
Günther Pernul · Peter Y A Ryan
Edgar Weippl (Eds.)

 123

LN
CS

 9
32

6

20th European Symposium on Research in Computer Security
Vienna, Austria, September 21–25, 2015
Proceedings, Part I

Computer Security –
ESORICS 2015

Lecture Notes in Computer Science 9326

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Günther Pernul • Peter Y A Ryan
Edgar Weippl (Eds.)

Computer Security –

ESORICS 2015
20th European Symposium on Research in Computer Security
Vienna, Austria, September 21–25, 2015
Proceedings, Part I

123

Editors
Günther Pernul
University of Regensburg
Regensburg
Germany

Peter Y A Ryan
University of Luxembourg
Luxembourg
Luxembourg

Edgar Weippl
SBA Research
Wien
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-24173-9 ISBN 978-3-319-24174-6 (eBook)
DOI 10.1007/978-3-319-24174-6

Library of Congress Control Number: 2015948157

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

It is our great pleasure to welcome you to the 20th European Symposium on Research
in Computer Security (ESORICS 2015).

This year’s symposium continues its tradition of establishing a European forum for
bringing together researchers in the area of computer security, by promoting the
exchange of ideas with system developers and by encouraging links with researchers in
related areas.

The call for papers attracted 293 submissions – a record in the ESORICS series –
from 41 countries. The papers went through a careful review process and were eval-
uated on the basis of their significance, novelty, technical quality, as well as on their
practical impact and/or their level of advancement of the field’s foundations. Each
paper received at least three independent reviews, followed by extensive discussion.
We finally selected 59 papers for the final program, resulting in an acceptance rate of
20 %.

The program was completed with keynote speeches by Sushil Jajodia, George
Mason University Fairfax, USA and Richard Clayton, University of Cambridge, UK.

Putting together ESORICS 2015 was a team effort. We first thank the authors for
providing the content of the program. We are grateful to the Program Committee, who
worked very hard in reviewing papers (more than 880 reviews were written) and
providing feedback for authors. There is a long list of people who volunteered their
time and energy to put together and organize the conference, and who deserve special
thanks: the ESORICS Steering Committee, and its chair Pierangela Samarati in par-
ticular, for their support; Giovanni Livraga, for taking care of publicity; Javier Lopez,
as workshop chair, and all workshop co-chairs, who organized workshops co-located
with ESORICS; and Yvonne Poul for the local organization and the social events.

Finally, we would like to thank our sponsors, HUAWEI, for the financial support
and SBA Research, for hosting and organizing ESORICS 2015.

A different country hosts the conference every year. ESORICS 2015 took place in
Vienna, Austria at the Vienna University of Technology. We are very happy to have
hosted the 20th edition of the symposium in Vienna and we tried to put together a
special social program for you, giving you the opportunity to share ideas with other
researchers and practitioners from institutions around the world and see all the beautiful
sights of Vienna.

We hope that you found this program interesting and thought-provoking and that
you enjoyed ESORICS 2015 and Vienna.

July 2015 Günther Pernul
Peter Y A Ryan
Edgar Weippl

Organization

General Chair

Günther Pernul Universität Regensburg, Germany

Program Chairs

Peter Y A Ryan University of Luxembourg, Luxembourg
Edgar Weippl SBA Research & Vienna University of Technology,

Austria

Workshops Chair

Javier Lopez University of Malaga, Spain

Program Committee

Alessandro Armando Università di Genova, Italy
Vijay Atluri Rutgers University, USA
Michael Backes Saarland University, Germany
Feng Bao Security and Privacy Lab, Huawei, China
David A. Basin ETH Zurich, Switzerland
Giampaolo Bella Università di Catania, Italy
Carlo Blundo Università degli Studi di Salerno, Italy
Stefan Brunthaler SBA Research, Austria
Ran Canetti Tel Aviv University, Israel
Liqun Chen HP Labs, UK
Michael Clarkson Cornell University, USA
Jason Crampton University of London, UK
Cas Cremers University of Oxford, UK
Frédéric Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Wenliang Du Syracuse University, USA
Hannes Federrath University of Hamburg, Germany
Simon Foley University College Cork, Ireland
Sara Foresti Università degli Studi di Milano, Italy
Felix Freiling Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Michael Goldsmith University of Oxford, UK

Dieter Gollmann TU Hamburg-Harburg, Germany
Dimitris Gritzalis AUEB, Greece
Joshua Guttman MTIRE Corp and Worcester Polytechnic, USA
Feng Hao Newcastle University, UK
Amir Herzberg Bar-Ilan University, Israel
Xinyi Huang Fujian Normal University, China
Michael Huth Imperial College, UK
Sotiris Ioannidis FORTH, Crete
Sushil Jajodia George Mason University, USA
Markus Jakobsson Qualcomm, USA
Sokratis K. Katsikas University of Piraeus, Greece
Stefan Katzenbeisser TU Darmstadt, Germany
Florian Kerschbaum SAP, Germany
Steve Kremer INRIA Nancy and LORIA, France
Adam J. Lee University of Pittsburgh, USA
Wenke Lee Georgia Institute of Technology, USA
Yingjiu Li Singapore Management University, Singapore
Peng Liu Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
Wenjing Lou Virginia Polytechnic Institute and State University,

USA
Haibing Lu Santa Clara University, USA
Antonio Maña Univeristy of Malaga, Spain
Roy Maxion Carnegie Mellon University, USA
Catherine Meadows Naval Research Laboratory, USA
Carroll Morgan University of New South Wales, Australia
John C. Mitchell Stanford University, USA
Martin Mulazzani SBA Research, Austria
David Naccache ENS, France
Rolf Oppliger eSecurity Technologies, Switzerland
Stefano Paraboschi Università degli Studi di Bergamo, Italy
Olivier Pereira UCL Crypto Group, Belgium
Günther Pernul University of Regensburg, Germany
Bart Preneel Katholieke Universiteit Leuven, Belgium
Jean-Jacques Quisquater UCL, Belgium
Kui Ren University at Buffalo, State University of New York,

USA
Mark Ryan University of Birmingham, UK
Ahmad-Reza Sadeghi TU Darmstadt, Germany
Pierangela Samarati Università degli Studi di Milano, Italy
Nitesh Saxena University of Alabama at Birmingham, USA
Andreas Schaad SAP, Germany
Steve Schneider University of Surrey, UK
Jörg Schwenk Ruhr University Bochum, Germany
Basit Shafiq Lahore University of Management Sciences, Pakistan
Dimitris E. Simos SBA Research, Austria

VIII Organization

Einar Snekkenes Gjovik University College, Norway
Philip Stark University of California, Berkeley, USA
Vanessa Teague University of Melbourne, Australia
Jaideep Vaidya Rutgers University, USA
Paulo Verissimo University of Luxembourg, Luxembourg
Luca Viganò King’s College London, UK
Michael Waidner TU Darmstadt, Germany
Cong Wang City University of Hong Kong, China
Lingyu Wang University of Concordia, Canada
Ting Yu North Carolina State University, USA
Meng Yu Virginia Commonwealth University, USA
Moti Yung Google, USA
Jianying Zhou Institute for Infocomm Research, Singapore
Sencun Zhu Pennsylvania State University, USA

Organization IX

Contents – Part I

Networks and Web Security

Towards Security of Internet Naming Infrastructure 3
Haya Shulman and Michael Waidner

Waiting for CSP – Securing Legacy Web Applications with JSAgents. 23
Mario Heiderich, Marcus Niemietz, and Jörg Schwenk

Analyzing the BrowserID SSO System with Primary Identity Providers
Using an Expressive Model of the Web . 43

Daniel Fett, Ralf Küsters, and Guido Schmitz

System Security

A Practical Approach for Adaptive Data Structure Layout Randomization . . . 69
Ping Chen, Jun Xu, Zhiqiang Lin, Dongyan Xu, Bing Mao, and Peng Liu

Trustworthy Prevention of Code Injection in Linux on Embedded Devices . . . 90
Hind Chfouka, Hamed Nemati, Roberto Guanciale, Mads Dam,
and Patrik Ekdahl

Practical Memory Deduplication Attacks in Sandboxed Javascript 108
Daniel Gruss, David Bidner, and Stefan Mangard

Cryptography

Computational Soundness for Interactive Primitives. 125
Michael Backes, Esfandiar Mohammadi, and Tim Ruffing

Verifiably Encrypted Signatures: Security Revisited and a New
Construction . 146

Christian Hanser, Max Rabkin, and Dominique Schröder

Interleaving Cryptanalytic Time-Memory Trade-Offs on Non-uniform
Distributions. 165

Gildas Avoine, Xavier Carpent, and Cédric Lauradoux

Efficient Message Authentication Codes with Combinatorial Group Testing . . . 185
Kazuhiko Minematsu

http://dx.doi.org/10.1007/978-3-319-24174-6_1
http://dx.doi.org/10.1007/978-3-319-24174-6_2
http://dx.doi.org/10.1007/978-3-319-24174-6_3
http://dx.doi.org/10.1007/978-3-319-24174-6_3
http://dx.doi.org/10.1007/978-3-319-24174-6_4
http://dx.doi.org/10.1007/978-3-319-24174-6_5
http://dx.doi.org/10.1007/978-3-319-24174-6_6
http://dx.doi.org/10.1007/978-3-319-24174-6_7
http://dx.doi.org/10.1007/978-3-319-24174-6_8
http://dx.doi.org/10.1007/978-3-319-24174-6_8
http://dx.doi.org/10.1007/978-3-319-24174-6_9
http://dx.doi.org/10.1007/978-3-319-24174-6_9
http://dx.doi.org/10.1007/978-3-319-24174-6_10

Symmetric-Key Based Proofs of Retrievability Supporting Public
Verification . 203

Chaowen Guan, Kui Ren, Fangguo Zhang, Florian Kerschbaum,
and Jia Yu

DTLS-HIMMO: Achieving DTLS Certificate Security with Symmetric Key
Overhead . 224

Oscar Garcia-Morchon, Ronald Rietman, Sahil Sharma,
Ludo Tolhuizen, and Jose Luis Torre-Arce

Short Accountable Ring Signatures Based on DDH. 243
Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi,
Jens Groth, and Christophe Petit

Updatable Hash Proof System and Its Applications 266
Rupeng Yang, Qiuliang Xu, Yongbin Zhou, Rui Zhang, Chengyu Hu,
and Zuoxia Yu

Server-Aided Revocable Identity-Based Encryption 286
Baodong Qin, Robert H. Deng, Yingjiu Li, and Shengli Liu

Efficient Zero-Knowledge Proofs for Commitments from Learning
with Errors over Rings. 305

Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky,
and Krzysztof Pietrzak

Making Any Identity-Based Encryption Accountable, Efficiently 326
Aggelos Kiayias and Qiang Tang

Practical Threshold Password-Authenticated Secret Sharing Protocol 347
Xun Yi, Feng Hao, Liqun Chen, and Joseph K. Liu

On Security of Content-Based Video Stream Authentication 366
Swee-Won Lo, Zhuo Wei, Robert H. Deng, and Xuhua Ding

Oblivious Maximum Bipartite Matching Size Algorithm with Applications
to Secure Fingerprint Identification . 384

Marina Blanton and Siddharth Saraph

Practical Invalid Curve Attacks on TLS-ECDH. 407
Tibor Jager, Jörg Schwenk, and Juraj Somorovsky

Crypto Applications and Attacks

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? . . . 429
Alessandro Barenghi, Alessandro Di Federico, Gerardo Pelosi,
and Stefano Sanfilippo

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-24174-6_11
http://dx.doi.org/10.1007/978-3-319-24174-6_11
http://dx.doi.org/10.1007/978-3-319-24174-6_12
http://dx.doi.org/10.1007/978-3-319-24174-6_12
http://dx.doi.org/10.1007/978-3-319-24174-6_13
http://dx.doi.org/10.1007/978-3-319-24174-6_14
http://dx.doi.org/10.1007/978-3-319-24174-6_15
http://dx.doi.org/10.1007/978-3-319-24174-6_16
http://dx.doi.org/10.1007/978-3-319-24174-6_16
http://dx.doi.org/10.1007/978-3-319-24174-6_17
http://dx.doi.org/10.1007/978-3-319-24174-6_18
http://dx.doi.org/10.1007/978-3-319-24174-6_19
http://dx.doi.org/10.1007/978-3-319-24174-6_20
http://dx.doi.org/10.1007/978-3-319-24174-6_20
http://dx.doi.org/10.1007/978-3-319-24174-6_21
http://dx.doi.org/10.1007/978-3-319-24174-6_22

Transforming Out Timing Leaks, More or Less . 447
Heiko Mantel and Artem Starostin

Small Tweaks Do Not Help: Differential Power Analysis of MILENAGE
Implementations in 3G/4G USIM Cards. 468

Junrong Liu, Yu Yu, François-Xavier Standaert, Zheng Guo, Dawu Gu,
Wei Sun, Yijie Ge, and Xinjun Xie

Risk Analysis

Should Cyber-Insurance Providers Invest in Software Security? 483
Aron Laszka and Jens Grossklags

Lightweight and Flexible Trust Assessment Modules for the Internet
of Things . 503

Jan Tobias Mühlberg, Job Noorman, and Frank Piessens

Confidence Analysis for Nuclear Arms Control: SMT Abstractions
of Bayesian Belief Networks . 521

Paul Beaumont, Neil Evans, Michael Huth, and Tom Plant

Author Index . 541

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-319-24174-6_23
http://dx.doi.org/10.1007/978-3-319-24174-6_24
http://dx.doi.org/10.1007/978-3-319-24174-6_24
http://dx.doi.org/10.1007/978-3-319-24174-6_25
http://dx.doi.org/10.1007/978-3-319-24174-6_26
http://dx.doi.org/10.1007/978-3-319-24174-6_26
http://dx.doi.org/10.1007/978-3-319-24174-6_27
http://dx.doi.org/10.1007/978-3-319-24174-6_27

Contents – Part II

Privacy

FP-Block: Usable Web Privacy by Controlling Browser Fingerprinting 3
Christof Ferreira Torres, Hugo Jonker, and Sjouke Mauw

Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections. 20
Wenrui Diao, Xiangyu Liu, Zhe Zhou, Kehuan Zhang, and Zhou Li

Enabling Privacy-Assured Similarity Retrieval over Millions
of Encrypted Records . 40

Xingliang Yuan, Helei Cui, Xinyu Wang, and Cong Wang

Privacy-Preserving Link Prediction in Decentralized Online
Social Networks . 61

Yao Zheng, Bing Wang, Wenjing Lou, and Y. Thomas Hou

Privacy-Preserving Observation in Public Spaces. 81
Florian Kerschbaum and Hoon Wei Lim

Privacy-Preserving Context-Aware Recommender Systems: Analysis
and New Solutions . 101

Qiang Tang and Jun Wang

Cloud Security

Rich Queries on Encrypted Data: Beyond Exact Matches 123
Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen,
Marcel Rosu, and Michael Steiner

Extended Proxy-Assisted Approach: Achieving Revocable Fine-Grained
Encryption of Cloud Data . 146

Yanjiang Yang, Joseph K. Liu, Kaitai Liang, Kim-Kwang Raymond
Choo, and Jianying Zhou

Batch Verifiable Computation of Polynomials on Outsourced Data 167
Liang Feng Zhang and Reihaneh Safavi-Naini

CloudBI: Practical Privacy-Preserving Outsourcing of Biometric
Identification in the Cloud . 186

Qian Wang, Shengshan Hu, Kui Ren, Meiqi He, Minxin Du,
and Zhibo Wang

http://dx.doi.org/10.1007/978-3-319-24177-7_1
http://dx.doi.org/10.1007/978-3-319-24177-7_2
http://dx.doi.org/10.1007/978-3-319-24177-7_3
http://dx.doi.org/10.1007/978-3-319-24177-7_3
http://dx.doi.org/10.1007/978-3-319-24177-7_4
http://dx.doi.org/10.1007/978-3-319-24177-7_4
http://dx.doi.org/10.1007/978-3-319-24177-7_5
http://dx.doi.org/10.1007/978-3-319-24177-7_6
http://dx.doi.org/10.1007/978-3-319-24177-7_6
http://dx.doi.org/10.1007/978-3-319-24177-7_7
http://dx.doi.org/10.1007/978-3-319-24177-7_8
http://dx.doi.org/10.1007/978-3-319-24177-7_8
http://dx.doi.org/10.1007/978-3-319-24177-7_9
http://dx.doi.org/10.1007/978-3-319-24177-7_10
http://dx.doi.org/10.1007/978-3-319-24177-7_10

Protocols and Attribute-Based Encryption

Typing and Compositionality for Security Protocols: A Generalization
to the Geometric Fragment . 209

Omar Almousa, Sebastian Mödersheim, Paolo Modesti,
and Luca Viganò

Checking Trace Equivalence: How to Get Rid of Nonces? 230
Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune

Attribute Based Broadcast Encryption with Short Ciphertext
and Decryption Key . 252

Tran Viet Xuan Phuong, Guomin Yang, Willy Susilo, and Xiaofeng Chen

Accountable Authority Ciphertext-Policy Attribute-Based Encryption
with White-Box Traceability and Public Auditing in the Cloud 270

Jianting Ning, Xiaolei Dong, Zhenfu Cao, and Lifei Wei

Code Analysis and Side-Channels

DexHunter: Toward Extracting Hidden Code from Packed
Android Applications. 293

Yueqian Zhang, Xiapu Luo, and Haoyang Yin

Identifying Arbitrary Memory Access Vulnerabilities in Privilege-Separated
Software . 312

Hong Hu, Zheng Leong Chua, Zhenkai Liang, and Prateek Saxena

vBox: Proactively Establishing Secure Channels Between Wireless Devices
Without Prior Knowledge. 332

Wei Wang, Jingqiang Lin, Zhan Wang, Ze Wang, and Luning Xia

Detection and Monitoring

Accurate Specification for Robust Detection of Malicious Behavior
in Mobile Environments. 355

Sufatrio, Tong-Wei Chua, Darell J.J. Tan, and Vrizlynn L.L. Thing

A Bytecode Interpreter for Secure Program Execution in Untrusted
Main Memory . 376

Maximilian Seitzer, Michael Gruhn, and Tilo Müller

Learning from Others: User Anomaly Detection Using Anomalous Samples
from Other Users . 396

Youngja Park, Ian M. Molloy, Suresh N. Chari, Zenglin Xu, Chris Gates,
and Ninghi Li

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-24177-7_11
http://dx.doi.org/10.1007/978-3-319-24177-7_11
http://dx.doi.org/10.1007/978-3-319-24177-7_12
http://dx.doi.org/10.1007/978-3-319-24177-7_13
http://dx.doi.org/10.1007/978-3-319-24177-7_13
http://dx.doi.org/10.1007/978-3-319-24177-7_14
http://dx.doi.org/10.1007/978-3-319-24177-7_14
http://dx.doi.org/10.1007/978-3-319-24177-7_15
http://dx.doi.org/10.1007/978-3-319-24177-7_15
http://dx.doi.org/10.1007/978-3-319-24177-7_16
http://dx.doi.org/10.1007/978-3-319-24177-7_16
http://dx.doi.org/10.1007/978-3-319-24177-7_17
http://dx.doi.org/10.1007/978-3-319-24177-7_17
http://dx.doi.org/10.1007/978-3-319-24177-7_18
http://dx.doi.org/10.1007/978-3-319-24177-7_18
http://dx.doi.org/10.1007/978-3-319-24177-7_19
http://dx.doi.org/10.1007/978-3-319-24177-7_19
http://dx.doi.org/10.1007/978-3-319-24177-7_20
http://dx.doi.org/10.1007/978-3-319-24177-7_20

Authentication

Towards Attack-Resistant Peer-Assisted Indoor Localization. 417
Jingyu Hua, Shaoyong Du, and Sheng Zhong

Leveraging Real-Life Facts to Make Random Passwords More Memorable. . . . 438
Mahdi Nasrullah Al-Ameen, Kanis Fatema, Matthew Wright,
and Shannon Scielzo

The Emperor’s New Password Creation Policies:: An Evaluation
of Leading Web Services and the Effect of Role in Resisting Against
Online Guessing . 456

Ding Wang and Ping Wang

Policies

A Theory of Gray Security Policies . 481
Donald Ray and Jay Ligatti

Factorization of Behavioral Integrity . 500
Ximeng Li, Flemming Nielson, and Hanne Riis Nielson

Checking Interaction-Based Declassification Policies for Android
Using Symbolic Execution . 520

Kristopher Micinski, Jonathan Fetter-Degges, Jinseong Jeon,
Jeffrey S. Foster, and Michael R. Clarkson

Applied Security

Enhancing Java Runtime Environment for Smart Cards Against
Runtime Attacks . 541

Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes

Making Bitcoin Exchanges Transparent . 561
Christian Decker, James Guthrie, Jochen Seidel, and Roger Wattenhofer

Web-to-Application Injection Attacks on Android: Characterization
and Detection . 577

Behnaz Hassanshahi, Yaoqi Jia, Roland H.C. Yap, Prateek Saxena,
and Zhenkai Liang

All Your Voices are Belong to Us: Stealing Voices to Fool Humans
and Machines . 599

Dibya Mukhopadhyay, Maliheh Shirvanian, and Nitesh Saxena

Balloon: A Forward-Secure Append-Only Persistent Authenticated
Data Structure. 622

Tobias Pulls and Roel Peeters

Contents – Part II XVII

http://dx.doi.org/10.1007/978-3-319-24177-7_21
http://dx.doi.org/10.1007/978-3-319-24177-7_22
http://dx.doi.org/10.1007/978-3-319-24177-7_23
http://dx.doi.org/10.1007/978-3-319-24177-7_23
http://dx.doi.org/10.1007/978-3-319-24177-7_23
http://dx.doi.org/10.1007/978-3-319-24177-7_24
http://dx.doi.org/10.1007/978-3-319-24177-7_25
http://dx.doi.org/10.1007/978-3-319-24177-7_26
http://dx.doi.org/10.1007/978-3-319-24177-7_26
http://dx.doi.org/10.1007/978-3-319-24177-7_27
http://dx.doi.org/10.1007/978-3-319-24177-7_27
http://dx.doi.org/10.1007/978-3-319-24177-7_28
http://dx.doi.org/10.1007/978-3-319-24177-7_29
http://dx.doi.org/10.1007/978-3-319-24177-7_29
http://dx.doi.org/10.1007/978-3-319-24177-7_30
http://dx.doi.org/10.1007/978-3-319-24177-7_30
http://dx.doi.org/10.1007/978-3-319-24177-7_31
http://dx.doi.org/10.1007/978-3-319-24177-7_31

On the Fly Design and Co-simulation of Responses Against
Simultaneous Attacks . 642

Léa Samarji, Nora Cuppens-Boulahia, Frédéric Cuppens,
Serge Papillon, Waël Kanoun, and Samuel Dubus

Author Index . 663

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-24177-7_32
http://dx.doi.org/10.1007/978-3-319-24177-7_32

Networks and Web Security

Towards Security of Internet Naming
Infrastructure

Haya Shulman1,2(B) and Michael Waidner1,2

1 Fraunhofer Institute for Secure Information Technology (SIT),
Technische Universität Darmstadt, Darmstadt, Germany

2 Fachbereich Informatik, Technische Universität Darmstadt, Darmstadt, Germany
{haya.shulman,michael.waidner}@sit.fraunhofer.de

Abstract. We study the operational characteristics of the server-side
of the Internet’s naming infrastructure. Our findings discover com-
mon architectures whereby name servers are ‘hidden’ behind server-side
caching DNS resolvers. We explore the extent and the scope of the name
servers that use server-side caching resolvers, and find such configurations
in at least 38% of the domains in a forward DNS tree, and higher per-
cents of the domains in a reverse DNS tree. We characterise the operators
of the server-side caching resolvers and provide motivations, explaining
their prevalence.

