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Abstract. We extend a commitment scheme based on the learning with
errors over rings (RLWE) problem, and present efficient companion zero-
knowledge proofs of knowledge. Our scheme maps elements from the ring
(or equivalently, n elements from Fq) to a small constant number of ring
elements. We then construct Σ-protocols for proving, in a zero-knowledge
manner, knowledge of the message contained in a commitment. We are
able to further extend our basic protocol to allow us to prove additive
and multiplicative relations among committed values.

Our protocols have a communication complexity of O(Mn log q) and
achieve a negligible knowledge error in one run. Here M is the constant
from a rejection sampling technique that we employ, and can be set
close to 1 by adjusting other parameters. Previously known Σ-protocols
for LWE-related languages only achieved a noticeable or even constant
knowledge error (thus requiring many repetitions of the protocol), or
relied on “smudging” out the error (which necessitates working over large
fields, resulting in poor efficiency).

Keywords: Commitment schemes · Ring learning with errors · Zero-
Knowledge Proofs of Knowledge

1 Introduction

Commitment schemes are among the most widely used cryptographic primitives.
They allow one party, the committer, to commit to a message m to another
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party. At a later point in time, the committer may reveal m by opening the
commitment c. The scheme is said to be secure if it is binding and hiding. The
former property says that the committer cannot open c to a message different
from m, and the latter ensures that only knowing c gives no information about
m to the receiver.

In higher-level protocols, commitments are often used to link different build-
ing blocks, e.g., encryption-, signature-, and revocation schemes in constructions
of group signatures or anonymous credentials [CKL+14]. In such situations, it is
often necessary to prove properties of a message m contained in a commitment,
without revealing any additional information about m. This is done via so-called
zero-knowledge proofs of knowledge (ZK-PoK). These are two-party protocols
which allow a prover to convince a verifier that it knows some secret piece of
information, without revealing anything else than what is already revealed by
the claim itself [GMR85]. As the efficiency of ZK-PoKs of commitments directly
affects the efficiency of many higher-level systems, generic constructions such
as [GMW86,GMR85] are too inefficient for practical use. A large amount of
research effort has therefore been expended in improving the efficiency of such
protocols for concrete proof goals. We continue this direction by presenting the
so far most efficient ZK-PoKs for lattice-based commitment schemes.

Our constructions are proved secure under the learning with errors over rings
(RLWE) assumption. Informally, it says that tuples (a, a.s + e) ∈ R2

q are com-
putationally indistinguishable from (a, u) ∈ R2

q , where a, s, u are uniformly ran-
dom in Rq and e is drawn according to some low-weight distribution χ. We
use Rq = Zq[x]/〈xn + 1〉, which as a vector space is isomorphic to Z

n
q (one

can identify a = a1 + a2x + · · · + anxn−1 ∈ Rq with (a1, . . . , an) ∈ Z
n
q ). For

appropriately chosen parameters there exists a quantum reduction from certain
worst-case problems on ideal lattices to the RLWE-problem [LPR10].

1.1 Our Contributions

In this paper is to construct efficient commitments and zero-knowledge proofs
from the RLWE-assumption. To the best of our knowledge, our protocols are the
first to achieve a negligible knowledge error in one run for lattice-based crypto
systems.

In detail, our contributions are as follows:

– Efficient Commitment Schemes from RLWE. We first construct a per-
fectly binding and computationally hiding string commitment scheme. Com-
mitting to a message is done as in Xie et al. [XXW13], but we relax require-
ments on valid openings to be able to realize better ZK proofs while still
preserving the binding property of the scheme.

– Efficient ZK-PoK for Committed Values. We then give a simple and
efficient zero-knowledge protocol for proving knowledge of committed val-
ues. The protocol differs substantially from previous protocols for RLWE, and
improves over them in the following ways: On the one hand, our protocol
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already achieves a negligible knowledge error in a single run. Previous proto-
cols only achieved a noticeable knowledge error, e.g., Ling et al. [LNSW13] or
Xie et al. [XXW13], and thus many repetitions are required to get meaningful
security, resulting in a low efficiency. On the other hand, we only require that
the modulus is polynomially larger than the error in the RLWE problem. The
construction of Asharov et al. [AJLA+12], which achieves a knowledge error
of 1/2, relied on “smudging out” (or “drowning”) the error, which required
stronger assumptions as the modulus-error ratio had to be super-polynomial.
Our protocols can be turned into concurrently zero-knowledge arguments of
knowledge without any additional computational costs.

– Efficient ZK-PoK for Relations. Starting from our basic ZK-PoK we then
construct protocols for proving that committed values m1,m2,m3 ∈ Rq satisfy
m3 = m1 + m2 as well as m3 = m1m2.

1.2 Related Work

At Asiacrypt’12, Jain et al. [JKPT12] presented a commitment scheme whose
hiding property relies on the learning parity with noise (LPN) assumption, which
is defined like LWE but over bits, i.e., for q = 2. Similar to our work, they give a
Σ-protocol to prove any relation among committed values. A single run of their
preimage proof requires O(n log n) bits of communication, where each committed
message is from {0, 1}n. However, their protocols only achieve a knowledge error
of 2/3, and thus reaching a success probability of a malicious prover negligible
in k, requires O(kn log n) bits of communication. The main open problem of
[JKPT12] was to find a commitment scheme and protocols whose security is
based on LPN or a related problem, and which avoids the dependency on k.

