Note

that phrase queries allow a match of a single wildcard with a whole word of
any size, while in a wildcard query a single wildcard can match only a single
character).

All these query types utilize the same crypto machinery that we describe next
for the substring case. In Sect. 4.2 we explain briefly how to adapt the techniques
to these queries too.

132 S. Faber et al.

4.1 Basic SSE Substring Search

Here we present protocol SUB-SSE-OXT that supports substring search in the
basic SSE model (i.e., a single client C outsources its encrypted database to
server E) and where the query consists of a single substring. This simpler case
allows us to explain and highlight the basic ideas that we also use for addressing
the general case of boolean expressions that admit substrings as the expression
terms as well as for extending these solutions to the more involved MC and
OSPIR settings.

Figure 1 describes the protocol where shadowed text highlights the changes
with respect to the original OXT protocol from [5] for resolving conjunctive
queries in the SSE model (the reader can visualize the underlying OXT pro-
tocol by omitting the shadowed text). We first explain the basic rationale and
functioning of the conjunctive-search OXT protocol, and then we explain how we
extend it by imposing additional constraints on relative positions of the searched
terms, and how this translates into support for substring-search SSE.

The Conjunctive SSE Scheme OXT. Let q = (w1, . . . , wn) be a conjunctive
query where DB(q) = ∩n

i=1DB(wi). Let FG be a Pseudorandom Function (PRF)
with key KG. (This PRF will map onto a cyclic group G, hence the name). Let
the setup algorithm create as metadata a set of (keyed) hashes XSet, named
for “cross-check set”, containing the hash values xtagw,ind = FG(KG, (w, ind))
for all keywords w ∈ W and records ind ∈ DB(w). Let the setup also create
the metadata needed to quickly retrieve the set of record indexes DB(w) match-
ing any given single keyword w ∈ W. The OXT protocol is based on a simple
conjunctive plaintext search algorithm which identifies all records correspond-
ing to a conjunctive query q = (w1, . . . , wn) as follows: It first identifies the
set of indexes DB(w1) satisfying the first term w1, called an s-term, and then
for each ind ∈ DB(w1) it returns ind as part of DB(q) if and only if hash value
xtagwi,ind = FG(KG, (wi, ind)) is in XSet for all x-terms (i.e. “cross-check terms”)
w2, . . . , wn. If group G is sufficiently large then except for negligible collision
probability, if xtagwi,ind ∈ XSet for i ≥ 2 then ind ∈ ∩n

i=2DB(wi), and since ind
was taken from DB(w1) it follows that ind ∈ DB(q). Since this algorithm runs in
O(|DB(w1)|) time w1 should be chosen as the least frequent keyword in q.

To implement the above protocol over encrypted data the OXT protocol
modifies it in three ways: First, the metadata supporting retrieval of DB(w)
is implemented using single-keyword SSE techniques, specifically the Oblivious
Storage data structure TSet [4,5], named for “tuples set”, which reveals to server
E only the total number of keyword occurrences in the database,

∑
w∈W |DB(w)|,

but hides all other information about individual sets DB(w) except those actu-
ally retrieved during search. (A TSet can be implemented very efficiently as
a hash table using PRF F whose key KT is held by client C, see [4,5]). Sec-
ondly, the information stored for each w in the TSet datastructure, denoted
TSet(w), which E can recover from TSet given F (KT , w), is not the plaintext
set of indexes DB(w) but the encrypted version of these indexes using a special-
purpose encryption. Namely, a tuple corresponding to the c-th index indc in
DB(w) (arbitrarily ordered) contains value yc = Fp(KI , indc) · Fp(Kz, c)−1, an

Rich Queries on Encrypted Data: Beyond Exact Matches 133

element in a prime-order group Zp where Fp is a PRF onto Zp, and KI ,Kz

are two PRF keys where KI is global and Kz is specific to keyword w. This
encryption enables fast secure computation of hash xtagwi,indc

between client
C and server E , where E holds ciphertext yc = Fp(KI , indc) · Fp(Kz, c)−1 of
c-th index indc taken from TSet(w1) and C holds keyword wi and keys KI ,Kz.
Let FG(KG, (w, ind)) = gFp(KX ,w)·Fp(KI ,ind) where g generates group G and
KG = (KX ,KI) where KX is a PRF key. C then sends to E :

xtoken[c, i] = gFp(KX ,wi)·Fp(Kz,c)

for i = 2, . . . , h and c = 1, . . . , |TSet(w1)|, and E computes FG(KG, (wi, indc))
for each c, i as:

(xtoken[c, i])yc = (xtoken[c, i])Fp(KI ,indc)·Fp(Kz,c)−1

Since Kz is specific to w1 mask zc = Fp(Kz, c) applied to indc in yc is a one-time
pad, hence this protocol reveals only the intended values FG(KG, (wi, indc)) for
all indc ∈ DB(w1) and w2, . . . , wn.

Extending OXT to Substring SSE. The basic idea for supporting substring
search is first to represent a substring query as a conjunction of k-grams (strings
of length k) at given relative distances from each other (e.g., a substring query
‘yptosys’ can be represented as a conjunction of a 3-gram ‘tos’ and 3-grams ‘ypt’
and ‘sys’ at relative distances −2 and 2 from the first 3-gram, respectively), and
then to extend the conjunctive search protocol OXT of [5] so that it verifies not
only whether the conjunctive terms all occur within the same document, but
also that they occur at positions whose relative distances are specified by the
query terms. We call representation of a substring q as a set of k-grams with
relative distances a tokenization of q. We denote the tokenizer algorithm as T ,
and we denote its results as T (q) = (kg1, (Δ2, kg2), . . . , (Δh, kgh)) where Δi are
any non-zero integer values, including negatives, e.g. T (‘yptosys’) can output
(‘tos’,(-2,‘ypt’),(2,‘sys’)), but many other tokenizations of the same string are
possible. We call k-gram kg1 an s-gram and the remaining k-grams x-grams, in
parallel to the s-term and x-term terminology of OXT, and as in OXT the s-gram
should be chosen as the least frequent k-gram in the tokenization of q. Let KG
be a list of k-grams which occur in DB. Let DB(kg) be the set of (ind, pos) pairs
s.t. DB[ind] contains k-gram kg at position pos, and let DB(ind, kg) be the set of
pos’s s.t. (ind, pos) ∈ DB(kg).

The basic idea of the above conjuctive-search protocol to handling substrings
is that the hashes xtag inserted into the XSet will use PRF FG applied to a triple
(kg, ind, pos) for each kg ∈ KG and (ind, pos) ∈ DB(kg), and when processing
search query q where T (q) = (kg1, (Δ2, kg2), . . . , (Δh, kgh)), server E will return
(encrypted) index ind corresponding to some (indc, posc) pair in DB(kg1) if and
only if

FG(KG, (kgi, indc, posc + Δi)) ∈ XSet for i = 2, . . . , h

134 S. Faber et al.

Fig. 1. SUB-SSE-OXT: SSE Protocol for Substring Search (shadowed text indicates
additions to the basic OXT protocol for supporting substring queries)

To support this modified search over encrypted data the setup procedure
Setup(DB,RDK) forms EDB as a pair of data structures TSet and XSet as in
OXT, except that keywords are replaced by k-grams and both the encrypted
tuples in TSet and the hashes xtag in XSet will be modified by the position-
related information as follows. First, the tuple corresponding to the c-th
(index,position) pair (indc, posc) in DB(kg) will contain value yc = Fp(KI , indc) ·
Fp(Kz, c)−1 together with a new position-related value vc = Fp(KI , indc)posc ·
Fp(Ku, c)−1, where Kz,Ku are independent PRF keys specific to kg. Secondly,
XSet will contain values computed as:

FG((KX ,KI), (kg, ind, pos)) = gFp(KX ,kg)·Fp(KI ,ind)pos (1)

Rich Queries on Encrypted Data: Beyond Exact Matches 135

In the Search protocol, client C will tokenize its query q as T (q) =
(kg1, (Δ2, kg2), . . . , (Δh, kgh)), send stagkg1 = FT (KT , kg1) to server E , who uses
it to retrieve TSet(kg1) from TSet, send the position-shift vectors (Δ2, . . . ,Δh)
to E , and then, in order for E to compute FG(KG, (kgi, indc, posc + Δi)) for all
c, i pairs, client C sends to E :

xtoken[c, i] = gFp(KX ,kgi)·(Fp(Kz,c))Δi ·Fp(Ku,c)

which lets E compute FG(kgi, indc, posc + Δi) as (xtoken[c, i]) exponentiated to
power (yc)Δi · vc for (yc, vc) in the c-th tuple in TSet(kg1), which computes
correctly because

yΔi
c · vc = Fp(KI , indc)Δi+posc · Fp(Kz, c)−Δi · Fp(Ku, c)−1

4.2 Wildcards and Phrase Queries

Any sequence of single character wildcards within regular substring queries can
be handled by changing tokenization to allow gaps in the query string covered
by the computed tokens, e.g. T (′ypt??yst′) would output (′ypt′, (5,′ yst′)).

In addition to support wildcard queries matching prefixes and/or suffixes, we
add special “anchor” tokens at the beginning (′ˆ′) and end (′$′) of every record
to mark the text boundaries. These anchors are then added during tokenization.
This allows searching for substrings at fixed positions within a record. For these
queries T (′ypt??yst′) would output (′ˆyp′, (1,′ ypt′), (6,′ yst′), (7,′ st$′)).

Still, this simple change limits us to queries which contain k consecutive
characters in-between every substring of wildcards. However, we can remove
this restriction if we add to the XSet all unigrams (i.e. k = 1) occurring in a text
in addition to the original k-grams.

Adding support for phrase queries is another simple change to the way we
parse DB. Instead of parsing by (k-gram, position) pairs, we parse each record by
(word, position). Tokenization of q then becomes splitting q into its component
words and relative position of each word to the s-term word. As with substrings,
wildcards in q result in a gap in the returned Δ’s.

4.3 Substring Protocol Extensions

Due to space limitations (this material is available from the authors upon
request), we only discuss briefly the extensions to the above SUB-SSE-OXT
protocol needed to support richer functionality as well as the MC and OSPIR
settings. A first extension extends the single-substring of SUB-SSE-OXT to any
Boolean query where atomic terms can be formed by any number of substring
search terms and/or exact keyword terms. Moreover, the user can specify as
an s-term either one of the exact keyword terms or a k-gram in one of the
substring terms. We call the resulting protocol MIXED-SSE-OXT, so named
because it freely mixes substring and exact keyword search terms. The ability to
handle Boolean formulas on exact keywords together with substring terms comes

136 S. Faber et al.

from the similarities between substring-handling SUB-SSE-OXT and Boolean-
formula-handling OXT of [5]. However, one significant adjustment needed to
put the two together is to disassociate the position-related information vc in the
tuples in TSet(kg) from the index-related information yc in these tuples. This is
because when all k-gram terms are x-terms (as would be the case e.g. when an
exact keyword is chosen as an s-term) then E must identify the position-related
information pertaining to a particular (kg, ind) pair given the (kg, ind)-related
xtoken value. Our MIXED-SSE-OXT protocol supports this by adding another
oblivious TSet-like datastructure which uses xtagkg,ind to retrieve the position-
related information, i.e. the vc’s, for all pos ∈ DB(ind, kg).

A second extension generalizes the SUB-SSE-OXT protocol to the OSPIR
setting [12] where D can obliviously enable third-party clients C to compute the
search-enabling tokens (see Sect. 2). The main ingredient in this extension is
the usage of Oblivious PRF (OPRF) evaluation for several PRF functions used
in MIXED-SSE-OXT for computing search tokens. Another important compo-
nent is a novel protocol which securely computes the xtagkg,ind,pos values given
these obliviously-generated trapdoors, in a way which avoids leaking any partial-
match information to C. This protocol uses bilinear maps which results in a
significant slowdown compared to the MIXED-SSE-OXT in the Client-Server
setting. Fortunately, for the Multi-Client (MC) setting where the third-party
clients’ queries are not hidden from the database owner D, we can simplify this
xtag-computation protocol, in particular eliminating the usage of bilinear maps,
and making the resulting protocol MIXED-MC-OXT almost equal in cost to the
underlying MIXED-SSE-OXT protocol.

5 Security Analysis

Privacy of an SSE scheme, in the SSE, Multi-Client, or OSPIR settings, is quan-
tified by a leakage profile L, which is a function of the database DB and the
sequence of client’s queries q. We call an SSE scheme L-semantically-secure
against party P (which can be C, E , or D) if for all DB and q, the entirety of
P ’s view of an execution of the SSE scheme on database DB and C’s sequence of
queries q is efficiently simulatable given only L(DB,q). We say that the scheme
is adaptively secure if the queries in q can be set adaptively by the adversary
based on their current view of the protocol execution. An efficient simulation of
a party’s view in the protocol means that everything that the protocol exposes
to this party carries no more information than what is revealed by the L(DB,q)
function. Therefore specification of the L function fully characterizes the privacy
quality of the solution: What it reveals about data DB and queries q, and thus
also what it hides. (See [5,12] for a more formal exposition.)

Security of Range Queries. Below we state the security of the range query
protocol for stand-alone range queries and we informally comment on the case
of range queries that are parts of composite (e.g., Boolean) queries. See full ver-
sion [10] for a more complete security treatment of range queries. We consider
adaptive security against honest-but-curious and non-colluding servers E ,D, and

Rich Queries on Encrypted Data: Beyond Exact Matches 137

against fully malicious clients. For query qj = RQ(aj , bj), let ((dj
1, c

j
1), . . .,

(dj
t , c

j
t)) be the tree cover of interval [aj , bj] and let wj

i = (dj
i , c

j
i). We define

three leakage functions for D, E , C, respectively:

• LD(DB, (q1, . . . , qm)) includes the query type (“range” in this case), the
attribute to which qj pertains, and the size of the range bj − aj + 1, for
each qj .

• LE(DB, (q1, . . . , qm)) = LOXT(DB, (w1
1, . . . , w

m
t)) where the latter function

represents the leakage to server E in the OXT protocol for a query series that
includes all wj

i ’s. By the analysis of [5], this leakage contains the TSet leakage
(which in our TSet implementation is just the total number of document-
keyword pairs in DB), the sequence {(|DB(wj

i)| : (i, j) = (1, 1), . . . , (t,m)},
i.e., the number of elements in each DB(wj

i), and the result set returned by
the query (in the form of encrypted records).

• LC(DB, (q1, . . . , qm)) = ∅.

Theorem 1. The range protocol from Sect. 3 is secure in the OSPIR model with
respect to D, E , C with leakage profiles LD,LE ,LC, respectively.

The leakage functions for D and C are as good as possible: D only learns
the information needed to enforce authorization, namely the attribute and size
of the range, while there is no leakage at all to the client. The only non-trivial
leakage is E ’s which leaks the number of documents matching each disjunct or,
equivalently, the size of each sub-range in the range cover. The leakage to D
remains the same also when the range query is part of a composite query. For
the client this is also the case except that when the range query is the s-term of a
Boolean expression, the client also learns an upper bound on the sizes |DB(wj

i)|
for all i, j. For E , a composite query having range as its s-term is equivalent
to tm separate expressions wj

i as in [5] (with reduced leakage due to disjoint
s-terms), and if the range term is an x-term in a composite query then wj

i ’s leak
the same as if they were x-terms in a conjunction.

Security of Substring Queries. Here we state the security of protocol SUB-
SSE-OXT against server E . Our security arguments are based on the following
assumptions: the T-set implementation is secure against adaptive adversaries
[4,5]; Fp and Fτ are secure pseudorandom functions; the hash function H is
modeled as a random oracle; and the q-DDH assumption [1] holds in G.1

The security analysis follows the corresponding argument in [5] adapting the
leakage profile to the substring case.

Leakage to Server E . We represent a sequence of Q non-adaptive substring queries
by q = (s,x,Δ) s.t. (s[i], (x[i],Δ[i])) is the tokenization T (q[i]) of the i-th
substring query q[i], where s[i],x[i] are k-grams, and Δ[i] is an integer between
−k+1 and k−1. For notation simplicity we assume that vector q does not contain
repeated queries, although E would learn that a repeated query has been made.
1 Our extension to the OSPIR model relies on the One-More Gap Diffie-Hellman

assumption and the linear DH assumption [2,22] on bilinear groups.

138 S. Faber et al.

Function LE(DB,q) which specifies leakage to E outputs (N, s,SP,RP,DP, IP),
defined as follows:

• The (N, s,SP,RP) part of this leakage is exactly the same as in the conjunctive
SSE protocol SSE-OXT of [5] on which our substring-search SUB-SSE-OXT
protocol is based. N =

∑d
i=1 |Wi| is the total number of appearances of all

k-grams in all the documents, and it is revealed simply by the size of the EDB
metadata. s ∈ [m]Q is the equality pattern of s ∈ KGQ indicating which queries
have the equal s-terms. For example, if s = (abc, abc, xyz, pqr, abc, pqr, def,
xyz, pqr) then s = (1, 1, 2, 3, 1, 3, 4, 2, 3). SP is the s-term support size which
is the number of occurrences of the s-term k-gram in the database, i.e. SP[i] =
|DB(s[i])|. Finally, RP is the results pattern, i.e. RP[i] is the set of (ind, pos)
pairs where ind is an identifier of document which matches the query q, and
pos is a position of the s-term k-gram s[i] in that document.

• DP is the Delta pattern Δ[i] of the queries, i.e. the shifts between k-grams in
a query which result from the tokenization of the queries.

• IP is the conditional intersection pattern, which is a Q by Q table IP defined
as follows: IP[i, j] = ∅ if i = j or x[i] �= x[j]. Otherwise, IP[i, j] is the set of all
triples (ind, pos, pos′) (possibly empty) s.t. (ind, pos) ∈ DB(s[i]), (ind, pos′) ∈
DB(s[j]), and pos′ = pos + (Δ[i] − Δ[j]).

Understanding Leakage Components. Parameter N is the size of the meta-data,
and leaking such a bound is unavoidable. The equality pattern s, which leaks
repetitions in the s-term k-gram of different substring queries, and the s-term
support size SP, which leaks the total number of occurrences of this s-term
in the database, are both a consequence of the optimized search that singles
out the s-term in the query, which we adopt from the conjunctive SSE search
solution of [5]. RP is the result of the query and therefore no real leakage in the
context of SSE. Note also that the RP over-estimates the information E observes,
because E observes only a pointer to the encrypted document, and a pointer to
the encrypted tuple storing a unique (ind, pos) pair, but not the pair (ind, pos)
itself. DP reflects the fact that our protocols leak the relative shifts Δ between
k-grams which result from tokenization of the searched string. If tokenization
was canonical, and divided a substring into k-grams based only on the substring
length, the shifts Δ would reveal only the substring length. (Otherwise, see below
for how Δ’s can be hidden from E).

The IP component is the most subtle. It is a consequence of the fact that when
processing the q[i] query E computes the (pseudo)random function FG(x[i], ind,
pos + Δ[i]) for all (ind, pos) ∈ DB(s[i]), and hence can see collisions in it. Con-
sequently, if two queries q[i] and q[j] have the same x-gram then for any doc-
ument ind which contains the s-grams s[i] and s[j] in positions, respectively,
pos and pos′ = pos + (Δ[i] − Δ[j]), server E can observe a collision in FG

and triple (ind, pos, pos′) will be included in the IP leakage. Note, however,
that IP[i, j] defined above overstates this leakage, because E does not learn
the ind, posi, posj values themselves, but only establishes a link between two
encrypted tuples, the one containing (ind, pos) in TSet(s[i]) and the one contain-
ing (ind, pos′) in TSet(s[j]). To visualize the type of queries which will trigger

Rich Queries on Encrypted Data: Beyond Exact Matches 139

this leakage, take k = 3, q[i] = *MOTHER*, q[j] = *OTHER*, and let q[i]
and q[j] tokenize with a common x-gram, e.g. T (q[i]) = (MOT, (HER, 3)) and
T (q[j]) = (OTH, (HER, 2)). The IP[i, j] leakage will contain tuple (ind, pos, pos′)
for pos′ = pos + (Δ[i] − Δ[j]) = pos + 1 iff record DB[ind] contains 3-gram
s[i] = MOT at position pos and 3-gram s[j] = OTH at position pos + 1, i.e. iff
it contains substring MOTH.

Theorem 2. Protocol SUB-SSE-OXT (restricted to substrings which tokenize
into two k-grams) is adaptively LE -semantically-secure against malicious server
E, assuming the security of the PRF’s, the encryption scheme Enc, and the TSet
scheme, the random oracle model for hash functions, and the q-DDH assumption
on the group G of prime order.

The proof of Theorem 2 is presented in the full version [10].

A Implementation and Performance

Here we provide testing and performance information for our prototype imple-
mentation of the range and SUB-SSE-OXT protocols described in Sects. 3 and
4.1. The results confirm the scalability of our solutions to very large databases
and complex queries. The prototype is an extension of the OXT implementa-
tion of [4]. Both the description of the changes and performance information are
limited, to the extent possible, to the protocols introduced in this paper. An
extensive evaluation of the prototype is outside of the scope of this paper as it
would be highly dependent on previous work.

Prototype Summary. The three components of our system are the preproces-
sor, the server, and the client. The preprocessor generates the encrypted data-
base from the cleartext data. The client, which implements a representative set
of SQL commands, ‘encrypts’ end-user requests and ‘decrypts’ server responses.
The server uses the encrypted database to answer client SELECT-type queries
or expands the encrypted database on UPDATE, INSERT, and (even) DELETE
queries [4].

To support range queries (see Sect. 3) the Boolean-query OXT prototype
was augmented with generation of range-specific TSet’s at pre-processing, and
with range-specific authorization and range-cover computation at the client. Sup-
port for substring and wildcard queries required redesigning pre-processing to
take into account the k-gram position information, adding support for ‘k-gram’-
based record tokenization to the client, and changing the Search protocol to
support position-enhanced computation (see Sect. 4) and authorization. A few
other changes were necessary in order to continue handling UPDATE, INSERT
and DELETE queries. These extensions largely follow the update mechanics
outlined in [4], with the addition of a new PSet+ data structure.

To match the SQL standard, our implementation uses the LIKE operator
syntax for substring and wildcard queries: ‘ ’ (‘%’) represent single-character
(variable-length) wildcards and the query must match the complete field, i.e.,

140 S. Faber et al.

unless a query must match the prefix (suffix) of fields, it should begin (end) with
a ‘%’.

Experimental Platform. The experiments described in the remainder of this
section were run on two Dell PowerEdge R710 systems, each one of them equipped
with two Intel Xeon X5650 processors, 96 GB RAM (12x8 1066 MHz), an embed-
ded Broadcom 1 GB Ethernet with TOE and a PERC H700 RAID controller with
a 1 GB Non-Volatile Cache and 1 or 2 daisy-chained MD1200 disk controllers
each with 12 2 TB 7.2 k RPM Near-Line SAS hard drives configured for Raid 6
(19 TB and 38 TB total storage per machine).

An automated test harness, written by an independent evaluator [25], drives
the evaluation, including the set of queries and the dataset used in the experi-
ments.

Dataset. The synthetic dataset used in the reported experiments is a US census-
like table with twenty one columns of standard personal information, such as
name (first, last), address (street, city, state, zipcode), SSN, etc. The values in
each column are generated according to the distributions in the most recent US
census. In addition, the table has one XML column with at most 10000 charac-
ters, four text columns with varying average lengths (a total of at most 12300
characters or ≈ 2000 words), and a binary column (payload) with a maximum
size of 100 KB. Our system can perform structured queries on data in all but
the XML and binary columns. The size of (number of records in) the table is
a parameter of the dataset generator. We tested on a wide variety of database
sizes, but we focus our results on a table with 100 million records or 10 TBytes.

Cryptographic Algorithms. Our implementation uses AES-128 for all sym-
metric key operations (including data encryption), SHA-256 for hashing, and
NIST’s Elliptic Curve p224 for group operations.

Experimental Methodology. In the initial step, the encrypted database is
created from the cleartext data stored in a MariaDB (a variant of open-source
MySQL RDBMS) table. Then, a per-protocol collection of SQL queries, gener-
ated by the harness to test its features, is run against the MariaDB sever and
against our system. The queries are issued sequentially by the harness, which
also records the results and the execution times of each query. Finally, the har-
ness validates the test results by comparing the result sets from our system and
from the MariaDB server. Not only does this step validate the correctness of our
system, it also ensures our system meets our theoretical false positive threshold
over large, automatically generated, collections of queries.

Encrypted Index. We built a searchable index on all personal information
columns (twenty one) in the plaintext database but we only use a small subset
of these indexes for the following experiments. Note that we support substring
and wildcard queries simultaneously over a given column using a single shared
index. We built a substring-wildcard index for four columns (average length of
12 characters) and a range index for five columns of varying types (one 64 bit
integer, one date, one 32 bit integer, and one enum). Each substring-wildcard

Rich Queries on Encrypted Data: Beyond Exact Matches 141

index was constructed with a single k value of 4. Each range index has a granu-
larity of one. For the date type, this equates to a day. We support date queries
between 0-01-01 and 9999-12-31, and integer queries between 0 and integer max
(232 − 1 or 264 − 1).

On average each record generates 256.6 document-keyword pairs (tuples)
among all indexes. This equates to a total encrypted index for our largest data-
base of ≈ 20 TB. We back our XSet by an in memory Bloom filter with a false
positive rate of 2−12; this allows us to save unnecessary disk accesses and it does
not influence the false positive rate of the system.

Query Flexibility. While many queries can be formed by using substring
or wildcard queries independently, many queries are not computable. We can
greatly increase the number of available queries by combining the two query
types. This allows us to answer any query q s.t. all non-wildcard characters in q
are part of at least one k length substring containing no wildcards and q starts
and ends with a non-wildcard character. This may require a sufficiently large
k (a performance benefit) but limit the type of queries supported. To further
increase flexibility we can index fields with multiple values for k or with a dif-
ferent k for each data structure: kx for XSet and ks for TSet. The result is a
very flexible policy that we can support any query q that meets the following:
(1) there exists at least one consecutive ks length sequence of non-wildcards in
q, (2) all non-wildcard characters in q are part of at least one kx length sub-
string containing no wildcards, and (3) q starts and ends with a non-wildcard
character.

Performance Costs by Query Type. Our complex query types have both
increased storage overhead and query time costs as compared to the keyword
only implementation of [4]. In order to support substring and wildcard queries
on a column, we must store additional tuples: for a record of length l (for the
indexed field) we must store (l − k) + 3 tuples. Note that we must pay this
cost for each k we chose to create the index for. The choice of k also affects
query time performance. For a query q, it’s performance is linearly dependent
on the number of tokens generated by the tokenization T (q). A smaller k results
in a larger number of tokens. Specifically for subsequence queries there will be
�|q|/k�-1 xtokens2. k also impacts the number of matching documents returned
by the s-term. A larger k results in a higher entropy s-term. The choice of k is
a careful trade-off between efficiency and flexibility.

Range queries incur storage costs linear in their bit depth. Specifically,
log2(max value) tuples are stored for a record for each range field. Notably
for date fields this value is 22. In addition we implemented the canonical cover
from Sect. 3, which results in up to 2 ∗ log2(max value) disjunctions.

Phrase queries incur storage costs linear in the total number of words in a
column. Specifically for every record with n free-text words, the index stores n
tuples. Although phrase queries and free-text queries can be supported via the
2 Wildcard queries pay a similar overhead, related to the size of each contiguous sub-

string within the query.

142 S. Faber et al.

same index, we have to pay the marginally higher price of the phrase index in
which we must store even repeated words.

Encrypted Search Performance. We illustrate the performance of our system
using the latency (i.e., total time from query issuing to completion) of a large
number of representative SELECT queries. The independent evaluator selected
a representative set of queries to test the correctness and performance of the
range, substring and wildcard queries (phrase queries were not implemented).
The two leftmost columns in Table 1 show how many unique queries were selected
for each query type. The third, fourth and fifth columns characterize the 95 %
fastest queries of each type. Finally, the rightmost column shows the percentage
of queries that complete in less than two minutes.

All queries follow the pattern SELECT id FROM CensusTable WHERE ...,
with each query having a specific WHERE clause. Range-type queries use the
BETWEEN operator to implement two-sided comparison on numerical fields as well
as date and enum fields. Specific queries were chosen to assess the performance
effect of differing result set sizes and range covers. In particular, in order to assess
the effect of cover size, queries with moderate result sets (of size under 10,000)
were chosen while the size of cover sets range from a handful to several dozens.
The results show relatively homogeneous latencies (all under 0.8 s) in spite of
the large variations in cover size, highlighting the moderate effect of cover sizes.

Our instantiation of SUB-SSE-OXT includes extensions for supporting sub-
string and wildcard searches simultaneously. However, to evaluate the effects of
each specific extension we measure them individually. Both query types use the
LIKE operator in the WHERE clause.

Substring queries use the variable-length wildcard ‘%’ at the beginning, at
the end, or at both ends of the LIKE operand, as in WHERE city LIKE ‘%ttle
Falls%’. Wildcard queries use the single-character wildcard (‘ ’) anywhere in
the LIKE operand, provided the query criteria dictated by k is still met.

In addition, we noticed that the choice of s-gram dominates the latency of the
substring queries. Our analysis shows that low performing queries can often be
tied to high-frequency s-terms (e.g., “ing” or “gton”), which are associated with
large Tsets. By default, the current implementation uses the first k characters in
the pattern string as s-gram. Thus, implementing a tokenization strategy guided
by the text statistics (which we leave for future work) can significantly reduce
query latency for many of the slow performers. To estimate the potential benefits
of such a strategy, we added the STARTAT ‘n’ option to the LIKE ‘pattern’
operator, where ‘n’ is the starting position of the s-gram. Experiments using
the ‘%gton Colle%’ pattern show latency improvements of up to 32 times when
the s-gram starts at the third or fourth character in the pattern string.

Comparison to Cleartext Search. Here we include the most relevant aspects
of the performance comparison between our prototype and MariaDB. In the
case of the 100 million record database, for ≈ 45% of the range queries, the two
systems have very similar performance. For the remaining 55%, our system is
increasingly (up to 500 times!) faster, admittedly due to MariaDB’s lack of sup-
port for indexed substring search. The large variations in MariaDB performance

Rich Queries on Encrypted Data: Beyond Exact Matches 143

Table 1. Latency (in secs) for 10TByte DB, 100 M records, 25.6 billion record-keyword
pairs

Query type # of queries Fastest 95 % % ≤ 120 s

Avg Min Max

Range 197 .37 .19 .61 100

Substring 939 40 0.22 166 93

Wildcard 511 31.22 6.7 224 93

seem to arise from its reliance on data (and index) caching, which is hindered by
large DBs. In contrast, our system issues between log2 s and 2 log2 s disk accesses
in parallel (where s is the size of the cover). On smaller census databases (with
fewer records) that fit in RAM, MariaDB outperforms our system, sometimes
by more than one order of magnitude, although in this case all query latencies
(ours and MariaDB’s) are under a second. For substring and wildcard queries
and the largest, 100 million records database, our system outperforms MariaDB
by such a large factor largely because MariaDB does not use any index for these
queries. Instead, it scans the full database to resolve queries involving the LIKE
operator.

References

1. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

3. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

4. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very large databases: data structures and
implementation. In: Symposium on Network and Distributed Systems Security
(NDSS 2014) (2014)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

6. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

7. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010)

144 S. Faber et al.

8. Chase, M., Shen, E.: Pattern matching encryption. Cryptology ePrint Archive,
Report 2014/638 (2014). http://eprint.iacr.org/

9. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., Vimercati, S. (eds.) ACM CCS 06: 13th Conference on Computer and Com-
munications Security, pp. 79–88. ACM Press, Alexandria (2006)

10. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M.C., Steiner, M.: Rich
queries on encrypted data: Beyond exact matches. Cryptology ePrint Archive
(2015). http://eprint.iacr.org/2015

11. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
http://eprint.iacr.org/

12. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric
private information retrieval. In: Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pp. 875–888. ACM (2013)

13. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013)

14. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12: 19th Conference on
Computer and Communications Security, pp. 965–976. ACM Press, Raleigh (2012)

15. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryp-
tosystems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pp. 943–954. ACM (2013)

16. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012)

17. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010)

18. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: 35th IEEE Symposium on Security and Privacy, pp. 639–654.
IEEE Computer Society Press (2014)

19. Pappas, V., Vo, B., Krell, F., Choi, S., Kolesnikov, V., Keromytis, A., Malkin, T.:
Blind seer: a scalable private DBMS. In: 35th IEEE Symposium on Security and
Privacy, pp. 359–374. IEEE Computer Society Press (2014)

20. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP 2011). ACM, October
2011

21. Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Secure anonymous database
search. In: Proceedings of the 2009 ACM Workshop on Cloud computing secu-
rity, pp. 115–126. ACM (2009)

22. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007). http://eprint.iacr.org/

23. Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: IEEE Symposium on Security and Privacy, SP 2007,
pp. 350–364. IEEE (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/2015
http://eprint.iacr.org/
http://eprint.iacr.org/

Rich Queries on Encrypted Data: Beyond Exact Matches 145

24. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Com-
puter Society Press, Oakland, May 2000

25. Varia, M., Price, B., Hwang, N., Hamlin, A., Herzog, J., Poland, J., Reschly, M.,
Yakoubov, S., Cunningham, R.K.: Automated assesment of secure search systems.
Operating Syst. Rev. 49(1), 22–30 (2015)

Extended Proxy-Assisted Approach: Achieving
Revocable Fine-Grained Encryption

of Cloud Data

Yanjiang Yang1(B), Joseph K. Liu2, Kaitai Liang3,
Kim-Kwang Raymond Choo4, and Jianying Zhou1

1 Institute for Infocomm Research, Singapore, Singapore
{yyang,jyzhou}@i2r.a-star.edu.sg

2 Faculty of Information Technology, Monash University, Melbourne, Australia
joseph.liu@monash.edu

3 Department of Computer Science, Aalto University, Greater Helsinki, Finland
kaitai.liang@aalto.fi

4 University of South Australia, Adelaide, Australia
raymond.choo@fulbrightmail.org

Abstract. Attribute-based encryption has the potential to be deployed
in a cloud computing environment to provide scalable and fine-grained
data sharing. However, user revocation within ABE deployment remains
a challenging issue to overcome, particularly when there is a large num-
ber of users. In this work, we introduce an extended proxy-assisted app-
roach, which weakens the trust required of the cloud server. Based on an
all-or-nothing principle, our approach is designed to discourage a cloud
server from colluding with a third party to hinder the user revocation
functionality. We demonstrate the utility of our approach by presenting a
construction of the proposed approach, designed to provide efficient cloud
data sharing and user revocation. A prototype was then implemented to
demonstrate the practicality of our proposed construction.

1 Introduction

Cloud storage services (e.g. Dropbox, Microsoft’s Azure storage, and Amazon’s
S3) enable users to upload and store their data remotely in the cloud environ-
ment as well as accessing and downloading the remotely stored data in real-
time using a web browser or a mobile application [24]. To ensure the security
and privacy of user data [9], particularly against an untrusted cloud service
provider, one could encrypt the data prior to uploading and storing the data
in the cloud [8,10,11,15,16,18,35]. In practice, data encryption often serves as
an access control mechanism in cloud data sharing, where end users’ decryption
capabilities are defined based on a specified access control policy. For instance,
a scientific research team may choose to share their research data and findings
(that are stored in a cloud server) in real-time with their team workers [19],
based on some pre-determined attributes or roles. To provide the scalability and
flexibility of real-time data sharing, a fine-grained access control is required.
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 146–166, 2015.
DOI: 10.1007/978-3-319-24177-7 8

An Extended Proxy-Assisted User Revocation 147

Attribute-based encryption (ABE) [4,13,14,20,28] has been identified as a suit-
able solution to enforce fine-grained decryption rights.

ABE can be broadly categorized into key policy ABE (KP-ABE) and cipher-
text policy ABE (CP-ABE). KP-ABE allows data to be encrypted with a set of
attributes, and each decryption key is associated with an access policy (defined in
terms of attributes); while CP-ABE is complementary – data are encrypted and
tagged with the pre-determined access policy, and a decryption key is associated
with the set of attributes. In either type, a ciphertext can be decrypted using
the corresponding decryption key only if the attributes satisfy the access policy.
ABE has been shown to be an effective and scalable access control mechanism for
encrypted data, but one key limiting factor is user revocation in an environment
where there are many users (e.g. in a cloud storage environment).

There are several possible approaches to address this challenge. For example,
one could implement an authentication based revocation mechanism in a con-
ventional access control system. However, such an approach requires the cloud
server to be fully trusted. This approach also imposes additional computational
requirements on both the users and the cloud server – the users are required to
possess another authentication secret and the cloud server needs to deal with the
additional authentication. Another potential approach is the key-update based
revocation, such as those proposed in [17,29,34], where key materials will be
updated to exclude a revoked user. This approach, however, suffers from limited
scalability as all data must be re-encrypted, and all non-revoked legitimate user
keys need to be either updated or re-distributed. This is prohibitive in a data-
intensive and high user volume environment, such as cloud storage. Although
in [17,29,34] the majority of data re-encryption workload is often performed by
the cloud server, it remains an attractive option to reduce the computational
requirements in a real-world implementation.

Several researchers have introduced an alternative approach for user revo-
cation by introducing an “expiry time” attribute such that a decryption key
is effective only for a period of time [4,13]. The shortcoming of this method
is that it is not possible to do real-time user revocation. Ostrovsky et al. [23]
employ negative constrains in access policy, such that a revocation of certain
attributes amounts to negating the attributes. The system does not scale well in
the revoking of individual users, because each encryption requires the informa-
tion of all revoked users and each of which is treated as a distinctive attribute.
Attrapadung et al. [1] aim to solve the revocation problem by incorporating
the broadcast encryption revocation mechanism [22] into ABE. The resulting
scheme, however, generates the public system key in size proportional to the
total number of users. Consequently, such a scheme has limited scalability. The
scheme introduced in [21] attempts to leverage revocation and traceability to
ABE in real-world applications, such as Pay-TV, where a decryption key is con-
tained in a black-box. The scheme is, unfortunately, not practical as the size
of each of public key, private key and ciphertext is O(n), where n is the total
number of users.

148 Y. Yang et al.

More recently, proxy-assisted user revocation was introduced in [32,33,35]
as a potential solution. In this approach, a cloud server acts as a proxy, and
each user’s decryption capability is split and represented by two parts, namely:
the first part is held by the cloud server (i.e. cloud-side key), and the other is
held by the user (i.e. user-side key). A decryption requires a partial decryption
using the cloud-side key by the cloud server, and a final/full decryption using the
user-side key by the user. In user revocation, the cloud server will erase the key
associated with the user to be revoked. This method is particularly promising, as
it supports immediate revocation, without compromising efficiency as it does not
require data re-encryption or key update. The idea of recurring to a third party
for immediate user revocation could be traced back to mediated cryptography,
where a mediator is introduced for the purpose of user revocation (e.g. [3]). The
difference between proxy-assisted user revocation (e.g. [32,33,35]) and mediated
cryptography will be clarified in Sect. 2.

However, we observe that both proxy-assisted and mediated cryptography
approaches require the cloud server to be trusted, which as pointed out in [5]
that ‘there are legitimate concerns about cloud service providers being com-
pelled to hand over user data that reside in the cloud to government agencies
without the user’s knowledge or consent due to territorial jurisdiction by a for-
eign government’. In the aftermath of the revelations by Edward Snowden that
the National Security Agency has been conducting wide-scale government sur-
veillance, including those targeting cloud users - see http://masssurveillance.
info/, the requirement of a honest cloud server (in this context, the cloud server
is assumed not to disclose users’ cloud-side keys) may limit the adoption of the
proxy-assisted approach or the mediated cryptography approach. Key disclosure
could also be due to unscrupulous employees of the cloud service provider or an
attacker who has successfully compromised the cloud system.

Our Contributions. We are, thus, motivated to address this problem; extend-
ing the proxy/mediator assisted user revocation approach (based on an ‘all-or-
nothing’ principle) to mitigate the risk due to a dishonest cloud server. More
specifically, the private key of the cloud server is also required for the cloud-
side partial decryption. Consequently, in order for the cloud server to collude
with another user to disclose a user’s cloud-side key, the cloud server would
also have to reveal its private key in order to perform a partial decryption. We
coin this approach as an extended proxy-assisted user revocation. We regard the
contributions of this work to be three-fold: (1) We formulate the definition and
threat model for cloud data encryption using the extended proxy-assisted user
revocation; (2) We propose a concrete construction instantiating our extended
proxy-assisted approach, which demonstrates the utility of this approach; and
(3) We implement a prototype of our construction, which demonstrates the prac-
ticality of our proposed construction.

http://masssurveillance.info/
http://masssurveillance.info/

An Extended Proxy-Assisted User Revocation 149

2 Related Work

Cloud Data Encryption with ABE. Over the last decade, a large num-
ber of cloud data encryption schemes have been proposed in the literature. Of
particular relevance are those that utilize ABE. As an one-to-many encryption
scheme, ABE is required to provide user revocation. However, the various pro-
posed attribute revocation mechanisms for ABE, such as “expiry time” attributes
and negative attributes [1,4,13,21,23], are generally not suitable for cloud data
encryption deployment as discussed below and in the preceding section.

Yu et al. [34] suggested adopting KP-ABE to achieve fine-grained data shar-
ing. To support user revocation, they proposed using proxy re-encryption (PRE)
[2] in the updating of user’s decryption key. In this approach, the bulk of the com-
putationally expensive operations (e.g. re-generation of encrypted cloud data due
to user revocation) are performed by the cloud server. Although a cloud generally
has significantly more computational resources, each user’s quota is cost-based.
Similar limitation is observed in the scheme proposed by Wang et al. [29]. Sahai
et al. [26] proposed an attribute revocable CP-ABE scheme, using ciphertext
delegation and the piecewise property of private keys. In particular, the system
proceeds in epochs, and in each epoch, the attribute authority generates a set
of update keys (as the other piece of each private key) according to the revoca-
tion list. All the ciphertexts are then re-encrypted with a new access policy (the
principal access policy remains unchanged, but the extra access policy changes
in each epoch). A similar attribute revocation method has also been explored in
the multi-authority setting [30,31], where users’ attributes are issued by multi-
ple independent attribute authorities. Similar to other ABE schemes with built-
in attribute revocation support (such as expiry time and negative attributes),
these schemes face the challenge of transforming attribute revocation into effi-
cient revocation for individual users. In addition, the overheads introduced by
these schemes in the re-generation of encrypted data should be addressed. In our
extended proxy-assisted approach, however, the overhead imposed upon both the
cloud server and users due to user revocation is relatively less.

Mediated Cryptography. Boneh et al. proposed “mediated RSA” to split
the private key of RSA into two shares; one share is delegated to an online
“mediator” and the other is given to the user [3]. As RSA decryption and signing
require the collaboration of both parties, the user’s cryptographic capabilities are
immediately revoked if the mediator does not cooperate. Recently, Chen et al. [7]
presented a mediated CP-ABE scheme, where the mediator’s key is issued over
a set of attributes. The scheme in [12] can also be viewed as mediated ABE,
although its purpose is to outsource the costly ABE decryption to the mediator.
This does now result in immediate revocation. A common issue associated with
existing mediated cryptographic schemes is key escrow. In other words, there
is a party responsible for generating the key shares such that the party knows
both shares. Similar to our proposed extended proxy-assisted approach, mediated
cryptography is intended to provide immediate user revocation (we remark that
mediator and proxy are essentially the same concept). However, a key difference

150 Y. Yang et al.

between the (extended) proxy-assisted approach and the mediated cryptography
is that the former approach does not suffer from the key escrow problem, since
the shares are generated by different parties and no single party knows both
shares. This is a particularly attractive option in the current privacy conscious
landscape.

Unlike other mediated schemes, the mediated certificateless encryption [6]
avoids key escrow by employing a combination of identity-based encryption
and conventional public key encryption; the private key corresponding to the
identity-based encryption held by the mediator is generated by a key generation
authority, and the private key of public key encryption can be generated by the
user. Unfortunately, such an approach cannot be straightforwardly used in the
(extended) proxy-assisted approach by simply replacing identity based encryp-
tion with ABE. This is due to the fact that using ABE for data encryption,
the encryptor does not have any particular recipients. Both the mediated certifi-
cateless encryption (as well as other mediated cryptographic schemes) and the
proxy-assisted approach (such as those in [32,35]) require the mediator/proxy to
be honest in maintaining user’s key shares. As mentioned earlier, this may not
be a realistic assumption to privacy conscious (or paranoid) users. Our extended
proxy-assisted approach exactly is designed to address this issue.

3 Proposed Revocable Cloud Data Encryption Model

3.1 System Overview

A cloud storage system allows an owner to remotely store the data at a cloud
storage server, and the data can be accessed by a group of users authorized by
the data owner. As an example, the data owner could be an organization and
the authorized users are the organization employees. Without fully trusting the
cloud server, the data owner encrypts the data to ensure the security and privacy
of the data. Here, data encryption serves as a measure of fine-grained access
control, and users have different decryption capabilities based on the specified
need-to-know basis. In particular, a user’s decryption capability is delineated by
a set of attributes according to the user’s functional role. Each data encryption
is associated with an access control policy (specified with respect to attributes),
such that a user can successfully decipher the encrypted record, if, and only
if, the user’s attributes satisfy the access policy. As the system is in a multi-
user setting, user revocation is a critical requirement (e.g. when a user leaves
the organization or is no longer involved in the project). User revocation would
allow the data owner to revoke a user’s ability to decipher the data.

3.2 Notations

We use the definitions of “attribute” and “access structure” from [4,13].

Attributes. Let Λ denotes the dictionary of descriptive attributes used in the
system. Each authorized cloud storage user, u, is assigned with a set of attributes

An Extended Proxy-Assisted User Revocation 151

Au ⊆ Λ, which defines the user’s functional role. The attribute assignment
procedure is application specific and is beyond the scope of this paper.

Access Policy. In the system, an access control policy is expressed by an access
tree, where each leaf node represents an attribute and we use att(�) to denote the
attribute associated with leaf node �. Each non-leaf node of the tree represents
a threshold gate, described by its children and a threshold value. Let numn be
the number of children of a non-leaf node n, and tn be its threshold value, where
1 ≤ tn ≤ numn. When tn = 1, the threshold gate is an OR gate, and when
tn = numn, it is an AND gate. The parent of a node n in the tree is denoted
by parent(n). The tree also defines an ordering among the children of a node –
i.e. the child nodes of a node n are numbered from 1 to numn. The function
index(n) calculates the unique number associated with a node n. The access tree
can express any access policy in the form of monotonic formula.

Satisfying an Access Tree. Let T be an access tree with root rt. The subtree of
T rooted at node n is denoted as Tn; hence, T = Trt. When a set A of attributes
satisfy the access tree Tn, it is denoted as Tn(A) = 1. Tn(A) is computed in a
recursive way as follows: if n is a non-leaf node, then compute Tn′(A) for all
child nodes n′; Tn(A) returns 1 if, and only if, at least tn children return 1; if n
is a leaf node, then Tn(A) returns 1 if and only if att(n) ∈ A.

3.3 Extended Proxy-Assisted User Revocation Approach

To strengthen key revocation and to reduce the possibility of a dishonest cloud
server, our approach requires the cloud server to use its own private key in the
partial decryption phase. In other words, unless the cloud server is willing to
disclose its private key, the exposure of a user’s cloud-side key (referred to as
proxy key in this paper) to a third party (e.g. a foreign government agency)
does not help in deciphering the encrypted cloud data. As our approach is an
extension of the proxy-assisted approach, it inherits the advanced features of
the latter, such as immediate user revocation, small amount of overhead for
revocation, light computation cost for user side, and key escrow-free.

3.4 Formulation of Revocable Cloud Data Encryption

A revocable cloud data encryption system involves three types of entities, namely:
data owner (denoted as DO), a set of users, and a cloud server (denoted as CS).
Each user and CS have their respective public/private key pairs. To authorize a
user, DO generates a proxy key based on the user’s attributes, the user’s public
key, and CS’s public key; the proxy key is given to and held by CS. Therefore, CS
maintains a Proxy Key list, with each entry containing a user’s identity and the
corresponding proxy key. When a user requests to retrieve a data record from
the cloud, CS executes a proxy decryption operation over the data with the user’s
proxy key and its own private key to generate an intermediate value. The value
is then returned to the user, who is able to obtain the underlying plain data by

152 Y. Yang et al.

running a user decryption operation with his/her private key. Specifically, the
system consists of the following algorithms.

Definition 1. Let Λ denote the universe of attributes. A revocable cloud data
encryption system (RCDE) is defined as a collection of the following algorithms.

Setup(1κ) → (params,msk): Taking as input a security parameter 1κ, DO
executes the algorithm to set up public parameters, params, and a master
secret key, msk. Below, we assume that params is implicit in the input of
the rest algorithms unless stated otherwise.

UKGen(u) → (pku, sku): The user key generation algorithm takes as input a
user identity, u, and outputs a pair of public/private keys, (pku, sku), for u.
Note that (pku, sku) is a pair for a standard public key cryptosystem.
Each system entity (including users and CS) runs this algorithm to generate
a key pair. As (pkCS, skCS) – the key pair of CS –is a standard public key
cryptosystem, we assume that (pkCS, skCS) is for long term use, and CS does
not expose the private key, skCS.

PxKGen(msk, pkCS , pku,Au) → PxKu: The proxy key generation algorithm
takes as input msk, the server’s public key, pkCS, a user u’s public key, pku,
and the user’s attributes, Au ⊂ Λ, and outputs a proxy key, PxKu, for u.
DO runs this algorithm to authorize a user based on the user’s attributes.
The proxy key, PxKu, will be given to CS who adds a new entry in its Proxy
Key list LPxK – i.e. LPxK = LPxK ∪ {u, PxKu}.

Encrypt(m, T) → c: The encryption algorithm takes as input a message, m,
and an access tree, T , specifying an access policy, and outputs a ciphertext,
c, under T .
DO runs this algorithm to encrypt data to be uploaded to CS.

PxDec(skCS , PxKu, c) → v: The proxy decryption algorithm takes as input
CS’s private key, skCS, a user’s proxy key, PxKu, and a ciphertext, c, and
outputs an intermediate value, v.
The CS runs this algorithm to help a user, u, partially decrypt an encrypted
record requested by the user with the corresponding proxy key.

UDec(sku, v) → m: The user decryption algorithm takes as input a user private
key, sku, and an intermediate value, v, and outputs a message, m.
An authorized user runs this algorithm to obtain the data with the interme-
diate value returned by CS and his/her private key.

Revoke(u,LPxK) → L′
PxK : Taking as input a user identity, u, and the Proxy

Key list, LPxK , the algorithm revokes u’s decryption capability by updating
and outputting an updated Proxy Key list, L′

PxK .

Correctness. Correctness of the system stipulates that UDec(sku, PxDec(skCS,
PxKu, c)) = m if T (A) = 1, for all (pku, sku) ← UKGen(u), PxKu ← PxKGen
(msk, pkCS, pku,A) and c ← Encrypt(m, T), where (params, msk) ← Setup(1κ).

Remark. The separation of the algorithms, UKGen and PxKGen, highlights the
distinction between our key-escrow-free approach and the mediated cryptogra-
phy with key escrow. For the latter, the two algorithms are combined into one,
which is executed by a single party (e.g., DO in our case).

An Extended Proxy-Assisted User Revocation 153

Security Requirements. We define the security requirements for our system.

Data Privacy Against Cloud Server. The primary purpose of data encryption is
to protect data privacy against CS. It guarantees that CS cannot learn any useful
information about the data in its storage system even with the knowledge of all
users’ proxy keys (as well as its own private key).

Definition 2. [Data Privacy Against Cloud Server] A revocable cloud data
encryption system (RCDE) achieves data privacy against the cloud server if for
any probabilistic polynomial time (PPT) adversary, the probability of the follow-
ing game returns 1 is 1/2 + ε(κ), where ε(.) is a negligible function with respect
to the security parameter, κ.

Setup. The game challenger runs the Setup algorithm, and returns params to
the adversary.

Phase 1. The adversary generates its own pair of public/private keys, and gives
the public key to the challenger. It then makes repeated queries to the proxy key
generation oracle by querying sets of attributes A1, ...,Aq1 . For each query i, (1)
the challenger runs the UKGen algorithm to get a user public/private key pair;
(2) with the adversary’s public key, the user public key, and the attribute set Ai,
the challenger runs the PxKGen algorithm to get a proxy key; (3) the challenger
returns the proxy key along with the user public key to the adversary.

Challenge. The adversary submits two equal-length messages, m0 and m1, along
with a challenge access tree, T ∗. The challenger flips a random coin, b, runs
the Encrypt algorithm on mb and T ∗, and returns the ciphertext, c∗, to the
adversary.

Phase 2. The adversary continues to make proxy key generation queries, and
the challenger responds as in Phase 1.

Guess. The adversary outputs a guess, b′, on b. If b′ = b, then the challenger
returns 1; otherwise returns 0.

Data Privacy Against Users. From the perspective of access control over cloud
data, a user should not be able to decrypt data beyond the user’s authorized
access rights issued by DO. In particular, a collusion of a set of malicious users
will not afford these users’ decryption capabilities beyond those authorized.

Definition 3. [Data Privacy against Users] A revocable cloud data encryption
system (RCDE) achieves data privacy against users if for any PPT adversary,
the probability of the following game returns 1 is 1/2 + ε(κ).

Setup. The challenger runs the Setup algorithm, and returns params to the
adversary.

Phase 1. The adversary makes repeated queries to the proxy key generation ora-
cle (PxKGen) by issuing sets of attributes, A1, ...,Aq1 . To respond the queries,
the challenger first generates a public/private key pair as the CS’s key by execut-
ing the UKGen algorithm, and gives the key pair to the adversary; then for each

154 Y. Yang et al.

query i, the challenger (1) first generates a user public/private key by executing
the UKGen algorithm and gives the key pair to the adversary; (2) then generates
a proxy key by executing the PxKGen algorithm upon the CS’s public key, and
the user public key and Ai, and returns the resulting proxy key to the adversary.

Challenge. The adversary submits two equal-length messages, m0 and m1, along
with an access tree, T ∗, subjecting to a restriction that none of the A’s satisfies
T ∗. The challenger flips a random coin, b, runs the Encrypt algorithm on mb

and T ∗, and returns the ciphertext, c∗, to the adversary.

Phase 2. The adversary continues to make proxy key generation queries by
submitting attribute sets as in Phase 1, with the restriction that none of the
attribute sets satisfies T ∗.

Guess. The adversary outputs a guess, b′, on b. If b′ = b, then the challenger
returns 1; otherwise returns 0.

Remark. This definition depicts a stronger adversarial capability as it allows users
to gain access to the cloud server’s key and the proxy keys.

User Revocation Support. The extended proxy-assisted user revocation approach
guarantees that without knowing CS’s private key, any user cannot decipher
encrypted data even given the corresponding proxy key (in addition to the user
key pair).

Definition 4. [User Revocation Support] A revocable cloud data encryption sys-
tem (RCDE) supports user revocation if for any PPT adversary, the probability
of the following game returns 1 is 1/2 + ε(κ).

Setup. The challenger runs the Setup algorithm, and returns params to the
adversary.

Phase 1. The challenger generates a public/private key pair as CS’s key by
executing the UKGen algorithm, and gives the public key to the adversary. The
adversary makes repeated queries to the proxy key generation oracle by issuing a
set of attributes A1, ...,Aq1 . For each query i, the challenger (1) generates a user
public/private key pair and gives the key pair to the adversary; (2) generates a
proxy key by executing the PxKGen algorithm upon the CS’s public key, the user
public key and Ai, and returns the resulting proxy key to the adversary.

Challenge. The adversary submits two equal-length messages, m0 and m1, along
with an access tree, T ∗. The challenger flips a random coin, b, runs the Encrypt
algorithm on mb and T ∗, and returns the ciphertext, c∗, to the adversary.

Phase 2. The adversary continues to make proxy key generation queries, as in
Phase 1.

Guess. The adversary outputs a guess, b′, on b. If b′ = b, the challenger returns
1; otherwise returns 0.

An Extended Proxy-Assisted User Revocation 155

4 Our Construction

In this section, we present a concrete construction of our novel extended proxy-
assisted user revocation approach described in Sect. 3. The construction is
adapted from the CP-ABE scheme in [4], and it achieves the same expressiveness
for access policy as in [4,13]. We state that it is not difficult to extend the fol-
lowing construction idea to other ABE schemes with more expressive attributes,
such as the scheme in [28].

4.1 Construction Details

The main challenge in our construction is the generation of a user’s proxy key
by seamlessly incorporating the cloud server’s public key and the user’s public
key into the decryption key generation algorithm of the CP-ABE scheme in [4].
Let s ∈R S denotes an element s randomly chosen from a set S. The details of
our construction are described as follow.

Setup(1κ): On input a security parameter 1κ, the algorithm: determines a
bilinear map, e : G0 × G0 → GT , where G0 and GT are cyclic groups of
κ-bit prime order p. Selects g, which is a generator of G0. Selects a cryp-
tographic hash function, H : {0, 1}∗ → G0. Picks α, β ∈R Zp, and sets
params = (e,G0, g, h = gβ ,Gα = e(g, g)α) and msk = (α, β).

UKGen(u): On input a user identity u, the algorithm chooses xu ∈R Zp, and
sets (pku = gxu , sku = xu). It can be seen that (pku, sku) is a standard
ElGamal type key pair. CS also uses this algorithm to generate a key pair,
(pkCS = gxCS , skCS = xCS).

PxKGen(msk, pkCS, pku,Au): On input msk = (α, β), pkCS = gxCS , pku = gxu

and Au, the algorithm chooses r1, r2, ri ∈R Zp,∀i ∈ Au, and sets PxKu =
(k = (pkr1

CSpkα
ugr2)

1
β , k′ = gr1 and ∀i ∈ Au : {ki1 = gr2H(i)ri , ki2 = gri}).

Encrypt(m, T): Taking as input a message, m, and T , the algorithm works
as follows: Firstly, it selects a polynomial, qn, for each node, n, (including
the leaf nodes) in T . These polynomials are chosen in a top-down manner
starting from the root node, rt. For each node n, set the degree dn of the
polynomial qn to be dn = tn − 1, where tn is the threshold value of node n.
Starting with the root node, rt, the algorithm chooses an s ∈R Zp, and sets
qrt(0) = s. It next selects drt other random points to define qrt completely.
For any other node n, it sets qn(0) = qparent(n)(index(n)), and chooses dn

other points to define qn. Let L be the set of leaf nodes in T . The algorithm
sets the ciphertext, c, as c = (T , C = m · Gs

α, C ′ = hs, C ′′ = gs,∀� ∈ L :
{C�1 = gql(0), C�2 = H(att(�))ql(0)}).

PxDec(skCS, PxKu, c): On input skCS = xCS, and PxKu = (k, k′,∀i ∈ Au :
{ki1, ki2}) associating with a set of attributes, Au, and a ciphertext, c =
(T , C, C ′, C ′′,∀� ∈ L : {C�1, C�2}), the algorithm outputs an intermedi-
ate value, v if T (Au) = 1, and ⊥ otherwise. Specifically, the algorithm is
recursive. We first define an algorithm, DecNdn(PxKu, c), on a node, n,
of T . If node, n, is a leaf node, we let z = att(n) and define as follows:

156 Y. Yang et al.

z /∈ Au, DecNdn(PxKu, c) = ⊥; otherwise DecNdn(PxKu, c) = Fn, where
Fn = e(kz1,Cn1)

e(kz2,Cn2)
= e(gr2H(z)rz ,gqn(0))

e(grz ,H(z)qn(0))
= e(g, g)r2.qn(0).

We now consider the recursive case when n is a non-leaf node. The algorithm,
DecNdn(PxKu, c), then works as follows. For each child node ch of n, it calls
DecNdch(PxKu, c), and stores the output as Fch. Let Sn be an arbitrary tn-
sized set of child nodes, ch, such that Fch �= ⊥. If such a set does not exist,
then the node is not satisfied and DecNdn(PxKu, c) = Fn = ⊥. Otherwise,
we let the Lagrange coefficient, �i,S for i ∈ Zp, and a set S of elements in
Zp be �i,S(x) =

∏
j∈S,j �=i

x−j
i−j . We next compute

Fn =
∏

ch∈Sn

F
�i,S′

n
(0)

ch , where
i=index(ch),

S′
n={index(ch):ch∈Sn}

=
∏

ch∈Sn

(e(g, g)r2.qch(0))
�i,S′

n
(0)

=
∏

ch∈Sn

(e(g, g)r2.qparent(ch)(index(ch)))
�i,S′

n
(0)

=
∏

ch∈Sn

(e(g, g)r2.qn(i))
�i,S′

n
(0)

= e(g, g)r2.qn(0)

In this way, DecNdrt(PxKu, c) for the root node rt can be computed if
Trt(Au) = 1, where DecNdrt(PxKu, c) = e(g, g)r2.qrt(0) = e(g, g)r2.s = Frt.
Next, the proxy decryption algorithm computes

e(k,C ′)
e(k′, C ′′)xCSFrt

=
e((pkr1

CSpkα
ugr2)

1
β , hs)

e(gr1 , gs)xCSe(g, g)r2.s
= e(pku, g)s.α.

Finally, it sets v = (C = m · Gs
α, e(pku, g)s.α).

UDec(sku, v): On input a user private key, sku = xu, and an intermediate
value, v = (C = m·Gs

α, e(pku, g)s.α), the user decryption algorithm computes
m·Gs

α

(e(pku,g)s.α)x
−1
u

= m.

Revoke(u,LPxK): On input a user identity, u, and the Proxy Key list, LPxK ,
the user revoking algorithm deletes the entry corresponding to u from the
list – i.e. L′

PxK = LPxK \{u, PxKu}. In a real world application, an interface
should be provided to DO for DO to perform the updating in real-time.

4.2 Functional Analysis – Features

Our construction enjoys a number of features as described below.
Efficient and Immediate User Revocation. The only overhead incurred due

to user revocation is the deletion of the revoked user’s proxy key from the cloud
server. Once the proxy key of a user is eliminated, the cloud server is no longer
able to perform the proxy decryption for the revoked user.

Mitigation against Cloud-User Collusion. The primary purpose of the
extended proxy-assisted user revocation is to reduce the likelihood of proxy keys
disclosure (e.g. the cloud server may collude with some revoked users to reveal
their proxy keys). In our construction, the leakage of a proxy key does not lead
to the success of proxy decryption.

An Extended Proxy-Assisted User Revocation 157

We note that there exists another way of colluding to invalidate user revoca-
tion. More specifically, the cloud server keeps a copy of a revoked user’s proxy
key before it is deleted by the data owner, and then continues to service the
revoked user’s data access with the retained proxy key. Unfortunately, such col-
lusion cannot be prevented by any proxy/mediator based system. However, it is
not difficult to detect collusion of this nature in practice (compared to the proxy
keys disclosure collusion), as it requires ongoing engagement of the cloud server.

Free of Key Escrow. Each user generates its own key pair, and the data owner
generating each authorized user’s proxy key does not need to know the user’s
private key.

Cloud Transparency. Although the cloud server’s key is involved in the autho-
rized users’ proxy keys, encrypting data only needs the access policy associated
with the data to be encrypted, without the need to involve the cloud server. In
other words, data encryption works as a regular CP-ABE encryption algorithm.

Minimal User Side Overhead. The bit-length of an intermediate value, v,
output by the algorithm, PxDec, is 2|GT |, independent of the complexity of access
policy. In addition, the main computation overhead of the algorithm, UDec,
includes just a single exponentiation in GT (unlike G0, GT is a regular finite
field) without any bilinear pairing operation. Thus, the complexity overhead at
the user side is relatively low in terms of both communication and computation.

No User Authentication. The cloud server is not require to check the authen-
ticity of a requesting user, as the intermediate value output by the proxy decryp-
tion algorithm can only be decrypted by the user being impersonated (i.e. the
impersonator will not be able to decrypt the intermediate value output).

4.3 Security Analysis

We have the following theorem asserting the security of our construction, and
the security proof is deferred to the Appendix.

Theorem 1. Our construction is a revocable cloud data encryption system
achieving Data Privacy Against Cloud Server (in the sense of Definition 2), Data
Privacy Against Users (in the sense of Definition 3), and User Revocation Sup-
port (in the sense of Definition 4), in the generic group model [25].

5 Implementation of Our Construction

5.1 Proof-of-Concept

To demonstrate the practicality of the construction described in Sect. 4, we
present a Web-based proof-of-concept.

Architecture. The prototype consists of a Web application representing a cloud
server (running the algorithm PxDec), a data owner application, and a user appli-
cation running the algorithm UDec. The data owner application takes charge of
the algorithms Setup, PxKGen and Encrypt. A cloud-data-owner interface is pro-
vided, allowing the data owner application to upload encrypted data to the Web

158 Y. Yang et al.

server. A cloud-user interface is also provided for the user to access and down-
load data from the Web server. The Web server runs on a desktop with 2.66 GHz
Intel Core2Duo and 3.25 GB RAM, the data owner application runs on a lap-
top with 2.10 GHz Intel Core i3-5010U Processor and 4 GB RAM, and the user
application runs on a smartphone configured with a 1.2 GHz CPU and 2 GB
RAM.

The implementation is based on the Pairing-Based Cryptography (PBC)
library (https://crypto.stanford.edu/pbc/). The bilinear map in our construc-
tion is instantiated with a 512-bit supersingular curve of embedding degree 2,
with |p| = 160. For the cryptographic hash function H : {0, 1}∗ → G0, a sim-
plified realization of choosing random values from G0 is used, as there is no
off-the-shelf hash function of this nature. The data encryption follows the com-
mon practice of data encapsulation + key encapsulation, namely, an encryption
of a message, m, is of the form (AESk(m),Encrypt(k, T)), where k is a random
encryption key. To achieve the security level guaranteed by the 512-bit super-
singular curve, 128-bit AES is chosen. Since GT is an ordinary finite field, the
AES keys can be directly encrypted by the algorithm Encrypt.

Reducing Storage Overhead. In the prototype, we are concerned with reduc-
ing the storage overhead. Recall that the ciphertext size in our construction is
linear with the number of leaf nodes in a given access tree - for a payload mes-
sage m ∈ GT , a ciphertext introduces an extra storage overhead of 2 + 2� group
of elements in G0, where � is the total number of leaf nodes of the access tree.
When � is large, the complexity overhead dominates the storage cost.

The mode of hybrid data/key encapsulation offers us a possibility to amortize
the above complexity overhead. Specifically, all data sharing the same access
policy are encrypted with the same encryption key. The high ciphertext overhead
resulting from the encapsulation of the encryption key by the algorithm Encrypt is
amortized by all these data. Note that the data owner is not necessarily involved
in the management of the encryption keys. Instead, the data owner can obtain the
key by retrieving and decrypting the corresponding ciphertext from the cloud
server, if the access policy has already been used. We also remark that the
decryption process by the data owner is very simple. With α, the data owner only
needs to retrieve the C,C ′′ elements of the ciphertext, and computes C

e(gα,C′′) to
recover the encryption key. If the data owner chooses to keep gα as a part of the
master secret key, msk, the computation overhead is a single pairing operation.
Figure 1 illustrates the logical structure of encrypted data records, where each
ciphertext of the algorithm Encrypt serves as an index, pointing to all encrypted
payload data that are governed by the same access policy.

The role played by this overhead amortization mechanism in user revocation
is as follows. Once a user is revoked, the data owner will use a new key for
every access policy when encrypting new data. This guarantees that the newly
generated cloud data cannot be decrypted by the revoked user even if it is given
the corresponding payload part. In practice, it is usually not a concern that a
revoked user can decrypt the data it has been entitled to before its revocation.

https://crypto.stanford.edu/pbc/

An Extended Proxy-Assisted User Revocation 159

Fig. 1. A snapshot of the encrypted cloud data structure

5.2 Performance Results

We evaluated the performance of PxKGen, Encrypt, PxDec, and UDec, respec-
tively, on their corresponding platforms. The experimental results are shown in
Fig. 2. As observed in Fig. 2(a) and (b), the runtimes of the algorithms, PxKGen
and Encrypt, are linear to the number of attributes. In our implementation, we
had not undertaken any optimization on multi-exponentiation operations; there-
fore, the runtime of PxKGen is slightly more costly than that of Encrypt given
the same number of attributes.

Fig. 2. Experimental results

We experiment the algorithm, PxDec, with two types of access policies. The
first type consists of access trees whose non-leaf nodes are all “and” gates (we call
them all-and access trees). Access trees in such a form ensure that all attributes
(leaf nodes) are needed in PxDec. Thus, the access trees are expected to impose
the heaviest workload, among access trees with the same number of leaf nodes.
The second type includes access trees that are constructed randomly (we call
them random access trees). It is clear that for a random access tree whose non-
leaf nodes are “or” or “threshold” gates, not all of the leaf nodes are necessary
in order to satisfy the tree. The actual leaf nodes needed in PxDec are tree-
specific. Figure 2(c) corroborates this fact. In the case of all-and access trees, the
computation overhead is basically linear with the number of leaf nodes. It can
also be seen that PxDec is more efficient than Encrypt given the same number
of attributes (i.e. the same access tree). This is because the former is dominated

160 Y. Yang et al.

by the exponentiation operations in GT , whereas the latter is dominated by the
exponentiations in G0.

Figure 2(d) shows that a UDec operation costs about 80 milliseconds on the
experimenting smartphone platform. Considering in addition that the communi-
cation overhead for user is merely 2|GT | = 1 K bits in our implementation, this
could be deployed on a smart mobile device (e.g. Android or iOS device).

6 Conclusion

In this paper, we presented an extended proxy-assisted approach in order to over-
come the limitation of needing to trust the cloud server not to disclose users’
proxy keys inherent in proxy/mediator assisted user revocation approaches. In
our approach, we bind the cloud server’s private key to the data decryption
operation, which requires the cloud server to reveal its private key should the
cloud server decide to collude with revoked users. We then formulated a prim-
itive, ‘revocable cloud data encryption’, under the approach. We presented a
concrete construction of the primitive and implemented the construction using
a proof-of-concept. The experimental results suggested that our construction is
suitable for deployment even on smart mobile devices.

Acknowledgment. Joseph K. Liu is supported by National Natural Science Foun-
dation of China (61472083). Kaitai Liang is supported by privacy-aware retrieval and
modelling of genomic data (PRIGENDA, No. 13283250), the Academy of Finland.

Appendix: Security Proof for Theorem1

Proof. We prove that our construction satisfies the three security requirements.

Lemma 1. The construction satisfies Data Privacy Against Cloud, as defined
in Definition 2 in the generic group model.

Proof. In the definition, the attributes, Ai, submitted by the adversary could or
could not satisfy the challenge access tree T ∗. To consider the strongest adversary
possible, we assume every Ai satisfy T ∗. We then prove under the generic group
model, no efficient adversary can output b′ = b in the security game defined in
Definition 2 noticeably better than a random guess. Note that a random guess, b′,
by the adversary equals b with probability 1/2, thus we often call ε the advantage
of the adversary if b′ = b with probability 1/2 + ε.

In the generic group model [25], each element of groups, G0, GT , is encoded
as a unique random string; thus, the adversary can directly test no properties
other than equality. The opaque encoding of the elements in G0 is defined as the
function ξ0 : Zp → {0, 1}∗, which maps all a ∈ Zp to the string representation
ξ0(a) of ga ∈ G. Likewise, ξT : Zp → {0, 1}∗ maps a ∈ Zp to the string represen-
tation ξT (a) of e(g, g)a ∈ GT . The adversary communicates with the oracles to

An Extended Proxy-Assisted User Revocation 161

perform group action on G0, GT and bilinear map e : G0 × G0 → GT , by way of
the ξ0-representation and ξT -representation only.

For simplicity, the original game is slightly modified: in the challenge phase of
the original security game, the adversary is given a challenge ciphertext, whose
C component is either m0 · e(g, g)α·s or m1 · e(g, g)α·s. We modify C to be either
e(g, g)α·s or e(g, g)ϑ, for a random ϑ in Zp. Indeed, any adversary that has a
advantage ε in the original game can be transformed into an adversary having
advantage ε/2 in the modified game (consider two hybrids: one in which the
adversary is to distinguish between m0 · e(g, g)α·s, e(g, g)ϑ), and the other in
which the adversary is to distinguish between m1 · e(g, g)α·s and e(g, g)ϑ.

Hereafter, we consider the adversary in the modified game. In the Setup
phase, the challenger sends the public parameters ξ0(1), ξ0(β), ξT (α) to the
adversary. To simulate the hash function H, the challenger maintains a table,
which is initially empty. Whenever a query i is asked on H, if i has never been
asked before, the challenger selects a random value ti ∈R Zp, and adds an entry
(i, ti, ξ0(ti)) to the table and returns ξ0(ti); otherwise, returns the already defined
ξ0(ti).

In Phase 1, the adversary starts by selecting x ∈R Zp and getting ξ0(x) from
the challenger. Then, the adversary makes a set of proxy key generation queries.
For a jth query Aj , the challenger first picks xj ∈R Zp and computes ξ0(xj).
Then the challenger picks r1, r2, ri ∈R Zp for all i ∈ Aj , and sets PxKj =
(k = ξ0(

r1·x+xj ·α+r2
β), k′ = ξ0(ri),∀i ∈ Aj : {ki1 = ξ0(r2 + ti · ri), ki2 = ξ0(ri)}),

where ti is obtained by querying i upon the random oracle H as described above.
Finally, the challenger gives ξ0(ti), ξ0(xj) and PxKj to the adversary.

In the Challenge phase, the adversary submits two equal-length challenge
messages m0,m1 and a challenge access tree T ∗. The challenger responds as
follows. Select s ∈R Zp, and compute shares ςi of s for each attribute i contained
in T ∗ (represented by T ’s leaf nodes) along the tree as described in the Encryp
algorithm. Note that ςi’s are random values subject to the underlying secret
sharing induced by T ∗. Finally, the challenger chooses ϑ ∈R Zp, and returns to
the adversary the challenge ciphertext c∗ as C = ξT (ϑ), C ′ = ξ0(β·s), C ′′ = ξ0(s),
and Ci1 = ξ0(ςi), Ci2 = ξ0(ti · ςi) for each attribute i in T ∗.

In Phase 2, the challenger responds to the proxy key generation queries from
the adversary, just as in Phase 1.

Analysis of the Simulated Game. Let q bound the total number of group
elements the adversary receives during the game from the queries it makes to
the oracles for G0, GT , the bilinear map, and the hash function (including the
hash function queries implicitly invoked by the proxy key generation and the
challenge ciphertext generation). We will show that with probability 1−O(q2/p),
the adversary’s view in this simulated game is identically distributed to what
its view could be if it has been given C = ξT (α · s) in the game. Note that in
the current game, the adversary’s advantage is 0, as ξT (ϑ) is independent of the
encryption of the challenge messages. We thus conclude that the advantage of
the adversary, when given C = ξT (α · s), is at most O(q2/p), which proves the
theorem if q2/p is negligible.

162 Y. Yang et al.

Table 1. Rational functions in G0

System setup β

Proxy key queries x x[j] r
[j]
1 ·x+x[j]·α+r

[j]
2

β
r
[j]
1

ti r
[j]
2 + ti · r[j]i r

[j]
i

Challenge ciphertext β · s s ςi′ ti′

ti′ · ςi′

We assume that the adversary communicates with group oracles, only with
values it has already received from the oracles. Note that each query the adver-
sary makes is of the form of a rational function π = χ/γ in the variables of
α, β, x, x[j], r

[j]
1 , r

[j]
2 , ti, r

[j]
i , s, and ςi, where the subscript variable i denotes the

attribute strings and the superscript variable [j] is the index of the proxy key
queries. We now place a condition on the event that no “unexpected collisions”
occur in either G0 and GT . An unexpected collision is one when two queries of
two distinct rational functions χ/γ �= χ′/γ′ coincide in value, due to the random
choices of the values of the involved variables. For any pair of queries corre-
sponding to χ/γ and χ′/γ′, a collision occurs only if the non-zero polynomial
χ/γ − χ′/γ′ evaluates to be zero. In our case, the degree of χ/γ − χ′/γ′ is a
small number; thus, the probability of a collision is O(1/p) [27,36]. By a union
bound, the probability of any unexpected collision happens is at most O(q2/p)
for q queries. As a result, we have probability 1 − O(q2/p) that no unexpected
collisions happen.

Subject to the condition of no unexpected collisions, we need to show that
the adversary’s view is identically distributed if the challenger has set ϑ = α · s.
The view of the adversary can differ in the case of ϑ = α · s only if there are two
queries π, π′ into GT , such that π �= π′ but π |ϑ=α·s= π′ |ϑ=α·s. We will show
that this will not happen.

Recall that ϑ only occurs as ξT (ϑ), which is an element of GT . Thus, the
only difference that π and π′ can have on ϑ is such that π − π′ = ηϑ − ηα · s,
for a constant η. It suffices to show that the adversary can never construct a
query for ξT (ηα · s = π − π′ + ηϑ), given that no unexpected collisions occur.
This reaches a contradiction and establishes the theorem.

This follows from the following analysis, based on the information given to the
adversary during the game. For ease of reference, Table 1 enumerates all rational
functions in G0 known to the adversary by means of the system setup, proxy
key generation queries and challenge ciphertext query (i, i′ are possible attribute
strings, and j is the index of the proxy key generation queries). In addition, the
adversary also knows the value of x (which represents the cloud server’s key).
Any query in GT is a linear combination of products of pairs of these rational
functions (of course, x or 1

x can be the coefficients, as the adversary knows the
value of x). Observe from the table that the only rational function containing

α is r
[j]
1 ·x+x[j]·α+r

[j]
2

β . In order for the adversary to produce a rational function

An Extended Proxy-Assisted User Revocation 163

containing ηα · s, while at the same time canceling out other elements as much

as possible, the only choice is multiplying r
[j]
1 ·x+x[j]·α+r

[j]
2

β and β · s. This will

create a polynomial of the form r
[j]
1 · x · s + x[j] · α · s + r

[j]
2 · s (for simplicity,

we always omit constant coefficients whenever possible). It is easy to cancel out
the term r

[j]
1 · x · s by multiplying r

[j]
1 and s, together with the knowledge of x.

Now, we have a polynomial x[j] · α · s + r
[j]
2 · s, and we need to eliminate the

term r
[j]
2 ·s. There are two options: (1) Multiplying r

[j]
2 + ti ·r[j]i and s introduces

an additional term ti · r
[j]
i · s. This additional term can be canceled out only

by an appropriate combination of the products of ti′ · ςi′ and s, following the
secret sharing induced by T ∗. We are eventually left with the term x[j] ·α · s. To
construct a query for ξT (ηα ·s) where η is a constant known to the adversary, we
must cancel out x[j] from x[j] ·α ·s. This is not possible using any combination of
the rational functions in Table 1, as long as the adversary does not know x[j] and
1

x[j] . (2) Multiplying r
[j]
2 + ti · r[j]i and ςi′ , which eventually leads to the canceling

out of r
[j]
2 · s and other introduced terms (following the secret sharing induced

by T ∗) as desired. But again, we need to cancel out x[j] from x[j] ·α · s, as in the
first case. This completes the proof. �
Lemma 2. The construction satisfies Data Privacy Against Users as defined in
Definition 3, if the CP-ABE scheme in [4] is CPA secure.

Proof. We prove that an adversary A to our scheme can be transformed to an
adversary B to the CP-ABE scheme [4] which is proven secure in the generic
group model. The construction of B is by means of invoking A, with the help of
its own chosen plaintext attack (CPA) game in terms of the CP-ABE scheme.
In particular, B has to answer A’s proxy key generation queries. We show that
within the context of the CPA game between B and its own challenger, B can
answer A’s proxy key generation queries, simulating A’s challenger.

Specifically, when the CPA game between B and its challenger starts, B starts
the Setup phase with A by passing the public system parameters it gets from its
own challenger (we do not consider the delegate functionality in [4]). In Phase
1, B first generates (gx, x ∈R Zp) as the cloud server’s key pair. When receiving
an attribute set A from A as jth proxy key generation query, B first makes a
key generation (KeyGen in [4]) query on A to its own challenger, and upon it, B
gets a decryption key of the form (k = g

α+r2
β , {ki1 = gr2H(i)ri , ki2 = gri}i∈A)

(having been collated with the notations in our construction). The challenge of
the simulation is how to derive a valid proxy key for A from the decryption
key. To this end, B generates (gxj , xj ∈R Zp) as the user key pair; then picks

r1 ∈R Zp, and computes k = kxj = g
α·xj+r2·xj

β , k′ = gr1 ,∀i ∈ A : ki1 = k
xj

i1 ·
g−xr1 = gr2·xj−xr1H(i)ri·xj , ki2 = k

xj

i2 = gri·xj , and the proxy key is set to
be (k, k′, {ki1, ki2}i∈A). It remains to see that this is a valid proxy key. Note

that k = g
α·xj+r2·xj

β = g
xr1+α·xj+r2·xj−xr1

β = ((gx)r1(gxj)αgr2·xj−xr1)
1
β . Hence

(k, k′, {ki1, ki2}i∈A) is indeed a valid proxy key, with “r2” being r2 ·xj −xr1 and
“ri” being ri · xj .

164 Y. Yang et al.

In Challenge phase, when A submits m0,m1 and T ∗, B submits them to its
own challenger. As a response, B gets a challenge ciphertext of the form (T ∗, C =
mb · Gs

α, C ′ = hs,∀� ∈ L : {C�1 = gql(0), C�2 = H(att(�))ql(0)}) according to the
encryption algorithm (i.e. Encrypt) in [4]. Note that this ciphertext is of the
same format as in our construction, except that it does not have the C ′′ = gs

element in our construction. Fortunately, gs actually can be computed from
∀� ∈ L : {C�1 = gql(0)}, following the secret sharing induced by T ∗.

In Phase 2, B answers A’s proxy key generation queries as in Phase 1. Finally,
B outputs whatever bit A outputs. It can be seen that the simulation by B is
perfect. This completes the proof. �
Lemma 3. The construction satisfies User Revocation Support as defined in
Definition 4.

Proof. The proof will in general proceed in a similar way as in the proof for
Lemma 1. The main difference is that in this proof, the adversary knows the
value of x[j]’s, instead of x. This results in the effect that it cannot cancel out
the term r

[j]
1 · x · s from the polynomial r

[j]
1 · x · s + x[j] · α · s + r

[j]
2 · s. To avoid

repetition, we omit the details. �
Combining the proofs for the above three lemmas, we complete the proof of

Theorem 1. �

References

1. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 278–300. Springer, Heidelberg (2009)

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

3. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of pub-
lic key certificates and security capabilities. In: Proceedings of USENIX Security
(2001)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of IEEE S&P, pp. 321–334 (2007)

5. Choo, K.K.R.: Legal issues in the cloud. IEEE Cloud Comput. 1(1), 94–96 (2014)
6. Chow, S.S.M., Boyd, C., González Nieto, J.M.: Security-mediated certificateless

cryptography. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 508–524. Springer, Heidelberg (2006)

7. Chen, Y., Jiang, L., Yiu, S., Au, M., Xuan, W.: Fully-RCCA-CCA-Secure
ciphertext-policy attribute based encryption with security mediator. In: Proceed-
ings of ICICS 2014 (2014)

8. Cloud Security Alliance: Security guidance for critical areas of focus in cloud com-
puting (2009). http://www.cloudsecurityalliance.org

9. Chu, C.-K., Zhu, W.T., Han, J., Liu, J.K., Xu, J., Zhou, J.: Security concerns in
popular cloud storage services. IEEE Pervasive Comput. 12(4), 50–57 (2013)

10. European Network and Information Security Agency: Cloud computing
risk assessment (2009). http://www.enisa.europa.eu/act/rm/files/deliverables/
cloud-computing-risk-assessment

http://www.cloudsecurityalliance.org
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment

An Extended Proxy-Assisted User Revocation 165

11. Gartner: Don’t trust cloud provider to protect your corporate assets,
28 May 2012. http://www.mis-asia.com/resource/cloud-computing/
gartner-dont-trust-cloud-provider-to-protect-your-corporate-assets

12. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: Proceedings of USENIX Security (2011)

13. Goyal, V., Pandy, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of ACM CCS 2006, pp.
89–98 (2006)

14. Hohenberger, S., Waters, B.: Online/offline attribute-based encryption. In: Kraw-
czyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg
(2014)

15. Jiang, T., Chen, X., Li, J., Wong, D.S., Ma, J., Liu, J.: TIMER: secure and reliable
cloud storage against data re-outsourcing. In: Huang, X., Zhou, J. (eds.) ISPEC
2014. LNCS, vol. 8434, pp. 346–358. Springer, Heidelberg (2014)

16. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Phuong, T.V.X.,
Xie, Q.: A DFA-based functional proxy pe-encryption scheme for secure public
cloud data sharing. IEEE Trans. Inf. Forensics Secur. 9(10), 1667–1680 (2014)

17. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: GO-ABE: an efficient cloud-based
revocable identity-based proxy re-encryption scheme for public clouds data sharing.
In: Proceedings of ESORICS 2014, pp. 257-272 (2014)

18. Liang, K., Susilo, W., Liu, J.K.: Privacy-preserving ciphertext multi-sharing con-
trol for big data storage. IEEE Trans. Inf. Forensics Secur. 10(8), 1578–1589 (2015)

19. Liu, J.K., Au, M.H., Susilo, W., Liang, K., Lu, R., Srinivasan, B.: Secure sharing
and searching for real-time video data in mobile cloud. IEEE Netw. 29(2), 46–50
(2015)

20. Li, M., Huang, X., Liu, J.K., Xu, L.: GO-ABE: group-oriented attribute-based
encryption. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS,
vol. 8792, pp. 260–270. Springer, Heidelberg (2014)

21. Liu, Z., Wong, D.S.: Practical attribute based encryption: traitor tracing, revoca-
tion, and large universe. https://eprint.iacr.org/2014/616.pdf

22. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

23. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of ACM CCS 2007, pp. 195–203
(2007)

24. Quick, D., Martini, B., Choo, K.K.R.: Cloud Storage Forensics. Syngress/Elsevier,
Amsterdam (2014)

25. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

26. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

27. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

28. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

http://www.mis-asia.com/resource/cloud-computing/gartner-dont-trust-cloud-provider-to-protect-your-corporate-assets
http://www.mis-asia.com/resource/cloud-computing/gartner-dont-trust-cloud-provider-to-protect-your-corporate-assets
https://eprint.iacr.org/2014/616.pdf

166 Y. Yang et al.

29. Wang, G., Liu, Q., Wu, J.: Hierarhical attribute-based encryption for fine-grained
access control in cloud storage services. In: Proceedings of ACM CCS 2010, pp.
735–737 (2010)

30. Yang, K., Jia, X.: Expressive, efficient, and revocable data access control for multi-
authority cloud storage. IEEE Trans. Parallel Distrib. Syst. 25(7), 1735–1744
(2014)

31. Yang, K., Jia, X., Ren, K., Zhang, B., Xie, R.: DAC-MACS: effective data access
control for multiauthority cloud storage systems. IEEE Trans. Inf. Forensics Secur.
8(11), 1790–1801 (2013)

32. Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-grained
cryptographic access control over cloud data. In: Proceedings of ISC 2013 (2013)

33. Yang, Y., Lu, H., Weng, J., Zhang, Y., Sakurai, K.: Fine-grained conditional proxy
re-encryption and application. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M.
(eds.) ProvSec 2014. LNCS, vol. 8782, pp. 206–222. Springer, Heidelberg (2014).
Extended version to appear: Pervasive and Mobile Computing, ELSEVIER

34. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
aata access control in cloud computing. In: Proceedings of IEEE INFOCOM 2010
(2010)

35. Yuen, T.H., Zhang, Y., Yiu, S.M., Liu, J.K.: Identity-based encryption with post-
challenge auxiliary inputs for secure cloud applications and sensor networks. In:
Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712, pp. 130–147.
Springer, Heidelberg (2014)

36. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.)
EUROSAM/ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

Batch Verifiable Computation of Polynomials
on Outsourced Data

Liang Feng Zhang1(B) and Reihaneh Safavi-Naini2

1 ShanghaiTech University, Shanghai, China
zhanglf@shanghaitech.edu.cn

2 University of Calgary, Calgary, Canada

Abstract. Secure outsourcing of computation to cloud servers has
attracted much attention in recent years. In a typical outsourcing sce-
nario, the client stores its data on a cloud server and later asks the server
to perform computations on the stored data. The verifiable computation
(VC) of Gennaro, Gentry, Parno (Crypto 2010) and the homomorphic
MAC (HomMAC) of Backes, Fiore, Reischuk (CCS 2013) allow the client
to verify the server’s computation with substantially less computational
cost than performing the outsourced computation. The existing VC and
HomMAC schemes that can be considered practical (do not required
heavy computations such as computing fully homomorphic encryptions),
are limited to compute linear and quadratic polynomials on the out-
sourced data. In this paper, we introduce a batch verifiable computation
(BVC) model that can be used when the computation of the same func-
tion on multiple datasets is required, and construct two schemes for com-
puting polynomials of high degree on the outsourced data. Our schemes
allow efficient client verification, efficient server computation, and com-
position of computation results. Both schemes allow new elements to be
added to each outsourced dataset. The second scheme also allows new
datasets to be added. A unique feature of our schemes is that the storage
required at the server for storing the authentication information, stays
the same as the number of outsourced datasets is increased, and so the
server storage overhead (the ratio of the server storage to the total size
of the datasets) approaches 1. In all existing schemes this ratio is ≥ 2.
Hence, our BVC can effectively halve the required server storage.

1 Introduction

Cloud computing provides an attractive solution for computationally weak
clients that need to outsource data and perform large-scale computations on
the outsourced data. This however raises the important security requirement of
enabling the client to verify the correctness of the outsourced computation. A
cloud server may return an incorrect result, accidentally or intentionally, and
the ability to verify the result is a basic requirement. This requirement has
motivated the research on the verifiability of outsourced computation in two
directions: exploring the theoretical foundation of what computations can be

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 167–185, 2015.
DOI: 10.1007/978-3-319-24177-7 9

168 L.F. Zhang and R. Safavi-Naini

securely outsourced, and proposing secure solutions for specific problems with
emphasis on practicality. Our work follows the latter direction.

Verifiable Computation. Several models have been proposed for secure out-
sourcing of computation. In the verifiable computation (VC) model of Gennaro,
Gentry and Parno [14], the client’s data defines a function and a computation
is equivalent to evaluating this function that is computationally expensive. To
outsource this computation, the client computes a one-time encoding of the
function and stores it at the server. This enables the server to not only evalu-
ate the function on any input, but also provide a proof that the evaluation has
been done correctly. The client’s verification must be substantially less time-
consuming than evaluating the original function. The effort of generating the
one-time encoding will be amortized over multiple evaluations of the function
and so is considered acceptable.

Following [14] a number of VC schemes [2,10,11,14,21] to delegate generic
functions have been proposed. These schemes are based on fully homomorphic
encryption (FHE) and so with today’s constructions of FHE, cannot be con-
sidered practical. Benabbas et al. [5] initiated a line of research [5,9,13,20] on
practical VC for specific functions such as polynomials, which do not require
heavy cryptographic computations such as FHE. In a VC for polynomials, the
client’s data consists of the coefficients of a polynomial. The client stores an
encoding of the coefficients on a cloud server; this encoding allows the server to
evaluates the polynomial on any requested point; the client can efficiently verify
the server’s computation. These schemes are secure against a malicious server
which is allowed to make a polynomial (in the security parameter) number of
attempts to deceive the client into accepting a wrong computation result, with
each attempt being told successful or not.

Practical VC schemes however are limited to the computation of linear func-
tions on the outsourced data (e.g., evaluating a polynomial at a point x is equiv-
alent to computing the inner product of a vector defined by the coefficients with
a vector defined by x and linear in the coefficients). This means that even simple
statistical functions such as variance, cannot be computed. Also, the encoding
of the function doubles the cloud storage needed by the function itself. Evaluat-
ing polynomials arise in applications such as proof of retrievability and verifiable
keyword search [13], where the number of polynomial coefficients is roughly equal
to the number of data elements in a file or database. In those scenarios doubling
the cloud storage will result in a substantial increase of the client’s expense and
will become increasingly problematic as more and more data is outsourced.

Homomorphic MAC. Homomorphic MAC (HomMAC) [16] allows a client to
store a dataset (a set of data elements) on a cloud server, and later request the
computation of some specified functions, referred to as the admissible function
family, on the dataset. The dataset may consist of employee records of an insti-
tution and a possible computation could be evaluating a function of the records.
One can add elements to, or remove elements from, the dataset as needed. The
encoding of the dataset consists of all data elements and a special MAC tag

Batch Verifiable Computation of Polynomials on Outsourced Data 169

for each data element. The tags allow the server to produce a MAC tag for the
computation of any admissible function.

HomMACs for admissible linear functions [1] and admissible nonlinear func-
tions [4,8,16] have been proposed. Some of these schemes require heavy cryp-
tographic computations, such as FHE [16]. Catalano and Fiore [8] proposed an
elegant HomMAC for high degree polynomials with efficient server computations
(including PRF computations and polynomial evaluations over relatively small
finite fields). The client verification cost however is effectively the same as per-
forming the outsourced computation. Backes, Fiore and Reischuk [4] removed
this drawback by restricting the class of admissible functions to polynomials of
degree 2. They considered the computations of the same function on multiple
datasets. The verification of the computations requires an expensive preprocess-
ing which is done only once and amortized over all verifications. Restriction on
the degree of the polynomials however limits their applicability. For example an
important task in data analysis is to determine if a dataset is normally distrib-
uted. Two commonly used statistical measures for symmetry and flatness of a
distribution relative to normal distribution, are skewness and kurtosis, which
require computation of degree 3 and 4 polynomials of the data elements, respec-
tively.

Compared to the VC model of [5,14], the security model of HomMAC is more
demanding. Here the server is allowed to learn the MAC tags of arbitrary data
elements of its choice and also make a polynomial (in the security parameter)
number of attempts to deceive the client into accepting a wrong computation
result, with each attempt being told successful or not. This stronger security
property means that the HomMACs can be straightforwardly translated into
VC schemes but the converse may not be true in general. In a HomMAC based
VC scheme the server has to store both the data elements and the MAC tags.
This usually doubles the cloud storage consumed by the data elements.

An additional desirable property of HomMACs is that they allow composi-
tion. That is, given multiple computation results and their MAC tags, one can
perform a high level computation on these results and also generate a corre-
sponding MAC tag for this high level computation.

Motivation. The existing VC schemes satisfy a subset of the following desirable
properties: (p1) Large admissible function family: enabling the computation of
high degree polynomials (not limited to the linear and quadratic ones) on the
outsourced data; (p2) Efficient client verification: the client’s verification is sub-
stantially less expensive than computing the delegated computation; (p3) Effi-
cient server computation: the server does not need to do heavy cryptographic
computations (such as FHE); (p4) Efficient server storage: the server stores an
encoding of the client’s data and the encoding consumes almost no extra stor-
age than the data itself. (p5) Unbounded data: the client can freely update the
outsourced data by adding new elements to every dataset and also adding new
datasets. Our goal is to construct schemes that provide all the above properties.

170 L.F. Zhang and R. Safavi-Naini

1.1 Our Contributions

We introduce batch verifiable computation (BVC), and construct two BVC
schemes that satisfy properties (p1)–(p5). Similar to Backes et al. [4], we also
consider outsourcing of multiple datasets with two labels. The outsourced data
m defines an N ×s matrix (mi,j)N×s, where each column is called a dataset, and
each entry mi,j is labeled by a pair (i, j) ∈ [N]× [s]. However, the similarity ends
here: Backes et al. allow computation of different functions on each dataset with
the restriction that the polynomials are of degree at most two. Our main obser-
vation is that by batching computation of the same function on all datasets, an
impressive set of properties can be achieved. In particular one can save storage
at the server, and this saving will be significant when the computation on more
datasets are outsourced. In BVC the client computes a tag ti for the ith row of
m for every i ∈ [N], and stores t = (t1, . . . , tN) as an extra column at the cloud
server. A computation is specified by a program P = (f, I), where f(x1, . . . , xn)
is a function and I = {i1, . . . , in} ⊆ [N] specifies the subset of elements of each
dataset which will be used in the computation of f . Given the program P, the
server returns s results ρ1 = f(mi1,1, . . . ,min,1), . . . , ρs = f(mi1,s, . . . ,min,s)
and a single batch proof π; the client accepts the s results only if they success-
fully pass the client’s verification. A BVC scheme is secure if no malicious cloud
server can deceive the client into accepting wrong results. We consider the com-
putation of any polynomial function (i.e., arithmetic circuit) on the outsourced
data, and construct two BVC schemes with the following properties.

Large Admissible Function Family. The first scheme admits polynomials of
degree as high as any polynomial in the security parameter. The second scheme
admits any constant degree polynomials. The only other known practical schemes
that can compute the same class of functions is from [8] in which the client’s
verification is effectively as heavy as the outsourced computation.

Efficient Client Verification. In our BVC schemes the client can verify the
computation results on the s datasets using a single batch proof that is computed
from the tag column. In both schemes verifying the computation result of each
dataset is by evaluating the batch proof (which is a polynomial) at a specific
point. The batch proof in the first scheme is a univariate polynomial of bounded
degree, and in the second scheme is a multivariate polynomial of bounded degree.
Compared with the naive construction where the scheme in [8] is used on each
dataset, the client’s average verification cost in our schemes is substantially less
than what is required by the original computation as long as s is large enough.

Efficient Server Computation. The server computation in our schemes con-
sists of PRF computations and polynomial evaluations over relatively small finite
fields (such as Zp for p ≈ 2128 when the security parameter λ = 128). This is
similar to [8] and more efficient than [4] where the server must compute a large
number of exponentiations and pairings over significantly larger groups.

Efficient Server Storage. In a VC (or BVC) scheme the client stores an encod-
ing of its data on the cloud server. We define the storage overhead of a VC

Batch Verifiable Computation of Polynomials on Outsourced Data 171

(or BVC) scheme as the ratio of the size of the encoding to the size of data. It
is easy to see that the storage overhead is lower bounded by 1. In both schemes
a tag has size equal to an element of m, resulting in a storage overhead of
1 + 1/s which approaches 1 as s increases. In all existing practical VC schemes
[4,5,8,9,13] the storage overhead is ≥ 2.

Unbounded Data. In our BVC schemes the outsourced data m consists of s
datasets, each consisting of N elements. Our schemes allow the client to add an
arbitrary number of new rows and/or columns to m, and efficiently update the
tag column without downloading m. While adding new rows to m is straightfor-
ward, adding new datasets to m without performing the tag computation from
scratch (and so downloading the already outsourced data) is highly non-trivial.
This is because in our schemes each row of m is authenticated using a single tag,
and so adding a new dataset (a new data element to each row) could destroy the
well-formed tag of the row, requiring the tag of the updated row to be computed
from scratch. We show that our second scheme allows the client to add new
datasets and efficiently update the tag column, without downloading m.

In summary our BVC schemes provide all the desirable properties of a VC
scheme in practice, together with the unique property that the storage overhead
reduces with the number of datasets. The storage efficiency however comes at a
somewhat higher cost of computing the proofs by the server. In Sect. 4 we give
comparisons of our schemes with [8] that supports the same functionality, when
applied to the s datasets individually.

Composition. Our BVC schemes support composition. Let m = (mi,j)N×s be
the client’s outsourced data, and P1 = (f1, I1), . . . ,Pn = (fn, In) be n programs,
where fi is a function and Ii ⊆ [N] for every i ∈ [n]. Computing the n programs
on the datasets gives a matrix ρ = (ρi,j)n×s of computation results and n proofs
π1, . . . , πn, where ρi,j is the result of computing fi on the jth dataset and πi

is a proof of the correctness of the ith row of ρ. Our schemes allow compo-
sition in the sense that there is a polynomial time algorithm Comb that takes
(ρ, (π1, . . . , πn)) and any program P = (f(x1, . . . , xn), I = [n]) as input, and out-
puts ξ1 = f(ρ1,1, . . . , ρn,1), . . . , ξs = f(ρ1,s, . . . , ρn,s) along with a batch proof π.
Moreover, the client’s cost to verify ξ1, . . . , ξs is substantially less than what is
required by computing ξ1, . . . , ξs.

1.2 Overview of the Constructions

We use a novel interpretation of the technique in [8] when applied to multiple
datasets to design schemes that satisfy properties (p1)–(p5). Let m = (mi,j)N×s

be a collection of s datasets that are to be outsourced. We shall authenticate
the s elements in each row of m using a single authentication tag that has
size equal to an entry of m. This immediately results in a storage overhead
of 1 + 1/s. The N tags are generated such that the cloud server can compute
any program P = (f, I) on the s datasets, and also produce a single proof
that verifies the correctness of all s computation results. The main idea is a
generalization of the technique of [8] to s elements. We pick a curve (or a plane)

172 L.F. Zhang and R. Safavi-Naini

σi that passes through the s points determined by the s elements in the ith row
of m and also a point determined by a pseudorandom value Fk(i), where F is a
pseudorandom function; the stored tag is a single field element that can be used
by the server to determine σi; the computations of any program P = (f, I) on all
the s outsourced datasets can be efficiently verified using the once computation
of f on the pseudorandom values {Fk(i) : i ∈ I}.

In the first scheme, the client picks a secret key sk = (k, a) ← K × (Zp \
{0, 1, . . . , s}) and determines a univariate polynomial σi(x) of degree ≤ s that
passes through the s + 1 points (1,mi,1), . . . , (s,mi,s) and (a, Fk(i)), for every
i ∈ [N]. The client takes the coefficient of xs in σi(x) as the tag ti that
authenticates all data elements in the ith row of m, i.e., mi,1, . . . ,mi,s. The
client stores pk = (m, t = (t1, . . . , tN)) on the cloud server. Let P = (f, I)
be a program where f(x1, . . . , xn) is a polynomial, and I = {i1, . . . , in} ⊆
[N] specifies the elements of each dataset that are used in the computa-
tion of f . Given the program P, the server returns both the s computation
results ρ1 = f(mi1,1, . . . ,min,1), . . . , ρs = f(mi1,s, . . . ,min,s) and a proof π =
f(σi1(x), . . . , σin(x)). The client accepts all s results only if π(j) = ρj for every
j ∈ [s] and π(a) = f(Fk(i1), . . . , Fk(in)). In the second scheme, the client picks a
secret key sk = (k,a = (a0, a1, . . . , as)) ← K×(Z∗

p)
s+1 and determines an (s+1)-

variate polynomial σi(y) = σi(y0, y1, . . . , ys) = ti ·y0+mi,1 ·y1+· · ·+mi,s ·ys that
passes through the s+1 points (e2,mi,1), . . . , (es+1,mi,s) and (a, Fk(i)) for every
i ∈ [N], where ej ∈ Z

s+1
p is a 0–1 vector whose jth entry is equal to 1 and all other

entries are equal to 0. The client stores pk = (m, t = (t1, . . . , tN)) on the cloud
server. Given the program P = (f, I), the server returns both the s computation
results ρ1, . . . , ρs and a proof π = f(σi1(y), . . . , σin(y)). The client accepts all s
results only if π(ej+1) = ρj for every j ∈ [s] and π(a) = f(Fk(i1), . . . , Fk(in)).

In both schemes the server’s computation consists of PRF computations and
polynomial evaluations over a relatively small finite field Zp. In Sect. 4 we will
show that the first scheme admits computation of polynomials of degree as high
as any polynomial in the security parameter λ, and the second scheme admits
computation of any constant-degree polynomials where the constant however can
be much larger than two. In both schemes, the client’s complexity of verifying
all s computation results is dominated by the once computation of f on the n
pseudorandom values Fk(i1), . . . , Fk(in). In particular, this complexity becomes
substantially less than the complexity incurred by the s outsourced computations
on datasets when the number s is large enough. In both of our schemes the s
datasets of size N contained in m are authenticated using a single vector t of
N tags, where each tag is a single field element. As a consequence, the storage
overheads of our schemes are both equal to (|m| + |t|)/|m| = (Ns + N)/(Ns) =
1 + 1/s, which can be arbitrarily close to the lower bound 1 as long as s is large
enough. Hence, our schemes achieve the properties (p1)–(p4).

In our schemes, a malicious cloud server may want to deceive the client into
accepting some wrong results (ρ̄1, . . . , ρ̄s) �= (ρ1, . . . , ρs) with a forged proof π̄.
In the first scheme, the forged proof π̄, as the correct proof π, is a univariate
polynomial of degree ≤ d1 = s · deg(f). The malicious server succeeds only

Batch Verifiable Computation of Polynomials on Outsourced Data 173

if (π̄(1), . . . , π̄(s)) = (ρ̄1, . . . , ρ̄s) �= (ρ1, . . . , ρs) = (π(1), . . . , π(s)) and π̄(a) =
f(Fk(i1), . . . , Fk(in)) = π(a). Let π̄ − π = u0 + u1x + · · · + ud1x

d1 and a =
(1, a, . . . , ad1). Then breaking the security of our first scheme is equivalent to
finding a non-zero vector u = (u0, . . . , ud1) such that the inner product u ·a = 0.
In the second scheme, the forged proof π̄, as the correct proof π, is an (s + 1)-
variate polynomial of degree ≤ d2 = deg(f). The malicious server succeeds only
if (π̄(e2), . . . , π̄(es+1)) = (ρ̄1, . . . , ρ̄s) �= (ρ1, . . . , ρs) = (π(e2), . . . , π(es+1)) and
π̄(a) = f(Fk(i1), . . . , Fk(in)) = π(a), where a = (a0, . . . , as). Let π̄ − π have
coefficient vector u ∈ Z

h
p and let α = 〈ai : wt(i) ≤ d2〉 ∈ Z

h
p , where h =

(
s+1+d2

d2

)

and ai = ai0
0 ai1

1 · · · ais
s for every i = (i0, i1, . . . , is). Then breaking the security

of our second scheme is equivalent to finding a non-zero vector u such that
u · α = 0. In Sect. 2, we provide a technical lemma that shows the probability
that any adversary finds such a vector u in both schemes is negligible in λ and
thus the security proofs follow.

In both schemes, client can easily authenticate an arbitrary number of new
rows using the same secret key and thus extend the size of all datasets. The
second scheme also allows the number of datasets to be increased. To add a new
dataset (m1,s+1, . . . ,mN,s+1), the client picks (k′, as+1) ← K × Z

∗
p, and sends

both (m1,s+1, . . . ,mN,s+1) and (Δ1, . . . ,ΔN) to the cloud server, where Δi =
a−1
0 (Fk(i)−Fk′(i)+as+1 ·mi,s+1) for every i ∈ [N]. The cloud server will update

m to (mi,j)N×(s+1) and update t to t′ = (t′1, . . . , t
′
N), where t′i = ti−Δi for every

i ∈ [N]. Intuitively, doing so reveals no information about a′ = (a0, . . . , as, as+1)
to the cloud server. The t′i is computed such that σ′

i(y0, . . . , ys+1) = t′i ·y0+mi,1 ·
y1 + · · · + mi,s+1 · ys+1 passes through (a′, Fk(i)), (e2,mi,1), . . . , (es+2,mi,s+1).
Thus, all the algorithms of the second scheme will work well with the new secret
key sk′ = (k′,a′). We show that breaking the security of this extended scheme
is equivalent to finding a non-zero vector u such that u · α′ = 0, where α′ =
〈(a′)i : wt(i) ≤ d2〉. We show that this cannot be done except with negligible
probability. Thus the second scheme also satisfies (p5).

In both schemes, the composition property follows from the intrinsic structure
of the constructions. Let P1 = (f1, I1), . . . ,Pn = (fn, In) be n programs. In the
first scheme the cloud server would compute these programs on pk = (m, t) and
then obtain a matrix (ρi,j)n×s of results and n proofs (π1, . . . , πn). Given any
high level program P = (f(x1, . . . , xn), I = [n]), the cloud server would be able
to compute P on (ρi,j)n×s to obtain s results ξ1, . . . , ξs and also compute P on
(π1, . . . , πn) to obtain a proof π = f(π1, . . . , πn).

1.3 Related Work

The problem of securely outsourcing computation has a long history. We refer the
readers to [5,14] for the solutions that require strong assumptions on adversaries,
and the theoretical solutions [19] that require interaction. We are only interested
in the non-interactive solutions in the standard model.

Verifiable Computation. The verifiable computation of Gennaro et al. [14]
gave a non-interactive solution for securely outsourcing computation in the stan-

174 L.F. Zhang and R. Safavi-Naini

dard model. The VC schemes of [2,11,14] can delegate any generic functions but
have limited practical relevance due to their use of fully homomorphic encryption
(FHE). The memory delegation [10] can delegate computations on an arbitrary
portion of the outsourced data. However, the client must be stateful and suf-
fer from the impracticality of PCP techniques. Benabbas et al. [5] initiated the
study of practical (private) VC schemes for delegating specific functions such as
polynomials. Parno et al. [21] initiated the study of public VC schemes. Fiore
et al. [13] generalized the constructions of [5] and obtained public VC schemes
for delegating polynomials and matrices. Papamanthou et al. [20] constructed a
public VC scheme for delegating polynomials that allows efficient update. The
storage overhead of all these schemes is ≥ 2. Furthermore, they only admit linear
computations on the outsourced data. In particular, the multi-function VC [13]
has similar setting as ours but only admits linear computations and has storage
overhead ≥ 2.

Homomorphic MACs and Signatures. A homomorphic MAC or signature
scheme [7,16] allows one to freely authenticate data and then verify computa-
tions on the authenticated data. Such schemes give VC: the client can store
data elements and their MAC tags (or signatures) with a server such that the
server can compute some admissible functions on an arbitrary subset of the data
elements; the server provides both the answer and a MAC tag (or signature)
vouching for the correctness of its answer. The storage overhead of the resulting
VC scheme is ≥ 2. Catalano and Fiore [8] proposed a practical HomMAC that
admits polynomials of degree as high as a polynomial in the security parameter.
However, the client’s verification requires as much time as the delegated compu-
tation. Backes, Fiore and Reischuk [4] proposed a HomMAC that has amortized
efficient verification but only admits polynomials of degree ≤ 2.

Non-interactive Proofs. Goldwasser et al. [18] gave a non-interactive scheme
for delegating NC computations. However, for any circuit of size n, the server’s
running time may be a high degree polynomial of n and thus not practical.
The SNARGs/SNARKs of [3,6,15] give non-interactive schemes for delegating
computations. However, they must rely on the non-falsifiable assumptions [17]
which are not standard and much stronger than the common assumptions such
as the existence of secure PRFs we use in this paper.

1.4 Organization

In Sect. 2 we provide a formal definition of batch verifiable computation and its
security; we also develop a lemma which will be used in our security proofs; In
Sect. 3 we present our BVC schemes; In Sect. 4, we give a detailed analysis of
the proposed schemes and compare them with the solutions based on [4,8]; we
also discuss extra properties of our schemes such as composition; Sect. 5 contains
some concluding remarks.

Batch Verifiable Computation of Polynomials on Outsourced Data 175

2 Preliminaries

Let λ be a security parameter. We say that a function q(λ) is a polynomial
function of λ, denoted as q(λ) = poly(λ), if there is a real number c > 0 such
that q(λ) = O(λc); we say that a function ε(λ) is a negligible function of λ,
denoted as ε(λ) = neg(λ), if ε(λ) = o(λ−c) for any real number c > 0. Let A(·)
be a probabilistic polynomial time (PPT) algorithm. The symbol “y ← A(x)”
means that y is the output distribution of running algorithm A on the input x.
We denote by u = 〈ux : x ∈ X〉 any vector whose entries are labeled by elements
of the finite set X.

2.1 Batch Verifiable Computation on Outsourced Data

In this section we formally define the notion of batch verifiable computation on
outsourced data. In our model, the client has a set of data elements and stores
them on the cloud server. The set is organized as a matrix m = (mi,j)N×s,
where each element mi,j is labeled with a pair (i, j) ∈ [N] × [s]. Each column
of m is called a dataset. Let F be any admissible function family. The client
is interested in delegating the computation of some function f(x1, . . . , xn) ∈
F on the n elements labeled by I = {i1, . . . , in} ⊆ [N], of every dataset. In
other words, the client is interested in learning ρ1 = f(mi1,1, . . . ,min,1), ρ2 =
f(mi1,2, . . . ,min,2), . . . , ρs = f(mi1,s, . . . ,min,s). We say that such a batch of
computations is defined by a program P = (f, I) ∈ F × 2[N].

Definition 1 (Batch Verifiable Computation). A BVC scheme for F is a tuple
Π = (KeyGen,ProbGen, Compute,Verify) of four polynomial-time algorithms,
where

– (sk, pk) ← KeyGen(1λ,m) is a key generation algorithm that takes as input the
security parameter λ and a set m = (mi,j)N×s of data elements and outputs
a secret key sk and a public key pk;

– vk ← ProbGen(sk,P) is a problem generation algorithm that takes as input
sk, a program P = (f, I) ∈ F × 2[N] and outputs a verification key vk;

– (ρ, π) ← Compute(pk,P) is a computation algorithm that takes as input pk
and a program P = (f, I) ∈ F × 2[N] and outputs an answer ρ = (ρ1, . . . , ρs)
and a proof π; and

– {0, 1} ← Verify(sk, vk, (ρ, π)) is a verification algorithm that verifies ρ with
(sk, vk, π); it outputs 1 (to indicate acceptance) or 0 (to indicate rejection).

In our BVC model, the client generates (sk, pk) ← KeyGen(1λ,m) and gives pk
to the server. To compute some program P = (f, I) on the outsourced data, the
client generates vk ← ProbGen(sk,P) and gives P to the server. Given (pk,P),
the server computes and replies with (ρ, π) ← Compute(pk,P). At last, the client
accepts ρ only if Verify(sk, vk, (ρ, π)) = 1.

Correctness. This property requires that the client always accepts the results
computed by an honest server (using the algorithm Compute). Formally, the

176 L.F. Zhang and R. Safavi-Naini

– Setup. Given m, the challenger computes (sk, pk) ← KeyGen(1λ, m) and
gives pk to A;

– Queries. The adversary A adaptively makes a polynomial number of
queries:
For every � = 1 to q = poly(λ),

• The adversary A picks a program P� and gives it to the challenger;
• The challenger computes vk� ← ProbGen(sk,P�);
• The adversary A constructs a response (ρ̄�, π̄�) to the challenger;
• The challenger gives the output b� = Verify(sk, vk, (ρ̄�, π̄�)) to A.

– Forgery. The adversary A picks a program P∗ and gives it to the chal-
lenger. The challenger computes vk∗ ← ProbGen(sk,P∗). At last, A con-
structs a response (ρ̄∗, π̄∗) to the challenger.

– Output. The challenger computes (ρ∗, π∗) ← Compute(pk, P∗). The ad-
versary wins the security game if Verify(sk, vk, (ρ̄∗, π̄∗)) = 1 but ρ̄∗ �= ρ∗.

Fig. 1. Security game

scheme Π is correct if for any data m = (mi,j), any (sk, pk) ← KeyGen(1λ,m),
any program P, any vk ← ProbGen(sk,P) and any (ρ, π) ← Compute(pk,P), it
holds that Verify(sk, vk, (ρ, π)) = 1.

Security. This property requires that no malicious server can deceive the client
into accepting any incorrect results. Formally, the scheme Π is said to be secure
if any PPT adversary A wins with probability < neg(λ) in the security game of
Fig. 1.

Remarks: (1) In the Forgery phase the adversary A behaves just like it has
done in any one of the q queries. Without loss of generality, we can suppose
(P∗, ρ̄∗, π̄∗) = (P�∗ , ρ̄�∗ , π̄�∗) for some
∗ ∈ [q], i.e., A picks one of its q queries as
the final forgery. (2) In the literature, many VC schemes such as [2,11,14] are not
immune to the “rejection problem”: if the malicious server knows whether the
client has accepted or rejected its answer, then the algorithm KeyGen (requir-
ing heavy computation effort) must be run again to refresh both sk and pk;
otherwise, the VC scheme becomes no longer secure. In our security definition,
the adversary A is allowed to make a polynomial number of queries and learns
whether some adaptively chosen answers in each query will be accepted by the
client. Therefore, the BVC schemes secure under our definition will be immune to
the “rejection problem”. (3) Our definition of BVC is different from the VC [5] in
the sense that we neither consider the outsourced data as a function nor consider
the client’s input to ProbGen as an input from that function’s domain. In our
definition, the client’s input to ProbGen is a program P = (f, I) ∈ F × 2[N] that
specifies the computations of an admissible function f on the portion labeled by
I of every dataset. Clearly our definition captures more general scenarios than
[5]. In particular, the VC model of [5] can be captured by our BVC as below. Let
m(x) be the client’s function which will be delegated to the cloud server (e.g.,

Batch Verifiable Computation of Polynomials on Outsourced Data 177

m(x) may be a polynomial m1 + m2x + · · · + mNxN−1 in [5]); from our point of
view, the coefficients (m1, . . . ,mN) of the polynomial m(x) is a dataset; and fur-
thermore, any input α to the polynomial m(x) specifies a program P = (fα, [N]),
where fα(m1, . . . ,mN) = m(α). Therefore, the polynomial evaluations consid-
ered in [5] can be captured by some specific linear computations in our BVC
model. (4) In our BVC, the client’s verification requires the secret key sk. Thus,
our BVC schemes are privately verifiable. (5) A critical efficiency measure of the
BVC scheme in Definition 1 is to what extent the client’s verification requires less
computing time (resources) than the delegated computations. The client’s veri-
fication in [5,9,13,14,20,21] is efficient in the sense that it requires substantially
less time than performing the delegated computation. In our BVC, the client
performs verification by generating a verification key vk ← ProbGen(sk,P) and
then running the verification algorithm Verify(sk, vk, (ρ, π)). The client’s veri-
fication time is equal to the total time required for running both algorithms.
Let tP be the time required for computing the program P on the outsourced
data. We say that a BVC scheme is outsourceable if the client’s verification time
is of the order o(tP). In this paper, we shall construct BVC schemes that are
outsourceable.

2.2 A Lemma

In this section we present a lemma (Lemma 1) that underlies the security proofs
of our BVC schemes. Let λ be a security parameter. Let p be a λ-bit prime and
let Zp be the finite field of p elements. Let h ≥ 0 be an integer. We define an
equivalence relation ∼ over Z

h+1
p \ {0} as below: two vectors u,v ∈ Z

h+1
p \ {0}

are said to be equivalent if there exists ξ ∈ Zp \ {0} such that u = ξ · v. Let
Ωp,h = (Zh+1

p \ {0})/ ∼ be the set of all equivalence classes. We represent each
equivalence class with a vector in that class. Without loss of generality, we agree
that the representative of each class in Ωp,h is chosen such that its first non-zero
element is 1. For any u,v ∈ Ωp,h, we define u � v = 0 if the inner product of
u and v is equal to 0 modulo p and define u � v = 1 otherwise. The following
game models the malicious server’s attack in our BVC schemes.

GameV . Let A be any algorithm. Let V ⊆ Ωp,h and let q = poly(λ). In this
problem, a vector v∗ ← V is chosen and hidden from A; for i = 1 to q, A
adaptively picks a query ui ∈ Ωp,h and learns bi = ui � v∗ ∈ {0, 1}; A wins the
game if there exists an index i∗ ∈ [q] such that bi∗ = 0.

In Appendix A, we show the following technical lemma:

Lemma 1. Let p be a prime and let d, h, s > 0 be integers.

(1) Let A ⊆ Zp be a non-empty subset of Zp. Let Vup = {(1, a, . . . , ah) : a ∈ A}.
Then any adversary A wins in GameVup with probability ≤ hq/|A|.

(2) Let Vmp = {〈ai : wt(i) ≤ d〉 : a ∈ As+1}, where h =
(
s+1+d

d

) − 1. Then any
adversary A wins in GameVmp with probability ≤ dq/|A|.

178 L.F. Zhang and R. Safavi-Naini

3 Constructions

In this section we propose two BVC schemes for delegating polynomial compu-
tations on outsourced data. Our schemes use curves and planes to authenticate
the outsourced data, respectively.

3.1 The First Construction

Let p be a λ-bit prime and let F : K×{0, 1}∗ → Zp be a PRF with key space K,
domain {0, 1}∗ and range Zp. Let s > 0 be an integer. Let m = (mi,j) ∈ Z

N×s
p

be a matrix that models the client’s data. We consider 1, 2, . . . , s as elements of
Zp. Below is our first construction Π1.

– (sk, pk) ← KeyGen(1λ,m): Pick k ← K and a ← Zp \{0, 1, 2, . . . , s}. For every
i ∈ [N], compute the coefficients of a polynomial σi(x) = σi,1 +σi,2 ·x+ · · · +
σi,s · xs−1 + ti · xs such that σi(j) = mi,j for every j ∈ [s] and σi(a) = Fk(i).
This can be done by solving the following equation system

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 · · · 1
1 2 22 · · · 2s

...
...

... · · · ...
1 s s2 · · · ss

1 a a2 · · · as

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σi,1

σi,2

...
σi,s

ti

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

mi,1

mi,2

...
mi,s

Fk(i)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

for every i ∈ [N]. The algorithm outputs pk = (m, t) and sk = (k, a), where
t = (t1, . . . , tN).

– vk ← ProbGen(sk,P): Let P = (f, I) be a program, where f(x1, . . . , xn) is
a polynomial of degree d over Zp and I = {i1, . . . , in} ⊆ [N] specifies the
data elements on which f should be computed. This algorithm computes and
outputs a verification key vk = f(Fk(i1), . . . , Fk(in)).

– (ρ, π) ← Compute(pk,P): Let P = (f, I) be a program, where f(x1, . . . , xn)
is a polynomial of degree d over Zp and I = {i1, . . . , in} ⊆ [N] specifies
the data elements on which f should be computed. This algorithm computes
ρj = f(mi1,j , . . . ,min,j) for every j ∈ [s]. It solves the following equation
system ⎛

⎜
⎜
⎜
⎝

1 1 1 · · · 1
1 2 22 · · · 2s−1

...
...

... · · · ...
1 s s2 · · · ss−1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

σi,1

σi,2

...
σi,s

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

mi,1 − ti
mi,2 − 2sti

...
mi,s − ssti

⎞

⎟
⎟
⎟
⎠

(2)

to determine s coefficients σi,1, . . . , σi,s for every i ∈ I. Let σi(x) = σi,1 +
σi,2 · x + · · · + σi,s · xs−1 + ti · xs. This algorithm outputs ρ = (ρ1, . . . , ρs) and
π = f(σi1(x), . . . , σin(x)).

– {0, 1} ← Verify(sk, vk, (ρ, π)): This algorithm accepts ρ and outputs 1 only if
π(a) = vk and π(j) = ρj for every j ∈ [s].

Batch Verifiable Computation of Polynomials on Outsourced Data 179

It is easy to see Π1 is correct. In the full version we show that no PPT
adversary can win in the standard security game (Fig. 1) for Π1 except with
negligible probability. So we have

Theorem 1. If F is a secure PRF, then Π1 is a secure BVC scheme.

3.2 The Second Construction

Let p be a λ-bit prime and let F : K×{0, 1}∗ → Zp be a PRF with key space K,
domain {0, 1}∗ and range Zp. Let s > 0 be an integer. Let m = (mi,j) ∈ Z

N×s
p

be a matrix that models the client’s data. We consider 1, 2, . . . , s as elements of
Zp. Below is our second construction Π2.

– (sk, pk) ← KeyGen(1λ,m): Pick k ← K and a0, a1, . . . , as ← Z
∗
p; for every

i ∈ [N], compute

ti = a−1
0 (Fk(i) − a1 · mi,1 − · · · − as · mi,s). (3)

This algorithm outputs pk = (m, t) and sk = (k,a), where t = (t1, . . . , tN)
and a = (a0, a1, . . . , as).

– vk ← ProbGen(sk,P): Let P = (f, I) be a program, where f(x1, . . . , xn) is
a polynomial of degree d over Zp and I = {i1, . . . , in} ⊆ [N] specifies the
data elements on which f should be computed. This algorithm computes and
outputs a verification key vk = f(Fk(i1), . . . , Fk(in)).

– (ρ, π) ← Compute(pk,P): Let P = (f, I) be a program, where f(x1, . . . , xn)
is a polynomial of degree d over Zp and I = {i1, . . . , in} ⊆ [N] specifies the
data elements on which f should be computed. This algorithm computes ρj =
f(mi1,j , . . . ,min,j) for every j ∈ [s]. Let σi(y) = ti ·y0+mi,1 ·y1+ · · ·+mi,s ·ys

for every i ∈ I, where y = (y0, y1, . . . , ys). This algorithm outputs s results
ρ = (ρ1, . . . , ρs) and a proof π = f(σi1(y), . . . , σin(y)).

– Verify(sk, vk, (ρ, π)): This algorithm accepts ρ and outputs 1 only if π(a) = vk
and π(ej+1) = ρj for every j ∈ [s], where ej+1 ∈ Z

s+1
p is a 0–1 vector whose

j + 1st component is 1 and all other components are 0.

It is easy to see Π2 is correct. In the full version we show that no PPT adver-
sary can win the standard security game (Fig. 1) for Π2 except with negligible
probability. So we have

Theorem 2. If F is a secure PRF, then Π2 is a secure BVC scheme.

4 Analysis

In this section we analyze our BVC schemes and compare them with several
(naive) solutions based on the existing works [4,8].

Admissible Function Family. In both of our schemes the integer s is allowed
to be O(λ) to capture the scenario that a large enough number of datasets are

180 L.F. Zhang and R. Safavi-Naini

outsourced. In Π1 the cloud server’s computation consists of computing f on s
points, solving n equation systems of the form (2) and also computing a proof
π = f(σi1(x), . . . , σin(x)). On one hand, the first two computations are light for
the powerful server. On the other hand, computing the proof π involves some
symbolic computation and seems heavy. However, π is a univariate polynomial
of degree ≤ sd. So π can be interpolated given D = sd+1 evaluations of π, which
requires the computations of f on O(D) = O(ds) points. This work is acceptable
for the cloud server even if d = poly(λ). Therefore, Π1 allows the computation
of polynomials of degree d as high as a polynomial in the security parameter. In
Π2 the cloud server’s computation consists of computing f on s points and also
computing a proof π = f(σi1(y), . . . , σin(y)). On one hand, the first computation
is light for the powerful cloud server. On the other hand, computing the proof
π involves some symbolic computation. Note that f(x1, . . . , xn) is of degree d
and each of the (s+1)-variate polynomials σi1(y), . . . , σin(y) is of degree 1. The
cost required by computing π is roughly equal to that required by computing f
on (s + 1)d points. Furthermore, the server needs to send a representation of π
that consists of

(
s+1+d

d

)
field elements. If we allow s = O(λ), then degree d must

be restricted to O(1) such that the server’s computation and communication are
not too costly. So Π2 allows the computation of any O(1)-degree polynomials.
This admissible function family of O(1)-degree polynomials can be significantly
larger than the admissible function family of quadratic polynomials in [4].

Efficient Client Verification. Let P = (f, I) be a program, where
f(x1, . . . , xn) is a polynomial function and I = {i1, . . . , in} ⊆ [N]. Let (ρ, π)
be the results and proof generated by Compute. The verification complexity is
measured by the time complexity of running two algorithms: ProbGen(sk,P)
and Verify(sk, vk, (ρ, π)). In our schemes, the time complexity of running Verify
is independent of n. As we always consider large enough n, the verification com-
plexity in both of our schemes will be dominated by the time complexity of
running ProbGen(sk,P). This is the complexity of computing f on n pseudoran-
dom values Fk(i1), . . . , Fk(in) once. Note that this computation requires roughly
1/s times as much time as that required by the s delegated computations of f
on the outsourced data. Whenever s is large enough, the client’s verification
per each dataset uses substantially less time than computing f on each dataset.
Hence, our schemes are outsourceable.

Efficient Server Computation. In our schemes, the cloud server’s computa-
tion only involves PRF computations and polynomial evaluations over the finite
field Zp. Note that we never need any number-theoretic assumptions. As a result,
the size of the finite field Zp can be chosen as small as p ≈ 2128 when the secu-
rity parameter λ = 128. In particular, the PRF F in our both constructions can
be chosen as some heuristic PRFs such as AES block ciphers in practical imple-
mentations. In Sect. 4.3 we shall see that our server’s computation is significantly
more efficient than [4].

Efficient Server Storage. The storage overheads of our schemes are equal
to |pk|/|m|, where |pk| and |m| denote the numbers of field elements contained

Batch Verifiable Computation of Polynomials on Outsourced Data 181

in pk and m respectively. Recall that the number |pk|/|m| is always ≥ 1 and
our objective is making it as close to 1 as possible. It is trivial to see that
|pk|/|m| = (|m| + |t|)/|m| = (Ns + N)/Ns = 1 + 1/s in our schemes. Therefore,
the storage overheads of our schemes can be made arbitrarily close to 1 as long
as s is large enough.

Extending the Size of Datasets. In our schemes the client’s outsourced data
is a collection m = (mi,j)N×s of s datasets, each containing N elements. In
practice, the client may add new data elements to the outsourced datasets. Let
Π = Π1 or Π2. Let (pk, sk) be any public key and secret key generated by
Π.KeyGen(1λ,m). Note that pk takes the form (m, t = (t1, . . . , tN)), where ti is
a tag authenticating the elements (mi,1, . . . ,mi,s) for every i ∈ [N]. In particular,
the tag ti is computed using (1) when Π = Π1 and using (3) when Π = Π2,
respectively. Let N ′ = N + 1. To add s new elements (mN ′,1, . . . ,mN ′,s) to
the s datasets, the client can simply compute a tag tN ′ authenticating these
elements and instruct the cloud server to change pk = (m, t) to pk′ = (m′, t′),
where m′ = (mi,j)N ′×s and t′ = (t1, . . . , tN ′). In particular, when Π = Π1,
the tag tN ′ will computed by solving the equation system (1) for i = N ′; and
when Π = Π2, the tag tN ′ will be computed using the equation (3) for i = N ′.
Extending the size of all datasets in this way will never compromise the security
of the underlying schemes.

Extending the Number of Datasets in Π2. In practice, the client may also
want to extend the number of datasets. Let s′ = s + 1. We consider the scenario
of the client updating m to m′ = (mi,j)N×s′ , where (m1,s′ , . . . ,mN,s′) is a new
dataset. The general case for adding more than one new datasets can be done by
adding one after the other. In a naive way of updating m to m′, the client may
simply download pk = (m, t), verify the integrity of m and then run our schemes
on m′. However, this method will be quite inefficient when the size of m is large.
Here we show how the client in Π2 can authenticate m′ without downloading m.

Let F : K×{0, 1}∗ → Zp be the PRF and let sk = (k,a) ← K×(Z∗
p)

s+1 be the
secret key used to outsource m = (mi,j)N×s in Π2. Let pk = (m, t), where ti =
a−1
0 (Fk(i)−a1 ·mi,1 −· · ·−as ·mi,s) for every i ∈ [N]. Let (m1,s+1, . . . ,mN,s+1)

be a new dataset. To authenticate m′ = (mi,j)N×s′ , the client picks (k′, as+1) ←
K ×Z

∗
p, updates sk to sk′ = (k′,a′ = (a0, . . . , as, as+1)) and instructs the server

to change pk to pk′ = (m′, t′ = (t′1, . . . , t
′
N)), where t′i = a−1

0 (Fk′(i) − a1 · mi,1 −
· · · − as+1 · mi,s+1) = ti − a−1

0 · (Fk(i) − Fk′(i) + as+1 · mi,s+1). To do so, the
client only needs to send the new dataset (m1,s+1, . . . ,mN,s+1) together with
Δi = a−1

0 (Fk(i) − Fk′(i) + as+1 · mi,s+1), 1 ≤ i ≤ N, to the cloud server such
that the server can update ti to t′i by computing t′i = ti − Δi for every i ∈ [N].
All the other algorithms will be changed as below to work with (sk′, pk′):

– vk ← ProbGen(sk′,P): Let P = (f, I) be a program, where f(x1, . . . , xn) is a
polynomial of degree d over Zp and I = {i1, . . . , in} ⊆ [N] specifies on which
elements of each dataset f should be computed. This algorithm computes and
outputs a verification key vk = f(Fk′(i1), . . . , Fk′(in)).

182 L.F. Zhang and R. Safavi-Naini

– (ρ, π) ← Compute(pk′,P): Let P = (f, I) be a program, where f(x1, . . . , xn) is
a polynomial of degree d over Zp and I = {i1, . . . , in} ⊆ [N] specifies on which
elements of each dataset f should be computed. This algorithm computes
ρj = f(mi1,j , . . . ,min,j) for every j ∈ [s + 1]. Let σi(y) = t′i · y0 + mi,1 · y1 +
· · ·+mi,s·ys+mi,s+1·ys+1 for every i ∈ I, where y = (y0, y1, . . . , ys, ys+1). This
algorithm outputs ρ = (ρ1, . . . , ρs+1) and a proof π = f(σi1(y), . . . , σin(y)).

– Verify(sk′, vk, (ρ, π)): This algorithm accepts ρ and outputs 1 only if π(a′) =
vk and π(ej+1) = ρj for every j ∈ [s + 1].

We say that these modifications resulting in an extended scheme Π ′
2. It is trivial

to verify the correctness of Π ′
2. In the full version we show that no PPT adversary

can win a slight modification of the standard security game (Fig. 1) for Π ′
2 except

with negligible probability, where the modification means that the adversary is
allowed to know two tag vectors t and t′ instead of one.

Theorem 3. If F is a secure PRF, then Π ′
2 is a secure BVC scheme.

Composition. We now show that our BVC schemes allow composition and
the composed computations can be efficiently verified as well. Let Π = Π1

or Π2. Let m = (mi,j)N×s ∈ Z
N×s
p be a collection of s datasets. Let pk

and sk be any public key and secret key generated by Π.KeyGen(1λ,m). Let
P1 = (f1, I1), . . . ,Pn = (fn, In) be n programs, where fi ∈ F and Ii ⊆ [N].
Let vki = fi(〈Fk(j) : j ∈ Ii〉) be generated by Π.ProbGen(sk,Pi) for every
i ∈ [n]. Let ((ρi,1, . . . , ρi,s), πi) ← Π.Compute(pk,Pi) be the results and proof
generated by the computing algorithm. We can consider ρ = (ρi,�)n×s as a col-
lection of s new datasets and consider (ρ, {πi}n

i=1) as an encoding of ρ. Let
P = (f(x1, . . . , xn), I = [n]) be a program that defines a computation on ρ.

If Π = Π1, we have that sk = (k, a) ∈ K×(Zp\{0, 1, . . . , s}) and pk = (m, t).
Due to the correctness of Π1, we have that Verify(sk, vki, {ρi,�}�∈[s], πi) = 1 for
every i ∈ [n], that is, πi(1) = ρi,1, πi(2) = ρi,2, . . . , πi(s) = ρi,s and πi(a) = vki.
Below is the combing algorithm:

– ((ξ1, . . . , ξs), π) ← Comb(f, (ρi,�)n×s, {πi}i∈[n]): computes ξ� = f(ρ1,�, . . . ,
ρn,�) for every
 ∈ [s] and π = f(π1(x), . . . , πn(x)). Outputs ξ1, . . . , ξs and π.

If Π = Π2, we have that sk = (k,a) ∈ K × (Z∗
p)

s+1 and pk = (m, t). Due to
the correctness of Π2, we have Verify(sk, vki, {ρi,�}�∈[s], πi) = 1 for every i ∈ [n],
that is, πi(e2) = ρi,1, πi(e3) = ρi,2, . . . , πi(es+1) = ρi,s and πi(a) = vki. Below
is the combing algorithm:

– ((ξ1, . . . , ξs), π) ← Comb(f, (ρi,�)n×s, {πi}i∈[n]): computes ξ� = f(ρ1,�, . . . ,
ρn,�) for every
 ∈ [s] and π = f(π1(y), . . . , πn(y)). Outputs ξ1, . . . , ξs and π.

5 Concluding Remarks

We introduced a model for batch verifiable computation and constructed two
BVC schemes with attractive properties. Extending the first scheme to support

Batch Verifiable Computation of Polynomials on Outsourced Data 183

efficient outsourcing of new datasets, expanding the admissible function family
of the second scheme, and constructing publicly verifiable batch computation
schemes are interesting open problems that follow from this work.

Acknowledgement. Liang Feng Zhang’s research is currently supported by Shang-
haiTech University’s start-up funding (No. F-0203-15-001). This work was done when
the author was a postdoctoral fellow at the University of Calgary. Reihaneh Safavi-
Naini’s research is supported in part by Alberta Innovates Technology Futures, in the
Province of Alberta, Canada.

A Proof of Lemma 1

Our proof of Lemma 1 begins with the following lemma from [22].

Lemma 2 (Zhang and Safavi-Naini [22]). If there is a number 0 < ε < 1 such
that |{v ∈ V : u � v = 0}| ≤ ε · |V| for every u ∈ Ωp,h, then A wins in the
GameV with probability ≤ εq.

Example 1. Let A ⊆ Zp be a non-empty subset of Zp. Let Vup =
{(1, a, . . . , ah) : a ∈ A} ⊆ Ωp,h. For any u = (u0, u1, . . . , uh) ∈ Ωp,h and
v = (1, a, . . . , ah) ∈ Vup, u � v = 0 if and only if a is a root of the poly-
nomial u0 + u1x + · · · + uhxh. Note that any non-zero univariate polynomial
of degree ≤ h has ≤ h roots in Zp (and thus has ≤ h roots in A). For any
u ∈ Ωp,h, there are ≤ h elements v ∈ Vup such that u � v = 0. It follows that
ε � maxu

|{v∈Vup:u�v=0}|
|Vup| ≤ h

|A| .

Let s > 0 be an integer. Let Zp[y] be the ring of polynomials in y =
(y0, y1, . . . , ys) with coefficients from Zp. For any vector i = (i0, i1, . . . , is) of
non-negative integers, we denote yi = yi0

0 yi1
1 · · · yis

s . We define the weight of i to
be wt(i) = i0 + i1 + · · · + is. Then yi is a monomial of total degree wt(i).

Definition 2 (Hasse Derivative). For any polynomial P (y) ∈ Zp[y] and any
vector i = (i0, i1, . . . , is) of non-negative integers, the i-th Hasse Derivative of
P (y), denoted as P (i)(y), is the coefficient of wi in the polynomial P (y + w) ∈
Zp[y,w], where w = (w0, w1, . . . , ws).

Definition 3 (Multiplicity). For any polynomial P (y) ∈ Zp[y] and any point
a ∈ Z

s+1
p , the multiplicity of P at a, denoted as mult(P,a), is the largest inte-

ger M such that for any non-negative integer vector i = (i0, i1, . . . , is) with
wt(i) < M , we have P (i)(a) = 0 (if M may be taken arbitrarily large, then we
set mult(P,a) = ∞).

It is trivial to see that mult(P,a) ≥ 0 for any polynomial P (y) and any point
a. Furthermore, P (a) = 0 if and only if mult(P,a) ≥ 1. The following lemma is
from [12] and shows an interesting property of multiplicity.

Lemma 3. Let P (y) ∈ Zp[y] be any non-zero polynomial of total degree at most
d. Then for any finite set A ⊆ Zp, it holds that

∑
a∈As+1 mult(P,a) ≤ d · |A|s.

184 L.F. Zhang and R. Safavi-Naini

Let NA(P) be the number of roots of P (y) in the set As+1. Recall that any
root a ∈ Z

s+1
p of P (y) must satisfies the property that mult(P,a) ≥ 1. Then

NA(P) ≤ ∑
a∈As+1 mult(P,a). Lemma 3 in particular implies that NA(P) ≤

d·|A|s whenever P (y) has total degree at most d. As a generalization of Example
1, we have the following Example related to multivariate polynomials.

Example 2. Let Vmp = {〈ai : wt(i) ≤ d〉 : a ∈ As+1} ⊆ Ωp,h, where h =
(
s+1+d

d

) − 1. For any two vectors u = 〈ui : wt(i) ≤ d〉 ∈ Ωp,h and v = 〈ai :
wt(i) ≤ d〉 ∈ Vmp, u�v = 0 if and only if a is a root of the s-variate polynomial
P (y) =

∑
wt(i)≤d ui · yi. Note that |{v ∈ Vmp : u � v = 0}| = NA(P) ≤ d · |A|s

and |Vmp| = |A|s+1. Thus, ε � maxu
|{v∈Vmp:u�v=0}|

|Vmp| ≤ d
|A| .

Lemma 2 together with Examples 1 and 2 gives us the technical Lemma 1.

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

3. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium
on Security and Privacy (2012)

4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: 2013 ACM Conference on Computer and Communication
Security. ACM Press, November 2013

5. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012: Proceedings of the 3rd Symposium on Innovations in Theoretical Computer
Science (2012)

7. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

8. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013)

9. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol.
7785, pp. 680–699. Springer, Heidelberg (2013)

10. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

Batch Verifiable Computation of Polynomials on Outsourced Data 185

11. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010)

12. Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of multi-
plicities, with applications to kakeya sets and mergers. In: FOCS 2009, pp. 181–190
(2009)

13. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: 2012 ACM Conference on Computer
and Communication Security. ACM Press, October 2012

14. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

15. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

16. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

17. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

18. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press, May 2008

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

20. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013)

21. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

22. Zhang, L.F., Safavi-Naini, R.: Verifiable delegation of computations with storage-
verification trade-off. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I.
LNCS, vol. 8712, pp. 112–129. Springer, Heidelberg (2014)

CloudBI: Practical Privacy-Preserving
Outsourcing of Biometric Identification

in the Cloud

Qian Wang1, Shengshan Hu1, Kui Ren2, Meiqi He1, Minxin Du1,
and Zhibo Wang1(B)

1 State Key Lab of Software Engineering, School of CS, Wuhan University,
Wuhan, China

{qianwang,zbwang}@whu.edu.cn
2 Department of CSE, University at Buffalo, Suny, Buffalo, USA

kuiren@buffalo.edu

Abstract. Biometric identification has been incredibly useful in the law
enforcement to authenticate an individual’s identity and/or to figure
out who someone is, typically by scanning a database of records for a
close enough match. In this work, we investigate the privacy-preserving
biometric identification outsourcing problem, where the database owner
outsources both the large-scale encrypted database and the computation-
ally intensive identification job to the semi-honest cloud, relieving itself
from data storage and computation burden. We present new privacy-
preserving biometric identification protocols, which substantially reduce
the computation burden on the database owner. Our protocols build
on new biometric data encryption, distance-computation and match-
ing algorithms that novelly exploit inherent structures of biometric data
and properties of identification operations. A thorough security analysis
shows that our solutions are practically-secure, and the ultimate solu-
tion offers a higher level of privacy protection than the-state-of-the-art on
biometric identification outsourcing. We evaluate our protocols by imple-
menting an efficient privacy-preserving fingerprint-identification system,
showing that our protocols meet both the security and efficiency needs
well, and they are appropriate for use in various privacy-preserving bio-
metric identification applications.

Keywords: Biometric identification · Data outsourcing · Privacy ·
Cloud computing

1 Introduction

Biometric data, which include fingerprints, DNA, irises, voice patterns, palm-
prints, and facial patterns etc., are the measurable biological or behavioral char-
acteristics widely-used for identification of individuals [9]. Matching biometric
data or biometric identification has been incredibly useful in the law enforce-
ment to authenticate an individual’s identity and/or to figure out who someone
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 186–205, 2015.
DOI: 10.1007/978-3-319-24177-7 10

CloudBI: Practical Privacy-Preserving Outsourcing 187

is, typically by scanning a database of records for a good match. A typical bio-
metric identification system consists of a server-side database owner and users
who submit candidate biometric records to the database owner for profile iden-
tification. Formally, the database owner holds a large set of biometric records
D = 〈bi, pi〉mi=1, where bi denotes the biometric data corresponding to its iden-
tity profile pi. A user who has a candidate biometric record bc wants to learn the
target profile pi∗ for which bi∗ matches the query bc closely enough according
to a certain metric.

Nowadays with the increasing development and popularity of cloud comput-
ing, individuals, companies and governments are highly motivated to outsource
their data onto remote cloud servers to get rid of expensive local storage and
computation costs [14]. As far as the biometric identification system is concerned,
the database owner (e.g., the FBI is responsible for managing the national fin-
gerprint collection) may desire to outsource the extremely large size of biometric
data records to the cloud, readily enjoying the biometric data matching service
from the cloud service provider (e.g., Amazon). However, to protect the privacy
of sensitive biometric data, the database owner should encrypt the database
before outsourcing. Whenever a government agency (e.g., the FBI’s partner)
wants to authenticate an individual’s identity or to figure out who someone is
(by a fingerprint left on a murder weapon or a bomb, for example), he will turn
to the FBI and issue an identification query. After receiving the query from the
user, the FBI also generates the encrypted query, which allows the cloud server to
execute it over the encrypted database, i.e., scanning the encrypted database for
a close match. Now the challenging problem is how to enable privacy-preserving
biometric identification over the encrypted database while apparently relieving
the database owner of its high computation burden and relying on the cloud for
providing fast and reliable biometric identification service.

Privacy-preserving biometric identification has been extensively investigated
in the secure two-party computation model, where the database owner and the
user interactively execute the identification protocol without revealing the self-
biometric data information to each other [1,6,15,17]. These works, however,
either have efficiency issues (heavily rely on homomorphic encryption) [6] or
fail to support the computation of a global minimum [15], which limits their
applications. To enable efficient identification for a large-scale database, recently
Huang et al. [8] and Blanton et al. [3] proposed privacy-preserving biometric
identification protocols by combining both homomorphic encryption and garbled
circuits [12]. Still, the biometric identification problem is essentially formulated
as a secure two-party computation problem, their solutions cannot be directly
applied to the identification outsourcing model. This is because the semi-trusted
cloud server cannot know any private inputs/data except for the encrypted bio-
metric database in the outsourcing computation model. The direct extensions
of the above approaches, if applied to our model, (i) will lead to extremely high
communication overhead and (ii) cannot relieve the database owner of a high
computation burden, i.e., for each identification query, the database owner has

188 Q. Wang et al.

to traverse the database to compute the Euclidean distances without taking
advantage of the cloud for undertaking heavy computations.

Recently, the biometric identification problem has been explored in the out-
sourced environment [2,4]. In [2], its single-server solution is far from practical
for a large database while its multi-server solution requires that the database is
shared among (at least three) servers in a split form. In [4], the authors devel-
oped a new outsourceable approach that secures the database and the candidate
biometric. But it is assumed that two non-colluding servers cooperate to run the
protocol and one of them knows the secret key. Moreover, its protocol requires
frequent interactions between two servers which will lead to too much communi-
cation overhead. Another line of work similar to privacy-preserving identification
is the kNN search problem over the encrypted database. Most of them, however,
such as [16], considered the kNN problem in the two-party computation model.
In [19], the authors proposed a new “encryption” scheme that achieves privacy-
preserving outsourcing, but the scheme can be cracked when there exist collu-
sions between the cloud server and the user. As a following work, [5] proposed a
secure kNN query protocol which achieves a higher security level than [19]. But
it also assumes the cloud to be two non-colluding servers and has the same draw-
backs (i.e., leakage of key secret and low efficiency) as [4], due to the use of the
same techniques to compute Euclidean distance. The most similar work to ours
is the biometric identification scheme proposed by Yuan et al. [20], which also
considered the cloud-based identification outsourcing model. It appears that very
high identification efficiency can be obtained as compared to [8]. They claimed
their scheme is secure under the known-plaintext attack (KPA) model or even
the chosen-plaintext attack (CPA) model. We show that, however, the security
arguments given for their work do not hold, and the scheme can be completely
broken once we manipulate the ciphertexts to remove the introduced randomness
in the presence of collusion.

In this work, we, for the first time, identify the deficiencies and security
weaknesses of previous privacy-preserving biometric identification protocols in
the computation outsourcing model. We propose new schemes that support
privacy-preserving biometric identification outsourcing in cloud computing. Our
design is carefully tuned to meet the security and efficiency requirements under
a three-party outsourcing computation model, where one or two parties may
be semi-honest. We exploit inherent structures of biometric data and prop-
erties of biometric identification operations and use similarity transformation,
trace computation by eigenvalues, and triangular matrix to design effective bio-
metric data encryption algorithms (on the database owner side) while enabling
privacy-preserving and correct distance-computation and matching over
encrypted biometric data (on the cloud server side). Our main contributions
can be summarized as follows.

– We formulate the problem of privacy-preserving biometric data identification
outsourcing, establish a well-defined threat model by carefully characteriz-
ing attack-specific capabilities in various scenarios. We examine the state-of-
the-art solutions and show their insufficiencies and security weaknesses when

CloudBI: Practical Privacy-Preserving Outsourcing 189

Fig. 1. An overview of cloud-based biometric-matching system.

meeting the practical needs under the biometric identification outsourcing
model.

– We present a suite of privacy-preserving biometric identification protocols,
which achieve different levels of security strength and substantially reduce
the computation burden on the database owner side. Our protocols build
on new and secure biometric data encryption and matching algorithms that
novelly exploit inherent structures of biometric data and properties of biomet-
ric identification. A thorough security analysis shows that our solutions are
practically-secure in different attack models.

– We have implemented our protocols to build an efficient privacy-preserving
fingerprint-identification system. The system performance is carefully evalu-
ated for each phase of the protocol, in terms of preparation time, commu-
nication cost and identification time. Our protocols meet both the security
and efficiency needs well, and they are appropriate for use in various privacy-
preserving biometric identification applications.

2 Problem Formulation: Outsourcing Computation
of Biometric Identification

2.1 System Model and Assumptions

In our work, we consider a cloud-based biometric-matching system involving
three parties: the database owner, the user, the cloud server (as illustrated in
Fig. 1). In this application scenario, we assume a database owner holding a data-
base D that contains a collection of biometric data 〈bi〉mi=1 (e.g., fingerprints,
voice patterns, palmprints, and facial patterns etc.), which are associated with
certain profile information 〈pi〉mi=1 (e.g., name, age and criminal record etc.).
Before outsouring D to the remote cloud server, the database owner first pre-
processes D to generate its encrypted form C and sends it to the cloud for storage.
With a candidate biometric image, a user first locally derives its corresponding
feature vector and sends the identification query to the database owner. After
receiving the query, the database server generates an encrypted query and sends

190 Q. Wang et al.

it to the cloud server. Subsequently, the cloud server executes the encrypted
identification query over the encrypted database C and finally returns all the
candidate matching results (i.e., hitting encrypted FingerCodes and profiles)
to the database owner. Finally, the database owner filters the results based on
certain similarity threshold and compute the final output for the user.

More specifically, we assume that both the database owner’s biometric data
and the user’s candidate biometric reading (e.g., fingerprint images) have been
processed such that the representations are suitable for biometric matching, i.e.,
each raw biometric image is pre-processed by some widely-used feature extraction
algorithms. Without loss of generality, we follow [8,20] and target fingerprint
identification using FingerCodes [10] in our work. In our system, a FingerCode
of a fingerprint consists of n elements with size l-bit (typically n = 640 and
l = 8). For two FingerCodes x = (x1, . . . , xn) and y = (y1, . . . , yn), they are
considered a good match if the Euclidean distance between them is below a pre-
defined threshold ε, which means that the fingerprints can be considered good
candidates from the same person if

‖x − y‖ < ε. (1)

Therefore, the process of identifying a candidate (encrypted) fingerprint and
its corresponding profile from a (encrypted) database of fingerprints can be
divided into three steps: secure Euclidian-distance computation, top-matching
fingerprint determination and result filtering and retrieval. The first and the
second steps are executed on the cloud server side, and the third step is exe-
cuted on the database owner side.

In the cloud-based biometric identification system, the encrypted database
and the time-consuming biometric identification tasks are outsourced to the
cloud. The system is expected to provide privacy-preserving biometric identifi-
cation without disclosing any information about the database owner’s biometric
data to the cloud server and/or the user, and without disclosing any information
about the user’s biometric data (i.e., query feature vectors) to the cloud (if no
collusion exists between the cloud server and the user). We assume the cloud
server and the user are semi-trusted, i.e., they will execute the protocol as spec-
ified but may try to learn additional information from the encrypted biometric
data and all the intermediate results generated during the protocol execution.
In particular, under certain circumstances, we assume that the cloud server and
the user may collude with each other and try to uncover the encrypted database.

2.2 Threat Model

In our model, we assume that the adversary knows the encryption scheme except
the secret key. From a practical point of view, real-life adversaries have different
level of background information and capabilities. To this end, we carefully define
the threat model and characterize the attack-specific capabilities of adversary
in three different scenarios. The Attack Scenario 1 reflects the very practical
case. In the Attack Scenario 2, the cloud server knows a set of plaintexts of the

CloudBI: Practical Privacy-Preserving Outsourcing 191

database but he does not know the corresponding encrypted values. In the Attack
Scenario 3, the cloud server may collude with the user. Obviously, attackers in
Attack Scenario 2 and Attack Scenario 3 are more powerful than that in Attack
Scenario 1, but there is no higher or lower form of security level between Scenario
2 and Scenario 3.

Attack Scenario 1: The cloud server is semi-trusted and can be seen as the
adversary. It observes only the encrypted database C and all encrypted biometric
identification queries. This model is similar to the well-known ciphertext-only
attack (COA) model [11] used in the security evaluation of data encryption
protocols. In practice, there are applications only accessed by secluded users but
others can hardly observe any information other than the encrypted data.

Attack Scenario 2: On the basis of Attack Scenario 1, we assume that the adver-
sary has some samples of the database in plaintext but he does not know the
corresponding encrypted values. This corresponds to the known-sample attack in
database literature [13]. For example, the attacker observes the encrypted data-
base and some of his sources are clients who have been collected fingerprints
by the government, it then knows the values of several records in the plaintext
database.

Attack Scenario 3: On the basis of Attack Scenario 1, we assume that the
cloud server and the user may collude with each other. Thus, in addition to the
encrypted biometric database the adversary can arbitrarily choose the user’s bio-
metric identification query of interest for encryption and execute the encrypted
query over C. Considering this attack model is also necessary in some application
cases. For example, it is possible for the cloud service provider to act as a user
to submit fingerprint information for identification, so it can observe and even
control the content of users’ candidate FingerCode.

Definition 1. A biometric identification outsourcing scheme is secure under
Attack Scenario α (α ∈ {1, 2, 3}) if no adversary can learn any other information
from the encrypted biometric database C and the encrypted identification queries
besides what it has already known.

Remarks. The above security definition takes both collusion and no-collusion
cases into account. The cloud server can observe the encrypted biometric data-
base and the encrypted identification queries. It should be noted that if a scheme
is secure under both Attack Scenario 2 and Attack Scenario 3, it does not mean
that the cloud server can both collude with the user and simultaneously observe
some plaintexts of the database. This attack is too strong that as far as we
know there exist no effective schemes that can defend against this sophisticated
attack. In the following discussion, we show that our scheme achieves a well
balance between efficiency and security requirements.

192 Q. Wang et al.

3 Privacy-Preserving Biometric Identification:
An Examination of the State-of-the-Art

In this section, we provide an examination of two most closely-related works,
which reflect the most recent progress and results in privacy-preserving biometric
identification. A careful analysis of these solutions (in terms of both the model
and the security strength) motivates us to seek new solutions.

3.1 The Biometric Identification Scheme of Huang et al.

Huang et al. [8] explored the privacy-preserving biometric identification problem
in the secure two-party computation model, where the database owner holds
the biometric database locally, and the database owner and the user carry the
burden of expensive identification jobs. This is completely different from our
outsourcing computation model, where we propose to take full advantage of cloud
to take away the burden of storing, maintaining and performing computations
over the extremely large database (e.g., billions of biometric data and profiles).
In particular, the biometric identification outsourcing model assumes the semi-
trusted cloud server and users, from which the privacy of biometric database
should be protected while enabling effective identification over the encrypted
database. This makes the privacy-preserving biometric identification approach
in [8] unsuitable for our application model.

Firstly, as reported from the experiment in [8], for a biometric database
with one million FingerCodes (a vector of 16 8-bit integers), the corresponding
profile size (including photos and other personal information) is around 2 TB
(assuming each profile is 2 MB approximately). By using a local machine with
an Intel Xeon CPU running at 2.0 GHz and a memory of 4 GB as the database
owner, it then requires 1.88 h to run the protocol for each identification query
(besides the preparation time of more than 100 h). When the database expands
to 1 billion FingerCodes with 2000 TB profiles (the setting is also practical in
the real world), the identification time that linearly increases with the database
size will be about 78 days. This is apparently unbearable for both the database
owner and the user.

Secondly, the entire encrypted biometric database should be transmitted to
the user for each identification query, which leads to extremely large communi-
cation overhead. For a database of size 5 GB (including the encrypted profiles),
according to the experimental results in [8], it will take about 3.5 GB band-
width to complete the transmission when 100 queries are arriving simultane-
ously. Finally, we show that even if there is a powerful semi-trusted cloud server
the database owner can cooperate with, Huang et al.’s [8] encryption method is
still not applicable in the outsourcing computation model due to its ineffective
use of cloud. Specifically speaking, in the Euclidean-Distance Protocol of [8], the
squared Euclidean distance di between vi (one of the vectors in the database)
and v′ (candidate vector) is computed as follows

CloudBI: Practical Privacy-Preserving Outsourcing 193

di =||vi − v′||2 =
N∑

j=1

(vi,j − v′
j)

2

=
N∑

j=1

v2
i,j +

N∑

j=1

(−2vi,jv
′
j) +

N∑

j=1

v′2
j .