Our experimental evaluation indicates that the caching infrastruc-
tures are typically run by third parties, and that the services, provided
by the third parties, often do not deploy best practices, resulting in
misconfigurations, vulnerabilities and degraded performance of the DNS
servers in popular domains.

1 Introduction

Domain Name System (DNS), [RFC1034, RFC1035], is the Internet’s naming
infrastructure; see background in Appendix, Sect.A. DNS plays a central role
in the network operation, and its correctness and efficiency are critical to the
stability and availability of the Internet. Initially designed to translate domain
names to IP addresses, DNS infrastructure has evolved into a complex ecosystem
and it is increasingly utilised to facilitate a wide range of applications. Due to
the important function that DNS fulfills in the Internet, understanding and char-
acterising it, is critical for security, efficiency and functionality of systems and
networks. In this work we utilise Internet scale measurements to study the server-
side of the DNS infrastructure. Within our study we find common configurations
of DNS name servers, that utilise server-side caching DNS resolvers to han-
dle requests from the client-side resolvers. In these configurations the DNS
name servers are hidden behind recursive caching resolvers. In particular, the IP
address of the server-side resolver is registered as the authoritative name server
in the zone file of the target domain. As a result, client-side resolvers query that
IP address (of the server-side resolver) and never communicate with the name

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 3–22, 2015.
DOI: 10.1007/978-3-319-24174-6 1

4 H. Shulman and M. Waidner

server directly (its IP address is not exposed to the client-side resolvers). In this
work we identify and study the name servers supporting such configurations.

Caching constitutes an important building block in the design of scalable
network architectures, and offers advantages such as an improved availability,
security and reduced latency for responses to clients. Caching proxies are com-
mon on the client-side of the DNS infrastructure, where the DNS resolvers are
connected to (often a chain of) caching forwarders. Such configurations are, how-
ever, much less known, and not studied, on the server-side. In our work, we find
and study DNS configurations that use server-side caching resolvers, which han-
dle the DNS requests, and relay them to the name servers. Our finding indicates
that the server-side DNS architecture in the Internet is not limited to the tradi-
tional model, where the client-side resolution platform (i.e., a client-side resolver
possibly connected via a chain of proxies) communicates with the name server
directly (see Fig. 11 in Appendix, Sect. A). Our study also shows an increasing
shift towards outsourcing DNS services’ operation to expert third parties. Out-
sourcing services is an increasingly common practice in the Internet, [4]; it saves
operational and management costs by using expertise and skilled personnel of
the third party service provider, e.g., like the services provided by the cloud
platforms. We characterise the operators of such caching server-side resolvers,
and evaluate the security of domains using server-side caching resolvers. We dis-
cover severe vulnerabilities exposing to attacks both the misconfigured networks
and other Internet victims. Our findings indicate that the hosts maintained by
the third parties are often misconfigured recursive DNS resolvers, that do not
support best practices and known security recommendations, e.g., [RFC5452,
RFC4697]. Our study shows that many of the networks with the vulnerabilities
and misconfigurations are benign, popular and often security aware – this is in
contrast to anecdotal belief that misconfigurations are an artifact of security
oblivious networks, [32]. We also explore the challenges that outsourcing DNS
operations introduces for adoption of cryptographic defences for DNS.

Our study encompases domains in forward and reverse DNS trees. In a
forward DNS tree we study 50K-top Alexa domains and Top-Level Domains
(TLDs). In a reverse DNS we study the domains that correspond to IPv4 address
blocks, i.e., all the network blocks in classes A, B and C – x.in-addr.arpa.,
y.x.in-addr.arpa. and z.y.x.in-addr.arpa. respectively. Forward DNS typi-
cally hosts widely used services, such as web and email. Reverse DNS lookups
are commonly utilised by security mechanisms, network operators and security
researchers. For instance, domains in a reverse DNS tree are used to prevent
spam and phishing attacks, to provide topological or geographic information of
routers, or to prevent BGP prefix hijacking attacks.

We summarise our findings in Table 1. The first column (to the left), lists the
DNS trees that we studied. The second column (to the left) contains the number
of registered domains that we tested. This is mainly relevant in the reverse DNS
tree, where a large fraction of the domains (that correspond to IPv4 address
space) are not registered. The third column (to the left) contains the number of
name servers in each domain space. The subsequent two columns report the name

Towards Security of Internet Naming Infrastructure 5

Table 1. Summary of the results reported in this work.

DNS Domains Name Fixed Predictable Failure Server Open

tree servers src port src port w/DNSSEC side cache cache

Forward DNS Alexa 50K 32.5K 4% 12.7% 23% 38% 6%

Forward DNS TLDs 568 3.2K 0.8% 1.6% 2% 12% 3.73%

rDNS x.in-addr.arpa. 229 1.5K 7% 14% 2% 14% 8%

rDNS y.x.in-addr.arpa. 28K 97K 10% 19% 32% 41% 19%

rDNS z.y.x.in-addr.arpa. 2, 767K 9, 687K 14% 19.5% 34.5% 38% 21%

servers with open server side resolvers that use fixed or predictable ports. Then
we report on the number of servers that fail with DNSSEC enabled packets. The
two rightmost columns contain the number of servers with server-side resolvers
and with server-side resolvers supporting open recursive resolution respectively.

Organisation

This paper is structured as follows. We review related work and put our results in
context in Sect. 2. In Sect. 3 we present a study of the server-side DNS infrastruc-
ture, and describe our methodology for detection of server-side DNS resolvers.
In Sect. 4 we evaluate security of domains that use server-side resolvers, and
conclude this work in Sect. 5. We provide an overview of DNS and DNSSEC in
Appendix, Sect. A.

2 Related Work

In the following section we put our work in context with the related research. In
particular, our work relates to prior studies of the: (1) DNS infrastructure, (2)
misconfigured networks, and (3) DNS security.

2.1 Understanding the DNS Infrastructure

Studying the DNS infrastructure is important for design of Internet systems and
future applications, and for construction and adoption of security mechanisms,
including defences for DNS, e.g., against Denial of Service (DoS), [BCP38], or
cache poisoning attacks, [RFC5452], and for defences that utilise DNS for authen-
tication of services, such as IP prefixes authentication for routing security with
ROVER, [6], or anti-spam mechanisms with SPF, [8].

A number of research works studied the client-side DNS infrastructure and
vulnerabilities, e.g., [13,17,24,31]. On the server-side of the DNS infrastructure,
[20,26] found multiple transitive trust dependencies within the DNS zones. Other
work on the name server-side typically focuses on examining the DNS packets,
exchanged between resolvers and name servers, such as for detection of malicious
domains [1,5] or to detect incorrect uses of DNS, e.g., [3].

6 H. Shulman and M. Waidner

In this work we study the server-side architecture of the DNS infrastructure.
In contrast to client-side resolvers, which the clients can identify by, e.g., inspect-
ing the hosts file, the server-side resolvers are transparent to the clients, to the
client-side resolvers and to network operators. This prevents the clients from
being able to identify security vulnerabilities, or sources of failures, or tracking
by third party DNS operators.

We also find that often, in contrast to best practices, [RFC5358, BCP140], the
server-side third party resolvers support open recursive resolution, i.e., willing
to lookup names in any domain and not only in the domain which they are
‘authoritative’ for.

We explore domains’ configurations that use server-side resolvers, and illus-
trate the scope and the extent of this phenomenon in our work. We characterise
the operators of the server-side DNS resolvers, and find that these are typically
third party service providers.

2.2 Misconfigured Networks

Misconfigured networks pose a significant threat to the stability and availability
of the Internet clients and services. Indeed, there is an established correlation
between mismanagement and networks reponsible for malicious activities, [32].
Exploiting vulnerabilities in misconfigured networks is a stepping stone towards
more sophisticated attacks and they are often abused by the attackers as prox-
ies to attack victim networks and clients. Open recursive resolvers, willing to
perform a recursive resolution for any Internet client, is a main source of the
misconfigurations. Networks, operating open recursive resolvers, pose a particu-
lar threat, not only to the clients using their services, but also to the stability of
the Internet, as they are frequently exploited in reflection amplification Denial
of Service (DoS) attacks on victim networks and services, [22]. Unfortunately,
despite the significant operational and research efforts to detect and characterise
networks running open resolvers, [24,32], and to provide recommendations to
mitigate the threat that they pose, the number of misconfigured networks is still
overwhelming. One of the factors for this situation may be a common belief that
since the misconfigured networks do not pose internal threat to their operators
and clients, there is little incentive to fix the vulnerabilities, [32].

We identify one of the factors responsible for misconfigurations of networks:
outsourcing services to security oblivious third parties. Although out-
sourcing network and services management to third parties can be effective and
convenient, our results indicate that the security of these services should be
carefully checked. We show experimentally that the vulnerable services are typi-
cally not hosted on the ‘misconfigured’ networks themselves, but on the networks
which the third parties operate. Our findings also indicate that to optimise profit,
third parties host multiple services of different customers on the same hosts. As
a result, a vulnerability in one service, e.g., a web server, can be exploited to
attack other services, e.g., DNS or email servers.

We hope that our work will raise awareness to the importance of validating
security of the services provided by the third parties. Our message is that the

Towards Security of Internet Naming Infrastructure 7

services provided by the third parties should not be blindly relied upon. Clients
using third party services should validate the infrastructure of the third party
service providers. We design tools that enable clients to infer information about
the server side of the DNS infrastructure.

2.3 DNS Security

There is a long history of attacks against the DNS, most notably, DNS cache
poisoning, [9,11,12,15,27,28]. In the course of a DNS cache poisoning attack,
the attacker hijacks a victim domain by providing spoofed DNS records in DNS
responses, thus redirecting clients to incorrect hosts, e.g., for credentials theft
or malware distribution. As DNS plays an essential role in networks operation,
cache poisoning can inflict economic losses and privacy damages and has a detri-
mental impact on the functionality and availability of the Internet clients and
services. In particular, open recursive resolvers, that do not support source port
randomisation and other recommendations, [RFC5452, RFC4697], are a lucra-
tive target for cache poisoning attacks.

We find that often the server-side resolvers do not support source
port randomisation and use fixed or predictable ports for their
requests to the name servers (see columns 4 and 5 in Table 1). Resolvers
with predictable ports are even more prevalent in domains in the reverse DNS
tree, which is surprising since the reverse DNS is commonly utilised by the secu-
rity mechanisms, hence it is expected to be better protected.

To mitigate the detrimental damages of cache poisoning attacks, IETF
designed and standardised a cryptographic defence for DNS: DNSSEC
[RFC4033-RFC4035]. A secure DNS would be resilient to cache poisoning attacks
and would facilitate a wide range of applications and systems, such as secure
routing (with ROVER [6]), secure email (with PGP keys distribution [29]).

Although proposed in 1997, DNSSEC is still not widely deployed; [18] found
that less than 3% of the DNS resolvers validate DNSSEC records. Important
domains, such as the root and top-level domains (TLDs) are signed. However,
the fraction of signed zones in lower domains, such as the second level domains
(SLDs), is less than 1%.

While there has been a considerable effort to identify the challenges to
DNSSEC deployment, the focus was generally on the issues that large DNSSEC
responses incur with the legacy firewalls and middleboxes on the resolver side,
e.g., [14,30]. Zones signing was thought to be just a matter of motivation, and a
folklore belief was that incentivised operators could sign their domains ‘today’.

Our study shows that the server-side resolvers impose obstacles on adoption
of DNSSEC, and signing the zones would disrupt the DNS functionality to those
domains. The reason is that the server-side resolvers often cannot operate with
DNSSEC specific records or flags, [RFC4034-RFC4035], such as the DO bit in
EDNS record, [RFC6891], and fail with an exception or a timeout; see the third
column from the right, titled ‘failure w/DNSSEC’, in Table 1.

8 H. Shulman and M. Waidner

In a recent work, [25], we studied security of encryption proposals for DNS,
and showed that the intermediate proxies foil the security guarantees expected
of the encryption schemes.

3 Studying DNS Name Servers

In this section we explore the architecture of the server-side DNS infrastructure.
In particular, we answer the following questions: in Sect. 3.1 we consider the
what - we identify common architectures of DNS name servers that use server-side
caching DNS resolvers; in Sect. 3.2 we address the why - we study the advantages
of such configurations; finally, in Sect. 3.3 we explore the who - we characterise
the operators of server-side resolvers.

In Sect. 3.4, we introduce our methodology for detecting DNS name servers’
architectures that use server-side DNS resolvers, and report on the extent and
the scope of this phenomenon among popular domains in forward and in reverse
DNS trees; our results and findings are summarised in Table 1.

3.1 Recursive Authoritative Name Servers

Our central finding is a common use of caches, that are configured to relay all
the communication between the client-side resolvers and the name servers; see
Fig. 1. In particular, we find that a large fraction of the domains in forward and
reverse DNS trees are configured in the following way: an authoritative name
server is hidden behind a server-side resolver. The IP address of the server-side
resolver is reported as the name server in the zone file of the target domain
(and in its parent). The server-side resolver receives DNS requests from the
client-side resolvers and forwards them to the name server hosting the zone
file for the target domain. Upon responses from the name server, the server-side
resolver caches the DNS records and subsequently returns them to the requesting
client-side resolver. Similarly to the standard DNS resolvers functionality, if the
requested record is in the cache, the server-side resolver does not forward the
query to the name server, but responds from the cache. The setting is illustrated
in Fig. 1. We call the servers configured according to this setting the recursive
authoritative name server (RANS). We report on the fraction of RANSes, among
domains in forward and reverse DNS trees, in Table 1. The server-side resolver
infrastructure may consist of a number of hosts, whereby a chain of resolver relay
the request from one to another, until the request reaches the name server; see
Fig. 2. We found that 42% of the RANSes use more than one host in the server-
side resolver infrastructure; we present the measurement methodology that we
used in Sect. 3.4.

3.2 Why Use Server-Side Caches?

In this section we attempt to address the following question: what are the rea-
sons for such configurations? We list the motivations for configuring caches
‘before’ the name servers, and compare to similar practices in other systems.

Towards Security of Internet Naming Infrastructure 9

Client-Side
Resolver

A?www.foo.bar

Client

IP Domain

Server-Side
Resolver
1.2.3.5

ns.foo.bar
Name Server

1.3.8.7

IP Domain

www.foo.bar A 1.3.8.8

A?www.foo.bar

www.foo.bar A 1.3.8.8

w
w

w
.fo

o.
ba

r
A

 1
.3

.8
.8

1

8

2

4

ns.bar
Name Server

5.6.7.8

A
?

w
w

w
.foo.bar

6

7

3

5

Recursive
Authoritative
Name Server

Fig. 1. Resolution for www.foo.bar
hosted on a RANS.

Client

ns.bar
Name Server

5.6.7.8

Client-Side
Resolver

A?www.foo.bar

IP Domain

Server-Side
Resolver
1.2.3.5

ns.foo.bar
Name Server

1.3.8.7

IP Domain

www.foo.bar A 1.3.8.8

A?www.foo.bar

www.foo.bar A 1.3.8.8

w
w

w
.fo

o.
ba

r
A

 1
.3

.8
.8

1

10

4

A
?

w
w

w
.foo.bar

9

3

5

www.foo.barA 1.3.8.8

A?www.foo.bar

7

6
Forwarder

7.7.7.7

8

Recursive
Authoritative
Name Server

2

Fig. 2. Resolution to a RANS with a
chain of server-side resolvers.

Improved Performance and Availability. To speed up access to their servers web-
site operators utilise content delivery networks (CDNs), such as Akamai, these
CDNs cache content in their global network and make it available to end users
through geographically dispersed edge servers that are close to the users. Using
CDNs for web content is a known practice. Our study shows that this prac-
tice is also common among the naming infrastructure. In particular, utilising
distributed resolving hosts to retrieve, cache and supply DNS records to client
can reduce latency for clients’ requests – the IP address of the resolver can be
ANYCAST-ed and the clients will perform lookups against the resolvers that
are close to them.

Furthermore, if the name server is connected via a low bandwidth channel to
the Internet or if its hardware is not suitable for handling multiple requests, a
resolver with high bandwidth connectivity to the Internet or resolver’s instance,
distributed via ANYCAST, can solve this problem.

Enhanced Security. If the domain operator does not have the required expertise
to enhance security of its name server, it can outsource this function to third
party DNS operator. It is much more difficult to attack a hidden name server,
since its IP address is not known. It is also much easier for the domain operator
to prevent attacks, by configuring a firewall rule that allows requests to the name
server only from one specific IP address – the resolver of the third party serving
the (hidden) name server.

3.3 Who Operates and Uses RANS?

In this section we characterise operators of the server-side resolvers in RANSes,
and the domains that use such configurations. To answer the former question
we check the owner of the IP address of the server-side resolver, to answer the
latter we check the owner of the domain of the name server.

Operators of RANSes. Running whois over the IP addresses of the server-side
resolvers in RANSes, indicates that at least 57% of the IP addresses belong to
networks of commercial CDNs, [21], (such as Akamai, AT&T, NTT communica-
tion, LimeLight, Level 3 Verisign and Google). To identify CDNs, we used the

www.foo.bar

10 H. Shulman and M. Waidner

traceroute traces, and for each name server’s IP address we checked whether
traceroute from different locations yields different network adapters at the last
host before the name server.

Typically, the caching service provided by the caching resolvers in a RANS
configuration is purchased for a fee, however we also observed ‘anecdotal’ con-
figurations, perhaps free riders, whereby domains’ operators configure the open
resolvers run by public open resolvers, e.g., such as Google Public DNS, as the
IP addresses of the name servers of their domains.

Customers of RANSes. We use a domain query tool DIG to collect the set of NS
records for RANS domains. Then, to characterise the domains with the RANS
configuration, we perform the following tests over the NS names that we collected:
(1) we check the age of each RANS domain, (2) we check the Alexa rank of the
domains and (3) we check the type of domains.