Xie et al. [XXW13] generalized the commitment scheme from Jain et al.
[JKPT12] from LPN to RLWE, and gave companion protocols for their scheme.
However, their zero-knowledge proofs still require Stern-like techniques [Ste93],
and therefore only achieve a knowledge error of 2/3. Our commitment scheme
is closely related to theirs and may be seen as a generalization as we relax
the requirements on valid openings. In their construction, a commitment c to a
message m can be opened by revealing r and a short e such that c = am+br+e ,
where a , b, c, e ∈ Rk

q and m, r ∈ Rq. Getting a bit ahead, we relax the openings
such that we also accept openings of the form c = am + br + f−1e , where
f ∈ Rq is an additional small polynomial. We will prove that commitments are
still binding, and show that this relaxation allows us to overcome the constant
knowledge-error “barrier” for the commitment scheme by employing rejection
sampling techniques introduced by Lyubashevsky [Lyu09,Lyu12].

Recently, Benhamouda et al. [BCK+14] improved the efficiency of ZK-PoKs
for RLWE-based encryption schemes. As encryption schemes can also be seen as
commitment schemes, it is worthwhile comparing their result to ours. They give
a protocol for proving relations of the form y = as + e (for y, a, s, e ∈ Rq and
s, e short) that has a knowledge error of 1/(2n), where n is the dimension of
the ring, and thus also overcomes the above barrier. However, their protocol has
a soundness gap in the sense that it only proves that the prover knows a valid
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representation of 2y, not of y itself, which is still sufficient for many applications
as illustrated in their work. We improve over their results by reaching a negligible
knowledge error already in one run of the protocol (compared to 1/(2n)) and by
not having such a soundness gap. On the other hand, our protocol requires the
ring Rq to have a large subring that is a field, whereas the protocol in [BCK+14]
does not require such a property.

Asharov et al. [AJLA+12] constructed Σ-protocols for several specific lan-
guages related to the standard LWE-problem. However, they do not give (effi-
cient, i.e., direct) constructions for proving relations among LWE-secrets. Fur-
thermore, their protocols have a super-polynomial knowledge-gap, i.e., the norm
of the error known to a potentially malicious prover can only be guaranteed to
be super-polynomially larger than that known to an honest party, while this gap
is only polynomial in our case. This allows us to prove the security of our scheme
under weaker assumptions, and to use a smaller modulus in the RLWE-problem,
giving better efficiency.

Apart from these very closely related works, a large number of crypto-
graphic applications based on the LWE-assumption has been proposed, start-
ing with the work of Regev [Reg05]. This includes (fully homomorphic)
encryption [BV11a,Gen09,LP11,LPR10,Reg05], signature schemes [DDLL13,
GPV08,Lyu09,Lyu12,Rüc10], pseudorandom functions [BPR12] and hash func-
tions [KV09,PR06]. Similarly, efficient (non-)interactive zero-knowledge proofs
and arguments have been a vivid topic of research, see, e.g., [AJLA+12,BDP00,
CD97,CD98,CD09,DPSZ12,GS08,IKOS07,KR06,KMO90,KP98] and the refer-
ences therein. Finally, starting with a different motivation, the idea of commit-
ting to the first message in a Σ-protocol was also used by Damg̊ard [Dam00],
where it was shown how to obtain concurrent zero-knowledge for any Σ-protocol.
We commit to the first message to get zero-knowledge in the first place, and
we will discuss how the concurrency results also apply to our constructions in
Sect. 4.1.

1.3 Roadmap

In Sect. 2 we recap some basic definitions on ZK proofs and LWE. Then, in Sect. 3
we present our commitment scheme, and give protocols for proving knowledge of,
and relations among, the contents of commitments in Sect. 4. We finally briefly
conclude in Sect. 5.

2 Preliminaries

We denote vectors by bold lower-case letters (a , b, . . . ) and algorithms by sans-

serif letters (A,B, . . . ). We write a
$← A for a set A if a was uniformly drawn

from A, a
$← D for a distribution D if a was drawn according to D, and a

$← A
if a is the output of a randomized algorithm A.

For two distributions D,E, we write D
c∼ E, if D and E are computationally

indistinguishable. Furthermore, we use the notation Pr[E : Ω] to denote the
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probability of event E over the probability space Ω. For instance, Pr[x = y :

x, y
$← D] denotes the probability that x = y if x, y were drawn according to a

distribution D.
The language induced by a binary relation R is defined as

L(R) = {c : ∃w such that (c, w) ∈ R} .

We finally assume that elements of Zq (q odd) are represented by elements
from

{− q−1
2 , . . . , q−1

2

}
.

2.1 Commitment Schemes

We now formally define commitment schemes.

Definition 2.1. A commitment scheme consists of three algorithms (KGen,
Com, Ver) such that:

– On input 1�, the key generation algorithm KGen outputs a public commitment
key pk.

– The commitment algorithm Com takes as inputs a message m from a message
space M and a commitment key pk, and outputs a commitment/opening pair
(c, d).

– The verification algorithm Ver takes a key pk, a message m, a commitment c
and an opening d and outputs accept or reject.

A commitment scheme has to satisfy the following security requirements:

– Correctness: Ver outputs accept whenever the inputs were computed by an
honest party, i.e.,

Pr[Ver(pk,m, c, d) = accept : m ∈ M, (c, d) $← Com(m,KGen(1�))] = 1.