Let Si,1 =
∑N

j=1 v2
i,j , Si,2 =

∑N
j=1(−2vi,jv

′
j) and Si,3 =

∑N
j=1 v′2

j . Obviously,
the encrypted Si,1, denoted by [Si,1], can be outsourced to the cloud server for
storage space savings and free of data maintenance. By homomorphic encryption,
we have

[Si,2] = [
N∑

j=1

(−2vi,jv
′
j)] =

N∏

j=1

[−2vi,j]v
′
j . (2)

Then, the database owner can outsource [−2vi,j] for 1 ≤ j ≤ N and 1 ≤ i ≤ M
to the cloud, where M denotes the database size. These are one-time executions
and can be done in the preparation phase. However, when the database owner
receives the plaintext identificatrion query v′ from the user, he has to download
all [−2vi,j] from the cloud server because v′ appears in the plaintext form in
the computation of [Si,2] (as shown in Eq. (2)) and cannot be encrypted and
outsourced to the cloud. Then the database owner has to traverse the database
to compute [Si,2] for each 1 ≤ i ≤ M according to Eq. (2). It is obvious that the
cloud server cannot free the database owner from the burden of heavy computa-
tions. Therefore, we claim that Huang et al. scheme cannot be directly extended
to our biometric identification outsourcing model.

3.2 The Biometric Identification Scheme of Yuan et al.

Yuan et al. [20] investigated the biometric identification outsourcing problem
under the same system model as ours, and they claimed that their scheme is
highly efficient and secure under the chosen message attack model. Roughly, their
main idea is to encrypt each extended FingerCode by multiplying randomly-
selected matrices and exploit properties embedded in these matrices for Euclidian
distance computations. Yuan et al. claimed their scheme is resilient to the Attack
Scenario 3 when the unknowns (associated with the secret keys and data) are
less than the system of equations built by the adversary. However, we show that
this is not the case at all!

We first describe their scheme in further detail. Let the i-th (i ∈ [1,m])
fingerprint in the database be a n-dimensional feature vector, the database owner
generates its FingerCode as bi = [bi1, bi2, . . . , bin], where bik (k ∈ [1, n]) is an
8-bit integer. To facilitate identification, each feature vector is extended to Bi =
[bi1, bi2, . . . , bin, bi(n+1)], where bi(n+1) = − 1

2 (b2i1 + b2i2 + . . . + b2in). Then, Bi is
used to generate matrix B′

i as

B′
i =

⎛

⎜
⎜
⎜
⎝

bi1 0 . . . 0
0 bi2 . . . 0
...

... · · · ...
0 . . . 0 bi(n+1)

⎞

⎟
⎟
⎟
⎠

. (3)

194 Q. Wang et al.

The database owner randomly generates two (n + 1)-dimensional vectors H =
[h1, h2, . . . , hn+1] and R = [r1, r2, . . . , rn+1], and it also randomly generates three
(n + 1) × (n + 1) invertible matrices M1,M2 and M3 as secret keys. For each
B′

i, a random (n + 1) × (n + 1) matrix Ai is generated to hide B′
i by

Di = AT
i B

′
i, (4)

where Aik = [aik1, aik2, . . . , aik(n+1)] is the row vector of Ai (k ∈ [1, n + 1]). It
has the property HAT

ik =
∑n+1

j=1 hjaikj = 1. This implies

HAT
i = (1, 1, . . . , 1). (5)

The database owner further encrypts H, R and Di with M1, M2 and M3 as

Ci = M1DiM2,

CH = HM−1
1 , (6)

CR = M−1
3 RT .

After encryption, a Index Ii is built for each FingerCode 〈bi,Ci〉. Finally,
(Ii,Ci,CH,CR) is uploaded to the cloud.

When the user has a candidate fingerprint to be identified, it extends its
corresponding FingerCode bc = [bc1, bc2, . . . , bcn] to a (n+1)-dimensional vector
Bc = [bc1, bc2, . . . , bcn, 1]. Then Bc is transferred to B′

c as in Eq. (3). Finally, the
database owner disguises B′

c by multiplying a (n+1)×(n+1) random matrix Ec

Fc = B′
cEc,

where Eck = [eck1, eck2, . . . , eck(n+1)] (k ∈ [1, n + 1]). Similar to Aik, it also
has the property EckRT =

∑n+1
j=1 rjeckj = 1, which implies that EcRT =

(1, 1, . . . , 1)T . The database owner further blinds Fc with secret keys M2 and
M3 to generate the encrypted identification query CF as

CF = M−1
2 FcM3.

Then, CF is submitted to the cloud for identification. Finally, on receiving CF,
the cloud server compares Euclidean distance between bi and bc by computing
Pi = CHCiCFCR (We eliminate other details since they are irrelevant for the
attacks we will describe).

In the following analysis, we show that there exist inherent flaws in the above
design. The cloud server can exploit these flaws to figure out M2, and further
to recover the database owner’s FingerCodes bi or Bi (i = 1, . . . ,m).

Our attacks rely on the knowledge of a set of plaintext-ciphertext pairs
(Bi,Ci), i.e., the known-plaintext attack model. Yuan et al. [20] even claimed
that a number of users can collude with the cloud server to choose arbitrary
plaintexts of candidate queries and obtain the corresponding ciphertexts (i.e.,
the known-candidate attack defined in [20]). However, we show this is not true.

CloudBI: Practical Privacy-Preserving Outsourcing 195

Attack on the Encrypted Biometric Database by Eliminating Ran-
domness. See AppendixA.

Attack on the Encrypted Biometric Database by Exploiting Euclidian
Distance Results. See AppendixB.

4 Our Construction: The New and Improved Solutions

In this work, our ultimate goal is to enable privacy-preserving biometric iden-
tification of the encrypted biometric database stored in the cloud, finding the
top matching identities for users. We have the following specifical goals. First,
correctness, i.e., the correctness of the identification results should be guaran-
teed. Second, privacy assurance, i.e., the privacy of biometric data should be
protected from the adversary. Third, efficiency, i.e., the computation efficiency
of the privacy-preserving biometric identification protocol should be practically
high.

Keep the above design goals in mind, in this section we first present a cloud-
based privacy-preserving biometric matching scheme secure under the Attack
Scenario 2. We named this basic scheme as CloudBI-I. Then, we propose an
enhanced version named CloudBI-II, which achieves security under both the
Attack Scenario 2 and Attack Scenario 3 and show how it effectively avoids
flaws of [20].

4.1 CloudBI-I: The Basic Scheme

Database Encryption Phase. The database owner pre-processes each finger-
print image for which a feature vector FingerCode bi is generated. For each n-
dimensional FingerCode bi = [bi1, bi2, . . . , bin] (bi ∈ 〈bi〉mi=1 and typically n =
640), it is extended to a (n+2)-dimensional vectorBi = [bi1, bi2, . . . , bin, bi(n+1), 1],
where bi(n+1) = − 1

2 (b2i1+b2i2+. . .+b2in). ThenBi is transferred to a (n+2)×(n+2)
matrixB′

i with the similar form in Eq. (3). To encrypt the biometric data, the data-
base owner randomly generates two (n + 2) × (n + 2) invertible matrices M1 and
M2. Then for each B′

i, it computes

Ci = M1B′
iM2

Given a security parameter k, call sk ← SKE.KeyGen(1k, r), where r is a random
number and SKE is a PCPA-secure symmetric encryption scheme. Let cp ←
Enc(sk,p), where p = 〈pi〉mi=1 is the set of profiles.

After encryption, the tuple 〈Ci, cpi
〉mi=1 is uploaded to the cloud.

Biometric Data Matching Phase. The user has a candidate fingerprint
(image) to be identified. To this end, it sends the corresponding FingerCode
bc = [bc1, bc2, . . . , bcn] to the database owner, who will extend the FingerCode

196 Q. Wang et al.

to Bc = [bc1, bc2, . . . , bcn, 1, rc], where rc is a random value generated by the
database owner. Note that rc is chosen independently for each bc. Similarly, Bc

is extended to the matrix B′
c with the form in Eq. (3). To encrypt the identifi-

cation query, the database server computes

CF = M−1
2 B′

cM
−1
1 .

The encrypted query CF is then sent to the cloud server for identification.
To compare the Euclidean distances between each encrypted FingerCode Ci

(i = 1, . . . ,m) and CF, the cloud server first computes

Pi = CiCF = M1B′
iB

′
cM

−1
1 .

Then the cloud server computes the eigenvalues of Pi, denoted by λj (j =
1, . . . , n + 2), by solving the equations |λI(n+2) − Pi| = 0, where I(n+2) is the
(n + 2) × (n + 2) identity matrix. Let Ti denote the trace of Pi, we have

Ti = tr(Pi) =
n+2∑

j=1

λj .

Finally, the cloud server only needs to rank Ti (i = 1, . . . ,m) to find out the
minimum k traces or the minimum one (i.e., k = 1). For ease of exposition,
we consider the k = 1 case in the following discussion. Assume Ci∗ is the
encrypted biometric data that achieves the minimum, and its corresponding
profile is denoted by pi∗ . Finally, the cloud server sends (Ci∗ , cpi∗) back to the
database owner.

Result Filtering and Retrieval Phase. After receiving (Ci∗ , cpi∗), the data-
base owner decrypts Ci∗ to have B′

i∗ = M−1
1 Ci∗M−1

2 . Then it transform B′
i∗ to

Bi∗ and the plaintext FingerCode bi∗ . Finally, it computes the actual Euclid-
ean distance between bi∗ and bc. By checking ‖bi∗ − bc‖ < ε, the database
owner decrypts cpi∗ to have pi∗ and sends it to the user if it holds. Otherwise,
it outputs ⊥.

Correctness Analysis. In linear algebra, the transformation B′
iB

′
c 	→ M1

(B′
iB

′
c)M

−1
1 is called a similarity transformation. Based on the properties of

similar matrices, the trace is similarity-invariant, which means that two similar
matrices have the same trace, i.e., tr(Pi) = tr(B′

iB
′
c). We now compute the trace

of B′
iB

′
c, denoted by tr(B′

iB
′
c). As can be seen, B′

iB
′
c has the following structure

B′
iB

′
c =

⎛

⎜
⎝

bi1bc1 0 0 ... 0 0
0 bi2bc2 0 ... 0 0
...
0 ... 0 binbcn 0 0
0 0 ... 0 −0.5

∑n
j=1b

2
ij 0

0 0 ... 0 0 rc

⎞

⎟
⎠ . (7)

CloudBI: Practical Privacy-Preserving Outsourcing 197

By the definition of trace and similarity-invariance property we have

Ti = tr(B′
iB

′
c) =

n∑

j=1

bijbcj − 0.5
n∑

j=1

b2ij + rc. (8)

Let distic and distzc denote the Euclidean distance between FingerCode bi and
query bc, the Euclidean distance between FingerCode bz and query bc, respec-
tively. Then we have

dist2ic − dist2zc =
n∑

j=1

(bij − bcj)2 −
n∑

j=1

(bzj − bcj)2.

We expand the above expression and re-arrange them to have

dist2ic − dist2zc = 2(
n∑

j=1

bzjbcj − 0.5
n∑

j=1

b2zj + rc)

− 2(
n∑

j=1

bijbcj − 0.5
n∑

j=1

b2ij + rc) (9)

= 2(tr(B′
zB

′
c) − tr(B′

iB
′
c))

= 2(Tz − Ti)

Based on Eq. (9), the cloud server can determine distic ≥ distzc if Tz ≥ Ti; oth-
erwise distzc < distic. After repeating this checking process for all the encrypted
FingerCode Ci’s, the cloud server is able to find out bi∗ (in encrypted form)
that has the minimum distance to bc (in encrypted form).

Security Analysis

Theorem 1. Our CloudBI-I scheme is secure under the Attack Scenario 2.

Proof. Due to the space limitation, please refer to our technical report [18] for
the full proof.

4.2 CloudBI-II: The Enhanced Scheme

In the previous section, we have proved that CloudBI-I is secure under the Attack
Scenario 2. However, it can be broken under the Attack Scenario 3. Specifically,
in the equation Pi = CiCF = M1B′

iB
′
cM

−1
1 , as B′

iB
′
c is a diagonal matrix and

the eigenvalues of a diagonal matrix is equal to its main diagonal elements, the
cloud server can establish equation λj = bijbcj . When there exists the collusion
between the cloud server and the user, which means bcj can be obtained by the
cloud server, it then can work out bij and thus get all Bi’s. Therefore CloudBI-I is
not secure under Attack Scenario 3. Besides, some approximate information may
be leaked to the adversary. For example, an attacker may formulate a system of

198 Q. Wang et al.

equations as a simultaneous Diophantine approximate problem [7] and will find
some approximate values corresponding to q′

11 and p′
1k (k = 1, . . . , n+2). To solve

the above problems and achieve higher security strength, we further propose an
improved privacy-preserving biometric identification outsourcing scheme. The
main idea of the enhanced scheme is to introduce more randomness in the encryp-
tions of the biometric data and the biometric identification query. Consequently,
it is impossible to derive any information about M1 and M2.

The key difference between CloudBI-II and CloudBI-I is that the database
owner will multiply B′

i and B′
c each by an additional random triangular matrix

during the encryption process. In the database encryption phase, for each B′
i

(i = 1, . . . ,m), the database owner encrypts it as

Ci = M1QiB
′
iM2,

where Qi is a randomly-generated lower triangular matrix with diagonal entries
set to 1.

In the biometric data matching phase, for each identification query Bc the
database owner randomly generates a lower triangular matrix Qc with diagonal
entries set to 1, and it encrypts the plaintext query as

CF = M−1
2 B′

cQcM
−1
1 .

The remaining operations for the result filtering and retrieval phase are the same
as the basic scheme.

Correctness Analysis. We show that the new probabilistic encryption algo-
rithm will not affect the correctness of the final results. After receiving Ci and
CF, the cloud server computes

Pi = CiCF = M1QiB
′
iM2M−1

2 B′
cQcM

−1
1

= M1QiB
′
iB

′
cQcM

−1
1 .

Due to the property of similarity transformation, Ti = tr(Pi) = tr(QiB
′
iB

′
cQc).

In linear algebra, the product of a diagonal matrix and a lower triangular matrix
is also lower triangular. Thus, we have

QiB
′
i =

⎛

⎜
⎜
⎝

bi1 0 0 ... 0 0
t21 bi2 0 ... 0 0
...
tn1 ... tn(n−1) bin 0 0

t(n+1)1 t(n+1)2 ... t(n+1)n − 1
2

∑n
j=1b

2
ij 0

t(n+2)1 t(n+2)2 ... t(n+2)n t(n+2)(n+1) 1

⎞

⎟
⎟
⎠ , (10)

where tij are random values. It shows that the multiplication of B′
i by Qi does

not change its main diagonal entries.
Following the same reason, the multiplication of B′

iB
′
c by Qi and Qc respec-

tively will not change the main diagonal entries of B′
iB

′
c (as shown in Eq. (7)).

It indicates that tr(QiB
′
iB

′
cQc) is also equal to

∑n
j=1 bijbcj − 0.5

∑n
j=1 b2ij + rc.

Thus, Eq. (9) still holds. So, the cloud server can return the target (Ci∗ , cpi∗)
to the database owner.

CloudBI: Practical Privacy-Preserving Outsourcing 199

Table 1. A summary of complexity costs. Here, m denotes the number of
〈FingerCode, profile〉 pairs in the database; k denotes the number of closest finger-
prints required to be returned, e.g., k = 1 if the closest one is returned; n � m.

Phases Yuan et al.
scheme [20]

CloudBI-I CloudBI-II

Comp. Database owner Prep. O(mn3) O(mn3) O(mn3)

Iden. O(n3) O(n3) O(n3)

Retr. O(n) O(n) O(n)

User Iden.

Cloud server Iden. O(mn2 +
m logm)

O(mn3 +
m logm)

O(mn3 +
m logm)

Comm. Database owner Prep. O(mn2) O(mn2) O(mn2)

Iden. O(n2) O(n2) O(n2)

Retr. O(k) O(k) O(k)

User Iden. O(1) O(1) O(1)

Cloud server Iden. / / /

Retr. O(k) O(k) O(k)

Security Attack Scenario 2 Yes Yes Yes

Attack Scenario 3 No No Yes

Security Analysis. Apparently, the multiplication of random matrices will not
compromise the security of CloudBI-I, thus the enhanced scheme CloudBI-II is
also secure under the Attack Scenario 2. For the Attack Scenario 3, we have the
following theorem.

Theorem 2. Our CloudBI-II scheme is secure under the Attack Scenario 3.

Proof. Due to the space limitation, please refer to our technical report [18] for
the full proof.

Remarks. By the introduction of random matrices Qi and Qc, CloudBI-II makes
it impossible for the adversary to apply simultaneous Diophantine approxima-
tion attack. Specifically, according to CloudBI-II, all the relevant equations that
involves p11 can be listed by the adversary are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p11q11 + t21p12q11, . . . + t(n+2)1p1(n+2)q11 = Ci1(11)

p11q12 + t21p12q12, . . . + t(n+2)1p1(n+2)q12 = Ci1(12)

. . .

p11q1(n+2) + t21p12q1(n+2), . . . + t(n+2)1p1(n+2)q1(n+2)

= Ci1(1(n+2)).

(11)

However, in Eq. (11), there are n + 2 equations with 3n + 5 unknowns in total
such that p11 cannot be determined or even approximately solved.

200 Q. Wang et al.

5 Implementation and Evaluation

We evaluate the performance of our protocols by implementing a privacy-
preserving fingerprint identification system. We set up the cloud with 1000 nodes,
each with an Intel Core i5-4440M 2.80 GHz CPU and 16 GB memory. We set up
the database owner on a separate machine with the same hardware configuration.
We randomly generate 640-entry vectors to construct the FingerCode database
following [8,20], and the database size ranges from one million to ten million
〈FingerCode, profile〉 pairs. We also randomly select a sequence of feature vec-
tors as the query FingerCodes.

5.1 Complexity Analysis

Before delveing into the experimental results, we first provide an overview of the
complexity of the privacy-preserving fingerprint identification execution on all
three participating parties, in terms of computation and communication over-
heads. Table 1 summarizes the complexities for our system (including CloudBI-I
and CloudBI-II) and for the biometric identification system proposed in [20].
Here, we eliminate the discussion of Huang et al. [8], who essentially consid-
ered the two-party secure computation model (see Sect. 3.1 for further details of
its extension to the computation outsourcing model). The preparation phase, the
identification phase and the retrieval phase are corresponding to the three phases
(as described before) during the protocol execution. Note that, we assume each
matrix multiplication has time complexity of O(n3), where n is the dimension
of a FingerCode. O(m log m) is the sorting cost of fuzzy Euclidian distances.
It is worth noting that although the computation and communication complex-
ities grow linearly with the database size, these are one-time costs that will
not influence the real-time performance of the biometric identification process.
Our system focuses on outsourcing of the storage and computation workloads
to the cloud for utilizing its high storage and computation capacity. In practice,
our privacy-preserving fingerprint identification protocol allows the identifica-
tion process to be performed in parallel on multiple cloud instances, which can
ensure the efficiency of the identification process even with a very large-scale
fingerprint database.

5.2 Experimental Evaluation

Preparation Phase. Figure 2 shows the time cost and the bandwidth cost in the
preparation phase. Note that, both costs are one-time startup costs. Not surpris-
ingly, the database encryption time and the communication cost for outsourcing
to the cloud increase linearly with the database size (i.e., the number of Fin-
gerCodes contained in the database). The experimental results conform to the
theoretical results in Table 1, which shows that CloudBI-I and CloudBI-II have
the same computation complexity with [20]. As CloudBI-I has less matrix mul-
tiplication operations than [20], it can save about 33 % time cost for biometric
database encryption. The bandwidth consumptions of three schemes, as shown

CloudBI: Practical Privacy-Preserving Outsourcing 201

1e6 2e6 3e6 4e6 5e6 6e6 7e6 8e6 9e6 1e7
0

20

40

60

80

100

Database size (# of FingerCodes)

Pr
ep

ar
at

io
n

tim
e

(h
)

Preparation phase: database encryption

CloudBI−I
CloudBI−II
Yuan et al.’s scheme

(a)

1e6 2e6 3e6 4e6 5e6 6e6 7e6 8e6 9e6 1e7
0

500

1000

1500

2000

2500

3000

3500

4000

Database size (# of FingerCodes)

B
an

dw
id

th
 c

os
t (

G
B

)

Preparation phase: encrypted database outsourcing

CloudBI−I
CloudBI−II
Yuan et al.’s scheme

(b)

Fig. 2. Preparation phase: (a) Time costs for different sizes of database; (b) Bandwidth
costs for different sizes of database.

in Fig. 2(b), are almost the same. As suggested in practical applications, hard
disks can be used to drive the outsourced encrypted data transmission services
offered by cloud service provider (e.g., Amazon) to save bandwidth consumption.

Identification Phase. Figure 3 shows the time cost and the bandwidth cost
in the identification phase. As demonstrated in Fig. 3(a), for a single query,
with the increase of database size, the biometric data matching time of our
schemes and [20] are linear functions of the database size. In the identification
phase, the computation cost of [20] are far less than CloudBI-II (i.e., mn2 vs.
mn3). However, we emphasize that Yuan et al. [20] have not noticed that sub-
stantial security is sacrificed for achieving such fast computation of Pi in [20],
where matrix multiplications are transformed to vector-matrix multiplications.
As discussed in Sect. 3.2, we launch successful attacks on [20] by leveraging this
weakness (see Eq. (12)). For bandwidth consumption of a single query, the cost
is constant (e.g., 400 KB in our experimental setting) as shown in Fig. 3(b). In
our system, a query request can be processed in parallel on the cloud side. A
set of computing instances in the cloud can be used to handle biometric data
matching on distinct small portions of database in parallel, and each of them
can find out a candidate result. Finally, by comparing these candidate results,
a cloud instance can figure out the final result. If simultaneous queries come,
as shown in Fig. 4(a), the identification time increases linearly with the num-
ber of queries without putting additional workload. The above results clearly
validate the scalability of our cloud-based privacy-preserving biometric identifi-
cation system. To demonstrate the computation savings on the database owner,
we show the comparison of time costs of biometric identification on the data-
base owner with and without identification outsourcing in Fig. 4(b). As can be
seen, our schemes achieves constant time cost on the database owner, while the
time cost of performing identification locally (over plaintext biometric database
without outsourcing) increases linearly with the database size. The larger the
database size (e.g., with 10 million FingerCodes) is, the higher efficiency gain
can be achieved.

202 Q. Wang et al.

1e6 2e6 3e6 4e6 5e6 6e6 7e6 8e6 9e6 1e7
0

20

40

60

80

100

Database size (# of FingerCodes)

Id
en

tif
ic

at
io

n
tim

e
(s

)

Identification phase: biometric data matching

CloudBI−I
CloudBI−II
Yuan et al.’s scheme

(a)

1e6 2e6 3e6 4e6 5e6 6e6 7e6 8e6 9e6 1e7
0

0.1

0.2

0.3

0.4

0.5

Database size (# of FingerCodes)

B
an

dw
id

th
 c

os
t (

M
B

)

Identification phase: encrypted query transmission

CloudBI−I
CloudBI−II
Yuan et al.’s scheme

(b)

Fig. 3. Identification phase: (a) Time costs for different sizes of database; (b) Band-
width costs for different sizes of database.

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

of simultaneous identification queries

Id
en

tif
ic

at
io

n
tim

e
(s

)

of FingerCodes n=1e7
of FingerCodes n=2e6
of FingerCodes n=1e6

(a)

1e6 2e6 3e6 4e6 5e6 6e6 7e6 8e6 9e6 1e7
0

1

2

3

4

5

Database size (# of FingerCodes)

T
he

 ti
m

e
co

st
 o

f
bi

om
et

ri
c

id
en

tif
ic

at
io

n
 o

n
th

e
da

ta
ba

se
 o

w
ne

r
(s

)

With biometric identification outsourcing
Without biometric identification outsourcing

(b)

Fig. 4. a) Time costs under different number of simultaneous identification queries;
(b) Comparison of time costs of biometric identification on the database owner.

6 Concluding Remarks

In this work, we investigated the privacy-preserving biometric identification
outsourcing problem by developing new privacy-preserving biometric identifica-
tion protocols. Our approaches enable efficient and privacy-preserving biometric
matching with minimum database owner’s involvement. Our experimental results
show that the cloud-based biometric identification system is appropriate for use
in various privacy-preserving biometric identification applications.

Acknowledgments. Kui’s research is supported in part by US National Science Foun-
dation under grant CNS-1262277. Qian’s research is supported in part by National Nat-
ural Science Foundation of China (Grant No. 61373167), Natural Science Foundation
of Hubei Province (Grant No. 2013CFB297), Wuhan Science and Technology Bureau
(Grant No. 2015010101010020), National Basic Research Program of China (973 Pro-
gram, Grant No. 2014CB340600) and National High Technology Research and Devel-
opment Program of China (863 Program, Grant No. 2015AA016004). Zhibo’s research
is supported in part by Fundamental Research Funds for the Central Universities (No.
2042015kf0016).

CloudBI: Practical Privacy-Preserving Outsourcing 203

A Attack on Yuan et al. [20] by Eliminating Randomness

We begin by describing an attack on the scheme as described above to recover
Bi by eliminating the randomness in the encrypted biometric database.

Based on (Ci,CH), the server can eliminate the random matrix Ai and then
derive the secret matrix M2 by computing

CHCi = (HM−1
1)(M1DiM2)

= HDiM2 = H(AT
i B

′
i)M2 = (HAT

i)B′
iM2 (12)

= (1, 1, . . . , 1) · B′
iM2 = BiM2.

Here, note that (1, 1, . . . , 1) ·B′
i = Bi. In Eq. (12), since M2 is a (n+1)× (n+1)

constant matrix, if the cloud server possesses (n + 1) linearly independent Bi

and constructs (n+1) equations, then M2 can be recovered. Once M2 is known,
the cloud server can recover all Bi’s (i = 1, . . . ,m) according to Eq. (12). Next
we give an illustrating example of this attack.

Assume that n = 2 and the database owner has Bi (i = 1, . . . ,m), H =
[1, 2, 3] and R = [1, 1, 2]. The three randomly-generated secret matrices M1,M2,
M3 are

M1 =
(

1 2 0
1 1 0
0 0 1

)
,M2 =

(
1 0 1
0 2 1
0 3 1

)
,M3 =

(
2 0 0
1 0 1
0 1 2

)
.

Correspondingly, A1,A2 and A3 are generated to satisfy HAT
i = (1, 1, . . . , 1) as

A1 =
(

1 0 0−1 1 0
0 −1 1

)
,A2 =

(
0 2 −1
1 0 0−1 1 0

)
,

A3 =
(−1 −2 2

1 0 0
0 −1 1

)
.

Then we have

CH = HM−1
1 = [1, 0, 3], where M−1

1 =
(−1 2 0

1 −1 0
0 0 1

)

Without loss of generality, we assume B1 = [1, 3,−5],B2 = [0, 2,−2] and B3 =
[2, 2,−4]. According to Eq. (4), we can compute Di. Based on Eq. (6), we have
Ci (i = 1, 2, 3)

C1 =
(

1 36 14
1 15 6
0 −15 −5

)
,C2 =

(
0 −2 0
0 4 2
0 0 0

)
,

C3 =
(−10 28 0

−6 16 0
4 −12 0

)
.

Then (C1,C2,C3,CH) are sent to the cloud server (i.e., the adversary in our
model), who can construct the following equations using Eq. (12)

B1M′
2 = CHC1 = (1,−9,−1),

B2M′
2 = CHC2 = (0,−2, 0),

B3M′
2 = CHC3 = (2,−8, 0).

204 Q. Wang et al.

According to the known-plaintext attack model (or the extension to the chosen-
plaintext attack model) defined in [20], if we let the adversary (i.e., the cloud
server) observe B1,B2,B3, it can solve for

M′
2 =

(
1 0 1
0 2 1
0 3 1

)
= M2.

By plugging M2 into Eq. (12), then the cloud server can solve for all unknown
Bi (i = 4, . . . ,m)!

Remarks. The above attack works due to the elimination of the randomness
introduced by Ai. When applying the property Eq. (5) in Eq. (12), the number
of secret unknowns will be equal to the number of equations. In fact, we can also
show that by knowing a set of (Bc,CF)’s, any plaintext query can be recovered
by eliminating the random matrix Ec with the property EcRT = (1, 1, . . . , 1)T .
This implies that by knowing a sequence of users’ queries and their encrypted
versions, the cloud can reveal any other plaintext queries (submitted by other
users) even if they have been encrypted. So, the biometric identification scheme
in [20] is also insecure under the Attack Scenario 3. Due to the space limitation,
we omit the analysis here.

B Attack on Yuan et al. [20] by Exploiting Euclidian
Distance Results

We next describe another attack on the scheme to recover Bi by exploiting the
Euclidian distance results.

In the scheme of Yuan et al. [20], the cloud server compares Euclidean dis-
tance between bi and bc by computing

Pi = CHCiCFCR =
n+1∑

j=1

bijbcj =
n∑

j=1

bijbcj − 1
2

n∑

j=1

b2ij . (13)

We show that it is easy to construct enough equations to recover Bi. Similarly,
we give an illustrating example. Assume that n = 2 and Bi = [0, 2,−2] (i ∈
[1,m]). Yuan et al. [20] claimed that their scheme allows the collusion between
the cloud server and a number of users. Based on this fact, the adversary can
select query plaintexts of his interest for encryption. Therefore, assume that two
linear independent FingerCodes Bc1 = [7, 8, 1] and Bc2 = [1, 2, 1] are chosen for
query, and their corresponding encrypted queries CF1 and CF2 are also known
by the cloud server. After performing the Euclidian distance comparison using
Eq. (13), the cloud server has P1 = 14 and P2 = 2. By using two equations
Pi =

∑2
j=1 bi′jbcj − 1

2

∑2
j=1 b2i′j (i = 1, 2), the cloud server can solve Bi′ =

[0, 2,−2] = Bi. The success of this attack further demonstrates that Yuan’s
scheme is vulnerable in the Attack Scenario 3. This attack works due to the
lack of randomness in the Euclidian distance results Pi. It tells us that besides
the biometric data, Pi should also be well-protected while not affecting result
correctness.

CloudBI: Practical Privacy-Preserving Outsourcing 205

References

1. Barni, M., Bianchi, T., Catalano, D., Raimondo, M.D., Labati, R.D., Failla, P.,
Fiore, D., Lazzeretti, R., Piuri, V., Scotti, F. et al.: Privacy-preserving fingercode
authentication. In: Proceedings of MMSec 2010, pp. 231–240. ACM (2010)

2. Blanton, M., Aliasgari, M.: Secure outsourced computation of iris matching. J.
Comput. Secur. 20(2), 259–305 (2012)

3. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint iden-
tification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp.
190–209. Springer, Heidelberg (2011)

4. Chun, H., Elmehdwi, Y., Li, F., Bhattacharya, P., Jiang, W.: Outsourceable two-
party privacy-preserving biometric authentication. In: Proceedings of ASIACCS
2014, pp. 401–412. ACM (2014)

5. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: Proceedings of ICDE 2014, pp.
664–675. IEEE (2014)

6. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

7. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, New York (2012)

8. Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient privacy-preserving biometric
identification. In: Proceedings of NDSS 2011 (2011)

9. Jain, A.K., Hong, L., Pankanti, S.: Biometric identification. Commun. ACM 43(2),
90–98 (2000)

10. Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint
matching. IEEE Trans. Image Process. 9(5), 846–859 (2000)

11. Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Pro-
tocols. CRC Press, Boca Raton (2007)

12. Lindell, Y., Pinkas, B.: A proof of security of yaos protocol for two-party compu-
tation. J. Cryptology 22(2), 161–188 (2009)

13. Liu, K., Giannella, C.M., Kargupta, H.: An attacker’s view of distance pre-
serving maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308.
Springer, Heidelberg (2006)

14. Mell, P., Grance, T.: Draft nist working definition of cloud computing. Referenced
June 3rd 15, 32 (2009)

15. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: Scifi-a system for secure face
identification. In: Proceedings of the S&P 2010, pp. 239–254. IEEE (2010)

16. Qi, Y., Atallah, M.J.: Efficient privacy-preserving k-nearest neighbor search. In:
Proceedings of ICDCS 2008, pp. 311–319. IEEE (2008)

17. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–
244. Springer, Heidelberg (2010)

18. Wang, Q., Hu, S.S., Ren, K., He, M.Q., Du, M.X., Wang, Z.B.: CloudBI: Practical
privacy-preserving outsourcing of biometric identification in the cloud. Technical
report (2015). http://web.eecs.utk.edu/∼zwang32/publications/CloudBI.pdf

19. Wong, W.K., Cheung, D.W-L., Kao, B., Mamoulis, N.: Secure knn computation on
encrypted databases. In: Proceedings of SIGMOD 2009, pp. 139–152. ACM (2009)

20. Yuan, J., Yu, S.: Efficient privacy-preserving biometric identification in cloud com-
puting. In: Proceedings of INFOCOM 2013, pp. 2652–2660. IEEE (2013)

http://web.eecs.utk.edu/~zwang32/publications/CloudBI.pdf

Protocols and Attribute-based
Encryption

Typing and Compositionality for Security
Protocols: A Generalization to the Geometric

Fragment

Omar Almousa1, Sebastian Mödersheim1(B), Paolo Modesti2,
and Luca Viganò3

1 DTU Compute, Lyngby, Denmark
samo@dtu.dk

2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
3 Department of Informatics, King’s College London, London, UK

Abstract. We integrate, and improve upon, prior relative soundness
results of two kinds. The first kind are typing results showing that any
security protocol that fulfils a number of sufficient conditions has an
attack if it has a well-typed attack. The second kind considers the parallel
composition of protocols, showing that when running two protocols in
parallel allows for an attack, then at least one of the protocols has an
attack in isolation. The most important generalization over previous work
is the support for all security properties of the geometric fragment.

1 Introduction

Context and Motivation. Relative soundness results have proved helpful in
the automated verification of security protocols as they allow for the reduction
of a complex verification problem into a simpler one, if the protocol in question
satisfies sufficient conditions. These conditions are of a syntactic nature, i.e., can
be established without an exploration of the state space of the protocol.

A first kind of such results are typing results [4,6,13,18]. In this paper, we
consider a typed model, a restriction of the standard protocol model in which
honest agents do not accept any ill-typed messages. This may seem unreason-
able at first sight, since in the real-world agents have no way to tell the type of
a random bitstring, let alone distinguish it from the result of a cryptographic
operation; yet in the model, they “magically” accept only well-typed messages.
The relative soundness of such a typed model means that if the protocol has
an attack, then it also has a well-typed attack. This does not mean that the
intruder cannot send ill-typed messages, but rather that this does not give him
any advantage as he could perform a “similar” attack with only well-typed mes-
sages. Thus, if we are able to verify that a protocol is secure in the typed model,

This work was partially supported by the EU FP7 Projects no. 318424, “FutureID:
Shaping the Future of Electronic Identity” (futureid.eu), and by the PRIN 2010–2011
Project “Security Horizons”. We thank Thomas Groß for many useful discussions.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 209–229, 2015.
DOI: 10.1007/978-3-319-24177-7 11

210 O. Almousa et al.

then it is secure also in an untyped model. Typically, the conditions sufficient
to achieve such a result are that all composed message patterns of the protocol
have a different (intended) type that can somehow be distinguished, e.g., by a
tag. The restriction to a typed model in some cases yields a decidable verification
problem, allows for the application of more tools and often significantly reduces
verification time in practice [5,6].

A similar kind of relative soundness results appears in compositional reason-
ing. We consider in this paper the parallel composition of protocols, i.e., running
two protocols over the same communication medium, and these protocols may
use, e.g., the same long-term public keys. (In the case of disjoint cryptographic
material, compositional reasoning is relatively straightforward.) The composi-
tionality result means to show that if two protocols satisfy their security goals in
isolation, then their parallel composition is secure, provided the protocols meet
certain sufficient conditions. Thus, it suffices to verify the protocols in isolation.
The sufficient conditions in this case are similar to the typing result: every com-
posed message can be uniquely attributed to one of the two protocols, which
again may be achieved, e.g., by tags.

Contributions. Our contributions are twofold. First, we unify and thereby sim-
plify existing typing and compositionality results: we recast them as an instance
of the same basic principle and of the same proof technique. In brief, this tech-
nique is to reduce the search for attacks to solving constraint reduction in a
symbolic model. For protocols that satisfy the respective sufficient conditions,
constraint reduction will never make an ill-typed substitution, where for compo-
sitionality “ill-typed” means to unify messages from two different protocols.

Second, this systematic approach also allows us to significantly generalize
existing results to a larger set of protocols and security properties. For what
concerns protocols, our soundness results do not require a particular fixed tagging
scheme like most previous works, but use more liberal requirements that are
satisfied by many existing real-world protocols like TLS.

While many existing results are limited to simple secrecy goals, we prove our
results for the entire geometric fragment suggested by Guttman [11]. We even
augment this fragment with the ability to directly refer to the intruder knowl-
edge in the antecedent of goals; while this does not increase expressiveness, it is
very convenient in specifications. In fact, handling the geometric fragment also
constitutes a slight generalization of existing constraint-reduction approaches.

Organization. In Sects. 2 and 3, we introduce a symbolic protocol model based
on strands and properties in the geometric fragment. In Sect. 4, we reduce verifi-
cation of the security properties to solving constraints. In Sects. 5 and 6, we give
our typing and parallel compositionality results. In Sect. 7, we introduce a tool
that checks if protocols are parallel-composable and report about first experi-
mental results. In Sect. 8, we conclude and discuss related work. Proof sketches
are in the appendix.

Typing and Compositionality for Security Protocols 211

2 Messages, Formats and the Intruder Model

2.1 Messages

Let Σ be a finite set of operators (also referred to as function symbols); as a
concrete example, Table 1 shows a Σ that is representative for a wide range
of security protocols. Further, let C be a countable set of constants and V a
countable set of variables, such that Σ, V and C are pairwise disjoint. We write
TΣ∪C(V) for the set of terms built with these constants, variables and opera-
tors, and TΣ∪C for the set of ground terms. We call a term t atomic (and write
atomic(t)) if t ∈ V ∪ C, and composed otherwise. We use also other standard
notions such as subterm, denoted by �, and substitution, denoted by σ.

The set of constants C is partitioned into three countable and pairwise disjoint
subsets: (i) the set CPi

of short-term constants for each protocol Pi, denoting
the constants that honest agents freshly generate in Pi; (ii) the set Cpriv of long-
term secret constants ; and (iii) the set Cpub of long-term public constants. This
partitioning will be useful for compositional reasoning: roughly speaking, we will
allow the intruder to obtain all public constants, and define that it is an attack
if the intruder finds out any of the secret constants.

2.2 Formats

We use in this paper a notion of formats that is crucial to make our typing and
compositionality results applicable to real-world protocols like TLS. Here, we
break with the formal-methods tradition of representing clear-text structures of
data by a pair operator (·, ·). For instance, a typical specification may contain
expressions like (A,NA) and (NB , (KB ,A)). This representation neglects the
details of a protocol implementation that may employ various mechanisms to
enable a receiver to decompose a message in a unique way (e.g., field-lengths
or XML-tags). The abstraction has the disadvantage that it may easily lead to
false positives and false negatives. For example, the two messages above have a
unifier A �→ NB and NA �→ (KB ,NA), meaning that a message meant as (A,NA)
may accidentally be parsed as (NB , (KB ,A)), which could lead to a “type-flaw”
attack. This attack may, however, be completely unrealistic in reality.

To handle this, previous typing results have used particular tagging schemes,
e.g., requiring that each message field starts with a tag identifying the type
of that field. Similarly, compositionality results have often required that each
encrypted message of a protocol starts with a tag identifying the protocol that
this message was meant for. Besides the fact that this does not really solve the
problem of false positives and false negatives due to the abstraction, practically
no existing protocol uses exactly this schema. Moreover, it is completely unreal-
istic to think that a widely used protocol like TLS would be changed just to make
it compatible with the assumptions of an academic paper — the only chance to
have it changed is to point out a vulnerability that can be fixed by the change.

Formats are a means to have a faithful yet abstract model. We define formats
as functions from data-packets to concrete strings. For example, a format from

212 O. Almousa et al.

Table 1. Example Operators Σ

Description Operator Analysis rule

Symmetric encryption scrypt(·, ·) Ana(scrypt(k, m)) = ({k}, {m})

Asymmetric encryption crypt(·, ·) Ana(crypt(pub(t), m)) = ({t}, {m})

Signature sign(·, ·) Ana(sign(t, m)) = ({∅}, {m})

Formats, e.g., f1 f1(t1, · · · , tn) Ana(f1(t1, · · · , tn)) = (∅, {t1, · · · , tn})

One-way functions, e.g., hash hash(·) Ana(hash(t)) = ({∅}, {∅})

Public key of a given private key pub(·) Ana(pub(t)) = ({∅}, {∅})

All other terms Ana(t) = ({∅}, {∅})

TLS is client hello(time, random, session id, cipher suites, comp
methods) = byte(1) · off3(byte(3) · byte(3) · time · random · off1(session id) ·
off2(cipher suites) · off1(comp methods)), where byte(n) means one concrete
byte of value n, offk(m) means that m is a message of variable length followed
by a field of k bytes, and · represents string concatenation.

In the abstract model, we are going to use only abstract terms like the part
in bold in the above example. It is shown in [19] that under certain conditions
on formats this abstraction introduces neither false positives nor false negatives.
The conditions are essentially that formats must be parsed in an unambiguous
way and must be pairwise disjoint; then every attack on the concrete bytestring
model can be simulated in the model based on abstract format symbols (in the
free algebra). Both in typing and compositionality, these conditions allow us to
apply our results to real world protocols no matter what formatting scheme they
actually use (e.g., a TLS message cannot be accidentally be parsed as an EAC
message). In fact, these reasonable conditions are satisfied by many protocols
in practice, and whenever they are violated, typically we have a good chance to
find actual vulnerabilities.

We will model formats as transparent in the sense that if the intruder learns
f(t1, . . . , tn), then he also obtains the ti.

2.3 Intruder Knowledge and Deduction Rules

We specify how the intruder can compose and decompose messages in the style
of the Dolev-Yao intruder model.

Definition 1. An intruder knowledge M is a finite set of ground terms t ∈
TΣ∪C. Let Ana(t) = (K,T) be a function that returns for every term t a pair
(K,T) of finite sets of subterms of t. We define � to be the least relation between
a knowledge M and a term t that satisfies the following intruder deduction rules:

M � t
(Axiom),
t ∈ M M � c

(Public),
c ∈ Cpub

M � t1 · · · M � tn
M � f (t1, · · · , tn)

(Compose),
f ∈ Σn

M � t M � k1 · · · M � kn

M � ti

(Decompose), Ana(t) = (K,T),
K = {k1, · · · , kn}, ti ∈ T

Typing and Compositionality for Security Protocols 213

The rules (Axiom) and (Public) formalize that the intruder can derive any
term t ∈ M that is in his knowledge and every long-term public constant c ∈ Cpub,
respectively, and the (Compose) rule formalizes that he can use compose known
terms with any operator in Σ (where n denotes the arity of f). Table 1 provides
an example Σ for standard cryptographic operators, along with the Ana function
defined for each of them, which are available to all agents, including the intruder.

For message decomposition, we namely rely on analysis rules for terms in
the form of Ana(t) = (K,T), which intuitively says that if the intruder knows
the keys in set K, then he can analyze the term t and obtain the set of mes-
sages T . We require that all elements of K and T are subterms of t (without any
restriction, the relation � would be undecidable). Consider, e.g., the analysis rule
for symmetric encryption given in Table 1: Ana(scrypt(k,m)) = ({k}, {m}) says
that given a term scrypt(k,m) one needs the key {k} to derive {m}. By default,
atomic terms cannot be analyzed, i.e., Ana(t) = (∅, ∅). The generic (Decompose)
deduction rule then formalizes that for any term with an Ana rule, if the intruder
can derive the keys in K, he can also derive all the subterms of t in T .

3 Protocol Semantics

We define the following notions. A protocol consists of a set of operational strands
(an extension of the strands of [12]) and a set of goal predicates that the protocol
is supposed to achieve. The semantics of a protocol is an infinite-state transition
system over symbolic states and security means that all reachable states satisfy
the goal predicates. A symbolic state (S;M ;E;φ) consists of a set S of opera-
tional strands (representing the honest agents), the intruder knowledge M , a set
E of events that have occurred, and a symbolic constraint φ on the free variables
occurring in the state. We first define constraints, then operational strands, the
transition relation on symbolic states, and finally the goal predicates.

3.1 Symbolic Constraints

The syntax of symbolic constraints is

φ := M � t | φσ | ¬∃x̄. φσ | φ ∧ φ | φ ∨ φ | ∃x̄. φ
︸ ︷︷ ︸

�

with φσ := s
.= t | φσ ∧ φσ

where s, t range over terms in TΣ∪C(V), M is a finite set of terms (not necessarily
ground) and x̄ is list of variables. The sublanguage φσ defines equations on
messages, and we can existentially quantify variables in them, e.g., consider a φ
of the form ∃x. y

.= f(x). We refer to equations also as substitutions since the
application of the standard most general unifier on a conjunction of equations
results in a set of substitutions. The constraints can contain such substitutions in
positive and negative form (excluding all instances of a particular substitution).

M � t is an intruder constraint : the intruder must be able to derive term t
from knowledge M . Note that we have no negation at this level, i.e., we cannot

214 O. Almousa et al.

write negated intruder constraints. A base constraint is a constraint built accord-
ing to this grammar without the two cases marked �, i.e., disjunction φ ∨ φ and
existential quantification ∃x̄. φ, which may only occur in negative substitutions.

For ease of writing, we define the semantics of the constraint language as
standard for each construct (rather than following strictly the grammar of φ).

Definition 2. Given an interpretation I, which maps each variable in V to a
ground term in TΣ, and a symbolic constraint φ, the model relation I |= φ is:

I |= M � t iff I(M) � I(t) I |= s
.
= t iff I(s) = I(t) I |= ¬φ iff not I |= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2 I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2

I |= ∃x.φ iff there is a term t ∈ TΣ such that I[x �→ t] |= φ

We say that I is a model of φ iff I |= φ, and that φ is satisfiable iff it has
a model. Two constraints are equivalent, denoted by ≡, iff they have the same
models. We define as standard the variables, denoted by var(·), and the free
variables, denoted by fv(·), of terms, sets of terms, equations, and constraints.
A constraint φ is closed, in symbols closed(φ), iff fv(φ) = ∅.

Every constraint φ can be quite straightforwardly transformed into an equiv-
alent constraint of the form

φ ≡ ∃x̄. φ1 ∨ . . . ∨ φn,

where the φi are base constraints. Unless noted otherwise, in the following we
will assume that constraints are in this form.

Definition 3. A constraint is well-formed if each of its base constraints φi

satisfies the following condition: we can order the conjuncts of φi such that
φi = M1 � t1 ∧ . . . ∧ Mn � tn ∧ φ′

i, where φ′
i contains no further � constraints

and such that Mj ⊆ Mj+1 (for 1 ≤ j < n) and fv(Mj) ⊆ fv(t1) ∪ . . . ∪ fv(tj−1).

Intuitively, this condition expresses that the intruder knowledge grows
monotonically and all variables that occur in an intruder knowledge occur in
a term that the intruder sent earlier in the protocol execution. We will ensure
that all constraints that we deal with are well-formed.

3.2 Operational Strands

In the original definition of [21], a strand denotes a part of a concrete proto-
col execution, namely, a sequence of ground messages that an agent sends and
receives. We introduce here an extension that we call operational strands, where
terms may contain variables, there may be positive and negative equations on
messages, and agents may create events over which we can formulate the goals:

S := send(t).S | receive(t).S | event(t).S | (∃x̄. φσ).S | (¬∃x̄.φσ).S | 0

where φσ is as defined above; we will omit the parentheses when there is no risk of
confusing the dots. fv and closed extend to operational strands as expected, with

Typing and Compositionality for Security Protocols 215

the exception of the receiving step, which can bind variables: we set
fv(receive(t).S) = fv(S)\ fv(t). According to the semantics that we define below,
in receive(x).receive(f (x)).send(x).0 the variable x is bound actually in the first
receive, i.e., the strand is equivalent to receive(x).receive(y).(y .= f (x)).send(x).0 .

A symbolic state (S;M ;E;φ) consists of a (finite or countable) set1 S of
closed operational strands, a finite set M of terms representing the intruder
knowledge, a finite set E of events, and a formula φ. fv(·) and closed extend to
symbolic states again as expected. We ensure that fv(S)∪ fv(M)∪ fv(E) ⊆ fv(φ)
for all reachable states (S;M ;E;φ), and that φ is well-formed. This is so since
in the transition system shown shortly, the operational strands of the initial
state are closed and the transition relation only adds new variables in the case
of receive(t), but in this case φ is updated with M � t.

A protocol specification (S0, G) (or simply protocol) consists of a set S0 of
closed operational strands and a set G of goal predicates (defined below). For
simplicity, we assume that the bound variables of any two different strands in S0

are disjoint (which can be achieved by α-renaming). The strands in S0 induce
an infinite-state transition system with initial state (S0; ∅; ∅;�) and a transition
relation ⇒ defined as the least relation closed under six transition rules:

T1 ({send(t).S} ∪ S;M ;E;φ) ⇒ ({S} ∪ S;M ∪ {t};E;φ)
T2 ({receive(t).S} ∪ S;M ;E;φ) ⇒ ({S} ∪ S;M ;E;φ ∧ M � t)
T3 ({event(t).S} ∪ S;M ;E;φ) ⇒ ({S} ∪ S;M ;E ∪ event(t);φ)
T4 ({φ′.S} ∪ S;M ;E;φ) ⇒ ({S} ∪ S;M ;E;φ ∧ φ′)
T5 ({0} ∪ S;M ;E;φ) ⇒ (S;M ;E;φ)
T6 (S;M ;E;φ) ⇒ (S;M ;E ∪ {lts(c)};φ) for every c ∈ Cpriv

The rule T1 formalizes that sent messages are added to the intruder knowl-
edge M . T2 formalizes that an honest agent receives a message of the form t,
and that the intruder must be able to create that message from his current
knowledge, expressed by the new constraint M � t; this indirectly binds the
free variables of the rest of the strand in the sense that they are now governed
by the constraints of the state. (In a non-symbolic model, one would at this
point instead need to consider all ground instances of t that the intruder can
generate.) T3 formalizes that we add events to the set E. T4 simply adds the
constraint φ′ to the constraint φ. T5 says that if a strand reaches {0}, then we
remove it. Finally, for every secret constant c in Cpriv, T6 adds the event lts(c)
to the set E. (We define later as a goal that the intruder never obtains any c for
which lts(c) ∈ E.) We cannot have this in the initial set E as we need it to be
finite; this construction is later crucial in the parallel composition proof as we
can at any time blame a protocol (in isolation) that leaks a secret constant. We
discuss below that in practice this semantic rule does not cause trouble to the
verification of the individual protocols.

1 Some approaches instead use multi-sets as we may have several identical strands, but
since one can always make a strand unique, using sets is without loss of generality.

216 O. Almousa et al.

3.3 Goal Predicates in the Geometric Fragment

We express goals by state formulas in the geometric fragment [11]. Here, we also
allow to directly talk about the intruder knowledge, but in a restricted manner so
that we obtain constraints of the form φ. Security then means: every reachable
state in the transition system induced by S0 satisfies each state formula, and
thus an attack is a reachable state where at least one goal does not hold.

The constraints φ we have defined above are interpreted only with respect to
an interpretation of the free variables, whereas the state formulas are evaluated
with respect to a symbolic state, including the current intruder knowledge and
events that have occurred (as before, we define the semantics for each construct).

Definition 4. State formulas Ψ in the geometric fragment are defined as:

Ψ := ∀x̄. (ψ =⇒ ψ0) with

{
ψ := ik(t) | event(t) | t

.= t′ | ψ ∧ ψ′ | ψ ∨ ψ′ | ∃x̄.ψ

ψ0 := event(t) | t
.= t′ | ψ0 ∧ ψ′

0 | ψ0 ∨ ψ′
0 | ∃x̄.ψ0

where ik(t) denotes that the intruder knows the term t. fv(·) and closed extend
to state formulas as expected. Given a state formula Ψ , an interpretation I, and
a state S = (S;M ;E;φ), we define I,M,E |=S Ψ as:

I,M,E |=S event(t) iff I(event(t)) ∈ I(E)
I,M,E |=S ik(t) iff I(M) � I(t)
I,M,E |=S s

.= t iff I(s) = I(t)
I,M,E |=S Ψ ∧ Ψ ′ iff I,M,E |=S Ψ and I,M,E |=S Ψ ′

I,M,E |=S Ψ ∨ Ψ ′ iff I,M,E |=S Ψ or I,M,E |=S Ψ ′

I,M,E |=S ¬Ψ iff not I,M,E |=S Ψ

I,M,E |=S ∃x. Ψ iff there exists t ∈ TΣ and I[x �→ t] |=S Ψ.

Definition 5. A protocol P = (S0, {Ψ0, · · · , Ψn}), where the Ψi are closed state
formulas, has an attack against goal Ψi iff there exist a reachable state S =
(S;M ;E;φ) in the transition system induced by S0 and an interpretation I such
that I,M,E |=S ¬Ψi and I |=S φ. We also call S an attack state in this case.

Note that in this definition the interpretation I does not matter in I,M,E |=S

¬Ψi because Ψi is closed.

Example 1. If a protocol generates the event2 secret(xA, xB , xm) to denote that
the message xm is supposed to be a secret between agents xA and xB , and—
optionally—the event release(xm) to denote that xm is no longer a secret, then
we can formalize secrecy via the state formula ∀xAxBxm.(secret(xA, xB , xm) ∧
ik(xm) =⇒ xA = i ∨ xB = i ∨ release(xm)), where i denotes the intruder.
The release event can be used to model declassification of secrets as needed

2 Strictly speaking, we should write event(secret(xA, xB , xm)) but, for readability, here
and below we will omit the outer event(·) when it is clear from context.

Typing and Compositionality for Security Protocols 217

to verify perfect forward secrecy (when other data should remain secret even
under the release of temporary secrets). We note that previous compositionality
approaches do not support such goals. A typical formulation of non-injective
agreement [15] uses the two events commit(xA, xB , xm), which represents that
xA intends to send message xm to xB), and running(xA, xB , xm, xC), which rep-
resents that xB believes to have received xm from xA, with xC a unique identi-
fier: ∀xAxBxmxC . (running(xA, xB , xm, xC) =⇒ commit(xA, xB , xm) ∨ xA =
i ∨ xB = i), and injective agreement would additionally require: ∀xAxBxm

xCx′
C . running(xA,xB ,xm,xC) ∧ running(xA, xB ,xm,x′

C) =⇒ xA = i ∨ xB =
i ∨ xC = x′

C . �

4 Constraint Solving

We first show how to translate every state formula Ψ in the geometric fragment
for a given symbolic state S = (S;M ;E;φ) into a constraint φ′ (in the fragment
defined in Sect. 3.1) so that the models of φ ∧ φ′ represent exactly all concrete
instances of S that violate Ψ . Then, we extend a rule-based procedure to solve
φ-style constraints (getting them into an equivalent simple form). This procedure
provides the basis for our typing and parallel composition results.

4.1 From Geometric Fragment to Symbolic Constraints

Consider a reachable symbolic state (S;M ;E;φ) and a goal formula Ψ . As men-
tioned earlier, we require that Ψ is closed. Let us further assume that the bound
variables of Ψ are disjoint from the variables (bound or free) of S, M , E, and
φ. We now define a translation function trM,E(Ψ) = φ′ where φ′ represents the
negation of Ψ with respect to intruder knowledge M and events E. The negation
is actually manifested in the first line of the definition:

trM,E(∀x̄. ψ ⇒ ψ0) = ∃x̄. tr ′
M,E(ψ) ∧ tr ′

M,E(¬ψ0)
tr ′

M,E(ik(t)) = M � t
tr ′

M,E(event(t)) =
∨

event(s)∈E s
.= t

tr ′
M,E(s .= t) = s

.= t
tr ′

M,E(ψ1 ∨ ψ2) = tr ′
M,E(ψ1) ∨ tr ′

M,E(ψ2)
tr ′

M,E(ψ1 ∧ ψ2) = tr ′
M,E(ψ1) ∧ tr ′

M,E(ψ2)
tr ′

M,E(∃x̄.ψ) = ∃x̄.tr ′
M,E(ψ)

tr ′
M,E(¬event(t)) =

∧
event(s)∈E ¬s

.= t

tr ′
M,E(¬s

.= t) = ¬s
.= t

tr ′
M,E(¬(∃x̄.ψ1 ∨ ψ2)) = tr ′

M,E(¬∃x̄.ψ1) ∧ tr ′
M,E(¬∃x̄.ψ2)

tr ′
M,E(¬¬φ) = tr ′

M,E(φ)
tr ′

M,E(¬∃x̄.event(t1) ∧ · · · ∧ event(tn) ∧ u1
.= v1 ∧ · · · um

.= vm) =∧
event(s1)∈E...event(sn)∈ ¬∃x̄. (s1

.= t1 ∧ · · · ∧ tn
.=sn ∧ u1

.= v1 ∧ · · · um
.=vm)

Theorem 1. Let S = (S;M ;E;φ) be a symbolic state and Ψ a formula in the
geometric fragment such that fv(Ψ) = ∅ and var(Ψ)∩var(φ) = ∅. For all I |= φ,
we have I,M,E |=S ¬Ψ iff I |= trM,E(Ψ). Moreover, if φ is well-formed, then
so is φ ∧ trM,E(Ψ).

218 O. Almousa et al.

4.2 Constraint Reduction

As mentioned before, we can transform any well-formed constraint into the form
φ ≡ ∃x̄.φ0 ∨ . . .∨φn, where φi are base constraints, i.e., without disjunction and
existential quantification (except in negative substitutions). We now discuss how
to find the solutions of such well-formed base constraints. Solving intruder con-
straints has been studied quite extensively, e.g., in [7,16,18,20], where the main
application of constraints was for efficient protocol verification for a bounded
number of sessions of honest agents. Here, we use constraints rather as a proof
argument for the shape of attacks. Our result is of course not restricted to a
bounded number of sessions as we do not rely on an exploration of reachable
symbolic states (that are indeed infinite) but rather make an argument about
the constraints in each of these states.

We consider constraint reduction rules of the form
φ′

φ
expressing that φ′

entails φ (if the side condition cond holds). However, we will usually read the
rule backwards, i.e., as: one way to solve φ is φ′.

Definition 6. The satisfiability calculus for the symbolic intruder comprises
the following constraint reduction rules:

eq(σ) ∧ σ(φ)

M � t ∧ φ

(Unify), s, t /∈ V, s ∈ M,

σ ∈ mgu(s
.
= t)

eq(σ) ∧ σ(φ)

s
.
= t ∧ φ

(Equation), σ ∈ mgu(s
.
= t),

s /∈ V or s ∈ fv(t) ∪ fv(φ)
φ

M � c ∧ φ
(PubConsts), c ∈ Cpub

M � t1, · · · , M � tn

M � f (t1, · · · , tn)
(Compose), f ∈ Σn

∧
k∈K M � k ∧ (M � t ∧ φ)T�M

M � t ∧ φ

(Decompose), s ∈ M, Ana(s) = (K, T), T �⊆ M,
and (Decompose) has not been applied with

the same M and s before

where (M ′ � t)T�M is M ′ ∪ T � t if M ⊆ M ′ and M ′ � t otherwise, (·)T�M

extends as expected, eq(σ) = x1
.= t1∧. . .∧xn

.= tn is the constraint corresponding
to a substitution σ = [x1 �→ t1, . . . , xn �→ tn], and mgu(s .= t) is the standard
most general unifier for the pair of terms t and s (in the free-algebra).

Recall that the mgu, if it exists, is unique modulo renaming (mgu extends
as expected). Let us now explain the rules. (Unify) expresses that one way to
generate a term t from knowledge M is to use any term s ∈ M that can be
unified with t, but one commits in this case to the unifier σ; this is done by
applying σ to the rest of the constraint and recording its equations. (Unify)
cannot be applied when s or t are variables; intuitively: when t is a variable, the
solution is an arbitrary term, so we consider this a solved state (until elsewhere
a substitution is required that substitutes t); when s is variable, then it is a
subterm of a message that the intruder created earlier. If the earlier constraint
is already solved (i.e., a variable) then s is something the intruder could generate
from an earlier knowledge and thus redundant.

(Equation), which similarly allows us to solve an equation, can be applied if s
or t are variables, provided the conditions are satisfied, but later we will have to
prevent vacuous application of this rule to its previous result, i.e., the equations
eq(σ). (PubConsts) says that the intruder can generate all public constants.

Typing and Compositionality for Security Protocols 219

(Compose) expresses that one way to generate a composed term f(t1, . . . , tn)
is to generate the subterms t1, . . . , tn (because then f can be applied to them).
(Decompose) expresses that we can attempt decryption of any term in the
intruder knowledge according to the Ana function. Recall that Table 1 provides
examples of Ana, and note that for variables or constants Table 1 will yield (∅, ∅),
i.e., there is nothing to analyze. However, if there is a set T of messages that can
potentially be obtained if we can derive the keys K, and T is not yet a subset
of the knowledge M anyway, then one way to proceed is to add M � k for each
k ∈ K to the constraint store, i.e., committing to finding the keys, and under
this assumption we may add T to M and in fact to any knowledge M ′ that is a
superset of M . Also for this rule we must prevent vacuous repeated application,
such as applying analysis directly to the newly generated M � k constraints.

The reduction of constraints deals with conjuncts of the form M � t and
s

.= t. However, we also have to handle negative substitutions, i.e., conjuncts of
the form ¬∃x̄.φσ. We show that we can easily check them for satisfiability.

Definition 7. A constraint φ is simple, written simple(φ), iff φ = φ1 ∧ . . .∧φn

such that for each φi (1 ≤ i ≤ n):

– if φi = M � t, then t ∈ V;
– if φi = s

.= t, then s ∈ V and s does not appear elsewhere in φ;
– if φi = ¬∃x̄.φσ, then mgu(θ(φσ)) = ∅ for θ = [ȳ �→ c̄] where ȳ are the free

variables of φi and c̄ fresh constants that do not appear in φ.

Theorem 2. If simple(φ), then φ is satisfiable.

Theorem 3 (Adaption of [18,20]). The satisfiability calculus for the symbolic
intruder is sound, complete, and terminating on well-formed constraints.

5 Typed Model

In our typed model, the set of all possible types for terms is denoted by TΣ∪Ta
,

where Ta is a finite set of atomic types, e.g., Ta = {Number ,Agent ,PublicKey ,
PrivateKey ,SymmetricKey}. We call all other types composed types. Each atomic
term (each element of V∪C) is given a type; constants are given an atomic type and
variables are given either an atomic or a composed type (any element of TΣ∪Ta

).
We write t : τ to denote that a term t has the type τ . Based on the type information
of atomic terms, we define the typing function Γ as follows:

Definition 8. Given Γ (·) : V → TΣ∪Ta
for variables and Γ (·) : C → Ta for

constants, we extend Γ to map all terms to a type, i.e., Γ (·) : TΣ∪C(V) → TΣ∪Ta
,

as follows: Γ (t) = f (Γ (t1), · · · , Γ (tn)) if t = f (t1, · · · , tn) and f ∈ Σn. We say
that a substitution σ is well-typed iff Γ (x) = Γ (σ(x)) for all x ∈ dom(σ).

For example, if Γ (k) = PrivateKey and Γ (x) = Number then Γ (crypt(pub(k),
x)) = crypt(pub(PrivateKey),Number).

220 O. Almousa et al.

As we require that all constants be typed, we further partition C into disjoint
countable subsets according to different types in Ta. This models the intruder’s
ability to access infinite reservoirs of public fresh constants. For example, for
protocols P1, P2 and Ta = {β1, . . . , βn}, we have the disjoint subsets Cβi

pub, Cβi

priv,
Cβi

P1
and Cβi

P2
, where i ∈ {1, . . . , n} and, e.g., Cβi

pub contains all Cpub elements
of type βi. Cβi

P1
and Cβi

P2
are short-term constants, whereas Cβi

pub and Cβi

priv are
long-term, and we consider it an attack if the intruder learns any of Cβi

priv.
By an easy induction on the structure of terms, we have:

Lemma 1. If a substitution σ is well-typed, then Γ (t) = Γ (σ(t)) for all terms
t ∈ TΣ∪C(V).

According to this typed model, I is a well-typed interpretation iff Γ (x) =
Γ (I(x)) for all x ∈ V. Moreover, we require for the typed model that Γ (s) = Γ (t)
for each s

.= t. This is a restriction only on the strands of the honest agents (as
they are supposed to act honestly), not on the intruder: he can send ill-typed
messages freely. We later show that sending ill-typed messages does not help the
intruder in introducing new attacks in protocols that satisfy certain conditions.

5.1 Message Patterns

In order to prevent the intruder from using messages of a protocol to attack a sec-
ond protocol, we need to guarantee the disjointness of the messages between both
protocols. Thus, we use formats to wrap raw data, as discussed in Sect. 2.2. In
particular, all submessages of all operators (except formats and public key opera-
tor) must be “wrapped” with a format, e.g., scrypt(k, fa(Na)) and scrypt(k, fb(Nb))
should be used instead of scrypt(k,Na) and scrypt(k1,Nb).

We define the set of protocol message patterns, where we need to ensure that
each pair of terms has disjoint variables: we thus define a well-typed α-renaming
α(t) that replaces the variables in t with completely new variable names.

Definition 9. The message pattern of a message t is MP(t) = {α(t)}. We
extend MP to strands, goals and protocols as follows. The set MP(S) of message
patterns of a strand S and the set MP(Ψ) of message patterns of a goal Ψ are
defined as follows:

MP(send(t).S) = MP(t) ∪ MP(S)
MP(event(t).S) = MP(t) ∪ MP(S)
MP(receive(t).S) = MP(t) ∪ MP(S)
MP(s

.
= t.S) = MP(σ(S)),

for σ ∈ mgu(s
.
= t)

MP(s
.
= t.S) = ∅ if mgu(s

.
= t) = ∅

MP((¬∃x̄.φσ).S) = MP(φσ) ∪ MP(S)
MP(0) = ∅

MP(∀x.ψ ⇒ ψ0) = MP(ψ) ∪ MP(ψ0)
MP(ik(t)) = MP(t)
MP(event(t)) = MP(t)
MP(ψ1 ∨ ψ2) = MP(ψ1) ∪ MP(ψ2)
MP(ψ1 ∧ ψ2) = MP(ψ1) ∪ MP(ψ2)
MP(s

.
= t) = MP(s) ∪ MP(t)

MP(¬φ) = MP(φ)

The set of message patterns of a protocol P = ({S1, · · · ,Sm}; {Ψ0, · · · , Ψn}) is
MP(P) =

⋃
m
i=1MP(Si) ∪ ⋃

n
i=1MP(Ψi), and the set of sub-message patterns of

a protocol P is SMP(P) = {α(s) | t ∈ MP(P) ∧ s � t ∧ ¬atomic(s)} \ {u | u =
pub(v) for some term v}. SMP applies to messages, strands, goals as expected.

Typing and Compositionality for Security Protocols 221

Example 2. If S = receive(scrypt(k, (f1(x, y)))).send(scrypt(k, y)), then SMP(S)
= {scrypt(k, f1(x1, y1)), scrypt(k, y2), f1(x3, y3)}. �

Definition 10. A protocol P = (S0, G) is type-flaw-resistant iff the following
conditions hold:

– MP(P) and V are disjoint, i.e., MP(P) ∩ V = ∅ (which ensures that none of
the messages of P is sent as raw data).

– If two non-atomic sub-terms are unifiable, then they have the same type, i.e.,
for all t1, t2 ∈ SMP(P), if σ(t1) = σ(t2) for some σ, then Γ (t1) = Γ (t2).

– For any equation s
.= t that occurs in strands or goals of P (also under a

negation), Γ (s) = Γ (t).
– For any variable x that occurs in equations or events of G, Γ (x) ∈ Ta.
– For any variable x that occurs in inequalities or events of strands, Γ (x) ∈ Ta.

Intuitively, the second condition means that we cannot unify two terms unless
their types match. Note that this match is a restriction on honest agents only,
the intruder is still able to send ill-typed messages.

Example 3. Example 2 included a potential type-flaw vulnerability as scrypt(k,
f1(x1, y1)) and scrypt(k, y2) have the unifier [y2 �→ f1(x1, y1)]. Here y1 and y2
must have the same type since they have been obtained by a well-typed variable
renaming in the construction of SMP . Thus, the two messages have different
types. The problem is that the second message encrypts raw data without any
information on who it is meant for and it may thus be mistaken for the first
message. Let us thus change the second message to scrypt(k, f2(y2)). Then SMP
also includes f2(y4) for a further variable y4, and now no two different elements
of SMP have a unifier. f2 is not necessarily inserting a tag: if the type of y in the
implementation is a fixed-length type, this is already sufficient for distinction. �

Theorem 4. If a type-flaw-resistant protocol P has an attack, then P has a
well-typed attack.

Note that this theorem does not exclude that type-flaw attacks are possible,
but rather says that for every type-flaw attack there is also a (similar) well-typed
attack, so it is safe to verify the protocol only in the typed model.

6 Parallel Composition

In this section, we consider the parallel composition of protocols, which we often
abbreviate simply to “composition”. We define the set of operational strands for
the composition of a pair of protocols as the union of the sets of the operational
strands of the two protocols; this allows all possible transitions in the composi-
tion. The goals for the composition are also the union of the goals of the pair,
since any attack on any of them is an attack on the whole composition (i.e., the
composition must achieve the goals of the pair).

222 O. Almousa et al.

Definition 11. The parallel composition P1 ‖ P2 of P1 = (SP1
0 ;ΨP1

0) and P2 =
(SP2

0 ;ΨP2
0) is P1 ‖ P2 = (SP1

0 ∪ SP2
0 ; ΨP1

0 ∪ ΨP2
0).

Our parallel composition result relies on the following key idea. Similar to
the typing result, we look at the constraints produced by an attack trace against
P1 ‖ P2, violating a goal of P1, and show that we can obtain an attack against P1

alone, or a violation of a long-term secret by P2. Again, the core of this proof is
the observation that the unification steps of the symbolic intruder never produce
an “ill-typed” substitution in the sense that a P1-variable is never instantiated
with a P2 message and vice versa. For that to work, we have a similar condition as
before, namely that the non-atomic subterms of the two protocols (the SMPs) are
disjoint, i.e., each non-atomic message uniquely says to which protocol it belongs.
This is more liberal than the requirements in previous parallel compositionality
results in that we do not require a particular tagging scheme: any way to make
the protocol messages distinguishable is allowed. Further, we carefully set up
the use of constants in the protocol as explained at the beginning of Sect. 5,
namely that all constants used in the protocol are: long-term public values that
the intruder initially knows; long-term secret values that, if the intruder obtains
them, count as a secrecy violation in both protocols; or short-term values of P1

or of P2.
The only limitation of our model is that long-term secrets cannot be “declassi-

fied”: we require that all constants of type private key are either part of the long-
term secrets or long-term public constants. Moreover, the intruder can obtain
all public keys, i.e., pub(c) for every c of type private key. This does not prevent
honest agents from creating fresh key-pairs (the private key shall be chosen from
the long-term constants as well) but it dictates that each private key is either a
perpetual secret (it is an attack if the intruder obtains it) or it is public right
from the start (as all public keys are). This only excludes protocols in which a
private key is a secret at first and later revealed to the intruder, or where some
public keys are initially kept secret.

Definition 12. Two protocols P1 and P2 are parallel-composable iff the follow-
ing conditions hold:

(1) P1 and P2 are SMP -disjoint, i.e., for every s ∈ SMP(P1) and t ∈ SMP(P2),
either s and t have no unifier (mgu(s .= t) = ∅) or s = pub(s0) and t =
pub(t0) for some s0, t0 of type private key.

(2) All constants of type private key that occur in MP(P1)∪MP(P2) are part of
the long-term constants in Cpub ∪ Cpriv.

(3) All constants that occur in MP(Pi) are in Cpub ∪ Cpriv ∪ CPi
, i.e., are either

long term or belong to the short-term constants of the respective protocol.
(4) For every c ∈ CPrivateKey

Pi
, Pi also contains the strand send(pub(c)).0.

(5) For each secret constant c ∈ Cβi

priv, for each type βi, each Pi contains the
strands event(ltsβi,Pi

(c)).0 and the goal ∀x : βi. ik(x) =⇒ ¬ltsβ,Pi
(x).

(6) Both P1 and P2 are type-flaw resistant.

Typing and Compositionality for Security Protocols 223

Some remarks on the conditions: (1) is the core of the compositionality result,
as it helps to avoid confusion between messages of the two protocols; (2) ensures
that every private key is either initially known to the intruder or is part of
the long-term secrets (and thus prevents “declassification” of private keys as we
discussed above). (3) means that the two protocols will draw from disjoint sets
of constants for their short-term values. (4) ensures that public keys are known
to the intruder. Note that typically the goals on long-term secrets, like private
keys and shared symmetric keys, are very easy to prove as they are normally not
transmitted. The fact that we do not put all public keys into the knowledge of the
intruder in the initial state is because the intruder knowledge must be a finite set
of terms for the constraint reduction to work. Putting it into strands means they
are available at any time, but the intruder knowledge in every reachable state
(and thus constraint) is finite. Similarly, for the goals on long-term secrets: the
set of events in every reachable state is still finite, but for every leaked secret, we
can in one transition reach the corresponding predicate that triggers the secrecy
violation goal. (5) ensures that when either protocol Pi leaks any constant of
Cβi

priv, it is a violation of its secrecy goals. (6) ensures that for both protocols, we
cannot unify terms unless their types match.

Theorem 5. If two protocols P1 and P2 are parallel-composable and both P1

and P2 are secure in isolation in the typed model, then P1 ‖ P2 is secure (also
in the untyped model).

We can then apply this theorem successively to any number of protocols that
satisfy the conditions, in order to prove that they are all parallel composable.

This compositionality result entails an interesting observation about parallel
composition with insecure protocols: unless one of the protocols leaks a long-term
secret, the intruder never needs to use one protocol to attack another protocol.
This means actually: even if a protocol is flawed, it does not endanger the security
of the other protocols as long as it at least manages not to leak the long-term
secrets. For instance, the Needham-Schroeder Public Key protocol has a well-
known attack, but the intruder can never obtain the private keys of any honest
agent. Thus, another protocol relying on the same public-key infrastructure is
completely unaffected. This is a crucial point because it permits us to even allow
for security statements in presence of flawed protocols:

Corollary 1. Consider two protocols P1 and P2 that are parallel-composable
(and thus satisfy all the conditions in Definition 12). If P1 is secure in isolation
and P2, even though it may have an attack in isolation, does not leak a long-term
secret, then all goals of P1 hold also in P1 ‖ P2.

7 Tool Support

We have developed the Automated Protocol Composition Checker APCC (avail-
able at http://www2.compute.dtu.dk/∼samo/APCC.zip), a tool that verifies the
two main syntactic conditions of our results: it checks both if a given protocol

http://www2.compute.dtu.dk/~samo/APCC.zip

224 O. Almousa et al.

is type-flaw-resistant and if the protocols in a given set are pairwise parallel-
composable. In our preliminary experiments, we considered a suite that includes
widely used protocols like TLS, Kerberos (PKINIT and Basic) and protocols
defined by the ISO/IEC 9798 standard, along with well-known academic proto-
cols (variants of Needham-Schroeder-Lowe, Denning-Sacco, etc.). Although we
worked with abstract and simplified models, we were able to verify that TLS
and Kerberos are parallel-composable. In contrast, since some protocols of the
ISO/IEC 9798 standard share common formats, they are not SMP -disjoint.

Another result is that many academic protocols are not pairwise parallel-
composable. This was largely expected because they do not have a standardized
implementation, and thus the format of messages at the wire level is not part of
the specification. In fact, in these protocols there are several terms that may be
confused with terms of other protocols, whereas a concrete implementation may
avoid this by choosing carefully disjoint messages formats that can prevent the
unification. Hence, our tool APCC can also support developers in the integration
of new protocols (or new implementations of them) in an existing system.

8 Conclusions and Related Work

This paper unifies research on the soundness of typed models (e.g., [4,6,13,
18]) and on parallel protocol composition (e.g., [2,8–10,12]) by using a proof
technique that has been employed in both areas: attack reduction based on a
symbolic constraint systems. For typing, the idea is that the constraint solving
never needs to apply ill-typed substitutions if the protocol satisfies some sufficient
conditions; hence, for every attack there exists a well-typed variant and it is thus
without loss of generality to restrict the model to well-typed execution. For the
parallel composition of P1 and P2 that again satisfy some sufficient conditions,
the constraint solving never needs to use a message that the intruder learned
from P1 to construct a message of P2; thus, the attack will work in P1 alone
or in P2 alone, and from verifying them in isolation, we can conclude that their
composition is secure.

We also make several generalizations over previous results. First, we are not
limited to a fixed set of properties like secrecy [3,6]. Instead, we consider the
entire geometric fragment proposed by Guttman [11] that we believe is the most
expressive language that can work with the given constraint-solving argument
that is at the core of handling typing and compositionality results uniformly.
Other expressive property languages have been considered, e.g., PS-LTL for typ-
ing results [4]; an in-depth comparison of the various existing property languages
and their relative expressiveness is yet outstanding. Another common limitation
is to rely on a fixed public key infrastructure, e.g., [3,4,8]. Our approach in con-
trast allows for the exchange of public keys (including freshly generated ones).
Moreover, early works on typing and parallel composition used a fixed tagging
scheme, whereas we use the more general notion of non-unifiable subterms for
messages that have different meaning. Using the notion of formats, our results
are applicable to existing real-world protocols like TLS with their actual formats.

Typing and Compositionality for Security Protocols 225

Our work considered so far protocols only in the initial term algebra without
any algebraic properties. There are some promising results for such properties
(e.g., [9,14,17]) that we would like to combine with our approach. The same
holds for other types of protocol composition, e.g., the sequential composition
considered in [9], where one protocol establishes a key that is used by another
protocol as input.

A Appendix: Proofs of the Technical Results

For space reasons, we only outline the proofs to convey the main ideas. The
detailed proofs are in [1].

Proof Sketch of Theorem 1. We prove by induction a corresponding property for
tr′ that is invoked by the tr function, i.e., that I,M,E |=S ψ iff I |= tr′

M,E(ψ)
for all suitable I,M,E and ψ. Here we use the fact that in all reachable states, E
is finite, i.e., event(t) ∈ E is equivalent to a finite enumeration t = e1∨. . .∨t = en.
All other cases and the extension to tr are straightforward. The well-formedness
follows from the fact that in each state, the knowledge M is a superset of all M ′

that occur in a deduction constraint M ′ � t in φ. �
Proof Sketch of Theorem 2. Since φ is simple, it is a conjunction of intruder
deduction constraints of the form M � x with x ∈ V, equations x

.= t where
x ∈ V and where x does not occur elsewhere in φ, as well as inequalities. Let ȳ be
all variables that occur freely in intruder deduction constraints and inequalities,
and let θ = [ȳ �→ c̄] for new constants c̄ ∈ Cpub (that do not occur in φ and
are pairwise different). We show that θ(φ) is satisfiable: all intruder deduction
constraints are satisfiable since the constants are in Cpub, and the equations are
obviously satisfiable. It remains to show that the inequalities are satisfiable under
θ. Let φ0 = ¬∃x̄.φσ with φσ =

∧
si

.= ti be any inequality. θ(φ0) is closed, and
since φ is simple we have mgu(θ(φσ)) = ∅. Thus, θ(φ0) holds. �

The completeness of the symbolic intruder constraint reduction is similar
to existing results on symbolic intruder constraints; what is particular is our
generalization to constraints with quantified inequalities. To that end, we show:

Lemma 2. Let φ = ¬∃x̄.φσ where φσ =
∧

si
.= ti, and let θ = [ȳ �→ c̄] where

ȳ = fv(φ) and c̄ are fresh public constants that do not occur in φ. Then φ is
satisfiable iff θ(φ) is satisfiable. Moreover, φ is satisfiable iff mgu(θ(φσ)) = ∅.

Proof Sketch. If θ(φ) is unsatisfiable, then also φ is unsatisfiable. For the other
direction, we show that the following two formulas are a contradiction:
(1) ∃ȳ.∀x̄.

∨n
i=1 si �= ti and (2) ∃x̄.

∧n
i=1 θ(si) = θ(ti). By (2), we can find a

substitution ξ = [x̄ �→ ū] where ū are ground terms such that
∧n

i=1 ξ(θ(si)) =
ξ(θ(ti)). Since θ and ξ are substitutions with disjoint domain and grounding, we
have θ(ξ(·)) = ξ(θ(·)), and thus we obtain (2’)

∧n
i=1 θ(ξ(si)) = θ(ξ(ti)). By (1),

choosing a particular value for the x̄, we obtain (1’) ∃ȳ.
∨n

i=1 ξ(si) �= ξ(ti). Then
we can find an i ∈ {1, ..., n} such that ∃ȳ. ξ(si) �= ξ(ti). Thus, taking s := ξ(si)

226 O. Almousa et al.

and t := ξ(ti), we have (1”) ∃ȳ. s �= t and (2”) θ(s) = θ(t). By case distinction on
whether s and t are atomic or not, follows immediately that (1”) and (2”) are a
contradiction. Now we can decide the satisfiability of φ with the mgu-algorithm
since θ(φ) is a closed formula and the remaining variables of θ(φσ) are the x̄. �
Proof Sketch of Theorem 3. As this is building on standard results [18,20], we
only describe the basic idea and highlight the particularities of our adaption. Let
us write φ � φ′ if φ′

φ is an instance of a reduction rule, i.e., representing one
solution step. It is straightforward that the rules are sound, i.e., that I |= φ′

and φ � φ′ imply I |= φ. The hard part is the completeness, i.e., when I |= φ,
then either φ is already simple or we can apply some rule, obtaining φ � φ′

for some φ′ with I |= φ′. Thus, we show that every solution I of a constraint
is preserved by at least one applicable reduction rule until we obtain a simple
constraint (that we already know is satisfiable by Theorem 2). The core idea is
as follows. Since I satisfies φ, for every intruder deduction M � t in φ, there
exists a proof I(M) � I(t) according to Definition 1. This proof has a tree shape
with I(M) � I(t) at the root and axioms as leaves for members of I(M). We
label each M � t with such a proof for I(M) � I(t). We now proceed from
the first (in the order induced by the well-formedness of φ) intruder constraint
M � t where t /∈ V (i.e., not yet simple) and show: depending on the form of
the derivation tree, we can pick a rule so that we can label all new deduction
constraints in the resulting constraint φ′ again with matching proof trees, i.e.,
so that they support still the solution. In particular, we will apply the (Unify)
rule only with substitutions of which I is an instance.

For the equalities s
.= t that are not yet simple (i.e., where neither s nor

t is a variable that occurs only once in the constraint), we can at any time
in the reduction apply (Equation), if the equation actually has a unifier. If not,
obviously the entire constraint is satisfiable. For the inequalities, suppose we have
a non-simple inequality φ0 = ¬∃x̄.φσ, i.e., mgu(θ(φσ)) �= ∅ for a substitution θ
from the free variables of φ0 to fresh constants. Then, by Lemma 2, φ0 is not
satisfiable, contradicting that I |= φ. This concludes the completeness proof.

For termination, it is standard to define a weight (n,m, l) for a constraint
φ, where n is the number of free variables in φ, m is the number of unanalyzed
subterms in the intruder knowledges of constraints; and l is the size of the con-
straint (in symbols). Ordering these three components lexicographically, every
� step reduces the weight. �
Proof Sketch of Theorem 4. The key idea is to consider a satisfiable constraint
Φ = φ ∧ trM,E(Ψ) that represents an attack against P , i.e., where φ is the con-
straint of a reachable state of P and trM,E(Ψ) is the translation of the violated
goal in that state. We have to show that the constraint has also a well-typed solu-
tion. By Theorem3 and since Φ is satisfiable, we can use the symbolic intruder
reduction rules to obtain a simple constraint Φ′, i.e., Φ �∗ Φ′. The point is now
that for a type-flaw resistant protocol, all substitutions in this reduction must
be well-typed! To see that, first observe that by construction, all equations s

.= t
(including inequalities) of Φ have Γ (s) = Γ (t) and for inequalities, we have that
all variables of s and t are of atomic type. Further, all terms that occur are either

Typing and Compositionality for Security Protocols 227

instances of terms in SMP(P) or atomic. We have to show also that during all
reduction steps, this property is preserved. Now note that we cannot apply the
(Unify) rule on a pair of terms s and t that are variables. So, they are either
both the same constant (which trivially preserves our invariants) or they are
composed and thus instances of terms in SMP(P). That in turn means that s
and t can only have a unifier if Γ (s) = Γ (t) by the type-flaw resistance property.
Thus, the resulting unifier is well-typed. For the (Equation) rule, we can obtain
only well-typed unifiers since all equations have to be well-typed. Finally, with a
similar construction as in Theorem 2 and using the fact that inequalities cannot
have composed variables, we can show that, when reaching a simple constraint
(in which all equations are well-typed), it has a well-typed solution. �
Proof Sketch of Theorem 5. Consider an attack against P1 ‖ P2 violating a goal
Ψ of P1. By Theorem 4, there must be a well-typed attack against P1 ‖ P2,
so we consider only a well-typed attack. We show that this attack works also
in P1 isolation, or one of the Pi in isolation leaks one of the long-term secret
constants. We use again a similar argument as in Theorem4: let φ be a constraint
that represents the attack against P1 ‖ P2 and thus has a well-typed model I;
we can then extract a constraint that represents an attack against P1 or P2 in
isolation. First, it does thus not change satisfiability of φ if we substitute each
variable of a composed type f (τ1, . . . , τn) by an expression f (x1, . . . , xn) where xi

are new variables of types τi, and repeat this process until we have only variables
of atomic types. We substitute every variable x of type private key with I(x).
Thus we have no variables of type private key anymore, and for every pub(t), t
is a public or secret long-term constant of type private key.

For every constraint M � t in φ, t is a message that was received by a strand
of either P1 or P2 and each s ∈ M is a message sent by a strand of either P1 or
P2. It is thus just a matter of book keeping to label t and each element of M
with either P1 or P2 accordingly. The property of parallel-composable requires
that all public constants of Cpub and all public keys pub(c) for c of type private
key are available to the intruder in each of the protocols; so when they occur
in the knowledge M of a constraint, we shall label them with � instead, as
they are not protocol-specific. By construction, no variable can occur both in a
P1-labeled term and in a P2-labeled term (and this property is preserved over all
reductions); we can thus also label variables uniquely as being either P1-variables
or P2-variables. By construction, in all s

.= t, both s and t are labeled the same.
Next, we can attack one of the two protocols without a unification between

a P1 and a P2 message. In the constraint system, this means that a constraint
M � t where t is labeled P1 can always be solved when removing all P2-labeled
messages from M . Following the reductions for a given well-typed solution I, the
only critical rule is (Unify), solving M � t by unifying t with some term s ∈ M .
Suppose t is labeled P1; s may be labeled P1, P2 or �. We show that there is
a solution without using a P2 message. Since (Unify) requires that s, t /∈ V,
they either are both the same constant or they are both composed. In case
of a constant, it cannot belong to the protocol-specific constants CP1 or CP2

(since they are disjoint by construction labeled for the respective protocol), so it

228 O. Almousa et al.

must be a long-term constant, belonging either to Cpub (then we can solve this
constraint instead with the (PubConsts) rule), or to Cpriv. In the latter case, we
have that one of the two protocols has leaked a long-term secret, and we can
extract the constraints up to this point as a witness that we have already an
attack for one protocol in isolation. It remains the case of composed messages
s and t being unified. One special case is that s = t = pub(c), in which case
we have that pub(c) is available in both protocols by parallel-composable. In all
other cases, we can use again that all non-atomic messages are instances of terms
in SMP(P1) or SMP(P2) and that the protocols are SMP-disjoint, so if s and t
have a unifier, they must belong to the same SMP(Pi). Thus the attack never
relies on the unification between a P1 and a P2 message, and we can extract a
pure P1 or a pure P2 constraint that violates a goal of the respective protocol.
Note that it is either a violation of a long-term secrecy goal or violating the goal
Ψ of P1 that the initial attack against P1 ‖ P2 violates. �

References

1. Almousa, O., Mödersheim, S., Modesti, P., Viganò, L.: Typing and composition-
ality for security protocols: a generalization to the geometric fragment (extended
version). DTU Compute Technical report-2015-03 (2015). http://www.imm.dtu.
dk/∼samo/

2. Andova, S., Cremers, C.J.F., Gjøsteen, K., Mauw, S., Mjølsnes, S.F., Radomirovic,
S.: A framework for compositional verification of security protocols. Inf. Comput.
206(2–4), 425–459 (2008)

3. Arapinis, M., Duflot, M.: Bounding messages for free in security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387.
Springer, Heidelberg (2007)

4. Arapinis, M., Duflot, M.: Bounding messages for free in security protocols - exten-
sion to various security properties. Inf. Comput. 239, 182–215 (2014)

5. Armando, A., Compagna, L.: SATMC: a sat-based model checker for security pro-
tocols. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp.
730–733. Springer, Heidelberg (2004)

6. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: tagging enforces
termination. Theor. Comput. Sci. 333(1–2), 67–90 (2005)

7. Comon-Lundh, H., Delaune, S., Millen, J.K.: Constraint solving techniques and
enriching the model with equational theories. In: Formal Models and Techniques
for Analyzing Security Protocols, pp. 35–61. IOS Press (2011)

8. Cortier, V., Delaune, S.: Safely composing security protocols. Form. Methods Syst.
Des. 34, 1–36 (2009)

9. Ciobâcă, Ş., Cortier, V.: Protocol composition for arbitrary primitives. In: CSF,
pp. 322–336. IEEE (2010)

10. Guttman, J.D.: Cryptographic protocol composition via the authentication tests.
In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 303–317. Springer,
Heidelberg (2009)

11. Guttman, J.D.: Establishing and preserving protocol security goals. J. Comput.
Secur. 22(2), 203–267 (2014)

12. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.
In: CSFW, pp. 24–34. IEEE (2000)

http://www.imm.dtu.dk/~samo/
http://www.imm.dtu.dk/~samo/

Typing and Compositionality for Security Protocols 229

13. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols. J. Comput. Secur. 11(2), 217–244 (2003)

14. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In: CSF, pp. 157–171. IEEE (2009)

15. Lowe, G.: A hierarchy of authentication specifications. In: CSFW, pp. 31–44 (1997)
16. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic

protocol analysis. In: CCS, pp. 166–175. ACM (2001)
17. Mödersheim, S.: Diffie-Hellman without difficulty. In: Barthe, G., Datta, A., Etalle,

S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 214–229. Springer, Heidelberg (2012)
18. Mödersheim, S.: Deciding security for a fragment of ASLan. In: Foresti, S., Yung,

M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 127–144. Springer,
Heidelberg (2012)

19. Mödersheim, S., Katsoris, G.: A sound abstraction of the parsing problem. In: CSF,
pp. 259–273. IEEE (2014)

20. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions
and composed keys is NP-complete. Theor. Comput. Sci. 299(1–3), 451–475 (2003)

21. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999)

Checking Trace Equivalence: How to Get Rid
of Nonces?

Rémy Chrétien1,2(B), Véronique Cortier1, and Stéphanie Delaune2

1 LORIA, INRIA Nancy - Grand-Est, Villers-lès-Nancy, France
chretien@lsv.ens-cachan.fr

2 LSV, ENS Cachan & CNRS, Cachan Cedex, France

Abstract. Security protocols can be successfully analysed using formal
methods. When proving security in symbolic settings for an unbounded
number of sessions, a typical technique consists in abstracting away fresh
nonces and keys by a bounded set of constants. While this abstraction is
clearly sound in the context of secrecy properties (for protocols without
else branches), this is no longer the case for equivalence properties.

In this paper, we study how to soundly get rid of nonces in the context
of equivalence properties. We show that nonces can be replaced by con-
stants provided that each nonce is associated to two constants (instead of
typically one constant for secrecy properties). Our result holds for deter-
ministic (simple) protocols and a large class of primitives that includes
e.g. standard primitives, blind signatures, and zero-knowledge proofs.

1 Introduction

Security protocols are notoriously difficult to design as exemplified by a long
history of attacks. For example, the TLS protocol has been shown once again to
be vulnerable to a new attack called FREAK [4]. Formal methods offer symbolic
models to carefully analyse security protocols, together with a set of proof tech-
niques and efficient tools such as ProVerif [5], Scyther [17], Maude-NPA [21], or
Avispa [3]. Security properties can be divided into two main categories.

– Trace properties are used to express secrecy or various forms of authentication
properties. They ensure that a certain statement holds for any execution.

– Equivalence properties are typically used to state privacy properties like
anonymity, unlinkability [8], or vote privacy [18]. More generally, equivalence
properties may state indistinguishability properties, such as game-based defi-
nitions inherited from models used in cryptography [15,22].

When proving security properties, it is important to obtain guarantees for an
unlimited number of sessions. Unfortunately, it is well known that even secrecy

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ERC grant agreement n◦ 258865, project ProSecure, and the ANR
project JCJC VIP no 11 JS02 006 01.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 230–251, 2015.
DOI: 10.1007/978-3-319-24177-7 12

Checking Trace Equivalence: How to Get Rid of Nonces? 231

is undecidable [20] in this context. Undecidability comes from two main factors.
First, messages may grow arbitrarily during an execution. Second, even when
considering messages of fixed size, it has been shown that nonces still cause
undecidability [2]. Intuitively, nonce freshness may be used to create pointers
that are used in turns to build chained lists and thus again arbitrarily large data.
Therefore, a standard restriction consists in bounding the number of nonces (and
keys). Under this assumption, several decidability results have been established
for secrecy [7,13,20], as well as for trace equivalence [9,10].

Replacing nonces by constants is sound in the context of secrecy properties.
More precisely, assuming that P is obtained from the security protocol P by
replacing nonces (and keys) by constants, whenever P is secure (w.r.t. a trace
property such as secrecy) then P is secure as well. Indeed, replacing nonces
by constants may only introduce more attacks, since it may only create more
equalities, as long as the protocol P under study does not have else branches.
Therefore, the decidability results developed for secrecy (e.g. [7,13,20]) may be
seen as proof techniques: if P falls in a decidable class and can be shown to be
secure then the protocol P is secure as well. Unfortunately, such an approach
is no longer valid in the context of equivalence properties. Indeed, consider the
processes:

P = ! new n.out(c, {n}k) and Q = ! out(c, {n}k).

The ! operator denotes the replication. Intuitively, both processes send out an
arbitrary number of messages on the public channel c. The process P sends out
each time a fresh nonce n encrypted by a (secret) key k while Q always sends the
same message. We assume here that encryption is not randomised. Clearly, the
processes P and Q are not in equivalence (denoted P �≈ Q) since an attacker can
easily notice that P sends distinct messages while Q sends identical messages.
However, abstracting away fresh names with constants, the resulting equivalence
holds (denoted P ≈ Q). Indeed, the two resulting processes are actually identical:
P = Q = ! out(c, {n}k). This illustrates that P ≈ Q �⇒ P ≈ Q.

Main Contribution. We identify a technique to (soundly) get rid of freshly
generated data (e.g. nonces, keys). The main idea consists in introducing an
additional copy of each replicated nonce. More precisely, we show that:

!P | P � ≈ !Q | Q� ⇒ !P ≈ !Q

where P � is obtained from P by renaming all fresh nonces and keys to distinct
(fresh) constants. Our result holds for simple processes, a notion that has been
introduced in [15] and used in several subsequent works (e.g. [10]). Roughly, each
process communicates on a distinct channel. This corresponds to the fact that in
practice each machine has its own IP address and each session is characterised
by some session identifier. We consider a large family of primitives, provided
that they can be described by a destructor/constructor theory with no critical
pair. In particular, our technique allows one to deal with standard primitives
(asymmetric and symmetric encryption, hash, signatures, MACs) as well as e.g.
blind signatures and zero-knowledge proofs. As an application, we deduce that

232 R. Chrétien et al.

the decidability result developed in [10] for tagged protocols without nonces can
be applied to study the security of protocols with nonces. The full proofs of the
results presented in this paper can be found in [11].

Related Work. Abstracting nonces and keys by constants is known to be sound
for secrecy properties as part of the “folklore”. We did not find a precise refer-
ence for this result. A related result is a reduction to two agents [14] for trace
properties. Reducing the number of nonces can be obtained in a similar way.

The tool ProVerif [5,6] also makes use of an abstraction for fresh data. In
case of secrecy, nonces are abstracted by functions applied to the process inputs.
In case of equivalence properties, nonces are additionally given a counter (termi-
nation is of course not guaranteed). The abstraction technique is therefore more
precise than using only constants but seems dedicated to the internal behaviour
of the ProVerif tool.

The only decidability result for equivalence with nonces (for an unbounded
number of sessions) has been recently presented in [12]. For protocols that fall
in the class of [12], it is therefore more direct to use this decidability result than
applying our simplification. However, the class of protocols we consider here is
more general: we do not need protocols to be tagged nor to induce an “acyclic
dependency graph” and we cover a much wider class of cryptographic primitives.

2 Model for Security Protocols

Security protocols are modelled through a process algebra inspired from [1] that
manipulates terms.

2.1 Term Algebra

We assume an infinite set N of names, which are used to represent keys and
nonces and an infinite set X of variables. We assume a signature Σ, i.e. a set of
function symbols together with their arity, and we make a distinction between
constructor symbols and destructor symbols: Σ = Σc �Σd. Given a signature Σ,
we denote by T (Σ,A) the set of terms built from symbols in Σ and atomic data
in A. Terms without variables are called ground. The set T (Σc,X ∪ N) is the
set of constructor terms. Then among the terms in T (Σc,N) we distinguish a
special subset of terms called messages and noted MΣ , and that is stable under
renaming of names: a message does not contain any destructor symbol, and
m ∈ MΣ implies that mρ ∈ MΣ for any renaming ρ (not necessarily a bijective
one).

In addition to the set of variables X , we consider an infinite disjoint set of
variables W. Variables in W intuitively refer to variables used to store messages
learnt by the attacker. We denote vars(u) the set of variables that occur in a
term u. The application of a substitution σ to a term u is written uσ, and we
denote dom(σ) its domain. The positions of a term are defined as usual. Two
terms u and v are unifiable if there is a substitution σ such that uσ = vσ.

Checking Trace Equivalence: How to Get Rid of Nonces? 233

The properties of the primitives are expressed using rewriting rules of the
form g(t1, . . . , tn) → t where g is a destructor, that is g ∈ Σd, and t1, . . . , tn, t
are constructor terms. A rewriting rule can only be applied to constructor terms.
Formally, we say that u can be rewritten into v if there is a position p and a
rule g(t1, . . . , tn) → t such that u at position p is equal to g(t1, . . . , tn)θ and
v = u[tθ]p (that is u where the term at position p has been replaced by tθ) for
some substitution θ such that t1θ, . . . , tnθ, tθ are messages. We only consider
sets of rewriting rules that yield convergent rewrite systems. We denote by u↓
the normal form of a given term u. We refer the reader to [19] for the precise
definitions of rewriting systems, convergence, and normal forms.

Example 1. A typical signature for representing symmetric encryption and pair is

Σ = {senc, sdec, 〈 〉, proj1, proj2} � Σ0

where Σ0 is a set of atomic data. The set Σ0 typically contains the public con-
stants known to the attacker (e.g. agent names a, b, . . .). The symbols senc
and sdec of arity 2 represent symmetric encryption and decryption. Pairing is
modelled using 〈 〉 of arity 2, whereas projection functions are denoted proj1 and
proj2 (both of arity 1). The relations between encryption/decryption and pair-
ing/projections are represented through the following convergent rewrite system:

sdec(senc(x, y), y) → x, and proji(〈x1, x2〉) → xi with i ∈ {1, 2}.

We have that proj1(sdec(senc(〈s1, s2〉, k), k))↓ = s1. Note that, since a
destructor can only be applied on messages, no rewriting rule can be applied on
the term sdec(senc(s, proj1(s)), proj2(s)) which is thus in normal form (but not a
message). This signature Σ is split into two parts as follows: Σc = {senc, 〈 〉}�Σ0

and Σd = {sdec, proj1, proj2}. Then, we may consider MΣ to be Mc = T (Σc,N)
the set of all ground constructor terms. We may also restrict MΣ to be Matomic,
the set of ground constructor terms that only use atomic data in key position.

Finally, we assume Σ to be split into two parts, and this distinction is orthog-
onal the one made between destructor and constructor symbols. We denote by
Σpub the set of function symbols that are public, i.e. available to the attacker,
and Σpriv for those that are private. Actually, an attacker builds his own mes-
sages by applying public function symbols to terms he already knows. Formally,
a computation done by the attacker is modelled by a term in T (Σpub,W), called
a recipe. Note that such a term does not contain any name. Indeed, all names
are initially unknown to the attacker.

2.2 Process Algebra

Let Ch be an infinite set of channels. We consider processes built using the
grammar below where u ∈ T (Σc,N ∪ X), v ∈ T (Σ,N ∪ X), n ∈ N , and
c, c′ ∈ Ch:

234 R. Chrétien et al.

P,Q := 0 null
| in(c, u).P input
| out(c, u).P output
| let x = v in P evaluation

| (P | Q) parallel
| !P replication
| new n.P restriction
| new c′.out(c, c′).P channel generation

The process 0 does nothing. The process “in(c, u).P” expects a message m of
the form u on channel c and then behaves like Pσ where σ is a substitution such
that m = uσ. The process “out(c, u).P” emits u on channel c, and then behaves
like P . The variables that occur in u are instantiated when the evaluation takes
place. The process “let x = v in P” tries to evaluate v and in case of success
the process P is executed; otherwise the process is blocked. The process “P | Q”
runs P and Q in parallel. The process “!P” executes P some arbitrary number
of times. The restriction “new n” is used to model the creation of a fresh random
number (e.g., a nonce or a key) whereas channel generation “new c′.out(c, c′).P”
is used to model the creation of a fresh channel name that shall immediately
be made public. Note that we consider only public channels. It is still useful to
generate fresh channel names to let the attacker identify the different sessions
(as it is often the case in practice through sessions identifiers).

Note that our calculus allows both message filtering as well as explicit appli-
cation of destructor symbols. For example, to represent a process that waits for
a message, decrypts it with a key k, and sends the plaintext in clear, we may write
P = in(c, senc(x, k)).out(c, x) as well as Q = in(c, y).let x = sdec(y, k) in out(c, x).
However, the choice of filtering or let yields a slightly different behaviour since a
message will be received in P only if it matches the expected format while any
message will be received in Q (and then the format is checked).

We write fv(P) for the set of free variables that occur in P , i.e. the set of
variables that are not in the scope of an input or a let construction. We assume
Ch = Ch0 � Chfresh where Ch0 and Chfresh are two infinite sets of channels. Intu-
itively, channels of Chfresh, denoted ch1, . . . , chi, . . . will be used in the semantics
to instantiate the channels generated during the execution of a protocol. They
shall not be part of its specification.

Definition 1. A protocol P is a process such that P is ground, i.e. fv(P) = ∅;
and P does not use channel names from Chfresh.

Example 2. The Yahalom protocol [23] is a key distribution protocol using sym-
metric encryption and a trusted server. The Paulson’s version of this protocol
can be described informally as follows:

1. A → B : A, Na

2. B → S : B, Nb, {A,Na}Kbs

3. S → A : Nb, {B,Kab, Na}Kas
, {A,B,Kab, Nb}Kbs

4. A → B : {A,B,Kab, Nb}Kbs
, {Nb}Kab

where {m}k denotes the symmetric encryption of a message m with key k, A
and B are agents trying to authenticate each other, S is a trusted server, Kas

(resp. Kbs) is a long term key shared between A and S (resp. B and S), Na

and Nb are nonces generated by A and B, whereas Kab is a key generated by S.

Checking Trace Equivalence: How to Get Rid of Nonces? 235

We propose a modelling of the Yahalom protocol in our formalism using the
signature given in Example 1. We use restricted channels to model the use of
unique session identifiers used along an execution of the protocol. Below, kas,
kbs, na, nb, kab are names, whereas a and b are constants from Σ0 and cA, cB ,
and cS are (public) channel names for respectively the role of A, B, and S. We
denote by 〈x1, . . . , xn−1, xn〉 the term 〈x1, 〈. . . 〈xn−1, xn〉〉〉.
PYah =! new c1.out(cA, c1).PA | ! new c2.out(cB , c2).PB | ! new c3.out(cS , c3).PS

where the processes PA, PB , and PS are given below:

PA = new na. out(c1, 〈a, na〉). in(c1, 〈xnb, senc(〈b, xab, na〉, kas), xbs〉).
out(c1, 〈xbs, senc(xnb, xab)〉);

PB = in(c2, 〈a, yna〉). new nb. out(c2, 〈b, nb, senc(〈a, yna〉, kbs)〉).
in(c2, 〈senc(〈a, b, yab, nb〉, kbs), senc(nb, yab)〉);

PS = in(c3, 〈b, znb, senc(〈a, zna〉, kbs)〉). new kab.
out(c3, 〈nb, senc(〈b, kab, zna〉, kas), senc(〈a, b, kab, znb

〉, kbs)〉).

2.3 Semantics

The operational semantics of a process is defined using a relation over configu-
rations. A configuration is a pair (P;φ) where:

– P is a multiset of ground processes.
– φ = {w1 � m1, . . . ,wn � mn} is a frame, i.e. a substitution where w1, . . . ,wn

are variables in W, and m1, . . . ,mn are messages, i.e. terms in MΣ .

We often write P instead of ({P}; ∅), and P ∪P or P | P instead of {P}∪P.
The terms in φ represent the messages that are known by the attacker. The
operational semantics of a process is induced by the relation α→ as defined below.

(in(c, u).P ∪ P;φ)
in(c,R)

−−−−−→ (Pσ ∪ P;φ) where R is a recipe such that Rφ↓ is a
message and Rφ↓ = uσ for some σ with dom(σ) = vars(u)(out(c, u).P ∪ P;φ)
out(c,wi+1)−−−−−−−→ (P ∪ P;φ ∪ {wi+1 � u}) where u is a message and i is the number of

elements in φ(new c′.out(c, c′).P∪P;φ)
out(c,chi)−−−−−−−→ (P{chi/c′}∪P;φ) where chi is

the “next′′ fresh channel name available in Chfresh(let x = v in P ∪ P;φ) τ→
(P{v↓/x} ∪ P φ) where v↓ is a message (new n.P ∪ P;φ) τ→ (P{n′

/n} ∪ P;φ)
where n′ is a fresh name in N (!P ∪ P;φ) τ→ (P ∪ !P ∪ P;φ).

The first rule allows the attacker to send to some process a term built from
publicly available terms and symbols. The second rule corresponds to the output
of a term: the corresponding term is added to the frame of the current configu-
ration, which means that the attacker can now access the sent term. Note that
the term is outputted provided that it is a message. The third rule corresponds
to the special case of an output of a freshly generated channel name. In such a
case, the channel is not added to the frame but it is implicitly assumed known
to the attacker, as all the channel names. These three rules are the only observ-
able actions. The fourth rule corresponds to the evaluation of the term v; if this

236 R. Chrétien et al.

succeeds, i.e. if v↓ is a message then x is bound to the result and P is executed;
otherwise the process is blocked. The two remaining rules are quite standard
and are unobservable by the attacker.

The relation α1...αn→ between configurations (where α1 . . . αn is a sequence of
actions) is defined as the transitive closure of α→. Given a sequence of observable
actions tr, we write K

tr=⇒K ′ when there exists a sequence α1 . . . αn such that
K

α1...αn−−−−→ K ′ and tr is obtained from α1 . . . αn by erasing all occurrences of τ .
For every protocol P , we define its set of traces as follows:

trace(P) = {(tr, φ) | P
tr=⇒(P;φ) for some configuration (P;φ)}.

Example 3. The Yahalom protocol as presented in Example 2 is known to be
flawed as informally described below.

(i) 1. I(A) → B : A, Ni

(i) 2. B → I(S) : B, Nb, {A,Ni}Kbs

(ii) 1. I(A) → B : A, B, Ki, Nb

(ii) 2. B → I(S) : B, N ′
b, {A, B, Ki, Nb}Kbs

(i) 4. I(A) → B : {A,B,Ki, Nb}Kbs
, {Nb}Ki

Intuitively, the attacker opens two sessions with B. In the second session (ii),
the attacker uses B as an encryption oracle. This attack can be reflected by the
following sequence tr.

tr = out(cB , ch1).in(ch1, 〈a, ni〉).out(ch1,w1).out(cB , ch2).in(ch2, 〈a,b, ki, Rb〉).
out(ch2,w2).in(ch1, 〈proj2(proj2(w2)), senc(Rb, ki)〉)

where ki and ni are public constants from Σ0, and Rb = proj1(proj2(w1)). This
sequence tr allows one to reach the frame:

φ = {w1 � 〈b, nb, senc(〈a, ni〉, kbs)〉, w2 � 〈b, n′
b, senc(〈a, 〈b, ki, nb〉〉, kbs)〉}.

We have that (tr, φ) ∈ trace(PYah). Roughly, agent b has completed a session
apparently with agent a, and has established a session key ki. However, the
agent a has never participated to this execution, and ki is actually a key known
to the attacker.

2.4 Trace Equivalence

Intuitively, two protocols are equivalent if they cannot be distinguished by any
attacker. Trace equivalence can be used to formalise many interesting secu-
rity properties, in particular privacy-type properties, such as those studied for
instance in [8,18]. We first define symbolic indistinguishability of sequences of
messages, called static equivalence.

Definition 2. Two frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when
we have that dom(φ1) = dom(φ2), and:

Checking Trace Equivalence: How to Get Rid of Nonces? 237

– for any recipe R, Rφ1↓ ∈ MΣ if, and only if, Rφ2↓ ∈ MΣ; and
– for all recipes R1 and R2 such that R1φ1↓, R2φ1↓ ∈ MΣ, we have that

R1φ1↓ = R2φ1↓ if, and only if, R1φ2↓ = R2φ2↓.
Intuitively, two frames are equivalent if an attacker cannot see the difference

between the two situations they represent. If some computation fails in φ1 for
some recipe R, i.e. Rφ1↓ is not a message, it should fail in φ2 as well. Moreover,
the frames φ1 and φ2 should satisfy the same equalities. In other words, the
ability of the attacker to distinguish whether a recipe R produces a message,
or whether two recipes R1, R2 produce the same message should not depend on
the frame. The choice of MΣ as well as the choice of public symbols allow to
fine-tune what an attacker can observe. The set of public function symbols tell
exactly which functions the attacker may use. Then the choice MΣ defines when
computations fail. For example, if MΣ represents the set of terms with atomic
keys only, then an attacker may potentially observe that some computation fails
because he was able to inject a non atomic key.

Example 4. Consider φ1 = {w1 � senc(m1, ki)}, and φ2 = {w1 � senc(m2, ki)}.
Assuming that m1, m2 are public constants from Σ0, we have that φ1 �∼ φ2.
An attacker can observe that decrypting the message of φ1 with the public
constant ki leads to the public constant m1. This is not the case in φ2. Consider
the recipes R1 = sdec(w1, ki) and R2 = m1. We have that R1φ1↓ = R2φ1↓
whereas R1φ2↓ �= R2φ2↓.

Intuitively, two protocols are trace equivalent if, however they behave, the
resulting sequences of messages observed by the attacker are in static equivalence.

Definition 3. Let P and Q be two protocols. We have that P � Q if for every
(tr, φ) ∈ trace(P), there exists (tr′, φ′) ∈ trace(Q) such that tr = tr′ and φ ∼ φ′.
They are in trace equivalence, written P ≈ Q, if P � Q and Q � P .

Example 5. We wish to check strong secrecy of the key received by B for the
Yahalom protocol. A way of doing so is to check that P 1

Yah ≈ P 2
Yah where P i

Yah

(with i ∈ {1, 2}) is as PYah but we add the instruction out(c2, senc(mi, yab)) at the
end of the process PB . The terms m1 and m2 are two distinct public constants
from Σ0. The idea is to check whether an attacker can see the difference when
the key that has been established is used to encrypt different public constants.
Actually, this equivalence does not hold.

Let tr′ = tr.out(ch1,w3), and φ′
j = φ ∪ {w3 � senc(mj , ki)} (with j ∈ {1, 2})

where (tr, φ) is as described in Example 3. We have that (tr′, φ′
1) ∈ trace(P 1

Yah)
and (tr′, φ′

2) ∈ trace(P 2
Yah). However, we have that φ′

1 �∼ φ′
2 (as explained in

Example 4). Thus, P 1
Yah and P 2

Yah are not in trace equivalence. An attacker can
observe the encrypted message sent at the end of the execution and see which
constant has been encrypted since he knows the key ki.

238 R. Chrétien et al.

3 Main Contribution: Getting Rid of Nonces

As explained in introduction, our main contribution is to provide a transforma-
tion that soundly abstracts nonces. Informally, we prove an implication of the
following form:

!P | P � ≈ !Q | Q� ⇒ !P ≈ !Q

where P is obtained from P by replacing nonces by constants, and P � is a copy
of P . Before defining formally this transformation in Sect. 3.2, we introduce in
Sect. 3.1 which hypotheses are required for the soundness of our transformation.

3.1 Our Hypotheses

Our technique soundly abstracts nonces and keys for trace equivalence, for simple
protocols and for a large family of security primitives, namely adequate theories,
that we define in this section. We first introduce the class of simple protocols,
similar to the one introduced e.g. in [10,15].

Definition 4. A simple protocol P is a protocol of the form:

!new c′
1.out(c1, c

′
1).B1 | ... | !new c′

m.out(cm, c′
m).Bm | Bm+1 | . . . | Bm+p

where each Bi with 1 ≤ i ≤ m + p is a basic process on ci, that is a ground
process built using the following grammar:

B := 0 | in(ci, u).B | out(ci, u).B | let x = v in B | new n.B

where u ∈ T (Σc,N ∪ X), v ∈ T (Σ,N ∪ X), and n ∈ N . Moreover, we assume
that c1, . . . , cm, cm+1, . . . , cm+p are pairwise distinct.

Even if considering simple processes may seem to be restricted, in practice it
is often the case that an attacker may identify processes through e.g. IP addresses
and even sessions using sessions identifiers. Therefore, encoding protocols in such
a class may be considered as a good practice since it allows to potentially discover
more flaws. Indeed, it gives more power to the attacker and allows him to know
from which agent he receives a message.

Example 6. The protocol PYah (see Example 2), as well as P 1
Yah and P 2

Yah as
described in Example 5, are simple protocols.

In order to establish our result, we have to ensure that considering two dis-
tinct constants instead of fresh nonces is sufficient. We need this property to hold
on terms first. Intuitively, when a term cannot be reduced further, it should be
possible to isolate two nonces that cause the reduction to fail. This is indeed the
case for a large class of primitives. We formalise this notion as follows:

Definition 5. Given a signature Σ = Σc � Σd, a convergent rewriting system
R, and a set of messages MΣ, we say that the theory (Σ,R) is adequate w.r.t.
MΣ when for any term t ∈ T (Σ,N)�MΣ in normal form, there exist n1, n2 ∈
N such that for any renaming ρ with ρ(n1) �= ρ(n2) then tρ↓ �∈ MΣ.

Checking Trace Equivalence: How to Get Rid of Nonces? 239

Intuitively, we require that whenever a term t is not a message, it is possible
to fix two names of t such that any renaming of t (preserving these two names)
is still not a message. We could generalise our criterion to n-adequate theories
where the number of names that need to fixed is bounded by n but two names
are actually sufficient to deal with most of the theories.

Example 7. The theory described in Example 1 is adequate w.r.t. to the two
notions of messages Mc and Matomic that have been introduced. Intuitively, when
a term is not a message, either this property is actually stable for any renaming
(e.g. sdec(n, k)) or is due to the failure of a decryption (e.g. sdec(senc(n, k), k′)).
In such a case, maintaining the disequality between the terms modelling the
encryption and the decryption keys is sufficient to ensure that the resulting
term will not become a message.

Since proving a theory to be adequate may be a bit tedious, we develop in
Sect. 4.2 a criterion that allows us to conclude for the theory given above and
many others.

3.2 Our Transformation

We now explain how to formally get rid of nonces. Our transformation is actually
modular w.r.t. which nonces shall be abstracted. Let P be a simple process in
which any name is bound at most once. This means that any name that does
not occur explicitly in the scope of a restriction is distinct from those introduced
by the new operator. Moreover, a same name can not be introduced twice by the
operator new. Our transformation is parametrised by a set of names N which
correspond to the new instructions that we want to remove (typically those under
a replication).

We denote by P
N

(or simply P when N is clear from the context) the process
obtained from P by removing every instruction new n for any n ∈ N. Given B(c)
a basic process built on channel c, we denote by B�(c�) the process obtained
from B by applying a bijective alpha-renaming on each name bound by a new
instruction and replacing each occurrence of the channel c with the channel c�

(that is assumed to be fresh).

Example 8. Consider the process P = !new c′.out(c, c′).B where B is a basic
process built on channel c′. Let B = new n.out(c′, senc(n, k)), and N = {n}. We
have that:

1. P = !new c′.out(c, c′).out(c′, senc(n, k)), and
2. B�(c�) = new n�.out(c�, senc(n�, k)).

Note that B and B�(c�) are identical up to the fact that they proceed on dif-
ferent channel. The transformation
 applied on the basic process is just here to
emphasise the fact that bound names are renamed to avoid some confusion due
to name clashes.

240 R. Chrétien et al.

Now, our transformation consists of combining these two building blocks.
When removing fresh names from a process P , we keep a copy of one of the
replicated basic processes of P , identified by its channel c. More formally, given
a simple process P of the form P = ! new c′.out(c, c′).B | P ′, and a set of names
N, the resulting process P

N,c
is defined as follows:

P
N,c def= P

N | B�(c�).

Sometimes we simply write P
c

instead of P
N,c

when N is clear from the context.

Example 9. Continuing Example 8, we have that:

P
N,c

= ! new c′.out(c, c′).out(c′, senc(n, k)) | new n�.out(c�, senc(n�, k)).

3.3 Main Result

We are now able to state our main result. We consider a signature Σ = Σc � Σd

together with a convergent rewriting system R, and a notion of messages MΣ

such that the theory (Σ,R) is adequate w.r.t. MΣ . Given a simple process P ,
we note Ch(P) the set of public channel names occurring under a replication
in P .

Theorem 1. Let P and Q be two simple protocols such that Ch(P) = Ch(Q),
and N be a set of names (intuitively those that we want to abstract away). We
have that:

[∀c ∈ Ch(P). P
N,c ≈ Q

N,c
] ⇒ P ≈ Q

Note that, in case Ch(P) �= Ch(Q), we trivially have that P �≈ Q since one
process is able to emit on a channel whereas the other is not.

This theorem shows that whenever two processes are not in trace equiva-
lence, then it is possible to find a witness of non-equivalence when nonces are
replaced by constants provided that one basic process under a replication has
been duplicated.

Example 10. Continuing the example developed in introduction and pursued in
Sect. 3.2, we consider

1. P = !new c′.out(c, c′).new nP .out(c′, senc(nP , k)), and
2. Q = !new c′.out(c, c′).out(c′, senc(nQ, k)).

Let N = {nP }. We have that:

1. P
c

= !new c′.out(c, c′).out(c′, senc(nP , k)) | new n�
P .out(c�, senc(n�

P , k)), and
2. Q

c
= !new c′.out(c, c′).out(c′, senc(nQ, k)) | out(c�, senc(nQ, k)).

Clearly P
c �≈ Q

c
since an attacker can observe that P

c
may send two distinct

messages while Q
c

cannot. Intuitively, the attack reflecting that P �≈ Q can be
reflected in P

c �≈ Q
c
. Another choice for N is to consider the set {nP , nQ} but

this would lead exactly to the same result.

Checking Trace Equivalence: How to Get Rid of Nonces? 241

3.4 Sketch of Proof

To establish our result, we first establish how to map traces from P to P
N
.

Given a simple process P , and a trace (tr, φ) ∈ trace(P), we denote by ρP,N
(tr,φ) the

replacement that associates to each name r ∈ N generated during the execution
under study and occurring in the frame φ, the name n ∈ N that occurs in the
instruction new n of P and that is responsible of the generation of this fresh
name. This amounts in losing freshness of all the new n instructions with n ∈ N.
Indeed all nonces induced by such an instruction are collapsed into a single nonce
n. Our transformation is parametric in N: we may replace all new instructions
or simply part of them. Note that, for simple processes, once (tr, φ) is fixed, this
replacement is uniquely defined.

Lemma 1. Let P be a simple protocol, N be a set of names, and (tr, φ) ∈
trace(P). We have that (tr, φρP,N

(tr,φ)) ∈ trace(P
N
).

This proposition is shown by induction on the length of the trace under study
and by case analysis on the rule of the semantics that is applied to allow the
process to evolve. The crucial point is that the lack of freshness induced by
considering P

N
instead of P only generates more equalities between terms, and

thus more behaviours. Now, it remains to ensure that the disequality that is
needed to witness the non-equivalence still remains, and this is the purpose of
considering a fresh copy, namely B�(c�).

Sketch of proof of Theorem 1. The idea is to showthatawitness ofnon-equivalence
for P �≈ Q can be converted into a witness of non-equivalence for P

c �≈ Q
c

for at
least one c ∈ Ch(P) = Ch(Q). Due to the fact that we consider simple processes,
three main cases may occur (the three other symmetric cases can be handled sim-
ilarly). We have that (tr, φ) ∈ trace(P), and

1. there exists ψ such that (tr, ψ) ∈ trace(Q) and two recipes R1, R2 such that
R1φ↓, R2φ↓, R1ψ↓ and R2ψ↓ are messages; R1φ↓ = R2φ↓ and R1ψ↓ �= R2ψ↓;
or

2. there exists ψ such that (tr, ψ) ∈ trace(Q) and a recipe R such that Rφ↓ is a
message but Rψ↓ is not; or

3. there exists no frame ψ such that (tr, ψ) ∈ trace(Q).

Each case is proved separately, following the same lines. First, thanks to
Lemma 1, in case (tr, φρP,N

(tr,φ)) is still a witness of non-equivalence, we easily
conclude. This roughly means that we do not even need the fresh copy to exhibit
the non-equivalence. Otherwise, we need to maintain a disequality to ensure that
the distinguishing test will not hold on the Q side. Since we consider adequate
theories, we know that this disequality can be maintained through the use of
two distinct names. This is exactly why a fresh copy is needed. The other cases
can be handled similarly.

242 R. Chrétien et al.

4 Scope of Our Result

In this section, we explain why we need to assume simple processes and adequate
theories and we discuss which class of protocols and primitives can be covered.

4.1 Simple Processes

Simple processes are really necessary for our simplification result to hold. We
provide below a small counter example to our result for non simple processes.

Example 11. We consider symmetric encryption and pairs as in Example 1 with
ok ∈ Σ0. We define the two following processes.

P = ! new c.out(c1, c).new n.out(c, senc(n, k)) (1)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(x, k), senc(y, k)〉).out(c, ok) (2)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(x, k)〉).out(c, ok) (3)
| ! new c.out(c2, c).in(c, 〈senc(y, k), senc(x, k), senc(x, k)〉).out(c, ok) (4)

Q = ! new c.out(c1, c).new n.out(c, senc(n, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(z, k)〉).out(c, ok).

Intuitively P expects a list of three ciphertexts among which two must be identi-
cal, while Q expects any three ciphertexts. The process Q is simple but P is not
since several processes in parallel proceed on channel c2. We have that P �≈ Q:
it is possible using (1) to generate distinct ciphertexts, concatenate them, and
send the resulting message on c2. This message will not be accepted in P , but
it will be accepted in Q.

Now, consider the process P
c1 and Q

c1 with N = {n}, that is the processes
obtained by applying our transformation on channel c1 (the only branch that
contains nonce generation) with the goal of getting rid of the instruction new n
on both sides. We obtain:

P
c1 = ! new c.out(c1, c).out(c, senc(n, k))

| new n�. out(c�, senc(n�, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(x, k), senc(y, k)〉).out(c, ok)
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(x, k)〉).out(c, ok)
| ! new c.out(c2, c).in(c, 〈senc(y, k), senc(x, k), senc(x, k)〉).out(c, ok)

Q
c1 = ! new c.out(c1, c).out(c, senc(n, k))

| new n�. out(c�, senc(n�, k))
| ! new c.out(c2, c).in(c, 〈senc(x, k), senc(y, k), senc(z, k)〉).out(c, ok).

It is quite easy to see that the witness of non-equivalence given above is not a
valid one anymore. Actually, we have that P

c1 and Q
c1 are in trace equivalence

since only two distinct ciphertexts may be produced.

Note that it is easy to express standard protocols as simple processes. As
explained previously, encoding security protocols as simple processes is a good
practice, and gives power to the attacker. However, it prevents the modeling of
unlinkability properties.

Checking Trace Equivalence: How to Get Rid of Nonces? 243

4.2 Adequate Theories

The fact that we consider adequate theories may seem to be a proof artefact.
We could probably go beyond adequate theories, but this would be at the price
of considering a more complex transformation, and in particular additional con-
stants. We provide below an example of a theory that reflects the same kind of
issues than the ones illustrated by the processes presented in Example 11.

Example 12. In addition to the signature introduced in Example 1, we consider
an additional destructor symbol g together with the following rewriting rules:

g(〈senc(x, z), senc(x, z), senc(y, z)〉) → ok
g(〈senc(x, z), senc(y, z), senc(x, z)〉) → ok
g(〈senc(y, z), senc(x, z), senc(x, z)〉) → ok

Assume for instance that MΣ is Mc = T (Σc,N) the set of all ground con-
structor terms. The resulting theory is not adequate. For instance, we have that
the term t = g(〈senc(n1, k), senc(n2, k), senc(n3, k)〉) is in normal form and not
a message. However, any renaming ρ that preserves distinctness between only
two names among n1, n2, n3, will be such that tρ↓ ∈ MΣ . This yields a counter-
example to our result, illustrated by the two following processes.

P ′ = ! new c.out(c1, c).new n.out(c, senc(n, k))
| in(c2, 〈senc(x1, k), senc(x2, k), senc(x3, k)〉).

let y = g(〈senc(x1, k), senc(x2, k), senc(x3, k)〉) in out(c2, y).
Q′ = ! new c.out(c1, c).new n.out(c, senc(n, k))

| in(c2, 〈senc(x1, k), senc(x2, k), senc(x3, k)〉).out(c2, ok).

The process P ′ expects three ciphertexts and returns the result of applying g to
them while Q′ directly returns ok. For the same reasons as those explained in
Example 11, we have that P ′ �≈ Q′ whereas P ′c1 ≈ Q′c1 .

The equational theory above is contrived, and actually most of the equational
theories useful to model cryptographic protocols can be shown to be adequate.
An example of a non-adequate theory is tdcommit as described in [18] which
does not fit the structure of our rules. Since the adequacy hypothesis might be
cumbersome to prove by hand for each theory, we exhibit a simple criterion that
ensures adequacy: the absence of critical pair.

Definition 6. Given a signature Σ = Σc � Σd, and a convergent rewriting
system R, we say that the theory (Σ,R) has no critical pair if �1 and �2 are not
unifiable for any distinct rules �1 → r1, and �2 → r2 in R.

Our notion of critical pairs actually coincide with the usual one for the theo-
ries we consider. Indeed, rewrite rules are all of the form � → r such that the head
symbol of � is a destructor symbol and destructors may not appear anywhere
else in � nor r. Theories without critical pairs are convergent and adequate.

244 R. Chrétien et al.

Lemma 2. Given a signature Σ = Σc � Σd, a convergent rewriting system R,
and a set of messages MΣ such that T (Σc,N) � MΣ is stable by renaming. If
the theory (Σ,R) has no critical pair, then (Σ,R) is convergent and adequate
w.r.t. MΣ.

This lemma allows us to conclude that many theories used in practice to
model security protocols are actually adequate. This is the case of the theory
given in Example 1, and the theories that are presented below.

Standard Cryptographic Primitives. We may enrich the theory described in
Example 1 with function symbols to model asymmetric encryption, and digi-
tal signatures.

Σ+ = Σ ∪ {aenc, adec, sign, checksign, getmsg, pub, priv, ok}.

Symbols adec/aenc and sign/checksign of arity 2 are used to model asymmetric
encryption and signature, whereas pub/priv of arity 1 will be used to model
key pairs, and the symbol priv will be part of the signature Σpriv. The symbol
getmsg may be used in case we want to consider a signature algorithm that does
not protect the signed message. The corresponding rewrite rules are defined as
follows:

checksign(sign(x, priv(y)), pub(y)) → ok
getmsg(sign(x, priv(y))) → x

adec(aenc(x, pub(y)), priv(y)) → x

Regarding the notion of messages, a reasonable choice for MΣ+ is to consider
M+

c = T (Σc � {aenc, sign, pub, priv, ok},N) the set of all ground constructor
terms. We may also restrict MΣ+ in various ways to only allow some specific
terms in key positions.

Blind Signatures. The following theory is often used to model blind signatures
(see e.g. [18]), checksign and unblind are the only destructor symbols.

checksign(sign(x, priv(y)), pub(y)) → x
unblind(blind(x, y), y) → x

unblind(sign(blind(x, y), priv(z)), y) → sign(x, priv(z))

Zero-Knowledge Proofs. A typical signature for representing zero-knowledge
proofs is ΣZKP = {Verify,ZKP, ok} where ZKP represents a zero-knowledge proof
and Verify models the verification of the proof. To ease the presentation, we
present how to model the proof of a particular statement, namely the fact that
a ciphertext is the encryption of either 0 or 1. Such proofs are thoroughly used
for example in the context of e-voting protocols such as Helios. In particu-
lar, the theory we consider here has been introduced in [16]. Specifically, let
Σ+

ZKP = ΣZKP � {raenc, radec, pub, priv, 0, 1} and consider the following rewrite
rules.

radec(raenc(x, z, pub(y)), priv(y)) → x
Verify(ZKP(x, raenc(0, x, pub(y)), pub(y)), raenc(0, x, pub(y)), pub(y)) → ok
Verify(ZKP(x, raenc(1, x, pub(y)), pub(y)), raenc(1, x, pub(y)), pub(y)) → ok

Checking Trace Equivalence: How to Get Rid of Nonces? 245

The symbol raenc represents randomised asymmetric encryption as reflected by
the first rewrite rule. The two last rules ensure that a proof is valid only if the
corresponding ciphertext contains either 0 or 1 and nothing else. Many variants
of zero-knowledge proofs can be modelled in a very similar way.

5 Application of Our Result

Abstracting nonces with constants (as done in Theorem 1) may introduce false
attacks. A typical case is when protocols make use of temporary secrets.

Example 13. Consider the signature described in Example 1. Let P and Q be:

P = ! new c′.out(c, c′).in(c′, x).new n.out(c′, senc(ok, n)).
let y = sdec(x, n) in out(c′, y);

Q = ! new c′.out(c, c′).in(c′, x).new n.out(c′, n).

The two processes are in equivalence: P ≈ Q. Now, consider the processes P
c

and Q
c

with N = {n}, that is, the processes obtained by applying our transfor-
mation on channel c to get rid of the fresh nonces.

P
c

= ! new c′.out(c, c′).in(c′, x).out(c′, senc(ok, n)).let y = sdec(x, n) in out(c′, y)
| in(c�, x).out(c�, senc(ok, n�)).let y = sdec(x, n�) in out(c�, y)

Q
c

is defined similarly. It is easy to notice that the output of the constant ok is
now reachable, yielding P

c �≈ Q
c
.

5.1 Is Our Abstraction Precise Enough?

Our transformation may in theory also introduce false attacks for protocols with-
out temporary secrets. In this section, we review several (secure) protocols of the
literature and study whether a false attack is introduced by our transformation.
To perform this analysis we rely on the ProVerif tool. For each protocol, we first
consider a scenario with honest agents only as for the Yahalom protocol (Sect. 2).
We then consider a richer scenario where honest agents are also willing to engage
communications with a dishonest agent. In each case, we check whether ProVerif
is able to establish:

1. the equivalence between the original processes (left column);
2. all the equivalences obtained after getting rid of all the nonces using our

transformation (right column).

The results are reported on the table below: a � means that ProVerif succeeded
and a ✗ means that it failed. Actually, on most of the protocols/scenarios we
have considered, our abstraction does not introduce any false attack. ProVerif
models of our experiments are available online at http://www.lsv.ens-cachan.fr/
∼chretien/prot.tar.

http://www.lsv.ens-cachan.fr/~chretien/prot.tar
http://www.lsv.ens-cachan.fr/~chretien/prot.tar

246 R. Chrétien et al.

Protocol name Original (with
nonces)

Our transformation (no
nonce)

Yahalom (corrected version)

- simple scenario � �
- with a dishonest agent � �

Otway-Rees

- simple scenario � �
- with a dishonest agent � �

Kao-Chow (tagged version)

- simple scenario � �
- with a dishonest agent � �

Needham-Schroeder-Lowe

- simple scenario (secrecy of Na) � ✗

- simple scenario (secrecy of Nb) � �
- with a dishonest agent (secrecy of Nb) � �

Denning-Sacco (asymmetric)

- simple scenario � �
- with a dishonest agent � �

Needham Schroeder Lowe Protocol. We briefly comment on the false attack intro-
duced by our transformation on the Needham Schroeder Lowe protocol.

1. A → B : {A,Na}pub(B)

2. B → A : {Na, Nb, B}pub(A)

3. A → B : {Nb}pub(B)

1. I(A) → B : {A,Ni}pub(B)

2. B → I(A) : {Ni, Nb, B}pub(A)

3. I(A) → B : {Nb}pub(B)

The protocol is given on the left, and the (false) attack depicted on the right.
This attack scenario (and more precisely step 3 of this scenario) is only possible
when nonces are abstracted away with constants. Indeed, the attacker will not
be able to decrypt the message {Ni, Nb, B}pub(A) he has received to retrieve the
nonce Nb. Instead he will simply replay an old message coming from a previous
honest session between A and B. Since nonces have been replaced by constants,
B will accept this old message, and will assume that Ni is a secret shared between
A and B, while Ni is known by the attacker. Unfortunately, this abstraction does
not seem to help ProVerif prove the security of new protocols. Nonetheless it can
still be used as a proof technique to prove the security of protocols in classes
defined in [9,10].

5.2 Proof Technique

Our result can be used as a proof technique to show that two simple proto-
cols are in trace equivalence. In particular, we have that the decidability result

Checking Trace Equivalence: How to Get Rid of Nonces? 247

developed in [10] for tagged protocols without nonces can now, thanks to our
transformation, be applied to study the security of protocols with nonces.

The decidability result given in [10] applies on type-compliant protocols. This
roughly means that ciphertexts cannot be confused and this can be achieved by
adding some identifier (a tag that is re-used in all sessions) in each ciphertext.

Applying our transformation to a simple, type-compliant protocol yields a
process that belongs to the decidable class of [10].

Proposition 1. Let (Σ,R) be the theory given in Example 1 with MΣ =
Matomic. Let P and Q be two simple and type-compliant protocols built on (Σ,R),
and such that Ch(P) = Ch(Q). Let N be the set of names that occur in P or Q.

The problem of deciding whether P
N,c

and Q
N,c

are in trace equivalence is
decidable (for any c ∈ Ch(P)).

6 Conclusion

Our simplification result allows to soundly reduce the equivalence of processes
with nonces to the equivalence of processes without nonce. This can be seen
as a proof technique. For example for tagged simple protocols with symmetric
encryption, the resulting protocols fall in the decidable class of [10]. Similarly, we
could use the decidability result of [9] for ping-pong protocols with one variable
per transition.

Our result assumes protocols to be simple processes. Otherwise, to prevent
some transition, it could be necessary to maintain several disequalities. We plan
to go slightly beyond simple processes and simply require some form of determi-
nacy. More generally, we plan to study whether such a reduction result can be
obtained for arbitrary processes, that is, study whether it is possible to compute
a bound on the number of fresh copies from the structure of the processes.

Regarding adequate theories, we believe that our criterion is general enough
to capture even more theories like exclusive or, or other theories with an asso-
ciative and commutative operator. This would however require to extend our
formalism to arbitrary terms (not just destructor/constructor theories).

A Appendix

Lemma 1 is a direct corollary of Lemma 3 which we state below. In the following,
we will only consider theories adequate w.r.t. MΣ . Given a frame φ (resp. ψ)
and a name r in φ (resp. ψ), let n(r) be the nonce in P (resp. Q) such that
r is an instance of n(r) and let c(r) be the channel of the protocol’s branch
which generated it. Actually, it can be computed as the channel on which r
appeared first in trφ↓ (resp. trψ↓). We note Dφ = {r ∈ φ | n(r) ∈ N} and for
any A ⊆ Dφ, we denote n(A) the application having A as domain, and such
that n(A)(r) = n(r) for any r ∈ A. To each nonce n ∈ N, we can associate a
new name n�: we can then define the function n�(·) to be the function mapping
any r ∈ Dφ to (n(r))�. Similarly, for any A ⊆ Dφ, we denote n�(A) the function
mapping any r ∈ A to (n(r))�.

248 R. Chrétien et al.

Lemma 3. We have the two following properties.

1. Let (tr, φ) ∈ trace(P), Dφ = {r ∈ φ | n(r) ∈ N} and ρ0 = n(Dφ). Then
(tr, φρ0) ∈ trace(P

N
).

2. Moreover, let ch be a channel such that tr = tr1.out(c, ch).tr2, D̃φ = {r ∈
φ | n(r) ∈ N ∧ c(r) = ch} and ρ = n(Dφ � D̃φ) ∪ n�(D̃φ). Then (tr�, φρ) ∈
trace(P

N,c
), where tr� = tr1.tr2{c�

/ch}.
Proof. The proof of case 2 is done by induction on the length of the execution
of tr in P . For any rule in our semantics, we prove that the renaming ρ does not
prevent the action from being executed as it only introduces new equalities and
that the resulting multiset of processes and frame are similar, up to application
of ρ. Finally, case 1 can be seen as a special instance of case 2. ��
Theorem 1. Let P and Q be two simple protocols such that Ch(P) = Ch(Q),
and N be a set of names (intuitively those that we want to abstract away). We
have that:

[∀c ∈ Ch(P). P
N,c ≈ Q

N,c
] ⇒ P ≈ Q.

Proof. Let us assume there exists a witness of non-equivalence (tr, φ) ∈ trace(P).
Three main cases can occur:

1. there exists ψ such that (tr, ψ) ∈ trace(Q) and two recipes R1, R2 such that
R1φ↓, R2φ↓, R1ψ↓ and R2ψ↓ are messages; R1φ↓ = R2φ↓ and R1ψ↓ �= R2ψ↓;

2. or there exists ψ such that (tr, ψ) ∈ trace(Q) and a recipe R such that Rφ↓
is a message but Rψ↓ is not;

3. or, finally, there exists no frame ψ such that (tr, ψ) ∈ trace(Q).

Note that the remaining symmetric cases are handled by considering a witness
(tr, ψ) ∈ trace(Q) instead, as P and Q are both simple. We will deal with each
case separately, with the same intermediate goal: define a renaming ρ on Dψ

such that any test failing in ψ still fails in ψρ while the successful tests in φ

remain so; then translate it into a valid trace of P
N,c

for some c ∈ Ch(P).

Case 1: Let us examine R1ψ↓ and R2ψ↓. If the two terms do not share the
same constructors, then for any renaming ρ, R1(ψρ)↓ �= R2(ψρ)↓, while for
any renaming ρ′, R1(φρ′)↓ = R2(φρ′)↓ (as the constructors are left unchanged,
because every term is a message). Now, if the two terms share the same con-
structors, there must exist a leaf position p in them such that R1ψ↓|p �= R2ψ↓|p.
Let us call t and s these terms respectively. If s or t is not an element of Dψ,
then sρ �= tρ for any ρ with dom(ρ) = Dψ. As in the previous case, we get
that R1(ψρ)↓ �= R2(ψρ)↓, while R1(φρ′)↓ = R2(φρ′)↓ for any renaming ρ′. Else,
assume s = r1 and t = r2 are two nonces of Dψ such that n(r1) = n1 ∈ N (resp.
n(r2) = n2 ∈ N). If n1 �= n2, consider the renaming ρQ

0 mapping any r ∈ Dψ to
n(r). Then sρQ

0 �= tρQ
0 and we get that R1(ψρQ

0)↓ �= R2(ψρQ
0)↓. By Lemma 3,

(tr, ψρQ
0) ∈ trace(Q

N
).

Checking Trace Equivalence: How to Get Rid of Nonces? 249

Similarly, by defining ρP
0 as the function mapping any name r ∈ Dφ to n(r),

we have that (tr, φρP
0) ∈ trace(P

N
). and R1(φρP

0)↓ = R2(φρP
0)↓. Hence we get

a witness of non-equivalence between P
N

and Q
N
, which can translate into a

witness between P
N,c

and Q
N,c

for any c ∈ Ch(P).
Else, if n(r1) = n(r2) = n, we need to be more precise to define a proper ρ.

Let out(c, ch) be the action of tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch.
Let D̃ψ = {r ∈ ψ | n(r) ∈ N ∧ c(r) = ch} and D̃φ = {r ∈ φ | n(r) ∈ N ∧ c(r) =
ch}. r1 ∈ Dψ � D̃ψ but r2 ∈ D̃ψ Consider now ρQ = n(Dψ � D̃ψ) ∪ n�(D̃ψ).
In particular, r1ρQ = n while r2ρQ = n�. Then sρQ �= tρQ and we get that
R1(ψρQ)↓ �= R2(ψρQ)↓ and Lemma 3 ensures (tr�, ψρQ) ∈ trace(Q

N,c
). Similarly,

by defining ρP = n(Dφ�D̃φ)∪n�(D̃φ), Lemma 3 ensures (tr�, φρP) ∈ trace(P
N,c

)
and R1(φρP)↓ = R2(φρP)↓ (only equalities have been introduced by removing
the name restriction in P). Hence we get a witness of non-equivalence between
P

N,c
and Q

N,c

Case 2: Because Rψ↓ is not a message and our signature is adequate (see Def-
inition 5), there must exist a, b ∈ N such that a �= b and for any renaming
σ : N → N , aσ �= bσ ⇒ tσ↓ /∈ MΣ . If a /∈ Dψ or b /∈ Dψ, consider the renam-
ing ρQ

0 mapping any name r ∈ Dψ to n(r): as aρQ
0 = a and n(r) �= a for any

r ∈ Dψ, R(ψρQ
0)↓ is still not a message. On the other hand, if ρP

0 = n(Dφ), as
Rφ↓ is a message, Rφ↓ρP

0 = R(φρP
0)↓ is a message. Hence, Lemma 3 ensures

(tr, φρP
0) ∈ trace(P

N
) while (tr, ψρQ

0) /∈ trace(Q
N
), leading to a witness of non-

equivalence between P
N

and Q
N
.

Else, assume a = r1 and b = r2 are two nonces in Dψ. If n(r1) �= n(r2),
r1ρ

Q
0 �= r2ρ

Q
0 and we can apply the same exact reasoning as before. So let us

consider the case where n(r1) = n(r2) = n. Let out(c, ch) be the action of tr
such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let D̃ψ = {r ∈ ψ | n(r) ∈
N ∧ c(r) = ch} and D̃φ = {r ∈ φ | n(r) ∈ N ∧ c(r) = ch}. r1 ∈ Dψ � D̃ψ but
r2 ∈ D̃ψ Consider now ρQ = n(Dψ �D̃ψ)∪n�(D̃ψ). In particular, r1ρQ = n while
r2ρQ = n�. Definition 5 ensures R(ψρQ

0)↓ is still not a message. On the other
hand, if ρP = n(Dφ � D̃φ) ∪ n�(D̃φ), as Rφ↓ is a message, Rφ↓ρP = R(φρP)↓ is
a message. Hence, Lemma 3 ensures (tr�, φρP) ∈ trace(P

N,c
) while (tr�, ψρQ) ∈

trace(Q
N,c

), leading to a witness of non-equivalence between P
N,c

and Q
N,c

.

Case 3: if tr ends with an output out(c,w) such that wψ is not a message, we
can define ρQ and ρP as in case 2 and obtain a witness of non-equivalence.
Similarly, if tr ends with an input or output out(c,w) which cannot be executed
in Q because a let action did not reduce to a message, we can define ρQ and
ρP as in case 2 and obtain a witness of non-equivalence. Consider now the
subcase where tr = tr′.in(c,R) for some tr′ such that (tr′, φ) ∈ trace(P) and
(tr′, ψ) ∈ trace(Q) for some frame ψ. Because P and Q are both simple protocols,
there exists a unique term uP (resp. at most one term uQ) in the multiset P
(resp. Q) of processes from the execution of tr′ in P (resp. in Q) such that
in(c, uP).M ∈ P for some M (resp. in(c, uQ).N ∈ Q for some N). Moreover,

250 R. Chrétien et al.

there exists σP such that Rφ↓ = uP σP while there is no σ such that Rψ↓ =
uQσ. As before, we consider the renamings ρQ

0 = n(Dψ) and ρP
0 = n(Dφ). As

(tr, φρP
0) ∈ trace(P

N
) and (tr, ψρQ

0) ∈ trace(Q
N
) by Lemma 3, if there exists

no σ such that uQρQ
0 σ = Rψ↓ρQ

0 , tr is a witness of non-equivalence between
P

N
and Q

N
and we are done. So let us then assume there exists σ0 such that

uQρQ
0 σ0 = Rψ↓ρQ

0 while uQσ �= Rψ↓ for every σ. There exist two leaves with
positions p1 and p2 in Rψ↓ which corresponds to positions below variables in
uQ such that Rψ↓|p1 �= Rψ↓|p2 but R(ψρQ

0)↓|p1 = R(ψρQ
0)↓|p2 and Rψ↓|p1 = r1

and Rψ↓|p2 = r2 such that n(r1) = n(r2) = n ∈ N. As repeatedly before, let
out(c, ch) be the action of tr such that tr = tr1.out(c, ch).tr2 and c(r2) = ch. Let
D̃ψ = {r ∈ ψ | n(r) ∈ N∧c(r) = ch} and D̃φ = {r ∈ φ | n(r) ∈ N∧c(r) = ch}. We
have that r1 ∈ Dψ � D̃ψ but r2 ∈ D̃ψ. Consider now ρQ = n(Dψ � D̃ψ)∪n�(D̃ψ).
In particular, r1ρQ = n while r2ρQ = n�. As Rψ↓ is a message (by virtue of
our semantics), Rψ↓ρQ = R(ψρQ)↓ and now R(ψρQ)↓|p1 �= R(ψρQ)↓|p2 . As
such, uQρQσ �= RψρQ↓ for any σ. By defining ρP = n(Dφ � D̃φ) ∪ n�(D̃φ), as
Rφ↓ is a message, Rφ↓ρP = R(φρP)↓ is a message. Hence, Lemma 3 ensures
(tr�, φρP) ∈ trace(P

N,c
) while (tr�, ψ) /∈ trace(Q

N,c
) for any ψ, leading to a

witness of non-equivalence between P
N,c

and Q
N,c

. ��

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
28th Symposium on Principles of Programming Languages (POPL 2001). ACM
Press (2001)

2. Amadio, R.M., Charatonik, W.: On name generation and set-based analysis in
the dolev-yao model. In: Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 499–514. Springer, Heidelberg (2002)

3. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

4. Beurdouche, B., et al.: A messy state of the union: Taming the composite state
machines of tls. In: IEEE Symposium on Security & Privacy 2015 (Oakland 2015).
IEEE (2015)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
14th Computer Security Foundations Workshop (CSFW 2001). IEEE Computer
Society Press (2001)

6. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: 20th Symposium on Logic in Computer Science
(2005)

7. Blanchet, B., Podelski, A.: Verification of cryptographic protocols: tagging enforces
termination. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 136–152.
Springer, Heidelberg (2003)

8. Bruso, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for
RFID systems. In: 23rd Computer Security Foundations Symposium (CSF 2010)
(2010)

Checking Trace Equivalence: How to Get Rid of Nonces? 251

9. Chrétien, R., Cortier, V., Delaune, S.: From security protocols to pushdown
automata. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 137–149. Springer, Heidelberg (2013)

10. Delaune, S., Chrétien, R., Cortier, V.: Typing messages for free in security proto-
cols: the case of equivalence properties. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 372–386. Springer, Heidelberg (2014)

11. Chrétien, R., Cortier, V., Delaune, S.: Checking trace equivalence: how to get rid
of nonces? Research report LSV-15-07. Laboratoire Spécification et Vérification,
ENS Cachan, France (2015)

12. Chrétien, R., Cortier, V., Delaune, S.: Decidability of trace equivalence for proto-
cols with nonces. In: Proceedings of the 28th IEEE Computer Security Foundations
Symposium (CSF 2015). IEEE Computer Society Press (June 2015, to appear)

13. Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-order
logic and application to cryptographic protocols. In: Nieuwenhuis, R. (ed.) RTA
2003. LNCS, vol. 2706, pp. 148–164. Springer, Heidelberg (2003)

14. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. In:
Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 99–113. Springer, Heidelberg
(2003)

15. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equiva-
lence. In: 15th ACM Conference on Computer and Communications Security (CCS
2008). ACM Press (2008)

16. Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89–148 (2013)

17. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008)

18. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 4, 435–487 (2008)

19. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science. Elsevier, The Netherlands (1990)

20. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded secu-
rity protocols. In: Workshop on Formal Methods and Security Protocols, Trento,
Italia (1999)

21. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci.
367(1–2), 162–202 (2006)

22. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

23. SPORE: Security protocols open repository. http://www.lsv.ens-cachan.fr/spore/
index.html

http://www.lsv.ens-cachan.fr/spore/index.html
http://www.lsv.ens-cachan.fr/spore/index.html

Attribute Based Broadcast Encryption
with Short Ciphertext and Decryption Key

Tran Viet Xuan Phuong1(B), Guomin Yang1, Willy Susilo1,
and Xiaofeng Chen2

1 Centre for Computer and Information Security Research, School of Computing
and Information Technology, University of Wollongong, Wollongong, Australia

tvxp750@uowmail.edu.au, {gyang,wsusilo}@uow.edu.au
2 State Key Laboratory of Integrated Service Networks, Xidian University,

Xi’an, People’s Republic of China
xfchen@xidian.edu.cn

Abstract. Attribute Based Broadcast Encryption (ABBE) is a combi-
nation of Attribute Based Encryption (ABE) and Broadcast Encryption
(BE). It allows a broadcaster (or encrypter) to broadcast an encrypted
message that can only be decrypted by the receivers who are within a pre-
defined user set and satisfy the access policy specified by the broadcaster.
Compared with normal ABE, ABBE allows direct revocation, which is
important in many real-time broadcasting applications such as Pay TV.
In this paper, we propose two novel ABBE schemes that have distinguish-
ing features: the first scheme is key-policy based and has short ciphertext
and constant size decryption key; and the second one is ciphertext-policy
based and has constant size ciphertext and short decryption key. Both of
our schemes allow access policies to be expressed using AND-gate with
positive, negative, and wildcard symbols, and are proven secure under
the Decision n-BDHE assumption without random oracles.

Keywords: Attribute based encryption · Broadcast encryption · AND-
gate · Wildcard

1 Introduction

Broadcast encryption (BE), introduced by Berkovits [1] and Fiat and Naor [2], is
a very useful tool for securing a broadcast channel. In a traditional BE scheme,
a broadcaster can specify a subset of privileged users (out of the user universe)
as the legitimate receivers of a message. Due to the practicality of broadcast
encryption in real-world applications, many BE schemes have been proposed in
various settings since its introduction (e.g., [3–9]).

Attribute Based Encryption (ABE), first introduced by Sahai and Waters
[10], allows an encrypter to embed a fine-grained access policy into the ciphertext
when encrypting a message. There are two types of ABE. In a Ciphertext Policy
(CP) ABE system, each user secret key is associated with a set of user attributes,
and every ciphertext is associated with an access policy. A ciphertext can be
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 252–269, 2015.
DOI: 10.1007/978-3-319-24177-7 13

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 253

decrypted by a secret key if and only if the attributes associated with the secret
key satisfy the access policy in the ciphertext. Key Policy (KP) ABE is the
dual form of CP-ABE, where attributes are used in the encryption process, and
access policies are used in the user secret key generation. ABE systems can
provide fine-grained access control of encrypted data, and has been extensively
studied in recent years (e.g., [11–16]).

Since ABE gives a one-to-many relationship between a ciphertext and the
corresponding valid decryption keys, it can be considered as a natural broad-
cast encryption where the legitimate decryptors are defined by the access poli-
cies (CP-ABE) or the attributes (KP-ABE) associated with the ciphertext. As
pointed out in [11,17], ABE is useful in some broadcasting systems, such as Pay
TV, which require dynamic and flexible access control. For example, the broad-
casting company can specify an access policy ((Location: City A) AND (Age:
>18)) when generating an encrypted data stream for a TV program, and the
access policy may be changed to ((Location: City A) AND (Age: *)) (here ‘*’
denotes the wildcard symbol, meaning “don’t care”) for the next program. How-
ever, one drawback of using ABE for broadcasting is that the cost of revoking a
user (e.g., those fail to pay the subscription fee for Pay TV) is very high, since
the secret keys of all the other non-revoked users must be updated.

Attribute Based Broadcast Encryption (ABBE) is a combination of ABE and
BE. Specifically, in a CP-ABBE scheme, a user secret key SK is associated with
a user identity (or index) ID and a set of user attributes L, and a ciphertext CT
generated by the broadcaster is associated with a user list S and an access policy
W . The ciphertext CT can be decrypted using SK if and only if L satisfies W
(denoted by L |= W) and ID ∈ S. KP-ABBE is the dual form of CP-ABBE
where the positions of the attributes and the access policy are swapped. We
can see that similar to normal ABE, ABBE also allows fine-grained and flexible
access control. On the other hand, ABBE can provide direct revocation, which is
difficult or expensive to achieve in normal ABE systems. Direct revocation means
the broadcaster can directly exclude some revoked users without affecting any
non-revoked users, and ABBE can easily achieve this by removing the revoked
users from the receiver set S. As highlighted in [17,18], direct revocation is
important for real-time broadcasting applications such as Pay TV.

Existing ABBE Constructions. Several ABBE schemes [17–19] have been
proposed in the literature. In [19], Lubicz and Sirvent proposed a CP-ABBE
scheme which allows access policies to be expressed in disjunctive normal form,
with the OR function provided by ciphertext concatenation. Attrapadung and
Imai [18] proposed two KP-ABBE and two CP-ABBE schemes, which are con-
structed by algebraically combining some existing BE schemes (namely, the
Boneh-Gentry-Waters BE scheme [5] and the Sahai-Waters BE scheme [20]) with
some existing ABE schemes (namely, the KP-ABE scheme by Goyal et al. [11]
and the CP-ABE scheme by Waters [14]). Junod and Karlov [17] also proposed
a CP-ABBE scheme that supports boolean access policies with AND, OR and
NOT gates. Junod and Karlov’s scheme achieved direct revocation by simply
treating each user’s identity as a unique attribute in the attribute universe.

254 T.V.X. Phuong et al.

This Work. In order to use ABBE in real-time applications such as Pay TV,
the bandwidth requirement and the decryption cost are the most important
factors to be considered. Unfortunately, the ciphertext size of the existing ABBE
schemes reviewed above is quite high (See Table 1). The motivation of this work
is to construct efficient ABBE schemes in terms of ciphertext and key size, as
well as decryption cost.

The contribution of this paper are two efficient ABBE schemes allowing
access policies to be expressed using AND-gate with positive (+), negative (−),
and wildcard (∗) symbols. To give a high-level picture of our constructions, we
use the positions of different symbols (i.e., positive, negative, and wildcard) to
do the matching between the access structure (containing wildcards) and the
attribute list (containing no wildcard) in the ABE underlying ABBE schemes.
We put the indices of all the positive, negative and wildcard attributes defined
in an access structure into three sets. By using the Viète’s formulas [21], based
on the wildcard set, the decryptor can remove all the wildcard positions, and
obtain the correct message if and only if the remaining positive and negative
attributes have a perfect position match. We then incorporate the technique of
Boneh-Gentry-Waters broadcast encryption scheme [5] into our ABE scheme to
enable direct revocation.

Our first ABBE scheme is key policy based, and achieves constant key size
and short ciphertext size. The second scheme is ciphertext policy based, achiev-
ing constant ciphertext size1 and short key size. Both schemes require only con-
stant number of pairing operations in decryption. A comparison between our
ABBE schemes and the previous ones is given in Table 1.

Table 1. Performance comparison among different ABBE schemes

CP-ABBE Ciphertext Private Key Dec. (Pairing) Access Structure Assumption

[19] O(r)|G| + 1|GT | O(t)|G| O(1) DNF GDHE

[18] O(n)|G| + 1|GT | O(t)|G| O(t) LSSS n-BDHE, MEBDH

[17] O(n)|G| + 1|GT | O(m + t)|G| O(1) DNF, CNF GDHE

Ours O(1)|G| + 1|GT | O(N)|G| O(1) AND Gates + wildcard n-BDHE

KP-ABBE Ciphertext Size Private Key Dec. (Pairing) Access Structure Assumption

[18] O(t)|G| + 1|GT | O(n)|G| O(t) LSSS n-BDHE, MEBDH

Ours O(N)|G| + 1|GT | O(1)|G| O(1) AND Gates + wildcard n-BDHE

In the table, we compare our ABBE schemes with the previous ones in terms
of ciphertext and private key size, decryption cost, access structure, and security
assumption. We use “p” to denote the pairing operation, “n” the number of
1 We should note that in our CP-ABBE scheme the wildcard positions should be

attached with the ciphertext. A naive way to do this is to include an n-bit string
where a bit “1” indicates wildcard at that position. Similar to the previous works
on BE [5] and ABBE [18], this information together with the target receiver set S
are not counted when measuring the ciphertext size in Table 1.