These tests enable us to establish the ‘reputation’ of the networks which use
the RANS configurations.

The age of the RANS domains can be used to establish domains’ reputation.
In particular, malware domains are typically characterised with a short lived
duration (the attackers frequently change domain names to avoid detection)
while a long lived domain can be used as an indicatation of legitimate operators.
More than 50% of the RANSes were registered on average a decade ago.

Many of the domains belong to financial institutions, university networks
or Internet operators. These results show that many of the RANSes domains,
are located in legitimate networks and run by legitimate (and not malicious)
network operators.

Domain Age. Benign domains are usually characterised by a relatively long
age. Domains used for malicious purposes instead are typically active only for
short periods of time. The average age of benign domains is much higher than
the average age of malicious domains. we have estimated that the average age
of malicious hostnames is less than 5 weeks.

We utilise whois to find the average age of the RANS domains. The average
age for domains in Alexa is 517 weeks, for a TLD the differences are very diverse:
approximately 18% are more than 20 years old, 11% are between 3 and 5 years
old, and 71 are less than 2 years old. In a reverse DNS tree, the average domain
age is 972 weeks.

Alexa Rank. We examined the Alexa rank of domains running RANSes, and
find that more than 60% of the RANSes are ranked below 25,000 in Alexa; the
results are plotted in Fig. 5.

Domain Type. We use a whois application over the RANS domains in forward
and reverse DNS trees. We process the description field (descr) and organisation
name (org-name) and check the values against a list of universities and network
operators that we compiled. Those not appearing on the list, but with keywords
such as university, network, school, were tested manually. We found that 38%
of the RANSes domains belong to educational sector, most notably universities,
approximately 12% belong to network operators, e.g., Sprint. Approximately

Towards Security of Internet Naming Infrastructure 11

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

C
D

F
 (

%
)

Latency to Name Server (ms)

Fig. 3. Latency of the cached responses
of the server-side resolver vs. responses
from a (hidden) name server.

Fig. 4. Latency probing for the cached
(λ seconds) vs. uncached record, i.e.,
including (τ seconds) latency to the
name server.

18% belong to domains in a financial sector. The rest could not be determined
due to unknown or missing description or organisation name in information
reported by the whois service.

3.4 Methodology for Detecting RANSes

We use the following techniques to identify domains with RANS architectures:
(1) timing side channels, (2)Time-to-Live (TTL) and (3) open recursive resolution.

Timing Side-Channels. We design a timing side channel, which utilises the
caching of the server-side resolvers, and allows to identify RANSes. The tim-
ing side channel is based on the difference in the latency of the responses relayed
by the server-side resolvers to the (hidden) name servers, vs. the latency of the
responses returned from the cache of the server-side resolvers. The timing channel
is due to the caching of the resolvers. Our evaluation of a target domain foo.bar
proceeds as follows: (1) we query a name server of foo.bar for a non-existing
(random) subdomain $str.foo.bar, and measure the latency of the response;
(2) we repeat the first step with the same query $str.foo.bar and measure the
latency. If the name server uses a server-side resolver to handle the DNS queries
for clients, then the latency of both responses will differ. In particular, since
the record $str.foo.bar in the first query is not in the cache, it is relayed by
the server-side resolver to the name server, a subsequent request for the same
record is served from the cache. Hence the latency of the first request is higher
than the latency of the second request – in this case we mark the name server
infrastructure as a RANS. We illustrate the measurement technique in Fig. 4.

To account for a potential noise, such as occasional network load or load
balancing mechanisms (where the query is sent to a different name server each
time), we repeat the experiment for each name server 20 times, using a different
random subdomain $str at each invocation.

The results of the RANSes measurements are plotted in Fig. 3. We set a
threshold at 70 ms (and above), which is the typical delay in the Internet.

12 H. Shulman and M. Waidner

The values below 70 ms but above 30 ms, were marked as ‘suspicious’. To con-
firm the ‘suspicious’ RANSes we used an additional TTL-based side channel
(described below). As can be seen, the typical latency is above 100 ms. This
significant difference in the latency is due to the fact that typically server-side
resolvers and the (hidden) name servers are located in different Autonomous
Systems (ASes).

Time-to-Live (TTL). Our measurement shows that server-side resolvers sup-
port a standard DNS caching mechanisms. Namely, upon receiving a response
from the (hidden) name server, the records are sent to the requesting client-side
resolver and are cached. The cache reduces the TTL value of the records, until
it expires, and the records are evicted form the cache. We utilise the caching to
identify server-side resolvers. The idea is to send a request for the same record
twice (to the same name server) and check the TTL value of the record in both
responses. If the TTL in the second response is lower than the TTL in the first
response, then it is a RANS.

Our finding provides one possible explanation to the phenomenon of the incon-
sistency of TTL values in records within Alexa domains, as reported by [24]. In par-
ticular, [24] found that TTL of responses is distorted before reaching the requesting
client, and that only 19% of domains have consistent TTL values. We postulate
that the bias could have resulted due to the requests to domainswhich useRANSes,
see Fig. 1, and thus responses were served from the cache of the resolver.

The TTL side channel provides a more accurate metric, than the timing side
channel, and enables to detect RANSes, where the latency between the server-
side resolver and the (hidden) name server is not significant, e.g., below 30 ms.
Although the TTL side channel is more reliable it nevertheless depends on the
configuration of the proxy caching resolver. In particular, if the caching resolver
does not accurately maintain the TTL of the cached records, the TTL channel
cannot be relied upon. In contrast, the timing side channel, albeit less accurate,
provides for a more reliable metric. For detection of server-side caching resolvers
we recommend to utilise both side channels.

Fig. 5. Alexa rank of ORANSes; the inner graph presents
results plotted in log-scale.

Open Recursion. We
found that some of the
RANSes are configured
as open resolvers, i.e.,
the recursive resolution
that they are willing to
perform is not limited
to a specific domain (for
which they are regis-
tered as authoritative)
but they will look up
records in any domain.

We call these ORAN
Ses. Open recursive res-
olution is known to
expose to attacks and is
considered a bad practice.

Towards Security of Internet Naming Infrastructure 13

Blocking recursive resolution should also be enforced on the server side, and
not only on the client side of the DNS infrastructure. On the server-side the goal
is to restrict queries only for resources within the domain for which the target
name server is authoritative, while serving queries from any clients. In contrast,
on the client-side, the goal is to allow resolution for resources within any domain,
but only for a limited set of clients, e.g., those that are located on the same
network as the recursive resolver. To identify ORANSes, we set up a domain and
sent requests for records within our domain, to the name servers, authoritative
for the tested domains within forward and reverse DNS trees. Those servers that
forwarded the requests to our name server were marked as ORANSes.

We identified 6% of open RANSes in 50K-top Alexa domains, 3% of open
RANSes in TLDs, and we found a much larger fraction of the domains in a
reverse DNS tree; the results are summarised in Table 1.

We discovered almost 3K ORANSes among top 50K Alexa domains and 21
ORANSes among TLDs. This translates to approximately 40 ORANSes in every
1K Alexa domains. We examined the Alexa rank of domains running ORANSes,
and report our findings in Fig. 5.

To identify resolvers’ chains, i.e., those that use forwarders, we concatenated
the destination IP address (to which we sent the DNS request) as a subdo-
main of our domain; i.e., we sent DNS requests for A record of a resource in
dest-ip.our-domain.tld domain, where dest-ip is the IP address of the server
to which we sent the requests. This enabled us to associate the requests that we
sent, with the requests that were subsequently received at our name server. Upon
receipt of the request on our name server we validated if the request arrived at
our name server from the same IP address, as the one to which it was sent. If
not, we marked the ORANS as consisting of resolvers’ chain. We found that 42%
of the RANSes are using a chain of recursive resolvers, consisting of at least two
intermediate resolvers; see Fig. 2.

We found that 58% of the ORANSes use the same source IP in the requests
which they forward to the name servers, as the IP addresses on which they
receive requests from the clients; namely, support the configuration illustrated
in Fig. 1. In particular, 42% of the DNS requests for A record of a resource in
our-domain.tld domain, which we sent to the ORANSes, were received at our
name server from different IP addresses.

We find that in 84% of the requests, the IP address to which we sent the
request, was located in a different AS than the IP address from which we received
the request on our name server.

Misconfigurations. Almost 10% of the RANSes in 25K-top Alexa domains return
responses from a different IP address than the one to which the request was sent
by the client-side resolver. In this case, the response (sent from an incorrect IP
address of the name server) is ignored by the client side resolver, and after a
timeout the query is resent to another name server.

14 H. Shulman and M. Waidner

4 Evaluating (in)Security of RANSes

In this section we evaluate the support of best practices and popular defences
against cache poisoning by the server-side resolvers in the RANSes and ORANSes
configurations.

4.1 Services Coresidence

We find that the server-side resolvers in RANSes frequently serve more than a
single service. In particular, we tested for a ‘coresidence’ between web and DNS
servers, in two phases: (1) we use nmap to check for open ports 80 or 443 on server-
side resolvers in RANSes; then, in step (2) we use telnet to connect to the web
server on port 80, and s client of openssl to connect web servers that support
communication over SSL/TLS, [RFC6101, RFC2246]. We find that more than
60% of server-side resolvers host web and DNS services on the same machine.
Hosting multiple services on the same machine is a known risky practice, in
particular, a vulnerability in one service can enable attackers to take control
over the host and subvert the security of the other services, e.g., vulnerability in
PHP web servers enables attackers to obtain a shell on the victim host, [2].

4.2 Source Port Randomisation

Source port randomisation (SPR) is a main defence against DNS cache poison-
ing attacks. Resolvers supporting SPR send DNS requests from unpredictable
(hopefully randomly selected) source ports. We tested support of SPR among
server-side resolvers in ORANSes and RANSes. We first describe the sampling
techniques that we used, and then analyse the values of the sampled ports.

Sampling SPR in ORANSes. We triggered, via each ORANS, four consecutive
DNS requests to subdomains in our domain www.our-domain.tld, and capture
the requests with a tcpdump on a name server hosting a zone file for our domain.

Sampling SPR in RANSes. The measurement of recursive resolvers in RANSes
is tricky since we cannot trigger requests to a name server that we control –
resolvers in RANSes are limited to resolving requests within a domain which
they serve. The approach that we employ is based on a timing side channel
due to packet loss inflicted by the attacker via socket overloading between hard-
ware interrupts. The kernels in operating systems (OSes), e.g., Unix variants
and Microsoft platforms, use hardware interrupts for event notification purposes
in communication with input/output hardware components. Network interface
cards (NICs) generate interrupts to notify the kernel of arrival of new pack-
ets. Hardware interrupts can impose significant CPU overhead. This is due to
the fact that hardware interrupt is associated with context switching of saving
and restoring processor state, see details in [16]. After the notification of a new
packet arrival the kernel processes the packet, and then invokes TCP/IP pro-
tocol processing. However, arrival of a new packet distrupts protocol processing
since hardware interrupts have higher priority over other tasks. Thus under a

www.our-domain.tld

Towards Security of Internet Naming Infrastructure 15

high traffic load, the socket may fill up if the interrupt level is high, and when
the socket queue is full the arriving packets will be dropped. Techniques to avoid
socket overloading was studied in the scope of improving web servers efficiency,
e.g., [19,23]. We use the socket overloading technique to elicit side channels for
remote detection of port used by the resolver in a RANS. For our measurements,
we employ 10 PlanetLab hosts to send the UDP packets’ bursts. First we mea-
sure latency for requests to the resolver for records that are not in its cache
(i.e., we concatenate a random subdomain to requests). Then, to sample if the
resolver is using some port p, we send a burst of packets to a port p, causing
socket overloading between kernel interrupts; this results in packets’ loss. If the
resolver used p to send its request to some name server, then the response from
the name server to port p is also discarded; after a timeout (typically 1 second)
the resolver retransmits the request. We use packet loss from the name server
as an indication of hitting the correct port. Notice that a packet loss is caused
only when the burst of packets is sent to the same port on which the resolver
expects to receive a response. If a burst is sent to a different port, than the one
from which the resolver sent its request, no loss will be incurred.

We find that packets of size 500 bytes provide for optimal packets’ loss. This is
probably due to the fact that they cause maximal number of hardware interrupts
and filled the kernel buffers with bytes.

Fig. 6. Meet-in-the-middle port dis-
covery procedure.

As a result, when the response from the
sever arrived between the interrupts, it was
discarded since the buffers were full. We first
use the socket overloading technique above
to sample for known fixed ports, and then for
sequential ports. In case of sequential ports,
we start with the highest port, probe each
port 5 times, and then reduce the port by
one, to next port; see Fig. 6.

Analysing Port Selection. The results are plotted in Figs. 7, 8, and 9. As can be
seen almost 10% of the four consecutive requests contain a fixed port 53, and
the similarity across the four requests is very high.

Among TLDs in forward DNS less than 1% use a fixed port, and among
50K-top Alexa domains 4% use a fixed port. In a reverse DNS domains that
correspond to classes A, B and C – 7%, 10%, and 14% respectively use fixed
ports. The most popular (6.58%) fixed port is 32, 768, then follows a fixed port
53; see distribution of fixed ports in Fig. 7. Most of the requests that did not
seem to use predictable ports, contained ports from small ports’ ranges, which
enables efficient exhaustive search of the ports pool. To calculate the ports’
ranges, plotted in Fig. 8, we applied the following function over the ports in our
four consecutive requests A,B,C and D: (ABS(A−B)+ABS(C−D)+ABS(A−
D))/3 As can be seen, only less than 10% of the requests have ports that differ
by 17K, while more than 90% differ in less than 256 between them. In contrast,
truly random ports would have an average difference of 216/2, and would result
in a normal distribution. Figure 9 plots the distribution of unpredictable ports in

16 H. Shulman and M. Waidner

1

2

4

8

16

32

64

16 64 256 1024 4096 16384 65536

F
ra

ct
io

n
of

 P
or

t V
al

ue
s

(%
)

[lo
g-

sc
al

e]

Popular Fixed Ports [log-scale]

Fig. 7. Distribution of fixed ports in
use by RANSes.

0

20

40

60

80

100

1 4 16 64 256 1024 4096 16384

C
D

F
 (

%
)

Ports Variability [log-scale]

Fig. 8. Ports variability across differ-
ent DNS requests.

0

20

40

60

80

100

1 4 16 64 256 1024 4096 16384

C
D

F
 (

%
)

Alexa Domains Sorted by Rank [log-scale]

Fig. 9. Distribution of unpredictable
ports within 25K-top Alexa domains.

0

20

40

60

80

100

1 2 4 8 16 32 64 128 256 512

C
D

F
 (

%
)

Transitive-Trust Dependenciess [log-scale]

Legend
Alexa
TLD

Fig. 10. Transitive-trust dependencies
of domains in 50K-top Alexa and
TLDs.

use by RANSes in 25K-top Alexa. The curve shows that port unpredictability is
correlated with domain popularity – less popular domains use more predictable
ports.

4.3 DNSSEC

The root zone and the top-level-domains (TLDs) are signed, but, as our measure-
ments indicate, the adoption of DNSSEC within lower domains is extremely low;
see Table 1. An interesting question is, how difficult is it to deploy DNSSEC, and
whether there is software support for this. This question is particularly interest-
ing in light of the coresidence of multiple domains, and in light of our discovery of
recursive authoritative servers configurations. Our study provides a novel angle
to the deployment of DNSSEC, allowing to look into the ability of name servers
to support DNSSEC. In particular, previous work either measured the fraction of
signed zones, [10,14,30], or the fraction of validating resolvers, [7,18], however,
the ability and the readiness of the name servers to adopt DNSSEC or serve
signed zones did not receive sufficient attention. We initiate this investigation in
our work.

We sought to measure two quantities: (1) What fraction of open recursive
authoritative name servers are ‘DNSSEC compatible’, i.e., can operate with

Towards Security of Internet Naming Infrastructure 17

responses containing DNSSEC records. (2) What fraction of open recursive
authoritative name servers perform strict validation of DNSSEC responses.

Evaluation Methodology. We set up three domains1: (1) without DNSSEC, (2)
correctly signed with DNSSEC, (3) incorrectly signed. Domain (1) was not
signed, and served plain DNS responses. Domains (2) and (3), were signed
with 1024 bit keys RSA/SHA-1 (algorithm 5), [RFC3110,RFC4034]. Domain (3)
served expired keys in DNSKEY records and invalid signatures in RRSIG record.

We found that 39.2% of the open recursive authoritative name servers could
not process signed DNSSEC responses, and returned FMTERROR/SRVFAIL, 29.8%
stripped DNSSEC records from responses and returned plain DNS responses
(without signatures and keys). Together this resulted in a bit more than 69%
of servers that can not support DNSSEC. We found that only 30.9% of the
open recursive authoritative name servers return DNSSEC enabled responses, in
return to requests for records in signed domains.

We further tested support of EDNS0 among the open recursive authoritative
name servers. Clearly, the 30.9% of them that support DNSSEC also support
EDNS0. What about the remaning 69% that do not support DNSSEC. We found
that 52% of them support EDNS0. In total, we observed that 82% of the open
recursive name servers support EDNS0 while 18% do not.

To test whether open recursive authoritative name servers perform strict
validation of DNSSEC responses, we ran test (2) on the 30.9% of the open
recursive authoritative name servers that could serve signed responses. None of
the queries failed, namely, the open recursive authoritative name servers do not
support strict DNSSEC validation. This result is consistent with measurements
reported in [18], which showed that most recursive DNS resolvers, that support
DNSSEC, do not perform strict DNSSEC validation.

4.4 Implications of Vulnerable RANSes

Vulnerabilities in RANSes can be exploited for large scale DNS cache poisoning
attacks. In particular, in contrast to the tranditional cache poisoning, where
only a single resolver, and the clients using it, fall victims – name servers using
vulnerable third party caches expose any resolver querying that name server to
attacks.

Such vulnerabilities in domains in a forward DNS tree expose to surveillance,
distribution of malware, credentials theft, and more. Exploits in domains in a
reverse DNS tree can be exploited to subvert security mechanisms, such as anti-
spam defences, via PTR records, or routing security, such as ROVER. Dependency
on Vulnerable RANSes. Best practices for ensuring availability and security of a
domain in the DNS infrastructure recommend defining a number of name servers
for each domain and configuring these name servers under at least two differ-
ent parent domains. This redundancy provides for stability of the domain and
prevents a single point of failure. In particular, if one of the parent domains is
1 For compliance with anonymisation of the submission the domain names are

removed.

18 H. Shulman and M. Waidner

not accessible, the domain will remain functional via the other parent domains.
As a result of this practice, it is common in a DNS infrastructure for a domain
name to depend on many other domains and resolving a single domain name
often requires traversing multiple other domains. This phenomenon is called
transitive trust dependency, introduced in [20]. On the flip side, while ensuring
availability, this redundancy introduces a risk in case of dependencies on vul-
nerable domains. In Fig. 10 we plot the CDF of the number of transitive-trust
dependencies in 50K-top Alexa and TLDs: 60% of Alexa domains depend on 12
or more domains, and 60% of TLDs depend on 6 or more domains. Subverting
one of the domains in a transitive trust dependency chain would impact all the
dependant domains.

5 Conclusions

In this work we performed a study of the server-side DNS infrastructure. Our
results identify two common phenomena: (1) use of server-side caching DNS
resolvers and (2) outsourcing security and availability of the domains to third
party service providers. We study the implications of such architectures on the
security, availability, and operational characteristics of popular domains in for-
ward and reverse DNS trees, as well as on the design and adoption of security
mechanisms for DNS. We show that often server-side resolvers do not support
best practices and are vulnerable to cache poisoning attacks. In contrast to client
side resolvers, where a vulnerability impacts only the clients on the network of
the resolver, a vulnerability in a server-side resolver applies to any Internet client
querying the vulnerable name server, and not limited to a specific network.

Since the server-side resolvers are transparent to the clients (client-side
resolvers or network operators) querying them, the clients have no means to
identify such architectures. Hence, the clients cannot validate whether they are
vulnerable to cache poisoning attacks or identify failures, e.g., due to use of
security mechanisms that the server-side resolvers cannot process, such as sig-
naling of DNSSEC. We design a methodology and implement tools for detection
of server-side resolvers and evaluation of their security. The results reported in
this work, and the tools that we developed, are of interest and of importance for
domain operators and clients, and enable automated evaluation of the security
provided by third parties.

Acknowledgements. This research was supported by the German Federal Ministry
of Education and Research (BMBF) within EC SPRIDE, by the Hessian LOEWE
excellence initiative within CASED, and co-funded by the DFG as part of the CRC
1119 CROSSING.

A Overview: DNS and DNSSEC

Domain Name System (DNS) is composes of a client-server protocol, used by the
resolvers to retrieve domain records in zone files maintained by the name servers.