– Binding : A commitment cannot be opened to different messages. A scheme
is said to be perfectly binding if this holds unconditionally, i.e., with over-
whelming probability over the choice of the public key pk

$← KGen(1�) we
have that:

((Ver(pk,m, c, d) = accept) ∧ (Ver(pk,m′, c, d′) = accept)) ⇒ m = m′.

On the other hand, a scheme is said to be computationally binding if no PPT
adversary can come up with a commitment and two different openings, i.e.,
for every PPT adversary A there exists a negligible function negl such that:

Pr
[
Ver(pk,m, c, d) = Ver(pk,m′, c, d′) :pk

$← KGen(1�),

(c,m, d,m′, d′) $← A(pk)
]

≤ negl(n).



310 F. Benhamouda et al.

– Computational hiding : A commitment computationally hides the committed
message: for every probabilistic polynomial time (PPT) adversary A there is
a negligible function negl such that:

Pr

[

b = b′ :
pk

$← KGen(1�), (m0,m1, aux)
$← A1(pk),

b
$← {0, 1}, (c, d) = Com(mb, pk), b′ $← A2(c, aux)

]

≤ 1
2

+ negl(n).

A scheme is called a trapdoor commitment scheme, if KGen additionally outputs a
trapdoor td for the public key, such that there exists an efficient algorithm taking
(c, d) = Com(m, pk), m, td and m′ ∈ M as inputs, that outputs d′ such that
Ver(pk,m′, c, d′) = accept. Note that trapdoor commitment schemes can only be
computationally binding. See, e.g., Fischlin [Fis01] for a detailed discussion of
such schemes.

For the sake of simplicity, we will not state pk explicitly as an input in the
following.

2.2 Zero-Knowledge Proofs and Σ-Protocols

Informally, a zero-knowledge proof of knowledge is a two party protocol between
a prover and a verifier, which allows the former to convince the latter that it
knows some secret piece of information, without revealing anything about the
secret apart from what the claim itself already reveals. For a formal definition
we refer to Bellare and Goldreich [BG93]. The ZK proofs constructed in this
paper will be instantiations of the following definition, which is a straightforward
generalization of the standard notion of Σ-protocols [Cra97,Dam10]:

Definition 2.2. Let (P,V) be a two-party protocol, where V is PPT, and let
R,R′ be a binary relation such that R ⊆ R′. Then (P,V) is called a Σ′

m-protocol
for R,R′ with challenge set C, public input c and private input w, if and only if
it satisfies the following conditions:

– 3-move form: The protocol is of the following form:
• The prover P computes a commitment t and sends it to V.
• The verifier V draws a challenge d

$← C and sends it to P.
• The prover sends a response s to the verifier.
• Depending on the protocol transcript (t, d, s), the verifier accepts or

rejects the proof.
The protocol transcript (t, d, s) is called accepting, if the verifier accepts the
protocol run.

– Completeness: Whenever (c, w) ∈ R, the verifier V accepts with probability
at least 1 − α.

– Special soundness: There exists a PPT algorithm E (the knowledge extrac-
tor) which takes m accepting transcripts (t, d1, s1), . . . , (t, dm, sm) satisfying
di �= dj for i �= j as inputs, and outputs w′ such that (c, w′) ∈ R′.

– Special honest-verifier zero-knowledge: There exists a PPT algorithm
S (the simulator) taking c ∈ L(R) and d ∈ C as inputs, that outputs triples
(t, d, s) whose distribution is (computationally) indistinguishable from accept-
ing protocol transcripts generated by real protocol runs.
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We now discuss some additional points regarding Definition 2.2. First, the
standard definition for Σ-protocols found in the literature considers the case
where m = 2, R = R′ and α = 0. In this case, it is well known that the
protocol is also a proof of knowledge for the same relation R with knowledge
error 1/|C| [Dam10]. However, it can be seen that the proof given there also
generalizes to other constants m with a knowledge error of (m − 1)/|C| if 1 −
α > (m − 1)/|C|, and special cases of this result were already used implicitly
in previous work, e.g., [JKPT12,Ste93]. Second, the modification that R ⊆ R′

means that the protocol is honest-verifier zero-knowledge and complete whenever
the prover uses a secret witness w such that (c, w) ∈ R, but the verifier is
only assured that the prover supplied a witness w′ such that (c, w′) ∈ R′. For
many interesting relations this gap allows for much more efficient protocols,
e.g., Fujisaki et al. [FO97,DF02] or Benhamouda et al. [BCK+14]. If this gap
is reasonably small, as is the case in the protocols we present, one still obtains
sufficient security guarantees from the protocol. Finally, the above definition
only guarantees privacy to the prover against honest-but-curious verifiers, i.e.,
verifiers not deviating from the protocol. This issue can be solved generically
using techniques of, e.g., Damg̊ard et al. [DGOW95] or Fiat and Shamir [FS87];
furthermore, for our concrete protocols it can be solved without any extra costs,
cf. Lemma 4.3.