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 255

attributes in an access structure, “t” the number of attributes in an attribute list,
“m” and total number of attributes in the system, “r” the number of revoked
users in the system, and “N” the maximum number of wildcard in an access
structure in our proposed ABBE schemes.

Paper Organisation. In the next section, we review some primitives that will
be used in our constructions, and the formal definition and security model of
KP- and CP-ABBE. We then present our KP- and CP-ABBE schemes in Sects. 3
and 4, respectively. We give the formal security proofs for our proposed schemes
in Sect. 5, and conclude the paper in Sect. 6.

2 Preliminaries

2.1 Bilinear Map on Prime Order Groups

Let G and GT be two multiplicative cyclic groups of same prime order p, and
g a generator of G. Let e : G × G → GT be a bilinear map with the following
properties:

1. Bilinearity: e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and a,b ∈ Zp.
2. Non-degeneracy: e(g, g) �= 1.

Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Decision n-BDHE Assumption. The Decision n-BDHE problem in G is
defined as follows: Let G be a bilinear group of prime order p, and g, h two
independent generators of G. Denote −→y g,α,n = (g1, g2, . . . , gn, gn+2, . . . , g2n) ∈
G

2n−1 where gi = gαi

for some unknown α ∈ Z
∗
p. We say that the n-BDHE

assumption holds in G if for any probabilistic polynomial-time algorithm A

|Pr[A(g, h,−→y g,α,n, e(gn+1, h)) = 1] − Pr[A(g, h,−→y g,α,n, T) = 1]| ≤ ε(k)

where the probability is over the random choive of g, h in G, the random choice
α ∈ Z

∗
p, the random choice T ∈ GT , and ε(k) is negligible in the security para-

meter k.

2.2 The Viète’s formulas

Both of our schemes introduced in this paper are based on the Viète’s formulas
[21] which is reviewed below. Consider two vectors −→v = (v1, v2, . . . , vL) and−→z = (z1, z2, . . . , zL). Vector v contains both alphabets and wildcards, and vector
z only contains alphabets. Let J = {j1, . . . , jn} ⊂ {1, . . . , L} denote the positions
of the wildcards in vector −→v . Then the following two statements are equal:

vi = zi ∨ vi = ∗ for i = 1 . . . L
L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
L∑

i=1

zi

∏

j∈J

(i − j). (1)

256 T.V.X. Phuong et al.

Expand
∏

j∈J

(i−j) =
n∑

k=0

akik, where ak are the coefficients dependent on J , then

(1) becomes:
L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
n∑

k=0

ak

L∑

i=1

zii
k (2)

To hide the computations, we choose random group elemen Hi and put vi, zi

as the exponents of group elements: Hvi
i ,Hzi

i . Then (2) becomes:

L∏

i=1,i/∈J

H
vi

∏
j∈J (i−j)

i =
n∏

k=0

(
L∏

i=1

Hzii
k

i)ak (3)

Using Viète’s formulas we can construct the coefficient ak in (2) by:

an−k = (−1)k
∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik
, 0 ≤ k ≤ n. (4)

where n = |J |. If we have J = {j1, j2, j3}, the polynomial is (x−j1)(x−j2)(x−j3),
then:

a3 = 1
a2 = −(j1 + j2 + j3)
a1 = (j1j2 + j1j3 + j2j3)
a0 = −j1j2j3.

2.3 Access Structure

Let U = {Att1, Att2, ..., AttL} be the universe of attributes in the system.
Each attribute Atti has two possible values: positive and negative. Let W =
{Att1, Att2, ..., AttL} be an AND-gates access policy with wildcards. A wildcard
‘*’ means “don’t care” (i.e., both positive and negative attributes are accepted).
We use the notation S |= W to denote that the attribute list S of a user satis-
fies W .

For example, suppose U = {Att1 = CS, Att2 = EE, Att3 = Faculty, Att4 =
Student}. Alice is a student in the CS department; Bob is a faculty in the
EE department; Carol is a faculty holding a joint position in the EE and CS
department. Their attribute lists are illustrated in Table 2. The access structure
W1 can be satisfied by all the CS students, while W2 can be satisfied by all CS
people.

2.4 KP-ABBE Definition

Let U denote the set of all user indices, and N the set of all user attributes. A key-
policy attribute based broadcast encryption scheme consists of four algorithms:

– Setup(1λ): The setup algorithm takes the security parameter 1λ as input and
outputs the public parameters PK and a master key MSK.

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 257

Table 2. List of attributes and policies

Attributes Att1 Att2 Att3 Att4

Description CS EE Faculty Student

Alice + − − +

Bob − + + −
Carol + + + −
W1 + − − +

W2 + − ∗ ∗

– Encrypt(S,L,M,PK): The encryption algorithm takes as input the public
parameters PK, a message M , a set of user index S ⊆ U and a set of attributes
L ⊆ N , and outputs a ciphertext CT .

– Key Generation(ID,W,MSK,PK): The key generation algorithm takes
as input the master key MSK, public parameters PK, a user index ID ∈ U ,
and an access structure W , and outputs a private key SK.

– Decrypt(PK, CT , SK): The decryption algorithm takes as input the pub-
lic parameters PK, a ciphertext CT , and a private key SK, and outputs a
message M or a special symbol ‘⊥’.

Security Definition for KP-ABBE. We define the Selective IND-CPA secu-
rity for KP-ABBE via the following game.

– Init: The adversary commits to the challenge user indices S∗ and target
attribute set L∗.

– Setup: The challenger runs the Setup algorithm and gives PK to the adver-
sary.

– Phase 1: The adversary queries for private keys with pairs of user index and
access structure (ID,W) such that L∗ �|= W or ID /∈ S∗.

– Challenge: The adversary submits messages M0,M1 to the challenger. The
challenger flips a random coin β and passes the ciphertext ct∗ =
Encrypt(PK,Mβ , L∗, S∗) to the adversary.

– Phase 2: Phase 1 is repeated.
– Guess: The adversary outputs a guess β′ of β.

Definition 1. We say a KP-ABBE scheme is selective IND-CPA secure if for
any probabilistic polynomial time adversary

Adv
s-ind-cpa
kp (λ) = |Pr[β′ = β] − 1/2|

is a negligible function of λ.

2.5 CP-ABBE Definition

A ciphertext-policy attribute based broadcast encryption scheme consists of four
algorithms:

258 T.V.X. Phuong et al.

– Setup(1λ): The setup algorithm takes the security parameter 1λ as input and
outputs the public parameters PK and a master key MSK.

– Encrypt(S,W,M,PK): The encryption algorithm takes as input the public
parameters PK, a message M , an access structure W , a set of user index
S ⊆ U , and outputs a ciphertext CT .

– Key Generation(ID,L,MSK,PK): The key generation algorithm takes as
input the master key MSK, public parameters PK, a user index ID ∈ U ,
and a set of attributes L ⊆ N , and outputs a private key SK.

– Decrypt(PK, CT , SK): The decryption algorithm takes as input the pub-
lic parameters PK, a ciphertext CT , and a private key SK, and outputs a
message M or a special symbol ‘⊥’.

Security Definition for CP-ABBE. We define the Selective IND-CPA secu-
rity for CP-ABBE via the following game.

– Init: The adversary commits to the challenge user indices S∗ and target access
structure W ∗.

– Setup: The challenger runs the Setup algorithm and gives PK to the adver-
sary.

– Phase 1: The adversary queries for private keys with pairs of user index and
a user attribute list (ID,L) such that L∗ �|= W or ID /∈ S∗.

– Challenge: The adversary submits messages M0,M1 to the challenger. The
challenger flips a random coin β and passes the ciphertext ct∗ =
Encrypt(PK,Mβ ,W ∗, S∗) to the adversary.

– Phase 2: Phase 1 is repeated.
– Guess: The adversary outputs a guess β′ of β.

Definition 2. We say a CP-ABBE scheme is selective IND-CPA secure if for
any probabilistic polynomial time adversary

Advs-ind-cpacp (λ) = |Pr[β′ = β] − 1/2|

is a negligible function of λ.

3 KP-ABBE Scheme

In our KP-ABBE scheme, we assume that |U | ≤ n and |N | ≤ n where n is a
system parameter. Let N1, N2, N3 be three upper bounds for the user attributes:

– N1: the maximum number of wildcard in an access structure.
– N2: the maximum number of positive attribute in an attribute list L.
– N3: the maximum number of negative attribute in an attribute list L.

� Setup(1λ): The setup algorithm first generates bilinear groups G,GT with
order p, and selects random generators g, h1, . . . , hN ∈R G, and α ∈R Zp.
Then compute gi = gαi ∈ G for i = 1, 2, . . . , n, n+2, . . . , 2n, randomly choose
γ, δ, θ, x1, . . . , xN1 ∈R Zp, and set:

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 259

ν = gγ , V0 = gδ, V1 = gθ,

V01 = (gδ)x1 , . . . , V0N1 = (gδ)xN1 ,

V11 = (gθ)x1 , . . . , V1N1 = (gθ)xN1 ,

The public key and master secret key are defined as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1, V01, . . . , V0N1 ,
V11, . . . , V1N1)

MSK = (α, γ, δ, θ, x1, . . . , xN1).

� Encrypt(S,L,M,PK): Given a user index set S ⊆ U , an attribute list L
which contains:
– n2 ≤ N2 positive attributes at positions V = {v1, . . . , vn2};
– n3 ≤ N3 negative attributes at positions Z = {z1, . . . , zn3};
the algorithm randomly chooses r ∈ Zp and computes:

C0 = M · e(gn, g1)r, C1 = gr, C2 = (ν
∏

j∈S

gn+1−j)r,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C3,0 = (V0

∏

i∈V

hi)r

C3,1 = (V01

∏

i∈V

hi
i)

r

. . .

C3,N1 = (V0N1

∏

i∈V

hiN1

i)r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C4,0 = (V1

∏

i∈Z

hi)r

C4,1 = (V11

∏

i∈Z

hi
i)

r

. . .

C4,N1 = (V1N1

∏

i∈Z

h
N1

i)r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The ciphertext is CT = (C0, C1, C2, C3,0, . . . , C3,N1 , C4,0, . . . , C4,N1).

� Key Generation(ID,W,MSK,PK): Suppose that the access structure W
contains:
– n1 ≤ N1 wildcards at positions J = {w1, . . . , wn1}.
– n2 ≤ N2 positive attributes at positions V ′ = {v′

1, . . . , v
′
n2

}.
– n3 ≤ N3 negative attributes at positions Z ′ = {z′

1, . . . , z
′
n3

}.
Randomly choose s1, s2 ∈ Zp, and apply the Viete formulas on J to compute

ak(0 ≤ k ≤ n1) and set t =
n1∑

k=0

xkak where x0 = 1. Then compute

D1 = gαIDγ+δs1+θs2 ,D2 = g
s1
t ,D3 = g

s2
t ,

D4 = (
∏

i∈V ′
h

n1∏

j=0
(i−wj)

i)
s1
t ,D5 = (

∏

i∈Z′
h

n1∏

j=0
(i−wj)

i)
s2
t .

and set the secret key SK = (D1,D2,D3,D4,D5).

260 T.V.X. Phuong et al.

� Decrypt(PK,CT, SK): The decryption algorithm first applies the Viete for-
mulas on J included in the secret key to compute ak for 0 ≤ k ≤ n1, and

e(D1, C1) = e(gαIDγ+δs1+θs2 , gr)

= e(gαIDγ , gr)e(g, g)δs1re(g, g)θs2r

e(D4, C1) = e((
∏

i∈V ′
h

n1∏

j=0
(i−wj)

i)s1/t, gr)

e(D5, C1) = e((
∏

i∈Z′
h

n1∏

j=0
(i−wj)

i)s2/t, gr)

e(gID, C2) = e(gαID

, (ν
∏

j∈S

gn+1−j)
r)

= e(gαID

, ν)re(gαID

,
∏

j∈S

gn+1−j)
r

e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(
∏

j∈S, j �=ID

gn+1−j+ID, gr)

⇒ e(gID, C2)/e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(gαID

, ν)r · e(gn, g1)
r

e(D2,
n1∏

k=0

C
ak
3,k) = e(gs1/t, V

r
n1∑

k=0
xkak

0

∏

i∈V

h

n1∑

k=0
ikakr

i)

= e(g, V0)
s1re(

∏

i∈V

h

n1∏

j=0
(i−wj)r

i , gs1/t)

e(D3,
n1∏

k=0

C
ak
4,k) = e(gs2/t, V

r
n1∑

k=0
xkak

1

∏

i∈Z

h

n1∑

k=0
ikakr

i)

= e(g, V1)
s2re(

∏

i∈Z

h

n1∏

j=0
(i−wj)r

i , gs2/t)

If L |= W and ID ∈ S, then we have:

M =

C0·e(gαIDγ ,gr)e(g,g)δs1re(g,g)θs2re((
∏

i∈V ′
h

n1∏

j=0
(i−wj)

i)s1/t,gr)e((
∏

i∈Z′
h

n1∏

j=0
(i−wj)

i)s2/t,gr)

e(gαID
,ν)r·e(gn,g1)re(g,V0)

s1re(
∏

i∈V
h

n1∏

j=0
(i−wj)r

i ,gs1/t)e(g,V1)
s2re(

∏

i∈Z
h

n1∏

j=0
(i−wj)r

i ,gs2/t)

.

4 CP-ABBE Scheme

Our CP-ABBE scheme is the dual-form of our KP-ABBE scheme.

� Setup(1λ): The setup algorithm first generates bilinear groups G,GT with
order p, and selects random generators g, h1, . . . , hN ∈R G, and α ∈R Zp.

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 261

Then compute gi = gαi ∈ G for i = 1, 2, . . . , n, n+2, . . . , 2n, randomly choose
γ, δ, θ ∈R Zp, and set:

ν = gγ , V0 = gδ, V1 = gθ.

The public key and master secret key are defined as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1)
MSK = (α, γ, δ, θ).

� Encrypt(S,W,M,PK): Given a user index set S ⊆ U , and an access struc-
ture W containing:
– n1 ≤ N1 wildcards at positions J = {w1, . . . , wn1};
– n2 ≤ N2 positive attributes at positions V = {v1, . . . , vn2};
– n3 ≤ N3 negative attributes at positions Z = {z1, . . . , zn3};
the algorithm randomly chooses r ∈ Zp and computes:

C0 = M · e(gn, g1)r, C1 = gr, C2 = (ν
∏

j∈S

gn+1−j)r,

C3 = (V0

∏

i∈V

h

n1∏

j=0
(i−wj)

i)r, C4 = (V1

∏

i∈Z

h

n1∏

j=0
(i−wj)

i)r.

The ciphertext is CT = (J,C0, C1, C2, C3, C4).

� Key Generation(ID,L,MSK,PK): Given a user identity ID and an
attribute list L which contains:
– n2 ≤ N2 positive attributes at positions V ′ = {v′

1, . . . , v
′
n2

};
– n3 ≤ N3 negative attributes at positions Z ′ = {z′

1, . . . , z
′
n3

};
randomly choose s1, s2 ∈ Zp and compute:

D1 = gαIDγ+δs1+θs2 ,D2 = gs1 ,D3 = gs2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D4,0 = (
∏

i∈V ′
hi)s1

D4,1 = (
∏

i∈V ′
hi

i)
s1

. . .

D4,N1 = (
∏

i∈V ′
hiN1

i)s1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D5,0 = (
∏

i∈Z′
hi)s2

D5,1 = (
∏

i∈Z′
hi

i)
s2

. . .

D5,N1 = (
∏

i∈Z′
hiN1

i)s2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and set the secret key SK = (D1,D2,D3,D4,0, . . . , D4,N1 ,D5,0, . . . , D5,N1).

� Decrypt(PK,CT, SK): The decryption algorithm first applies the Viete
formulas on J included in the ciphertext to compute ak for 0 ≤ k ≤ n1:

262 T.V.X. Phuong et al.

e(D1, C1) = e(gαIDγ+δs1+θs2 , gr)
= e(gαIDγ , gr)e(g, g)δs1re(g, g)θs2r

e((
n1∏

k=0

Dak

4,k), C1) = e(
∏

i∈V ′
h

n1∑

k=0
ikaks1

i , gr)

= e(
∏

i∈V ′
h

n1∏

j=0
(i−wj)s1

i , gr)

e((
n1∏

k=0

Dak

5,k), C1) = e(
∏

i∈Z′
h

n1∑

k=0
ikaks2

i , gr)

= e(
∏

i∈Z′
h

n1∏

j=0
(i−wj)s2

i , gr)

e(gID, C2) = e(gαID

, (ν
∏

j∈S

gn+1−j)r)

= e(gαID

, ν)re(gαID

,
∏

j∈S

gn+1−j)r

e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(
∏

j∈S, j �=ID

gn+1−j+ID, gr)

⇒ e(gID, C2)/e(
∏

j∈S, j �=ID

gn+1−j+ID, C1) = e(gαID

, ν)r · e(gn, g1)r

e(D2, C3) = e(gs1 , (V0

∏

i∈V

h

n1∏

j=0
(i−wj)

i)r)

= e(gs1 , V r
0)e(gs1 ,

∏

i∈V

h

n1∏

j=0
(i−wj)

i)r

e(D3, C4) = e(gs2 , (V1

∏

i∈Z

h

n1∏

j=0
(i−wj)

i)r)

= e(gs2 , V r
1)e(gs2 ,

∏

i∈Z

h

n1∏

j=0
(i−wj)

i)r

If L |= W and ID ∈ S, then we have

M =
C0·e(gαIDγ ,gr)e(g,g)δs1re(g,g)θs2r·e(∏

i∈V ′
h

n1∏

j=0
(i−wj)s1

i ,gr)e(
∏

i∈Z′
h

n1∏

j=0
(i−wj)s2

i ,gr)

e(gαID ,ν)r·e(gn,g1)re(gs1 ,V r
0)e(gs1 ,

∏

i∈V

h

n1∏

j=0
(i−wj)

i)re(gs2 ,V r
1)e(gs2 ,

∏

i∈Z

h

n1∏

j=0
(i−wj)

i)r

.

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 263

5 Security Analysis

We prove that the proposed KP-ABBE and CP-ABBE schemes are selectively
secure under the Decision n-BDHE assumption.

Theorem 1. Assume that the Decision n-BDHE assumption holds, then no
polynomial-time adversary against our KP-ABBE scheme can have a non-
negligible advantage over random guess in the Selective IND-CPA security game.

Proof: Suppose that there exists an adversary A which can attack our scheme
with non-negligible advantage ε, we construct another algorithm B which uses A
to solve the Decision n-BDHE problem. On input (g, h,−→y g,α,n = (g1, g2, . . . , gn,

gn+2, . . . , g2n), T), where gi = gαi

and for some unknown α ∈ Z
∗
p, the goal of B

is to determine whether T = e(gn+1, h) or a random element of GT .

Init: A gives B the challenge user indices S∗ and the target attribute set L∗

with n2 ≤ N2 positive attributes which occur at positions V ∗ = {v∗
1 , . . . , v

∗
n2

},
and n3 ≤ N3 negative attributes which occur at positions Z∗ = {z∗

1 , . . . , z∗
n3

} at
the beginning of the game.

Setup: B chooses d, v0, v1, u1, . . . , un, x1, . . . , xN1 ∈ Zp and generates:

ν = gd(
∏

j∈S∗
g−1

n+1−j) = gd−∑j∈S∗ αn+1−j

= gγ ,

V0j = (gv0)xj
∏

i∈V ∗
gαn+1−iij

= (gv0)xj g
∑

i∈V ∗ αn+1−iij

, for j = 0, . . . , N1

V1j = (gv1)xj
∏

i∈Z∗
gαn+1−iij

= (gv1)xj g
∑

i∈Z∗ αn+1−iij

, for j = 0, . . . , N1

where x0 = 1, and hi = gui−αn+1−i

, then B sets public key as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1, V01, . . . , V0N1 , V11, . . . , V1N1).

Phase 1: A submits a pair of user index and access structure (ID,W) in a
secret key query, which satisfies L∗ �|= W or ID /∈ S∗. Assume W consists
of n1 ≤ N1 wildcards which occur at positions J = {w1, . . . , wn1}, n2 ≤ N2

positive attributes which occur at positions V = {v1, . . . , vn2}, and n3 ≤ N3

negative attributes which occur at positions Z = {z1, . . . , zn3}. B applies the

Viete formulas on J = {j1, . . . , jn1} to get ak and set t =
n1∑

k=0

xkak. Consider the

following two cases in Phase 1:

– Case 1: ID /∈ S∗. B first selects a random number s1, s2 ∈ Zp, then computes:

D1 = gd
ID

∏

j∈S∗
(gn+1−j+ID)−1gv0s1

∏

i∈V ∗
(gn+1−i)s1gv1s2

∏

i∈Z∗
(gn+1−i)s2

= gαID(d−∑j∈S∗ αn+1−j)(gv0+
∑

i∈V ∗ αn+1−i

)s1(gv1+
∑

i∈Z∗ αn+1−i

)s2

= gαIDγ+δs1+θs2 .

264 T.V.X. Phuong et al.

D2 = g
s1
t ,

D3 = g
s2
t ,

D4 = (
∏

i∈V

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)
s1
t = (

∏

i∈V

h

∏

j∈J

(i−wj)

i)
s1
t ,

D5 = (
∏

i∈Z

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)
s2
t = (

∏

i∈Z

h

∏

j∈J

(i−wj)

i)
s2
t .

– Case 2: ID ∈ S∗. In this case, due to the constraint L∗ �|= W , W has at least
one position i∗ which has a different attribute value from L∗, which means
{V ∪ Z∗} �= ∅ or {Z ∪ V ∗} �= ∅.

� If there exists an i∗ ∈ {V ∪ Z∗} �= ∅:
B selects two random numbers s′

1, s
′
2 ∈ Zp and implicitly sets s1, s2 as:{

s1 = s′
1

s2 = s′
2 + αi∗ by setting D2 = gs′

1 = gs1 ,D3 = gs′
2+αi∗

= gs2 . Then B
can compute D1,D4,D5 as follows:

D1 = gαIDγ+δs1+θs2 .

= gαID(d−∑j∈S∗ αn+1−j)gv0s1
∏

i∈V ∗
(gn+1−i)s1gv1s2

∏

i∈Z∗
(gn+1−i)s2

= gd
ID

∏

j∈S∗
(gn+1−j+ID)−1

(gv0)s′
1(g
∑

i∈V ∗ αn+1−i

)s′
1(gv1)s′

2+αi∗
(g
∑

i∈Z∗ αn+1−i

)s′
2+αi∗

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1 · g−αn+1

(gv0)s′
1(g
∑

i∈V ∗ αn+1−i

)s′
1

(gv1)s′
2+αi∗

(g
∑

i∈Z∗ αn+1−i

)s′
2(g
∑

i∈Z∗,i�=i∗ αn+1−i+i∗
)gαn+1

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1(gv0)s′
1(g
∑

i∈V ∗ αn+1−i

)s′
1

(gv1)s′
2+αi∗

(g
∑

i∈Z∗ αn+1−i

)s′
2(g
∑

i∈Z∗,i�=i∗ αn+1−i+i∗
),

D4 = (
∏

i∈V

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)s′
1/t = (

∏

i∈V

h

∏

j∈J

(i−wj)

i)s1/t,

D5 = (
∏

i∈Z

(gui−αn+1−i

)
∏

j∈J

(i−wj)

)(s
′
2+αi∗

)/t = (
∏

i∈Z

h

∏

j∈J

(i−wj)

i)s2/t.

We should note that since i∗ /∈ Z, the item gαn+1
will not occur in the

calculation of D5.
� If there exists an i∗ ∈ {Z ∪ V ∗} �= ∅:

the simulation can be performed in a similar way by choosing two random

numbers s′
1, s

′
2 ∈ Zp and implicitly setting s1, s2 as:

{
s1 = s′

1 + αi∗

s2 = s′
2

. We

omit the details here.

B returns to A the secret key SK = (D1,D2,D3,D4,D5).

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 265

Challenge: The adversary gives two messages M0 and M1 to B. Then B flips
a coin b and generate the challenge ciphertext by setting C1 = gτ = h for some
unknown τ and

C2 = hd = (gd)τ

= (gd
∏

j∈S∗
(gn+1−j)−1

∏

j∈S∗
(gn+1−j))τ = (ν

∏

j∈S∗
(gn+1−j))τ

C3,k = h
v0xk+

∑

i∈V ∗
uii

k

= (g
v0xk+

∑

i∈V ∗
uii

k

)τ ,

C4,k = h
v1xk+

∑

i∈Z∗
uii

k

= (g
v1xk+

∑

i∈Z∗
uii

k

)τ .

B then sends the following challenge ciphertext to A

CT ∗ = (MbT,C1, C2, {C3,k}, {C4,k}).

Phase II: Same as Phase I.

Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(gn+1, h), then the simulation is the same as in the real game.
Hence, A will have the probability 1

2 + ε to guess b correctly. If T is a random
element of GT , then A will have probability 1

2 to guess b correctly. Therefore, B
can solve the Decision n-BDHE assumption also with advantage ε. ��
Theorem 2. Assume that the Decision n-BDHE assumption holds, then no
polynomial-time adversary against our CP-ABBE scheme can have a non-negligible
advantage over random guess in the Selective IND-CPA security game.

Proof: Suppose that there exists an adversary A which can attack our scheme
with non-negligible advantage ε, we construct another algorithm B which uses A
to solve the Decision n-BDHE problem. On input (g, h,−→y g,α,n = (g1, g2, . . . , gn,

gn+2, . . . , g2n), T), where gi = gαi

and for some unknown α ∈ Z
∗
p, the goal of B

is to determine whether T = e(gn+1, h) or a random element of GT .

Init: A gives B the challenge user indexes S∗ and the challenge access structure
W ∗ with n1 ≤ N1 wildcards which occur at positions J∗ = {w∗

1 , . . . , w
∗
n1

}, n2 ≤
N2 positive attributes which occur at positions V ∗ = {v∗

1 , . . . , v
∗
n2

}, n3 ≤ N3

negative attributes which occur at positions Z∗ = {z∗
1 , . . . , z∗

n3
} at the beginning

of the game.

Setup: B chooses d, v0, v1, u1, . . . , un ∈ Zp and generates:

ν = gd(
∏

j∈S∗
g−1

n+1−j) = gd−∑j∈S∗ αn+1−j

= gγ ,

V0 = gv0
∏

i∈V ∗
g

αn+1−i ∏

j∈J∗
(i−w∗

j)

= g
v0+

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

= gδ,

V1 = gv1
∏

i∈Z∗
g

αn+1−i ∏

j∈J∗
(i−w∗

j)

= g
v1+

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

= gθ,

266 T.V.X. Phuong et al.

and hi = gui−αn+1−i

, then B sets public key as:

PK = (g, g1, . . . , gn, gn+2, . . . , g2n, h1, . . . , hN , ν, V0, V1).

Phase 1: A submits (ID,L) in a secret key query, where L∗ �|= W “or” ID /∈ S∗.
Suppose the attribute set L contains n2 ≤ N2 positive attributes which occur
at positions V = {v1, . . . , vn2}, and n3 ≤ N3 negative attributes which occur at
positions Z = {z1, . . . , zn3}. We consider two cases in Phase 1:

– Case 1: ID /∈ S∗. B first selects random numbers s1, s2 ∈ Zp and computes:

D1 = gd
ID

∏

j∈S∗
(gn+1−j+ID)−1gv0s1

∏

i∈V ∗
(g

∏

j∈J∗
(i−w∗

j)

n+1−i)s1gv1s2
∏

i∈Z∗
(g

∏

j∈J∗
(i−w∗

j)

n+1−i)s2

= gαID(d−∑j∈S∗ αn+1−j)

(g
v0+

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)s1(g
v1+

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)s2

= gαIDγ+δs1+θs2 ,
D2 = gs1 ,
D3 = gs2 ,

D4,k =
∏

i∈V

(gui−αn+1−i

)iks1 =
∏

i∈V

hiks1
i ,

D5,k =
∏

i∈Z

(gui−αn+1−i

)iks2 =
∏

i∈Z

hiks2
i .

– Case 2: ID ∈ S∗. In this case, due to the constraint L∗ �|= W , L has at least
one position i∗ which has a different attribute value from W ∗, which means
{V ∪ Z∗} �= ∅ or {Z ∪ V ∗} �= ∅.

� If there exists i∗ ∈ {V ∪ Z∗} �= ∅:
B selects two random numbers s′

1, s
′
2 ∈ Zp and implicitly sets s1, s2 as:⎧

⎪⎨

⎪⎩

s1 = s′
1

s2 = s′
2 + αi∗

∏

j∈J∗
(i∗−w∗

j)

by setting D2 = gs′
1 = gs1 ,D3 =

g

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

= gs2 . Then B can compute D1,D4,k,D5,k as follows:

D1 = gαIDγ+δs1+θs2 .

= gαID(d−∑j∈S∗ αn+1−j)gv0s1
∏

i∈V ∗
(g

∏

j∈J∗
(i−w∗

j)

n+1−i)s1gv1s2
∏

i∈Z∗
(g

∏

j∈J∗
(i−w∗

j)

n+1−i)s2

= gd
ID

∏

j∈S∗
(gn+1−j+ID)−1(gv0)s′

1(g

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)s′
1

(gv1)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

(g

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1g−αn+1

(gv0)s′
1(g

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)s′
1

(gv1)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

(g

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)s′
2

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 267

(g

∑
i∈Z∗,i�=i∗ αn+1−i+i∗ ∏

j∈J∗
(i−w∗

j)

∏

j∈J∗
(i∗−w∗

j
)

)gαn+1

= gd
ID

∏

j∈S∗, j �=ID

(gn+1−j+ID)−1

(gv0)s′
1(g

∑
i∈V ∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)s′
1

(gv1)

s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)

(g

∑
i∈Z∗ αn+1−i ∏

j∈J∗
(i−w∗

j)

)s′
2

(g

∑
i∈Z∗,i�=i∗ αn+1−i+i∗ ∏

j∈J∗
(i−w∗

j)

∏

j∈J∗
(i∗−w∗

j
)

)

D4,k =
∏

i∈V

(gui−αn+1−i

)iks′
1 =

∏

i∈V

hiks1
i

D5,k =
∏

i∈Z

(gui−αn+1−i

)

ik(s′
2+

αi∗
∏

j∈J∗
(i∗−w∗

j
)
)

=
∏

i∈Z

hiks2
i

� If there exists an i∗ ∈ {Z ∪ V ∗} �= ∅:
the simulation can be performed in a similar way by choosing two random numbers

s′
1, s

′
2 ∈ Zp and implicitly setting s1, s2 as:

⎧
⎪⎨

⎪⎩

s1 = s′
1 + αi∗

∏

j∈J∗
(i∗−w∗

j)

s2 = s′
2

. We omit the

details here.

B returns to A the secret key SK = (D1,D2,D3, {D4,k}, {D5,k}).

Challenge: The adversary gives two messages M0 and M1 to B. Then B flips a
coin b and generates the challenge ciphertext by setting C1 = gτ = h for some
unknown τ and

C2 = hd = (gd)τ

= (gd
∏

j∈S∗
(gn+1−j)−1

∏

j∈S∗
(gn+1−j))τ

= (ν
∏

j∈S∗
(gn+1−j))τ

C3 = h
v0+

∑

i∈V ∗
ui

∏

j∈J∗
(i−w∗

j)

= (g
v0+

∑

i∈V ∗
ui

∏

j∈J∗
(i−w∗

j)

)τ

C4 = h
v1+

∑

i∈Z∗
ui

∏

j∈J∗
(i−w∗

j)

= (g
v1+

∑

i∈Z∗
ui

∏

j∈J∗
(i−w∗

j)

)τ

B sends the following challenge ciphertext to A:

CT ∗ = (MbT,C1, C2, C3, C4).

Phase II: Same as Phase I.

Guess: A outputs b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(gn+1, h), then the simulation is the same as in the real game.
Hence, A will have the probability 1

2 + ε to guess b correctly. If T is a random
element of GT , then A will have probability 1

2 to guess b correctly. Therefore, B
can solve the Decision n-BDHE assumption also with advantage ε. ��

268 T.V.X. Phuong et al.

6 Conclusion

We proposed two efficient Attribute Based Broadcast Encryption (ABBE)
schemes allowing access policies to be expressed using AND-gate with positive,
negative, and wildcard symbols. Our first key policy ABBE scheme achieves con-
stant secret key size, while the second ciphertext policy ABBE scheme achieves
constant ciphertext size, and both schemes require only constant number of pair-
ing operations in decryption. We also proved the security of our schemes under
the Decision n-BDHE assumption. One open problem is to construct an ABBE
scheme that has constant ciphertext and secret key, and we leave it as our future
work.

References

1. Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

2. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

3. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 41. Springer,
Heidelberg (2001)

4. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
100–115. Springer, Heidelberg (2002)

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

6. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: ACM CCS, pp. 211–220 (2006)

7. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007)

8. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)

9. Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA
broadcast encryption with constant-size secret keys and ciphertexts. In: Susilo, W.,
Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 308–321. Springer,
Heidelberg (2012)

10. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

11. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS, pp. 89–98 (2006)

12. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P, pp. 321–334 (2007)

13. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: ACM CCS,
pp. 456–465 (2007)

A.B.Broadcast Encryption with Short Ciphertext and Decryption Key 269

14. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

15. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

16. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

17. Junod, P., Karlov, A.: An efficient public-key attribute-based broadcast encryption
scheme allowing arbitrary access policies. In: ACM Workshop on Digital Rights
Management, pp. 13–24 (2010)

18. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

19. Lubicz, D., Sirvent, T.: Attribute-based broadcast encryption scheme made effi-
cient. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 325–342.
Springer, Heidelberg (2008)

20. Sahai, A., Waters, B.: Revocation systems with very small private keys. IACR
Cryptology ePrint Archive 2008/309

21. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords
with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010)

Accountable Authority Ciphertext-Policy
Attribute-Based Encryption with White-Box
Traceability and Public Auditing in the Cloud

Jianting Ning1, Xiaolei Dong2(B), Zhenfu Cao2(B), and Lifei Wei3

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
jtning@sjtu.edu.cn

2 Shanghai Key Lab for Trustworthy Computing, East China Normal University,
Shanghai 200062, China

{dongxiaolei,zfcao}@sei.ecnu.edu.cn
3 College of Information Technology,

Shanghai Ocean University, Shanghai 201306, China
Lfwei@shou.edu.cn

Abstract. As a sophisticated mechanism for secure fine-grained access
control, ciphertext-policy attribute-based encryption (CP-ABE) is a
highly promising solution for commercial applications such as cloud com-
puting. However, there still exists one major issue awaiting to be solved,
that is, the prevention of key abuse. Most of the existing CP-ABE sys-
tems missed this critical functionality, hindering the wide utilization and
commercial application of CP-ABE systems to date. In this paper, we
address two practical problems about the key abuse of CP-ABE: (1)
The key escrow problem of the semi-trusted authority; and, (2) The mali-
cious key delegation problem of the users. For the semi-trusted authority,
its misbehavior (i.e., illegal key (re-)distribution) should be caught and
prosecuted. And for a user, his/her malicious behavior (i.e., illegal key
sharing) need be traced. We affirmatively solve these two key abuse prob-
lems by proposing the first accountable authority CP-ABE with white-
box traceability that supports policies expressed in any monotone access
structures. Moreover, we provide an auditor to judge publicly whether a
suspected user is guilty or is framed by the authority.

Keywords: Attribute-based encryption · Ciphertext-policy · Key abuse ·
White-box traceablity · Public auditing

1 Introduction

As a new commercial and exciting paradigm, cloud computing has attracted much
attention from both industrial and academic world. Due to the advantage of cloud
computing, plenty of enterprises and individuals can share and outsource their
data to cloud servers instead of building and maintaining data centers of their own,
and themselves or other authorized users can access the outsorced data anywhere
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 270–289, 2015.
DOI: 10.1007/978-3-319-24177-7 14

Accountable Authority CP-ABE with WT and PA in the Cloud 271

and anytime [1]. Despite lots of benefits provided by cloud computing, the con-
cerns on data security are probably the main obstacles hindering the wide usage of
cloud services. To address the data security concerns, encryption has been applied
on the data of enterprises and individuals before outsourcing. Nevertheless, in
some practical applications of cloud computing, data is often shared with some
potential users without knowing who will receive it, thus a fine-grained access con-
trol over data is desired. Attribute-Based Encryption (ABE, [13]) is a promising
approach to protect the confidentiality of sensitive data and express fine-grained
access control for cloud computing. In a CP-ABE system, enterprises and indi-
viduals can specify access policies over attributes that the potential users possess.
And the data customers whose attributes satisfy the specified access policy can
decrypt successfully and get access to the outsourced data.

A Motivating Story. Consider a company employs a cloud storage system to
outsource its data after encrypting the data under some access policies. Each
employee is assigned with several attributes (such as “manager”, “engineer”,
etc.). And those whose attributes satisfy the access policy over the outsourced
data could decrypt the ciphertext and get access to the sensitive data stored in
the cloud. As a versatile one-to-many encryption mechanism, CP-ABE system
is quite suitable in this cloud storage scenario. If it happens to exist an employee
from the company’s competitor who is not authorized but could get access to
the sensitive data stored in the cloud, as such, the company will suffer severe
financial loss. Then, who leaks the decryption key to him? In addition, if an
employee from the company named Bob is traced as the traitor (who leaks the
decryption key) but claims to be innocent and framed by the system, then how
to judge whether Bob is indeed innocent or not? Does Bob have an opportunity
to argue for himself?

The problems, as described above, are the main obstacles when CP-ABE is
implemented in cloud storage service. In a CP-ABE system, a user’s decryption
key is issued by a trusted authority according to the attributes the user possesses.
The authority is able to generate and (re-)distribute decryption keys for any user
without any risk of being caught and confronted in a court of law. Thus the secu-
rity of a CP-ABE system relies heavily on trusting the authority. It is actually
the key escrow problem in CP-ABE. One approach to reduce this trust is to
employ multiple authorities [8,16,19]. However, this approach inevitably causes
additional communication and infrastructure cost, and the problem of collusion
among collaborating authorities remains. It is better to adopt the accountable
authority approach to mitigate the key escrow problem in CP-ABE. The prob-
lem described above is the key abuse problem of authority. There exists another
kind of key abuse problem: the key abuse problem of users. In a CP-ABE system,
the decryption keys are defined over sets of attributes shared by multiple users.
The misbehavior users may illegally share their decryption keys with others for
profits without being detected. It is actually the malicious key delegation prob-
lem. It is necessary to trace the malicious users who leak their decryption keys
illegally. Moreover, if a user is traced to be malicious (for leaking the decryption
key) but claims to be innocent and framed by the system, it is necessary to

272 J. Ning et al.

enable an auditor to judge whether the user is indeed innocent or is framed by
the system.

1.1 Our Contribution

In this paper, we address the key abuse and the auditing problems of CP-ABE
and affirmatively solve these by proposing an accountable authority CP-ABE
system with white-box traceability and public auditing. To the best of our
knowledge, this is the first CP-ABE scheme that supports the following prop-
erties: traceability of malicious users, accountable authority, almost no storage
for tracing, public auditing and high expressiveness (i.e. supporting access poli-
cies expressed in any monotone access structures). Also, we prove that our new
system is fully secure in the standard model.

We solve the obstacles of CP-ABE implementation in cloud storage scenario
as follows:

1. Traceability of malicious users. Anyone who may leak their decryption keys
to others for profits can be traced.

2. Accountable authority. The semi-trusted authority could be caught if it ille-
gally generates and distributes legitimate keys to any unauthorized users.

3. Public auditing. We provide an auditor to judge whether a suspected user
(for leaking his/her decryption key) is guilty or is framed by the authority.
In addition, the auditability of our system is public, that is, anyone can run
the Audit algorithm to make a judgement with no additional secret needed.

4. Almost no storage for tracing. We use a Paillier-style encryption as an
extractable commitment in tracing the malicious users. And we do not need
to maintain an identity table of users for tracing as used in [21]. As a result,
we need almost no storage for tracing.

Table 1 gives the comparison between our work and some other related work.

Table 1. Comparison with other related work

[18] [17] [21] [20] [22] Ours

Traceability of malicious users × × × √ √ √

Accountable authority
√ × × × × √

Storage for tracinga none none linear none constant none

Supporting any monotone access structures × × √ √ √ √

Public auditing × × × × × √

Fully secure × × √ √ × √

Standard model × √ √ √ √ √
a In [17,18,20] and this paper, the systems need almost no storage for tracing, for

simplicity, we use none stands for almost no storage for tracing.

Accountable Authority CP-ABE with WT and PA in the Cloud 273

1.2 Our Technique

In this subsection, we briefly introduce the main idea we utilize to realize the
properties of traceability of malicious users, accountable authority and public
auditing before giving the full details in Sect. 4.

To trace malicious users who may leak their decryption keys to others for
profits, we use a Paillier-style encryption as an extractable commitment to
achieve white-box traceability. Specifically, we use a Paillier-style extractable
commitment to make a commitment to a user’s identity when the user queries for
his decryption key. The commitment is further inserted into the user’s decryp-
tion key as a necessary part for successful decryption. Due to the hiding and
binding properties of the Paillier-style extractable commitment, the user does
not know what is inserted into his decryption key and even cannot change the
identity insert into his decryption key. When it comes to the Trace algorithm,
the algorithm uses a trapdoor for the commitment to recover the identity of
the user from his decryption key. Note that the decryption key needs to take a
key sanity check algorithm to see whether it is well-formed or not prior to the
tracing step. Take the advantage of the Paillier-style extractable commitment,
we do not have to maintain the identity table as used in [21], as a result, we
need almost no storage for tracing.

To achieve accountable authority, the main idea is to let the user’s decryp-
tion key be jointly determined by both of the authority and the user himself,
hence the authority does not have complete control over the decryption key. We
let a user get his decryption key sk corresponding to his attributes and iden-
tity from the authority using a secure key generation protocol. The protocol
allows the user to obtain a decryption key sk for his attributes and identity
without letting the authority know which key he obtained. Now if the authority
(re-)distribute a decryption key s̃k (corresponding to a user’s attributes and
identity) for malicious usage, with all but negligible probability, it will be dif-
ferent from the key sk which the user obtained. Hence the key pair (sk, s̃k) is a
cryptographic proof of malicious behavior of the authority.

Furthermore, the difference between the user’s decryption key sk and the
decryption key s̃k (re-)distributed by the authority allows the auditor to judge
publicly whether the malicious user is guilty or is framed by the system. And
note that the auditor is assumed to be fair and credible.

1.3 Related Work

Attribute-Based Encryption, first introduced by Sahai and Waters [27], gener-
alizes the notion of fuzzy Identity-Based Encryption (IBE) [6,28]. Goyal et al.
[13] formalized two complementary forms of Attribute-Based Encryption (ABE):
Key-Policy Attribute-Based Encryption (KP-ABE) and Ciphertext-Policy
Attribute-Based Encryption (CP-ABE). In a CP-ABE system, every user’s
decryption key is associated with a set of attributes she/he possesses, and every
ciphertext is associated with an access policy defined over attributes. KP-ABE is
reversed in that every ciphertext is associated with a set of attributes and every

274 J. Ning et al.

user’s decryption key is associated with an access policy. ABE (especially CP-
ABE) is envisioned as a highly promising public key primitive for implementing
scalable and fine-grained access control over encrypted data, and has attracted
much attention in the research community. A series of ABE (including CP-ABE
and KP-ABE) systems have been proposed [4,11,14,15,20–22,24–26,29], aiming
at better efficiency, expressiveness or security.

Li et al. first introduced the notion of accountable CP-ABE [18] to pre-
vent illegal key sharing among colluding users. Then a user accountable multi-
authority CP-ABE scheme was proposed in [17] which only supported AND
gates with wildcard. White-box [21] and black-box [20] traceability CP-ABE
systems which supported policies expressed in any monotone access structures
were later proposed by Liu et al. Recently, Ning et al. [22] proposed a practical
large universe CP-ABE system with white-box traceability. Deng et al. [9] pro-
vided a tracing mechanism of CP-ABE to find the leaked access credentials in
cloud storage systems. Unfortunately, the above work either only support less
expressive access policy, or do not consider the misbehavior of the authority, or
do not address the auditing issue.

1.4 Organization

Section 2 introduces the background, including the notation, the access pol-
icy, the linear secret sharing scheme, the composite order bilinear groups, the
assumptions and the zero-knowledge proof of knowledge of discrete log. Section 3
gives the formal definition of accountable authority CP-ABE with white-box
traceability and public auditing (AAT-CP-ABE) and its security
model. Section 4 presents the construction of our AAT-CP-ABE system as well
as the security proof. Finally, Sect. 5 presents a brief conclusion and foresees our
future work.

2 Background

2.1 Notation

We define [l] = {1, 2, ..., l} for l ∈ N. We denote by s
R← S the fact that s is picked

uniformly at random from the finite set S. By PPT we denote probabilistic
polynomial-time. We denote (v1, v2, ..., vn) be a row vector and (v1, v2, ..., vn)⊥

be a column vector. By vi we denote the i-th element in a vector v. And by Mv
we denote the product of matrix M with vector v . We denote Z

l×n
p be the set of

matrices of size l × n with elements in ZN . The set of column vectors of length
n (i.e. Zn×1

N) are the two special subsets and the set of row vectors of length n
(i.e. Z1×n

N).

2.2 Access Policy

Definition 1. (Access Structure [2]): Let S be the attribute universe. A collec-
tion (respectively, monotone collection) A ⊆ 2S of non-empty sets of attributes is

Accountable Authority CP-ABE with WT and PA in the Cloud 275

an access structure (respectively, monotone access structure) on S. A collection
A ⊆ 2S is called monotone if ∀B,C ∈ A : if B ∈ A and B ⊆ C, then C ∈ A.
The sets in A are called the authorized sets, and the sets not in A are called the
unauthorized sets.

For CP-ABE, if a user of the system possess an authorized set of attributes
then he can decrypt the ciphertext. Otherwise, the set he possed is unauthorized
and he can’t get any information from ciphertext. In our construction, we restrict
our attention to monotone access structure.

2.3 Linear Secret-Sharing Schemes

Definition 2. (Linear Secret-Sharing Schemes (LSSS) [2,22]). Let S denote
the attribute universe and p denote a prime. A secret-sharing scheme

∏
with

domain of secrets Zp realizing access structure on S in called linear (over Zp) if

1. The shares of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on S, there exists a matrix M with l rows and n

columns called the share-generating matrix for
∏

. For i = 1, ..., l, we define a
function ρ labels row i of M with attribute ρ(i) from the attribute universe S.
When we consider the column vector v = (s, r2, ..., rn), where s ∈ Zp is the
secret to be shared and r2, ..., rn ∈ Zp are randomly chosen. Then Mv ∈ Z

l×1
p

is the vector of l shares of the secret s according to
∏

. The share (Mv)j

“belongs” to attribute ρ(j), where j ∈ [l].

As shown in [2], every linear secret-sharing scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: we
suppose that

∏
is an LSSS for the access structure A, S′ ∈ A is an authorized

set and let I ⊂ {1, 2, ..., l} be defined as I = {i ∈ [l] ∧ ρ(i) ∈ S′}. Then, there
exist constants {ωi ∈ Zp}i∈I such that for any valid shares {λi = (Mv)i}i∈I of
a secret s according to

∏
, then

∑
i∈I ωiλi = s. Additionally, it is shown in [2]

that these constants {ωi}i∈I can be found in time polynomial in the size of the
share-generating matrix M . On the other hand, for any unauthorized set S′′, no
such constants {ωi} exist.

Note that if we encode the access structure as a monotonic Boolean formula
over attributes, there exists a generic algorithm by which we can generate the
corresponding access policy in polynomial time [2].

In our construction, an LSSS matrix (M,ρ) will be used to express an access
policy associated to a ciphertext.

2.4 Composite Order Bilinear Groups

Composite order bilinear groups are widely used in IBE and ABE systems, which
are first introduced in [7]. We let G denote a group generator, which takes a
security parameter λ as input and outputs a description of a bilinear group G.
We define the output of G as (p1, p2, p3, G,GT , e), where p1, p2, p3 are distinct
primes, G and GT are cyclic groups of order N = p1p2p3, and e : G2 → GT is a
map such that:

276 J. Ning et al.

1. Bilinearity: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: ∃g ∈ G such that e(g, g) has order N in GT .

We assume that group operations in G and GT as well as the bilinear map
e are computable in polynomial time with respect to λ. We refer to G as the
source group and GT as the target group, and assume the group descriptions
of G and GT include a generator of each group. Let Gp1 , Gp2 , and Gp3 be the
subgroups of order p1, p2, and p3 in G, respectively. Note that these subgroups
are “orthogonal” to each other under the bilinear map e: for any ui ∈ Gpi

and
uj ∈ Gpj

where i
= j, e(ui, uj) = 1. Any element EN ∈ G can (uniquely) be
expressed as gr1

1 gr2
2 gr3

3 for some values r1, r2, r3 ∈ ZN , where g1, g2, g3 are the
generators of Gp1 , Gp2 , Gp3 respectively. And we will refer to gr1

1 , gr2
2 , gr3

3 as the
“Gp1 part of EN”, “Gp2 part of EN” and “Gp3 part of EN”, respectively. Assume
Gp1p2 be the subgroups of order p1p2 in G. Similarly, any element Ep1p2 ∈ Gp1p2
can be expressed as the product of an element from Gp1 and an element from Gp2 .

2.5 Complexity Assumptions

Assumption 1. (Subgroup Decision Problem for 3 Primes): [14] Given a group
generator G, define the following distribution:

G = (N = p1p2p3, G,GT , e) R← G,
g

R← Gp1 ,X3
R← Gp3 ,

D = (G, g,X3),
T1

R← Gp1p2 , T2
R← Gp1 .

The advantage of an algorithm A in breaking this assumption is defined to
be: Adv1G,A(λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|.
Definition 3. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 2. [14] Given a group generator G, define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R← G,
g,X1

R← Gp1 ,X2, Y2
R← Gp2 ,X3, Y3

R← Gp3

D = (G, g,X1X2,X3, Y2Y3),
T1

R← G,T2
R← Gp1p3 .

The advantage of an algorithm A in breaking this assumption is defined to
be: Adv2G,A(λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|.
Definition 4. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Accountable Authority CP-ABE with WT and PA in the Cloud 277

Assumption 3. [14] Given a group generator G, define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e) R← G, α, s
R← ZN ,

g
R← Gp1 ,X2, Y2, Z2

R← Gp2 ,X3
R← Gp3

D = (G, g, gαX2,X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R← GT .

The advantage of an algorithm A in breaking this assumption is defined to
be: Adv3G,A(λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|.
Definition 5. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 4. (l-SDH assumption [5,10]): Let G be a bilinear group of prime
order p and g be a generator of G, the l-Strong Diffie-Hellman (l-SDH) problem
in G is defined as follows: given a (l+1)-tuple (g, gx, gx2

, ..., gxl

) as inputs, output
a pair (c, g1/(c+x)) ∈ Zp ×G. An algorithm A has advantage ε in solving l-SDH
in G if Pr[A(g, gx, gx2

, ..., gxl

) = (c, g1/(c+x))] ≥ ε, where the probability is over
the random choice of x in Z

∗
p and the random bits consumed by A.

Definition 6. We say that the (l, t, ε)-SDH assumption holds in G if no t-time
algorithm has advantage at least in solving the l-SDH problem in G.

2.6 Zero-Knowledge Proof of Knowledge of Discrete Log

Informally, a zero-knowledge proof of knowledge (ZK-POK) of discrete log pro-
tocol enables a prover to prove that it possesses the discrete log t of a given
group element T in question to a verifier.

A ZK-POK protocol has two distinct properties: the zero-knowledge property
and the proof of knowledge property. The property of zero-knowledge implies
that there exists a simulator S which is able to simulate the view of a verifier in
the protocol without being given the witness as input. The proof of knowledge
property implies there exists a knowledge-extractor Ext which interacts with
the prover and extracts the witness using rewinding techniques [10]. We refer
the reader to [3] for more details about ZK-POK.

3 Accountable Authority CP-ABE with White-Box
Traceability and Public Auditing

3.1 Definition

An Accountable Authority CP-ABE with White-Box Traceability and Public
Auditing (AAT-CP-ABE) is a CP-ABE system which could hold the misbehaved
authority accountable, trace the malicious user by his/her decryption key and
judge whether the suspected a user is indeed innocent or not. An AAT-CP-ABE
system consists of seven algorithms as follows:

278 J. Ning et al.

– Setup(1λ,U) → (pp,msk): The algorithm takes as input a security parameter
λ ∈ N encoded in unary and the attribute universe description U . It outputs
the public parameters pp and the master secret key msk.

– KeyGen(pp,msk, id, S) → skid,S : This is an interactive protocol between the
authority AT and a user U . The public parameters pp and a set of attributes
S for a user with identity id are the common input to the AT and U . The
master secret key msk is the private input to the AT . Additionally, the AT
and U may use a sequence of random coin tosses as private input. At the end
of the protocol, U is issued a secret key skid,S corresponding to S.

– Encrypt(pp,m,A) → ct: The encryption algorithm takes as input the public
parameters pp, a plaintext message m, and an access structure A over the
universe of attributes. It outputs the ciphertext ct1.

– Decrypt(pp, skid,S , ct) → m or ⊥: The decryption algorithm takes as input
the public parameters pp, a secret key skid,S , and a ciphertext ct. If the set
of attributes of the private key satisfies the access structure of the ciphertext,
the algorithm outputs the plaintext m. Otherwise, it outputs ⊥.

– KeySanityCheck(pp, sk) → 1 or 0: The key sanity check algorithm takes as
input the public parameters pp and a secret key sk. If sk passes the key
sanity check, it outputs 1. Otherwise, it outputs 0. The key sanity check is a
deterministic algorithm [10,12], which is used to guarantee the secret key to
be well-formed in the decryption process.

– Trace(pp,msk, sk) → id or ᵀ: The tracing algorithm takes as input the public
parameters pp, the master secret key msk and a secret key sk. The algorithm
first checks whether sk is well-formed or not so as to determine whether sk
needs to be traced. A secret key sk is defined as well-formed which means
that KeySanityCheck(pp, sk) → 1. If sk is well-formed, the system extracts
the identity id from sk. Then it outputs an identity id with which the sk
associates. Otherwise, it outputs a special symbol ᵀ indicates that sk does
not need to be traced.

– Audit(pp, skid, sk
∗
id) → guilty or innocent. This is an interactive protocol

between a user U and a public auditor PA. It judges whether a user is guilty
or innocent.

3.2 Security

An AAT-CP-ABE system is deemed secure if the following three requirements
are satisfied. First, it must satisfy the standard semantic security notion for
CP-ABE system: ciphertext indistinguishability under chosen plaintext attacks
(IND-CPA). Second, it is intractable for the authority to create a decryption key
such that the Trace algorithm outputs a user and the Audit algorithm outputs
the user is guilty. Finally, it is infeasible for a user to create a decryption key
such that the Audit algorithm implicates the user is innocent. To define security
for AAT-CP-ABE system satisfies the above three requirements, we define the
following three games, respectively.
1 We assume that A is implicitly in the ciphertext ct.

Accountable Authority CP-ABE with WT and PA in the Cloud 279

The IND-CPA game. The IND-CPA game for AAT-CP-ABE system is similar
to that of the CP-ABE system [15], excepting every key query is companied with
an explicit identity. The game proceeds as follows:

– Setup: The challenger runs the Setup(1λ,U) algorithm and sends the public
parameters pp to the attacker.

– Query Phase 1: In this phase the attacker can adaptively query the chal-
lenger for secret keys corresponding to sets of attributes (id1, S1), (id2, S2), ...,
(idQ1 , SQ1). For each (idi, Si) the challenger calls KeyGen(pp,msk, id, Si) →
skid,Si

and sends skid,Si
to the attacker.

– Challenge: The attacker declares two equal length messages m0 and m1 and
an access structure A

∗. Note that this access structure cannot be satisfied
by any of the queried attributes sets (id1, S1), (id2, S2), ..., (idQ1 , SQ1). The
challenge flips a random coin δ ∈ {0, 1} and calls Encrypt(pp,mδ,A

∗) → ct.
It sends ct to the attacker.

– Query Phase 2: The attacker adaptively queries the challenger for the secret
keys corresponding to sets of attributes (idQ1+1, SQ1+1), ..., (idQ, SQ) with the
added restriction that none of these satisfy A

∗. For each (idi, Si) the challenger
calls KeyGen(pp,msk, id, Si) → skid,Si

and sends skid,Si
to the attacker.

– Guess: The attacker outputs a guess δ′ ∈ {0, 1} for δ.

An attacker’s advantage in this game is defined to be Adv = |Pr[δ′ = δ]−1/2|.
Definition 7. An AAT-CP-ABE system is fully secure if all probabilistic poly-
nomial time (PPT) attackers have at most a negligible advantage in the above
game.

The DishonestAuthority Game. The DishonestAuthority game for the AAT-
CP-ABE system is defined as follows. The intuition behind this game is that an
adversarial authority attempts to create a decryption key which will frame a
user. It is described by a game between a challenger and an attacker.

– Setup: The attacker (acting as a malicious authority) generates public para-
meters pp, and sends pp, a user’s (id, S) to the challenger. The challenger runs
a sanity check on pp and (id, S) aborts if the check fails.

– Key Generation: The attacker and the challenger engage in the key gen-
eration protocol KeyGen to generate a decryption key sk∗

id corresponding to
the user’s id and S. The challenger gets the decryption key sk∗

id as input and
runs a sanity check on it to ensure that it is well-formed. It aborts if the check
fails.

– Output: The attacker outputs a decryption key sk∗
id and succeeds if

Trace(pp,msk, sk∗
id) → id, and Audit(pp, skid, sk

∗
id) → guilty.

The attacker’s advantage in this game is defined to be Adv = |Pr[A succeeds]|
where the probability is taken over the random coins of Trace, Audit, the
attacker and the challenger.

Definition 8. An AAT-CP-ABE system is DishonestAuthority secure if all
PPT attackers have at most a negligible advantage in the above security game.

280 J. Ning et al.

The DishonestUser Game. The DishonestUser game for the AAT-CP-ABE
system is defined as follows. The intuition behind this game is that a malicious
user attempts to create new decryption key which will frame the authority. It is
described by a game between a challenger and an attacker.

– Setup: The challenger runs the Setup(1λ,U) algorithm and sends the public
parameters pp to the attacker.

– Key Query: The attacker submits the sets of attributes (id1, S1), ..., (idq, Sq)
to request the corresponding decryption keys. The challenger calls KeyGen(pp,
msk, id, Si) → skid,Si

and returns skid,Si
to the attacker.

– Key Forgery: The attacker will output a decryption key sk∗. If {Trace
(pp,msk, sk∗)
= ᵀ and Trace(pp,msk, sk∗) /∈ {id1, ..., idq}} or {Trace(pp,
msk, sk∗) = id and Audit(pp, skid, sk

∗
id) → innocent}, the attacker wins the

game.

An attacker’s advantage in this game is defined to be Adv = |Pr[A succeeds]|
where the probability is taken over the random coins of Trace, Audit, the
attacker and the challenger.

Definition 9. An AAT-CP-ABE system is fully traceable if all PPT attackers
have at most a negligible advantage in the above security game.

The Key Sanity Check Game. According to [23], the Key Sanity Check
game for the AAT-CP-ABE system is defined as follows. It is described by the
following game between an attacker and a simulator. On input a security para-
meter 1λ (λ ∈ N), a simulator invokes an attacker A on 1λ. A returns the public
parameters pp, a ciphertext ct and two different secret keys skid,S and s̃kid,S

corresponding to the same set of attributes S for a user with identity id. A wins
the game if

(1) KeySanityCheck(pp, skid,S) → 1.
(2) KeySanityCheck(pp, s̃kid,S) → 1.
(3) Decrypt(pp, skid,S , ct)
=⊥.
(4) Decrypt(pp, s̃kid,S , ct)
=⊥.
(5) Decrypt(pp, skid,S , ct)
= Decrypt(pp, s̃kid,S , ct).

A’s advantage in the above game is defined as Pr[A wins]. And it is easy to
see that the intuition of “Key Sanity Check” is captured combining the notion
captured in the above game and the related algorithms (KeySanityCheck and
Decrypt) defined in this section [23].

4 Our System

4.1 Construction

– Setup(λ,U) → (pp,msk): The algorithm calls the group generator G with λ
as input and gets a bilinear group G of order N = p1p2p3 (3 distinct primes),
Gpi

the subgroup of order pi in G, and g, g3 the generator of the subgroup

Accountable Authority CP-ABE with WT and PA in the Cloud 281

Gp1 , Gp3 respectively. It then chooses exponents α, a, κ, μ ∈ ZN and a group
element v ∈ Gp1 randomly. For each attribute i ∈ U , the algorithm chooses a
random value ui ∈ ZN . Also, the algorithm chooses two random primes p and
q for which it holds p
= q, |p| = |q| and gcd(pq, (p − 1)(q − 1)) = 1, and then
let n = pq, π = lcm(p−1, q−1), Q = π−1 mod n and g1 = (1+n). The public
parameters are set to pp = (N,n, g1, v, g, ga, gκ, gμ, e(g, g)α, {Ui = gui}i∈U).
And the master secret key msk is set to msk = (p, q, α, g3).

– KeyGen(pp,msk, id, S) → skid,S : The authority AT and a user U (with the
identity id2) interact in the key generation protocol as follows.
1. U first chooses t ∈ ZN randomly and computes RU = gt. Next, it sends gt,

the identity id and a set of attributes S to AT . Then, it runs an interactive
ZK-POK of the discrete log of RU with respect to g with AT .

2. AT first checks whether the ZK-POK is valid or not. If the check fails, AT
aborts the interaction. Otherwise, it chooses a random c ∈ ZN , a random
r ∈ Z

∗
n and random elements R,R0, R

′
0, {Ri}i∈S ∈ Gp3 . Then, it computes

the primary secret key skpri as follows:

〈S, K = g
α

a+T (gt)
κ

a+T vcR, T = gid
1 rn mod n2,

L = gcR0, L′ = gacR′
0, {Ki = U (a+T)c

i Ri}i∈S〉.
And it sends (c, skpri) to U .

3. U checks whether the following equalities hold or not:
(1) e(L′, g) = e(L, ga) = e(ga, (g)c).
(2) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ).
(3) ∃x ∈ S s.t. e(Ux, L′(L)T) = e(Kx, g).
If no, U aborts the interaction. Otherwise, U computes tid = c

t and sets
his decryption key skid,S as follows:

〈S, K = K(gμ)tid , T = T , L = L, L′ = L′, RU , tid, {Ki = Ki}i∈S〉.

– Encrypt(pp,m, (A, ρ)) → ct: The algorithm takes the access structure encoded
in an LSSS policy3, the public parameters pp and a plaintext message m. The
algorithm chooses −→y = (s, y2, ..., yn)⊥ ∈ Z

n×1
N randomly, where s is the ran-

dom secret to be shared among the shares according to Subsect. 2.3. Then it
chooses rj ∈ ZN for each row Aj of A randomly. The ciphertext ct is set as
follows:

〈C = m · e(g, g)αs, C0 = gs, C1 = (ga)s, C2 = (gκ)s, C3 = (gμ)s,

{Cj,1 = vAj
−→y U−rj

ρ(j) , Cj,2 = grj }j∈[l], (A, ρ)〉.
2 We assume that the identity id is an element in Zn. One can extend the construction

to arbitrary identities in {0, 1}∗ easily by adopting a collision-resistant hash H :
{0, 1}∗ → Zn.

3 where A is an l × n matrix and ρ is a map from each row Aj of A to an attribute
ρ(j).

282 J. Ning et al.

– Decrypt(pp, skid,S , ct) → m or ⊥: The algorithm first parses the skid,S to
(S,K, T, L, L′, RU , tid, {Ki}i∈S) and ct to (C,C0, C1, C2, C3, {Cj,1, Cj,2}j∈[l],
(A, ρ)). The algorithm will output ⊥ if the attribute set S cannot satisfy the
access structure (A, ρ) of ct. Otherwise, the algorithm first computes constants
ωj ∈ ZN such that

∑
ρ(j)∈S ωjAj = (1, 0, ..., 0). It then computes:

D = e((C0)T C1,K)(e(C2, Ru)e(C3, (gT ga)tid))−1

E = Πρ(j)∈S(e(Cj,1, (L)T L′)e(Cj,2,Kρ(j)))ωj

F = D/E = e(g, g)αs,m = C/F

– KeySanityCheck(pp, sk) → 1 or 0: The algorithm takes as input the public
parameters pp and a secret key sk. The secret key sk passes the key sanity
check if
(1) sk is in the form of (S,K, T, L, L′, RU , tid, {Ki}i∈S) and T ∈ Z

∗
n2 ,

K, L, L′, RU , {Ki}i∈S ∈ G.
(2) e(L′, g) = e(L, ga).
(3) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ)e((gagT)tid , gμ).
(4) ∃x ∈ S s.t. e(Ux, L′(L)T) = e(Kx, g).
If sk passes the key sanity check, the algorithm outputs 1. Otherwise, it
outputs 0.

– Trace(pp,msk, sk) → id or ᵀ: If KeySanityCheck(pp, sk) → 0, the algorithm
outputs ᵀ. Otherwise, it is a well-formed decryption key4, and the algorithm
will extract the identity id from T = gid

1 rn mod n2 in sk as follows: note that
Q = π−1 mod n and observe that TπQ = gid·πQ

1 ·rn·πQ = gid
1 = 1+id·n mod n2.

Thus, it recovers id = ((T)πQ mod n2)−1
n mod n and outputs the identity id.

– Audit(pp, skid, sk
∗
id) → guilty or innocent: Suppose a user U (with identity

id and decryption key skid) is identified as a malicious user by the system
(through the traced key sk∗

id), but claims to be innocent and framed by the
system. U will interact with the public auditor PA in the following protocol.
(1) U sends its decryption key skid to PA. If KeySanityCheck(pp, sk) → 0,

PA aborts. Otherwise, go to (2).
(2) PA tests whether the equality tid = t∗id hold or not. If no, it outputs

innocent indicates that U is innocent and is framed by the system. Oth-
erwise, it outputs guilty indicates that U is malicious and sk∗

id is leaked
by U .

4.2 IND-CPA Security

Since our construction of accountable authority traceable CP-ABE system is
based on the CP-ABE system in [14], for simplicity, we will reduce the IND-
CPA security proof of our construction to that of the system in [14]. We denote
by Σcpabe, Σaatcpabe the CP-ABE system in [14] and our system respectively.

4 i.e. the decryption privilege of the key is described by attribute set Sτ = {x|x ∈
S ∧ e(Kx, g) = e(Ux, L′(L)T) �= 1}.

Accountable Authority CP-ABE with WT and PA in the Cloud 283

The security model of Σcpabe in [14] is almost the same with the IND-CPA
security model of our system Σaatcpabe in Subsection in 3.2, excepting every key
query is companied with an identity and the decryption key is jointly determined
by a user and the authority.

Lemma 1. [14] If Assumptions 1,2,3 hold, then the CP-ABE system Σcpabe in
[14] is secure.

(2) IND-CPA Security of our AAT-CP-ABE system:

Lemma 2. [14] If the CP-ABE system Σcpabe in [14] is secure, then our AAT-
CP-ABE system Σaatcpabe in is secure in the IND-CPA security game of Sub-
sect. 3.2.

Due to space, we refer the reader to Appendix A for the proof of this lemma.

Theorem 1. If Assumptions 1,2,3 hold, then our AAT-CP-ABE system
Σaatcpabe is secure.

Proof. It follows directly from Lemmas 1 and 2.

4.3 DishonestAuthority Security

Theorem 2. If computing discrete log is hard in Gp1 , the advantage of an adver-
sary in the DishonestAuthority game is negligible for our AAT-CP-ABE system.

Due to space, we refer the reader to Appendix B for the proof of this theorem.

4.4 DishonestUser Security

In this subsection, we prove the DishonestUser secure of our AAT-CP-ABE
system based on q-SDH assumption and Assumption 2. We adopt a similar
method from [5] and [21].

Theorem 3. If q-SDH assumption and Assumption 2 hold, then our AAT-CP-
ABE system is DishonestUser secure provided that q′ < q.

Due to space, we refer the reader to Appendix C for the proof of this theorem.

4.5 Key Sanity Check Proof

In this subsection, we will give the key sanity check proof of our AAT-CP-ABE
system. We use the proof method from [23].

Theorem 4. The advantage of an attacker in the key sanity check game (in
Subsect. 3.2) is negligible for our AAT-CP-ABE system.

Due to space, we refer the reader to Appendix D for the proof of this theorem.

284 J. Ning et al.

5 Conclusion and Future Work

In this work, we addressed two practical problems about the key abuse of CP-
ABE in the cloud, and have presented an accountable authority CP-ABE system
supporting white-box traceability and public auditing. Specifically, the proposed
system could trace the malicious users for illegal key sharing. And for the semi-
trusted authority, its illegal key (re-)distributing misbehavior could be caught
and prosecuted. Furthermore, we have provided an auditor to judge whether a
malicious user is innocent or framed by the authority. As far as we known, this
is the first CP-ABE system that simultaneously supports white-box traceability,
accountable authority and public auditing. We have also proved that the new
system is fully secure in the standard model.

Note that there exists a stronger notion for traceability called black-box
traceability. In black-box scenario, the malicious user could hide the decryption
algorithm by tweaking it, as well as the decryption key. And in this case, the
proposed system with white-box traceability in this paper will fail since both
the decryption key and decryption algorithm are not well-formed. In our future
work, we will focus on constructing an accountable authority CP-ABE system
which is black-box traceability and public auditing.

Acknowledgements. We are grateful to the anonymous reviewers for their invaluable
suggestions. This work is supported in part by the National Natural Science Foundation
of China under Grant 61321064, Grant 61371083, Grant 61373154, Grant 61402282, and
Grant 61411146001, in part by the Specialized Research Fund for the Doctoral Program
of Higher Education of China through the Prioritized Development Projects under
Grant 20130073130004, and in part by the Natural Science Foundation of Shanghai of
Yang-Fan Plan under Grant 14YF1410400.

A Proof of Lemma 2

Proof. Suppose there exists a PPT attacker A that has advantage AdvAΣaatcpabe

in breaking Σaatcpabe. We construct a PPT algorithm B that has advantage
AdvBΣcpabe in breaking the underlying CP-ABE system Σcpabe, which equals to
AdvAΣaatcpabe.

– Setup: Σcpabe gives B the public parameters ppcpabe = (N, g, gβ , e(g, g)α,
{Ui = gui}i∈U). B randomly chooses a, κ ∈ ZN , it also chooses two random
primes p and q for which it holds p
= q, |p| = |q| and gcd(pq, (p−1)(q−1)) = 1,
and then let n = pq, π = lcm(p − 1, q − 1), Q = π−1 mod n and g1 = (1 + n).
B gives A the public parameters (N,n, g1, v = gβ , g, ga, gκ, gμ, e(g, g)α, {Ui =
gui}i∈U).

– Query Phase 1: The attacker A will submit (id, S) to B to query a decryp-
tion key, then B submits S to Σcpabe and gets the corresponding decryption
key in the form of s̃k = 〈K̃ = gαgβc̃R, L̃ = gc̃R0, {K̃i = U c̃

i Ri}i∈S〉. Note that
in the proof of [14], the authority is free to choose a decryption key on its own
and passes it on to the user. In our setting, however, the authority and the user

Accountable Authority CP-ABE with WT and PA in the Cloud 285

engage in a key generation protocol where the decryption key is jointly deter-
mined by both of them (via the choice of numbers t and c). Hence the authority
does not have complete control over the decryption key. The problem can be
solved as follows. The authority generates a primary secret key skpri on its own
and then “forces” the output of a user during key generation. Recall that dur-
ing the key generation protocol, a user first chooses a random t ∈ ZN and sends
RU = gt to the authority. The user gives to the authority a zero-knowledge
proof of knowledge of the discrete log of RU . The proof of knowledge property
of the proof system implies the existence of a knowledge extractor Extr (see
Sect. 2.6). Using Extr on the user during the proof of knowledge protocol,
the authority can extract the discrete log t (by rewinding the user during
protocol execution) with all but negligible probability. Thus, in the IND-CPA
security game, B could extract the discrete log t of RU (which was sent by
the attacker A). Then B chooses a random r ∈ Z

∗
N . It computes T = T̄ =

gid
1 rn mod n2 and 1/(a + T) modulo N . Then B sets c = c̃/(a + T), tid = c/t

implicitly and randomly chooses R′
0 ∈ Gp3 by using g3, then computes K̄ =

(K̃)
1

a+T (gt)
κ

a+T = (gαgβc̃R)
1

a+T g
κt

a+T = g
α

a+T vcg
κt

a+T R
1

a+T ,K = K̄(gμ)tid ,

L̄ = (L̃)
1

a+T = (gc̃R0)
1

a+T = gcR
1

a+T

0 , L = L̄, L̄′ = (L̃)
a

a+T = (gc̃R0)
a

a+T =
gacR

a
a+T

0 R′
0, L

′ = L̄′, {K̄i = K̃i = U c̃
i Ri = U (a+T)c

i Ri}i∈S , {Ki = K̃i}i∈S . B
gives A the decryption key skid,S = 〈S,K, T, L, L′, RU , tid, {Ki}i∈S〉.5

– Challenge: The attacker A submits to B two equal length messages (m0,m1)
and an LSSS matrix (A∗, ρ). Then B submits (m0,m1) and (A∗, ρ) to Σcpabe,
and obtains the challenge ciphertext as follows: c̃t = 〈C̃ = mδ · e(g, g)αs, C̃0 =
gs, { ˜Cj,1 = gβAj

−→y U−rj

ρ(j) ,
˜Cj,2 = grj }j∈[l], (A∗, ρ)〉. B sets C = C̃, C0 = C̃0, C1 =

(C̃0)a = gas, C2 = (C̃0)κ = gκs, C3 = (C̃0)μ = gμs, Cj,1 = ˜Cj,1 = vAj
−→y U−rj

ρ(j) ,

Cj,2 = ˜Cj,2. Then, B gives the challenge ciphertext ct = 〈C,C0, C1, C2, C3,
{Cj,1, Cj,2}j∈[l], (A∗, ρ)〉 to A.

– Query Phase 2: This phase is the same with Phase 1.
– Guess: A outputs and gives his guess δ′ to B. Then B gives δ′ to Σcpabe.

Since the distributions of the public parameters, decryption keys and challenge
ciphertext in the above game are the same as that in the real system, we have
AdvBΣcpabe=AdvAΣaatcpabe.

B Proof of Theorem 2

Proof. Suppose there exists a PPT attacker A that has non-negligible advantage
in winning the DishonestAuthority game for our AAT-CP-ABE system. We con-
struct a PPT algorithm B that has non-negligible advantage in solving discrete
log in Gp1 .

B proceeds as follows. B runs the algorithm A and gets the public parameters
pp = (N,n, g1, v, g, ga, gκ, gμ, e(g, g)α, {Ui = gui}i∈U) and a user’s (id, S) from

5 Note that R′
0 makes the Gp3 part of L′ uncorrelated to the Gp3 part of L, this is

why our simulator needs g3.

286 J. Ning et al.

A. It then invokes the challenger and passes on g to it, and gets a challenge
RU = gt. The goal of B is to makes use of A to get the discrete log t of RU with
respect to g.

B will engage in the key generation protocol with A to get a decryption
key for the user with (id, S) as follows. It sends RU to the attacker A and
has to give a zero-knowledge proof of knowledge of the discrete log of RU . The
zero-knowledge property of the proof system implies the existence of a simu-
lator S which is able to successfully simulate the view of A in the protocol
(by rewinding A) with all but negligible probability. B will use the simulator S
to simulate the required proof even without of knowledge of t. And B receives
c and the primary secret key skpri as follows: 〈S, K = g

α
a+T g

κt
a+T vcR, T =

gid
1 rn mod n2, L = gcR0, L′ = gacR′

0, {Ki = U (a+T)c
i Ri}i∈S〉. As before, B

checks whether the following equalities hold or not: (1)e(L′, g) = e(L, ga) =
e(ga, (g)c); (2) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ); (3) ∃x ∈ S s.t.

e(Ux, L′(L)T) = e(Kx, g).
If any of these checks fail, B aborts as would an honest user in the key

generation protocol.
Now with non-negligible advantage, the attacker A outputs a decryption key

sk∗
id such that Trace(pp,msk, sk∗

id) → id, Audit(pp, skid, sk
∗
id) → guilty and t∗id

equals tid (which is unknown to B). The decryption key sk∗
id is set as follows:

〈S, K = K(gμ)tid , T = T , L = L, L′ = L′, RU , t∗id, {Ki = Ki}i∈S〉. Then B
computes t = c/t∗id and outputs t as the discrete log (with respect to g) of the
challenge RU and halts.

C Proof Sketch of Theorem 3

Proof Sketch. Suppose there exists a PPT attacker A that has non-negligible
advantage ε in winning the traceability game after making q′ key queries, w.l.o.g.,
assuming q = q′ + 1, we construct a PPT algorithm that has non-negligible
advantage in breaking q-SDH assumption or Assumption 2. B is given an instance
of q-SDH problem and an instance of Assumption 2 problem as follows6.

– B is given an instance of q-SDH problem: Let G be a bilinear group of
order N = p1p2p3 (three distinct primes), Gi be the subgroup of order
pi in G (where 1 ≤ i ≤ 3), e : G × G → GT be a bilinear map, a ∈
Z

∗
p1

and g̃ ∈ Gp1 . B is given an instance of q-SDH problem INSSDH =
(G,GT , N, e, g̃, g̃a, ..., g̃aq

, p1, p2, p3).
– B is given an instance of Assumption 2 problem: Let G be a bilinear group

of order N = p1p2p3 (three distinct primes), Gi be the subgroup of order pi

in G (where 1 ≤ i ≤ 3), e : G × G → GT be a bilinear map, g̃, X1 ∈ Gp1 ,
X2, Y2 ∈ Gp2 , X3, Y3 ∈ Gp3 , δ ∈ {0, 1} and if δ = 0, T ′ ∈ G, if δ = 1,
T ′ ∈ Gp1p3 . B is given an instance of Assumption 2 problem INSAss2 =
(G,GT , N, e, g̃,X1X2,X3, Y2Y3, T

′).

6 Note that this two instances are independent from each other.

Accountable Authority CP-ABE with WT and PA in the Cloud 287

The goal of B is to output a bit δ′ ∈ {0, 1} to determine T ′ ∈ G or T ′ ∈ Gp1p3 for
solving the Assumption 2 problem, and a tuple (Ti, wi) ∈ Zp1 × Gp1 satisfying
wi = g̃1/(a+Ti) for solving the q-SDH problem. B will make use of A to break at
least one of the above assumptions.

Note that the structure of our system is similar to that of [21], and both of
the two systems use a Boneh-Boyen-style signature to achieve the unforgeability
property of decryption key. Correspondingly, the proof of the DishonestUser
game in our system is also similar to the proof of white-box traceability in [21].
And using a similar proof method from [21], it is easy to give a proof that B will
make use of A to break at least one of the above assumptions in our system.
Due to space limitations, we refer the interested reader to the full version of this
paper for the proof of this theorem.

D Proof of Theorem 4

Proof. Let the output of an attacker A be the public parameters pp, two differ-
ent secret keys skid,S = 〈S,K, T, L, L′, RU , tid, {Ki}i∈S〉 and s̃kid,S = 〈S, K̃, T̃ ,

L̃, L̃′, R̃U , t̃id, {K̃i}i∈S〉, and a ciphertext ct = 〈C,C0, C1, C2, C3, {Cj,1, Cj,2}j∈[l],
(A, ρ)〉. A wins implies that the following conditions (as defined in the key sanity
check game in Subsect. 3.2) are all fulfilled.

Conditions (1) − (5):
(1) KeySanityCheck(pp, skid,S) → 1; (2) KeySanityCheck(pp, s̃kid,S) → 1;
(3) Decrypt(pp, skid,S , ct)
=⊥; (4) Decrypt(pp, s̃kid,S , ct)
=⊥;
(5) Decrypt(pp, skid,S , ct)
= Decrypt(pp, s̃kid,S , ct).
Condition (1) implies

(1) sk is in the form of (S,K, T, L, L′, RU , tid, {Ki}i∈S) and T ∈ Z
∗
n2 ,K, L, L′,

RU , {Ki}i∈S ∈ G.
(2) e(L′, g) = e(L, ga).
(3) e(K, gagT) = e(g, g)αe(L′(L)T , v)e(RU , gκ)e((gagT)tid , gμ).
(4) ∃x ∈ S s.t. e(Ux, L′(L)T) = e(Kx, g).

Similarly, condition (2) implies

(1) sk is in the form of (S, K̃, T̃ , L̃, L̃′, R̃U , t̃id, {K̃i}i∈S) and T̃ ∈ Z
∗
n2 ,

K̃, L̃, L̃′, R̃U , {K̃i}i∈S ∈ G.
(2) e(L̃′, g) = e(L̃, ga).
(3) e(K̃, gagT̃) = e(g, g)αe(L̃′(L̃)T̃ , v)e(R̃U , gκ)e((gagT̃)t̃id , gμ).
(4) ∃x ∈ S s.t. e(Ux, L̃′(L̃)T̃) = e(K̃x, g).

From conditions (1) and (3), we have D = e((C0)T C1,K)(e(C2, Ru)e(C3,
(gT ga)tid))−1, E = Πρ(j)∈S(e(Cj,1, (L)T L′)e(Cj,2,Kρ(j)))ωj , F = D/E =
e(g, g)αs,m = C/F . And from conditions (2) and (4), we have D̃ = e((C0)T̃

C1, K̃)(e(C2, R̃u)e(C3, (gT̃ ga)t̃id))−1, Ẽ = Πρ(j)∈S(e(Cj,1, (L̃)T̃ L̃′)e(Cj,2,

K̃ρ(j)))ωj , F̃ = D̃/Ẽ = e(g, g)αs,m = C/F̃ .

288 J. Ning et al.

From conditions (1) − (4), we have F = D/E = e(g, g)αs = F̃ = D̃/Ẽ,m =
C/F = C/F̃ (∗). However, condition (5) implies that C/F
= C/F̃ , where
F = D/E, F̃ = D̃/Ẽ, which contradicts to (∗). Thus A wins the game only with
negligible probability.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy. SP 2007, pp. 321–334. IEEE
(2007)

5. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

8. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

9. Deng, H., Wu, Q., Qin, B., Mao, J., Liu, X., Zhang, L., Shi, W.: Who Is touching
my cloud. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol.
8712, pp. 362–379. Springer, Heidelberg (2014)

10. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007)

11. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

12. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security, pp. 427–436. ACM (2008)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

15. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

Accountable Authority CP-ABE with WT and PA in the Cloud 289

16. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

17. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: Proceedings
of the 6th ACM Symposium on Information, Computer and Communications Secu-
rity, pp. 386–390. ACM (2011)

18. Li, J., Ren, K., Kim, K.: A2be: Accountable attribute-based encryption for abuse
free access control. IACR Cryptology ePrint Arch. 2009, 118 (2009)

19. Liu, Z., Cao, Z., Huang, Q., Wong, D.S., Yuen, T.H.: Fully secure multi-authority
ciphertext-policy attribute-based encryption without random oracles. In: Atluri,
V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 278–297. Springer,
Heidelberg (2011)

20. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable cp-abe: how to catch people
leaking their keys by selling decryption devices on ebay. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, pp.
475–486. ACM (2013)

21. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based
encryption supporting any monotone access structures. IEEE Trans. Inf. Forensics
Secur. 8(1), 76–88 (2013)

22. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy
attribute-based encryption with white-box traceability. In: Kuty�lowski, M., Vaidya,
J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 55–72. Springer, Heidelberg
(2014)

23. Ning, J., Dong, X., Cao, Z., Wei, L., Lin, X.: White-box traceable ciphertext-
policy attribute-based encryption supporting flexible attributes. IEEE Trans. Inf.
Forensics Secur. 10(6), 1274–1288 (2015)

24. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

25. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 195–203. ACM (2007)

26. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

27. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

29. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

Code Analysis and Side-Channels

DexHunter: Toward Extracting Hidden Code
from Packed Android Applications

Yueqian Zhang, Xiapu Luo(B), and Haoyang Yin

Department of Computing, The Hong Kong Polytechnic University Shenzhen
Research Institute, The Hong Kong Polytechnic University, Kowloon, Hong Kong

{csyzhang,csxluo}@comp.polyu.edu.hk, yin.haoyang@connect.polyu.hk

Abstract. The rapid growth of mobile application (or simply app)
economy provides lucrative and profitable targets for hackers. Among
OWASP’s top ten mobile risks for 2014, the lack of binary protections
makes it easy to reverse, modify, and repackage Android apps. Recently,
a number of packing services have been proposed to protect Android
apps by hiding the original executable file (i.e., dex file). However, little
is known about their effectiveness and efficiency. In this paper, we per-
form the first systematic investigation on such services by answering two
questions: (1) what are the major techniques used by these services and
their effects on apps? (2) can the original dex file in a packed app be
recovered? If yes, how? We not only reveal their techniques and evaluate
their effects, but also propose and develop a novel system, named Dex-
Hunter, to extract dex files protected by these services. It is worth noting
that DexHunter supports both the Dalvik virtual machine (DVM) and
the new Android Runtime (ART). The experimental results show that
DexHunter can extract dex files from packed apps effectively and effi-
ciently.

1 Introduction

Being the most popular mobile operating system [29], Android has attracted
around 60 % more app downloads than iOS, and made nearly $3 billion in rev-
enue from Google Play last year [18], not to mention many other third-party
Android markets. The massive success of Android apps poses lucrative and prof-
itable targets for attackers. For example, it was recently reported that 98 % of
mobile malware targeted on Android devices [21]. In particular, attackers usu-
ally disassemble popular apps, insert malicious components, and then upload
the repackaged apps to various markets for compromising victims’ smartphones
[13,15,16,45,51,53]. Moreover, attackers can make profits by changing the client
IDs of ad components in apps created by others or adding new ad libraries to
these apps [23]. These attacks are due to the lack of binary protections, which
is among OWASP’s top ten mobile risks for 2014 [4].

Recently, a number of packing services (or simply packers) have been pro-
posed to protect Android apps from being reversed, modified, and repackaged
[10,22]. The packers usually adopt various approaches to hide the original exe-
cutable file (i.e., dex file) and impede the attempt of dumping the dex file. They
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 293–311, 2015.
DOI: 10.1007/978-3-319-24177-7 15

294 Y. Zhang et al.

also employ code obfuscation techniques to raise the bar of understanding the
internal logics. Note that attackers also use packers to harden malware so that
they could evade signature-based detection and make it very difficult for security
analysts to understand malware [9].

However, little is known about these packers, such as their effectiveness and
efficiency. In this paper, we conduct the first systematic investigation on Android
packers by answering two questions:

– What are the major techniques used by these packers and their effects on
apps?

– Can the original dex file in a packed app be extracted? If yes, how?

We inspect six packing services that provide web portals to allow users to upload
apps for hardening [8,11,12,30,39,50]. Our analysis in Sect. 2 reveals that these
packing services usually employ one or more techniques to protect apps, includ-
ing code obfuscation, dynamic code modification, dynamic loading, and anti-
debugging. Moreover, we quantify their overhead, in terms of app’s size and
launch time, in Sect. 5.1.

Then, we examine whether the original dex file in a packed app can be
extracted. We propose and develop a novel system, named DexHunter, which
provides a general approach to recover the dex files from packed apps. DexHunter
exploits the class loading process of Android’s virtual machine, including both
the Dalvik virtual machine (DVM) and the new Android Runtime (ART) [25].
It is non-trivial to design and develop DexHunter because of many challenging
issues, such as handling dynamic code modification through a general approach,
avoiding anti-debugging techniques, etc. By applying DexHunter to packed apps,
we found that the packers under examination cannot effectively protect apps and
the original dex files can be recovered. Note that in this paper we focus on how to
extract hidden dex files from packed apps without touching on how the packers
obfuscate the code [14], because obtaining the dex files is the prerequisite of
deobfuscating the code, and we will investigate the latter in future work.

In summary, our major contributions include:

– We perform the first systematic examination on Android packers. We examine
their techniques, assess their effectiveness in protecting apps, and evaluate
their overhead introduced to apps. Our findings shed light on the research of
Android apps protection.

– We propose DexHunter, a novel system for recovering the dex files from packed
apps in both ART and DVM. To our best knowledge, DexHunter is the first
system that can handle packed apps running on both Android runtimes. We
implement DexHunter by modifying ART and DVM, and conduct careful
evaluation on its effectiveness and efficiency.

– By applying DexHunter to real apps packed by six packers, we observe that
it can automatically recover most dex files. The results indicate that existing
packing services are not as secure as expected. We also share lessons learnt
when dealing with these packers.

Toward Extracting Hidden Code from Packed Android Applications 295

The rest of this paper is organized as follows. We examine the techniques
used by existing packers in Sect. 2. Section 3 describes the goal and the basic
idea of DexHunter and Sect. 4 details the design and implementation of Dex-
Hunter. Section 5 reports the evaluation result. Section 6 discusses the limitations
of DexHunter and our future work. After introducing related work in Sect. 7, we
conclude the paper in Sect. 8.

2 Analysis of Packing Services

In this section, we analyze six app packers, including, Ali [8], Baidu [11], Bangcle
[12], Tencent [50], Qihoo 360 Mobile [39], and ijiami [30]. The reasons of selecting
them are twofold. First, these packers allow users to upload apps through web
portals and then return packed apps. Hence, attackers can easily use such services
to pack malware. In contrast, other packers, such as Arxan1 and Apperian2, do
not provide such services, thus having few samples for analysis. Although it was
reported that malware used ApkProtect to evade the detection [9], we cannot
access the web page of ApkProtect. Second, China is one of a few countries that
have very high Android malware encounter rates [32] and these packers are the
major packing services in China, which are developed by professional security
companies or big IT companies. We introduce the major techniques used by these
packers in Sect. 2.1 and report the evaluation result of the overhead introduced
by packers on apps in Sect. 5.1.

2.1 Common Techniques Used by Packing Services

Obfuscation. Obfuscation aims at preventing analysts from understanding the
code [14]. Android provides ProGuard to obfuscate apps through modifying
the names of classes, fields, and methods [24]. Advanced techniques to obfus-
cate Android apps, such as reordering control flow graphs, encrypting constant
strings, etc., have been recently proposed [40,52]. Developers can also manu-
ally conduct obfuscation, such as, using Java reflection to call methods and
access fields, implementing major functions in native code and then invoking
them through Java native interface(JNI), etc. They can further obfuscate the
correlation between Java code and native code by registering JNI methods with
semantically meaningless names in the JNI OnLoad function.

Dynamic Code Modification. Android apps are mostly written in Java and
then turned into Dalvik bytecode. Note that it is not easy for apps in Dalvik
bytecode to arbitrarily modify itself in DVM in a dynamic manner. Instead, they
can invoke native code through JNI to modify bytecode in DVM [37], because
the native code is running in the same context as the app’s DVM so that the
native code can access and manipulate the memory storing the bytecodes. As
1 https://www.arxan.com/.
2 http://www.apperian.com/.

https://www.arxan.com/
http://www.apperian.com/

296 Y. Zhang et al.

an example, malware can employ native code to generate malicious bytecodes
dynamically and then execute them in DVM [44].

Before executing the dex file in the new Android runtime (i.e., ART), ART
will compile the dex file into oat file in the ELF format. The native codes in so
files can not only change instructions in dex and oat files, but also modify key
data structures in the memory, such as DexHeader, ClassDef, ArtMethod, etc.,
in order to assure that the contents are correct only when they are used, and
the contents will be wiped out after they have been used.

Dynamic Loading. Android allows apps to load codes from external sources (in
dex or jar format) at runtime. Leveraging this feature, packers usually encrypt
the original dex file, decrypt and load it before running the app.

Anti-debugging. Since Linux allows a process to attach to another process for
debugging, to thwart the debugging through gdb, packed apps usually attach to
themselves using ptrace[1]. The rationale is that only one process can attach to
a target process at the same time. In other words, if an app (target process)
attaches to itself at runtime, gdb cannot attach to it, thus further debugging
operations are prohibited. Some packers will also check whether special threads,
such as the JDWP (Java Debug Wire Protocol) thread, have been attached.
Moreover, advanced packers can check whether the apps are running in an emu-
lator or the underlying system has been rooted.

Table 1. A summary of the six packers’ features.

Packing
service

Obfuscation Dynamic
code mod-
ification

Dynamic
loading

Anti-
debugging

Add
shared
libraries

Insert
classes

Support
ART

Bangcle YES NO YES YES YES YES YES

Tencent YES YES NO YES YES YES YES

360
Mobile

YES NO YES YES YES YES YES

ijiami YES NO YES YES YES YES YES

Ali YES YES YES YES YES YES NO

Baidu YES YES YES YES YES YES YES

2.2 Packers Under Investigation

We identify the major techniques used in the six packers through manual analy-
sis. Since these packers are evolving and do not provide version number, our
examination is based on the packed apps whose original versions were uploaded
those packers’ web portals on March-15-2015. As shown in Table 1, all of them

Toward Extracting Hidden Code from Packed Android Applications 297

add extra shared libraries (i.e., 6th column) and new instructions to the origi-
nal app (i.e., 7th column). Moreover, they adopt obfuscation (i.e., 2nd column)
and anti-debugging techniques (i.e., 5th column). While only half of them use
dynamic code modification (i.e., 3rd column), all except Tecent packer employ
dynamic loading approach. As Google introduced the new runtime (i.e., ART)
to replace DVM, all except Ali packer support ART.

3 DexHunter: Goal and Basic Idea

DexHunter aims at extracting dex files from packed apps through a unified
approach. It first launches the packed app in a real smartphone, and then locates
and dumps the unpacked content when the app is running. We will also correct
some fields corrupted by packers if necessary. Note that DexHunter does not
handle code obfuscation and junk instructions. Moreover, it only considers the
dynamic loading conducted when an app is executed, because most packers do
so to shorten launch time. We discuss how to extend DexHunter to deal with
arbitrary dynamic loading in Sect. 6.

3.1 Basic Idea

Android apps are compiled to dex files, which are in turn zipped into a single
apk file together with other resources. If DVM is utilized, when a newly installed
app is started for the first time, DVM converts the dex file extracted from the
apk file to the odex format. If ART is used, it will turn the dex file into the oat
file upon the installation [20].

An intuitive approach to realize DexHunter is to first locate the odex header
or the oat header in the memory by searching for their magic numbers, and then
dump the corresponding memory by parsing the headers. However, this approach
has several limitations. First, accessing the packed app’s memory requires such
approach to attach to the app’s process, such as using ptrace[1]. Unfortunately,
packed apps usually employ anti-debugging techniques as described in Sect. 2
to prevent itself from being attached. Second, this approach will miss the real
content resulted from dynamic code modification that happens when a class
is being initialized. Note that a class may be loaded without being initialized.
Third, this approach may miss dex files due to corrupted dex headers caused by
packed apps. Fourth, this approach may dump fake odex or oat files because
packed apps can create fake headers.

To tackle these issues, we propose a novel and unified approach that exploits
the class loading process of Android runtime, including both DVM and ART,
to locate and dump the desired files. The rationale behind the basic idea is that
Android runtime can locate and parse the dex file in order to execute it. While
the following analysis is based on the source code of Android 4.4.3, we believe
the basic idea can be applied to future versions.

Since each class should be loaded before it can be used, Android provides
three approaches [28] to load classes: (1) the implicit procedure of loading classes,

298 Y. Zhang et al.

Fig. 1. The three approaches of loading classes and their invocation graphs in ART.
The numbers indicate the invocation order.

such as the new operation, which happens if the corresponding class has never
been used before; (2) the explicit invocation of Class.forName; (3) the explicit
invocation of ClassLoader.loadClass. Although DVM and ART have different
implementations for these class loading approaches, we observe that for a given
virtual machine these three approaches share a few key common functions, which
will be elaborated in Sects. 3.2 and 3.3 for ART and DVM, respectively.

Leveraging this observation, DexHunter inserts codes into a selected key func-
tion to locate the required files and trigger the invocation of <clinit>. Moreover,
we propose novel approaches (Sect. 4.3) to pro-actively load and initialize classes.
To overcome anti-debugging and anti-emulating techniques, we integrate Dex-
Hunter with DVM and ART, and execute packed apps in a real smartphone
running modified DVM and ART as described in Sect. 4.2.

3.2 ART

In KitKat (Android 4.4), the new Android runtime, ART, was introduced to
replace DVM for better performance by compiling an app’s bytecode into native
instructions. Adopting the ahead-of-time compilation (AOT) technology, ART
performs the compilation when an app is being installed. More precisely, the dex
file will be compiled into oat file that adopts the ELF format.

To load a class, ART reads the dex or jar file using a native method called
DexFile openDexFileNative in libart.so. If the corresponding oat file does not
exist, ART invokes a tool named dex2oat to compile the dex or jar file into
an oat file. If the oat file exists but has not been loaded, ART reads it and
puts it into a memory cache map to avoid opening the file repeatedly. After
successfully accessing the oat file, ART creates a structure named OatFile to
record important information of this file. We will detail it when describing how
to dump the dex file in Sect. 4.2.

Toward Extracting Hidden Code from Packed Android Applications 299

Fig. 2. The three approaches of loading classes and their invocation graphs in DVM.

Then, ART can use different methods to load the class, whose invoca-
tion graphs are shown in Fig. 1. More precisely, the explicit invocation of
ClassLoader.loadClass will call the native method DexFile define
ClassNative (i.e., Fig. 1(a)). The invocation of Class.forName will call the
native method Class classForName (i.e., Fig. 1(a)). The new operation will
eventually call the native method artAllocObjectFromCode (i.e., Fig. 1(c)). By
comparing the two sub-figures in Fig. 1, we can locate the common functions
called by these three approaches. More precisely, we select DefineClass as the
key function for inserting DexHunter ’s code, because it creates the Class object
and is responsible for loading and linking classes.

3.3 DVM

Figure 2 illustrates the three approaches of loading classes and their invocation
graphs in DVM. The invocation of Class.forName will call Dalvik java lang
Class classForName. Calling ClassLoader.loadClass will eventually invoke
Dalvik dalvik system DexFile defineClassNative. The implicit class load-
ing will result in the invocation of dvmResolveClass. Moreover, dvmInitClass
is responsible for initializing a class. Before invoking it, the initialization status
is checked through dvmIsClassInitialized. The Reflection to Class.loadClass
in Fig. 2 means that there is a reflection invoking procedure that invokes the
related class loader’s loadClass method at Java level. By analyzing Fig. 2, we
select Dalvik dalvik system DexFile defineClassNative as the key function
for injecting DexHunter ’s code, because it creates the Class object and loads
the class from the dex file directly.

4 DexHunter: Design and Implementation

4.1 Architecture

Figure 3 depicts the major procedure of DexHunter. Given a packed app, Dex-
Hunter first determines whether it is packed by known packing services (i.e.,
those in Table 1) through the signatures to be described in Sect. 4.4. Moreover,

300 Y. Zhang et al.

Fig. 3. Using DexHunter in smartphone to recover dex files from packed apps.

we will check which runtime can run this app. If the app supports both DVM
and ART, we will use the ART version DexHunter to recover the dex file. If the
app is packed by known packers, we will obtain the corresponding parameters
from the profile database, including location for ART and fileName for DVM,
which will be detailed in Sect. 4.2. Otherwise, DexHunter will dump the target
memory but exclude system libraries listed in a while list.

Depending on the selected runtime, the packed app will be installed and
executed in a smartphone with modified libart.so or libdvm.so for ART or DVM,
respectively. If DVM is used, DexHunter will first dump the optimized dex file
from the smartphone and then combine it and its dependent files to reconstruct
the dex file. If ART is adopted, DexHunter will generate the dex file directly.

4.2 Locating and Dumping Dex Files

ART. Note that each oat file contains the information of the original dex file
in its oatdata section [43]. Therefore, after ART opens and reads an oat file, it
will create an OatFile structure to record important information of the file and a
DexFile object containing information related to the original dex file. In partic-
ular, there are three important values in the DexFile object, through which we
can locate the dex file, including:

– begin , which depicts the start address of the memory region containing the
original dex file;

– size , which represents the length;
– location , which indicates the oat file’s location.

We add codes in the DefineClass function to check the value of location
when a class is being loaded. Section 4.5 describes how to decide the packed
app’s location and the system libraries’ location . Therefore, by specifying
the value of location , we can recognize all classes in the original dex file and
then create a thread to accomplish the dumping operation. In this thread, the
DexFile object, which is also a parameter of the DefineClass function, is passed
in and then the thread can get the memory region to which the DexFile object
refers. By invoking the methods DexFile::Begin() and DexFile::Size(), we
can obtain the start address and the length of the memory region containing the
original dex file. As a result, we can recover the original dex file.

Toward Extracting Hidden Code from Packed Android Applications 301

DVM. After loading a dex or jar file, DVM will create a structure named
DexOrJar, which records the information of the file. One member named
fileName refers to the location of the file. Moreover, a DvmDex object, which
represents an open odex file, is associated with the corresponding DexOrJar
object. The DvmDex object has a member named memMap that maintains the cor-
responding memory region of the opened dex file. Its addr member stores the
start address while the length member denotes the length of the memory region.

To dump the desired dex file, we add codes to the selected function
Dalvik dalvik system DexFile defineClassNative and specify the value of
fileName. Once the dex file we expect is located through fileName, the mem-
ory region of the targeted odex file can also be figured out through the related
DvmDex object. More precisely, the member memMap in the DvmDex object records
the specified memory region. The member addr of memMap indicates the start
address while the member length stores the length. As a result, we can obtain
the odex file.

The odex file format was designed to let DVM work more efficiently and it is
usually much smaller than the original dex file, because it only includes critical
information. For instance, in an odex file, references to framework APIs are
replaced by indexes of a pre-loaded vtable and therefore methods can be quickly
invoked. Therefore, odex files rely on dependence files, which are device-specific
and can be found in the directory /system/framework.

Odex files cannot be converted into dex format directly because they rely
on dependencies. Since dependencies are device-specific, they must be copied
from the same device that runs the packed app. Finally, DexHunter uses
smali/backsmali to recover the dex file from the odex file and its dependen-
cies [2].

4.3 Proactive Class Loading and Initialization

For each newly loaded class, its class initializer (i.e. <clinit>) may not be invoked
yet. Since this method is invoked before any other method in the same class,
packers can add codes in <clinit> to perform dynamic code modification.

To deal with this potential issue, we propose a novel approach that turns
ART’s lazy initialization into proactive class loading and initialization. Note
that ART calls <clinit> only after the Class object is used for the first time,
such as invoking static method member, etc. Our approach loads all classes in
the same dex file and initializes them as shown in Algorithm1. More precisely,
in ART, before the dumper thread is created, DexHunter traverses all classes
in the same dex file in DefineClass function, and then invokes the FindClass
function along with every class’s descriptor for loading them. Note that invoking
FindClass can avoid loading the same class repeatedly in the same class loader.
After that, each class is initialized by invoking EnsureInitialized. All these
operations are done in the same loop.

The algorithm for DVM is similar except that FindClass is changed
to dvmDefineClass and EnsureInitialized is replaced with dvmIsClass
Initialized and dvmInitClass.

302 Y. Zhang et al.

Algorithm 1. Traversing and Initializing Classes
input : A ”DexFile” pointer dex file and the number of classes in this dex file n
output: All initialized ”Class” objects belonging to the dex file

for i ← 0 to n − 1 do
ClassDef ← GetClassDef(dex file,i);
Descriptor ← GetClassDescriptor(ClassDef);
ClassObject ← FindClass(Descriptor);
ClassObject ← EnsureInitialized(ClassObject);

end

4.4 Identifying Packers

Known Packers. DexHunter identifies known packers using (1) changes in
files, (2) inserted classes, and (3) location for ART and fileName for DVM.
We observe that all packers add new files, especially native codes (i.e., so files),
as shown in Table 2. Moreover, they modify the original AndroidManifest.xml
and classes.dex. After inspecting packed apps, we find that all packers insert
their own classes into the app, as shown in Table 3. We will describe how to
extract location or fileName in Sect. 4.5. Since it is easy to recognize and
differentiate these inserted files and classes, we use them as features to recognize
known packers. In future work, we will investigate advanced features, such as
Software bertillonage [17], if packers try to hide current features.

Unknown Packers. For unknown packers, we observe that they usually adopt
dynamic code modification with the following common steps. First, they load
packed dex files dynamically into memory, which will be converted to oat files
by ART. Then, they employ memory manipulation functions (e.g., “memcpy”)
to modify the code. Before that, they may call “mprotect” to alter the accessing
attributes of corresponding memory regions, for example, changing a memory
fragment from read-only (r--) to readable and writable (rw-). We can hook
aforementioned functions to capture this behavior patten. If such behavior pat-
tern is observed, DexHunter regards the app as a packed app.

4.5 Extracting the Values of location and fileName

location and fileName provide hints to dump the desired dex files in ART and
DVM, respectively. To examine their values set by different packers and those
used by system libraries, we modify ART and DVM to collect these values.

In ART, we add a function named GetUid to obtain the current process’s user
id by invoking system calls directly instead of using getuid in bionic library due
to the limit of the configuration for compiling Android. Moreover, we modify
DefineClass function to record all location values if the current process’s
user id is equal to that of the target app. Therefore, when DefineClass is used
to generate the Class object for the opened oat file, we can obtain the names

Toward Extracting Hidden Code from Packed Android Applications 303

Table 2. New files introduced by the packers. “xxx” denotes the app’s original package
name.

Packers New files

360 assets/libprotectClass.so, assets/libprotectClass x86.so, assets/libqupc.so

ALi lib/armeabi/libmobisec.so,
lib/armeabi/libmobisecx.so,lib/armeabi/libmobisecy.so,

lib/armeabi/libmobisecz.so

Baidu assets/baiduprotect.jar,assets/libbaiduprotect x86.so,lib/armeabi/
libbaiduprotect.so,

lib/x86/libbaiduprotect.so

Bangcle assets/bangcleplugin/container.apk,assets/bangcleplugin/dgc,assets/meta-
data/manifest.mf

assets/meta-data/rsa.pub,assets/meta-
data/rsa.sig,assets/bangcle classes.jar

assets/libsecexe.so,assets/libsecexe.x86.so,assets/libsecmain.so

assets/libsecmain.x86.so,assets/libsecpreload.so,assets/libsecpreload.x86.so

assets/xxx,assets/xxx.art,assets/xxx.L

assets/xxx.x86,assets/xxx.x86.L

ijiami assets/ijm lib/armeabi/libexec.so,assets/ijm lib/armeabi/libexecmain.so,

assets/ijm lib/x86/libexec.so

assets/ijm lib/x86/libexecmain.so,assets/ijiami.dat

META INF/af.bin, META INF/sdata.bin,META INF/signed.bin

Tencent assets/lib/armeabi/libmain.so,assets/lib/armeabi/libshell.so

Table 3. Inserted classes. The classes in parentheses will only appear if the original
dex file has an Application class. Otherwise, they will not be inserted.

Packers Inserted classes

360 com.qihoo.util.StubApplication, com.qihoo.util.DefenceReport

ALi com.ali.mobisecenhance.StubApplication

Baidu com.baidu.protect.A, com.baidu.protect.StubApplication,
com.baidu.protect.StubProvider

Bangcle com.bangcle.protect.Acall,com.bangcle.protect.MyClassLoader,
com.bangcle.protect.Util

neo.proxy.DistributeReceiver

(com.bangcle.protect.FirstApplication),
(com.bangcle.protect.ApplicationWrapper)

ijiami com.shell.NativeApplication

(com.shell.SuperApplication)

Tencent com.tencent.StubShell.ProxyShell, com.tencent.StubShell.ShellHelper

304 Y. Zhang et al.

Table 4. The values of location or fileName in apps packed by six packers.

Packers String

Bangcle /data/data/package name/.cache/classes.jar

Baidu /data/data/package name/.1/classes.jar

Tencent /data/app/installed apk name

360 internal.dex (/data/local/tmp/fake@apk.dex)

ijiami /data/data/package name/cache/.0000

ALi /data/app-lib/installed apk name/libmobisecy.so (i.e., the path of
libmobisecy.so, which is located in the app’s native library directory)

of all dex files related to the classes being loaded. We first filter out all known
system libraries and then decide which names should be kept according to the
features of different packers. For instance, some packers load the original dex file
dynamically and the oat file bound to the name of installed apk is only a stub.
Hence, such names should be removed.

In DVM, we follow the similar steps to collect the values of file
Name. More precisely, we modify the function Dalvik dalvik system
DexFile defineClassNative to locate the DexOrJar object and get the value
of fileName in this object.

Table 4 lists the location or fileName from six packers we examine. For
apps packed by 360 packer, the value is “/data/local/tmp/fake@apk.dex” when
the apps are executed for the first time. Then, the value is changed to “inter-
nal.dex”.

5 Evaluation

We downloaded 40 open source apps from F-Droid [6] and uploaded them to the
web portals of the six packers. Then, we execute the packed apps and DexHunter
on a Nexus 4 smartphone running Android 4.4.3 with Qualcomm Snapdragon
S4 Pro 1.5 GHz CPU and 2G RAM. Table 5 shows that not all apps can be
successfully packed by those packers and some packed apps cannot be run.

5.1 Overhead Introduced by Packers

We evaluate the overhead introduced by different packers in terms of increased
file size and prolonged launch time. By subtracting the original file size from
the size of packed app, we obtain the increased file size. Figure 4 illustrates that
most packed apps are larger than the original apps and Bangcle introduces more
than 600 KB data. A few packed apps are smaller than the original ones. The
reason is some packers will compress the original dex file.

To measure the prolonged launch time, we randomly select 17 apps and run
each original app and the packed one 30 times in the smartphone. We collect

Toward Extracting Hidden Code from Packed Android Applications 305

Table 5. Creating packed apps.

Packers Number of apps Number of packed apps Numbers of packed apps that
can run

360 40 39 37

ALi 40 39 37

Baidu 40 37 36

Bangcle 40 40 40

ijiami 40 40 40

Tencent 40 40 38

360 ALi Baidu Bangcle ijiami Tencent
-500000

0

500000

1000000

B
yt

es

360
ALi
Baidu
Bangcle
ijiami
Tencent

(a) Increased file size.

360 ALi Baidu Bangcle ijiami Tencent

0

2000
m

s

360
ALi
Baidu
Bangcle
ijiami
Tencent

(b) Prolonged launch time.

Fig. 4. Overhead introduced by packers in terms of increased file size and launch time.

the samples of launch time (i.e. from its start to the end of its main activ-
ity’s initialization) measured by executing “am start -n -W MainActivity”, and
then compute the inflated launch time. Figure 4(b) demonstrates that all pack-
ers introduce obvious additional delays. The minimal delay brought by Tencent
packer may be due to the fact that it does not load external dex files.

5.2 DexHunter’s Effectiveness

We apply DexHunter to all packed apps that can run in the smartphone. In fact,
DexHunter can bypass all anti-debugging methods used by these packers. Since
it becomes part of the process created by Zygote, all anti-debugging methods
mentioned in Sect. 2.1 will not stop DexHunter.

For apps packed by 360 packer and ijiami packer, DexHunter can recover the
dex files in both ART and DVM. Moreover, the extracted dex files can be parsed
by de-compilers (e.g., smali/baksmali, IDA, etc.).

For apps packed by Bangle, DexHunter can successfully extract the dex files
in both ART and DVM. The dex files dumped from DVM can be parsed by
de-compilers. However, the dex files recovered from ART have some instructions
that cannot be parsed by baksmali. The reason is that the dex files are extracted

306 Y. Zhang et al.

from the oat files prepared by Bangcle packer that has used some new Dalvik
opcodes [5]. The developer of baksmali said that this issue will be fixed soon.

For apps packed by Tencent packer, we found that the dex files dumped by
DexHunter are incomplete in both ART and DVM, because the method objects
in the heap, which represent hidden methods, are modified dynamically but the
dex file in memory is not changed. However, since the valid data is still in the
dex file’s data section, we can manually correct the attributes and the related
pointers of the hidden methods in the dex file.

For apps packed by Baidu packer, we observe that the dex file’s header will be
wiped if any class’s initializer is executed. Hence, we perform the dumping oper-
ations without pro-actively initializing the classes. Moreover, we found that the
dumped dex files are incomplete. More precisely, in dex files, for each class, there
is a class data item object to describe the members of the class. However, some
class data item objects of the dumped dex file are wiped by Baidu packer. In
order to capture the positions of the class data item objects, we modified the
runtime to record the addresses of class data item objects. When the applica-
tion runs, the wiped class data item objects in so files will be released to the
heap and the pointers, which are in the dex file, to the class data item objects
will also be corrected. After filling in the correct data in the class data item
objects, we can obtain complete dex files.

Since Ali packer only supports DVM, DexHunter recovers the dex files in
DVM. In a dex file, each code item object describes a method and maintains a
pointer to it. But some pointers to code item objects are invalid in the dumped
dex files. We modified DVM to obtain the addresses of code item objects and the
corresponding instructions. Combining the process’s memory layout, we found
that the lost code item objects and instructions are located in a memory region
allocated by the packed app. To repair the dex files, we could also dump this
memory region and record the addresses of the lost code item objects.

360 ALi Baidu Bangcle ijiami Tencent
10000

20000

30000

40000

50000

60000

B
yt

e/
s

360
ALi
Baidu
Bangcle
ijiami
Tencent

Fig. 5. Dumping speed of DexHunter.

Toward Extracting Hidden Code from Packed Android Applications 307

5.3 DexHunter’s Efficiency

We also evaluate DexHunter ’s efficiency on the same Nexus 4 device. We ran-
domly select 15 apps that can be packed by all six packers. For each sample,
DexHunter performs the dumping operation for 30 times. Note that the time
complexity of the dumping procedure is O(n)(n represents size of the target
memory region in bytes). Figure 5 shows DexHunter ’s dumping speed which is
around 40 KB/s and does not change much among different packers.

6 Discussion

Although DexHunter can recover the dex files from apps packed by existing
packers, it has the following limitations and we will tackle them in future work.
First, some packers will wreck some fields in the dumped dex files as mentioned in
Sect. 5.2. Currently, we repair them through semi-automatic or manual approach.
In future work, we will enhance DexHunter to automate this process.

Second, if an app dynamically loads components from other places after
waiting for a long period or certain conditions, DexHunter cannot dump this
dex file, because DexHunter does not know when the component will be loaded.
We will extend DexHunter to handle it by hooking all methods for dynamic class
loading in future work. Alternatively, we can first conduct static analysis [38] to
determine how to trigger the app’s dynamic class loading and then perform it.

7 Related Work

Hardening Android apps has attracted great attention from the industry [9,26].
Although there are a few simultaneous work from the industry, there lacks of a
systematic study on it yet. In a recent article and presentation [9,34], Apvrille
and Nigam reported the results of manually unpacking apps packed by a few
packers, such as APKProtect and Bangcle. Strazzere and Sawyer reported their
tool, named android-unpacker, to defeat four packers including APKProtect,
Bangcle, 360 Mobile, and LIAPP [48,49]. Since it will attach to the last thread
of an app, we observed that it failed in several scenarios, such as, the thread has
already been attached by a ptrace, the thread is killed, etc. Note that DexHunter
will not be affected by this issue because it is integrated into the runtime. We
developed DexDumper for extracting the dex files of apps running on Android
2.3 or older versions [45]. Note that DexDumper lacks of the functions provided
by DexHunter, including handling apps running on Android with version newer
than 2.3, dealing with anti-debugging, processing odex files, etc.

ZjDroid was released by Baidu Inc. [7] for unpacking packed apps. It relies
on Xposed [3] and locates the dex files by hooking BaseDexClassLoader to
obtain DexOrJar. There are several significant differences between ZjDroid and
DexHunter. First, DexHunter supports both ART and DVM while ZjDroid only
works in DVM. Second, ZjDroid cannot pro-actively load and initialize classes

308 Y. Zhang et al.

and therefore it may miss the real content resulted from dynamic code modi-
fication that happens when a Class object is being initialized. DexHunter can
overcome this issue because it conducts pro-active class loading and initializa-
tion. Third, since ZjDroid waits for user commands to dump the dex files, it may
be evaded by packers that destroy some key data which is used only once. Dex-
Hunter can handle this issue because it extracts the dex files before the first class
in the dex file is used. Fourth, since ZjDroid relies on Xposed and obtains the
information at Java level, it can be easily detected and interrupted by advanced
packed. In contrast, DexHunter will not be affected.

Park described one general unpacking method for packed apps [35]. It is quite
different from DexHunter because it needs to insert codes to packed apps (i.e.,
repackage the packed app). This approach can be easily detected by packed apps.
Moreover, compared to DexHunter, its functionality is quite limited.

Since packing is widely used by malware to evade the signature-based detec-
tion, many studies have investigated how to unpack such malware [19]. However,
all of them focus on packers for Windows/Linux native codes [41]. It is worth
noting that unpacking techniques for x86 binaries cannot be applied to Android
because of two reasons. First, Android and x86 have different execution model.
Second, techniques for x86 unpacking only need to examine x86 instructions
in memory while dumping odex files need to investigate both the memory of
Android runtime (e.g., DVM) and that of the underlying Linux because packers
usually use native codes running on Linux to modify the byte codes in DVM.

We review some representative work of automatically dumping packed native
executables because an app’s native codes can be packed through traditional
approaches. PolyUnpack is the first general approach to automatically identify
and dump packed codes [42]. It first statically analyzes an executable and then
uses debugging APIs to check each instruction. If an instruction sequence does
not exist in the disassembly of the executable, PolyUnpack identifies the packed
codes and then extracts them. Renovo runs a packed executable in QEMU and
monitors each instruction [31]. If new codes are written to memory and then
executed, Renovo regards it as one layer of unpacking conducted by the packed
program. Instead of tracking each instruction, OmniUnpack [33] and Eureka [46]
adopt coarse-grained execution monitoring to improve the performance. The for-
mer uses OllyBone [47] to track executed pages and the latter monitors selected
system calls. Justin employs a set of heuristics to improve the detection of the
end of unpacking and adopts several countermeasures to defeat some evasion
techniques used by malware [27]. Although dynamic approaches could effec-
tively extract packed code, they suffer from some common limitations, such as,
higher overhead compared to static analysis, limited time of executing packed
program, etc. Perdisci et al. developed a classification system for determining
whether an executable is packed or not before sending it to unpacking systems,
thus significantly saving the processing time [36].

Toward Extracting Hidden Code from Packed Android Applications 309

8 Conclusion

We conduct the first systemic investigation on existing Android packers by exam-
ining their major techniques, evaluating their effects on apps, and assessing their
effectiveness. We propose and develop DexHunter, a novel system for recovering
dex files from packed apps in both ART and DVM. To our best knowledge, it is
the first unpacking system that supports both ART and DVM. The experimental
results based on real packed apps demonstrate the effectiveness and efficiency of
DexHunter. This research reveals important issues in existing Android packers
and sheds light on the future research of Android apps protection.

Acknowledgments. We thank the anonymous reviewers for their quality reviews.
We thank Yuru Shao and Xian Zhan for their contributions to the preliminary study
of this research. This work is supported in part by the Hong Kong GRF (No. PolyU
5389/13E), the National Natural Science Foundation of China (No. 61202396), the
PolyU Research Grant (G-UA3X), and the Open Fund of Key Lab of Digital Signal
and Image Processing of Guangdong Province (2013GDDSIPL-04).

References

1. ptrace. http://linux.die.net/man/2/ptrace
2. Smali. https://code.google.com/p/smali/
3. Xposed. http://forum.xda-developers.com/xposed/xposed-installer-versions-chan

gelog-t2714053
4. Owasp mobile top 10 risks (2014). http://bit.ly/1FAIJiv
5. Dalvik opcode changes in art (2015). https://github.com/anestisb/oatdump plus#

dalvik-opcode-changes-in-art
6. F-droid (2015). https://f-droid.org/
7. Zjdroid (2015). http://safe.baidu.com/opensec detail 2.html
8. Alibaba Inc.: http://jaq.alibaba.com/
9. Apvrille, A., Nigam, R.: Obfuscation in android malware, and how to fight back.

In: Virus Bulletin, July 2014
10. Arxan Tech., Inc.: Securing mobile apps in the wild with app hardening and run-

time protection (2014). http://bit.ly/1aliJil
11. Baidu Inc.: http://apkprotect.baidu.com/
12. Bangcle Inc.: http://www.bangcle.com/
13. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously

in detecting application clones on android markets. In: Proceedings of the ACM
ICSE (2014)

14. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley, Upper Saddle River
(2009)

15. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: detecting cloned applications
on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

16. Crussell, J., Gibler, C., Chen, H.: Scalable semantics-based detection of similar
android applications. In: Proceedings of the ESORICS (2013)

http://linux.die.net/man/2/ptrace
https://code.google.com/p/smali/
http://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
http://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
http://bit.ly/1FAIJiv
https://github.com/anestisb/oatdump_plus#dalvik-opcode-changes-in-art
https://github.com/anestisb/oatdump_plus#dalvik-opcode-changes-in-art
https://f-droid.org/
http://safe.baidu.com/opensec_detail_2.html
http://jaq.alibaba.com/
http://bit.ly/1aliJil
http://apkprotect.baidu.com/
http://www.bangcle.com/

310 Y. Zhang et al.

17. Davies, J., German, D., Godfrey, M., Hindle, A.: Software bertillonage - determin-
ing the provenance of software development artifacts. Empirical Softw. Eng. 18(6),
1195–1237 (2013)

18. Dredge, S.: Android beats IOS for app downloads, but revenues are still a different
story (2015). http://bit.ly/1A2conk

19. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 1–42 (2012)

20. Frumusanu, A.: A closer look at android runtime (ART) in android L
21. Fung, B.: The time a major financial institution was hacked in under 15 minutes

(2015). http://wapo.st/1zcKNj0
22. Gartner Inc.: Debunking six myths of app wrapping (2015). http://gtnr.it/1aGJizc
23. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: Adrob: examining

the landscape and impact of android application plagiarism. In: Proceedings of the
ACM MobiSys (2013)

24. Google: Proguard. http://goo.gl/CLBIkD
25. Google Inc.: ART and Dalvik
26. Grassi, M.: Reverse engineering, pentesting, and hardening of android apps
27. Guo, F., Ferrie, P., Chiueh, T.: A study of the packer problem and its solutions.

In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 98–115. Springer, Heidelberg (2008)

28. Halloway, S.: Component Development for the Java Platform. Addison-Wesley,
Boston (2002)

29. IDC.: Android and IOS squeeze the competition (2015). http://bit.ly/17wYoFF
30. Ijiami Inc.: http://www.ijiami.cn/
31. Kang, M., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed

executables. In: Proceedings of WORM (2007)
32. Lookout Inc.: Mobile threats, made to measure (2014). http://goo.gl/EhJzdt
33. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: fast, generic, and safe

unpacking of malware. In: Proceedings of the ACSAC (2007)
34. Nigam, R.: Android packers: separating from the pack, June 2014. http://goo.gl/

YiULcy
35. Park, Y.: We can still crack you! general unpacking method for android packer (no

root). In: Proceedings of the Blackhat Asia (2015)
36. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executables for accurate

computer virus detection. Pattern Recogn. Lett. 29(14), 1941–1946 (2008)
37. Qian, C., Luo, X., Shao, Y., Chan, A.: On tracking information flows through JNI

in android applications. In: Proceedings of the IEEE/IFIP DSN (2014)
38. Qian, C., Luo, X., Yu, L., Gu, G.: Vulhunter: towards discovering vulnerabilities

in android applications. IEEE Micro 35(1), 44–53 (2015)
39. Qihoo360 Inc.: http://dev.360.cn/protect/welcome
40. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware

against transformation attacks. In: Proceedings of the ACM ASIACCS (2013)
41. Roundy, K., Miller, B.: Binary-code obfuscations in prevalent packer tools. ACM

Comput. Surv. 46(1), 1–32 (2013)
42. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: automating

the hidden-code extraction of unpack-executing malware. In: Proceedings of the
ACSAC (2006)

43. Sabanal, P.: State of the art: exploring the new android kitkat runtime
44. Schulz, P.: Android security analysis challenge: tampering dalvik bytecode during

runtime (2013). http://goo.gl/eIszsj

http://bit.ly/1A2conk
http://wapo.st/1zcKNj0
http://gtnr.it/1aGJizc
http://goo.gl/CLBIkD
http://bit.ly/17wYoFF
http://www.ijiami.cn/
http://goo.gl/EhJzdt
http://goo.gl/YiULcy
http://goo.gl/YiULcy
http://dev.360.cn/protect/welcome
http://goo.gl/eIszsj

Toward Extracting Hidden Code from Packed Android Applications 311

45. Shao, Y., Luo, X., Qian, C., Zhu, P., Zhang, L.: Towards a scalable resource-driven
approach for detecting repackaged android applications. In: Proceedings of the
ACSAC (2014)

46. Sharif, M., Yegneswaran, V., Saidi, H., Porras, P.A., Lee, W.: Eureka: a framework
for enabling static malware analysis. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 481–500. Springer, Heidelberg (2008)

47. Stewart, J.: Ollybone: semi-automatic unpacking on ia-32 (2006). http://goo.gl/
LbQYiN

48. Strazzere, T.: android-unpacker (2014). https://github.com/strazzere/android-
unpacker

49. Strazzere, T., Sawyer, J.: Android hacker protection level 0 (2014). http://goo.gl/
BSKEop

50. Tencent Inc.: http://www.qcloud.com/product/product.php?item=appup
51. Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: Viewdroid: towards obfuscation-

resilient mobile application repackaging detection. In: Proceedings of the ACM
WiSec (2014)

52. Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: an automatic and extensible platform
to stress test android anti-virus systems. In: Flegel, U., Markatos, E., Robertson,
W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 82–101. Springer, Heidelberg (2013)

53. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applica-
tions in third-party android marketplaces. In: Proceedings of the ACM CODASPY
(2012)

http://goo.gl/LbQYiN
http://goo.gl/LbQYiN
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
http://goo.gl/BSKEop
http://goo.gl/BSKEop
http://www.qcloud.com/product/product.php?item=appup

Identifying Arbitrary Memory Access
Vulnerabilities in Privilege-Separated Software

Hong Hu(B), Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena

Department of Computer Science, National University of Singapore,
Singapore, Singapore

{huhong,chuazl,liangzk,prateeks}@comp.nus.edu.sg

Abstract. Privilege separation is a widely used technique to secure com-
plex software systems. With privilege separation, software components
are divided into several partitions and these partitions can only commu-
nicate through limited interfaces. However, the interfaces still provide a
channel for one partition to influence code in other partitions. As a result,
certain memory access patterns can be leveraged by attackers to perform
arbitrary memory access. We refer to this type of memory access errors
by the acronym DUI (Dereference Under the Influence). In this paper,
we present a systematic method to detect vulnerabilities leading to DUI
through binary analysis, and to estimate the capability attackers can
obtain through DUI exploits. The evaluation shows that our approach
can accurately identify vulnerable code that leads to arbitrary memory
access in real-world software components and programs, when they are
transformed to privilege-separated designs.

1 Introduction

Privilege separation is widely used to secure complex software systems. With this
method, software components are divided into several partitions. Each partition
only has a reduced set of privileges and inter-partition communication is only
possible via clearly defined interfaces. To protect legacy programs using privilege
separation, developers need to transform the monolithic legacy programs. For
example, the OpenSSH server was originally implemented as a monolithic pro-
gram, where a single vulnerability will expose all critical resources to attackers.
To mitigate the threat, part of OpenSSH code without access to high-privileged
resources (e.g., password) was separated from other code and isolated as a slave
process [39]. In addition, Qmail [4], Postfix [7] and Google Chrome [3,46] are
also designed (or re-designed) with privilege separation.

To facilitate retrofitting legacy code into privilege-separation designs, many
solutions have been proposed to partition software and assign each partition a
different set of privileges, such as Wedge [6], Privtrans [11], and Privman [27].
The deployed techniques include sandboxing [44–46] and process-based isola-
tion [6,11,27]. When the monolithic code is divided into several partitions, some
program behaviors inside the original code (e.g., function calls or direct memory
access) need to be transformed into inter-partition communications (e.g., via
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 312–331, 2015.
DOI: 10.1007/978-3-319-24177-7 16

Identifying Arbitrary Memory Access Vulnerabilities 313

socket and shared memory). As a result, program logic ensuring the correct-
ness of program semantics, such as valid ranges of variables, may be separated
into different partitions and fail to enforce the correctness. Therefore, additional
checking code is often needed, especially in the high-privileged partitions, to
make sure that data from other partitions is valid. However, if the transforma-
tion process fails to include checking code in a high-privileged partition, or the
added checking code is inadequate, attackers can use specially-crafted inputs to
compromise the high-privileged partitions and carry out malicious actions with
escalated privileges.

Memory errors such as buffer overflow can be exploited in such cross-partition
attacks. There are more subtle memory errors with which attackers can perform
arbitrary memory access inside the high-privileged partition, if the victim par-
tition has certain memory access patterns. For example, if a partition uses an
input from an untrusted interface as the array index, writing to the array inside
the partition is an arbitrary memory access under the influence of the input
provider. If attackers provide the input, they can utilize this memory access
behavior to modify critical data or retrieve secrets of the partition in a targeted
manner.

In this paper, we refer to this type of memory access errors by the acronym
DUI (Dereference Under the Influence). It stems from the memory access pattern
in the vulnerable partition: The address used in memory read or memory write
is influenced by malicious data from other partitions. Through DUI exploits,
attackers can corrupt discrete memory locations, instead of a continuous memory
block, significantly improving the stability of the attacks.

Challenges. DUI exploits can be prevented through sufficient checks on inter-
face inputs. Unfortunately, it is non-trivial to ensure that adequate checking
code has been added at correct locations. The checking code in legacy programs
is often scattered across many program locations in the monolithic code base,
which is split during the privilege-separation transformation, it is necessary to
guarantee that each of these program locations are checked correctly. However,
to achieve this goal, manual modification usually takes a long time to fully
understand the requirement of checking operations, while automatic separation
methods often miss important checks. Therefore, we need a systematic method
to detect such DUI vulnerabilities resulting from privilege-separation transfor-
mations.

Our Approach. To address these challenges, we develop an approach,
DUI Detector, to automatically detect code suspicious to DUI exploits in the
binary of trusted partitions. Specifically, through binary program analysis, we
identify the suspicious instructions that use data from other partitions to derefer-
ence memories. Then we use symbolic analysis to identify code with the
DUI vulnerability and assess the attackers’ capabilities in exploiting them.
DUI Detector helps to identify concrete code instances that are easily influenced
by attackers among a large code base.

We applied our approach on several real-world software systems retrofitted
with different types of isolation schemes. DUI Detector successfully detected

314 H. Hu et al.

DUI vulnerabilities inside them. We present four case studies where attackers can
perform DUI attacks. Furthermore, our approach reports the attackers’ capability
to the developers, providing a comprehensive understanding of the vulnerability.

In summary, this paper makes the following contributions:

– We study the problem of arbitrary memory access (DUI) in privilege-separation
transformations, and identify several general memory access patterns leading
to DUI vulnerabilities in binary instruction level.

– We design a novel mechanism to automatically detect DUI vulnerabilities, and
to estimate attackers’ capability in controlling user memory spaces. It helps
developers add sufficient checking.

– We prototype an automated tool and evaluate it on several real-world software.
Our tool automatically detects and comprehensively analyzes DUIs in these
software programs when they are gone through privilege-separation transfor-
mation.

2 Problem Overview

In this section, we motivate the problem by a concrete example. Then we provide
the problem definition of DUI detection and discuss two DUI types: The write
DUI and the read DUI. At the end we discuss the memory access patterns used
to detect DUI vulnerabilities.

1 struct subobj { ... } * p_sub;

2 struct object { ...

3 struct subobj * sub;

4 } * p_obj;

5
6 int main() {

7 p_obj = create_object ();

8 p_sub = create_subobj ();

9 p_obj ->sub = p_sub;

10 }

11
12 // create an object instance and return its pointer

13 struct object * create_object ()

14 { ... }

15
16 // create a subobj instance and return its pointer

17 struct subobj * create_subobj ()

18 { ... }

Listing 1.1. Example code to illustrate DUI problem.

2.1 Motivating Example

We use the example in Listing 1.1 to illustrate the memory access problem dur-
ing the program transformation. In this example, the structure object has

Identifying Arbitrary Memory Access Vulnerabilities 315

one pointer of structure subobj. Functions create object and create subobj
return pointers of new structure instances. The statement on line 9 in func-
tion main assigns the pointer p sub of a subobj instance to the subobj field
of a object instance. Originally function create object and create subobj
are in the same partition with the function main, and there are checking code
inside them to make sure that the return values are correct. During the transfor-
mation, these two functions are separated into a low-privileged partition since
they are not trusted any more. In this case, the return values could be mali-
cious. To protect the high-privileged main function, we can use memory isola-
tion to prevent the direct memory access from low-privileged code to main’s
memory, in which case function create object and create subobj just man-
age main’s memory. However, this is inadequate to protect the high-privileged
main: The statement on line 9 contains a memory access vulnerability. When
the low-privileged partition is malicious, it allows writing a malicious p obj to a
memory location p sub inside the protected one. The statement on line 9 is an
instance of DUI vulnerability.

2.2 Problem Definition

We give the definition of the problem solved in this paper.

DUIDetection: Given a partition of a privilege-separated program, we detect
whether the partition’s memory access behaviors can be influenced by data from
its interfaces. In particular, the memory addresses or the data are derived from
the interface inputs, giving attackers the ability to read or write to a large range
of memory inside the partition.

Attackers use the DUI vulnerability as a memory access service to mount
attacks. They specify the address and the data through specially-crafted inputs.
DUI vulnerability then finishes the memory operation on behalf of attackers. In
real-world programs, the logics used to derive the address from the interface
inputs could be complicated, thus subtle and hard to spot. However, the final
result is that the attacker can exercise certain levels of influence over the address
of the memory operation. It is worthwhile to note that only controlling the
memory address is inadequate to corrupt the memory or to steal the sensitive
information. Corresponding data flows are necessary to provide the malicious
data or send the confidential data out. Based on the direction of the memory
access, there are two types of DUI, the write DUI and the read DUI.

1 v1 = API_recv ();

2 v2 = API_recv ();

3 array[v1] = v2;

Listing 1.2. An example of write DUI

Write DUI. We call a memory write operation the write DUI if both the mem-
ory address and the value to be written in the operation are derived from the
interface inputs. Take the code in Listing 1.2 as an example. The API recv() is

316 H. Hu et al.

an interface through which the code can receive data from other partitions. The
memory write operation on line 3 has the address array + v1 and the data v2
derived from the interface inputs, which allows the input provider to write the
selected data to any address in its memory space. We can relax the requirement
of the data to be written to a value predictable by attackers. An example is
that if v2 in Listing 1.2 is a constant 0, attackers can use v2 to reset important
flags, or terminate a C-style string. With the write DUI, attackers can corrupt
the memory of the vulnerable program. Not only can they mount control flow
hijacking attacks by corrupting code pointers or return addresses, they can also
change critical data in memory to mount non-control-data attacks [16,26].

1 v1 = API_recv ();

2 data = *(base + v1);

3 API_send(data);

Listing 1.3. An example of read DUI

Read DUI. We call a memory read operation the read DUI if the memory
address in the operation is derived from the interface inputs and the retrieved
data are eventually passed to the output interface of the partition. Consider
the example in Listing 1.3. API recv() and API send() are APIs used by the
code to receive data from other partitions and send data to other partitions,
respectively. This code snippet retrieves data from a local buffer and sends it
out. Since the data retrieving address base+ v1 is under the control of attackers
via the interface input v1, attackers can steal sensitive information from the
partition. For read DUI, it is insufficient to control the memory read address.
The data being read has to reach an output interface for it to complete. In real-
world programs, the web client may have secret keys or high-privileged files on
the server client. Attackers can use read DUI vulnerability to steal the secret key
or file. Another exploit is to leak the randomized address of the loaded modules,
leading to bypassing address randomization protections [5,37].

2.3 Memory Access Patterns to Detect DUIs

Although attackers can use various ways to control the memory access, one
DUI vulnerability is inevitably represented as attacker-controllable memory
address and data in memory access instructions, i.e., the address is derived
from the input, and the data also comes from the input (for the write DUI)
or is sent out (for the read DUI). This observation inspires us to use instruction-
level memory access patterns to detect DUI vulnerabilities. We summarize the
memory access patterns used in DUI exploits below.

– Write DUIPattern 1. The memory write address and the data are derived
from the interface inputs. In this case, attackers control both the value and
the address in memory write operation.

Identifying Arbitrary Memory Access Vulnerabilities 317

– Write DUIPattern 2. The memory write address is derived from the interface
inputs. The data value is predictable to attackers. Attackers can exploit this
code to set the predictable value to any memory address.

– Read DUIPattern. The memory read address is calculated from the inter-
face inputs. The retrieved data are then passed to output interfaces (e.g., via
network, file operation or standard printing).

3 Design

3.1 Overview

Figure 1 shows the design of our DUI detection tool, DUI Detector. It takes two
inputs: The program binary containing the partition to be checked and a normal
input to the program. It detects DUI vulnerabilities during the binary execu-
tion for the given input and estimates the capability of attackers obtained by
DUI exploits. There are three phases in the process: Execution state collection,
suspicious instruction shortlisting and dereference behavior analysis.

Binary
Execution

state collection

Suspicious
instruction
shortlisting

Dereference
behavior analysis

Vulnerabilities

Assessment Input

Fig. 1. Design of the DUIDetector. There are two inputs to the system. One is the
program binary, containing the partition to be checked. Another one is a normal input
to the program. The output is the list of DUI vulnerabilities and the assessment of
attackers’ capabilities.

Execution State Collection. First we run the program binary in an emulated
environment with the given input and record all the execution states of the
checked partition, including instructions, operands, processor states and mem-
ory states. We also log system-level information such as module loading and
unloading behaviors.

Suspicious Instruction Shortlisting. From the execution states, our tool
identifies instructions potentially vulnerable to DUI exploits. We use data depen-
dency analysis to find the source of the memory address and the data used in
memory access instructions. For a memory read operation, we also search for-
ward to check whether the retrieved data is sent to other partitions through
output interfaces. If the address is derived from the interface inputs and the
data is derived or used in an attacker-controllable manner, we report this mem-
ory operation as a suspicious DUI vulnerability.

318 H. Hu et al.

Dereference Behavior Analysis. Our tool generates the symbolic formula,
called the access formula, to capture all the constraints from the interface inputs
to the suspicious instruction. Then it analyzes the access formula to verify the
DUI vulnerability and to assess the capability of attackers in controlling the
memory space of the vulnerable partition.

DUI Detector reports the verified DUI vulnerabilities together with their
severity to developers, helping them to fix the vulnerable code. Next, we intro-
duce the key phases of the DUI Detector.

3.2 Suspicious Instruction Shortlisting

From the collected execution states, we use data dependency analysis to track
the data flow of the memory address and the data used in memory access instruc-
tions. The methods used to detect DUIs are given below.

To detect write DUIs, we check for the following conditions for each instruc-
tion. (1) It is a memory write instruction, i.e., instructions that write the data
into memory, like mov, add, push and successful conditional move cmov. (2) The
source operand is derived from the interface inputs, or predictable to attackers.
(3) The address of the destination operand is also derived from the interface
inputs.

To detect read DUIs, it is insufficient to check just one single instruction.
Other than the actual memory read operation, it is also necessary to identify
the data flow from the read operation to output interfaces, as we discuss in
Sect. 2. Hence, we use a two-step approach to identify a read DUI.

1. A memory read instruction is selected for further checking if it matches the
following two conditions: (1) The instruction reads data from memory and
saves the data into registers. Instructions reading from registers or without
saving the data into registers are ignored. (2) The memory address is derived
from the interface inputs.

2. For an instruction selected above, we perform forward slicing on the data flow
of the destination operand (the retrieved data). If the data reaches an output
interface, we report it as a potential read DUI.

Our tool generates a list of the suspicious instructions potential vulnerable
to DUIs. However, strong constraints on the interface inputs could significantly
limits the attackers’ capability, even making the instruction unexploitable. Hence
we need to analyze each suspicious instruction to confirm the vulnerability and
assess attackers’ capability.

3.3 Dereference Behavior Analysis

Given a suspicious instruction identified in the previous step, our tool extracts
an access formula to represent the relationship between the interface inputs and
the address or data used in the instruction. The access formula captures all the
constraints in the execution states with respect to the interface inputs. There
are four types of constraints in the access formula as follows.

Identifying Arbitrary Memory Access Vulnerabilities 319

– Data-Flow Constraints. Data-flow constraints describe the arithmetic rela-
tions between the address and the data in the DUI instruction and the interface
inputs. They are presented as a sequence of arithmetic operations.

– Control-Flow Constraints. Control-flow constraints ensure that the
attacked partition follows the same path as the one recorded in the execution
states. We only consider the path constraints related to the interface inputs.
Other path constraints are out of the attacker’s control and are assumed to
be satisfied.

– Memory Space Constraints. To reach the suspicious instruction, all the
memory accesses should be legitimate. Specifically, the code must have the
correct write or read permission of the accessed page. Otherwise, page fault
exceptions will be raised and divert the execution path. This constraint limits
the attacker’s capability since only a subset of memory space is accessible.

– Data Life-Cycle Constraints. To create an effective attack, the malicious
data (written data or retrieved data) must be used within its life-cycle. Oth-
erwise, the suspicious instruction cannot be exploited. For example, if the
malicious data written to a selected location is immediately overwritten by a
benign value, the attack does not have any effect on the victim partition. To
capture this constraint, our tool considers subsequent instructions in order to
track the aliveness of the data.

The generated access formula captures all the constraints on the interface
inputs to reach the suspicious instruction and continue the execution. By assess-
ing the attacker’s capability by exploiting the instruction, we can determine
if the suspicious instruction is indeed a DUI vulnerability. If so, we report the
suspicious instruction and the attackers’ capability to developers.

Attackers’ Capability Assessment. Attackers’ capability is represented as
the ability to control the address and the value in the memory operation. A
larger memory range controllable by attackers indicates a stronger attackers’
capability. However, due to the constraints on the interface inputs, not all the
malicious inputs lead to a successful attack. The working inputs form a valid
data space, and the attacker’s capability is determined by the size of this space.
Our tool constructs constraint queries to estimate this space size. Specifically,
we assign concrete values or a memory range to the operands of the suspicious
instruction, i.e., the address or the data. Then these assignments are added to
the access formula as new constraints to form a query. By solving the query
using a constraint solver, we get the answer to the following questions: Q1: Is
there any input making the partition follow the same path to the suspicious
instruction when the address or the data in the address have to be a given
value? Q2: Is there any input making the partition follow the same path to
the suspicious instruction when the address or the data have to be within a
given range? Q3: Is it true that for any address or any data in the given range
there is an input making the partition follow the same path to the suspicious
instruction? The answer to the question Q1 indicates attackers’ capability on
controlling specific addresses. This is useful to build real exploits, for example,

320 H. Hu et al.

writing the ROP gadget address to a function pointer. A negative answer to the
question Q2 helps filter out a memory range from attackers’ capability. While
a positive answer to the question Q3 adds the queried range into attackers’
capability.

We take several query strategies to efficiently answer these questions. These
strategies are based on the bit-pattern analysis and the range analysis [33,35].
Through these methods, we can estimate the valid memory space controllable
by attackers for each of the suspicious instruction.

– Initial Target Analysis. We first consider the memory page permission to
initialize the memory range. For a memory read operation, the target memory
location has to be readable. For a memory write operation, the target memory
location has to be writable. Using this method, the queried memory range is
limited to the readable or writable memory space.

– Bit-Pattern Analysis. Bit pattern analysis uses queries that specify con-
crete values on particular bits (or all bits) of the target value [33,35]. An
example of the query is whether the last two bits of the address have to be
10. This gives the answer to question Q1.

– Range Analysis. The range query identifies whether the values inside a
particular range are valid [35] or not. If all values are valid, we conclude that
the queried range is a valid range. If no value is valid, we remove the range
from the valid memory space. If only some values are valid, the query solver
will give a concrete valid value. We use this value to divide the range to two
subranges. Then we use the range query to query both subranges. This query
answers question Q2 and Q3.

Finally the report given by DUI Detector includes the identified
DUI vulnerabilities, together with the attackers’ capability obtained by exploit-
ing such vulnerabilities. It points out all the vulnerable-prone code in the checked
partition. This enables security analysts to focus their efforts on a particular por-
tion of the code.

4 Implementation

We built a prototype of DUI Detector on a 32-bit Ubuntu 10.04 system by
extending the BitBlaze [42] platform. The prototype uses STP [22] as the SMT
solver to query the access formula.

4.1 Taint Propagation

DUI Detector uses taint analysis to track the data flow of the interface inputs.
Data from the interfaces are bound with the taint information of the source. Taint
information has two aspects: One aspect is the taint attribute, a flag indicating
whether a particular memory byte is tainted or not. Another aspect is the taint
record, which contains the sources of the taint attribute. We use TEMU, the

Identifying Arbitrary Memory Access Vulnerabilities 321

dynamic analysis engine of BitBlaze, as the base of taint propagation. However,
there are several problems when we use TEMU to build our tool. Next we discuss
these problems and present our solutions.

Finer-Gained Taint Record Propagation. Since we need to capture all the
execution constraints, the taint propagation has to be accurate to permit the
identification of all data sources. The normal taint propagation focuses on taint
attribute propagation, and pays less attention on the taint record propagation.
For example, for a given instruction, TEMU checks all its operands, and copies
the taint records of the first tainted operand to the destination operand. This
propagation method loses some taint sources. For example, in the instruction
add %ebx, %eax, if eax and ebx are tainted by different data sources, the taint
sources of ebx get lost. To solve this problem, we instead identify all the tainted
source operands and copy all distinct taint records to the destination operand.
As a result, the taint records for each operand capture all the data sources used
to derive the operand.

1-Level Table Lookup. If a memory read address is tainted, taint analysis
has to decide to propagate the taint to the destination operand or not. Table
lookup is a method to propagate the taint. However, table lookup results in
over-tainting problem, leading to a high false positive. A better tainting method
for table lookup is necessary to capture the read DUI and avoid the over-tainting
problem. We observe that as more table lookups are performed, attackers likely
have increasingly less influence over the destination. As such, we propose the
1-level table lookup: Only propagating the taint for a single level of memory
indexing. When the tainted data retrieved from table lookup are used as an
index again, we will not propagate the taint. Our implementation uses the most
significant bit of the taint attribute to indicate whether it is tainted through table
lookup or not. Note that 1-level table lookup will miss attacks that utilize high-
level table lookup to corrupt memory locations. However, we believe that the
benefit on false positive reduction overweighs the false negative introduced since
attacks with high-level lookup are rare in real-world attacks. With 1-level table
lookup, our tool captures memory read operations that are strongly controlled
by attackers, and skips the weakly-controlled operations.

Taint Propagation for XMM Registers. XMM (eXtended Multi-Media)
registers are used to speed up the memory operation (e.g., memcpy), by joining
several 4-byte copies into a single 16-byte operation. TEMU does not support the
taint propagation through XMM registers. When tainted data are copied into an
XMM register, the taint information gets lost. To support the taint propagation,
we extend TEMU to correctly propagate taint to XMM registers and read taint
information from XMM registers.

4.2 Access Formula Generation

We use VINE [42], the static analysis component of BitBlaze, to generate the
formula for memory access from the trace. As discussed in Sect. 3.3, there are four

322 H. Hu et al.

types of constraints affecting memory access. However, VINE only generates two
constraints, the data-flow constraint and the control-flow constraint. To bridge
this gap, we develop tools to add additional two constraints into the formula.
There are two steps to generate the memory space constraints.

1. In the guest OS, we insert a kernel module to detect the module loading and
unloading behaviors. The kernel module sends the update information of the
loaded and unloaded module to TEMU. We log such information together
with the number of traced instructions when a behavior happens.

2. Using the log file, we can construct the readable and writable memory ranges
for each instruction. Specifically, we collect all the modules that are still
loaded in the memory for a given instruction. The union of their readable
and writable memory ranges is the valid memory space. We add the memory
range as a memory space constraint to the access formula.

To generate the data life-cycle constraints for a particular instruction, we
search forward from the given instruction in the trace to find the first memory
write instruction that overwrites the data at the same address. We call this
instruction the update instruction. The data life-cycle of the data starts from
the given instruction, and ends at its update instruction.

5 Evaluation

We evaluated our approach in the following system: The host OS is a 32 bit
Ubuntu 10.04 system, running on Openstack Cloud with two 2.4 GHz vCPUs
and 4 GB RAM. The guest OS in TEMU is a 32 bit Ubuntu 9.10 system. Next,
we present our evaluation results and then discuss the security implication of
our findings.

5.1 Efficacy

We applied DUI Detector on privilege-isolated programs to detect
DUI vulnerabilities in protected partitions. We focus on two particular isola-
tion schemes: The isolation between malicious OS kernels and user space pro-
grams [17,25,32,41,48], and the isolation between malicious libraries and main
programs [19,21,44–46]. We ran several programs on Linux system to get the
execution trace, which were written to drive the execution through commu-
nications between different partitions. DUI Detector successfully detected read
DUI and write DUI vulnerabilities in the protected user space code and the pro-
tected program main code. Further, DUI Detector assesses the attackers’ capa-
bility obtained by exploiting such vulnerabilities. Next we present the details of
these DUI vulnerabilities.

User-Kernel Isolation. A few proposals remove the OS kernel from the trusted
base of the program execution, like hardware-based isolation (e.g., Flicker [31])
and hypervisor-based isolation (e.g., Overshadow [17]). These isolation schemes

Identifying Arbitrary Memory Access Vulnerabilities 323

are designed to protect the sensitive data in user-space programs from the mali-
cious kernel, so the kernel have no direct access to program memory space. Our
goal is to detect DUI vulnerabilities inside protected user-space programs that
allow the malicious kernel to corrupt programs’ private user-space memory.

— Glibc code exploitable by brk. A write DUI was detected in the malloc
function, which manages the heap memory for programs. The malloc calls the
brk system call to request a new heap memory and takes the return value as the
break value (the upper bound of data segment). Before looking into the detected
DUI, we first illustrate the logic in malloc handling the return values of brk.

1 addr1 = brk (0) ; // get the current brk value

2 addr2 = brk (argument) ; // request more space

3 ∗(addr1 + 4) = addr2 − addr1 ; // store the size as metadata

This code snippet calls brk twice to create a heap memory region. The first
brk call on line 1 is used to get the current break value (saved in addr1), which
is the start address of the heap. The second brk call on line 2 is used to request
more memory space and the new break value is stored in addr2. The memory
location addr1 + 4 is used to store the size of the allocated data chunk, which
is addr2 − addr1 in this case. The code on line 3 stores the size value into the
metadata address. One of our tested programs invokes the malloc library call to
call brk. In the recorded execution states, we found two instructions that match
the write DUI Pattern 1, as listed below.

1 mov %eax , 0x4(%edx)

2 ...

3 mov %eax , 0x4(%edi)

For each instruction, both the value and the memory address are derived from
the return values of brk system calls. By manipulating the system call return
values, the malicious kernel can write any value into an arbitrary address in the
victim process, even if the process is protected by encryption. We analyzed the
capability of attackers and found that only the second instruction is exploitable.
For the mov instruction on line 1, the data life-cycle constraints show that the
value is immediately overwritten by another benign value. For the instruction
on line 2, the first return value has to be a multiple of 8. We show the con-
straints on the return value generated by our tool below, where the brkn is the
nth return value. DUI Detector generated the payloads in order to exploit this
DUI vulnerability. The generated payloads successfully wrote the given address
to the selected stack address.

1 condition(brk1%8 == 0 && brk2 >brk1)

2 address = brk1 + 0x2718;

3 data = (brk2 - brk1 - 0x2718) | 0x1;

To explore other paths, we changed the condition to invalidate one of the
constraints. The following are two conditions that lead to the write DUIs in
other paths. The last one is the scenario of the Iago attack [15]. Note that DUI

324 H. Hu et al.

Detector accurately identified the constraints of Iago attack: The address has to
be non-multiple of 8 and the data write to the memory has to be congruent to
1 modulo 8.

1 condition(brk1%8 != 0 && brk1 <brk2 <brk3)

2 address : relies on brk1;

3 data : relies on brk1 and brk2;

1 condition(brk1%8 != 0 && brk1 <brk2 >brk3)

2 address : relies on brk1;

3 data : relies on brk1 and brk3;

— Glibc code exploitable by mmap2. The second DUI vulnerability in Glibc is
in the code handling the mmap2 system call. The mmap2 system call on Linux is
used to map files or devices into memory in the Linux system. It is widely used by
programs to map large files into memory. From the execution trace, we identified
a total of 1,653 suspicious instructions matching write DUI patterns. We further
reduced them to 302 based on the attackers’ capability analysis. Analysis of the
remaining 302 instructions reveals that all of them use values derived from the
first 3 mmap2 return values. Here we show the very first instruction among them.
This is a write DUI, where the memory address and the data are derived from
the first and the third mmap2 return values.

1 mov %eax , 0x1ac(%edi)

Using the queries we discuss in Sect. 3.3, we identified the valid memory
space which the attacker can write values to. For a stack memory range over
0x0BFFF000 to 0x0BFFF2FF, we found that the attacker has no control over
addresses whose last four bits are 1100 or 0100.

— cat exploitable by read and write. The UNIX utility program cat reads
data from the given files, concatenates the content and writes them out to the
standard output file. This behavior results in consecutive file read and write
operations. The cat program we used is a derivative of the BSD cat program1.
We identified read DUIs in the cat code, which can be exploited by malicious
kernel to steal program’s private information. To illustrate the read DUI, we
present the pseudo code below.

1 nr = read(rfd , buf , size);

2 for(off = 0; nr; nr -= nw , off += nw)

3 {

4 nw = write(wfd , buf + off , nr);

5 if (nw == 0 || nw == -1)

6 goto error;

7 }

The loop condition nr is fully controlled by the malicious kernel. First, it is
initialized by the return value of the read system call on line 1. For each loop,
1 http://www.opensource.apple.com/source/text cmds/text cmds-87/cat/cat.c.

http://www.opensource.apple.com/source/text_cmds/text_cmds-87/cat/cat.c

Identifying Arbitrary Memory Access Vulnerabilities 325

it is updated by the return value nw of the write call on line 2. nw is also used
to advance the buffer for the next write call. When the kernel is changed to
be untrusted, isolation mechanisms use deep copy to duplicate all system call
parameters to a shared memory between kernel and process [41]. In this case, by
manipulating the return value nw, the malicious kernel drives the process to copy
its private data into shared memory space. With further capability analysis, we
find that the attacker has full control over the value, i.e., the attacker is able to
access any memory with the values ranging from 0x00000000 to 0xFFFFFFFF.

Library Isolation. Dynamic shared libraries are linked to software process at
the runtime. Since the dynamic library lives in the same memory space with
the program’s main code, any vulnerability in the library is inherited by the
program. Memory separation designs [44–46] provide transparent memory isola-
tion between the main code and libraries. The goal is to prevent the untrusted
libraries from directly accessing the main memory. However, attackers can still
leverage the DUIs in the main code to indirectly access the main memory.

— Programs Using libsdl. The Simple DirectMedia Layer (SDL) library
provides programming interfaces to access low lever hardware, like keyboard,
screen, audio and so on. The main program requests an SDL object and per-
forms operation through the SDL object. For example, the main program can
request a screen object, and then invoke the screen object methods to set display
attributes, like colors and fonts. When the library isolation technique Code-
jail [45] is used, the SDL library code cannot directly access the memory of
the main code. A monitor module will selectively commit the memory changes
from the library to the main code. However, the memory isolation provided by
Codejail cannot prevent the memory access from the library to the main mem-
ory through DUIs in the main code. We write a simple program that requests a
screen object from the SDL library and then sets the color attribute. The pseudo
code of the simple program is shown below.

1 s c r e en = SDL SetVideoMode (. . .) ; // get framebuffer surface

2 c o l o r = SDL MapRGB (. . .) ; // get a pixel value

3 pixmem16 = screen−>p i x e l s + x + y ∗ p i x e l s p e r l i n e ;

4 // get pixel address

5 ∗pixmem16 = co l o r ; // set the color

Our tool detected the write DUI in the main code (on line 5) of this simple
program. A malicious SDL library can exploit this DUI vulnerability to corrupt
any memory location of the main code, even if the main program is protected
by memory isolation schemes. Using attackers’ capability estimation, our tool
reports that there is no limitation on the address or value, which means that
attackers have full control of the main code memory through the DUI exploit.

5.2 Performance

Table 1 shows the performance details of each experiment conducted using our
tool. We can see that our tool is able to analyze and detect a DUI vulnerability

326 H. Hu et al.

Table 1. Performance of DUIDetector. T1 is the time for trace generation; T2 is the
time to get the access formula; T3 is the time to solve the formula. “Inst. #” is the
number of executed instruction, while “Infl. #” is the number of tainted instructions.
All times are measured in second.