Towards Security of Internet Naming Infrastructure 19

The resolvers communicate to the name servers using a simple request-response
protocol (typically over UDP); for instance, (abstracting out details) to trans-
late www.foo.bar resolvers locate the name server ns.foo.bar, authoritative for
foo.bar, and obtain the IP address of the machine hosting the web server of the
website www.foo.bar, see Fig. 11. Resolvers store the DNS records, returned in
responses, in their caches for the duration indicated in the Time To Live (TTL)
field of each record set.

The resource records in DNS correspond to the different services run by the
organisations and networks, e.g., hosts, servers, network blocks.

Recursive
Resolver

A?www.foo.bar

Client

Root
Name Server

IP Domain

ns.bar TLD
Name Server

5.6.7.8

IP Domain

ns.foo.bar SLD
Name Server

1.2.3.5

IP Domain

www.foo.bar A 1.2.3.4

A?www.foo.bar

ns.foo.bar A 1.2.3.5

1

5

2

3

4

Fig. 11. DNS resolution process for www.foo.bar and the involved DNS servers.

The zones are structured hierarchically, with the root zone at the first level,
Top Level Domains (TLDs) at the second level, and millions of Second Level
Domains (SLDs) at the third level. The IP addresses of the 13 root servers are
provided via the hints file, or compiled into DNS resolvers software and when a
resolver’s cache is empty, every resolution process starts at the root. According
to the query in the DNS request, the root name server redirects the resolver, via
a referral response type, to a corresponding TLD, under which the requested
resource is located. There are a number of TLDs types, most notably: country
code TLD (ccTLD), which domains are (typically) assigned to countries, e.g., us,
il, de, and generic TLD (gTLD), whose domains are used by organisations,
e.g., com, org, and also US government and military, e.g., gov, mil. Domains
in SLDs can also be used to further delegate subdomains to other entities, or
can be directly managed by the organisations, e.g., as in the case of ibm.com,
google.com.

A DNS domain is divided into zones, and includes all the nodes of the subtree
rooted at the zone. A DNS zone constitutes a portion of a domain name space. A
zone contains only the nodes that are managed by the name server at the named
node. A zone can be divided into subdomains, with its own DNS name servers.
At the lowest level of the DNS tree, in the leaves of the tree, the terms ‘DNS
zone’ and a ‘DNS domain’ become equivalent. For instance, when querying the

www.foo.bar
www.foo.bar
www.foo.bar

20 H. Shulman and M. Waidner

root zone for foo.bar., the resolver will be redirected to bar. domain, via a
referral to the authoritative servers for bar. zone. When querying the name
servers of bar., the resolver is issued another referral for foo.bar. zone.
Notice that bar. zone does not include subdomains, e.g., like foo.bar., but
those are delegated from bar to their name servers.

When no protection is employed, DNS requests and responses can be
inspected and altered by a MitM attacker. For example, a malicious wireless
client can tap the communication of other clients and can respond to their
DNS requests with maliciously crafted DNS responses, containing a spoofed IP
address, e.g., redirecting the clients to a phishing site. Domain Name System
Security Extensions (DNSSEC) standard [RFC4033, RFC4034, RFC4035] was
designed to address the cache poisoning vulnerability in DNS, by providing data
integrity and origin authenticity via cryptographic digital signatures over DNS
resource records. The digital signatures enable the recipient, e.g., resolver, that
supports DNSSEC validation, to check that the data in a DNS response is the
same as the data published within the target zone.

DNSSEC defines new resource records (RRs) to store signatures and keys
used to authenticate the DNS responses. For example, a type RRSIG record
contains a signature authenticating an RR-set, i.e., all mappings of a specific type
for a certain domain name. By signing only RR-sets, and not specific responses,
DNSSEC allows signatures to be computed off-line, and not upon request; this
is important, both for performance (since signing is computationally intensive)
and security (since the signing key can be stored in a more secure location than
the name server).

To allow clients to authenticate DNS data, each zone generates a signing and
verification key pair, (sk, vk). The signing key sk is used to sign the zone data,
and should be secret and kept offline. Upon queries for records in a domain,
the name server returns the requested RRs, along with the corresponding signa-
tures (in a RRSIG RRs). To prevent replay attacks, each signature has a fixed
expiration date. The clients, i.e., resolvers, should also obtain the zone’s public
verification key vk, stored in a DNSKEY RR, which is then used by the clients
to authenticate the origin and integrity of the DNS data.

Resolvers are configured with a set of verification keys for specific zones,
called trust anchors; in particular, all resolvers have the verification key (trust
anchor) for the root zone. The resolver obtains other verification keys, which are
not trust anchors, by requesting a DNSKEY resource record from the domain.
To validate these verification keys obtained from DNSKEY, the resolver obtains
a corresponding a DS RR from the parent zone, which contains a hash of the
public key of the child; the resolver accepts the DNSKEY of the child as authentic
if the hashed value in DNSKEY is the same as the value in the DS record at
the parent, and that DS record is properly signed (in a corresponding RRSIG
record). Since the DS record at the parent is signed with the DNSKEY of the
parent, authenticity is guaranteed.

This process constructs a chain of trust which allows the resolver to authen-
ticate the public verification key of the target zone. Specifically, the clients

Towards Security of Internet Naming Infrastructure 21

authenticate the public verification key of the zone by constructing a chain of
trust starting at the root zone, or another trust anchor, and terminating at the
target zone.

References

1. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou II, N., Dagon, D.: Detecting
malware domains at the upper dns hierarchy. In: USENIX Security Symposium,
p. 16 (2011)

2. Canali, D., Balzarotti, D., et al.: Behind the scenes of online attacks: an analysis
of exploitation behaviors on the web. In: Proceedings of the 20th Annual Network
& Distributed System Security Symposium (2013)

3. Chen, Y., Antonakakis, M., Perdisci, R., Nadji, Y., Dagon, D., Lee, W.: DNS noise:
measuring the pervasiveness of disposable domains in modern DNS traffic (2014)

4. Feamster, N.: Outsourcing home network security. In: Proceedings of the 2010
ACM SIGCOMM Workshop on Home Networks, pp. 37–42. ACM (2010)

5. Gao, H., Yegneswaran, V., Chen, Y., Porras, P., Ghosh, S., Jiang, J., Duan, H.:
An empirical reexamination of global dns behavior. In: Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, pp. 267–278. ACM (2013)

6. Gersch, J., Massey, D.: Rover: Route origin verification using DNS. In: 2013 22nd
International Conference on Computer Communications and Networks (ICCCN),
pp. 1–9. IEEE (2013)

7. Gudmundsson, O., Crocker, S.D.: Observing DNSSEC Validation in the Wild. In:
SATIN, March 2011

8. Herzberg, A.: DNS-based email sender authentication mechanisms: a critical
review. Comput. Secur. 28(8), 731–742 (2009)

9. Herzberg, A., Shulman, H.: Security of patched DNS. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 271–288. Springer,
Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-33167-1 16

10. Herzberg, A., Shulman, H.: DNSSEC: interoperability challenges and transition
mechanisms. In: Eighth International Conference on Availability, Reliability and
Security (ARES), 2013, Regensburg, Germany, pp. 398–405. IEEE (2013)

11. Herzberg, A., Shulman, H.: Fragmentation Considered Poisonous: or one-domain-
to-rule-them-all.org. In: IEEE CNS 2013. The Conference on Communications and
Network Security. Washington, IEEE (2013)

12. Herzberg, A., Shulman, H.: Socket overloading for fun and cache poisoning. In:
Payne Jr., C.N. (ed.) ACM Annual Computer Security Applications Conference
(ACM ACSAC), New Orleans, Louisiana, U.S., December 2013

13. Herzberg, A., Shulman, H.: Vulnerable delegation of DNS resolution. In: Crampton,
J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 219–236.
Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-40203-6 13

14. Herzberg, A., Shulman, H.: Retrofitting security into network protocols: the case
of DNSSEC. IEEE Internet Compu. 18(1), 66–71 (2014)

15. Kaminsky, D.: It’s the end of the cache as we know it. In: Black
Hat Conference, August 2008. http://www.blackhat.com/presentations/bh-jp-08/
bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf

16. Kleiman, S.R.: Apparatus and method for interrupt handling in a multi-threaded
operating system kernel, US Patent 5,515,538, 7 May 1996

http://dx.doi.org/10.1007/978-3-642-33167-1_16
http://dx.doi.org/10.1007/978-3-642-40203-6_13
http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf

22 H. Shulman and M. Waidner

17. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? reducing the
impact of amplification DDoS attacks. In: Proceedings of the 23rd USENIX Secu-
rity Symposium, San Diego, CA, USA, 20–22 August 2014, pp. 111–125 (2014)

18. Lian, W., Rescorla, E., Shacham, H., Savage, S.: Measuring the practical impact
of DNSSEC Deployment. In: Proceedings of USENIX Security (2013)

19. Ramakrishnan, K.: Performance considerations in designing network interfaces.
IEEE J. Sel. Areas Commun. 11(2), 203–219 (1993)

20. Ramasubramanian, V., Sirer, E.: Perils of transitive trust in the domain name
system. In: Proceedings of the 5th ACM SIGCOMM Conference on Internet Mea-
surement, pp. 35–35. USENIX Association (2005)

21. Rayburn, D.: CDN market getting crowded: Now tracking 28 providers in the
industry. Bus. Online Video Blog (2007)

22. Rossow, C.: Amplification hell: Revisiting network protocols for ddos abuse (2014)
23. Salah, K., El-Badawi, K., Haidari, F.: Performance analysis and comparison of

interrupt-handling schemes in gigabit networks. Comput. Commun. 30(17), 3425–
3441 (2007)

24. Schomp, K., Callahan, T., Rabinovich, M., Allman, M.: On measuring the client-
side DNS infrastructure. In: Proceedings of the 2013 Conference on Internet Mea-
surement Conference, pp. 77–90. ACM (2013)

25. Shulman, H.: Pretty bad privacy: pitfalls of DNS encryption. In: Proceedings of the
13th Annual ACM Workshop on Privacy in the Electronic Society, WPES 2014,
pp. 191–200 (2014). IETF/IRTF Applied Networking Research Award

26. Shulman, H., Ezra, S.: Poster: On the resilience of DNS infrastructure. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1499–1501. ACM (2014)

27. Shulman, Haya, Waidner, Michael: Fragmentation considered leaking: port infer-
ence for DNS poisoning. In: Boureanu, Ioana, Owesarski, Philippe, Vaudenay, Serge
(eds.) ACNS 2014. LNCS, vol. 8479, pp. 531–548. Springer, Heidelberg (2014)

28. Stewart, J.: DNS cache poisoning-the next generation (2003)
29. Wouters, P.: Using DANE to Associate OpenPGP public keys with email addresses

(2014). http://tools.ietf.org/html/draft-wouters-dane-openpgp-02
30. Yang, H., Osterweil, E., Massey, D., Lu, S., Zhang, L.: Deploying cryptography in

internet-scale systems: A case study on dnssec. IEEE Trans. Dependable Secure
Comput. 8(5), 656–669 (2011)

31. Yu, Y., Wessels, D., Larson, M., Zhang, L.: Authority server selection of DNS
caching resolvers. ACM SIGCOMM Comput. Commun. Rev. 42, 80–86 (2012)

32. Zhang, J., Durumeric, Z., Bailey, M., Liu, M., Karir, M.: On the mismanagement
and maliciousness of networks. In: Proceedings of the 21st Annual Network &
Distributed System Security Symposium (NDSS 2014), San Diego, California, USA
(2014, to appear)

http://tools.ietf.org/html/draft-wouters-dane-openpgp-02

Waiting for CSP – Securing Legacy Web
Applications with JSAgents

Mario Heiderich, Marcus Niemietz(B), and Jörg Schwenk

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Bochum, Germany
{mario.heiderich,marcus.niemietz,joerg.schwenk}@rub.de

Abstract. Markup Injection (MI) attacks, ranging from classical Cross-
Site Scripting (XSS) and DOMXSS to Scriptless Attacks, pose a major
threat for web applications, browser extensions, and mobile apps. To
mitigate MI attacks, we propose JSAgents, a novel and flexible approach
to defeat MI attacks using DOM meta-programming. Specifically, we
enforce a security policy on the DOM of the browser at a place in the
markup processing chain “just before” the rendering of the markup. This
approach has many advantages: Obfuscation has already been removed
from the markup when it enters the DOM, mXSS attack vectors are
visible, and, last but not least, the (client-side) protection can be indi-
vidually tailored to fit the needs of web applications.

JSAgents policies look similar to CSP policies, and indeed large parts
of CSP can be implemented with JSAgents. However, there are three
main differences: (1) Contrary to CSP, the source code of legacy web
applications needs not be modified; instead, the policy is adapted to the
application. (2) Whereas CSP can only apply one policy to a complete
HTML document, JSAgents is able, through a novel cascading enforce-
ment, to apply different policies to each element in the DOM; this prop-
erty is essential in dealing with JavaScript event handlers and URIs. (3)
JSAgents enables novel features like coarse-grained access control: e.g. we
may block read/write access to HTML form elements for all scripts, but
human users can still insert data (which may be interesting for password
and PIN fields).

1 Introduction

Cross-Site Scripting. XSS attacks are one of the major threats to web appli-
cation security. The goal of an attacker is to execute a (malicious) JavaScript
function of his own choice in the context of the target web page. If he succeeds,
the Same Origin Policy (SOP) of the browser will grant them full acess to all
elements and variables of the target web page (including stored passwords, ses-
sion cookies, and security tokens), and the script may trigger other potentially
harmful actions (drive-by-downloads and alike).

In the literature, three main classes of XSS are described: (1) Reflected XSS,
where the attack vector is sent to the target web server in a HTTP request
(e.g., a search request), this input is integrated by the server into a dynamically

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 23–42, 2015.
DOI: 10.1007/978-3-319-24174-6 2

24 M. Heiderich et al.

generated web page, and the attack is executed when this page is rendered.
(2) Stored XSS, where the attack vector is stored in a subpage of the target
web application (e.g., discussion forum), and the attack is executed each time a
victim visits this subpage. (3) DOMXSS [1], where the attack vector is inserted
by a (legal) client-side script into the web page. Mutation-based XSS (mXSS)
is a recent new variant [2], which has the potential to circumvent several known
mitigation techniques, including advanced XSS filters.

HTML5 and Scriptless Attacks. Since the advent of HTML5 (HTML,
HTML 5.1 Nightly and HTML.next), new attack techniques are continuously
being discovered. Different browser strategies for processing XML, XHTML1

and HTML content which may all be mixed together can be exploited through
SVG images or MathML markup [3]. Even deactivating JavaScript completely,
a method repeatedly proposed by security authorities, does not protect against
HTML5-based attacks as certain publications [4,5] have shown that Script-
less Attacks are possible. Scriptless Attacks additionally complicate the task
of server- and client-side filters: It is nearly impossible to decide which HTML5
tags may be dangerous before an attack vector has been published.

Markup Injection Attacks. We will use the term Markup Injection (MI) to
denote the superclass of attacks formed by Scriptless Attacks and the different
kinds of XSS vectors. For a MI attack on a web application to be successful, all
three conditions listed below must be fulfilled.

1. Injectability. It must be possible to inject potentially malicious markup into
a web page.

2. Executability. It must be possible for the browser to parse and execute the
markup.

3. Extractability. It must be possible for the attacker to exfiltrate sensitive infor-
mation (e.g., session cookies) from the browser and to transfer them to a
device where he can retrieve it.

Classical Defense Approaches. As a first line of defense, server- and client-
side filters, which have different restrictions, are deployed. Server-side filters must
be able to detect JavaScript snippets even if they are obfuscated, a task that
becomes harder with every new markup functionality introduced with HTML5.
Client-side filters are embedded into the browser (MSIE/ WebKit/ Blink) or can
be installed as a plugin (NoScript). In both cases, they have to apply the same
policy to all visited web applications, which in many cases proves too weak or
too strong.

Novel Defense Approaches. Whereas classical MI countermeasures concen-
trate on condition (1.) injectability (by detecting and removing markup injec-
tions with client- or server-side filters), modern approaches take into account
the other two conditions. For example, Content Security Policy (CSP) [6,7] and

1 For example, the different XHTML treatment of self-closing tags.

Waiting for CSP – Securing Legacy Web Applications with JSAgents 25

HTTPonly cookies [8] mitigate extractablility (CSP by allowing HTTP con-
nections only to a small number of white-listed URLs, HTTPonly cookies by
making themselves inaccessible from the DOM), and sandboxed Iframes [9] try
to prevent executability by restricting script execution.

Content Security Policy. CSP 1.0 is fully supported by all current webbrowser
versions. Its main feature is domain whitelisting for <script>, <object>,
<style>, , <media> and <iframe> elements, and for fonts and websock-
ets, to mitigate condition 3 (Extractability) for a successful MI attack. For some
of these elements (e.g. scripts) this strict whitelisting policy can be relaxed by
allowing inline sources through unsafe-inline.

CSP 1.1 has a much broader scope: The whitelisting can be applied to a
broader set of DOM elements (e.g. through form-action), the use of inline
scripts can be protected through script nonces, only whitelisted plugins will be
activated, client-side XSS filters can be activated, and many more. Thus CSP
can be seen as a specification where most research on web application security
has been condensed; subsequently CSP is often cited as a comparison for new
approaches. However, this comparison is a little weak since CSP 1.1 has to be
fully implemented yet. We will nevertheless compare our approach to CSP 1.1
below.

JSAgents Library. Our JSAgents library specifically targets conditions (2.)
and (3.) through DOM meta-programming. It is a client-side solution which, in
contrast to the client-side XSS filters, can be tailored to a given web application.
In addition, it does not have to care about code obfuscation since this has already
been removed by the browser. We can restrict execution of any markup, not only
JavaScript, thus mitigating XSS and in part Scriptless Attacks (Executability);
we can restrict HTTP leakage for elements in the browser’s DOM, and we can
read-protect certain DOM elements (Extractability). Furthermore, we can write-
protect DOM elements; a feature that mitigates complex cross-domain attacks
(e.g., through document.location). We can enforce different policies for each
part of the DOM tree through the use and enforcement of a cascading policy
language (comparable to CSS).

JSAgents vs. CSP 1.1. With CSP 1.1, stronger security guarantees can be
enforced, because CSP is implemented directly in each browser core, it runs with
‘browser root privileges’. Through the DOM metaprogramming approach, we
can never achieve more than ‘page level privileges’. A different CSP 1.1 policy
can be applied to each Iframe, but within each Iframe only a one-level, non-
cascading security policy is applied. Through Cascading Style Sheets (CSS), web
programmers are experienced in cascading style declarations. JSAgents makes
use of the CSS syntax to define cascading security policies, where one, two or
more iterations over the document’s DOM can be made to enforce security rules.
This is especially useful for legacy web applications running in a single document
context (see below). JSAgents additionally allows to block read and write access

26 M. Heiderich et al.

to DOM elements and their attributes, a feature that is not part of CSP 1.1 but
is currently in discussion for input values on the WHATWG mailing list2.

Architectural Overview JSAgents. JSAgents uses a static JavaScript library
(jsa.js) and a customizable configuration file to achieve its application-specific
goals: jsa.js must be inserted into the web page as the first JavaScript function
to be executed. Insertion points may include the web application itself, a HTTP
proxy, or a browser extension (webapp, proxy, and extension mode). As soon as
jsa.js is executed, it uses a FrozenDOM approach to stop other active markup
from being executed and reads the (cascaded) configuration file. The directives
contained in this file are used to set different flags on the elements of the frozen
DOM. After all flags are set, the frozen DOM is parsed and all restrictions
expressed by the flags are enforced: Elements may be deleted, read- or write-
protected, or their actions may be limited to white-listed URLs.

Legacy Web Applications. CSP imposes restrictions on JavaScript event han-
dlers and JavaScript URIs (cf. Section A.2) that makes adoption of CSP nearly
impossible for legacy web applications: A complete redesign of each application
is necessary to be able to use CSP without the’unsafe-inline’ option for scripts.
With JSAgents, we can use the fact that policy files can be cascaded to sketch
a generic solution for this problem: First we disallow all inline scripts, event
handlers, and URIs. Then we can allow those JavaScript embeddings which are
essential for a correct functionality of a web page, based on a whitelist extracted
from the legacy application. Thus we can achieve the same effect as CSP 1.1
script nonces for inline scripts, but in contrast to CSP 1.1 we can extend this app-
roach to JavaScript URIs and event handlers. We were able to deploy JSAgents
successfully for two large classes of legacy applications: (a) Web-mailers and (b)
Identity Providers in Single-Sign-On Systems. In both cases, JSAgents could suc-
cessfully be deployed to enhance security, without affecting functionality. We are
confident that, due to the flexibility of our approach, JSAgents can be deployed
with nearly all legacy applications. In some cases (1 out of 13 IdPs) we have
detected incompatibilities with other large JavaScript libraries, which indicates
that we may not be able to achieve 100 % coverage.