2.3 Learning with Errors

The learning with errors (LWE) problems was first introduced by Regev [Reg05].
Informally, it asks to distinguish slightly perturbed random linear equations
from truly random ones. LWE has been shown to be as hard as certain worst-case
problems on lattices, and has served as a basis for a large variety of cryptographic
schemes. Unfortunately, schemes built upon LWE are inherently inefficient due to
a large overhead in the use of the problem. This drawback has been resolved by
Lyubashevsky et al. [LPR10] by introducing the ring learning with noise problem,
which still enjoys strong hardness guarantees. The following formulation is a
special case of the problem restricted to the ring Z[x]/〈xn + 1〉, with n a power
of two:

Definition 2.3. Let R = Z[x]/〈xn + 1〉 and Rq = R/qR, and let χ be a distrib-
ution over R.

The (decisional) ring learning with errors assumption (denoted by RLWEq,χ)
states that:

{(ai, ai · s + ei)} c∼ {(ai, ui)} ,

for any polynomial number of samples, where ai
$← Rq, ei

$← χ, ui
$← Rq, and

s
$← Rq is secret.

We further recapitulate the definition of Normal distributions:
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Definition 2.4. The continuous Normal distribution on R
m centered at v with

standard deviation σ is defined by the density function

ρm
v,σ(x) =

(
1√
2πσ

)m

e− ‖x−v‖2

2σ2 .

We avoid the subscript v if v = 0m.
The discrete Normal distribution on Z

m centered at v with standard deviation
σ is defined by the density function Dm

v,σ(x) = ρm
v,σ(x)/ρσ(Zm), where ρσ(Zm) =∑

z∈Zm ρm
σ (z) is the scaling factor required to obtain a probability distribution.

For convenience, sampling the normal distribution over a ring R, we will still
write Dv ,σ even though it is not a 1-dimensional distribution. Lyubashevsky
et al. [LPR10] showed the search and the decisional version of RLWEq,χ are
polynomially related, and that there exists a quantum reduction from the worst-
case approximate shortest vector problem on ideal lattices to RLWEq,χ.1

2.4 Rejection Sampling

For proving the zero-knowledge property of our protocol, it is essential that all
the responses of the prover can be simulated without knowing the secret key. We
thus need that the response elements are from a distribution which is independent
of the secret key. In our protocol, however, all the potential responses will be from
a shifted distribution D�

v ,σ for 	 = kn and some vector v depending on the secret
key. To correct for this, we employ rejection sampling [Lyu09,Lyu12], where a
potential response is only output with a certain probability, and otherwise the
protocol is aborted.

Informally, the following theorem states that if σ ∈ Θ̃(‖v‖), then the rejection
sampling procedure will result in a distribution statistically close to D�

σ, which is
independent of v as required. The technique only requires a constant number of
iterations before a value is output, and furthermore the output is also statistically
close for every v ′ with norm at most ‖v‖. For concrete parameters we refer to
the original work of Lyubashevsky [Lyu12].

Theorem 2.5 ([Lyu12]). Let V be a subset of Z� in which all elements have
norms less than T , and let h be a probability distribution over V . Then, for any
constant M , there exists a σ = Θ̃(T ) such that the output distributions of the
following algorithms A,F are statistically close:
A:
v

$← h; z
$← D�

v,σ;
output (z, v) with probability
min

(
exp

(
−2〈z,v〉+‖v‖2

2σ2

)
, 1

)

F:
v

$← h; z
$← D�

σ;

output (z, v) with probabil-
ity 1

M

Moreover, the probability that A outputs something is exponentially close to that
of F, i.e., 1/M .
1 The work of [LPR10] showed the hardness for decisional RLWE only for rings where

xn +1 splits completely modulo q. Employing the modulus switching technique from
[BV11b], it was shown in [BLP+13] that the problem remains hard for any q.
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In [Lyu12], it is also shown that if σ = αT for a positive α, then M =
e12/α+1/(2α2), the output of A is within a statistical distance of 2−100

M of the
output of F, and the probability that A outputs something is at least 1−2−100

M .

3 Commitments from Ring-LWE

In the following we describe our commitment scheme. Table 1 lists the para-
meters being used and the requirements we pose on them.

– KGen: The public commitment key pk = (a , b) is computed as a , b
$←

(Zq[x]/〈xn + 1〉)k, where q ≡ 3 mod 8 is prime, and n is a power of 2.
– Com: To commit to a message m ∈ Zq[x]/〈xn +1〉, the commitment algorithm

draws r
$← Zq[x]/〈xn + 1〉 and e

$← Dk
σe

conditioned on ‖e‖∞ ≤ n, and
outputs

c = am + br + e ,

and the opening information for c is given by (m, r, e , 1).
– Ver: Given a commitment c, a message m′, a randomness r′, as well as e ′ and

f ′, the verifier accepts, if and only if

am′ + br′ + f ′−1e ′ = c ∧ ‖e ′‖∞ <

⌊
n4/3

2

⌋
∧ ‖f ′‖∞ ≤ 1 ∧ deg f ′ <

n

2
.

The scheme above is a generalization of that by Xie et al. [XXW13], as we
allow for the additional small polynomial f in valid openings. While an honest
party can always set f = 1 when opening c and therefore the completeness
property is not affected by this relaxation, the immediate question arises whether
the given construction is still binding, i.e., whether a malicious user still cannot

Table 1. Overview of parameters used in this document.