Trusted part Untrusted part APIs DUI Inst. # Infl. # T1 T2 T3

User space Linux kernel brk write 168,089 103 21.79 1.70 0.18

User space Linux kernel mmap2 write 167,644 69,486 21.19 2.94 3.11

Cat code Linux kernel read, write read 2,288,914 684 104.76 16.58 0.16

Main code SDL library SDL APIs write 100,424,507 68 7574.23 1.52 0.10

in a few minutes. The time required for the generation of the trace is largely
dependent on the number of instructions that are generated and logged in the
trace. On the other hand, the amount of time required for the generation of the
STP formula is very small. For the STP formula solving, the time required highly
varies due to its dependence on the query inputs, formula and how quickly the
STP solver can obtain a solution for us.

5.3 Security Implications

Our tool detected DUI vulnerabilities in different program transformation sce-
narios, including untrusted kernel isolation and untrusted libraries isolation. In
this part, we discuss the security implications of our findings.

– Simple memory isolation is inadequate to prevent unauthorized memory access.
Although a lot of designs aim to prevent the malicious partition from access-
ing the protected memory, our result shows that simple memory isolation
cannot completely stop the unauthorized memory access. DUI vulnerabilities
inside the protected partition still allow other partitions to access arbitrary
protected memory.

– API-review is necessary to provide a secure environment. Since
DUI vulnerabilities can be leveraged to mount attacks through interfaces,
developers need to pay special attention to the checking code on interface
inputs when the legacy code is retrofitted into a memory isolation model.
More specifically, there is a need to review the interfaces between trusted and
untrusted partitions.

6 Discussion

In this section we present the limitation of our work and discuss the possible
defense against the DUI exploits.

Code Coverage. Our analysis only considers one particular code path executed
during the trace generation. However, it is possible for the program to have other
DUI vulnerabilities in other paths. We employ an iterative process to detect

Identifying Arbitrary Memory Access Vulnerabilities 327

other DUI vulnerabilities. Specifically, after the analysis for one execution path,
we invalidate the path condition in the control-flow constraints and require the
solver to provide an input that satisfies the invalidated condition [23]. The given
input makes the program follow a new code path. The same analysis is performed
on it and this process is repeated until no additional new path can be generated.
This may lead to the path explosion problem [1]. To mitigate the problem, we
only invalidate the conditional branches that are affected by untrusted input to
generate the new path. Existing methods to mitigate path explosion, like [30,43]
can also be considered.

Defense. Once a DUI vulnerability has been identified, developers can mitigate
the consequences of the vulnerability by introducing proper checks to the vul-
nerable code. Different checks should be used accordingly based on the type of
the interface inputs. For the Glibc brk attack, where the interface inputs are
addresses, the sanitization code needs to make sure that the returned address
either equals to the requested one or points to a newly allocated memory region.
For operation counters (e.g., the return value of the read system call), sanitiza-
tion code should perform strict checks on the length, like comparing it with the
file size or the buffer size.

7 Related Works

Vulnerability Detection. Symbolic execution and dynamic taint analysis are
two techniques that are commonly used for vulnerability detection. In symbolic
execution, the program is executed with symbols rather than concrete values.
Operations on the inputs are represented as an expression of the symbols, natu-
rally providing constraints on possible values of the input after each operation.
As a result, symbolic execution [28] has been extensively used in program test-
ing and vulnerability analysis [8,12,13,34,40]. Dynamic taint analysis is another
technique frequently used to detect vulnerabilities. In taint analysis, attacker-
controlled inputs are usually marked with a tag. This tag is propagated whenever
the data is derived from the input. This enables the analyst to determine the
data flow and the attackers’ influence. A series of work has utilized taint analy-
sis to detect and analyze vulnerabilities [9,14,49] and malware [18,47]. Newsome
et al. [36] proposed using dynamic taint analysis to find bugs. In these meth-
ods, attacks are detected when the tainted data are used in a dangerous way,
like jump address or system call parameters. Our approach differs in applica-
tion of these techniques. In order to detect DUI vulnerabilities, our focus is on
detecting certain access pattern while at the same time considering implicit con-
straints such as memory constraints. As such, our approach aims to obtain a
better understanding of the vulnerability in addition to detection.

Automatic Exploit Generation. The goal of the automatic exploit genera-
tion is to generate a working payload that successfully compromises the vulner-
able program. Heelan et al. [24] discussed algorithms to automatically generate
exploits to hijack the control flow for a given vulnerable path. Brumley et al. [10]

328 H. Hu et al.

proposed the automatic patch-based exploit generation for a given vulnerable
program together with security patches. A followup work [2] presents an auto-
matic exploit generation tool for buffer overflow and format string vulnerabilities.
Felmetsger et al. [20] proposed AEG on web applications. In another work [26]
we present an automatic method to generate data-oriented attacks. Different
from these AEG-style approaches, our goal is to estimate the attackers’ capa-
bility. Hence, rather than obtaining the payload for a vulnerable program, we
quantify the potential severity of the vulnerability.

Privilege Separation in Software Systems. Privilege separation is a way to
realize the principle of least privilege in software designs. It is often achieved
by using memory isolation to protect resources of high-privileged partitions
from low-privileged ones. For examples, Provos [39] retrofitted OpenSSH with
a privilege-separated design and other methods [6,11,27] automatically sepa-
rate and isolate components within monolithic legacy programs. Other security
solutions proposed new threat models. For example, some [17,29,31] treat the
kernel as potentially untrusted and remove it from the trusted computing base.
However, the work [15,38] shows that just isolating the components is insufficient
as attackers might be able to leverage on poorly designed legacy interfaces to
compromise the isolated components. Our solution complements this work with
a systematic method to detect DUI vulnerabilities when adopting new isolation
schemes.

8 Conclusion

In this paper, we present a systematic solution to detect arbitrary memory
access vulnerability in binary programs. Our approach builds access formula
for a binary using program analysis techniques. The formula is then utilized to
detect the memory access patterns that can be leveraged by attackers to per-
form arbitrary memory accesses. Detailed analysis is also performed to assess the
capability of attackers using such vulnerabilities. We demonstrate the effective-
ness and accuracy of our approach in the evaluation, where we present four case
studies of DUI vulnerabilities in programs utilizing isolation schemes. Finally, we
provide the security implications based on the results of the evaluation.

Acknowledgments. We thank Xinshu Dong and the anonymous reviewers for their
insightful comments. This research is supported in part by the National Research
Foundation, Prime Minister’s Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2014NCR-NCR001-21) and administered by the National
Cybersecurity R&D Directorate, and by a research grant from Symantec.

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008)

Identifying Arbitrary Memory Access Vulnerabilities 329

2. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley., D.: AEG: automatic exploit gen-
eration. In: Proceedings of the 18th Annual Network and Distributed System Secu-
rity Symposium (2011)

3. Barth, A., Jackson, C., Reis, C., Team, T.G.C.: The Security Architecture of the
Chromium Browser. Technical report (2008)

4. Bernstein, D.J.: Some thoughts on security after ten years of Qmail 1.0. In: Pro-
ceedings of the 14th ACM Workshop on Computer Security Architecture (2007)

5. Bhatkar, E., Duvarney, D.C., Sekar, R.: Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In: Proceedings of the 12th
USENIX Security Symposium (2003)

6. Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: splitting applications
into reduced-privilege compartments. In: Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation (2008)

7. Blum, R.: Postfix. Sams, Indianapolis (2001)
8. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards automatic

discovery of deviations in binary implementations with applications to error detec-
tion and fingerprint generation. In: Proceedings of 16th USENIX Security Sympo-
sium (2007)

9. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gen-
eration of vulnerability-based signatures. In: Proceedings of the 27th IEEE Sym-
posium on Security and Privacy (2006)

10. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: Techniques and implications. In: Proceedings of the 2008
IEEE Symposium on Security and Privacy (2008)

11. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege
separation. In: Proceedings of the 13th USENIX Security Symposium (2004)

12. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (2008)

13. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security (2006)

14. Caselden, D., Bazhanyuk, A., Payer, M., McCamant, S., Song, D.: HI-CFG:
construction by binary analysis and application to attack polymorphism. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134,
pp. 164–181. Springer, Heidelberg (2013)

15. Checkoway, S., Shacham, H.: Iago attacks: why the system call API is a bad
untrusted RPC interface. In: Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems (2013)

16. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: Proceedings of the 14th USENIX Security Symposium (2005)

17. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. In: Proceedings of the
13th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (2008)

18. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic spyware analysis.
In: Proceedings of USENIX Annual Technical Conference (2007)

19. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Software
guards for system address spaces. In: Proceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation (2006)

330 H. Hu et al.

20. Felmetsger, V., Cavedon, L., Kruegel, C., Vigna, G.: Toward automated detection
of logic vulnerabilities in web applications. In: Proceedings of the 19th USENIX
Security Symposium (2010)

21. Ford, B., Cox, R.: Vx32: lightweight user-level sandboxing on the x86. In: Proceed-
ings of USENIX Annual Technical Conference (2008)

22. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

23. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the 26th ACM SIGPLAN Conference on Programming Language
Design and Implementation (2005)

24. Heelan, S.: Automatic Generation of Control Flow Hijacking Exploits for Software
Vulnerabilities. Technical report, Computing Laboratory, University of Oxford,
September 2009

25. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: InkTag: secure appli-
cations on an untrusted operating system. In: Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating
Systems (2013)

26. Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z.: Automatic generation of
data-oriented exploits. In: 24th USENIX Security Symposium (2015)

27. Kilpatrick, D.: Privman: a library for partitioning applications. In: Proceedings of
USENIX Annual Technical Conference (2003)

28. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

29. Lie, D., Thekkath, C.A., Horowitz, M.: Implementing an untrusted operating sys-
tem on trusted hardware. In: Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (2003)

30. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011)

31. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an
execution infrastructure for tcb minimization. In: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems (2008)

32. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (2013)

33. Meng, Z., Smith, G.: Calculating bounds on information leakage using two-bit
patterns. In: Proceedings of the ACM SIGPLAN 6th Workshop on Programming
Languages and Analysis for Security (2011)

34. Molnar, D.A., Molnar, D., Wagner, D., Wagner, D.: Catchconv: Symbolic Execu-
tion and Run-Time Type Inference for Integer Conversion Errors. Technical report,
UC Berkeley EECS (2007)

35. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish
undue influence. In: Proceedings of the ACM SIGPLAN 4th Workshop on Pro-
gramming Languages and Analysis for Security (2009)

36. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of the
12th Annual Network and Distributed System Security Symposium (2005)

37. PaX Team. PaX Address Space Layout Randomization (ASLR) (2003). http://
pax.grsecurity.net/docs/aslr.txt

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

Identifying Arbitrary Memory Access Vulnerabilities 331

38. Ports, D.R.K., Garfinkel, T.: Towards application security on untrusted operating
systems. In: Proceedings of the 3rd Conference on Hot Topics in Security (2008)

39. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: Proceed-
ings of the 12th USENIX Security Symposium (2003)

40. Qi, D., Roychoudhury, A., Liang, Z., Vaswani, K.: Darwin: an approach for debug-
ging evolving programs. In: Proceedings of the the 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (2009)

41. Shinde, S., Tople, S., Kathayat, D., Saxena, P.: PODARCH: Protecting Legacy
Applications with a Purely Hardware TCB. Technical Report NUS-SL-TR-15-01,
School of Computing, National University of Singapore, February 2015

42. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: a new approach to computer
security via binary analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

43. Staats, M., Pǎsǎreanu, C.: Parallel symbolic execution for structural test gener-
ation. In: Proceedings of the 19th International Symposium on Software Testing
and Analysis (2010)

44. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: Proceedings of the 14th ACM Symposium on Operating Systems
Principles (1993)

45. Wu, Y., Sathyanarayan, S., Yap, R.H.C., Liang, Z.: Codejail: application-
transparent isolation of libraries with tight program interactions. In: Foresti, S.,
Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 859–876.
Springer, Heidelberg (2012)

46. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native
code. In: Proceedings of the 30th IEEE Symposium on Security and Privacy (2009)

47. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security (2007)

48. Zhang, F., Chen, J., Chen, H., Zang, B.: CloudVisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. In: Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (2011)

49. Zhang, M., Yin, H.: AppSealer: automatic generation of vulnerability-specific
patches for preventing component hijacking attacks in android applications. In:
Proceedings of the 21st Network and Distributed System Security Symposium
(2014)

vBox: Proactively Establishing Secure Channels
Between Wireless Devices
Without Prior Knowledge

Wei Wang1,2,3, Jingqiang Lin1,2, Zhan Wang1,2(B), Ze Wang1,2,
and Luning Xia1,2

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

wangzhan@iie.ac.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Establishing secure channels between two wireless devices
without any prior knowledge is challenging, especially when such devices
only have very simple user interface. Most existing authentication and
key negotiation solutions leverage the received signal strength (RSS) of
wireless signals, and the security guarantees depend on the environments
too much; in a static environment of less motion, the adversaries could
control or predict the RSS of legitimate devices. We propose vBox in this
paper, a proactive method to establish secure channels between wire-
less devices, without the assumption on environments. By holding and
waving two devices to communicate, the owner creates a virtual “shield
box”. The adversaries outside the box cannot send signals with stable
RSS into the box, so the legitimate devices can easily be authenticated
based on the variation of RSS. At the same time, the adversaries can-
not correctly measure or detect the RSS of wireless signals transmitted
between the in-box devices, and then they can directly transmit secret
keys in plaintext. Then, after the simple operation by the owner for a
few seconds, the authenticated nodes will securely communicate using
the shared secret key. We implement the vBox prototype on commercial-
off-the-shelf ZigBee devices, and evaluate it with extensive experiments
under the normal case and several attack scenarios. The experiment
results and security analysis show that, vBox establishes secure channels
handily against various attacks and is suitable for different environments.

Keywords: Authentication · Key establishment · Received signal
strength · Wireless personal area network

Z. Wang—This work was partially supported by the National 973 Program under
award No. 2013CB338001 and the National Natural Science Foundation of China
under Grant 61272479.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 332–351, 2015.
DOI: 10.1007/978-3-319-24177-7 17

vBox: Proactively Establishing Secure Channels Between Wireless Devices 333

1 Introduction

With the proliferation of wireless personal devices, wireless personal area net-
works (WPANs) have experienced great development in recent years. A WPAN
involves a variety of lightweight, small-size and low-power wireless devices, which
are held or carried by the owner. For example, around an owner, a mobile phone
receives daily fitness data from an associated smart bracelet and exchanges
voices with the Bluetooth headset. Other typical WPAN nodes include intel-
ligent watches, wearable sensors and so on.

Because the wireless personal devices inevitably transmit private information
in WPANs, the communications need to be secured; however, conventional solu-
tions are unsuitable for the wireless devices to establish secure channels. First
of all, there is no “mobile” trusted third server to facilitate the wireless nodes
to authenticate each other or negotiate secret keys, which hardly allows the
owner to connect two WPAN devices anytime and anywhere. Secondly, because
the small-size WPAN devices are equipped with very limited input and output
interfaces, it is difficult to type some characters as prior knowledge or display a
passcode to verify the communication peer, before they establish secure channels.
For example, the Xiaomi smart bracelet has only three LED lights as its output
interface to users. Finally, although the owner could connect wireless devices
by wires and then set up prior associations securely, it is very inconvenient and
harms the benefits of wireless communications.

To establish secure channels between a WPAN device and another device,
both of which are carried by the owner, we need to ensure that, (a) the wireless
communication peer is held or controlled by the owner, i.e., authentication; and
(b) the messages exchanged are not leaked to other entities, i.e., confidentiality.
To authenticate a wireless device without prior knowledge, existing proximity-
based authentication solutions [4,6,13] employ the received signal strength (RSS)
feature of nearby wireless devices, to distinguish a legitimate node from distant
(or illegitimate) ones in real time. Therefore, the proximity-based authentication
can be finished without requiring the owner’s explicit operations. As for the
confidentiality issue, existing solutions usually leverage the reciprocity of wireless
communication to negotiate secret keys, so that the eavesdroppers cannot extract
the same key as the pair of WPAN nodes.

In this paper, we propose vBox, a simple but effective RSS-based solution to
establish secure channels between two wireless devices without any prior knowl-
edge. vBox follows distinct principles from the existing solutions: it requires
explicit operations executed by the owner so as to proactively prevent threats
from adversaries. By holding and simultaneously waving two WPAN devices that
need to establish secure channels, the owner easily “builds” a virtual shield box,
so that (a) the adversaries at distance cannot send wireless signals with stable
RSS to the shielded devices; and (b) the strength of wireless signals sent between
these shielded devices, cannot be measured accurately by the adversaries at dis-
tance. Different from existing solutions, vBox follows a proactive philosophy. In
particular, the owner explicitly creates a special environment that is static to the
legitimate nodes but unpredictable to the adversaries, and deliberatively tunes
the strength of the signal for the key establishment.

334 W. Wang et al.

vBox consists of two phases, one of which is for authentication; and the
second phase is to transmit secret keys. In the first phase, one node (called the
initiator in this paper) sends signals with stable RSS for a certain period of time,
and the other node (called the listener) verifies the stableness to authenticate
the initiator. In the key transmission phase, the initiator tunes its transmitting
power level based on a random number, i.e., transmits a session key in plaintext;
and the listener obtains the secret key based on RSS. Note that these two phases
are performed, as the owner waves them together in an unpredictable way. Then,
the listener replies with a message generated by the secret key (e.g., a message
authentication code) to acknowledge the integrity of the received secret key.
The subsequent communications will be secured by such secret key. In addition,
the above operations can be triggered after the owner presses a special button
on the devices (and waves them), or when the devices detect the wave and
automatically start the process of authentication and key transmission because
more and more WPAN devices are configured with motion sensors.

While vBox takes advantage of RSS to complete the authentication and key
transmission, the statistics of RSS is greatly affected by the relative distance and
direction between the sender and the receiver. When the initiator and the listener
devices are being held together and waved by the owner, the relative distance and
direction between two devices remains unchanged. In contrast, it is extremely dif-
ficult to predict such relative distance and direction between the initiator (or the
listener) and any other wireless devices not being held by the owner. In this way,
the RSS detected by the listener can be synchronized by the initiator so that the
authentication and key transmission succeed. Meanwhile, the listener node being
waved cannot receive wireless signals with stable strength from any other wireless
devices, so no adversarial wireless device would be authenticated successfully by
the listener. Finally, no wireless device except the listener can detect the signal
strength (i.e., the secret key) tuned by the initiator.

We implemented vBox on commercial-off-the-shelf ZigBee devices. Through
extensive experiments under the normal case and several attack scenarios, we
demonstrate that, by choosing suitable parameters including the authentication
threshold and the power level difference for key transmission, vBox successfully
establishes secure channels between wireless devices against various attacks.

The rest of this paper is organized as follows. Section 2 introduces preliminary
knowledge on wireless propagation and related works. Section 3 illustrates the
main idea of vBox. Section 4 presents the complete vBox protocol and discusses
the parameters. Section 5 depicts the extensive experiments we have conducted
for validating the properties of vBox. Section 6 evaluates the proposed scheme
from the security and usability aspects. Section 7 concludes the paper.

2 Preliminaries and Related Work

2.1 Wireless Signal Propagation

The strength of a wireless signal fades, when it propagates over the air. The
received signal strength (RSS), i.e., the receiver’s measurement of the wireless

vBox: Proactively Establishing Secure Channels Between Wireless Devices 335

signals, is determined by two factors: (a) the initial strength of the wireless
signal, or the transmitting power at the transmitter, and (b) the path loss,
which depicts how the signal is fading through the wireless channel. So, the RSS
can be expressed as Eq. 1 as follows,

PR = P0 − PL (1)

where PR is the strength (or power) of wireless signals at the receiver, and P0

is the initial strength. P0 and PR are usually measured in dBm, and the path
loss PL is represented in dB, representing the ratio between the strengths at the
transmitter and the receiver.

The path loss mainly consists of two factors, called the slow fading and the
fast fading. The slow fading is caused by events such as shadowing, where a hill
or large building obscures the main signal path between the transmitter and
the receiver. The two main causes of fast fading are (1) the multipath effect,
where the wireless signal reaches the receiver through two or more paths; (2)
Doppler shift, where the relative motion between the transmitter and the receiver
causes frequency shifts of the signal. Fast fading is reflected by the tremendous
fluctuations of the instantaneous RSS values.

The path loss of wireless signals inside a building or densely populated area,
is modeled as a log-distance formula [11] as follows:

PL = C + 10α lg(d) + Fg (2)

The first part C is a constant which accounts for system losses. The second
part 10αlog(d) is related to the slow fading, where α is called the path loss
exponent, d is the distance between the transmitter and the receiver. The values
of α range from 1.2 to 8 [9], depending on the certain propagation environment.
In the free space, the value of α is 2.

The fast fading is mainly expressed in the third part Fg, which is a variable
reflecting the channel fading. In an indoor environment, the channel fading is
mainly fast fading caused by the multipath effect. Particularly, for a receiver
that is moving rapidly, the fading is aggravated by Doppler shift, which results
in great fluctuations in its RSS measurements of received wireless signals. In this
case, Fg is a variable with Rician distribution [1].

2.2 RSS-based Authentication and Key Establishment

Since the RSS is highly related to the wireless channels from the transmitter to
the receiver, RSS-based approaches are proposed for proximity authentication
[10] and key establishment. RSS measurement is a generally available feature
for most commercial-off-the-shelf wireless devices, so such approaches outrange
many hardware-based solutions in terms of usability.

In temporal RSS variation authentication (TRVA) [16], one node sends a list
of RSS variations of acknowledgment frames that it has ever received, and then
the other node authenticates the sender if the list is consistent to its own obser-
vation. TRVA is based on the reciprocity principle of wireless channels, but it

336 W. Wang et al.

requires that the two nodes authenticate each other a priori by other means. On
the other hand, in proximity-based authentication solutions, the receiver collects
the RSS statistics to determine their proximity, and decide a proximate appli-
cant as legitimate; so they eliminate the necessary prior knowledge in traditional
authentication systems. Good Neighbor [4] is a wireless device pairing scheme,
and it requires neither shared secrets nor out-of-band channels as vBox. How-
ever, Good Neighbor assumes that the receiver device has at least two antennas
separated by a reasonable distance (e.g., 10 cm), so it is not always suitable for
small-size WPAN devices. The authentication design of vBox shares the same
spirit with BANA [13], which employs the distinct RSS variation to authen-
ticate legitimate nodes. In BANA, the unique on-body channel characteristic
arises from the multipath fading in the surroundings, while vBox requires the
owner to explicitly build such an environment (i.e., wave the WPAN devices).

RSS-based key establishment leverages the reciprocity of wireless commu-
nication, i.e., the wireless channels between two communicating parties affect
both the parties equally and causes identical RSS variations on each of them.
Moreover, these variations are distinct from other channels between any com-
municating party and attackers, especially in dynamic environments. Therefore,
a shared key can be generated secretly based on the observed RSS variations.
Radio-telepathy [7] establishes a shared secret key between 802.11 nodes by
exploiting the reciprocity property. R. Wilson et al. discussed such key estab-
lishment approaches in ultrawideband channels and analyzed the approximation
and upper bound on the key size [15].

However, the difference of the RSS variations between the channels of legit-
imate nodes and those of adversaries, becomes insignificant in static environ-
ments. S. Jana et al. evaluated the effectiveness of key extraction based on the
reciprocity principle in different wireless scenarios, and showed that, in static
environments the eavesdropper could predict the “secret” key between two nodes
[5]. Then, an adaptive approach was proposed to generate secret keys [5] at a
high rate and high entropy, in both static and dynamic environments. In fact,
the similar risk is also notified by the designers of BANA [13], that is, when the
owner is not in motion, the legitimate on-body channel characteristic is not so
distinct from that of the attack channels.

3 vBox Design

3.1 Design Goal and Threat Model

The goal of vBox is to establish secure channels between two small-size wireless
devices, without any prior association. After the two phases of vBox, these two
devices called the initiator and the listener1, authenticate each other and share
a secret session key used for the confidentiality, authenticity and integrity of

1 The terms “initiator” and “listener”, are used to emphasize their roles in the authen-
tication and key transmission phases; however, in the following secure communica-
tions, these nodes can play different roles according to the applications.

vBox: Proactively Establishing Secure Channels Between Wireless Devices 337

the following wireless communication. Designed for small-size mobile wireless
nodes, vBox requires no extra hardware or human interface, and it leverages the
RSS measurement for authentication and key transmission, which is a standard
function of wireless devices. No computationally-expensive or time-consuming
processing (e.g., public-key cryptographic computations) is involved in vBox, so
this lightweight solution is very suitable for resource-constrained devices.

In vBox, the two wireless devices are picked up by the owner, so we assume
that the owner has the ability and caution to distinguish his own devices from
any other malicious devices, not belonging to him. We do not consider the social
engineering attacks on the owner; for example, replace the owner’s Bluetooth
headset by another one with embedded malicious codes. The detailed parameters
and steps of the vBox protocol are publicly known. At the same time, adversaries
could eavesdrop and send wireless signals, attempting to be authenticated as a
legitimate device or obtain the secret key. In particular, an attacker would receive
and measure all wireless signals from the initiator or the listener, or send signals
to them arbitrarily. Moreover, we assume that, the adversaries might be a place
very close to the owner, e.g., only 1m, but not be detected physically.

3.2 Basic Insight

Building a Virtual Box over the Wireless Channels. As mentioned in
the preliminaries, the wireless signal prorogation between two devices is highly
related to their relative position. For two nearby devices that are relatively static
to each other, the wireless channel between them is very stable. On the contrary,
for two devices that are in rapid relative motion, the wireless signal prorogation
between them experiences tremendous fluctuations. When two devices are held
together and waved randomly in the air: the wireless channel between the two
relatively static devices remains stable, while any channel between a third device
and either of these two devices is fluctuated remarkably. Based on this fact, the
owner can build a shielded environment for the legitimate initiator and listener
in terms of signal stability, by holding and randomly waving them together. We
name the virtual shield environment vBox.

Figure 1 illustrates the functionality of vBox in a typical indoor environment
in the presence of an adversary. The initiator and the listener are held together
and waved by the owner, while the adversary hides behind the wall. The solid-
arrowed line indicates the direct path between the legitimate nodes, while the
dashed-arrowed lines indicate the multiple paths between the legitimate devices
and the adversary. We recognize three wireless channels in this scenario:

– The initiator-listener channel . Because the initiator and the listener are kept
very close, the direct path (DP) is the dominant path [12], which suffers little
from the environment changes. In other words, the RSS variation is very small.

– The adversary-listener channel . This channel exists when the adversary tries
to send data to the listener to be authenticated as a legitimate device. The sig-
nal propagates through multiple paths. Meanwhile, the rapid relative motion
between the adversary and the listener causes the Doppler shift. So the chan-
nel is filled with fluctuations, leading to large RSS variations at the listener.

338 W. Wang et al.

Fig. 1. Signal propagation of the in-box channel and the off-box channel

– The initiator-adversary channel . This channel exists when the adversary tries
to eavesdrop data sent between the legitimate nodes. This channel is also fluc-
tuated due to the rapid movement of the initiator and filled with fluctuations
that lead to large RSS variations at the adversary.

In the remainder, the stable channel between the initiator and the listener
is also called the in-box channel, and sometimes the off-box channel is used to
represent both the initiator-adversary and adversary-listener channels.

Proximity-Based Authentication Within vBox. In the first phase, the
initiator is authenticated as follows. This phase can be triggered by the user by
pressing buttons on the devices, or automatically by the device themselves if
they are configured with motion sensors.

(a) The initiator sends a sequence of packets at a fixed TX power level for a
predetermined period of time, as an authentication request;

(b) On receiving the authentication request, the listener calculates the standard
deviation of the sequence’s RSS;

(c) If the calculated standard deviation is lower than a threshold, the listener
accepts the authentication request; otherwise, it is rejected and the vBox
protocol terminates.

vBox ensures that, only the initiator that is held and waved together with
the listener, will be authenticated successfully. As is illustrated above, the RSS
variation of the in-box channel is very small, while that of off-box channel is
much greater. So, this security goal is achieved by determining the threshold of
RSS standard deviation.

Tuned-RSS as Secret Keys Within vBox. After being successfully authen-
ticated, the initiator sends a plaintext secret key to the listener, by tuning the
RSS of another sequence of packets. We name this key transmission method
active RSS tuning. The method is as follows:

vBox: Proactively Establishing Secure Channels Between Wireless Devices 339

(a) The initiator generates an m-bit random key on its own. Then, it sends the
key as a sequence of packets, where the TX power of each packet is tuned
by one key bit: if the bit is ‘1’, the packet is transmitted at the power level
of P0H ; if it is ‘0’, the packet is transmitted at P0L.

(b) The listener receives the m packets, and extracts the secret key based on its
RSS measurements.

vBox ensures that, the secret key recovered by listener is identical to the
one generated by the initiator, and adversaries cannot recover these random
bits. The in-box channel is very stable and suffers little noise, while the secret
information (i.e., the initial TX power) is mixed with the noise in the off-box
channel. So, the security goals are achieved by determining P0H and P0L as well
as the key recovery rule at the listener.

3.3 The RSS Analysis of vBox

RSS Variation of the Channels. We analyze the RSS (or the strength at
the receiver) of the three channels, to show the practicability of vBox and find
the suitable parameters in the protocols. For the in-box channel, the distance d
between the two devices is almost kept unchanged; and the fading between the
two closely-located devices (i.e., Fg) is expressed as a Gaussian variable XσX

related to the static environment. From Eqs. 1 and 2, we have

PR = P0 − (C + 10α lg(d) + Fg) ≈ P0 + XσX
+ C ′ (3)

where C ′ is a constant. The RSS variation is mainly determined by σX , the
standard deviation of X, which is typical very small if there is not malicious
wireless jamming.

As for the off-box channel, the rapid relative motion between the communi-
cating peers aggravates the fast fading phenomenon substantially, and it follows
the Rician distribution. When the adversary is relatively distant from the legiti-
mate devices and the owner waves the nodes around his body, the change of the
distance between the initiator (or the listener) and the adversary is very small,
compared with the effect of fast fading. From Eqs. 1 and 2, we have

PR = P0 − (C + 10α lg(d) + Fg) ≈ P0 + RσR
+ C ′′ (4)

where C ′′ is another constant and R is a variable of Rician distribution with
standard deviation σR. Note the RSS variation of the initiator-adversary channel
is identical to that of the adversary-listener channel.

RSS Analysis on Authentication. The authentication of vBox requires that,
the RSS variation through the in-box channel is much smaller than the RSS
variation through the off-box channel, and there is a clear gap between them.
From Eqs. 3 and 4, it is required that: σX � σR.

Figure 2 shows the elementary experiment results in these different channels.
In the experiment, the initiator and the adversary send packets to the listener

340 W. Wang et al.

0 50 100 150 200 250 300
−80

−70

−60

−50

−40

−30

−20

−10

0

sample (per 20ms)

R
S

S
 (

dB
m

)

Initiator−Listener

Adversary−Listener

Fig. 2. RSS at Listener, sent by Initiator and Adversary with fixed TX power

0 20 40 60 80 100 120
−80

−70

−60

−50

−40

−30

−20

−10

0

sample (per 20ms)

R
S

S
 (

dB
m

)

Initiator−Listener
Initiator−Adversary

R
T

Fig. 3. RSS at Listener and Adversary, of a tuned key sent by Initiator

with fixed power at a rate of 50 packet/s, respectively; the RSS measured at the
listener is also shown. The legitimate nodes are held and waved rapidly together,
while the adversary is placed 3m away from them. The experiment took place in
an office room for 6 s. From Fig. 2, it is found that, the RSS through the in-box
channel is very stable, almost fixed at −10 dBm. In contrast, the RSS of the
adversary-listener channel is filled with fluctuations, varying dramatically in the
range of [−70 dBm,−35 dBm]. It is verified that there exists a clear gap between
the RSS variation of the in-box channel and that of the off-box channel, i.e. the
RSS variation of the initiator-listener channel is restricted in a small range, while
that of the adversary-listener channel is much more significant.

RSS Analysis on Key Transmission. Firstly at all, to transmit key bits
correctly, the difference between P0H and P0L, i.e. ΔP0 = P0H − P0L, shall be
great enough to eliminate the interference of the RSS variation through the in-
box channel; at the same time, to transmit key bits secretly, ΔP0 shall be smaller
enough, to prevent the adversary from recovering the random bits through the
off-box channel. Basically, we have: σX � ΔP0/2 � σR.

vBox: Proactively Establishing Secure Channels Between Wireless Devices 341

Figure 3 is the experiment result of the key bit tuning in vBox. This experi-
ment configuration is the same as that in Fig. 2, except that the initiator sends
128 bits by tuning the signal strength of 128 consecutive packets in 3 s, and
ΔP0 is 4 dBm. The sequence of bits consists of ‘0’ and ‘1’ alternatingly, i.e.,
010101...0101. It is shown that, by choosing a reasonable threshold RT (the
dashed line in Fig. 3), the listener is able to recover the bit sequence from its
RSS measurements correctly: if the RSS is higher than RT , the bit is ‘1’; if lower,
it is ‘0’. In contrast, adversaries cannot recover the correct bit sequence from its
RSS measurements, as the original tuning is overwhelmed by the inherent fluc-
tuations in the initiator-adversary channel.

4 The Detailed vBox Protocol

In this section, we describe the detailed authentication and key transmission
steps, and then present the parameters in this protocol.

4.1 The Initiator-Listener Protocol

The secure communication between the two devices is composed of three phases.
In the first stage, the listener authenticates the initiator, following the proximity-
based authentication; in the second stage, the initiator transmits the secret key to
the listener, by actively tuning the RSS. These two phases shall be performed, as
the owner waves the virtual box. Then, in the third phase, all data are protected
by the negotiated secret key; e.g., each data packet is encrypted and appended
with a message authentication code.

In vBox, the secure channel is established by the owner explicitly. Sometimes,
the owner needs to be responsible for two issues: (a) appoint the roles (i.e., the
initiator or the listener); and (b) trigger the vBox protocol. These inputs can
be set by simple interface. For example, a long press on the button means the
listener, and a normal press means the initiator; then, the devices will start the
protocol. However, these issues may be solved automatically, too. For example,
a mobile phone always acts as the listener, and a smart bracelets or Bluetooth
headset always acts as the initiator; or, if the devices are configured with motion
sensors, the protocol can be triggered as they are waved. In the following descrip-
tion, I and L stand for the initiator and the listener, respectively.

Phase 1: Initiator Authentication

(a) I→L: AuthReq(j), where j = 1, ..., N and N is the packet number for I to
send. I sends N consecutive AuthReq using the fixed TX power level P0I .

(b) L→I: AuthResp(AuthResult). L receives N AuthReq from I and measures
the RSS values. Upon receiving the N AuthReq, L calculates the mean value
and the standard deviation of the N values, denoted as RT and σ, respec-
tively. Then σ is compared against a predetermined threshold σT . If σ < σT ,
L replies I with a “success” message; otherwise, replies with a “fail” message.

342 W. Wang et al.

Phase 2: Key Transmission and Listener Authentication

(c) I→L: BitCarrierMsg(i), where i = 1, ...,M and M is the length of the
key. I decides its two transmitting power levels as P0H = P0I + ΔP0/2,
P0L = P0I − ΔP0/2. I successively sends M key bit messages to L with
transmitting power level P0H or P0L. The transmitting power of the ith
message is decided by the kth key bit ki. If ki = 1, it is transmitted at power
level P0H ; if ki = 0, it is done at P0L.

(d) L→I: AuthBack(EK′(OK)). L receives the M BitCarrierMsg from I and
records the M corresponding RSS values. L firstly verifies that all the RSS
values fall into the range [RT −ΔP0/2−3σX , RT +ΔP0/2+3σX], where RT

is the mean of the RSS values of AuthReq in (b). Then L starts to recover
the key from the M RSS values. L interprets each RSS value above RT into
bit ‘1’ and each RSS value below RT into bit ‘0’, orderly. The key recovered
by L is denoted as K ′. L replies I with an “OK” message encrypted by K ′.

(e) I→L: Success(). I decrypts the encrypted “OK” message with the original
key K, to verify the correctness of K ′ and authenticates L. If K ′ = K is
verified, I replies L with a success message.

(f) L: On receiving the Success message, L blinks its LED to inform the user.
Till now, a common secret key K has been established between I and L after
they authenticate each other.

Phase 3: Encrypted Communication

(g) I↔L: I and L protect the following communication with the established
symmetric key.

4.2 Parameters

The following parameters are used in the prototype. A more detailed discussion
on the parameters is given in Appendix A. We use a 128-bit key for key trans-
mission, and configure T as 20 ms, i.e. 50 packets are transmitted per second for
authentication and key transmission. The authentication time is 4 s in Phase 1.

The Power Level Difference ΔP0. To deliver a 128-bit key correctly with a
probability of 0.99, ΔP0 should satisfy: ΔP0 ≥ 5·σX . At the same time, ΔP0

should be as small as possible on the premise of ensuring the reliability of the
key transmission.

The Valid RSS Range for Key Transmission. We determine a valid RSS
range for key transmission, which is [RT − ΔP0/2 − 3σX , RT + ΔP0/2 + 3σX],
according to the empirical 3-sigma rule for Gaussian distribution [2]. The pro-
tocol requires that all the RSS values of the BitCarrierMsg should fall in to
the valid range.

5 Experiments

We carry out extensive experiments in real world scenarios on three aspects:
(1) Estimation of the RSS variation of the in-box channel and the off-box chan-
nel; (2) Verification of the effectiveness of the vBox protocol, including both
authentication and key establishment; (3) Verification of the security of vBox.

vBox: Proactively Establishing Secure Channels Between Wireless Devices 343

Fig. 4. Layout of the rooms in Scenario A and Scenario B

5.1 Setup

The experimental system involves three wireless nodes: the initiator, the listener,
and the adversary. Each wireless node in our experiment is a SmartRF05 evalua-
tion board from Texas Instruments, which is a popular ZigBee application tester
in home automation development. The node works at the radio frequency of
2.4 GHz and is capable of varying its transmission power. Each node is equipped
with a 2 dBi omni-directional SMA antenna.

The initiator and the listener are held together by a researcher in his hand and
kept relatively stationary to each other during the experiment. The researcher
waves initiator and the listener simultaneously rapidly in front of himself. The
adversary is placed at a distance away from the researcher, which can be as near
as 1 m and as far as 8 m. The experiments are carried out in three scenarios:

– Scenario A. Compact office room. The office room is 4 m × 3.5 m× 3.5 m in
size. The layout is shown by Fig. 4(a).

– Scenario B. Spacious living room. The living room is 8m × 4m × 3.5m in
size. The layout is shown by Fig. 4(b).

– Scenario C. Large dining hall. The dining hall is as large as 20m × 15m and
the ceiling is 6 m high. A clean area of 50 m2 in the hall is selected for the
experiment.

5.2 Real World Estimation of the RSS Variation σX and σR

The experiments show that σX � σR holds in real world environment. We
evaluate the approximation of σX and σR by performing the authentication
phase of the vBox protocol 50 times in each experimental scenario and calculating
the RSS variations of the initiator-listener channel and the initiator-adversary
channel, respectively. The results for the initiator-listener channel is independent
of the scenario, so they are shown in Fig. 5 as “Legitimate”; the results for the
initiator-adversary channel are shown in Fig. 5 as “Scenario A”, “Scenario B”,
and “Scenario C”, respectively. From the experimental results, we expect the
real world RSS Variation σX and σR to be around 0.67 dBm and 6.21 dBm,
respectively. A detailed description of the process is given in Appendix B.

344 W. Wang et al.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Locations

rs
s

va
ria

tio
n

(d
B

m
)

Legitimate
Scenario A
Scenario B
Scenario C

Fig. 5. σ values in different scenarios

5.3 On the Effectiveness of the vBox Protocol

We conducted a series of experiments to verify the effectiveness of vBox. The
protocol parameters are determined based on the experiment results and the
principles in Sect. 4.2, and are used throughout the following experiments.

The Accuracy of Authentication. We verify the accuracy of the proximity-
based authentication in the vBox protocol by testing it against the initiator and
the adversary at the same time. In this experiment, both the initiator and the
adversary try to authenticate themselves to the listener following the protocol.
The difference is that, the initiator is held and waved together with the listener,
while the adversary is placed at a distance away. The experiment is conducted
for 50 times in each scenario, and the adversary is located at a different spot
each time. The authentication threshold, i.e. σT , is set to 1.5 dBm, according to
the results of Sect. 5.2. The authentication time is set to 4s, i.e. 200 packets are
transmitted for authentication. The experimental results show that the authen-
tication achieves 100 % accuracy through all the scenarios, with no false positive
or false negative.

The Reliability of Key Transmission. We verify the reliability of the key
transmission of the vBox protocol by making the initiator deliver a known 128-bit
key to the listener with active RSS tuning following the protocol, and validat-
ing whether listener can restore the key correctly from the RSS measurements.
According to Eq. 7, ΔP0 is set to 4 dBm. The packet rate is 50/s. The key is a
random 128-bit sequence generated by the initiator, denoted as K. The experi-
ment is conducted 50 times in each scenario, and the adversary is located at a
different spot each time. The experimental results show that the success ratio of
key transmission reaches 100 % through all the scenarios.

The Resistance Against Eavesdropping. When the initiator transmits the
key, the adversary might be placed at a distance away and eavesdrops on the

vBox: Proactively Establishing Secure Channels Between Wireless Devices 345

Table 1. Correlation coefficient for eavesdropping

ρ (average) ρ (min) ρ (max)

Scenario A 0.06 0.002 0.17

Scenario B 0.06 0.002 0.20

Scenario C 0.08 0.002 0.21

Overall 0.07

key transmission process. The experiment is conducted for 50 times in each
scenario, and the adversary is located at a different spot each time. The key
is the same random key generated by the initiator in the above section. We
evaluate the resistance against eavesdropping of the key transmission method
by calculating the Pearson correlation coefficient between the key derived by
the adversary (K ′) and the original key (K), both in the form of bit sequence.
The smaller the correlation coefficient is, the greater resistance the method has
against eavesdropping. The Pearson correlation coefficient is calculated as:

ρK,K′ =
E(KK ′) − E(K)E(K ′)

√
E(K2) − E(K)2

√
E(K ′2) − E(K ′)2

(5)

The results are shown in Table 1. The overall correlation coefficient of the eaves-
dropped key and the original key throughout all the scenarios is 0.07. Even in
the worst case, which actually only occurred twice among 150 trials, the coeffi-
cient is no larger than 0.21. The small correlation coefficient indicates that little
information can the adversary get from the eavesdropped RSS values. In addi-
tion, the adversary himself has no idea which bits of the key are incorrect. The
result implies that recovering the key correctly by eavesdropping is infeasible,
even when performed at a distance as near as 1 m from the initiator.

The Resistance Against False Key Attack. We simulate the effect of a false
key attack using the same ΔP0 as the initiator. As analyzed in Sect. 6.1, such
attacks will be detected and failed by the valid range check. On this premise, we
still want to test the distortion effect that the channel fluctuation causes on the
false key. We assume that the listener recovers the key bits from the RSS mea-
surements of the adversary regardless of the valid RSS range: interpreting any
RSS above the mean value as ‘1’, and any RSS below the mean value as ‘0’. Then
we calculate the correlation coefficient between the recovered key and the origi-
nal false key. We let the adversary send a false key to the moving listener from 50
random spots in each scenario, with other experimental settings unchanged. The
results regarding the detection ratio of the attack and the correlation between
the recovered key and the original false key are shown in Table 2: The detection
ratio column clearly shows that all of the false key attack attempts are detected
by the valid range check. On this premise, the results on the correlation coeffi-
cient in the rest columns is similar to those in Table 1, which is a proof of the
distortion effect of the channel fluctuations.

346 W. Wang et al.

Table 2. Detection ratio and correlation coefficients

Detect Ratio ρ (average) ρ (min) ρ (max)

Scenario A 100 % 0.06 0.02 0.16

Scenario B 100 % 0.07 0.02 0.20

Scenario C 100 % 0.07 0.03 0.19

Overall 100 % 0.07

6 Evaluation and Analysis

In this section, we analyze vBox in terms of security and usability.

6.1 Security

Eavesdropping. The security of the scheme against eavesdropping is well guar-
anteed by the RSS fluctuations on the adversary’s side which are introduced by
the movements. The key transmission SNR for the initiator-adversary channel
is too low for the adversary to recover the key bits. As shown in Table 1, the
adversaries cannot obtain enough information on the key bits, even when they
are very close (1 m) to the initiator. We can even choose a smaller ΔP0 to ensure
more protections against eavesdropping, for the value of ΔP0 in our experiments
is more than sufficient for reliable key transmission in the in-box channel.

False Key Attacks. In extreme cases, if the initiator suddenly loses the con-
nection with the listener right after being authenticated successfully (e.g., out of
battery), the adversary might launch a false key attack by sending a key to the
listener in the name of the initiator. The false key in this attack is also delivered
in the RSS tuning way as required by the protocol. However, the attack will be
detected and prevented in the vBox protocol. For an attacker that uses a very
large ΔP0 parameter to overcome the great fluctuation of the adversary-listener
channel, the attempt will be thwarted by the valid range check in Step (d) of
the protocol. For an attacker that uses the same ΔP0 parameter as the initiator,
the situation is worse, because: (1) he can not pass the valid range check, either;
(2) the key is greatly distorted by the great fluctuation of the adversary-listener
channel (similar to the case of eavesdropping), so the listener will shared a “fake”
key with the adversary and the adversary cannot decrypt packets.

LOS (line-of-sight) Attacks. LOS attacks refer to the scenarios where the
attacker can getting relatively close to the user and a direct signal propagation
path exists between them. For some RSS-based authentication or key establish-
ment schemes whose security heavily rely on a multipath environment [5,13],
such attacks can be very threatening. However, vBox has strong resistance
against LOS attacks, because the fast relative motion between the legitimate
devices and the attacker leads to tremendous Doppler shift in the off-box chan-
nel [11], which contributes largely to the fast fading of the channel. Even if the

vBox: Proactively Establishing Secure Channels Between Wireless Devices 347

attacker launch attacks in a very near proximity (1 m as described in the experi-
ment section) with no obstacle, the security is still well guaranteed. In the same
spirit, the nature of vBox also makes it more resistant to attacks using direc-
tional antennas, where the attacker tries to eliminate the multipath effect by
using directional antennas that provide a narrower main lobe of the radio wave.

Channel Prediction Attacks. The proposed scheme is also secure against
channel prediction attacks. In such attacks, the attacker might leverage his
knowledge of the environment to predict the wireless channel between himself
and the target device. However, this attack is usually effective against stationary
targets only. In our scheme, the random movement of the initiator makes the
realtime channel prediction impractical. Note that this random entropy comes
from the wave by the owner but also the greatly aggravated fast fading of the
wireless channel due to the wave.

6.2 Usability

Operation Time. The vBox protocol is very efficient in terms of time con-
sumption. The experiment results show an operation time of about 6.5 s (4 s for
authentication, and 2.5 for key transmission). The time efficiency is remarkably
high compared with existing works, which averagely takes more than 10s to
finish the authentication [4,13].

Secret Bit Rate. The secret bit rate (as defined in [5]) of vBox is approximately
1, meaning that each RSS measurement can contribute nearly 1 secret bit. This
can be seen as an advantage over existing key extraction approaches, whose secret
bit rates are mostly around 0.3 [3,5,7,14]. At a sending speed of 50 packet/s,
vBox can finish the establishment of a 128-bit key within 3 s.

Computation Overhead. vBox is lightweight in terms of computation over-
head. Unlike approaches that leverage public key cryptography, there is no com-
putationally expensive operations involved in vBox. This lightweight feature
makes it a good choice for low-end WPAN nodes.

Versatility. vBox does not rely on any pre-shared secrets between the devices or
additional hardware support such as special biometric sensors, NFC transceivers,
or multiple antennas. vBox is applicable for almost all off-the-shelf small-size
wireless devices.

Ease of Use. The users of vBox do not need any special training. The human
interaction involved is very simple: pressing a button and waving for a short
period of time. For devices that are equipped with motion sensor (which has
already been widely adopted), the operation can be even simpler by detecting
the motion of the user and starting the protocol automatically.

7 Conclusion

In this paper, we proposed vBox, a method to proactively establish secure chan-
nels between wireless devices without any prior knowledge. By requiring the

348 W. Wang et al.

owner to simply waving the devices together, vBox builds a virtually shielded
environment for RSS-based authentication and secret key transmission in plain-
text. vBox eliminates the dependence on dynamic environments of existing RSS-
based authentication and key negotiation approaches. We presented the detailed
vBox protocol and implemented it on commercial-off-the-shelf ZigBee devices.
The experiment results and security analysis demonstrate that vBox is light-
weight, easy-of-use, efficient and secure against various attacks.

A Detailed Discussion of the Parameters

Key Length. We recommend that the symmetric key delivered in Phase 2 use
a length of 128. The time cost of Phase 2 is proportional to the length of the key,
so the key material should not be too lengthy. 128-bit key is security enough for
a symmetric encryption algorithm such as AES.

The Packet Interval T . The packet interval T in the protocol is the time inter-
val between the transmission of two successive AuthReq or BitCarrierMsg,
which are used by the initiator for authentication or key transmission, respec-
tively. To eliminate the correlation between the measured RSS values, T should
be greater than the coherence time of the adversary-listener channel. The coher-
ence time is estimated with the formula tc = c/2fv, where c denotes the speed
of light, f denotes the radio frequency, and v denotes the moving speed of the
listener. In our protocol, the listener is held by the user and waved rapidly in
the air, the speed of which is around 3 m/s. The radio frequency is 2.4 GHz. The
resulting coherence time is about 20 ms.

The Authentication Time. In the protocol, the initiator is required to send
N consecutive AuthReq packets to the listener for authentication with the time
interval T . The listener measures and records the RSS of the N packets to
calculate the standard deviation σ. N should be large enough to provide the
listener with sufficient samples for the evaluation. Particularly, the amount of
RSS measurements should be sufficient for the listener to detect and evaluate
the fluctuations in the adversary-listener channel, so as to defeat the malicious
authentication trials by the adversary. As a matter of fact, our protocol can
detect the existence of the adversary in several seconds, because the intentional
movements of listener makes the adversary-listener channel fluctuates tremen-
dously.

The Power Level Difference ΔP0. In our protocol, the process of delivering
an m-bit key is composed by the consecutive transmissions of m data packets.
The transmitting power of each packet is either P0H (representing bit ‘1’) or
P0L (representing bit ‘0’), in consistency with the key bits orderly. As the Active
RSS Tuning method can be deemed as a form of baseband transmission of digital
signal through an AWGN (Additive White Gaussian Noise) channel, the level
difference ΔP0 directly affects the reliability of the key transmission by affecting

vBox: Proactively Establishing Secure Channels Between Wireless Devices 349

the SNR (signal-to-noise ratio). The SNR (in dB) can be estimated using the
formula:

S/N = 10 lg(σ2
P /σ2

X) (6)

where σP = ΔP0/2, σX is the standard deviation of the Gaussian noise as
defined in Eq. 3. By consulting the theoretical BER-SNR curve in [8], we can
figure out that, to deliver a 128-bit key correctly with a probability of 0.99, the
SNR should be greater than 8dB. According to Eq. 6, we can derive:

ΔP0 ≥ 5·σX (7)

At the same time, ΔP0 should be as small as possible on the premise of ensur-
ing the reliability of the key transmission. A low ΔP0 relative to the RSS vari-
ation of the initiator-adversary channel, σR, helps prevent the adversary from
retrieving the key bits from the channel fluctuations.

The Valid RSS Range for Key Transmission. We use RT to denote the
mean value of the RSS measurements on the listener during the authentication
phase. If the initiator-listener channel is noiseless, when P0I (TX power) pro-
duces RT (RSS), P0H should produce RT + ΔP0/2, and P0L should produce
RT −ΔP0/2. However, the actually measured RSS values might be a little devi-
ated from RSSH and RSSL due to the existence of the Gaussian noise. So we
determine a valid RSS range for key transmission, which is [RT −ΔP0/2− 3σX ,
RT + ΔP0/2 + 3σX]. The measured RSS is likely to fall into this range with
a probability higher than 99.7 %, according to the empirical 3-sigma rule for
Gaussian distribution [2]. The protocol requires that all the RSS values of the
BitCarrierMsg should fall in to the valid range, so as to resist the False
Key Attack as described in Sect. 6.1. The listener restores the key by inter-
preting a RSS among [RT ,RT + ΔP0/2 + 3σX] into bit ‘1’, and a RSS among
[RT − ΔP0/2 − 3σX ,RT] into bit ‘0’.

B Real World Estimation of σX and σR

The initiator and the listener is held together within the researcher’s hand,
and their antennas are in parallel with a distance of about 3 cm. During the
experiment, the researcher waves the two devices rapidly in front of himself
as described in the protocol. The initiator consecutively sends 200 repetitive
packets to the listener at a rate of 50/s with a fixed TX power, 0 dBm. The
listener records the 200 RSS values and calculates their standard deviation σ, as
an estimation of the initiator-listener channel RSS variation. The experiment is
carried out for 50 times. Note that the initiator-listener channel is a near field
channel which suffers little influence from the environment, so we did not change
the location of this experiment intentionally. The results are shown in Fig. 5 as
“legitimate”. All of the 50 σ values fall into the range [0.40 dBm, 0.97 dBm], and
the average is 0.67 dBm. We expect the initiator-listener channel RSS variation
to be around 0.67 dBm.

350 W. Wang et al.

We measure the RSS variation of the initiator-adversary channel in three
different scenarios as described above: a compact office room, a spacious living
room, and a large dining hall, respectively. In this experiment, the adversary is
placed a distance away from the initiator, at a different location for each trial.
Again, the initiator consecutively sends 200 repetitive packets to the adversary
at a rate of 50/s with a fixed TX power, 0 dBm. The adversary records the 200
RSS values and calculates their standard deviation σ, as an estimation of the
initiator-adversary channel RSS variation. In each scenario, the experiment is
carried out for 50 times. In each trial, adversary is located at a random spot of
the current scenario. The distance between the two nodes ranges from 1m to 8m.
We believe that 1m is the minimum distance that an attacker can launch attacks
near the user without being noticed. The results are shown in Fig. 5 as “scenario
A”, “scenario B”, and “scenario C”, respectively. All of the 150 σ values fall
into the range [5 dBm, 8 dBm]. The overall mean of σ of the three scenarios is
6.21 dBm. As an approximation, we expect the initiator-listener channel RSS
variation to be around 6.21 dBm, which is far larger than that of the initiator-
listener channel as estimated above (0.67 dBm).

References

1. Wireless Propagation. http://people.seas.harvard.edu/jones/es151/prop models/
propagation.html

2. Normal Distribution. http://en.wikipedia.org/wiki/Normal distribution
3. Aono, T., Higuchi, K., Ohira, T., Komiyama, B., Sasaoka, H.: Wireless secret

key generation exploiting reactance-domain scalar response of multipath fading
channels. IEEE Trans. Antennas Propag. 53, 3776–3784 (2005)

4. Cai, L., Zeng, K., Chen, H., Mohapatra, P.: Good neighbor: Ad hoc pairing of
nearby wireless devices by multiple antennas. In: Proceedings of the Network and
Distributed System Security Symposium, NDSS 2011 (2011)

5. Jana, S., Premnath, S.N., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy,
S.V.: On the effectiveness of secret key extraction from wireless signal strength in
real environments. In: Proceedings of the 15th Annual International Conference on
Mobile Computing and Networking, MOBICOM 2009, pp. 321–332 (2009)

6. Kalamandeen, A., Scannell, A., de Lara, E., Sheth, A., LaMarca, A.: Ensemble:
cooperative proximity-based authentication. In: Proceedings of the 8th Interna-
tional Conference on Mobile Systems, Applications, and Services (MobiSys 2010),
pp. 331–344 (2010)

7. Mathur, S., Trappe, W., Mandayam, N.B., Ye, C., Reznik, A.: Radio-telepathy:
extracting a secret key from an unauthenticated wireless channel. In: Proceedings of
the 14th Annual International Conference on Mobile Computing and Networking,
MOBICOM 2008, pp. 128–139 (2008)

8. Divya, M.: Bit error rate performance of bpsk modulation and ofdm-bpsk with
rayleigh multipath channel. Int. J. Eng. Adv. Technol. (IJEAT) 2(4), 623–626
(2013). ISSN: 2249-8958

9. Neskovic, A., Neskovic, N., Paunovic, G.: Modern approaches in modeling of mobile
radio systems propagation environment. IEEE Commun. Surv. Tutorials 3(3), 2–12
(2000)

http://people.seas.harvard.edu/jones/es151/prop_models/propagation.html
http://people.seas.harvard.edu/jones/es151/prop_models/propagation.html
http://en.wikipedia.org/wiki/Normal_distribution

vBox: Proactively Establishing Secure Channels Between Wireless Devices 351

10. Patwari, N., Kasera, S.K.: Robust location distinction using temporal link sig-
natures. In: Proceedings of the 13th Annual International Conference on Mobile
Computing and Networking, MOBICOM 2007, pp. 111–122 (2007)

11. Rappaport, T.S.: Wireless communications - principles and practice. Prentice Hall,
Upper Saddle River (1996)

12. Rappaport, T., Milstein, L.: Effects of radio propagation path loss on ds-cdma cel-
lular frequency reuse efficiency for the reverse channel. IEEE Trans. Veh. Technol.
41(3), 231–242 (1992)

13. Shi, L., Li, M., Yu, S., Yuan, J.: BANA: body area network authentication exploit-
ing channel characteristics. In: Proceedings of the Fifth ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks, WiSec 2012, pp. 27–38 (2012)

14. Tope, M.A., McEachen, J.C.: Unconditionally secure communications over fading
channels. In: MILCOM, Military Communications Conference (2001)

15. Wilson, R.D., Tse, D., Scholtz, R.A.: Channel identification: Secret sharing using
reciprocity in ultrawideband channels. IEEE Trans. Inf. Forensics Secur. 2, 364–375
(2007)

16. Zeng, K., Govindan, K., Mohapatra, P.: Non-cryptographic authentication and
identification in wireless networks. IEEE Wireless Commun. 17(5), 56–62 (2010)

Detection and Monitoring

Accurate Specification for Robust Detection
of Malicious Behavior in Mobile Environments

Sufatrio(B), Tong-Wei Chua, Darell J.J. Tan, and Vrizlynn L.L. Thing

Institute for Infocomm Research, 1 Fusionopolis Way, #21-01, Connexis, Singapore
{sufatrio,twchua,jjdtan,vriz}@i2r.a-star.edu.sg

Abstract. The need to accurately specify and detect malicious behav-
ior is widely known. This paper presents a novel and convenient way
of accurately specifying malicious behavior in mobile environments by
taking Android as a representative platform of analysis and implementa-
tion. Our specification takes a sequence-based approach in declaratively
formulating a malicious action, whereby any two consecutive security-
sensitive operations are connected by either a control or taint flow. It
also captures the invocation context of an operation within an app’s
component type and lifecycle/callback method. Additionally, exclusion of
operations that are invoked from UI-related callback methods can be
specified to indicate an action’s stealthy execution portions. We show
how the specification is sufficiently expressive to describe malicious pat-
terns that are commonly exhibited by mobile malware. To show the use-
fulness of the specification, and to demonstrate that it can derive stable
and distinctive patterns of existing Android malware, we develop a sta-
tic analyzer that can automatically check an app for numerous security-
sensitive actions written using the specification. Given a target app’s
uncovered behavior, the analyzer associates it with a collection of known
malware families. Experiments show that our obfuscation-resistant ana-
lyzer can associate malware samples with their correct family with an
accuracy of 97.2 %, while retaining the ability to differentiate benign apps
from the profiled malware families with an accuracy of 97.6 %. These
results positively show how the specification can lend to robust mobile
malware detection.

Keywords: Behavior specification · Mobile security · Malware detec-
tion

1 Introduction

Recent years have seen smart mobile devices becoming increasingly pervasive in
our world. The threat posed by malicious mobile applications (apps), however,
seriously undermines the security and privacy of mobile users [16], who are usu-
ally not even aware of any incidents occurring on their own devices. To deal with
this, a mechanism that can accurately specify malicious behavior of mobile mal-
ware is important and necessary. Using such a specification, malware detectors
can subsequently be built to help ascertain the presence of malicious apps.
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 355–375, 2015.
DOI: 10.1007/978-3-319-24177-7 18

356 Sufatrio et al.

This paper presents a novel way of accurately specifying malicious behavior
in mobile environments. The specification is concise, convenient to write, and
sufficiently expressive to capture a wide range of malicious behavior patterns
that are commonly exhibited by mobile malware. Our specification declaratively
expresses a malicious behavioral action as a sequence of security-sensitive oper-
ations, where any two consecutive operations are connected by either a control
or taint flow. It also captures the invocation context of an operation, including
the one that intercepts a broadcast-based system event, within its Android app-
component type and lifecycle/callback method. Additionally, exclusion of oper-
ations that are invoked from UI-related callback methods can be specified on
selective parts of a malicious action to indicate the absence of user involvement.
We show how our specification is at least as expressive as existing specification
schemes in describing malicious behavior in mobile environments.

To demonstrate the usefulness of our specification, we use it to compile an
initial list of malicious and security-relevant behavior patterns in Android, which
serves as a representative platform of our analysis and implementation. We then
develop a static analyzer to utilize the pattern base and characterize apps in
terms of their applicable pattern entries. Based on the uncovered entries of target
apps, the analyzer associates the apps with a set of known malware families.
Our goal here is to empirically demonstrate that the specification can facilitate
a compilation of malicious pattern base, which can be used by an analyzer to
derive stable, distinctive and obfuscation-resistant behavior patterns of existing
malware families. Experiments show that the analyzer can associate malware
samples with their correct family with an accuracy of 97.2 %. When tested on
presumably-benign top free apps from Google Play, it can differentiate the apps
from profiled malware with an accuracy of 97.6 %. App similarity techniques [7,
19,20] can additionally be employed for a higher combined association accuracy.

In summary, our work makes the following contributions to mobile security:

– We propose a novel malware specification language, which can handily capture
a wide range of malicious behavior in mobile environments (see Sect. 2).

– We analyze and compare the scheme’s expressiveness and usage convenience
with other existing specification techniques (see Sect. 3).

– We build a static analyzer that utilizes a database of malicious and security-
sensitive patterns, which are declaratively written using the specification, to
characterize an app and correlate it with known malware families (see Sect. 4).

– Using a set of experiments, we demonstrate how the analyzer can perform an
association of malware samples with their correct family with a high accuracy
of 97.2 % (see Sect. 5). Benign apps are deemed different from the profiled
malware families with an accuracy of 97.6 %. We additionally show how the
analyzer is robust against various code obfuscation attacks, which significantly
reduce the average detection rate of 55 other anti-malware systems connected
to VirusTotal from 70.8 % to 34.4 %.

The remainder of this paper is organized as follows. Section 2 elaborates our
specification scheme. Section 3 analyzes and compares it with other schemes.
Section 4 explains the design and implementation of our static analyzer, while

Accurate Specification for Robust Detection of Malicious Behavior 357

Sect. 5 reports its experiments. Section 6 gives additional discussions on our spec-
ification and analyzer. Section 7 mentions related work and Sect. 8 concludes this
paper.

2 Malicious Behavior Specification for Mobile
Environments

2.1 Goals, Rules and Notation of Specification Scheme

In Android, operations that access protected resources are invoked through
permission-guarded API calls. To accomplish a certain security-sensitive action,
multiple security-sensitive operations may be required. For instance, to record
audio, an app needs to successively invoke the following methods of an object
of android.media.MediaRecorder class: setAudioSource(), setOutputFor-
mat(), setOutputFile(), and start(). Throughout its execution, an untrusted
Android app may execute a number of possibly independent security-sensitive
actions.

In this work, we call a sequence of API calls that can independently realize a
security-sensitive action as a malicious behavior pattern. Our proposed specifica-
tion scheme, called Sequence-based MaliciousBehavior Specification (SeqMalSpec),
declaratively specifies malicious behavior patterns that are commonly or poten-
tially exhibited by mobile malware in an accurate and convenient manner.
Although we specifically target the Android platform1, our specification scheme
in principle can be easily adapted to other systems employing permission-guarded
API calls for accessing protected resources.

We specifically take a sequence-based specification approach in order to
yield a semantically-aware scheme that is both convenient for formulation and
interpretation by human analysts, and is amenable to processing by automated
analyzers. The specification intentionally avoids referring to any user-supplied
identifiers so that it is robust against identifier renaming attacks [14]. App behav-
ior characterization using SeqMalSpec is defined in a top-down fashion as follows.

– A malicious app (maliciousApp) is defined in terms of a set of its applicable
malicious behavior patterns.

– A malicious behavior pattern (maliciousPattern) represents a path (sequence)
of security sensitive operations, where any two consecutive operations in the
path are connected by either:
�: a control-flow based sub-path of length≥ 1, which may contain non

security-sensitive operations in between;
→: a control-flow based sub-path of length 1;
≈�: a taint-flow based sub-path of length ≥ 1, which may contain non security-

sensitive operations;
⇒: a taint-flow based sub-path of length 1.

1 We limit the scope of our behavior specification in this paper to operations at the
Java/Dalvik code level. Operations that are performed by native code are thus beyond
the scope of this paper, and may be addressed by future work.

358 Sufatrio et al.

As can be seen above, our specification allows multiple occurrences of a taint-
flow based sub-path. Based on analyzing the attack threat in Android, we
however observe that taint-flow related behavior of Android malware is mostly
pertinent to private information leakage. Hence, in practice, only one taint-
flow based sub-path is present at the end of a malicious pattern. It links
up a private-information access operation with the corresponding exfiltration
operation. Notice that this taint-flow sub-path, however, can be part of a
longer pattern containing multiple preceding control-flow based sub-paths.

– A security-sensitive operation (sensitiveOp) is defined as a tuple 〈x, y, z〉, with:
x: a non-empty element of the set of all possible combinations of Android app-

component types from which operation z is invoked. We can thus write
x ∈ P(X)−{∅}, where X = {activity , service, broadcastReceiver}. When
x = X, we can write a notational shorthand “*” instead.

y: a non-empty element of the set of all possible combinations of lifecycle and
callback methods. That is, y ∈ P(Y)−{∅}, where Y is the set of all lifecycle
and callback methods. When y = Y, we can write “*”. For convenience,
we can also specify the set of lifecycle or callback methods m that should
not be present as !m. In other words, y = Y−m. This shorthand is useful,
for instance, to exclude API invocations from a particular set of methods,
such as UI-related callback methods.

z: either an API call (APICall), a similar API call set (similarAPICallSet),
or a system-event interception (eventInterception) operation.

– An API call (APICall) is defined based on its class type, method signature,
and possible argument values to match. It is expressed as the following tuple:

APICall = 〈className, returnType,APICallName

(parameterType1 = value1, . . . , parameterTypen = valuen)〉.

For valuei, where 1≤ i≤ n, we can specify a special generic value “any” if the
corresponding parameter does not need to bematched.An example of a security-
sensitiveoperationofAPICall type is 〈{service, broadcastReceiver},∗, 〈android.
telephony.TelephonyManager, java.lang.String, getDevice-Id()〉〉.Thiscor-
responds to an invocation of getDeviceId() from any lifecycle method of a ser-
vice or broadcast receiver, which runs in the background.

– A similar API-call set (similarAPICallSet) is a set of API calls sharing the
same functionality, or an API call that has different argument signatures.
Multiple API calls can have the same functionality in Android, for instance,
when a new API call is used to replace deprecated one(s). An API can have
different argument signatures when it is overloaded with different arguments.

– A system-event interception operation (eventInterception) is defined for each
broadcast intent that is related to a system event, such as for android.provi-
der.Telephony.SMS RECEIVED intent. Since such an event interception occurs
within the onReceive() method of a broadcast receiver, the tuple of a system-
event interception operation is set with x= {broadcastReceiver} and y =
{onReceive()}. In an analyzed app, the presence of a system-event inter-
ception operation is assumed whenever:

Accurate Specification for Robust Detection of Malicious Behavior 359

1. There exists a broadcast receiver that is registered, either statically in
AndroidManifest.xml or dynamically by invoking registerReceiver(),
to receive the corresponding system intent in its intent filters.

2. The onReceive() lifecycle method is present (i.e. overridden) within that
broadcast receiver.

A static analyzer that analyzes an app for malicious behavior patterns, such
as ours described in Sect. 4, may assume these system-event interception oper-
ations at the beginning of the pertinent onReceive() methods.

– A method-exclusion constraint (methodExclusionConstraint) can be defined
on a control- or taint-flow based sub-path of length ≥ 2 by specifying a set
of methods to be excluded along the sub-path. That is, along the sub-path,
the constraint disallows the presence of any operations that are invoked from
within any methods in the set.2 While we can specify any methods to be
excluded in a sub-path, in practice we are concerned only with UI callback
methods, such as onClick(), onLongClick() or onKey(). By specifying a set
of all UI callback methods, referred to as UICallbackSet , on a sub-path, we thus
require the sub-path to consist of operations that are performed without any
user interactions. Notationally, we can write a method-exclusion constraint c
with its excluded method set m by putting !m on top of the control-flow based

sub-path (i.e. !m�) or taint-flow based sub-path (i.e.
!m≈�).

SeqMalSpec can be described in the Extended Backus-Naur Form (EBNF)
notation as shown in Table 1 of Appendix A.

2.2 Sample Specified Malicious Patterns

The following are two commonly-exhibited malicious behavior patterns in
Android environment that are expressed using SeqMalSpec. For easier reading,
we omit the parameters of some API calls (denoted as “. . .”) in these patterns:

– An automatic opening of the camera that is followed by the trigger of an image
capture within the onReceive() method of a broadcast receiver, without any
user interaction in between:
〈{broadcastReceiver}, {onReceive()}, 〈android.hardware.Camera, android.
hardware.Camera, open()〉〉 !UICallbackSet� 〈{broadcastReceiver},{onReceive()},
〈android.hardware.Camera, void, takePicture(. . .)〉〉.

– A sending of the phone’s IMEI number to the Internet upon receipt of an
SMS without any user interaction, which represents a behavior pattern of
GoldDream malware that is previously specified using predicates in [8]:
〈{broadcastReceiver}, {onReceive()}, SMS RECEIVED INTERCEPTION()〉

2 If desired, one can define variations of exclusion constraint depending on which part
of a sub-path that must satisfy the exclusion. That is, we may have !prefix (n,m)
and !suffix (n,m), which disallow operations that are invoked from methods in set m
within the first and last n operations of the sub-path, respectively. Our constraint
that disallows all operations throughout a sub-path can be renamed as !all(m).

360 Sufatrio et al.

!UICallbackSet� 〈{broadcastReceiver}, {onReceive()}, 〈android.content.Con-
text, android.content.ComponentName, startService(. . .)〉〉 !UICallbackSet�
〈{service}, {onStartCommand()}, 〈android.telephony.TelephonyManager,
java.lang.String, getDeviceId()〉〉 !UICallbackSet≈� 〈{service}, {onStartCom−
mand(), 〈org.apache.http.client.HttpClient, org.apache.http.HttpRes-
ponse, execute(. . .)〉〉.

3 Expressiveness of SeqMalSpec and Its Comparison

3.1 Expressiveness of SeqMalSpec

We give an analysis of the expressiveness of SeqMalSpec by asserting the following
two claims, whose (sketch of) proof is given in Appendix B.

Claim 1. In a system where accesses to protected resources are invoked through
a finite set of well-defined API calls, SeqMalSpec is able to express the following
types of malicious action3:

1. A finite series of API calls that realizes an action to a protected resource;
2. A finite series of API calls that obtains a piece of information from a pro-

tected resource and subsequently performs other operations on it, including
ultimately releasing it out of the system via a communication channel.

Defining a malicious action in terms of the Android-level API calls as in our
specification allows us to express a more accurate semantic description than that
based on the OS-level API/system calls in the traditional desktop environment.
This is because the Android-level API calls are defined with more relevant oper-
ational semantics, which are directly pertinent to the protected resources on a
mobile device and their access permission models. As a result, our specification
can yield a more accurate and clearer behavior specification of Android malware
compared to schemes that operate on the OS-level API calls.

Claim 2. Suppose we have an event-driven system, where each user interaction
with an app raises a UI event. For each raised UI event, the system invokes a
registered UI callback method, which is either an overridden correspondingly-
named method of a registered event-handler object, or other arbitrarily-named
handler method that is registered to process the event. On such a system model,
on which Android is based, SeqMalSpec is able to express variants of malicious
action described in Claim 1, whose any two API calls are executed through a
series of operations that involve no user interaction.
3 We remark that the use of Java reflection, together with string encryption, in Android

may hinder static malware detectors in determining an invoked API call. As such,
they may not be able to match a pattern whose series of API calls are explicitly
named, thus apparently limiting the use of the specification. This is, in fact, a widely
known limitation of static analyzers. To deal with it, one can incorporate a dynamic
analyzer to uncover the invoked API calls. A static analyzer with such a runtime
information feedback then would be able to inspect the app and match the pattern.

Accurate Specification for Robust Detection of Malicious Behavior 361

With regard to Claim 2, we would like to make the following important
remarks. A pattern in SeqMalSpec whose all API calls are invoked from non UI-
related callback methods, and also specifies UI-related method exclusion con-
straint, means that no user interaction should appear along the pattern. This is
used to specify stealthy actions. An execution path involving a user interaction,
however, does not necessarily mean that the action is intended or consented by
the user. This is because a malware may perform malicious actions while the user
is legitimately interacting with its activities. This subtle point highlights that a
flow connector with an added UI-related exclusion constraint is a stricter version
of its unconstrained one. It is to be specified when we know that a particular
malware sample performs the pertinent patterns in a totally stealthy manner.

3.2 Comparison with Other Malware Specification Schemes

We now compare SeqMalSpec with other existing malware specification schemes.
There exist various ways of specifying malicious behavior. Most of them [2,4–
6,9,12,13], however, pre-date modern mobile OSes and are designed primarily for
desktop security. As such, they work mostly at the native code level, where the
higher-level operational semantics at the mobile OS level cannot be fully utilized.
Below, we compare SeqMalSpec with other schemes that are specifically proposed
for mobile setting with respect to expressiveness power and usage convenience.

Predicate Based Specification. Feng et al. [8] recently proposed Apposcopy,
which specifies the signatures of Android malware in Horn-clause based Data-
log language. For this purpose, a number of unary and binary predicates are
introduced. A malicious pattern is considered present in an app if all its spec-
ified predicates evaluate to true, possibly through a unification process. While
Datalog-based predicates are suitable to identify relations, usually between two
API operations, our sequence-based specification allows us to naturally express
a chain of any number consecutive operations, together with the context of each
operation invocation. As a result, we can easily specify multiple context-based
operations that must appear in order, including affixing possible UI-exclusion
constraints on selective parts of a sequence. Since Apposcopy can define new
predicates, it can extend its specification to mimic our newly-proposed invoca-
tion context and constraints. Yet SeqMalSpec, in our view, look more natural
to human analysts since a pattern’s operations are expressed using the orig-
inal Android API calls rather than newly-defined predicate-based expressions.
Section 7 additionally mentions further differences between our work and [8] with
respect to the signature derivation and static analyzer implementation.

Temporal-Logic Based Specification. Model checking systems use a behav-
ior signature expressed as a temporal logic formula. This formula can be based
on Computational Tree Logic (CTL) or Linear Temporal Logic (LTL); or their
extensions, such as CTPL [12] or SCTPL/SLTPL [15]. While previous model-
checking based detectors work at the native code level [12] or on a generic plat-
form [2], a recent work [15] applies model checking to Android apps.

362 Sufatrio et al.

Although a temporal logic formula can describe various temporal-based cor-
relation of events, its usage in specifying malicious behavior, including the one
in [12,15], is typically limited to describing the existence of a sequence of related
operations. Consequently, the relevant formulae employ linear-time temporal
operators F (finally/eventually) and U (until); or appear as a CTL-based formula
in the form of EF(φ1,EF(φ2)) or E(φ1 Uφ2). As reasoned above, SeqMalSpec is
able to express such formulae using a more intuitive notation. While the extended
temporal logic used in [15] can deal with variables to identify the reading of a
private information and its subsequent exfiltration, we instead use the notion of
taint-flow relationship between a set of source and sink API calls as in [1]. The use
of API call sequence in SeqMalSpec additionally allows us to selectively encode
the context of an API call invocation (i.e. using sensitiveOp) and to impose the
exclusion of UI-related operations (i.e. using methodExclusionConstraint), which
are both lacking in the existing logic-based specifications.

4 StaticAnalyzerUtilizingSeqMalSpec

4.1 Goal and Approch

To demonstrate the usefulness of SeqMalSpec and how one can leverage on it, we
have developed a static analyzer that uncovers the presence of behavior patterns
within Android apps by taking a list of SeqMalSpec-based specifications as an
input. Unlike the static analyzer in [8], which determines if an app exhibits the
behavior patterns of a particular malware family that are manually-specified by
human experts, we instead devise our analyzer to automatically derive behavior
patterns of each existing malware family. To this end, using SeqMalSpec, we com-
pile a list of security-sensitive behavior patterns that are commonly exhibited
by Android malware. We also include other behaviors that are potentially rel-
evant from the security analysis viewpoint, such as inter-component activation
operations. Given this compiled pattern database, our static analyzer inspects
an app and reports the presence/absence of each pattern entry in the database.

Following this app characterization, the analyzer then associates an app with
a set of known malware families by reporting the app’s similarity distance to

Fig. 1. Profiling a malware family for its malicious behavior pattern profile.

Accurate Specification for Robust Detection of Malicious Behavior 363

Fig. 2. Analysis of an untrusted app to determine its closest existing malware family.

the closest profiled malware family. This association is carried out to empirically
show that the proposed specification, which is our main contribution in this work,
allows for a derivation of stable, distinctive and obfuscation-resistant behavior
profile of existing malware families. Figure 1 illustrates the process workflow of
profiling an existing malware family. Figure 2 depicts how an association of an
untrusted app is performed. The details of all these steps are elaborated below.

4.2 System Design and Implementation

Compilation of Malicious Pattern Database. We compile a behavior pat-
tern database by examining how Android malware can launch various attack
modalities on a device. For this, we analyze numerous existing security advi-
sories on existing Android malware, as well as examine Android permissions
to see how they can possibly be abused by apps. Our approach to identifying
these patterns is thus a human-determined one. We take this approach since we
specifically want the patterns to be accurate, accountable and explainable.

While this compilation effort requires the enumeration of all potentially rel-
evant sensitive operations, we argue that producing a relatively comprehensive
pattern database for Android is feasible owing to the following reasons:

– Android permissions, which guard a device’s protected resources, are limited.
– Apps invoke a known set of API calls to access these permission-guarded

resources. While malware writers may craft their samples to perform various
processing steps, including for obfuscation purposes, the API calls represent
a well-guarded gateway to performing the samples’ payloads.

We remark that once such a pattern database is compiled, it can be shared with
the security community for a crowd-sourcing based extension or refinement.4

The database used in our experiments includes patterns that perform the fol-
lowing types of operations: system-event interception, broadcast-intent related
processing (e.g. android.content.BroadcastReceiver:abortBroadcast()),
4 Correspondingly, we do not assume that the uncovered patterns of a malware family

in our experimentation give a complete specification of the family. This is because
the completeness level depends on the employed pattern database.

364 Sufatrio et al.

incoming message processing (e.g. android.os.Bundle:get("pdus")), app com-
ponent activation, audio/video/camera processing, access of private information,
information release through SMS and data network, network management oper-
ations (e.g. reconnecting a WiFi network), and alarm-related operations.

Detection of Behavior Patterns. To uncover the presence of entries of the
compiled behavior pattern database, we leverage on FlowDroid [1], which is built
on top of the Soot framework. FlowDroid is a precise static analysis for Android
apps, which finds potential privacy leaks between a list of source and sink API
calls. We use FlowDroid to obtain the callgraph and all intra-procedural graphs
of an Android app, as well as to perform a taint-flow analysis between a given
source and sink method within a behavior pattern.

Note that by making use of our expressive behavior specification, which covers
both control- and data-flow aspects of an app, our analyzer can characterize
malware behavior more precisely than FlowDroid. In addition, we also made the
following enhancements to FlowDroid in order to detect the compiled patterns:

– Identification of system-event interception operations of an app by scanning
both its statically- and dynamically-registered broadcast receivers. All iden-
tified dynamic broadcast receivers are added as the app’s entry points.

– Control-flow based, i.e. � sub-path, reachability analysis of a pattern entry.
– Utilization of control-flow based reachability to filter out any source and sink

pairs that are known to be unconnected. This avoids extra taint-flow checking
by FlowDroid, which is computationally more expensive.

– Argument value determination of a number of parameterized API calls, pos-
sibly through a number of preceding intermediary assignment statements.

Our current prototype does not impose any method-exclusion constraints.
Yet, it can be extended to apply the constraints as discussed in Sect. 6.

Profiling of Existing Malware Families. As can be seen in Fig. 1, we profile
a malware family by having the static analyzer check all the samples within the
family. For each sample, we generate its bit vector v of length �, where � is the
number of pattern entries in the database. An entry at index i, i.e. v[i], is set to
1 if the i-th pattern is present in the analyzed sample; or it is set to 0 otherwise.

Once we produce the bit vectors for all the samples of a malware family,
we can derive the profile vector for that family, whose entries are real numbers
between 0 and 1 (inclusive), as follows. Let us denote k as the number of sam-
ples in the family; and vi as the bit vector of the i-th sample in the family, with
1≤ i≤k. The malware family’s profile vector p is derived by setting its entry at
index j, for all 1≤ j ≤ �, as follows:

p[j] =
1
k

·
k∑

i=1

vi[j]. (1)

Accurate Specification for Robust Detection of Malicious Behavior 365

An entry p[j] thus quantifies the presence rate of a malicious behavior pattern j
across all the samples within the malware family.5

Association of Apps with Profiled Malware. Figure 2 shows how an asso-
ciation of an untrusted app is performed by comparing its bit vector against the
profile vectors of all known malware families. Its detailed steps are as follows.

First, we want to associate each behavior pattern entry with a weight that
indicates its usage prevalence for solely malicious purposes. The more a pattern
is used more exclusively by malicious apps, the higher its weight is to be set. To
achieve this, we take an automated weight-generation approach to determine bi,
with 0≤ bi ≤ 1, as the occurrence rate of pattern i among (presumably) benign
apps. Then, we can derive a vector w of length �, where w[i] = 1−bi, for 1≤ i≤ �.

Let us now denote f as the number of all known malware families. The profile
vectors of all malware families can be considered as a real-valued matrix M of
dimension f × �. A cell entry M [i][j] represents the index j (with 1≤ j ≤ �) of
the profile vector belonging to malware family i (with 1≤ i≤ f).

We calculate the weighted Euclidean distance between the input app (with
its bit vector a) and malware family i (with its profile vector M [i]) as follows:

distanceai =

√
√
√
√

�∑

j=1

w[j] · (a[j] − M [i][j])2 . (2)

Once we have calculated the target app’s distance scores against all malware
families, which form a multiset {distanceai, 1≤ i≤ f}, we can determine the set
of the closest malware families for the app, called closestFamilySeta , as follows:

closestFamilySeta = {x, 1≤x ≤ f | ∀y, 1≤y≤f : distanceax≤distanceay}. (3)

Note that while we define closestFamilySeta as a set, which may have multiple
elements that all share a common similarity score, we however expect it to be
a singleton, i.e. |closestFamilySeta | = 1. In the case where distanceax > τ , with
τ serving as a distance threshold, we then view the app to be sufficiently differ-
ent from all the profiled malware families. Note, however, that we only compare
apps and known malware solely based on their exhibited malicious patterns.
Our similarity checking thus can be complemented by other app similarity tech-
niques [7,11,19,20], which analyze different app modalities, to further ascertain
if an app is really similar to a known malware family. Section 7 further discusses
this point.

We build our analyzer module that generates the profiles of existing malware
as in (1) and associates app with the profiled malware as in (2–3) in Python.

5 In the case where a malware family actually consist of a few sub-families with signif-
icantly different behavior (see our empirical findings in Sect. 5.1), we may thus want
to first perform a clustering on the family to partition it into several sub-families.
Hence, each sub-family will have its own more accurate profile vector. The similarity
checking step is then done against the profile vectors of the formed sub-families.

366 Sufatrio et al.

5 Experimentation Results

This section reports the experimentation results of our analyzer with regards to
its association results. In the following, we successively explain the used malware
dataset, experimentation objectives, taken methodology, and obtained results.

5.1 Used Malware Dataset

We evaluate our static analyzer using real-world malware samples from the
Android Malware Genome Project [21], which in its entirely consists of 1,260
malware samples from 49 families. The distribution of malware samples among
the families are, however, unequal. There are families that contain very few sam-
ples. Since we need to evaluate the analyzer by dividing each family’s samples
into profiling and testing samples, we thus omit malware families that have only
six or less samples. We also exclude BaseBridge and Asroot, which perform an
update attack and a root exploit with no observable payload execution within
its Java code, respectively [21]. The following 22 families constitute our exper-
imental dataset: ADRD, AnserverBot, BeanBot, Bgserv, DroidDream, Droid-
DreamLight, DroidKungFu1, DroidKungFu2, DroidKungFu3, DroidKungFu4,
Geinimi, GoldDream, Gone60, jSMSHider, KMin, Pjapps, Plankton, RogueSP-
Push, SndApps, YZHC, zHash and Zsone. Out of 1,083 total samples from these
22 families, 125 (11.5 %) samples apparently did not run to completion dur-
ing the taint-flow analysis using FlowDroid (see additional discussion in Sect. 6).
Hence, 958 samples, or 76 % of the total samples in the Android Malware Genome
Project, form our analyzed malware samples.

When we characterized the listed families to build their profile vectors, we
observed that some families seem to consist of different sub-families. From [21],
we learn that among the 1,260 malware samples in the Android Malware Genome
Project, 1,083 (86.0 %) of them are repackaged. Thus, while the samples under
the same family share a common payload, they may actually stem from a few
variants of repackaged apps. The carrier apps may have other additional oper-
ations, including those security-sensitive ones. We, however, cannot fully ascer-
tain this inference since the information of the exact mechanisms used to classify
the samples into families is unavailable to us. To capture the existence of sub-
families, we thus performed a clustering on the bit vectors of malware samples
within a family. Based on our experimentation with the employed parameter-
ized clustering technique, we empirically formed a cluster for each five samples
within a family.6 We found that the performed clustering on the families gave
well-partitioned sub-families, thus supporting our hypothesis of the existence of
sub-families.
6 Notice that, for our purpose of associating an app with a set of profiled malware

sub-families, separating samples belonging to the same malware sub-family into two
different clusters will not affect the association result. This is because the derivation
of the set closestFamilySeta in (3) will yield either a single sub-family or multiple
(possibly separated) sub-families with the same smallest distance score.

Accurate Specification for Robust Detection of Malicious Behavior 367

5.2 Experimentation Objectives and Obtained Results

We aim to evaluate our developed analyzer with the following three objectives:

1. To test the association of malware samples with their correct families;
2. To test the association of presumably benign apps with the malware families;
3. To test the robustness of the analyzer against code obfuscation.

Objective 1 (Associating Malware Samples into Correct Families). For
each malware family in the dataset, we randomly select 80 % of the samples
to derive the profile of the family, and leave the remaining 20 % to form the
testing set. Since we form sub-families of malware, we compare each test sample
against all sub-families, and report the family whose sub-family produces the
smallest distance. We empirically set τ = 2.45 as an approximate midpoint
that separates the results of malicious samples (objective 1) and benign apps
(objective 2). Using this threshold value, our analyzer can correctly associate
the test samples with an accuracy of 97.18 %. The weighted Euclidean distances
of the test samples range from 0.00 to 7.03, with an average distance of 0.64.

Objective 2 (Association of Benign Apps with Profiled Families). We
also test if presumably benign apps listed as the top free apps on Google Play
can be sufficiently similar to any of the profiled malware families. Analyzing 546
apps using the same threshold value gives an accuracy of 97.62 %. In other words,
only 2.38 % of the tested benign apps is inaccurately determined to be similar to
one of the profiled malware families. Upon inspection, we find that these apps are
all inaccurately associated with Gone60 malware family. The generated profile
vectors reveal that Gone60 exhibits only a few applicable patterns. A malware
characterization in [21] lists Gone60 to perform only an SMS-based personal
information stealing. This may explain why a number of benign apps can share
similar patterns with Gone60. The weighted Euclidean distances of the tested
benign apps range from 2.42 to 25.47, with an average distance of 7.03.

Objective 3 (Robustness Against Transformation Attacks). To show the
robustness of our analyzer against malware transformation attacks, we compare
the bit vectors of original malware samples with those of the transformed ones. If
each vector pair always matches, that means our analyzer is resistant against the
applied transformations. For this, we select 8 families from our dataset (i.e. Bean-
Bot, Bgserv, DroidDream, Geinimi, GoldDream, Pjapps, Sndapps, Zsone), each
with 4 random samples, for variant generation and detection. We use apktool
to produce an app’s disassembled smali code, and then modify the code to apply
a sequence of transformations as listed in Table 2 of Appendix C.

The results show that our analyzer always produces the same bit vector for
each transformed and original sample pair. The robustness of our analyzer stems
from the following two important features of SeqMalSpec:

– Its avoidance of using any developer-supplied identifiers.
– The control- or taint-flow reachability property between two operations, which

is robust against possible control-flow based obfuscation.

368 Sufatrio et al.

While the applied obfuscation methods are still limited, they are sufficient
to deceive many anti-malware systems connected to VirusTotal (https://www.
virustotal.com). Table 3 in Appendix D shows the results of transforming
randomly-selected 5 malware families, with 2 samples in each family.

6 Discussions

6.1 Threats to Validity

We now address possible threats to the validity of our analyzer evaluation:

– The used features of SeqMalSpec: Our compiled pattern database exercises
a simplified usage of SeqMalSpec in that only a single taint-flow connec-
tor (≈�) is present to link a source and sink API call. We can implement
a more expressive usage of the taint-flow connector by allowing a succes-
sive occurrences of taint-flow connected operations, where: (i) its beginning
and end API calls represent the source and sink operations, respectively; and
(ii) the intermediary API calls represents the ‘pass-through’ operations along
the taint flow. In our implementation, we however choose to see how the sim-
plified scheme can work in profiling and associating malware samples.

– Malicious behavior database compilation: Our compiled pattern database
might not be sufficiently comprehensive. In fact, generating a sufficiently com-
plete database may require a collective and cumulative effort. We however
believe that a sufficiently good database is feasible to be constructed, which
can then be refined over time, preferably in a crowd-sourced manner.

– The developed analyzer: Our analyzer relies on FlowDroid to perform its taint-
flow analysis. While FlowDroid represents a state-of-the-art tool in perform-
ing taint analysis for Android apps, we encountered some apps that took a
rather long time (i.e. hours or even a few days) of taint analysis process-
ing on our machine. A number of apps throwed exceptions, including the
memory-insufficiency related ones. In addition, the FlowDroid’s option to out-
put multiple paths between a detected source and sink pair seems to be very
time- and memory-consuming. Any extensible tools that can give the same or
even higher level of analysis precision as FlowDroid’s, but with lower process-
ing and memory footprint, will thus be useful. Since our specification and app
association technique are independent of any implementation platforms, they
can be realized using other tools as they become available.

– Testing methodology: For the experimentation, there is always a concern of not
having sufficient samples in the dataset. We have tested our analyzer against
most malware samples in the Android Malware Genome Project as well as
more than five hundreds widely-used top free apps from Google Play. Further
testing with more samples, especially recent ones, however will always be good
to be carried out. We also assume that the top free apps downloaded from
Google Play are benign, which may not always be the case. As mentioned
in Sect. 5.1, the observed need for partitioning malware families into their

https://www.virustotal.com
https://www.virustotal.com

Accurate Specification for Robust Detection of Malicious Behavior 369

sub-families may warrant manual inspection to ascertain the presence of sub-
families in the dataset. Lastly, we set the distance threshold value τ as an
approximate midpoint that gives almost equal distance separation on both
the malicious samples (objective 1) and benign apps (objective 2). Deciding
a more fitting threshold value warrants further investigation, and is ideally to
be done on a large number of analyzed apps.

– Known challenges to static analysis: Lastly, we also mention the widely-known
challenges that may hinder any static analysis systems, namely the use of
native code and Java reflection. Our system currently does not deal with
these challenges, which may be best handled by dynamic analysis or other
security techniques.

6.2 Future Work

Our experiments show that our specification and analyzer can derive patterns
that form a stable and distinctive profile of a malware family. Nonetheless, they
are less useful in profiling malware families that perform update attacks or
dynamic code loading, such as BaseBridge. They also cannot effectively char-
acterize malware families that do not execute their malicious payloads at the
Java-based Android code, such as Asroot. To deal with this issue, our associa-
tion can be complemented by another round of similarity checking that examines
app structure similarity. Our app association, however, are useful in establishing
app similarity with respect to the compiled pattern base, with an added benefit
of being able to report explainable and comprehensible uncovered patterns.

Other possible future work that can improve our prototype system include:

– Our current prototype does not implement the UI-method exclusion con-
straints yet. We can implement the defined !m (i.e. !all(m)) constraint rather
easily by removing all excluded methods in the callgraph of an analyzed app.
To implement !prefix (n,m) and !suffix (n,m), however, we need to ensure that
a constructed path must avoid using any operations in the excluded methods,
either in the beginning or ending part of the path as desired.

– As mentioned earlier, we can implement an analyzer that detects a pattern
with multiple occurrences of the taint-flow connector (≈�). For this, we need
to ensure that a taint-flow must pass a number of intermediary operations.

– We can further measure the robustness of our prototype system against obfus-
cation attacks by applying and testing more app transformations.

7 Related Work

The comparison of SeqMalSpec with other existing mobile malware specification
schemes is given in Sect. 3.2. Below, we highlight further differences with other
specification work with regard to the associated detector implementation.

The design and implementation of our static analyzer differs from that in
Apposcopy [8] in the two following aspects:

370 Sufatrio et al.

1. Apposcopy implements its own custom static analyzer, with a significant effort
spent on developing its taint-flow tracker. In contrast, we leverage on Flow-
Droid [1], which is known to perform a highly precise static taint analysis
for Android apps. We additionally perform a number of enhancements to
FlowDroid as described in Sect. 4.2.

2. Apposcopy requires its authors to manually inspect malware samples and
craft the signature for each malware family. Its experimentation was then
carried out to check whether a set of existing malware samples and benign
apps match all the predicates in the manually-crafted signatures. In contrast,
we need to compile a generic pattern base only once, from which our analyzer
then automatically profiles all existing malware families. Hence, our analyzer
not only checks the existence of certain behavior patterns within target apps,
but also profiles all existing malware families and then associates a sample
with its correct family in an automated manner as reported in Sect. 5.

DroidMiner [17] generates a behavior graph in order to mine segments of
the graph that might correspond to known suspicious behavior, which are called
modalities in the work. While our specification makes use of declarative, human-
formulated operation sequences to be searched on samples from the control- and
taint-flow viewpoints, DroidMiner extracts graph-reduction based modalities to
be further processed by a classifier or associated with the rule mining process.
Due to this, our approach in specifying malicious behavior is thus more in line
with how human analysts work in analyzing a malicious app.

RiskRanker [10] detects malware samples, including possible zero-day ones,
that invoke known root exploit, illegal cost creation and privacy-violation exploit
patterns. DroidRanger [22] analyzes apps based on their permission-based behav-
ioral footprint. While the two systems describe and scan for behavior patterns,
they however lack a generic declarative behavior model that can concisely specify
behavior patterns, and is also robust against transformation attacks.

FlowDroid [1] is a highly precise static taint analysis tool for Android apps,
which is context, flow, field and object sensitive. Our work extends FlowDroid,
which implicitly detects only privacy-leakage operations involving a pair of source
and sink, to deal with any general sequence-based operations. Our improved
analyzer not only reports privacy leakages, but also analyzes and characterizes
an untrusted app, and then associates it with a known malware family.

Pegasus [3] detects malicious behavior that violates the temporal properties
of safe interactions between an app and the Android event system. It thus can
detect, for instance, if an operation is invoked without the prerequisite GUI-
based interaction that indicates the user’s consent. Meanwhile, AppIntent [18]
checks if a data transmission in an app is intended by the user. Similar to
these two systems, our work considers operations that are invoked without user
involvement. Our analyzer can implement a feature that looks for a sequence
of operations, whose sub-path(s) exclude any operations from within UI-related
callback methods. The presence of these patterns, which are declaratively spec-
ified, are used by our analyzer to characterize and classify a malware sample.

Accurate Specification for Robust Detection of Malicious Behavior 371

8 Conclusion

We have presented our sequence-based specification scheme called SeqMalSpec,
which is concise, convenient and sufficiently expressive to capture malicious
behavior in mobile environments. We have also demonstrated how SeqMalSpec
can be utilized by a static analyzer to characterize apps in terms of their mali-
cious behavior patterns. Experiments have shown that the analyzer can associate
a malicious app with its correct malware family with a high accuracy of 97.2 %,
while still being able to differentiate benign apps from the profiled malware fami-
lies with an accuracy of 97.6 %. Lastly, we have also demonstrated the analyzer’s
robustness against various code obfuscation attacks. The proposed SeqMalSpec,
as we foresee it, will thus open up various other effective approaches to mitigat-
ing malware in mobile environments, including the malware-plagued Android
platform that commands a huge user base.

Appendix A: SeqMalSpec Scheme in Extended BNF

Malicious behavior specification using SeqMalSpec can be described in the EBNF
notation as shown in Table 1. In the notation, we take the liberty of expressing
the terminals belonging to a defined set using a natural language description
(written within “[]”) instead of explicitly listing all the set elements.

Appendix B: Sketch of Proof of SeqMalSpec Expressiveness

The sketch of proof for the two expressiveness claims in Sect. 3 is as follows.

Proof of Claim 1: Suppose there exists a malicious action that is inexpressible
using SeqMalSpec. Due to the assumed system, where all protected resources are
guarded by a set of well-defined API calls, the malicious action must manifest
itself as a series, i.e. sequence, of security-sensitive API calls:

– If the action involves no taint flow: SeqMalSpec is able to express that action
using all control-flow based connectors. This leads to a contradiction.

– If it involves a taint flow from one operation to the other(s): SeqMalSpec is
also able to express that action using a combination of control- and taint-flow
based connectors. This also leads to a contradiction.

Hence, SeqMalSpec is able to express the actions described in Claim 1. �

Proof of Claim 2: Suppose there is an action that involves no user interaction.
We will show that SeqMalSpec is able to describe this action. Based on Claim 1,
we know that the action is expressible with a sequence of API calls that are con-
nected with the defined connectors. We can then add a non-UI method exclusion
constraint on each of the used control- or taint-flow based connector. We addi-
tionally specify that all the security-sensitive API calls are not invoked from any
UI-related callback methods. This means that no operation of the action is ever

372 Sufatrio et al.

Table 1. The notation of SeqMalSpec in Extended Backus-Naur Form (EBNF).

invoked from UI-related callback methods, which are triggered by the assumed
event-driven system in the event of user interaction with the app. If the action
runs automatically upon a broadcast system event, SeqMalSpec is also able to
describe a system event interception in its pattern. This shows that SeqMalSpec
is able to express the stealthy action. �

Appendix C: Applied App Obfuscation Attacks

Table 2 lists a sequence of app obfuscations that are applied to malware samples
as discussed in Sect. 5.2.

Accurate Specification for Robust Detection of Malicious Behavior 373

Table 2. The sequence of app obfuscations that are applied to a malicious sample in
order to generate its new variants.

Step Transformation Transformation details

1 Package name renaming Replace a sample’s package name, which can be
found in its AndroidManifest.xml, with
random English words found in the dictionary

2 Identifier renaming Replace all method names and strings with
random English words found in the dictionary.
We however do not rename identifiers with a
single and dual characters (e.g. ‘a’, ‘b’, ‘aa’,
‘ab’), which could have been subject to
previous obfuscation by ProGuard

3 Junk code insertion Insert junk code following arithmetical-operation
based opaque predicates

4 Control-flow obfuscation Relocate the invocation points of sensitive
Android API calls by using an indirect method
invocation

5 Reassembling and repacking Reassemble the transformed smali code into an
APK file using apktool, and then sign the file
with a new custom key

Appendix D: Evaluation Results of Obfuscation Attacks
on Other Anti-Malware Systems

Table 3 shows the results of evaluating 55 anti-malware systems that are con-
nected to VirusTotal (https://www.virustotal.com) as explained in Sect. 5.2.

Table 3. Detection comparison between the transformed and their original samples on
55 anti-malware systems connected to VirusTotal.

Malware family Average detection rate Detection rate reduction

Original samples Transformed samples

BeanBot 66% 35 % 31 %

Bgserv 70% 35 % 35 %

GoldDream 73% 45 % 28 %

Sndapps 70% 27 % 43 %

Zsone 75% 30 % 45 %

Average 70.8 % 34.4 % 36.4 %

https://www.virustotal.com

374 Sufatrio et al.

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In: 35th Conference on Pro-
gramming Language Design and Implementation (2014)

2. Beaucamps, P., Gnaedig, I., Marion, J.-Y.: Abstraction-based malware analysis
using rewriting and model checking. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 806–823. Springer, Heidelberg (2012)

3. Chen, K.Z., Johnson, N., D’Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu,
E., Rinard, M., Song, D.: Contextual policy enforcement in Android applications
with permission event graphs. In: 20th Network and Distributed System Security
Symposium (2013)

4. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-
terns. In: 12th USENIX Security Symposium (2003)

5. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: 6th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (2007)

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: 2005 IEEE Symposium on Security and Privacy (2005)

7. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned applica-
tions on Android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

8. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: Semantics-based detection of
Android malware through static analysis. In: 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (2014)

9. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-
optimal malware specifications from suspicious behaviors. In: 31st IEEE Sympo-
sium on Security and Privacy (2010)

10. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: Scalable and accu-
rate zero-day Android malware detection. In: 10th International Conference on
Mobile Systems, Applications, and Services (2012)

11. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A scalable sys-
tem for detecting code reuse among Android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81. Springer, Hei-
delberg (2012)

12. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code
by model checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol.
3548, pp. 174–187. Springer, Heidelberg (2005)

13. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Valdes, A., Zamboni, D.
(eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006)

14. Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: Evaluating Android anti-
malware against transformation attacks. In: 8th ACM Symposium on Information,
Computer and Communications Security (2013)

15. Song, F., Touili, T.: Model-checking for Android malware detection. In: Garrigue,
J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 216–235. Springer, Heidelberg (2014)

16. Sufatrio, Tan, D.J.J., Chua, T.W., Thing, V.L.L.: Securing Android: a survey,
taxonomy, and challenges. ACM Comput. Surv. 47(4), 45 (2015). Article 58

Accurate Specification for Robust Detection of Malicious Behavior 375

17. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: Automated
mining and characterization of fine-grained malicious behaviors in Android appli-
cations. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol.
8712, pp. 163–182. Springer, Heidelberg (2014)

18. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: Appintent: Analyzing
sensitive data transmission in Android for privacy leakage detection. In: 20th ACM
Conference on Computer and Communications Security (2013)

19. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of ‘pig-
gybacked’ mobile applications. In: 3rd ACM Conference on Data and Application
Security and Privacy (2013)

20. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party Android marketplaces. In: 2nd ACM Conference on Data
and Application Security and Privacy (2012)

21. Zhou, Y., Jiang, X.: Dissecting Android malware: Characterization and evolution.
In: 33rd IEEE Symposium on Security and Privacy (2012)

22. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative Android markets. In: 19th Network and
Distributed System Security Symposium (2012)

A Bytecode Interpreter for Secure Program
Execution in Untrusted Main Memory

Maximilian Seitzer, Michael Gruhn(B), and Tilo Müller

Department of Computer Science, Friedrich-Alexander University
Erlangen-Nürnberg, Erlangen, Germany

{maximilian.seitzer,michael.gruhn,tilo.mueller}@fau.de

Abstract. Physical access to a system allows attackers to read out RAM
through cold boot and DMA attacks. Thus far, counter measures protect
only against attacks targeting disk encryption keys, while the remaining
memory content is left vulnerable. We present a bytecode interpreter
that protects code and data of programs against memory attacks by
executing them without using RAM for sensitive content. Any program
content within memory is encrypted, for which the interpreter utilizes
TRESOR [1], a cold boot resistant implementation of the AES cipher.
The interpreter was developed as a Linux kernel module, taking advan-
tage of the CPU instruction sets AVX for additional registers, and AES-
NI for fast encryption. We show that the interpreter is secure against
memory attacks, and that the overall performance is only a factor of 4
times slower than the performance of Python. Moreover, the performance
penalty is mostly induced by the encryption.

Keywords: Coldboot · Secure computation · Encrypted bytecode

1 Introduction

Physical security has often been a weak point in the defense of computer
systems, especially mobile ones. Against physical access, software protection
methods are often no longer effective. Even though methods such as full disk
encryption can protect parts of the system, namely the hard disk, encryption
keys still reside in RAM. As it stands, encryption is not applied to RAM, which
makes memory attacks feasible today. A memory attack is a physical attack
that lets an adversary obtain a memory contents of the targeted running sys-
tem. One type of memory attack is known as the cold boot attack [2,3]. Cold boot
attacks exploit the data remanence effect [4] which says that data in RAM grad-
ually fades away and can be accessed for a short period of time after powering
off [5–7]. Another threat are DMA attacks. DMA attacks exploit the fact that
direct memory access allows external devices to directly interface with RAM,
without the operating system being involved [8,9].

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 376–395, 2015.
DOI: 10.1007/978-3-319-24177-7 19

A Bytecode Interpreter for Secure Execution 377

1.1 Motivation

As the spread of full disk encryption extends, and devices become more and
more mobile, the importance of memory attacks increases. Persons who use
encryption rely on their data to be protected against physical access, which hard
disk encryption alone cannot provide. Main memory can no longer be regarded
as a trusted resource because of cold boot and DMA attacks. Consequently, mul-
tiple counter measures have been developed to make disk encryption withstand
memory attacks. One approach is to run the encryption algorithm only on the
CPU without using memory [1,10,11]. Another solution are hard disks encrypt-
ing their data with a built-in crypto-module that stores keys securely in the disk
itself. However, all these solutions have in common that they protect only the
disk encryption key against main memory attacks. The memory contents of any
program currently executed rests unprotected in RAM. An attacker can exploit
this fact to obtain information about both, programs running on the target sys-
tem, and the data they are operating on. Therefore, solutions are required to
overcome the issue of sensitive data being openly accessible in RAM. Special
software solutions already exist to protect private keys [12,13] during computa-
tions. However, these solutions are limited to computations with private keys.
Hardware solutions such as Intel’s software guard extensions (SGX) [14] could
be used to protect RAM contents more generically. However, SGX has not been
released by Intel. Hence, we provide a software only solution to protecting RAM
contents during computations.

1.2 Contributions

To protect program code and data in RAM during computations, our contribu-
tions are as follows:

– We provide a Turing complete execution environment running on x86 com-
modity hardware, which allows program execution to treat RAM as untrusted.
To this end, we use a bytecode interpreter executing programs without directly
using RAM for code and data. This interpreter stores its state in CPU regis-
ters and uses RAM only to store encrypted data, effectively securing it against
memory attacks.

– We provide a proof-of-concept implementation of the interpreter targeting the
x86 architecture. It is delivered in form of a loadable kernel module compatible
with recent Linux kernels. The interpreter can be used as the central part of
a software-only trusted computing base.

– We evaluate the interpreter with regard to several attack types. Concerning
memory attacks, we show that the interpreter fulfills our goals and is fully
secure against those kind of attacks. Against attacks on the software level,
the interpreter provides a considerable security add-on that can protect the
confidentiality of executed programs even against attackers with root privi-
leges.

378 M. Seitzer et al.

– We benchmarked the interpreter against three other programming languages,
namely C, Java, and Python. The results show that C and Java are both
between one or two magnitudes faster than both Python and our interpreter,
which is not surprising considering that these languages utilize native code
execution. Between our interpreter and Python, the difference in performance
is much smaller, with Python being faster than the interpreter by an average
factor of 4.

1.3 Outline

In Sect. 2, the design and implementation of our interpreter is described. Sub-
sect. 2.1 introduces different parts the interpreter consists of, and how they inter-
act with each other. Subsect. 2.2 depicts where and how the interpreter manages
the state of an executed program. In Subsect. 2.3, we discuss how the encryption
algorithm of TRESOR [1] was adapted to fit our needs, and how encryption
is applied to the interpreter data. Subsect. 2.4 shows the steps the interpreter
goes through while executing a program. Our implementation is evaluated in
regards to several aspects of performance and security in Sect. 3. In chapter
Sect. 4 we review other solutions to protecting RAM contents during computa-
tion. Last, Sect. 5 contains a discussion about limitations and ideas for further
developments.

2 Implementation

In the following we describe the design and implementation of our interpreter.
While implementing the interpreter, we have to keep two security policies in
mind. First, we are not allowed to use main memory for any sensitive data,
as memory is considered untrusted. Second, we should not weaken the given
security of the system provided by TRESOR [1]. We solve the first challenge by
enforcing that any data is encrypted before it hits memory. The second task is
fulfilled by ensuring the confidentiality of the TRESOR key during interpreter
runtime.

2.1 General Interpreter Composition

In this section, we show what the different parts the interpreter consists of are,
what their purpose is, and how they interact. We do this by walking through
a program’s life cycle from being programmed over compilation and execution
to termination. The interpreter consists of three parts: the front-end, running
in user-mode, which takes encrypted binary programs as input and outputs the
results of the calculations, and the back-end, running in kernel mode, which
does the actual interpretation of the given encrypted program. Additionally, a
compiler tool is provided. It compiles programs from a simplified C dialect to
interpreter bytecode, and encrypts them afterwards. A general overview of the
layout is given by Fig. 1.

A Bytecode Interpreter for Secure Execution 379

user space kernel space

source code compiler AES implementation

results front-end back-end

interpreter-kthread

sy
s-

in
te

rf
a
ce

encrypted executable

bytecode

encrypted bytecode

encrypted executable

results
start kthread()

interpreter loop()

Fig. 1. The interpreter is separated into a compiler and front-end in user space, and a
back-end with the AES implementation in kernel space. The different parts communi-
cate over the kernel’s sys-interface. On program execution, the back-end starts a kernel
thread running the interpreter loop.

At first, the Linux kernel has to be booted up. At this point, TRESOR
asks for a password which is used to derive the encryption key. During the
system’s life time, every program created will be encrypted with this key, and
every program the interpreter executes will be decrypted with this key. After a
password is entered, a program to be executed can be created. For this task, a
simple programming language was devised to avoid having to program directly
in bytecode. This programming language is called “secure C-like language”. Its
files are called .scll. It is based on a reduced subset of C that lacks features such
as arrays and global variables. The grammar of SCLL is given in AppendixA.1.

A finished program is passed to the compiler to translate into bytecode.
After compilation, the bytecode is not yet ready for execution; to meet our
goal of secure execution, it has to be encrypted first. Encryption needs the
key which is stored in debug registers by TRESOR. Therefore the interpreter
back-end runs in kernel space and provides the necessary encryption facili-
ties; these are made accessible to user space programs through the kernel sys-
interface /sys/kernel/bispe/crypto. The compiler utilizes this and sends the
unencrypted bytecode through the sys-interface to kernel space, where it gets
encrypted with the currently set key. After getting back the encrypted bytecode,
the program is outputted as an encrypted executable file, now with the extension
.scle (for “secure C-like executable”).

In order to execute our encrypted program, the interpreter front-end is used.
The front-end acts as a user mode wrapper to the functionalities exported by the
back-end. After its call, the front-end invokes interpretation of the program by
passing the program to the back-end, again through the sys-interface. The sys-
entry for this is /sys/kernel/bispe/invoke. Alongside the program, additional
information is passed to the back-end, e.g. command line arguments and buffers
providing space for execution results. The front-end then blocks until the back-
end has finished execution of the program.

380 M. Seitzer et al.

Before execution begins, the back-end first has to initialize the execution
environment. Most notably, this means allocating the different memory segments
the interpreter uses. These are the code segment, the operand stack, and the call
stack. The just allocated code segment gets pre-filled with the encrypted pro-
gram. The different segments and their usage are described in detail in Sect. 2.2.
After initialization, the back-end creates a new kernel thread which runs the
interpretation. There are two reasons to use a kernel thread instead of starting
the interpretation directly in the back-end thread. First, it allows for clean signal
handling. If the user gets impatient and stops the front-end before the execution
is fully done, for instance with a SIGINT signal, the back-end must ensure that
all kernel memory is freed before returning back to user space. With a kernel
thread running the interpretation, the back-end thread just sleeps until execu-
tion is done, and if the sleep is interrupted by a signal, the kernel thread is issued
to stop execution. The kernel thread notices that it should stop, and releases all
allocated kernel memory. The second reason are future extensions: Currently,
only one interpretation can be run at a time. If the interpretation is executed as
a separate thread, it is easier to extend the program to allow multiple concurrent
interpretations in the future.

To begin execution, the kernel thread repeats the interpreter loop. The inter-
preter loop is described in detail in Sect. 2.4. If the program is either finished,
an error occurred, or the interpreter is ordered to cancel by the user, the loop
is stopped. The kernel thread wakes up the sleeping back-end, reports the exe-
cution results, and finally terminates. Back in the main thread, the execution
results get copied back to the front-end. Last, all allocated kernel resources are
released, and control flow returns to user space. The front-end unblocks, reads
out the execution results and potential output data is presented to the user.

2.2 Interpreter Memory Layout

This section details how the interpreter organizes the executed program’s mem-
ory, and in which way the encryption interacts with the data. The interpreter
is simulating a simple stack machine. This means that arithmetic and logical
instructions always take their operands from top of a stack structure, on which
they also put their computation results. The reason why a stack based inter-
preter is chosen over a register based one is that the bytecode instruction set
is simplified, even though register based interpreters have been found to offer
better performance [15].

The interpreter uses a unified word size of four byte for every instruction
and every data element, which simplifies data accesses. An instruction consists
of a four byte opcode and a four byte argument, if the instruction specifies
one. The unit by which the interpreter accesses memory is per row consisting of
16 byte. Every time the interpreter reads from memory, it reads in a full row, even
though the requested data is only of word size, because in memory, there is only
encrypted data. The AES algorithm, by which this data is en- and decrypted,
uses a block size of 16 byte. A program uses three memory segments during
its execution: the code segment, the operand stack segment, and the call stack
segment. Each segment’s start address is aligned to 16 byte.

A Bytecode Interpreter for Secure Execution 381

The code segment stores the code of the program. Before execution starts,
the encrypted bytecode is relocated to this segment. The interpreters instruction
pointer pointing into the code segment can be padded with random data before
encryption so an adversary can not deduce program flow from it.

Intermediate data is stored in the operand stack segment, with a stack pointer
pointing to the top of the stack. Every instruction that works on data expects
its arguments and leaves its result on the operand stack. The only exceptions are
load and store instructions which can transfer data between the operand stack
and variables. Subroutines leave their result on this stack.

The call stack segment stores function related data. Every time a subroutine
is called, a new stack frame is generated on top of the call stack. This frame
contains subroutine arguments, local variables, and the return address, which
is the address where execution is resumed after the subroutine ends. Like the
operand stack, the call stack has a pointer pointing to its top.

We now take a look at how data from the segments can be used by the
interpreter, although it rests encrypted in memory. To this end, throughout
runtime, a decrypted 16 byte slice of each segment is held in a so-called row
register, that is one of the 16 byte SSE registers. In case of the code and operand
stack segments, this slice is always the row the instruction or stack pointer
currently points to. For the call stack segment, it is the row which contains the
data element currently processed. Instructions can now process their required
data, because this data is always present in decrypted form.

When an element is requested from memory, the base address of the con-
taining row is calculated from which 16 byte are copied from memory to the
corresponding row register. The register gets decrypted and the data is almost
ready to be accessed. Before a bytecode instruction can actually use it, the ele-
ment needs to be extracted from the register row to a general purpose register.

Let us suppose an instruction has altered an element in some way and wants
to push that element on top of the operand stack. The element now takes the
inverse way back to memory. First, the stack pointer gets increased by four bytes
to make space for the new element. Second, the element gets inserted in the stack
row register at the four byte offset specified by the stack pointer, relative to the
base address of the row. Further instructions are processed until eventually the
stack pointer is increased so far that it exceeds the current row and points into a
new row. To make space for the new stack row, the current row register must then
be moved away to memory. This happens by encrypting the stack row register,
and saving it to the corresponding memory location. New data elements can
then be inserted in the empty stack row register. This procedure is largely the
same for the code and the call stack segment.

2.3 Encryption Scheme

The interpreter utilizes the AES-256 encryption and decryption routines pro-
vided by TRESOR. TRESOR uses the SSE registers to store the AES round
keys. However, this leaves no space for the interpreter state inside the SSE reg-
isters. Fortunately, with the introduction of the Advanced Vector Extensions

382 M. Seitzer et al.

rstate

rhelp

round key 0, round key 14

round key 1

round key 2

round key 3

round key 4

round key 5

round key 6

round key 7

round key 8

round key 9

round key 10

round key 11

round key 12

round key 13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TRESOR:
SSE register usage

127 XMM 0

unused

unused

unused

unused

unused

unused

unused

unused

round key 0

round key 1

round key 2

round key 3

round key 4

round key 5

round key 6

round key 7

rstate

rhelp

rhelp2

rhelp3

rcall row

rstack row

rinstruction row

unused

round key 8

round key 9

round key 10

round key 11

round key 12

round key 13

round key 14

unused

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AES

AES

AES

AES

AES

AES

AES

AES

AES

interpreter

interpreter

interpreter

AES/interpreter

AES/interpreter

AES/interpreter

interpreter:
AVX register usage

255 YMM 127 XMM 0

Fig. 2. Modification of TRESOR’s register allocation to host the interpreter state.

(AVX), the size of the SSE registers was increased from 128 bits to 256 bits [16].
This allows us to place two round keys in each of the 256 bit registers, cutting
the amount of registers needed for round keys in half. Figure 2 displays how the
register distribution was changed from TRESOR to the interpreter, and also
which registers are used for encryption, and which for the interpreter.

The interpreter uses cipher block chaining (CBC) [17] as its cipher mode.
For both stack segments, the IV is created at runtime, directly after the seg-
ments were allocated, before execution start. The interpreter writes 128 ran-
dom bits to the beginning of the segment, obtained from the kernel function
get random bytes, which uses the Linux kernel’s internal pseudo random num-
ber generator (PRNG). For the code segment, the IV is determined at compile
time, from /dev/urandom, and it stays the same for the executable until a recom-
pilation occurs.

The crypto-routines of the interpreter are in backend/bispe crypto asm.S.
Programmatically,most ofTRESOR’s code couldbe carriedover, buta fewchanges
were made. Those changes mostly address access to the AVX registers instead of
SSE for key material. Further, the crypto module of the interpreter was extended
with routines to encrypt memory in CBC mode (bispe encblk mem cbc), as well
as encrypting a register in place (bispe encblk).

The implementation of the CBC mode for memory segments during runtime
is, in all but one case, trivial. The non-trivial case occurs because the call stack
segment allows writing to arbitrary elements; a saving of the call stack row
register to memory triggers a re-encryption from the changed block up to the

A Bytecode Interpreter for Secure Execution 383

end of the segment. As writes to the stack segment only target the frame of the
current function, however, the chain to be encrypted is short.

2.4 The Interpreter Loop

When executing a program, the interpreter has to repeat the same set of steps for
every instruction. The instruction specified by the instruction pointer is fetched
from memory and the interpreter performs the appropriate actions to execute the
instructions, based on the fetched opcode. Afterwards, the instruction pointer is
changed to point to the next instruction. These steps basically get repeated in
a loop until the program is finished.

Figure 3 lists the individual steps taken during the interpreter loop in a tex-
tual manner. Figure 4 shows a flowchart version of the process. The interpreter
splits up this loop in individual cycles – which are not to be confused with the
above mentioned fetch-execute cycle.

1. Begin atomic CPU section by disabling scheduling and interrupts.
2. Generate AES round keys in AVX registers.
3. Load program state to registers.
4. Repeat until cycle has ended or halt flag is set:

4.1. Extract opcode of current instruction from instruction row.
4.2. Jump to instruction routine specified by opcode.
4.3. Execute instruction routine.
4.4. Increase instruction pointer. If new instruction is not present in current in-

struction row, load and decrypt next instruction row from memory.
5. Save program state encrypted to memory, clear AVX registers.
6. End atomic CPU section by enabling interrupts and scheduling.
7. If halt flag is set or execution was stopped by the user, break interpreter loop.

Otherwise, go back to step 1.

Fig. 3. Individual steps the interpreter repeats during a cycle.

A cycle consists of multiple instructions executed subsequently. The amount
of instructions executed in one cycle is not fixed but user configurable. From
the outside, a cycle represents an atomic unit. Therefore, one cycle always runs
uninterruptible and even the kernel is not able to interrupt execution. This is
necessary to protect the integrity of both the program and the cipher key, as
during the cycle, the AVX registers hold decrypted program- and encryption
state, and these registers are principally free to access for any process.

Since the interpreter runs in kernel mode, it has access to kernel functions
which can create an atomic section. Preemptive kernel scheduling can be disabled
with the function preempt disable. To provide true atomicity, local irq save
has to be called for disabling interrupts.

At the beginning of a cycle, after an atomic section has been started, the
interpreter first derives the round keys from the cipher key and places them in
the round key registers. The next step is to load the program state into regis-
ters, so that the interpreter instructions can operate properly. This means that

384 M. Seitzer et al.

begin loop

begin
atomic
section

generate
AES

round keys

load
program

state

cycle end
or halt?

extract
opcode

execute
instruction

increase
instruction

pointer

decrypt
instruction

row

save
program

state

clear
registers

end atomic
section

stopped
by user
or halt?

end loop

false

if instruction
not present

true

false

true

Fig. 4. The different steps the interpreter repeats in the interpreter loop. One pass
represents an atomic cycle, in which program data and encryption state are protected
from leaking to memory.

for each segment, a row gets decrypted to the corresponding row register, as
described in Sect. 2.2. Internally, every segment pointer in memory is mapped
to a general purpose CPU register, e.g. the instruction pointer to register r11,
because these pointers have to be accessed often during program execution.
In the “load program state step”, the state pointers get loaded from memory
in their respective register. Then the interpreter is ready to process bytecode
instructions. The used technique is indirect threading ; each bytecode instruction
is represented by a single routine in backend/asm instructions.S. When one
of these routines gets executed, it simulates the bytecode instruction it repre-
sents on the programs state. The addresses of each of those routines are stored
in a jump table. To execute a bytecode instruction, the interpreter extracts the
opcode of the current instruction from the instruction row and calls the appro-
priate routine to process the instruction. In AppendixA.3, the functionality of
each bytecode instruction is explained.

After the instruction is finished, the instruction pointer gets updated to point
to the instruction to be executed next. Before a new instruction is executed,
however, it is checked if the amount of instructions executed in this cycle exceed
the specified maximum amount of instructions in one cycle or the halt flag was
set, e.g. by the special finish instruction, or due to the occurrence of a runtime
error, e.g. a division through zero, or a stack overflow. If either of this is the case,
the next instruction is not executed. Instead, the interpreter saves the current
program state to memory. This is done by encrypting the row registers and
saving them to memory. Additionally, the values of the state pointer registers
are written to their counterpart in memory again. Before the atomic section is
left again, it is important to reset the content of the AVX registers, before anyone
else can have access to them. At last, the atomic section is ended by activating
scheduling and interrupts again.

As the interpreter code itself is only executed during an atomic section, an
adversary has no way to observe and infer any knowledge from the rip instruc-
tion pointer pointing to interpreter code execution.

A Bytecode Interpreter for Secure Execution 385

However, when a subroutine within the interpreter code is called, the return
address is pushed on the stack. The leaked information about a single instruction
causes nearly no actual damage, but it is desirable to thwart even theoretical
attacks. The solution is to not use the call instruction directly but rather store
the current position in a register (%r9) and jump into the function. For return-
ing, instead of calling ret an indirect jump to an address stored in a register
(jmp *%r9) is used.

3 Evaluation

We evaluate our interpreter concept and its implementation with respect to two
criteria. In Subsect. 3.1, we discuss benchmarks comparing the performance of
the interpreter against other programming languages. And in Subsect. 3.2, we
deliver an analysis of the interpreter’s security against memory attacks, software
attacks, and hardware attacks.

3.1 Performance

In this section, we investigate the performance of our interpreter. Given the
interpreter’s design, a performance drop-off compared to other execution envi-
ronments must be expected due to encryption. The interesting question is how
big the difference in performance compared to other programming languages is.
To test this, benchmarks with four different language environments were per-
formed, one of them being our own bytecode interpreter. All benchmarks were
performed on an Intel Core i5-3570K CPU which supports AVX as well as AES-
NI. The operating system is Xubuntu Linux 14.04 with kernel version 3.8.2 and
TRESOR patch applied.

The other three languages (C, Java and Python) were selected to fit into
different kinds of execution types. As C compiles to machine code which can
be executed natively by the CPU, C should run the fastest among the tested
languages. The C programs have been compiled with GCC version 4.8.2. The
second language chosen is the Java language. Java represents the class of JIT-
compiled interpreted languages. Therefore, we expected Java to perform quite
well albeit a bit slower than C. The Java version used was OpenJDK 1.7.0 65.
The third and last language choice is the Python language, using the default
Python implementation in version 2.7.6. Python represents a simpler kind of
interpreter implementation. It uses no JIT compilation, and the source code
is parsed to bytecode just before execution. This makes Python a slower type
of interpreter, which makes its performance results closest to our interpreter’s
performance.

We benchmarked the following mathematical algorithms:

– the nth Fibonacci numbers
– the first n Prime numbers
– the Pascal triangle with n rows.

386 M. Seitzer et al.

0

2

4

6

8

10

SCLL Python Java C

se
co

n
d
s

Fibonacci, n = 35

SCLL Python C Java

Primes, n = 1000000

SCLL Python Java C

Pascal triangle, n = 23

w.o. encr.

8.775

1.953

0.079 0.048

1.394

9.829

3.406

0.1089 0.087

3.431

10.054

1.897

0.080 0.045

1.601

Fig. 5. The results of the language benchmark show that the interpreter is vastly
slower than C and Java, but still within performance reach of Python.

The implementation of the three algorithms in the interpreter’s language. It can
be found in AppendixA.2. The elapsed time of a program run has been measured
with the built-in time shell command of the Bash shell.

An additional property of the interpreter is that execution is divided in
atomic cycles. Each of these cycles creates a performance overhead. We tested
the exact influence of this setting on performance and have chosen the default
instructions per cycle value of the interpreter to be 2000. This was also the value
used for performance tests.

The benchmark results are listed in Fig. 5, with the results averaged out from
50 program runs. The column labeled “SCLL” contains the benchmark results
of our interpreter. A first overview shows roughly the same picture for all three
programs. As expected, the interpreter is slower than Python, and C and Java
perform both much faster than Python and SCLL. C and Java are between one
or two magnitudes faster – their bars in the figure are only barely visible. This
is owed to the power of native code execution, for Java enabled through JIT.
If we compare our interpreter to Python, we see that the interpreter performs
reasonably well. On average, SCLL is about a factor 4 slower than Python.

The influence of encryption on the interpreter’s performance is interesting,
and we decided to measure it explicitly. In Fig. 5, the results of this benchmark
are shown as striped bars within the SCLL bar. It is easy to see that encryption
takes up a major part of the interpreter’s runtime. On average, the interpreter
spends four fifth of the overall runtime with encryption.

If we contrast the individual programs, we can see that in respect to the
other languages, the interpreter performs best on the Primes program. Whereas
performance for Fibonacci and Pascal is similar, the ratio to the other languages
is the best for Primes. Looking for the reasons, we have to take a look at the
source codes of the programs (see Appendix A.2). We can see that Primes is
implemented purely iterative, Fibonacci recursive, and Pascal uses both itera-
tion and recursion. This indicates that recursive programs affect the interpreter’s
performance negatively. Recursion requires the repetitive use of function calls.

A Bytecode Interpreter for Secure Execution 387

Within each function call, a stack frame has to be allocated and freed which cre-
ates encryption overhead at the interpreter. In the Primes program, encryption
takes up two thirds of the running time, whereas for Fibonacci and Pascal, the
overall execution time is composed of five sixths of encryption time.

Summarizing, we have benchmarked the interpreter against three other pop-
ular programming languages: C, Java, and Python. The interpreter is slowed
down considerably by the overhead caused by encryption, and without it, the
performance of the implementation is on par with Python.

3.2 Security

The most important property of our interpreter is the security it can provide.
In Sect. 3.2, we show that the interpreter holds its designated goal and is secure
against attacks on memory such as cold boot attacks. We also discuss how far
the interpreter is protected against software attacks in Sect. 3.2 and investigate
possible weaknesses of the interpreter against hardware attacks in Sect. 3.2.

Protection Against Memory Attacks. As outlined in Sect. 2, great care has
been taken to ensure that no sensitive interpreter state or even encryption keys
are leaked into RAM. However, we now like to practically uphold this fact. To
this end, we perform memory scans of a system running the interpreter. We used
a Qemu/KVM virtual machine running Debian Linux with kernel version 3.8.2
(TRESOR patched) to obtain memory images.

Three memory dumps were taken at different times. The first without running
the interpreter at all, to compare if running the interpreter influenced the scan
results. Afterwards, the interpreter kernel module was loaded, and the inter-
preter ran the program calculating the Fibonacci numbers from the previous
section. The second memory dump was taken during the interpreter running the
program, and a third one after the Fibonacci program was executed a hundred
times. We searched the memory dump for both AES key schedule patterns as
well as cleartext patterns of bytecode programs that are decrypted by the inter-
preter. Only small matches could be found that can be attributed to coincidence,
because searching for any random pattern also yields matches of the same length.

These results indicate that neither debug registers nor AVX registers get
leaked to memory, which confirms the adherence of the interpreter’s security goal
to leak no sensitive data in memory. In sum, we can state that the interpreter’s
implementation protects executed programs against memory attacks.

Protection Against Software Attacks. Another interesting topic is the level
of protection the interpreter can provide for executed programs against attacks
on the software level. That is, the attacker model now switches from physical
access to logical access to the system the interpreter is running on.

One idea is to pick off the data during interpreter runtime when the inter-
preter is processing it in decrypted form. The interpreter holds decrypted data
in the segment row registers. If an attacker can continuously copy the content

388 M. Seitzer et al.

of those row registers, while the interpreter is running the program, a complete
picture of the program’s code can be reconstructed, as well as the data the pro-
gram is working with. This would, however, require outside access to the row
registers at the time they contain decrypted data. Since the row registers hold
decrypted data only within the atomic CPU section, this is not easily possible.
The atomic section prevents any other process that could read out the registers
from running on that CPU, and the atomic section can only be ended by the
interpreter itself – even the kernel can not interrupt it. Attackers with system
privileges can change the code of our kernel module such that no atomic section
is entered before interpretation.

Attackers with system privileges, however, also have another attack surface.
The encryption key is stored in the CPU debug registers at all times. Debug
registers are a privileged resource which means that ring 0, the kernel, can access
them. The debug registers are accessible for user space applications only through
the ptrace system call. TRESOR patches certain kernel code to make the debug
register inaccessible – the ptrace system call is patched to not return the debug
register content.

It is impossible for a non-privileged attacker to read out the debug registers.
Only an attacker with root privileges has more possibilities. By using a loadable
kernel module (LKM), or /dev/kmem, arbitrary code can be inserted into the
kernel and executed from within ring 0. In its current form, the interpreter is
vulnerable to attacks of this kind. To protect against this security flaw, the
TRESOR authors advise to compile the kernel without support for LKM and
/dev/kmem, as then even root attackers are unable to access the cipher key. For
now, the interpreter is designed as a LKM itself, but it would be possible to
change the module into a kernel patch, which would allow hard compiling the
interpreter into the kernel, while disabling support for LKMs. An attacker would
then be required to use some kind of kernel exploit that allows to execute code.
All in all, this would make the interpreter also resistant against most attacks on
the software level.

Protection Against Hardware Attacks. A simple hardware attack would
succeed if CPU registers keep their content after rebooting of the system. For-
tunately, according to the authors of TRESOR, this is not the case.

In our discussion of the interpreter’s resistance against attacks on memory,
we mostly had the cold boot scenario in mind. DMA attacks, however, are also
viable. Blass and Robertson [18] introduce an attack on CPU based encryption
systems, exploiting DMA to write malicious code to kernel memory. In fact,
the attack is named “TRESOR-Hunt” explicitly targeting TRESOR. Through
patching the interrupt descriptor table, the kernel is issued to execute a payload,
which is essentially a piece of code that dumps the debug registers to mem-
ory. After the cipher key is in memory, the attacker can obtain it via DMA.
This attack, however, can be defended by device whitelisting, to only allow
known devices to use DMA, or using a input/output memory management unit
(IOMMU) to block critical memory regions from DMA access.

A Bytecode Interpreter for Secure Execution 389

Physical access to the CPU also enables other kinds of attacks. The JTAG
interface of a microprocessor allows an engineer to debug the running processor
by connecting with the JTAG ports on the physical device. Some modern Intel
CPUs also expose JTAG ports on their surface, which can be used to read out
the debug registers. However, we are not aware of anyone successfully carrying
out such an attack.

4 Related Work

Different solutions for CPU bound encryption on x86 exist such as TRESOR [1]
and LoopAmnesia [11]. Also for ARM, a cold boot resistant implementation
named ARMORED [19] has been developed. However, CPU bound encryption
alone can only protect single encryption keys, which are mostly used as disk
encryption keys as explained above. In contrast, we want to protect entire pro-
grams and their data against memory attacks. One solution which comes into
mind for supporting the execution of encrypted programs is Frozen cache [10].
Frozen cache, however, must reserve the entire CPU cache which renders this
approach unfeasible as it slows down the overall system performance too much.

In the past, encrypted program execution has already been worked at in
different ways: Brenner et al. [20] have shown that secure program execution
would be possible with a fully homomorphic encryption scheme [21]. They focus
on securing programs in an untrusted environment, e.g. in cloud computing,
which is not the primary goal of this work. Another approach is to use full mem-
ory encryption [22,23], which would indeed protect programs against memory
attacks. However, software-based full memory encryption suffers from consider-
able performance drawbacks, while hardware-based full memory encryption is
not available for end-users. Duc and Keryell [22], for example, rely on their own,
special hardware architecture. [23] is restricted to ARM processors equipped
with security hardware, while [22] relies on its own, special hardware architec-
ture. Another memory encryption solution explicitly designed to mitigate cold
boot attacks is Cryptkeeper [24]. Unfortunately, on its own, Cryptkeeper poses
no viable solution because the encryption key itself is stored in clear in RAM.

Working special solutions are PRIME [12] and Copker [13]. However, they
are restricted to computations with private keys.

A possible future technology to solve the issues surrounding secure program
execution is Intel’s Software Guard Extensions (SGX) [14]. SGX allows appli-
cations to run in so-called enclaves, which are secure memory containers inac-
cessible by anyone but the application itself. To achieve this, enclave memory is
encrypted in hardware, with the encryption key stored securely in hardware. The
system is explicitly designed to both protect programs against memory attacks
and to enable running them securely in an untrusted environment. While being
announced by Intel in 2013, it is still unknown when the first CPUs supporting
SGX are released to the public.

Last but not least, this work was partially inspired by Breuer and Bowen [25].
They propose a “crypto-processor unit” (KPU) which instructions and data enter

390 M. Seitzer et al.

and leave encrypted only. While the concept is not practically feasible yet, the
underlying idea was useful to us in providing a generic software only protection
mechanism for code and data during computations.

5 Conclusion and Future Work

In this chapter, we draw conclusions about our developed bytecode interpreter
for secure program execution. In the previous chapters, we evaluated the inter-
preter regarding performance and security. We summarize the found limitations
in Sect. 5.1. In Sect. 5.2, we present future tasks and investigations that can
be pursued to further extend the interpreter’s scope of applicability. Finally, in
Sect. 5.3, we summarize the work done in this thesis and draw a conclusion about
the overall applicability of our interpreter concept.

5.1 Limitations

Currently, the developed bytecode language supports only a narrow set of fea-
tures. However, we have not yet found any obstacles caused by the interpreter’s
design which will impede future integration of common programming language
features.

5.2 Future Work

In this section, we present some possible future developments. A certainly worth-
while goal is to extend the bytecode language to be fully compatible with the
C language. This would make encrypted program execution through the inter-
preter widely applicable, as many programs are written in C, and several other
programming languages can be compiled to C. The longterm goal is to be able
to securely run everyday software, like text editors, browsers, and mail-, or office
programs through the interpreter.

Usability must also be increased. Currently, a program can be executed and
encrypted only with a single key; and for changing the key, the system has to
be rebooted, which is quite inconvenient. It would be desirable, that the user
is able to specify a password to use for encryption at compilation, and to enter
that password again for execution. To implement this, the user password must
be scrambled with the master key set by TRESOR.

Advances in performance can be gained by Intel’s AVX-512 instruction set.
AVX-512 increases the amount of SIMD registers to 32, and the register width
to 512 bits, which yields four times more available register space than AVX has.
The interpreter can use the additional space for caching. AVX-512 also brings
many new assembler instructions, which may allow simplifying the code of the
current implementation, yielding performance gains as well.

There are further cipher modes that also guarantee authenticity of the
encrypted data, but that can be more complex to implement, so the interpreter
currently limits itself to CBC. If it turns out that other cipher modes are needed,
they can be integrated in the future.

A Bytecode Interpreter for Secure Execution 391

5.3 Conclusion

Physical security has always been a weak point in the defenses of computer sys-
tems, especially mobile systems. Regardless of software protection measures, the
data of a stolen laptop can easily be obtained by reading out the hard disk. As
full disk encryption became common and closed a simple attack vector, attacks
moved a level lower, targeting the disk encryption keys within the unencrypted
RAM instead. Several kind of attacks on memory have been shown viable. Exe-
cuting programs outside memory, using memory only for encrypted data, would
protect sensitive user data against memory attacks.

In this work, we have shown how encrypted program execution is feasible
when treating main memory as untrusted. The design consists of an interpreter
which executes encrypted bytecode programs without using RAM for sensitive
data. The program’s bytecode and data is held decrypted only within CPU
registers that are processed by the interpreter.

We provide a working proof-of-concept implementation for the x86 archi-
tecture, in form of a kernel module for the Linux kernel. Our proof-of-concept
implementation supports a simple bytecode language, but we have shown that
the concept can be extended to include more features soon.

To analyze the interpreter’s resistance against memory attacks, several mem-
ory dumps were taken and scanned for patterns of encryption keys, round keys
as well as code and data of executed programs. A significantly long byte pat-
tern, that would indicate the interpreter leaking to memory, could not be found
in any case. Furthermore, this result is strengthened by the fact that the inter-
preter uses the same protection approach as TRESOR which was thoroughly
controlled before. The interpreter resists attacks on the software level as long as
the attacker has no ring 0 privileges, as then the debug registers are no longer a
secure storage for cryptographic keys. Without further measures, the interpreter
is vulnerable to a special DMA attack [18], which inserts malicious code into
the kernel to obtain keys. This attack can be mitigated by restricting DMA, as
supported by recent Linux kernels.

Acknowledgement. This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre “Invasive Comput-
ing” (SFB/TR 89).

A Appendix

A.1 SCLL Grammar

Listing 1.1. Grammar of SCLL in Extended Backus-Naur Form.

i n t e g e r = d ig i t , { d i g i t } ;
i d e n t i f i e r = (l e t t e r | ’ ’) , { (l e t t e r | d i g i t | ’ ’) } ;
type = ’ void ’ | ’ int ’ ;
num op = ’+ ’ | ’− ’ | ’∗ ’ | ’/ ’ | ’% ’;
boo l op = ’==’ | ’ != ’ | ’> ’ | ’< ’ | ’<=’ | ’>=’ ;
f c a l l a r g l i s t = [express ion , ’ , ’ , [f c a l l a r g l i s t]] ;
f c a l l = i d e n t i f i e r , ’ (’ , f c a l l a r g a r g l i s t , ’) ’ ;

392 M. Seitzer et al.

expre s s i on = (f c a l l
| i d e n t i f i e r
| [’ − ’] , i n t e g e r
| ’ (’ , express ion , ’) ’) , [num op , expre s s i on] ;

va r de f = type , i d e n t i f i e r , [’= ’ , expre s s i on] ;
v a r a s s i gn = i d e n t i f i e r ’= ’ expre s s i on ;
p r in t = ’ pr int ’ , expre s s i on ;
return = ’ return ’ , [expre s s i on] ;
cond = express ion , bool op , expre s s i on ;
branch = ’ i f ’ , ’ (’ , cond , ’) ’ , ’{ ’ , sequence , ’} ’ ,

[’ e l s e ’ , ’{ ’ , sequence , ’} ’] ;
loop head = (va r de f | va r a s s i gn) , cond , va r a s s i gn ;
loop = ’ while ’ , ’ (’ , cond , ’) ’ , ’{ ’ , sequence , ’} ’

| ’ for ’ , ’ (’ , loop head , ’) ’ , ’{ ’ , sequence , ’} ’
| ’ do ’ , ’{ ’ , sequence , ’} ’ , ’ while ’ , ’ (’ , cond , ’) ’ , ’ ; ’ ;

statement = (va r de f | va r a s s i gn | f c a l l | pr in t | return) ’ ; ’ ;
sequence = (statement | branch | loop) , [sequence] ;
a rgde fnce = type | i d e n t i f i e r ;
a r g l i s t = argdef , [’ , ’ , a r g l i s t] | ’ void ’ ;
func = type , i d e n t i f i e r , ’ (’ , a r g l i s t , ’) ’ , (’{ ’ , sequence , ’} ’ | ’ ; ’) ;
program = [func , program] ;

A.2 Source Codes

In this section, the SCLL source codes of programs that were used to evaluate
our work are listed. In particular, the programs 1.2, 1.3, and 1.4 were used in
benchmarking (Fig. 6).

Listing 1.2. Program calculating the n’th Fibonacci number.

i n t f i b (i n t i) ;

i n t f i b (i n t i) {
i f (i == 1) return 1 ;
i f (i == 2) return 1 ;
return f i b (i −1) + f i b (i −2);

}

void main (in t n) {
pr in t f i b (n) ;

}

Listing 1.3. Program calculating the primes to primes.

void pr int pr ime (in t p) {
i f (p % 2 == 0) return ;

f o r (i n t i = 3 ; i ∗ i <= p ; i = i + 2) {
i f (p % i == 0) return ;

}
pr in t p ;

}

void main (in t primes) {
f o r (i n t i = 2 ; i <= primes ; i = i + 1)

pr int pr ime (i) ;
}

Listing 1.4. Program calculating the pascal triangle with max row rows.

i n t binom(in t n , i n t k) ;

i n t binom(in t n , i n t k) {
i f (k == 0) return 1 ;
i f (n == k) return 1 ;
return binom(n−1, k−1) + binom(n−1, k) ;

}

void main (in t max row) {
f o r (i n t n = 0 ; n < max row ; n = n + 1) {

f o r (i n t k = 0 ; k < n+1; k = k + 1)
pr in t binom(n , k) ;

}
}

A Bytecode Interpreter for Secure Execution 393

A.3 Bytecode Language

opcode mnemonic argument operand stack: before →
after

description

0 nop perform no operation

1 finish halt execution

2 push value
→ value

push integer value on the stack

3 print value → write value to output buffer

4 load index
→ value

load value from local variable at index

5 store index value → save value to local variable at index

6 add value1, value2 → result add two integers, r = v2 + v1

7 sub value1, value2 → result subtract two integers, r = v2 - v1

8 mul value1, value2 → result multiply two integers, r = v2 * v1

9 div value1, value2 → result divide two integers, r = v2 / v1

10 mod value1, value2 → result remainder of two integers, r = v2 % v1

11 jmp address jump to instruction at address

12 jeq address value1, value2 → if value2 is equal to value1, jump to instruction at address

13 jne address value1, value2 → if value2 is not equal to value1, jump to instruction at address

14 jl address value1, value2 → if value2 is less than value1, jump to instruction at address

15 jle address value1, value2 → if value2 is less than or equal to value1, jump to instruction at address

16 jg address value1, value2 → if value2 is greater than value1, jump to instruction at address

17 jge address value1, value2 → if value2 is greater or equal to value1, jump to instruction at address

18 call address call subroutine at address

19 ret return from subroutine

20 prolog amount allocate space for amount elements on the call stack (subroutine prolog)

21 epilog amount free space of amount elements on the call stack (subroutine epilog)

22 argload index save command line argument index to local variable at index

Fig. 6. Complete listing of all bytecode instructions.

References

1. Müller, T., Freiling, F.C., Dewald, A.: Tresor runs encryption securely outside
ram. In: Proceedings of the 20th USENIX Conference on Security (SEC 2011), pp.
17–17. USENIX Association, Berkeley (2011)

2. Alex Halderman, J., Schoen, S.D., Clarkson, W., Heninger, N., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remem-
ber: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009).
doi:10.1145/1506409.1506429

3. Gruhn, M., Müller, T.: On the practicability of cold boot attacks. In IEEE Con-
ference Publications, editor, Eighth International Conference on Availability, Reli-
ability and Security (ARES), pp. 390–397 (2013)

4. A Guide to Understanding Data Remanence in Automated Information Systems.
NCSC-TG-025, National Computer Security Centre, Sep 1991

5. Gutmann, P.: Data remanence in semiconductor devices. In: Proceedings of the
10th Conference on USENIX Security Symposium, SSYM 2001, vol. 10. USENIX
Association, Berkeley (2001)

6. Skorobogatov, S.: Low temperature data remanence in static RAM. Technical
report UCAM-CL-TR-536, University of Cambridge, Computer Laboratory, Jun
2002

http://dx.doi.org/10.1145/1506409.1506429

394 M. Seitzer et al.

7. Wyns, P., Anderson, R.L.: Low-temperature operation of silicon dynamic random-
access memories. IEEE Trans. Electron. Devices 36(8), 1423–1428 (1989). doi:10.
1109/16.30954, ISSN 0018–9383

8. Becher, M., Dornseif, M., Klein, C.N.: FireWire: all your memory are belong to us.
In: Proceedings of CanSecWest Applied Security Conference, Vancouver, British
Columbia, Canada (2005)

9. Carrier, B.D., Grand, J.: A hardware-based memory acquisition procedure for dig-
ital investigations. Digital Invest. 1(1), 50–60 (2004)

10. Pabel, J.: Frozen cache, Jan 2009. http://frozenchache.blogspot.com
11. Simmons, P.: Security through amnesia: a software-based solution to the cold boot

attack on disk encryption. In: Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC 2011, pp. 73–82. ACM, New York (2011). ISBN
978-1-4503-0672-0

12. Garmany, B., Müller, T.: PRIME: private RSA infrastructure for memory-less
encryption (best paper award). In: Applied Computer Security Associates (ACSA)
and ACM (eds.) Proceedings of the 29th Annual Computer Security Applications
Conference (2013)

13. Guan, L., Lin, J., Luo, B., Jing, J.: Copker: Computing with private keys without
ram. In: Network and Distributed System Security Symposium (NDSS) (2014)

14. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP 2013, pp. 10:1–10:1. ACM,
New York (2013). doi:10.1145/2487726.2488368, ISBN 978-1-4503-2118-1

15. Shi, Y., Casey, K., Anton Ertl, M., Gregg, D.: Virtual machine showdown: stack
versus registers. ACM Trans. Archit. Code Optim. 4(4), 2:1–2:36 (2008). doi:10.
1145/1328195.1328197, ISSN 1544–3566

16. Lomont, C.: Introduction to Intel Advanced Vector Extensions. Intel Corporation,
Jun 2011

17. National Institute for Standards and Technology. Recommendation for Block
Cipher Modes of Operation, NIST Special Publication 800–38A edition, Dec 2001

18. Blass, E.-O., Robertson, W.: TRESOR-HUNT: attacking CPU-bound encryption.
In: Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC 2012, pp. 71–78. ACM, New York (2012). doi:10.1145/2420950.2420961,
ISBN 978-1-4503-1312-4

19. Götzfried, J., Müller, T.: ARMORED: CPU-bound encryption for android-driven
ARM devices. In: Proceedings of the 2013 International Conference on Availabil-
ity, Reliability and Security, ARES 2013, pp. 161–168. IEEE Computer Society,
Washington, DC (2013). doi:10.1109/ARES.2013.23, ISBN 978-0-7695-5008-4

20. Brenner, M., Wiebelitz, J., von Voigt, G., Smith, M.: Secret program execution
in the cloud applying homomorphic encryption. In: 2011 Proceedings of the 5th
IEEE International Conference on Digital Ecosystems and Technologies Conference
(DEST), pp. 114–119, May 2011. doi:10.1109/DEST.2011.5936608

21. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

22. Duc, G., Keryell, R.: CryptoPage: an efficient secure architecture with memory
encryption, integrity and information leakage protection. In: 22nd Annual Com-
puter Security Applications Conference, ACSAC 2006, pp. 483–492, Dec 2006.
doi:10.1109/ACSAC.2006.21

http://dx.doi.org/10.1109/16.30954
http://dx.doi.org/10.1109/16.30954
http://frozenchache.blogspot.com
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/1328195.1328197
http://dx.doi.org/10.1145/1328195.1328197
http://dx.doi.org/10.1145/2420950.2420961
http://dx.doi.org/10.1109/ARES.2013.23
http://dx.doi.org/10.1109/DEST.2011.5936608
http://crypto.stanford.edu/craig
http://dx.doi.org/10.1109/ACSAC.2006.21

A Bytecode Interpreter for Secure Execution 395

23. Henson, M., Taylor, S.: Beyond full disk encryption: protection on security-
enhanced commodity processors. In: Jacobson, M., Locasto, M., Mohassel, P.,
Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 307–321. Springer,
Heidelberg (2013)

24. Peterson, P.A.H.: Cryptkeeper: Improving security with encrypted RAM. In: 2010
IEEE International Conference on Technologies for Homeland Security (HST), pp.
120–126, Nov 2010. doi:10.1109/THS.2010.5655081

25. Breuer, P.T., Bowen, J.P.: A fully homomorphic crypto-processor design: correct-
ness of a secret computer. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS
2013. LNCS, vol. 7781, pp. 123–138. Springer, Heidelberg (2013)

http://dx.doi.org/10.1109/THS.2010.5655081

Learning from Others: User Anomaly Detection
Using Anomalous Samples from Other Users

Youngja Park1(B), Ian M. Molloy1, Suresh N. Chari1, Zenglin Xu2,
Chris Gates2, and Ninghi Li2

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
{young park,molloyim,schari}@us.ibm.com

2 Purdue University, West Lafayette, IN, USA
{xu218,gates,ninghui}@cs.purdue.edu

Abstract. Machine learning is increasingly used as a key technique in
solving many security problems such as botnet detection, transactional
fraud, insider threat, etc. One of the key challenges to the widespread
application of ML in security is the lack of labeled samples from real
applications. For known or common attacks, labeled samples are avail-
able, and, therefore, supervised techniques such as multi-class classifica-
tion can be used. However, in many security applications, it is difficult to
obtain labeled samples as each attack can be unique. In order to detect
novel, unseen attacks, researchers used unsupervised outlier detection or
one-class classification approaches, where they treat existing samples as
benign samples. These methods, however, yield high false positive rates,
preventing their adoption in real applications.

This paper presents a local outlier factor (LOF)-based method to
automatically generate both benign and malicious training samples from
unlabeled data. Our method is designed for applications with multiple
users such as insider threat, fraud detection, and social network analysis.
For each target user, we compute LOF scores of all samples with respect
to the target user’s samples. This allows us to identify (1) other users’
samples that lie in the boundary regions and (2) outliers from the tar-
get user’s samples that can distort the decision boundary. We use the
samples from other users as malicious samples, and use the target user’s
samples as benign samples after removing the outliers.

We validate the effectiveness of our method using several datasets
including access logs for valuable corporate resources, DBLP paper titles,
and behavioral biometrics of user typing behavior. The evaluation of our
method on these datasets confirms that, in almost all cases, our technique
performs significantly better than both one-class classification methods
and prior two-class classification methods. Further, our method is a gen-
eral technique that can be used for many security applications.

1 Introduction

Driven by an almost endless stream of well publicized cases of information theft
by malicious insiders, such as Wikileaks and Snowden, there is increased interest
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 396–414, 2015.
DOI: 10.1007/978-3-319-24177-7 20

Learning from Others: User Anomaly Detection Using Anomalous 397

for monitoring systems to detect anomalous user behavior. Today, in addition
to traditional access control and other security controls, organizations actively
deploy activity monitoring mechanisms to detect such attacks. Activity moni-
toring is done through enforced rules as well as anomaly detection using ML
techniques. To best apply ML techniques, it is ideal if we can train a model with
lots of both anomalous and benign samples. This is very difficult for security
applications: it is often unrealistic to expect to gather enough anomalous sam-
ples for labeling. The lack of anomalous samples prohibits the applicability of
more accurate classification techniques, and, thus, most monitoring applications
have adopted anomaly detection or one-class classification techniques. These
methods construct a profile of a subject’s normal behavior using the subject’s
past behavior by treating them as benign sample and compare a new observed
behavior with the normal profile resulting in high false positive cases. The lack
of labeled data can also extend to samples of normal activity. In some situations,
there may be a small number of samples to learn a user’s normal behavior, or
the sample contain anomalous cases. This makes it difficult to learn an accurate
model for the data. Another problem of existing approaches is that they treat
the samples in the training period as benign. However, the training data can
contain anomalies, and, thus, training with this data can result in high false
negative rates.

Prior work has addressed the issue of mapping such one class classification
problems into two class classification problems [1–5]. However, earlier approaches
generate samples for the second class randomly [1,2] or by following a predefined
distribution such as uniform or Gaussian distribution [3–5]. While these data
points are generated from the data, they do not represent actual behavior in
most real-world problems.

In contrast, we observe that multiple users share the system and exhibit dis-
tinct behavioral patterns in many monitoring applications. Examples of such sce-
narios include user authentication determining the authenticity of a user based
on users’ keystroke patterns, insider threat detection identifying deviation of a
user’s access patterns from past behavior, and social network analysis detecting
anomaly in a user’s collaboration patterns. In these scenarios, we expect other
users’ behavioral pattern to be distinct from the target user’s behavior. Thus,
we can utilize other users’ samples to estimate a target user’s possible abnormal
behavioral patterns. We leverage these “abnormal” samples to help the classifier
learn a boundary between a user’s expected behavior and unexpected behavior.
There are no assumptions made about the distribution of anomalous samples,
no manual labeling is necessary, and it is independent of the underlying learning
algorithms.

The basic idea of our algorithm lies in the concept of a local density and is
built on the Local Outlier Factor algorithm [6]. LOF is a density-based anomaly
detection algorithm and finds anomalous data points based on their deviation
with respect to their neighbours. The locality of a data point is defined by its
k -nearest neighbors, and the distance to the k -neighbors is used to estimate the

398 Y. Park et al.

density. If the density of a data point has much lower density than its neighbors,
the data point is considered as an outlier.

We extend the idea of LOF and propose a new local density-based method
for selecting a good set of anomalous samples from the other users’ sample set.
For a given target user, we compute the Local Outlier Factor (LOF) value for
all data points with respect to the target user’s data points and choose data
points from other users’ samples that are distant from the target user’s data as
anomalous samples. Our method, named as reference points-based LOF, gives us
an estimate of the degree of “outlier-ness” of the other data points with respect
to the target user’s behavior. Given this measure of LOF, we have explored
two broad strategies to select abnormal samples: use the points with the highest
LOF, which deviate the most from the target user’s data points, or use the points
with the lowest LOF above a certain threshold, which are just “slightly different”
from the target user’s data. Further, we use the reference points-based LOF to
remove outliers from the target user’s sample set and produce more coherent
benign sample set.

We evaluate these approaches using four different data sets: keystroke dynam-
ics data for user authentication, typing patterns for user recognition, user access
patterns for a source code repository, and, finally, paper titles from the DBLP bib-
liography. For each test user, we generate both benign data points and abnormal
data points using the LOF-based strategies. We then train two-class classifiers—
Decision Tree, Logistic Regression and Random Forest—for evaluation. In each
case, our evaluation has shown that the strategy of providing abnormal data points
for users using the Reference Points-based LOF provides uniformly better results
compared to the one class classifier approach and binary-class approach using syn-
thetically constructed distributions of abnormal samples for training. Our meth-
ods produce better AUC (Area Under the ROC Curve) across all users in the var-
ious data sets. Our technique is promising and applicable to a large number of
problems in security relying on anomaly detection and user profiling.

2 Approach

This paper addresses the critical problem of detecting anomalous user behavior,
targeting use cases such as continuous user authentication and insider threat
detection. The key challenge we aim to address is the difficulty in obtaining
labeled anomalous samples. The primary goal is to detect anomalous behavior
of a user, i.e., when a user’s behavior deviates significantly from his/her own
historical behavior. While user-specific modeling can provide higher accuracy
and adaptability to changing environments, obtaining known anomalous samples
for each individual user is made even more challenging.

Standard anomaly detection techniques, such as statistical analysis or one-
class classification, aim to rank new samples based on their similarity to the
model of the negative samples, assuming that all previously known samples are
negative (benign). Many approaches use distance or density of the points as a
measurement for the similarity, in which data points with the lowest density

Learning from Others: User Anomaly Detection Using Anomalous 399

or the longest average distance to the previously known (negative) samples are
considered most anomalous.