Project Evaluation. We evaluated three different aspects of JSAgents: Secu-
rity, usability, and performance. In Sect. 4, we describe the results of a public
challenge to break JSAgents. The goal of our usability evaluation was to show
that JSAgents policy files can indeed be adapted to the two classes of web
applications mentioned above. During this usability evaluation, we also investi-
gated compatibility with other popular JavaScript libraries: JSAgents is com-
patible with jQuery, Prototype, and Underscore, but has compatibility issues
with RequireJS. Finally, we measured the performance of our solution based on
randomly generated HTML code of different sizes. The results can be found in
Sect. 5.

2 Write-only Form Elements, http://mikewest.github.io/credentialmanagement/write
only/.

http://mikewest.github.io/credentialmanagement/writeonly/
http://mikewest.github.io/credentialmanagement/writeonly/

Waiting for CSP – Securing Legacy Web Applications with JSAgents 27

Contributions. This paper makes the following contributions:

– Novelty. We give a novel, comprehensive, DOM-meta-programming-based
approach to defend against MI attacks. We demonstrate the large potential of
novel DOM meta-programming features like Object.defineProperty and DOM
Mutation Observers.

– Impact. We are able to mitigate most attack classes, including mXSS and
HTTP request leaks. We describe a flexible and powerful policy language such
that JSAgents can be adapted to numerous (legacy) applications scenarios.

– Usability. In contrast to CSP, JSAgents can easily be deployed with legacy
web applications, since no changes to the source code are necessary.

– Public Availability. We present a free open-source project from the JSAgents
core that can be used as a universal client-side HTML filter (“DOMPurify”
project on GitHub).

2 Related Work

From the large body of research on XSS and beyond, we provide a brief overview
of the relevant literature, detailing both scholarly work and research-driven
sources pertaining to this subject area.

XSS Mitigation. Server-side mitigation techniques range from a simple char-
acter encoding or replacement, to a full rewrite of the HTML code. The advent
of DOM XSS was one of the main reasons behind the introduction of XSS filters
on the client-side. The IE8 XSS Filter was the first fully integrated solution [10],
timely followed by the Chrome XSS Auditor in 2009 [11]. For Firefox, client-
side XSS filtering is implemented through the NoScript extension. Unsurpris-
ingly, XSS attacks’ mitigation strategies have been covered in numerous pub-
lications [12–17]. Noncespaces [18] use randomized XML namespace prefixes
as an XSS mitigation technique, which would make detection of the injected
content reliable. DSI [19] tries to achieve the same goal based on a process of
clasifying HTML content into trusted and untrusted variety on the server side,
subsequently changing browser parsing behavior so that the said distinction is
taken into account. Blueprint [20] generates a model of the user input on the
server-side and transfers it, together with the user-contributed content, to the
browser, making its behavior modified by an injection of a JavaScript library for
processing the model along with the input.

Mutation-Based (mXSS) and Scriptless Attacks. Weinberger et al. [21]
give an example of the innerHTML being used to execute a DOM-based XSS.
Comparable XSS attacks based on changes in the HTML markup have been
initially described for client-side XSS filters. Vela Nava et al. [22] and Bates
et al. [11] have shown that the IE8 XSS Filter could have once been used to
“weaponize” harmless strings and turn them into valid XSS attack vectors. This
relied on applying a mutation through the regular expressions used by the XSS
Filter. Zalewski covers concatenation problems based on NUL strings in inner-
HTML assignments in the Browser Security Handbook [23]. Additionally, he later

28 M. Heiderich et al.

dedicates a section to backtick mutation in his volume “The Tangled Web” [24].
Other mutation-based attacks have been reported by Barth et al. [25] and
Heiderich [26]. In the latter, mutation may occur after client-side filtering
(WebKit corrected a self-closing script tag before rendering, thus activating the
XSS vector) or during XSS filtering (XSS Auditor strips the code attribute
value from an applet tag, thus activating a second malicious code source).
Hooimeijer et al. describe the dangers associated with the sanitization of con-
tent [27] and claim that they were able to produce a string that would result in a
valid XSS vector after sanitization, for every single one of a large number of XSS
vectors. The vulnerabilities described by Kolbitsch et al. may form the basis for
an extremely targeted attack by web malware [28]. Those authors state that the
attack vectors may be prepared for taking into account the mutation behavior
of different browser engines. HTML5 introduces a script-like functionality in its
different tags, making the so called “Scriptless Attacks” (a term coined in [4]) a
real threat. For example, SVG images and their active elements can be used to
steal passwords even if JavaScript is deactivated [5].

3 JSAgents Architecture

3.1 Building Blocks

FrozenDOM. The current version of JSAgents uses a technique called Frozen-
DOM [26,29–31]. Upon execution of the JSAgents Core Library, the DOM is
stopped from being rendered as a plain-text element (<plaintext>) and is being
written right after the <script> element that contains JSAgents code. Note that
using plain-text is employed in the sake of supporting legacy browsers; for mod-
ern browsers, JSAgents can make use of the Shadow DOM and the <template>
element. The interrupted rendering flow allows the library to simultaneously
quickly read the document markup and prevent race conditions introduced by
the injected scripts or markup. In case the application uses a JavaScript templat-
ing engine/MVC framework, JSAgents can directly work on the HTML string
that built before rendering and does not need to rely on <plaintext>. Adopting
JSAgents reduces the performance when used on complex websites (see Sect. 5)
but it must be underscored that the user experience on modern browsers (like
Firefox 24+, MSIE9+, and Chrome 30+) is hardly affected at all.

DOM Mutation Observers. By using DOM Mutation Observers (DMO),
JSAgents is able to monitor write-access to selected DOM nodes and trigger
an execution of a callback function in cases where such access has taken place.
This allows us to protect form elements from being overwritten, effectively mak-
ing a commonly used technique of Web Injects against online banking portals
void. JSAgents can detect scripted form element manipulation because actual
keyboard input into form elements does not cause mutation events to be emit-
ted, while, conversely, the scripted access does so. DMO are implemented in all
modern browsers and can be emulated reliably in older versions without DMO
support with the use of onpropertychange.

Waiting for CSP – Securing Legacy Web Applications with JSAgents 29

Object.defineProperty(). Almost arbitrary DOM objects can be set into an
immutable state by using the ES5 functionality of Object.defineProperty(),
and thereby be protected from external, potentially malicious, manipulations.
By doing so, we can assure a certain level of integrity for the JSAgents library,
essentially allowing to introduce tamper safety and detectability of manipulation
attempts. Further, it is possible to manage attempts of potentially malicious
scripts coveting to gain a write-access to form elements.

Document.querySelectorAll(). By using the querySelectorAll API,
JSAgents is able to select all elements that match very specific criteria from
a given document. Note that the API is similar to the CSS selector API and
thereby helps existing front-end developers to precisely select these elements
they want to impose the security restrictions and capability control onto. Cre-
ating JSAgents policy files is comparable to composing style sheets, as selectors
are identical and property-value assignments use common terminology.

3.2 JSAgents Core Library

The Core Library includes the methods that ensure safe deployment and inner
workings of JSAgents. The library must be executed as early as possible in the
execution flow of the protected website in order to win the basic race condition.
When the core library is executed, a sequence of events enumerated and discussed
below is started (cf. Fig. 1).3

(1) Freezing and Sealing the Original DOM. Markup rendering is stopped
by a plain-text element being written into the actual document. Consequently
all HTML markup after this element is considered to be simple text and is

Fig. 1. Processing of a JSAgents protected HTML document.

3 For review purposes, we have copied a password protected ZIP file of the
JSAgents code to the following Dropbox URL: https://www.dropbox.com/s/
17kjd8hrmjbzy6c/jsa.zip (password: conference).

https://www.dropbox.com/s/17kjd8hrmjbzy6c/jsa.zip
https://www.dropbox.com/s/17kjd8hrmjbzy6c/jsa.zip

30 M. Heiderich et al.

not parsed into DOM objects. This is necessary to win possible attacker-caused
race-conditions (for instance based on DOM-clobbering, see below).

this.freeze = function () {

// seal existing document before freezing

JSA.seal(document);

// freeze and blind the whole document

document.write(’<plaintext id="’ + JSA._random

+’" style=" display:none">’);

document.close();

}

Listing 1.1. The code to freeze a document by stopping its execution flow

By calling this.seal(), it is ensured that the attacker cannot tamper with
the existing DOM properties that JS-Agents requires to work (for example DOM
traversal, element and attribute manipulation). This technique effectively defeats
“DOM clobbering”4, a way of overwriting the native DOM methods by using
HTML injections5 in any tested browser.

this.seal = function (doc) {

for(var item in doc){

if(typeof doc[item] ===’function ’){

Object.defineProperty(

doc , item , {value: doc[item], configurable:false}

);}}

return doc;}

Listing 1.2. Iterating over all methods to seal them reliably from external access

(2) Content Copying to a “fresh” DOM. We now extract the DOM contents
and map them into the safe DOM.

// create JSA document to check on

JSA.doc = JSA.create ();

//Copy document and assign random ID values

JSA.doc.documentElement.innerHTML =’<html ><head >’ +

document.getElementById(JSA._random).textContent;

Listing 1.3. Creating a virtual DOM and assigning random IDs to each element

(3) Enforcing the given Policies. This is done by iterating over the virtual
DOM tree we have created. The enforcer first requests all elements matching
the JSAgents policy selectors and, upon receiving one or more elements, passes
them to the protected enforce() method. This method is being provided by the
JSAgents enforcer module and compares the policy defined capabilities with the
actual object’s capabilities, eventually taking action in case of any mismatches
4 DOM Clobbering describes malicious declarative DOM manipulation: http://www.

thespanner.co.uk/2013/05/16/dom-clobbering/.
5 For example, the HTML would overwrite the

method document.getElementById() with an image-object.

http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

Waiting for CSP – Securing Legacy Web Applications with JSAgents 31

being identified. The final goal is the removal of either the attributes or the
specific attribute values, the prefixing of resource URIs or even the removal of
entire elements and there-attached child nodes. However, to make sure the policy
directives and their selectors cascade properly (selector precision over selector
order), the enforcer initially only flags elements for deletion or manipulation.
Only after the final selector’s rules have been enforced, the elements are actually
removed or modified (see below). By design, the enforcer is being defined and
kept as “a module” because adding it to the core library would cause unnecessary
overhead – we acknowledge that possible forks and adaptations of JSAgents
might prefer building their own enforcers and keep the core library untouched.
Using it as a module allows an easy extension and customization; one imaginable
scenario would be that a more exotic or legacy browser needs to be supported.

(4) Remove Elements Flagged as del, Domain White-Listing. After
all necessary enforcement iterations are completed, the final state of element
and attribute flagging is being used as an indicator of whether the element or
attribute should be removed or kept in place. Elements are removed if they are
flagged as del, or if their source domain does not match any of the whitelisted
domains.

this.filter = function () {

// remove elements with kill -switch

var elements = JSA.doc.querySelectorAll (’*’);

for(var index in elements){

if(elements[index]. tagName) {

if(elements[index]. getAttribute(JSA._random) ===’del ’) {

elements[index]. parentNode.removeChild(elements[index

])

}}}}

Listing 1.4. Deleting marked elements

Note that during the flagging and enforcement no other script in the pro-
tected website can be executed6. Furthermore, beware that the deletion flags
are applied with a token value to make sure that an attacker cannot inject those
attributes and force legitimate elements to be deleted. The token changes every
time JSAgents runs.

(5) Rendering the Document. Read- or write-access restrictions must be
enforced in the “real” DOM. This signifies that the flagged virtual DOM with for-
bidden elements already removed, is now copied back – as shown in the simplified
example: document.body.innerHTML = JSA.doc.body.innerHTML (script con-
tent is, if permitted, reactivated separately). During subsequent parsing, restric-
tions on the parsed elements imposed by the attached flags will be enforced.
6 Only if an external window opened from the same origin injects code, a malicious

script may run concurrently to JSAgents. This may happen if only parts of the
website are protected with the JSAgents library. Partial library usage is considered
a dangerous implementation misbehavior and leads to race conditions that allow
policy bypasses.

32 M. Heiderich et al.

The core library uses DOM Mutation Observers to get on-time notification on
changes happening to the write-protected DOM elements. Only by monitoring
access and changes to the existing elements with working observers, a continuous
level of write-protection can be guaranteed. All DOM objects flagged with access
restrictions are protected – all their property getters are set to return null.

var access = document.querySelectorAll (’*[’+ _random+’access

]’)

for(var elm in access) {

if(access[elm]. tagName) {

for(var i in access[elm]){

// null all properties of the protected element

Object.defineProperty(access[elm], i, {value:

null});

}}}

Listing 1.5. Read access protection for DOM elements

It is possible to allow access for certain trusted DOM methods if required.
By default, however, all property access is prohibited. Once write-access to a
DOM element with write-access:false is communicated to the JSAgents core
function, a wide range of actions becomes available. Depending on the JSAgents
policy, the library can block write-access (through restoring the element to its
original state), return empty strings upon read-access, and even report attempts
of read or write to protected elements.

// freeze flagged elements

var freeze = document.querySelectorAll (’*[’+ _random+’freeze

]’)

for(var elm in freeze) {

if(freeze[elm]. tagName) {

var observer = new MutationObserver (function(mutations) {

mutations.forEach(function(mutation) {

alert(’form tamper detected ’);

});

});

var config = {

attributes: true ,

childList: true ,

characterData: true

};

observer.observe(freeze[elm], config);

Object.defineProperty(freeze[elm],’value ’, {set: function

(){

return alert(’form value tamper detected ’);

}}) ;}}

Listing 1.6. Code to handle write-access control to elements

From this point forward none of the elements and attributes that are violating
the JSAgents policies are present. Please note that changing element properties

Waiting for CSP – Securing Legacy Web Applications with JSAgents 33

through the keyboard is not registered as a mutation event by the DOM Muta-
tion Observers, as opposed to the write-access by a script. Thus, for example,
for write-protected form elements, user input from keyboard is not considered to
be write-access, thus laying the foundation for basic access-control functionality.

3.3 JSAgents Modules

The JSAgents library further ships a set of modules that provide functionality
not yet available in modern browsers.

(1) A JavaScript implementation of the MD5 hashing algorithm md5.js is being
loaded via module; MD5 is being used despite security concerns for perfor-
mance reasons. The library allows to upgrade to SHA1 and later releases are
planned to be shipped with a JavaScript implementation of SHA256. It is
important to note that the use cases for hashing algorithms in the JSAgents
library do not depend on collision resistance.

(2) An enforcer.js script is used to enforce various JSAgents policies and
iterate over the target elements. It also imposes the restrictions or permis-
sions the developer wishes to enforce and grant (as discussed in Sect. 3.2).
Furthermore, an extended enforcer allows creation of additional rules – com-
plementary to the already available rules and policies. The enforcer is again
not considered a part of the core library because it might be subject to
customizations, for instance for a website that uses a specific JavaScript
framework.

3.4 JSAgents Policy Files

JSAgents policy files are composed in a JSON format and make use of a very
simple and intuitive dictionary of instructions. This allows even novice devel-
opers to understand the concept and impact of the policy files rather quickly.
Note that the dictionary of available configuration directives might be subject
to change as it is now in its prototypic state. The code shown in Listing 1.7
and Listing 1.8 demonstrates the flexibility of JSAgents policy composition. The
syntax is designed to closely resemble CSS selectors.

Listing 1.7 makes use of the asterisk-selector which causes the JSAgents
engine to indeed choose all available DOM elements on the loaded document
and impose the following (very restrictive) directives. As dictated by this policy,
no Script, Iframe, Object, Embed, Applet, or SVG elements will be present in
the modified DOM. JavaScript and data URIs will be removed from the DOM
and so will be the event handlers. All remaining elements will be frozen, for
example they cannot be modified by the DOM meta-programming from now on.
Read-access to all remaining elements is blocked.

The code shown in Listing 1.8 is a bit more permissive, and demonstrates
the “cascading” features of the policy language. Here we can observe an overall
of four selectors: the asterisk selector, a selector for head-elements, a selector
for form elements and their expected descendants, and, finally, a selector for the

34 M. Heiderich et al.

{ "*" : {

"iframe -elements ": false ,

"object -elements ": false ,

"embed -elements" : false ,

"applet -elements ": false ,

"svg -elements ": false ,

"script -elements ": false ,

"javascript -uris": false ,

"data -uris": false ,

"event -handlers ": false ,

"write -access ": false ,

"read -access ": false

}

Listing 1.7. A high-security policy: All
forms of scripting and read/write-access to
DOM elements prohibited

{ "*" : {

"javascript -uris": false ,

"data -uris": false ,

"event -handlers ": false ,

"script -elements ": false ,

"style -elements ": false

},

"head" : {"script -elements ":

"same -domain"

}

"form , input , textarea" : {

"read -access ": false ,

"write -access ": false

},

"# widget" : {

"script -elements ": true

} }

Listing 1.8. A low-security policy:
Scripting is permitted for scripts living in
the page header and a widget container -
read-/write-access to form content is
prohibited

element(s) applied with the “widget” ID. Depending on the selector, different
policies are assigned and will thus be enforced by the JSAgents prototype. None
of the elements are permitted to contain script-elements – aside from the head-
element which can comprise of script-elements as long as their source points to a
same domain resource, and also the element with the “widget” ID. The selected
form elements are being protected from arbitrary access. No script can have
access to their value properties, all attempts to set their values via JavaScript
will be blocked, a read-access will return an empty value. This is interesting for
websites which wish to impose better protection for user-generated content in
the form elements (account data, passwords, credit card numbers).

The grammar used for the selectors is identical to the CSS grammar and
will be parsed by the DOM document. querySelectorAll() method for ele-
ment selection. No deviations from the standard are implemented. Developers
can freely use any selector string that is available and supported by the browser.
Please note that although the selectors in Listing 1.8 are ordered according to
generality, the ordering of selectors is not relevant for the correct functionality
as JSAgents will always give preference to stronger selectors. Later versions of
the library will also support detailed style directives to avoid HTTP leakage via
backgrounds, list bullets, fonts, cursors, and alike. The set of the currently avail-
able directives and policies for the JSAgents prototype is described as follows:

(1) iframe-elements, object-elements, embed-elements. These policy
directives can be set to true, false or a domain reg-ex. The elements
can be permitted, prohibited or only be permitted if the src attribute

Waiting for CSP – Securing Legacy Web Applications with JSAgents 35

matches the given domain string. If a directive is set to false, all such
elements will be removed from the DOM by the JSAgents core library.7

(2) applet-elements. This policy directive can be set to true, false or a
domain reg-ex. Java applets can be permitted, prohibited, or only be per-
mitted if the code-base or archive attribute matches the given domain
string.

(3) svg-elements. This policy directive can be set to true or false. If set to
false, no SVG elements can be used inside the selected nodes. This does
not exclude the option of using SVG embedded via image elements or CSS.
Recent browser versions have proven to be able to safely deal with SVG
content – once the SVG data is being loaded as an image rather than a
document.

(4) script-elements. This policy directive can be set to true, false or a
domain reg-ex. Script elements can be permitted, prohibited, or only be
permitted if the src attribute matches the given domain string. Note that
the “same-domain” setting does not utilize a regular expression but rather
an exact string matching between origin and domain part of the URL that
the script element is supposed to load from.

(5) style-elements. This policy directive can be set to true, false or a
domain reg-ex. Style (and link) elements can be permitted, prohibited,
or only be permitted if the href attribute/ import URIs match the given
domain string.

(6) img-elements. This policy directive can be used to permit or prohibit
images loaded from external URLs. Especially for web-mail software,
embedded images and comparable resources allow for advertisers and other
parties to track and monitor reception of and reaction to a HTML mail.
With prohibition of external sources, an additional layer of privacy will
be added. To cope with the needs of modern web-mailers, an additional
function ask() was added. By using this function, JSAgents leaves the
decision of loading or blocking external images to the user, instrumenting
a permission-dialog.

(7) javascript-uris. This policy directive can be set to true or false. Once
set to false, none of the elements hosted by the selected element can be
applied with JavaScript URIs. This holds for all attributes supporting URL
strings. Note that an element using JavaScript URIs will be completely
removed in case that the policy setting prohibits its existence. Several
existing tools attempt to rewrite the URL to become a harmless place-
holder value, JSAgents nevertheless removes the entire element for security
reasons.

(8) data-uris. This policy directive can be set to true or false. Once set to
true, none of the elements hosted by the selected element can be applied
with data URIs. This holds for all attributes supporting URL strings.

7 It should be noted that Java applets can be loaded via object element as well. Future
versions of the JSAgents prototype will warn the developer in case a policy prohibits
the usage of applets yet allows the arbitrary object usage.

36 M. Heiderich et al.

(9) event-handlers. This policy directive can be set to true or false. If set
to false, all event handlers will be removed from the selected elements.