Parameter Semantics/Restrictions

n degree of polynomial, power of 2, typical values are 29 or 210

γ integer parameter controlling the size of the modulus

q prime number, ≡ 3 mod 8 and ≥ nγ

k multiplicative overhead of commitment size

σe standard deviation of the error in the commitment scheme; Õ(n3/4)

κ integer, where 1/|C| = 1/
(

n/2
κ

)
bounds the knowledge error of our

proofs; for instance, n = 29, κ = 21 or n = 210, κ = 17 give a
knowledge error of less than 2−100

C domain of challenges; C = {d ∈ {0, 1}n : ‖d‖1 ≤ κ ∧ deg d < n/2}
ση standard deviation of the randomness for e in the protocols; Õ(n5/4)
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open a commitment to two different messages. We give a formal security proof
in the following.

We want to stress that the above modification will be at the heart for the con-
struction of efficient zero-knowledge proofs of the contained message in Sect. 4.

Theorem 3.1. Let γ > 6 and q, k be polynomial in n such that the following is
satisfied:

q ≥ nγ ≥ n6 and k >
18γ

3γ − 16
. (1)

Then, under the RLWE-assumption, the above scheme is a computationally hiding
and perfectly binding commitment scheme with overwhelming probability over the
choices of the public commitment key.

Proof. Correctness is trivial to see.

Computational Hiding. First note that by, e.g., [Lyu12, Lemma 4.4], the prob-

ability that e
$← Dk

σe
has ‖e‖∞ > n is negligible, and thus the conditional

distribution of e in Com is statistically close to a discrete Normal distribution.
Now, by the RLWE-assumption, br + e is pseudorandom, and thus so is c.

Binding. For the binding property, we have to show that

c = am′ + br′ + f ′−1e ′ = am′′ + br′′ + f ′′−1e ′′

implies that m′ = m′′, if ‖e ′‖∞, ‖e ′′‖∞ < n4/3/2, ‖f ′‖∞, ‖f ′′‖∞ ≤ 1, and
deg f ′,deg f ′′ < n/2, or, alternatively, that

am + br = f ′−1e ′ − f ′′−1e ′′

implies that m = 0 with overwhelming probability over the choices of a , b.
Assume by contradiction that this holds for some fixed m, r, e′, e′′, f ′, f ′′ with

m �= 0 and e′, e′′, f ′, f ′′ being sufficiently small. Because of the assumption on n
and q, we have that xn+1 splits into two irreducible factors α(x), β(x) [SSTX09,
Lemma 3]. Now, since m �= 0 mod (xn + 1), we also have that m �= 0 mod α(x)
or m �= 0 mod β(x), and thus a im takes at least qn/2 different values. We then
have that

Pr

⎡

⎢
⎣

⎛

⎜
⎝

a1m + b1r
...

akm + bkr

⎞

⎟
⎠ =

⎛

⎜
⎝

f ′−1e ′
1 − f ′′−1e ′′

1

...
f ′−1e ′

k − f ′′−1e ′′
k

⎞

⎟
⎠ : a , b

$← (Zq[x]/〈xn + 1〉)k

⎤

⎥
⎦ ≤ 1

qkn/2
.

Now, taking a union bound over all m, r, e′, e′′, f ′, f ′′ we get that the overall
probability that there exists such an m �= 0 is at most

q2n(n4/3)2kn32n/2

qkn/2
≤ q2n(q4/(3γ))2kn32n/2

qkn/2
= 3nq(2+( 8

3γ − 1
2 )k)n.

This is negligible in n if 3q2+(8/(3γ)−1/2)k ≤ 1/2, which holds if the requirements
from (1) are satisfied. ��
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4 Zero-Knowledge of Proofs of Knowledge

In this section we first present a protocol for proving knowledge of valid openings
of commitments as defined in the previous section. We then give protocols which
allow one to prove that the messages m1,m2,m3 contained in commitments
c1, c2, c3 satisfy m3 = m1 + m2 or m3 = m1m2, respectively. Together this
allows one to prove knowledge of arbitrary algebraic circuits.

In this entire section we let (aKGen, aCom, aVer) be an arbitrary auxiliary
string commitment scheme. For simplicity, the reader may think of it as the
scheme from Sect. 3, or as well just as a random oracle. We write (caux, daux) =
aCom(s), where caux is the commitment and daux is the opening of caux.

4.1 Preimage Proofs

Protocol 4.1 is a Σ′
2-protocol for showing knowledge of a valid opening for a single

commitment. It is honest-verifier zero-knowledge whenever the commitment was
honestly computed, and is sound with respect to valid openings. In particular,
whenever a potentially malicious prover can make the verifier accept with more
than negligible probability, it must know a valid opening of c. We stress that
this gap between the zero-knowledge and the soundness property is in line with
previous protocols, e.g., for discrete logarithms in groups of hidden order [DF02],
where the prover is also guaranteed security only for a subset of valid openings.
However, this gap is meaningful, as our commitment scheme is still perfectly
binding also for the larger set of valid openings, and so the proof still guarantees
knowledge of the unique valid opening of c.

Theorem 4.2. If the auxiliary commitment scheme is perfectly binding, then
Protocol 4.1 is an honest-verifier zero-knowledge proof of knowledge with knowl-
edge error 1/

(
n/2
κ

)
for the following relations:

RLWE = {((a, b, c), (m, r, e)) : c = am + br + e ∧ ‖e‖∞ ≤ n} and

R′
LWE =

{
((a, b, c), (m, r, e, f)) : c = am + br + f−1e ∧ ‖e‖∞ ≤ �n4/3/2�,

‖f‖∞ ≤ 1,deg f <
n

2

}
.