In contrast, our approach makes no assumption on the underlying data dis-
tribution. We assume that data samples in these applications are generated inde-
pendently by many users with different underlying distributions. Consider, for
example, the case of detecting anomalous user access to a source code repository
shared by many employees. In this case, we expect that users’ access patterns
will depend on their role in the organization or project and will, in general,
be different from each other. For instance, we expect software developers to
exhibit similar access patterns e.g. access the repository regularly during busi-
ness hours, and to be significantly different from the access patterns of testers,
business managers, backup administrators etc. Further, we assume that, in these
multi-user applications, malicious actors often change their behaviors subtly or
try to impersonate another person to hide their malicious intention. Thus, an
anomalous point of a user’s behavior can look perfectly normal in the global
view, and, anomaly detection per user can detect these stealth attacks better
than a global anomaly detection. However, while user-specific modeling can pro-
duce more accurate detection, the data sparseness problem becomes even worse.
In this case, in addition to the lack of anomalous cases, we may not have enough
benign cases for some users, such as new users or not active users.

We address the lack of labeled samples by exploiting data samples from the
other users in the target application. Our intuition is that, when there are many
users, other users’ behavior can provide additional insights on potential anomalies.
We assume that a user’s actions are similar each other and tend to form a few
clusters occupying a small area in the data space. However, when we combine data
samples from many users, they provide more accurate projection of the entire data
space and help to estimate accurate boundaries between different users.

The main focus of this study is on how to generate anomalous samples auto-
matically from other users’ behaviors. To identify possibly anomalous samples
for a target user, we adopt a common definition of anomaly which considers the
data points in low density areas as anomalous [7]. We examine all the samples
of all users in the data set and identify the samples that are considered different
from a target user’s data samples. We apply Local Outlier Factor (LOF) [6] to
estimate the degree of “outlier-ness” and select anomalous samples for the target
user from other users’ data samples which have high LOF with respect to the
target user’s data samples. We call the target user’s data points the reference
points, and call the LOF computed based on the reference points as the reference
points-based LOF. Figure 1 illustrates the difference between outliers based on
the standard LOF and outliers based on the reference points-based LOF. Stan-
dard anomaly detection methods will identify two clusters of dense area and
detect only the two data points p1 and p2 as outliers as shown in Fig. 1(a).
However, the reference points-based outlier detection method will measure the
density of all the points with respect to their distance to the reference points
(C1), and thus will consider all the data points in C2 as outliers as well. The
main differences of our approach from other density-based anomaly detection
methods are in that we measure the outlier-ness of a data point with respect to

400 Y. Park et al.

(a) (b)

Fig. 1. Comparison of standard outlier detection (a) and reference points-based outlier
detection (b). The data points in C1 are the reference points, and the red points
represent outliers (Color figure online).

a fixed set of existing data points in the space, and, we use low density samples
as anomalous samples to build a binary classifier.

Apparently, if the data points of a user (i.e., reference points) are dispersed
over a wide area in the data space and mingled with other users’ samples, this
method would not work well. To validate our assumption that one user’s actions
tend to form close clusters, we analyzed a data set of 51 distinct users containing
200 cases for each user (10,200 cases in total) from the dynamic keystroke analy-
sis study [8]. We considered the 200 instances of the first user as the reference
points, and computed the LOF scores for all 10,200 samples with respect to the
200 reference points. Figure 2 shows the LOF scores of the data points of all
the users. The x-axis represents the 51 users, and each cross point in the chart
represents a keystroke instance.

As we can see, all samples belonging to the first user have very low LOF
scores, while other users’ data points have much higher LOF scores, indicating
that the data points belonging to a user are close each other, while data points
from other users are separated. The analysis result supports our hypothesis on
exploiting other users’ data points to generate anomalous samples for the tar-
get user.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Subject

0

2

4

6

8

10

12

14

16

18

LO
F

Fig. 2. The reference points-based LOF scores for the 51 users in the Keystroke Data
Set [8] using the data points of the first user as the reference points. The dashed red
line is the 95% confidence interval for the target user (Color figure online).

Learning from Others: User Anomaly Detection Using Anomalous 401

3 Reference Points-Based LOF

In this section, we explain the reference points-based LOF method in detail. The
task is to build an anomaly detection model for each user with both normal and
anomalous samples. In the absence of labeled anomalous samples, we explore
other users’ samples as potential anomalous points for a target user. We find
possible anomalous samples for each user from the other users’ normal samples.
The basic idea is to measure the degree of “outlier-ness” of all the training
samples and identify the data points that deviate from the target user’s samples.

In density-based anomaly detection, a data point is considered as an outlier
if the local density of the point is substantially lower than its neighbors. In this
work, we use the Local Outlier Factor (LOF) for local density estimation [6],
where the local area is determined by its k nearest neighbors from the target
user. LOF is computed as defined in Eqs. 1 and 2.

LOF (p) =

∑
q∈kNN(p)

LRD(q)
LRD(p)

|kNN(p)| (1)

The local reachability distance (LRD) is defined as in Eq. 2.

LRD(p) =
|kNN(p)|

∑
q∈kNN(p) max{k-distance(q), dist(p, q)} (2)

where k-distance(q) be the distance of the point q to its k-th nearest neighbor.
Let U be the set of users, D be the set of training samples for all the users,

Du be the samples of a target user u, and Du be the samples from all other
users except u, i.e., D = Du ∪ Du. Unlike the standard LOF, where k-nearest
neighbors are found from the entire data set, we compute the LOF values of all
data points p ∈ D based on their distance to the k-nearest neighbors from the
target user’s data points, Du. Figure 3 shows a high level sketch of the reference
points-based LOF.

Fig. 3. Algorithm for computing LOF based on a set of reference points

402 Y. Park et al.

In this work, we compute the distance between two data points p and q using
a normalized Manhattan distance.

dist(p, q) =
∑

i

|pi − qi|
max(i) − min(i)

(3)

where max(i) and min(i) denote the maximum and minimum value for the i-th
features respectively. Alternative to the k-nearest neighbors, one can use the
ε-neighborhood as described in the DBSCAN clustering algorithm [9]. In this
case, the degree of outlier-ness of a sample p can be computed as the average
distance to the data points in its directly reachable neighbors.

4 Abnormal Behavior Detection

In this section, we explore several strategies to generate a labeled training set
based on the reference points-based LOF. Sections 4.1 and 4.2 describe strategies
for choosing normal samples and anomalous samples respectively. Note that the
algorithm in Fig. 3 computes the LOF scores for all data points including both
the target user’s data points and other users’ data points. We use the LOF scores
to select both normal and abnormal samples to train a two-class classification
model for each user.

4.1 Normal Sample Selection

We apply the following 2 different strategies for generating normal samples for
training.

1. All Self Samples (Self): This method uses all the samples from the target
user during the training period as normal samples, similarly to unsupervised
anomaly detection or one-class classification approach.

2. No Outlier Samples (LowLOF): Note that we compute LOF values for the
target user’s own samples as well. The data points with relatively high LOF
scores are outliers in the target user’s samples. We discard these outlier sam-
ples from the target user’s sample set and use the remaining samples as normal
samples for training. This strategy can handle noisy data.

4.2 Abnormal Sample Selection

For anomalous training sample generation, we apply the following four strategies
to extract anomalous samples for the target user. These strategies aim to find
other users’ samples that are outside of the target user’s samples, i.e., outliers
from the perspective of the target user.

1. Boundary Sampling (LowLOFAll): Out of all other users’ samples that have
LOF higher than a threshold, we choose the samples with lowest LOF scores.
This method finds anomalous samples that are located close to the bound-
aries. These samples would have higher LOF scores than most of the target
user’s samples, but have lower LOF scores than most of the other users’
samples.

Learning from Others: User Anomaly Detection Using Anomalous 403

2. Boundary Sampling Per User (LowLOFUser): This method is also intended
to choose boundary samples. However, this method selects low LOF samples
from each of the other users. If we want to generate N anomalous samples,
and there are m other users, we generate approximately N

m samples from each
user.

3. Outlier Sampling (HighLOFAll): This method generates anomalous samples
which deviate mostly from the target users’ samples, i.e., samples with highest
LOF scores from the sample set from all the other users as in LowLOFAll.

4. Outlier Sampling per User (HighLOFUser): This method is similar to LowLO-
FUser. The difference is that it chooses samples with highest LOF scores from
each of the other users.

We note that our algorithm chooses anomalous samples which have an LOF
score higher than a threshold to exclude other users’ samples that are inside of or
too close to the target user’s region. Further, the LowLOF method for generating
normal samples (Sect. 4.1) can also discard a few normal samples. Thus, for very
small data sets like the Typist data set, we can generate a smaller number of
samples than requested.

4.3 Training Sample Generation

By combining the two methods for normal sample generation and the four for
abnormal samples, we have eight methods for generating training samples. We
label the methods as ‘Normal Sampling Method’-‘Abnormal Sampling Method’
(e.g., Self-LowLOFAll and LowLOF-HighLOWUser). Figure 4 illustrates the differ-
ences of the sampling methods. Here, the circle points are the data samples of
the target user, and the triangle, square and diamond points belong to the other
three users, U1, U2, and U3 respectively. Figure 4(a) shows the LowLOF method
and Fig. 4(b) shows the Self method for selecting normal samples respectively.
With Self, all circle points are selected as normal, while the two white circles
are discarded because their LOF scores are high and considered as outlier with
the LowLOF method. Suppose we plan to include nine anomalous samples in
the training data set: Fig. 4(a) shows per-user basis sampling methods, LowLO-
FUser and HighLOFUser, and chooses three samples from each user. The points
enclosed by dashed lines are selected by LowLOFUser, while the points enclosed
by solid lines are chosen by HighLOFUser. Figure 4(b) shows anomalous samples
selected by LowLOFAll (dashed line) and HighLOFAll (solid line).

4.4 Binary Classification

Having both normal and anomalous samples in the training data allows us to
cast the anomaly detection task as a two-class classification problem, and learn
a classifier that can discriminate the abnormal samples from the normal sam-
ples. Any classification algorithm can be applied and may be chosen based on
the application. We use classification algorithms that produce the class proba-
bility as an output, rather than a binary decision. The advantage of having class

404 Y. Park et al.

Fig. 4. Illustrations of the reference points-based LOF sampling methods. The circles
are the instances of the target user. (a) depicts LowLOF-LowLOFUser and LowLOF-
HighLOFUser methods, and (b) depicts Self-LowLOFAll and Self-HighLOFAll methods.
The points enclosed with dashed lines have low LOF values, and those enclosed with
solid lines have high LOF values.

probability estimation over a binary decision of normal versus abnormal is that
the system administrators can adjust the ratio of alarms according to available
resources and costs. In this work, we conduct experiments with three classifi-
cation algorithms: Decision Tree, Logistic Regression, and Random Forest. We
use the implementations in RapidMiner [10] for all the experiments described in
Sect. 5.

5 Experiments

We validated the proposed sampling methods with three publicly available data
sets and one private data set from information security application. This section
decribes the four data sets and the evaluation methods in details.

5.1 Data

We validate our algorithms for anomalous sample generation using the following
four data sets: Keystroke Dynamics Benchmark Data; Typist Recognition Data;
DBLP Collaboration Network Data; and Access Log Data. The first three data
sets are publicly available and the last data set is private.

Keystroke Dynamics Benchmark Data: Killourhy and Maxion [8] collected
keystroke data from 51 users typing the same strong password 400 times, broken
into eight equal-length sessions1. They collected various timing features such as
the length of time between each keystroke, and the time each key was depressed.
They used this data set to compare the accuracy of fourteen one-class classifiers
at identifying impostors.

Typist Recognition Data: Hempstalk, Frank and Witten [5] collected data
on the typing patterns of ten different users and build a classifier to identify
1 http://www.cs.cmu.edu/afs/cs/Web/People/keystroke/.

http://www.cs.cmu.edu/afs/cs/Web/People/keystroke/

Learning from Others: User Anomaly Detection Using Anomalous 405

individual typists. The typing pattern are represented by eight features such as
typing speed and error rate (backspace)2. The typing behavior of the users is
broken into units, approximately one paragraph’s worth of typing. Each user
contains between 24 and 75 records with an average of 53.3.

DBLP Collaboration Network Data: DBLP3 is a large database of publica-
tions from computer science journals, conferences, and workshops. We extracted
DBLP records of “inproceedings” and “incollection” publications, and authors
with publication records between 25 and 150 papers in the data set. We then
randomly selected 200 authors from the extracted data and generated a cor-
pus containing the publication records of the selected 200 authors. The paper
titles are preprocessed by removing stop words and performing lemmatization
on the remaining words, and each publication record is converted to a vector of
term:count pairs found in the title. We build models to learn what a “normal”
paper title is for an author.

Access Log Data: The access log data set comes from a source code repository
used in a large IT company. The logs were collected over 5 years and consist
of 2,623 unique users, 298,365 unique directories, 1,162,259 unique files, and
68,736,222 total accesses. Each log contains a timestamp, a user ID, a resource
name, and the action performed on the resource. We process these logs down to
individual periods per user which represent the user’s behavior in a given week.
The features include the number of total accesses, the number of unique accesses
in that period, new unique accesses given a user’s history, counts for the actions
performed, counts for the file extensions accessed, and similarity scores to the
target user as discussed in [11]. The similarity scores represent how similar a
user is to the other users given the user’s current access pattern and the other
users’ past access patterns.

5.2 Evaluation Method

While we assume that most of a target user’s activity is benign, we need to
prevent our training data from containing samples of malicious behavior to be
detected. For example, if the target user’s account is compromised by an adver-
sary, the classifier should not have been trained on the activity of the adversary.
For this reason, we train and test a classifier on different user groups. For each
target user, we perform K-fold cross validation by dividing the user population
into K disjoint sets of training and testing user groups. For example, suppose
there are three users U1, U2 and U3, and U1 is the target user. We train a clas-
sifier on U1 and U2 and test on U1 and U3, and train a second classifier on U1

and U3, and test on U1 and U2. The user actions are also split into training and
testing samples using a pivot point in time when applicable, that is, all training
actions occur strictly prior to all testing actions. We choose anomalous samples
only from the training user group and measure the performance on the evalua-
tion user group. The training user group and the evaluation user group for each
2 http://www.cs.waikato.ac.nz/ml/data/typist.arff.
3 http://snap.stanford.edu/data/com-DBLP.html.

http://www.cs.waikato.ac.nz/ml/data/typist.arff
http://snap.stanford.edu/data/com-DBLP.html

406 Y. Park et al.

Table 1. Sizes of the four experiment data sets both for training and testing. The
number of samples denote the mean values for each cross-validation set.

Data Set Num. Users Training Testing

Normal Abnormal Normal Abnormal

Keystroke 51 200 200 200 54

Typist 10 47 45 5 45

DBLP 28 91 85 23 34

Access Log 202 125 151 37 201

fold are mutually exclusive, so no evaluation user is seen during training. Table 1
shows the average size of the training and test data sets.

To ease comparison with some prior work, we evaluate the performance of
a two-class classifier versus a one-class classifier for detecting changes in user
behavior. Further, for all experiments, we report the average results over the
cross-validation splits and compare the algorithms based on AUC (Area Under
Curve), as it is the metric used in all previous work.

5.3 Baseline Methods

We use two baseline methods for evaluation. The first baseline method is a two-
class classification using randomly selected anomalous samples from other users.
We use all training samples from the target user as normal samples (i.e., Self),
and apply a standard random sampling strategy (Random) on the other users’
sample set. We call this baseline Self-Random, and compare this method with
the eight different combinations of sampling methods described in the previous
section.

We also compare two-class classification with one-class classification based
on one-class SVM using all samples of a target user as normal samples. We use
the SVM implementation from SVM KMToolbox [12]4 with RBF kernel and the
upper bound on the number of errors ν was set to 0.1.

6 Results

6.1 Keystroke Dynamics Benchmark Data

Killourhy and Maxion [8] collected the Keystroke data to build one-class classi-
fiers to detect imposters. There are 51 users in the data, where each user con-
tributed 400 samples. They evaluated fourteen scoring methods, one of which is
a one-class SVM. Each method is trained using normal samples obtained only
from the target user and is not exposed to malicious samples during training.
However, our methods need anomalous samples from other users. To make the
4 Download available at http://asi.insa-rouen.fr/enseignants/∼arakoto/toolbox/.

http://asi.insa-rouen.fr/enseignants/~arakoto/toolbox/

Learning from Others: User Anomaly Detection Using Anomalous 407

Table 2. AUC comparison for the Keystroke
Dynamics Data. Our Algorithm (LOF) reports
the best result obtained from the LOF-based
strategies.

Cross
validation

LOF Self-
Random

One-Class
SVM

1 0.979 0.934 0.927

2 0.967 0.939 0.908

3 0.971 0.905 0.905

4 0.945 0.933 0.800

5 0.968 0.957 0.844

Avg. 0.966 0.934 0.877

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Low-Low

0.75

0.80

0.85

0.90

0.95

1.00

S
el

f R
an

do
m

Per-User AUC with Training/Testing Split 95% Confidence Interval

Fig. 5. AUC values of the classifiers
for individual target users, and the
variance across the five training-testing
folds.

comparison objective, we divided the 51 users into 5-fold cross validation sets
comprising a training user group and an evaluation user group as described in
Sect. 5.2. Each training and testing group contains approximately 41 users and
10 users respectively.

Following Killourhy et al.’s convention, we considered one user from a training
user group as the target user, and treat all remaining users in the training user
group as malicious users. For each target user, we use the user’s first 200 samples
to select the benign training samples and extract five samples randomly from
each malicious user as anomalous samples for training. Therefore, the training
data set contains 200 benign cases and 200 anomalous cases. For testing, we
use the remaining 200 samples from the target user and extract five samples
randomly from each user in the testing user group as anomalous samples. The
performance is measured using the average AUC over all 51 users. Table 2 shows
the average AUC of the 5-fold cross validation results. As we can see from the
table, the LOF-based method produces a higher AUC than the Self-Random
baseline method and the one-class SVM for all folds.

Next, we evaluate how well the individual classifiers compare across each tar-
get user. Figure 5 compares the classifiers for individual target users and the error
rates of the AUC across the five splits. Here, the x-axis is the AUC score of the
LowLOF-LowLOFUser method, and the y-axis is the AUC for the random baseline
method, Self-Random. The red error ellipse around each point has a diameter
of one standard deviation for the AUC scores over the five splits. Points below
the y-equal-x line (red-dashed) are classifiers where our LOF method produced
strictly better results.

6.2 Typist Recognition Data

Hempstalk et al. [5] proposed a technique for combining density and class prob-
ability estimation for continuous typist recognition. They collected a dataset of

408 Y. Park et al.

15 emails from each of ten participants to validate their method. To compare our
methods with theirs, we conducted experiments using a stratified 10-fold cross
validation on the same data set as described in [5]. For each user, we choose
90 % of randomly chosen samples as training samples and the remaining 10 %
for benign testing samples. Due to the small user population, we don’t split the
users into disjoint training and evaluation groups.

To generate anomalous training samples for each target user, we first merge
the training samples for all users, assuming the target user’s samples as “normal”
and samples from the other nine users as “abnormal”. We then compute the
reference points-based LOF scores all the samples in the training data, and
generate abnormal samples as described in Sect. 3. To replicate the experiments
by Hempstalk et al. as close as we can, we set the number of anomalous samples
to the number of normal samples for the target users. However, our method often
produces a smaller number of samples than requested as we noted in Sect. 4.2,
because LowLOF normal sampling method discards outliers from the target user’s
sample set.

Table 3 compares the results of our algorithm, random sampling-based
method, and two density estimation-based methods from [5]. The table shows
the average AUC over the 10-fold cross validation for each user. As we can see,
our method outperforms both of the density estimation methods, and is slightly
better than the random sampling method for this data set. However, as we noted

Table 3. AUC results for the Typist Recognition Data. Our Algorithm (LOF) reports
the best result obtained from the LOF-based strategies. The results of Gaussian and
EM methods are obtained by the density and class probability estimation described
in [5].

Participant LOF Self-Random Density∗ One-Class SVM

Gaussian EM

A 0.946 0.923 0.924 0.923 0.894

B 0.965 0.984 0.934 0.929 0.725

C 0.852 0.825 0.707 0.786 0.769

D 0.903 0.922 0.924 0.902 0.918

E 0.977 0.982 0.973 0.971 0.932

F 0.902 0.872 0.852 0.867 0.749

G 0.960 0.949 0.942 0.952 0.856

H 0.909 0.877 0.909 0.914 0.822

I 0.976 0.974 0.956 0.950 0.913

J 1.000 0.989 1.000 1.000 0.982

Avg. 0.939 0.930 0.912 0.919 0.856

Std. 0.046 0.056 0.082 0.060 0.087

Learning from Others: User Anomaly Detection Using Anomalous 409

Table 4. AUC results for the DBLP data set.

earlier, the results demonstrate our algorithm’s advantage, as it used a smaller
number of training samples than the other three methods in most testing cases.

6.3 DBLP Collaboration Network Data

While the DBLP data contain publication information about many authors, each
user has a small number of publications. Many authors do not have enough data
points for training a reliable model. In this experiments, we selected authors
with at least 50 publications in the data set, resulting in 28 distinct authors.
We used the words in the publication titles as the features and represent each
user with a bag of word vector after removing stop words and converting words
to their base form, resulting in 9,670 unique features. We ran PCA (Principal
Component Analysis) on the entire samples, and reduced the dimension to 200.
Then, we conducted a 5-fold cross validation test similar to the password data
sets. Table 4 summarizes the average AUC of each user over the 5-fold splits.

6.4 Access Log Data

The access log data contains a mixture of real user IDs and system IDs which
periodically run batch processes. These system processes perform tasks such as
nightly builds of source code and exhibit vastly different behavioral patterns from
real users. We discarded these system IDs from the logs. Further, we eliminated
any user that is active in fewer than 150 weeks (not active users) or more than
250 weeks (very active) out of 260 weeks during which the logs were collected.
The final data set contain 202 unique users. The samples are then split by time
into 80 % for training and 20 % for testing.

410 Y. Park et al.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
 LOF

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 R
an

do
m

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
 LOF

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ne

-c
la

ss
 S

V
M

Fig. 6. Comparison of AUC scores for LOF, Random, and One-Class SVM across the
202 per-user classifiers.

Figure 6 shows the comparison of the three sampling methods in terms of the
AUC scores for the individual classifiers per target user, and Table 5 shows the
mean and standard deviation of the AUC scores of the 202 users.

In both scatter plots, the AUC scores of LOF are given on the x-axis, and
the AUC scores for the competing methods, Self-Random for the left plot and
one-class SVM for the right, are given on the y-axis. The dashed red-line is the
y-equals-x line. For any points below the line, our LOF method outperformed
the other methods for the given target user, producing better results across the
majority of target users (89.1 % compared to Self-Random and 87.1 % compared
to one-class SVM). Further, the improvement in AUC scores is significant: 0.155
(stdev 0.155) higher compared to Self-Random, and 0.163 (stdev 0.155) com-
pared to one-class SVM. We also note that the biggest impediment to the use of
analytics for insider threat detection is the high false positive rates. As shown
above, our approach significantly reduces false positive rates, thus improving the
applicability of anomaly detection mechanisms.

6.5 Comparison of Sampling Methods

Lastly, we compare the performance of the eight LOF-based sampling methods
and the Self-Random baseline. The comparison was conducted using the Key-
stroke Data and the three binary classifiers—Decision Tree, Logistic Regression,
and Random Forest—over a 5-fold cross validation, resulting in 6,885 exper-
iments in total (51 users × 9 sampling methods × 3 classifiers × 5 folds). We
counted how many times a sampling method preformed the best for each of the
user and classifier combinations. When multiple sampling algorithms made a tie,
we considered all the methods as the best performing one.

The comparison results are shown in Fig. 7. The x-axis denotes the five
methods for generating anomalous samples—four LOF-based methods and the

Learning from Others: User Anomaly Detection Using Anomalous 411

Table 5. Mean and Standard
Deviation for AUC scores of the
202 users in the Access Log data.

Method Mean
AUC

Stdev
AUC

LOF 0.877 0.089

Self-Random 0.722 0.176

One-Class SVM 0.714 0.134

HighLOFAll HighLOWUser LowLOFAll LowLOFUser Random
Anomalous Sample Selection Methods

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
er

ce
nt

ag
e

of
 b

ei
ng

 th
e

be
st

 p
er

fo
rm

er

LowLOF-Normal
Self-Normal

Fig. 7. The percentage of each sampling method
being the best performer.

Random method. The blue bars represent the LowLOF method for generating
normal samples, and the pink bars indicate that all samples of the target user
were used as normal (Self). We can see that LowLOF-HighLOFUser was the best
performing method most of the time, closely followed by LowLOF-LowLOFUser.
The results confirm two findings. First, discarding outlier cases from the nor-
mal sample significantly increase the detection accuracy, as indicated by all blue
bars (LowLOF outperforming red bards (Self). Second, sampling from each user is
more beneficial than from the merged sample set (LOFUser vs. LOFAll for anom-
alous samples). The reason that there is no significant difference between High-
LOFUser and LowLOFUser methods for anomalous sample generation is because
the sample size was relatively small, and many of the selected anomalous samples
appear in both training sets.

7 Related Work

Anomaly detection has been an important research problem in security analy-
sis [13,14]. Various techniques based on domain knowledge/statistics [15–19] or
on data mining algorithms [20–22], haven been proposed for anomaly detection
for a number of application domains. Due to the absence or insufficiency of
labeled examples, most of the techniques have modeled anomaly detection as a
unsupervised learning problem. However, unsupervised modeling suffers from a
number of problems, e.g., the incapability of discriminative modeling and the
difficulty of tuning parameters, leading to high false-positive rates.

To solve this problem, several anomaly detection methods tried to artificially
generate samples as a second class based on some heuristics, posing a one-class
classification task as a binary classification problem. For example, in a word
spotting application, Chang and Lippmann [1] presented a method to artifi-
cially enlarge the number of training talkers to increase variabilities of training

412 Y. Park et al.

samples. They transformed one talker’s speech pattern to that of a new talker
by generating more varied training examples of keywords. Theiler and Cai [2]
applied a resampling method to generate a random sample by choosing each of
its coordinates randomly from the coordinate values that are in the data. Later,
Fan et al. [3] proposed a distribution-based artificial anomaly generation method,
which first measures the density of each feature value in the original data set D
and then artificially generates anomaly points near to the normal data points by
replacing low-density features with a different value in D. This method assumes
that the boundary between the known and anomalous instances is very close to
the existing data, hence “near misses” can be safely assumed to be anomalous.
However, this methods is not applicable to data with a very high dimensionality
or with continuous variables.

Further, Hastie et al. [4] summarized techniques for transforming the density
estimation (unsupervised learning) problem into one of supervised learning using
artificially generated data in the context of association rule learning. A reference
model, such as uniform or Gaussian, can be used to generate artificial training
samples as “contrast” statistics that provide information concerning departures
of the data density from the chosen reference density. Following this principle,
Hempstalk et al. [5] further proposed to employ the training data from the target
class to generate artificial data based on a known reference distribution. But
it restrict the underlying classification algorithm to produce class probability
estimates rather than a binary decision.

Despite the success of the above methods, they suffer either from strong
restrictions, which made them not applicable to problems with high dimen-
sional data other application domains, or from the requirement of estimating
the reference data distribution, which is usually not accurate and may lead to
suboptimal performance. Our method addresses both limitations: (1) artificially
generated samples do not reflect real cases, (2) assuming an underlying data
distribution is unrealistic in multi-user environments. Instead, our LOF-based
sampling provides a unified mechanism to filter out bad normal samples and
generate potential anomalous samples for each target user.

8 Conclusion

This study focused on abnormal behavior detection for applications where mul-
tiple users share the system or application. Many applications exist in computer
security such as user authentication, insider threat detection, and network secu-
rity, and anomalous user activity detection in social network. In each case, we
learn a target user’s normal behavior from the user’s training samples, and esti-
mate the user’s possible abnormal behavioral patterns from other users’ training
samples, who exhibit quite different behavioral patterns from the target user.

We proposed the reference points based LOF method which measures outlier-
ness of a data point with respect to a set of known data points, and showed,
through empirical evaluations, that reference points-based LOF methods find
good anomalous samples from the behavior of other users. Our evaluation has

Learning from Others: User Anomaly Detection Using Anomalous 413

shown that the our methods provide uniformly better results compared to the one
class classifier approach and the approach of providing synthetically constructed
distributions of abnormal samples for training. Our technique is promising and
seems to be applicable to a large number of problems in security relying on
anomaly detection and user profiling.

References

1. Chang, E.I., Lippmann, R.P.: Using voice transformations to create additional
training talkers for word spotting. In: Advances in Neural Information Processing
Systems, pp. 875–882 (1995)

2. Theiler, J., Cai, D.M.: Resampling approach for anomaly detection in multispectral
images. In: Proceedings of the SPIE, pp. 230–240 (2003)

3. Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.: Using artificial anomalies to
detect unknown and known network intrusions. Knowl. Inf. Syst. 6(5), 507–527
(2004)

4. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical
learning: data mining, inference and prediction. The Math. Intelligencer 27(2),
83–85 (2005)

5. Hempstalk, K., Frank, E., Witten, I.H.: One-class classification by combining den-
sity and class probability estimation. In: Daelemans, W., Goethals, B., Morik, K.
(eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 505–519. Springer,
Heidelberg (2008)

6. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: Identifying density-based
local outliers. In: ACM Sigmod Record, vol. 29, no. 2, pp. 93–104. ACM (2000)

7. Bishop, C.M.: Novelty detection and neural network validation. In: IEE Proceed-
ings Vision, Image and Signal Processing, vol. 141, no. 4, pp. 217–222. IET (1994)

8. Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms forkey-
stroke dynamics. In: IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2009, pp. 125–134 (2009)

9. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231
(1996)

10. Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business
Analytics Applications. CRC Press, Boca Raton (2013)

11. Gates, C., Li, N., Xu, Z., Chari, S.N., Molloy, I., Park, Y.: Detecting insider infor-
mation theft using features from file access logs. In: Kuty�lowski, M., Vaidya, J.
(eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 383–400. Springer, Heidelberg
(2014)

12. Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A.: Svm and kernel meth-
ods matlab toolbox. Perception Systmes et Information, INSA de Rouen, Rouen,
France (2005)

13. Salem, M., Hershkop, S., Stolfo, S.: A survey of insider attack detection research.
In: Insider Attack and Cyber Security, pp. 69–90 (2008)

14. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

15. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE–13(2),
222–232 (1987)

414 Y. Park et al.

16. Javitz, H.S., Valdes, A.: The SRI IDES statistical anomaly detector. In: Research
in Security and Privacy (1991)

17. Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.J.: Detecting malicious
software by monitoring anomalous windows registry accesses. In: Wespi, A., Vigna,
G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 36–53. Springer, Heidelberg
(2002)

18. Stolfo, S.J., Hershkop, S., Bui, L.H., Ferster, R., Wang, K.: Anomaly detection
in computer security and an application to file system accesses. In: Hacid, M.-S.,
Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488,
pp. 14–28. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11425274 2

19. Chen, Y., Malin, B.: Detection of anomalous insiders in collaborative environments
via relational analysis of access logs. In: CODASPY 2011: Proceedings of the First
ACM Conference on Data and Application Security and Privacy, Feb 2011

20. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: Loci: Fast outlier
detection using the local correlation integral. In: Dayal, U., Ramamritham, K.,
Vijayaraman, T.M. (eds.) ICDE, pp. 315–326. IEEE Computer Society (2003)

21. Wang, Y., Parthasarathy, S., Tatikonda, S.: Locality sensitive outlier detection: A
ranking driven approach. In: Abiteboul, S., Bhm, K., Koch, C., Tan, K.-L. (eds.)
ICDE, pp. 410–421. IEEE Computer Society (2011)

22. Senator, T.E., Goldberg, H.G., Memory, A., Young, W.T., Rees, B., Pierce, R.,
Huang, D., Reardon, M., Bader, D.A., Chow, E., Essa, I., Jones, J., Bettadapura,
V., Chau, D.H., Green, O., Kaya, O., Zakrzewska, A., Briscoe, E., Mappus, R.I.L.,
McColl, R., Weiss, L., Dietterich, T.G., Fern, A., Wong, W.-K., Das, S., Emmott,
A., Irvine, J., Lee, J.-Y., Koutra, D., Faloutsos, C., Corkill, D., Friedland, L.,
Gentzel, A., Jensen, D.: Detecting insider threats in a real corporate database of
computer usage activity. In: KDD 2013: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM Request
Permissions, Aug 2013

http://dx.doi.org/10.1007/11425274_2

Authentication

Towards Attack-Resistant Peer-Assisted
Indoor Localization

Jingyu Hua(B), Shaoyong Du, and Sheng Zhong

State Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology,

Nanjing University, Nanjing, China
{huajingyu,zhongsheng}@nju.edu.cn, shaoyong.du.cs@gmail.com

Abstract. Peer-assisted smartphone localization, which leverages pair-
wise acoustic ranging among nearby peer phones to refine location esti-
mation, significantly pushes the accuracy limit of WiFi-based indoor
localization. Unfortunately, this technique is designed for non-adversarial
settings. Dishonest peers may cheat in their distance measurements.
Outside attackers may interfere with the acoustic ranging by continu-
ally broadcasting interference signals. In this paper, we propose coun-
termeasures against each of these attacks. We first present an algorithm
that can identify peers that are not cheating in the current localiza-
tion, by searching for devices that can be embedded into the same plane
according to their pairwise distances. We also design a robust acoustic
ranging method exploiting signal modulation, which can defend effec-
tively against intentional interference of outside attackers. Experimental
results demonstrate that our countermeasures can greatly improve the
robustness of peer-assisted localization.

Keywords: Peer-assisted localization · Acoustic ranging · Attack
resistance · Smartphone

1 Introduction

Outdoor localization with smartphones is being widely used in our daily life.
Indoor localization, however, remains in the elementary stage. Although there
do exist many accurate indoor location mechanisms [3,8,16], they require either
special hardware not yet supported by smartphones, or infrastructures expen-
sive to deploy. Compared with them, WiFi-based localization, which leverages
radio signals of existing WiFi access points, is much cheaper to implement on
smartphones. Whereas current proposals [1,17,21,23,24] can only achieve room-
level accuracy. For example, according to the experiments of Liu et al. [13], the
errors of Fingerprinting Based Localization [2,17,23], which is one of the most

This work was supported by NSFC-61321491, NSFC-61425024, and NSFC-61300235.
The extended version of this paper is available at http://cl.ly/3d3V1z0D2d45.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 417–437, 2015.
DOI: 10.1007/978-3-319-24177-7 21

http://cl.ly/3d3V1z0D2d45

418 J. Hua et al.

popular WiFi localization technologies, may exceed 8 m. This is far from enough
for indoor localization.

Targeting this problem, Liu et al. [13] propose an interesting approach of
peer-phone assisted acoustic ranging to push the accuracy limit of WiFi based
localization on smartphones. This proposal mainly takes advantage of the high
accuracy of acoustic ranging (Measurement error can be confined below 5 cm
[15]) to eliminate large WiFi localization errors. Specifically, when a target phone
wants to improve its location accuracy, a group of nearby peer phones (includ-
ing itself) are made to emit sound signals according to the schedule of a central
server. They also make recordings in this process, and all the recorded sound
files are sent back to the server. The server analyzes these files to calculate pair-
wise distances among these peers based on the Time of Flight (ToF) approach,
and then uses the obtained relative positions of nearby phones as physical con-
straints to refine the WiFi-based location estimation of the target phone. Their
experiments show that this approach can reduce the maximum and 80 % errors
to 2 m and 1 m, respectively.

While such peer-phone assisted localization (PAL) is effective for
non-adversarial settings, it is vulnerable to various attacks that can significantly
reduce its high accuracy or even prevent it from working properly. First, PAL
relies on a group of peers that are not under the control of the server. It is hard to
guarantee that all of them are honest. Instead, they may cheat by emitting their
signals without following the server’s schedule (which we call emission attacks –
see Sect. 2.2), or by directly manipulating the uploaded sound files (which we
call tampering attacks – see Sect. 2.2), thus altering the distance measurements,
and so disrupt the final location estimation of the target phone. In addition,
current acoustic ranging can be easily interfered with by even outsider attacks:
The server in PAL has no ability to associate ranging signals detected from the
recorded data to their emitters except based on their present order. As a result,
if an attacker continuously broadcasts his interference signals during the rang-
ing process, the server may mistake the interference signals for legitimate ones
and then obtain false distance measurements. We call these attacks saturation
attacks (please see Sect. 2.2).

Location information is a critical input to a wide variety of high-level location-
based applications. Compromised localization results are a serious threat because
of their impacts on applications [4]. For example, indoor navigation applica-
tion may bring users to wrong ways and advertising applications may deliver
unmatched ads to users if localization results are compromised. So, in this paper,
we aim to achieve a secure PAL resistant to the three attacks we mentioned
above. Specifically, we make the following contributions:

We first study emission attacks. We show that when a peer launches this
kind of attack, all the distance measurements between him and other phones are
increased or decreased by the same value, which in theory makes this peer no
longer embeddable in the same plane with any three honest ones. We leverage
this observation to identify those peers having not performed emission attacks.
In particular, we prove that if we find greater than or equal to k +3 peers (here,
k is the number of dishonest peers) embeddable in the same plane according to

Towards Attack-Resistant Peer-Assisted Indoor Localization 419

their distance measurements, we can guarantee that none of them is launching
emission attacks.

Next, we consider the scenario involving tampering attacks. Dishonest peers
launch this kind of attack could manipulate any distance measurement involving
them to arbitrary values. We show that so long as we synchronize the clocks
of peers in advance, the above result for emission attacks also applies to this
scenario and the distance measurements among the k + 3 or more peers, which
can be embedded into the same plane, do not suffer from any emission attacks.

We thus present an algorithm in search of no fewer than k + 3 peers that
can be embedded in the same plane if they really exist. These phones are con-
sidered not cheating in the current localization. This algorithm has a worst-case
computational complexity polynomial in n – the total number of peers. Since
n is usually very small due to the limitation of the transmission range of beep
signals, this algorithm is extremely fast. In addition, to apply this algorithm to
the real world, we take ranging errors into consideration. We propose additional
mechanisms to reduce false positives and false negatives due to these errors.

After that, we propose a new correlation-based beep detection approach
that can well defend against saturation attacks during acoustic ranging. In this
approach, beep signals assigned to peers are produced by modulating distinct
pseudonoise (PN) codes on a sine carrier wave. Such modulations guarantee that
these signals are poorly cross-correlated. The server can then precisely identify
a specific beep from a recorded signal by searching for the earliest sharp peak of
the cross-correlation function between them. If attackers have no knowledge of
the PN codes, they have small chance of producing highly correlated beeps to
interfere with the beep detection.

We finally perform extensive experiments to demonstrate the real effects of
the above countermeasures. For the algorithm against dishonest peers, we show
that it can achieve a high detection rate of honest peers while produce very few
false positives. For the new correlation-based acoustic ranging method, we show
that it confines the ranging errors to the same level (below 20 cm) before and
after we introduce the saturation attack. By contrast, the errors of the existing
energy-based method may exceed 1 m facing this attack.

2 Peer Assisted Localization and Attacks

2.1 Review of Peer Assisted Localization

Peer Assisted Localization (PAL) proposed by Liu et al. [13] uses nearby phones
as reference anchors to push the limit of WiFi-based indoor localization. It
exploits the high accuracy of acoustic ranging. There can be many possible
designs of PAL protocols. To be specific, we use [13] as an example in this sub-
section and present attacks against it in Sect. 2.2. This technique includes the
following four steps:

(1) WiFi-Based Localization: Smartphones use traditional WiFi-based localiza-
tion techniques to roughly estimate their locations.

420 J. Hua et al.

(2) Peer Recruitment: When a target phone wants to refine his location, he has
to first broadcast a special audio signal to recruit a group of nearby peers.
All the phones receiving this signal will report themselves to a central server.

(3) Relative Acoustic Ranging Among Peers: The server creates a time schedule
to specify which device should emit a beep signal for ranging at what time.
Involved devices send beeps accordingly while also turn on their recording
function at the outset. All the recorded sound files are uploaded to the
server, which will compute the relative distances among peers by estimating
the sound travel time among them, and then construct a graph based these
distances.

(4) Location Refining: the server then refines the location estimation of the
target by superimposing the graph based on the relative distances among
peers onto the graph base on the WiFi localization. The final result is sent
back to the target.

We now review more details on the third step since most of our work below
focuses on the acoustic ranging process in this step. We first want to mention
that peer phones in this system are only responsible for emitting and record-
ing beeps, and all the signal processing and computation are carried out on
the server. This could avoid the inconvient peer-to-peer communication among
smartphones. Next, the high accuracy of the acoustic ranging is based on an
assumption that the server could precisely detect the earliest position of each
beep signal in the recorded sound files of peer phones, which is corresponding
to the arrival time of each beep signal on these phones. The server uses the
difference between the specified emission time and the detected arrival time to
estimate the distances between two phones.

There exist two methods to detect beep signals hidden in the sound files
[13,22]. The first one is correlation-based. It computes the cross-correlation (CC)
function of an emitted beep signal and a recorded signal. The first sharp peak
in this function is considered with a high probability to be corresponding to
the arrival time. The second method is energy-based. It generates beep signals
with stronger energy than the background noises. Thereby, the point before and
after which the energy distribution differs significantly is regarded as the arrival
point of a beep signal. Through extensive experiments, Liu et al. [13] employ the
second method due to its higher accuracy.

2.2 Attacks Against Peer Assisted Localization

As the current PAL system is designed for non-adversarial settings, it is highly
vulnerable to both insider and outsider attacks. We now analyze the possible
vulnerabilities of PAL and present the details of the attacks this research aims
to address.

Insider Attacks. As peers in PAL are recruited randomly from the neighbors
of the target and are beyond the control of the system, their behaviors are

Towards Attack-Resistant Peer-Assisted Indoor Localization 421

hard to predict. We mentioned earlier in this section that peer devices in PAL
are mainly responsible for signal emitting and recording. Dishonest peers may
launch attacks by cheating in either of them.

(a) An example of emission attacks (b) An example of tampering at-
tacks

Fig. 1. Attacks from dishonest peers

In the emission task, they may intentionally bring forward or delay their beep
emissions rather than follow the schedule of the server. The server computes the
distance between two devices by estimating the sound travel time between them.
Suppose that the server schedules peer Pi to emit his beep signal bi at time ETi.
Then, if Pi follows this schedule and really emits bi at time ETi, the server can
learn the true distance between Pi and Pj by computing dij = c(RTij − ETi)
provided that their clocks are synchronized. Here, c is the sound speed, and
RTij is the arrival time of bi at Pj , which is obtained by analyzing the audio
record uploaded by Pj . However, if Pi sends his beep (ranging) signal tδ earlier
or later than ETi as we show in Fig. 1(a), all the values of RTij(j = 1, 2, · · · , n)
will be tδ smaller or larger than the true value, respectively. As a result, all
the distances dij from Pi to other peers are decreased or increased by the same
value ctδ.

In the recording task, dishonest peers may manipulate their recorded signals
before sending them back to the server. Since the server learns RTij based on the
detected position of the related beep signal in the recorded data uploaded by Pj ,
if Pj intentionally modifies the position of this signal (e.g., swaps the positions of
this signal and a nearby noise window as we show in Fig. 1(b)), RTij will diverge
from its real value and the obtained distance will also be changed. We name such
kind of attacks tampering attacks. Compared with emission attacks, tampering
attacks are relatively more flexible: a dishonest peer could freely choose one or
several phones to change his distances to them without affecting other distances.

In addition, we assume that dishonest peers know their own locations in
advance and may collude with each other.

Outsider Attacks. Outsider attacks are mainly caused by another vulnera-
bility exists in the energy-based beep detection approach employed in acoustic-
ranging. As we show in Fig. 2, the arrival of a beep signal will significantly change

422 J. Hua et al.

0 1 2 3 4 5

x 10
4

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n

er
g

y

Time (sample, 44.1 kHz)

Fig. 2. Detecting the arrival time of a
signal by identifying the energy salta-
tion point (circled in red) (Color figure
online)

Fig. 3. Event sequence in the acoustic
ranging algorithm of Beepbeep

the energy distribution of the recorded signal. This approach then locates ranging
beeps in the recorded signal by identifying the earliest saltation points (marked
by a red circle in Fig. 2) from where the energy distribution changes severely. It
has no way to tell the difference between beep signals emitted by different devices
but based on the assumption that the server’s schedule makes these beep sig-
nals touch every device in a pre-defined order. Consequently, this technique can
be easily fooled by interference signals from attackers even outside the system.
For example, if an attacker in the proximity emits a strong signal at the same
time when a peer emits his beeps, other peers may mistake the arrival of the
interference signal for the legitimate one.

We may alleviate this problem by encrypting the communications between
the server and the peers with individualized keys to prevent them and outside
attackers from knowing the emission time of other devices. However, attackers
may still obstruct the normal ranging with saturation attacks, i.e., constantly
emitting interference signals. Such attacks will make the audio files recorded by
peers full of energy saturation points. It is hard for the server to tell which one
of them is due to the arrival of a real ranging signal. In this research, we focus
on improving the PAL system to resist the above three attacks.

3 Countermeasure Against Insider Attacks

In this section, we first present countermeasures against insider attacks in an
ideal scenario without measurement errors in the acoustic ranging. We then
consider measurement errors to make our countermeasures more practical.

3.1 Countermeasure Against Emission Attacks

We first consider emission attacks, in which dishonest peers violate the server’s
schedule to bring forward or delay their beep emissions. We temporarily assume
that dishonest peers do not perform tampering attacks except those altering
distance measurements among themselves.

Towards Attack-Resistant Peer-Assisted Indoor Localization 423

A naive way to defeat emission attacks is to employ the acoustic ranging
algorithm of Beepbeep [15], which can reach an accuracy of 5 cm when there are
unintentional faults in the timing of emitting signals. Below we briefly explain
why this naive approach does not work when there are intentional attacks.

In this algorithm, the distance between two peers P1 and P2 is computed by

dP1P2 =
c

2
· (tb1 − ta1 + ta2 − tb2) +

dAA + dBB

2
, (1)

where c is the speed of sound and dxy is the distance between device x’s speaker
and device y’s microphone. Other notations are illustrated in Fig. 3. If P1 delays
his emission for tΔ due to unintentional faults, then both ta1, the arrival time of
his beep on P1, and tb1, the arrival time of the same beep on P2, are increased
by tΔ. These two increments will cancel each other out in Eq. 1, and we will
obtain the correct distance measurement between P1 and P2. In fact, the biggest
advantage of this mechanism is that many uncertainties including those due
to the lack of clock synchronization between devices can be eliminated in the
calculation.

Nevertheless, if P1 is an intentional attacker, he can easily bypass this coun-
termeasure by manipulating his recorded sound file to change the value of ta1
before uploading it. For instance, P1 can move a noise window of length tΔ after
the position of his ranging signal to its front in his recorded data, which will
result in an error of c/2 · tΔ in every distance measurement involving P1. Thus,
we require a more advanced mechanism to defend against this type of attack.

Our new mechanism aims to filter out false distance measurements due to
emission attacks. For simplicity, we present our theoretical analysis in a two-
dimensional scenario. This is reasonable because the peers in PAL are on the
same floor. In addition, we first assume the estimated distances among honest
peers are exactly equal to their real values and we will consider measurement
errors in the final algorithm design. Under these assumptions, we have the fol-
lowing lemma:

Lemma 1. For four peers in the same plane but not in the same line, if one
of them launches the emission attack while the other three keep honest, these
four peers cannot be embedded in the same plane according to their distance
measurements.

Please find the proof in the extended version. This leads to our first theorem:

Theorem 1. Let k be the maximum possible number of dishonest peers. Assume
that the target phone is not in the same line with any three peers, and there are
only emission attacks and no other attacks. If we can find m ≥ k + 3 peers
(including the target phone) that can be embedded into the same plane according
to distance measurements among them, none of them performs emission attacks.

424 J. Hua et al.

Please find the proof in the extended version. We may design an algorithm based
on Theorem 1 to identify a group of peers that do not launch emission attacks.
However, Theorem 1 does not consider tampering attacks. If dishonest peers are
allowed to perform tampering attacks, Theorem 1 is valid only when k < 3. We
explain the reasons below.

3.2 Countermeasure Against Tampering Attacks

In PAL, the emission schedule in PAL guarantees that the arrival sequence of
beep signals on each peer is exactly the same as the emission sequence. The
server leverages this property to distinguish among different beep signals. Unfor-
tunately, this property may also be exploited by dishonest peers. Two of them
with synchronized clocks could associate their recorded data to calculate the
time difference that the same beep touched them. Therefore, if there exist three
or more dishonest peers that know their own locations, they could cooperate
with each other to precisely locate every honest peer with TDoA localization
technique.

Once the dishonest peers know the exact locations of the honest peers, they
can further invalidate Lemma 1 and Theorem 1 by tampering with their recorded
sound signals. For instance, if P4 knows the positions of P1, P2 and P3, he can
easily predict the false distance measurements between him and these peers
due to his emission attack. He can then adjust these measurements by altering
the positions of corresponding beep signals in his recorded data to make them
consistent in the same plane again. Therefore, due to the presence of tampering
attacks, even if a peer can be embedded into the same plane with three honest
peers, he may still perform emission attacks without being detected. Lemma 1
works iff k < 3 in the presence of tampering attacks. When k < 3, since the
number of dishonest peers is not enough to position honest peers, they do not
know how to adjust their distance measurements to make them consistent in the
same plane.

We now present countermeasures against tampering attacks. Our proposal
requires that all the peers synchronize their clocks before the localization. A
possible solution is to use NTP (Network Time Protocol). There exists a free
Android application, ClockSync, which can synchronize system clocks of Android
devices with atomic time from local or remote NTP servers. If the user can use
the root mode, the accuracy can reach milliseconds based on the NTP server.

Since the server knows the scheduled emission time of every peer, he can
derive two distance estimations for each pair of peers (Pi and Pj): dij = c ·
(tij − tePi

) and dji = c · (tji − tePj
), where tij is the detected arrival time of

Pi’s ranging signal on Pj , and tePi
is the emission time of Pi. Once all the peers’

clocks are synchronized, the two estimations for the same pair should be very
close: if not exactly the same because of other local uncertainties of smartphones,
the difference will, at least, be much less than the error due to attacks. If they
are inconsistent (i.e. the difference between them is beyond some predefined

Towards Attack-Resistant Peer-Assisted Indoor Localization 425

threshold ε), we can conclude that at least one peer has lied. On the other
hands, however, if the two values are consistent, we cannot simply claim that
both phones are honest because they may have colluded with each other. Under
this assumption, we have the following theorem:

Theorem 2. Let k be the maximum possible number of dishonest peers. Assume
that there are Tampering Attacks in addition to Emission Attacks, but no other
attacks. If we can find m ≥ k + 3 peers (including the target phone) that can
be embedded into the same plane according to the distance measurements among
them, and if any three involved peers are not in the same line, then none of them
has performed any attack that affects the distance measurements among them.

Please find the proof in the extended version.
We design an algorithm based on Theorem 2 to identify a group of peers that

do not lie about the distances among them. This algorithm can always succeed
when the total number of peers (including the target phone) n ≥ 2k+3. Its basic
idea is to transverse triangles including the target phone (The total number of
such triangles is C(n − 1, 2)) until we find one that can be embedded into the
same plane with at least additional k peers. Specifically, for each triangle, we
first test whether it can be embedded into the same planes with R > k peers
(We name them candidate peers) separately. If so, we place this triangle into a
two-dimensional coordinate system by assigning the three peers coordinates con-
sistent with their distance measurements. Once we do like this, the coordinates
of the R candidate peers are also determined based on their distances to the
triangle vertexes. We compute the required lengths of edges between each pair
of the candidate peers and then remove those peers that the derived distance
measurements based on their uploaded sound files are contradicting to the corre-
sponding edge lengths. Afterwards, if the number of remained candidate peers is
greater than k, the algorithm succeeds. Otherwise, it tries the next triangle. Due
to the space limit, please find the pseudocode of this algorithm in Appendix.

It is easy to find that the worst-case time complexity of Algorithm 1 is O(n4).
Since n is very small in PAL (usually below 10), this algorithm can be fast enough
as you can see in Sect. 5. Once we identify these correct distance measurements,
we can execute the last step of PAL to precisely locate the target phone.

Our discussion has assumed that there is no measurement error in acoustic
ranging, which is obviously too ideal for the real world. Thus, to apply
Algorithm 1 into the real world, we have to consider how to tolerate measurement
errors. Due to the space limit, please find this part in Appendix.

4 Countermeasure Against Saturation Attacks

So far we have presented the countermeasures against insider attacks. We now
consider countermeasures against Saturation Attacks.

426 J. Hua et al.

As we pointed out in Sect. 2.2, the energy-based beep detection technique in
current PAL is a major reason for the existence of saturation attacks. Beepbeep
[15] uses a correlation-based technique, which is completely different from the
energy-based method, to detect the location of a specific beep signal within
a recorded signal. This technique has the potential to be extended to defend
against saturation attacks: so long as we can prevent attackers from producing
interference beeps that are highly correlated with ranging signals, they cannot
affect the normal beep detection in theory because non-correlated interferences
will not introduce noisy sharp peaks in the correlation functions with ranging
signals.

Beepbeep does not fully solve this challenge since security is not its major
focus. It makes all the ranging participants simply share the same ranging signal,
which leads to that even if we prevent the outside attackers from knowing this
signal, malicious peers inside can still launch saturations attacks to interfere with
the server. In this section, we aim to present a new correlation-based method
that can better resist saturation attacks.

4.1 Modulation-Based Beep Generation

Specifically, to resist the saturation attacks, we need beep signals that satisfy
the following requirements:

– Each beep signal is only assigned to one peer. Aside from this peer and the
server, it is infeasible for others to guess it in a short time.

– Beep signals have bad cross-correlation with each other or background noises.
It is also hard to create a signal that is highly cross-correlated with a beep
signal without knowing it.

– Each beep signal has a good auto-correlation property, which is critical for
countering multi-path effects.

We find that the modulation technique in Direct Sequence Spread Spectrum
(DSSS) [20], which is widely used in digital radio communication systems, can
help us generate our required signals. The basic idea is to produce beep signals
by using pseudonoise (PN) codes to modulate a sine sound-wave. For simplicity,
we use Binary Phase Shifting Key (BPSK) as our modulation strategy. The
correlation properties of the obtained signals are completely determined by PN
codes (i.e., binary sequences in BPSK). If we can find a family of PN codes that
satisfy the requirements above, the resulting signals hold similar properties.

We find that Maximum Length Sequences (M-Sequences) [20], which is a
special class of pseudo-random binary sequences generated with maximal linear
feedback shift registers, are ideal for such PN codes. An M-Sequence has a good
autocorrelation property: the autocorrelation function RA(τ) reaches its peak
when τ = 0, and as τ deviates from 0, RA(τ) drops quickly. As a result, if we
choose non-overlapped subsequences from the same M-Sequence as our PN codes
for modulation, they must satisfy the requirements of R2 and R3. In addition,

Towards Attack-Resistant Peer-Assisted Indoor Localization 427

0 1 2 3 4

x 10
5

−400

−200

0

200

400

600

Time (sample, 44.1 kHz)

C
o

rr
e

la
ti

o
n

(a) Abnormal CC function (the maximal
peak is due to a strong noise or interfer-
ence signal)

0 0.5 1 1.5 2 2.5

x 10
5

−200

−150

−100

−50

0

50

100

150

200

Time (sample, 44.1 kHz)

C
o

rr
e

la
ti

o
n

(b) CC function after applying the nor-
malization

Fig. 4. An illustration of the effects of random signal attenuation on the results of CC
functions (the peaks in red circles are due to the presence of ranging signals) (Color
figure online)

to guarantee R1, we can use an extremely long M-Sequence that can produce
a huge number of PN codes. For instance, if we use an M-Sequence of length
248 − 1 and suppose the length of the final PN codes is 256 bits (this length is
long enough according to our experiments), we can obtain a family of 240 PN
codes. Given such a huge space, it is infeasible for an attacker to guess a specific
code assigned to a peer.

4.2 Beep Detection

To detect a specific ranging signal from a recorded signal, we have to compute
their CC function and then search for the sharp peak of this function. This task
is not trivial due to the possible existence of some noise peaks, which are mainly
caused by the correlation noises of the ranging signal with background noises,
interference signals and the same signals due to the multi-path effect.

Because of the careful design of ranging signals, noise peaks due to back-
ground noises and interference signals are usually much lower than the desired
peaks due to real ranging signals. However, there are abnormal cases where noise
peaks suppress the true one when the strength of a ranging signal has become
very weak when it arrives at another peer. We show an example in Fig. 4(a). We
solve this problem by normalizing recorded signals before correlation. Specifi-
cally, when we compute the CC value of a recorded signal χ at time t with a
ranging beep, we first find the maximal signal power of χ within a window of
length 2d around t. Here, d is the length of the ranging beep. We then use this
maximum value to normalize the signal segment involved in computing the CC
value at t. Figure 4(b) shows the CC function after applying such normalization
for the abnormal case in Fig. 4(a). We see that its maximum peak now becomes
the one we desire.

428 J. Hua et al.

(a) Average time costs (b) Average detection
rates of peers who did
not cheat in the ranging

(c) Average rates of false
positives

Fig. 5. Performance of Algorithm 1 in experiments with real smartphones (φ is the
difference threshold to etermine whether two distance values between the same pair of
peers are consistent in the presence of measurement errors.)

Due to the existence of multi-path effects, the maximum peak we identify
now may still not correspond to the earliest time that a ranging signal touches
a phone. We deal with this problem with a simple method. We first locate the
maximum peak whose correlation value is Cm. We then compute all the correla-
tion values in a small window (500 samples) before the maximum peak and the
first one whose value is larger than 85%Cm is regarded as the earliest presence
point of the ranging signal.

5 Evaluation

We have performed extensive experiments to evaluate the effects of our proposed
countermeasures against the three attacks. We develop an Android application
responsible for the beep emission and recording, and deploy it on five different
Android smartphones: HTC G14, HTC G7, Motome 600 , HTC G12 and Coolpad
7260. All of them are equipped with two built-in speakers and one microphone
that support 44.1 kHz sampling rate. In all the experiments, we use the back
speaker and the microphone on every phone. We generate distinct beep signals
for each device based on the design in Sect. 4.1. Due to the space limit, we have
to put the detailed parameters for this process in the extended version.

To measure the distance between two phones, we make them emit their beep
signals at a random order. All their recorded files are then manually copied to a
desktop for analysis with a MatLab application that implements the automatic
beep detection and distance calculation. We do not implement the last step of
PAL because it depends on what WiFi localization technique that the peers use
and is also beyond the scope of this paper. We only aim to verify whether our
proposals can guarantee that all the distance measurements input into the last
step are true.

Towards Attack-Resistant Peer-Assisted Indoor Localization 429

(a) Average time costs (b) Average detection
rates of peers who did
not cheat in the ranging

(c) Average rates of false
positives

Fig. 6. Performance of Algorithm 1 in simulations with different numbers of dishonest
peers (the measurement error is uniformly distributed over [−ε, ε] and φ = 3ε)

(a) Average time costs (b) Average detection
rates of peers who did
not cheat in the ranging

(c) Average rates of false
positives

Fig. 7. Performance of Algorithm 1 (employing the patch in Appendix to filter false
positives) in simulations with different number of dishonest peers (The measurement
error is uniformly distributed over [−ε, ε] and φ = 3ε)

5.1 Evaluation of Algorithm1

We first evaluate the real performance of Algorithm1 against dishonest peers.
We conduct experiments in an empty room that is about 10m × 6m. We make
five students carrying smartphones stand inside a circle of 2 m radius. Their
topology is random but ensures line-of-sight between any two devices. Due to the
limitation of the penetrating power of the used ranging signal, we do not consider
the scenarios where some students stand in the corridor and some students stand
in the room. We make phones emit their assigned ranging signals in a random
order, and all their recorded data are uploaded to a desktop for analysis. We
repeat this process for five times and each time all the students change their
positions (i.e. topology). Therefore, we will obtain five groups of recorded signals.

Since we use Formula (1) to calculate distances, both emission and tampering
attacks are carried out by manipulating dishonest peers’ recorded signals, which
are collected earlier. For emission attacks, we move the signal window contain-
ing the dishonest peer’s ranging signal m samples ahead. For tampering attacks,
we simply insert a noise window of n samples immediately after the ranging

430 J. Hua et al.

signal. Here, both m and n are random values over [260, 780], which will produce
ranging errors over [1m, 3m]. Since the total number of peers is five, the maxi-
mum number of dishonest peer Algorithm1 can tolerate is one. For each group
of recorded data, we launch 100 emission attacks and 100 tampering attacks,
respectively. Each attack randomly selects one device as the dishonest peer and
another as the target peer. We perform the pairwise ranging with our matlab
application and can get 500 inputs for Algorithm1 for each kind of attack.

We then run Algorithm1 for each input and each value of φ, which is the
threshold for determining whether two distances are consistent, from 20 cm to
40 cm in steps of 5 cm. We have applied the patches for reducing FPs and FNs.
To filter out FPs, we use 2.6 m as the upper bound for the average distance of
an honest peer. The average detection rate of peers who did not cheat in the
ranging, and the average rate of false positives are plotted in Fig. 5(b) and (c),
respectively. We can see that the average detection rate exceeds 90 % in both
two attacks when φ is larger than 30 cm. The false positive rates are always small
enough to ignore. In addition, the average time cost is below 0.15 s and increases
slightly in φ.

Due to the limited number of smartphones available for experiments, the
above experiments only consider the scenario with three honest peers and one
dishonest peer. To better evaluate the performance of Algorithm1 with more
peers, especially more dishonest ones, we do further simulations using Java lan-
guage programs. We assume that there are 10 peer phones within an area of
4m × 4m and one of them is the target phone. We think it is difficult and
also meaningless to employ more peers in the real world. The positions of each
node is selected uniformly over the 4 m × 4 m area. Since the total number of
nodes is fixed to ten, the maximum number of dishonest nodes this algorithm
can tolerate is three. These dishonest peers are uniformly selected, and they are
made to perform emission attacks and tampering attacks concurrently: bidirec-
tional distance measurements between dishonest and honest nodes are enlarged
by the same value δ, which is a random value over [1m, 3m]. We also assume
the measurement error is uniformly distributed over [−ε, ε], and two distances
measurements between the same pair of nodes are thought consistent if and only
if their difference is within [−3ε, 3ε]. We make Algorithm 1 try all the possible
coordinate combinations of nodes in S1 to reduce false negatives.

We run this algorithm 1000 times for each value of ε from 0 cm to 20 cm in
steps of 4 cm and each possible value of k. In each run, all the nodes are assigned
new positions. Figure 6(a) shows that the average simulation time increases in
both k and ε. The reason for the first observation is obvious: a larger number of
dishonest peers makes the algorithm harder to find enough number of nodes that
can be embedded into the same plane. The reason for the second observation,
however, is not so straightforward. According to our analysis, the increase is due
to the fact that larger ranging errors usually bring more ambiguous nodes as
Fig. 9(a) shows, which are extremely time consuming to deal with.

Towards Attack-Resistant Peer-Assisted Indoor Localization 431

1 2 3
0

20

40

60

80

100

120

140

Distance (m)

R
an

g
in

g
 E

rr
o

r
(c

m
)

Maximum
Average (Quiet)
Average (Quiet, Saturation Attack)
Average (Noisy, Saturation Attack)

(a) Errors of the existing energy-based
acoustic ranging approach

1 2 3
0

5

10

15

20

Distance (m)

R
an

g
in

g
 E

rr
o

rs
 (

cm
)

Maximum
Average (Quiety)
Average (Quiety, Saturation Attack)
Average (Quiety, Saturation Attack)

(b) Errors of the proposed correlation-
based acoustic ranging approach

Fig. 8. Comparing the errors of the existing acoustic ranging approach in PAL and
our proposal under different environments

We plot the average detection rate, and the average false positive rate in
Fig. 6(b) and (c), respectively. We can see that Algorithm 1 works exactly the
same as we expect in the cases without measurement errors: it can identify all
the nodes that did not cheat in the ranging without bringing about any false
positives. However, when we introduce measurement errors, Algorithm 1 pro-
duces both FNs and FPs. As we have applied our measure for avoiding FNs, the
detection rate exceeds 90 % for all the cases except the one with three dishonest
peers and ε = 20 cm. The rate of FPs, however, is a little bit too high.

We then apply the patch mentioned in Appendix to reduce false positives:
we consider a node to be malicious if its average distance to other nodes exceeds
3.7m. We determine this threshold with extensive experiments. The new result
is plotted in Fig. 7. The false positive rates are now confined below 4 %, which
are much smaller that those in Fig. 6(c).

5.2 Evaluation of Countermeasures Against Saturation Attacks

We next evaluate the real effects of our acoustic ranging mechanism against
saturation attacks. We conduct ranging between HTC G7 and Coolpad 7260 in
the three indoor environments: (1) quiet, (2) quiet with Saturation Attack and
(3) Noisy with Saturation Attack. Please find the detailed information about
these environments in the extended version.

In all the experiments, we place two phones parallel to each other and back
to back. For each environment, we vary the distance between two phones among
1 m, 2 m and 3 m, and repeat each experiment for four times. Besides our pro-
posed correlation-based acoustic ranging, we also implement the energy-based
method proposed in [13] as the reference. We present the average and the maxi-
mum ranging errors of these two methods in Fig. 8(b) and (a), respectively. We

432 J. Hua et al.

see that the ranging errors of the existing energy-based method could exceed 1 m
in the latter two cases when two phones are placed 3 m apart. For our proposal,
however, we do not observe any big difference in the ranging errors between the
environments with and without saturation attacks or noises. All the measure-
ment errors are below 20 cm. We obtain similar results among other smartphones.
This well demonstrates that our modulation-based acoustic ranging could well
defend against the saturation attack.

In addition, the total signal processing time (i.e., compute the TOAs of the
two ranging signals within the two recorded signals) in our proposal is 0.73 s
on average. Although this value is much higher than 0.24 s in the energy-based
approach, it is still acceptable. According to our analysis, most of the time is
spent on the computations of the cross-correlation values. We may leverage the
emission time of each ranging signal to reduce this time.

6 Related Work

Our work is towards robust peer-assisted indoor localization by defending against
different kinds of attacks. Although PAL is novel, robust localization and ranging
are not new. Related theory and systems have been developed for a long time,
especially in the context of wireless sensor networks.

Most of current robust localization algorithms are designed for beacon-based
localization systems. These systems require the presence of special nodes, so-
called beacons or anchors, that know their own locations. Other nodes estimate
their locations by measuring their distances to a set of beacons. Robust local-
ization algorithms [10–12,18,25] then aims to enable a node to locate himself
precisely even if some beacons are malicious. However, these algorithms have a
premise that most of the beacons are still honest. For instance, Misra et al. [14]
prove that the minimum number of honest beacons required for exact localiza-
tion of the target in the presence of dishonest beacons is �n/2� + 2, where n is
the total number beacons. In our work, if we regard peer nodes as beacons, since
the errors of their rough locations from WiFi localization reach 4 m on average,
all of them can be regarded to have lied about their locations considering the
strict requirement of indoor localization on the accuracy. As a result, we cannot
directly use robust localization algorithms in this area. Compared with beacon-
based localization, the scenario of beacon-less localization [5,9,19] is much closer
to our problem. However, few of them consider security issues.

The last attack that we focus on is due to vulnerabilities in acoustic ranging.
Girod et al. [6,7] propose a robust acoustic ranging mechanism that cleverly
exploits signal modulation. Specially, the system is composed by a transmitter
and a receiver. The transmitter produces a distinct sound by modulating a sine
sound-wave with some special PN code. After the transmitter plays this sound,
the receiver detects the arrival time of this sound by searching for the first sharp
peak in the cross-correlation function between this sound and the recorded signal.
Using a known sound speed and the emission time, the distance travelling from
the transmitter and the receiver can be computed. While their work can work

Towards Attack-Resistant Peer-Assisted Indoor Localization 433

very well even in very obstructed or noisy environments, they only consider
the interference from background noises and reflections, and do not consider
intentional interference from attackers.

7 Conclusion

Peer-assisted localization (PAL) through acoustic ranging could significantly
improve the accuracy of WiFi localization. In this paper, we have studied the
problem of robust PAL in the presence of dishonest peers and outside attackers.
We first show that so long as the number of peers that can be embedded in the
same plane according to their distance measurements exceeds some threshold,
we can guarantee that none of them lies on these distances. We then present
an algorithm based on this principle to identify peers having not cheated in
the current localization, which can finish in polynomial time even in the worst
case. We also present a robust acoustic ranging mechanism that leverages signal
modulation to resist saturating interference from outside attackers. Extensive
experiment on real smartphones have demonstrated that our countermeasures
can greatly improve the robustness of peer-assisted localization.

Appendix

Practical Consideration of Measurement Errors

Our discussion has assumed that there is no measurement error in acoustic rang-
ing, which is obviously too ideal for the real world. Thus, to apply Algorithm1
into the real world, we consider how to tolerate measurement errors in this sub-
section.

Our solution is straightforward: facing measurement errors, Algorithm1
regards two different distance measurements between the same pair of peers,
or a distance measurement and its expected value, as consistent so long as their
difference is below some pre-defined threshold φ. We empirically set φ = 3ε,
where ε is the upper bound of the measurement error. Nevertheless, this mecha-
nism has a side effect that it can produce both false negatives and false positives.

(a) Source of false negatives (b) Source of false positives

Fig. 9. False positives and negatives of Algorithm 1

False negatives (FNs) refer to that some peers which did not cheat in the
ranging are falsely classified as dishonest by Algorithm1. They mainly occur

434 J. Hua et al.

Input: P1,2,··· ,n: n peer points
Pt: the target point
{dij |i, j ∈ {1, · · · , n, t}}: dij is the distance between Pi and Pj based on the
recorded data of Pj

1 for i = 0, · · · , n do
2 if dit is conflicting with dti then continue;
3 for j = i + 1, · · · , n do
4 if j − i > Malicousmax + 1 then break ;
5 if djt is conflicting with dtj or dij is conflicting with dji then continue;
6 Assign Pt, Pi and Pj two-dimension coordinates that meet their

side-length requirements ;
7 failCount = 0;
8 Define an empty set S1;
9 foreach Pk(k /∈ {i, j}) do

10 if Pk can be embedded in the plane of �PtPiPj then
11 compute the coordinates of Pk;
12 S1 = S1 ∪ {Pk};

13 end
14 else
15 failCount + +;
16 if failCount > n − 2 − Maliciousmax then break;

17 end

18 end
19 if Size(S1) < Maliciousmax then continue;
20 Define another empty set S2;
21 foreach Pa ∈ S1 do
22 if S2 is empty then
23 S2 ∪ {Pa};
24 Continue;

25 end
26 foreach Pb ∈ S2 do

27 Compute d′
ab =

√
(Pa.x − Pb.x)2 + (Pa.y − Pb.y)2;

28 if dba is consistent with d′
ab then S2 ∪ {Pa};

29 if dab is conflicting with d′
ab then S2 − {Pb};

30 end

31 end
32 if Size(S2) >= Maliciousmax then
33 Output S2 ∪ {Pi, Pj};
34 Stop the Algorithm;

35 end

36 end

37 end

Algorithm 1. Algorithm to identify true distances in the presence of emis-
sion attacks and tampering attacks

Towards Attack-Resistant Peer-Assisted Indoor Localization 435

in the special cases that the three vertices of the winning triangle ΔPiPjPt

in Algorithm 1 are either too close to each other or approximately in the same
straight line, which makes the algorithm determine false positions for some nodes
in the presence of measurement errors. We show an example in Fig. 9(a). Suppose
ΔP1P2P3 is the winning triangle and the algorithm is computing the coordinates
of P4 at line 11. We also assume that another node P ′

4 satisfies the condition:
dP4P1 = dP ′

4P1 and dP4P2 = dP ′
4P2 . Then, since P1, P2, P3 are almost collinear,

the distance measurement between P ′
4 and P3 can be even closer to dP4P3 than

the measurement between P4 and P3 in the presence of measurement errors. As
a result, the algorithm may assign the coordinates of P ′

4 to P4, which will lead to
contradictories at line 25 or 26 and then falsely classify P4 as a dishonest node.
We can solve this problem by recording both coordinates of such special nodes,
and then executing Line 21–31 for each possible coordinate combination of the
nodes in S1.

False positives (FPs) refer to that some dishonest peers which launched
attacks are falsely reported as honest by Algorithm 1. They are mainly caused
by dishonest nodes that are located on one side of the other nodes (i.e., not sur-
rounded by any triangles formed by other nodes), launching emission attacks.
We show a typical example in Fig. 9(b). Suppose P1, P2 and P3 are honest, while
P4 is dishonest and delayed his emission for some time. So, the three distance
measurements between P4 and the other three nodes are increased by the same
value, which is impossible in theory. However, when we move P4 further from
ΔP1P2P3, for example to the new position of P ′

4, the real increments of the three
distances are very close even if their absolute values are very large. Thus, in the
presence of measurement errors, these different changes may be approximated to
be equal, which leads to the fact that P4 can be accepted to be at some position
in the same plane of ΔP1P2P3.

We find that dishonest nodes causing FPs usually do not choose to shorten
their distance measurements. This is because the peer phones in PAL should be
in the vicinity in order to receive each other’s ranging signals. If the dishonest
peers not surrounded by other nodes shorten their distance measurements, they
are very likely to be falsely positioned at a place surrounded by some honest
peers, and so they can be captured. In addition, some distance measurements in
this case may even become minus, which is obviously ridiculous. Therefore, these
dishonest peers usually choose to enlarge their distance measurements. However,
since they are located on one side of the other nodes, their real average distances
to other nodes are already larger than those of normal nodes. If they further
enlarge their distance measurements, they will expose a larger anomaly. We
leverage this observation to add a patch to Algorithm1 to reduce false positives:
before we check the size of S2 at Line 32, we first remove each node whose
average distance measurement to other nodes exceeds some threshold.

436 J. Hua et al.

References

1. Azizyan, M., Constandache, I., Choudhury, R.R.: Surroundsense: mobile phone
localization via ambience fingerprinting. In: Proceedings of the 15th MOBICOM,
pp. 261–272. ACM (2009)

2. Bahl, P., Padmanabhan, V.: Radar: an in-building RF-based user location and
tracking system. In: Proceedings of the 19th INFOCOM, pp. 775–784. IEEE (2000)

3. Borriello, G., Liu, A., Offer, T., Palistrant, C., Sharp, R.: WALRUS: wireless
acoustic location with room-level resolution using ultrasound. In: Proceedings of
the 3rd MobiSys, pp. 191–203. ACM (2005)

4. Chen, Y., Trappe, W., Martin, R.P.: Attack detection in wireless localization. In:
Proceedings of the 26th INFOCOM, pp. 1964–1972. IEEE (2007)

5. Fang, L., Du, W., Ning, P.: A beacon-less location discovery scheme for wireless
sensor networks. In: Proceedings of the 24th INFOCOM, vol. 1, pp. 161–171. IEEE
(2005)

6. Girod, L., Estrin, D.: Robust range estimation using acoustic and multimodal
sensing. In: Proceedings of the 2001 IROS, vol. 3, pp. 1312–1320. IEEE (2001)

7. Girod, L.: A self-calibrating system of distributed acoustic arrays. Ph.D. thesis,
University of California Los Angeles (2005)

8. Hazas, M., Kray, C., Gellersen, H., Agbota, H., Kortuem, G., Krohn, A.: A rela-
tive positioning system for co-located mobile devices. In: Proceedings of the 3rd
MobiSys, pp. 177–190. ACM (2005)

9. Ji, X., Zha, H.: Sensor positioning in wireless ad-hoc sensor networks using multi-
dimensional scaling. In: Proceedings of the 23rd INFOCOM, vol. 4, pp. 2652–2661.
IEEE (2004)

10. Li, Z., Trappe, W., Zhang, Y., Nath, B.: Robust statistical methods for securing
wireless localization in sensor networks. In: Proceedings of the 4th IPSN, pp. 91–98.
IEEE (2005)

11. Liu, D., Ning, P., Du, W.: Detecting malicious beacon nodes for secure location
discovery in wireless sensor networks. In: Proceedings of the 25th ICDCS, pp.
609–619. IEEE (2005)

12. Liu, D., Ning, P., Liu, A., Wang, C., Du, W.: Attack-resistant location estimation
in wireless sensor networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 11(4), 22
(2008)

13. Liu, H., Gan, Y., Yang, J., Sidhom, S., Wang, Y., Chen, Y., Ye, F.: Push the limit of
WiFi based localization for smartphones. In: Proceedings of the 18th MOBICOM,
pp. 305–316. ACM (2012)

14. Misra, S., Bhardwaj, S., Xue, G.: Rosetta: robust and secure mobile target tracking
in a wireless ad hoc environment. In: Proceedings of the 2006 MILCOM, pp. 1–7.
IEEE (2006)

15. Peng, C., Shen, G., Zhang, Y., Li, Y., Tan, K.: Beepbeep: a high accuracy acoustic
ranging system using cots mobile devices. In: Proceedings of the 5th SenSys, pp.
1–14. ACM (2007)

16. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: Proceedings of the 6th MOBICOM, pp. 32–43. ACM (2000)

17. Rai, A., Chintalapudi, K., Padmanabhan, V., Sen, R.: Zee: zero-effort crowdsourc-
ing for indoor localization. In: Proceedings of the 18th MOBICOM, pp. 293–304.
ACM (2012)

18. Ray, S., Ungrangsi, R., Pellegrini, D., Trachtenberg, A., Starobinski, D.: Robust
location detection in emergency sensor networks. In: Proceedings of the 22nd
INFOCOM, vol. 2, pp. 1044–1053. IEEE (2003)

Towards Attack-Resistant Peer-Assisted Indoor Localization 437

19. Shang, Y., Rumi, W., Zhang, Y., Fromherz, M.: Localization from connectivity in
sensor networks. IEEE Trans. Parallel Distrib. Syst. 15(11), 961–974 (2004)

20. Simon, M., Omura, J., Scholtz, R., Levitt, B.: Spread Spectrum Communications
Handbook, vol. 2. McGraw-Hill, New York (1994)

21. Wu, C., Yang, Z., Liu, Y., Xi, W.: Will: wireless indoor localization without site
survey. In: Proceedings of the 31st INFOCOM, pp. 64–72. IEEE (2012)

22. Yang, J., Sidhom, S., Chandrasekaran, G., Vu, T., Liu, H., Cecan, N., Chen, Y.,
Gruteser, M., Martin, R.: Detecting driver phone use leveraging car speakers. In:
Proceedings of the 17th MOBICOM, pp. 97–108. ACM (2011)

23. Yang, Z., Wu, C., Liu, Y.: Locating in fingerprint space: wireless indoor localization
with little human intervention. In: Proceedings of the 18th MOBICOM, pp. 269–
280. ACM (2012)

24. Ye, H., Gu, T., Zhu, X., Xu, J., Tao, X., Lu, J., Jin, N.: Ftrack: infrastructure-free
floor localization via mobile phone sensing. In: Proceedings of the 10th PerCom,
pp. 2–10. IEEE (2012)

25. Zhong, S., Jadliwala, M., Upadhyaya, S., Qiao, C.: Towards a theory of robust
localization against malicious beacon nodes. In: Proceedings of the 27th INFO-
COM, pp. 1391–1399. IEEE (2008)

Leveraging Real-Life Facts to Make Random
Passwords More Memorable

Mahdi Nasrullah Al-Ameen1(B), Kanis Fatema1, Matthew Wright1,
and Shannon Scielzo2

1 Department of Computer Science and Engineering,
The University of Texas at Arlington, Arlington, TX, USA

{mahdi.al-ameen,kanis.fatema}@mavs.uta.edu, mwright@cse.uta.edu
2 Department of Psychology, The University of Texas at Arlington,

Arlington, TX, USA
scielzo@uta.edu

Abstract. User-chosen passwords fail to provide adequate security.
System-assigned random passwords are more secure but suffer from mem-
orability problems. We argue that the system should remove this bur-
den from users by assisting with the memorization of randomly assigned
passwords. To meet this need, we aim to apply the scientific understand-
ing of long-term memory. In particular, we examine the efficacy of aug-
menting a system-assigned password scheme based on textual recognition
by providing users with verbal cues—real-life facts corresponding to the
assigned keywords. In addition, we explore the usability gain of including
images related to the keywords along with the verbal cues. We conducted
a multi-session in-lab user study with 52 participants, where each partic-
ipant was assigned three different passwords, each representing one study
condition. Our results show that the textual recognition-based scheme
offering verbal cues had a significantly higher login success rate (94 %)
as compared to the control condition, i.e., textual recognition without
verbal cues (61%). The comparison between textual and graphical recog-
nition reveals that when users were provided with verbal cues, adding
images did not significantly improve the login success rate, but it did
lead to faster recognition of the assigned keywords. We believe that our
findings make an important contribution to understanding the extent
to which different types of cues impact the usability of system-assigned
passwords.

Keywords: Usable security · System-assigned passwords · Memorabil-
ity · Verbal cues

1 Introduction

Traditional user-chosen textual passwords suffer from security problems because
of password reuse and predictable patterns [13,38]. Users are tasked with creat-
ing a password that should be both secure and memorable, but they typically
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 438–455, 2015.
DOI: 10.1007/978-3-319-24177-7 22

Leveraging Real-Life Facts to Make Random Passwords More Memorable 439

lack information about what is secure in the face of modern cracking and attacks
tools, as well as how to construct memorable strings, memorize them quickly,
and accurately recall them later. Faced with this challenge, users often com-
promise on security and create a weak but memorable password. While policies
have been deployed to get users to create stronger passwords [19,38], such poli-
cies do not necessarily lead to more secure passwords but do adversely affect
memorability [33,38].

Studies in psychology have shown that recognition, such as identifying an
assigned picture from a set, is an easier memory task than recall, such as tradi-
tional textual passwords [6,42,43]. Inspired by these findings, researchers have
proposed and examined recognition-based authentication schemes as alternatives
to pure recall-based schemes in hopes that by reducing the memory burden on
users, more secure passwords can be generated. Wright et al. [45] implemented
the concept of recognition for a text-based scheme, where users are shown sev-
eral portfolios of keywords (e.g., “Cheetah”, “Mango”, “Camera”, etc.), and one
keyword per portfolio serves as the authentication secret that they have to recog-
nize during login. Passfaces [1] is an example of a graphical recognition-based
scheme, which is now commercially available and deployed by a number of large
websites.1

To ensure security, the commercial Passfaces [1] product assigns a random
image for each portfolio instead of allowing users to choose. With system-assigned
passwords, the user does not have to guess whether a password is secure, and the
system can ensure that all passwords offer the desired level of security. Addi-
tionally, while password reuse could pose a serious security threat [13], using
system-assigned passwords ensures that users do not reuse a password (or mod-
ification thereof) already used on another account. Unfortunately, it is difficult
for most people to memorize system-assigned passwords for both textual [45] and
graphical recognition [17]. Thus, it still remains a critical challenge to design an
authentication scheme that offers satisfactory memorability for system-assigned
random passwords.

1.1 Contributions

To this end, we draw upon several prominent theories of cognitive psychology
to enhance the memorability of system-assigned recognition-based passwords.
In particular, we examine the impact of offering verbal cues, i.e., real-life facts
related to the system-assigned keywords. For example, “Cheetah is faster than
any other land animal” is a verbal cue for the keyword “Cheetah”. The use
of cues facilitates a detailed encoding that helps to transfer the authentication
information (e.g., assigned keywords) from the working memory to long-term
memory at registration [7], helping users recognize their keywords when log-
ging in later. We provide a detailed discussion on these memorization processes
in Sect. 3.

The study of Wright et al. [45] found insufficient memorability for textual
recognition, where the keywords in a portfolio remained same but were shown at
1 http://www.realuser.com/ shows testimonials about Passfaces from customers.

http://www.realuser.com/

440 M.N. Al-Ameen et al.

different positions each time that portfolio was loaded. The authors anticipated
that showing the keywords in the same position each time would improve the
memorability for recognition-based schemes and suggested the approach to be
examined in future work. We adopt suggestion of Wright et al. [45] to design our
study conditions by showing the keywords in a portfolio in the same position
each time that a portfolio is loaded. We also accommodate the variant response
feature in our schemes to gain resilience against observation attacks like shoulder
surfing (see Sect. 3.5 for details).

To examine the impact of verbal cues in improving the memorability for tex-
tual recognition, we design a scheme, TextV : Textual Recognition with Verbal
cues, and compare it with the Control condition that requires users remem-
bering the assigned keywords without the help of verbal cue. In addition, we
aim to understand whether adding images related to the keywords contributes
to higher memorability than when users are provided with just verbal cues. To
achieve the goal, we design another scheme, GraphicV : Graphical Recognition
with Verbal cues, and compare it with the TextV scheme. To the best of our
knowledge, no study yet has compared textual and graphical recognition-based
schemes in terms of usability.

In our within-group study with 52 participants, every participant was assigned
three different passwords, each representing one study condition. The major find-
ings from our study include:

– In contrast to the suggestion of Wright et al. [45], keeping the position of
keywords fixed in a portfolio did not provide a satisfactory login success rate
(61.5 %).

– Verbal cues made a significant contribution in improving the login success rate
for textual recognition (94.2 %).

– Despite the picture superiority effect (see Sect. 3), we found no significant
difference between textual and graphical recognition in terms of login success
rate when both conditions included verbal cues.

– We did find, however, a significant improvement in login time for graphical
recognition as compared to textual recognition, even though the number of
attempts for successful logins did not differ significantly between these condi-
tions.

We organize the rest of this paper as follows: In Sect. 2, we give an overview
of notable authentication schemes with a discussion on their limitations and the
respective scopes of possible improvements. In Sect. 3, we explain from the per-
spective of cognitive psychology how the design choices for our study conditions
are set up. We then describe our study procedure in Sect. 4 and present the
results in Sect. 5. In Sect. 6, we discuss the findings from our study and highlight
the possible directions for future research, followed by a conclusion in Sect. 7.

2 Related Work

In this section, we give a brief overview of notable textual and graphical password
schemes in which we highlight why existing schemes are insufficient.

Leveraging Real-Life Facts to Make Random Passwords More Memorable 441

2.1 Textual Password Schemes

Traditional Passwords. Traditional user-chosen textual passwords are fraught
with security problems because of password reuse and predictable patterns [13,
38]. Different password restriction policies (e.g., increasing the minimum pass-
word length, requiring a combination of different types of characters, and using
password strength meters) have been deployed to get users to create stronger
passwords [19,38]. However, in separate studies, Proctor et al. [33] and Shay
et al. [38] report that such policies do not necessarily lead to more secure pass-
words but do adversely affect memorability in some cases.

Mnemonic Passwords. Kuo et al. [28] studied passwords based on mnemonic
phrases, in which the user chooses a memorable phrase and uses a character
(often the first letter) to represent each word in the phrase. Results [28] show
that user-selected mnemonic passwords are slightly more resistant to brute-force
attacks than traditional passwords. However, mnemonic passwords are found to
be more predictable when users choose common phrases to create their pass-
words. A properly chosen dictionary may further increase the success rate in
guessing mnemonic passwords [28].

System-Assigned Passwords. System-assigned random textual password
schemes are more secure but fail to provide sufficient memorability, even when
natural-language words are used [37,45]. Wright et al. [45] compared the usability
of three different system-assigned textual password schemes: Word Recall, Word
Recognition, and Letter Recall. None of these schemes had sufficient memora-
bility rates.

PTP. Forget et al. [20,22] proposed the Persuasive Text Passwords (PTP)
scheme, in which the user first creates a password, and PTP improves its security
by placing randomly-chosen characters at random positions into the password.
PTP is resilient against attacks exploiting password reuse and predictable pat-
terns. Unfortunately, the memorability for PTP is just 25 % when two random
characters are inserted at random positions [20].

Cognitive Questions. Furnell et al. [23] revealed the potential of cognitive
questions and reported a high level of user satisfaction in using that for primary
authentication. However, Just and Aspinall [27] identified the usability and secu-
rity problems of using cognitive questions for authentication, and several other
studies [34,36] reported the vulnerability of this approach to targeted guessing
attacks.

2.2 Graphical Password Schemes

Graphical password schemes can be divided into three categories [8], based on
the kind of memory leveraged by the systems: (i) Drawmetric (recall-based),
(ii) Locimetric (cued-recall-based), and (iii) Cognometric (recognition-based).

442 M.N. Al-Ameen et al.

Drawmetric. The user is asked to reproduce a drawing in this category of
graphical passwords. In Draw-a-Secret (DAS) [26], a user draws on top of a
grid, and the password is represented as the sequence of grid squares. Nali and
Thorpe [29] have shown that users choose predictable patterns in DAS that
include drawing symmetric images with 1–3 pen strokes, using grid cell corners
and lines (presumably as points of reference) and placing their drawing approx-
imately in the center of the grid.

BDAS [16] intends to reduce the amount of symmetry in the user’s drawing
by adding background images, but this may introduce other predictable behav-
iors such as targeting similar areas of the images or image-specific patterns [8].
DAS and BDAS have recall rates of no higher than 80%.

Locimetric. The password schemes in this category present users with one or
more images as a memory cue to assist them selecting their particular points
on the image(s). In the Passpoints [9] scheme, users select a sequence of click-
points on a single image as their password. Cued Click-Points (CCP) [11] is a
modified version of Passpoints, where users sequentially choose one click-point
on each of five images. Dirik et al. [15] developed a model that can predict
70–80 % of users’ click positions in Passpoints. To address this issue, Chiasson
et al. proposed Persuasive Cued Click-Points (PCCP) [12,21], in which a
randomly-positioned viewport is shown on top of the image during password
creation, and users select their click-point within this viewport. The memorabil-
ity for PCCP was found to be 83–94 %.

In a follow-up study, Chiasson et al. [10] found predictability in users’ click
points, showing that in Passpoints, the click points are roughly evenly spaced
across the image, in straight lines starting from left to right, and either com-
pletely horizontal or sloping from top to bottom. The authors [10] indicate that
predictability is still a security concern for PCCP.

Cognometric. In this recognition-based category of graphical passwords, the
user is asked to recognize and identify their password images from a set of
distractor images. Passfaces [1] is the most studied cognometric scheme as it
is commercially deployed by a number of large websites. The commercial Pass-
faces [1] product assigns a random set of faces instead of allowing users to choose,
since the research [14] has found that users select predictable faces, biased by
race, gender, and attractiveness of faces. However, Everitt et al. [17] show that
users have difficulty in remembering system-assigned Passfaces.

Davis et al. [14] proposed the Story scheme, in which users select a sequence
of images as their password and, to aid memorability, are encouraged to mentally
construct a story to connect those images. During login, users have to identify
their images in accurate order from a panel of decoy images. Though the user
choices in Story are found to be more varied than the face-recognition-based
scheme, the results still display some exploitable patterns, and the user study
showed a memorability rate of about 85% [14].

Leveraging Real-Life Facts to Make Random Passwords More Memorable 443

In a recent study [5], Al-Ameen et al. found satisfactory memorability by
combining various cues for graphical recognition, which suggests that the use
of cues is very promising and motivates further study. In their experiment [5],
the authors did not examine the impact of different cues, nor they studied tex-
tual recognition. Our deeper investigation on this issue helps to understand how
humans’ cognitive abilities could be leveraged through verbal cues for enhanced
memorability in system-assigned textual recognition-based passwords. We also
compare textual and graphical recognition to explore the usability gain of accom-
modating images, when users are provided with verbal cues.

3 System Design

Hlywa et al. [25] provide a guideline to design recognition-based authentication
schemes with password-level security. We follow this guideline to design our
study conditions, where the user is assigned five keywords at registration and
has to recognize each of the assigned keywords from a distinct portfolio of 16
keywords during login. A successful authentication requires the user to recognize
all five keywords correctly. For an unsuccessful login, the user is shown an error
message at the end of the login attempt but not informed on which portfolio the
mistake was made.

In our study, we implement three different recognition-based schemes. In Con-
trol condition, users remember and recognize the assigned keywords without the
help of verbal cues (see Fig. 1). In TextV scheme, the system offers verbal cues to
help users with the memorization and recognition of the assigned keywords, where
cues are shown both at registration and login (see Fig. 2). In GraphicV scheme,
the system provides users with images corresponding to the keywords along with
the verbal cues (see Fig. 3). In this section, we explain our design choices from the
perspective of cognitive psychology and existing password literature.

3.1 Memory Retrieval

Users are required to perform a recognition task in our study. Researchers in
psychology have found that recognition (identifying the correct item among a set
of distractors) is easier than recall (reproducing the item from memory) [42] and
have developed two main theories to explain this: Generate-recognize theory [6]
and Strength theory [43].

Generate-recognize theory [6] speculates that recall is a two-phase process.
In the generate phase, a list of candidate words is formed by searching long-
term memory. Then, in the recognize phase, the list of words is evaluated to see
if they can be recognized as the sought-out memory. According to this theory,
recognition tasks do not utilize the generation phase and are thus faster and
easier to perform. Strength theory [43] states that although recall and recog-
nition involve the same memory task, recognition requires a lower threshold of
strength that makes it easier. The point is commonly illustrated in examples
from everyday life. For example, multiple choice questions are frequently easier
than essay questions since the correct answer is available for recognition.

444 M.N. Al-Ameen et al.

Fig. 1. A partial screen shot of the Control condition during login. Users enter the
key, a lowercase letter shown in parentheses, in the password field (on top) to select
the corresponding keyword. The keys are randomly assigned to keyword each time the
portfolio is loaded, where no two keywords share the same key. During login, users are
shown five such portfolios, where each presents a distinct set of 16 keywords including
one of the five assigned keywords.

3.2 Semantic Priming

Having a fixed set of objects in a certain place aids to augment semantic priming,
which refers to recognizing an object through its relationship with other objects
around it [1]. Semantic priming thus eases the recognition task [1]. For example,
in Fig. 3, the clock is not only in the upper-left-hand corner each time, but
it is always next to the mango and above the dining table. This establishes a
relationship between the objects and reinforces semantic priming. Thus, in each
of our study conditions, the keywords in a portfolio remain same and presented
at a fixed position whenever that a portfolio is loaded.

3.3 Verbal Cues

We incorporate the scientific understanding of long-term memory to advance
the usability properties of recognition-based authentication. According to the
cognitive memory model proposed by Atkinson and Shiffrin [7], any new infor-
mation is transferred to short-term memory (STM) through the sensory organs,
where STM holds the information as memory codes, or mental representations
of selected parts of the information. The information is transferred from STM to
long-term memory (LTM), but only if it can be further processed and encoded.
This encoding helps people to remember and retrieve the processed informa-
tion efficiently over an extended period of time. To motivate such encoding, we
examine the efficacy of providing verbal cues with the keywords.

Leveraging Real-Life Facts to Make Random Passwords More Memorable 445

Fig. 2. A partial screen shot of TextV scheme during login. The facts corresponding
to each keyword appear below that keyword.

If the system provides verbal cues, i.e., real-life facts related to the keywords,
then users may focus their attention on associating the keywords with the cor-
responding cues, which should help to process and encode the information in
memory and store them in the long-term memory. For example, the keyword
“Turtles” is associated with the verbal cue “Turtles are cold blooded”. The cues
would also assist users to recognize the keywords in the future and thus enhance
their memorability.

Psychology research [6,42] has shown that it is difficult to remember informa-
tion spontaneously without memory cues, and this suggests that authentication
schemes should provide users with cues to aid memory retrieval. Encoding speci-
ficity theory [41] postulates that the most effective cues are those that are present
at the time of remembering. In TextV and GraphicV schemes, verbal cues are
provided during registration, i.e., the learning period, and also at login.

3.4 Visual Memory

In GraphicV scheme, we leverage users’ visual memory, in addition to offering
verbal cues. Psychology research shows that the human brain is better at mem-
orizing graphical information as compared to textual information [30,32]. This
is known as the picture superiority effect. Several explanations for the picture
superiority effect have been proposed. The most widely accepted is dual-coding
theory [32], which postulates that in human memory, images are encoded not
only visually and remembered as images, but they are also translated into a
verbal form (as in a description) and remembered semantically. Another expla-
nation of picture superiority effect is the sensory-semantic model [30], which
states that images are accompanied by more distinct sensory codes that allow
them to be more easily accessed than the textual information.

446 M.N. Al-Ameen et al.

Fig. 3. A partial screen shot of GraphicV scheme during login. Each keyword is accom-
modated with the corresponding image.

3.5 Variant Response

In the existing recognition-based schemes [1,25,45], mouse input is used to select
a keyword or image, where the keywords/images in a portfolio remain the same
but are positioned randomly each time that a portfolio is loaded to compensate
for shoulder surfing risk during login. However, the shoulder-surfing study of
Tari et al. [39] reveals that recognition-based schemes with keyboard input pro-
vide higher resilience to shoulder surfing than schemes with mouse input, since
the keyboard input associated with a particular keyword/image changes across
the user’s login sessions. This feature is called variant response, i.e., varying the
user’s responses across the login sessions [8].

For a recognition-based scheme providing variant response through varying
keyboard inputs, the shoulder surfer needs to learn both the user’s keystrokes
and the corresponding keywords/images by looking at the keyboard and moni-
tor. Tari et al.’s study [39] shows that observing both the monitor and keyboard
at the same time is difficult.2 Thus, the schemes in our study provide users with
variant response feature, where each time a portfolio is loaded, a distinct lowercase
letter a-z is assigned randomly as a key to one keyword on the page, and the user
inputs the key letter corresponding to her assigned keyword into a single-character
password field to move on to the next portfolio (see Figs. 1, 2 and 3).

4 User Study

We now present the design of our user study, where we used a within-subjects
design consisting of three experimental conditions. Using a within-subjects design
2 Though we note that videotaping could overcome this.

Leveraging Real-Life Facts to Make Random Passwords More Memorable 447

controls for individual differences and permits the use of statistically stronger
hypothesis tests. The study procedures were approved by our university’s Insti-
tutional Review Board (IRB) for human subjects research.

4.1 Participants, Apparatus and Environment

For this experiment, we recruited 52 students (34 women, 18 men) through our
university’s Psychology Research Pool. Participants came from diverse back-
grounds, including majors from Nursing, Psychology, Business, Environmental
Science, Biochemistry, and Spanish Language. The age of the participants varied
between 18 to 48 with a mean age of 22. Each participant was compensated with
course credit for participation and was aware that her performance or feedback
in this study would not affect the amount of compensation.

The lab studies were conducted with one participant at a time to allow
the researchers to observe the users’ interactions with the system. We created
three realistic and distinct websites, including sites for banking, email, and social
networking. The sites used the images and layouts from familiar commercial sites,
and each of them was equipped with one of our three password schemes.

In our study, each of the five portfolios in a scheme consists of unique set
of keywords and images that are not repeated in any other portfolio nor in any
other scheme. In other words, we did not reuse any keywords or images. We
collected the images and real-life facts (verbal cues) from free online resources.

4.2 Procedure

We conducted the experiment in two sessions, each lasting around 30 min. The
second session took place one week after the first one to test users’ memorization
of the assigned passwords. A one-week delay is larger than the maximum average
interval for a user between subsequent logins to any of her important accounts
[24] and is also a common interval used in authentication studies (e.g., [2,4,5,
16,31,45]).

Session 1. After signing a consent form, the participants were given an overview
of our study. Then they performed registration for each of the three sites, each
outfitted with a distinct scheme. The sites were shown to the participants at ran-
dom order during registration. After registering with each scheme, participants
performed a practice login with that scheme. They performed another practice
login with each scheme after completing registration for all of the three sites.
We did not collect data for these practice trials. They were asked to not record
(e.g., write down or take a picture) their authentication secrets.

Session 2. The participants returned one week after registration and logged into
each of the three sites using the assigned passwords. The sites were shown to the
participants in random order, and they could make a maximum of five attempts
for a successful login. After they had finished, we conducted an anonymous
survey. Participants were then compensated and thanked for their time.

448 M.N. Al-Ameen et al.

Control TextV GraphicV
50

60

70

80

90

100

Study Conditions

L
o

g
in

 S
u

c
c
e
s
s
 R

a
te

 (
%

)

Fig. 4. Login success rates for the study conditions [Number of participants = 52]

4.3 Ecological Validity

Most of our participants were young and all of them were university educated,
which represents a large number of frequent Web users, but may not generalize
to the entire population. They came from diverse majors. As the study was
performed in a lab setting, we were only able to gather data from 52 participants.
However, lab studies have been preferred to examine brain-powered memorability
of passwords [18]. Since lab studies take place in a controlled setting, it helps to
establish performance bounds and figure out whether field tests are worthwhile in
future research. We believe that 52 provides a suitable sample size for a lab study
as compared to the prior studies on password memorability [2,4,5,11,12,40,44].

5 Results

We now discuss the results of our user study. To analyze our results, we use sta-
tistical tests and consider results comparing two conditions to be significantly
different when we find p < 0.05. When comparing two conditions where the vari-
able is at least ordinal, we use a Wilcoxon signed-rank test for the matched pairs
of subjects and a Wilcoxon-Mann-Whitney test for unpaired results. Wilcoxon
tests are similar to t-tests, but make no assumption about the distributions of
the compared samples, which is appropriate to the datasets in our conditions.
Whether or not a participant successfully authenticated is a binary measure,
and so we use either a McNemar’s test (for matched pairs of subjects) or a chi-
squared test (for unpaired results) to compare login success rates between two
conditions. Here, we tested the following hypotheses:

Hypothesis 1. H1: The login success rate for TextV would be significantly
higher than that for the Control condition.

The TextV scheme offers verbal cues (i.e., real-life facts related to the key-
word), where cues are shown both at registration and login. So, the users could
memorize their keywords through associating them with the corresponding cues,
which should help to process and encode the information to store them in long-
term memory (see Sect. 3 for detailed discussion). Moreover, the cues would assist

Leveraging Real-Life Facts to Make Random Passwords More Memorable 449

Control TextV GraphicV

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Study Conditions

R
eg

is
tr

at
io

n
Ti

m
e

(s
ec

on
ds

)

Fig. 5. Registration time for the study conditions

users to recognize the keywords in the future, which should enhance their mem-
orability. Thus, we hypothesized that TextV scheme would have significantly
higher login success rate than the Control condition.

Our results show that out of 52 participants in our study, 49 participants
(94.2 %) succeeded to log in using TextV, while 32 participants (61.5 %) logged in
successfully with the Control condition (see Fig. 4). Whether or not a participant
successfully authenticated is a binary measure, so we compare login success rates
between conditions using McNemar’s test. We found that the login success rate
for TextV scheme was significantly higher than that for the Control condition,
X 2(1, N = 52) = 12.2, p < 0.01. Thus, H1 is supported by these results.

Hypothesis 2. H1: The login success rate for GraphicV would be significantly
higher than that for the TextV scheme.

In GraphicV scheme, we accommodate images corresponding to the key-
words, in addition to offering verbal cues. Psychology research reveals picture
superiority effect showing that the human brain is better at memorizing graph-
ical information as compared to textual information [30,32]. Thus, we hypothe-
sized that the login success rate for GraphicV would be significantly higher than
that for the TextV scheme.

We found that out of 52 participants in our study, 50 participants (96.2 %)
succeeded to log in using GraphicV scheme, and 49 participants (94.2 %) logged
in successfully with the TextV scheme. The results for McNemar’s test show
that there was no significant difference between TextV and GraphicV schemes
in terms of login success rate, X 2(1, N = 52) = 0, p = 1. Hence, H2 is not
supported by these results.

5.1 Registration Time

We illustrate the results for registration time in Fig. 5. We found that the median
registration times for Control, TextV, and GraphicV schemes were 48 s, 180 s,

450 M.N. Al-Ameen et al.

Control TextV GraphicV

0
50

10
0

15
0

Study Conditions

Lo
gi

n
Ti

m
e

(s
ec

on
ds

)

Fig. 6. Login time for the study conditions

and 181 s, respectively. We use a Wilcoxon signed-rank test (appropriate for
matched pairs of subjects) to evaluate two schemes in terms of registration time.
The results show that the registration time for TextV (V = 0, p < 0.01) and
GraphicV (V = 1, p < 0.01) were significantly less than that for the Control
condition. We did not find a significant difference in registration time between
TextV and GraphicV schemes (V = 633.5, p = 0.62).

5.2 Login Time and Number of Attempts

In this paper, number of attempts and login time respectively refer to the required
attempts and time for successful logins only, unless otherwise specified. We do
not get matched pairs of subjects while comparing two schemes in terms of login
time or number of attempts for successful logins, since some participants who
logged in successfully for one scheme failed in the other scheme. So, we use a
Wilcoxon-Mann-Whitney test (appropriate for unpaired results) to evaluate two
schemes in terms of login time and the number of attempts for successful logins.

Login Time. We illustrate our results for login time in Fig. 6. We found that
the median login time for Control, TextV, and GraphicV were 43 s, 51 s, and
41 s, respectively. The results for Wilcoxon-Mann-Whitney tests show that the

Table 1. Number of attempts for successful logins [SD: Standard Deviation]

Study Conditions Mean Median SD

Control 1.3 1 0.8

TextV 1.4 1 0.9

GraphicV 1.3 1 0.6

Leveraging Real-Life Facts to Make Random Passwords More Memorable 451

Table 2. Questionnaire responses for the usability of each of the three schemes. Scores
are out of 10. * indicates that scale was reversed. Med : Median, Mo: Mode

Questions Control TextV GraphicV

Med Mo Med Mo Med Mo

I could easily sign up with this scheme 5 1 7.5 10 9 10

Logging in using this scheme was easy 5.5 1 7.5 10 9 10

Passwords in this scheme are easy to remember 5 1 7 10 8 10

I could easily use this scheme every day 5 4 7 10 8 10

login time for Control (W = 569.5, p < 0.05) and GraphicV (W = 878.5,
p < 0.05) were significantly less than that for the TextV scheme. We did not find
a significant difference in login time between Control and GraphicV (W = 790,
p = 0.93).

Number of Attempts. The mean number of attempts for a successful login
was less than two for each of the three study conditions, while the median was
one in each case (see Table 1). The results for Wilcoxon-Mann-Whitney tests
found no significant difference between any pair of study conditions in terms of
the number of attempts for a successful login.

5.3 User Feedback

We asked the participants to answer a set of 10-point Likert-scale questions
(1: strong disagreement, 10: strong agreement) at the end of the second session,
where a higher score indicates a more positive result for a scheme. We illustrate
the results in Table 2. Since Likert scale data are ordinal, it is most appropriate
to calculate mode and median for Likert-scale responses [35].

The feedback of the participants were overall positive (mode and median
higher than neutral) for TextV and GraphicV schemes, however, the majority
of participants reported concern about the usability of Control condition. The
results for Wilcoxon signed-rank tests (appropriate for matched pairs of subjects)
show that the user feedback was significantly better for TextV and GraphicV
schemes in comparison to the Control condition; for ease of registration: TextV-
Control (V = 500, p < 0.05), GraphicV-Control (V = 118, p < 0.05), ease
of login: TextV-Control (V = 567, p < 0.05), GraphicV-Control (V = 124,
p < 0.05), memorability: TextV-Control (V = 577, p < 0.05), GraphicV-Control
(V = 108.5, p < 0.05), and ease of everyday use: TextV-Control (V = 672,
p < 0.05), GraphicV-Control (V = 27, p < 0.05).

6 Discussion

System-assigned recognition-based passwords (e.g., Passfaces [1]) are now com-
mercially available and deployed by a number of large websites. They fail,

452 M.N. Al-Ameen et al.

however, to gain satisfactory memorability [17], since it is difficult for most
people to memorize system-assigned passwords. Our study explores a promising
direction to improve memorability for these passwords by leveraging humans’
cognitive abilities through verbal cues, and presents a comparison between tex-
tual and graphical recognition to understand the underlying usability gain of
adding images, when users are provided with such memory cues.

We accommodate the scientific understanding of long-term memory to
improve the memorability of system-assigned recognition-based passwords. As
noted by Atkinson and Shiffrin [7], any new information is transferred from short-
term memory to long-term memory, when it is duly processed and encoded.
In our study, we explored the impact of verbal cues for an elaborate encod-
ing of authentication information to ease recognition during login. As we com-
pared TextV scheme with the Control condition, our results showed a significant
improvement in login success rate when users were provided with verbal cues to
aid textual recognition.

We design GraphicV scheme to examine the picture superiority effect when
users are provided with verbal cues. As we compared TextV with GraphicV
scheme, our results found no significant difference in login success rate. The login
time for GraphicV was significantly less than that for TextV scheme, although
we found no significant difference in number of attempts for successful logins.
Thus, we infer that when verbal cues are provided, accommodating images with
the keywords might not contribute to gain a significant improvement in login
success rate, however, aids users with a faster recognition of the keywords, and
so on, reduces the login time.

During registration with TextV and GraphicV schemes, the participants may
have learned the assigned keywords by correlating them with the verbal cues.
This then assisted them with the elaborate processing of the authentication
information, but also contributed to the higher registration time compared to
the Control condition. No significant difference was found between TextV and
GraphicV schemes in terms of registration time.

Future Work. Now that lab-study results show promise for implementing verbal
cues, it would be interesting to evaluate the approaches through a long-term
field study with larger and more diverse populations, where we would explore
the training effects on login performances over time. A recent field study [3]
reveals that login time significantly decreases with the frequent use of a scheme
due to training effects.

In future work, we would explore the efficacy of verbal cues for the people
from different age groups. We would also make a deeper investigation to under-
stand the impact of cues in improving the memorability of passwords for the
people with different cognitive limitations.

7 Conclusion

In our study, we aimed to understand the impact of verbal cues on system-
assigned recognition-based passwords, and designed three different study

Leveraging Real-Life Facts to Make Random Passwords More Memorable 453

conditions to achieve this goal. In a study with 52 participants, we had a 94.2 %
login success rate for a textual recognition-based scheme offering verbal cues
(TextV), which was significantly higher than that for the Control condition. To
understand the usability gain of accommodating images for a scheme providing
verbal cues, we compared TextV and GraphicV schemes, and found no significant
difference in login success rate, although users required less time to recognize the
keywords when they were accommodated with images. These findings shed light
on a promising research direction to leverage humans’ cognitive ability through
verbal cues in gaining high memorability for system-assigned random passwords.

Acknowledgement. This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1423163 and CAREER Grant No. CNS-
0954133.

References

1. Passfaces corporation. The science behind Passfaces. White paper. http://www.
passfaces.com/enterprise/resources/white papers.htm

2. Al-Ameen, M.N., Haque, S.M.T., Wright, M.: Q-A: Towards the solution
of usability-security tension in user authentication. Technical report (2014).
arXiv:1407.7277 [cs.HC]

3. Al-Ameen, M.N., Wright, M.: A comprehensive study of the GeoPass user authen-
tication scheme. Technical report (2014). arXiv:1408.2852 [cs.HC]

4. Al-Ameen, M.N., Wright, M.: Multiple-password interference in the GeoPass user
authentication scheme. In: USEC (2015)

5. Al-Ameen, M.N., Wright, M., Scielzo, S.: Towards making random passwords mem-
orable: leveraging users’ cognitive ability through multiple cues. In: CHI (2015)

6. Anderson, J.R., Bower, G.H.: Recognition and recall processes in free recall. Psy-
chol. Rev. 79(2), 97–123 (1972)

7. Atinkson, C.R., Shiffrin, M.R.: Human memory: a proposed system and its control
processes. In: Spence, K.W., Spence, J.T. (eds.) Advances in the Psychology of
Learning and Motivation. Academic press, New York (1968)

8. Biddle, R., Chiasson, S., van Oorschot, P.: Graphical passwords: learning from the
first twelve years. ACM Comput. Surv. 44(4), 19 (2012)

9. Chiasson, S., Biddle, R., van Oorschot, P.C.: A second look at the usability of
click-based graphical passwords. In: SOUPS (2007)

10. Chiasson, S., Forget, A., Biddle, R., van Oorschot, P.: User interface design affects
security: patterns in click-based graphical passwords. Int. J. Inf. Secur. 8(6), 387–
398 (2009)

11. Chiasson, S., van Oorschot, P.C., Biddle, R.: Graphical password authentication
using cued click points. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol.
4734, pp. 359–374. Springer, Heidelberg (2007)

12. Chiasson, S., Stobert, E., Biddle, R., van Oorschot, P.: Persuasive cued click-points:
design, implementation, and evaluation of a knowledge- based authentication mech-
anism. IEEE TDSC 9, 222–235 (2012)

13. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wangz, X.: The tangled web of
password reuse. In: NDSS (2014)

http://www.passfaces.com/enterprise/resources/white_papers.htm
http://www.passfaces.com/enterprise/resources/white_papers.htm
http://arxiv.org/abs/1407.7277
http://arxiv.org/abs/1408.2852

454 M.N. Al-Ameen et al.

14. Davis, D., Monrose, F., Reiter, M.: On user choice in graphical password schemes.
In: USENIX Security (2004)

15. Dirik, A.E., Memon, N., Birget, J.C.: Modeling user choice in the passpoints graph-
ical password scheme. In: SOUPS (2007)

16. Dunphy, P., Yan, J.: Do background images improve “Draw a Secret” graphical
passwords? In: CCS (2007)

17. Everitt, K., Bragin, T., Fogarty, J., Kohno, T.: A comprehensive study of frequency,
interference, and training of multiple graphical passwords. In: CHI (2009)

18. Fahl, S., Harbach, M., Acar, Y., Smith, M.: On the ecological validity of a password
study. In: SOUPS (2013)

19. Florencio, D., Herley, C.: Where do security policies come from? In: SOUPS (2010)
20. Forget, A.: A World with Many Authentication Schemes. Ph.D. thesis, Carleton

University (2012)
21. Forget, A., Chiasson, S., van Oorschot, P.C., Biddle, R.: Persuasion for stronger

passwords: motivation and pilot study. In: Oinas-Kukkonen, H., Hasle, P.,
Harjumaa, M., Segerst̊ahl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS,
vol. 5033, pp. 140–150. Springer, Heidelberg (2008)

22. Forget, A., Chiasson, S., van Oorschot, P., Biddle, R.: Improving text passwords
through persuasion. In: SOUPS (2008)

23. Furnell, S., Papadopoulos, I., Dowland, P.: A long-term trial of alternative user
authentication technologies. Inf. Manag. Comput. Secur. 12(2), 178–190 (2004)

24. Hayashi, E., Hong, J.I.: A diary study of password usage in daily life. In: CHI
(2011)

25. Hlywa, M., Biddle, R., Patrick, A.S.: Facing the facts about image type in
recognition-based graphical passwords. In: ACSAC (2011)

26. Jermyn, I., Mayer, A., Monrose, F., Reiter, M., Rubin, A.: The design and analysis
of graphical passwords. In: USENIX Security (1999)

27. Just, M., Aspinall, D.: Personal choice and challenge questions a security and
usability assessment. In: SOUPS (2009)

28. Kuo, C., Romanosky, S., Cranor, L.F.: Human selection of mnemonic phrase-based
passwords. In: SOUPS (2006)

29. Nali, D., Thorpe, J.: Analyzing user choice in graphical passwords. Technical report
TR-04-01, School of Computer Science, Carleton University (2004)

30. Nelson, D.L., Reed, V.S., McEvoy, C.L.: Learning to order pictures and words: a
model of sensory and semantic encoding. J. Exp. Psychol. Hum. Learn. Mem. 3(5),
485–497 (1977)

31. Nicholson, J., Coventry, L., Briggs, P.: Age-related performance issues for PIN and
face-based authentication systems. In: CHI (2013)

32. Paivio, A.: Mind and Its Evolution: A Dual Coding Theoretical Approach.
Lawrence Erlbaum, Mahwah, NJ (2006)

33. Proctor, R.W., Lien, M.C., Vu, K.P.L., Schultz, E.E., Salvendy, G.: Improving com-
puter security for authentication of users: influence of proactive password restric-
tions. Behav. Res. Meth. Instrum. Comput. 34(2), 163–169 (2002)

34. Rabkin, A.: Personal knowledge questions for fallback authentication: security
questions in the era of Facebook. In: SOUPS (2008)

35. Robertson, J.: Stats: we’re doing it wrong, April 2011. http://cacm.acm.org/blogs/
blog-cacm/107125-stats-were-doing-it-wrong/fulltext

36. Schechter, S., Brush, A.J.B., Egelman, S.: It’s no secret: measuring the security
and reliability of authentication via ‘secret’ questions. In: IEEE S&P (2009)

http://cacm.acm.org/blogs/blog-cacm/107125-stats-were-doing-it-wrong/fulltext
http://cacm.acm.org/blogs/blog-cacm/107125-stats-were-doing-it-wrong/fulltext

Leveraging Real-Life Facts to Make Random Passwords More Memorable 455

37. Shay, R., Kelley, P.G., Komanduri, S., Mazurek, M.L., Ur, B., Vidas, T., Bauer,
L., Christin, N., Cranor, L.F.: Correct horse battery staple: exploring the usability
of system-assigned passphrases. In: SOUPS (2012)

38. Shay, R., Komanduri, S., Kelley, P.G., Leon, P.G., Mazurek, M.L., Bauer, L.,
Christin, N., Cranor, L.F.: Encountering stronger password requirements: user atti-
tudes and behaviors. In: SOUPS (2010)

39. Tari, F., Ozok, A., Holden, S.: A comparison of perceived and real shoulder-surfing
risks between alphanumeric and graphical passwords. In: SOUPS (2006)

40. Thorpe, J., MacRae, B., Salehi-Abari, A.: Usability and security evaluation of
GeoPass: a geographic location-password scheme. In: SOUPS (2013)

41. Tulving, E., Thompson, D.M.: Encoding specificity and retrieval processes in
episodic memory. Psychol. Rev. 80(5), 352–373 (1973)

42. Tulving, E., Watkins, M.: Continuity between recall and recognition. Am. J. Psy-
chol. 86(4), 739–748 (1973)

43. Wickelgren, W.A., Norman, D.A.: Strength models and serial position in short-
term recognition memory. J. Math. Psychol. 3, 316–347 (1966)

44. Wiedenbeck, S., Waters, J., Birget, J., Brodskiy, A., Memon, N.: Authentication
using graphical passwords: effects of tolerance and image choice. In: SOUPS (2005)

45. Wright, N., Patrick, A.S., Biddle, R.: Do you see your password? applying recog-
nition to textual passwords. In: SOUPS (2012)

The Emperor’s New Password Creation Policies:

An Evaluation of Leading Web Services and the Effect
of Role in Resisting Against Online Guessing

Ding Wang1,2(B) and Ping Wang2,3

1 School of EECS, Peking University, Beijing 100871, China
2 National Engineering Research Center for Software Engineering, Beijing, China

{wangdingg,pwang}@pku.edu.cn
3 School of Software and Microelectronics, Peking University, Beijing 100260, China

Abstract. While much has changed in Internet security over the past
decades, textual passwords remain as the dominant method to secure
user web accounts and they are proliferating in nearly every new web
services. Nearly every web services, no matter new or aged, now enforce
some form of password creation policy. In this work, we conduct an exten-
sive empirical study of 50 password creation policies that are currently
imposed on high-profile web services, including 20 policies mainly from
US and 30 ones from mainland China. We observe that no two sites
enforce the same password creation policy, there is little rationale under
their choices of policies when changing policies, and Chinese sites gener-
ally enforce more lenient policies than their English counterparts.

We proceed to investigate the effectiveness of these 50 policies in resist-
ing against the primary threat to password accounts (i.e. online guessing)
by testing each policy against two types of weak passwords which repre-
sent two types of online guessing. Our results show that among the total
800 test instances, 541 ones are accepted: 218 ones come from trawl-
ing online guessing attempts and 323 ones come from targeted online
guessing attempts. This implies that, currently, the policies enforced in
leading sites largely fail to serve their purposes, especially vulnerable to
targeted online guessing attacks.

Keywords: User authentication · Password creation policy · Password
cracking · Online trawling guessing · Online targeted guessing

1 Introduction

Textual passwords are perhaps the most prevalent mechanism for access control
in a broad spectrum of today’s web services, ranging from low value news por-
tals and ftp transfers, moderate value social communities, gaming forums and
emails to extremely sensitive financial transactions and genomic data protection
[25]. Though its weaknesses (e.g., vulnerable to online and offline guessing [38])
have been articulated as early as about forty years ago and various alterna-
tive authentication schemes (e.g., multi-factor authentication protocols [24,47]
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 456–477, 2015.
DOI: 10.1007/978-3-319-24177-7 23

The Emperor’s New Password Creation Policies 457

and graphical passwords [51]) have been successively suggested, password-based
authentication firmly stays as the dominant form of user authentication over the
Internet. Due to both economical and technical reasons [23], it will probably still
take the lead on web authentication in the foreseeable future.

It has long been recognised that system-assigned passwords are hardly usable
[1,4], yet when users are allowed to select passwords by themselves, they tend to
prefer passwords that are easily memorable, short strings but not arbitrarily long,
random character sequences, rendering the accounts protected by user-generated
passwords at high risk of compromise [5,16,49]. It is a rare bit of good news from
recent password studies [15,42,45] that, if properly designed, password creation
policies do help user select memorable yet secure passwords, alleviating this
usability-security tension. Unsurprisingly, nearly every web service, no matter
new or aged, follows the fashion and now enforces some form of password creation
policy. Generally, a password creation policy1 is composed of some password
composition rules and a password strength meter (see Fig. 1). The former requires
user-generated passwords to comply with some complexity (e.g., a combination of
both letters and numbers) and nudges users towards selecting strong passwords
[9,36], while the latter provides users with a visual (or verbal) feedback [15,45]
about the password strength during registration.

Fig. 1. A typical example of password creation policy

However, to what extent can the widely-deployed password creation policies
on the Internet be relied upon has long been an open issue. In 2007, Furnell [18]
initiated an investigation into the password practices on 10 popular websites and
found that, password rules and meters are vastly variable among the examined
sites and none of them can perform ideally across all of the evaluated criteria.

In 2010, Bonneau and Preibush [7] conducted the first large-scale empirical
study of password policy implementation issues in practice. By examining 150
different websites, they observed that bad password practices were commonplace
and particularly, highly inconsistent policies were adopted by individual sites,
which suggests that there is a lack of widely accepted industry standards for pass-
word implementations. At the meantime, Florêncio and Herley [17] investigated

1 In this work, we use “password policy” and “password creation policy” interchange-
ably, and don’t consider other password policies like expiration and storage [3,11].

458 D. Wang and P. Wang

the rationale underlying the choices of password policies among 75 high-profile
websites and found that, greater security demands (e.g., the site scale, the value
protected and the level of severity of security threats) generally do not consti-
tute the dominant factor for selecting more stringent password rules. Instead,
these Internet-scale, high value web services (e.g., e-commerce sites like Paypal
and online banking sites like Citibank) accept relatively weak passwords and
these sites bearing no consequences from poor usability (e.g., government and
university sites) usually implement restrictive password rules.

To figure out whether leading websites are improving their password man-
agement policies as time goes on, in 2011 Furnell [19] made an investigation
into 10 worldwide top-ranking sites and compared the results with those of the
study [18] he performed in 2007. Disappointingly, he reported that, during the
four-year intervening period there has been hardly any improvement in password
practices while the number of web services and security breaches has increased
greatly. In 2014, Carnavalet and Mannan [10] investigated the problem of to
what extent the currently deployed password strength meters are lack of sound
design choices and consistent strength outcomes. They systematically evaluated
13 meters from 11 high-profile web services by testing about 4 million passwords
that are leaked from popular online services as well as specifically composed
passwords. It is found that most meters in their study are “quite simplistic in
nature and apparently designed in an ad-hoc manner, and bear no indication of
any serious efforts from these service providers” [10]. Fortunately, most meters
can correctly assign sensible scores to highly weak popular passwords, e.g., at
least 98.4 % of the top 500 passwords [8], such as password, 123456, iloveyou
and qwerty, are considered “weak” or “very weak” by every meter.

Motivations. However, most of the existing works [7,17–19] were conducted
five years ago, while the online world has evolved rapidly during the intervening
period. In early 2010, Twitter had 26 million monthly active Users, now this
figure has increased tenfold;2 In Nov. 2010, Gmail had 193 million active users,
now this figure reaches 500 million;3 In April 2010, Xiaomi, a privately owned
smartphone company headquartered in Beijing, China, just started up, now it
has become the world’s 3rd largest smartphone maker (ranked after Apple and
Samsung) and there are 100 million Xiaomi users worldwide who rely on its
cloud service.4 All these three sites have recently been the victims of hacking
and leaked large amounts of user credentials [34,37,39]. As we will demonstrate,
they all (as well eight other sites examined in this work) have changed their
policies at least once during the past five years. Moreover, at that time how to
accurately measure password strength was an open problem and there were few
real-life password datasets publicly available, and thus the methodologies used
in these earlier works are far from systematic (mature) and satisfactory.

The sole recent work by Carnavalet and Mannan [10] mainly focuses on
examining password meters from 13 sites, paying little attention to the other
2 http://www.statista.com/statistics/282087/.
3 http://thefusejoplin.com/2015/01/choose-google-gmail-yahoo-mail/.
4 https://www.techinasia.com/xiaomi-miui-100-million-users/.

http://www.statista.com/statistics/282087/
http://thefusejoplin.com/2015/01/choose-google-gmail-yahoo-mail/
https://www.techinasia.com/xiaomi-miui-100-million-users/

The Emperor’s New Password Creation Policies 459

part of password policies (i.e., password composition rules). Due to the fact
that a password (e.g., Wanglei123) measured “strong” by the password meter
of a site (e.g., AOL) may violate the password rule of this site, finally it is still
rejected by the site. In addition, many sites (e.g., Edas, AOL and Sohu) enforce
mandatory password rules but suggestive meters, a password metered “weak”
might pass the password rule of these sites, and finally this “weak” password is
still accepted. Consequently, the question of how well these sites actually reject
weak passwords and withstand online guessing remains unanswered.

Another limitation of existing works is that little attention has been given to
non-English web services. As typical hieroglyphics, Chinese has been the main
language used in a total of over 3.64 million web services until 2014 and about
0.95 million new web services that started up in 2014 (which means 0.95M new
password policies come out and impact on common users.) [22]. What’s more,
Chinese web users, who have reached 649 million by the end of 2014 [12], have
been the largest Internet population in the world and account for a quarter of the
world’s total netizens. Therefore, it is important (and interesting) to investigate
what’s the strengths and weaknesses of the current password policies in Chinese
web services as compared to their English counterparts.

Our Contributions. The main contributions of this work are as follows:

(1) First, we propose a systematic, evidence-grounded methodology for mea-
suring password creation policies and investigate the status quo of policies
enforced by 50 leading web services (with special emphasis on Chinese web
services) with a total of ten application domains. We find that, generally,
gaming sites, email sites, e-commerce sites and non-profit organizations man-
age with the least restrictive password rules, while the sites of IT manufac-
turers impose the most stringent ones; Web portals, email sites, e-commerce
sites and technical forums tend to provide explicit feedbacks of the password
strength to users, while sites of security companies, IT manufacturers and
academic services, ironically, often do not bother to provide users with any
piece of information about password strength.

(2) Second, we explore the differences in password policy choices between English
sites and Chinese sites. Compared to their English counterparts, Chinese
sites, in general, are more undaunted (audacious) in their password rule
choices, while there is no significant difference between these two groups of
sites with regard to the password meter choices.

(3) Third, we employ state-of-the-art password cracking techniques (including
the probabilistic-context-free-grammar (PCFG) based and Markov-Chain-
based) to measure the strength of the 16 testing passwords that are used
to represent two primary types of online password guessing attempts. This
provides a reliable benchmark (ordering) of the actual strength of these test-
ing passwords beyond intuitive (heuristic) estimates as opposed to previous
works like [10,19]. We observe that most of the meters overestimate the
strength of at least some of these 16 passwords, rendering the corresponding
web services vulnerable to online guessing.

460 D. Wang and P. Wang

2 Our Methodology

As there is little research on studying password practices and the approaches
used in the few pioneering works [7,10,17,19] are far from systematic and may
be demoded over the past five years, in the following we take advantage of state-
of-the-art techniques and elaborate on a systematic methodology for measuring
password policies. As far as we know, for the first time several new approaches
(e.g., the use of large-scale real-life passwords as corroborative evidence, the use
of targeted online guessing to measure password strength, and the classification
and selection of testing passwords) are introduced into this domain.

2.1 Selecting Representative Sites

To investigate the status quo of password creation policies deployed in today’s
Internet (with special emphasis on Chinese web services), first of all we selected
ten themes of web services that we are most interested in and that are also highly
relevant to our daily online lives: web portal, IT corporation, email, security cor-
poration, e-commerce, gaming, technical forum, social forum, academic service
and non-profit organization. Then, for each theme we choose its top 5 sites
according to the Alexa Global Top 500 sites list based on their traffic ranking
(http://www.alexa.com/topsites). Some companies (e.g., Microsoft and Google)
may offer various services (e.g., email, search, news, product support) and have
a few affiliated sites, fortunately they generally rely on the same authentication
system (e.g., Windows Live and Google Account) to manage all consumer cre-
dentials and we can consider all the affiliated sites as one. Similarly, for each
theme we also choose its top 10 sites that are among the Alexa Top 500 Chinese
sites rank list. In this way, there are 15 leading sites selected for each theme: 5
from English sites and 10 from Chinese sites. Further, we randomly selected 5
sites out of these 15 sites for each theme, resulting in 50 sites used in this work
(see Table 5): 20 from English sites and 30 from Chinese sites.

We note that though our selected websites have a wide coverage, yet
many other themes are still left unexplored, such as e-banking, e-health and
e-government. The primary reason why we does not include them is that, they
rely heavily on multi-factor authentication techniques in which passwords play
a much less critical role. In addition, the number of sites allocated for each
theme is also limited. Nonetheless, our sample characterizes the current most
recognised and leading portion of the online web services, which attract the
majority of the visit traffic [26,28]. Therefore, the password practices used by
these sites will impact on the major fraction of end-users and may also became
a model for other less leading sites (which generally are with less technical, cap-
ital and human resources). Further considering the amount of work incurred for
one site, an inspection of 50 sites is really not an easy task, let alone an ini-
tial study like ours (as there is no sophisticated procedure to follow, we have
to carry out an iterative process of data collection). In the future work, we are
considering to increase the number of sites for each theme to 10 or possibly 20,
and the investigation results as well as a set of evidence-supported, practicable

http://www.alexa.com/topsites

The Emperor’s New Password Creation Policies 461

policy recommendations will be made available at the companion site http://
wangdingg.weebly.com/password-policy.html.

2.2 Measuring Password Policy Strength

The task of measuring strength of a policy is generally accomplished by evaluat-
ing strength of the password dataset generated under this policy, and a number
of methods for tackling the latter issue have been proposed, including statistical-
based ones (e.g., guessing entropy and α-guesswork [5]) and cracking-based ones
(e.g., [31,48]). However, these methods all require access to a real password
dataset with sufficient size. Fortunately, we note that Florêncio and Herley [17]’s
simple metric —Nmin·log2Cmin— is not subject to this restriction and sufficient
for our purpose, where Nmin is the minimum length allowed and Cmin is the
cardinality of the minimum charset imposed.5 For instance, the strength of a
policy that requires a user’s password to be no short than 6 and must contain a
letter and a number is 31.02(=6 · log236) bits. This metric well characterizes the
minimum strength of passwords allowed by the policy, providing a lower bound
of the policy strength. We adopt this metric in our work.

Table 1. Basic information about the seven password datasets used in this work

Dataset Services Location Language When leaked How leaked Total passwords

Rockyou Social USA Englsih Dec. 14, 2009 SQL injection 32,603,387

Tianya Social China Chinese Dec. 4, 2011 Hacker breached 30,233,633

7k7k Gaming China Chinese Dec. 2, 2011 Hacker breached 19,138,452

Dodonew Ecommerce China Chinese Dec. 3, 2011 Hacker breached 16,231,271

CSDN Programming China Chinese Dec. 2, 2011 Hacker breached 6,428,287

Duowan Gaming China Chinese Dec. 1, 2011 Insider disclosed 4,982,740

Yahoo Portal USA English July 12, 2012 SQL injection 453,491

2.3 Exploiting Real-Life Password Datasets

Our work relies on seven password datasets, a total of 124.9 million real-life
passwords (see Table 1), to train the cracking algorithms and learn some basic
statistics about user password behaviors in practice. Five datasets of Chinese
web passwords, namely Tianya (31.7 million), 7k7k (19.1 million), Dodonew
(16.3 million), Duowan (8.3 million) and CSDN (6.4 million), were all leaked
during Dec. 2011 in a series of security breaches [33]. Tianya is the largest social
forum in China, 7k7k, Dodonew and Duowan are all popular gaming forums in
China, and CSDN is a well-known technical forum for Chinese programmers.

Two datasets of English web passwords, namely Rockyou (32.6 million) and
Yahoo (0.5 million), were among the most famous datasets in password research
[32,48]. Rockyou is one of the world’s largest in-game video and platform for
premium brands located in US, and its passwords were disclosed by a hacker
5 This implicitly assumes that users are least-effort ones.

http://wangdingg.weebly.com/password-policy.html
http://wangdingg.weebly.com/password-policy.html

462 D. Wang and P. Wang

using a SQL injection in Dec. 2009 [2]. This dataset is the first source of large-
scale real-life passwords that are publicly available. Yahoo is one of the most
popular sites in the world known for its Web portal, search engine and related
services like Yahoo Mail, Yahoo News and Yahoo Finance. It attracts “more than
half a billion consumers every month in more than 30 languages”. Its passwords
were hacked by the hacker group named D33Ds in July 2012 [50]. We will pay
special attention to this site because it has changed its password policy, as far
as we can confirm, at least three times during the past five years.

2.4 Measuring Password Strength

Essentially, the strength of a password is its guessing resistance against the
assumed attacker. This equals the uncertainty this attacker has to get rid of,
and naturally the idea of shannon entropy was suggested to measure password
strength, called NIST entropy [9]. Later, NIST entropy was found to correlates
poorly with guess resistance and can at best serve as a “rough rule of thumb” [31,
48]. In contrast, the guess-number metric, which is based on password cracking
algorithms (e.g., PCFG-based and Markov-based [32]), was shown to be much
more effective, and it has been used in a number of following works like [35,42].

However, we note that the traditional use of guess-number metric generally
implicitly assumes that the attacker is a random, trawling attacker Atra (i.e.,
not targeting a selected user). In many cases this is evidently not realistic. For
a targeted attacker Atar, with the knowledge of the name of the target user, she
can drastically reduce the guess number required to find the right password. In
this work, we consider these two kinds of attacker and suppose that the targeted
attacker knows of the user’s name. This assumption is reasonable because, for
Atar to launch a targeted attack, he must know some specific information about
the victim user Uv, and Uv’s name is no-doubt the most publicly available data.

To take advantage of name information in cracking, we slightly modify the
PCFG-based and Markov-based algorithms by specially increasing the probabil-
ity of the name-related letter segments. This can be easily achieved in PCFG-
based attacks [32]. For instance, assuming the victim’s name is “wanglei”, after
the PCFG-based training phase, one can increase the probability of the item
“L4 → wang” in the PCFG grammars to that of the most popular L4 segment
and similarly, the item “L7 → wanglei” to that of the most popular L7 segment.

However, for Markov-based attacks since there is no concrete instantiation of
“letter segments” during training, we substitute all the name segments (includ-
ing full, sur- and first names) in training passwords (we use 2M Duowan pass-
words and 2M CSDN passwords together as training sets) with the victim’s
corresponding name segments before training. For instance, “zhangwei0327”
is replaced with “wanglei01”, “zhao@123” is replaced with “wang@123”, and
“pingpku@123” is replaced with “leipku@123”, where “wang” and “lei” is Uv’s
surname and first name in Chinese Pinyin, respectively. Our basic idea is that
the popularity of name-based passwords in the training sets largely reflects the
probability of the targeted user to use a name-based password, and the clever

The Emperor’s New Password Creation Policies 463

attacker Atar will base on this probability to exploit Uv’s name. Our Markov-
based algorithm for targeted online guessing is shown as Algorithm 1. One can
easily see that, based on our idea, besides Chinese Pinyin names, this algorithm
can be readily extended to incorporate names in any other language (e.g., “James
Smith” in English), and to incorporate other user-specific data (such as account
name and birthdate) to model a more knowledgeable targeted attacker.

Algorithm 1. Our Markov-Chain-based generation of targeted guesses
Input: A training set T S; A name list nameList; The victim user’s name

victimName; The size k of the guess list to be generated (e.g., k = 107)
Output: A guess list L with the k highest ranked items

1 Pre-Training:
2 for name ∈ nameList do
3 trieTree.insert(name)

4 for password ∈ T S do
5 for letterSegment ∈ splitToLetterSegments(password) do
6 if InTrieTree(letterSegment) then
7 if isFullName(letterSegment) then
8 password.replace(letterSegment, victimName.fullName)

9 if isSurName(letterSegment) then
10 password.replace(letterSegment, victimName.surName)

11 if isF irstName(letterSegment) then
12 password.replace(letterSegment, victimName.firstName)

13 Ordinary Markov-Chain-based training on the pre-trained set T S
using Good-Turing smoothing and End-Symbol normalization (for
more details see [46]);

14 Produce a list L with top-k guesses in decreasing order of probability.

To avoid ambiguity, we only consider name segments no shorter than 4. To
determine whether a password picked from the training set includes a name or
not, we first build a name-based Trie-tree by using the 20 million hotel reserva-
tion data leaked in Dec., 2013 [21]. This name dataset consists of 2.73 million
unique Chinese full names and thus is adequate for our purpose. We also add
504 Chinese surnames which are officially recognized in China into the Trie-tree.
These surnames are adequate for us to identify the first names of Chinese users
in the Trie-tree to be used in Markov-based targeted guess generation.

2.5 Selecting Testing Passwords

As we have mentioned in Sect. 2.3, we measure how the 50 password policies we
are interested in are resistant to two types of guessing attacker, i.e., a trawling
attacker Atra and a targeted attacker Atar (with the victim’s name). The aim
of Atra is to break as many accounts as possible with a few password trials [5],
while Atar intends to break the single account of the given victim user Uv.

To be effective, Atra would try the most popular passwords in decreasing
order of probability with regard to the targeting population, while Atar would

464 D. Wang and P. Wang

Table 2. Two types of passwords modeling two kinds of guessing attacks (‘Guess rank’
is the order in which the corresponding attacker will try that guess; ‘–’ = not exist)

User password Guess rank in

trawling PCFG

Guess rank in

trawling Markov

Guess rank in

targeted PCFG

Guess rank in

targeted Markov

123456 1 1 3 2

123456789 3 2 1 3

5201314 6 8 9 10

Type A

(Hotspot)

woaini 12 19 30 423

iloveyou 43 347 24 359

password 84 164 34 194

woaini1314 737 116 1501 32736

password123 17002 36834 6572 36679

wanglei 281 595 64 1

wanglei123 13929 35852 324 7

wanglei1 42627 86999 3450 16

Type B

(Name-based)

wanglei12 169546 235971 11205 58

Wanglei123 3020809 6222672 323 392

wang.lei 301547 7856239 2287915 379205

wanglei@123 5291970 – 1927185 5109

Wanglei@123 – – 1927186 206144

Table 3. Popularity of Type A passwords in real-life password datasets

Tianya Dodonew 7k7k Duowan Rockyou Yahoo

Hotspot password (31.7M,2011) (16.3M,2011) (19.1M,2011) (8.3M,2011) (32.6M,2009) (0.5M,2012)

Rank Freq. Rank Freq. Rank Freq. Rank Freq. Rank Freq. Rank Freq.

123456 1 3.98% 1 1.45% 1 3.79% 1 3.43% 1 0.89% 1 0.38%

123456789 4 0.59% 3 0.32% 4 0.63% 3 0.62% 3 0.24% 6 0.05%

5201314 7 0.19% 5 0.19% 6 0.34% 6 0.28% 415 0.01% 5090 0.00%

woaini 17 0.09% 26 0.04% 15 0.09% 18 0.07% 3626 0.00% – 0.00%

iloveyou 49 0.04% 106 0.01% 53 0.03% 45 0.03% 5 0.15% 16 0.03%

password 86 0.02% 23 0.04% 98 0.02% 87 0.02% 4 0.18% 2 0.18%

woaini1314 295 0.01% 18 0.05% 72 0.02% 57 0.03% 87348 0.00% – 0.00%

password123 20045 0.00% 8004 0.00% 22462 0.00% 14382 0.00% 1384 0.00% 153 0.01%

Table 4. Popularity of Type B passwords in real-life datasets

Name dictionary Tianya Dodonew 7k7k Duowan Average

Chinese

Rockyou Yahoo Average

English

Pinyin surname (len ≥ 4) 6.34% 10.04% 7.14% 8.44% 7.99% 1.38% 1.29% 1.34%

Pinyin fullname (len ≥ 4) 9.87% 15.90% 11.42% 13.42% 12.65% 5.37% 3.61% 4.49%

Pinyin name total (len ≥ 4) 10.91% 18.06% 14.81% 14.92% 14.68% 5.36% 4.21% 4.78%

try the most popular passwords in decreasing order of probability with regard to
the specific user. As shown in Table 2, we use Type A passwords (we call hotspot
passwords) to represent the attempts Atra will try and Type B passwords (we
call Chinese-Pinyin-name-based passwords) to represent the attempts Atar will
try, respectively. As revealed in [46], Chinese web users create a new type of
passwords, named “Chinese-style passwords”, such as woaini, 5201314 and
wanglei123 based on their language. Note that, “wanglei” is not a random

The Emperor’s New Password Creation Policies 465

string of length 7 but a highly popular Chinese name, among the top-20 list
of Chinese full names [44]; “520” sounds as “woaini” in Chinese, equivalent to
“i love you” in English; “1314” sounds as “for ever and ever” in Chinese. Thus,
both “woaini1314” and “5201314” mean “I love you for ever and ever”. Such
passwords are extremely popular among Chinese users (see Table 3) and thus are
as dangerous as internationally bad passwords like iloveyou and password123.

In the following we show why these two types of passwords are weak and can
really serve as representatives of password attempts that the aforementioned two
types of attacker would try. Table 3 reveals that, all the eight Type A passwords
are among the top-200 rank list in at least one web services. More specifically,
all the Type A passwords (except woaini1314 and password123) are among
the top-100 rank list in the four Chinese web services, while woaini1314 is only
slightly less popular (i.e., with a rank 295) in Tianya and English services, and
password123 is comparatively much more popular in English services, i.e., with a
rank 153 in Yahoo and a rank 1384 in Rockyou, respectively. Besides popularity,
these eight Type A passwords are also different in length, culture (language)
and composition of charsets. Therefore, they well represent the characteristics
of potential passwords that a trawling attacker Atra would try.

As stated in Sect. 2.4, to model a targeted guessing attacker Atar, we mainly
focus on the case that Atar knows of the victim’s name. Without loss of much
generality, we assume the victim is a Chinese web user, named “wanglei”. From
Table 4 (and see more data in [46]) we can see that Chinese users really love to
include their (Pinyin) names into passwords: an average of 14.68 % of Chinese
users have this habit. That is, given a targeted user, it is confident to predict that
there is a chance of 14.68 % that she includes her name into her password, and
Atar would gain great advantage by making use of this fact. We conservatively
deal with the ambiguities during the name matching. For instance, there are some
English surnames (e.g., Lina) may coincide with a Chinese full name, and we
take no account of such names when processing English datasets. Well, how does
a user uses her name, which can be seen as a word, to build a password? There
are a dozen of mangling rules to accomplish this aim, and the most popular ones
[13,27] include appending digits and/or symbols, capitalizing the first letter, leet
etc. This results in our eight Type B passwords. One can see that the guess rank
in Markov-based targeted attack (see the last column in Table 2) quite accords
with the rank of general user behaviors as surveyed in [13]. This implies the
effectiveness of our Markov-based targeted attacking algorithm.

2.6 Collecting Data from Sites

To obtain first-hand data on password policy practices, we create real accounts
on each site, read the html/PHP/Javascript source code of the registration page,
and test sample passwords to see the reaction of the meter when available. We
note that there are many unexpected behaviors of sites. For example, in some
sites (e.g., Edas, Easychar and Yahoo) the descriptions of password policies are
not explicitly given (or the information explicitly given are not complete), and
additional data about policies can only be extracted from the feedbacks of the

466 D. Wang and P. Wang

server after one have actually clicked the “submit” button. Consequently, for all
sites and every password testing instance, we press the “submit” button down
and take note of the response to avoid missing anything important.

Initially, considering the great amount of manual workload involved, we
attempt to automate the collection of data from each site by using PHP/Python
scripts or web spiders. However, we have to abandon this idea mainly due to
four reasons: (1) A large portion of sites (38 %) prevent automated registration
by requiring users to solve CAPTCHA puzzles when registration; (2) 18 % sites
need to input the verification code received by user’s mobile phone to accomplish
the registration; (3) 8 % sites involve a verification code to be received by the
user’s email before the user can input the password; (4) Information displayed on
each site is highly heterogeneous, as demonstrated in Sect. 3, no two sites share
the same password policy, and thus batch processing hardly works. As a result,
the whole data collection process is manually handled. To assure accuracy, every
process is conducted at least twice (at intervals of more than one week) and the
collected data all has been cross validated by the authors.

3 Our Results

In this section, we first present the status quo of the password policies employed
in the 50 web services that we are interested in, and then examine the effective-
ness of these policies in resisting against online guessing attacks. All of the data
were collected from these services between the months of Jan. to Feb. in 2015.

3.1 Password Composition Rules in the Wild

For each password composition rule, we investigate the following six common
requirements: length limits, charset requirement, whether rules are explicitly
stated, whether allowing symbols, whether using a blacklist and whether deter-
ring the use of personal data. The results are summarized in Table 5.

Length Limits. All sites but one impose a minimum length limit. 60 % sites
require passwords to be no shorter than 6, 30 % sites require passwords to be no
shorter than 8, with the remaining 8 % sites raging from 5, 7 to 9. It is interesting
to see that, all sites from the IT corporation category enforce a minimum-8 length
limit. Is this because that these services care the security of user account more
than other services examined? We will explore this question later.

At the meantime, 72 % sites impose a maximum length limit no larger than
64, as far as they can be identified. Surprisingly, 22 % sites do not allow pass-
words to be longer than 16. As it is cognitively impossible for common users
to remember complex non-linguistic strings yet attack vectors are increasing,
passphrases have recently received much interest and shown to be more use-
able than passwords [30,43], and actually, they have been used successfully and
gain popularity (see an example http://correcthorsebatterystaple.net/). How-
ever, passphrases are highly likely to exceed such maximum length limits (e.g.,

http://correcthorsebatterystaple.net/

The Emperor’s New Password Creation Policies 467

Table 5. An overview of the password composition rules in the selected web services
(‘-’ means a length limit of larger than 64; ‘∅’ means no charset requirement; ‘Blacklist’
means a list of banned popular passwords or structures (e.g., repetition); ‘User info’
considers two types of a user’s personal information, i.e. name and account name.)

Web services Len. limits Charset requirement Rules
explicit

Accept
symbol

Using
blacklist

Checking
user info

Min Max

Sina 6 16 ∅ Yes Yes No No

China.com 6 - 1+lower, 1+upper, 1+digit Noa Yes No No
Web portal Tecent 6 16 Not a number with len<9 Yes Yes No No

Ifeng 6 20 ∅ Yes Yes No Account

Yahoo 7 30 ∅ No Yes No Bothb

Microsoft 8 16 Any 2 charsets Yes Yes No Both

Intel 8 15 1+letter, 1+digit, 1+symbol Yes Yes No Account

IT corp. Apple 8 32 1+lower, 1+upper, 1+digit Yes Yes No Account
Lenovo 8 20 Any 2 of letter, digit, symbol No Yes No No

Huawei 8 60 1+letter, 1+digit, 1+symbol Yes Yes No Account

139 6 16 Not a number with len<8 Noa Yesc Yes No
163 6 16 ∅ Yes Yes Yes Account

Email AOL 8 16 ∅ Yes Yes Yes Both
Sohu 6 16 ∅ Yes Yes Yes No
Gmail 8 - ∅ Yes Yes Yes Both

Rsing 6 - ∅ Yes Yes No NO

Symantec 8 25 1+letter, 1+digit Yes Yes No Account
Security

corp.
Kaspersky 6 16 ∅ Yes Yes No NO

McAfee 8 32 1+letter, 1+digit, no symbol Yes No No No
360 6 20 ∅ Yes Yes Yes No

Taobao 6 20 Any 2 of letter, digit, symbol Yes Yes No Account
Jd.com 6 20 ∅ Yes Yes Yes Account

Ecommerce Dangdang 6 20 ∅ Yes Yes No No
Amazon 6 - ∅ Yes Yes No No
Meituan 6 32 ∅ Yes Yes No No

17173 6 20 Not digits only Noa Yes Yes No
Duowan 8 20 Not a number with len<9 Yes Yes No No

Gaming 4399.com 6 20 ∅ Yes Yes No No
Sdo.com 6 30 Only letter and digit Yes No Yes No
Wanmei 6 16 Only letter and digit Yes No No No

CSDN 6 20 ∅ Yes Yes No No
51CTO 8 20 ∅ Yes Yes No No

Technical
forum

ChinaUnix 6 24 Any 2 of letter, digit, symbold Yes Yes No Account

Hack80 9 - ∅ Yes Yes No No
Pediy.com 5 - ∅ Noe Yes Yes No

Tianya 6 - 1+letter, 1+digit Yes Yes Yes No
BBS.xiaomi 8 16 Any 2 of letter, digit, symbol Yes Yes No No

Social
forum

Renren 6 20 ∅ Yes Yes No No

Twitter 6 - ∅ Yes Yes Yes Account
Facebook 6 - ∅ Yes Yes Yes No

WoS 8 - 1+letter, 1+digit, 1+special Yes Yes No No
CNKI 6 20 No symbol(except ‘ ’) Yes No Yes No

Academic
service

Cjc.ac.cn 1 - ∅ Yes Yes No No

Easychair 6 40 Not digits only No Yes No No

Edas 7 - 1+letter, 1+digit No Yes Yes No

IEEE 8 64 1+digit Yes Yes Yesf No
ACM 6 26 ∅ Yes Yes No No

Non-profit
Org.

W3C 8 - ∅ Yes Yes No No

CCF 6 32 ∅ No Yes No No
CACR 6 - ∅ Yes Yes No No

aChina.com, 139 and 17173 only explicitly require that password must be no shorter than 6, yet when one
submits a password that do not fulfill the charset requirement, they prompt that more type(s) of character(s)
is(are) needed.
bYahoo checks whether user’s personal name are incorporated in the password yet it is case sensitive, e.g.,
“wanglei123” will not be blocked if we input the surname ‘Wang’ instead of ‘wang’.
c139 only accepts six kinds of symbols (i.e., ~@#$^).
dChinaUnix explicitly states that a password must contain two types of characters, yet it accepts passwords
(e.g., “123456789” and “qwertasdfg”) that are measured as “medium” or “strong”.
eThere is no explicit rule in Pediy.com, yet when one submits a password shorter than 5, it prompts that an
accepted password must be no shorter than 5.
f IEEE’s blacklist only includes one item (i.e., “password”), which is explicitly stated.

https://www.China.com
https://www.Jd.com
https://www.4399.com
https://www.Sdo.com
https://www.Pediy.com

468 D. Wang and P. Wang

16 and 20) and thus are prohibited from use. This may impair both security and
usability.

Further considering that, increasing the password length is generally more
effective in enhancing password security than extending the charsets [40], it is
more advisable to set a maximum length limit that is large enough (e.g., 64).

Charset Requirement. Among the 50 sites, 23 sites (46 %) implement some
charset requirements. Once again, all sites from the IT corp. category enforce a
charset requirement, while other categories do not show this feature. Remarkably,
3 Chinese sites require that a digit-only password cannot be shorter than some
minimum length (e.g., 9). This may be due to their insight into the fact that
Chinese users highly love to use digit-only passwords—according to one of our
earlier works [46], an average of 52.93 % Chinese users use digit-only passwords.

Symbol Acceptance. It is perhaps surprising to note that four sites (including
both English and Chinese sites) prevent symbols to be included into passwords.
Theoretically, among the 95 printable ASCII characters, 33 ones are symbols,
excluding which would largely reduce an attacker’s search space. It has also
been established empirically that passwords with symbol(s) are generally much
secure than passwords with no symbol [35,48]. The only plausible reason for
forbidding symbols that we can imagine is to prevent SQL injection attacks, yet
such attacks can be well prevented by properly handling the escape characters.
It is really beyond comprehension why these four sites forbid symbols.

Using Blacklist. As recommended in NIST-800-63 [9], a blacklist of sufficient
size (e.g., at least 50,000) is highly desirable in prevent popular passwords which
are particularly vulnerable to statistical attacks [41]. US-CERT also suggest
the use of blacklist [36]. However, only 16 sites (32 %) impose a blacklist and
none of their blacklists are adequate. For instance, the blacklist of Twitter only
contains 370 bad passwords and ironically, the blacklist of IEEE only consists of
the famous “password”. Also note that, all email sites impose a blacklist; 33 %
Chinese services impose a blacklist, and this figure for English services is 30 %.

Checking User Info. As highlighted in both NIST-800-63 [9] and NIST-800-
118 [40], uses tend to use their personal data (e.g., account name and personal
name) to build passwords for better memorization, and accordingly, preventing
the use of personal data in a password can raise the min-entropy of this password.
However, only 14 sites (28 %) disallow account name and/or personal name to
be included into passwords. Among these 14 sites, 9 come from English sites.

Explicit Rules. Despite the long-standing use of and familiarity with passwords,
good password practices have not become “an established part of our security cul-
ture”, and “even basic provision of guidance can help to deliver a tangible improve-
ment” [20]. Consequently, it is crucial for sites to provide users with explicit advice
and guidance, otherwise the implicit rules would only provide users with frustra-
tion and fatigue. However, there are still 9 sites (including 3 sites from English
sites and 6 from Chinese sites) that do not make the password rules explicit, leav-
ing the users to try their luck to comply with the required rules.

The Emperor’s New Password Creation Policies 469

Summary. Despite the long-standing use of passwords and long-recognised
importance of the provision of sound password practices, many leading web
services seem to lose their lead in enforcing sensible password rules. As no two
services examined share the same password rule, there seems to be no generally
agreed-upon practice. In 2010, Bonneau and Preibusch [7] found “many aspects
of password implementation are not standardised”, while our results suggest
that after five years of development, basic password practices are still highly
diversified. What’s worse, policy recommendations from major authorities are
also quite different from each other (e.g., US-CERT [36] vs. NIST [40] vs. DISA
[14]) and often far from practicable (e.g., “use different passwords on different
systems” [36,40] and “users must not be able to reuse any of their previous
10 passwords.” [14]). This greatly impairs their authoritativeness. Unsurpris-
ingly, a large fraction of high-profile sites (e.g., Yahoo, Apple, Microsoft and
Kaspersky) each maintains their own, even unnecessary, illogical rules. Security
background or abundant capital, engineering resources do not correlate with
noticeable advantages in policy strength (see Fig. 2). In addition, generally Eng-
lish sites implement more demanding rules than their Chinese counterparts.

Fig. 2. Strength (in bits) of the 50 password composition rules

3.2 Password Strength Meters in the Tangle

To give users a feedback about the goodness of their selected passwords, password
strength meters are employed to accomplish this aim. Recent research has shown
that password meters, especially those with a timely [42], easily comprehensible
[15] and accurate [45] feedback, can lead to tangible improvements in password
security. Table 6 shows that 26 sites (10 English and 16 Chinese) employ a meter.

Among these 26 sites with a meter, 5 sites (including 3 from English sites and
2 from Chinese sites) only verbally show the password strength, and a mere 9
sites (including 5 from English sites and 4 from Chinese sites) impose mandatory
strength requirements. Further considering that there are only 20 English sites

470 D. Wang and P. Wang

out of 50 sites investigated, this suggests that, generally, English sites are more
stringent in ensuring password security. It is also worth noting that, some sites
(i.e., 139, IEEE and Hack80) provides strength feedback to a user only when the
user’s password meets with their password composition rules first.

According to Furnell’s 2007 investigation [18], only two of the 10 sites studied
provide a meter, while his 2011 investigation [19] saw a great advancement: 6
out of 10 sites provide a meter during user registration. However, our results
show no advancement in password meter adoption during the past five years.

It is interesting to note that, most sites from the categories of web portal,
email, e-commerce and technical forum employ a password meter, while most
sites from the categories of IT corp., security corp. and academic service do
not provide thus feature. Further considering that the later categories of sites
typically employ more restrictive password rules (see Fig. 2), one would really be
confused about what’s their ultimate purpose of imposing a password creation
policy from the user prospective. From the site prospective, as composition rules
is highly more easy to be implemented and maintained than a password meter,
and thus different choices mean different engineering cost involved. Consequently,
one plausible (yet ironical) reason may be that, IT corp. sites, security corp.
sites and academic service sites do not provide a meter due to engineering cost.
Another reason may be that, due to the “failure of the academic literature to
provide approaches that are convincingly better than current practices” [6], these
technically-savvy sites are aware of the ineffectiveness of the current password
meters, yet there is no adequate, concrete and well-grounded knowledge (e.g.,
about architectures, frameworks, algorithms, metrics and guidelines) available
for them to get things (towards) right, and they simply do not employ any meter.

3.3 Online Guessing Attackers at Large

We proceed to investigate the effectiveness of these 50 policies in resisting against
the primary threat to password accounts, i.e. online guessing. As detailed in
Sect. 2.5, we specially select two types of weak passwords to model the two dif-
ferent types of online guessing (i.e., trawling and targeted) attacks, respectively.
Each type is composed of 8 testing passwords, and each password is tested
against every service, meaning a total of 800(=2*8*50) testing instances.