(10) write-access. This policy allows setting an element to an immutable state
by freezing it and prohibiting access to any of its child properties. This is
particularly interesting for form elements as means of keeping external
scripts and other active content from varying values, actions and other
potentially sensitive data stores. This policy directive can be set to true
or false. Upcoming versions will also allow to define an array of allowed
setters, making sure that trusted JavaScript methods are permitted whilst
untrusted methods are blocked from modifying form values.

(11) read-access. This policy allows to manage read-access to an element. If
set to false, all read-access to its sensitive DOM values will be blocked.
Similar to the freeze-policy, this directive is particularly interesting for the
protection of sensitive data in form elements. The policy directive can be
set to true or false. Upcoming versions will also allow to define an array
of allowed setters, ensuring that trusted JavaScript methods are permitted
while untrusted methods are blocked from modifying form values.

4 Security Evaluation

Since no formal methods are available to test security against MI attacks (XSS
filter bypasses are nearly always found through manual inspection), several semi-
formal empirical evaluations have been performed.

Generic Security Features. Unlike other filter tools, JSAgents cannot be
bypassed by an attacker utilizing obfuscation, unusual character sets, compressed
markup (WBXML) or even mXSS attacks. JSAgents takes the information about
the markup that is to be analyzed directly from the browser’s DOM. That means
that even if a certain version of a given user agent has exploitable flaws that lead
to broken markup being parsed into something active and executable, JSAgents
can still maintain its protective functionality through analyzing the markup after
the browser has processed it.

State-of-the-art Test Vectors. Two major sources of state-of-the-art XSS
attack vectors, “RSnake XSS Cheat Sheet” (now maintained by OWASP, 107
unique vectors8) and “HTML5 Security Cheatsheet” (139 unique vectors9) were
used for an initial hardening of JSAgents.

Public Challenge. To test the security features of the JSAgents core, a demo
was made available online and announced publicly (“DOMPurify” project hosted
on GitHub). Composing an arbitrary HTML string and sanitizing it from XSS
and DOM clobbering attacks using our library is made possible through this
demo. We received feedback from 31 researchers, with an approximate total
of 13,000 attempts to break JSAgents. Only 15 bypasses based on unexpected

8 https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet.
9 http://html5sec.org.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://html5sec.org

Waiting for CSP – Securing Legacy Web Applications with JSAgents 37

browser and DOM behaviors as well as DOM clobbering were identified after that
test phase and could be mitigated successfully (e.g., DOM-clobbering attacks
using a form-node, two input elements applied with the name “attributes” and
similar).

Empirical Security Model Based on Browser Capability Tests. The
currently employed version of the JSAgents core has been hardened against XSS,
DOM Clobbering, Tag Splitting, XML injections, and mXSS attacks by one the
authors who is considered as an expert in this field. Further, capability tests for
HTML, MathML and SVG elements to harden JSAgents have identified several
formerly unknown methods of script execution. This research has resullted in
several new attack vectors like using SVG and the <animate> element to execute
JavaScript from seemingly harmless attributes such as from, to and values, for
example leading to XSS Auditor bypasses in WebKit and Blink. Consequently,
the JSAgents core was updated and now successfully mitigates these attack
vectors.

Preventing Information Leakage. A test-suite was created to enumerate all
currently documented ways for browsers to leak information via HTTP requests
to third-party servers (images, CSS, videos, HTML manifests, proprietary MSIE
features, CSS image()). JSAgents was then optimized to spot and later remove
those data leaks. This was motivated by a need to allow a web-mailer to present
HTML mails without risking data leakage and unwanted tracking. At the same
time, it made it possible for the web proxies to provide better anonymity (which
they lack based on the fact that proxied HTML is filtered on the server and
thereby prone to attacks using obfuscation and exotic HTML features).

5 Performance Evaluation

To measure the execution time of JSAgents we created random HTML files with
valid elements and attributes, and arbitrary values. Table 1 shows the perfor-
mance for files with 10, 100, 608, 1,000, and 10,000 elements. For each test case,
Table 1 contains the average time in milliseconds after 25 tests with the web
API interface console.time (reconstructed for IE10). Next to console.time,
we worked with the JavaScript profiler of Firebug for Firefox and the native
profiler of Chrome to analyze the execution time of our JSAgents functions.
Therefore, there are five additional measurements for each test case in FF and
GC. We used the policies of Listings 1.7 and 1.8 with the following modifica-
tions: (1) For policy 1.7, we used script-elements: "same-domain". (2) For
policy 1.8, we omitted the #widget definition, since this value was not present in
our sample files. Each tested browser was installed on the same virtual machine
with an Intel Xeon E5-2470 processor (2,3 GHz), four assigned cores and 4 GB
RAM. By reading out the measurements via the profiler, we noticed that the
attribute enforcer, source extraction, and innerHTML modification need more
execution time than any other parts of JSAgents. By comparing our results,
the attribute enforcer is the slowest component if there are at least 37 HTML
elements on the website.

38 M. Heiderich et al.

Table 1. Performance evaluation in milliseconds.

Elements IE10 IE11 FF16 FF29 GC36

Policy of Listing 1.8 with

script-elements: "same-domain"

100 21 23 45 53 25

608 83 114 182 129 77

1,000 132 181 297 208 121

10,000 1,131 1,437 3,064 1,643 1,073

Policy of Listing 1.7 without the #widget definition

100 21 23 49 52 25

608 81 107 179 126 74

1,000 124 173 279 202 117

10,000 1,043 1,403 2,923 1,524 1,031

To make our measurements applicable to real life applications, we computed
the average number of HTML elements of the following main pages: Google
(145), YouTube (1,302), Facebook (383), Twitter (402), and Yahoo (810). This
average number is 608, and for this number (cf. Table 1) JSAgents needs 117 ms
to be fully executed for the modified policy of Listing 1.8 with 11 directives
inside of one selector, and 114 ms for the modified policy of Listing 1.7 with
eight directives inside of three selectors. The modified policy of Listing 1.7 is
a little faster than the policy of Listing 1.8; the enforcer is responsible for this
behavior because its execution time increases with a higher number of directives.

6 Future Work

JSAgents is a library and framework that can reliably enforce fine-grained poli-
cies on the DOM of a website or any other browser-based document. Deploying
a security tool on this specific layer has many benefits and enables several novel
use cases and docking points for future work and extensions.

Extensibility Through Modularity. Given that the developer can deploy
a module right in the time window between the document content being fully
loaded and the document being rendered, a large set of additional security and
usability enhancements can be implemented. For example accessibility factors
of the document can be enriched by JSAgents, since the subtitles can be auto-
matically displayed for videos, markup can be annotated from linked content
sources, visibility aspects can be adjusted by applying additional contrast or
manipulating font sizes.

Enhancements of the Policy Language. Future revisions will cover policy
directives capable of managing permissions to use arbitrary non-HTTP protocol
handlers, a flag to enforce “SSL only” resources, and a possibility to pipeline

Waiting for CSP – Securing Legacy Web Applications with JSAgents 39

any existing binary resource through a configurable proxy-URL. An implemen-
tation of fine-grained DOM property access management will be offered. This is
advantageous for developers who wish to use JSAgents with applications that
already make use of a plenitude of JavaScript code and DOM interaction.

A Comparable Approaches

A.1 From XSS Filters to CSP 1.0

Client-side XSS Filters. JSAgents is not a classical XSS filter. This is due
to the fact that each and every XSS filter must be able to make distinctions
between user-supplied and application-supplied markup. Conversely, JSAgents
only sees the combination of both (aside from common DOMXSS sources and
sinks like location.href). However, by employing an approach inherently differ-
ent from that of any common XSS filters, JSAgents can reliably mitigate several
kinds of XSS and markup injection – including DOMXSS and, in part, Scriptless
Attacks. If a web application uses third-party input to build some parts of the
DOM tree, regardless of whether it is user-supplied, stored, or DOM-based (e.g.,
document.URL, document.href, document.referrer), it may specify a white-
list of the allowed HTML elements for that very part of the DOM tree. Any other
type of element will be deleted by JSAgents. Thus, if JavaScript execution and
other potentially malicious HTML5 elements are not allowed in certain parts
of the website, these attacks will be blocked. An example of this approach is
given in Sect. 5, where a common webmail application assumes that the Iframe
containing the body of the rendered email should not contain any active markup.

HTTPonly Cookies. By setting the JSAgents directive read-access: false
for properties such as document.cookie, we effectively turn any cookie into
an HTTPonly cookie, so that document.cookie can no longer be accessed by
scripts. Similar access control can be imposed on form elements to prevent mali-
cious script from stealing its contents or sniffing keystrokes.

Sandboxed Iframes. In their default configuration, sandboxed Iframes have a
virtual origin that is different from any other kind of origin. By default, they
neither allow script execution nor form submission and they are not permitted to
navigate the top level frame (although those restrictions can be lifted gradually).
Two of these properties can easily be modeled with JSAgents: We can remove all
script and form elements from a selected Iframe. Sandboxed Iframes, however,
feature additional properties to gradually release the default security constraints.
In its current state JSAgents is not yet able to emulate this functionality.

HTTP Leak Detection/Proxy Injection. Since JSAgents is targeting
extractability, it is capable of detecting HTML elements that attempt to load
external resources. Depending on the use case, leaking information via direct
HTTP requests might compromise privacy promises of a web application. This
especially holds for web-mailers and web proxies, where a HTTP request sent to
an arbitrary URL or IP would leak user data and timing information, essentially

40 M. Heiderich et al.

enabling localization and tracking. JSAgents can be instructed to change any of
the existing URLs that point to external resources to be prefixed with a proxy
URL. This would mean that leakage of sensitive user data is avoided.

A.2 Content Security Policy

Content Security Policy 1.0. Large parts of CSP 1.0 can be implemented
and extended with the use of JSAgents. This is achieved by creating a policy
that prohibits any form of inline scripting, objects, embeds and applets, while
implementing a prefix for external resources (or simply blocking the use of exter-
nal resources that are coming from a non-whitelisted domain). Therefore, one
possible application scenario is to (partly) implement CSP in legacy browsers.
However, since JSAgents is not part of the browser core, it is less resistant to
higher-privilege attacks (e.g., web injections by local malware). JSAgents can be
used as a CSP replacement in browsers that do not support it and as a CSP
supplement in browsers with partial or full support.

header(’X-Content -Security -Policy: script -src ’self ’; style -

src ’self ’; img -src ’self ’ images.mysite.com);

Listing 1.9. Example CSP policy.

The code instances in Listings 1.9 and 1.10 show how an example CSP policy
can be emulated using JSAgents, even if the browser itself does not support CSP.

{"*" : {

script -elements: "same -domain",

style -elements: "same -domain",

img -elements: "same -domain", "images.mysite.com"

}}

Listing 1.10. CSP-emulating JSAgents policy.

CSP 1.1 Script Nonces. Introduced with CSP 1.1, script nonces are a way
to permit execution of only those (inline) script elements that have a nonce

Table 2. Comparison between CSP 1.0, 1.1 and JSAgents (Y: available, m: available
via module, n: not available).

Feature CSP 1.0 CSP 1.1 JSAgents

connect-src, font-src, frame-src, img-src, media-src, object-src,

script-src, style-src

Y Y Y

base-uri, frame-ancestors n Y n

default-src, form-action, plugin-types, referrer, sandbox n Y Y

reflexted-xss, report-uri n Y m

Cascading Properties n n Y

DOM node read-access n n Y

DOM write read-access n n Y

ask() function n n m

Waiting for CSP – Securing Legacy Web Applications with JSAgents 41

attribute with a value identical to a nonce value transmitted in the HTTP header.
This makes inline script injection nearly impossible. In cooperation with the web
application, JSAgents, inspired by Noncespaces [18], can achieve the same goal:
Inline scripts are marked with a fresh nonce value by the web application and
the same nonce value is written into a copy of the configuration file. As a result
of the jsa.js execution with this unique policy, all inline scripts unmarked with
the nonce value from the configuration file will be deleted (Table 2).

References

1. Klein, A.: DOM based cross site scripting or XSS of the third kind (2005). http://
www.webappsec.org/projects/articles/071105.shtml

2. Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., Yang, E.Z.: mxss attacks:
attacking well-secured web-applications by using innerhtml mutations. In: CCS
(2013)

3. Heiderich, M., Frosch, T., Jensen, M., Holz, T.: Crouching tiger - hidden pay-
load: security risks of scalable vector graphics. In: Proceedings of the 18th ACM
conference on Computer and Communications Security, pp. 239–250. ACM (2011)

4. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks-
stealing the pie without touching the sill. In: ACM Conference on Computer and
Communications Security (CCS) (2012)

5. Stone, P.: Pixel perfect timing attacks with html5. http://contextis.co.uk/files/
Browser Timing Attacks.pdf

6. Sterne, B., Barth, A.: Content security policy 1.0,” W3C, Candidate Recommen-
dation, November 2012. http://www.w3.org/TR/2012/CR-CSP-20121115/

7. Barth, A., Veditz, D., West, M.: Content security policy 1.1, w3c editor’s draft
12 November 2013. https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/
csp-specification.dev.html

8. Barth, A.: HTTP State Management Mechanism, RFC 6265 (Proposed Standard),
Internet Engineering Task Force, April 2011. http://www.ietf.org/rfc/rfc6265.txt

9. Hickson, I.: Html living standard - last updated 21 february 2014. http://www.
whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html

10. Ross, D.: IE8 XSS Filter design philosophy in-depth, April 2008. http://blogs.
msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.
aspx

11. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-
side XSS filters. In: Proceedings of the 19th International Conference on World
Wide Web, ser. WWW 2010, pp. 91–100. ACM, New York (2010). http://doi.acm.
org/10.1145/1772690.1772701

12. Zuchlinski, G.: The anatomy of cross site scripting. Hitchhiker’s World 8, November
2003

13. Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: precise dynamic prevention of
cross-site scripting attacks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 23–43. Springer, Heidelberg (2008)

14. Johns, M.: Code injection vulnerabilities in web applications - exemplified at cross-
site scripting. Ph.D. dissertation, University of Passau, Passau, July 2009

15. Gebre, M., Lhee, K., Hong, M.: A robust defense against content-sniffing xss
attacks. In: 2010 6th International Conference on Digital Content, Multimedia
Technology and its Applications (IDC), pp. 315–320. IEEE (2010)

http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
http://www.w3.org/TR/2012/CR-CSP-20121115/
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://www.ietf.org/rfc/rfc6265.txt
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://blogs.msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.aspx
http://blogs.msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.aspx
http://blogs.msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.aspx
http://doi.acm.org/10.1145/1772690.1772701
http://doi.acm.org/10.1145/1772690.1772701

42 M. Heiderich et al.

16. Saxena, P., Molnar, D., Livshits, B.: SCRIPTGARD: automatic context-sensitive
sanitization for large-scale legacy web applications. In: Proceedings of the 18th
ACM conference on Computer and communications security, pp. 601–614. ACM
(2011)

17. Gourdin, B., Soman, C., Bojinov, H., Bursztein, E.: Toward secure embedded web
interfaces. In: Proceedings of the Usenix Security Symposium (2011)

18. Gundy, M.V., Chen, H.: Noncespaces: using randomization to defeat cross-site
scripting attacks. Comput. Secur. 31(4), 612–628 (2012)

19. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: a robust basis for
cross-site scripting defense. In: NDSS. The Internet Society (2009)

20. Louw, M.T., Venkatakrishnan, V.N.: Blueprint: robust prevention of cross-site
scripting attacks for existing browsers. In: Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, ser. SP 2009, pp. 331–34. IEEE Computer
Society, Washington, DC (2009). http://dx.doi.org/10.1109/SP.2009.33

21. Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: A sys-
tematic analysis of XSS sanitization in web application frameworks. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 150–171. Springer, Heidelberg
(2011)

22. Nava, E.V., Lindsay, D.: Abusing Internet Explorer 8’s XSS Filters. http://p42.
us/ie8xss/Abusing IE8s XSS Filters.pdf

23. Zalewski, M.: Browser Security Handbook, July 2010. http://code.google.com/p/
browsersec/wiki/Main

24. Zalewski, M.: The Tangled Web: A Guide to Securing Modern Web Applications.
No Starch Press, San Francisco (2011)

25. Bug 29278: XSSAuditor bypasses from sla.ckers.org. https://bugs.webkit.org/
show bug.cgi?id=29278

26. Heiderich, M.: Towards Elimination of XSS Attacks with a Trusted and Capability
Controlled DOM (2012). http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/
Diss/HeiderichMario/diss.pdf

27. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with bek. In: Proceedings of the 20th USENIX Conference On
Security, ser. SEC 2011, p. 1. USENIX Association, Berkeley (2011). http://dl.
acm.org/citation.cfm?id=2028067.2028068

28. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-Cloaking internet mal-
ware. In: Proceedings IEEE Symposium on Security & Privacy (2012)

29. Nava, E.V.: ACS - active content signatures. PST WEBZINE 0X04, no. 4, Decem-
ber 2006

30. Di Paola, S.: Preventing xss with data binding. http://www.wisec.it/sectou.php?
id=46c5843ea4900

31. Heiderich, M., Frosch, T., Holz, T.: IceShield: detection and mitigation of malicious
websites with a frozen DOM. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 281–300. Springer, Heidelberg (2011)

http://dx.doi.org/10.1109/SP.2009.33
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://code.google.com/p/browsersec/wiki/Main
http://code.google.com/p/browsersec/wiki/Main
https://bugs.webkit.org/show_bug.cgi?id=29278
https://bugs.webkit.org/show_bug.cgi?id=29278
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/HeiderichMario/diss.pdf
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/HeiderichMario/diss.pdf
http://dl.acm.org/citation.cfm?id=2028067.2028068
http://dl.acm.org/citation.cfm?id=2028067.2028068
http://www.wisec.it/sectou.php?id=46c5843ea4900
http://www.wisec.it/sectou.php?id=46c5843ea4900

Analyzing the BrowserID SSO System
with Primary Identity Providers Using

an Expressive Model of the Web

Daniel Fett, Ralf Küsters(B), and Guido Schmitz

University of Trier, Trier, Germany
{fett,kuesters,schmitzg}@uni-trier.de

Abstract. BrowserID is a complex, real-world Single Sign-On (SSO)
System for web applications recently developed by Mozilla. It employs
new HTML5 features (such as web messaging and web storage) and
cryptographic assertions to provide decentralized login, with the intent
to respect users’ privacy. It can operate in a primary and a secondary
identity provider mode. While in the primary mode BrowserID runs with
arbitrary identity providers, in the secondary mode there is one identity
provider only, namely Mozilla’s default identity provider.

We recently proposed an expressive general model for the web
infrastructure and, based on this web model, analyzed the security of the
secondary identity provider mode of BrowserID. The analysis revealed
several severe vulnerabilities, which have been fixed by Mozilla.

In this paper, we complement our prior work by analyzing the even
more complex primary identity provider mode of BrowserID. We do not
only study authentication properties as before, but also privacy proper-
ties. During our analysis we discovered new and practical attacks that
do not apply to the secondary mode: an identity injection attack, which
violates a central authentication property of SSO systems, and attacks
that break the privacy promise of BrowserID and which do not seem to
be fixable without a major redesign of the system. Interestingly, some of
our attacks on privacy make use of a browser side channel that, to the
best of our knowledge, has not gained a lot of attention so far.

For the authentication bug, we propose a fix and formally prove in
a slight extension of our general web model that the fixed system satis-
fies all the authentication requirements we consider. This constitutes the
most complex formal analysis of a web application based on an expres-
sive model of the web infrastructure so far.

As another contribution, we identify and prove important security
properties of generic web features in the extended web model to facili-
tate future analysis efforts of web standards and web applications.

1 Introduction

Single sign-on (SSO) systems have become an important building block for
authentication in the web. Over the last years, many different SSO systems
have been developed, for example, OpenID, OAuth, and proprietary solutions
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 43–65, 2015.
DOI: 10.1007/978-3-319-24174-6 3

44 D. Fett et al.

such as Facebook Connect. These systems usually allow a user to identify herself
to a so-called relying party (RP), which provides some service, using an identity
that is managed by an identity provider (IdP), such as Facebook or Google.

Given their role as brokers between IdPs and RPs, the security of SSO sys-
tems is particularly crucial: numerous attacks have shown that vulnerabilities in
SSO systems compromise the security of many services and users at once (see,
e.g., [3,7,23–26]).

BrowserID [21] is a relatively new complex SSO system which allows users
to utilize any of their existing email addresses as an identity. BrowserID, which
is also known by its marketing name Persona, has been developed by Mozilla
and provides decentralized and federated login, with the intent to respect users’
privacy: While in other SSO systems (such as OpenID), by design, IdPs can
always see when and where their users log in, Mozilla’s intention behind the
design of BrowserID was that such tracking should not be possible. Several web
applications support BrowserID authentication. For example, popular content
management systems, such as Drupal and WordPress allow users to log in using
BrowserID. Also Mozilla uses this SSO system on critical web sites, e.g., their
bug tracker Bugzilla and their developer network MDN.