Proof. The theorem is proved by showing that the protocol is a Σ′
2-protocol

for the given relation. The claim then follows directly from the discussion in
Sect. 2.2.

The 3-move-form is obvious.

Completeness. An honest prover responses with a probability close to 1
M . In this

case we get:

t + dc = aμ + bρ + η + dam + dbr + de

= a(μ + dm) + b(ρ + dr) + (η + de) = asm + bsr + se .
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P[c;m, r, e] V[c]

μ, ρ
$← Zq [x]/〈xn + 1〉

η
$← Dk

ση

t = aμ + bρ + η

(caux, daux) = aCom(t)
caux �

d
$← C

d�

sm = μ + dm

sr = ρ + dr

se = η + de

abort with probability exp

(
−2〈se ,de〉+‖de‖2

2σ2
η

)

daux, t , sm, sr, se �

aVer(caux, daux, t)
?
= accept

t + dc
?
= asm + bsr + se

‖se‖∞
?
≤ �n4/3/4�

Protocol 4.1: Simple preimage proof. The verifier accepts, iff all conditions marked
with “?” are satisfied.

Furthermore, we have that with overwhelming probability

‖se‖∞ = ‖η + de‖∞ ≤ ‖η‖∞ + κ‖e‖∞ ≤ �n4/3/4�,

as the standard deviations of Dσe
,Dση

are significantly smaller than n4/3.

Special Soundness. Let the extractor E be given two accepting protocol tran-
scripts (caux, d′, (d′

aux, t
′, s′

m, s′
r, s

′
e)) and (caux, d′′, (d′′

aux, t
′′, s′′

m, s′′
r , s′′

e )), where
d′ �= d′′. By the perfect binding property of aCom we get that t ′ = t ′′ = t . By
subtracting the verification equations performed by the verifier we then obtain:

Δdc = aΔm + bΔr + Δe ,

where we set Δd = d′ − d′′, Δm = s′
m − s′′

m, Δr = s′
r − s′′

r and Δe = s′
e − s′′

e .
As deg Δd < n/2, we also have that Δd is invertible in Rq. We get the witness
(Δ−1

d Δm,Δ−1
d Δr,Δd,Δe), where ‖Δd‖∞ ≤ 1 and ‖Δe‖ ≤ �n4/3/2�.

Honest-Verifier Zero-Knowledge. Taking a challenge d as an input, the simulator
first draws uniformly random elements s′

m, s′
r

$← Zq[x]/〈xn + 1〉, and s′
e to be

⊥ with probability 1 − 1/M and distributed according to Dση
with probability

1/M . If s′
e �= ⊥, it computes (c′

aux, d
′
aux) = aCom(t ′ = as′

m + bs′
r + s′

e − dc) and
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outputs (c′
aux, d, (d′

aux, t
′, s′

m, s′
r, s

′
e)). (Note that s′

i and d uniquely determine t ′

in the protocol and in the simulation.) Otherwise the simulator sets (c′
aux, d

′
aux) =

aCom(0) and outputs (c′
aux, d,⊥).

It follows from Theorem 2.5 that the distribution conditioned on the prover
not outputting ⊥ is indistinguishable from real protocol runs. From the same
theorem, it follows that aborts occur with probability 1−1/M for every value of
de . In case of an abort, the indistinguishability follows from the hiding property
of aCom and the fact that for every d, there is an equal chance of an abort
happening. ��
Lemma 4.3. If the auxiliary commitment scheme is a trapdoor commitment
scheme, then Protocol 4.1 is a concurrently secure zero-knowledge argument of
knowledge with knowledge error 1/

(
n/2
κ

)
for the relation specified in Theorem 4.2.

The proof is similar to Damg̊ard [Dam00] who gives a generic construction to
achieve concurrent ZK for any Σ-protocol. However, our technique had a slightly
different origin as our protocols are inherently based on the auxiliary commit-
ment scheme to achieve honest-verifier zero-knowledge. The lemma literally also
applies for the subsequent protocols.

On the Abort Probability. From Theorem 2.5 and [Lyu12] it follows that the
probability that the prover does not abort is exponentially close to 1

M , where
M ∈ O(exp(‖de‖

ση
)). Thus, on average M repetitions of the protocol are required.

By choosing ση sufficiently large, M can be made arbitrarily small at the cost
of requiring larger parameters, see also Lyubashevsky [Lyu12].

Number of Rounds. By nesting the executions, the expected number of rounds
until a successful protocol run is about 2M . Alternatively, when only aiming for
arguments of knowledge, one can also use the idea of Damg̊ard et al. [DPSZ12],
who compute many independent first messages and send a Merkle-tree commit-
ment of those in the first step. While on average requiring more computation on
the prover side, this approach gives a constant 3-round protocol.