Our results (see Table 7) show that among the 800 testing instances, 541 ones
are accepted, where 257 ones are accepted without providing any strength infor-
mation, 83 ones are accepted while they are metered “weak/low”, and each site
accepts at least two instances (passwords). Among these 259 rejected instances,
221 ones are rejected by password rules, 17 ones are rejected by password meters,
and 21 ones are rejected by both the password rule and meter.

This has at least two important implications. First, considering that at least 2
(and an average of 10.8) weak passwords are allowed by every site and that, ironi-
cally, 15 leading sites, including many technically savvy services (e.g., Kaspersky,
Rsing and ACM) and financially sound services (e.g., Amazon and Dangdang),
accept all the 16 weak passwords like “123456”, “woaini” and “wanglei”, it is
really difficult to refuse the implication that the password policies imposed by

The Emperor’s New Password Creation Policies 471

Table 6. An overview of the password strength meters in the selected web services
(‘∅’ stands for no strength scale; ‘-’ stands for non-existence; ‘Monotonicity’ stands for
whether an additional character contributes to a better score)

Web Services Strength score scale Verbal or
visual

Monotonicity Least score
enforce-
ment

Web portal Sina Very weak, Weak, Medium, High Both Yes Weak
China.com Weak, Medium, Strong Both Yes Medium
Tecent Weak, Medium, Strong Both Yes ∅
Ifeng Low, Medium, High Both Yes ∅
Yahoo 1(Easy to guess), 2(weak), 3(Medium),

4(Strong), 5(Very Strong)a
Visualb Yes 3(Medium)

IT Corp. Microsoft ∅ None – ∅
Intel ∅ None – ∅
Apple Weak, Medium, Strong Verbal No Medium
Lenovo ∅ None – ∅
Huawei ∅ None – ∅

Email 139 ∅ None No ∅
163 Weak, Medium, Strong Both Yes ∅
AOL Weak, Strong, Brilliant Both Yes ∅
Sohu Weak, Medium, Strong Both Yes ∅
Gmail Too short, Weak, Fair, Slightly strong, Strong Both No Fair

Security
Corp.

Rsing ∅ None – ∅

Symantec ∅ None – ∅
Kaspersky ∅ None – ∅
McAfee ∅ None – ∅
360 ∅ None – ∅

Ecommerce Taobao Low, Medium, High Both Yes Medium
Jd.com Weak, Medium, Strong Both Yes ∅
Dangdang Weak, Medium, Strong Both Yes ∅
Amazon ∅ None – ∅
Meituan Weak, Medium, Strong Both – ∅

Gaming 17173 Weak, Medium, Strong Verbal – ∅
Duowan ∅ None – ∅
4399.com ∅ None – ∅
Sdo.com Weak, Medium, Strong Both – ∅
Wanmei Low, Medium, High Both – ∅

Technical
Forum

CSDN Low, Medium, High Both Yes ∅

51CTO Weak, Medium, Strong Both Yes ∅
ChinaUnix Weak, Medium, Strong Both Yes Medium
Hack80 Weak, Medium, Strong Both Yes ∅
Pediy.com ∅ None – ∅

Social
Forum

Tianya ∅ None – ∅

BBS.xiaomi ∅ None – ∅
Renren Weak, Fair, Very brilliant Verbal Yes ∅
Twitter Too obvious/short, NSE, Can be more secure,

Ok, Medium, Strong, Perfect
Visualb No Not secure

enough
(NSE)

Facebook ∅ None – ∅
Academic

Service
WoS ∅ None – ∅

CNKI ∅ None – ∅
Cjc.ac.cn ∅ None – ∅
Easychair ∅ None – ∅
Edas Weak, Medium, Strong Verbal No ∅

Non-profit
Org.

IEEE Should be stronger, Good, Great Both No ∅

ACM ∅ None – ∅
W3C Very weak, Weak, Sufficient, Strong, Very

strong
Verbal Yes Sufficient

CCF ∅ None – ∅
CACR ∅ None – ∅

aAccording to the results obtained in 2013 [10], the password meter of Yahoo was “Weak, Strong, Very strong”.
Yet, at the time of this writing Yahoo has changed its policy and divides its strength bar into five scales. Although
Yahoo’s meter only verbally displays the strength score when the password is “1 (Easy to guess)” or “2 (Weak)”,
and for the other cases, only a visual progress bar is in place, fortunately one can identify the total number of
such cases (i.e., three). In line with its scores in 2013, we suppose the three scores corresponding to these three
scales that are not verbally displayed are “3(Medium)”, “4(Strong)” and “5(Very Strong)”, respectively.
bThe password meters of Yahoo and Twitter only verbally displays the strength score when a password can not
be accepted. When a password can be accepted, only a visual progress bar is in place. Consequently, their meters
is deemed to be visually displayed.

https://www.China.com

472 D. Wang and P. Wang

Table 7. An overview of the evaluation results of 16 passwords on 50 web services

the 50 sites largely fail to serve their purpose—resisting online guessing. Second,
currently, password rules are overwhelmingly dominant in the filtering of bad
passwords, and password meters should have played a more important role.

Perhaps unsurprisingly, password strength scores of the 50 selected sites are
highly inconsistent, which accords with previous work [10]. Very often, inherently
weak passwords (e.g., “password123” and “wanglei1”) pass the check of pass-
word rules and is labeled as strong by password meters, and they are accepted by
sites of significant value (e.g., all of the five e-commerce sites); the same password
receives highly inconsistent strength outcomes from different password meters
and is accepted or rejected for unintelligible reason. For instance, “Wanglei@123”
is measured as “weak” by Yahoo, “medium” by Sohu and “strong” by Gmail;
It is rejected by McAfee (which accepts “wanglei123”). These inaccuracies

The Emperor’s New Password Creation Policies 473

provide users with a false sense of security, and what’s worse, these inconsis-
tencies cause user confusion in selecting a stronger password, both of which
would lead the “weakest link” (i.e., common users) in the security chain to be
weaker.

Particularly, among the 541 accepted instances, 323 ones (i.e., 59.7 %) are
used for the test against targeted online guessing, which suggests that web ser-
vices on today’s Internet are comparatively more vulnerable to targeted attacks
(at least, against Chinese users). The right part of Table 7, further shows that,
most of the meters largely overestimate the strength of Type B passwords and
Chinese sites show no better performance, which renders such kind of passwords
at large over the Internet and also provides a false sense of security to users.

Some Remarks. To the best of our knowledge, 15 web services studied in
this work have been the victims of hacking and leaked large amounts of user
credentials (see some shivery news [33,34,37,39]). As far as can be confirmed,
among these 15 leaked sites, 9 ones have changed their password policies during
the past five years. More specifically, Yahoo has changed its length limits from
6–32 to 7–30 in the last year as compared to the data reported in 2014 by [10];
Apple changed its some lenient charset requirement to the current “1+lower,
1+upper, 1+digit” in 2012 according to [29]; As compared to the data reported
in 2011 by [19], Microsoft has changed its length limits from 6–16 to 8–16 and its
meter ratings from {Weak, Medium, Strong} to {∅}, Gmail has changed its meter
ratings from {Weak, Fair, Good, Strong} to the current {Too short, Weak, Fair,
· · · }, Twitter has changed its meter ratings from {· · · , Weak, Good, Strong, Very
strong} to the current {· · · , Medium, Strong, Perfect}, Facebook has changed
its meter ratings from {Weak, Medium, Strong} to {∅}; As victims of the 2011
catastrophic hacking event [33], Duowan changed its length limits from 6–20 to
8–20, CSDN changed its length limits from 8–20 to 6–20, and Tianya added the
current charset requirement. In addition, we can identify that AOL has changed
its length limits from 6–16 to 8–16 as compared to the data we collected in Mar.
2014, and Taobao changed its length limits from 6–16 to 6–20.

In all, during the past five years, as far as we know, 6 sites have adopted more
complex and stringent rules, 1 sites have relaxed its rules, 2 sites have changed
their rating scores and 2 sites have chosen not to provide meters at all. While
8 of the 11 changed sites may be towards seemingly more stringent or usable
policies, 3 sites are highly going against the trend of good password practices,
bearing no serious efforts from these 3 service providers. In a nutshell, as shown
in Table 7, all these 11 “new” password policies still largely fail to serve their
purposes and are virtually equivalent to ‘the emperor’s new password policies’.

At least, new services or existing ones that wish to establish/change a pass-
word policy, should not start the development of yet another policy, but rather
consider using or extending the pacemakers’ policies to be more consistent with
common sense practices and to be more prudent with local, cultural characteris-
tics. Comparatively, among the 50 policies studied, the current policy adopted by
Apple is the most effective one against online guessing. However, it is at the cost
of usability and leads to great user frustration and fatigue [29]. For example, the

474 D. Wang and P. Wang

“1+lower, 1+upper, 1+digit” rule highly hinders mobile users. This highlights
the imperative needs for more academic efforts to guide the industrial practice.

4 Conclusion

In this work, we have conducted a large-scale empirical analysis of the current
state of password creation policies imposed by 50 leading web services by using
a systematic, evidence-supported approach. We find that the policies are highly
diversified among the studied sites and largely fail to withstand online guess-
ing attacks. Comparatively, password composition rules play a more important
role in resisting online guessing than password strength meters, partly because
most meters are merely suggestive, and partly because current meters are inac-
curate in gauging the strength of passwords. Consistent with previous work [10],
highly inconsistent outcomes are given for the same testing password by different
meters, which may confuse users and undermine user trust in security advice,
defeating the purpose of enforcing password policies in the first place.

As compared to Chinese sites, English sites generally enforce more stringent
password polices. We also discuss the factors that may influence a site’s choice of
password policies. Our results show that, overall, security background or abun-
dant capital, engineering resources do not correlate with noticeable advantages
in password practice, as opposed to previous work [7]. A natural future work is to
incorporate more sample sites (e.g., medium sites, and sites from other languages
and services) and investigate more types of password policies (such as password
change, lockout and expiration), gaining a more complete picture of the whole
password ecosystem and proposing well-grounded policy recommendations.

Acknowledgment. We are grateful to the anonymous reviewers for their invaluable
comments. We also thank Dr. Ye Bai, Zhecheng Sun, and Chen Zhu for helping collect
the data. This research was supported by the National Natural Science Foundation of
China (NSFC) program under Grant No. 61472016.

References

1. Al-Ameen, M.N., Wright, M., Scielzo, S.: Towards making random passwords mem-
orable: Leveraging users’ cognitive ability through multiple cues. In: Proceedings
of the ACM CHI 2015, Seoul, Republic of Korea, 18–23 April 2015, pp. 1–10 (2015)

2. Allan, C.: 32 million Rockyou passwords stolen, December 2009. http://www.
hardwareheaven.com/news.php?newsid=526

3. Bauman, E., Lu, Y., Lin, Z.: Half a century of practice: who is still storing plaintext
passwords? In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 253–267.
Springer, Heidelberg (2015)

4. Bishop, M., Klein, D.V.: Improving system security via proactive password check-
ing. Comput. Secur. 14(3), 233–249 (1995)

5. Bonneau, J.: The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In: Proceedings of the IEEE S&P 2012, pp. 538–552 (2012)

http://www.hardwareheaven.com/news.php?newsid=526
http://www.hardwareheaven.com/news.php?newsid=526

The Emperor’s New Password Creation Policies 475

6. Bonneau, J., Herley, C., van Oorschot, P., Stajano, F.: Passwords and the evolution
of imperfect authentication. Commun. ACM 58(7), 78–87 (2015)

7. Bonneau, J., Preibusch, S.: The password thicket: Technical and market failures
in human authentication on the web. In: Proceedings of the WEIS 2010, Harvard
University, USA, pp. 1–48. 7–8 June 2010

8. Burnett, M.: 10,000 top passwords, June 2011. https://xato.net/passwords/
more-top-worst-passwords/

9. Burr, W., Dodson, D., Perlner, R., Polk, W., Gupta, S., Nabbus, E.: NIST SP800-
63 – electronic authentication guideline. Technical report, Reston, VA, April 2006

10. Carnavalet, X., Mannan, M.: From very weak to very strong: Analyzing password-
strength meters. In: Proceedings of the NDSS 2014, pp. 1–16 (2014)

11. Chiasson, S., van Oorschot, P.C.: Quantifying the security advantage of password
expiration policies. Designs, Codes and Cryptography (2015, in press). http://dx.
doi.org/10.1007/s10623-015-0071-9

12. CNNIC: CNNIC Released the 35th Statistical Report on Internet Development in
China, February 2015. http://www.apira.org/news.php?id=1732

13. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: Proceedings of the NDSS 2014, pp. 1–15 (2014)

14. DISA for DoD: Application security and development. Tech. rep., Defense Infor-
mation Systems Agency (DISA), Reston, VA, July 2013. http://www.stigviewer.
com/stig/application security and development/

15. Egelman, S., Sotirakopoulos, A., Beznosov, K., Herley, C.: Does my password go up
to eleven?: the impact of password meters on password selection. In: Proceedings
of the CHI 2013, pp. 2379–2388. ACM (2013)

16. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the WWW 2007, pp. 657–666. ACM (2007)

17. Florêncio, D., Herley, C.: Where do security policies come from? In: Proceedings
of the ACM SOUPS 2010, 14–16 July 2010, pp. 1–14. ACM, Redmond (2010)

18. Furnell, S.: An assessment of website password practices. Comput. Secur. 26(7),
445–451 (2007)

19. Furnell, S.: Assessing password guidance and enforcement on leading websites.
Comput. Fraud Secur. 2011(12), 10–18 (2011)

20. Furnell, S., Bär, N.: Essential lessons still not learned? examining the password
practices of end-users and service providers. In: Marinos, L., Askoxylakis, I. (eds.)
HAS 2013. LNCS, vol. 8030, pp. 217–225. Springer, Heidelberg (2013)

21. Goldman, J.: Chinese Hackers Publish 20 Million Hotel Reser-
vations, December 2013. http://www.esecurityplanet.com/hackers/
chinese-hackers-publish-20-million-hotel-reservations.html

22. Haikun, C.: Multiply the total to 3.647 million on chinese web sites,
February 2015. http://www.changhaikun.com/index.php/2015/04/03/
multiply-the-total-to-3-647-million-on-chinese-web-sites/

23. Herley, C., Van Oorschot, P.: A research agenda acknowledging the persistence of
passwords. IEEE Secur. Priv. 10(1), 28–36 (2012)

24. Huang, X., Xiang, Y., Chonka, A., Zhou, J., Deng, R.H.: A generic framework for
three-factor authentication: Preserving security and privacy in distributed systems.
IEEE Trans. Parallel Distrib. Syst. 22(8), 1390–1397 (2011)

25. Huang, Z., Ayday, E., Fellay, J., Hubaux, J.P., Juels, A.: Genoguard: Protecting
genomic data against brute-force attacks. In: Proceedings of the IEEE S&P 2015,
San Jose, CA, USA, pp. 447–462. 17–21 May 2015

26. Ihm, S., Pai, V.S.: Towards understanding modern web traffic. In: Proceedings of
the ACM SIGCOMM 2011, pp. 295–312. ACM (2011)

https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
http://dx.doi.org/10.1007/s10623-015-0071-9
http://dx.doi.org/10.1007/s10623-015-0071-9
http://www.apira.org/news.php?id=1732
http://www.stigviewer.com/stig/application_security_and_development/
http://www.stigviewer.com/stig/application_security_and_development/
http://www.esecurityplanet.com/hackers/chinese-hackers-publish-20-million-hotel-reservations.html
http://www.esecurityplanet.com/hackers/chinese-hackers-publish-20-million-hotel-reservations.html
http://www.changhaikun.com/index.php/2015/04/03/multiply-the-total-to-3-647-million-on-chinese-web-sites/
http://www.changhaikun.com/index.php/2015/04/03/multiply-the-total-to-3-647-million-on-chinese-web-sites/

476 D. Wang and P. Wang

27. Jakobsson, M., Dhiman, M.: The benefits of understanding passwords. In: Pro-
ceedings of the HotSec 2012, pp. 1–6. USENIX Association (2012)

28. Jiang, Q., Tan, C.H., Phang, C.W., Sutanto, J., Wei, K.K.: Understanding chinese
online users and their visits to websites: Application of zipf’s law. Int. J. Inf.
Manage. 33(5), 752–763 (2013)

29. Johns, R.: Illogical apple id password rules, May 2012. https://discussions.apple.
com/thread/3785494

30. Keith, M., Shao, B., Steinbart, P.: A behavioral analysis of passphrase design and
effectiveness. J. Assoc. Inf. Syst. 10(2), 2 (2009)

31. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess again (and again and again): Measur-
ing password strength by simulating password-cracking algorithms. In: Proceedings
of the IEEE S&P 2012, pp. 523–537. IEEE (2012)

32. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
Proceedings of the IEEE S&P 2014, pp. 538–552. IEEE (2014)

33. Martin, R.: Amid Widespread Data Breaches in China, December 2011. http://
www.techinasia.com/alipay-hack/

34. Mathew, J.S.: 15,000 twitter credentials stolen and leaked, hacker
promises more soon, August 2013. http://www.itcmt.com/2013/08/23/
15000-twitter-credentials-stolen-and-leaked-hacker-promises-more-soon/

35. Mazurek, M.L., Komanduri, S., Vidas, T., Cranor, L.F., Kelley, P.G., Shay, R.,
Ur, B.: Measuring password guessability for an entire university. In: Proceedings
of the CCS 2013, 4–8 November 2013, pp. 173–186. ACM (2013)

36. McDowell, M., Hernan, S., Rafail, J.: Security Tip (ST04-002): Choosing and Pro-
tecting Passwords (2013). https://www.us-cert.gov/ncas/tips/ST04-002

37. Millward, S.: Xiaomi now has 100 million users of its android-based mobile os,
February 2015. https://www.techinasia.com/xiaomi-miui-100-million-users/

38. Morris, R., Thompson, K.: Password security: A case history. Commun. ACM
22(11), 594–597 (1979)

39. Rhodan, M.: Nearly 5 million google passwords leaked on russian site, September
2014. http://time.com/3318853/google-user-logins-bitcoin/

40. Scarfone, K., Souppaya, M.: NIST SP800-118: Guide to enterprise password man-
agement. Technical report, NIST, Reston, VA, August 2013

41. Schechter, S., Herley, C., Mitzenmacher, M.: Popularity is everything: A new app-
roach to protecting passwords from statistical-guessing attacks. In: Proceedings of
the HotSec 2010, pp. 1–8 (2010)

42. Shay, R., Bauer, L., Christin, N., Cranor, L.F., Forget, A., Komanduri, S., Mazurek,
M., Melicher, W., Segreti, S.M., Ur, B.: A spoonful of sugar? the impact of guidance
and feedback on password-creation behavior. In: Proceedings of the CHI 2015,
Seoul, Korea, pp. 2903–2912. 18–24 April 2015

43. Shay, R., Komanduri, S., Durity, A.L., Huh, P.S., Mazurek, M.L., Segreti, S.M.,
Ur, B., Bauer, L., Christin, N., Cranor, L.F.: Can long passwords be secure and
usable? In: Proceedings of the ACM CHI 2014, pp. 2927–2936. ACM (2014)

44. Top 500 chinese pinyin names, January 2015. http://www.data.ac.cn/zrzy/g22.asp
45. Ur, B., Kelley, P.G., Komanduri, S., et al.: How does your password measure up?

the effect of strength meters on password creation. In: Proceedings of the USENIX
Security 2012, Bellevue, WA, USA, 8–10 August 2012, pp. 65–80 (2012)

46. Wang, D., Cheng, H., Wang, P.: Understanding Passwords of Chinese Users: Char-
acteristics, Security and Implications, January 2015. http://t.cn/RzSlpDz

https://discussions.apple.com/thread/3785494
https://discussions.apple.com/thread/3785494
http://www.techinasia.com/alipay-hack/
http://www.techinasia.com/alipay-hack/
http://www.itcmt.com/2013/08/23/15000-twitter-credentials-stolen-and-leaked-hacker-promises-more-soon/
http://www.itcmt.com/2013/08/23/15000-twitter-credentials-stolen-and-leaked-hacker-promises-more-soon/
https://www.us-cert.gov/ncas/tips/ST04-002
https://www.techinasia.com/xiaomi-miui-100-million-users/
http://time.com/3318853/google-user-logins-bitcoin/
http://www.data.ac.cn/zrzy/g22.asp
http://t.cn/RzSlpDz

The Emperor’s New Password Creation Policies 477

47. Wang, D., He, D., Wang, P., Chu, C.H.: Anonymous two-factor authentication in
distributed systems: certain goals are beyond attainment. IEEE Trans. Depend.
Secur. Comput. 12(4), 428–442 (2015)

48. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings of the
CCS 2010, 4–8 October 2010, pp. 162–175. ACM (2010)

49. Yan, J., Blackwell, A.F., Anderson, R.J., Grant, A.: Password memorability and
security: Empirical results. IEEE Secur. Priv. 2(5), 25–31 (2004)

50. Yap, J.: 450,000 user passwords leaked in Yahoo breach, July 2012. http://www.
zdnet.com/article/450000-user-passwords-leaked-in-yahoo-breach/

51. Zhu, B., Yan, J., Bao, G., Mao, M., Xu, N.: Captcha as graphical passwords-a
new security primitive based on hard AI problems. IEEE Trans. Inform. Forensics
Secur. 9(6), 891–904 (2014)

http://www.zdnet.com/article/450000-user-passwords-leaked-in-yahoo-breach/
http://www.zdnet.com/article/450000-user-passwords-leaked-in-yahoo-breach/

Policies

A Theory of Gray Security Policies

Donald Ray and Jay Ligatti(B)

Department of Computer Science and Engineering,
University of South Florida, Tampa, USA

{dray3,ligatti}@cse.usf.edu

Abstract. This paper generalizes traditional models of security poli-
cies, from specifications of whether programs are secure, to specifications
of how secure programs are. This is a generalization from qualitative,
black-and-white policies to quantitative, gray policies. Included are gen-
eralizations from traditional definitions of safety and liveness policies
to definitions of gray-safety and gray-liveness policies. These generaliza-
tions preserve key properties of safety and liveness, including that the
intersection of safety and liveness is a unique allow-all policy and that
every policy can be written as the conjunction of a single safety and a
single liveness policy. It is argued that the generalization provides several
benefits, including that it serves as a unifying framework for disparate
approaches to security metrics, and that it separates—in a practically
useful way—specifications of how secure systems are from specifications
of how secure users require their systems to be.

1 Introduction

Computer-security policies have traditionally been modeled as predicates,
partitioning the secure from the insecure system behaviors. Policies partition
behaviors by specifying constraints like “only administrators may write to files”,
“packets destined for port 120 must be logged”, or “all array accesses must be
bounds-checked”. These are qualitative, black-and-white constraints that can be
used to decide whether a given system is secure.

This paper generalizes the qualitative, black-and-white model of policies to
a quantitative, gray model. Instead of specifying whether systems are secure,
gray policies specify how secure systems are. For example, a gray policy for
array-bounds checking might consider that checking every array access makes
a program 100 % secure and that each unchecked access decimates a program’s
current rating.

Gray policies are useful because users are often unwilling to pay the costs
required to achieve 100 % security according to some policy. As is well under-
stood, enforcement costs can be high, typically in the form of:

– performance overhead (e.g., due to increased runtime checks),
– code-size overhead (e.g., due to inlined monitoring code),
– decreased usability (e.g., due to authentication procedures), and

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 481–499, 2015.
DOI: 10.1007/978-3-319-24177-7 24

482 D. Ray and J. Ligatti

– consumption of other system resources (e.g., due to security checks draining
batteries or security logs draining file-system space).

To make an analogy with the physical world, safes are not rated as secure
or insecure, but rather by the estimated amount of time needed to penetrate
them with a given set of tools. Such a quantitative rating enables consumers
to weigh the security metric against other metrics, such as size, weight, price,
and availability, when choosing a safe to buy. Importantly, a choice made in one
context may differ from a choice made in another context, depending on the
priorities of the purchaser and resources available.

In this paper’s framework, a gray policy specifies a system’s security rat-
ing, while a silhouette judge specifies a user’s security requirements. Returning
to the safe analogy, a silhouette judge is like a consumer’s purchasing-decision
algorithm that inputs a safe’s security rating and, combining it with the safe’s
other attributes, outputs a buy or don’t-buy decision.

Thus, this paper’s framework separates the intuitively distinct specifications
of how secure systems are (gray policies) from how secure users require their
systems to be (silhouette judges). This separation enables users with different
security requirements to use the same gray policy in different ways, by specify-
ing different silhouette judges. For example, in the context of high-performance
systems research users might require 0 % security (e.g., no array-bounds check-
ing), while in the context of flight-navigation software users might require 100 %
security.

There are additional benefits of the gray model over the black-and-white
model. Gray policies enable users to compare the security of different systems
when choosing which to use. In the black-and-white model, a user who can’t
afford to run a “secure” web browser has to choose between other browsers only
known to be “insecure”; in the gray model, the same user could choose the most
secure of the affordable browsers. As another potential benefit, consumers often
base purchasing decisions on measurable attributes, so quantifying security could
drive demand for security improvements, even ones that degrade performance by
10–20 % or more, thus countering the arguments of some developers that such
security overheads are intolerable [32].

Overview of Related Work and Contributions

Of course, the idea to quantify security is not new (e.g., [3,14,18,31,35,48,49]).
However, the extensive research into general-purpose models of policies has

considered them to be predicates and therefore black and white (e.g., [17,22,24,
29,41,54]). Many interesting results have come from these qualitative models of
policies, including definitions of safety and liveness properties, which are tied
to particular classes of enforcement mechanisms, and proofs that every black-
and-white property is the conjunction of one safety property and one liveness
property.

This paper contributes a more general, quantitative model of policies and
properties (Sect. 2). This model generalizes existing definitions of policies, prop-
erties, safety, liveness, hypersafety, and hyperliveness. It is shown that the new

A Theory of Gray Security Policies 483

model is indeed a generalization, in that every black-and-white policy is also
a gray policy, every black-and-white safety property is also a gray safety prop-
erty, etc.

It is also shown that the gray model preserves interesting properties of safety
and liveness that were previously derived in black-and-white models (Sect. 3).
Specifically, the intersection of gray safety and gray liveness properties is a unique
allow-all property, every gray property can be written as the conjunction of a sin-
gle gray-safety and a single gray-liveness property, and similarly for hypersafety
and hyperliveness policies.

Section 4 shows how this paper’s model of gray policies can serve as a unifying
framework for many disparate approaches to security metrics, and how gray
policies might be constructed from existing black-and-white policies.

Section 5 formalizes silhouette judges and shows how they work in tandem
with gray policies, and Sect. 6 briefly discusses future work.

2 From Black-and-White to Gray Policies

Policies reason about systems, which execute events. Let E be a non-empty,
countable set of events, with metavariable e ranging over individual events. Intu-
itively, E is the system API and might contain instructions for manipulating
system resources.

A system trace, or execution, x, is a possibly infinite sequence of pairs of
events called exchanges. The events in an exchange 〈e, e′〉 indicate (1) an event
e the system attempts to execute and (2) an event e′ that actually executes. For
example, the trace

〈sti(0, 0x9ABC), sti(0, 0x1ABC)〉 〈rdr(4, 0x8FFF), rdr(4, 0x0FFF)〉
indicates that the target system being reasoned about, for example an application
program, attempted to store the immediate value 0 at memory address 0x9ABC,
but 0 was instead written at address 0x1ABC, due to the involvement of a
runtime mechanism such as a virtual-memory manager. The second exchange in
the trace also shows involvement of a runtime mechanism, again decreasing the
memory address being accessed by 215.

This model of traces as sequences of exchanges is general, in part because it
clarifies the effects of runtime mechanisms; such clarification improves expres-
siveness [24,42]. In cases where policies require no runtime support, such as
statically enforced policies, the first and second events in exchanges will be the
same.

Some additional notation will be useful. A set of events E determines the set
of possible exchanges E . Given exchange set E , E∗ denotes the set of all finite
executions (i.e., finite sequences of exchanges), Eω denotes the set of all infinite
executions, and E∞ denotes the set of all finite and infinite executions. Also,
x � y and y � x mean that execution x ∈ E∗ is a prefix of execution y ∈ E∞.
Finally, shorthand quantifications will be used in formulae; for example, ∃x � y :
F means ∃x ∈ E∗ : (x � y∧F), while ∀x � y : F means ∀x ∈ E∞ : (x � y ⇒ F).

484 D. Ray and J. Ligatti

2.1 Policies and Properties

The black-and-white model defines policies P as predicates over target systems;
the policy returns a yes-no response to a given target system, to indicate whether
that system is secure [54]. A target system X is modeled as the set of executions
it can produce, for example, all possible runs of an application program. Hence,
on a system with exchange set E , X is a subset of E∞, so a black-and-white policy
is a P : 2E∞→ {false, true}.

The gray model defines policies G as functions mapping target systems not
to false/true values, but to a real number between 0 and 1, with greater num-
bers indicating higher security. Gray policies generalize black-and-white policies
because false/true values in the black-and-white model can always be encoded
as 0/1 values in the gray model. A gray policy is simply a G : 2E∞→ R[0,1].

In the black-and-white model, properties are policies that place no constraints
on the relationships between executions [54]. It can be determined whether a
target system satisfies a property by examining each possible trace in isolation;
if every trace is valid in isolation (according to some predicate p over individual
traces), then the policy as a whole is satisfied. Formally, a policy P is a black-
and-white property iff

∃ (p : E∞ → {false, true}) : ∀X ⊆ E∞ : P (X) = (∀x ∈ X : p (x)).

The gray model also considers a policy to be a property when the policy’s
value for a given a set of executions can be determined by examining each execu-
tion in isolation. While the black-and-white model determines the policy’s value
P (X) as the conjunction of the values of p(x), for all x ∈ X, the gray model
determines the policy’s value G(X) as the infimum (inf) of the values of g(x),
for all x ∈ X. Here g, like p, is a function over individual traces. Formally, a
policy G is a gray property iff

∃ (
g : E∞ → R[0,1]

)
: ∀X ⊆ E∞ : G (X) = inf{g (x) | x ∈ X}.

Gray properties generalize black-and-white properties because the conjunction
of a set of false/true values always equals the infimum of a set of corresponding
0/1 values.1

It is often convenient to identify a property by the individual-trace func-
tion (p or g) it uses. There is no ambiguity in doing so, due to the one-to-one
correspondence between a p or g function and the property it induces.

2.2 Safety and Liveness

Two subsets of black-and-white properties have been studied extensively: safety
and liveness properties [1,38]. These sets are fundamentally intertwined with the
sets of properties that can be enforced in practice [2,24,25,41,54].
1 The use of the infimum precludes limiting the range of security values in the gray

model to computable reals; computable reals are not closed under infimum opera-
tions [57].

A Theory of Gray Security Policies 485

p(x)

x = 〈e1, e′
1〉; 〈e2, e′

2〉; . . .

true

false

(a) Black-and-white Safety

g(x)

x = 〈e1, e′
1〉; 〈e2, e′

2〉; . . .

1

0

(b) Gray Safety

Fig. 1. The security of traces as they proceed. The security level is according to (a) a
black-and-white safety property and (b) a gray safety property. The dotted lines and
shaded area represent the possible security values of the executions’ extensions. In all
cases, security levels are nonincreasing.

Safety. Black-and-white safety properties partition “secure” from “insecure”
traces in such a way that every insecure trace has a finite insecure prefix that
can never become secure [38]. Formally, property p is black-and-white safety iff

∀x ∈ E∞ : (¬p(x) ⇒ ∃x′ � x : ∀y � x′ : ¬p(y)).

An equivalent, perhaps more intuitive, definition of black-and-white safety is
the set of properties that are both prefix- and omega-closed [24]. Prefix-closed
means that all prefixes of secure traces are secure, while omega-closed means the
converse, that if all prefixes of a trace x are secure then so must be x. Formally,
property p is black-and-white safety iff

∀x ∈ E∞ : p(x) = (∀x′ � x : p(x′)).

This formalization of black-and-white safety has an interesting similarity to the
formalization of black-and-white properties; in both cases, an entity is secure
exactly when all of its “simpler parts” are secure.

It can be seen from these definitions that black-and-white safety properties
require traces to be as secure as their least-secure prefix; security cannot increase
as traces proceed. Figure 1(a) plots the general shape of a trace’s security as
considered by a black-and-white safety property.

Gray safety properties also require traces to have nonincreasing security, as
shown in Fig. 1(b). However, with gray safety, the requirement that traces be
as secure as their least-secure prefix has to be modified—infinite traces may
not have a least-secure prefix. To handle such cases the infimum is again used.
Formally, property g is gray safety iff

∀x ∈ E∞ : g(x) = inf{g(x′) | x′ � x}.

This formalization of gray safety retains the similarity, present in the black-and-
white model, between the definitions of properties and safety.

As an example, the gray property described earlier, specifying that a trace’s
security level gets decimated with each unchecked array access, is a gray safety

486 D. Ray and J. Ligatti

p(x)

x = 〈e1, e′
1〉; 〈e2, e′

2〉; . . .

true

false

(a) Black-and-white Liveness

g(x)

x = 〈e1, e′
1〉; 〈e2, e′

2〉; . . .

1

0

(b) Gray Liveness

Fig. 2. The security of traces as they proceed. The security level is according to (a) a
black-and-white liveness property and (b) a gray liveness property. The dotted lines
and shaded area represent the possible security values of the executions’ extensions. In
all cases, less-than-fully-secure traces have more-secure extensions.

property. Traces according to this policy begin as 100 % secure (before any
exchanges occur) and can only proceed to lower security. In the limit, a trace con-
taining an infinite number of unchecked array accesses has 0 % security, because
the infimum of {1, 0.9, 0.81, 0.729, . . .} is 0.

Gray safety is a proper generalization of black-and-white safety. To under-
stand why, note that black-and-white policies (properties) can be trivially con-
verted to gray policies (properties) by partitioning target systems (traces) not as
insecure or secure but as having security levels of 0 or 1. Then because a black-
and-white safety property p is prefix- and omega-closed, traces are as secure as
their least-secure prefix, so p converts to a gray safety property. Conversely, a
black-and-white nonsafety property p′ assigns the security of some trace to be
different than its least-secure prefix, so p′ converts to a gray nonsafety property.
Liveness. Black-and-white liveness properties require every finite trace to have a
secure extension [1], as shown in Fig. 2(a). A canonical example is the termination
property, which requires traces to be finite (so every finite trace x has a secure
extension, namely x). Formally, property p is black-and-white liveness iff

∀x ∈ E∗ : ∃y � x : p(y).

Analogously, gray liveness properties require every finite trace to have a more-
secure extension, with traces that are already 100 % secure exempted (because
a fully secure trace cannot have a more-secure extension). Figure 2(b) illustrates
the requirement that, according to a gray liveness property, every imperfectly
secure trace has a more-secure extension.

To formalize gray liveness, a new operator
≥

is defined that behaves exactly
like a greater-than operator (>), except that 1

≥
1. Then property g is gray

liveness iff
∀x ∈ E∗ : ∃y � x : g(y) ≥

g(x).

For example, a gray liveness property could map trace x to a security value
based on the number n of resources acquired but unreleased in x; the security
level might be 1−0.01n when 0 ≤ n ≤ 100 and 0 when n > 100. This property

A Theory of Gray Security Policies 487

gives traces a 1 % security penalty for every unreleased resource. It is a gray live-
ness property because every finite, imperfectly secure trace has a more-secure
extension (in which acquired resources are released). It is interesting to com-
pare the usefulness of, and information provided by, this gray property with its
black-and-white version, which simply says that traces are secure iff all acquired
resources eventually get released.

As with safety, gray liveness is a proper generalization of black-and-white
liveness. A black-and-white liveness property p requires every finite, insecure
trace to have a secure extension, so p converts to a gray liveness property. Con-
versely, a black-and-white nonliveness property p′ forbids some finite, insecure
trace from becoming secure, causing p′ to convert to a gray nonliveness property.

2.3 Hypersafety and Hyperliveness

Just as black-and-white properties can be categorized as safety or liveness, the
same can be done for black-and-white policies. Using the term “hyperproperty”
to mean “policy”, then, hyperproperties can be categorized as hypersafety or
hyperliveness [17]. Intuitively, the definitions of hypersafety and hyperliveness
raise the definitions of safety and liveness from the level of executions (properties)
to the level of sets of executions (policies).

The definitions of safety and liveness rely on the the � and � operators to
indicate executions being prefixed or extended; definitions of hypersafety and
hyperliveness will need to raise these operators to the level of sets of executions.
This raising is accomplished by defining a terminating target system X—that is,
a set of finite executions—to prefix another target system Y , written X � Y , iff
every execution in X is a prefix of some execution in Y . Formally, given X ⊆ E∗

and Y ⊆ E∞, X � Y iff ∀x ∈ X : ∃y ∈ Y : x � y [17, Footnote 13]. The Y � X
relation is defined symmetrically.

Hypersafety. Black-and-white hypersafety raises black-and-white safety from the
level of traces (executions) to the level of target systems (sets of executions) by
requiring that target systems are secure iff all their prefixes are secure. Hence,
just as property p was defined to be black-and-white safety iff

∀x ∈ E∞ : p(x) = (∀x′ � x : p(x′)),

policy P is black-and-white hypersafety iff

∀X ⊆ E∞ : P (X) = (∀X ′ � X : P (X ′)).

Similarly, just as property g was defined to be gray safety iff

∀x ∈ E∞ : g(x) = inf{g(x′) | x′ � x},
policy G is gray hypersafety iff

∀X ⊆ E∞ : G(X) = inf{G(X ′) | X ′ � X}.
The reasoning that gray hypersafety is a proper generalization of black-and-

white hypersafety follows the reasoning used to show that gray safety is a proper
generalization of black-and-white safety.

488 D. Ray and J. Ligatti

Following [17], it is also possible to define (black-and-white and gray) k-
hypersafety by restricting the set X ′ to have at most k elements. For example,
policy G is gray k-hypersafety iff

∀X ⊆ E∞ : G(X) = inf{G(X ′) | X ′ � X, |X ′| ≤ k}.

Hyperliveness. Black-and-white hyperliveness requires that all terminating target
systems have secure extensions. Just as property p was defined to be black-and-
white liveness iff

∀x ∈ E∗ : ∃y � x : p(y),

policy P is black-and-white hyperliveness iff

∀X ⊆ E∗ : ∃Y � X : P (Y).

Similarly, just as property g was defined to be gray liveness iff

∀x ∈ E∗ : ∃y � x : g(y) ≥
g(x),

policy G is gray hyperliveness iff

∀X ⊆ E∗ : ∃Y � X : G(Y) ≥
G(X).

Gray hyperliveness is a proper generalization of black-and-white hyperlive-
ness by the same reasoning used to show that gray liveness properly generalizes
black-and-white liveness.

2.4 Summary

Table 1 summarizes the gray definitions and compares each with its black-and-
white counterpart.

3 Further Analysis of the Model

The generalization of black-and-white to gray policies preserves key properties
of the black-and-white model.

3.1 Singleton Intersection of Safety and Liveness

In the black-and-white models, exactly one property is both safety and liveness:
the “allow-all” property that considers every trace secure [1]. Similarly, exactly
one policy is both hypersafety and hyperliveness: the policy that considers every
target system secure [17]. The following theorems show that, analogously, exactly
one property (policy) is both gray (hyper)safety and gray (hyper)liveness: the
property (policy) that considers every trace (target system) perfectly secure.

A Theory of Gray Security Policies 489

Table 1. Summary of the generalization from black-and-white to gray policies. The
black-and-white definitions are taken from [1,17,24,54]. As a reminder, the

≥
operator

behaves like greater-than (>), except that 1
≥

1.

policy
P : 2E∞→ {false, true}
G : 2E∞→ R[0,1]

property
∃p : ∀X ⊆ E∞ : P (X) = (∀x ∈ X : p (x))

∃g : ∀X ⊆ E∞ : G (X) = inf{g (x) | x ∈ X}

safety
∀x ∈ E∞ : p(x) = (∀x′
 x : p(x′))

∀x ∈ E∞ : g(x) = inf{g(x′) | x′
 x}

liveness
∀x ∈ E∗ : ∃y � x : p(y)

∀x ∈ E∗ : ∃y � x : g(y)
≥

g(x)

hypersafety
∀X ⊆ E∞ : P (X) = (∀X ′ � X : P (X ′))

∀X ⊆ E∞ : G(X) = inf{G(X ′) | X ′ � X}

hyperliveness
∀X ⊆ E∗ : ∃Y X : P (Y)

∀X ⊆ E∗ : ∃Y X : G(Y)
≥

G(X)

Theorem 1. The gray property g(x) = 1 is the only gray property that is both
gray safety and gray liveness.

Proof. First note that g(x) = 1 is trivially both a gray safety and a gray liveness
property.

Now let g′ be an arbitrary gray property that is both gray safety and gray
liveness. For the sake of obtaining a contradiction, suppose there exists an exe-
cution x such that g′(x) < 1. If x is infinite, it must have a finite prefix whose
security is also less than 1 because g′ is gray safety; let x instead refer to that
prefix. Because g′ is gray liveness, there exists y � x such that g′(y) ≥

g′(x),
so because g′(x) �= 1, it must be that g′(y) > g′(x). Also, because g′ is gray
safety, g′(y) must equal inf{g′(y′) | y′ � y}. However, x is a prefix of y, so by
the definition of infimum, g′(y) ≤ g′(x), which contradicts the earlier result that
g′(y) > g′(x). Thus, for all x, g′(x) = 1, meaning that g′ must be g. ��
Theorem 2. The gray policy G(X) = 1 is the only gray policy that is both gray
hypersafety and gray hyperliveness.

Proof. Analogous to that of Theorem 1. ��
Figure 3 depicts the relationships between gray properties, black-and-white

properties, and their subsets of safety and liveness properties. Notably, the gray
sets subsume the black-and-white sets, and the intersection of safety and liveness
is the black-and-white allow-all property.

490 D. Ray and J. Ligatti

Gray Properties

B
W

Properties

S
a
fe

ty

L
iv

en
ess

Fig. 3. Relationships between gray and black-and-white properties, and their subsets
of safety and liveness properties. The central dot represents the intersection of safety
and liveness, which only contains the property g(x) = 1.

3.2 Decomposition into Safety and Liveness

In the black-and-white models, every property p can be decomposed into prop-
erties ps and pl such that:

– ps is a black-and-white safety property,
– pl is a black-and-white liveness property, and
– p(x) = (ps(x) ∧ pl(x)).

In other words, every black-and-white property is the conjunction of a single
safety and a single liveness property. This result appeared in [1], with alternative
proofs appearing in [41,53]. A similar result has been shown for decomposing
policies into hypersafety and hyperliveness [17].

Theorem 3 shows that the gray model preserves this decomposition result.

Theorem 3. Every gray property g can be decomposed into gs and gl such that:

– gs is a gray safety property,
– gl is a gray liveness property, and
– g(x) = min(gs(x), gl(x)).

Proof. Construct gs and gl as follows, where sup refers to the supremum function.

gs(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inf{gs(x′) | x′ � x}
g(x)

sup{g(x′) | x′ � x}

if x ∈ Eω

if x ∈ E∗ and ∀x′ � x : g(x′) ≤ g(x)

otherwise

gl(x) =

⎧
⎨

⎩

1

g(x)

if x ∈ E∗ and ∀x′ � x : g(x′) ≤ g(x)

otherwise

To establish that gs is gray safety, it must be shown that for all x ∈ E∞,
gs(x) = inf{gs(x′) | x′ � x}. By construction, this constraint holds for all x ∈ Eω.
For finite executions, gs ensures that security never increases as traces proceed
by giving every finite trace x a security value that’s greater than or equal to all
of x’s extensions. Hence, the safety constraint holds for all finite executions as
well.

A Theory of Gray Security Policies 491

To establish that gl is gray liveness, it must be shown that for all x ∈ E∗,
∃y � x : gl(y)

≥
gl(x). Let x be a finite execution. If all extensions x′ of x have

security less than or equal to x (according to g), then gl(x) = 1 and the liveness
constraint is satisfied by letting y = x. On the other hand, if some extension
x′ of x has security greater than x (according to g), then gl(x) = g(x) and the
liveness constraint is satisfied by letting y = x′ (where gl(x′) must be at least
g(x′), which is greater than g(x) = gl(x)).

It remains to establish that g(x) = min(gs(x), gl(x)). If x is a finite trace
then this result immediately follows from the definitions of gs and gl. If x is an
infinite trace, first observe that gs assigns every prefix x′ of x a security level of
at least g(x). Hence, gs assigns x ∈ Eω a security level of at least g(x), while gl

assigns x ∈ Eω a security level of g(x), which completes the proof. ��
As in the black-and-white models, the decomposition result in the gray model

extends to policies, hypersafety, and hyperliveness.

Theorem 4. Every gray policy G can be decomposed into Gs and G� such that:

– Gs is a gray hypersafety policy,
– G� is a gray hyperliveness policy, and
– G(X) = min(Gs(X), G�(X)).

Proof. Analogous to that of Theorem 3. ��

4 Creating Gray Policies from Existing Metrics/Policies

Existing work on security metrics and on black-and-white policies can be used
to create new gray policies.

4.1 Gray Policies Based on Security Metrics

The gray model serves as a unifying framework for disparate approaches to
security metrics. The disparate approaches include:

– using greater values to indicate higher levels of security (e.g., [23]),
– using greater values to indicate lower levels of security (e.g., [46]),
– limiting security values to a bounded range (e.g., [14]),
– limiting security values to a range bounded only on the lower side (e.g., [40]),

and
– placing no bounds on the range of security values (e.g., [9]).

In contrast to black and white models, all of these approaches can be encoded
in the gray model.

Encoding these disparate approaches to security metrics in the gray model
provides the benefit of consistency. In the gray model, security consistently
ranges between 0 and 1, and for a fixed policy or property, greater security
values consistently indicate higher security.

492 D. Ray and J. Ligatti

Table 2. Examples of functions that can be used to normalize security metrics to
the gray model’s range of R[0,1]. Variable x denotes the output of the security metric,
constants A and B denote the metric’s minimum and maximum values (when applica-
ble), and constant C denotes a positive number (C affects how quickly the functions
converge to absolute security or insecurity).

Bounded Lower bounded Unbounded

Higher values
represent
higher security

y =
x − A

B − A
y =

x − A

x − A + C
y = 0.5 +

tan−1(C ∗ x)

π

Higher values
represent
lower security

y =
B − x

B − A
y =

C

x − A + C
y = 0.5 +

tan−1(−C ∗ x)

π

Table 2 shows several example functions that can be used to encode security
metrics as gray policies. Every one of the more than forty metrics we’ve stud-
ied [3–10,12–16,18–21,23,27,28,30,31,33–37,39,40,45–47,49–52,55,56,58–61],
in domains as varied as access control, noninterference, privacy, integrity, and
network security, can be encoded as a gray policy or property by using one of
the functions shown in Table 2.

The arctangent functions shown in Table 2 can be used to normalize metrics
having an unbounded range because the arctangent’s domain is all real numbers,
and its output monotonically increases over the range (−π

2 ,
π
2). The arccotangent

function (cot−1), and many others, could be used instead.

4.2 Graying Black-and-White Policies

Gray policies can also be created from existing black-and-white policies.
For example, a gray policy G(X) could be created by quantifying how well

the given target system X obeys a particular black-and-white policy. This tech-
nique has already been used in this paper’s examples: black-and-white policies
might require all array accesses to be checked or all acquired resources to be
released; these policies were grayed by penalizing target systems based on how
far their traces deviate from ideal traces. A similar idea is used with cost-aware
enforcement [25], where a cost, or penalty, can be assigned to certain exchanges.

Another approach to graying considers the overall security achieved by per-
mitting some “insecure” executions to be run and/or denying some “secure”
executions from being run [26].

Gray policies could be defined based on a similar idea: Given a black-and-
white property of interest p, G(X) might be defined as the product of:

A Theory of Gray Security Policies 493

– the probability that a randomly selected element of X satisfies p—such a
probability measures the soundness of X with respect to p—and

– the probability that a randomly selected element of {x | p(x)} is in X—such
a probability measures the completeness of X with respect to p.

Following [44], these probabilities could be weighted by the likelihood of traces to
actually be observed (due to nonuniform input distributions and target-system
functionality, some traces may be observed much more frequently than others).
Therefore, when calculating G(X) in terms of the soundness and completeness
probabilities defined above, one might choose traces not from uniform distribu-
tions, but instead with the more-likely-to-be-observed traces more likely to be
chosen.

5 Silhouettes and Their Judges

The gray model separates specifications of how secure target systems are (gray
policies) from specifications of how secure users require their systems to be (sil-
houette judges). In the safe analogy of Sect. 1, silhouette judges input a safe’s
security rating and output a buy or don’t-buy decision. In other words, sil-
houette judges input a silhouette—a distillation of a safe’s characteristics into a
security value—and output a no/yes decision to indicate whether that silhouette
is acceptably secure.

5.1 Silhouettes

Thus, silhouette judges, as their name implies, judge silhouettes, by outputting a
no/yes (or false/true) to indicate whether a given silhouette is acceptably secure.

In the gray model, a silhouette represents the shape of a trace’s (or target
system’s) security. For example, the plots shown in Figs. 1 and 2 illustrate sil-
houettes of traces—the plots abstract from the events of the underlying traces
to provide only the shape of the security values achieved as the traces proceed.

Silhouettes can be formalized in many ways. For generality, the key require-
ment is to encode a trace’s (or target system’s) evolution of security values.

For example, the silhouette of a trace x according to property g can be
formalized as a function s that takes a natural number n, or a special ∞ symbol,
as input and returns the security (according to g) of x’s n-length prefix, or the
security of x itself if s’s input is ∞. With this formalization, silhouettes are
partial functions; e.g., the silhouette of the empty trace is undefined for all
inputs n > 0.

With this formalization, the silhouette of trace x according to gray property
g is the partial function sx,g : (N ∪ {∞}) → R[0,1], such that:

sx,g(n) =

{
g(x) if n = ∞
g(x′) if x′ is the n-length prefix of x

494 D. Ray and J. Ligatti

Because target systems may be infinite sets of infinite-length traces, silhou-
ettes of target systems are more complicated than those of individual traces.
Rather than mapping natural numbers to security values, target-system silhou-
ettes could map real numbers to security values. In this case, the real number
can encode which parts of the target system’s traces to evaluate the security of.

For example, a silhouette for target system X could interpret an input like
0.192939..969109119... as identifying the set of traces containing the 1-length
prefix of X’s first execution (ordered lexicographically), the 2-length prefix of X’s
second execution, and so on, with each prefix length delimited by a 9 and written
in base-7. Under this encoding, the target-system silhouette could interpret a
7 (8) appearing before the ith 9 in an input real number as indicating exclusion
of the (inclusion of the whole) ith execution in X.

With such a formalization, the silhouette of target system X according to
gray policy G is the partial function SX,G : R → R[0,1], such that:

SX,G(r) = G(X ′), where r encodes X ′ with respect to X.

5.2 Silhouette Judges

Silhouette judges are simply predicates over silhouettes. A judge therefore acts as
the final, black-and-white decision maker, determining whether a trace or target
system is acceptably secure. Importantly, judges base their decisions on silhou-
ettes of traces or target systems, not on the traces or target systems themselves,
as is done in black-and-white models.

For example, a silhouette judge could forbid all trace silhouettes whose secu-
rity ever drops below a certain minimum threshold. This sort of silhouette judge
specifies a user’s minimum security requirement, such as “traces must always be
at least 80 % secure”.

Another silhouette judge might forbid all silhouettes whose “final” security
value (obtained by inputting ∞ to the given silhouette) is greater than 0. Such
a judge might be used by high-performance systems researchers to require the
complete insecurity of their executions.

More interesting judges can also be defined. For example, it may be reason-
able to allow executions to occasionally behave less securely, provided they are
usually more secure. Such a judge might be satisfied by exactly those silhouettes
having a rolling average of security above a given threshold. Other judges could
be satisfied by exactly those silhouettes that never dip below a desired threshold
for more than k consecutive exchanges.

Theorem 5 states that combining a gray property g with a trace-silhouette
judge j produces a unique black-and-white property p, but, on the other hand,
every black-and-white property can be decomposed into uncountably many dif-
ferent gray-property, trace-silhouette-judge pairs. Theorem 6 states a similar
result for black-and-white policies and gray-policy, trace-system-silhouette-judge
pairs.

A Theory of Gray Security Policies 495

Theorem 5. There is a one-to-uncountably-many correspondence between
black-and-white properties p and pairs of gray properties and trace-silhouette
judges (g, j) such that ∀x ∈ E∞ : p(x) ⇔ j(sx,g).

Proof. Every gray-property, trace-silhouette-judge pair (g, j) is equivalent to
exactly one black-and-white property p; otherwise, there must be some exe-
cution x whose silhouette according to g, sx,g, both satisfies and dissatisfies j, a
contradiction.

It remains to show that every black-and-white property can be expressed by
an uncountable number of gray-property, silhouette-judge pairs. Given black-
and-white property p and arbitrary r ∈ R[0,1], construct a gray property gr and
silhouette judge jr as follows:

gr(x) =

{
r if p(x)
0 otherwise

jr(s) ⇔ (s(∞) = r)

By construction, p(x) ⇔ jr(sx,gr
). Because there are uncountably many val-

ues of r, there are uncountably many pairs of (gr, jr) equivalent to p. ��
Theorem 6. There is a one-to-uncountably-many correspondence between
black-and-white policies P and pairs of gray policies and target-system-silhouette
judges (G, J) such that ∀X ⊆ E∞ : P (X) ⇔ J(SX,G).

Proof. Analogous to that of Theorem 5. ��
These theorems demonstrate the increased expressiveness of gray policies,

properties, and silhouette judges, compared to black-and-white policies and
properties.

6 Future Work

Several directions exist for future work.
One would be to design and evaluate programming languages, or other tools,

for specifying gray policies and silhouette judges. As a part of this direction, it
would be interesting to consider case studies, to learn which sorts of gray policies
and silhouette judges seem to be more common, or practically useful.

Another direction would investigate generalizations of existing program-
verification techniques, to transition from determining whether programs obey
black-and-white policies to determining how well programs obey gray policies.

It would also be interesting to consider ways in which the gray security model
could benefit from results known in the area of fuzzy set theory. Intuitively, gray
policies are to black-and-white policies what fuzzy sets are to sets: A fuzzy set
is an ordered pair (U,m), where U is a set and m : U → R[0,1] is a membership
function that describes the degree to which each element of U is a member of
the set [62]. Because of the similarity between gray policies and fuzzy sets, much

496 D. Ray and J. Ligatti

of the work on fuzzy set theory is expected to translate to gray policies. For
example, the “very” operator takes a fuzzy set (U,m) and returns the fuzzy set
(U,m2); such an operation is a simple way to make gray policies stricter.

Further generalizations of gray policies may also be possible. For example,
rather than the totally ordered set of R[0,1], gray policies could have complete
lattices as their codomains. Some alterations would need to be made to the
gray model to handle such codomains, including replacing infimum (supremum)
operations with meet (join) operations.

Yet another direction is in the area of enforceability theory. As other work
has delineated the black-and-white properties enforceable by various mechanisms
(e.g., [11,24,25,41,43,54]), the same could be done for gray properties and/or
silhouette judges. This direction of research would explore whether, and how
well, different mechanisms (static code analyzers or runtime monitors, possi-
bly constrained in various ways) can enforce classes of gray properties and/or
silhouette judges.

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185
(1985)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2,
117–126 (1987)

3. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of the Computer
Security Foundations Symposium, pp. 265–279, June 2012

4. An, X., Jutla, D., Cercone, N.: Privacy intrusion detection using dynamic bayesian
networks. In: Proceedings of the International Conference on Electronic Commerce,
pp. 208–215 (2006)

5. Andersson, C., Lundin, R.: On the fundamentals of anonymity metrics. In: Fischer-
Hübner, S., Duquenoy, P., Zuccato, A., Martucci, L. (eds.) The Future of Identity in
the Information Society. The International Federation for Information Processing,
vol. 262, pp. 325–341. Springer, USA (2008)

6. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage
of information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 373–389. Springer, Heidelberg (2010)

7. Asnar, Y., Giorgini, P., Massacci, F., Zannone, N.: From trust to dependability
through risk analysis. In: Proceedings of the Conference on Availability, Reliability
and Security, pp. 19–26, April 2007

8. Au, M.H., Kapadia, A.: PERM: practical reputation-based blacklisting without
TTPs. In: Proceedings of the Conference on Computer and Communications Secu-
rity, pp. 929–940 (2012)

9. Au, M.H., Kapadia, A., Susilo, W.: BLACR: TTP-free blacklistable anonymous
credentials with reputation. In: Proceedings of the Symposium on Network and
Distributed System Security (2012)

10. Balzarotti, D., Monga, M., Sicari, S.: Assessing the risk of using vulnerable com-
ponents. In: Proceedings of the Workshop on Quality of Protection, pp. 65–77
(2006)

A Theory of Gray Security Policies 497

11. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revis-
ited. ACM Trans. Inf. Syst. Secur. 16(1), 3:1–3:26 (2013)

12. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for
one-try attacks. Electron. Notes Theor. Comput. Sci. 249, 75–91 (2009). Proceed-
ings of the Conference on Mathematical Foundations of Programming Semantics

13. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS,
vol. 4661, pp. 281–300. Springer, Heidelberg (2007)

14. Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy multi-level security: an experiment on quantified risk-adaptive access control.
In: Proceedings of the Symposium on Security and Privacy, pp. 222–230, May 2007

15. Clark, K., Singleton, E., Tyree, S., Hale, J.: Strata-Gem: risk assessment through
mission modeling. In: Proceedings of the Workshop on Quality of Protection, pp.
51–58 (2008)

16. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with
beliefs. J. Comput. Secur. 17(5), 655–701 (2009)

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

18. Clarkson, M.R., Schneider, F.B.: Quantification of integrity. Math. Struct. Com-
put. Sci. 25(2), 207–258 (2015)

19. Clauß, S.: A framework for quantification of linkability within a privacy-enhancing
identity management system. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995,
pp. 191–205. Springer, Heidelberg (2006)

20. Clauß, S., Schiffner, S.: Structuring anonymity metrics. In: Proceedings of the
Workshop on Digital Identity Management, pp. 55–62 (2006)

21. Deng, Y., Pang, J., Wu, P.: Measuring anonymity with relative entropy. In:
Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006.
LNCS, vol. 4691, pp. 65–79. Springer, Heidelberg (2007)

22. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of the Symposium on Security and Privacy, pp. 109–124 (2010)

23. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68.
Springer, Heidelberg (2003)

24. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with manda-
tory results automata. Int. J. Inf. Secur. 14(1), 47–60 (2015)

25. Drábik, P., Martinelli, F., Morisset, C.: Cost-aware runtime enforcement of security
policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol.
7783, pp. 1–16. Springer, Heidelberg (2013)

26. Drábik, P., Martinelli, F., Morisset, C.: A quantitative approach for inexact enforce-
ment of security policies. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS,
vol. 7483, pp. 306–321. Springer, Heidelberg (2012)

27. Dwaikat, Z., Parisi-Presicce, F.: Risky trust: risk-based analysis of software sys-
tems. In: Proceedings of the Workshop on Software Engineering for Secure Systems,
pp. 1–7 (2005)

28. Edman, M., Sivrikaya, F., Yener, B.: A combinatorial approach to measuring
anonymity. In: Proceedings of the Conference on Intelligence and Security Infor-
matics, pp. 356–363, May 2007

29. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings
of the Symposium on Security and Privacy, pp. 43–55 (2004)

498 D. Ray and J. Ligatti

30. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic bayesian network. In: Proceedings of the Workshop on Quality of Protec-
tion, pp. 23–30 (2008)

31. Gervais, A., Shokri, R., Singla, A., Capkun, S., Lenders, V.: Quantifying web-
search privacy. In: Proceedings of the Conference on Computer and Communica-
tions Security, pp. 966–977 (2014)

32. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: over-
coming control-flow integrity. In: Proceedings of the Symposium on Security and
Privacy, pp. 575–589 (2014)

33. Goriac, I.: Measuring anonymity with plausibilistic entropy. In: Proceedings of the
International Conference on Availability, Reliability and Security, pp. 151–160,
September 2013

34. Gowadia, V., Farkas, C., Valtorta, M.: PAID: a probabilistic agent-based intrusion
detection system. Comput. Secur. 24(27), 529–545 (2005)

35. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. J. Comput. Secur. 13(3), 483–514 (2005)

36. Heumann, T., Trpe, S., Keller, J.: Quantifying the attack surface of a web appli-
cation. In: Proceedings of Sicherheit, vol. 170, pp. 305–316 (2010)

37. Howard, M., Pincus, J., Wing, J.M.: Measuring relative attack surfaces. In: Lee,
D.T., Shieh, S.P., Tygar, J.D. (eds.) Computer Security in the 21st Century, pp.
109–137. Springer, Heidelberg (2005)

38. Alford, M.W., Hommel, G., Schneider, F.B., Ansart, J.P., Lamport, L., Mullery,
G.P., Zhou, T.H.: Distributed Systems: Methods and Tools for Specification. An
Advanced Course. LNCS, vol. 190. Springer, Heidelberg (1985)

39. Lee, A.J., Yu, T.: Towards quantitative analysis of proofs of authorization: appli-
cations, framework, and techniques. In: Proceedings of the Computer Security
Foundations Symposium, pp. 139–153, July 2010

40. Leversage, D.J., Byres, E.J.: Estimating a system’s mean time-to-compromise.
IEEE Secur. Priv. 6(1), 52–60 (2008)

41. Ligatti, J., Lujo, B., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Trans. Inf. Syst. Secur. 12(3), 1–41 (2009)

42. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. In: Gritzalis,
D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
87–100. Springer, Heidelberg (2010)

43. Mallios, Y., Bauer, L., Kaynar, D., Ligatti, J.: Enforcing more with less: formalizing
target-aware run-time monitors. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.)
STM 2012. LNCS, vol. 7783, pp. 17–32. Springer, Heidelberg (2013)

44. Mallios, Y., Bauer, L., Kaynar, D., Martinelli, F., Morisset, C.: Probabilistic cost
enforcement of security policies. In: Accorsi, R., Ranise, S. (eds.) STM 2013. LNCS,
vol. 8203, pp. 144–159. Springer, Heidelberg (2013)

45. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

46. Manadhata, P., Wing, J., Flynn, M., McQueen, M.: Measuring the attack surfaces
of two FTP daemons. In: Proceedings of the Workshop on Quality of Protection,
pp. 3–10 (2006)

47. Mardziel, P., Alvim, M.S., Hicks, M., Clarkson, M.R.: Quantifying information flow
for dynamic secrets. In: Proceedings of the Symposium on Security and Privacy,
pp. 540–555 (2014)

48. Martinelli, F., Matteucci, I., Morisset, C.: From qualitative to quantitative enforce-
ment of security policy. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012.
LNCS, vol. 7531, pp. 22–35. Springer, Heidelberg (2012)

A Theory of Gray Security Policies 499

49. McQueen, M.A., Boyer, W.F., Flynn, M.A., Beitel, G.A.: Time-to-compromise
model for cyber risk reduction estimation. In: Gollmann, D., Massacci, F.,
Yautsiukhin, A. (eds.) Quality of Protection. Advances in Information Security,
vol. 23, pp. 49–64. Springer, Heidelberg (2006)

50. Molloy, I., Dickens, L., Morisset, C., Cheng, P.-C., Lobo, J., Russo, A.: Risk-based
security decisions under uncertainty. In: Proceedings of the Conference on Data
and Application Security and Privacy, pp. 157–168 (2012)

51. Ngo, T.M., Huisman, M.: Quantitative security analysis for programs with low
input and noisy output. In: Jürjens, J., Piessens, F., Bielova, N. (eds.) ESSoS.
LNCS, vol. 8364, pp. 77–94. Springer, Heidelberg (2014)

52. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security
metric for network configuration security analysis. In: Proceedings of the Workshop
on Quality of Protection, pp. 31–38 (2006)

53. Schneider, F.B.: Decomposing Properties into Safety and Liveness using Predicate
Logic. Technical report 87–874, Cornell University, October 1987

54. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

55. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

56. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

57. Specker, E.: Nicht konstruktiv beweisbare sätze der analysis. J. Symbolic Logic 14,
145–158 (1949)

58. Verslype, K., De Decker, B.: Measuring the user’s anonymity when disclosing per-
sonal properties. In: Proceedings of the International Workshop on Security Mea-
surements and Metrics, pp. 2:1–2:8 (2010)

59. Xi, L., Feng, D.: FARB: fast anonymous reputation-based blacklisting without
TTPs. In: Proceedings of the Workshop on Privacy in the Electronic Society, pp.
139–148 (2014)

60. Xi, L., Shao, J., Yang, K., Feng, D.: ARBRA: anonymous reputation-based revo-
cation with efficient authentication. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K.,
Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 33–53. Springer, Heidelberg (2014)

61. Yu, K.Y., Yuen, T.H., Chow, S.S.M., Yiu, S.M., Hui, L.C.K.: PE(AR)2: privacy-
enhanced anonymous authentication with reputation and revocation. In: Foresti,
S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 679–696.
Springer, Heidelberg (2012)

62. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

Factorization of Behavioral Integrity

Ximeng Li(B), Flemming Nielson, and Hanne Riis Nielson

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{ximl,fnie,hrni}@dtu.dk

Abstract. We develop a bisimulation-based nonintereference property
that describes the allowed dependencies between communication behav-
iors of different integrity levels. The property is able to capture all pos-
sible combinations of integrity levels for the “presence” and “content”
of actual communications. Channels of low presence integrity and high
content integrity can be used to model the effect of Message Authen-
tication Codes or the consequence of Denial of Service Attacks. In case
the distinction between “presence” and “content” is deliberately blurred,
the noninterference property specialises to a classical process-algebraic
property (called SBNDC). A compositionality result is given to facilitate
a structural approach to the analysis of concurrent systems.

1 Introduction

The semantic validation of information flow security [6,15] is achieved with non-
interference properties [5,7]. Recent proposals of such properties for confiden-
tiality in event-based systems distinguish between the “presence” and “content”
of communication events (e.g. [13]).

Consider the simple process c1?x.c2!d, where some data is received from the
confidential channel c1, and forgotten immediately, with some data d subse-
quently sent over the public channel c2. Although the confidential input content
is not leaked through the public channel c2, this process is typically regarded
as insecure [2,3,6,8,13,18], in case the input can be occasionally blocked by the
environment. The reason is that the “presence” of the confidential input can be
leaked through the “presence” of the public output.

When separate confidentiality levels can be assigned for the presence and
content of communication, a more fine-grained analysis can be obtained. Sup-
posing both the “presence” level and the “content” level of c2 are public, then
the content level of c1 can still be confidential — only the presence level needs
to be public, for the process to be secure. However, existing work introduces the
constraint that “presence” can be no more confidential than “content” [13,14]:
observing the content of a communication implies the knowledge that the com-
munication is happening (present).

By the usually perceived duality [9] between confidentiality and integrity,
separating “presence” and “content” applies for integrity as well. Still consider
the process c1?x.c2!d. If both the “presence” and the “content” of communica-
tion over c2 are of high integrity, then only the “presence” of communication

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 500–519, 2015.
DOI: 10.1007/978-3-319-24177-7 25

Factorization of Behavioral Integrity 501

over c1 needs to be of high integrity as well, the input content can still be of low
integrity, for the process to be secure. However, the aforementioned constraint
would preclude the use of channels with low presence integrity and high con-
tent integrity. Nevertheless, this combination is practically meaningful. When
message authentication codes (MAC) are used, a MAC-checker can detect tam-
pered (low integrity) content and choose to accept only high integrity content.
As a result, the content, once received by an end user, can be used by her with
confidence that no harm will arise. The worry, though, is that the communi-
cation allowing to receive that content may not be present. The suspension of
this communication may be caused, for example, by message rejection in the
MAC-checker due to content corruption. It is therefore sensible to regard the
user channel as having low presence integrity and high content integrity.

Our contribution is a novel bisimulation-based noninterference property for
integrity, where the presence and content of communication events are dealt with
separately, and all combinations of integrity levels for these two dimensions are
allowed. The property is shown to degenerate to the classical process-algebraic
condition SBNDC (e.g., [6]), and a compositionality result is obtained to facili-
tate a structural approach to information flow analysis in a concurrent setting.

Our development will be performed in the Quality Calculus [12], a recent
extension of the π-calculus. The distinguishing feature of the Quality Calculus
is the use of composite binders &q(b1, ..., bn) that describe the combinations of
communications (at the basic input/output binders b1, ..., bn) that suffice for the
computation to proceed. This makes system models more robust, since when
faced with a computation environment that does not allow certain communica-
tions to be performed, their alternatives could still succeed. Take the composite
binder &1∨2(c1?x1, c2?x2) as an example. This binder is passed immediately after
the success of either input. If x1 has received data d when the binder is passed,
then x1 is bound to some(d); otherwise to none, which resembles the optional
data types used in languages like Standard ML. We can then use the “case
construct” of the calculus to model branching decisions based on whether x1 is
bound to some(d) or none. An example here is case x1 of some(y) : P1 else P2

where P1 and P2 are two processes.

2 Motivating Examples

Let us give a few examples (in Fig. 1) to frame our mind in terms of presence
integrity and content integrity, and further motivate the noninterference prop-
erty to be proposed. Channels with two subscripts (L or H, representing their
integrity classification) will often be used. The first level describes the presence
dimension and the second describes the content dimension. For each subscript,
an L (resp. H) will denote low (resp. high) integrity.

Processes 1 and 2 are intuitively secure. In process 1, given the low content
integrity and high presence integrity of cHL, the corruption of the input content
by an attacker can be “passed on” to the output content, while the input cannot be
blocked by the attacker, consequently blocking the output. Hence the low content
integrity, high presence integrity of c′

HL can be justified in accordance with the

502 X. Li et al.

integrity classes of cHL. In process 2, any influence on the presence of the input
can in turn influence the presence of the output, but cannot by itself corrupt the
output content, which also demonstrates the consistency of the integrity classes
of cLH and c′

LH . On the other hand, process 3 is insecure: the classification of c′
LH

does not meet the intuition that both the presence of the final output, and its
content, can be badly influenced.

One might think that the presence integrity can either be high for all chan-
nels, or low for all channels, hence at most one of the classes “high” and “low”
is needed. This is not true, as illustrated by the insecurity of process 4, and the
security of process 5. In process 4, the content integrity of the output channel
cannot be H, since the presence of the input leads to more choices for the output
content, some of which may not be possible with the input still blocked.

1. cHL?x.c′
HL!x

2. cLH?x.c′
LH !x

3. cLH?x1.cLL?x2.c
′
LH !f(x1, x2),

where f(a, b) �= f(c, d)
whenever a �= b or c �= d

4. cLH?x1.c
′
LH !x1 | c′

LH !d
5. cHH?x1.c

′
HH !x1 | c′

HH !d
6. M where

M � &1∨2(cLH?x1, cLL?x2).
case x1 of some(y1) : c′

LH !y1.M
else case x2 of some(y2) : c′′

LL!y2.M
else 0

7. A where
A � &1∨2(cLL?x1, c

′
LL?x2).

case x1 of some(y1) : cHL!y1.A
else case x2 of some(y2) : cHL!y2.A
else 0

Fig. 1. Some example processes

Given the insecure dependency
of high integrity content on low
integrity presence in process 4, it
becomes interesting to see when
certain source channels have the
presence level L, which sink chan-
nels can still have the content level
H without being affected. Process
6 is coded in the Quality Calcu-
lus. It is a call to the procedure
M whose definition follows. This
process is in fact a simple-minded
“multiplexer” that directs incom-
ing data from cLH to c′

LH , and from
cLL to c′′

LL. Note that if one of
the four channels has low presence
integrity, then all channels have low
presence integrity, since the influ-
ence by the presence of communi-
cation over one of the channels on
the control flow is global. However, c′

LH preserves the high content integrity of
cLH , despite this pervasive corruption on the “presence” dimension.

The process 7 is a call to procedure A whose body uses the same predicate
1 ∨ 2, which enables it to source from alternative channels cLL and c′

LL. The
input content, no matter from which source channel, will be output over the
channel cHL. The process is not secure if the environment can block the two
inputs at the same time. However, cLL and c′

LL might represent sources that are
geographically distant or that fail with drastically different causes, which can be
modeled by an environment strategy (e.g., [10,13]) that always provides at least
one of the inputs when the computation proceeds to the composite input binder.
The procedure call will be secure under that strategy.

We end this section with a conceptualization of presence integrity and con-
tent integrity, although a more technical characterization comes along with our
security property to be presented later.

Factorization of Behavioral Integrity 503

– Presence integrity: for each i, whether the existence of the i-th output/input
over channel c in a finite sequence π of communication actions can be influ-
enced by the attacker

– Content integrity: for each i, whether the content of the i-th output/input
over channel c can be influenced by the attacker, in case the input/output
exists in a finite sequence π of communication actions

Note that it is not only whether an input/output on a channel c is eventu-
ally available, that matters, but how many times it occurs in each computation
sequence, since we are concerned with nonterminating computation and looping
behaviors: the processes 6 and 7 in Fig. 1 are such examples.

This paper is structured as follows. In Sect. 3, we present the syntax and
semantics of the Quality Calculus. We then present our noninterference condi-
tion for behavioral integrity in Sect. 4. Two main theoretical properties of the
noninterference condition, including its degeneration to SBNDC, and the compo-
sitionality result, are presented in Sect. 5. Further examples are given in Sect. 6,
to illustrate the condition and its compositionality. We conclude in Sect. 7, with
a few pointers to related work.

3 The Quality Calculus

Syntax. The Quality Calculus [12] has its roots in the π-calculus and CCS,
but allows to specify criteria on which communications have to succeed for the
computation to continue. This can be expressed by the construct &q(b1, ..., bn)
with predicate q and communication binders b1,...,bn. The computation can then
continue differently, depending on whether each of these communications has
succeeded, using the construct case e of some(y) : P1 else P2. The predicate q
can refer to any specific binder among b1, ..., bn, by its index (1,...,n), and can
denote any boolean combination of their evaluation status. Since some previous
inputs might be unsuccessful, we allow expressions that are missing data to be
evaluated to none, or else to some(c) with some constant c.

The complete syntax is given in Table 1. Terms t and expressions e are sepa-
rate syntactical categories that capture the distinction between data and optional
data. A constant c is either a channel (Chn), or a datum (Dt), or both, as we
allow Chn ∩ Dt �= {}. For a constant in Dt, we also use d (d′, etc.) for its
denotation. Atomic input binders are of the form t?x. Atomic output binders
are of the form t!t′{x}, where the variable x is used as an indicator of whether
the output has succeeded, the output content is also bound to x in case it has.
We abbreviate t!t′{x} to t!t′ when such indication provided by x is not needed.
With a procedure call A(ē), the procedure A needs to be defined as a process P ,
with A(x̄) � P . Looping behavior is allowed via recursive procedure calls. The
other features not mentioned so far are mostly standard. Although the Qual-
ity Calculus does not have a non-deterministic choice operator, an encoding of
internal nondeterministic choice (in the style of Hoare’s CSP) can be done using
composite binders and case constructs, as presented in [12].

504 X. Li et al.

Table 1. The syntax of the quality calculus

t ::= c | y | f(t1, . . . , tn)

e ::= x | some(t) | none P ::= (νc)P | P1|P2 | b.P | A(ē) | 0 |
case e of some(y) : P1 else P2

b ::= t?x | t!t′{x} | &q(b1, ..., bn)

Semantics. To facilitate the specification of open systems, and the formulation
of our security condition, we present a semantics that is parameterized on the
computation environment. The tight correspondence of this semantics with the
classical semantics [12] of the Quality Calculus is discussed in the appendix.

Processes and binders make transitions together with sequences π ∈ Π. Each
such sequence contains a separator �, which delimits the environment’s past
actions interacting with the process, and optionally a future communication
attempt. Each communication action/attempt is represented by an “abstract
binder” b̂ ∈ AB given by the syntax b̂ ::= c?x | c?c′ | c!c′ | �. The abstract binders
c?x and c?c′ represent a pending input and a completed input, respectively, of
the environment ; on the other hand, c!c′ represents either a pending output
or a completed output, also of the environment. In addition, � represents the
suspension of any communication by one step.

We write [π]� for the prefix of π up to the � in it, and Π� for the set
{[π]� | π ∈ Π}. Next introduce environment strategies δ : Π� → 2AB \ {c?c′|c, c′ ∈
Chn ∪ Dt} from the set Strat. For each π ∈ Π�, δ(π) gives the set of abstract
binders that represent the environment’s intended ways of “exercising” the spec-
ification for one more step. In case δ(π) is an input abstract binder, it will be of
the form c?x rather than c?c′, since it represents a pending input.

The transition relation for processes and binders is given in Table 2. We make
use of an unspecified evaluation relation � for terms and expressions. For binders,
each transition rule is of the form 〈b, π〉 β−→ 〈b′, π′〉, representing that the
binder b performs the communication action β (β �= τ) under the environment
π and becomes b′, turning the environment into π′. The intermediate binder
[c : some(c′)/x] is introduced (essentially extending the syntax for binders) to
record the completion of the communication of some content c′ over channel c,
subsequently binding some(c′) to the variable x.

A [c : some(c′)/x] is produced after a transition made by either t!t′{x} or
t?x, given that the content of the output/input is c′. In the case of t!t′{x},
π�c?x′ represents that the environment is expecting some data to be output
over channel c (from the process of t!t′{x} where t is evaluated to c), and the
resulting π.c?c′� represents the completion of this interaction, extending the
environment’s observational history by c?c′. In the case of t?x, π�c!c′ represents
that the environment attempts to output c′ over channel c (to the process of t?x
where t is evaluated to c), and the resulting π.c!c′

� represents the completion
of this interaction, growing the environment’s observational history by c!c′. The
transitions of composite binders &q(b1, ..., bn) are simply built on top of those of
their sub-binders.

Factorization of Behavioral Integrity 505

Table 2. The transition relation for processes and binders

〈b, π〉 c!c′/c?c′
−−−−−−→ 〈b′, π′〉

δ � 〈b.P, π〉 c!c′/c?c′
−−−−−−→ 〈P ′, π′〉

where P ′=

{
Pθ (if b′::ttθ)
b′.P (otherwise)

δ � 〈P1, �c?x〉 c!c′
−→ 〈P ′

1, π′
1〉 δ � 〈P2, �c!c′〉 c?c′

−→ 〈P ′
2, π′

2〉
δ � 〈P1|P2, π〉 τ−→ 〈P ′

1|P ′
2, π〉

e � some(c) δ � 〈P1[c/y], π〉 β−→ 〈P ′, π′〉
δ � 〈CS(e, y, P1, P2), π〉 β−→ 〈P ′, π′〉

e � none δ � 〈P2, π〉 β−→ 〈P ′, π′〉
δ � 〈CS(e, y, P1, P2), π〉 β−→ 〈P ′, π′〉

ē � w̄ δ � 〈P [w̄/x̄], π〉 β−→ 〈P ′, π′〉
δ � 〈A(ē), π〉 β−→ 〈P ′, π′〉

if A(x̄) � P
δ � 〈P1, π〉 β−→ 〈P2, π′〉

δ � 〈P1|P, π〉 β−→ 〈P2|P, π′〉

δ � 〈P, π〉 β−→ 〈P ′, π′〉
δ � 〈(νc)P, π〉 β−→ 〈(νc)P ′, π′〉

if c �∈ Ch(β)
P1 ≡ P2 δ � 〈P2, π〉 β−→ 〈P3, π′〉 P3 ≡ P4

δ � 〈P1, π〉 β−→ 〈P4, π′〉

¬(∃c, c′, β, P ′, π′′ : (β = c!c′ ∨ β = c?c′) ∧ δ � 〈P, π�α.π′〉 β−→ 〈P ′, π′′〉)
δ � 〈P, π�α.π′〉 �−→ 〈P, π.��π′〉

δ � 〈P, π〉 env−−→ 〈P, π.α〉 if π = [π]� ∧ α ∈ δ(π)

t � c t′ � c′

〈t!t′{x}, π�c?x′〉 c!c′
−−→ 〈[c : some(c′)/x], π.c?c′

�〉
t!t′{x} ::ff [none/x] t?x ::ff [none/x]

t � c

〈t?x, π�c!c′〉 c?c′
−−−→ 〈[c : some(c′)/x], π.c!c′

�〉
[c : some(c′)/x] ::tt [some(c′)/x]

〈bj , π〉 β−→ 〈b′
j , π′〉

〈&q(..., bj , ...), π〉 β−→ 〈&q(..., b′
j , ...), π′〉

∀i : bi ::vi θi v′ = [{q}](v̄)
&q(b1, ..., bn) ::v′ θn . . . θ1

The last couple of rules in Table 2 define the evaluation b ::v θ of binders
b, which is used by the transition rules for processes. Here θ is the substitution
produced, recording the optional data bound to variables, and v is a boolean
value indicating whether the binder b can already be passed. The basic binders
t!t′{x} and t?x represent pending (incomplete) communications and hence for
the evaluation of both binders, v = ff , and the resulting substitution is [none/x],
representing that no data is received into the variable x. For composite binders
&q(...), the last evaluation rule in Table 2 uses [{q}], the interpretation of the
predicate q, to aggregate the evaluation statuses of the individual sub-binders.
As examples, we have [{2}](v1, v2) = v2, and [{1 ∨ 2}](v1, v2) = v1 ∨ v2. On the
other hand, the resulting substitution is the composition of all the substitutions
resulting from the evaluation of the sub-binders.

For processes, each transition rule of the form δ � 〈P, π〉 β−→ 〈P ′, π′〉 governs
the transition of process P under environment π into process P ′, turning the

506 X. Li et al.

environment into π′. On the other hand, each transition of the form δ � 〈P, π〉 env−→
〈P, π′〉 represents the advancement of the environment alone. This transition
relation is defined assuming a standard structural congruence ≡ (given in detail
in Table 3 of the appendix).

For output and input, we start from a process of the form b.P . Suppose the
binder b makes a transition to the binder b′. In case b′ has the evaluation b′ ::tt θ,
the execution will embark on the process Pθ — the process P with the substi-
tution θ applied to it. In case b′ has the evaluation b′ ::ff θ, we stay with the
process b′.P , waiting for further communication required by the binder b′ before
it can be passed. The communication action (either an input or an output) per-
formed by the process b.P is the one performed by b. A synchronization between
two processes does not rely on the environment π, and has no impact on it.

The next two rules use the abbreviation CS(e, y, P1, P2) for the process case e of
some(y) : P1 else P2, and describe the execution of the case construct. In case
the expression e is evaluated to some(c), where c is a constant, then the process
P1[c/y] is executed, where the substitution records the binding of y to c. In case
e is evaluated to none, then the process P2 is executed, with no reference to y.

The rules for procedure calls, for parallel composition, for restriction, and for
dealing with processes equivalent under ≡, are self-explanatory. Notation-wise,
Ch(β) represents the set of channels occurring in β.

The second last transition rule for processes says that when a process P
cannot perform any communication action when the environment attempts to
use the abstract binder α for the next interaction, we allow P to do a �-step,
signaling that there is one step of delay. At the same time, the observational
history of the environment is extended by a �, recording the observation of this
delay.

The last transition rule says that the environment can make its next interac-
tion attempt when its observational history ends with a �: it can only “prescribe”
the most imminent interaction, without further predication of the future.

We illustrate the semantics in Example 1, where δALL = λπ�.{c!c′|c, c′ ∈
Chn ∪ Dt} ∪ {c?x|c ∈ Chn} ∪ {�} is the strategy that allows the environment to
produce any sensible abstract binder with any observation it has.

Example 1. The procedure call M in Fig. 1 has the following transition sequence.

δALL � 〈M, �〉 env−→ 〈M, �cLL!d〉
cLL?d−→ 〈 case none of some(y1) : c′

LH !y1.M
else case some(d) of some(y2) : c′′

LL!y2.M else 0
, cLL!d�〉

env−→ 〈 case none of some(y1) : c′
LH !y1.M

else case some(d) of some(y2) : c′′
LL!y2.M else 0

, cLL!d�c′′
LL?x〉

c′′
LL!d−→ 〈M, cLL!d.c′′

LL?d�〉
We elaborate slightly on the second step above. According to the transition rules for

binders, we have 〈cLL?x2, �cLL!d〉 cLL?d−→ 〈[cLL : some(d)/x2], cLL!d�〉, which gives
rise to 〈&1∨2(cLH?x1, cLL?x2), �cLL!d〉 cLL?d−→ 〈&1∨2(cLH?x1, [cLL : some(d)/x2]),

cLL!d�〉. Using the evaluation rules for binders, we have &1∨2(cLH?x1, [cLL :

some(d)/x2]) ::tt [none/x1][some(d)/x2]. Hence by the transition rule for b.P , with
b taken to be &1∨2(cLH?x1, [cLL : some(d)/x2]), the second transition is derived.
�

Factorization of Behavioral Integrity 507

Hereafter, we will use the more compact δ � 〈P, π〉 env,β−−−→ 〈P ′, π′〉 to represent
∃π0 : δ � 〈P, π〉 env−→ 〈P, π0〉 ∧ δ � 〈P, π0〉 β−→ 〈P ′, π′〉. We will also use rch(P)
to represent the channel, polarity pairs of all possible communications that can
be performed by a derivative of 〈P, �〉 under the strategy δALL, i.e., rch(P) =

{(c, ρ) | ∃P ′, π′, c′ : δALL � 〈P, �〉 →∗ 〈P ′, π′〉 cρc′
−→}.

4 Noninterference for Behavioral Integrity

In this section, we build up to our noninterference condition for behavioral
integrity. We introduce the classification mappings P and C to keep track of
the presence levels and content levels, respectively, for communication chan-
nels. In our definitions and propositions, we tacitly assume that all variables not
explicitly quantified are in fact universally quantified.

We start by introducing a way of indexing into traces: π@c,ρ
i is (n, c′) if the i-

th communication over channel c with polarity ρ in π is the n-th communication
overall in π, and the content of the communication is c′. All the indices start
with 0. If the number of communications over c with polarity ρ in π is less than
or equal to i, then π@c,ρ

i is ⊥. This is formalized in Definition 1 and illustrated
in Example 2.

Definition 1 (π@c,ρ
i). π@c,ρ

i = π@c,ρ
i,0 , where i ≥ 0 and π@c,ρ

i,0 is defined by

π@c,ρ
i,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ (if π = ε)

(n, c′) (if ∃π′ : π = cρc′.π′ ∧ i = 0)

π′@c,ρ
i−1,n+1 (if ∃c′ : π = cρc′.π′ ∧ i �= 0)

π′@c,ρ
i,n+1 (if ∃c′′, ρ′′, c′′′ : π = c′′ρ′′c′′′.π′ ∧ (c′′ �= c ∨ ρ′′ �= ρ))

Example 2. Consider the trace π = cLL!d.c′′
LL?d� left by the environment from

Example 1. We have π@c′′
LL,?

0 = (1, d) and π@c′′
LL,?

i = ⊥ whenever i ≥ 1.
�
We define the trace correspondence relation WP

C as follows, where |π| stands for
the length of π. The presence and content of communications in traces related
by WP

C are supposed to reflect the integrity levels of their channels.

Definition 2 (WP
C). π1 WP

C π2 if and only if π1 and π2 are finite, |π1| = |π2|,
and ∀i ≥ 0 : ∀c, ρ : π1@

c,ρ
i W

P(c)
C(c) π2@

c,ρ
i .

In Definition 2, two traces related by WP
C are required to have the same finite

length, and the i-th occurrences of communication over channel c, with polarity
ρ, are required to be related by W

P(c)
C(c) , for each c and ρ. The latter relation is in

turn defined as follows, where c′
1

.= c′
2 if and only if c′

1 = c′
2 or c′

2 �∈ Chn ∪ Dt.

Definition 3 (W lP
lC). (n1, c

′
1) W lP

lC (n2, c
′
2) if and only if

(n1, c
′
1) W lP

lC (n2, c
′
2) iff (lP = H ⇒ n1 = n2) ∧ (lC = H ⇒ c′

1
.
= c′

2)

(n1, c
′
1) W lP

lC ⊥ iff lP = L

⊥ W lP
lC (n2, c

′
2) iff lP = L

⊥ W lP
lC ⊥ iff true

508 X. Li et al.

It can be seen that for a channel c with high presence integrity, the i-th occur-
rences of input/output over c need to have the same overall index in their respec-
tive traces. On the other hand, for a channel c with high content integrity, the i-th
occurrences of input/output over c need to have equivalent content. This corre-
sponds tightly to our description of “presence integrity” and “content integrity”
in Sect. 2. The reason that .= is used for relating content, instead of =, is the
potential existence of variables in traces of the form ...�c?x.

We will write
β̂′

=⇒ for the weak transition used for standard observational
equivalence, i.e., it stands for (

τ−→)∗◦ β′
−→ ◦(

τ−→)∗ when β′ �= τ and for (
τ−→)∗

when β′ = τ . The weak transition will not be used directly in our noninterference

property, but encapsulated within the transition β̂′
=⇒

β
introduced in Definition 4.

It boils down to the weak transition β̂′
=⇒ in case β is a communication with high

presence integrity; otherwise τ ’s are not allowed.

Definition 4 (
β̂′

=⇒
β

). β̂′
=⇒

β
=

⎧
⎨

⎩

β′
−→ (if β = � ∨ ∃c, ρ, c′ : β = cρc′ ∧ P(c) = L)

β̂′
=⇒ (otherwise)

We then define the notion of δ-bisimulation, where δ ∈ Strat is a strategy.

Definition 5 (δ-Bisimulation). A δ-bisimulation is a symmetric relation R

on configurations such that if 〈P1, π1〉 R 〈P2, π2〉, δ � 〈P1, π1〉 env,β−−−→ 〈P ′
1, π′

1〉,
δ �〈P2, π2〉 env−→ 〈P2, π20〉, and π′

1 WP
C π20, then we have

∃P ′
2, π

′
2, β

′ : δ � 〈P2, π20〉 β̂′
=⇒

β
〈P ′

2, π
′
2〉 ∧

[π′
1]� W P

C [π′
2]� ∧ 〈P ′

1, [π
′
1]�〉 R 〈P ′

2, [π
′
2]�〉.

If two configurations 〈P1, π1〉 and 〈P2, π2〉 are related by a δ-bisimulation R,
then after 〈P1, π1〉 interacts with the environment δ for one step, and the envi-
ronment makes an interaction attempt with 〈P2, π2〉, such that the interaction
and the attempt meet the integrity classes of their channels (π′

1 WP
C π20), the

configuration 〈P2, π20〉 can simulate the interaction made by 〈P1, π1〉, in a way
that meets the integrity classes of the channels involved ([π′

1]� WP
C [π′

2]�).
The definition of δ-Bisimulation introduces two universally quantified transi-

tions, before simulating the first one with an existentially quantified transition.
This pattern, previously adopted in [11], is rare in the literature.

We then define δ-bisimilarity (∼
δ
) as the union of all δ-bisimulations (which

is itself a δ-bisimulation). Note that δ-bisimilarity is not reflexive. In fact, our
noninterference condition identifies the δ-security of a process P with the self-
relatedness of 〈P, �〉 in ∼

δ
, as stated in Definition 6.

Definition 6 (δ-Security). A process P is δ-secure, denoted by Secδ(P), if and
only if 〈P, �〉 ∼

δ
〈P, �〉.

To arrive at a better understanding of δ-security, we introduce in Definition 7
the notion of kernel δ-bisimulation, which constrains the pairs of observational

Factorization of Behavioral Integrity 509

histories further than δ-bisimulation does. Proposition 1 then says that kernel
δ-bisimulations, with a more complex formulation, can be used to characterize
δ-security equally well.

Definition 7 (Kernel δ-Bisimulation). A δ-bisimulation R is said to be a
kernel δ-bisimulation if and only if 〈P1, π1〉 R 〈P2, π2〉 implies knl(π1, π2),
where knl(π1, π2) represents π1 WP

C π2, [π1]� = π1, and [π2]� = π2.

Proposition 1. There is a δ-bisimulation R such that 〈P, �〉 R 〈P, �〉, if and
only if there is a kernel δ-bisimulation R′ such that 〈P, �〉 R′ 〈P, �〉.
For a δ-secure process P , the implications of the existence of a kernel δ-bisimulation
R such that 〈P, �〉 R 〈P, �〉 are:

1. A communication β with high presence integrity needs to be simulated by
a communication over the same channel, possibly together with τ ’s. In case
the channel also has high content integrity, the content of the simulating
communication should be the same as that of β. If the channel has low content
integrity, on the other hand, then the bisimulation should continue under all
contents possibly attempted by the environment, that are not necessarily the
same as that of β.

2. A communication β with low presence integrity, or a �-transition, is simulated
by a communication over a channel also of low presence integrity, or by a �-
transition. If the channel of β, say c, has high content integrity, and it is
being used for the i-th time with polarity ρ, then the content of β needs to
agree with the content of the communication occurring on c with polarity ρ
for the i-th time in the second execution, in case that communication exists.
A similar requirement is imposed on the simulating communication, when its
channel has high content integrity.

3. A τ can only be simulated by a (possibly empty) sequence of τ ’s. This is
because when a τ -transition is made from a configuration 〈P, π〉, the � in π
does not move, which is not the case otherwise. By Proposition 1, it is obvious
that |π′

1| = |π20|. Hence [π′
1]� and [π′

2]� will not have the same length and
[π′

1]� WP
C [π′

2]� will not hold, if a τ is not simulated only by τ ’s.

The δALL-security/insecurity of processes 1-6 in Fig. 1 of Sect. 2 agrees with the
claims based on intuition in the same section, with an unconstrained environ-
ment. And process 7 is δALT-secure, where δALT characterizes an environment
that provides content over at least one of cLL and c′

LL whenever the process is
ready for input from these two alternative channels:

δALT(π) =

{
{c1!d | c1 ∈ {cLL, c′

LL} ∧ d ∈ Dt} (if π = � ∨ ∃π′, d′ : π = π′.cHL?d′
�)

AB (otherwise)

The construction of the underlying kernel δALL-bisimulation R� for the δALL-
security of process 6 is given in the appendix. We demonstrate in Example 3 that
some of the requirements of 〈M, �〉 R� 〈M, �〉 are fulfilled, to aid in the reader’s
intuition.

510 X. Li et al.

〈M, �〉 R� 〈M, �〉

〈M, �cLL!d2〉

〈c′
LH !d1.M, cLH !d1�〉 R� 〈c′′

LL!d2.M, cLL!d2�〉

〈c′′
LL!d2.M, cLL!d2�c′′

LL?x〉

〈M, cLH !d1.c′
LH?d1�〉 R� 〈M, cLL!d2.c′′

LL?d2�〉

〈M, cLL!d2.c′′
LL?d2�cLH !d1〉

〈M, cLH !d1.c′
LH?d1.��〉 R� 〈c′

LH !d1.M, cLL!d2.c′′
LL?d2.cLH !d1�〉

〈c′
LH !d1.M, cLL!d2.c′′

LL?d2.cLH !d1�c′
LH?x〉

〈c′′
LL!d′

1.M, cLH !d1.c′
LH?d1.�.cLL!d′

1�〉 R� 〈M, cLL!d2.c′′
LL?d2.cLH !d1.c′

LH?d1�〉

env,
cLH?d1

1

env,
c′

LH !d1
4

env,
� 7

env,
cLL?d′

1
10

env2

cLL?d23

env5

c′′
LL!d26

env8

cLH?d19

env11

c′
LH !d112

Fig. 2. Partial unfolding of the kernel bisimulation containing (〈M, �〉, 〈M, �〉)

Example 3. Figure 2 contains a partial unfolding of 〈M, �〉 R� 〈M, �〉 where R�

is a kernel δALL-bisimulation. For each pair 〈P1, π1〉 and 〈P2, π2〉 related by R�

in Fig. 2, π1 WP
C π2 holds. After transitions 1 and 2, the environment has made

the attempt to interact with the process on two different channels cLH and cLL.
This is allowed since cLH !d1� WP

C �cLL!d2 holds. The process M can indeed
perform an input over cLH , resulting in transition 1. This transition needs to be
simulated by either an input over cLL, or a �-transition in case such an input
cannot be performed. We are in the former situation and transition 1 is thus sim-
ulated by transition 3. Note that according to Definition 4, the simulation of low
presence communications should be done without using τ ’s. This is because such
simulation is actually used to introduce interference, rather than to demonstrate
resilience to it. And τ -transitions are conventionally used to weaken the require-
ment for a process to be resilient to interference. We then direct our attention
to transitions 7, 8 and 9. The environment intentionally resists communication
with the process in transition 7. On the other hand, it attempts to feed some
content over cLH to the process through transition 8. That content is restricted
to d1 since only then it holds that cLH !d1.c

′
LH?d1.�� W P

C cLL!d2.c
′′
LL?d2�cLH !d1.

Intuitively, the input over cLH is blocked for a while in the second execution,
but it needs to happen with the same content d1 since the channel has high
content integrity. For transitions 10, 11 and 12, the attempt of the environment
to input from the process over channel c′

LH in transition 11 is satisfied with
the content d1, resulting in transition 12. The latter transition is a legitimate
simulation of transition 10 since the content d1 is the same as that of transition
4 — the corresponding communication over c′

LH in the first execution.
�
A total order can be built on the set Strat of environment strategies, charac-
terizing their relative aggressiveness (Definition 8), which has its impact on the
strength of the security condition (Theorem 1).

Factorization of Behavioral Integrity 511

Definition 8 (Aggressiveness of Environments). Environment δ2 is said
to be more aggressive than δ1, denoted δ1 ≤ δ2, if ∀π ∈ Π� : δ1(π) ⊆ δ2(π).

Theorem 1 (Monotonicity). δ-bisimilarity is anti-monotonic in δ, i.e., for
all δ1, δ2 such that δ1 ≤ δ2, it holds that ∼

δ2
⊆ ∼

δ1
.

This monotonicity result may look counter-intuitive since δ appears to be used

both positively and negatively in Definition 5. However, δ � 〈P2, π20〉 β̂′
=⇒

β
〈P ′

2, π
′
2〉

if and only if δ′ � 〈P2, π20〉 β̂′
=⇒

β
〈P ′

2, π
′
2〉 for all δ′ ∈ Strat. In other words, δ is not

actually used in the derivation of the transition sequence from 〈P2, π20〉.
Corollary 1. The permissiveness of δ-security is anti-monotonic in δ, i.e.,

∀δ1, δ2 ∈ Strat : δ1 ≤ δ2 ∧ Secδ2(P) ⇒ Secδ1(P).

We will discuss deeper theoretical properties of our security condition in
Sect. 5, focusing on δALL-security. It will be seen that the most pessimistic
assumption about the environment, captured by its most aggressive strategy
δALL, is in line with classical process-algebraic conditions like SBNDC, and also
facilitates the compositional verification of the security property.

5 Theoretical Properties

Connection with SBNDC. We reformulate SBNDC [6] using the classical
semantics of the Quality Calculus, and with respect to the environment I :

Chan → {H, L} ∪ {⊥} that gives the presence level of a channel only when its

presence level and content level are the same, i.e., I(c) =

{
P(c) (if P(c) = C(c))
⊥ (otherwise)

.

The aim of I is to obtain the integrity class of each channel when its presence
integrity and content integrity are the same (using C(c) instead of P(c) in the
definition of I(c) would have the same effect).

We also introduce the notation loi to represent the list of low integrity chan-
nels, i.e., loi = {c | I(c) = L}, and use ch(β) to denote the channel used by the
(non-τ) communication action β. The reformulation is then given in Definition 9,
where ≈ is the standard observational equivalence. The intuitive interpretation
is that before and after each low integrity communication, a process is required
to have the same high integrity behaviors. Then the central result of this subsec-
tion, that δALL-security coincides with SBNDC when the same integrity levels
are always used for both “presence” and “content”, is given in Theorem 2.

Definition 9 (SBNDC). P ∈ SBNDC if for all P ′, P ′′, communication β,

such that P →∗ P ′, P ′ β−→ P ′′, and I(ch(β)) = L, we have (ν loi)P ′ ≈ (ν loi)P ′′.

Theorem 2 (Degeneration). For all processes P , if ∀c, ρ s.t. (c, ρ) ∈ rch(P) :
P(c) = C(c), then SecδALL(P) if and only if P ∈ SBNDC.

512 X. Li et al.

To build up to a proof of Theorem 2, we recast SBNDC in the form of self-
bisimilarity. The underlying bisimulation is the �-bisimulation of Definition 10.

Definition 10 (�-Bisimulation). A symmetric relation R on processes qual-
ifies as a �-bisimulation if P1 R P2 implies:
for all P ′

1 and β such that P1
β−→ P ′

1, there exists P ′
2 such that

– if I(ch(β)) = L, then P ′
2 ≡ P2 and P ′

1 R P ′
2,

– if I(ch(β)) = H or β = τ , then P2
β̂

=⇒ P ′
2 and P ′

1 R P ′
2.

We define �-bisimilarity as the union of all �-bisimulations. The � used here
symbolizes the triangular structure created by the simulation of a low integrity
communication by inaction, as required in Definition 10. It can be shown that
self-�-bisimilarity coincides with self-δALL-bisimilarity when the presence levels
and content levels are the same for all channels whose uses are reachable.

Lemma 1. Suppose P is such that ∀c, ρ s.t. (c, ρ) ∈ rch(P) : P(c) = C(c). Then
P ∈ SBNDC ⇐⇒ P ∼� P , and P ∼� P ⇐⇒ 〈P, �〉 ∼

δALL
〈P, �〉.

The degeneration result presented above demonstrates that the notion of δ-
security is in fact well-based on the classical process-algebraic noninterference
properties, and SBNDC, as one of those properties, actually has the implicit
assumption of the most aggressive environment.

Compositionality. Compositionality is a desirable property for the verifica-
tion of noninterference properties. The security of a parallel composition can be
directly obtained from that of its constituents, in case full compositionality is
enjoyed by a noninterference condition. However, δ-security is not fully composi-
tional. Nevertheless, this is key to spotting the insecurity of the example process
4 given in Sect. 2, since the processes cLH?x1.c

′
LH !x1 and c′

LH !d are themselves
δALL-secure. We then discuss the sufficient conditions required for δALL-security
to be compositional.

A process P is deterministic with respect to output over a channel c, denoted
by det(P, c), if

δALL � 〈P, �〉 →∗ 〈P ′, π′〉 ∧ (∀i ∈ {1, 2} : δALL � 〈P ′, π′〉 c!c′
i−→ 〈P ′

i , π′
i〉) ⇒ c′

1 = c′
2.

We then have the following theorem for the compositionality of δALL-security.

Theorem 3 (Compositionality). If SecδALL(P1), and SecδALL(P2), then we
have SecδALL((νc̄′)(P1|P2)), provided that for all i ∈ {1, 2} and channel c:

P(c) �� C(c) ∧ (c, ρ1) ∈ rch(Pi) ∧ (c, ρ2) ∈ rch(P3−i) ⇒ ρ1 �= ρ2 ∧ det(Pi, c) ∧ c ∈ {c̄′}.

In words, Theorem 3 says that given two processes P1 and P2 that are both
δALL-secure, the process (νc̄′)(P1|P2) is δALL-secure, provided that

1. No LH-channels are used by both P1 and P2 with the same polarity (note
that the process 4 given in Sect. 2 does not meet this requirement), and

Factorization of Behavioral Integrity 513

2. For each LH-channel c used by P1 and P2 with different polarities, P1 and
P2 must be deterministic with respect to output on c, and c must be among
the constants over which there is a top-level restriction; thus the input side
always sources from the output side, never from the environment.

Corollary 2. Suppose ∀c, ρ : (c, ρ) ∈ rch(P) ⇒ P(c) � C(c). Then SecδALL(P1|P2)

can be deduced from SecδALL(P1) and SecδALL(P2).

The results presented above help elucidate the points below.

1. If δ-security had been fully compositional, it would not have uncovered cer-
tain insecure dependencies of high integrity content on low integrity presence.

2. The notion of δ-security is fully compositional for processes that do not make
use of LH-channels.

6 Further Examples and Discussion

We have associated with LH-channels the meaning: communications over these
channels can be blocked by the attacker, but with uninfluenced contents when
they finally happen. So far the abstract environment has been assumed to be
able to induce these channels. In this section, we present a concrete process in
the Quality Calculus that can accomplish the same task. We then make the
multiplexer process presented in Sect. 2 obtain its input from this process, to
illustrate our compositionality result.

On LH-Channels. We illustrate that LH-channels can be induced from chan-
nels that are LL and HH by a concrete process. The procedure SINK in Fig. 3
mimics the potential congestion of the high integrity data source cHH using a
queue: output of the oldest element suspended in the queue is attempted through
the sink channel cLH only when the low integrity switch cLL is on. Recall that
the &2(,) can be passed if and only if the second communication is successful.

SINK � &2(cLL?x1, cHH ?x2).
case x2 of some(y2) :
(νcf)(ci!(y2, cf).cf?xf .

case x1 of some(y1) :
(νce, cr)(cp!(ce, cr).cr?x3[y3].

&2(cLH !y3{x′
3}, c′

HH?xt).
case x′

3 of some(y′
3) :

(νc′
e, c

′
r)(cd!(c

′
e, c

′
r).cr?x4[y4].SINK)

else SINK)
else c′

HH?xt.SINK)
else 0

Fig. 3. The “Realization” of sink channels with low
presence integrity and high content integrity

The channels ci, cd, and
cp are interfaces for the
operations “insert” (“en-
que”), “delete” (“deque”),
and “peek” (the non-
destructive inspection of the
oldest element) of the queue
specified by the procedure
QUE (adapted from the
priority queue in [17]) in
the appendix. The proce-
dure SINK waits on the
input over cHH for the com-
posite binder on the first
line to be passed. When
that happens, the input data over cHH is enqued, with the completion of the

514 X. Li et al.

“enque” operation signaled on cf . If the input over cLL was also successful, then
outputting the head of the queue is attempted, with a high integrity timeout
supposed to come over c′

HH . If the output is successful before the timeout, then
the data item of the output is deleted from the queue. In the “peek” and “deque”
operations, the channels ce and c′

e are sent to the queue for the latter to signal
back whether it is already an empty queue. In our case the non-emptiness of
the queue is an invariant and hence neither ce nor c′

e is subsequently used. The
process (νci, cd, cp)(SINK |QUE (some(ci), some(cd), some(cp))) is δALL-secure.

Compositionality. We now consider making the multiplexer process (process
6 in Fig. 1) source from the channel cLH in Fig. 3. Let SRC � (νci, cd, cp) (SINK |
QUE(some(ci), some(cd), some(cp))). The process under consideration is (νcLH)
(SRC |M). It is not difficult to see that det(SRC, cLH) and det(M, cLH) hold.
Hence we can deduce the validity of SecδALL((νcLH)(SRC |M)) by Theorem 3
and the δALL-security of SRC and M .

Confidentiality. We are in a position to further explain having developed our
theory for integrity, rather than confidentiality. It has been illustrated by the
example in Fig. 3 that a concrete process can influence the presence of com-
munication over a sink channel of it, without influencing the communication
content. For confidentiality, a channel c� with high presence confidentiality and
low content confidentiality would correspond to our channel with LH-integrity.
Assuming the existence of c� and developing the same theory would not be prob-
lematic. However, it is difficult to come up with a possibilistic process that leaks
the content of c� properly, without leaking the presence of communication over
it, unless other channels also with confidential presence and public content are
used. Hence the meaning of “confidential presence, public content” would be
harder to justify as opposed to “low integrity presence, high integrity content”.

7 Conclusion

We have studied the integrity of communication behaviors in process-algebraic
systems from the viewpoint of information flow control. A fine-grained, bisimul-
ation-based noninterference property is proposed: the presence and content of
communications have separate integrity levels, and all combinations of integrity
levels for both dimensions are allowed. When identical levels are always used for
both dimensions, the property coincides with the classical process-algebraic prop-
erty SBNDC (e.g., [6]), demonstrating faithful inheritance from known frame-
works. A compositionality result is obtained, facilitating modular flow analysis
of concurrent processes.

Our recasting of SBNDC as self-�-bisimilarity may reflect the insights behind
existing work [3] in bridging language-based and process-algebraic security, but
may be the first direct reformulation of BNDC-like properties as self-bisimilarity.
This gives another perspective on the secure semantics induced by SBNDC.

Clarkson et al. [4] dimensions quantitative integrity in terms of information
suppression and contamination, where dissimilarity of integrity to confidentiality
is also examined: information suppression has no confidentiality counterpart.

Factorization of Behavioral Integrity 515

It would not be difficult to adapt δ-security to support the use of down-
grading [16], which relaxes information flow constraints. This can be done along
the directions of [1]. Another interesting line of future work is the design of
information flow type systems supporting δ-security.

Acknowledgement. We would like to thank the ProSec research group at Chalmers
University of Technology, especially Andrei Sabelfeld, Willard Rafnsson and David
Sands, for useful feedback on this work at an earlier stage.

A Appendix

Structural Congruence. The structural congruence is the smallest congru-
ence relation satisfying the rules in Table 3. In Table 3, the α-equivalence of two
processes is denoted by ≡α, and fc(P) gives the set of free constants of the
process P and can be defined in a straightforward manner.

Table 3. The structural congruence

P1|P2 ≡ P2|P1 (νc1)(νc2)P ≡
P1|(P2|P3) ≡ (P1|P2)|P3 (νc2)(νc1)P (if c1 �= c2)

P | 0 ≡ P (νc)(P1|P2) ≡ ((νc)P1)|P2

(νc)P ≡ P (if c �∈ fc(P)) (if c �∈ fc(P2))

P ≡α P ′ ⇒ P ≡ P ′ P1 ≡ P2 ⇒ (νc)P1 ≡ (νc)P2

Semantics Without Environment. The “classical” semantics [11] of the
Quality Calculus is given in Table 4. The transitions made by processes are
of the form P

β−→ P ′, where β is a communication action or a τ . The cor-
respondence between the two semantics is given in Lemma 2, where ch(β) ={

c (if β = c!c′ ∨ β = c?c′)

⊥ (if β = τ ∨ β = �)
, ρ(β) =

{
ρ0 (if∃c, c′ : β = cρ0c

′)

⊥ (otherwise)
, !̃ =? and ?̃ =!.

Lemma 2. For all processes P , P ′, actions β1, β2, ..., and βn such that there
is at most one i ∈ {1, ..., n} for which βi �= τ , and ∀i ∈ {1, ..., n} : βi �= �,
histories π such that π = [π]�, and π0 such that ∀i ∈ {1, ..., n} : βi �= τ ⇒ π0 =
π.ch(βi)˜ρ(βi)c′ for some c′, the following are equivalent:

1. P
β1...βn=⇒ P ′, and

2. δALL � 〈P, π〉 env−→ 〈P, π0〉 ∧ ∃π′
0 : δALL � 〈P, π0〉 β1...βn=⇒ 〈P ′, π′

0〉.

Proof. Both directions can be shown by induction on the length of the corre-
sponding sequences of semantic derivation.
�

516 X. Li et al.

Table 4. The transition relation for processes

b
c!c′
−−−→ b′

b.P
c!c′
−−−→ P ′

where P ′ =

{
Pθ (if b′::ttθ)
b′.P (if b′::ffθ)

b
c?c′
−−−→ b′

b.P
c?c′
−−−→ P ′

where P ′ =

{
Pθ (if b′::ttθ)
b′.P (if b′::ffθ)

P1
c!c′
−→ P ′

1 P2
c?c′
−→ P ′

2

P1|P2
τ−→ P ′

1|P ′
2

e � some(c) P1[c/y]
β−→ P ′

case e of some(y) : P1 else P2
β−→ P ′

e � none P2
β−→ P ′

case e of some(y) : P1 else P2
β−→ P ′

ē � w̄ P [w̄/x̄]
β−→ P ′

A(ē)
β−→ P ′

if A(x̄) � P
P

β−→ P ′

(νc)P
β−→ (νc)P ′

if c �∈ Ch(β)

P1
β−→ P2

P1|P β−→ P2|P
P1 ≡ P2 P2

β−→ P3 P3 ≡ P4

P1
β−→ P4

t � c t′ � c′

t!t′{x} c!c′
−−−→ [c : some(c′)/x]

t!t′{x} ::ff [none/x] t?x ::ff [none/x]

t � c

t?x
c?c′
−−−→ [c : some(c′)/x]

[c : some(c′)/x] ::tt [some(c′)/x]

bj
β−→ b′

j

&q(. . . , bj , . . .)
β−→ &q(. . . , b′

j , . . .)

∀i : bi ::vi
θi v′ = [{q}](v̄)

&q(b1, ..., bn) ::v′ θn . . . θ1

We introduce the notation π ↓ C for π ending with �, and C a set of channels,
to represent the order-preserving sequence of all communications on channels
within C in π, and abbreviate π ↓ {c} as π ↓ c where c is a channel.

δALL-Security of Process 6. We construct the binary relation Rsym that is
the symmetric closure of the following relation R. Below, φ(π1, π2) stands for

knl(π1, π2) ∧
∀i ∈ {1, 2} : ∀ca, cb : cLH !ca is followed immediately by c′

LHρcb in πi ↓ {cLH , c′
LH}

=⇒ ρ =? ∧ ca = cb.

In addition, CSs(e1, e2) stands for

case e1 of some(y1) : c′
LH !y1.M

else case e2 of some(y2) : c′′
LL!y2.M else 0

R = {(〈M, π1〉, 〈M, π2〉) | φ(π1, π2)} ∪
{(〈CSs(some(c′

a), none), π1〉, 〈M, π2〉) | π1 = ...cLH !c′
a� ∧ φ(π1, π2)} ∪

{(〈CSs(none, some(c′
a)), π1〉, 〈M, π2〉) | π1 = ...cLL!c′

a� ∧ φ(π1, π2)} ∪
{(〈CSs(some(c′

a), none), π1〉, 〈CSs(some(c′
b), none), π2〉) |

π1 = ...cLH !c′
a� ∧ π2 = ...cLH !c′

b� ∧ φ(π1, π2)} ∪
{(〈CSs(none, some(c′

a)), π1〉, 〈CSs(none, some(c′
b)), π2〉) |

π1 = ...cLL!c′
a� ∧ π2 = ...cLL!c′

b� ∧ φ(π1, π2)} ∪
{(〈CSs(some(c′

a), none), π1〉, 〈CSs(none, some(c′
b)), π2〉) |

π1 = ...cLH !c′
a� ∧ π2 = ...cLL!c′

b� ∧ φ(π1, π2)}
It can be shown that Rsym is a δALL-bisimulation relating 〈M, �〉 to itself.

Factorization of Behavioral Integrity 517

Queue Specification. We adapte the priority queue discussed in [17] to be a FIFO
queue specified in Fig. 4. A peek operation that returns but does not remove the head
of the queue is added.

QUE(xi, xd, xp) � (νcg)(E(xi, xd, xp, some(cg)) | G(some(cg)))

G(xg[cg]) � cg?(xi, xd, xp).E(xi, xd, xp, xg) | G(xg)

E(xi[ci], xd[cd], xp[cp], xg[cg]) �
ci?(x, xf)[, cf].

(νc′
i, c

′
d, c′

p)(cg!(c
′
i, c

′
d, c′

p).cf !�.F (xi, xd, xp, x, some(c′
i), some(c′

d), some(c′
p), xg))

+ cd?(xe, xr)[ce,].ce!�.E(xi, xd, xp, xg)
+ cp?(x

′
e, x

′
r)[c

′
e,].c′

e!�.E(xi, xd, xp, xg)

F (xi[ci], xd[cd], xp[cp], xk[ck], x
′
i[c

′
i], x

′
d[c

′
d], x

′
p[c

′
p], xg) �

ci?(x, xf)[y, cf].
(νc′

f)(c
′
i!(y, c′

f) | c′
f?x

′.cf !�.F (xi, xd, xp, xk, x
′
i, x

′
d, x′

p, xg)) +
cd?(xe, xr)[, cr].

(νc′
e, c

′
r)(c

′
d!(c

′
e, c

′
r) |

(c′
e?x

′′.cr!ck.E(xi, xd, xp, xg) + c′
r?x

′′′.cr!ck.F (xi, xd, xp, x′′′, x′
i, x

′
d, x′

p, xg))) +
cp?(x

′′
e , x′′

r)[, c′′
r].c′′

r !ck.F (xi, xd, xp, xk, x
′
i, x

′
d, x′

p, xg)

Fig. 4. Specification of FIFO queue

Sketch of Proof for Compositionality (Theorem 3). Define π̃ to be the order-
preserving sequence of all actions in π with all the polarities ρ changed to ρ̃. For
convenience we rename the P1 and P2 in the precondition of Theorem 3 into P ◦

1 and
P ◦
2 , and the list c̄′ into c̄◦.

Construct the binary relation R as:

R = {(〈P1, π1〉, 〈P2, π2〉) | ∃P11, P12, P21, P22, π11, π12, π21, π22 :
ψ(P1, P2, P11, P12, P21, P22, π1, π2, π11, π12, π21, π22)},

where ψ(P1, P2, P11, P12, P21, P22, π1, π2, π11, π12, π21, π22) is the conjunction of the fol-
lowing clauses:

∀i ∈ {1, 2} : Pi ≡ (νc̄◦)(P1i|P2i) (1)
∀j, i ∈ {1, 2} : ∃π′ : δALL � 〈P ◦

j , �〉 −→∗ 〈Pji, π′〉 (2)
∀j ∈ {1, 2} : 〈Pj1, πj1〉 ∼

δALL
〈Pj2, πj2〉 (3)

knl(π1, π2) (4)
∀j ∈ {1, 2} : knl(πj1, πj2) (5)
∀c s.t. P(c) = L ∧ C(c) = H : ∀i ∈ {1, 2} : (6)

((∃ρ : (c, ρ) ∈ rch(P1) ∧ (c, ρ̃) �∈ rch(P2)) ⇒ πi ↓ c = π1i ↓ c ∧ π2i ↓ c = ε) ∧
((∃ρ : (c, ρ) ∈ rch(P2) ∧ (c, ρ̃) �∈ rch(P1)) ⇒ πi ↓ c = π2i ↓ c ∧ π1i ↓ c = ε) ∧
((∃ρ : (c, ρ) ∈ rch(P1) ∧ (c, ρ̃) ∈ rch(P2)) ⇒ π2i ↓ c = ˜π1i ↓ c ∧ πi ↓ c = ε)

518 X. Li et al.

We show that R qualifies as a δALL-bisimulation. Then SecδALL((νc̄◦)(P ◦
1 |P ◦

2))
will follow, since it holds that

ψ((νc̄◦)(P ◦
1 |P ◦

2), (νc̄◦)(P ◦
1 |P ◦

2), P ◦
1 , P ◦

1 , P ◦
2 , P ◦

2 , �, �, �, �, �, �),

and we thus have 〈(νc̄◦)(P ◦
1 |P ◦

2), �〉 R 〈(νc̄◦)(P ◦
1 |P ◦

2), �〉.
We omit further details.
�

References

1. Bossi, A., Piazza, C., Rossi, S.: Modelling downgrading in information flow security.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28–30
June 2004, Pacific Grove, CA, USA, p. 187 (2004)

2. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., Rezk, T.: Session types for
access and information flow control. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 237–252. Springer, Heidelberg (2010)

3. Castellani, I.: State-oriented noninterference for CCS. Electron. Notes Theor. Com-
put. Sci. 194(1), 39–60 (2007)

4. Clarkson, M.R., Schneider, F.B.: Quantification of integrity. In: Proceedings of the
23rd IEEE Computer Security Foundations Symposium, CSF (2010)

5. Cohen, E.S.: Information transmission in computational systems. In: SOSP, pp.
133–139 (1977)

6. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Hei-
delberg (2001)

7. Goguen, J.A, Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

8. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Inf.
42(4–5), 291–347 (2005)

9. Montagu, B., Pierce, B.C., Pollack, R.: A theory of information-flow labels. In:
2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, LA,
USA, 26–28 June 2013, pp. 3–17 (2013)

10. Muller, S., Chong, S.: Towards a practical secure concurrent language. In: Proceed-
ings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2012, pp. 57–74 (2012)

11. Nielson, H.R., Nielson, F.: Safety versus security in the quality calculus. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 8051, pp. 285–303. Springer, Heidelberg (2013)

12. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

13. Rafnsson, W., Hedin, D., Sabelfeld, A.: Securing interactive programs. In: 25th
IEEE Computer Security Foundations Symposium, CSF 2012 (2012)

14. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed pro-
grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
376–394. Springer, Berlin Heidelberg (2002)

15. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

Factorization of Behavioral Integrity 519

16. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

17. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes.
Cambridge University Press, UK (2001)

18. van Bakel, S., Vigliotti, M.G.: Note on a simple type system for non-interference.
CoRR, abs/1109.4843 (2011)

Checking Interaction-Based Declassification
Policies for Android Using Symbolic Execution

Kristopher Micinski1(B), Jonathan Fetter-Degges1, Jinseong Jeon1,
Jeffrey S. Foster1, and Michael R. Clarkson2

1 University of Maryland, College Park, USA
{micinski,jonfd,jsjeon,jfoster}@cs.umd.edu

2 Cornell University, Ithaca, USA
clarkson@cs.cornell.edu

Abstract. Mobile apps can access a wide variety of secure information,
such as contacts and location. However, current mobile platforms include
only coarse access control mechanisms to protect such data. In this
paper, we introduce interaction-based declassification policies, in which
the user’s interactions with the app constrain the release of sensitive
information. Our policies are defined extensionally, so as to be indepen-
dent of the app’s implementation, based on sequences of security-relevant
events that occur in app runs. Policies use LTL formulae to precisely spec-
ify which secret inputs, read at which times, may be released. We for-
malize a semantic security condition, interaction-based noninterference,
to define our policies precisely. Finally, we describe a prototype tool that
uses symbolic execution of Dalvik bytecode to check interaction-based
declassification policies for Android, and we show that it enforces poli-
cies correctly on a set of apps.

Keywords: Information flow · Program analysis · Symbolic execution

1 Introduction

The Android platform includes a permission system that aims to prevent apps
from abusing access to sensitive information, such as contacts and location.
Unfortunately, once an app is installed, it has carte blanche to use any of its
permissions in arbitrary ways at run time. For example, an app with location
and Internet access could continuously broadcast the device’s location, even if
such behavior is not expected by the user.

To address this limitation, this paper presents a new framework for Android
app security based on information flow control [8] and user interactions. The key
idea behind our framework is that users naturally express their intentions about

This research was supported in part by NSF grants CNS-1064997 and CNS-1421373,
AFOSR grants FA9550-12-1-0334 and FA9550-14-1-0334, the partnership between
UMIACS and the Laboratory for Telecommunication Sciences, and the National
Security Agency.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 520–538, 2015.
DOI: 10.1007/978-3-319-24177-7 26

Checking Interaction-Based Declassification Policies for Android 521

information release as they interact with an app. For example, clicking a button
may permit an app to release a phone number over the Internet. Or, as another
example, toggling a radio button from “coarse” to “fine” and back to “coarse”
may temporarily permit an app to use fine-grained GPS location rather than a
coarse-grained approximation.

To model these kinds of scenarios, we introduce interaction-based declassi-
fication policies, which extensionally specify what information flows may occur
after which sequences of events. Events are GUI interactions (e.g., clicking a
button), inputs (e.g., reading the phone number), or outputs (e.g., sending over
the Internet). A policy is a set of declassification conditions, written φ � S,
where φ is a linear-time temporal logic (LTL) [20] formula over events, and S
is a sensitivity level. If φ holds at the time an input occurs, then that input is
declassified to level S. We formalize a semantic security condition, interaction-
based noninterference (IBNI), over sets of event traces generated by an app.
Intuitively, IBNI holds of an app and policy if observational determinism [28]
holds after all inputs have been declassified according to the policy. (Section 2
describes policies further, and Sect. 3 presents our formal definitions.)

We introduce ClickRelease, a static analysis tool to check whether an Android
app and its declassification policy satisfy IBNI. ClickRelease generates event
traces using SymDroid [11], a Dalvik bytecode symbolic executor. ClickRelease
works by simulating user interactions with the app and recording the resulting
execution traces. In practice, it is not feasible to enumerate all program traces, so
ClickRelease generates traces up to some input depth of n GUI events. ClickRe-
lease then synthesizes a set of logical formulae that hold if and only if IBNI holds,
and uses Z3 [17] to check their satisfiability. (Section 4 describes ClickRelease in
detail.)

To validate ClickRelease, we used it to analyze four Android apps, including
both secure and insecure variants of those apps. We ran each app variant under
a range of input depths, and confirmed that, as expected, ClickRelease scales
exponentially. However, we manually examined each app and its policy, and
found that an input depth of at most 5 is sufficient to guarantee detection of a
security policy violation (if any) for these cases. We ran ClickRelease at these
minimum input depths and found that it correctly passes and fails the secure
and insecure app variants, respectively. Moreover, at these depths, ClickRelease
takes just a few seconds to run. (Section 5 describes our experiments.)

In summary, we believe that ClickRelease takes an important step forward in
providing powerful new security mechanisms for mobile devices. We expect that
our approach can also be used in other GUI-based, security-sensitive systems.

2 Example Apps and Policies

We begin with two example apps that show interesting aspects of interaction-
based declassification policies.

Bump App. The boxed portion of Fig. 1 gives (simplified) source code for an
Android app that releases a device’s unique ID and/or phone number. This

522 K. Micinski et al.

Fig. 1. “Bump” app and policy.

app is inspired by the Bump app, which let users tap phones to share selected
information with each other. We have interspersed an insecure variant of the app
in the red code on lines 14 and 16, which we will discuss in Sect. 3.1.

Each screen of an Android app is implemented using a class that extends
Activity. When an app is launched, Android invokes the onCreate method for a
designated main activity. (This is part of the activity lifecycle [10], which includes
several methods called in a certain order. For this simple app, and the other apps
used in this paper, we only need a single activity with this one lifecycle method.)
That method retrieves (lines 3–5) the GUI IDs of a button (marked “send”) and
two checkboxes (marked “ID” and “phone”). The onCreate method next gets
an instance of the TelephonyManager, uses it to retrieve the device’s unique ID
and phone number information, and unchecks the two checkboxes as a default.
Then it creates a new callback (line 11) to be invoked when the “send” button is
clicked. When called, that callback releases the user’s ID and/or phone number,
depending on the checkboxes.

This app is written to work with ClickRelease, a symbolic execution tool we
built to check whether apps satisfy interaction-based declassification policies. As
we discuss further in Sect. 4, ClickRelease uses an executable model of Android
that abstracts away some details that are unimportant with respect to security.
While a real app would release information by sending it to a web server, here
we instead call a method Internet.sendInt. Additionally, while real apps include
an XML file specifying the screen layout of buttons, checkboxes, and so on,
ClickRelease creates those GUI elements on demand at calls to findViewById
(since their screen locations are unimportant). Finally, we model the ID and
phone number as integers to keep the analysis simpler.

Checking Interaction-Based Declassification Policies for Android 523

ClickRelease symbolically executes paths through subject apps, recording a
trace of events that correspond to certain method calls. For example, one path
through this app generates a trace

id!42, ph!43, idBox!true, sendBtn!unit, netout!42

Each event has a name and a value. Here we have used names id and ph for
secret inputs, idBox and sendBtn for GUI inputs, and netout for the network
send. In particular, the trace above indicates 42 is read as the ID, 43 is read
as the phone number, the ID checkbox is selected, the send button is clicked
(carrying no value, indicated by unit), and then 42 is sent on the network. In
ClickRelease, events are generated by calling certain methods that are specially
recognized. For example, ClickRelease implements the manager.getDeviceId call
as both returning a value and emitting an event.

Notice here that in the trace, callbacks to methods such as idBox and sendBtn
correspond to user interactions. The key idea behind our framework is that these
actions convey the user’s intent as to which information should be released. More-
over, traces also contain actions relevant to information release—here the reads
of the ID and phone number, and the network send. Thus, putting both user
interactions and security-sensitive operations together in a single trace allows
our policies to enforce the user’s intent.

The policy for this example app is shown at the bottom of Fig. 1. Policies are
comprised of a set of declassification conditions of the form φ�S, where φ is an
LTL formula describing event traces and S is a security level. Such a condition
is read, “At any input event, if φ holds at that position of the event trace, then
that input is declassified at level S.” For this app there are two declassification
conditions. The top condition declassifies (to Low) an input that is a read of
the ID at any value (indicated by ∗), if sometime in the future (indicated by
the F modality) the send button is clicked and, when that button is clicked, the
last value of the ID checkbox was true. (Note that last is not primitive, but is
a macro that can be expanded into regular LTL.) The second declassification
condition does the analogous thing for the phone number.

To check such a policy, ClickRelease symbolic executes the program, generat-
ing per-path traces; determines the classification level of every input; and checks
that every pair of traces satisfies noninterference. Note that using LTL provides
a very general and expressive way to describe the sequences of events that imply
declassification. For example, here we precisely capture that only the last value
of the checkbox matters for declassification. For example, if a user selects the ID
checkbox but then unselects it and clicks send, the ID may not be released.

Although this example relies on a direct flow, ClickRelease can also detect
implicit flows. Section 3.2 defines an appropriate version of noninterference, and
the experiments in Sect. 5 include a subject program with an implicit flow.

Notice this policy depends on the app reading the ID and phone number
when the app starts. If the app instead waited until after the send button were
clicked, it would violate this policy. We could address this by replacing the F
modality by P (past) in the policy, and we could form a disjunction of the two

524 K. Micinski et al.

Fig. 2. Location sharing app and policy.

policies if we wanted to allow either implementation. More generally, we designed
our framework to be sensitive to such choices to support reasoning about secret
values that change over time. We will see an example next.

Location Resolution Toggle App. Figure 2 gives code for an app that shares
location information, either at full or truncated resolution depending on a radio
button setting. The app’s onCreate method displays a radio button (code not
shown) and then creates and registers a new instance of RadioManager to be
called each time the radio button is changed. That class maintains field mFine
as true when the radio button is set to full resolution and false when set to
truncated resolution.

Separately, onCreate registers LocSharer to be called periodically with the
current location. It requests location updates by registering a callback with the
LocationManager system service. When called, LocSharer releases the location,
either at full resolution or with the lower 8 bits masked, depending on mFine.

The declassification policy for longitude appears below the code; the policy
for latitude is analogous. This policy allows the precise longitude to be released
when mRadio is set to fine, but only the lower eight bits to be released if mRadio
is set to coarse. Here ClickRelease knows that at the MaskLower8 level, it should
consider outputs to be equivalent up to differences in the lower 8 bits.

Checking Interaction-Based Declassification Policies for Android 525

Fig. 3. Formal definitions.

Finally, notice that this policy does not use the future modality. This is
deliberate, because location may be read multiple times during the execution, at
multiple values, and the security level of those locations should depend on the
state of the radio button at that time. For example, consider a trace

mRadio!false, longitude!v1,mRadio!true, longitude!v2

The second declassification condition (longitude!∗∧last(mRadio, false)) will match
the event with v1, since the last value of mRadio was false, and thus v1 may be
declassified only to MaskLower8. Whereas the first declassification condition will
match the event with v2, hence it may be declassified to Low.

3 Program Traces and Security Definition

Next, we formally define when a set of program traces satisfies an interaction-
based declassification policy.

3.1 Program Traces

Figure 3(a) gives the formal syntax of events and traces. Primitives p are terms
that can be carried by events, e.g., values for GUI events, secret inputs, or
network sends. In our formalism, primitives are integers, booleans, and terms
constructed from primitives using uninterpreted constructors f . As programs
execute, they produce a trace t of events η, where each event name!p pairs an
event name name with a primitive p. We assume event names are partitioned into
those corresponding to inputs and those corresponding to outputs. For all the
examples in this paper, all names are inputs except netout, which is an output.

526 K. Micinski et al.

Due to space limitations, we omit details of how traces are generated. These
details, along with definition of our LTL formulas, can be found in a companion
tech report [16]. Instead, we simply assume there exists some set T containing all
possible traces a given program may generate. For example, consider the insecure
variant bump app in Fig. 1, which replaces the black code with the red code on
lines lines 14 and 16. This app sends the phone number when the email box is
checked and vice-versa. Thus, its set T contains, among others, the following
two traces:

id!0, ph!0, idBox!true, sendBtn!unit, netout!0 (1)
id!0, ph!1, idBox!true, sendBtn!unit, netout!1 (2)

In the first trace, ID and phone number are read as 0, the ID checkbox is selected,
the button is clicked, and 0 is sent. The second trace is similar, except the phone
number and sent value are 1. Below, we use these traces to show this program
violates its security policy.

3.2 Interaction-Based Declassification Policies

We now define our policy language precisely. Figure 3(b) gives the formal syntax
of declassification policies. A policy P is a set of declassification conditions Ci

of the form φi � Si, where φi is an LTL formula describing when an input
is declassified, and Si is a security level at which the value in that event is
declassified.

As is standard, security levels S form a lattice. For our framework, we require
that this lattice be finite. We include High and Low security levels, and we can
generalize to arbitrary lattices in a straightforward way. Here we include the
MaskLower8 level from Fig. 2 as an example, where Low � MaskLower8 � High.
Note that although we include High in the language, in practice there is no
reason to declassify something to level High, since then it remains secret.

The atomic predicates A of LTL formulae match events, e.g., atomic predi-
cate name!p matches exactly that event. We include ∗ for matches to arbitrary
primitives. We allow event values to be variables that are bound in an enclosing
quantifier. The atomic predicates also include atomic arithmetic statements; here
⊕ ranges over standard operations such as +, <, etc. The combination of these
lets us describe complex events. For example, we could write ∃x.spinner!x∧x > 2
to indicate the spinner was selected with a value greater than 2.

Atomic predicates are combined with the usual boolean connectives (¬, ∧,
∨, →) and existential and universal quantification. Formulae include standard
LTL modalities X (next), U (until), G (always), F (future), φ S ψ (since), and
Pφ (past). We include a wide range of modalities, rather than a minimal set,
to make policies easier to write. Formulae also include last(name, p), which is
syntactic sugar for ¬(name!∗) S name!p. We assume a standard interpretation
of LTL formulae over traces [14]. We write t, i |= φ if trace t is a model of φ at
position i in the trace.

Checking Interaction-Based Declassification Policies for Android 527

Next consider a trace t ∈ T for an arbitrary program. We write level(t, P, i)
for the security level that policy P assigns to the event t[i]:

level(t, P, i) =

{�
φj�Sj∈P {Sj | t, i |= φj} t[i] = name!p

Low t[i] = netout!p

In other words, for inputs, we take the greatest lower bound (the most declas-
sified) of the levels from all declassification conditions that apply. We always
consider network outputs to be declassified. Notice that if no policy applies, the
level is H by definition of greatest lower bound.

For example, consider trace (1) above with respect to the policy in Fig. 1.
At position 0, the LTL formula holds because the ID box is eventually checked
and then the send button is clicked, so level((1), P, 0) = Low. However,
level((1), P, 1) = High because no declassification condition applies for ph (phBox
is never checked). And level((1), P, 4) = Low, because that position is a network
send.

Next consider applying this definition to the GUI inputs. As written, we
have level((1), P, 2) = level((1), P, 3) = High. However, our app is designed to
leak these inputs. For example, an adversary will learn the state of idBox if they
receive a message with an ID. Thus, for all the subject apps in this paper, we also
declassify all GUI inputs as Low. For the example in Fig. 1, this means adding
the conditions idBox! ∗ �Low, phBox! ∗ �Low, and sendBtn! ∗ �Low. In general,
the security policy designer should decide the security level of GUI inputs.

Next, we can apply level pointwise across a trace and discard any trace
elements that are below a given level S. We define

level(t, P)S [i] =

{
t[i] level(t, P, i) � S

τ otherwise

We write level(t, P)S,in for the same filtering, except output events (i.e., network
sends) are removed as well. Considering the traces (1) and (2) again, we have

level((1), P)Low=id!0, idBox!true, sendBtn!unit, netout!0
level((2), P)Low=id!0, idBox!true, sendBtn!unit, netout!1

level((1), P)Low,in=id!0, idBox!true, sendBtn!unit
level((2), P)Low,in=id!0, idBox!true, sendBtn!unit

Finally, we can define a program to satisfy noninterference if, for every pair
of traces such that the inputs at level S are the same, the outputs at level S are
also the same. To account for generalized lattice levels such as MaskLower8, we
also need to treat events that are equivalent at a certain level as the same. For
example, at MaskLower8, outputs 0xffffffff and 0xffffff00 are the same,
since they do not differ in the upper 24 bits. Thus, we assume for each security
level S there is a appropriate equivalence relation =S , e.g., for MaskLower8, it
compares elements ignoring their lower 8 bits. Note that x =Low y is simply
x = y and x =High y is always true.

528 K. Micinski et al.

Definition 1 (Interaction-based Noninterference (IBNI)). A program
satisfies security policy P , if for all S and for all t1, t2 ∈ T (the set of traces of
the program) the following holds:

level(t1, P)S,in =S level(t2, P)S,in =⇒ level(t1, P)S =S level(t2, P)S

Looking at traces for the insecure app, we see they violate non-interference,
because level((1), P)Low,in = level((2), P)Low,in, but level((1), P)Low �= level
((2)P)Low (they differ in the output). We note that our definition of nonin-
terference makes it a 2-hypersafety property [6,7].

4 Implementation

We built a prototype tool, ClickRelease, to check whether Android apps obey
the interaction-based declassification policies described in Sect. 3. ClickRelease
is based on SymDroid [11], a symbolic executor for Dalvik bytecode, which is
the bytecode format to which Android apps are compiled. As is standard, Sym-
Droid computes with symbolic expressions that may contain symbolic variables
representing sets of values. At conditional branches that depend on symbolic
variables, SymDroid invokes Z3 [17] to determine whether one or both branches
are feasible. As it follows branches, SymDroid extends the current path condition,
which tracks branches taken so far, and forks execution when multiple paths are
possible. Cadar and Sen [1] describe symbolic execution in more detail.

SymDroid uses the features of symbolic execution to implement nondetermin-
istic event inputs (such as button clicks or spinner selections), up to a certain
bound. Since we have symbolic variables available, we also use them to represent
arbitrary secret inputs, as discussed below in Sect. 4.2. There are several issues
that arise in applying SymDroid to checking our policies, as we discuss next.

4.1 Driving App Execution

Android apps use the Android framework’s API, which includes classes for
responding to events via callbacks. We could try to account for these callbacks
by symbolically execution Android framework code directly, but past experience
suggests this is intractable: the framework is large, complicated, and includes
native code. Instead, we created an executable model, written in Java, that mim-
ics key portions of Android needed by our subject apps. Our Android model
includes facilities for generating clicks and other GUI events (such as the View,
Button, and CheckBox classes, among others). It also includes code for Location-
Manager, TelephonyManager, and other basic Android classes.

In addition to code modeling Android, the model also includes simplified ver-
sions of Java library classes such as StringBuffer and StringBuilder. Our versions
of these APIs implement unoptimized versions of methods in Java and escape to
internal SymDroid functions to handle operations that would be unduly complex
to symbolically execute. For instance, SymDroid represents Java String objects

Checking Interaction-Based Declassification Policies for Android 529

with OCaml strings instead of Java arrays of characters. It thus models methods
such as String.concat with internal calls to OCaml string manipulation functions.
Likewise, reflective methods such as Class.getName are handled internally.

For each app, we created a driver that uses our Android model to simulate
user input to the GUI. The driver is specific to the app since it depends on
the app’s GUI. The driver begins by calling the app’s onCreate method. Next it
invokes special methods in the Android model to inject GUI events. There is one
such method for each type of GUI element, e.g., buttons, checkboxes, etc. For
example, Trace.addClick(id) generates a click event for the given id and then calls
the appropriate event handler. The trace entry contains the event name for that
kind of element, and a value if necessary. Event handlers are those that the app
registered through standard Android framework mechanisms, e.g., in onCreate.

Let m be the number of possible GUI events. To simulate one arbitrary
GUI event, the driver uses a block that branches m ways on a fresh symbolic
variable, with a different GUI action in each branch. Typical Android apps never
exit unless the framework kills them, and thus we explore sequences of events
only up to a user-specified input depth n. Thus, in total, the driver will execute
at least mn paths.

4.2 Symbolic Variables in Traces

In addition to GUI inputs, apps also use secret inputs. We could use SymDroid to
generate concrete secret inputs, but instead we opt to use a fresh symbolic vari-
able for each secret input. For example, the call to manager.getDeviceId in Fig. 1
returns a symbolic variable, and the same for the call to manager.getPhoneNumber.
This choice makes checking policies using symbolic execution a bit more power-
ful, since, e.g., a symbolic integer variable represents an arbitrary 32-bit integer.
Note that whenever ClickRelease generates a symbolic variable for a secret input,
it also generates a trace event corresponding to the input.

Recall that secret inputs may appear in traces, and thus traces may now
contain symbolic variables. For example, using αi’s as symbolic variables for the
secret ID and phone number inputs, the traces (1) and (2) become

id!α1, ph!α2, idBox!true, sendBtn!unit, netout!α2 (1′)
id!α1, ph!α2, idBox!true, sendBtn!unit, netout!α2 (2′)

We must take care when symbolic variables are in traces. Recall level checks
t, i |= φ and then assigns a security level to position i. If φ depends on symbolic
variables in t, we may not be able to decide this. For example, if the third
element in (1′) were idBox!α3, then we would need to reason with conditional
security levels such as level(t, P, 0) = if α3 then Low else High. We avoid the
need for such reasoning by only using symbolic variables for secret inputs, and
by ensuring the level assigned by a policy does not depend on the value of a
secret input. We leave supporting more complex reasoning to future work.

530 K. Micinski et al.

4.3 Checking Policies with Z3

Each path explored by SymDroid yields a pair (t, Φ), where t is the trace and
Φ is the path condition. ClickRelease uses Z3 to check whether a given set of
such trace–path condition pairs satisfies a policy P . Recall that Definition 1
assumes for each S there is an =S relation on traces. We use the same relation
below, encoding it as an SMT formula. For our example lattice, =High produces
true, =Low produces a conjunction of equality tests among corresponding trace
elements, and =MaskLower8 produces the conjunction of equality tests of the
bitwise-and of every element with 0xffffff00.

Given a trace t, let t′ be t with its symbolic variables primed, so that the
symbolic variables of t and t′ are disjoint. Given a path condition Φ, define Φ′

similarly. Now we can give the algorithm for checking a security policy.

Algorithm 1. To check a set T of trace–path condition pairs, do the following.
Let P be the app’s security policy. Apply level across each trace to obtain the
level of each event. For each (t1, Φ1) and (t2, Φ2) in T × T , and for each S, ask
Z3 whether the following formula (the negation of Definition 1) is unsatisfiable:

level(t1, P)S,in =S level(t′2, P)S,in ∧ level(t1, P)S �=S level(t′2, P)S ∧ Φ1 ∧ Φ′
2

If no such formula is unsatisfiable, then the program satisfies noninterference.

We include Φ1 and Φ′
2 to constrain the symbolic variables in the trace. More

precisely, t1 represents a set of concrete traces in which its symbolic variables
are instantiated in all ways that satisfy Φ1, and analogously for t′2.

If the above algorithm finds an unsatisfiable formula, then Z3 returns a coun-
terexample, which SymDroid uses in turn to generate a pair of concrete traces as
a counterexample. For example, consider traces (1’) and (2’) above, and prime
symbolic variables in (2’). Those traces have the trivial path condition true, since
neither branches on a symbolic input. Thus, the formula passed to Z3 will be:

α1 = α′
1 ∧ true = true ∧ unit = unit ∧ (α1 �= α′

1 ∨ true �= true ∨ unit �= unit ∨ α2 �= α′
2

)

Thus we can see a satisfying assignment with α1 = α′
1 and α2 �= α′

2, hence
noninterference is violated.

4.4 Minimizing Calls to Z3

A naive implementation of the noninterference check generates n2 equations,
where n is the number of traces produced by ClickRelease to be checked by Z3.
However, we observed that many of these equations correspond to pairs of traces
with different sequences of GUI events. Since GUI events are low inputs in all
our policies, these pairs trivially satisfy noninterference (the left-hand side of the
implication in Definition 1 is false). Thus, we need not send those equations to
Z3 for an (expensive) noninterference check.

We exploit this observation by organizing SymDroid’s output traces into a
tree, where each node represents an event, with the initial state at the root.

Checking Interaction-Based Declassification Policies for Android 531

Traces with common prefixes share the same ancestor traces in the tree. We
systematically traverse this tree using a cursor t1, starting from the root. When
t1 reaches a new input event, we then traverse the tree using another cursor t2,
also starting from the root. As t2 visits the tree, we do not invoke Z3 on any
traces with fewer input events than t1 (since they are not low-equivalent to t1).
We also skip any subtrees where input events differ.

5 Experiments

To evaluate ClickRelease, we ran it on four apps, including the two described
in Sect. 2. We also ran ClickRelease on several insecure variants of each app, to
ensure it can detect the policy violations. The apps and their variants are:

– Bump. The bump app and its policy appear in Fig. 1. The first insecure vari-
ant counts clicks to the send button sends the value of the ID after three
clicks, regardless of the state of the ID checkbox. The second (indicated in
the comments in the program text) swaps the released information—if the ID
box is checked, it releases the phone number, and vice-versa.

– Location Toggle. The location toggle app and its policy appear in Fig. 2. The
first insecure variant always shares fine-grained location information, regard-
less of the radio button setting. The second checks if coarse-grain information
is selected. If so, it stores the fine-grained location (but does not send it yet).
If later the fine-grained radio button is selected, it sends the stored location.
Recall this is forbidden by the app’s security policy, which allows the release
only of locations received while the fine-grained option is set.

– Contact Picker. We developed a contact picker app that asks the user to select
a contact from a spinner and then click a send button to release the selected
contact information over the network. The security policy for this app requires
that no contact information leaks unless it is the last contact selected before
the button click. (For example, if the user selects contact 1, selects contact 2,
and then clicks the button, only contact 2 may be released.) Note that since
an arbitrarily sized list of contacts would be difficult for symbolic execution
(since then there would be an unbounded number of ways to select a contact),
we limit the app to a fixed set of three contacts. The first insecure variant of
this app scans the set of contacts for a specific one. If found, it sends a message
revealing that contact exists before sending the actual selected contact. The
second insecure variant sends a different contact than was selected.

– WhereRU. Lastly, we developed an app that takes push requests for the user’s
location and shares it depending on user-controlled settings. The app con-
tains a radio group with three buttons, “Share Always,” “Share Never,” and
“Share On Click.” There is also a “Share Now” button that is enabled when
the “Share On Click” radio button is selected. When a push request arrives,
the security policy allows sharing if (1) the “Always” button is selected, or
(2) the “On Click” button is selected and the user presses “Share Now.” Note
that, in the second case, the location may change between the time the request
arrives and the time the user authorizes sharing; the location to be shared is

532 K. Micinski et al.

Fig. 4. Runtime vs. number of events.

the one in effect when the user authorized sharing, i.e., the one from the most
recent location update before the button click. Also, rather than include the
full Android push request API in our model, we simulated it using a basic
callback. This app has two insecure variants. In the first one, when the user
presses the “Share Now” button, the app begins continuously sharing (instead
of simply sharing the single location captured on the button press). In the sec-
ond, the app shares the location immediately in response to all requests.

Scalability. We ran our experiments on a 4-core i7 CPU @3.5 GHz with 16 GB
RAM running Ubuntu 14. For each experiment we report the median of 10 runs.

In our first set of experiments, we measured how ClickRelease’s performance
varies with input depth. Figure 4 shows running time (log scale) versus input
depth for all programs and variants. For each app, we ran to the highest input
depth that completed in one hour.

For each app, we see that running time grows exponentially, as expected.
The maximum input depth before timeout (i.e., where each curve ends) ranges

Checking Interaction-Based Declassification Policies for Android 533

Input Time (ms)
App Depth Exploration Analysis Total

Bump 3 114 15 142
Bump (insecure 1) 5 2,100 1,577 3,690
Bump (insecure 2) 4 266 70 344

Location toggle 2 113 12 128
Location toggle (insecure 1) 2 143 12 163
Location toggle (insecure 2) 3 117 12 143

Contact picker 2 79 2 94
Contact picker (insecure 1) 2 325 27 361
Contact picker (insecure 2) 2 149 9 170

WhereRU 3 849 183 1,045
WhereRU (insecure 1) 3 860 234 1,108
WhereRU (insecure 2) 2 257 10 280

Fig. 5. Results at minimum input depth.

from five to nine. The differences have to do with the number of possible events
at each input point. For example, WhereRU has seven possible input events, so
it has the largest possible “fan out” and times out with an input depth of five.
In contrast, Bump and Location Toggle have just three input events and time
out with an input depth of nine. Notice also the first insecure variant of Contact
Picker times out after fewer events than the other variants. Investigating further,
this occurs due to that app’s implicit flow (recall the app branches on the value
of a secret input). Implicit flows cause symbolic execution to take additional
branches depending on the (symbolic) secret value.

Minimum Input Depth. Next, for each variant, we manually calculated a mini-
mum input depth guaranteed to find a policy violation. To do so, first we deter-
mined possible app GUI states. For example, in Bump (Fig. 1), there is a state
with idBox and phBox both checked, a state with just idBox checked, etc. Then we
examined the policy and recognized that certain input sequences lead to equiv-
alent states modulo the policy. For example, input sequences that click idBox an
even number of times and then click send are all equivalent. Full analysis reveals
that an input depth of three (which allows the checkboxes to be set any possible
way followed by a button click) is sufficient to reach all possible states for this
policy. We performed similar analysis on other apps and variants.

Figure 5 summarizes the results of running with the minimum input depth
for each variant, with the depths listed in the second column. We confirmed
that, when run with this input depth, ClickRelease correctly reports the benign
app variants as secure and the other app variants as insecure. The remaining
columns of Fig. 5 report ClickRelease’s running time (in milliseconds), broken
down by the exploration phase (where SymDroid generates the set of symbolic
traces) and the analysis phase (where SymDroid forms equations about this set
and checks them using Z3). Looking at the breakdown between exploration and
analysis, we see that the former dominates the running time, i.e., most of the

534 K. Micinski et al.

time is spent simply exploring program executions. We see the total running
time is typically around a second or less, while for the first insecure variant of
Bump it is closer to 4 seconds, since it uses the highest input depth.

Our results show that while ClickRelease indeed scales exponentially, to actu-
ally find security policy violations we need only run it with a low input depth,
which takes only a small amount of time.

6 Limitations and Future Work

There are several limitations of ClickRelease we plan to address in future work.
Thus far we have applied ClickRelease to a set of small apps that we devel-

oped. There are two main engineering challenges in applying ClickRelease to
other apps. First, our model of Android (Sect. 4.1) only includes part of the
framework. To run on other apps, it will need to be expanded with more Android
APIs. Second, we speculate that larger apps may require longer input depths to
go from app launch to interfering outputs. In these cases, we may be able to
start symbolic execution “in the middle” of an app (e.g., as in the work of Ma
et al. [15]) to skip uninteresting prefixes of input events.

ClickRelease also has several limitations related to its policy language. First,
ClickRelease policies are fairly low level. Complex policies—e.g., in which clicking
a certain button releases multiple pieces of information—can be expressed, but
are not very concise. We expect as we gain more experience writing ClickRelease
policies, we will discover useful idioms that should be incorporated into the policy
language. Similarly, situations where several methods in sequence operate on and
send information should be supported. Second, currently ClickRelease assumes
there is a single adversary who watches netout. It should be straightforward to
generalize to multiple output channels and multiple observers, e.g., to model
inter-app communication. Third, we do not consider deception by apps, e.g., we
assume the policy writer knows whether the sendBtn is labeled appropriately as
“send” rather than as “exit.” We leave looking for such deceptive practices to
future work.

Finally, since ClickRelease explores a limited number of program paths it is
not sound, i.e., it cannot guarantee the absence of policy violations in general.
However, in our experiments we were able to manually analyze apps to show
that exploration up to a certain input depth was sufficient for particular apps,
and we plan to investigate generalizing this technique in future work.

7 Related Work

ClickRelease is the first system to enforce extensional declassification policies in
Android apps. It builds on a rich history of research in usable security, informa-
tion flow, and declassification.

One of the key ideas in ClickRelease is that GUI interactions indicate the
security desires of users. Roesner et al. [22] similarly propose access control gad-
gets (ACGs), which are GUI elements that, when users interact with them,

Checking Interaction-Based Declassification Policies for Android 535

grant permissions. Thus, ACGs and ClickRelease both aim to better align secu-
rity with usability [27]. ClickRelease addresses secure information flow, especially
propagation of information after its release, whereas ACGs address only access
control.

Android-Based Systems. TaintDroid [9] is a run-time information-flow tracking
system for Android. It monitors the usage of sensitive information and detects
when that information is sent over insecure channels. Unlike ClickRelease, Taint-
Droid does not detect implicit flows.

AppIntent [26] uses symbolic execution to derive the context, meaning inputs
and GUI interactions, that causes sensitive information to be released in an
Android app. A human analyst examines that context and makes an expert
judgment as to whether the release is a security violation. ClickRelease instead
uses human-written LTL formulae to specify whether declassifications are per-
mitted. It is unclear from [26] whether AppIntent detects implicit flows.

Pegasus [2] combines static analysis, model checking, and run-time monitor-
ing to check whether an app uses API calls and privileges consistently with users’
expectations. Those expectations are expressed using LTL formulae, similarly to
ClickRelease. Pegasus synthesizes a kind of automaton called a permission event
graph from the app’s bytecode then checks whether that automaton is a model
for the formulae. Unlike ClickRelease, Pegasus does not address information flow.

Jia et al. [12] present a system, inspired by Flume [13], for run-time enforce-
ment of information flow policies at the granularity of Android components and
apps. Their system allows components and apps to perform trust declassifica-
tion according to capabilities granted to them in security labels. In contrast,
ClickRelease reasons about declassification in terms of user interactions.

Security Type Systems. Security type systems [25] statically disallow programs
that would leak information. O’Neill et al. [19] and Clark and Hunt [5] define
interactive variants of noninterference and present security type systems that
are sound with respect to these definitions.

Integrating declassification with security type systems has been the focus of
much research. Chong and Myers [3] introduce declassification policies that con-
ditionally downgrade security labels. Their policies use classical propositional
logic for the conditions. ClickRelease can be seen as providing a more expres-
sive language for conditions by using LTL to express formulae over events. SIF
(Servlet Information Flow) [4] is a framework for building Java servlets with
information-flow control. Information managed by the servlet is annotated in
the source code with security labels, and the compiler ensures that information
propagates in ways that are consistent with those labels. The SIF compiler is
based on Jif [18], an information-flow variant of Java.

All of these systems require adding type annotations to terms in the pro-
gram code, e.g., method parameters, etc. In contrast, ClickRelease policies are
described in terms of app inputs and outputs.

536 K. Micinski et al.

Event Based Models and Declassification. Vaughan and Chong [24] define expres-
sive declassification policies that allow functions of secret information to be
released after events occur, and extend the Jif compiler to infer events. ClickRe-
lease instead ties events to user interactions.

Rafnsson et al. [21] investigate models, definitions, and enforcement tech-
niques for secure information flow in interactive programs in a purely theoretical
setting. Sabelfeld and Sands [23] survey approaches to secure declassification in a
language-based setting. ClickRelease can be seen as addressing their “what” and
“when” axes of declassification goals: users of Android apps interact with the
GUI to control when information may be released, and the GUI is responsible
for conveying to the user what information will be released.

8 Conclusion

We introduced interaction-based declassification policies, which describe what
and when information can flow. Policies are defined using LTL formulae describ-
ing event traces, where events include GUI actions, secret inputs, and network
sends. We formalized our policies using a trace-based model of apps based on
security relevant events. Finally, we described ClickRelease, which uses sym-
bolic execution to check interaction-based declassification policies on Android,
and showed that ClickRelease correctly enforces policies on four apps, with one
secure and two insecure variants each.