The BrowserID implementation is based solely on native web technologies. It
uses many new HTML5 web features, such as web messaging and web storage.
For example, BrowserID uses the postMessage mechanism for cross-origin inter-
frame communication (i.e., communication within a browser between different
windows) and the web storage concept of modern browsers to store user data on
the client side.

There are two modes for BrowserID: For the best user experience, email
providers (IdPs) can actively support BrowserID; they are then called primary
IdPs. For all other email providers that do not support BrowserID, the user can
register her email address at a default IdP, namely Mozilla’s login.persona.org,
the so-called secondary IdP.

In [13], we proposed a general and expressive Dolev-Yao style model for
the web infrastructure. This web model is designed independently of a specific
web application and closely mimics published (de-facto) standards and speci-
fications for the web, for instance, the HTTP/1.1 and HTML5 standards and
associated (proposed) standards (mainly RFCs). It is the most comprehensive
web model to date. Among others, HTTP(S) requests and responses, including
several headers, such as cookie, location, strict transport security (STS), and
origin headers, are modeled. The model of web browsers captures the concepts
of windows, documents, and iframes, including the complex navigation rules, as
well as new technologies, such as web storage and cross-document messaging
(postMessages). JavaScript is modeled in an abstract way by so-called scripting
processes which can be sent around and, among others, can create iframes and
initiate XMLHTTPRequests (XHRs). Browsers may be corrupted dynamically
by the adversary.

Based on this general web model, we analyzed the security of the secondary
IdP mode of BrowserID [13]. The analysis revealed several severe vulnerabilities,
which have since been fixed by Mozilla.

Analyzing the BrowserID SSO System with Primary Identity Providers 45

Contributions of this Paper. The main contributions of this paper are that
we (i) analyze authentication and privacy properties for the primary mode of
BrowserID, where in both cases the analysis revealed new attacks, (ii) identify
generic web security properties to ease future analysis efforts, and (iii) slightly
extend our web model.

As mentioned before, in [13], we studied the simpler secondary mode of
BrowserID only. The primary model studied here is much more complex than
the secondary mode (see also the remarks in Sect. 4.2). It involves more compo-
nents (such as an arbitrary set of IdPs, more iframes), a much more complex
communication structure, and requires weaker trust assumptions (for example,
some IdPs, and hence, the JavaScript they deliver, might be malicious). Also, in
our previous work, we have not considered privacy properties, but authentication
properties only.

More specifically, the contributions of this paper can be summarized as
follows.

Extension of the Web Model. We slightly extend our web model proposed in [13].
We complement the modeling of the web storage concept of modern browsers by
adding sessionStorage [27], which is (besides the already modeled localStorage)
heavily used by BrowserID in its primary mode. We also extend the model to
include a set of user identities (e.g., user names or email addresses) in addition
to user secrets.

Authentication Attack and Security Proof for BrowserID. The authentication
properties we analyze are central to any SSO system and correspond to those
considered in our previous work: (i) the attacker should not be able to log in at
an RP as an honest user and (ii) the attacker should not be able to authenticate
an honest user/browser to an RP with an ID not owned by the user (identity
injection). While trying to prove these authentication properties for the primary
mode of BrowserID, we discovered a new attack which violates property (ii).
Depending on the service provided by the RP, this could allow the attacker to
track the honest user or to obtain user secrets. We confirmed the attack on the
actual implementation and reported it to Mozilla, who acknowledged the attack.
We note that this attack does not apply to the secondary mode.

We propose a fix and provide a detailed formal proof based on the (extended)
web model which shows that the fixed system satisfies the mentioned authenti-
cation properties. This constitutes the most complex formal analysis of a web
application based on an expressive model of the web infrastructure, in fact, as
mentioned, the most comprehensive one to date. We note that other web models
are too limited to be applied to BrowserID (see also Sect. 7).

Privacy Attacks on BrowserID. As pointed out before, BrowserID was designed
by Mozilla with the explicit intention to respect users’ privacy. Unlike in other
SSO systems, when using BrowserID, IdPs should not learn to which RP a user
logs in. When trying to formally prove this property, we discovered attacks that
show that BrowserID cannot live up to this claim. Our attacks allow malicious

46 D. Fett et al.

IdPs to check whether or not a user is logged in at a specific RP with little effort.
Interestingly, one variant of these attacks exploits a browser side channel which,
to our knowledge, has not received much attention in the literature so far. Just as
for authentication, we have confirmed the attacks on the actual implementation
and reported them to Mozilla [10], who acknowledged the attacks. We have
been awarded a bug bounty from the Mozilla Security Bug Bounty Program.
Unfortunately, the attacks exploit a design flaw of BrowserID that does not
seem to be easily fixable without a major redesign.

Generic Web Security Properties. Our security analysis of BrowserID and the
case study in [13] show that certain security properties of the web model need to
be established in most security proofs for web standards and web applications.
As another contribution, we therefore identify and summarize central security
properties of generic web features in our extension of our model and formalize
them in a general way such that they can be used in and facilitate future analysis
efforts of web standards and web applications.

Structure of this Paper. In Sect. 2, we outline the basic communication model
and the web model, including our extensions. We deduce general properties of
this model, which are independent of specific web applications, in Sect. 3. For our
security analysis, we first, in Sect. 4, provide a description of the BrowserID sys-
tem, focusing on the primary mode. We then, in Sect. 5, present our attack and
the formal analysis of the authentication properties of the (fixed) BrowserID sys-
tem in primary mode. In Sect. 6, we present our attacks on privacy of BrowserID.
Related work is discussed in Sect. 7. We conclude in Sect. 8. In the appendix, we
present more details on our web model and some privacy attack variants. Full
details of our models and proofs can be found in our technical report [14].

2 The Web Model

In this section, we present a brief overview of our model of the web infrastructure
as proposed in [13], along with our extensions (sessionStorage and user identities)
mentioned in the introduction. Full details are provided in [14]. We first present
the generic Dolev-Yao style communication model which the model is based on.

2.1 Communication Model

The main entities in the communication model are atomic processes, which will
be used to model web browsers, web servers, DNS servers as well as web and
network attackers. Each atomic process has a list of addresses (representing IP
addresses) it listens to. A set of atomic processes forms what is called a system.
The different atomic processes in such a system can communicate via events,
which consist of a message as well as a receiver and a sender address. In every
step of a run, one event is chosen non-deterministically from the current “pool”
of events and is delivered to an atomic process that listens to the receiver address

Analyzing the BrowserID SSO System with Primary Identity Providers 47

of that event; if different atomic processes can listen to the same address, the
atomic process to which the event is delivered is chosen non-deterministically
among the possible processes. The (chosen) atomic process can then process the
event and output new events, which are added to the pool of events, and so on.
More specifically, messages, processes, etc. are defined as follows.

Terms, Messages and Events. As usual in Dolev-Yao models (see, e.g., [1]),
messages are expressed as formal terms over a signature. The signature Σ for
the terms and messages considered in our web model contains, among others,
constants (such as (IP) addresses, ASCII strings, and nonces), sequence and pro-
jection symbols, and further function symbols, including those for (a)symmetric
encryption/decryption and digital signatures. The equational theory associated
with the signature Σ is defined as usual in Dolev-Yao models. Message are
defined to be ground terms (terms without variables) and events are of the form
(a:f :m) where a and f are receiver/sender (IP) addresses, and m is a message.

To provide an example of a message, in our web model an HTTP
request is represented as a ground term containing a nonce, a method (e.g.,
GET or POST), a domain name, a path, URL parameters, request headers
(such as Cookie), and a message body. Now, for example, an HTTP GET
request for the URL http://ex.com/show?p=1 is modeled as the term r :=
〈HTTPReq, n1, GET, ex.com, /show, 〈〈p, 1〉〉 , 〈〉 , 〈〉〉, where headers and body are
empty. An HTTPS request for r is of the form enca(〈r, k′〉 , pub(kex.com)), where k′

is a fresh symmetric key (a nonce) generated by the sender of the request (typically
a browser); the responder is supposed to use this key to encrypt the response.

Atomic Processes, Systems and Runs. Atomic Dolev-Yao processes, sys-
tems, and runs of systems are defined as follows.

An atomic Dolev-Yao (DY) process is a tuple p = (Ip, Zp, Rp, sp0) where Ip

is a set of addresses (the set of addresses the process listens to), Zp is a set of
states (formally, terms), sp0 ∈ Zp is an initial state, and Rp is a relation that
takes an event and a state as input and (non-deterministically) returns a new
state and a set of events. This relation models a computation step of the process,
which upon receiving an event in a given state non-deterministically moves to a
new state and outputs a set of messages (events). It is required that the events
and states in the output can be computed (more formally, derived in the usual
Dolev-Yao style) from the current input event and state.

The so-called attacker process is an atomic DY process which records all
messages it receives and outputs all messages it can possibly derive from its
recorded messages. Hence, an attacker process is the maximally powerful DY
process. It carries out all attacks any DY process could possibly perform and is
parametrized by the set of sender addresses it may use. Attackers may corrupt
other DY processes (e.g., a browser).

http://ex.com/show?p=1

48 D. Fett et al.

A system is a (possibly infinite) set of atomic processes. Its state (i.e., the
states of all atomic processes in the system) together with a multi-set of waiting
events is called a configuration.

A run of a system for an initial set E0 of events is a sequence of configurations,
where each configuration (except for the first one, which consists of E0 and the
initial states of the atomic processes) is obtained by delivering one of the waiting
events of the preceding configuration to an atomic process p (which listens to
the receiver address of the event), and which in turn performs a computation
step according to its relation Rp.

Scripting Processes. We also define scripting processes, which model client-
side scripting technologies, such as JavaScript.

A scripting process (or simply, a script) is defined similarly to a DY process.
It is called by the browser in which it runs. The browser provides it with a (fresh,
infinite) set of nonces and state information s. The script then outputs a term s′,
which represents the new internal state and some command which is interpreted
by the browser (see Appendix A). Again, it is required that a script’s output is
derivable from its input.

Similarly to an attacker process, the so-called attacker script Ratt may output
everything that is derivable from the input.

2.2 Web System

A web system formalizes the web infrastructure and web applications. Formally,
a web system is a tuple (W,S, script, E0) with the following components:

The first component, W, denotes a system (a set of DY processes) and con-
tains honest processes, web attacker, and network attacker processes. While a
web attacker can listen to and send messages from its own addresses only, a
network attacker may listen to and spoof all addresses. Hence, it is the max-
imally powerful attacker. Attackers may corrupt other parties. In the analysis
of a concrete web system, we typically have one network attacker only and no
web attackers (as they are subsumed by the network attacker), or one or more
web attackers but then no network attacker. Honest processes can either be
web browsers, web servers, or DNS servers. The modeling of web servers heavily
depends on the specific application (for BrowserID see the modeling in Sect. 5.1).
In our security analysis of authentication properties, DNS servers will be sub-
sumed by the attacker, and hence, do not need to be modeled explicitly in this
work. The web browser model, which is independent of a specific web application,
is presented below.

The second component, S, is a finite set of scripts, including the attacker
script Ratt. In a concrete model, such as our BrowserID model (see Sect. 5.1),
the set S\{Ratt} describes the set of honest scripts used in the application under
consideration while malicious scripts are modeled by the “worst-case” malicious
script, Ratt.

The third component, script, is an injective mapping from a script in S to
its string representation script(s) (a constant in Σ). Finally, E0 is a multi-set

Analyzing the BrowserID SSO System with Primary Identity Providers 49

of events, containing an infinite number of events of the form (a:a:TRIGGER) for
every process a in the web system. A run of the web system is a run of W
initiated by E0.

2.3 Web Browsers

We now sketch the model of the web browser, with more details provided in
Appendix A. A web browser is modeled as a DY process (Ip, Zp, Rp, sp0, N

p).
An honest browser is thought to be used by one honest user, who is modeled

as part of the browser. User actions are modeled as non-deterministic actions of
the web browser. For example, the browser itself non-deterministically follows
the links in a web page. User data (i.e., passwords and identities) is stored in
the initial state of the browser and is given to a web page when needed, similar
to the AutoFill feature in browsers.

Besides the user identities and passwords, the state of a web browser (mod-
eled as a term) contains a tree of open windows and documents, lists of cookies,
localStorage and sessionStorage data, a DNS server address, and other data (see
Appendix A). We note that identities and sessionStorage were not considered
in [13].

In the browser state, the windows subterm is the most complex one. It con-
tains a window subterm for any open window (which may be many at a time),
and inside each window, a list of documents opened in that window (which,
again, may contain windows, modeling iframes). A document contains a script
loaded from a web server and represents one loaded HTML page.

Scripts may, for example, navigate or create windows, send XHRs and
postMessages, submit forms, set/change cookies, localStorage, and sessionStor-
age data, and create iframes. When activated, the browser provides a script
with all data it has access to, such as certain cookies as well as localStorage and
sessionStorage.

Browsers can become corrupted, i.e., be taken over by web and network
attackers. We model two types of corruption: close-corruption, modeling that
a browser is closed by the user, and hence, certain data is removed (e.g., ses-
sion cookies and opened windows), before it is taken over by the attacker, and
full corruption, where no data is not removed in advance. Once corrupted, the
browser behaves like an attacker process.

3 General Security Properties

We have identified central application independent security properties of web
features in the web model and formalized them in a general way such that they
can be used in and facilitate future analysis efforts of web standards and web
applications. In this section, we provide a brief overview of these properties, with
precise formulations and proofs presented in [14].

The first set of properties concerns encrypted connections (HTTPS): We show
that HTTP requests that were encrypted by an honest browser for an honest

50 D. Fett et al.

receiver cannot be read or altered by the attacker (or any other party). This,
in particular, implies correct behavior on the browser’s side, i.e., that browsers
that are not fully corrupted never leak a symmetric key used for an HTTPS
connection to any other party. We also show that honest browsers set the host
header in their requests properly, i.e., the header reflects an actual domain name
of the receiver, and that only the designated receiver can successfully respond
to HTTPS requests.

The second set of properties concerns origins and origin headers. Using the
properties stated above, we show that browsers cannot be fooled about the origin
of an (HTTPS) document in their state: If the origin of a document in the
browser’s state is a secure origin (HTTPS), then the document was actually
sent by that origin. Moreover, for requests which contain an origin header with
a secure origin we prove that such requests were actually initiated by a script
that was sent by that origin to the browser. In other words, in this case, the
origin header works as expected.

4 The BrowserID System

BrowserID [22] is a decentralized single sign-on (SSO) system developed by
Mozilla for user authentication on web sites. It is a complex full-fledged web
application deployed in practice, with currently ∼47k LOC (excluding some
libraries). It allows web sites to delegate user authentication to email providers,
identifying users by their email addresses. BrowserID makes use of a broad vari-
ety of browser features, such as XHRs, postMessage, local- and sessionStorage,
cookies, various headers, etc.

We first, in Sect. 4.1, provide a high-level overview of the BrowserID system.
A more detailed description of the BrowserID implementation is then given in
Sect. 4.2. The description of the BrowserID system presented in the following
as well as our BrowserID model (see Sect. 5.1) is extracted mainly from the
BrowserID source code [20] and the (very high-level) official BrowserID docu-
mentation [22].

4.1 Overview

The BrowserID system knows three distinct parties: the user, who wants to
authenticate herself using a browser, the relying party (RP) to which the
user wants to authenticate (log in) with one of her email addresses (say,
user@idp.com), and the identity/email address provider, the IdP. If the IdP
(idp.com) supports BrowserID directly, it is called a primary IdP. Otherwise, a
Mozilla-provided service, the so-called secondary IdP, takes the role of the IdP.
As mentioned before, here we concentrate on the primary IdP mode as the sec-
ondary IdP mode was described in detail in [13]. However, we briefly discuss the
differences between the two modes at the end of Sect. 4.2.

A primary IdP provides information about its setup in a so-called support
document, which it provides at a fixed URL derivable from the email domain,
e.g., https://idp.com/.well-known/browserid.

https://idp.com/.well-known/browserid

Analyzing the BrowserID SSO System with Primary Identity Providers 51

Fig. 1. BrowserID login: basic overview

A user who wants to log in at an
RP with an email address for some IdP
has to present two signed documents
to the RP: A user certificate (UC) and
an identity assertion (IA). The UC
contains the user’s email address and
the user’s public key. It is signed by the
IdP. The IA contains the origin of the
RP and is signed with the user’s pri-
vate key. Both documents have a lim-
ited validity period. A pair consisting
of a UC and a matching IA is called
a certificate assertion pair (CAP) or
a backed identity assertion. Intuitively,
the UC in the CAP tells the RP that
(the IdP certified that) the owner of
the email address is (or at least claims to be) the owner of the public key. By
the IA contained in the CAP the RP is ensured that the owner of the given
public key (i.e., the one who knows the corresponding private key) wants to log
in. Altogether, given a valid CAP, RP would consider the user (identified by the
email address in the CAP) to be logged in.

The BrowserID authentication process (with a primary IdP) consists of three
phases (see Fig. 1): I UC provisioning, II CAP creation, and III CAP verifi-
cation.

In Phase I , (the browser of) the user creates a public/private key pair A .
She then sends her public key as well as the email address she wants to use to
log in at some RP to the respective IdP B . The IdP now creates the UC C ,
which is then sent to the user D . The above requires the user to be logged in at
IdP.

With the user having received the UC, Phase II can start. The user wants
to authenticate to an RP, so she creates the IA E . The UC and the IA are
concatenated to a CAP, which is then sent to the RP F .

In Phase III , the RP checks the authenticity of the CAP. For this purpose,
the RP fetches the public key of the IdP G , which is contained in the support
document. Afterwards, the RP checks the signatures of the UC and the IA H .
If this check is successful, the RP can, as mentioned before, consider the user
to be logged in with the given email address and send her some token (e.g., a
cookie with a session ID), which we refer to as an RP service token.

4.2 Implementation Details

We now provide a more detailed description of the BrowserID implemen-
tation. Since the system is very complex, with many HTTPS requests, XHRs,
and postMessages sent between different entities (servers as well as windows and
iframes within the browser), we here describe mainly the phases of the login

52 D. Fett et al.

Fig. 2. Simplified BrowserID implementation overview. CIF omitted for brevity.

process without explaining every single message exchange done in the imple-
mentation. A more detailed step-by-step description can be found in [14]. Note
that BrowserID’s specification of IdPs fixes the interface to BrowserID only, but

Analyzing the BrowserID SSO System with Primary Identity Providers 53

otherwise does not further detail the specification of IdPs. Therefore, in what
follows, we consider a typical IdP, namely the example implementation provided
by Mozilla [20].

In addition to the parties mentioned so far, the actual BrowserID implemen-
tation uses another party, Mozilla’s login.persona.org (LPO). Among others,
LPO provides HTML and JavaScript files that, for security and privacy reasons,
cannot be delivered by either IdP or RP. An overview of the implementation is
given in Fig. 2. For brevity of presentation, several messages and components,
such as the CIF (see below), are omitted in the figure (but not in our analysis).

Windows and iframes in the Browser. By RP-Doc we denote the window
containing the document loaded from some RP, at which the user wants to log in
with an email address hosted by some IdP. RP-Doc typically includes JavaScript
from LPO and contains a button “Login with BrowserID”. The LPO JavaScript
running in RP-Doc opens an auxiliary window called the login dialog (LD). Its
content is provided by LPO and it handles the interaction with the user. During
the login process, a temporary invisible iframe called the provisioning iframe
(PIF) can be created in the LD. The PIF is loaded from IdP. It is used by LD
to communicate (cross-origin) with the IdP via postMessages: As the BrowserID
implementation mainly runs under the origin of LPO, it cannot directly commu-
nicate with the IdP, thus it uses the PIF as a proxy. Temporarily, the LD may
navigate itself to a web page at IdP to allow for direct user interaction with the
IdP. We then call this window the authentication dialog (AD).

Login Process. To describe the login process, for the sake of presentation we
assume for now that the user uses a “fresh” browser, i.e., the user has not been
logged in before. As mentioned, the process starts by the user visiting a web site
of some RP. After the user has clicked on the login button in RP-Doc, the LD
is opened and the interactive login flow is started. We can divide this login flow
into seven phases: In Phase i , the LD is initialized and the user is prompted to
provide her email address. Also, LD fetches the support document (see Sect. 4.1)
of the IdP via LPO. In Phase ii , LD creates the PIF from the provisioning
URL provided in the support document. As (by our assumption) the user is not
logged in yet, the PIF notifies LD that the user is not authenticated to the IdP.
In Phase iii , LD navigates itself away to the authentication URL which is also
provided in the support document and links to the IdP. Usually, this document
will show a login form in which the user enters her password to authenticate to
the IdP. After the user has been authenticated to IdP (which typically implies
that the IdP sets a session cookie in the browser), the window is navigated back
to LPO.