4.2 Proving Linear Relations

Protocol 4.4 allows one to prove knowledge of messages m1,m2,m3 contained
in c1, c2, c3, where the mi additionally satisfy a linear relation of the form
m3 = x1m1 + x2m2 for arbitrary public xi ∈ Zq[x]/〈xn + 1〉. The construction
uses a standard technique: Three instances of Protocol 4.1 are run in parallel for
m1,m2,m3 using the same challenge, but instead of choosing the randomness μ3

for m3 in the prover’s first step at random, it is computed such that μ1, μ2, μ3

satisfy the claimed linear relation. Verifying now whether the smi
also satisfy

that linear relation is enough for the verifier to be guaranteed that the supplied
messages have the correct form.
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P[ci;mi, ri, ei] V[ci]

μ1, μ2, ρ1, ρ2, ρ3
$← Zq [x]/〈xn + 1〉

μ3 = x1μ1 + x2μ2

η1, η2, η3
$← Dk

ση

ti = aμi + bρi + ηi for i = 1, 2, 3

(caux, daux) = aCom(t1, t2, t3)
caux �

d
$← C

d�

smi = μi + dmi for i = 1, 2

sri = ρi + dri for i = 1, 2, 3

sei = ηi + dei for i = 1, 2, 3

abort-checks for sej

daux, ti, smi , sri , sei �

aVer(caux, daux, (t1, t2, t3))
?
= accept

sm3 = x1sm1 + x2sm2

ti + dci
?
= aismi + bsri + sei for i = 1, 2, 3

sei

?
≤ �n4/3/4� for i = 1, 2, 3

Protocol 4.4: Proving linear relations. The abort-checks are as in Protocol 4.1 and
Theorem 2.5.

Theorem 4.5. If the auxiliary commitment scheme is perfectly binding, then
Protocol 4.4 is an honest-verifier zero-knowledge proof of knowledge with knowl-
edge error 1/

(
n/2
κ

)
for the following relations:

RLLWE =

{

((a, b, x1, x2, c1, c2, c3), (m1,m2,m3, r1, r2, r3, e1, e2, e3)) :

3∧

i=1

(ci = ami + bri + ei ∧ ‖ei‖∞ ≤ n) ∧ m3 = x1m1 + x2m2

}

,

and R′
LLWE is defined accordingly.

Proving Inhomogeneous Relations. As for, e.g., DLOG based protocols, inhomo-
geneous relations like m3 = x1m1 + x2m2 + x3 can be proved by first removing
the inhomogeneity: If ci is a commitment to mi, both parties first compute
c′
3 = c3 − ax3, and the prover sets m′

3 = m3 − x3. The parties then perform
Protocol 4.4 for c1, c2, c

′
3 and m1,m2,m

′
3 and the homogeneous linear relation

m′
3 = x1m1 + x2m2.
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4.3 Proving Multiplicative Relations

In this section we show how one can prove knowledge of mi, ri, e i, i = 1, 2, 3
such that ci = ami + bri + e i, and additionally m3 = m1 · m2. We begin by
giving the intuition behind the protocol.

(i) The prover first proves knowledge of the contents of c1, c2, c3 by running
3 instances of Protocol 4.1 in parallel.

(ii) Similar to Protocol 4.4, the verifier will check the multiplicative relation
by combining the responses for m1,m2,m3 accordingly. Unfortunately, in
contrast to linear proofs where we have sm1 + sm2 = sm3 for an honest
prover, we have that sm1sm2 �= sm3 . We tackle this problem by letting
the prover commit to the arising cross-terms μ1m2 + μ2m1 and μ1μ2 in a
second part. The according commitments are denoted by c+ and c×. Again
using two instances of Protocol 4.1, the prover now proves that it knows
the openings of those two commitments.

(iii) The third part of the proof now establishes the multiplicative relation. It is
based on the following observation: from (i) and (ii) it follows that:

c̃ = asm1sm2 − d2c3 − c× − dc+

= a
(
μ1μ2 − m× + d(μ1m2 + μ2m1 − m+) + d2(m1m2 − m3)

)

+ b(−d2r3 − r× − dr+) + (−d2e3 − e× − de+),

for some m×,m+. Note here that the error term (−d2e3 − e× − de+) of c̃
has small norm, because e3, e×, e+ have small norm and ‖d‖1 ≤ κ.
Now, for an honest prover it can easily be seen that c̃ = b r̃ + ẽ for r̃ and
ẽ as defined in the protocol, i.e., c̃ is a commitment to 0. On the other
hand, if a prover can prove that for at least three different challenges d, the
multiplicative relation follows. This can be seen as follows. If

μ1μ2 − m× + d(μ1m2 + μ2m1 − m+) + d2(m1m2 − m3) = 0,

for three different values of d, this coefficient must be the zero-polynomial
(in the indeterminate d), and thus m3 = m1m2. This is because a quadratic
polynomial in Rq can only have at most two distinct roots in C. The proof
of this claim is straightforward and thus omitted.

Theorem 4.6. If the auxiliary commitment scheme is perfectly binding, then
Protocol 4.7 is an honest-verifier zero-knowledge proof of knowledge with knowl-
edge error 2/

(
n/2
κ

)
for the following relations:

RMLWE =

{

((a, b, x1, x2, c1, c2, c3), (m1,m2,m3, r1, r2, r3, e1, e2, e3)) :

3∧

i=1

(ci = ami + bri + ei ∧ ‖ei‖∞ ≤ n) ∧ m3 = m1m2

}

,

and R′
MLWE is defined accordingly.
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P[ci;mi, ri, ei] V[ci]