References

1. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades
later. Commun. ACM 56(2), 82–90 (2013). http://doi.acm.org/10.1145/
2408776.2408795

2. Chen, K.Z., Johnson, N.M., D’Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu,
E.X., Rinard, M., Song, D.X.: Contextual policy enforcement in Android applica-
tions with permission event graphs. In: NDSS, The Internet Society (2013). http://
dblp.uni-trier.de/db/conf/ndss/ndss2013.html#ChenJDDMMWRS13

3. Chong, S., Myers, A.C.: Security policies for downgrading. In: Proceedings of the
11th ACM Conference on Computer and Communications Security, pp. 189–209,
October 2004

4. Chong, S., Vikram, K., Myers, A.C.: SIF: enforcing confidentiality and integrity
in web applications. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, SS 2007, pp. 1:1–1:16. USENIX Association, Berke-
ley (2007)

5. Clark, D., Hunt, S.: Non-interference for deterministic interactive programs. In:
Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 50–
66. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-01465-9 4

6. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014 (ETAPS 2014). LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-642-54792-8 15

http://doi.acm.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/2408776.2408795
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#ChenJDDMMWRS13
http://dblp.uni-trier.de/db/conf/ndss/ndss2013.html#ChenJDDMMWRS13
http://dx.doi.org/10.1007/978-3-642-01465-9_4
http://dx.doi.org/10.1007/978-3-642-54792-8_15

Checking Interaction-Based Declassification Policies for Android 537

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). http://dl.acm.org/citation.cfm?id=1891823.1891830

8. Denning, D.E.R.: Secure Information Flow in Computer Systems. Ph.D. thesis,
West Lafayette, IN, USA (1975), aAI7600514

9. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2010, pp. 1–6. USENIX Association,
Berkeley (2010). http://dl.acm.org/citation.cfm?id=1924943.1924971

10. Google: Managing the Activity Lifecycle (2015). http://developer.android.com/
training/basics/activity-lifecycle/index.html

11. Jeon, J., Micinski, K.K., Foster, J.S.: SymDroid: Symbolic Execution for Dalvik
Bytecode. Technical report CS-TR-5022, Department of Computer Science, Uni-
versity of Maryland, College Park, July 2012

12. Jia, L., Aljuraidan, J., Fragkaki, E., Bauer, L., Stroucken, M., Fukushima,
K., Kiyomoto, S., Miyake, Y.: Run-time enforcement of information-flow
properties on android. In: Crampton, J., Jajodia, S., Mayes, K. (eds.)
ESORICS 2013. LNCS, vol. 8134, pp. 775–792. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-40203-6 43

13. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Mor-
ris, R.: Information flow control for standard OS abstractions. In: Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
2007, pp. 321–334. ACM, New York (2007)

14. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logics of Programs. Lecture Notes in Computer Science, vol. 193, pp. 196–218.
Springer, Berlin (1985). http://dx.doi.org/10.1007/3-540-15648-8 16

15. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011). http://dl.acm.org/citation.cfm?id=2041552.2041563

16. Micinski, K., Fetter-Degges, J., Jeon, J., Foster, J.S., Clarkson, M.R.: Checking
interaction-based declassification policies for android using symbolic execution.
Technical report CS-TR-5044, Department of Computer Science, University of
Maryland, College Park, July 2015

17. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). http://dx.doi.org/10.1007/978-3-540-78800-3 24

18. Myers, A.C.: Jflow: Practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 1999, pp. 228–241. ACM, New York (1999). http://doi.
acm.org/10.1145/292540.292561

19. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: Proceedings of the 19th IEEE Workshop on Computer Security Foun-
dations, CSFW 2006, pp. 190–201. IEEE Computer Society, Washington (2006).
http://dx.doi.org/10.1109/CSFW.2006.16

20. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE
Computer Society, Washington (1977). http://dx.doi.org/10.1109/SFCS.1977.32

21. Rafnsson, W., Hedin, D., Sabelfeld, A.: Securing interactive programs. In: Pro-
ceedings of the 2012 IEEE 25th Computer Security Foundations Symposium, CSF
2012, pp. 293–307. IEEE Computer Society, Washington (2012). http://dx.doi.
org/10.1109/CSF.2012.15

http://dl.acm.org/citation.cfm?id=1891823.1891830
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://developer.android.com/training/basics/activity-lifecycle/index.html
http://developer.android.com/training/basics/activity-lifecycle/index.html
http://dx.doi.org/10.1007/978-3-642-40203-6_43
http://dx.doi.org/10.1007/3-540-15648-8_16
http://dl.acm.org/citation.cfm?id=2041552.2041563
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://doi.acm.org/10.1145/292540.292561
http://doi.acm.org/10.1145/292540.292561
http://dx.doi.org/10.1109/CSFW.2006.16
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/CSF.2012.15
http://dx.doi.org/10.1109/CSF.2012.15

538 K. Micinski et al.

22. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-
driven access control: rethinking permission granting in modern operating systems.
In: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP 2012,
pp. 224–238. IEEE Computer Society, Washington (2012). http://dx.doi.org/10.
1109/SP.2012.24

23. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

24. Vaughan, J.A., Chong, S.: Inference of expressive declassification policies. In: Pro-
ceedings of the 2011 IEEE Symposium on Security and Privacy SP 2011, pp. 180–
195. IEEE Computer Society, Washington (2011). http://dx.doi.org/10.1109/SP.
2011.20

25. Volpano, D., Irvine, C., Smith, G.: A sound type system for
secure flow analysis. J. Comput. Secur. 4(2–3), 167–187 (1996).
http://dl.acm.org/citation.cfm?id=353629.353648

26. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: Appintent: analyzing
sensitive data transmission in Android for privacy leakage detection. In: Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2013, pp. 1043–1054. ACM, New York (2013). http://doi.acm.org/
10.1145/2508859.2516676

27. Yee, K.P.: Aligning security and usability. IEEE Secur. Priv. 2(5), 48–55 (2004)
28. Zdancewic, S., Myers, A.: Observational determinism for concurrent program secu-

rity. In: Proceedings of 16th IEEE Computer Security Foundations Workshop 2003,
pp. 29–43 (2003)

http://dx.doi.org/10.1109/SP.2012.24
http://dx.doi.org/10.1109/SP.2012.24
http://dx.doi.org/10.1109/SP.2011.20
http://dx.doi.org/10.1109/SP.2011.20
http://dl.acm.org/citation.cfm?id=353629.353648
http://doi.acm.org/10.1145/2508859.2516676
http://doi.acm.org/10.1145/2508859.2516676

Applied Security

Enhancing Java Runtime Environment for Smart
Cards Against Runtime Attacks

Raja Naeem Akram(B), Konstantinos Markantonakis, and Keith Mayes

Information Security Group, Smart Card Centre,
Royal Holloway, University of London, Egham, Surrey, UK
{R.N.Akram,K.Markantonakis,Keith.Mayes}@rhul.ac.uk

Abstract. Smart cards are mostly deployed in security-critical environ-
ments in order to provide a secure and trusted access to the provisioned
services. These services are delivered to a cardholder using the Service
Provider’s (SPs) applications on his or her smart card(s). These applica-
tions are at their most vulnerable state when they are executing. There
exist a variety of runtime attacks that can circumvent the security checks
implemented either by the respective application or the runtime envi-
ronment to protect the smart card platform, user and/or application.
In this paper, we discuss the Java Runtime Environment and a poten-
tial threat model based on runtime attacks. Subsequently, we discussed
the counter-measures that can be deployed to provide a secure and reli-
able execution platform, along with an evaluation of their effectiveness,
incurred performance-penalty and latency.

1 Introduction

An application on a smart card relies on the Smart Card Runtime Environ-
ment (SCRT) for secure and reliable execution. An SCRT contains a library of
Application Programming Interfaces (APIs) that provide a secure and reliable
interface between the installed applications and on-card services. An SCRT is
used in order to:

1. Provide a secure and reliable program execution.
2. Enforce an execution isolation and access to memory locations.
3. Provide an interface to access cryptographic algorithms.
4. Protect the platform and applications from malicious or ill-formed applications.
5. Handle communication between applications and with external entities.

In early 2000, fault attacks became the modus operandi of adversaries to sub-
vert the implemented cryptographic algorithms in the smart card industry. Since
then the technology has evolved to counter these threats to some extent [3–5].
Althought, the full extent is not publically know, there has been a growing inter-
est in fault injection and combined attacks [6–8] to subvert the protection mech-
anisms on a smart card. In combined attacks both the software (i.e. attacker’s
application) and fault injection are used to achieve the objectives. In this paper,

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 541–560, 2015.
DOI: 10.1007/978-3-319-24177-7 27

542 R.N. Akram et al.

we analyse the attacks that target the SCRT and provide counter-measures.
The attacks we have considered in this paper are fault and combined attacks
targetted at the SCRT. In this paper, we focus on Java Cards; therefore, we will
constantly refer to the Java Card Runtime Environment (JCRE) and it is used
synonymously with SCRT. The rationale is that the JCRE has an open spec-
ification as compared to alternatives such as Multos, and new attacks mostly
target Java Cards.

1.1 Contributions of the Paper

In this paper, we propose and evaluate the following:

1. A JCRE protection framework referred to as the “Runtime Protection Mech-
anism (RPM)”.

2. Inclusion of the application developer’s security requirements at the compi-
lation of the application. If these requirements do not violate the security
requirements of the JCRE, the runtime environment will try to enforce them.

3. A set of countermeasures that include:
(a) Operand Stack Integrity: Safeguarding the JCRE’s operand stack from

any malicious modifications.
(b) Permitted Execution Path Analysis: Evaluate the program flow and ver-

ify whether a particular execution path is allowed or not, based on
the security requirements; defined by the application developer and/or
JCRE.

(c) Bytecode Integrity: To verify and validate whether the execution code
of an application, in storage (persistent memory) and while in non-
persistent memory during execution has not been modified.

4. Two variants of “Runtime Security Manager (RSM)” referred to as serial and
parallel mode. The RSM enforces the security requirements defined by the
application developers and JCRE as part of the RPM along with deploying the
countermeasures. The variants are differentiated based on the architecture of
the underlying hardware and the point at which the RSM verify and validate
an application during its execution.

5. The proposed framework is implemented, and evaluated for security, incurred
performance penalty and latency.

2 Smart Card Runtime Environment

In this section, we open the discussion with a brief description of the Java Card
Virtual Machine (JCVM) followed by related work, and our motivation for the
paper.

2.1 Java Card Virtual Machine

The JCRE consists of APIs, system classes, Java Card Virtual Machine (JCVM),
and native methods. The most crucial component of the JCRE is the JCVM that

Enhancing Java Runtime Environment for Smart Cards 543

actually interpret the application code to execute on the underlying hardware.
The architecture of the JCVM is more or less similar between various Java Card
versions.

An application is coded in a subset of the Java language that is supported by
the JCVM, which is represented as a Java file. The application is then compiled
into a class file, and it is packaged along with any resource files and supporting
libraries into an installation package (e.g. CAP, or JAR file [9,10]) that can be
downloaded to a Java Card. On the Java Card, the on-card bytecode verifier
would analyse the downloaded application and validate that it conforms to the
Java language semantics.

Class Loader Subsystem

Runtime Data Areas

Heap
Method Area

Java Stacks

PC Registers

Execution Engine
Native Method

Interface
Native Methods

Class Files (bytecode)

Frames

Runtime Constant Pool

Field and Method Data

Code for Methods and Constructors

Numeric Literals

Method and Field
References

Local Variables
Operand Stack

References to Constant Pool

Fig. 1. Architecture of the Java card virtual machine

Figure 1 illustrates the architecture of a typical JCVM. Various components
and their functions are described subsequently with emphasis on how they inter-
act during the execution of an application.

The JCVM mainly deals with an abstract storage unit called word that is
the smallest storage unit that it can process. The actual size of a word is left
to the JCVM implementers. However, the JCVM specification [9] states that
a word should be large enough to hold a value of byte, short, reference, or
returnAddress.

When an application is initiated, the bytecode representation of an applica-
tion is loaded into the JCVM memory by a “class loader subsystem”. The class
loader is responsible for locating and loading the class onto the memory areas
used by the JCVM. This memory is divided into sub-areas, where each of them
contains specific information regarding the application. The JCVM memory area
is the heap, and all data/code related to an application is loaded onto it. The
three main storage structures defined on the heap that are of relevance here are
the Program Counter (PC) registers, method area, and Java stacks. These stor-
age structures are briefly discussed here as they are referred to in the remaining
paper (i.e., when we discuss our proposed counter-measures).

544 R.N. Akram et al.

The PC registers store the memory address of the bytecode instruction cur-
rently executing. If the JCVM supports multiple threading then each thread will
have its own PC register.

The method area is a memory space that consists of structures that include
runtime constant pool, field and method data, and code related to methods and
constructors. The runtime constant pool stores the constant field values (e.g.
numeric literals) and references to the memory address related to methods and
fields. The other two structures store the data and code related to fields and
methods, etc.

A frame is created by the JCVM each time a method is invoked during the
execution of an application. A frame is a construct that stores data, partial
results, return values, and dynamically resolved links, associated with a single
method (not the related class). These frames are stored on a last-in first-out
(LIFO) stack called Java Stack. For each thread, there will be a different Java
Stack. For security reasons, only the JCVM can issue the push and pop instruc-
tions to Java Stacks. The data structures that reside on a frame include an array
of local variables, operand stack, and references to constant pool. The operand
stack is a LIFO stack and it is empty when a frame is created. During the
execution of a method, the JCVM will load data values (of either constant or
non-constant variables/fields) onto the operand stack. The JCVM will operate
on the values at the top of the operand stack and push the results back on it.

The JCVM provide well-defined interfaces to access native methods; however,
contrary to traditional Java virtual machines they do not allow user-defined
native methods. Each JCVM has an execution engine that is responsible for the
execution of the individual instructions (opcodes) in an application code. The
design of the execution engine is dependent on the underlying hardware platform
and in a simple way, it can be considered as a software interface to the platform’s
processor.

This section does not exhaustively explain the JCRE and the rationale for
covering the aforementioned topics is to make it easy to follow the subsequent
discussion in the paper.

2.2 Related Work on JCRE Security

Earlier work on Java Cards was mainly related to the semantic and formal mod-
elling of the JCVM [11,12], Java Card firewall mechanism [13,14], and applets
[15–17]. The JCRE countermeasure against ill-formed applications was based
on on-card bytecode verification [18–21], which became compulsory in the Java
Card version 3 [9].

In the early 2000s, side channel analysis and fault attacks on smart card plat-
forms were mainly focussed on the cryptographic algorithms [2,22–26]. However,
in recent years, logical and fault attacks are combined to target the JCRE [27–29].

In 2008, Mostowski and Poll [30] loaded an ill-typed bytecode on various
smart cards to test their security and reliability mechanisms. They also noted
that smart cards that had an effective on-card bytecode verifier were less sus-
ceptible than others. In 2009, Hogenboom and Mostowski [31] managed to read

Enhancing Java Runtime Environment for Smart Cards 545

arbitrary contents of the memory. They performed this attack even in the pres-
ence of the Java Card firewall mechanism. Similar results were also shown by
Lanet and Iguchi-Cartigny [32]. Sere et al. [33] use the similar attack of modi-
fying the bytecodes to gain unauthorised access or skip the security mechanism
on a platform. However, Sere et al. relied on fault attacks to modify the byte-
codes rather than modifying them off-card as done by [30]. This way, Sere et al.
managed to bypass the on-card bytecode verification. A countermeasure to this
attack provided by Sere et al. relied on tagging the bytecode instructions with
integrity values (i.e. integrity bits) and during the execution, the JCVM checks
these bits and if it fails, the execution terminates.

In 2010, Barbu et al. [7] along with Vétillard and Ferrari [6] used a similar
attack methodology to Sere et al. [33] that later came to be known as combined
attacks. Later, the combined attack technique was extended to target various
components of JCVM in [34–36]. These attacks are significant; nevertheless,
they require the loading of an application designed specifically to accomplish
the attack goals.

Dubrile et al. [48] discussed the fault enabled mutants in the Java Cards
and proposed a countermeasure based on the typed stack. In [49] Julien Lancia
illustrated a combined attack on the memory references (object and variable
references) and proposed a countermeasure based on a defensive virtual machine.

The discussion in this section is by no means exhaustive but it introduces
the challenges faced by the JCRE.

2.3 Motivation

During an application’s lifetime, the application’s security is dependent on the
security of the runtime environment. As discussed in Sect. 2.2, a smart card
runtime environment is increasingly facing the convergence of various attack
techniques (e.g. fault and logical attacks). Although, physical protection mech-
anisms regarding fault attacks are proposed [37], we consider that the necessary
software protection for the runtime environment cannot be understated. The
software protection can augment the hardware mechanism to protect against
the combined attacks, as a similar approach has yielded successful results in the
secure design of cryptographic algorithms for smart cards [38]. Therefore, in this
paper, we will focus on the software protection mechanism.

In the literature, several methods are described for software protection mech-
anism, including application slicing in which an application is partitioned for
performance [39] or to protect intellectual property [40]. Such partitioning can
be used to tag individual segments of an application with adequate security
requirements. The runtime environment can then take into account the security
requirements, tagged with individual segments during the execution; thus pro-
viding configurable runtime security architecture. A similar approach is proposed
by Java Card 3 [9] and as part of the counter-measures to combined attacks pro-
posed by Sere et al. [36] and Bouffard et al. [41]. These proposals are based on
using Java annotations to tag segments of an application with required security
or reliability levels.

546 R.N. Akram et al.

Developers can use Java annotations to provide information regarding an
application (or its segment), which is used by either the compiler, or runtime
environment (i.e. JCVM). Based on Java annotations, Bouffard et al. [41] and
Sere et al. [36] proposed mechanisms to prevent control flow attacks. In addi-
tion, Loining et al. [42] used the Java annotations to ensure a secure and reliable
development of applications for embedded devices (e.g. smart cards). Further-
more, Java Card 3 Connected Edition also makes provision for Java annotations
[9]. The defined annotations by Java Card 3 are integrity, confidentiality, and full
(which corresponds to both integrity and confidentiality). In addition, the spec-
ification also allows proprietary annotations that can be used to invoke specific
protection mechanisms implemented by the respective card manufacturer. The
Java Card 3 specification does not detail what operations a JCVM should per-
form when encountering a particular annotation, which are left to the discretion
of the card manufacturers.

These proposals are useful but a malicious user can use the annotations
to his advantage in order to accomplish malicious goals. To avoid this, in our
proposal we have an on-card analyser that checks the security and reliability
requirements of an application, validates the associated Java annotations (tags)
with each segment of the application, and modifies the security annotations
where adequate. In such a scenario, we may assume that tagging segments of
an application with security annotations might be useful. Nevertheless, such an
on-card analyser is not currently available on smart cards. In this paper, we
solely focus on adequately hardening the runtime environment.

In our proposed framework, we tackle the problem from three aspects:
application compilation, runtime protection, and trusted component. The Java
annotations are used to tag properties of individual segments of an application.
Runtime commands (opcodes) that might be subverted to gain unauthorised
access are hardened with additional protection (security checks), and finally a
trusted component is included to complement the runtime environment for secu-
rity verification and validation of an application’s execution.

3 Runtime Protection Mechanism

In this section, we describe the anticipated attacker’s capability along with the
security requirements for a reliable and safe JCRE. Subsequently, we discuss
the proposed runtime protection mechanism and how it provides a secure and
reliable framework for JCRE.

3.1 Attacker’s Capability

Due to the advancement in chip technology and hardware protection mechanisms
[43], we have taken a realistic approach in defining the attacker’s capability,
taking into consideration the current state-of-the-art in attack methodologies
for smart cards. The attacker’s capabilities are listed as below:

1. Has the knowledge of the underlying (hardware and software) architecture.
2. Has the ability to load a customised application onto a given smart card.

Enhancing Java Runtime Environment for Smart Cards 547

3. Has the capability to induce a fault attack at a precise clock cycle.
4. Has the limited capability of changing a byte value to either 0x00 or 0xFF,

or a random value in between.
5. Has the potential to change values stored in a non-volatile memory perma-

nently within the limits of the capability four.
6. Has the ability to inject multiple faults; however, only in serial fashion (i.e.

after injecting a fault, the attacker waits for the results before injecting the
next fault). The adversary cannot inject multiple faults in parallel — injecting
two faults simultaneously.

7. Can overwrite the whole or part of a memory such as the Electrically Erasable
Programmable Read-Only Memory (EEPROM) or off-card storage.

Capability four restricts an adversary to induce a precise byte error rather
than the precise bit error. This restriction is based on the underlying smart card
hardware architecture. This is not to say that precise bit errors are not possible
in smart cards. On the contrary, they are technically possible but increasing the
density of packaging (i.e. chip fabrication) makes it challenging to change a value
of a bit in comparison to changing the value of a byte.

The rationale behind the choice of multiple fault attacks in serial fashion
than parallel is to give precise control and reproducibility of the attack. In fault
attacks where a malicious user injects multiple faults simultaneously (parallel),
it is difficult to assess whether the first fault injection was successful; therefore,
injecting the second fault may be less productive.

3.2 Security Requirements for a Runtime Protection Mechanism

In this section, we discuss the set of requirements appropriate for a runtime
protection mechanism to defend against the attacker discussed in the previous
section.

1. Customisable: Enables the application developers to define the security
requirements (if preferred) for their applications, which will be enforced as
long as they do not violate the platform’s and/or other application’s security
requirements.

2. Developer Independent: Does not require the application developers to eval-
uate the security risks of their application and adequately tag it.

3. Code Integrity: Detect any unauthorised modification to the application code
before it is executed.

4. Stack Integrity: Detect any modification to the values stored on the Java
stacks (e.g. operand stack).

5. Execution Flow Evaluation: Detect any illegal jumps to either restricted areas
(e.g. data or code locations for a different application) or violating the secure
execution flow of the application.

These requirements are revisited in Sect. 4.5, when our proposal is compared
with the existing proposals discussed in Sect. 2.2.

548 R.N. Akram et al.

3.3 Overview of the Proposed Runtime Protection Mechanism

The proposed architecture of the runtime protection mechanism is involved at
various stages of the application lifecycle - including the application compilation,
on-card bytecode verification, and execution as shown in Fig. 2.

On-Card ProcessesOff-Card Processes

Design
Compilation /

Packaging
Off-Card Bytecode

Verifier
On-Card Bytecode

Verifier
Execution

Environment

Trusted ComponentVerification

EnforcementProperty
File

Fig. 2. Generic overview of the proposed runtime protection mechanism

During the compilation/packaging process additional information regarding
individual methods, classes, and objects of an application is generated as part of
the property file, discussed in Sect. 3.4. The property file assists the runtime envi-
ronment to provide a security and reliability service during the execution of the
application. The off-card bytecode verification checks whether the downloaded
application conforms to the (given) language’s semantics. The on-card bytecode
verifier can also request the trusted component to validate the property file.
The trusted component is the proposed Runtime Security Manager (RSM) dis-
cussed in Sect. 3.6 that actively enforces the security and reliability policy of the
platform - taking into account the information included in the property file.

The proposed framework does not require that application developers per-
form security assessments of their application(s) to adequately tag application
segments. The framework only requires at minimum that developers compile
their applications in a way that they have property files that stores informa-
tion related to the respective applications. The second requirement of the pro-
posed framework is to adequately harden the runtime environment discussed in
Sect. 3.5 along with introducing the RSM that will enforce the platform security
policy (Sect. 3.6).

In subsequent sections, we will extend the generic architecture discussed in
this section and explain how the different components come together.

3.4 Application Compilation

A Java compiler will take a Java file and convert it to a (bytecode) class file. The
class file not only has opcodes, but it also includes information about various
segments (e.g. methods, and classes) of an application that is necessary for the
JCVM to execute the application. However, for our proposal we introduce a
property file that includes additional information about an application. If a
JCVM knows how to process property files then it will proceed with them;
otherwise, it will ignore them. In our proposal a property file is stored and
used by the RSM during the execution of the associated application. In order

Enhancing Java Runtime Environment for Smart Cards 549

to integrate the RSM into the runtime environment, the JCVM is required to
be modified so it can communicate with the RSM in order to safeguard the
execution environment.

1 App l i c a t i on In f o {
2 App l i c a t i o n I d e n t i f i e r App l i c a t i o n I d e n t i f i e r ;
3 Class In fo rmat ion C la s s In f o [c l a s s c oun t] ; }
4 Cla s s In f o {
5 C l a s s I d e n t i f i e r C l a s s I d e n t i f i e r ;
6 MethodInformation MethodInfo [method count] ; }
7 MethodInfo{
8 Method Iden t i f i e r MethodIdent i f i e r ;
9 MethodIntegr ity HashValue ;

10 PermittedExecutionPath Path [jumps count]}

Listing 1.1. Property file structure of a Java Card application.

The property file contains security and reliability information concerning an
application that the runtime environment can utilise to execute an application.
The structure of the property file is illustrated in Listing 1.1, which includes
information regarding the permitted execution-paths, and integrity matrix (hash
values of the non-mutable part of the individual methods in a class).

The ApplicationInfo data structure includes the application identifier (e.g.
AID) and an array of classes that are part of the respective application. For
each class in the application, we have a ClassInfo structure that contains the
MethodInformation array that contains information regarding all methods asso-
ciated with the given class. Each method is represented by the MethodInfo
structure that includes the permitted execution-paths that are generated for
each method. In the permitted execution-paths, child nodes represent jumps to
other methods, irrespective of whether they are from the same application or
from a different application. In a way, combining the method paths of all classes
can give the complete permitted execution-path of the respective application. In
addition to the permitted execution-paths, a MethodInfo also contains the hash
value (of non-mutable code) of the respective method. This hash value can be
generated at compile time and added to the property file, or at the time of the
application installation: the RSM calculates the hash value and stores it in the
property file.

3.5 Execution Environment

The runtime environment is modified to support the inclusion of the RSM that is
shown in Fig. 3. At the time of application installation, the application bytecode
is stored in the respective SP’s domain along with the associated property file.
The property file is sealed1 so that neither the application nor an off-card entity
(e.g. an SP or/and adversary) can modify it without detection. At the time of
execution, the RSM will retrieve the file, verify the integrity of the file, and then
decrypt it. If an SP wants to update its application then it will proceed with the
1 Sealed: The data is encrypted (authenticated encryption) by the RSM storage key.

550 R.N. Akram et al.

text

Class Loader Subsystem

Runtime Data Areas

Heap

Method Area

Java Stacks

PC Registers

Execution Engine
Native Method

Interface
Native Methods

Class Files (bytecode)

Frames

Runtime Constant Pool

Field and Method Data

Code for Methods and Constructors

Numeric Literals

Method and Field
References

Local Variables

Operand Stack

References to Constant Pool

Runtime Security
Manager

textIntegrity Matrix

Fig. 3. Architecture of the proposed runtime environment for COM devices.

update command2 that will notify the RSM of the update. At the completion of
the update, the RSM will verify the application security certificate (if available),
and update the property file – if required.

3.6 Runtime Security Manager

The purpose of the RSM is to enforce the security counter-measures (Sect. 3.7)
defined by the respective platform. To enforce the security counter-measures,
the RSM has access to the heap area (e.g. method area, Java stacks) and it can
be implemented as either a serial or a parallel mode.

A serial RSM will rely on the execution engine of the JCVM (Fig. 1) to per-
form the required tasks. This means that when an execution engine encounters
instructions that require an enforcement of the security policy, it will invoke the
RSM that will then perform the checks. If successful the execution engine con-
tinues with execution, otherwise, it will terminate. A parallel RSM will have its
own dedicated hardware (i.e. processor) support that enables it to perform checks
simultaneously while the execution engine is executing an application. Note that
having multiple processors on a smart card is technically possible [44]. The main
question regarding the choice is not the hardware, but the balance between the
performance and latency.

Performance, as the name suggests is concerned with the computational
speed. Whereas, latency in this context deals with the number of instructions
executed between an injected-error to the point it is detected. We will return to
this discussion later in Sect. 4 where we provide test (simulated) implementation
results.
2 Update Command: We do not propose any update command in this paper but similar

commands are defined as part of the GlobalPlatform card specification. The update
command enables an authorised entity (e.g. SP) to modify an application.

Enhancing Java Runtime Environment for Smart Cards 551

3.7 Runtime Security Counter-Measures

The RSM along with the runtime environment would apply the required secu-
rity counter-measures (as part of the runtime protection mechanism) that are
discussed in subsequent sections.

Operand Stack Integrity. As discussed in Sect. 2.1, an operand stack is part of
the Java stacks and they are associated with individual Java frames (methods).
During the execution of an application, the runtime environment pushes and
pops local variables, constant fields, and object references to the operand stack.
The instructions specified in an application can then process the values at the
top of the stack. Barbu et el. [34] showed that a fault injection that changes the
values stored on the operand stack could have adverse effect on an application’s
security. Furthermore, they also provided three different counter-measures to the
proposed attack.

The proposed countermeasure (second-refined method) of Barbu et al. [34]
is based on the idea of operand stack integrity. They define a variable α, and all
values that are pushed on or popped from the operand stack are XORed with the
α. On every jump instruction beyond the scope of the current frame (method),
the runtime environment XORs all the values stored on the operand and com-
pares the result with α. If they match then the integrity of the operand stack
is verified. Their proposal does not measure the integrity of the operand stack
on instructions like if-else or loops, which could be the target of the malicious
user. In their proposed counter-measures they sacrificed security and (to some
extent) performance for the sake of memory use, whereas our proposal focuses
on security rather than saving the memory.

In our proposal, we use a Last In First Out (LIFO) stack referred to as
integrity stack. One thing to note is that the JCVM knows the size of the
operand stack when it loads a frame (Sect. 2.1); therefore, the RSM just cre-
ates an integrity stack of the size n where n is the size of the respective operand
stack. We refer to the integrity stack as “InS” in Listing 1.2.

When a frame is loaded, the JCVM and the RSM will create an operand and
integrity stack, respectively. Furthermore, the RSM will also generate a random
number and stores it as Sr. The rationale for using the random number will
become apparent in the subsequent discussion.

1 // Executed by RSM when a value i s pushed onto an i n t e g r i t y s tack .
2 On Stack Push (pushedValue){
3 push (InS [top] XOR pushedValue) ;}
4 // Executed by RSM when a value i s popped from an operand stack .
5 On Stack Pop (poppedValue){
6 i f (pop (InS) XOR poppedValue := InS [top]) {
7 } e l s e {
8 terminateExecut ion () ;
9 }}

Listing 1.2. Operand stack integrity operations.

552 R.N. Akram et al.

When a value Vi is pushed to the operand stack, if it is the first value on the
stack then the value pushed on the InS will be Ii= Vi ⊕ Sr. For all subsequent
values (where i> 1) the values pushed on the Ins will be Ii= Vi ⊕ Vi−1.

The rationale for using a random number is to avoid parallel fault injections
that try to change the values on both operand and integrity stack simultaneously.
Such a parallel fault injection will become difficult if an adversary cannot predict
the values stored on the integrity stack, as each value on the integrity stack will
be chained with the generated random number.

When a value is popped out of the operand stack, we also pop the integrity
value from the integrity stack, XOR it with the popped value from the operand
stack and compare it with the new top value on the integrity stack. If the values
match then the integrity of the popped value from the operand stack is verified;
otherwise, it has been corrupted and the RSM requests the JCVM to terminate
the execution as shown in Listing 1.2.

The RSM will continuously monitor the integrity of the operand stack, in
comparison to the Barbu’s proposal. Furthermore, in this proposal the validation
does not require the calculation of integrity value over the entire operand stack.
If we take the Barbu’s proposal then for an operand stack of length ‘n’, we
have to perform “n-1” XOR operations every time we need to verify the state
of the operand stack. However, in our proposal we only need to perform one
XOR operation. We sacrifice the memory for the sake of performance in our
proposal. We consider that operand stacks are not large data structures so even
if we double the memory used by them, it will not have an adverse effect on the
overall memory usage.

Permitted Execution Path (PEP) Analysis. In our proposal, we are con-
cerned with jumps that refer to external resources. The term external resources
in the context of PEP analysis means any jump that goes beyond the scope
of the current Java frame (i.e. method) while it is still on the Java stack.
Once a method completes its execution, the JCVM will remove the associated
Java frame from the Java stacks (Fig. 1). Examples of such jumps defined in
Java virtual machine specification [45] are invokeinterface, invokestatic,
invokevirtual, areturn, etc.

1 byte B(byte inputValue){
2 byte a = 1 ;
3 i f (inputValue != a){ C(inputValue) ;
4 } e l s e {D(inputValue)}
5 re turn SG(inputValue) ;}

Listing 1.3. Code for an example method B.

To explain the Permitted Execution Path Analysis further, we consider an
example method B that has three jumps before it reaches the return statement
that completes the execution of the method. The method B’s code is shown
in Listing 1.3. Each invocation of a method (e.g. C, D, and SG) is represented
by a symbolic method name (i.e. alphanumeric form that is easily readable/

Enhancing Java Runtime Environment for Smart Cards 553

recognisable by humans) that has an associated unique byte sequence referred
as method identifier. For example, unique method identifier of methods B, C, D,
and SG are 0xF122, 0xF123, 0xF124, and 0xF125, respectively. For explanation
we have used method identifiers that consist of two bytes. Along with the method
identifier the property file also includes PermittedExecutionPath, which is a
set of PEPs sanctioned for the given method.

The PermitedExecutionPath in the property file (Listing 1.1) is simply con-
structed by taking into account every possible (legal) execution path of a method.
Taking the example method B, the first jump can either be to method C or D
depending upon the input. The construction of the PermitedExecutionPath (set
of legal jumps) is constructed by XORing the method identifiers of individual
jumps.

The PEP analysis requires that the RSM have a PEP variable “cfa” that
stores the path taken by an application as cfa = Σn

j=1Cj . Where Cj represents
the jumps taken during execution of an application. During the execution of
a method, when the JCVM encounters a jump to another method the RSM
XORs the method identifier with the current value of “cfa” and lookup the
PermitedExecutionPath of the given method in the associated property file. If
it finds a matching value, the JCVM will proceed with the execution; if not it
will terminate the execution. Our scheme also deals with the loop instructions
that contain jumps to multiple methods depending upon the loop condition.

Bytecode Integrity. The property file associated with an application stores
the hash values of individual methods. When the runtime environment fetches
an application, the RSM will measure the integrity value of individual methods
of the application and compare them with the hash values in the property file.
Therefore, any method that is loaded to the heap goes through the integrity
validation. This validation protects against the fault attacks on an application
stored while it is stored on a non-volatile memory.

The hashes of the individual methods (code and constant local-data vari-
ables) along with the integrity values (hash values) generated on the global
persistent data can create a whole application integrity matrix. During the exe-
cution of an application, when it jumps from one method to another, it can be
assured that the execution path is going to a (potentially) trusted method or the
integrity of the called method will be verified. The RSM also tracks the integrity
of the global variables and update the hash values if any authorised changes are
being performed by the application.

4 Analysis of the Runtime Protection Mechanism

In this section, we evaluate the suitability of countermeasures against the attacks
discussed in Sect. 2.2 under the adversary’s capability detailed in Sect. 3.1. Fur-
thermore, we provide the latency and incurred overhead analysis for both serial
and parallel RSMs.

554 R.N. Akram et al.

4.1 Security Analysis

In this section, we discuss how the proposed counter-measures protect against
the combined attacks under the attacker’s capability detailed in Sect. 3.1.

Operand Stack Integrity. We proposed a more refined approach to Barbu
et al. [34] and removed the need to perform integrity measurement of the entire
operand stack on each validation. In addition, we made the validation process
continuous thus checking the integrity of the operand stack on each pop and
push operation. If a malicious user changes values on the operand stack, the
RSM can not only detect the modification but can also provide error correction
service by providing the correct value that was stored on the operand stand.
Furthermore, by using a random number, our proposal makes it difficult for an
adversary to know the values stored on the integrity stack, even if he has the
knowledge of all values on the operand stack.

PEP Analysis. The PEP analysis performed by the RSM during the execution
of an application effectively prevents execution path attacks. If an attacker has
the capability of multiple fault injections simultaneously, (which is beyond the
capability of our attacker as stated in Sect. 3.1) then he can in theory affect the
RSM execution. Nevertheless, even with simultaneous injections the attacker
may be able to skip a node in the execution tree but the RSM calculation on
the subsequent nodes will reveal an illegal path of execution. Therefore, even in
the parallel injection model the RSM will detect the erroneous execution path,
unless the attacker keeps on injecting faults during the whole execution of an
application.

Bytecode Integrity. Our countermeasure prevents an adversary from chang-
ing an application while it is stored on a non-volatile memory (capability four
of an adversary discussed in Sect. 3.1). To avoid such modifications, the RSM
generates a hash of individual methods that are requested by the JCVM. If the
hash matches the stored value (MethodIntegrity in Listing 1.1) in the respec-
tive property file, the JCVM will proceed with the execution of the method;
otherwise, the RSM will signal the termination of the application (and possibly
mark it malicious and up for deletion). Furthermore, this protection mechanism
can also safeguard the dynamic loading of applications/classes/routines as part
of a simple web server or other applications, which are stored in off-card storage.

4.2 Evaluation Context

For evaluating the proposed counter-measures, we have selected four sample
applications. Two of the applications selected are part of the Java Card devel-
opment kit distribution: Wallet and Java Purse. The other two applications are
the offline attestation algorithm [46] and the STCPSP protocol [47].

Enhancing Java Runtime Environment for Smart Cards 555

4.3 Latency Analysis

As discussed before, latency is the number of instructions executed after an
adversary mounts an attack, before the system becomes aware of it. Therefore,
in this section we analyse the latency of the proposed counter-measures under
the concepts of serial and parallel RSMs that are listed in Table 1 and discussed
subsequently.

Table 1. Latency measurement of individual countermeasure

Counter-measures Serial RSM Parallel RSM

Operand Stack Integrity 0 + i 3 + i

Permitted Execution Path Analysis 0 3(Cn)

Bytecode Integrity 0 0

In case of the operand stack integrity, the serial RSM finds the occurrence
of an error (e.g. fault injection) with latency “0+i”, where ‘i’ is the number
of instructions executed before the manipulated value reaches the top of the
operand stack. Similarly, the latency value in case of the operand stack integrity
for the parallel RSM is “3+i”, where ‘3’ is the number of instructions required to
perform a comparison on pop operation (On Stack Pop(poppedValue) in Listing
1.2). The latency value of the parallel RSM is higher than the serial. This has
to do with the fact that while the parallel RSM is applying the security checks
the JCVM does not need to stop the execution of subsequent instructions.

Regarding the PEP analysis, the serial RSM has a latency of zero where
the parallel RSM has latency value of “3(Cn)”, where the value Cn represents
the number of legal jumps in the respective PermittedExecutionPath set. To
explain this further, consider the example in Listing 1.3. The set method B has
four possible values (Bcfa−Set in Sect. 3.7). Thereby, the latency value for a jump
in the method B in the worse case is “3(4) = 12”. The value ‘3’ represents the
number of instructions required to execute individual comparison.

A notable point to mention here is that all latency measurements listed in
Table 2 are based on the worst-case conditions. Furthermore, it is apparent that
it might be difficult to implement a complete parallel RSM. To explain our
point, consider two consecutive jump instructions in which the parallel RSM
has to perform PEP analysis. In such a situation, there might be a possibility
that while the RSM is still evaluating the first jump, the JCVM initiates the
second jump instruction. Therefore, this might create a deadlock between the
JCVM and parallel RSM, so we consider that either JCVM should wait for
the RSM to complete the verification, or for the sake of performance the RSM
might skip certain verifications. We opt for the parallel RSM that will switch
to the serial RSM mode, restricting the JCVM to proceed with next instruction
until the RSM can apply the security checks. This situation will be further
explained during the discussion on the performance measurements in the next
section.

556 R.N. Akram et al.

4.4 Incurred Overhead Analysis

To evaluate the performance impact of the proposed counter-measures we devel-
oped an abstract virtual machine that takes the bytecode of each Java Card
applet and then computes the computational overhead for individual counter-
measure. When a Java application is compiled, the Java compiler (javac) pro-
duces a class file as discussed in Sect. 2.1. The class file is a Java bytecode
representation, and we utilise the javap tool that comes with Java Development
Kit (JDK) as it produces the bytecode representation of a class file in human-
readable mnemonics as represented in the JVM specification [45]. The abstract
virtual machine takes the mnenomic bytecode representation and searches for
push, pop, and jump (e.g. method invocation) opcodes. Subsequently, we cal-
culated the number of extra instructions required to be executed in order to
implement the counter-measures discussed in previous sections.

Table 2. Performance measurement (percentage increase in computational cost)

Applications Serial RSM Parallel RSM

Wallet +29 % +22 %

Java Purse +30 % +26 %

Offline Attestation [46] +27 % +23 %

STCPSP [47] +39 % +33 %

We compute the incurred overhead as a number of instructions that are going
to be executed by an application that our countermeasures verify/validate. After
this measurement, we have associated costs based on additional instructions
executed for each JCVM instruction and calculated as an (approximate) increase
in the percentage of computational overhead and listed in Table 2. Furthermore,
the computational cost of generating a hash is dependent on individual hardware
configuration. The same is also true for the execution of each of the instructions.
This is the reason why we opt for the evaluation based on the number of increased
instructions rather then the performance as it provides us a hardware agnostic
cost.

For each application, the counter-measures have different computational over-
head values because they depend upon how many times certain instructions that
invoke the counter-measures are executed. Therefore, the computational over-
head measurements in Table 2 can only give us a measure of how the performance
is affected in individual cases - without generalising for other applications.

4.5 Comparative Analysis

In this section, we will compare our proposed framework with the existing state-
of-the-art discussed in Sect. 2.2 in the context of security requirements for a
JCRE (listed in Sect. 3.2).

Enhancing Java Runtime Environment for Smart Cards 557

Table 3. Comparison between Proposed and Existing Proposals

Requirement Barbu et al. [7] Sere et al. [36] Dubreuil et al. [48] Lancia [49] RSM

Customisable Limited Yes No No Yes

Developer Independent Yes No Yes Yes Yes

Code Integrity No Yes No Yes Yes

Stack Integrity Yes No Yes No Yes

Execution Flow Evaluation No No No No Yes

Table 3 illustrates our proposed framework’s results are better in comparison
to other proposals, in the context of attacker capabilities and security require-
ments. One thing to note is that other proposals compared in Table 3 do not
provide performance degradation matrix associated with their countermeasures,
equivalent to one presented in Sects. 4.3 and 4.4

5 Conclusion

In this paper we discussed the smart card runtime environment by taking the
Java Card as a practical example. The JCRE was described with its different
data structures that it uses during the execution of an application. Subsequently,
we discussed various attacks that target the smart card runtime environment and
most of these attacks are based on perturbation of the values stored by the run-
time environment. These perturbations are the result of fault injection, which
was defined and mapped to an adversary’s capability in this paper. Based on
recent published attacks on the smart card runtime environment, we proposed
an architecture that includes the provision of a RSM. We also proposed three
counter-measures and provided the computational cost imposed by them. The
overall protection framework is then compared with the existing frameworks
and we showed that our proposal provides comparatively better protection. No
doubt, counter-measures that do not change the core architecture the Java vir-
tual machine, will almost always incur extra computational cost. Therefore, we
concluded in this paper that a better way forward would be to change the archi-
tecture of the Java virtual machine. Finally, in the context of this paper we
showed that the current architecture can be hardened at the expanse of a mod-
est computational penalty.

References

1. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Chris-
tianson, B., Lomas, M., Crispo, B., Roe, M. (eds.) Security Protocols 1997. LNCS,
vol. 1361, pp. 125–136. Springer, Heidelberg (1998)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Sauveron, D.: Multiapplication smart card: towards an open smart card? Inf. Secur.
Tech. Rep. 14(2), 70–78 (2009)

558 R.N. Akram et al.

4. Akram, R.N., Markantonakis, K.: Smart cards: state-of-the-art to future directions,
invited paper. In: Douligeris, C., Serpanos, D. (eds.) IEEE International Sympo-
sium on Signal Processing and Information Technology (ISSPIT 2013). IEEE CS,
Athens, Greece (2013)

5. Markantonakis, K., Mayes, K., Sauveron, D., Askoxylakis, I.: Overview of security
threats for smart cards in the public transport industry. In: 2008 IEEE Interna-
tional Conference on e-Business Engineering. IEEE CS (2008)

6. Vétillard, E., Ferrari, A.: Combined attacks and countermeasures. In: Gollmann,
D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp.
133–147. Springer, Heidelberg (2010)

7. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java card 3.0 combining fault
and logical attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

8. Chaumette, S., Sauveron, D.: An efficient and simple way to test the security of
Java cards. In: Fernández-Medina, E., Castro, J.C.H., Castro, L.J.G. (eds.) Security
in Information Systems, pp. 331–341. INSTICC Press, Miami (2005)

9. Java Card Platform Specification, Oracle Std. v3.0.1, May 2009
10. Java Card Platform Specification, Sun Microsystem Inc Std. v2.2.2, March 2006
11. Barthe, G., Dufay, G., Jakubiec, L., de Sousa, S.M.: A formal correspondence

between offensive and defensive JavaCard virtual machines. In: Cortesi, A. (ed.)
VMCAI 2002. LNCS, vol. 2294, pp. 32–45. Springer, Heidelberg (2002)

12. Barthe, G., Stratulat, S.: Validation of the JavaCard platform with implicit induc-
tion techniques. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 337–351.
Springer, Heidelberg (2003)

13. Éluard, M., Jensen, T., Denne, E.: An operational semantics of the Java card
firewall. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 95–
110. Springer, Heidelberg (2001)

14. Éluard, M., Jensen, T.: Secure object flow analysis for Java card. In: Proceedings of
the 5th Conference on Smart Card Research and Advanced Application Conference,
CARDIS 2002, p. 11. USENIX Association, California (2002)

15. Lanet, J.L., Requet, A.: Formal proof of smart card applets correctness. In:
Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 85–97.
Springer, Heidelberg (2000)

16. Meijer, H., Poll, E.: Towards a full formal specification of the JavaCard API. In:
Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 165–178. Springer,
Heidelberg (2001)

17. Almaliotis, V., Loizidis, A., Katsaros, P., Louridas, P., Spinellis, D.D.: Static pro-
gram analysis for Java card applets. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 17–31. Springer, Heidelberg (2008)

18. Basin, D., Friedrich, S., Posegga, J., Vogt, H.: Java bytecode verification by model
checking. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
491–494. Springer, Heidelberg (1999)

19. Leroy, X.: On-card bytecode verification for Java card. In: Attali, S., Jensen, T.
(eds.) E-smart 2001. LNCS, vol. 2140, pp. 150–164. Springer, Heidelberg (2001)

20. Basin, D., Friedrich, S., Gawkowski, M.: Verified bytecode model checkers. In:
Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp.
47–66. Springer, Heidelberg (2002)

21. Leroy, X.: Bytecode verification on Java smart cards. Softw. Pract. Exper. 32(4),
319–340 (2002)

Enhancing Java Runtime Environment for Smart Cards 559

22. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

23. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis
attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard
Technology on USENIX Workshop on Smartcard Technology, p. 17. USENIX Asso-
ciation, Berkeley (1999)

24. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

25. Quisquater, J.-J., Samyde, D.: Eddy current for Magnetic Analysis with Active
Sensor. Springer (2002)

26. Aumller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on RSA
with CRT: concrete results and practical countermeasures. In: Kaliski Jr, B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

27. Joint Interpretation Library - Application of Attack Potential to Smartcards,
Online, Technical report, Apirl 2006

28. Vertanen, O.: Java type confusion and fault attacks. In: Breveglieri, L., Koren,
I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 237–251.
Springer, Heidelberg (2006)

29. Lemarechal, A.: Introduction to fault attacks on smartcard. In: 11th IEEE Inter-
national On-Line Testing Symposium, IOLTS 2005, p. 116, July 2005

30. Mostowski, W., Poll, E.: Malicious code on Java card smartcards: attacks and
countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008)

31. Hogenboom, J., Mostowski, W.: Full memory read attack on a Java card. In:
Pereira, O., Quisquater, J.-J., Standaert, F.-X. (eds.) 4th Benelux Workshop on
Information and System Security. Springer, Belgium (2009)

32. Lanet, J.-L., Iguchi-Cartigny, J.: Developing a Trojan applet in a smart card. J.
Comput. Virol. 6(1) (2009)

33. Sere, A.A., Iguchi-Cartigny, J., Lanet, J.-L.: Automatic detection of fault attack
and countermeasures. In: Proceedings of the 4th Workshop on Embedded Systems
Security, ser. WESS 2009, pp. 71–77. ACM, New York (2009)

34. Barbu, G., Duc, G., Hoogvorst, P.: Java card operand stack: fault attacks, combined
attacks and countermeasures. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079,
pp. 297–313. Springer, Heidelberg (2011)

35. Barbu, G., Thiebeauld, H.: Synchronized attacks on multithreaded systems - appli-
cation to Java card 3.0 -. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp.
18–33. Springer, Heidelberg (2011)

36. Sere, A.A., Iguchi-Cartigny, J., Lanet, J.-L.: Evaluation of countermeasures against
fault attacks on smart cards. Int. J. Secur. Appl. 5(2), 49–61 (2011)

37. Derouet, O.: Secure smartcard design againist laser fault. (Invited Speaker). In:
4th Workshop on Fault Diagnosis and Tolerance in Cryptography (FDRC 2007).
IEEE-CS, Austria, Vienna, September 2007

38. Kim, S.-K., Kim, T.H., Han, D.-G., Hong, S.: An efficient CRT-RSA algorithm
secure against power and fault attacks. J. Syst. Softw. 84(10), 1660–1669 (2011)

39. Zhang, T., Pande, S., Valverde, A.: Tamper-resistant whole program partitioning.
In: LCTES 2003, the 2003 ACM SIGPLAN Conference on Language, Compiler,
and Tool for Embedded Systems, pp. 209–219. ACM, New York (2003)

560 R.N. Akram et al.

40. Zhuang, X., Zhang, T., Lee, H.-H.S., Pande, S.: Hardware assisted control flow
obfuscation for embedded processors. In: CASES 2004. ACM, USA (2004)

41. Bouffard, G., Lanet, J.-L., Machemie, J.-B., Poichotte, J.-Y., Wary, J.-P.: Eval-
uation of the ability to transform SIM applications into hostile applications. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 1–17. Springer, Heidelberg
(2011)

42. Loinig, J., Steger, C., Weiss, R., Haselsteiner, E.: Identification and Verification of
Security Relevant Functions in Embedded Systems Based on Source Code Anno-
tations and Assertions. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis,
K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 316–323. Springer,
Heidelberg (2010)

43. Séré, A.A.K., Iguchi-Cartigny, J., Lanet, J.-L.: Checking the paths to identify
mutant application on embedded systems. In: Kim, T., Lee, Y., Kang, B.-H.,
Slezak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 459–468. Springer, Heidelberg
(2010)

44. Rankl, W., Effing, W.: Smart Card Handbook, 3rd edn. Wiley, New York (2003)
45. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.

Addison-Wesley Longman, Amsterdam (1999)
46. Akram, R.N., Markantonakis, K., Mayes, K.: Remote attestation mechanism for

user centric smart cards using pseudorandom number generators. In: Qing, S.,
Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 151–166. Springer, Hei-
delberg (2013)

47. Akram, R.N., Markantonakis, K., Mayes, K.: A secure and trusted channel proto-
col for the user centric smart card ownership model. In: 12th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications.
IEEE CS, Australia, July 2013

48. Dubreuil, J., Bouffard, G., Lanet, J., Cartigny, J.: Type classification against fault
enabled mutant in Java based smart card. In: 2012 Seventh International Confer-
ence on Availability, Reliability and Security (ARES), August 2012

49. Lancia, J.: Java card combined attacks with localization-agnostic fault injection. In:
Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 31–45. Springer, Heidelberg
(2013)

Making Bitcoin Exchanges Transparent

Christian Decker(B), James Guthrie, Jochen Seidel, and Roger Wattenhofer

Distributed Computing Group, ETH Zurich, Zürich, Switzerland
{cdecker,guthriej,seidelj,wattenhofer}@ethz.ch

Abstract. Bitcoin exchanges are a vital component of the Bitcoin
ecosystem. They are a gateway from the classical economy to the cryp-
tocurrency economy, facilitating the exchange between fiat currency and
bitcoins. However, exchanges are also single points of failure, operat-
ing outside the Bitcoin blockchain, requiring users to entrust them with
their funds in order to operate. In this work we present a solution, and
a proof-of-concept implementation, that allows exchanges to prove their
solvency, without publishing any information of strategic importance.

1 Introduction

Since the conceptual introduction of Bitcoin in 2008 by Satoshi Nakamoto [15]
and the appearance of the first Bitcoin client in 2009, Bitcoin has seen massive
growth on a multitude of fronts. Bitcoin currently has a market capitalisation of
3 billion US dollars and an average daily transaction volume of approximately
50 million US dollars.

One factor which has driven widespread adoption of Bitcoin is the emergence
of Bitcoin exchanges: companies which allow trading bitcoins with fiat currency,
such as Euros and US dollars. Bitcoin exchanges have helped the adoption of
Bitcoin in two ways. Firstly, before the advent of Bitcoin exchanges, the only
way to come by bitcoins was to mine them oneself or to informally trade bitcoins
with other participants. Exchanges have opened the Bitcoin market to parties
who might otherwise not have been able to participate. Secondly, exchanges
publish their trade books which establishes an accepted exchange rate between
fiat currencies and bitcoins. This in turn allowed vendors to value their goods
and services in bitcoins in accordance to the market rates in fiat currency.

Although Bitcoin exchanges have had a positive contribution to the Bitcoin
economy, they are not without risks. In Moore and Christin’s analysis of the
risks involved with Bitcoin exchanges [14] they analyse 40 Bitcoin exchanges, at
the time of publication 18 of the 40 exchanges had ceased operation. Of those
18, 5 exchanges did not reimburse customers on closure, 6 exchanges claim that
they did and for the remaining 7 there is no data available. Most of the collapsed
Bitcoin exchanges were not long-lived, with their closure either being immediate
or over a relatively short period of time.

Since the publication of that analysis the most high-profile exchange closure
took place: the bankruptcy and closure of the Mt. Gox Bitcoin exchange, in which
650,000 bitcoins belonging to customers of the exchange were lost or stolen.
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 561–576, 2015.
DOI: 10.1007/978-3-319-24177-7 28

562 C. Decker et al.

At the time, Mt. Gox claimed that a flaw in the Bitcoin protocol was to blame
for the loss of its client’s bitcoins, a claim which has since been refuted [7]. At
the time of the event, Mt. Gox was one of the longest-running exchanges in
the Bitcoin market with its cumulative number of transactions accounting for
approximately 70 % of all Bitcoin transactions.

Bitcoin transactions are irreversible by design. Once a user has transferred
her bitcoins to another user there is no way that she will get them back without
the cooperation of the recipient. There is little recourse for the customer of an
exchange: Bitcoin is new ground for insurers, regulators, and law enforcement
who do not yet have any established methods for dealing with Bitcoin related
legal issues.

In an effort to calm customers fears, some exchanges have taken to period-
ically publishing data proving their solvency: an anonymised list of their cus-
tomers account balances and a list of Bitcoin addresses owned by the exchange
along with a signature that proves the ownership. If the balance of the bitcoins
available on the addresses is at least as large as the sum of the amounts owed by
the exchange, the exchange is solvent. Although customers may be appreciative
of this type of transparency, it may put the exchange at a disadvantage as it
reveals information of strategic importance, such as the number of customers,
the amounts the exchange’s customers keep on hand and the total balance of
bitcoins held by the exchange.

In conventional financial markets trust is placed in the financial statements
made by institutions such as exchanges or investment funds through the process
of auditing. An independent third party, which is perceived to be trustworthy
by the customers of the institution, or a state mandated auditor inspects the
financial records of the institution and publishes an audit result. Such an audit
is an expensive and time-consuming process and is typically only performed in
well-spaced intervals.

In this paper, we propose to perform a software-based audit of Bitcoin
exchanges without revealing any information about the bitcoins that are pos-
sessed by either the exchange, or its customers to the public. This is achieved by
replacing the human financial auditor by a piece of software. To ensure that the
software is executed correctly we rely on Trusted Computing (TC) technology.
In our scenario, the traditional limitations of financial auditing no longer apply.
Software executes orders of magnitudes faster than humans, and the execution
of a piece of software is generally not costly at all and it becomes feasible to
provide daily audits of a Bitcoin exchange. Our contribution is twofold: we pro-
pose a system that uses Trusted Computing to prove the exchange’s solvibility
to its customers and we implement the proposed solution on consumer hardware
minimizing obstacles to its deployment.

1.1 Related Work

Auditing Bitcoin exchanges has been previously discussed by Todd and
Maxwell [10], and later by Maxwell and Wilcox [11]. Both approaches rely on
modifying the merkle tree computation to defend against insertion of negative

Making Bitcoin Exchanges Transparent 563

subtrees. Our use of TC for the merkle tree computation obviates any such
modifications as the secure code would error out on negative sums.

Trusted Computing, and more specifically TPMs, have been proposed previ-
ously as a method to secure Bitcoin wallets by Hal Finney [8], storing sensitive
keying material in the tamper proof storage. Since then several additional meth-
ods of securing funds have been proposed, including multisignature accounts [3],
the creation of deterministic public keys that do not require private keys during
the generation [4] and locking funds for a predetermined period of time [17].
The latter may also be used to extend the audit to guarantee the solvency for a
certain period, by making the funds inaccessible until they are unlocked.

While regular auditsmayhelpdetect fraudat an early stage, a regulatory frame-
work is needed to prosecute perpetrators. Some initial work has been done in the
field of regulation, examining the impact of Bitcoin on current anti-money laun-
dering (AML) policies and on know-your-customer (KYC) policies [1,2,5,6,16].

2 Preliminaries

The software-based audit of a Bitcoin exchange relies on an understanding of
both the Bitcoin project as well as Trusted Computing. This section introduces
the fundamentals of Bitcoin and Trusted Computing, as needed in this paper.

2.1 Bitcoin

Bitcoin is a decentralized digital currency built on cryptographic protocols and
a system of proof of work. Instead of relying on traditional, centralized financial
institutions to administer transactions as well as other aspects concerning the
economic valuation of the currency, peers within the Bitcoin network process
transactions and control the creation of bitcoins. The major problems to be
solved by a distributed currency are related to how consensus can be reached
in a group of anonymous participants, some of whom may be behaving with
malicious intent.

Transactions within the Bitcoin network are based on public key cryptogra-
phy, users of Bitcoin generate an address which is used to receive funds. The Bit-
coin address is derived, through cryptographic hash functions, from the public-
key of an ECDSA key pair. A Bitcoin transaction records the transfer of bitcoins
from some input address to output addresses. A transaction consists of one or
more inputs and one or more outputs, each input to a transaction is the output
of a previous transaction. The output of a transaction may only be used as the
input to a single transaction. The outputs are associated with an address, whose
private key is then used to sign transactions spending these outputs.

Transactions are generated by the sender and distributed amongst the peers
in the Bitcoin network. Transactions are only valid once they have been accepted
into the public history of transactions, the blockchain. As the blockchain contains
Bitcoin’s entire transaction history and is publicly distributed, any user can
determine the bitcoin balance of every address at any time, by summing the
value of unspent transaction outputs (UTXOs) associated with the address.

564 C. Decker et al.

Bitcoin Exchanges. Bitcoin exchanges facilitate trade between fiat currency
and bitcoins. In order to trade on the exchange, users create an account with the
exchange and transfer fiat currency and/or bitcoins to the exchange. Should the
user wish to retrieve their bitcoins, they must make a request that the exchange
transfers the bitcoins to an address which the user controls. The exchange man-
ages a balance of the bitcoins that the user has deposited with the exchange or
traded for against fiat currency.

The user may place buy and sell orders for bitcoins or fiat currency which
are executed for the user by the exchange, adjusting the balances of the user’s
Bitcoin or fiat currency accounts. The orders are executed internally within the
exchange, that is they are not recorded in the blockchain. Given this model of
operation, a Bitcoin exchange is not merely a marketplace but also acts as a
fiduciary, administrating both fiat currency and bitcoin accounts for its clients.

2.2 Trusted Computing

When a third party, such as a Bitcoin exchange, is tasked with performing a
computation, there is no method for the verification of the integrity of the result,
short of performing the computation locally, which in some circumstances may
not be feasible. Trusted Computing allows the creation of a trusted platform
which provides the following features [18]:

Protected Capabilities are commands which may access shielded locations,
areas in memory or registers which are only accessible to the trusted platform.
These memory areas may contain sensitive data such as private keys or a
digest of some aspect of the current system state.

Integrity Measurement is the process of measuring the software which is
executing on the current platform. A measurement is the cryptographic hash
of the software which is executing throughout each stage of execution.

Integrity Reporting is the process of delivering a platform measurement to
a third party such that it can be verified to have originated from a trusted
platform.

These features of the trusted platform are deployed on consumer hardware
in a unit called the Trusted Platform Module (TPM), a secure cryptographic
co-processor, which is usually incorporated on the mainboard of the hardware.

An important component in proving trust are the Platform Configuration
Registers (PCRs), 20-byte registers which are only modifiable through the extend
operation based on cryptographic hash digests. The properties of a cryptographic
hash ensure that the value held in a PCR cannot be deliberately set.

Initially the TPM is equipped with a Storage Root Key (SRK) which may
be used to sign and thus authenticate further keys which may be generated or
loaded into the TPM. A number of different types of cryptographic keys may be
present on the TPM, however we limit our description to Attestation Identity
Keys (AIK). AIKs are signing keys that reside solely on the TPM, which are
used to sign data, which originates from the TPM, in order to attest to the

Making Bitcoin Exchanges Transparent 565

values originating from the TPM. In order to verify a TPM attestation, the
verifying party requires the signed attestation, the AIK public key, and a valid
SRK signature authenticating the AIK.

The TPM can be used to seal data which encrypts the data with a key which
is loaded in the TPM and binds the data to the state of some of the PCRs. The
encrypted data may only be decrypted or unsealed if PCRs are in the same state
as when the data was sealed, thus binding the ability to decrypt to the measured
state. TPMs provide two distinct paradigms:

SRTM (Static Root of Trust for Measurement): the system begins to boot in
a piece of firmware which is trusted (the static root) and each component of
the boot process is measured and verified against a known-good configuration
before it is executed in order to assert that no component has been tampered
with.

DRTM (Dynamic Root of Trust for Measurement): allows for a trusted platform
to be established dynamically without requiring a system reboot. It even
allows for a trusted platform to be established within a platform which is
known to be compromised with malicious software.

DRTM is implemented in consumer general purpose processors from Intel and
AMD under the names Intel Trusted eXecution Technology (TXT) and AMD
Secure Virtual Machine (SVM). Intel TXT and AMD SVM provide additional
security features when executing in the secure mode on top of the capabilities of
the TPM. These include turning off system interrupts to prevent other execu-
tion paths, as well as memory protection for specific memory ranges which also
prevents DMA access [9].

3 Auditing

The audit should determine the solvency of the exchange. In principle this is a
binary result, either solvent in the case that the exchange’s assets in bitcoins
cover its liabilities in bitcoins, or insolvent otherwise. It is plausible that there are
situations in which this binary result does not suffice, for instance an exchange
which wishes to prove fractional reserves. In these cases a multiplicative factor
can be applied to the liabilities of the exchange to show that the exchange can
cover some percentage of its liabilities with its assets.

The auditing process can be broken into three individual steps: summing
the user account balances (proof of liabilities), summing the assets, i.e., address
balances, the exchange controls (proof of reserves), and proof that the reserves
cover the liabilities (proof of solvency). Figure 1 illustrates the components of the
audit, the inputs to each of the components of the calculation and the outputs
of the audit.

The publicly available inputs are the address balance and the fraction factor,
which determines the percentage of coverage that the exchange wishes to prove.
The address balances can be computed by a third party by replaying transactions
in the blockchain until the time of the audit. The non-public inputs consist of

566 C. Decker et al.

filterverifyhash

Address
balances

Signed
public keys

+

+ Merkle

User
accounts

∗

Fraction
factor

≥

Audit
result

Address
balance hash

Merkle
root

Fraction
factor

• • •

Reserves Liabilities

Signed Outputs

Fig. 1. An overview of the audit process. Italicised values are not published.

a list of signed public keys owned by the exchange and the list of user account
information, including account balances and customer identifiers.

Unlike the inputs, the outputs of the auditing process should all be disclosed
publicly. The address balance hash proves that the latest snapshot of the address
balances was used in the audit and should match an independently computed
hash. The audit result is the boolean result, either true if the exchanges assets
are greater than the fraction of the liabilities or false otherwise. To prove that
all liabilities have been considered a merkle tree is computed and its root is
included in the outputs as well as the fraction which determines the coverage
percentage. The output values are signed by the TPM, which also signs a hash
digest of the binary which was executing at the time.

3.1 Proof of Reserves

The assets that the exchange possesses are in the form of bitcoins in the block-
chain. The sum of assets is therefore calculated by determining which balances
in the blockchain the exchange has access to and calculating the sum of those
balances. In order for the exchange to access the bitcoins it needs to be in
possession of the private keys belonging to the addresses.

To simplify the calculation, the audit program does not need to parse the
entire blockchain to determine which balances should be summed. Instead, a
preprocessor can be used to compute the address balances from the blockchain.
This is secure as it is a deterministic aggregation over publicly available data.

The exchange can prove control of a Bitcoin address by providing the public
key belonging to that Bitcoin address and signing it with the private key. For

Making Bitcoin Exchanges Transparent 567

additional safety, the exchange should also sign a value which can be used to
prove the freshness of the signature, a nonce. The hash of the last block added
to the blockchain is an ideal candidate for the nonce, as it uniquely identifies the
state of the blockchain and thus the address balances, it is not predictable and
changes frequently. Thus, the second input to the audit process consists of a list
of tuples of a public keys, and a signatures of the public key and the nonce:

〈PubKey, {PubKey,Nonce}σ〉

where {data}σ indicates that data is signed with the corresponding private key.
The overview of the steps of the calculation of reserves is shown in Fig. 1,

internally it consists of four different stages. The first stage computes the hash
of the address balances, which is required in the verify stage. The verify stage
asserts that the signatures for the public keys are valid and that the provided
nonce matches the hash of the provided address balances. It then passes the
public keys to the filter stage, determines the Bitcoin address and filters for
entries in the address balances which match the exchange’s addresses. Finally,
the balances of these entries are summed. The sum, as well as the hash of the
address balances are produced as outputs of the proof of reserves.

3.2 Proof of Liabilities

The liabilities of the exchange are the balances in bitcoins owed to its customers.
The audit process requires a list of tuples consisting of a customer identifier and
a positive balance owed to the customer:

〈CustID,Balance〉

An additional input to the proof of liabilities is the fraction factor, which is
multiplied with the sum of client account balances to prove fractional reserves.

Using the above definition of liabilities, the total liabilities of the exchange
are calculated as the sum of all customer account balances. The calculated sum is
later compared against the sum of reserves to determine solvency. Additionally
to the sum, the proof of liabilities component calculates the root of a merkle
tree [13], as well as a hash of the fraction factor.

The basic schema is to construct a merkle tree with the user account infor-
mation. That is, in order to compute a leaf in the tree one would take the
cryptographic hash of the customer identifier and the balance owed to the cus-
tomer. The leaves are then combined in a pairwise fashion and hashed, forming
the nodes in the next layer of the tree. Nodes are combined and hashed until the
root of the tree is constructed.

As the root of the merkle tree is dependent on all of the individual values
within the tree, it serves as public record of the account balances which were
counted in the summation of all account balances, without revealing individual
customers account balances.

568 C. Decker et al.

h(ABCD‖EFGH)

h(AB‖CD)

h(A‖B)

h(A:20)

A:20

h(B:15)

B:15

h(C‖D)

h(C:30)

C:30

h(D:10)

D:10

h(EF‖GH)

h(E‖F)

h(E:25)

E:25

h(F:40)

F:40

h(G‖H)

h(G:10)

G:10

h(H:15)

H:15

Fig. 2. An example merkle tree with the path from h(D:10) to the root highlighted

3.3 Proof of Solvency and Verification

The proof of the solvency of a bitcoin exchange consists of two components, one
is the outputs of the audit, the other is an attestation which can be used to
verify that the auditing software was executed in the trusted environment, and
that it computed the outputs which are attested. The final output is the Audit
result, which is a binary value, true if the reserves are greater than or equal to
the liabilities, and false otherwise. The attestation is a signature for the outputs
as well as the platform measurements, i.e., the hashes of the executed program.

Given the audit program, its public inputs and outputs and the attestation,
a customer can independently verify the validity of the audit. By hashing the
program and validating it against the attested measurements she can ensure that
the TPM has executed the program. The validity of the program could be proven
by publishing its source code. The customer can then proceed to validating the
outputs, by checking the signatures, that the address balance hash matches the
blockchain and that she is included in the merkle tree.

The customer can use the root of the merkle tree to verify that its account
balance was included in the calculation. The merkle tree in Fig. 2 shows a poten-
tial scenario in which customer D wishes to determine whether it was accounted
for in the hash h(ABCD‖EFGH). The nodes which D requires are the children
of the nodes along the path from D’s leaf node to the root excluding the nodes
along that path. These are the nodes h(C:30), h(A ‖B), h(EF‖GH). With these
node values, D can reconstruct the path from its leaf node to the root, calculating
the same value of h(ABCD‖EFGH) that was provided by the exchange.

Making Bitcoin Exchanges Transparent 569

4 Implementation

The proof-of-concept presented in this work is built on the Flicker platform [12].
Flicker is a software platform which leverages DRTM to allow security sensitive
components of software applications to execute in a secure, isolated environment.
The developers of Flicker call such a component a Piece of Application Logic
(PAL). The PAL comprises only the routines required to perform some security
critical computation component of the application. Flicker consists of two com-
ponents, the kernel module which prepares and launches the DRTM process,
and the Secure Loader Block (SLB) core which performs bootstrapping of the
secure execution environment for the PAL.

The execution scenario in which the PAL runs is made up of four distinct
components: the user application, the Flicker kernel module, an Authenticated
Code Module (ACM), and one or more PAL binaries, each consisting of the
SLB core and PAL. The ACM is the root of dynamic trust for the DRTM in
Intel TXT and is digitally signed by the chipset vendor. It functions as a secure
bootloader for a lightweight piece of code which is to be executed on the processor
in complete isolation from any other software or hardware access.

User
Application

Flicker
Kernel
Module

In
tel

A
C

M

S
L
B

C
o
re

PAL

SLB/PAL binary

Kernel space
Secure Execution

Environment
User space

Fig. 3. Flicker PAL execution scenario.

The user application is a conventional application executing in userspace.
The Flicker kernel module provides data and control file system entries with
which the user application may interact in order to provide the Flicker kernel
module with the SLB, PAL, and the inputs, as well as to read the outputs when
execution of the PAL terminates.

Figure 3 illustrates the control flow when the user application needs to per-
form a security-critical task. First the application passes the PAL binary and
inputs to the Flicker kernel module and instructs the kernel module to execute
the PAL. The Flicker kernel module prepares the necessary data structures and
memory protection to launch the DRTM and start the PAL, it then invokes

570 C. Decker et al.

the GETSEC[SENTER] CPU instruction which disables interrupts and triggers
the start of the DRTM. These data structures are measured by the Intel ACM,
which forms the root of the DRTM. The ACM hands control over to the Flicker
SLB core which invokes the PAL and contains the necessary data structures to
return the control flow directly to the Flicker kernel module when the PAL has
finished executing.

During the execution of the SENTER operation, the dynamic TPM PCRs
(17–23) are initialised to zero. PCR 17 is then extended with the hashes of the
ACM and a number of configuration parameters. During the execution, PCR 18
is extended with the hash of the PAL. These PCR values are provided in the
TPM’s attestation, which can be used to prove to a third party that the PAL
binary was executed and calculated the output values.

The Flicker platform was designed with lightweight, short-lived computations
in mind, as such it imposes a number of restrictions which make a direct imple-
mentation of the audit as outlined in Sect. 3 unfeasible. The major restriction
which poses problems for the automated software audit is memory. The Flicker
environment has a stack size of 4KB, a heap size of 128KB, and a maximum input
size of approximately 116KB. In addition each Flicker session has a significant
overhead, between 0.2 and 1 second, depending on which TPM functionality is
used during the invocation [12].

4.1 Architecture

Three of the four inputs to the audit process may be of considerable size: the
address balances, the public keys and signatures, and the user accounts. At the
time of writing there are a total of 3.7 million addresses with a non-zero balance.
Each of the entries in the address balance input consists of an address of up to
35 byte and a 64 bit integer for the balance. The size of all address balances
therefore is just under 160 MB. The size of the user accounts depends on the
number of user accounts of the exchange. Generating a unique identifier from
the account information by hashing results in a 32 byte identifier. Each account
therefore has a 32 byte identifier with a 64 bit integer for the balance. Estimating
the user base of the exchange at 1 million users this results in a total size for
the user account input of 40 MB. While the number of addresses owned by the
exchange is under control of the exchange, the prototype should support any
number of addresses.

It is clear from the memory requirements posed by the input data and the
available input sizes of the Flicker platform that the monolithic architecture
of the audit as proposed in Fig. 1 must be broken into smaller components.
The input data is split into input-sized chunks and processed in an incremental
fashion. This does not change the result of the audit, however the calculation of
the outputs which are required to verify the input data must change as a result
of the components only having a view of a small subset of the input data in each
iteration. The individual invocations of a component of the audit require a secure
method of storing intermediate values, for instance a sum which is calculated
over multiple iterations. The PAL can use the TPM to seal intermediate values

Making Bitcoin Exchanges Transparent 571

filter+ verify

Public keys +
Signatures

hash

Address
Balances[i]

Sum(AB)ihi(AB)

Sealed Outputs

•

Fig. 4. An overview of the proof of reserves component. Italicised values are not pub-
lished publicly. Dashed arrows indicate values which are passed from invocation to
invocation

to the current PCR state, encrypting them such that they can only be decrypted
by the TPM when it is executing the same PAL. The encrypted data is passed
back to the user application which should provide it as an input to the next
iteration of the component.

The process is driven by a user application, external to the trusted plat-
form, which repeatedly invokes the computation in the trusted platform. As the
encrypted data is passed back to the user application, which is executing in
an untrusted and potentially malicious environment, there is the potential for a
replay attack to be performed. However, the process of hashing the input ensures
that replay attacks can be detected by the client when verifying the result of the
audit.

We consider each component of the system individually and describe how it
is implemented in order to support incremental invocations.

Proof of Reserves. The Proof of Reserves can be split into iterative invocations
by splitting the address balance list, and the list of signatures and public keys into
equal sized batches. Initially the address balance list is sorted lexicographically,
in order to allow a verifier to compute the same hash. Each batch contains a list of
address balances and a possibly empty set of signatures and public keys matching
the address balances of the batch. This allows the system to verify the signatures
and sum up the respective values. The hash of the address balances is computed
by concatenating the hash from the previous round with the current hash and
hashing the result: h0 = h(AB0) and hi = h(hi−1 ‖ ABi). The output includes
the last considered address from the current batch. Due to the lexicographic
ordering of addresses it is trivial for the proof of reserves to detect a replay
attack, since it would require a lexicographically lower first address than the last
address from the previous batch. Figure 4 shows an overview of the new POR
component.

572 C. Decker et al.

merkle+

Customer
Data[i]

Sum(L)i Merklei

Sealed Outputs

•

Fig. 5. An overview of the proof of liabilities component. Italicised values are not
published publicly. Dashed arrows indicate values which are passed from invocation to
invocation

Proof of Liabilities. The Proof of Liabilities (POL) is invoked iteratively, simi-
larly to the Proof of Reserves. Figure 5 shows an overview of the POL component.
The merkle tree computation accepts a list of tuples consisting of merkle sub-
tree root hashes, the root’s height and the associated sum of the tree’s value.
It then iteratively computes the roots of the trees by combining the subtrees,
summing the values and increasing the height. The resulting merkle root, height
and value sum is then sealed for the next iteration or to be passed to the proof
of solvency. In order to initiate the process, the proof of liabilities also accepts
subtrees that are not sealed for height 0, i.e., the hashes of the account identifier
and the account’s value. Missing branches in the merkle tree are replaced with
a single leaf with value 0.

Given that the merkle tree computation does not allow negative value sums
for subtrees guarantees that, if an account was included in the computation, its
value is included in the sum. A replay attack in this case does not benefit the
exchange as it may only increase the sum that is to be covered.

Proof of Solvency. The Proof of Solvency (POS) component takes as inputs the
sealed outputs from the Proof of Reserves (POR) and Proof of Liabilities (POS)
components as well as the Fraction factor. As it handles only constant size inputs
it is sufficient to call the proof of solvability once. Its main purpose is to compute
the fraction that is to be covered and whether or not the assets are sufficient to
cover the liabilities. A secondary purpose is to unseal the results from the other
components and sign in order to publish them (Fig. 6).

The final step of the POS component is the attestation of the PAL binary.
The audit no longer consists of an individual invocation of a PAL, instead the
POR and POL components are invoked hundreds or thousands of times each
of these invocations requires attestation. The solution to this problem is to put
the separate logic for the POR, POL and POS components into a single binary.
The initial invocations of both the POR and POL logic of the PAL produce a

Making Bitcoin Exchanges Transparent 573

hi(AB) Sum(AB)i Sum(L)i

Fraction
Factor

Merklei

∗

≥

Audit
Result

Hash of
Address Balances

Fraction
Factor

Merkle
Root

Signed Outputs

Sealed Inputs

Fig. 6. An overview of the proof of solvency component.

sealed intermediate values which are tied to that PAL. The sealed blob is then
unsealed by the next invocation, the intermediate values are modified and then
resealed. When the POS is invoked, it unseals the intermediate results produced
by the POR and POL.

The fact that the sealed blobs are unsealed and modified in each invocation
of the POR and POL and that they can only be unsealed by the same PAL that
initially created them means that the values in the sealed blob form a chain of
trust from their respective first invocations until the invocation of the POS. An
attestation of the POS is transitive to all previous PAL executions which were
able to unseal the blobs that the POS unseals.

4.2 Execution Time

As previously mentioned, the Flicker invocation and some TPM operations pose
a significant overhead of up to 1 s, when repeatedly entering and leaving the
PAL. During the execution time of the PAL, the operating system on which
the Flicker session is invoked does not process any interrupts. When the Flicker
session ends, the operating system requires a small amount of time to process
any interrupts and respond to system events. Tests showed that the operating
system needs pauses of 500ms to 1 s in order to continue processing without
locking up or crashing. As the processing time for such a small number of inputs
is quite low in comparison to the TPM overhead, we can safely assume that each
Flicker invocation costs approximately two seconds.

For input sizes in the range previously discussed, 3.7 million address balances
and 1 million customer accounts, the POR must be invoked approximately 1300
times if each invocation of the POR can process 3000 address balances, the

574 C. Decker et al.

POL must be invoked approximately 500 times. This comes to a total of 1800
invocations, each of which requires 2 s to execute and wait for the operating
system to recover. The overall execution time for an audit with inputs of this
size is approximately one hour and scales linearly in the number of address
balances and user accounts.

4.3 Additional Interfaces

Although the audit is the core component of proving solvency of a Bitcoin
exchange, the signed audit output is not all that a customer requires in order to
verify the audit. Customers must retrieve additional values from the exchange
and perform some local computations in order to be able to verify the audit, and
to have some form of recourse should the verification fail. The implementation
of these interfaces is not in the scope of this work, what follows is an outline of
the requirements of the peripheral software and interfaces.

Audit Verification. Most important for customers is the ability to verify the
audit’s result. This consists of the verification that the customer’s balance was
included in the calculation, verification of the address balances, and verification
of the attestation. The customer of an exchange must be able to retrieve the
nodes in the merkle tree which can be used to calculate the path from the
customer’s leaf node to the root of the merkle tree. If the customer is able to
reproduce the merkle root using the nodes provided by the exchange and their
own customer identifier and account balance at the time of the audit, then they
can be assured that they were accounted for in the calculation. The interface for
this purpose must take the hash of the tuple

〈Customer Identifier,Balance〉
as an argument and deliver the set of nodes required to calculate the path from
the customer’s leaf node to the merkle root. Each node would consist of a tuple

〈Height,Hash〉
where Height is the height of the node in the merkle tree and Hash is the hash
digest stored at that node in the tree. The customer must also be able to verify
that the hash of the address balances provided by the exchange represents the
true account balances for a set blockchain height. For this purpose, the customer
must be able to determine the blockchain height that was used to determine
the address balances. The customer would require a software client which can
determine the address balances for the blockchain at a given height. This consists
of: extraction and aggregation of UTXOs, and sorting of the address balances.
With the address balances calculated, the customer can calculate the hash and
compare it with the hash provided by the audit. Finally, the customer must be
able to verify the attestation. This consists of two components: verification that
the attestation originates from a TPM, and verification of the binary which was
executed in the trusted platform.

Making Bitcoin Exchanges Transparent 575

Attestation Verification. The customer needs to be able to verify that the
attestation was indeed issued by a TPM, in other words, what the customer
needs to know is that the Attestation Identity Key (AIK) used to sign the
attestion was provided by a TPM. The method proposed by the TCG is
Direct Anonymous Attestation (DAA) which allows for a customer to verify
directly that an AIK belongs to a TPM. For this the exchange must provide
an interface which performs DAA and the customer requires client software
which can verify the DAA provided by the exchange.

Binary Verication. In order for the customer to verify that the PAL executed
in the trusted environment actually calculates the audit, as opposed to always
returning true, the customer must have access to the source code of the PAL
and be able to reproduce the value of PCR 17 which is signed in the TPM’s
attestation. The exchange needs to provide a platform from which the PAL
source code can be retrieved, as well as a method for compiling a reproducible
binary, and instructions on how to transform the hash of the binary to the
value of PCR 17 in the attestation.

Signed Account Balance. If a customer should determine that their account
balance was not included in an audit, they require some form of proof that
their account balances ought to have been taken into account in the audit. For
this purpose the exchange should provide an interface which allows a customer
to retrieve a signature of the hash of their 〈CustomrID,balance〉 tuple. With
this signature, other customers or the community at large could verify that the
exchange signed a value which is not included in the latest audit.

5 Conclusion

A string of Bitcoin exchange closures as well as various thefts from Bitcoin
exchanges have left customers of exchange services somewhat hesitant as there
has often been little transparency when such events took place. Exchanges have
published customer account balances as well as proof of ownership of Bitcoin
addressed which allow for customers and the public to determine the Bitcoin
assets of the exchange.

In this work we propose using an automated software-based audit to deter-
mine the solvency of Bitcoin exchanges without revealing any private data. Meth-
ods are proposed, based on the Flicker Trusted Computing platform, with which
the audit result can be verified and trusted to be correct. An architecture is pro-
posed which allows for the computation to be split into individual pieces which
iteratively compute a subset of the complete input to overcome the memory limi-
tations posed by the Flicker platform. The verification methodology is expanded
to cover the iterative execution scenario, allowing for customers of an exchange
to verify the inputs to the audit. An analysis of the execution time showed that
it is entirely feasible to conduct audits on a daily basis at the current estimate
size of the Bitcoin ecosystem.

576 C. Decker et al.

References

1. Bitcoin virtual currency: Unique features present distinct challenges for deterring
illicit activity. Technical report, Federal Bureau of Investigation (2012)

2. Application of fincen’s regulations to persons administering: exchanging, or using
virtual currencies. Technical report, Financial Crimes Enforcement Network, US
Department of the Treasury (2013)

3. Andresen, G.: Bitcoin improvement proposal 11: M-of-N standard transac-
tions (2011). https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki.
Accessed February 2015

4. Araoz, M., Charles, R.X., Garcia, M.A.: Bip 45: Structure for determinis-
tic P2SH multisignature wallets (2014). https://github.com/bitcoin/bips/blob/
master/bip-0045.mediawiki. Accessed February 2015

5. Brito, J., Castillo, A.: Bitcoin: A Primer for Policymakers. Mercatus Center at
George Mason University, Arlington (2013)

6. Bryans, D.: Bitcoin and money laundering: mining for an effective solution. Indiana
Law J. 89, 441–472 (2014)

7. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: 19th
European Symposium on Research in Computer Security (ESORICS), Wroclaw,
Poland, September 2014

8. Finney, H.: bcflick - using TPM’s and trusted computing to strengthen bit-
coin wallets (2013). https://bitcointalk.org/index.php?topic=154290.msg1635481.
Accessed February 2015

9. Intel Corporation: Intel Trusted Execution Technology Software Developers Guide,
May 2014

10. Maxwell, G., Todd, P.: Fraud proof (2013). https://people.xiph.org/greg/
bitcoin-wizards-fraud-proof.log.txt. Accessed March 2015

11. Maxwell, G., Wilcox, Z.: Proving your bitcoin reserves, February 2014. https://
iwilcox.me.uk/2014/proving-bitcoin-reserves. Accessed 5th January 2015

12. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An exe-
cution infrastructure for TCB minimization. In: ACM SIGOPS Operating Systems
Review

13. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

14. Moore, T., Christin, N.: Beware the middleman: empirical analysis of bitcoin-
exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013)

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed February 2015

16. New York State Department of Financial Services: Virtual Currencies (2015).
http://www.dfs.ny.gov/legal/regulations/revised vc regulation.pdf. Accessed Feb-
ruary 2015

17. Todd, P.: BIP 65: OP CHECKLOCKTIMEVERIFY (2014). https://github.com/
bitcoin/bips. Accessed March 2014

18. Trusted Computing Group: TCG Specification Architecture Overview, rev. 1.4,
August 2007

https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0045.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0045.mediawiki
https://bitcointalk.org/index.php?topic=154290.msg1635481
https://people.xiph.org/ greg/bitcoin-wizards-fraud-proof.log.txt
https://people.xiph.org/ greg/bitcoin-wizards-fraud-proof.log.txt
https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.dfs.ny.gov/legal/regulations/revised_vc_regulation.pdf
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips

Web-to-Application Injection Attacks
on Android: Characterization and Detection

Behnaz Hassanshahi(B), Yaoqi Jia, Roland H.C. Yap, Prateek Saxena,
and Zhenkai Liang

School of Computing, National University of Singapore, Singapore, Singapore
{behnaz,jiayaoqi,ryap,prateeks,liangzk}@comp.nus.edu.sg

Abstract. Vulnerable Android applications (or apps) are traditionally
exploited via malicious apps. In this paper, we study an underexplored
class of Android attacks which do not require the user to install mali-
cious apps, but merely to visit a malicious website in an Android browser.
We call them web-to-app injection (or W2AI) attacks, and distinguish
between different categories of W2AI side-effects. To estimate their preva-
lence, we present an automated W2AIScanner to find and confirm W2AI
vulnerabilities. We analyze real apps from the official Google Play store
and found 286 confirmed vulnerabilities in 134 distinct applications. This
findings suggest that these attacks are pervasive and developers do not
adequately protect apps against them. Our tool employs a novel com-
bination of static analysis, symbolic execution and dynamic testing. We
show experimentally that this design significantly enhances the detection
accuracy compared with an existing state-of-the-art analysis.

1 Introduction

In this paper, we present a detailed study of an underexplored class of application
vulnerabilities on Android that allow a malicious web attacker to exploit app
vulnerabilities. It can be a significant threat as the remote attacker has full
control on the web-to-app communication channel and no malicious apps are
needed on the device. A successful attack can exploit web APIs (WebView) and
native APIs on Android.

The Android platform provides a web-to-app communication bridge which
enables web-to-app interaction. The web-to-app bridge is used in Android to
facilitate installed applications to be invoked directly via websites. This feature
has many benign uses. It is used by many popular applications on the official
Google App Store, e.g., the Google Maps app can seamlessly switch to the Phone
app when phone numbers of businesses displayed on Google Maps are clicked,
without explicitly starting the Phone app.

The web-to-app bridge exposes Android apps to unvetted websites when the
user visits them in a browser. Without proper sanitization on the URI or “extra
parameters” derived from the URI, a vulnerable app ends up using these values

This work has been supported in part by Huawei.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 577–598, 2015.
DOI: 10.1007/978-3-319-24177-7 29

578 B. Hassanshahi et al.

to start a malicious web page in a WebView or abuse Android native APIs.
While it is known that the web-to-app bridge can lead to vulnerabilities [34], in
this work, we study whether existing apps are susceptible to attacks from this
channel in any significant way, and if so, to what extent. We systematically study
and classify attacks which we call Web-to-App Injection (W2AI). Web-to-App
Injection attacks are different from other recently disclosed vulnerabilities. Such
vulnerabilities arise either in the implementations of hybrid mobile application
frameworks, or in application code written on top of such frameworks which
access external device interfaces (e.g. camera) [9,14,17,26]. In contrast, attacks
studied in this paper affect Android applications via the web-to-app bridge.
Furthermore, W2AI attacks can be easily combined with existing app-to-app
attacks.

W2AIScanner. To enable detection for W2AI on a large scale, we describe a
tool that analyzes Android apps for W2AI vulnerabilities. Existing static analysis
techniques alone are insufficient for conducting such analysis as the complexity
and size of applications limits the precision of static analysis. Dynamic analysis,
such as random testing and unguided symbolic execution, face the complemen-
tary problem of path space explosion, leading to expensive analysis. In this work,
we employ a refinement-based static analysis combined with dynamic testing to
overcome the challenges of these individual techniques. W2AIScanner can auto-
matically analyze APK files and produce working (0-day) exploits. Thus, it shows
a significant enhancement of the accuracy over the results generated by a purely
static state-of-the-art analysis. It constructs a witness exploit, a URI, to be sub-
sequently used by security analysts (or app store) to construct specific attack
payloads for determining the severity of discovered vulnerabilities.

Results. First, to measure the prevalence of W2AI vulnerabilities, we present
the first comprehensive study of web-to-app injection (W2AI) attacks in Android.
We analyzed 12,240 applications from the official Google App Store where 1,729
of them expose browsable activities. Our tool, found 134 apps (7.75% of 1,729
apps) to have W2AI vulnerabilities by automatically constructing 286 attacks.
Our results suggest that developers often neglect the risk posed by web-to-app
vulnerabilities to Android users, taking insufficient countermeasures. We con-
tacted the Android security team to disclose the vulnerabilities to the vulnerable
apps. The Tencent security team has confirmed our reported vulnerabilities in
the Tencent Android SDK (2.8) [3].

Second, we find that W2AI attacks introduce a broad range of possible
exploits in installed Android applications which are analogous to vulnerabili-
ties commonly known to occur in web applications — such as open redirect,
database pollution, file inclusion, credential theft, and so on. Further, these vul-
nerabilities are not specific to implementations of certain application frameworks
(or SDKs), as they can arise in application written in different SDKs. Third, we
demonstrate that our analysis technique provides significantly higher precision
than state-of-the-art static analysis techniques, at an acceptable analysis cost.

Web-to-Application Injection Attacks on Android 579

2 Overview

In Android, intents are the primary ways for an Android app to share data
with other apps and to access system services [1]. An intent object carries infor-
mation that Android uses to determine the component to start execution, plus
information that the recipient component uses to properly perform the action.
For example, the email app can be invoked to send an email via an intent by
any other app.

A web page can invoke a component in an installed app if the target app
declares one or more of its activities as being BROWSABLE in the app’s manifest.
When a user clicks a web hyperlink, in a certain format, Android translates it
into an intent (object). We use intent hyperlink to refer to the hyperlink or
its string and use URI intent to refer to the workings of the intent mechanism
in Android. Intent hyperlinks carry parameters within the hyperlink – the frag-
ment identifier, and information about the target activity specified as a tuple
(scheme, host, path), etc.

2.1 Web-to-App Injection Attacks

URI intents expose a new channel of attacks targeting installed apps.

Threat Model. In a W2AI attack, we assume that the adversary is a standard
web attacker [4], who controls a malicious website. To expand the coverage of
victims, the attacker can disseminate the shortened URL of the malicious site
through emails, social networks, ads, etc. We make the following conservative
assumptions. We assume that the victim, Alice, only installs legitimate apps
from Google Play on her Android device. We also assume that at least one app
with adequate permissions on her device is benign but buggy, hence a W2AI
vulnerability exists.

W2AI Attacks. Analogous to a conventional web attack, when Alice directly
visits the malicious website or clicks a link redirected to the site, a W2AI attack
occurs. A generic scenario for W2AI follows: (1) The attacker crafts and publishes
a malicious intent hyperlink in a social network; (2) A user clicks the malicious
link redirecting to the attacker’s site in her mobile browser; (3) The site loads
the malicious intent hyperlink in an iframe or a new tab; (4) The browser parses
the hyperlink, generates the URI intent and launches the corresponding activity
in the vulnerable app; and (5) Hence, the payloads derived from the URI intent
running in the app can access the user’s private information or perform privileged
operations on behalf of the app.

W2AI vulnerabilities arise due to dataflows in the native Android code, rather
than in application logic written in HTML5 code [9,14,17,26]. Unlike other
vulnerabilities that exploit app-to-app communication interfaces [8,24,40,42],
we emphasize that W2AI attacks do not need an installed malicious app on the
device to launch attacks.

580 B. Hassanshahi et al.

2.2 Categories of W2AI Vulnerabilities

Android applications typically use data derived from the intent hyperlink with
Android API interfaces which can be divided into two categories, WebView and
native interfaces. If the attacker-controlled data are used in these interfaces with-
out any validation, the attacker can feed payloads to abuse them. We divide the
W2AI vulnerabilities into: (i) abusing WebView; and (ii) abusing Android native
app interfaces.

Abusing WebView Interfaces. WebView is a browser component provided
by Android, which provides the basic functionalities of normal browsers (e.g.,
page rendering and JavaScript execution) and enables access to various interfaces
(e.g., HTML5 APIs and JavaScript-to-native bridge). Certain applications take
parameters in the intent hyperlink and treat them as web URLs, thereby loading
them into WebView during execution. When this happens, the attacker’s HTML
code runs in the WebView. Furthermore, if the vulnerable application enables
execution for JavaScript in the WebView, the attacker can run JavaScript in
its HTML page, and can access all interfaces exposed to it by WebView. We
further classify the vulnerabilities arising from unfettered access to the exposed
interfaces into 4 sub-categories:

(1) Abusing the JavaScript-to-Native Bridge. JavaScript code loaded in the Web-
View can access native methods via the android.webkit.JavascriptInterface. The acces-
sible native methods are specific to each application. In our experiments, we
have found up to 29 distinct JavaScript-to-native interfaces accessible by a sin-
gle app, e.g., many apps enable access to interfaces that retrieve the device’s
UUID, version and name, thereby opening up the threat of privacy-violating
attacks. Furthermore, several interfaces allow reading and modifying the user’s
contact list and app-specific local files.

(2) Abusing HTML5 APIs. WebView enables access to standard HTML5 APIs,
akin to normal web browsers, e.g., if the vulnerable app has the proper permis-
sions and WebView settings, the attack web page running in the WebView can
use JavaScript to call the HTML5 geolocation API. We found 29 apps with such
tracking vulnerabilities.

(3) Local File Inclusion. When the user visits the malicious site, the site can trick
the browser to automatically download an HTML file into the user’s SD card
by setting the HTML file as not viewable. When the site triggers the browser
to parse the intent hyperlink that refers to the downloaded HTML file, e.g.,
file:///sdcard/Downloads/attack.html, it launches the vulnerable app to load the HTML
file in its WebView. If the vulnerable app has certain WebView settings, the
malicious JavaScript code in the HTML file can read any files under the app’s
directory or the readable system files (e.g., /etc/hosts) and send them to the
attacker.

(4) Phishing. The attacker’s web page can impersonate or phish the user interface
of the original application. Since there is no address bar displayed by WebView
that users can use to inspect the current page’s URL, users cannot distinguish

Web-to-Application Injection Attacks on Android 581

the phishing page from the normal page. Such attacks via the web-to-app bridge
are harder for users to discern than the conventional phishing attack on the
web [12].

Abusing Android Native App Interfaces. Android Apps, even if WebView
is not used, can expose native Android interfaces to URI intents if input is not
properly sanitized. These lead to the further four categories of vulnerabilities:

(1) App Database Pollution. Android provides native interfaces for apps to exe-
cute SQL query statements to manage the app’s database. Therefore, if the SQL
queries are derived from the URI intent, it allows the web attacker to pollute
(e.g., add or update the table’s fields) the vulnerable app’s database.

(2) Persistent Storage Pollution. Android native interfaces enable apps to store
persistent states, e.g., authentication tokens, in the persistent storage (e.g.,
SharedPreferences and local files). Many vulnerable apps directly treat the parame-
ters from the URI intent as the content to add or update the persistent storage.
An attack URI intent can pollute the target app’s persistent storage.

(3) Open Re-delegation. Android native interfaces provide the ability to launch
specific activities addressed by name. If the name parameter is derived from
URI intent, it allows the web attacker to invoke any in-app private activities
directly, which are not required to be marked browsable. Moreover, the attacker
might embed an additional intent hyperlink as a parameter to the original intent
hyperlink and force the benign app to invoke another app. This leads to a broad
range of problems such as permission redelegation [13]. Permission re-delegation
is a confused deputy problem whereby a vulnerable app accesses critical resources
under influence from an adversary. Though these attacks are previously known
to be possible via the app-to-app [13], we show that they can be affected under
influence of a website through the web-to-app bridge.

(4) App-Specific Logic Flaws. Android enables apps to perform various opera-
tions (e.g., popping up messages) via native interfaces. Due to the app-specific
logic flaws, the vulnerable app directly uses the data from the URI intent as
parameters to these operations. For example, we found that an attacker can
exploit vulnerable apps to display a fabricated PayPal transaction status.

We use a real app as an example to explain how the W2AI attack works. The
example app is WorkNet (3.1.0), a Korean information app with 1–5M down-
loads. It has a browsable activity, kr.go.keis.worknet.WorknetActivity, which
loads arbitrary URLs in URI intents and is vulnerable to the following W2AI
attacks: abusing JavaScript-to-native bridges, abusing HTML5 APIs, local file
inclusion and phishing. The attack’s life cycle is as follows: (1) The attacker
hosts a malicious website, which loads an intent hyperlink ("intent://#Intent;scheme=
worknet;action=android.intent.action.VIEW;S.url=http://attacker.com;end;") into a new tab
using window.open. The attacker posts the site’s shortened link on social net-
works, e.g., Facebook. (2) When the user visits the attacker’s site (by clicking
the link on social networks, ads, and so on) in her Android browser, the site loads
the hyperlink in a new tab. (3) The user’s browser parses the hyperlink to the

582 B. Hassanshahi et al.

URI intent which contains extra parameters and launches the WorknetActivity

activity with the intent. (4) The activity loads the URL (http://attacker.com)
derived from the malicious URI intent into the WebView without proper valida-
tion. Now the attacker’s site is loaded with its JavaScript code running in the
WebView. The attacker can utilize whatever is available to this activity, e.g.,
abusing JavaScript-to-native bridges.

We find that WorkNet has 21 such interfaces, e.g., accessing contacts, local
files, device information, etc. Furthermore, being a WebView app, the attacker’s
site can mimic the UI of the original page. In the background, the scripts
access the user’s private data (e.g., device information and contacts), sending
them to the attacker’s server. In addition to abusing the JavaScript-to-native
interfaces, the web attacker can also abuse HTML5 APIs to track Alice’s geolo-
cation and leak the content of local files via file inclusion in this app. From this
example, we can see that the W2AI attacker can not only mount conventional
web attacks (e.g., unvalidated redirect in the example), but can also hijack the
vulnerable app to perform privileged operations on sensitive resources (e.g., local
files and contacts) without any installation of malware in the user’s device.

2.3 Detection Challenges

Our aim is to design a system that both detects and also confirms W2AI vul-
nerabilities. The target of W2AI attacks are sinks defined as sensitive/critical
Android and Java APIs used to inject data which make the application vulner-
able. The API calls which fetch intent objects containing data under the control
of the attacker are called sources.

At the high level, detecting W2AI vulnerabilities can be considered a source
to sink reachability analysis for Android apps. Existing analysis for Android apps
[5,16,25]. employ static analysis techniques but this only gives potential reach-
ability. Many of the potential source-sink flows detected may be false positives
(i.e., potential vulnerability is signaled as a flow, even though it can never occur
during execution) as we show in Sect. 4. We eliminate the false positives by gen-
erating intent hyperlinks which can be shown during execution to actually reach
and affect a sink. In other words, we only report vulnerabilities when we can
automatically generate a 0-day W2AI attack. This makes the task of explaining
and understanding a vulnerability significantly easier for security analysts or the
app developers.

The complexity of the Android environment and apps also raises practical
challenges. Figure 1 shows a simplification of the code of the WorkNet app,
explained in Sect. 2.2, which has W2AI vulnerabilities. The browsable activity
that is triggered by intent hyperlinks is MainActivity. When the user clicks on
the malicious intent hyperlink in the default browser, the system generates an
intent, launching MainActivity. Unlike Java programs, Android apps do not have
a main method. When an intent invokes an activity, the Android runtime invokes
the onCreate() or onNewIntent() callback methods. Next, the getIntent() and
onNewIntent() methods obtain the intent messages. Once an intent is sent to
an activity, any invocation of the getIntent() method throughout the activity

Web-to-Application Injection Attacks on Android 583

MyRunnable

run(){...
 L15: if(timeOutError(this.timeout))

my_activity.
onReceivedError();

 L16: loadUrlNow(this.url);}

public MyRunnable(String s3,int t1){
 L13: this.url = s3;
 L14: this.timeout = t1;}

MainActivity MyWebView

String url; int timeout;

Object getProperty(String key,
 Object default){
 L9: Intent i2 = my_activity.getIntent();
 L10: return i2.getExtras().get(key);}

loadUrlNow(String s4){
 L11: if(s4.startsWith(“file://”) ||
 s4.startsWith(“javascript://”) || …)
 L12: local_webview.loadUrl(s4);}

loadUrl(String s1,int n1){...
 L4: String s2 = (String)

getProperty("url", null);
 L5: if (s2 == null) loadUrlNow(s1,n1);
 L6: this.url = s2;
 L7: my_activity.
 runOnUiThread(new MyRunnable

 (s2,t1));
 L8: MyRunnable dummy = new

MyRunnable(s2,t1);}

showWebPage(String s7,...){
 L20: if((s7.startsWith(“file://”) ||

 !s7.equals(this.url))
 L21: loadUrl(s7);
 L22: Intent i3 = new Intent("android.

intent.action.VIEW");
 L23: startActivity(i3.setData

(Uri.parse(s7)));}5

MainActivity my_activity; String url;

 onReceivedError(String s5){
 L17: Intent i3 = getIntent();
 L18: String s6 = i3.

getStringExtra(“errorUrl”);
 L19: appview.
 showWebPage(s6,...);}

onCreate(Bundle...){...
 L1: this.mUrl =

 “http://m.work.go.kr/”;
 L2: init();...}

init(){...
 L3:appview.
 loadUrl(this.mUrl,60000);...}

1

MyWebView appview;

2 4

3

6

Fig. 1. An execution sequence which retrieves malicious parameters from an intent
hyperlink. There are three classes separated by dashed lines: MainActivity, MyWebView and
MyRunnable. MainActivity is the browsable activity, MyRunnable is an inner class of MainActivity
implementing the Runnable interface. Methods are shown in boxes.

yields the same intent until setIntent(Intent) is called. Thus, the intent objects
at lines L9 &L17 will refer to the same intent hyperlink.

We explain the possible execution paths in Fig. 1, where the browsable activ-
ity loads malicious parameters in a malicious intent hyperlink clicked by the user:
(1) The MainActivity is launched and onCreate() is invoked storing the default
URL in this.mUrl used by loadUrl() at L3. (2) However, the application does not
load the default URL into the WebView immediately. Instead, getProperty() is
called which invokes getIntent() at L9. This method looks for the “extra para-
meter” (i.e., the parameter returned by get[type]Extra() API with type string),
having the key "url". If this parameter exists in the URI intent, runOnUiThread()
at L7 is called which runs the MainActivity’s UI thread. (3) Next, MyRunnable

class is instantiated storing the malicious URL in this.url and run() method
is invoked by the Android runtime. Line L15 in MyRunnable forks a thread (not
shown) to check whether the network connection times out within timeout limit.
In case of timeout, it calls onReceivedError() in the MainActivity which looks for
another extra parameter with key "errorUrl" at line L18. (4) If the string condi-
tions at line L20 are met, a string from the malicious URL is eventually loaded
to the WebView (path 1 with sink 1, loadUrl(), at line L12). (5) Otherwise, the
string will be incorporated into a new intent and attack suceeds to start another
app (path 2 with sink 2, startActivity(), at line L23). (6) Alternatively, the
malicious URL obtained at line L4 is loaded by the WebView (path 3 with sink
1, loadUrl() at line L12).

(2) Refining Control Flow Graph
and Reachability Analysis

Specification

(3) Static Flow Refinement &
Symbolic Execution

(4) Attack Validation and Concrete
Value Propagation

Intent Hyperlink Exploit

<source1 - sink1>
<source2 - sink2>
...

(1) Source-Sink Pair
Identification

Fig. 2. Architecture of W2AIScanner

584 B. Hassanshahi et al.

In this example, there are two vulnerable sinks at lines L12 and L23 with
three paths to reach them. However, analyzing these vulnerabilities require deal-
ing with challenges that are not currently dealt with satisfactorily in existing
systems. The main reason is limitations in constructing the control flow graph
(CFG) from the Dalvik code. We saw that paths one and two occur due to
(nested) inner threads. The app also uses runOnUiThread() which changes execu-
tion to the main UI thread of the activity. Existing tools such as FlowDroid [5]
do not report this path since the generated CFG lacks the edges necessary for
the vulnerable paths. We remark that we have found 818 browsable apps using
threads in our dataset. In this example, the getIntent() invocations happen to
give the same intent message in all the code. The analysis needs to determine
what intent getIntent() refers to. This example also shows that the analysis
needs to be field-sensitive, since the malicious URL is stored in this.url field,
and also object-sensitive to refer to the correct instance of MyRunnable class.

Our analysis not only aims for accuracy in finding the paths for the source-
sink flow but also needs to generate instances of intent hyperlinks to confirm the
vulnerability. We use symbolic reasoning on strings and other constraint solving
in our analysis (lines L11, L20) to this end. In addition, the operations on intent
parameters can be dependent on the intent filters in the app manifest. Hence, in
addition to the bytecode analysis, intent filters from the app manifest need to
be taken into account in the analysis.

3 Detecting and Confirming W2AI Vulnerabilities

We describe a tool, W2AIScanner, which can automatically detect and confirm
W2AI vulnerabilities. In order to deal with the challenges described in Sect. 2.3,
W2AIScanner works in four phases as shown in Fig. 2. We now describe each of
these phases.

3.1 Source-Sink Pair Identification

Our design starts with a less precise analysis followed with an on-demand refine-
ment of the analysis. The more efficient but less precise analysis identifies poten-
tially vulnerable areas in the app that further benefit from a more precise and
costly analysis which can reduce false alarms.

We start with a specification including a set of sources and sinks. The sources
are the getIntent() and onNewIntent() methods that fetch the intent objects
which start the activity and provide data inputs to the app. We choose a subset of
the sinks provided by Susi [29] and also sinks relevant to the categories described
in Sect. 2.2.

The initial CFG used by our analysis is the inter-procedural control flow
graph in Soot [21] constructed based on the call graph created by SPARK [22].
In the first step, we generate pairs of source and sink program points for the given
specification. We have two design choices: (i) locating all possible program points
in the initial CFG by comparing the method signatures in the reachable methods;

Web-to-Application Injection Attacks on Android 585

and (ii) using an existing information flow analysis system like FlowDroid [5] to
collect source-sink pairs with data dependency on inputs.1

We have observed that using FlowDroid, we need to perform the analysis
for fewer source-sink pairs and remove some of the irrelevant pairs, thereby
decreasing the analysis time. Hence, we use FlowDroid with a conservative set-
ting. For instance, it is possible to choose the flow sensitivity of the backward
alias search, we conservatively choose it to be flow-insensitive. Starting from the
browsable activities,2 FlowDroid finds pairs of source and sink program points
using dataflow analysis. In the next step, we utilize these source-sink pairs for
reachability testing and refining the initial CFG constructed by FlowDroid.

3.2 Refining the Control Flow Graph and Reachability Analysis

The less precise dataflow analysis in the previous step may introduce false alarms
and the constructed CFG may also miss edges (informally, we call them as gaps).
We compensate for this inaccuracy by a subsequent on-demand refinement and
symbolic execution. We start with the initial CFG from the previous step. Given
a source method, Sc, and a sink method Sk, W2AIScanner starts traversing
and refining the CFG with Sc being the starting node using depth-first search.
We resolve virtual methods and interface calls using a backward variable type
analysis, which considers assignments between callsites and class object instan-
tiation program points. In our motivating example, a node for method run()

in MyRunnable class is added because the CFG misses the edge from L7 to this
method. In this example, the class implementation for the Runnable interface at
L7 is resolved to MyRunnable class. Then, the run() method is loaded and its
nodes are added to the CFG.

While refining the CFG, a reachability analysis is also performed to reduce
the state explosion problems in the symbolic execution phase. When a branching
node is visited, it examines whether Sk is reachable from each of the branches
and caches the reachability result. The CFG traversal stops in this step if Sk is
reached and continues for the next source-sink pair. If a new sink is detected,
it will be added to the source-sink pairs to be examined later by the symbolic
execution. In Sect. 4, we show that accurate thread handling helps in finding
interesting vulnerabilities that are not detected by FlowDroid [5].

One problem is that Sc can be invoked anywhere in the program. Therefore,
the caller of the method where Sc resides might not be known (e.g., line L9 in
Fig. 1). Our analysis is conservative, thus, it returns to all possible callsites to
continue the analysis. Note that a path may have more than one sink. In that
case, the analysis continues until it reaches the other sinks.

In order to deal with backward edges caused by loops and recursive calls, a
node in a specific calling context is visited within a bounded number of times.
1 FlowDroid [5] is a static state-of-art analyzer for Android built upon Soot [21]

(based on the Interprocedural Finite Distributive Subset (IFDS) algorithm [30]) and
incorporates the Android component lifecycle.

2 We have modified the entry point selection implementation to pick the browsable
activities.

586 B. Hassanshahi et al.

Later we unify all the reachability results for nodes visited in different calling
contexts and use them in the symbolic execution. If a path does not include
any backward edges but is too long, we enforce a depth limit for the depth first
search.

3.3 Symbolic Execution and Static Flow Refinement

Static analysis is generally not sufficient to confirm vulnerabilities. However,
confirmation with concrete execution needs concrete inputs in the form of an
(attack) intent hyperlink. We employ symbolic execution [15,19] commonly used
for automated test generation to help in generating the inputs. Our symbolic
executor does not require any initial inputs and employs optimizations to reduce
the number of paths that need to be explored using the sink reachability analy-
sis conducted in the previous step. The final generated intent hyperlinks are
produced by a combination of the symbolic execution and validation phases.

The initial dataflow analysis used for reachability analysis in the first step
might produce a large number of flows, many of which may be false positives.
Thus, a strategy is required to reduce the number of initial flows. W2AIScanner
achieves an initial reduction by removing infeasible paths using symbolic exe-
cution. A path is feasible if there exists a program input for which the path is
traversed during program execution, otherwise the path is infeasible [20]. So we
immediately remove the infeasible paths.

The symbolic executor works on a worklist of statements. Our analysis picks
a source-sink pair, (Sc, Sk), starts from the source statement Sc and symbolically
executes the program until it reaches sink Sk. The reaching definition analysis
starts simultaneously and the intent object returned by Sc is marked as data
dependent on input. From this point, any parameter extracted from the source
intent object that has string, numeric, URI or boolean types is stored in a sym-
bolic variable. A URI can be decomposed into many substrings. We model the
URI class and convert it to string and integer compartments. We store symbolic
variables in a symbolic variable pool which is updated when translating a defin-
ition statement. If a statement has a call invocation, we need to decide whether
to enter the method or not. The symbolic execution enters a method if the sink
reachability result shows that entering the method will lead to a program point
where Sk is invoked. If the method is available (i.e., it is not an external method)
and the method callsite has a definition of a variable, the flow fact at the callsite
is updated when the analysis returns from the method. Otherwise, the method
call is considered dependent on inputs if any of its use variables (arguments or
the instance variable) are dependent.

For IF statements, the sink reachability result is examined for each of the
branches. If none of the branches are reachable to Sk, no new job will be added
to the worklist and the next path will be traversed. If only one of the branches is
reachable, that branch will be taken. Finally, if both branches are reachable to
Sk, W2AIScanner will search for the immediate postdminator (ImPodm). Based
on the CFG of a method, if W2AIScanner finds an ImPodm inside the method,
a new pending merge state will be added to the merge stack.

Web-to-Application Injection Attacks on Android 587

An optimization arises during the analysis: if there is no ImPodm inside the
method, we cannot merge the two branches which are reachable to the same
sink Sk. If one of these branches does not contain input-dependent variables,
forking it will produce spurious paths whose constraints will not be used for
generating inputs. To avoid these paths, we introduce a dummy ImPodm: (1) We
add a merge state to the merge stack when execution reaches an always feasible
conditional statement and the mergepoint can be any of the exit statements
of the method. An exit statement is a program point where execution exits
a method; (2) When execution reaches any exit statement, it does not exit the
method. Instead, if the method contains another distinct path, that path is added
to the worklist; (3) Finally, when all paths inside the method are traversed and
execution is exiting the method, the states at all of the exit statements which
are data dependent on input and the constraints for class fields are merged and
there will be only one merged state for all exit statements. In order to choose the
program counter for this dummy ImPodm, we create a dummy exit statement.
The data dependency results are also utilized to remove irrelevant constraints
on the path formula if possible.

This step also involves a reaching definition analysis performed together with
the symbolic execution. This analysis is field-sensitive and distinguishes objects
originating at different allocation sites but reaching the same program point.
We use symbolic values to point to a heap object. In an execution path, there
may be variables whose values are used but not resolved, we employ an (on
demand) backward copy constant search for more accuracy. The values are over-
approximated in two ways: (i) The variable is a method parameter where we
consider all possible callers of the method. Therefore, the result might be a set
of possible values which will be considered one by one; (ii) The variable is a
class field, so we do an over-approximation by considering all of the definition
statements for this field variable in its declaring class.

In practice, symbolic execution on real world applications with large code-
bases face some additional challenges. The backward edges due to loops and
recursions or long paths may lead to scalability issues. In particular, loops pose
many challenges in the analysis since even the Android activity lifecycle itself is
a large loop. W2AIScanner employs a bounded symbolic execution and models
iteration blocks of code (e.g., Iterator class in Java) to address these obstacles.

Threads. One challenge in supporting threads is passing arguments. Usually
threads are initialized with arguments that are stored in class fields. Later, these
class fields are queried in the body of the run methods and a field-sensitive
analysis is required to keep track of them. Method arguments can also be passed
to threads in specific ways (e.g., AsyncTask) which are more complicated than
binding method arguments in the callsite for normal method invocations (where
there exists a one-to-one mapping between actual parameters at callsite and
formal parameters of the method). We model different ways provided by Android
to use threads and also support binding arguments for them.

Once we get the abstract description for all the sinks and external methods
in terms of formulas, we solve them and check the feasibility of each path. For

588 B. Hassanshahi et al.

feasible paths, a solution to the constraints is a witness which can be used to
construct an intent hyperlink to drive the execution down this path. These intent
hyperlinks are used at the last step to dynamically execute the program. We
employ the CVC4 SMT solver [23] which deals with string, integer and boolean
constraints. We provide intermediate formulas for string operations that are not
directly supported by CVC4 such as (startsWith and split). Once the solver
has instantiated some/all of the symbolic variables, we use them to instantiate
an intent hyperlink. In order to incorporate the generated inputs to the intent
hyperlink, our analysis resolves the key-value mappings (explained shortly) in
the intent hyperlink syntax.

3.4 Attack Validation and Concrete Value Propagation

W2AIScanner automatically generates intent hyperlinks that can exploit the
W2AI vulnerabilities. An intent hyperlink can be divided into two parts:
(i) the scheme part which has to be matched with the intent filter for the activ-
ity defined in the manifest file; and (ii) the data inputs which are of key-value
forms described below. The first part is collected by the manifest parser com-
ponent which retrieves the intent filter specification for the source activity. It
creates all possible schemes that will match the intent filter. Path is one of the
elements in intent filters that will be checked for accepting an intent. It can
be provided by developers in a special pattern (similar to regular expressions).
We use the algorithms from the Android framework to find values that match
these patterns.

The data inputs that make up an intent hyperlink are derived from the Intent
class methods. In Sect. 2 we discussed that an intent hyperlink follows a specific
syntax. Here is a simplified meta intent hyperlink:

intent://HOST/PATH?query=[string1]#Intent;scheme=[string2];action=[string3];S.key

=[string4];end;

where data input can be sent through the [string] fields to the Android applica-
tion code. There are several possible ways to send data via an intent hyperlink:
(i) a data URI which references the data resources consisting of the scheme,
host and path as well as query parameters which are the key-value mappings
preceded by the “?”; (ii) intent extras, the key-value pairs whose type can also
be specified in the intent hyperlink (e.g., the S in S.key = [string4] refers to
the string extra). Note that an intent hyperlink can have more parameters with
other types, e.g., int; (iii) other intent parameters such as categories, actions,
etc., that can be sent as string values.

As we explained in the previous step, there are intent APIs for each form of
the inputs described above that can be utilized in the application code to get
the data inputs. For instance, Intent.getStringExtra(String key) returns the
extras in the intent whose type is string and is mapped to key. We infer such
types and use them in generating intent hyperlinks. We define such methods
as entry methods if they are invoked on an input intent object. These methods
are considered as the input methods in the symbolic execution which generates

Web-to-Application Injection Attacks on Android 589

test inputs for variables initialized by these entry methods. While constructing
symbolic formulas in the previous step, we also correlate the entry methods with
the intent filters in the manifest file to generate more accurate intent hyperlinks.
The entry methods return string, integer and boolean types as well as the URI
type.

We also need to find keys corresponding to each input parameter. We use
constant propagation, explained in the previous step to find the values of the
arguments of API calls such as getStringExtra(String name). If it fails to resolve
the key names, an arbitrary string value is generated.

Once we have the key-value pairs and other necessary inputs for the source-
sink flows and the intent filter specifications for the target browsable activity,
these can all be put together to form an intent hyperlink. Therefore a group of
paths generated in the symbolic execution phase might contribute to a single
intent hyperlink.

Attack Validation. The intent hyperlinks generated in the static phase are used
by the dynamic executor explained below to validate whether they exploit the
sink methods. The dynamic executor runs the generated inputs and inspects the
results. Running the generated inputs, two possible scenarios might happen: (1)
the sink method is invoked at runtime and the generated input is accurate enough
to cause the exploit; (2) the sink method is invoked but it is not exploited. In this
case, first we use the concrete values obtained from the runtime execution path
and assign them to the unknown variables which symbolic executor has failed
to resolve. The new path formula is passed to the solver again and we generate
a new intent hyperlink. This procedure continues until intent hyperlinks do not
change any more (i.e., analysis reaches a fixpoint).

In order to run the concrete generated inputs and obtain the execution trace,
we chose to use a high-level but standard interface, Java Debug Wire Protocol
(JDWP) [2] which is supported by the Android runtime (both Dalvik and Art)
and independent of framework releases. One complexity is that the execution is
run in Dalvik bytecode but the analysis is in Jimple (a 3-address intermediate
instruction representation). We re-translate the generated execution trace back
to Jimple. Dexpler [6] keeps a mapping between byte code instruction addresses
and Jimple statements. We fetch the Jimple statements using these mappings.
In order to assign the concrete value of a variable from execution trace to Jimple
registers, for each method, we have to find the relation between variables on
the execution stack and the Jimple registers in the method Body. After running
the generated intent hyperlinks, we will use these register mappings to find out
accurately which Jimple registers should be updated to be further processed
during the analysis.

The validation component has to verify whether the generated intent hyper-
link results in an exploit. This decision is based on the execution trace, concrete
values and the attack policies provided by the security analyst. The attack policy
consists of rules for each class of vulnerabilities. Depending on the category of
the sink method reached on the execution trace, it applies different policy checks.
There are two main classes of vulnerabilities: abusing WebView interfaces and
abusing native app interfaces.

590 B. Hassanshahi et al.

Table 1. Overall statistics of vulnerable apps in each W2AI Attack category

Category Sub-Category # of Sinks # of Vulnerable Apps ID

Abusing
WebView
Interfaces

Abusing
JavaScript-to-Native
Bridge

9 52 1

Abusing HTML5 APIs 10 29 2

Local File Inclusion 9 63 3

Phishing 11 84 4

Abusing
Native
App
Interfaces

App Database Pollution 14 10 5

Persistent Storage
Pollution

72 7 6

Open Re-delegation 39 23 7

App-Specific Logic
Flaws

16 18 8

The first category is validated by sending a malicious URL through the intent
hyperlink parameters. When a vulnerable application loads the malicious URL,
the data retrieved from the device is sent to our server and we can confirm
the attacks accordingly.3 Attacks which abuse native app interfaces are more
complex to validate. First we verify if the sink method is reached on the execution
trace. But this is not sufficient. We should also check whether the concrete values
of the sink method parameters are directly affected by the intent hyperlink fields.
For this purpose, we compare the values resolved for the sink method parameters
in the symbolic execution phase with the values observed after running the intent
hyperlink. Then, according to the policy, we check for other methods (which we
call category settings) on the path that should exist so that the exploit is not
prevented from occurring. After confirming the sink method to be exploitable,
the intent hyperlink will be reported as an exploit.

4 Evaluation

We assess the prevalence of web-to-app injection attacks on a large scale and also
assess the detection capabilities of W2AIScanner. We choose the top 100 apps of
all categories in Google Play plus the dataset used in [17]4 giving a total of 12,240

3 As an example, if the app has flows that reach the WebView.loadUrl sink and enables
setAllowFileAccess, setJavaScriptEnabled and setAllowFileAccessFromFileURLs settings, the
app is vulnerable to local file inclusion attacks.

4 Since numerous apps were out of the shelf (the dataset in [17] contains 15,510 apps),
we could only download 9,877 apps in Google Play on April, 2014.

Web-to-Application Injection Attacks on Android 591

apps. We ran on Ubuntu 14.04 with an Intel Core i5-4570 CPU PC (3.20 GHz)
with 16 GB of RAM. Apps are tested both on the Android 4.4 emulator as
well as real Android devices, Galaxy Nexus and Nexus 7. W2AIScanner utilizes
the adb command to launch the activity to validate the exploits that abuse
WebView interfaces or native app interfaces and perform privileged operations
(e.g., inserting data into the app’s database) which is explained in Sect. 3.4.

Prevalence of W2AI Vulnerabilities in Apps. In the dataset, 1,729 apps
have at least one BROWSABLE activity. W2AIScanner detected 286 W2AI vulner-
abilities in those apps with BROWSABLE activities. This shows that our system is
effective as a vulnerability detection tool for W2AI attacks.5

Table 1 gives a breakdown of the detected vulnerable apps into our 8 cate-
gories. The column, # of sinks, gives the number of sinks defined by our specifi-
cation for that category. There can be overlaps among the different categories of
sinks. For example, WebView.loadUrl() can be the sink for the first 4 categories.
In total, we have 153 distinct sinks for 8 categories. An app may have vulner-
abilities from more than one category. For instance, the WorkNet example has
vulnerabilities from categories with ID 1 to 4. Thus, the sum of that column is
greater than the number of vulnerable apps. The column, # of vulnerable apps,
gives the number of apps for which we found a confirmed vulnerability for that
class.

For each category, we have found at least one vulnerable application with
more than 1 Million downloads. A popular application is Wikipedia (1.3.4) which
is vulnerable to categories with ID 2 and 4. We have also detected and confirmed
14 Dropbox applications that are vulnerable to open-redelegation attacks where
attacker can force them to invoke other apps hosting on the phone. One app-
specific logic vulnerability appears in 587 apps, here we count it as only one
unique vulnerability to avoid to skewing the results. Once this vulnerability is
exploited, attacker can send fake Paypal payment notifications to the phone. The
Tencent Android SDK (2.8) is also confirmed to be vulnerable to W2AI attacks.
More details on representative applications in each attack category is given in
Appendix A.

Effectiveness of W2AIScanner in Detecting W2AI Vulnerabilities. Our
objective is effective detection of W2AI vulnerabilities with the following goals:
(i) potential vulnerabilities found by the analyser should have only few false
positives and the generated intent hyperlinks should be accurate; and (ii) it
should find vulnerabilities which may be missed due to imprecision at the initial
whole app-level analysis phase.

Figure 3(a) depicts the ratio of number of paths generated by W2AIScanner
and those reported by vanilla FlowDroid. For most of the apps, there is a consid-
erable reduction in the number of reported flows which means that either most of
the false positive flows are rejected or the combination of symbolic execution and
data-flow analysis has effectively reduced the number of generated paths. The
ratio can also be greater than one as we detect flows not found by FlowDroid.

5 We, in fact, process 12,240 apps, first rejecting those without browsable activities.

592 B. Hassanshahi et al.

Figure 3(c) shows that W2AIScanner is able to effectively detect false positive
sinks. Sometimes, our system is even able to find sinks which have been missed
by vanilla FlowDroid. In Fig. 3(c), these sinks are shown as new sinks. Note
that if we do not find any new sinks for one app, we do not put 0 in the chart.
In some cases, all of the sinks reported by FlowDroid are false positives while
W2AIScanner finds the true positive ones. In total, we find 82 new true positive
sinks in 69 applications after refining the CFG constructed by FlowDroid. The
new sinks found in 39 applications are due to thread executions. Figure 3(b)
shows the number of missing edges in FlowDroid CFG for each application in
our dataset. In total, we find missing edges in 863 apps which are due to thread
invocations.

The total execution time for static analysis phase can be found in Fig. 3(d).
For most of the applications analysis takes less than 30 s. The execution time
for dynamic analysis phase tends to be higher. We have measured the execution
time per flow for 8 applications each representative for each attack category. The
average execution time per flow is around 48 s. A large portion of the cost for
the dynamic phase is due to operations such as networking.

In Fig. 3(a), it can be observed that for the first 200 apps, the number of paths
reported by vanilla FlowDroid is much higher than W2AIScanner (the ratio is
less than 0.2). Figure 3(c) also shows that FlowDroid has many false positive
sinks for the same apps. This shows that our system can successfully reduce the
number of generated paths for these apps by rejecting the false positive sinks.
The high number of initial flows for these apps also results in more runtime
execution in Fig. 3(d).

We successfully generate accurate intent hyperlinks that allow us to find 0-
day vulnerabilities. The intent hyperlink parameters generated for many appli-
cations in our dataset follow complex patterns. For example, Letv is an Android
app which only processes an intent hyperlink if it has a query parameter with
from as the key and baidu as value. Another example is Kobobooks which requires
that action parameter of the intent hyperlink that invokes the app be not equal
to android.intent.action.VIEW. Thus, symbolic execution and validation is the
key for finding confirmed paths. An alternative approach to symbolic execution
is fuzzing but we believe that any fuzzing without some symbolic reasoning is
unlikely to give good results.

5 Related Work

We discuss Android related work from two angles, attacks on apps and analysis
of apps. Privilege escalation attacks have been shown in Android [8,10,13,24,31,
32,36,39,40]. These works all assume that the malicious apps are present on the
victim’s Android device, while our W2AI attacks work without any installation
of malware.

Recently, WebView and hybrid apps have been shown to be vulnerable to new
classes of attacks [9,14,17,26]. Luo et al. observe that malicious JavaScript code
can access sensitive resources [26]. Georgiev et al. carry out an analysis on hybrid

Web-to-Application Injection Attacks on Android 593

Fig. 3. (a) Ratio of number of paths generated by W2AIScanner and vanilla Flow-
Droid; (b) Number of missing edges in the initial CFG which were found and added by
W2AIScanner; (c) FD sinks are number of FlowDroid false positive sinks and new sinks
are number of new true positive sinks found by W2AIScanner; (d) Total execution time
for static analysis in seconds. Apps are sorted based on the ratio in figure (a). All apps
have at least one potential vulnerable sink.

apps, and demonstrate vulnerabilities that affect bridge mechanisms [14]. Jin
et al. introduce code injection attacks on HTML5-based mobile apps via internal
and external channels [17]. These attacks require the user to visit the malicious
page directly in the WebView of the hybrid apps. In contrast, our W2AI attacks
utilize intent hyperlinks to convey the payload simply by clicking a link in the
default browser, which is more probable.

Attacks have also been found through scheme mechanisms [18,33,34]. Wang
et al. [34] reveal confused deputy attacks on Android and iOS applications which
abuse channels provided by the OS. One of these channels is the scheme mech-
anism through which an attacker can invoke apps on the phone by crafting
intent hyperlinks and publishing on web. They study the problem where the
user surfs through the web in customized WebViews of benign applications
and launch confused deputy attacks abusing the benign app’s “origin”. They
present a CSRF attack on the Dropbox SDK in iPhone [34] launched through
an intent hyperlink. However, our attacks differ because our attack model is more
general – the user clicks on an intent hyperlink in the default browser which does
not need to be started from the benign app and can leverage safer channels like
default browsers. More importantly, we investigate which vulnerabilities can be
exploited once the attacker can manage to start an application via an intent
hyperlink. We present a detection and validation method which we show is able
to scale for automatically detecting and generate exploits for vulnerabilities in
real apps.

594 B. Hassanshahi et al.

Another approach is static analysis of Android apps [5,25,35,41]. CHEX
[25] finds component hijacking vulnerabilities in Android by approximating app
execution as a sequential permutation of “splits”. We try to reduce the over-
approximation and show that precise detection is feasible. Additionally, our han-
dling of threads is more precise than CHEX as our analysis is object-sensitive.
FlowDroid [5] is a state-of-the-art information flow analyser tailored for Android
applications which we leverage upon and improve in the context of W2AI.
AppSealer can automatically generate patches for Android apps with component
hijacking vulnerabilities [38]. This work can potentially be used as a solution for
injection attacks like W2AI attacks.

There are also dynamic analysis approaches [11,27,37]. TaintDroid uses taint
analysis to track the flow of privacy sensitive data through third-party apps [11].
However, it requires a proper set of inputs to begin with. Our analysis gener-
ates the requisite inputs for W2AI attacks. Symbolic execution has been used to
generate test inputs for Android apps. Cadar et al. [7] generate event sequences
based on concolic testing but does not address data inputs. Mirzaei et al. [28]
perform symbolic execution for event sequences and data inputs by making an
abstraction for modelling framework. However, their approach may not scale.
Our refinement based approach is designed to reduce the state explosion prob-
lems inherent in symbolic execution.

6 Conclusion

We present a comprehensive study on an underexplored class of W2AI attacks
in Android. These attacks can be significant threats as they open a web-to-app
attack channel without needing malware and can perform privileged operations.
Our work is also novel in that unlike most analysis papers which are about
finding potential vulnerabilities, we show that it is possible to automatically
both detect and confirm vulnerabilities with an attack intent hyperlink (0-day
web input) at scale on real apps.

A Appendix

Case Studies from Table 2

For each representative app in Table 2, we detail the exploitable sinks and the
vulnerabilities with the attack settings in Table 3.
Abusing JavaScript-to-Native Bridge. WorkNet provides job information
in Korea. This app enables settings for JavaScript and JavaScript-to-native inter-
faces in its configuration file (config.xml). We found vulnerabilities which exploit
the WebView.loadUrl sink. This app enables the following settings:

setJavaScriptEnabled, setGeolocationEnabled, setAllowFileAccess,
setAllowFileAccessFromFileURLs

Hence, the web attacker can mount all the attacks in the WebView interfaces
abuse category on WorkNet. As explained in Sect. 2, its WebView loads arbitrary

Web-to-Application Injection Attacks on Android 595

Table 2. Representative vulnerable apps for each W2AI vulnerability category

ID App Version Downloads

1 WorkNet (kr.go.keis.worknet) 3.1.0 1 - 5 M

2 Wikipedia (org.wikipedia) 1.3.4 10 - 50 M

3 WeCal Calendar (im.ecloud.ecalendar) 3.0.8 1 - 5 M

4 IPharmacy (com.sigmaphone.topmedfree) 1.0.92 1 - 5 M

5 i2X RDP (com.tux.client) 11.0.1899 1 - 5 M

6 Moneycontrol (com.divum.MoneyControl) 2.0 1 - 5 M

7 Caller ID (com.callapp.contacts) 1.56 1 - 5 M

8 Sina Weibo (com.sina.weibo) 4.3.0 5 - 10 M

ID: Category ID
App: Representative App (Package Name)
Version: App’s Version
Download: # of Downloads (Million)

URLs which exposes the Java native methods to the Javascript code. Once the
user clicks the malicious link, WorkNet loads the URL from the intent hyper-
link’s parameters in the WebView. Therefore, the malicious page running in the
WebView can invoke 21 JavaScript-to-native interfaces to access private user
data (e.g., contacts) and perform privileged operations (e.g., modifying local
files).

Abusing HTML5 APIs. Wikipedia is the free encyclopedia containing more
than 32 M articles in 280 languages. It contains 2 paths that reaches the WebView.

loadUrl sink and enables JavaScript and geolocation settings. The combination
of this sink and setting enables the malicious site running in the WebView to
access the GPS sensors and send out the user’s current location to the attacker
to track the user at any time.

Local File Inclusion. WeCal Calendar is a calendar assistant, which synchro-
nizes with the Google calendar, takes notes, sets alarm and so on. W2AIScanner
detects that the app has flows that reach the WebView.loadUrl sink and enables
settings for JavaScript and the file’s access. The settings are: setAllowFileAccess,
setAllowFileAccessFromFileURLs. After validation, we find that when loading the local
HTML file (whose URL comes from the URI intent) in the WebView, the file
can utilize XMLHttpRequest to read the local files (e.g., /etc/hosts) and leak the
content to the attacker.

Phishing. IPharmacy provides medical products. W2AIScanner detects that
the Webview.loadUrl sink in this app is reachable and exploitable. Therefore,
this app can be exploited to load a phishing page whose URL is derived from
the intent hyperlink from the web attacker in the customized WebView.

App Database Pollution. 2X RDP Client is a popular remote desktop app.
The exploitable sink reported by W2AIScanner is SQLiteDatabase.insert, which
adds items to farms table. The web attacker can set sensitive attributes, e.g.,
credentials, in the URI intent to pollute the app’s database.

596 B. Hassanshahi et al.

Table 3. Sinks and policies/settings for representative apps from Table 2

Category Sub-category Representative Sinks Policies/Settings ID

Abusing
WebView
Interfaces

Abusing
Javascript-to-
Native
Bridge

WebView.loadUrl JavaScript-to-
native
interfaces,
setJavaScript

Enabled

1

Abusing HTML5
APIs

WebView.loadUrl setGeolocation

Enabled,set
JavaScript

Enabled

2

Local File
Inclusion

WebView.loadUrl setAllowFile

Access,setJava
ScriptEnabled,
setAllowFile

AccessFrom-

FileURLs

3

Phishing WebView.loadUrl setJavaScript

Enabled

4

Abusing
Native
App
Interfaces

App database
pollution

SQLiteDatabase.

insert

- 5

Persistent
Storage
Pollution

SharedPreferences.

Editor.putString

- 6

Open
Re-elegation

Class.forName - 7

App-Specific
Logic Flaws

TextView.setText - 8

Persistent Storage Pollution. MoneyControl is a popular business and mar-
keting app. W2AIScanner detects paths that inject data to the SharedPreferences.

Editor.putString sink. Exploiting this vulnerability, the web attacker can make per-
manent changes to the storage.

Open Re-delegation. Caller ID - Call Blocker is a caller-ID app in Google Play
that identifies unknown callers. The reached sink for this app is Class.forName.
The attacker can set a private activity’s name in the URI intent’s parameters,
this app will be launched and invoke the designated activity when the user clicks
the malicious link.

App-Specific Logic Flaws. Sina Weibo is a microblogging client for Android
phones. A W2AI vulnerability in this application allows the attacker to show
arbitrary title messages to the victim user. The vulnerable sink in this application

Web-to-Application Injection Attacks on Android 597

is TextView.setText. The attacker can launch an injection attack by putting an
arbitrary title as query paramater in the malicious intent hyperlink.

References

1. Intents and intent filters. http://developer.android.com/guide/components/
intents-filters.html

2. Java debug wire protocol. http://developer.android.com/tools/debugging/index.
html

3. Tencent Android SDK. http://wiki.open.qq.com/wiki/mobile/Android SDK

4. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: CSF (2010)

5. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.: FlowDroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In: PLDI (2014)

6. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Dexpler: converting Android
dalvik bytecode to jimple for static analysis with Soot. In: SOAP (2012)

7. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Automated con-
colic testing of smartphone apps. In: FSE (2012)

8. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app without actually seeing
it: UI state inference and novel Android attacks. In: USENIX Security (2014)

9. Chin, E., Wagner, D.: Bifocals: analyzing webview vulnerabilities in Android appli-
cations. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp.
129–146. Springer, Heidelberg (2014)

10. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

11. Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: USENIX Security (2010)

12. Felt, A.P., Wagner, D.: Phishing on mobile devices. In: W2SP (2011)
13. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-

delegation: attacks and defenses. In: USENIX Security (2011)
14. Georgiev, M., Jana, S., Shmatikov, V.: Breaking and fixing origin-based access

control in hybrid web/mobile application frameworks. In: NDSS (2014)
15. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:

PLDI (2005)
16. Grace, M.C., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability

leaks in stock android smartphones. In: NDSS (2012)
17. Jin, X., Hu, X., Ying, K., Du, W., Yin, H., Peri, G.N.: Code injection attacks on

HTML5-based mobile apps: characterization, detection and mitigation. In: CCS
(2014)

18. Kaplan, D.: (cve-2014-3500/1/2) Apache Cordova for Android - multiple vulnera-
bilities. http://seclists.org/fulldisclosure/2014/Aug/21

19. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

20. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng 16(8),
870–879 (1990)

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/tools/debugging/index.html
http://developer.android.com/tools/debugging/index.html
http://wiki.open.qq.com/wiki/mobile/Android_SDK
http://seclists.org/fulldisclosure/2014/Aug/21

598 B. Hassanshahi et al.

21. Lam, P., Bodden, E., Hendren, L., Darmstadt, T.U.: The Soot framework for Java
program analysis: a retrospective. In: CETUS (2011)

22. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using SPARK. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

23. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: CAV (2014)

24. Lin, C.C., Li, H., Zhou, X., Wang, X.: Screenmilker: how to milk your Android
screen for secrets. In: NDSS (2014)

25. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: Chex: statically vetting Android apps
for component hijacking vulnerabilities. In: CCS (2012)

26. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on webview in the Android
system. In: ACSAC (2011)

27. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: an input generation system for
Android apps. In: FSE (2013)

28. Mirzaei, N., Malek, S., Păsăreanu, C.S., Esfahani, N., Mahmood, R.: Testing
Android apps through symbolic execution. SIGSOFT Softw. Eng. Notes 37(6),
1–5 (2012)

29. Rasthofer, S., Arzt, S., Bodden, E.: A machine-learning approach for classifying
and categorizing android sources and sinks. In: NDSS (2014)

30. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL (1995)

31. Schlegel, R., Zhang, K., Zhou, X.y., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: a stealthy and context-aware sound trojan for smartphones. In: NDSS
(2011)

32. Schrittwieser, S., Frühwirt, P., Kieseberg, P., Leithner, M., Mulazzani, M., Huber,
M., Weippl, E.R.: Guess who’s texting you? evaluating the security of smartphone
messaging applications. In: NDSS (2012)

33. Terada, T.: Whitepaper attacking android browsers via intent scheme URLs.
http://www.mbsd.jp/Whitepaper/IntentScheme.pdf

34. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized origin crossing on mobile
platforms: threats and mitigation. In: CCS (2013)

35. Wei, F., Roy, S., Ou, X., Robby: Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of Android apps. In: CCS (2014)

36. Xing, L., Pan, X., Wang, R., Yuan, K., Wang, X.: Upgrading your android, ele-
vating my malware: privilege escalation through mobile OS updating. In: Security
and Privacy (2014)

37. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: USENIX Security (2012)

38. Zhang, M., Yin, H.: AppSealer: automatic generation of vulnerability-specific
patches for preventing component hijacking attacks in Android applications. In:
NDSS (2014)

39. Zhou, X., Lee, Y., Zhang, N., Naveed, M., Wang, X.: The peril of fragmentation:
security hazards in android device driver customizations. In: Security and Privacy
(2014)

40. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution.
In: Security and Privacy (2012)

41. Zhou, Y., Jiang, X.: Detecting passive content leaks and pollution in Android
applications. In: NDSS (2013)

42. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative Android markets. In: NDSS (2012)

http://www.mbsd.jp/Whitepaper/IntentScheme.pdf

All Your Voices are Belong to Us: Stealing
Voices to Fool Humans and Machines

Dibya Mukhopadhyay, Maliheh Shirvanian(B), and Nitesh Saxena

University of Alabama at Birmingham, Birmingham, AL, USA
{dibya,maliheh}@uab.edu, saxena@cis.uab.edu

Abstract. In this paper, we study voice impersonation attacks to defeat
humans and machines. Equipped with the current advancement in auto-
mated speech synthesis, our attacker can build a very close model of a
victim’s voice after learning only a very limited number of samples in the
victim’s voice (e.g., mined through the Internet, or recorded via physical
proximity). Specifically, the attacker uses voice morphing techniques to
transform its voice – speaking any arbitrary message – into the victim’s
voice. We examine the aftermaths of such a voice impersonation capabil-
ity against two important applications and contexts: (1) impersonating
the victim in a voice-based user authentication system, and (2) mimick-
ing the victim in arbitrary speech contexts (e.g., posting fake samples on
the Internet or leaving fake voice messages).

We develop our voice impersonation attacks using an off-the-shelf
voice morphing tool, and evaluate their feasibility against state-of-the-
art automated speaker verification algorithms (application 1) as well as
human verification (application 2). Our results show that the automated
systems are largely ineffective to our attacks. The average rates for reject-
ing fake voices were under 10–20% for most victims. Even human ver-
ification is vulnerable to our attacks. Based on two online studies with
about 100 users, we found that only about an average 50 % of the times
people rejected the morphed voice samples of two celebrities as well as
briefly familiar users.

1 Introduction

A person’s voice is one of the most fundamental attributes that enables commu-
nication with others in physical proximity, or at remote locations using phones
or radios, and the Internet using digital media. However, unbeknownst to them,
people often leave traces of their voices in many different scenarios and contexts.
To name a few, people talk out loud while socializing in cafés or restaurants,
teaching, giving public presentations or interviews, making/receiving known and,
sometimes unknown, phone calls, posting their voice snippets or audio(visual)
clips on social networking sites like Facebook or YouTube, sending voice cards
to their loved ones [11], or even donating their voices to help those with vocal
impairments [14]. In other words, it is relatively easy for someone, potentially

The first two authors are equally contributing.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 599–621, 2015.
DOI: 10.1007/978-3-319-24177-7 30

600 D. Mukhopadhyay et al.

with malicious intentions, to “record” a person’s voice by being in close phys-
ical proximity of the speaker (using, for example, a mobile phone), by social
engineering trickeries such as making a spam call, by searching and mining for
audiovisual clips online, or even by compromising servers in the cloud that store
such audio information. The more popular a person is (e.g., a celebrity or a
famous academician), the easier it is to obtain his/her voice samples.

We study the implications of such a commonplace leakage of people’s voice
snippets. Said differently, we investigate how an attacker, in possession of a
certain number of audio samples in a victim’s voice, could compromise the vic-
tim’s security, safety, and privacy. Given the current advancement in automated
speech synthesis, an attacker can build a very close model of a victim’s voice after
learning only a very limited number of previously eavesdropped sample(s) in the
victim’s voice. Specifically, voice morphing techniques can be used to transform
the attacker’s voice – speaking any arbitrary message – into the victim’s voice
based on this model. As a result, just a few minutes worth of audio in a victim’s
voice would lead to the cloning of the victim’s voice itself.

We show that the consequences of imitating one’s voice can be grave. Since
voice is regarded as a unique characteristic of a person, it forms the basis of
the authentication of the person. If voice could be imitated, it would compro-
mise the authentication functionality itself, performed implicitly by a human
in human-to-human communications, or explicitly by a machine in human-to-
machine interactions. As our case study in this paper, we investigate the after-
maths of stealing voices in two important applications and contexts that rely
upon voices as an authentication primitive. The first application is a voice-based
biometric or speaker verification system that uses the potentially unique fea-
tures of an individual’s voice to authenticate that individual. Voice biometrics
is the new buzzword among banks and credit card companies. Many banks and
credit card companies are striving for giving their users a hassle-free experience
in using their services in terms of accessing their accounts using voice biometrics
[13,15,18,22,29,31]. The technology has now also been deployed on smartphones
as a replacement to traditional PIN locks, and is being used in many govern-
ment organizations for building access control. Voice biometrics is based on the
assumption that each person has a unique voice that depends not only on his or
her physiological features of vocal cords but also on their entire body shapes, and
on the way sound is formed and articulated. Once the attacker defeats voice bio-
metrics using fake voices, he would gain unfettered access to the system (device
or service) employing the authentication functionality.

Our second application, naturally, is human communications. If an attacker
can imitate a victim’s voice, the security of (remote) arbitrary conversations
could be compromised. The attacker could make the morphing system speak lit-
erally anything that the attacker wants to, in victim’s tone and style of speaking,
and can launch an attack that can harm victim’s reputation, his security/safety
and the security/safety of people around the victim. For instance, the attacker
could post the morphed voice samples on the Internet, leave fake voice messages
to the victim’s contacts, potentially create fake audio evidence in the court, and

All Your Voices are Belong to Us 601

even impersonate the victim in a real-time phone conversations with someone
the victim knows. The possibilities are endless. Such arbitrary conversations are
usually (implicitly) verified by humans.

Our Contributions: In this paper, we study the security threat associated with
stealing someone’s voice (Fig. 1). We develop our voice impersonation attacks
using an off-the-shelf voice morphing engine, and comprehensively evaluate their
feasibility against state-of-the-art automated speaker verification algorithms
(application 1 above) as well as manual verification (application 2). Our results
show that the automated systems are largely ineffective to our voice imperson-
ation attacks. The average rates for rejecting fake voices were under 10–20%
for most of our victims. In addition, even human verification is vulnerable to
our attacks. Based on an online study with 65 users, we found that only about
an average 50 % of the times people rejected the morphed voice samples of two
celebrities, while, as a baseline, they rejected different speakers’ voices about
98 % of the times, and that 60–70% participants rated the morphed samples as
being similar to original voices. We extended the same study for briefly famil-
iar voices with 32 online participants, the results being slightly better than the
previous study (rejection rates decrease and ambiguity of speaker verification
increases).

Our work highlights a real threat of practical significance because obtaining
audio samples can be very easy both in the physical and digital worlds, and the
implications of our attacks are very serious. While it may seem very difficult to
prevent “voice hacking,” our work may help raise people’s awareness to these
attacks and motivate them to be careful while sharing and posting their audio-
visuals online.

2 Background and Related Work

Voice Conversion: It has always been a challenge to get a machine to talk in a
human’s voice. Voice synthesis (artificial creation of human voice) has a growing
number of applications most dominant one is text to speech systems. There are
several instances of such voice synthesizers, whose qualities are judged based on
their naturalness (similarity to human voice). Some of the recent synthesizers
[2,5,10] significantly improved quality of the speech by reducing the robotic
sound that was unavoidable in earlier synthesizer. However, still the synthesized
speech is distinguishable from a human voice. Besides, such systems require a
huge amount of data to learn phonemes.

The other technique to create a voice is voice morphing (also referred to as
voice conversion and voice transformation). Voice morphing modifies a source
speaker’s voice to sound like a target speaker by mapping between spectral fea-
tures of their voice. Similar to the voice synthesizers the major application of
voice morphing is TTS that can speak in any desired voice. Usually such tech-
niques require smaller amounts of training data and sound more natural and
fluent compared to voice synthesizers [6]. Due to these advantageous properties,

602 D. Mukhopadhyay et al.

voice morphing becomes an excellent tool to attack someone’s voice as studied
in our paper.

We employed the CMU Festvox voice converter [6] (reviewed in Sect. 4)
to attack machine-based and human-based speaker verification. We used Mel-
Cepstral Distortion (MCD)1 to measure the performance of conversion engine
for different size of training dataset. The smaller the MCD, the better the quality
of the conversion. MCD values between 5–8 dB are generally considered accept-
able for voice conversions [9]. As a crucial component of our attacks, we found
that the conversion quality is very good (within the desired range of 5–8 dB)
even with very small amount of training data. Our MCD analysis is reported in
Sects. 5.1 and 6.3.

Machine-based Speaker Verification: Speaker verification is the biometric
task of authenticating a claimed identity by means of analyzing a spoken sample
of the claimant’s voice. It is a 2-class problem in which the claimant must be
recognized as the true speaker or as an impostor [35]. To recognize a known target
speaker, a speaker verification system goes through a prior speaker enrollment
phase. In the speaker enrollment phase, the system creates a target model of a
speaker from his/her speech samples so that they can be verified during the test
phase in future.

A speaker verification system extracts certain spectral or prosodic features
from a speech signal to enroll the model of the target speaker. After extracting
the features from a speech signal, model enrollment or “voice print” generation
of the target speaker is done using different modeling techniques.

With the emergence of advanced speech synthesis and voice conversion tech-
niques, the automatic speaker verification systems may be at risk. De Leon et
al. have studied the vulnerabilities of advanced speaker verification systems to
synthetic speech [23–25], and proposed possible defenses for such attacks. In [16],
the authors have demonstrated the vulnerabilities of speaker verification systems
against artificial signals. The authors of [44] have studied the vulnerabilities of
text-independent speaker verification systems against voice conversion based on
telephonic speech.

In our paper, we pursue a detailed analysis of the vulnerabilities of a speaker
verification system employing two advanced algorithms against voice conver-
sion. Although some of the prior papers tested the same set of speaker verifica-
tion algorithms we are testing in our paper, they did not evaluate the Festvox
conversion system, which claims to require only few sentences for training [6].
Noticeably, a key difference between our work and previous studies lies in the
number/length and type of samples required to build a good voice conversion
model. We use very less amount of training samples (e.g., 50–100 sentences of
length 5 s each) for voice conversion collected using unprofessional voice recording
devices such as laptops and smartphones. Such short-size audio samples giving
rise to a victim’s voice, sets a fundamental premise of how easily a person’s voice

1 MCD is a metric used to measure the similarity of the converted voice and the
original voice by calculating the different between the feature vectors of the original
and converted voice [26,32,33].

All Your Voices are Belong to Us 603

can be attacked or misused. While the prior papers do not seem to clearly specify
the sizes of their voice conversion training data sets, they employ spectral con-
version approaches that typically require a large amount of high-quality training
data [28,42].

Human-based Speaker Verification: Manual speech perception and recogni-
tion is a complex task, which depends on many parameters such as length/number
of different samples, samples from familiar vs. famous people, and combinations
thereof [38]. There exists a considerable volume of literature on how speech is
recognized [20,21,38]. Linguistics researches show that the shorter the sentence,
the more difficult it is to identify the source [27]. Based on the study conducted
by Shirvanian et al. [39], it appears that the task of establishing the identity of a
speaker is challenging for human users, especially in the context of short random
strings (numbers or phrases). In our paper, we study the capability of human
users in recognizing the speaker for an arbitrary speech of famous celebrities and
briefly familiar speakers.

3 Our Attacks on Human Voices

3.1 Overview

In this paper, we study the attacks against human-based and machine-based
speaker verification. Our attack system consists of three phases (visualized in
Fig. 1). The first phase involves the collection of voice samples OT = (t1, t2, · · · ,
tn), previously spoken by the target victim. At this point, the audio (content)
privacy may have been compromised as the victim gives away (willingly or unwill-
ingly) his/her audio samples to the attacker. The second phase of our attack
focuses on the creation of the victim’s voice based on the audio samples col-
lected in the first phase. The attacker (source) first speaks the same sentences
OS = (s1, s2, · · · , sn) the victim (target) has spoken in the recorded audio, and
then feeds OS and OT to the morphing engine to create a model M = µ(OS , OT)
of the victim’s voice. At this point, the attacker has at its disposal essentially
the voice of the victim. The third phase involves the use of this voice imitation
capability to compromise any application or context that utilizes the victim’s
voice. The target applications that we study in this paper are: machine-based
and human-based speaker verification systems. The attacker can speak any new
arbitrary sentence A = (a1, a2, · · · , am), as required by the attacked application,
which the model built in the second phase will now convert into the victim’s voice
as fT = M(A) = (f1, f2, · · · , fm). The morphed samples will then be fed-back to
the speaker verification systems (to authenticate the morphed voice as the tar-
get victim’s voice), and to people (to attack them by fooling them into believing
that the morphed attacker’s voice is the voice of the benign victim). The third
phase of our attack system serves to demonstrate the aftermaths of the breach
of voice security.

604 D. Mukhopadhyay et al.

Fig. 1. An overview of our attack system

3.2 Threat Model

In our threat model, an attacker can collect a few of the victim’s audio samples,
for example, by recording the victim using a mobile audio recording device with
or without the knowledge of the victim, or mining the previously posted samples
on the web. As mentioned earlier, these samples are then used to train a mor-
phing engine. In the training procedure, the attacker may use his own voice or
could recruit other users (possibly those who can mimic the victim’s voice very
closely). Thus, the attacker has the ability to employ means to achieve favor-
able conditions for voice conversion so as to achieve the highest quality morphed
samples.

Equipped with this voice morphing capability, the attacker then attempts
to defeat the machine-based and human-based speaker verification systems/
contexts. When attacking a machine-based speaker verification system, the
attacker simply sends the morphed voices to impersonate himself as the legiti-
mate user. In this case, we clearly assume that the attacker has permanent or
temporary physical access to the terminal or device deploying voice authentica-
tion (e.g., a stolen mobile phone, a desktop left unattended during lunch-time,
or a public ATM).

The attacker can defeat human-based speaker verification in many ways.
Clearly in this context, faking face-to-face conversation would not be possible
with voice morphing. However, the attacker can be remote and make spoofed
phone calls, or leave voice messages impersonating the victim. He may even cre-
ate real-time fake communication with a party with the help of a human attacker
who provides meaningful conversations, which the morphing engine converts to
the victim’s voice on-the-fly. The attacker can also post the victim’s morphed
samples online on the public sites or disseminate via social networking sites, for
example.

3.3 Attacking Machine-Based Speaker Verification

In this paper, we systematically test the advanced speaker verification algorithms
that can be used for the purpose of user authentication, in the following scenarios:

All Your Voices are Belong to Us 605

Different Speaker Attack: This attack refers to the scenario in which, the
speaker verification system trained with the voice of speaker A is attacked with
another human speaker B’s voice samples. If the system fails to detect this
attack, then the system is not good enough to be used for the purpose of speaker
verification. This is conceivably the simplest and the most naive attack that can
be performed against an automatic speaker verification system. So, this attack
might be used as a baseline to measure the security performance of the target
speaker verification system.

Conversion Attack: This attack scenario refers to the one in which the speaker
verification system is attacked by the morphed samples of an impostor replacing
the legitimate user’s samples. Such an attacker might have the capability to
attack a speaker-verification system that gives a random challenge each time a
victim user tries to login or authenticate to the system.

3.4 Attacking Human-based Speaker Verification

In this scenario, the attacker would simply create arbitrary morphed speech in
the victim’s voice and use it to communicate with others remotely. As mentioned
earlier, some of the real life applications of this attack might include leaving fake
voice-mails in the victim’s voice to harm victim’s family or friends, or broadcast-
ing a morphed voice of a celebrity victim to defame him/her. While the attack
itself is relatively straight-forward in many cases, the key aspect is whether the
“human verifier” would fall prey to it or not. This is the primary aspect we study
in our work via two user studies. Similar to our study on machine-based speaker
verification, we evaluate the performance of the conversion attack contrasted
with the different speaker attack as a baseline against human-based speaker
verification.

4 Tools and Systems

Festvox Voice Conversion System: Voice conversion (as reviewed in Sect. 2)
is an emerging technique to morph voices. For implementing our attacks, we
have used Festvox [6], a speech conversion system developed at Carnegie Mellon
University.

Festvox employs acoustic-to-articulatory inversion mapping that determines
the positions of speech articulators of a speaker from the speech using some
statistical models. Toda et al. proposed a method of acoustic-to-articulatory
inversion mapping based on Gaussian Mixture Model in [41] that is independent
of the phonetic information of the speech. The next phase in this system is spec-
tral conversion between speakers for transforming the source speaker’s to the
target speaker’s voice. The authors developed a spectral conversion technique
[42], in which they have used maximum likelihood based estimation taking into
account the converted parameter for each utterance. The evaluation results of
this unique spectral conversion technique show that this technique has fared bet-
ter than the conventional spectral conversion techniques [42]. For our experiment,

606 D. Mukhopadhyay et al.

we fed Festvox with recordings of some prompts spoken by the source (attacker)
and the target (victim) speakers. Once the system is trained, any given arbitrary
recording from the source speaker can generate the corresponding speech in the
target’s voice.

Bob Spear Speaker Verification System: In our experiment, we have used
Spear verification toolbox developed by Khoury et al. [30] The Spear system is
a open source speaker verification tools that has been evaluated with standard
datasets like Voxforge [12], MOBIO [7] and NIST SRE [8]. Also, it represents
the state-of-the-art in speaker verification systems having implemented the cur-
rent well-known speaker verification algorithms, which makes it a representative
system to evaluate our attack.

The input to this system, a set of clips spoken by a number of speakers, is
split into 3 sets namely: training set, development set (Dev set) and evaluation
set (Eval set). The training set is used for background modeling. The develop-
ment and evaluation sets are further divided into two subsets, namely, Enroll set
(Dev.Enroll, Eval.Enroll) and Test set (Dev.Test, Eval.Test). Speaker modeling
can be done using any one of the given modeling techniques, namely, Univer-
sal Background Modeling in Gaussian Mixture Model (UBM-GMM) [37] and
Inter-Session Variability (ISV) [43].

UBM-GMM is a modeling technique that uses the spectral features and then
computes a log-likelihood of the Gaussian Mixture Models for background mod-
eling and speaker verification [19,34,36]. ISV is an improvement to UBM-GMM,
where a speaker’s variability due to age, surroundings, emotional state, etc., are
compensated for, and it gives better performance for the same user in different
scenarios [40,43].

After the modeling phase, the system is then tuned and tested respectively
using the Dev.Test and Eval.Test sets from Development and Evaluation sets.
All the audio files in the Dev.Test and Eval.Test sets are compared with each of
the speaker models for development and evaluation sets, respectively, and each
file is given a similarity score with respect to each speaker in the corresponding
set. The scores of the Dev.Test files are used to set a threshold value. The scores
of the Eval.Test set are then normalized and compared with this threshold,
depending on which each file is assigned to a speaker model. If the audio file
actually belong to the speaker to whom it got assigned, then the verification is
successful otherwise the verification is not successful.

5 Experiments: Attacking Machine-based Speaker
Verification

We now present the experiments that we conducted to attack the well-known
speaker verification algorithms using voice conversion techniques.

5.1 Setup

Datasets: We used MOBIO and Voxforge datasets, two open source speech
databases that are widely used for testing different speech recognition tools.