(i) μ1, μ2, μ3, ρ1, ρ2, ρ3
$← Zq [x]/〈xn + 1〉

η1, η2, η3
$← Dk

ση

ti = aμi + bρi + ηi for i = 1, 2, 3

(ii) m+ = μ1m2 + μ2m1

m× = μ1μ2

r+, r×
$← Zq [x]/〈xn + 1〉

e+, e×
$← Dk

σe

c+ = am+ + br+ + e+

c× = am× + br× + e×
μ+, μ×, ρ+, ρ×

$← Zq [x]/〈xn + 1〉
η+, η×

$← Dk
ση

t+ = aμ+ + bρ+ + η+

t× = aμ× + bρ× + η×

(iii) ρ̃
$← Zq [x]/〈xn + 1〉

η̃
$← Dk

ση

t̃ = bρ̃ + η̃

(caux, daux) = aCom(t+, t×, ti, t̃ , c+, c×)
caux �

d
$← C

d�

(i) + (ii) smi = μi + dmi for i = 1, 2, 3,+, ×
sri = ρi + dri for i = 1, 2, 3,+, ×
sei = ηi + dei for i = 1, 2, 3,+, ×

(iii) sr̃ = ρ̃ + dr̃

ẽ = −d2e3 − e× − de+

r̃ = −d2r3 − r× − dr+
sẽ = η̃ + dẽ

abort-checks for sẽ , sej

daux, t+, t×, ti, t̃ , c+, c×, smi , sri , sei , sr̃, sẽ�

aVer(caux, daux, (t+, t×, ti, t̃ , c+, c×))
?
= accept

(i) + (ii) ti + dci
?
= aismi + bsri + sei for i = 1, 2, 3,+, ×

sei

?
≤ �n4/3/4� for i = 1, 2, 3,+, ×

(iii) c̃ = asm1sm2 − d2c3 − c× − dc+

t̃ + dc̃
?
= bsr̃ + sẽ

sẽ
?
≤ �n4/3/4�

Protocol 4.7: Proving multiplicative relations. The abort-checks are as in Protocol
4.1 and Theorem 2.5
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5 Conclusion

We presented a simple and efficient string commitment scheme whose security is
based on the hardness of the RLWE-problem, or, equivalently, on the hardness of
solving certain problems on ideal lattices. Additionally we gave constructions for
zero-knowledge proofs of knowledge of valid openings of such commitments, and
for proving arbitrary relations among such messages. By achieving a negligible
knowledge error in our protocols, we solve an open problem stated in previous
work, e.g., Jain et al. [JKPT12].

A Proofs

A.1 Proofs of Theorem 4.5

The theorem is proved by showing that the protocol is a Σ′
2-protocol for the

given relation. The claim then follows directly from the discussion in Sect. 2.2.
The proof is essentially a straightforward adaption of that of Theorem 4.2.

Completeness. This follows directly from the completeness of Protocol 4.1 and:

x1sm1 + x2sm2 = x1(μ1 + dm1) + x2(μ2 + dm2)
= (x1μ1 + x2μ2) + d(x1m1 + x2m2) = μ3 + dm3 = sm3 ,

Special Soundness. Given two accepting transcripts, we can extract witnesses
(Δmi

,Δri
,Δd,Δei

) for ci (i = 1, 2, 3) analogously to Theorem 4.2. The only
thing that remains to show is that the linear relation Δm3 = x1Δm1 + x2Δm2 is
indeed satisfied. This can be seen as follows:

Δm3 = s′
m3

− s′′
m3

= (x1s
′
m1

+ x2s
′
m2

) − (x1s
′′
m1

+ x2s
′′
m2

)
= x1(s′

m1
− s′′

m1
) + x2(s′

m2
− s′′

m2
) = x1Δm1 + x2Δm2 .

Special Honest-Verifier Zero-Knowledge. The simulator is essentially given by
three independent instances of that for Protocol 4.1, except that s′

m3
= x1s

′
m1

+
x2s

′
m2

. The correctness of this simulation is shown by a standard argument, cf.,
e.g., [BGK+09,JKPT12].

A.2 Proofs of Theorem 4.6

The theorem is proved by showing that the protocol is a Σ′
3-protocol for the

given relation. The claim then follows directly from the discussion in Sect. 2.2.

Completeness. It is easy to see that V accepts with overwhelming probability
when P does not abort.

Special Soundness. This follows from the soundness of Protocol 4.1 and 4.4 and
the above considerations.
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Special Honest-Verifier Zero-Knowledge. The intuition is the following: By the
hiding property of our commitment scheme, c+ and c× computationally do not
reveal any information about the secrets. Furthermore, as Protocol 4.1 is zero-
knowledge, sm1 , sm2 and consequently c̃ do not reveal anything to the verifier
either. The claim then follows from the proof of Theorem 4.2.

More formally, the simulator first computes c̃′ as a commitment to 0, and
similarly for c′

+. It then runs the simulator for c1, c2, c3 and, assuming that no
aborts happened, computes c′

× = c̃′ + d2c3 − as′
m1

s′
m2

+ dc+. It now runs the
simulator for c′

×, c′
+, c̃′, and, again assuming no aborts, computes an auxiliary

commitment, and outputs a transcript by appropriately arranging the messages.
If in any step an abort occurred, it sets (c′

aux, d
′
aux) = aCom(0) and returns

(c′
aux, d,⊥). It can now be shown that the simulator outputs transcripts that are

computationally indistinguishable from real protocol runs. Note therefore that
even though the error distributions of c̃′ and c̃ (and of c′

× and c×, respectively)
are not identical, the resulting commitments cannot be distinguished under the
RLWE-assumption.

References
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