All Your Voices are Belong to Us 607

Voxforge is a much more standard dataset in terms of the quality and the length
of the speech compared to MOBIO. Voxforge samples are better quality samples
of about 5 s each while MOBIO dataset is recorded using laptop microphones
and also the length of the speech samples varies from 7 to 30 s. The reason behind
choosing these two datasets was to test our attacks against both standard and
sub-standard audio samples. We have chosen a set of 28 male speakers from
Voxforge, and 152 (99 male and 53 female) speakers from the MOBIO. For the
purpose of the experiment, this speaker set is divided into 3 subsets. These three
subsets are used separately for background modeling (Train set), development
(Dev set) and evaluation (Eval set) of the toolkit. The Dev and Eval sets contain
both labeled and unlabeled voice samples. The labeled samples are used for
target speaker modeling while the unlabeled samples are used for testing the
system.

For the Voxforge dataset, the development set (Dev.Test) contains 30 unla-
beled voice samples for each of the 10 speakers, i.e., a total of 300 voice samples.
In contrast, for the MOBIO dataset, the Dev.Test subset contains 105 unlabeled
samples of 24 male and 18 female speakers. The samples in the Dev.Test set
are used for tuning the parameters of the system such that the system performs
well on the evaluation set. The MOBIO dataset contains both male and female
speakers and are modelled separately in two separate systems.Since we are using
the speaker recognition tool specifically in a speaker verification scenario, our
evaluation (Eval) set always contains a single speaker. For Voxforge, we test for
8 (male) speakers, and for MOBIO, we test for 38 male and 20 female speakers.

Metrics Used: The performance of a speaker verification system is evaluated
based on the False Rejection Rates (FRR) and False Acceptance Rates (FAR).
A benign setting is defined as a scenario in which, the test samples are all genuine
samples. That is, the samples fed to the system are spoken by the original speaker
(the one whose samples were used during the training phase). If the system
accepts a given test sample, then the system was successful in recognizing the
speaker, while a rejection means that the system has wrongly rejected a genuine
sample, and this is counted as a false reject.

An attack setting is defined as a scenario in which, the test samples are fake
or morphed. That is, these samples are not spoken by the original legitimate
speaker, but are either spoken by some other speaker (another user) or generated
using voice conversion. For simulating an attack setting, we replaced the genuine
test samples with our fake samples in the Eval.Test set. So, the success of our
attacks is directly proportional to the number of accepts, i.e., false accepts, by
the system.

Different Speaker Attack Setup: For testing Voxforge dataset in this sce-
nario, we swapped the voice samples of the original speakers with that of 4 CMU
Arctic speakers [4] that have spoken the same samples as the Voxforge speak-
ers, and tested the performance of the system. For testing with the MOBIO
dataset, we replaced each speaker with all the other speakers in the Test set to
see if the system could determine that the original speaker has been swapped. As

608 D. Mukhopadhyay et al.

discussed in Sect. 3, this attack is a rather naive attack, and serves as a baseline
for our conversion-based attacks.

Conversion Attack Setup: In this attack scenario, we tested how robust the
Spear system is to voice conversion. For implementing this attack, we changed
the genuine test samples with converted ones. The voice conversion was done
by training the Festvox conversion system with a set of samples spoken by both
an attacker and the victim speakers. In case of Voxforge, one CMU Arctic [4]
speaker posed as attackers and the 8 speakers in the Test set were the victims.
For the MOBIO dataset, we chose 6 male and 3 female speakers in the Test set
as attackers, and the remaining 32 male and 17 female speakers were the victims.

In case of the Voxforge dataset, we used 100 samples of 5 s each (so approx-
imately 8 min speech data), to train the conversion system. In the MOBIO
dataset, the speakers have independently recorded free speech in response to
some questions asked to them. However, there were some specific common text
that all the speakers have recorded. We used 12 such samples of about 30 secs
each (so approximately 6 min of speech data) to train the conversion system.
The converted voices thus generated were swapped with the genuine samples of
the victim test speakers.

The MCD value after conversion in case of MOBIO speakers was about
4.58 dB (for females) and about 4.9 dB (for males) for 12 training samples (of
average length 30 s), which decreased by 0.16 dB (for females) and by 0.1 dB
(for males) for about 100 training samples (of 15–30 s length). In case of Vox-
forge, the MCD values were on average 5.68 dB, 5.59 dB, 5.56 dB for 50, 100,
125 training samples (of average length 5 s each) respectively. The negligible
improvement in MCD of about 3 % for MOBIO females, about 2 % for MOBIO
males, about 0.53 % for Voxforge speakers led us to use 12 training samples for
MOBIO and 100 training samples for Voxforge. Thus, its confirmed that voice
conversion works well with only a small training dataset (a fundamental premise
of our attack).

5.2 Results

Benign Setting Results: This experiment was done to set the baseline for
the performance of the system being studied. The original clips of 8 Voxforge
speakers, 38 male and 20 female MOBIO speakers, were used to evaluate the
system. This test was done for both the algorithms: UBM-GMM and ISV. The
results are summarized in the 2nd, 5th and 6th columns of Table 1. The results
show that the rate of rejection of genuine (original speaker) samples (i.e., FRRs)
is pretty low, less than 2 % in case of Voxforge speakers, and in the range of
around 7 %–11 % in case of MOBIO speakers. The MOBIO speakers, both male
and female, have a standard deviation of more than 10 % in case of UBM-GMM
and that of about 8 %–9 % for ISV. The variation in the quality of speech across
different speakers in the MOBIO dataset might be the reason behind this result.

Different Speaker Attack Results: The results for this attack is given in the
3rd, 7th and 8th columns of Table 1. From the results, we can see that the FAR

All Your Voices are Belong to Us 609

Table 1. Performance of machine-based speaker verification system against our
attacks. Reported numbers represent error rates mean (standard deviation).

(success rate of the attack) is less than 1 % for the Voxforge speakers, around
10 % for the male MOBIO speakers and around 16 % for the female MOBIO
speakers. Both UBM-GMM and ISV algorithms seem to perform similarly in
case of this attack. However, the FAR of female speakers, being higher, can be
attributed to the level of similarity of their voices in the MOBIO dataset. The
acceptance rate is significantly low for both the datasets, which proves that Spear
is robust against the naive different speaker attack, and can successfully detect,
with at least 94 % accuracy (for Voxforge) and with at least 84 % accuracy (for
MOBIO), that the speaker has been changed. This makes Spear a worthwhile
system to challenge with respect to more sophisticated attacks.

Conversion Attack Results: The results of this attack are shown in the 4th, 9th
and 10th columns ofTable 1. TheFAR in this case is above 98 % forVoxforge, about
70–85% for male MOBIO speakers and about 60 % for female MOBIO speakers.

However, the standard deviation corresponding to the speakers in the MOBIO
dataset seems to be pretty high (about 28 % in male and 36 % in females). Hence,
we analyze the distribution of the FAR values across all the Test users in the
MOBIO dataset (Fig. 3 of AppendixC). For MOBIO male speakers, we see that
for 60 % of speakers with UBM-GMM and more than 30 % of speakers with ISV
have 90 % FAR. Overall, about 88 % (for UBM-GMM) and about 85 % (for ISV)
of the male speakers have more than 50 % FAR. For female speakers, about 52 %
(for UBM-GMM) and about 47 % (for ISV) speakers have above 90 % success
rate. Overall, around 70 % (for UBM-GMM) and 65 % (for ISV) of the speakers
have above 50 % success rate. Thus, it is fair to say that the tested algorithms
failed significantly against our voice conversion attacks.

Conversion Attack vs. Different Speaker Attack: We compared the mean
FAR of the conversion attack with the mean FAR of the different speaker attack
using the Wilcoxon Signed-Rank test, and found that the difference is statisti-
cally significant2 with a p-value = 0 (for Males in case of both the algorithms),
with a p-value = 0.0015 (for Females with UBM-GMM), with a p-value = 0.0019
(for Females with ISV) for MOBIO, and with a p-value = 0.0004 for Voxforge
in case of both the algorithms. Thus, the conversion attack is significantly more
successful than the different speaker attack.

2 All significance results are reported at a 95% confidence level.

610 D. Mukhopadhyay et al.

UBM-GMM vs. ISV: In the two attacks, the ISV algorithm performs equally
well, and in some cases, better than the GMM algorithm. We compared the two
algorithms using the Wilcoxon Signed-Rank test, and noticed that the result is
statistically significant for the conversion attack on male MOBIO speakers with
a p-value = 0.0147, and in the benign setting for female MOBIO speakers with
a p-value = 0.0466. This was an expected result since ISV has session variability
parameters that makes it perform better than UBM-GMM and also the MOBIO
dataset was recorded in various sessions.

The Voxforge dataset being a better and standard dataset has a higher attack
success rate compared to MOBIO. The quality of voice conversion plays an
important role here. The attacker (source) samples for voice conversion in case of
the Voxforge dataset were from the CMU Arctic database that contains samples
recorded in a professional recording environment. However, in case of MOBIO,
attacker samples were chosen from the Test set of MOBIO itself and that affected
the quality of conversion adversely. Moreover, the style of speaking among the
speakers varied widely in case of MOBIO that can also be one of the factors
affecting the voice conversion training.

6 Experiments: Attacking Human-based Speaker
Verification

We now investigate the extent to which humans may be susceptible to the voice
conversion attacks in arbitrary human-to-human communications.

6.1 Setup

To evaluate the performance of our voice impersonation attacks against human
users, we conducted two web-based studies with 65 and 32 Amazon Mechanical
Turk (M-Turk) online workers. In the first study, referred to as the Famous
Speaker Study, we investigate a scenario, where the attacker mimics a popular
celebrity, and posts, for example, the morphed fake samples of his/her speech on
the Internet or broadcasts them on the radio. The primary reason for choosing
celebrities in our case study was to leverage people’s pre-existing familiarity with
their voices. In our second study, called the Briefly Familiar Speaker Study, we
consider a scenario, where humans are subject to a briefly familiar person’s (fake)
voice (e.g., someone who was introduced at a conference briefly). The failure of
users in detecting such attacks would demonstrate a vulnerability of numerous
real-world scenarios that rely (implicitly) on human speaker verification.

Our studies involved human subjects, who participated to provide their voice
samples for building our morphing engine, and to evaluate the feasibility of
our attacks (human verification of converted voices). Their participation in the
study was strictly voluntary. The participants provided informed consent prior
to the study and were given the option to withdraw from the study at any time.
Standard best practices were followed to protect the confidentiality/privacy of
participants’ responses and audio samples acquired during the study as well as
the morphed audio samples that were generated for in the study. Our study was
approved by our University’s Institutional Review Board.

All Your Voices are Belong to Us 611

The demographic information of the participants of our two studies is sum-
marized in AppendixA Table 3. Most of the participants were young and well-
educated native English speakers with no hearing impairments. For the first and
second studies, each participant was paid $1 and $3, respectively, for his/her
effort, which took about 30 min and 45 min, respectively, for completion.

6.2 Dataset

To build the dataset for our studies, we developed an application to collect audio
samples from a group of American speakers, and posted the task on M-Turk.
This job required mimicking two celebrities namely, Oprah Winfrey and Morgan
Freeman.

We collected some audio samples of these celebrities available on the Internet,
and, using our application, played back those samples to the speakers (who posed
as attackers) and asked the male speakers to repeat and record the clips of
Morgan Freeman and the female speakers to record the clips of Oprah Winfrey.
While collecting these audio samples, speakers were categorically instructed to
try their best to mimic the speaking style and emotion of the celebrity that they
are listening to (our threat model allows the attack with such a leverage). There
were around 100 samples for both the male (Morgan) and the female (Oprah)
celebrities that took each user approximately an hour to record. Each participant
was paid $10 for this task. Over a period of two weeks, we collected samples from
20 speakers. Among these, we picked 5 male and 5 female speakers, who could
record all clips successfully in a non-noisy environment and with a similar style
and pace of the original speakers. The demographic information of the final 10
participants has been given in AppendixA Table 3.

6.3 Conversion Processes

The audio data collected from the M-Turk participants acted as the source voice
to synthesize the voices of Oprah and Morgan (Famous Speaker Study). The
same dataset was used to generate the voices of 4 briefly familiarized target
speakers (Briefly Familiar Speaker Study).

We converted attacker’s voice to target voice using the CMU Festvox voice
converter, and observed that for 25, 50, 100 and 125 sentences, in the training
dataset, the average MCD values are 7.52 dB, 7.45 dB, 7.01 dB, and 6.98 dB,
respectively. This shows an improvement of only 1 %, 6 % and less that 1 %
when increasing the training dataset size from 25 to 50, 50 to 100 and 100 to
125 sentences, respectively. This result confirms the suitability of the conver-
sion system even with a small training dataset. Because of only a slight MCD
improvement across different sample sizes, we fixed our training dataset size to
only 100 sentences, each with an average duration of 4 s.

We converted the voice of each of the 5 female speakers to Oprah’s voice and
5 male speakers to Morgan’s voice (Famous Speaker Study). We also generated
2 female and 2 male voices by converting female attackers’ voices to female tar-
gets’ voices, and male attackers’ voices to male targets’ voices (Briefly Familiar
Speaker Study).

612 D. Mukhopadhyay et al.

6.4 Famous Speaker Study

In this study, we asked our participants to first listen to a two-minute speech of
each of our victim celebrities (Oprah and Morgan) to get to recall their voices.
After familiarization, the participants had to listen to several audio clips and
complete two set of tasks, namely, “Speaker Verification” and “Voice Similarity”,
as defined below.

Speaker Verification Test: In the first set of questions, we played 22 audio clips
of around 15 s each, and asked the participants to decide if the speaker is Oprah.
In each question, they had the choice of selecting “Yes” if they could iden-
tify Oprah’s voice, “No” if they could detect that the voice does not belong
to Oprah, and “Not Sure” if they could not distinguish precisely whose voice
is being played. 4 of the presented samples were Oprah’s voice collected from
different speeches, 8 samples were from a “different speaker” in our dataset
described earlier, and 5 samples were from our converted voice dataset, gener-
ated by performing voice conversions on our dataset. Similar set of questions
was asked about Morgan. Morgan’s challenges, consisted of 4 voice of Morgan
selected from different speeches and interviews, 6 samples of different speakers,
and 6 converted voices picked from our voice conversion dataset.

Voice Similarity Test: In the second set of questions, we played several samples
(original speaker, different speaker, and converted voice) and asked users to rate
the similarity of the samples to the two target speakers’ voices. We defined five
ratings to capture the similarity/dissimilarity – “exactly similar”, “very similar”,
“somehow similar”, “not very similar” and “different”. For each audio sample,
participants could select one of the 5 options according to the similarity of the
challenge voice to the celebrities’ own voices. 4 original speaker, 5 converted
voice and 6 different speaker samples were presented in Oprah’s set of questions.
Similarly, for Morgan’s questions, 4 original speaker, 6 converted, and 7 different
speaker samples were played.

In both tests, we categorized audio clips into three groups, namely, Original
Speaker (benign setting), Different Speaker Attack and Conversion Attack.

Results: The results for the speaker verification test are summarized in Table 2.
The success rate for users in answering original speaker challenges is shown in
the first row (column 2 and 5) of Table 2, which is 89.23 % for Oprah and 91.54 %
for Morgan (averaged across all samples across all participants). These results
show that the participants were pretty much successful in detecting the original
speaker’s voice.

The second row (columns 3 and 6) of Table 2 depicts the accuracy of detecting
the different speaker attack. The results show that a majority of participants
were able to distinguish a different speaker’s voice from the original speaker’s
voice. The rate of correctly identifying a different speaker was 95.19 % for Oprah
and 97.95 % for Morgan (averaged across all different speaker samples across
all participants). The results imply that the participants were somewhat more
successful in detecting a different speaker than verifying the original speaker.

All Your Voices are Belong to Us 613

Table 2. Performance of human-based speaker verification against our attacks (Famous
Speaker and Briefly Familiar Speaker studies). The accuracy of detecting the original
as well as different speaker is around 90 %, but the accuracy of detecting the conversion
attack is around 50 %.

However, the participants were not as successful in detecting the conversion
attack (row three of Table 2; shaded cells). The rate of successfully detecting
the presence of conversion attack was around 50 % (averaged across all mor-
phed samples across all participants). Interestingly, ambiguity increased while
detecting the conversion attack (which is inferred from the increase in “Not
Sure” answers). This shows that participants got confused in identifying the
converted voice compared to the original speaker’s voice samples and different
speaker’s voice samples. In a real life setting, participants’ confusion in recogniz-
ing the speaker might highly affect their accuracy of verifying the identity of a
speaker. The reason is that, while in our experiment, participants had the choice
of answering “Not Sure”, in a real life application, where the users should either
accept or discard a conversation (e.g., a voice message), they might rely on a
random guess, possibly accept an illegitimate conversation or reject a legitimate
conversation.

We compared the two attacks (different speaker and conversion attacks) using
Wilcoxon Signed-Rank Test and noticed that the result is statistically significant
for both of our familiar speakers (p-value = 0).

The results from the voice similarity test show that a majority of our partici-
pants found the original speaker samples as being “exactly similar” or “very simi-
lar” to the original speaker’s voice. Only with negligible rates, participants found
original samples different or not very similar to the original speaker. This is well-
aligned with the speaker verification test results, and shows that people can suc-
cessfully detect similarity of different samples of the same speaker. 88.08 % found
samples of Oprah’s voice exactly similar or very similar to her voice while 95.77 %
found samples of Morgan’s voice exactly similar or very similar to his voice.

As expected, the users could detect dissimilarity of a different speaker’s voice
to the original speaker. 86.81 % found different speaker’s voices as “different” and
“not very similar” to the Oprah’s voice; this result was 94.36 % for Morgan’s
voice. Very few users considered a different speaker’s voice similar to an original
speaker’s voice. In line with the speaker verification test, the voice similarity test
shows the success of participants in detecting a different speaker.

Our study shows that most of the users rated converted voice as “somehow
similar” or “very similar” to the original speaker. 74.10 % detected converted
voice “very similar” and “some how similar” to Oprah’s voice, while this result
is 59.74 % for Morgan’s voice. The voice conversion makes the attacker’s voice

614 D. Mukhopadhyay et al.

sound similar to the original target voice. The conversion depends on many para-
meters, including similarity between source and target before the conversion, and
the level of noise present in initial source and target recordings. Since we used
same samples of the target voice (Oprah, Morgan) for all conversions, difference
between the conversions is mainly due to the ambient noise present in source
(attacker) recordings. The source recordings, being better in quality, worked
better for conversion. The attacker is assumed to have the ability to improve
quality of his recordings to improve the conversion. In our study, Oprah’s con-
verted voice was more similar to her original voice than Morgan’s converted
voice was to his voice. However, we cannot generalize this result to all speakers
and all conversions. Figure 2 (AppendixB) summarizes the results of the voice
similarity test.

6.5 Briefly Familiar Speaker Study

Similar to the Famous Speaker Study, we conducted a study evaluating the
performance of human users in recognizing a briefly familiar speaker. For this
study, we picked two female and two male speakers from our dataset as victims,
and two female and two male speakers as the attackers from the same dataset
mentioned in Sect. 6.2. We asked the participants to first listen to a 90 s recording
of a victim’s voice to get familiar with the voice, and then answer 15 speaker
verification challenges and 15 voice similarity challenges about each speaker (each
audio sample was about 15 s long). As in the previous study, in the speaker
verification test, participants were asked to verify the speaker, and, in the voice
similarity test, the participants were asked to rate the level of similarity of the
audio clips to the original speaker’s voice. Audio clips were categorized as 5
original speaker, 5 different speaker and 5 converted voice. Moreover, we asked
the participants their opinion about the tasks, and the qualitative basis for
their judgment. To discard possibly inattentive participants, we included dummy
questions as part of the challenges that asked the user to pick the right most
option from the answers.

Results: Table 2 includes the result of the Briefly Familiar Speaker study, and
Fig. 2 (AppendixB) summarizes the result of the similarity test, averaged over
all participants and all speakers. The participants show an average success rate
of 74.68 % in recognizing the original speaker correctly averaged over the four
speakers (row 1, column 8). Average success rate of users in distinguishing a
different speaker is 82.81 % (row 2, column 9). These results show that, on an
average, participants seem less successful in verifying a briefly familiar speaker
compared to a famous speakers.

Importantly, the average success rate of detecting the conversion attack
is 47.81 % (row 3, column 9). This shows that over 50 % of users could not
detect the conversion attack. That is, they either misidentify the converted
voice as the original speaker’s voice or were not able to verify the speaker. We
compared the two attacks (different speaker and conversion attacks) using the
Wilcoxon Signed-Rank Test, and noticed that the result is statistically significant

All Your Voices are Belong to Us 615

(p-value = 0.0038), which means the conversion attack works significantly better
than the different speaker attack.

The results of the similarity test shows that majority of the participants found
the samples in the benign settings exactly similar to the original speaker’s voice,
and majority of participants found the samples in the different speaker attack
setting different from the original speaker’s voice. The converted voice similarity
is rated as somehow similar to the original speaker’s voice, which stands between
the different speaker’s voice rate and original speaker’s voice rate.

At the end of the survey we asked the participants how easy/difficult they
found the task of recognizing a speaker, on what basis they made their decisions,
and what would possibly improve the participant’s accuracy. In general, they
found speaker verification to be a challenging task, and quality of the voice to
be a prominent factor in verifying the speaker. A summary of their answers is
presented in AppendixD.

6.6 Briefly Familiar Speaker vs. Famous Speaker Verification

We compared the performance of the attacks between the two settings (Famous
and Briefly Familiar Speaker). Although the result of the Mann-Whitney U
test does not show statistical significance between the two settings in case of
the conversion attack, the result is significant for the different speaker attack,
for both Oprah and Morgan combined (p-value = 0). This shows that people
can detect the different speaker attack better in the Famous Speaker setting
compared to the Briefly Familiar Speaker setting.

The fraction of participants, who could not distinguish the speakers, seems
to have increased compared to the Famous Speaker study (as reflected in the last
column of Table 2). This suggests that the ambiguity in recognizing a speaker
increases as the familiarity with the speaker decreases. The result of the Mann-
Whitney U test confirms that this increase is significant for the conversion attack
(p-value = 0.0076), but not significant for the other two type of settings (original
speaker and different speaker) for both Oprah and Morgan combined.

7 Summary

We explored how human voice authenticity can be easily breached using voice
conversion, and how such a breach can undermine the security of machine-based
and human-based speaker verification. Our voice conversion attack against the
state-of-the-art speaker verification algorithms has a very high success rate,
about 80–90%. This suggests that current algorithms would not be able to pre-
vent a malicious impostor with morphing capability from accessing the authen-
tication terminal or remote services employing voice biometrics. In our attacks
against human verification, the target victims were known users (celebrities) as
well as briefly familiar users. The results corresponding to both types of victims
highlight that even humans can be fooled into believing, in almost 50 % of the
cases, that the morphed samples are from a genuine speaker. Naturally, people

616 D. Mukhopadhyay et al.

seem to detect attacks against celebrity voices better than briefly familiar voices.
In light of this result, it seems that an attacker can compromise the authentic-
ity of remote arbitrary human-to-human conversations with a relatively high
chance.

Voice conversion sits right at the heart of all our attacks. Therefore, in order
to achieve the best possible outcome, an attacker should strive to improve the
voice conversion quality. This could be achieved by choosing high quality audio
samples of the target (victim) when possible and by creating high quality audio
samples for the source (attacker), ideally mimicking the victim’s voice and verbal
style as much as possible. Moreover, if required, the attacker may process the
victim samples before and after performing the voice conversion to improve the
voice quality (e.g., by filtering-out noise).

8 Conclusions, Limitations and Future Work

In this paper, we studied how human voices can be easily stolen and used against
applications and contexts that rely upon these voices, specifically focusing on
machine-based and human-based speaker verification. We showed that voice con-
version poses a serious threat and our attacks can be successful for a majority of
cases. Worryingly, the attacks against human-based speaker verification may
become more effective in the future because voice conversion/synthesis quality will
continue to improve, while it can be safely said that human ability will likely not.

Our current study has certain limitations that might affect the results when
our attacks are implemented in real-life. First, we only used the known state-of-
the-art biometric speaker verification system and an off-the-shelf voice conversion
tool for conducting our attacks. There may be other systems, especially used in
industry, that might give different (better or worse) results under our attacks.
Second, our arbitrary speech attack was designed to imitate the scenario, in
which an attacker posts fake audio samples of a victim over the Internet or even
leaves fake voice messages to someone’s phone. The current study does not tell
us how the attacks might work in other scenarios such as faking real-time com-
munication, or faking court evidences. Third, we asked the participants in our
human verification study to pay close attention to the samples before respond-
ing. In real-life, however, if someone posts an audio snippet or leaves a voicemail,
people may not pay as much attention. Thus, in this scenario, the possibility of
accepting a morphed sample in real-life may actually increase (compared to our
study). All these issues should be subject to further research, which we plan to
explore.

Among these limitations, our study has certain strengths as well. The users
who have participated in the study, in case of the arbitrary speech experiment,
were all fairly young with no hearing problems. Older people, or those with
hearing disabilities, might perform worse against our attacks. Moreover, our
results may be much better if a trained mimicry artist serves the role of an
attacker resulting in a better voice conversion model.

Although protecting against our attacks seems challenging, there can be ways
to ensure that one’s voice does not get stolen by an adversary in the first place.

All Your Voices are Belong to Us 617

Such measures may include people’s awareness to these attacks, and people being
wary about posting their audio-visuals online. Another line of defense lies in
defeating audio monitoring in public places. For example, putting in place stricter
policies for audio recording in public or actively preventing audio monitoring by
using high frequency audio transmitters that cloak the audio recordings (without
affecting human perception). There exist commercial equipment to jam audio
and jeopardize audio surveillance systems [1,3].

Another natural defense strategy would be the development of speaker verifi-
cation systems that can resist voice conversion attacks by using liveness tests for
a speaker. A development in the field of speaker liveness detection is proposed
by Baughman et al. [17]. In our future work, we plan to study these different
defense strategies.

A Demographics Information

Table 3. Demographics information of (a) speakers of the arbitrary speech dataset (b)
participants in the human-based famous speaker verification study (c) participants in
the human-based briefly familiar speaker verification study

618 D. Mukhopadhyay et al.

B Voice Similarity Test Results

Fig. 2. The voice similarity test results for Oprah (left), Morgan (middle), and unfa-
miliar speakers (right)

C Voice Conversion Attack FAR Distribution
(MOBIO Dataset)

Fig. 3. Distribution of FAR for Voice Conversion Attack across the (a) Male, (b) Female
users in the MOBIO dataset

D Open-Ended Feedback

At the end of the second study, we asked the participants as to how easy/difficult
they find the task of recognizing a speaker. Majority of participants found the
task to be “fairly difficult”, some believed that it was easier for some recordings
and more difficult for others, and a couple of participants found the female

All Your Voices are Belong to Us 619

speakers more easy to distinguish. We also asked the participants what possibly
can improve the accuracy of their answers. Most of the users reported that the
quality of the recordings plays an important role, others believed that associating
the voice to an image (i.e., a face) helps to recognize the speaker better. Some
answered that listening to multiple topics spoken by the speaker or hear the
speaker sing a song can help to understand his/her particular style of speaking.
The last question polled the participants about the basis behind their decisions.
Each user had distinct opinion, including quality, naturalness, genuineness, pitch,
tone, style, pace, accent, volume, background noise, age, and race of the speaker.

References

1. Atlassound – speech privacy/sound masking. http://www.atlassound.com/
SpeechPrivacy-SoundMasking-376

2. AT&T Natural Voices Text-to-Speech. http://www2.research.att.com/∼ttsweb/tts
3. Audio Jammers. http://www.brickhousesecurity.com/category/counter+surveil

lance/audio+jammers.do
4. CMU Arctic Databases. http://festvox.org/cmu arctic/index.html
5. Festival. http://www.cstr.ed.ac.uk/projects/festival/
6. Festvox. http://festvox.org/
7. Mobio. https://www.idiap.ch/dataset/mobio
8. NIST SREs. http://www.itl.nist.gov/iad/mig//tests/spk/
9. Statistical Parametric Synthesis And Voice Conversion Techniques. http://festvox.

org/11752/slides/lecture11a.pdf
10. The ModelTalker TTS system. https://www.modeltalker.org
11. Voice Cards. http://www.voicecards.com/index.html
12. Voxforge. http://www.voxforge.org/
13. Banking on the power of speech (2013). https://wealth.barclays.com/en gb/

internationalwealth/manage-your-money/banking-on-the-power-of-speech.html
14. VocaliD: Donating your voice to people with speech impairment (2014).

http://www.assistivetechnologyblog.com/2014/03/vocalid-donating-your-voice-to-
people.html

15. Wells Fargo tests mobile banking voice recognition (2014). http://www.mobile
paymentstoday.com/news/wells-fargo-tests-mobile-banking-voice-recognition

16. Alegre, F., Vipperla, R., Evans, N., Fauve, B.: On the vulnerability of automatic
speaker recognition to spoofing attacks with artificial signals. In: 2012 Proceedings
of the 20th European Signal Processing Conference (EUSIPCO) (2012)

17. Baughman, A.K., Pelecanos, J.W.: Speaker liveness detection, 19 November 2013.
US Patent 8,589,167

18. Bjhorus, J.: Big banks edge into biometrics (2014)
19. Burget, L., Matejka, P., Schwarz, P., Glembek, O., Cernocky, J.: Analysis of feature

extraction and channel compensation in a gmm speaker recognition system. IEEE
Trans. Audio Speech Lang. Process. 15, 1979–1986 (2007)

20. Campbell Jr., J.P.: Speaker recognition: a tutorial. In: Proceedings of the IEEE
(1997)

21. Chevillet, M., Riesenhuber, M., Rauschecker, J.P.: Functional correlates of the
anterolateral processing hierarchy in human auditory cortex. J. Neurosci. 31, 9345–
9352 (2011)

http://www.atlassound.com/SpeechPrivacy-SoundMasking-376
http://www.atlassound.com/SpeechPrivacy-SoundMasking-376
http://www2.research.att.com/~ttsweb/tts
http://www.brickhousesecurity.com/category/counter+surveillance/audio+jammers.do
http://www.brickhousesecurity.com/category/counter+surveillance/audio+jammers.do
http://festvox.org/cmu_arctic/index.html
http://www.cstr.ed.ac.uk/projects/festival/
http://festvox.org/
https://www.idiap.ch/dataset/mobio
http://www.itl.nist.gov/iad/mig//tests/spk/
http://festvox.org/11752/slides/lecture11a.pdf
http://festvox.org/11752/slides/lecture11a.pdf
https://www.modeltalker.org
http://www.voicecards.com/index.html
http://www.voxforge.org/
https://wealth.barclays.com/en_gb/internationalwealth/manage-your-money/banking-on-the-power-of-speech.html
https://wealth.barclays.com/en_gb/internationalwealth/manage-your-money/banking-on-the-power-of-speech.html
http://www.assistivetechnologyblog.com/2014/03/vocalid-donating-your-voice-to-people.html
http://www.assistivetechnologyblog.com/2014/03/vocalid-donating-your-voice-to-people.html
http://www.mobilepaymentstoday.com/news/wells-fargo-tests-mobile-banking-voice-recognition
http://www.mobilepaymentstoday.com/news/wells-fargo-tests-mobile-banking-voice-recognition

620 D. Mukhopadhyay et al.

22. Crosman, P.: U.s. bank pushes voice biometrics to replace clunky passwords (2014)
23. De Leon, P.L., Apsingekar, V.R., Pucher, M., Yamagishi, J.: Revisiting the secu-

rity of speaker verification systems against imposture using synthetic speech. In:
2010 IEEE International Conference on Acoustics Speech and Signal Processing
(ICASSP) (2010)

24. De Leon, P.L., Pucher, M., Yamagishi, J.: Evaluation of the vulnerability of speaker
verification to synthetic speech (2010)

25. De Leon, P.L., Pucher, M., Yamagishi, J., Hernaez, I., Saratxaga, I.: Evaluation of
speaker verification security and detection of hmm-based synthetic speech. IEEE
Trans. Audio Speech Lang. Process. 20, 2280–2290 (2012)

26. Desai, S., Raghavendra, E.V., Yegnanarayana, B., Black, A.W., Prahallad, K.:
Voice conversion using artificial neural networks. In: IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2009. IEEE (2009)

27. Hollien, H., Majewski, W., Doherty, E.T.: Perceptual identification of voices under
normal, stress and disguise speaking conditions. J. Phonetics 10, 139–148 (1982)

28. Kain, A., Macon, M.W.: Spectral voice conversion for text-to-speech synthesis. In:
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing (1998)

29. Keiler, A.: Is voice-recognition the future of banking? wells fargo thinks
so (2014). http://consumerist.com/2014/01/21/is-voice-recognition-the-future-of-
banking-wells-fargo-thinks-so/

30. Khoury, E., El Shafey, L., Marcel, S.: Spear: an open source toolbox for speaker
recognition based on bob. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2014)

31. Kinsbruner, E.: Key considerations for testing voice recognition in mobile banking
applicaions (2013). http://www.banktech.com/channels/key-considerations-for-
testing-voice-recognition-in-mobile-banking-applications/a/d-id/1296456?

32. Kominek, J., Schultz, T., Black, A.W.: Synthesizer voice quality of new languages
calibrated with mean mel cepstral distortion. In: Proceedings of SLTU (2008)

33. Kubichek, R.F.: Mel-cepstral distance measure for objective speech quality assess-
ment. In: IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, vol. 1. IEEE (1993)

34. Suvarna Kumar, G., Prasad Raju, K.A., Mohan Rao, C.P.V.N.J., Satheesh, P.:
Speaker recognition using gmm. Int. J. Eng. Sci. Technol. 2, 2428–2436 (2010)

35. Melin, H.: Automatic speaker verification on site and by telephone: methods, appli-
cations and assessment (2006)

36. Reynolds, D.: An overview of automatic speaker recognition. In: Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2002)

37. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted
gaussian mixture models. Digital Signal Process. 10, 19–41 (2000)

38. Rose, P.: Forensic Speaker Identification. CRC Press, New York (2003)
39. Shirvanian, M., Saxena, N.: Wiretapping via mimicry: short voice imitation man-

in-the-middle attacks on crypto phones. In: Proceedings of ACM CCS 2014 (2014)
40. Stolcke, A., Kajarekar, S.S., Ferrer, L., Shrinberg, E.: Speaker recognition with

session variability normalization based on mllr adaptation transforms. IEEE Trans.
Audio Speech Lang. Process. 15, 1987–1998 (2007)

41. Toda, T., Alan W.B., Tokuda, K.: Acoustic-to-articulatory inversion mapping with
gaussian mixture model. In: Proceedings of INTERSPEECH (2004)

http://consumerist.com/2014/01/21/is-voice-recognition-the-future-of-banking-wells-fargo-thinks-so/
http://consumerist.com/2014/01/21/is-voice-recognition-the-future-of-banking-wells-fargo-thinks-so/
http://www.banktech.com/channels/key-considerations-for-testing-voice-recognition-in-mobile-banking-applications/a/d-id/1296456?
http://www.banktech.com/channels/key-considerations-for-testing-voice-recognition-in-mobile-banking-applications/a/d-id/1296456?

All Your Voices are Belong to Us 621

42. Toda, T., Black, A.W., Tokuda, K.: Spectral conversion based on maximum likeli-
hood estimation considering global variance of converted parameter. In: Proceed-
ings of ICASSP, vol. 1 (2005)

43. Vogt, R., Sridharan, S.: Explicit modelling of session variability for speaker verifi-
cation. Comput. Speech Lang. 22, 17–38 (2008)

44. Wu, Z., Li, H.: Voice conversion and spoofing attack on speaker verification sys-
tems. In: Signal and Information Processing Association Annual Summit and Con-
ference (APSIPA), 2013 Asia-Pacific (2013)

Balloon: A Forward-Secure Append-Only
Persistent Authenticated Data Structure

Tobias Pulls1(B) and Roel Peeters2

1 Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

tobias.pulls@kau.se
2 ESAT/COSIC and iMinds, KU Leuven, Leuven, Belgium

roel.peeters@esat.kuleuven.be

Abstract. We present Balloon, a forward-secure append-only persistent
authenticated data structure. Balloon is designed for an initially trusted
author that generates events to be stored in a data structure (the Bal-
loon) kept by an untrusted server, and clients that query this server for
events intended for them based on keys and snapshots. The data struc-
ture is persistent such that clients can query keys for the current or past
versions of the data structure based upon snapshots, which are generated
by the author as new events are inserted. The data structure is authenti-
cated in the sense that the server can verifiably prove all operations with
respect to snapshots created by the author. No event inserted into the
data structure prior to the compromise of the author can be modified or
deleted without detection due to Balloon being publicly verifiable. Bal-
loon supports efficient (non-)membership proofs and verifiable inserts by
the author, enabling the author to verify the correctness of inserts with-
out having to store a copy of the Balloon. We formally define and prove
that Balloon is a secure authenticated data structure.

1 Introduction

This paper is motivated by the lack of an appropriate data structure that would
enable the trust assumptions to be relaxed for privacy-preserving transparency
logging. In the setting of transparency logging, an author logs messages intended
for clients through a server : the author sends messages to the server, and clients
poll the server for messages intended for it. Previous work [21] assumes a forward
security model: both the author and the server are assumed to be initially trusted
and may be compromised at some point in time. Any messages logged before this
compromise remain secure and private. One can reduce the trust assumptions
at the server by introducing a secure hardware extension at the server as in [25].

This paper proposes a novel append-only authenticated data structure that
allows the server to be untrusted without the need for trusted hardware. Our data
structure, which is named Balloon, allows for efficient proofs of both membership
and non-membership. As such, the server is forced to provide a verifiable reply
to all queries. Balloon also provides efficient (non-)membership proofs for past
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 622–641, 2015.
DOI: 10.1007/978-3-319-24177-7 31

Balloon: A Forward-Secure Append-Only Persistent Authenticated 623

versions of the data structure (making it persistent), which is a key property for
providing proofs of time, when only some versions of the Balloon have been time-
stamped. Since Balloon is append-only, we can greatly improve the efficiency
in comparison with other authenticated data structures that provide the same
properties as described above, such as persistent authenticated dictionaries [1].

Balloon is a key building block for privacy-preserving transparency logging
to make data processing by service providers transparent to data subjects whose
personal data are being processed. Balloon can also be used as part of a secure
logging system, similar to the history tree system by Crosby and Wallach [6].
Another closely related application is as an extension to Certificate Transparency
(CT) [12], where Balloon can be used to provide efficient non-membership proofs,
which are highly relevant in relation to certificate revocation for CT [11,12,18].

For formally defining and proving the security of Balloon, we take a similar
approach as Papamanthou et al. [19]. We view Balloon in the model of authenti-
cated data structures (ADS), using the three-party setting [24]. The three party
setting for ADS consists of the source (corresponding to our author), one or more
servers, and one or more clients. The source is a trusted party that authors a
data structure (the Balloon) that is copied to the untrusted servers together
with some additional data that authenticates the data structure. The servers
answer queries made by clients. The goal for an ADS is for clients to be able to
verify the correctness of replies to queries based only on public information. The
public information takes the form of a verification key, for verifying signatures
made by the source, and some digest produced by the source to authenticate the
data structure. The source can update the ADS, in the process producing new
digests, to which is further referred to as snapshots. The reply we want to enable
clients to verify is the outcome of a membership query, which proves membership
or non-membership of an event with a provided key for a provided snapshot.

After we show that Balloon is a secure ADS in the three party setting, we
extend Balloon to enable the author to discard the data structure and still per-
form verifiable inserts of new events to update the Balloon. Finally, we describe
how monitors and a perfect gossiping mechanism would prevent the an author
from undetectably modifying or deleting events once inserted into the Balloon,
which lays the foundation for the forward-secure author setting.

We make the following contributions:

– A novel append-only authenticated data structure named Balloon that allows
for both efficient membership and non-membership proofs, also for past ver-
sions of the Balloon, while keeping the storage and memory requirements
minimal (Sect. 3).

– We formally prove that Balloon is a secure authenticated data structure
(Sect. 4) according to the definition by Papamanthou et al. [19].

– Efficient verifiable inserts into our append-only authenticated data structure
that enable the author to ensure consistency of the data structure without
storing a copy of the entire (authenticated) data structure (Sect. 5).

– We define publicly verifiable consistency for an ADS scheme and show how
it enables a forward-secure source (Sect. 6). Verifiable inserts can also have
applications for monitors in, e.g., [3,10–12,22,27].

624 T. Pulls and R. Peeters

– In Sect. 7, we show that Balloon is practical, providing performance results
for a proof-of-concept implementation.

The rest of the paper is structured as follows. Section 2 introduces the back-
ground of our idea. Section 8 presents related work and compares Balloon to
prior work. Section 9 concludes the paper. Of independent interest, Appendix B
shows why probabilistic proofs are insufficient for ensuring consistency of a Bal-
loon without the burden on the prover increasing greatly.

2 Preliminaries

First, we introduce the used formalisation of an authenticated data structure
scheme. Next, we give some background on the two data structures that make
up Balloon: a history tree, for efficient membership proofs for any snapshot,
and a hash treap, for efficient non-membership proofs. Finally we present our
cryptographic building blocks.

2.1 An Authenticated Data Structure Scheme

Papamanthou et al. [19] define an authenticated data structure and its two
main properties: correctness and security. We make use of these definitions and
therefore present them here, be it with slight modifications to fit our terminology.

Definition 1 (ADS scheme). Let D be any data structure that supports
queries q and updates u. Let auth(D) denote the resulting authenticated data
structure and s the snapshot of the authenticated data structure, i.e., a constant-
size description of D. An ADS scheme A is a collection of the following six
probabilistic polynomial-time algorithms:

1. {sk, pk} ← genkey(1λ): On input of the security parameter λ, it outputs a
secret key sk and public key pk;

2. {auth(D0), s0}← setup(D0, sk, pk): On input of a (plain) data structure D0,
the secret key sk, and the public key pk, it computes the authenticated data
structure auth(D0) and the corresponding snapshot s0;

3. {Dh+1, auth(Dh+1), sh+1, upd} ← update(u,Dh, auth(Dh), sh, sk, pk): On
input of an update u on the data structure Dh, the authenticated data struc-
ture auth(Dh), the snapshot sh, the secret key sk, and the public key pk,
it outputs the updated data structure Dh+1 along with the updated authenti-
cated data structure auth(Dh+1), the updated snapshot sh+1 and some relative
information upd;

4. {Dh+1, auth(Dh+1), sh+1} ← refresh(u,Dh, auth(Dh), sh, upd, pk): On
input of an update u on the data structure Dh, the authenticated data structure
auth(Dh), the snapshot sh, relative information upd and the public key pk, it
outputs the updated data structure Dh+1 along with the updated authenticated
data structure auth(Dh+1) and the updated snapshot sh+1;

Balloon: A Forward-Secure Append-Only Persistent Authenticated 625

5. {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): On input of a query q on data
structure Dh, the authenticated data structure auth(Dh) and the public key
pk, it returns the answer α(q) to the query, along with proof Π(q);

6. {accept, reject} ← verify(q, α, Π, sh, pk): On input of a query q, an
answer α, a proof Π, a snapshot sh and the public key pk, it outputs either
accept or reject.

Next to the definition of the ADS scheme, another algorithm was defined for
deciding whether or not an answer α to query q on data structure Dh is correct:
{accept, reject} ← check(q, α,Dh).

Definition 2 (Correctness). Let A be an ADS scheme {genkey,setup,
update,refresh,query,verify}. The ADS scheme A is correct if, for all λ ∈ N,
for all {sk, pk} output by algorithm genkey, for all Dh, auth(Dh), sh output by
one invocation of setup followed by polynomially-many invocations of refresh,
where h ≥ 0, for all queries q and for all Π(q), α(q) output by query(q,Dh,
auth(Dh), pk) with all but negligible probability, whenever algorithm check

(q, α(q),Dh) outputs accept, so does verify(q, α(q),Π(q), sh, pk).

Definition 3 (Security). Let A be an ADS scheme {genkey,setup,update,
refresh,query,verify}, λ be the security parameter, ε(λ) be a negligible func-
tion and {sk, pk} ← genkey(1λ). Let also Adv be a probabilistic polynomial-
time adversary that is only given pk. The adversary has unlimited access to all
algorithms of A, except for algorithms setup and update to which he has only
oracle access. The adversary picks an initial state of the data structure D0 and
computes D0, auth(D0), s0 through oracle access to algorithm setup. Then, for
i = 0, ..., h = poly(λ), Adv issues an update ui in the data structure Di and
computes Di+1, auth(Di+1) and si+1 through oracle access to algorithm update.
Finally the adversary picks an index 0 ≤ t ≤ h + 1, and computes a query q,
answer α and proof Π. The ADS scheme A is secure if for all λ ∈ N, for all
{sk, pk} output by algorithm genkey, and for any probabilistic polynomial-time
adversary Adv it holds that

Pr

[{q,Π, α, t}← Adv(1λ, pk); accept← verify(q, α,Π, st, pk)
reject← check(q, α,Dt)

]

≤ ε(λ). (1)

2.2 History Tree

A tamper-evident history system, as defined by Crosby and Wallach [6], consists
of a history tree data structure and five algorithms. A history tree is in essence
a versioned Merkle tree [15] (hash tree). Each leaf node in the tree is the hash
of an event, while interior nodes are labeled with the hash of its children nodes
in the subtree rooted at that node. The root of the tree fixes the content of
the entire tree. Different versions of history trees, produced as events are added,
can be proven to make consistent claims about the past. The five algorithms,
adjusted to our terminology, are defined as follows:

626 T. Pulls and R. Peeters

– ci← H.Add(e): Given an event e the system appends it to the history tree H
as the i:th event and then outputs a commitment1 ci.

– {P, ei} ← H.MembershipGen(i, cj): Generates a membership proof P for the
i:th event with respect to commitment cj , where i ≤ j, from the history tree
H. The algorithm outputs P and the event ei.

– P ← H.IncGen(ci, cj): Generates an incremental proof P between ci and cj ,
where i ≤ j, from the history tree H. Outputs P .

– {accept, reject} ← P.MembershipVerify(i, cj , e
′
i): Verifies that P proves

that e′
i is the i:th event in the history defined by cj (where i ≤ j). Outputs

accept if true, otherwise reject.
– {accept, reject} ← P.IncVerify(c′

i, cj): Verifies that P proves that cj fixes
every event fixed by c′

i (where i ≤ j). Outputs accept if true, otherwise
reject.

2.3 Hash Treap

A treap is a type of randomised binary search tree [2], where the binary search
tree is balanced using heap priorities. Each node in a treap has a key, value,
priority, left child and right child. A treap has three important properties:

1. Traversing the treap in order gives the sorted order of the keys;
2. Treaps are structured according to the nodes’ priorities, where each node’s

children have lower priorities;
3. Given a deterministic attribution of priorities to nodes, a treap is set unique

and history independent, i.e., its structure is unique for a given set of nodes,
regardless of the order in which nodes were inserted, and the structure does
not leak any information about the order in which nodes were inserted.

When a node is inserted in a treap, its position in the treap is first determined by
a binary search. Once the position is found, the node is inserted in place, and then
rotated upwards towards the root until its priority is consistent with the heap
priority. When the priorities are assigned to nodes using a cryptographic hash
function, the tree becomes probabilistically balanced with an expected depth
of log n, where n is the number of nodes in the treap. Inserting a node takes
expected O(log n) operations and results in expected O(1) rotations to preserve
the properties of the treap [9]. Given a treap, it is straightforward to build a hash
treap: have each node calculate the hash of its own attributes2 together with the
hash of its children. Since the hash treap is a Merkle tree, its root fixes the entire
hash treap. The concept of turning treaps into Merkle trees for authenticating
the treap has been used for example in the context of persistent authenticated
dictionaries [7] and authentication of certificate revocation lists [18].

We define the following algorithms on our hash treap, for which we assume
that keys k are unique and of predefined constant size cst:
1 A commitment ci is the root of the history tree for the i:th event, signed by the

system. For the purpose of this paper, we omit the signature from the commitments.
2 The priority can safely be discarded since it is derived solely from the key and

implicit in the structure of the treap.

Balloon: A Forward-Secure Append-Only Persistent Authenticated 627

– r ←T.Add(k, v): Given a unique key k and value v, where |k| = cst and |v| > 0,
the system inserts them into the hash treap T and then outputs the updated
hash of the root r. The add is done with priority Hash(k), which results in
a deterministic treap. After the new node is in place, the hash of each node
along the path from the root has its internal hash updated. The hash of a
node is Hash

(
k||v||left.hash||right.hash

)
. In case there is no right (left) child

node, the right.hash (left.hash) is set to a string of consecutive zeros of size
equal to the output of the used hash function 0|Hash(·)|.

– {PT , v} ← T.AuthPath(k): Generates an authenticated path PT from the
root of the treap T to the key k where |k| = cst. The algorithm outputs PT

and, in case of when a node with key k was found, the associated value v. For
each node i in PT , ki and vi need to be provided to verify the hash in the
authenticated path.

– {accept, reject} ← PT.AuthPathVerify(k,v): Verifies that PT proves that
k is a non-member if v ?

= null or otherwise a member. Verification checks that
|k| = cst and |v| > 0 (if �= null), calculates and compares the authenticator
for each node in PT , and checks that each node in PT adheres to the sorted
order of keys and heap priority.

Additionally we define the following helper algorithms on our hash treap:

– pruned(T) ← T.BuildPrunedTree(< PT
j >): Generates a pruned hash treap

pruned(T) from the given authenticated paths PT
j in the hash treap T . This

algorithm removes any redundancy between the authenticated paths, resulting
in a more compact representation as a pruned hash treap. Note that evaluating
pruned(T).AuthPathVerify(k, v) is equivalent with evaluating PT .AuthPath
Verify(k, v) on the authenticated path PT through k contained in the pruned
hash treap.

– r ← PT .root(): Outputs the root r of an authenticated path. Note that
pruned(T).root() and PT .root() are equivalent for any authenticated path
PT contained by the pruned tree.

2.4 Cryptographic Building Blocks

We assume idealised cryptographic building blocks in the form of a hash func-
tion Hash(·), and signature scheme that is used to sign a message m and ver-
ify the resulting signature: {accept, reject} ← Verifyvk

(
Signsk(m),m

)
. The

hash function should be collision and pre-image resistant. The signature scheme
should be existentially unforgeable under known message attack. Furthermore,
we rely on the following lemma for the correctness and security of a Balloon:

Lemma 1. The security of an authenticated path in a Merkle (hash) tree reduces
to the collision resistance of the underlying hash function.

Proof. This follows from the work by Merkle [16] and Blum et al. [5]. ��

628 T. Pulls and R. Peeters

3 Construction and Algorithms

Our data structure is an append-only key-value store that stores events e con-
sisting of a key k and a value v. Each key ki is assumed to be unique and of
predefined constant size cst, where cst ← |Hash(·)|. Additionally, our data struc-
ture encodes some extra information in order to identify in which set (epoch)
events were added. We define an algorithm k ← key(e) that returns the key k
of the event e.

Our authenticated data structure combines a hash treap and a history tree
when adding an event an event e as follows:

– First, the event is added to the history tree: ci ← H.add
(
Hash(k||v)

)
. Let i

be the index where the hashed event was inserted at into the history tree.
– Next, the hash of the event key Hash(k) and the event position i are added to

the hash treap: r ← T.Add(Hash(k), i).

Figure 1 visualises a simplified Balloon with a hash treap and a history tree. For
the sake of readability, we omit the hash values and priority, replace hashed keys
with integers, and replace hashed events with place-holder labels. For example,
the root in the hash treap has key 42 and value 1. The value 1 refers to the leaf
node in the history tree with index 1, whose value is p42, the place-holder label
for the hash of the event which key, once hashed, is represented by integer 42.

By putting the hash of the event key, Hash(k), instead of the key into the
hash treap, we avoid easy event enumeration by third parties: no valid event
keys leak as part of authenticated paths in the treap for non-membership proofs.
Note that when H.MembershipGen returns an event, as specified in Sect. 2.2, the
actual event is retrieved from the data structure, not the hash of the event as
stored in the history tree (authentication). We store the hash of the event in
the history tree for sake of efficiency, since the event is already stored in the
(non-authenticated) data structure.

Fig. 1. A simplified example of a Balloon consisting of a hash treap and history tree.
A membership proof for an event e = (k, v) with Hash(k) = 50 and Hash(e) denoted
by p50 (place-holder label) consists of the circle nodes in both trees.

Balloon: A Forward-Secure Append-Only Persistent Authenticated 629

3.1 Setup

Algorithm. {sk, pk} ← genkey(1λ) : Generates a signature key-pair {sk, vk}
using the generation algorithm of a signature scheme with security level λ and
picks a function Ω that deterministically orders events. Outputs the signing key
as the private key sk = sk, and the verification key and the ordering function
Ω as the public key pk = {vk, Ω}.

Algorithm. {auth(D0), s0} ← setup(D0, sk, pk): Let D0 be the initial data
structure, containing the initial set of events < ej >. The authenticated data
structure, auth(D0), is then computed by adding each event from the set to the,
yet empty, authenticated data structure in the order dictated by the function
Ω ← pk. The snapshot is defined as the root of the hash treap r and commitment
in the history tree ci for the event that was added last together with a digital
signature over those: s0 = {r, ci, σ}, where σ = Signsk({r, ci}).

3.2 Update and Refresh

Algorithm. {Dh+1, auth(Dh+1), sh+1, upd} ← update(u, Dh, auth(Dh), sh,
sk, pk): Let u be a set of events to insert into Dh. The updated data structure
Dh+1 is the result of appending the events in u to Dh and indicating that these
belong the (h + 1)th set. The updated authenticated data structure, auth(Dh+1),
is then computed by adding each event from the set to the authenticated data
structure auth(Dh) in the order dictated by the function Ω ← pk. The updated
snapshot is the root of the hash treap r and commitment in the history tree ci

for the event that was added last together with a digital signature over those:
sh+1 = {r, ci, σ}, where σ = Signsk({r, ci}). The update information contains
this snapshot upd = sh+1.

Algorithm. {Dh+1, auth(Dh+1), sh+1} ← refresh(u, Dh, auth(Dh), sh, upd,
pk): Let u be a set of events to insert into Dh. The updated data structure
Dh+1 is the result of appending the events in u to Dh and indicating that these
belong the (h + 1)th set. The updated authenticated data structure, auth(Dh+1),
is then computed by adding each event from the set u to the authenticated data
structure auth(Dh) in the order dictated by the function Ω ← pk. Finally, the
new snapshot is set to sh+1 = upd.

3.3 Query and Verify

Algorithm. {Π(q), α(q)} ← query(q, Dh, auth(Dh), pk) (Membership): We
consider the query q to be “a membership query for an event with key k in the
data structure that is fixed by squeried”, where queried ≤ h. The query has two
possible answers α(q): {true, e} in case an event e with key k exists in Dqueried,
otherwise false. The proof of correctness Π(q) consists of up to three parts:

630 T. Pulls and R. Peeters

1. An authenticated path PT in the hash treap to k′ = Hash(k);
2. The index i of the event in the history tree;
3. A membership proof P on index i in the history tree.

The algorithm generates an authenticated path in the hash treap, which is part of
auth(Dh), to k′: {PT , v} ← T.AuthPath(k’). If v ?

= null, then there is no event
with key k in Dh (and consequently in Dqueried) and the algorithm outputs
Π(q) = PT and α(q) = false.

Otherwise, the value v in the hash treap indicates the index i in the his-
tory tree of the event. Now the algorithm checks whether or not the index i is
contained in the history tree up till auth(Dqueried). If not, the algorithm out-
puts α(q) = false and Π(q) = {PT , i}. If it is, the algorithm outputs α(q) =
{true,ei} and Π(q) = {PT , i, P}, where {P, ei} ← H.MembershipGen(i, cqueried)
and cqueried ← squeried.

Algorithm. {accept, reject} ← verify(q, α,Π, sh, pk) (Membership):
First, the algorithm extracts {k, squeried} from the query q and {PT , i, P} from Π,
where i and P can be null. From the snapshot it extracts r ← sh. Then the algo-
rithm computes x ← PT .AuthPathVerify(k, i). If x ?

= false ∨ PT .root() �= r,
the algorithm outputs reject. The algorithm outputs accept if any of the fol-
lowing three conditions hold, otherwise reject:

– α ?
= false ∧ i ?

= null ;
– α ?

= false ∧ i > queried[−1]3 ;
– α ?

= {true, e} ∧ key(e) ?
= k ∧ y ?

= true,
for y ← P .MembershipVerify(i, cqueried, Hash(e)) and cqueried ← squeried .

4 Security

Theorem 1. Balloon {genkey,setup,update,refresh,query,verify} is a cor-
rect ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 2, assuming the collision-resistance of the underlying
hash function.

The proof of correctness can be found in the full version of our paper [20].

Theorem 2. Balloon {genkey,setup,update,refresh,query,verify} is a
secure ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 3, assuming the collision-resistance of the underlying
hash function.

The full proof of security can be found in Appendix A.

3 queried[−1] denotes the index of the last inserted event in version queried of the
authenticated data structure.

Balloon: A Forward-Secure Append-Only Persistent Authenticated 631

Proof (Sketch). Given that the different versions of the authenticated data struc-
ture and corresponding snapshots are generated through oracle access, these are
correct, i.e., the authenticated data structure contains all elements of the data
structure for each version, the root and commitment in each snapshot correspond
to that version of the ADS and the signature in each snapshot verifies.

For all cases where the check algorithm outputs reject, Adv has to forge
an authenticated path in the hash treap and/or history tree in order to get the
verify algorithm to output accept, which implies breaking Lemma 1.

5 Verifiable Insert

In practical three-party settings, the source typically has less storage capabilities
than servers. As such, it would be desirable that the source does not need to
keep a copy of the entire (authenticated) data structure for update, but instead
can rely on its own (constant) storage combined with verifiable information
from a server. We define new query and verify algorithms that enable the con-
struction of a pruned authenticated data structure, containing only the nodes
needed to be insert the new set of events with a modified update algorithm. The
pruned authenticated data structure is denoted by pruned

(
auth(Dh), u

)
, where

auth(Dh) denotes the version of the ADS being pruned, and u the set of events
where this ADS is pruned for.

Algorithm. {Π(q), α(q)} ← query(q, Dh, auth(Dh), pk) (Prune): We consider
the query q to be “a prune query for if a set of events u can be inserted into
Dh”. The query has two possible answers: α(q): true in case no key for the
events in u already exist in Dh, otherwise false. The proof of correctness Π(q)
either proves that there already is an event with a key from an event in u, or
provides proofs that enable the construction of a pruned auth(Dh), depending
on the answer. For every kj ← key(ej) in the set u, the algorithm uses as a sub-
algorithm {Π ′

j(q), α
′
j(q)} ← query (q′

j ,Dh, auth(Dh), pk) (Membership) with

q = {kj , sh}, where sh fixes auth(Dh). If any α′
j(q)

?
= true, the algorithm outputs

α(q) = false and Π(q) = {Π ′
j(q), kj} and stops. If not, the algorithm takes PT

j

from each Π ′
j(q) and creates the set < PT

j >. Next, the algorithm extracts the
latest event ei inserted into the history tree from auth(Dh) and uses as a sub-
algorithm {Π ′(q), α′(q)} ← query(q′,Dh, auth(Dh), pk) (Membership) with
q’ = {key(ei), sh}. Finally, the algorithm outputs α(q) = true and Π(q) = {<
PT

j >,Π ′(q)}.

Algorithm. {accept, reject} ← verify(q,α,Π, sh, pk) (Prune): The algo-
rithm starts by extracting < ej > ← u from the query q. If α ?

= false, it gets
{Π ′

j(q), kj} from Π and uses as a sub-algorithm valid ← verify(q′, α′,Π ′, sh,
pk) (Membership), with q’ = {k, sh}, α′ = true and Π ′ = Π ′

j(q), where

k ← kj . If valid ?
= accept and there exists an event with key k in u, the

algorithm outputs accept, otherwise reject.

632 T. Pulls and R. Peeters

If α ?
= true, extract {< PT

j >,Π ′(q)} from Π. For each event ej in u, the
algorithm gets kj ← key(ej), finds the corresponding PT

j for k′
j = Hash(kj), and

uses as a sub-algorithm valid ← verify(q′, α′,Π ′, sh, pk) (Membership), with
q′ = {kj , sh}, α′ = false and Π ′ = PT

j . If no corresponding PT
j to k′

j is found

in < PT
j > or valid ?

= reject, then the algorithm outputs reject and stops.
Next, the algorithm uses as a sub-algorithm valid ← verify(q′, α,Π ′, sh, pk)
(Membership), with q′ ={key(ei), sh} and Π ′ = Π ′(q), where ei ∈ Π ′(q). If
valid ?

= accept and i ?
= h[−1] the algorithm outputs accept, otherwise reject.

Algorithm. {sh+1, upd} ← update*(u, Π, sh, sk, pk): Let u be a set of events
to insert into Dh and Π a proof that the sub-algorithm verify(q, α,Π, sh, pk)
(Prune) outputs accept for, where q = u and α = true. The algorithm extracts
{< PT

j >,Π ′(q)} from Π and builds a pruned hash treap pruned(T) ← T.Build

PrunedTree(< PT
j >). Next, it extracts P from Π ′(q) and constructs the pruned

Balloon pruned (auth(Dh), u) ← {pruned(T), P}. Finally, the algorithm adds
each event in u to the pruned Balloon pruned

(
auth(Dh), u

)
in the order dictated

by Ω ← pk. The updated snapshot is the digital signature over the root of the
updated pruned hash treap r and commitment in the updated pruned history
tree ci for the event that was added last: sh+1 = {r, ci}, Signsk({r, ci}). The
update information contains this snapshot upd = sh+1.

Lemma 2. The output of update and update* is identical with respect to the
root of the hash treap and the latests commitment in the history tree of sh+1 and
upd4.

The proof of Lemma 2 can be found in the full version of our paper [20]. As a
result of Lemma 2, the update algorithm in Balloon can be replaced by update*
without breaking the correctness and security of the Balloon as in Theorems 1
and 2. This means that the server can keep and refresh the (authenticated) data
structure while the author only needs to store the last snapshot sh to be able to
produce updates, resulting in a small constant size storage requirement for the
author.

Note that, in order to reduce the size of the transmitted proof, verify
(Prune) could output the pruned authenticated data structure directly. Since
pruned(T). AuthPathVerify(k, v) and PT .AuthPathVerify(k, v) are equiva-
lent, the correctness and security of verify (Prune) reduce to verify (Mem-
bership). Section 7 shows the reduction in the size of the proof with pruning.

6 Publicly Verifiable Consistency

While the server is untrusted, the author is trusted. A stronger adversarial model
assumes forward security for the author: the author is only trusted up to a certain
point in time, i.e., the time of compromise, and afterwards cannot change the
4 Note that the signatures may differ since the signature scheme can be probabilistic.

Balloon: A Forward-Secure Append-Only Persistent Authenticated 633

past. In this stronger adversarial model, Balloon should still provide correctness
and security for all events inserted by the author up till the time of author
compromise.

Efficient incremental proofs, realised by the IncGen and IncVerify algo-
rithms, are a key feature of history trees [9]. Anyone can challenge the server to
provide a proof that one commitment as part of a snapshot is consistent with all
previous commitments as part of snapshots. However, it appears to be an open
problem to have an efficient algorithm for showing consistency between roots of
different versions of a treap (or any lexicographically sorted data structure) [8].
In AppendixB, we show why one cannot efficiently use probabilistic proofs of
consistency for a Balloon. In absence of efficient (both for the server and verifier
in terms of computation, storage, and size) incremental proofs in hash treaps,
we rely on a concept from Certificate Transparency [12]: monitors.

We assume that a subset of clients, or any third party, will take on a role
referred to as a “monitor”, “auditor”, or “validator” in, e.g., [3,10–12,22,27].
A monitor continuously monitors all data stored at a server and ensures that
all snapshots issued by an author are consistent. We assume that clients and
monitors receive the snapshots through gossiping.

Definition 4 (Publicly Verifiable Consistency). An ADS scheme is pub-
licly verifiable consistent if anyone can verify that a set of events u has been cor-
rectly inserted in Dh and auth(Dh), fixed by sh to form Dh+1 and auth(Dh+1)
fixed by sh+1.

Algorithm. {α,Dh+1, auth(Dh+1), sh+1} ← refreshVerify(u, Dh, auth(Dh),
sh, upd, pk): First, the algorithm runs {Dh+1, auth(Dh+1), sh+1} ← refresh(u,
Dh, auth(Dh), sh, upd, pk) as a sub-algorithm. Then, the algorithm verifies the
updated snapshot {r, ci, σ} ← sh+1 ← upd:

– verify the signature: true ?
= verifypk(σ, {r, ci}) ; and

– match the root of the updated hash treap r′ ?
= r ; and

– match the last commitment in the updated history tree c′
i

?
= ci .

If the verify succeeds, the algorithm outputs {α = true,Dh+1, auth(Dh+1),
sh+1}. Otherwise, the algorithm outputs α = false.

Theorem 3. With refreshVerify, Balloon is publicly verifiable consistent
according to Definition 4, assuming perfect gossiping of the snapshots and the
collision-resistance of the underlying hash function.

The proof of publicly verifiable consistency can be found in the full version
of our paper [20]. Note that for the purpose of verifying consistency between
snapshots, it is not necessary to keep the data structure D. Moreover, the
storage requirement for monitors can be further reduced by making use of
pruned versions of the authenticated data structure, i.e., by using a refresh∗

sub-algorithm, similar to the update∗ algorithm. Finally, to preserve event pri-
vacy towards monitors, one can provide the monitors with ũ =< ẽj >, where

634 T. Pulls and R. Peeters

ẽj =
(
Hash(kj), Hash(ej)

)
, and not the actual set of events. However, in this

case, one must ensure that the ordering function Ω ← pk provides the same
output for u and ũ.

7 Performance

We implemented Balloon in the Go5 programming language using SHA-512 as
the hash function and Ed25519 for signatures [4]. The output of SHA-512 is trun-
cated to 256-bits, with the goal of reaching a 128-bits security level. The source
code and steps to reproduce our results are available at http://www.cs.kau.se/
pulls/balloon/. Our performance evaluation focuses on verifiable inserts, which
are composed of performing and verifying |u|+1 membership queries, since these
algorithms presumably are the most common. Figure 2 shows the size of the proof
from query (Prune) in KiB based on the number of events to insert ranging
from 1–1000 for three different sizes of Balloon: 210, 215, and 220 events. Figure 2a
includes redundant nodes in the membership query proofs, and shows that the
proof size is linear with the number of events to insert. Figure 2b excludes redun-
dant nodes between proofs, showing that excluding redundant nodes roughly
halves the proof size with bigger gains the more events are inserted. For large
Balloons the probability that any two authenticated paths in the hash treap
share nodes goes down, resulting in bigger proofs, until the number of events
get closer to the total size of the Balloon, when eventually all nodes in the hash
treap are included in the proof as for the 210 Balloon.

Table 1 shows a micro-benchmark of the three algorithms that enable veri-
fiable inserts: query(Prune), verify(Prune), and update*. The table shows
the average insert time (ms) calculated by Go’s built-in benchmarking tool that
performed between 30–30000 samples per measurement. The update* algorithm
performs the bulk of the work, with little difference between the different Bal-
loon sizes, and linear scaling for all three algorithms based on the number of
events to insert.

Fig. 2. The size of the proof from query (Prune) in KiB based on the number of
events to insert |u| for different sizes of Balloon.

5 golang.org, accessed 2015-04-10.

http://www.cs.kau.se/pulls/balloon/
http://www.cs.kau.se/pulls/balloon/
https://www.golang.org

Balloon: A Forward-Secure Append-Only Persistent Authenticated 635

Table 1. A micro-benchmark on Debian 7.8 (x64) using an Intel i5-3320M quad core
2.6 GHz CPU and 7.7 GB DDR3 RAM.

Average time (ms) Balloon 210 Balloon 215 Balloon 220

Events |u| # Events |u| # Events |u|
10 100 1000 10 100 1000 10 100 1000

query (Prune) 0.04 0.37 3.64 0.04 0.37 3.64 0.06 0.37 3.62

verify (Prune) 0.07 0.72 6.83 0.07 0.73 6.84 0.07 0.72 6.85

update* 0.75 4.87 40.1 1.22 5.26 43.7 1.24 9.33 56.7

8 Related Work

Balloon is closely related to authenticated dictionaries [18] and persistent authen-
ticated dictionaries (PADs) [1,7,8]. Balloon is not a PAD because it does not
allow for the author to remove or update keys from the data structure, i.e., it is
append-only. By allowing the removal of keys, the server needs to be able to con-
struct past versions of the PAD to calculate proofs, which is relatively costly. In
Table 2, Balloon is compared to the most efficient tree-based PAD construction
according to Crosby & Wallach [8]: a red-black tree using Sarnak-Tarjan ver-
sioned nodes with a cache-everywhere strategy for calculated hash values. The
table shows expected complexity. Note that red-black trees are more efficient
than treaps due to their worst-case instead of expected logarithmic bounds on
several important operations. We opted for using a treap due to its relative sim-
plicity. For Balloon, the storage at the author is constant due to using verifiable
inserts, while the PAD maintains a copy of the entire data structure. To query
past versions, the PAD has to construct past versions of the data structure,
while Balloon does not. When inserting new events, the PAD has to store a copy
of the modified authenticated path in the red-black tree, while the storage for
Balloon is constant. However, Balloon is less efficient when inserting new events
with regard to the proof size due to verifiable inserts.

Miller et al. [17] present a generic method for authenticating operations on
any data structure that can be defined by standard type constructors. The prover
provides the authenticated path in the data structure that are traversed by
the prover when performing an operation. The verifier can then perform the
same operation, only needing the authenticated paths provided in the proof.

Table 2. Comparing Balloon and an efficient PAD construction [8]. The number of
events in the data structure is n and the size of the version cache is v.

Expected

complexity

Total

storage

size (A)

Query time

(current)

Query

time (past)

Insert

storage

size (S)

Insert

time (A)

Insert

time (S)

Insert

proof size

Balloon O(1) O(logn) O(logn) O(1) O(logn) O(logn) O(logn)

Tree-based

PAD

O(n) O(logn) O(log v ·
logn)

O(logn) O(logn) O(logn) O(1)

636 T. Pulls and R. Peeters

The verifier only has to store the latest correct digest that fixes the content of
the data structure. Our verifiable insert is based on the same principle.

Secure logging schemes, like the work by Schneier and Kelsey [23], Ma and
Tsudik [13], and Yavuz et al. [26] can provide deletion detection and forward-
integrity in a forward secure model for append-only data. Some schemes, like
that of Yavuz et al., are publicly verifiable like Balloon. However, these schemes
are insufficient in our setting, since clients cannot get efficient non-membership
proofs, nor efficient membership-proofs for past versions of the data structure
when only some versions (snapshots) are timestamped.

All the following related work operates in a setting that is fundamentally
different to the one of Balloon. For Balloon, we assume a forward-secure author
with an untrusted server, whereas the following related work assumes a (mini-
mally) trusted server with untrusted authors.

Certificate Transparency [12] and the tamper-evident history system by
Crosby & Wallach [6] use a nearly identical6 data structure and operations.
Even though in both Certificate Transparency and Crosby & Wallach’s his-
tory system, a number of minimally trusted authors insert data into a history
tree kept by a server, clients query the server for data and can act as audi-
tors or monitors to challenge the server to prove consistency between commit-
ments. Non-membership proofs require the entire data structure to be sent to the
verifier.

In Revocation Transparency, Laurie and Kasper [11] present the use of a
sparse Merkle tree for certificate revocation. Sparse Merkle trees create a Merkle
tree with 2N leafs, where N is the bit output length of a hash algorithm. A leaf
is set to 1 if the certificate with the hash value fixed by the path to the leaf
from the root of the tree is revoked, and 0 if not. While the tree in general is
too big to store or compute on its own, the observation that most leafs are zero
(i.e., the tree is sparse) means that only paths including non-zero leafs need to
be computed and/or stored. At first glance, sparse Merkle trees could replace
the hash treap in a Balloon with similar size/time complexity operations.

Enhanced Certificate Transparency (ECT) by Ryan [22] extends CT by using
two data structures: one chronologically sorted and one lexicographically sorted.
Distributed Transparent Key Infrastructure (DTKI) [27] builds upon the same
data structures as ECT. The chronologically sorted data structure corresponds
to a history tree (like CT). The lexicographically sorted data structure is similar
to our hash treap. For checking consistency between the two data structures,
ECT and DTKI use probabilistic checks. The probabilistic checking verifies that
a random operation recorded in the chronological data structure has been cor-
rectly performed in the lexicographical data structure. However, this requires
the prover to generate past versions of the lexicographical data structure (or
cache all proofs), with similar trade-offs as for PADs, which is relatively costly.

CONIKS [14] is a privacy-friendly key management system where mini-
mally trusted clients manage their public keys in directories at untrusted key
servers. A directory is built using an authenticated binary prefix tree, offering

6 The difference is in how non-full trees are handled, as noted in Sect. 2.1 of [12].

Balloon: A Forward-Secure Append-Only Persistent Authenticated 637

similar properties as our hash treap. In CONIKS, user identities are presumably
easy to brute-force, so they go further than Balloon in providing event privacy
in proofs by using verifiable unpredictable functions and commitments to hide
keys (identities) and values (user data). CONIKS stores every version of their
(authenticated) data structure, introducing significant overhead compared to
Balloon. On the other hand, CONIKS supports modifying and removing keys,
similar to a PAD. Towards consistency, CONIKS additionally links snapshots
together into a snapshot chain, together with a specified gossiping mechanism
that greatly increases the probability that an attacker creating inconsistent snap-
shots is caught. This reduces the reliance on perfect gossiping, and could be used
in Balloon. If the author ever wants to create a fork of snapshots for a subset of
clients and monitors, it needs to maintain this fork forever for this subset or risk
detection. Like CONIKS, we do not prevent an adversary compromising a server,
or author, or both, from performing attacks: we provide means of detection after
the fact.

9 Conclusions

This paper presented Balloon, an authenticated data structure composed of a
history tree and a hash treap, that is tailored for privacy-preserving transparency
logging. Balloon is a provably secure authenticated data structure, using a similar
approach as Papamanthou et al. [19], under the modest assumption of a collision-
resistant hash function. Balloon also supports efficiently verifiable inserts of new
events and publicly verifiable consistency. Verifiable inserts enable the author
to discard its copy of the (authenticated) data structure, only keeping constant
storage, at the cost of transmitting and verifying proofs of a pruned version of the
authenticated data structure. Publicly verifiable consistency enables anyone to
verify the consistency of snapshots, laying the foundation for a forward-secure
author, under the additional assumption of a perfect gossiping mechanism of
snapshots. Balloon is practical, as shown in Sect. 7, and a more efficient solution
in our setting than using a PAD, as summarised by Table 2.

Acknowledgements. We would like to thank Simone Fischer-Hübner, Stefan Lind-
skog, Leonardo Martucci, Jenni Reuben, Philipp Winter, and Jiangshan Yu for their
valuable feedback. Tobias Pulls has received funding from the Seventh Framework Pro-
gramme for Research of the European Community under grant agreement no. 317550.
This work was supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007).

A Proof of Security

Theorem 2. Balloon {genkey,setup,update,refresh,query,verify} is a
secure ADS scheme for a data structure D, that contains a list of sets of events,
according to Definition 3, assuming the collision-resistance of the underlying
hash function.

638 T. Pulls and R. Peeters

Proof. The adversary initially outputs the authenticated data structure
auth(D0) and the snapshot s0 through an oracle call to algorithm setup. The
adversary picks a polynomial number i = 0, . . . , h of updates with ui insertions
of unique events and outputs the data structure Di, the authenticated data
structure auth(Di), and the snapshot si through oracle access to update. Then
it picks a query q = “a membership query for an event with key k ∈ {0, 1}|Hash(·)|

in the data structure that is fixed by sj , with 0 ≤ j ≤ h + 1”, a proof Π(q),
and an answer α(q) which is rejected by check(q, α(q),Dj) as incorrect. An
adversary breaks security if verify(q, α(q),Π(q), sj , pk) outputs accept with
non-negligible probability.

Assume a probabilistic polynomial time adversary Adv that breaks security
with non-negligible probability. Given that the different versions of the authenti-
cated data structure and corresponding snapshots are generated through oracle
access, these are correct, i.e., the authenticated data structure contains all ele-
ments of the data structure for each version, the root and commitment in each
snapshot correspond to that version of the ADS and the signature in each snap-
shot verifies.

The tuple (q, α(q),Dj) is rejected by check in only three cases:

Case 1. α(q) = false and there exists an event with key k in Dj ;
Case 2. α(q) = {true, e} and there does not exists an event with key k in Dj ;
Case 3. α(q) = {true, e} and the event e∗ with key k in Dj differs from e:

e = (k, v) �= e∗ = (k, v∗) or more specifically v �= v∗;

For all three cases where the check algorithm outputs reject, Adv has to forge
an authenticated path in the hash treap and/or history tree in order to get the
verify algorithm to output accept:

Case 1. In the hash treap that is fixed by sh+1, there is a node with key k′ =
Hash(k) and the value v′ ≤ j[−1]. However for the verify algorithm to
output accept for α(q) = false, the authenticated path in the hash treap
must go to either no node with key k′ or a node with key k′ for which the
value v′ is greater than the index of the last inserted event in the history tree
that is fixed by sj : v′ > j[−1].

Case 2. In the hash treap that is fixed by sh+1, there is either no node with
key k′ = Hash(k) or a node with key k′ for which the value v′ is greater than
the index of the last inserted event in the history tree that is fixed by sj :
v′ > j[−1]. However for the verify algorithm to output accept for α(q) =
{true, e}, the authenticated path in the hash treap must go to a node with
key k′, where the value v′ ≤ j[−1]. Note that, in this case, A also needs to
forge an authenticated path in the history tree to succeed.

Case 3. In the hash treap that is fixed by sh+1, there is a leaf with key k′ =
Hash(k) and the value v′ ≤ j[−1]. In the history tree, the leaf with key v′ has
the value Hash(e∗). However for the verify algorithm to output accept for
α(q)={true, e}, the authenticated path in the hash treap must go to a leaf
with key k′, where the value v′ ≤ j[−1], for which the authenticated path in
the history tree must go to a leaf with key v′ and the value Hash(e).

Balloon: A Forward-Secure Append-Only Persistent Authenticated 639

From Lemma 1 it follows that we can construct a probabilistic polynomial
time adversary Adv∗, by using Adv, that outputs a collision of the underlying
hash function with non-negligible probability. ��

B Negative Result on Probabilistic Consistency

Probabilistic proofs are compelling, because they may enable more resource-
constrained clients en-mass to verify consistency, removing the need for monitors
that perform the relatively expensive role of downloading all events at a server.
Assume the following pair of algorithms:

– P ← B.IncGen(si, sj , rand): Generates a probabilistic incremental proof P
using randomness rand between si and sj , where i ≤ j, from the Balloon B.
Outputs P .

– {accept, reject} ← P.IncVerify(si, sj , rand): Verifies that P probabilisti-
cally proves that sj fixes every event fixed by si, where i ≤ j, using randomness
rand.

B.1 Our Attempt

Our envisioned B.IncGen algorithm shows consistency in two steps. First, it uses
the H.IncGen algorithm from the history tree. This ensures that the snapshots
are consistent for the history tree. Second, it selects deterministically and uni-
formly at random based on rand a number of events E = < ej > from the
history tree. Which events to select from depend on the two snapshots. For each
selected event, the algorithm performs a query (Membership) for the event
key kj ← key(ej) to show that the event is part of the hash treap and points to
the index of the event in the history tree.

The P.IncVerify algorithm checks the incremental proof in the history tree,
verify (Membership) ?

= accept for each output of query (Membership), and
that the events E were selected correctly based on rand. Next, we explain an
attack, why it works, and lessons learnt.

B.2 Attack

The following attack allows an attacker to hide an arbitrary event that was
inserted before author compromise. The attacker takes control over both the
author and server just after snapshot st. Assume that the attacker wants to
remove an event ej from Balloon, where j ≤ t[−1]. The attacker does the fol-
lowing:

1. Remove the event key k′
j = Hash(kj), where kj ← key(ej), from the hash

treap, insert a random key, and rebalance the treap if needed. This results is
a modified ADS auth(Dt)

∗.
2. Generate a set of new events u and update the data structure: update(u,Dt,

auth(Dt)
∗
, st, sk, pk), resulting in a new snapshot st+1.

640 T. Pulls and R. Peeters

It is clear that the snapshot st+1 is inconsistent with all other prior snapshots,
sp, where p ≤ t.

Now, we show how the attacker can avoid being detected by P.IncVerify
in the case that the verifier challenges the server (and therefore the attacker)
to probabilistically prove the consistency between sp and st+1, AND that the
randomness rand provided by the verifier selects the event ej that was modi-
fied by the attacker. The attacker can provide a valid incremental proof in the
history tree, using H.IncGen, since the history tree has not been modified. How-
ever, the attacker cannot create a valid membership proof for an event with key
kj ← key(ej) in the ADS, since the key k′

j = Hash(kj) was removed from the
hash treap in auth(Dt+1). To avoid detection, the attacker puts back the event
key k′

j in the hash treap and rebalances the treap if needed. By inserting a set
of events using update, a new snapshot st+2 is generated, which is then used to
perform the membership query against that will now output a valid membership
proof.

B.3 Lessons Learnt

This attack succeeds because the attacker can, once having compromised the
author and server, (a) create snapshots at will; and (b) membership queries are
always performed on the current version of the hash treap.

In settings where snapshots are generated periodically, e.g., once a day, the
probability of the attacker getting caught in this way is non-negligible given a suf-
ficient number of queries. However, as long as the attacker can create snapshots
at will, the probability that it will be detected with probabilistic incremental
proofs is zero, as long as it cannot be challenged to generate past versions of
the hash treap; and there are no monitors or another mechanism, that prevent
the attacker from modifying or deleting events that were inserted into the ADS
prior to compromise.

References

1. Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dic-
tionaries and their applications. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001.
LNCS, vol. 2200, pp. 379–393. Springer, Heidelberg (2001)

2. Aragon, C.R., Seidel, R.: Randomized search trees. In: FOCS, pp. 540–545. IEEE
Computer Society (1989)

3. Basin, D.A., Cremers, C.J.F., Kim, T.H., Perrig, A., Sasse, R., Szalachowski, P.:
ARPKI: attack resilient public-key infrastructure. In: CCS. ACM (2014)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)

5. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225–244 (1994)

6. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: USENIX Security Symposium, pp. 317–334. USENIX (2009)

Balloon: A Forward-Secure Append-Only Persistent Authenticated 641

7. Crosby, S.A., Wallach, D.S.: Super-efficient aggregating history-independent per-
sistent authenticated dictionaries. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 671–688. Springer, Heidelberg (2009)

8. Crosby, S.A., Wallach, D.S.: Authenticated dictionaries: Real-world costs and
trade-offs. ACM Trans. Inf. Syst. Secur. 14(2), 17 (2011)

9. Crosby, S.A.: Efficient tamper-evident data structures for untrusted servers. Ph.D.
thesis, Rice University (2010)

10. Kim, T.H., Huang, L., Perrig, A., Jackson, C., Gligor, V.D.: Accountable key
infrastructure (AKI): a proposal for a public-key validation infrastructure. In:
World Wide Web Conference, pp. 679–690. ACM (2013)

11. Laurie, B., Kasper, E.: Revocation transparency (2012). http://www.links.org/
files/RevocationTransparency.pdf

12. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (2013).
http://tools.ietf.org/html/rfc6962

13. Ma, D., Tsudik, G.: Extended abstract: Forward-secure sequential aggregate
authentication. In: IEEE Symposium on Security and Privacy, pp. 86–91. IEEE
Computer Society (2007)

14. Melara, M.S., Blankstein, A., Bonneau, J., Freedman, M.J., Felten, E.W.:
CONIKS: A privacy-preserving consistent key service for secure end-to-end com-
munication. Cryptology ePrint Archive, Report 2014/1004 (2014). https://eprint.
iacr.org/2014/1004

15. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

16. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

17. Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.
In: POPL, pp. 411–424. ACM (2014)

18. Nissim, K., Naor, M.: Certificate revocation and certificate update. In: USENIX,
pp. 561–570. USENIX (1998)

19. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011)

20. Pulls, T., Peeters, R.: Balloon: A forward-secure append-only persistent authenti-
cated data structure. Cryptology ePrint Archive, Report 2015/007 (2015). https://
eprint.iacr.org/2015/007

21. Pulls, T., Peeters, R., Wouters, K.: Distributed privacy-preserving transparency
logging. In: WPES, pp. 83–94. ACM (2013)

22. Ryan, M.D.: Enhanced certificate transparency and end-to-end encrypted mail. In:
NDSS. The Internet Society (2014)

23. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)

24. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

25. Vliegen, J., Wouters, K., Grahn, C., Pulls, T.: Hardware strengthening a distrib-
uted logging scheme. In: DSD, pp. 171–176. IEEE (2012)

26. Yavuz, A.A., Ning, P., Reiter, M.K.: BAF and FI-BAF: efficient and publicly ver-
ifiable cryptographic schemes for secure logging in resource-constrained systems.
ACM Trans. Inf. Syst. Secur. 15(2), 9 (2012)

27. Yu, J., Cheval, V., Ryan, M.: DTKI: a new formalized PKI with no trusted parties.
CoRR abs/1408.1023 (2014). http://arxiv.org/abs/1408.1023

http://www.links.org/files/RevocationTransparency.pdf
http://www.links.org/files/RevocationTransparency.pdf
http://tools.ietf.org/html/rfc6962
https://eprint.iacr.org/2014/1004
https://eprint.iacr.org/2014/1004
https://eprint.iacr.org/2015/007
https://eprint.iacr.org/2015/007
http://arxiv.org/abs/1408.1023

On the Fly Design and Co-simulation
of Responses Against Simultaneous Attacks

Léa Samarji1,2(B), Nora Cuppens-Boulahia1, Frédéric Cuppens1,
Serge Papillon2, Waël Kanoun2, and Samuel Dubus2

1 Télécom Bretagne, rue de la Chataigneraie, 35510 Cesson-Sévigné, France
{layal.elsamarji,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

2 Alcatel-Lucent Bell Labs, Villarceaux, route de Villejust, 91620 Nozay, France
{serge.papillon,wael.kanoun,samuel.dubus}@alcatel-lucent.com

Abstract. The growth of critical information systems in size and
complexity has driven the research community to propose automated
response systems. These systems must cope with the steady progress
of the attacks’ sophistication, coordination and effectiveness. Unfortu-
nately, existing response systems still handle attacks independently, suf-
fering thereby from (i) efficiency issues against coordinated attacks (e.g.
DDoS), (ii) conflicts between parallel responses, and (iii) unexpected side
effects of responses on the system. We, thus, propose in this paper a new
response model against simultaneous threats. Our response is dynami-
cally designed based on a new definition of capability-aware logic anti-
correlation, and modeled using the Situation Calculus (SC) language.
Even though a response can prevent or reduce an attack scenario, it
may also have side effects on the system and unintentionally ease one
of the attackers to progress on its scenario. We address this issue by
proposing a response co-simulator based on SC planning capabilities.
This co-simulator considers each response candidate apart and reasons,
from the current system’s and attackers’ state, to assess the achieved
risk mitigation on the protected system. Experimentations were led to
highlight the benefits of our solution.

Keywords: Response system · Simultaneous attacks · Situation
calculus

1 Introduction

Modern attack tools are rapidly evolving to become more powerful and sophis-
ticated. Networks and information systems are frequently targeted by simulta-
neous attacks, which causes deterioration in system’s performance and induce
great damage to physical assets. Simultaneous attacks are those performed by
different attack entities. Each of them may be a single individual attacker or
composed of a Group of Coordinated Attackers (GCA), with a specific attack
objective in the system. When the attack entity is a GCA, the system risks
to suffer from coordinated attacks [20]. Unfortunately, existing response systems
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 642–661, 2015.
DOI: 10.1007/978-3-319-24177-7 32

On the Fly Design and Co-Simulation of Responses 643

proposals [7–9,17,19] still handle attacks as being independent actions, and each
attack scenario is treated as if it is the only intrusion scenario in the system.
Moreover, the majority of automated intrusion response systems rely on a pre-
defined mapping of response actions to attacks. While this approach allows a
system administrator to deal with intrusions faster, it lacks flexibility as “things
do not always turn out the way we planned”. Besides, when responding to simul-
taneous attacks by activating parallel response measures, unexpected conflicts
between responses may occur, in addition to potential side effects on the system.

In this paper we propose a response system that overcomes these problems
by dynamically designing and co-simulating response candidates for simultane-
ous attack threats. We first introduce a new response scheme. Our response is
described as a sequence of non conflicting parallel actions, allowing thereby an
execution in parallel or in sequence of different actions handling all the risky
threats. Our response is dynamically designed based on a new definition of a
capability-aware logic anticorrelation approach [2], and modeled through an effi-
cient logic language, the Situation Calculus (SC) [11,14].

When a system is simultaneously threatened by different attack entities, mul-
tiple response candidates may be dynamically designed. In order to choose the
most effective response, we also present in this paper a co-simulator based on
the SC planning capabilities. This enables to have a real-time estimation of the
total risk mitigation induced by each response candidate, and thus, the most
optimal one can be chosen and deployed in the system.

The paper is organized as follows: Sect. 2 presents a Simultaneous Attacks
Graph (SAG) which forecasts potential simultaneous attack scenarios. SAG is
an input for our framework, since it allows us to identify risky threats for which
we have to design a response. Section 3 introduces our new response scheme, and
explains how responses can be dynamically designed based on a new definition of
anticorrelation. Section 4 introduces the Situation Calculus language, and shows
how to model our dynamic response with SC. Section 5 introduces our response
co-simulator based on SC planning capabilities. In Sect. 6, we experiment our
framework on an IP network threatened by simultaneous attacks. Then, Sect. 7
discusses related works, before we conclude on our proposals in Sect. 8.

2 Simultaneous Attacks Graphs

[15] differs from other works on attack modeling (e.g. [1,4,18], etc.), by proposing
a formal description of actions that correspond to all types of attacks (individual,
coordinated and simultaneous ones). An algorithm was also proposed to generate
Attack Graphs (SAG) corresponding to Simultaneous attacks scenarios. Hence,
given a system’s state and a set of suspicious attackers, the algorithm is able to
generate multiple SAGs each corresponding, to a combination of scenarios pre-
dicted for those attackers. Figures 1 and 2 are two examples of generated graphs
for a telephony operator threatened by fourteen suspicious attackers at time
t0. In each graph, attackers may be assembled differently into groups, and may

644 L. Samarji et al.

have a different end goal. Consequently, each graph represents only one combi-
nation of potential scenarios that can be simultaneously performed in the future
by suspicious attackers. In the SAG of Fig. 1, the algorithm assembles attack-
ers into 3 groups of coordinated attackers {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10},
{a11, a12}, and {a13, a14}. For the first group, a scenario targeting the opera-
tor’s reputation on its principal services (e.g. QoS) is predicted by performing a
Distributed Denial of Service (DDoS) on one of its SIP servers. For the second
group, a scenario that aims at inducing losses for an operator’s client is predicted
by hijacking its account and performing a toll fraud. For the third group, a sce-
nario that aims at inducing losses for an operator’s political client is predicted
by recording its conversation and using it for black mailing. In another example,
in Fig. 2, attackers a11 and a12 are not coordinated, and each one has it own
end goal. Notice that an attack entity (e.g. a11) can block another one (e.g. a12)
from progressing. This can occur due to a simultaneous access to unshareable
resources in the system. Attackers in this case are called concurrent.

In [16], a new framework was proposed to properly assess the risk of Individ-
ual, Coordinated, and Concurrent Attack Scenarios. The method is based on a
coordination aware-Game Theoric approach to derive an Attack Likelihood equa-
tion. An algorithm was also proposed to assess the risk of each attack scenario in
a given SAG, considering the concurrency between attackers. Consequently, the
SAG containing scenarios that are the most risky (i.e. scenarios with high likeli-
hood and high impact) in the system is chosen. The most risky SAG is an input
for our framework. Our framework will dynamically design and co-simulate a
response efficient against attackers leading the risky scenarios within this SAG.

a1 a13a11

Distributed
Port Scan

Fingerprinting
SIP servers

Fingerprinting
Authentication

servers

DDoS on SIP
server

DDoS on
authentication

server

Affected reputation
on principal

services

Affected reputation
on secondary

services

User Active
Discovery

Third-party
losses, detectable

in short time

Affected
reputation on

Security

Publish
on internet

Account
High-

jacking

Third-party losses,
undetectable in

short time

Recording
conversation

Mac addresses
Discovery

Toll
Fraud

Password
Cracking

Coordinated
Attack

Individual
Attack

Attack
Goal

Scenario
Blocked by ‘A’

a2 a3 a4 a5 a6 a7 a8 a9 a10 a12 a14

Fig. 1. Example 1 of a VoIP SAG.

On the Fly Design and Co-Simulation of Responses 645

a1 a13

Distributed
Port Scan

Fingerprinting
SIP servers

Fingerprinting
Authentication

servers

DDoS on SIP
server

DDoS on
authentication

server

Affected reputation
on principal

services

Affected reputation
on secondary

services

Third-party losses,
undetectable in

short time

Recording
conversation

Mac addresses
Discovery

Coordinated
Attack

Individual
Attack

Attack
Goal

Scenario
Blocked by ‘A’

a2 a3 a4 a5 a6 a7 a8 a9 a10 a14

User Active
Discovery

Third-party
losses, detectable

in short time

Affected
reputation on

Security

Publish
on internet

Account
High-

jacking

Toll
Fraud

User Active
Discovery

a11

Password
Cracking of

user U

Password
Cracking of

user U

a12a11

Fig. 2. Example 2 of a VoIP SAG.

3 New Scheme for a Complex Response

Let [[a1
1, a

1
2, ..., a

1
M]; [a2

1, a
2
2, ..., a

2
M]; ...; [aN

1 , aN
2 , ..., aN

M]] be the sequence of simul-
taneous attacks forecasted in the input SAG, where M different attack entities
are presented in the system, with ai

j being the action that is going to be exe-
cuted in the ith place by the attack entity j. Symbol ′,′ represents parallelism,
and symbol ′;′ represents sequencing. Note that ai

j can also be no operation if
no action is predicted for the entity. Consider that attack entities 1, 2, ...,K are
considered as risky and attack entities K + 1, ...,M are considered as not risky.
Note that, in a given SAG, risky attack entities are those for which risky scenar-
ios are forecasted. Hence, the following is the sequence of Risky Simultaneous
Attacks (RiskySAS): RiskySAS = [[a1

1, ..., a
1
K]; [a2

1, ..., a
2
K]; ...; [aN

1 , ..., aN
K]].

R is considered a response against RiskySAS, if R is able, while main-
taining the system in an operational state, to either prevent or delay enti-
ties 1, 2, ...,K from reaching their attack objectives. In order to respond
to simultaneous threats, the response should not be limited to a single
elementary action, we thus consider a response as a complex action, and
we define it as a set of partially ordered elementary actions. In other
words, a response may consist of non conflicting system’s actions acti-
vated in parallel and of system’s actions activated in sequence. Contrarily
to an attack action, a system’s action is an action triggered/executed by
the system. openSession(Src ip, Src port,Dest ip,Dest port), restart(Server),
install(patchID,machineIP), deploy(StrongAuthentication,Server), are examples
of system’s actions.

We introduce, in the following, a generic action scheme for a response
R described as a sequence of length x of parallel system’s actions: R =
[[r11, ..., r

1
l1]; [r

2
1, ..., r

2
l2]; ...; [r

x
1 , ..., rxlx]] with rki being one of the lk system’s actions

646 L. Samarji et al.

executed in the kth place (i.e. kth time step) , and ∀k/ 1 < k < x, ∀i �= j / 1 < i,
j < lk, rki and rkj are not conflicting (i.e. meaning that parallel actions should
be compatible together for a parallel execution).

In order to design such a response on the fly against a RiskySAS, a dynamic
anticorrelation logic approach should be applied. Unfortunately, existing work
on anticorrelation [2] is limited to an anticorrelation definition unaware of the
applicability of actions, and is thereby inefficient for dynamic use. Moreover, the
existing definition of anticorrelation is limited to responses consisting of a single
elementary action. We thus propose in the following sections an applicability-
aware anticorrelation definition adapted to our response scheme.

3.1 Applicability-Aware Anticorrelation

Anticorrelation in logic programming was defined in [2] as follows:

Definition 1. Let r and a be respectively a system’s action and an attack. postr
is the set of predicates of post-condition of r and prea is the set of predicates
of pre-condition of a. Each of the post-condition and the pre-condition is a
conjunction of predicates. r and a are anti-correlated if the following is satis-
fied: anticorrelated(r, a) ↔ ∃Pr, Pa/(Pr ∈ postr ∧ ¬Pa ∈ prea)∧ Pr,Pa are
unifiable.

Consider passwordCrack(Attacker1, U, Serv) a cracking of user U ’s password
through server Serv. A precondition of this attack is to have Attacker1 having
network access to Serv. Let discard(Attacker1, Serv) be a system’s action con-
sisting in disconnecting Attacker1 from Serv ’s network. Consequently, we have:
anticorrelated(discard(Attacker1, Serv), passwordCrack(Attacker1,U,Serv)).

Unfortunately, Definition 1 does not consider the applicability of
the system’s action. Actually, if we reconsider the latest example, the
discard(Attacker1, Serv) action, may not be possible for execution in the cur-
rent state because the database containing allowed ip addresses for connection
to Serv is exclusively opened by another module in the system. Hence, response
system should wait until the database is released, to be able to execute its action.
Therefore, we propose an applicability-aware anticorrelation definition as follows:

Definition 2. Let r and a be respectively a system’s action and an attack. Let S
be the current system state, and poss(r,S) a predicate meaning that it is possible
to execute r in S. r and a are anti-correlated in S if the following is satisfied:
anticorrelated(r, a, S) ↔ poss(r, S) ∧ anticorrelated(r, a).
poss(r, S) ↔ ∀P ∈ prer, P holds in S.

Definition 2 is limited to responses consisting of a single elementary action.
However, a system may sometimes need to coordinate multiple elementary
actions in order to react against an attack a, especially when a is a coordi-
nated attack [15]. As an example, consider that 25 users are registered to server
Serv, that can handle up to 20 users deploying their entire bandwidth. Consider
now that 22 users were infected by an external bot, and they are coordinately

On the Fly Design and Co-Simulation of Responses 647

flooding Serv (i.e. executing a DDoS). The set of compromised users is thus con-
sidered as a GCA. In order to respond to the DDoS attack, the system should
discard in parallel at least two of the infected users to reduce the receiving flow
below the threshold of Serv. Thus, it is the resulting effect of the three discard
actions which is opposite to the precondition of DDoS (which is | GCA |> 20).
The following is a logic expression of the combined effect of the three elementary
actions: discarded(User21) ∧ discarded(User22) →| GCA |< 20.

In this case, it is the set of parallel actions [discard(User21), discard(User22)]
which is anticorrelated with DDoS(GCA,Serv). Therefore, we propose a defin-
ition of applicability-aware anticorrelation between a set of coordinated elemen-
tary system’s actions and an attack, as follows:

Definition 3. Let rcoordinated = [r1, r2, ..., rC] be a set of parallel system’s
actions, and a an attack. postrk is the set of predicates of post-conditions of
rk and prea is the set of predicates of pre-condition of a. rcoordinated and a are
anti-correlated if the following condition is satisfied:
anticorrelated([r1, r2, .., rC], a, S) ↔
poss([r1, r2, .., rC], S) ∧ anticorrelated([r1, r2, .., rC], a). with:
anticorrelated([r1, r2, .., rC], a) ↔ (Pr1 ∧ Pr2 ∧ .. ∧ PrC → Pr) /Prk ∈ postrk ∧
∃Pa /(¬Pa ∈ prea ∧ Pr, Pa are unifiable). and
poss([r1, r2, ..., rC], S) ↔ ∀i ∈ [1, C], poss(ri, S) ∧ ∀j �= i/1 < j < C,
¬conflict(ri, rj).

¬conflict(ri, rj) means that ri and rj are not conflicting (i.e. can be executed
simultaneously). The semantic definition of conflict will be given in Sect. 4.3.

Definition 3 can be extended to the case of a complex system action (i.e. a
sequence of parallel system’s actions) as follows:

Definition 4. Let R∗ = [[r11, ..., r
1
l1]; [r

2
1, ..., r

2
l2]; ...; [r

c
1, ..., r

c
lc]] be a complex

action, and a an attack action. Let Si+1 be the state of the system after the
execution of [ri1, ..., r

i
li] in state Si. R∗ and a are anticorrelated in state Sc−1 if

the following condition is satisfied:
anticorrelated([[r11, ..., r

1
l1]; [r

2
1, ..., r

2
l2]; ...; [r

c
1, ..., r

c
lc]], a, Sc−1)

↔ anticorrelated([rc1, ..., r
c
lc], a) ∧ poss([r11, ..., r

1
l1], S0) ∧

poss([r21, ..., r
2
l2], S1) ∧ ∧ poss([rc1, ..., r

c
lc], Sc−1).

Based on Definition 4, we now propose a definition of applicability-aware
anticorrelation between a complex action R, and a RiskySAS as follows:

Definition 5. Let R = [[r11, ..., r
1
l1]; [r

2
1, ..., r

2
l2]; ...; [r

x
1 , ..., rxlx]] be a complex

action, and RiskySAS a set of risky simultaneous attack scenarios, such that
RiskySAS = [[a1

1, ..., a
1
K]; [a2

1, ..., a
2
K]; ...; [aN

1 , ..., aN
K]], with ai

j being an attack
performed by attack entity j. R and RiskySAS are anti-correlated if the following
condition is satisfied:
anticorrelated(R,RiskySAS, S) ↔ ∀entity(j), ∃R∗ ∈ R ,∃a ∈ [a1

j ; a
2
j ; ...; a

N
j]/

anticorrelated(R∗, a, S).

648 L. Samarji et al.

Thus, R is anticorrelated with RiskySAS if for each attack sequence corre-
sponding to an attack entity, we can find a complex action R∗ within R which
is anticorrelated and applicable with at least one of the attacks that the entity
will execute throughout its sequence.

3.2 Complex Response

A complex action R is considered a dynamic response against RiskySAS in a
state S, if R is applicable in S and anticorrelated with RiskySAS, and no nom-
inal constraint is violated at the end of R’s execution. Nominal constraints are
those related to critical system assets that should not be violated, in order to
guarantee a minimum operating state (i.e. service continuity) in the system. Con-
sequently, R should include ‘operability’ actions whenever nominal constraints
risk to be violated by the system’s actions composing R. We, thus, define a
response R against a RiskySAS as follows:

Definition 6. Let R = [[r11, ..., r
1
l1]; [r

2
1, ..., r

2
l2]; ...; [r

x
1 , ..., rxlx]] be a complex

action, and RiskySAS a set of risky simultaneous attack scenarios. And, let
min constraints be the set of nominal constraints. R is a response against
RiskySAS in state S if the following condition is satisfied:
response(R,RiskySAS, S) ↔ anticorrelated(R,RiskySAS,S)
∧∀Constraint ∈ min constraints, Constraint(S) = True.

For example, consider a system threatened simultaneously by two risky
threats T1 and T2. T1 aims at over-flooding server S1, and T2 aims at hijacking
a legitimate user’s account U throughout a machine M infected with a bot. The
following sequence of parallel actions corresponds, thus, to a response against
T1 and T2.

R = [[shareLoad(S1, S2), disconnect(M)]; [backupF iles(M,BackupServer)];
[reformatHarddrive(M)]; [install(SecurityPatch,M)]; [connect(M)]].

In a first step, sharing load is settled between S1 and another server
S2 in order to prevent S1 from being overcharged by T1. In parallel, M
is disconnected from the network, and files on M are backed up in order
to reformat the machine and install a security patch in further steps. By
this, the bot on M is removed and the vulnerability is patched. In this
example, shareLoad(S1, S2), and install(SecurityPatch,M) are two sys-
tem’s actions anticorrelated respectively with T1 and T2. disconnect(M),
reformatHarddrive(M) and backupFiles(M, BackupServer) are actions rendering
the system capable to execute install(SecurityPatch,M). We call them ‘capabil-
ity enabling’ actions. Finally, connect(M) is an ‘operability’ action. Note that
without this latter, the response against T2 will not be effective.

In order to design our responses based on logic anticorrelation, system and
attacks actions should be modeled using the same logic language. Additionally,
the modeling language should follow a pre/post condition approach for actions
description. In [15] different modeling languages were compared: LAMBDA [4],

On the Fly Design and Co-Simulation of Responses 649

STRIPS [1], JIGSAW [18], and Situation Calculus [11,14], and the latter turns
to be the most adapted language to describe all attack types. We, thus, investi-
gate in the next section the adaptability of SC in modeling anticorrelation and
responses as defined in the previous section.

4 Modeling Responses with Situation Calculus (SC)

4.1 Basics of the Situation Calculus

Situation Calculus [11,14] is a dialect of first order logic, with second order-logic
terms for representing dynamic change. It basically consists of:
– Situations: a situation represents the system’s state, and the action’s history

(i.e. sequence) from an initial empty action sequence S0.
– Fluents and Predicates: the world is described in terms of predicates and flu-

ents. Whereas predicates are stateless, fluents are statefull, and thus take sit-
uations as arguments. For example, Server(Serv) is a predicate meaning that
Serv is a server. While, network access(M1, S2, s) is a fluent meaning that
machine M1 has a network access to server S2 in situation s. Additionally, Flu-
ents can be either relational, or functional. Relational fluents return boolean
values, e.g. is on(Serv, s), while functional fluents return a non boolean value,
e.g. received flow(Serv,s)=500.

– Actions: consist of a function symbol and its arguments. For example,
reboot(Server1) is the action of rebooting Server1. In order to reason about
the effects of an action, we refer to function do(a,s). This latter denotes the
situation that results from doing action a in situation s.

SC also provides essential axioms to represent dynamic changes:
– Action precondition axioms: for each action a, there is a predicate Poss(a, s)

that states if it is possible for action a to be executed in situation s.
– Successor state axioms: there is one for each fluent F . It characterizes the

conditions under which a fluent F (x, do(a, s)) changes from s to do(a, s).

4.2 Elementary System Actions

SC answers our need in (1) offering the possibility to dynamically design a
response whose requirements and effects depend on the system’s state, and (2)
modeling system actions following a pre/post condition approach. The following
is an SC description of an operational action shareLoad(S1, S2) which consists
in forcing a server S1 to share the load with another server S2 when overcharged.
Poss(shareLoad(S1, S2), S) ↔ overcharged(S1, S) ∧ is on(S2)
∧runningService(S1, S) = runningService(S2, S).
overcharged(S1,do(A,S)) ↔ A = ddos(GCA,S1)∨ (overcharged(S1, S)∧A �=
shareLoad(S1, S2)).

650 L. Samarji et al.

4.3 Concurrent System Actions

In [12,13], SC was expanded to handle concurrency. A new sort concurrent is
added. Every concurrent variable c is a set of concurrent simple actions a. The
binary function do(c, s) returns a situation term that results from the application
of concurrent actions c in situation s. Poss(a, s) is thus extended to Poss(c, s).

Additionally, in a simultaneous actions context, some actions can not be
performed concurrently. This is due to incompatibility between actions in terms
of resources that each action uses. As a solution, Pinto [12] proposed to add a
finer level of granularity by appealing to the notion of resource: xres(a, r) means
that the action a requires the exclusive use of the resource r, and sres(a, r)
means that the action a requires the use of the resource r for its execution, but
r can be shared. Finally, poss(c, s) makes use of a conflict predicate conflict as
a precondition in order to test compatibility between actions:

conflict(c) ↔ ∃a1, a2 ∈ c, ∃r | [(xres(a1, r)∧
xres(a2, r)) ∨ (xres(a1, r) ∧ sres(a2, r)) ∨ (sres(a1, r) ∧ xres(a2, r))]
Poss(c, s) ↔ [∀a ∈ c, Poss(a, s)] ∧ ¬conflict(c)

Concurrent SC is thus efficient to avoid conflicts while designing a response.

4.4 Anticorrelation and Response in Situation Calculus

Let r and a be respectively a SC description of a system’s action, and an attack
action. Anticorrelation between r and a presented in Definition 2 is expressed in
SC as follows: anticorrelated(r, a, S) ↔ poss(r, S) ∧ ¬poss(a, do(r, S)).

In SC, doing action r renders action a not possible for execution, this means
that r has rendered one of a’s precondition’s predicates unfulfilled (i.e. false).

Let C = [r1, r2, ..., rL] be a set of parallel system’s actions, and a an attack
action. Anticorrelation between rconcurrent and a, as presented in Definition 3,
can be expressed in concurrent SC as follows:
anticorrelated(C, a, S) ↔ poss(C,S) ∧ ¬poss(a, do(C,S)).

Now, let R∗ = [C0;C1; ...;Ck] be a complex action with Ci = [ri1, ..., r
i
li], and

a an attack action. Anticorrelation between R∗ and a, as presented in Defini-
tion 4, can be expressed in concurrent SC as follows:
anticorrelated(R∗, a, S) ↔ poss(R∗, S) ∧ ¬poss(a, do(R∗, S)). with
poss(R∗, S) ↔ poss(C0, S0) ∧ poss(C1, do(C0, S0)) ∧ ...∧
poss(Ck, do(Ck−1, (..(do(C0, S0)..)).

Consequently, concurrent SC is adapted to model anticorrelation of a complex
action against a RiskySAS as defined in Definition 5. And, a response (see Def-
inition 6) can be modeled in SC as follows:
response(R,RiskySAS,S) ↔ anticorrelated(R,RiskySAS,S)∧
∀Ct ∈ min constraints,Ct(S). //constraints can be modeled in SC as shown
in [5].

On the Fly Design and Co-Simulation of Responses 651

At this stage of the paper, we have proposed a mean to dynamically design a
response against a set of simultaneous attacks scenarios. Since multiple response
possibilities may exist, we introduce in the next section, the SC planning task
that we use to propose a dynamic response co-simulator.

5 Planning in Situation Calculus

In [14], the author presented and implemented the world’s simplest breadth-first
planner (wspbf). wspbf is a SC planner for an agent who can perform concurrent
or sequential actions. It is supplied with a goal predicate plannerGoal(s) to
fulfill. Here is the Golog [10] program of the wspbf :
procwspbf(n)
plans(0, n)
endProc
proc plans(m,n)
m ≤ n?; [actionSequence(m); plannerGoal? | plans(m+1, n)]
endProc
proc actionSequence(n)
n = 0? | n > 0?; (πc) [concurrent actions(c)?; c] ; actionSequence(n-1)
endProc
The planner generates all sequences of concurrent actions c fulfilling the goal. It
terminates with failure if it does not find a sequence, which length is smaller or
equal to n, that fulfills the goal.

5.1 Dynamic Response Co-simulator Based on SC Planning

We generalize the wspbf to the case of a multi-agent system, where we have, on
one hand, the system which can perform, concurrently or sequentially, a set of
actions, and on the other hand, the attack entities present in the SAG, which
can perform individual or coordinated attacks. First, we integrate all the attacks
that have been specified to generate the SAGs. Second, a network and a security
expert are needed to specify and describe in SC, all the elementary actions that
the system can perform, considering the resource notion. Third, we integrate all
the attack goals that have been specified to generate the SAGs. For instance, the
following are two critical assets that may be considered attack goals in a system
handling a voice over IP (VoIP) service.

Attack Goal(Entity,S) → in denial(Entity,VoIPserver,S) ∨ is off(Entity,VoIPuser,S).

//meaning that an attack entity can reach an attack goal in situation S, if in S,
it has succeeded a denial of service over a VoIP server or a VoIP user.

Forth, we describe more specifically the attack goal that each attack entity
has reached in the considered SAG. For example, if entity1 has overflown a VoIP
server then: goalreached(entity1, S) ↔ in denial(entity1, V oIPserver, S).

Fifth, we specify in SC, for each attack entity appearing in SAG, if it is risky
or not [16]. Besides, we specify for each risky entity, its attack scenario. For
instance, risky(entity1) ∧ riskySAS(entity1, scenario1), and ¬risky(entityM).

652 L. Samarji et al.

Finally, we configure the co-simulator goal in a manner to reach a situation
where a response is designed based on described system actions, and every risky
entity is either (1) completely prevented from reaching her attack goal, or (2)
forced to change her path and choose a more complex one before getting to her
goal, thereby, reducing her risk. Concerning non risky entities, since they are not
the prior concern of the system in the current situation, then no response will be
intentionally designed for them. Note that if a response was able to additionally
block or reduce the risk of a non risky entity, then this is also considered a
solution for our co-simulator. We model our co-simulator’s goal as follows:

plannerGoal(S) →
∀ risky(EntityA), [riskBlocked(EntityA, S) ∨ riskReduced(EntityA, S)]∧
∀¬risky(EntityB), [riskBlocked(EntityB, S) ∨ riskReduced(EntityB, S)
∨Attack Goal(EntityB, S)]. with:

riskBlocked(Entity, do(R∗, S)) → ∃Scenario/
riskySAS(Entity, Scenario) ∧ response(R∗, Scenario, S) ∨ riskBlocked(Entity, S).

//meaning that: due to the response R*, the attack entity was completely pre-
vented from performing her attack scenario. Thus, the risk of this entity is totally
blocked.

riskReduced(Entity, S) → goalReached(Entity, S) ∧ privilegesLoss(Entity, S).

privilegesLoss(Entity, do(C,S)) → [∃Predicate, ∃Object/Predicate(Entity,Object,S)

∧¬Predicate(Entity,Object,do(C,S))] ∨ privilegesLoss(Entity, S).

//meaning that: due to some system actions C making part of the response, the
attack entity has lost one of its privileges. Consequently, the entity will need to
do more effort, thus, more time, to progress in its scenario Hence, the risk of
this entity will decrease.

Our response co-simulator generates an exhaustive list of all the response
possibilities that can be designed against the risky threats, co-simulating, for
each response, the potential behavior of the attackers face to this response,
and the side effects that this latter can have on the system. Note that, each
of the generated responses appears within a response plan. A response plan is
a sequence of parallel actions. Each action can be either an attack or a system
action. Actions in sequence are ordered in time, thereby, an administrator knows
when to execute each system action making part of the response.

6 Experimentation

We implemented our response co-simulator using a prolog interpreter, SWI pro-
log (http://www.swi-prolog.org/). Then, we considered two different use cases
for experimentation. In the first, we highlight the capability of our framework
in generating responses handling sequencing and parallelism, and simulating the
responses side effects. In the second experimentation, we highlight the efficiency
of our framework in managing the conflict between actions.

http://www.swi-prolog.org/

On the Fly Design and Co-Simulation of Responses 653

6.1 Use Case 1

In Use case 1, we consider two simultaneous threats led by two attack entities
(A1 and A2), as shown in the SAG of Fig. 3. In the initial system state, A1 has
already infected machine M1 and actively scanned user U. In parallel, A2 has
already infected machine M2 which belongs with M1 to the same Ethernet net-
work (machines are reachable via Switch12). It is predicted for A1 to crack the
password of U’s account and highjack it in order to do a toll fraud which induces
economic losses to U. Besides, a likely scenario for A2 is predicted starting by
discovering M1 and then poisoning it with ARP messages, in order to spoof its
address later on and make calls or inject packets as if they were sent by M1.

In a first experimentation, we consider that both threats are risky. Thus, our
planner derives response plans for both of them. The following sequences are
some of the response plans proposed by our planner:

Experimentation 1 - Response plan 1:

t1: [[passCrack(A1, server, u), discovermacaddress(A2,M2,M1)];
t2: [notifychangepassword(u,server),deployAuthentication

(Switch12)];
t3: [passCrack(A1, server, u)];
t4: [highjack(A1, u, server)];
t5: [tollFraud(A1, u)]]

Plan 1, presented in the graph of Fig. 4, designs a response R2 against both
threats as parallel system actions. The first notifies U to change his password, and
the second deploys an authentication on Swith12. Due to changing U’s password,
A1 is no more able to highjack U’s account. Thus A1 should re-execute again a
password cracking in order to continue its scenario. R2 is considered a response
against A1, because it delays A1 from reaching its attack goal, thereby reducing
its risk. Due to deploying authentication on switch12, A2 will not be able to
poison M1 with ARP messages. Thus, it will not be able to reach its attack goal.

Experimentation 1 - Response plan 2:

t1: [[disconnect(M1)];
t2: [install(SecurityPatch,M1)];
t3: [connect(M1)];
t4: [discovermacaddress(A2,M2,M1)];
t5: [arppoisoning(A2,M2,M1)];
t6: [injectRTPpackets(A2,M2,M1)]]

Plan 2, presented in the graph of Fig. 5, designs a response R1 against both
threats as a sequence of system actions. The response consists in patching the
vulnerability in M1 and thereby prohibiting A1 from having a remote access to
this machine. By disconnecting M1 in order to patch it, A2 will not be able to
discover the mac address of M1. Consequently A2 will have to wait until M1 is
reconnected to the network in order to continue its scenario. Hence, R1 blocks
completely A1, and reduces the risk of A2.

In a second experimentation, we now consider that A1 is a risky threat,
whereas A2 is not risky yet. Hence, we configure the planner’s goal to respond
against A1. The following is one of the solutions proposed by our planner:

654 L. Samarji et al.

Experimentation 2 - Response plan 1:

t1: [[passCrack(A1, server, u), discovermacaddress(A2,M2,M1)];
t2: [disconnect(M1)];
t3: [install(SecurityPatch,M1), injectRTPpackets(A2,M2,M1)];
t4: [connect(M1)]]

The above sequence, presented in the graph of Fig. 6, designs a response R3
against threat A1. R3 consists in patching the vulnerability of M1, and blocking
thereby A1. Note that, R3 is composed of the same actions as for R1. The only
difference is that they do not have the same activation time. By launching R3,
thus disconnecting M1, after that A2 discovers the address of M1, A2 does no
more need to perform ARP poisoning. Indeed, disconnecting a machine is like
inducing a denial of service on this machine. Consequently, A2 can directly spoof
the address of M1 and fulfill its attack objective. Consequently, R3 has a side
effect on the system, by increasing the risk of threat A2.

As you may notice, our framework is able to co-simulate the effects of each
response on the system considering its activation time, allowing by this the
system to choose the response plan bringing the highest risk mitigation.

6.2 Use Case 2

In Use case 2, we consider a system running a VoIP service, and a Trading service
as shown in Fig. 7. For clients {cV 1, cV 2, ..., cV 10} subscribed to VoIP, a pass-
word based authentication using PAP (password authentication protocol) is con-
sidered and handled by a RADIUS server. While for clients {cT1, cT2, ..., cT8}

Fig. 3. SAG: System threatened by two attack entities A1 and A2.

On the Fly Design and Co-Simulation of Responses 655

Fig. 4. Response against A1 and A2, designed as parallel actions.

Fig. 5. Response against A1 and A2, designed as a sequence of actions.

656 L. Samarji et al.

Fig. 6. Response against A1, having side effects on A2.

subscribed to Trading service, a strong authentication (e.g. multi-factor authen-
tication, Digest access authentication, etc.) is adopted and handled by a Strong
Authentication Server (SAS). SAS is suffering a Zero day vulnerability (e.g.
Heart bleed1). Besides, in the initial system state, clients {cV 1, ..., cV 5} and
cT1 are compromised. The graph of Fig. 8 forecasts two different risky threats
T1 and T2 led by these two attack entities. In T1, a coordinated password
cracking attack scenario is predicted over cV 8’s account. In T2, cT1 will try to
exploit the vulnerability of SAS and prevent other traders from connecting to
the trading service. The following is the attack sequence corresponding to the
graph:

t1: [[botinfect(a1,cV1),...,botinfect(a5,cV5), scanVulnerability(cT1,fw2)];
t2: [cscanuser((cV 1, ..., cV 5), cV 8),modifyAccessRules(cT1, fw2)];
t3: [cpassCrack((cV 1, .., cV 5), sV 1, cV 8), scanserver(cT1, sas)];
t4: [highjack(cV1,sV1,cV8), exploitVulnerability(cT1,sas)]]

In order to prevent T1, a solution would be to adapt the strong authen-
tication to the VoIP service. To do so, the database containing informa-
tion (passwords, accounts, etc.) about VoIP clients should be transferred
to server SAS. Thus, r1 =transferData(sV1,SAS) is anticorrelated with
cpassCrack((cV1,...,cV5),sV1,cV8). Another solution would be to notify cV 8

1 http://www.zdnet.com/heartbleed-serious-openssl-zero-day-vulnerability-revealed-
7000028166/.

http://www.zdnet.com/heartbleed-serious-openssl-zero-day-vulnerability-revealed-7000028166/
http://www.zdnet.com/heartbleed-serious-openssl-zero-day-vulnerability-revealed-7000028166/

On the Fly Design and Co-Simulation of Responses 657

to change his password before that cV 1 highjacks his account. Thus, action r3 =
changePassword(sV 1, cV 8) is anticorrelated with highjack(cV 1, cV 8, sV 1).

In order to prevent T2, a solution would be to disconnect SAS in order to
install security patches or a new software version (e.g. OpenSSL 1.0.1g) to patch
the vulnerability. Thus, action r2 = installPatch(sas) is anticorrelated with
exploitV ulnerability(cT1, sas). Another solution would be to discard or blacklist
the malicious trader for a while. Thus, r4 = discard(cT1) is anticorrelated with
all actions executed by cT1.

A naive solution to respond to both threats would be to choose any combina-
tion [ri, rj], with i an even number and j an odd number. However, r1 and r2 are
in conflict. Actually, installing the security patch requires disconnecting sas from
the network, whereas transfering data to sas requires this latter to stay online.
Consequently, our framework prevents the execution of these two actions in par-
allel, by appealing the notion of resource: xres(r2, sas) ∧ sres(r1, sas). Thus,
conflict([r1, r2]) returns true, and Poss([r1, r2], S) returns false. Our planner
avoids, thus, conflicting actions while designing the response plans:

Response Plan 1 presented in Fig. 9 integrates r3 and r2:

t1: [[botinfect(a1,cV1),..,botinfect(a5,cV5), scanVulnerability(cT1,fw2),
diconnect(sas)];

t2: [cscanuser((cV1,..,cV5),cV8), modifyAccessRules(cT1,fw2),
installPatch(sas)];

t3: [cpassCrack((cV1,..,cV5),sV1,cV8), restart(sas)];
t4: [changePassword(cV1,cV8), scanserver(cT1,sas)];
t5: [cpassCrack((cV1,..,cV5),sV1,cV8)];
t6: [highjack(cV1,cV8,sV1)]]

Fig. 7. Multi-services system topology.

658 L. Samarji et al.

Fig. 8. SAG for the multi-services system.

Response Plan 2 presented in Fig. 10 integrates r1 and r4:

t1: [[botinfect(a1,cV1),...,botinfect(a5,cV5),scanV ulnerability(cT1, fw2)];
t2: [cscanuser((cV1,...,cV5),cV8), transferData(sV1,sas),discard(cT1)]]

7 Related Work

Stakhanova et al. [17] proposed a response selection mechanism that can be based
on a (i) static mapping, (ii) dynamic mapping, or (iii) cost-sensitive mapping. As
opposed to static mapping, in dynamic mapping, the countermeasure is deter-
mined in realtime by considering additional factors related to the attack occur-
rence (e.g. attack confidence, attack severity, past experience). Cost-sensitive
response systems can be viewed as a particular form of dynamic mapping. In
such response systems, the selection procedure considers mainly the impact of
the attack on the monitored system, and the cost of candidate countermeasures.

Kanoun et al. [9] highlighted the lack in existing taxonomies of considering
the deactivation phase of a response. They, proposed a novel temporal response
taxonomy using the Set Theory. Their taxonomy addresses the lifetime and
the deactivation aspects of response measures distinguishing two major classes
of countermeasures: one-shot and sustainable. Thus, response measures can be
classified with respect to their effectiveness, lifetime, defeasibility, etc.

Unfortunately, most of the existing response taxonomies are based on a
matching between a threat and a predefined response. Hence, an expert is
needed to, first, understand and reason about each threat, and then, specify
the response policy, in advance, for every threat. Besides, the potential conflicts
between simultaneous responses, and the potential side effect of responses on the
system, are not considered.

In [3], different types of conflict between responses are described, and a solu-
tion to avoid the conflict was proposed. This latter consists in performing, offline,

On the Fly Design and Co-Simulation of Responses 659

Fig. 9. Response Plan 1.

Fig. 10. Response Plan 2.

a static assignment of priorities over conflicting responses. However, conflicts
between responses may depend on the current system’s state and the dynamic
resources’ allocation. Thus, the conflict should be dynamically handled.

In [6], authors introduced a structured approach to evaluate a Return On
Response Investment (RORI) index for all possible combinations of security mea-
sures that can be launched against simultaneous threats. In this work, security
measures corresponding to each threat are designed by an expert in advance.
Moreover, the risk mitigation for combined countermeasures is calculated by
adding the effectiveness of countermeasures over the different surfaces they cover.

660 L. Samarji et al.

An attack surface is defined as the subset of the system’s resources that an
attacker may use to send/receive data into/from the system in order to attack
the system. Thus, the effectiveness of a combination of responses, and thus its
risk mitigation, is restricted to the threats for which these responses are consid-
ered. However, a proper risk mitigation should be calculated over the totality of
the ongoing threats including not yet risky ones.

8 Conclusion

In this paper, we proposed a new response scheme for simultaneous threats, as a
sequence of non conflicting parallel actions. Our response is dynamically designed
based on a new definition of capability-aware logic anticorrelation, and modeled
using the Situation Calculus language. This latter is efficient to describe conflicts
between parallel actions by appealing the notion of resource. Moreover, in order
to choose the most effective response, when multiple responses are possible,
we presented a co-simulator based on SC planning capabilities. This latter co-
simulates each response possibility apart, considering the system’s state and the
currently existing attack entities. Our framework is implemented in SWI-prolog,
and experimentations were led to reveal the benefits of our solution.

In the future, we intend to assess the risk mitigation and the return on
investment of each response plan in order to activate the most efficient one.

References

1. Boutilier, C., Brafman, R.I.: Partial-order planning with concurrent interacting
actions. J. Artif. Int. Res. 14(1), 105–136 (2001)

2. Cuppens, F., Autrel, F., Bouzida, Y., Garcia, J., Gombault, S., Sans, T.: Anti-
correlation as a criterion to select appropriate counter-measures in an intrusion
detection network (2006)

3. Cuppens, F., Cuppens-Boulahia, N., Bouzida, Y., Kanoun, W., Croissant, A.:
Expression and deployment of reaction policies. In: IEEE International Confer-
ence on Signal Image Technology and Internet Based Systems, SITIS 2008, pp.
118–127, November 2008

4. Cuppens, F., Ortalo, R.: LAMBDA: a language to model a database for detection
of attacks. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907,
pp. 197–216. Springer, Heidelberg (2000)

5. Essaouini, N., Cuppens, F., Cuppens-Boulahia, N., Abou El Kalam, A.: Specify-
ing and enforcing constraints in dynamic access control policies. In: 2014 Twelfth
Annual International Conference on Privacy, Security and Trust (PST), pp. 290–
297. IEEE (2014)

6. Gonzalez Granadillo, G., Belhaouane, M., Debar, H., Jacob, G.: Rori-based coun-
termeasure selection using the OrBAC formalism. Int. J. Inf. Secur. 13(1), 63–79
(2014)

7. Irvine, C., Levin, T.: Toward a taxonomy and costing method for security services.
In: Proceedings of the 15th Annual Computer Security Applications Conference,
ACSAC 1999, pp. 183–188. IEEE Computer Society, Washington, DC (1999)

On the Fly Design and Co-Simulation of Responses 661

8. Jr., C.C., Pooch, U.W.: An intrusion response taxonomy and its role in automatic
intrusion response. In: The 2000 IEEE Workshop on Information Assurance and
Security (2000)

9. Kanoun, W., Samarji, L., Cuppens-Boulahia, N., Dubus, S., Cuppens, F.: Towards
a temporal response taxonomy. In: Di Pietro, R., Herranz, J., Damiani, E., State,
R. (eds.) DPM 2012 and SETOP 2012. LNCS, vol. 7731, pp. 318–331. Springer,
Heidelberg (2013)

10. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: a logic
programming language for dynamic domains (1994)

11. Mccarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Machine Intelligence, vol. 4 (1969)

12. Pinto, J.A.: Temporal reasoning in the situation calculus (1994)
13. Reiter, R.: Natural actions, concurrency and continuous time in the situation

calculus. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) KR, pp. 2–13. Morgan
Kaufmann, San Francisco (1996)

14. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press, Massachusetts, Illustrated edition
(2001)

15. Samarji, L., Cuppens, F., Cuppens-Boulahia, N., Kanoun, W., Dubus, S.: Situ-
ation calculus and graph based defensive modeling of simultaneous attacks. In:
Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds.) CSS 2013. LNCS, vol. 8300, pp.
132–150. Springer, Heidelberg (2013)

16. Samarji, L., Cuppens-Boulahia, N., Cuppens, F., Kanoun, W., Papillon, S., Dubus,
S.: Liccas: assessing the likelihood of individual, coordinated, and concurrent attack
scenarios. In: Security and Privacy in Communication Networks (2014)

17. Stakhanova, N., Basu, S., Wong, J.: A cost-sensitive model for preemptive intru-
sion response systems. In: Proceedings of the 21st International Conference
on Advanced Networking and Applications, AINA 2007, pp. 428–435. IEEE Com-
puter Society, Washington, DC (2007)

18. Templeton, S.J., Levitt, K.: A requires/provides model for computer attacks.
In: Proceedings of the 2000 workshop on New security paradigms, NSPW 2000,
pp. 31–38. ACM, New York (2000)

19. Wang, H., Wang, G., Lan, Y., Wang, K., Liu, D.: A new automatic intrusion
response taxonomy and its application. In: Shen, H.T., Li, J., Li, M., Ni, J., Wang,
W. (eds.) APWeb Workshops 2006. LNCS, vol. 3842, pp. 999–1003. Springer,
Heidelberg (2006)

20. Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated attacks and
collaborative intrusion detection. Comput. Secur. 29(1), 124–140 (2010)

Author Index

Akram, Raja Naeem II-541
Al-Ameen, Mahdi Nasrullah II-438
Almousa, Omar II-209
Avoine, Gildas I-165

Backes, Michael I-125
Barenghi, Alessandro I-429
Beaumont, Paul I-521
Benhamouda, Fabrice I-305
Bidner, David I-108
Blanton, Marina I-384
Bootle, Jonathan I-243

Cao, Zhenfu II-270
Carpent, Xavier I-165
Cerulli, Andrea I-243
Chaidos, Pyrros I-243
Chari, Suresh N. II-396
Chen, Liqun I-347
Chen, Ping I-69
Chen, Xiaofeng II-252
Chfouka, Hind I-90
Choo, Kim-Kwang Raymond II-146
Chrétien, Rémy II-230
Chua, Tong-Wei II-355
Chua, Zheng Leong II-312
Clarkson, Michael R. II-520
Cortier, Véronique II-230
Cui, Helei II-40
Cuppens, Frédéric II-642
Cuppens-Boulahia, Nora II-642

Dam, Mads I-90
Decker, Christian II-561
Delaune, Stéphanie II-230
Deng, Robert H. I-286, I-366
Di Federico, Alessandro I-429
Diao, Wenrui II-20
Ding, Xuhua I-366
Dong, Xiaolei II-270
Du, Minxin II-186
Du, Shaoyong II-417
Dubus, Samuel II-642

Ekdahl, Patrik I-90
Evans, Neil I-521

Faber, Sky II-123
Fatema, Kanis II-438
Fett, Daniel I-43
Fetter-Degges, Jonathan II-520
Foster, Jeffrey S. II-520

Garcia-Morchon, Oscar I-224
Gates, Chris II-396
Ge, Yijie I-468
Ghadafi, Essam I-243
Grossklags, Jens I-483
Groth, Jens I-243
Gruhn, Michael II-376
Gruss, Daniel I-108
Gu, Dawu I-468
Guan, Chaowen I-203
Guanciale, Roberto I-90
Guo, Zheng I-468
Guthrie, James II-561

Hanser, Christian I-146
Hao, Feng I-347
Hassanshahi, Behnaz II-577
He, Meiqi II-186
Heiderich, Mario I-23
Hou, Y. Thomas II-61
Hu, Chengyu I-266
Hu, Hong II-312
Hu, Shengshan II-186
Hua, Jingyu II-417
Huth, Michael I-521

Jager, Tibor I-407
Jarecki, Stanislaw II-123
Jeon, Jinseong II-520
Jia, Yaoqi II-577
Jonker, Hugo II-3

Kanoun, Waël II-642
Kerschbaum, Florian I-203, II-81

Kiayias, Aggelos I-326
Krawczyk, Hugo II-123
Krenn, Stephan I-305
Küsters, Ralf I-43

Laszka, Aron I-483
Lauradoux, Cédric I-165
Li, Ninghi II-396
Li, Ximeng II-500
Li, Yingjiu I-286
Li, Zhou II-20
Liang, Kaitai II-146
Liang, Zhenkai II-312, II-577
Ligatti, Jay II-481
Lim, Hoon Wei II-81
Lin, Jingqiang II-332
Lin, Zhiqiang I-69
Liu, Joseph K. I-347, II-146
Liu, Junrong I-468
Liu, Peng I-69
Liu, Shengli I-286
Liu, Xiangyu II-20
Lo, Swee-Won I-366
Lou, Wenjing II-61
Luo, Xiapu II-293
Lyubashevsky, Vadim I-305

Mangard, Stefan I-108
Mantel, Heiko I-447
Mao, Bing I-69
Markantonakis, Konstantinos II-541
Mauw, Sjouke II-3
Mayes, Keith II-541
Micinski, Kristopher II-520
Minematsu, Kazuhiko I-185
Mödersheim, Sebastian II-209
Modesti, Paolo II-209
Mohammadi, Esfandiar I-125
Molloy, Ian M. II-396
Mühlberg, Jan Tobias I-503
Mukhopadhyay, Dibya II-599
Müller, Tilo II-376

Nemati, Hamed I-90
Nguyen, Quan II-123
Nielson, Flemming II-500
Nielson, Hanne Riis II-500
Niemietz, Marcus I-23
Ning, Jianting II-270
Noorman, Job I-503

Papillon, Serge II-642
Park, Youngja II-396
Peeters, Roel II-622
Pelosi, Gerardo I-429
Petit, Christophe I-243
Phuong, Tran Viet Xuan II-252
Piessens, Frank I-503
Pietrzak, Krzysztof I-305
Plant, Tom I-521
Pulls, Tobias II-622

Qin, Baodong I-286

Rabkin, Max I-146
Ray, Donald II-481
Ren, Kui I-203, II-186
Rietman, Ronald I-224
Rosu, Marcel II-123
Ruffing, Tim I-125

Safavi-Naini, Reihaneh II-167
Samarji, Léa II-642
Sanfilippo, Stefano I-429
Saraph, Siddharth I-384
Saxena, Nitesh II-599
Saxena, Prateek II-312, II-577
Schmitz, Guido I-43
Schröder, Dominique I-146
Schwenk, Jörg I-23, I-407
Scielzo, Shannon II-438
Seidel, Jochen II-561
Seitzer, Maximilian II-376
Sharma, Sahil I-224
Shirvanian, Maliheh II-599
Shulman, Haya I-3
Somorovsky, Juraj I-407
Standaert, François-Xavier I-468
Starostin, Artem I-447
Steiner, Michael II-123
Sufatrio, II-355
Sun, Wei I-468
Susilo, Willy II-252

Tan, Darell J.J. II-355
Tang, Qiang I-326, II-101
Thing, Vrizlynn L.L. II-355
Tolhuizen, Ludo I-224
Torre-Arce, Jose Luis I-224
Torres, Christof Ferreira II-3

664 Author Index

Viganò, Luca II-209

Waidner, Michael I-3
Wang, Bing II-61
Wang, Cong II-40
Wang, Ding II-456
Wang, Jun II-101
Wang, Ping II-456
Wang, Qian II-186
Wang, Wei II-332
Wang, Xinyu II-40
Wang, Ze II-332
Wang, Zhan II-332
Wang, Zhibo II-186
Wattenhofer, Roger II-561
Wei, Lifei II-270
Wei, Zhuo I-366
Wright, Matthew II-438

Xia, Luning II-332
Xie, Xinjun I-468
Xu, Dongyan I-69
Xu, Jun I-69

Xu, Qiuliang I-266
Xu, Zenglin II-396

Yang, Guomin II-252
Yang, Rupeng I-266
Yang, Yanjiang II-146
Yap, Roland H.C. II-577
Yi, Xun I-347
Yin, Haoyang II-293
Yu, Jia I-203
Yu, Yu I-468
Yu, Zuoxia I-266
Yuan, Xingliang II-40

Zhang, Fangguo I-203
Zhang, Kehuan II-20
Zhang, Liang Feng II-167
Zhang, Rui I-266
Zhang, Yueqian II-293
Zheng, Yao II-61
Zhong, Sheng II-417
Zhou, Jianying II-146
Zhou, Yongbin I-266
Zhou, Zhe II-20

Author Index 665

	Foreword
	Organization
	Contents – Part II
	Contents – Part I
	Privacy
	FP-Block: Usable Web Privacy by Controlling Browser Fingerprinting
	1 Introduction
	2 Related Work
	2.1 Fingerprinting
	2.2 Countermeasures

	3 Determining the Fingerprint Surface
	3.1 Limitations of Preventing Fingerprint Tracking
	3.2 Fingerprint Vectors
	3.3 Fingerprint Surface

	4 Design
	4.1 Balancing Usability vs. Privacy
	4.2 Generating Web Identities

	5 Development and Implementation
	5.1 Development
	5.2 Implementation

	6 Experiments and Validation
	7 Conclusions
	References

	Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections
	1 Introduction
	2 Background and Adversary Model
	2.1 IME and Personalized User Dictionary
	2.2 Adversary Model

	3 Vulnerability Analysis
	3.1 Android KeyEvent Processing Flow
	3.2 Cross-App KeyEvent Injection Vulnerability

	4 Attack
	4.1 Enumerating Entries from Dictionary
	4.2 Attack in Stealthy Mode
	4.3 Case Study of IMEs for Non-Latin Languages

	5 Evaluation
	5.1 Scope of Attack
	5.2 Experiment on Word Completion Attack Mode
	5.3 Experiment on Next-Word Prediction Attack Mode

	6 Defense
	7 Related Works
	8 Conclusion
	References

	Enabling Privacy-Assured Similarity Retrieval over Millions of Encrypted Records
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Notations and Definitions
	5 Our Proposed Schemes
	5.1 Main Scheme
	5.2 Dynamic Scheme

	6 Security Analysis
	7 Implementation and Evaluation
	8 Conclusion
	A Definition of Locality-Sensitive Hashing
	B Simulation-Based Security Definition
	C Security Proofs
	D Comparison with Prior Work
	E Bandwidth Consumption Switch Appendix D with Appendix E
	References

	Privacy-Preserving Link Prediction in Decentralized Online Social Networks
	1 Introduction
	2 Related Work
	3 System Model and Privacy Goals
	3.1 Network Abstraction
	3.2 Training Goal
	3.3 Prediction Goal

	4 Methodology
	4.1 ADMM
	4.2 Two-Tier Training
	4.3 Complexity Analysis
	4.4 Protecting Prior Knowledge

	5 Experimentation and Evaluation
	5.1 Wikipedia RfA Dataset
	5.2 Experimental Setup
	5.3 Evaluation Metrics
	5.4 Results

	6 Conclusion
	A Appendix: Link Reconstruction Attack
	A.1 Experimental Setup
	A.2 Results

	References

	Privacy-Preserving Observation in Public Spaces
	1 Introduction
	2 Related Work
	2.1 Privacy-Preserving Billing
	2.2 Threat Model

	3 Collusion Attack
	3.1 Model
	3.2 Collusion Strategy
	3.3 Analysis

	4 Privacy-Preserving Spot Checking
	4.1 Setup and Registration
	4.2 Security Properties
	4.3 Protocol
	4.4 Optimization
	4.5 Efficiency Analysis
	4.6 Rate Limiting
	4.7 Disposal

	5 Example Application
	6 Conclusions
	A Privacy vs. Penalty Analysis
	A.1 Variables
	A.2 Analysis

	References

	Privacy-Preserving Context-Aware Recommender Systems: Analysis and New Solutions
	1 Introduction
	1.1 State-of-the-Art
	1.2 Our Contribution
	1.3 Organization

	2 Analysis of JPH Protocols
	2.1 Preliminary of JPH Protocols
	2.2 JPH Online Protocol
	2.3 JPH Offline Protocol

	3 New Formulation of Recommender System
	3.1 Computing Predicted Ratings
	3.2 Threat Model

	4 New Privacy-Preserving Recommender Protocols
	4.1 Recommendation Protocol for Single Prediction
	4.2 Recommendation Protocol for Top-N Items

	5 Evaluating the Proposed Protocols
	6 Conclusion
	References

	Cloud Security
	Rich Queries on Encrypted Data: Beyond Exact Matches
	1 Introduction
	2 Preliminaries
	3 Range Queries
	4 Substring Queries
	4.1 Basic SSE Substring Search
	4.2 Wildcards and Phrase Queries
	4.3 Substring Protocol Extensions

	5 Security Analysis
	A Implementation and Performance
	References

	Extended Proxy-Assisted Approach: Achieving Revocable Fine-Grained Encryption of Cloud Data
	1 Introduction
	2 Related Work
	3 Proposed Revocable Cloud Data Encryption Model
	3.1 System Overview
	3.2 Notations
	3.3 Extended Proxy-Assisted User Revocation Approach
	3.4 Formulation of Revocable Cloud Data Encryption

	4 Our Construction
	4.1 Construction Details
	4.2 Functional Analysis -- Features
	4.3 Security Analysis

	5 Implementation of Our Construction
	5.1 Proof-of-Concept
	5.2 Performance Results

	6 Conclusion
	References

	Batch Verifiable Computation of Polynomials on Outsourced Data
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of the Constructions
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Batch Verifiable Computation on Outsourced Data
	2.2 A Lemma

	3 Constructions
	3.1 The First Construction
	3.2 The Second Construction

	4 Analysis
	5 Concluding Remarks
	A Proof of Lemma 1
	References

	CloudBI: Practical Privacy-Preserving Outsourcing of Biometric Identification in the Cloud
	1 Introduction
	2 Problem Formulation: Outsourcing Computation of Biometric Identification
	2.1 System Model and Assumptions
	2.2 Threat Model

	3 Privacy-Preserving Biometric Identification: An Examination of the State-of-the-Art
	3.1 The Biometric Identification Scheme of Huang et al.
	3.2 The Biometric Identification Scheme of Yuan et al.

	4 Our Construction: The New and Improved Solutions
	4.1 CloudBI-I: The Basic Scheme
	4.2 CloudBI-II: The Enhanced Scheme

	5 Implementation and Evaluation
	5.1 Complexity Analysis
	5.2 Experimental Evaluation

	6 Concluding Remarks
	A Attack on Yuan et al. by Eliminating Randomness
	B Attack on Yuan et al. by Exploiting Euclidian Distance Results
	References

	Protocols and Attribute-based Encryption
	Typing and Compositionality for Security Protocols: A Generalization to the Geometric Fragment
	1 Introduction
	2 Messages, Formats and the Intruder Model
	2.1 Messages
	2.2 Formats
	2.3 Intruder Knowledge and Deduction Rules

	3 Protocol Semantics
	3.1 Symbolic Constraints
	3.2 Operational Strands
	3.3 Goal Predicates in the Geometric Fragment

	4 Constraint Solving
	4.1 From Geometric Fragment to Symbolic Constraints
	4.2 Constraint Reduction

	5 Typed Model
	5.1 Message Patterns

	6 Parallel Composition
	7 Tool Support
	8 Conclusions and Related Work
	A Appendix: Proofs of the Technical Results
	References

	Checking Trace Equivalence: How to Get Rid of Nonces?
	1 Introduction
	2 Model for Security Protocols
	2.1 Term Algebra
	2.2 Process Algebra
	2.3 Semantics
	2.4 Trace Equivalence

	3 Main Contribution: Getting Rid of Nonces
	3.1 Our Hypotheses
	3.2 Our Transformation
	3.3 Main Result
	3.4 Sketch of Proof

	4 Scope of Our Result
	4.1 Simple Processes
	4.2 Adequate Theories

	5 Application of Our Result
	5.1 Is Our Abstraction Precise Enough?
	5.2 Proof Technique

	6 Conclusion
	A Appendix
	References

	Attribute Based Broadcast Encryption with Short Ciphertext and Decryption Key
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Map on Prime Order Groups
	2.2 The Viète's formulas
	2.3 Access Structure
	2.4 KP-ABBE Definition
	2.5 CP-ABBE Definition

	3 KP-ABBE Scheme
	4 CP-ABBE Scheme
	5 Security Analysis
	6 Conclusion
	References

	Accountable Authority Ciphertext-Policy Attribute-Based Encryption with White-Box Traceability and Public Auditing in the Cloud
	1 Introduction
	1.1 Our Contribution
	1.2 Our Technique
	1.3 Related Work
	1.4 Organization

	2 Background
	2.1 Notation
	2.2 Access Policy
	2.3 Linear Secret-Sharing Schemes
	2.4 Composite Order Bilinear Groups
	2.5 Complexity Assumptions
	2.6 Zero-Knowledge Proof of Knowledge of Discrete Log

	3 Accountable Authority CP-ABE with White-Box Traceability and Public Auditing
	3.1 Definition
	3.2 Security

	4 Our System
	4.1 Construction
	4.2 IND-CPA Security
	4.3 DishonestAuthority Security
	4.4 DishonestUser Security
	4.5 Key Sanity Check Proof

	5 Conclusion and Future Work
	A Proof of Lemma 2
	B Proof of Theorem 2
	C Proof Sketch of Theorem 3
	D Proof of Theorem 4
	References

	Code Analysis and Side-Channels
	DexHunter: Toward Extracting Hidden Code from Packed Android Applications
	1 Introduction
	2 Analysis of Packing Services
	2.1 Common Techniques Used by Packing Services
	2.2 Packers Under Investigation

	3 DexHunter: Goal and Basic Idea
	3.1 Basic Idea
	3.2 ART
	3.3 DVM

	4 DexHunter: Design and Implementation
	4.1 Architecture
	4.2 Locating and Dumping Dex Files
	4.3 Proactive Class Loading and Initialization
	4.4 Identifying Packers
	4.5 Extracting the Values of location_ and fileName

	5 Evaluation
	5.1 Overhead Introduced by Packers
	5.2 DexHunter's Effectiveness
	5.3 DexHunter's Efficiency

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Identifying Arbitrary Memory Access Vulnerabilities in Privilege-Separated Software
	1 Introduction
	2 Problem Overview
	2.1 Motivating Example
	2.2 Problem Definition
	2.3 Memory Access Patterns to Detect DUIs

	3 Design
	3.1 Overview
	3.2 Suspicious Instruction Shortlisting
	3.3 Dereference Behavior Analysis

	4 Implementation
	4.1 Taint Propagation
	4.2 Access Formula Generation

	5 Evaluation
	5.1 Efficacy
	5.2 Performance
	5.3 Security Implications

	6 Discussion
	7 Related Works
	8 Conclusion
	References

	vBox: Proactively Establishing Secure Channels Between Wireless Devices Without Prior Knowledge
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Wireless Signal Propagation
	2.2 RSS-based Authentication and Key Establishment

	3 vBox Design
	3.1 Design Goal and Threat Model
	3.2 Basic Insight
	3.3 The RSS Analysis of vBox

	4 The Detailed vBox Protocol
	4.1 The Initiator-Listener Protocol
	4.2 Parameters

	5 Experiments
	5.1 Setup
	5.2 Real World Estimation of the RSS Variation X and R
	5.3 On the Effectiveness of the vBox Protocol

	6 Evaluation and Analysis
	6.1 Security
	6.2 Usability

	7 Conclusion
	A Detailed Discussion of the Parameters
	B Real World Estimation of X and R
	References

	Detection and Monitoring
	Accurate Specification for Robust Detection of Malicious Behavior in Mobile Environments
	1 Introduction
	2 Malicious Behavior Specification for Mobile Environments
	2.1 Goals, Rules and Notation of Specification Scheme
	2.2 Sample Specified Malicious Patterns

	3 Expressiveness of SeqMalSpec and Its Comparison
	3.1 Expressiveness of SeqMalSpec
	3.2 Comparison with Other Malware Specification Schemes

	4 StaticAnalyzerUtilizingSeqMalSpec
	4.1 Goal and Approch
	4.2 System Design and Implementation

	5 Experimentation Results
	5.1 Used Malware Dataset
	5.2 Experimentation Objectives and Obtained Results

	6 Discussions
	6.1 Threats to Validity
	6.2 Future Work

	7 Related Work
	8 Conclusion
	References

	A Bytecode Interpreter for Secure Program Execution in Untrusted Main Memory
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline
	2 Implementation
	2.1 General Interpreter Composition
	2.2 Interpreter Memory Layout
	2.3 Encryption Scheme
	2.4 The Interpreter Loop

	3 Evaluation
	3.1 Performance
	3.2 Security

	4 Related Work

	5 Conclusion and Future Work
	5.1 Limitations
	5.2 Future Work
	5.3 Conclusion

	A Appendix
	A.1 SCLL Grammar
	A.2 Source Codes
	A.3 Bytecode Language
	References

	Learning from Others: User Anomaly Detection Using Anomalous Samples from Other Users
	1 Introduction
	2 Approach
	3 Reference Points-Based LOF
	4 Abnormal Behavior Detection
	4.1 Normal Sample Selection
	4.2 Abnormal Sample Selection
	4.3 Training Sample Generation
	4.4 Binary Classification

	5 Experiments
	5.1 Data
	5.2 Evaluation Method
	5.3 Baseline Methods

	6 Results
	6.1 Keystroke Dynamics Benchmark Data
	6.2 Typist Recognition Data
	6.3 DBLP Collaboration Network Data
	6.4 Access Log Data
	6.5 Comparison of Sampling Methods

	7 Related Work
	8 Conclusion
	References

	Authentication
	Towards Attack-Resistant Peer-Assisted Indoor Localization
	1 Introduction
	2 Peer Assisted Localization and Attacks
	2.1 Review of Peer Assisted Localization
	2.2 Attacks Against Peer Assisted Localization

	3 Countermeasure Against Insider Attacks
	3.1 Countermeasure Against Emission Attacks
	3.2 Countermeasure Against Tampering Attacks

	4 Countermeasure Against Saturation Attacks
	4.1 Modulation-Based Beep Generation
	4.2 Beep Detection

	5 Evaluation
	5.1 Evaluation of Algorithm1
	5.2 Evaluation of Countermeasures Against Saturation Attacks

	6 Related Work
	7 Conclusion
	References

	Leveraging Real-Life Facts to Make Random Passwords More Memorable
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Textual Password Schemes
	2.2 Graphical Password Schemes

	3 System Design
	3.1 Memory Retrieval
	3.2 Semantic Priming
	3.3 Verbal Cues
	3.4 Visual Memory
	3.5 Variant Response

	4 User Study
	4.1 Participants, Apparatus and Environment
	4.2 Procedure
	4.3 Ecological Validity

	5 Results
	5.1 Registration Time
	5.2 Login Time and Number of Attempts
	5.3 User Feedback

	6 Discussion
	7 Conclusion
	References

	The Emperor's New Password Creation Policies:
	1 Introduction
	2 Our Methodology
	2.1 Selecting Representative Sites
	2.2 Measuring Password Policy Strength
	2.3 Exploiting Real-Life Password Datasets
	2.4 Measuring Password Strength
	2.5 Selecting Testing Passwords
	2.6 Collecting Data from Sites

	3 Our Results
	3.1 Password Composition Rules in the Wild
	3.2 Password Strength Meters in the Tangle
	3.3 Online Guessing Attackers at Large

	4 Conclusion
	References

	Policies
	A Theory of Gray Security Policies
	1 Introduction
	2 From Black-and-White to Gray Policies
	2.1 Policies and Properties
	2.2 Safety and Liveness
	2.3 Hypersafety and Hyperliveness
	2.4 Summary

	3 Further Analysis of the Model
	3.1 Singleton Intersection of Safety and Liveness
	3.2 Decomposition into Safety and Liveness

	4 Creating Gray Policies from Existing Metrics/Policies
	4.1 Gray Policies Based on Security Metrics
	4.2 Graying Black-and-White Policies

	5 Silhouettes and Their Judges
	5.1 Silhouettes
	5.2 Silhouette Judges

	6 Future Work
	References

	Factorization of Behavioral Integrity
	1 Introduction
	2 Motivating Examples
	3 The Quality Calculus
	4 Noninterference for Behavioral Integrity
	5 Theoretical Properties
	6 Further Examples and Discussion
	7 Conclusion
	References

	Checking Interaction-Based Declassification Policies for Android Using Symbolic Execution
	1 Introduction
	2 Example Apps and Policies
	3 Program Traces and Security Definition
	3.1 Program Traces
	3.2 Interaction-Based Declassification Policies

	4 Implementation
	4.1 Driving App Execution
	4.2 Symbolic Variables in Traces
	4.3 Checking Policies with Z3
	4.4 Minimizing Calls to Z3

	5 Experiments
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

	Applied Security
	Enhancing Java Runtime Environment for Smart Cards Against Runtime Attacks
	1 Introduction
	1.1 Contributions of the Paper

	2 Smart Card Runtime Environment
	2.1 Java Card Virtual Machine
	2.2 Related Work on JCRE Security
	2.3 Motivation

	3 Runtime Protection Mechanism
	3.1 Attacker's Capability
	3.2 Security Requirements for a Runtime Protection Mechanism
	3.3 Overview of the Proposed Runtime Protection Mechanism
	3.4 Application Compilation
	3.5 Execution Environment
	3.6 Runtime Security Manager
	3.7 Runtime Security Counter-Measures

	4 Analysis of the Runtime Protection Mechanism
	4.1 Security Analysis
	4.2 Evaluation Context
	4.3 Latency Analysis
	4.4 Incurred Overhead Analysis
	4.5 Comparative Analysis

	5 Conclusion
	References

	Making Bitcoin Exchanges Transparent
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Bitcoin
	2.2 Trusted Computing

	3 Auditing
	3.1 Proof of Reserves
	3.2 Proof of Liabilities
	3.3 Proof of Solvency and Verification

	4 Implementation
	4.1 Architecture
	4.2 Execution Time
	4.3 Additional Interfaces

	5 Conclusion
	References

	Web-to-Application Injection Attacks on Android: Characterization and Detection
	1 Introduction
	2 Overview
	2.1 Web-to-App Injection Attacks
	2.2 Categories of W2AI Vulnerabilities
	2.3 Detection Challenges

	3 Detecting and Confirming W2AI Vulnerabilities
	3.1 Source-Sink Pair Identification
	3.2 Refining the Control Flow Graph and Reachability Analysis
	3.3 Symbolic Execution and Static Flow Refinement
	3.4 Attack Validation and Concrete Value Propagation

	4 Evaluation
	5 Related Work
	6 Conclusion
	A Appendix
	References

	All Your Voices are Belong to Us: Stealing Voices to Fool Humans and Machines
	1 Introduction
	2 Background and Related Work
	3 Our Attacks on Human Voices
	3.1 Overview
	3.2 Threat Model
	3.3 Attacking Machine-Based Speaker Verification
	3.4 Attacking Human-based Speaker Verification

	4 Tools and Systems
	5 Experiments: Attacking Machine-based Speaker Verification
	5.1 Setup
	5.2 Results

	6 Experiments: Attacking Human-based Speaker Verification
	6.1 Setup
	6.2 Dataset
	6.3 Conversion Processes
	6.4 Famous Speaker Study
	6.5 Briefly Familiar Speaker Study
	6.6 Briefly Familiar Speaker vs. Famous Speaker Verification

	7 Summary
	8 Conclusions, Limitations and Future Work
	A Demographics Information
	B Voice Similarity Test Results
	C Voice Conversion Attack FAR Distribution (MOBIO Dataset)
	D Open-Ended Feedback
	References

	Balloon: A Forward-Secure Append-Only Persistent Authenticated Data Structure
	1 Introduction
	2 Preliminaries
	2.1 An Authenticated Data Structure Scheme
	2.2 History Tree
	2.3 Hash Treap
	2.4 Cryptographic Building Blocks
	3 Construction and Algorithms
	3.1 Setup
	3.2 Update and Refresh
	3.3 Query and Verify

	4 Security
	5 Verifiable Insert

	6 Publicly Verifiable Consistency
	7 Performance
	8 Related Work
	9 Conclusions
	A Proof of Security
	B Negative Result on Probabilistic Consistency
	B.1 Our Attempt
	B.2 Attack
	B.3 Lessons Learnt
	References

	On the Fly Design and Co-simulation of Responses Against Simultaneous Attacks
	1 Introduction
	2 Simultaneous Attacks Graphs
	3 New Scheme for a Complex Response
	3.1 Applicability-Aware Anticorrelation
	3.2 Complex Response

	4 Modeling Responses with Situation Calculus (SC)
	4.1 Basics of the Situation Calculus
	4.2 Elementary System Actions
	4.3 Concurrent System Actions
	4.4 Anticorrelation and Response in Situation Calculus

	5 Planning in Situation Calculus
	5.1 Dynamic Response Co-simulator Based on SC Planning

	6 Experimentation
	6.1 Use Case 1
	6.2 Use Case 2

	7 Related Work
	8 Conclusion
	References

	Author Index