Now, the login flow continues in Phase iv , which basically repeats Phase i .
However, the user is not prompted for her email address (it has previously been
saved in the localStorage under the origin of LPO along with a nonce, where the
nonce is stored in the sessionStorage). In Phase v , which essentially repeats
Phase ii , the PIF detects that the user is now authenticated to the IdP and

54 D. Fett et al.

the provisioning phase is started (I in Fig. 1): The user’s keys are created by
LD and stored in the localStorage under the origin of LPO. The PIF forwards
the certification request to the IdP, which then creates the UC and sends it
back to the PIF. The PIF in turn forwards it to the LD, which stores it in the
localStorage under the origin of LPO.

In Phases vi and vii , mainly the IA is generated by LD for the origin of
RP-Doc and sent (together with the UC) to RP-Doc (II in Fig. 1). In the local-
Storage, LD stores that the user’s email address is logged in at RP. Moreover,
to log the user in at LPO, LD generates an IA for the origin of LPO and sends
the UC and IA to LPO.

Automatic CAP Creation. In addition to the interactive login presented
above, BrowserID also contains an automatic, non-interactive way for RPs to
obtain a freshly generated CAP: During initialization within RP-Doc, an invisi-
ble iframe called the communication iframe (CIF) is created inside RP-Doc. The
CIF’s JavaScript is loaded from LPO and behaves similar to LD, but without
user interaction. The CIF automatically issues a fresh CAP and sends it to RP-
Doc under specific conditions: among others, the email address must be marked
as logged in at RP in the localStorage. If necessary, a new key pair is created
and a corresponding new UC is requested at the IdP. For this purpose, a PIF is
created inside the CIF.

Differences to the Secondary IdP Mode. In the secondary IdP mode there
are three parties involved only: RP, Browser, and LPO, where LPO also takes
the role of an IdP; LPO is the only IdP that is present, rather than an arbitrary
set of (external) IdPs. Consequently, in the secondary IdP mode the PIF and the
AD do not exist. Moreover, in the primary mode, the behavior of the CIF and the
LD is more complex than in the secondary mode. For example, in the primary
mode, just like the LD, the CIF might contain a PIF (iframe in iframe) and
interact with it via postMessages. Altogether, the secondary IdP case requires
much less communication between parties/components and trust assumptions
are simpler: in the secondary IdP mode LPO (which is the only IdP in this
mode) has to be trusted, in the primary IdP mode some external IdPs might be
malicious (and hence, also the scripts they deliver for the PIF and the AD). In
[14], Appendix I, we illustrate the differences between the two modes.

5 Analysis of BrowserID: Authentication Properties

In this section, we present the analysis of the BrowserID system with primary
IdPs and with respect to authentication properties. As already mentioned, in
[13], we analyzed the simpler case with a secondary IdP. Due to the many differ-
ences between the secondary and primary mode as described above, the model
for the primary case had to be written from scratch in most parts, and hence,
the proof is new and much more complex.

Analyzing the BrowserID SSO System with Primary Identity Providers 55

We first, in Sect. 5.1, describe our model of BrowserID with primary IdPs,
with two central authentication properties one would expect any SSO system
to satisfy formalized in Sect. 5.2. As mentioned in the introduction, during the
analysis of BrowserID it turned out that one of the security properties is not
satisfied and that in fact there is an attack on BrowserID. We confirmed that this
attack, which was acknowledged by Mozilla, works on the actual implementation
of BrowserID. In Sect. 5.3, the attack is presented along with a fix. In Sect. 5.4,
we prove that the fixed BrowserID system with primary IdPs satisfies both
authentication properties.

5.1 Modeling of BrowserID with Primary IdPs

We model the BrowserID system with primary IdPs as a web system (in the
sense of Sect. 2). Note that, while in Sect. 4 we give only a brief overview of the
BrowserID system, our modeling and analysis considers the complete system
with primary IdPs, where we have extracted the model from the BrowserID
source code [20].

We call a web system BID = (W,S, script, E0) a BrowserID web system if it
is of the form precisely described in [14] and briefly outlined here.

The system W consists of the (network) attacker process attacker, a finite
set B of (initially honest) web browsers, the web server for LPO, a finite set RP
of web servers for the relying parties, and a finite set IDP of web servers for
the identity providers. (DNS servers are assumed to be dishonest, and hence,
are subsumed by attacker.) IdPs and RPs are initially honest and can become
corrupted (similar to browsers, by a special message); LPO is assumed to be
honest. The definition of the processes in W follows the description in Sect. 4.2.
For RP, we explicitly follow the security considerations in [22] (Cross-site Request
Forgery protection, e.g., by checking origin headers and HTTPS only with STS
enabled). When RP receives a valid CAP, RP responds with a fresh RP service
token for ID i where i is the ID (email address) for which the CAP was issued.
Intuitively, a client having such a token can use the service of the RP.

The set S of BID contains six scripts, with their string representations
defined by script: the honest scripts running in RP-Doc, CIF, LD, AD, and
PIF, respectively, and the malicious script Ratt. The scripts for CIF and LD
(issued by LPO) are defined in a straightforward way following the implementa-
tion outlined in Sect. 4. The scripts for RP-Doc, AD, and PIF follow the example
implementation provided by Mozilla [20].

5.2 Authentication Properties of the BrowserID System

While the documentation of BrowserID does not contain explicit security goals,
here we state two fundamental authentication properties every SSO system
should satisfy. These properties are adapted from [13].

Informally, these properties can be stated as follows: (A) The attacker should
not be able to use a service of RP as an honest user. In other words, the attacker
should not get hold of (be able to derive from his current knowledge) an RP

56 D. Fett et al.

service token for an ID of an honest user (browser), even if the browser was
closed and then later used by a malicious user (i.e., after a CLOSECORRUPT).
(B) The attacker should not be able to authenticate an honest browser to an RP
with an ID that is not owned by the browser (identity injection). We refer the
reader to [14] for the formal definitions.

We call a BrowserID web system BID secure (w.r.t. authentication) if the
above conditions are satisfied in all runs of the system.

5.3 Identity Injection Attack on BrowserID with Primary IdPs

While trying to prove the above mentioned authentication properties of
BrowserID with primary IdPs in our model, we discovered a serious attack,
which is sketched below and does not apply to the case with secondary IdPs. We
confirmed the attack on the actual implementation and reported it to Mozilla [9],
who acknowledged it.

During the provisioning phase v (see Fig. 2), the IdP issues a UC for the
user’s identity and public key provided in 16 . This UC is sent to the LD by the
PIF in 20 .

If the IdP is malicious, it can issue a UC with different data. In particular, it
could replace the email address by a different one, but keep the original public
key. This (malicious) UC is then later included in the CAP by LD. The CAP will
still be valid, because the public key is unchanged. Now, as the RP determines
the user’s identity by the UC contained in the CAP, RP issues a service token
for the spoofed email address. As a result, the honest user will use RP’s service
(and typically will be logged in to RP) under an ID that belongs to the attacker,
which, for example, could allow the attacker to track actions of the honest user
or obtain user secrets. This violates Condition (B).

To fix this problem, upon receipt of the UC in 20 , LD should check whether
it contains the correct email address and public key, i.e., the one requested by
LD in 16 . The same is true for the CIF, which behaves similarly to the LD. Our
formal model of BrowserID presented in [14] contains these fixes.

5.4 Security of the Fixed System

For the fixed BrowserID system with primary IdPs, we have proven the following
theorem, which says that a fixed BrowserID web system (i.e., the system where
the above described fix is applied) satisfies the security properties (A) and (B).

Theorem 1. Let BID be a fixed BrowserID web system. Then, BID is secure
(w.r.t. authentication).

We prove Conditions (A) and (B) separately. For both conditions, we assume
that they are not satisfied and lead this to a contradiction. In our proofs, we
make use of the general security properties of the web model presented in Sect. 3,
which helped a lot in making the proof for the primary IdP model more modular
and concise. The complete proof with all details is provided in [14].

Analyzing the BrowserID SSO System with Primary Identity Providers 57

6 Privacy of BrowserID

In this section, we study the privacy guarantees of the BrowserID system with
primary IdPs. Regarding privacy, Mozilla states that “. . . the BrowserID protocol
never leaks tracking information back to the Identity Provider.” [5] and “Unlike
other sign-in systems, BrowserID does not leak information back to any server
[. . .] about which sites a user visits.” [19].1 While this is not a formal definition
of the level of privacy that BrowserID is supposed to provide, these and other
statements2 make it certainly clear that, unlike for other SSO systems, IdPs
should not be able to learn to which RPs their users log in.

In the process of formalizing this intuition in our model of BrowserID and
trying to prove this property, we found severe attacks against the privacy of
BrowserID which made clear that BrowserID does not provide even a rather
weak privacy property in the presence of a malicious IdP. Intuitively, the property
says that a malicious IdP (which acts as a web attacker) should not be able to
tell whether a user logs in at an honest RP r or some other honest RP r′.
In other words, a run in which the user logs in at r at some point should be
indistinguishable (from the point of view of the IdP) from the run in which the
user logs in at r′ instead. Indistinguishability means that the two sequences of
messages received by the web attacker in the two runs are statically equivalent in
the usual sense of Dolev-Yao models (see [1]), i.e., a Dolev-Yao attacker cannot
distinguish between the two sequences. Details of the privacy definition are not
important here since our attacks clearly show that privacy is broken for any
reasonable definition of privacy. Unfortunately, our attacks are not caused by
a simple implementation error, but rather a fundamental design flaw in the
BrowserID protocol. Fixes for this flaw are conceivable, but not without major
changes to the design of BrowserID as discussed in Sect. 6.2. Such a redesign of
BrowserID and a proof of privacy of the redesigned system are therefore out of
the scope of this paper, which focuses on the existing and deployed version of
BrowserID.

6.1 Privacy Attacks on BrowserID

For our attacks to work, it suffices that the IdP is a web attacker. They work
even if all DNS servers, RPs, and LPO are honest, and all parties use encrypted
connections. In what follows, we present two variants of the attacks on privacy
with three additional interesting variants presented in Appendix B.

PostMessage-Based Attack. The adversary is a malicious IdP that is interested
to learn whether a user is logged in at RP r. Figure 3 illustrates the main steps:
1 Clearly, in the current state of BrowserID a malicious LPO server could gather

information about users’ log in history. However, an integration of the code currently
delivered by LPO into the browser, as envisioned, would avoid this issue. Currently,
Mozilla’s LPO needs to be trusted.

2 see, for example, https://developer.mozilla.org/en-US/Persona/Why Persona and
http://identity.mozilla.com/post/7669886219.

https://developer.mozilla.org/en-US/Persona/Why_Persona
http://identity.mozilla.com/post/7669886219

58 D. Fett et al.

Fig. 3. The three main steps of the privacy attack. Using a specially crafted PIF
document, a malicious IdP can notify itself via postMessage when the user is logged in
at some RP r.

Step a . First, the victim visits her IdP. In BrowserID, email providers serve as
IdPs, and therefore it is not unlikely that a user visits this web site (e.g., for
checking email). As the IdP usually has some cookie set at the user’s browser, it
learns the identity of the victim. The IdP now creates a hidden iframe containing
the login page of r.
Step b . The login page of r (now loaded as an iframe within IdP’s web site)
includes and runs the BrowserID script. As defined in the BrowserID protocol,
the script creates the communication iframe (see “Automatic CAP Creation” in
Sect. 4.2), which in turn checks whether the email address is marked as logged
in at r in the localStorage of the user’s browser. Only then it will try to create
a new CAP, for which it needs a PIF (the same as in Phase ii in Fig. 2).
Step c . The PIF is loaded from the IdP. (From this action alone, the IdP does
not learn where the user wants to log in.) However, instead of the original (hon-
est) PIF document, the IdP can send a modified one that sends a postMessage
to the parent of the parent of the parent of its own window, which in this setting
is the IdP document that was opened by the user in Step a . When the IdP
receives this message in the document from Step a , it knows that the PIF was
loaded, and therefore, that the user is currently logged in at r.

Note that the IdP can repeatedly apply the above as long as the user stays
on the IdP’s web site. During this period, the IdP can see whether or not the
user is logged in at the targeted RP. Clearly, the IdP can simultaneously run
the attack for different RPs. In particular, the IdP can distinguish whether a
user is logged in at RP r or r′, which violates the privacy property sketched
above. In our formal model, the malicious IdP would run the attacker script
Ratt in idp.com/index and in idp.com/pif (see Fig. 3) in order to carry out
the attack.

Variant 1: Waiting for UC requests. The IdP first acts as in Step a . Now, it
could passively wait for incoming requests for the PIF document or UC requests
on its server, which tell the IdP that a provisioning flow (probably initiated

Analyzing the BrowserID SSO System with Primary Identity Providers 59

by Step a) was started. This variant cannot be executed in parallel and is less
reliable in practice, though.

We verified (all variants of) the attacks in our model as well as in a real-
world BrowserID setup. Implementing proofs-of-concept required only a few lines
of (trivial) JavaScript. In most attack variants, we directly or indirectly use
the structure of the windows inside the web browser as a side channel. To our
knowledge, this is the first description of this side channel for breaking privacy
in browsers. The attacks have been reported to and confirmed by Mozilla [10].

6.2 Fixing the Privacy of BrowserID

Fixing the privacy of BrowserID seems to require a substantial redesign of the
system. Regarding the presented attacks, BrowserID’s main weakness is the win-
dow structure. The most obvious mitigation, modifying the CIF such that it
always creates the PIF (even if the user has not logged in before), does not
work: To open the PIF, the CIF looks up (in the localStorage) the user’s iden-
tity at the current RP to derive the address of the PIF. If the user has not logged
in before, this information is not available.

Another approach would be to use cross-origin XHRs to replace the features
of the PIF. This solution would require a major revision in the inner workings
of BrowserID and would not protect against Variant 1.

7 Related Work

The formal treatment of the security of the web infrastructure and web applica-
tions based on this infrastructure is a young discipline. Of the few works in this
area even less are based on a general model that incorporates essential mecha-
nisms of the web.

Early works in formal web security analysis (see, e.g., [3,11,16,17,25]) are
based on very limited models developed specifically for the application under
scrutiny. The first work to consider a general model of the web, written in the
finite-state model checker Alloy, is the work by Akhawe et al. [2]. Inspired by
this work, Bansal et al. [6,7] built a more expressive model, called WebSpi, in
ProVerif [8], a tool for symbolic cryptographic protocol analysis. These mod-
els have successfully been applied to web standards and applications. Recently,
Kumar [18] presented a high-level Alloy model and applied it to SAML single
sign-on. However, compared to our model in [13] and its extensions considered
here, on the one hand, all above mentioned models are formulated in the spec-
ification languages of specific analysis tools, and hence, are tailored towards
automation (while we perform manual analysis). On the other hand, the models
considered in these works are much less expressive and precise. For example,
these models do not incorporate a precise handling of windows, documents, or
iframes; cross-document messaging (postMessages) or session storage are not
included at all. In fact, several general web features and technologies that have
been crucial for the analysis of BrowserID are not supported by these models,

60 D. Fett et al.

and hence, these models cannot be applied to BrowserID. Moreover, the com-
plexity of BrowserID exceeds that of the systems analyzed in these other works
in terms of the use of web technologies and the complexity of the protocols.
For example, BrowserID in primary mode is a protocol consisting of 48 different
(network and inter-frame) messages compared to typically about 10–15 in the
protocols analyzed in other models.

The BrowserID system in the primary mode has been analyzed before using
the AuthScan tool developed by Bai et al. [4]. Their work focusses on the auto-
mated extraction of a model from a protocol implementation. This tool-based
analysis did not reveal the identity injection attack, though; privacy properties
have not been studied there. Dietz and Wallach demonstrated a technique to
secure BrowserID when specific flaws in TLS are considered [12].

8 Conclusion

In this paper, we slightly extended our existing web model, resulting in the
most comprehensive model of the web so far. It contains many security-relevant
features and is designed to closely mimic standards and specifications for the
web. As such, it constitutes a solid basis for the analysis of a broad range of web
standards and applications.

Based on this model, we presented a detailed analysis of the BrowserID SSO
system in the primary IdP mode. During the security proof of the fundamen-
tal authentication requirements (A) and (B), we found a flaw in BrowserID
that does not apply to its secondary mode and leads to an identity injection
attack, and hence, violates property (B). We confirmed the attack on the actual
BrowserID implementation and reported it to Mozilla, who acknowledged it. We
proposed a fix and formally proved that the fixed system fulfills both (A) and
(B). Among the so far very few efforts on formally analyzing web applications
and standards in expressive web models, our analysis constitutes the most com-
plex formal analysis of a web application to date. It illustrates that (manual)
security analysis of complex real-world web applications in a detailed web model,
while laborious, is feasible and yields meaningful and practically relevant results.

During an attempt to formally analyze the privacy promise of the BrowserID
system, we again found practical attacks. These attacks have been reported
to and confirmed by Mozilla and, unfortunately, show that BrowserID would
have to undergo a substantial redesign in order to fulfill its privacy promise.
Interestingly, for our attacks we use a side channel that exploits information
about the structure of windows in a browser. To the best of our knowledge, such
side channel attacks have not gained much attention so far in the literature.

Finally, we have identified and proven important security properties of gen-
eral application independent web features in order to facilitate future analysis
efforts of web standards and web applications in the web model.

Analyzing the BrowserID SSO System with Primary Identity Providers 61

A Browser Model

Here, we provide a compact overview of our browser model, with full details
presented in [14]. A web browser p is modeled as a DY process (Ip, Zp, Rp, sp0, N

p)
where Ip is a finite set of (IP) addresses p may listen to and Np is an infinite set
of nonces p may use. The set of states Zp, the initial state sp0, and the relation
Rp are sketched next.

A.1 Browser State: Zp and sp0

The set Zp of states of a browser consists of terms of the form

〈windows, ids, secrets, cookies , localStorage, sessionStorage, keyMapping ,

sts,DNSaddress,nonces , pendingDNS , pendingRequests , isCorrupted〉.

Windows and Documents. The most important part of the state are win-
dows and documents, both stored in the subterm windows. A browser may have
several windows open at any time (resembling the tabs and windows in a real
browser), each containing a list of documents (the history of visited web pages) of
which one is “active”, namely the one currently presented to the user in that win-
dow. A window may be navigated forward and backward (modeling navigation
buttons), deactivating one document and activating its successor or predecessor.
Intuitively, a document represents a loaded HTML page. More formally, a doc-
ument contains (the string representation of) a script, which is meant to model
both the static HTML code (e.g., links and forms) as well as JavaScript code.
When called by the browser, a script outputs a command which is then inter-
preted by the browser, such as following a link or issuing an XHR (see below).
Documents may also contain iframes, which are represented as windows (sub-
windows) nested inside of document terms. This creates a tree of windows and
documents.

Secrets and IDs. This subterm holds the secrets and the identities of the user
of the web browser. Secrets (such as passwords) are modeled as nonces and they
are indexed by origins (where an origin is a domain name plus the information
whether the connection to this domain is via HTTP or HTTPS). Secrets are
only released to documents (scripts) with the corresponding origin, similarly to
the AutoFill mechanism in browsers. Identities are arbitrary terms that model
public information of the user’s identity, such as email addresses. Identities are
released to any origin. As mentioned in the introduction, identities were not
considered in [13].

Cookies, localStorage, and sessionStorage. These subterms contain the
cookies (indexed by domains), localStorage data (indexed by origins), and ses-
sionStorage data (indexed by origins and top-level window references) stored in
the browser. As mentioned in the introduction, sessionStorage was not modeled
in [13].

62 D. Fett et al.

PROCESSING INPUT MESSAGE m
m = FULLCORRUPT: is Corrupted := FULLCORRUPT

m = CLOSECORRUPT: is Corrupted := CLOSECORRUPT

m = TRIGGER: non-deterministically choose action from {1,2}
action = 1: Call script of some active document. Outputs new state and command.

command = HREF: → Initiate request
command = IFRAME: Create subwindow, → Initiate request
command = FORM: → Initiate request
command = SETSCRIPT: Change script in given document.
command = SETSCRIPTSTATE: Change state of script in given document.
command = XMLHTTPREQUEST: → Initiate request
command = BACK or FORWARD: Navigate given window.
command = CLOSE: Close given window.
command = POSTMESSAGE: Send post Message to specified document.

action = 2: → Initiate request to some URL in new window
m = DNS response: send corresponding HTTP request
m = HTTP(S) response: (decrypt,) find reference.

reference to window: create document in window
reference to document: add response body to document’s script input

Fig. 4. The basic structure of the web browser relation Rp with an extract of the most
important processing steps, in the case that the browser is not already corrupted.

KeyMapping. This term is the equivalent to a certificate authority (CA) cer-
tificate store in the browser. Since, for simplicity, the model currently does not
formalize CAs, this term simply encodes a mapping assigning domains to their
respective public keys.

STS. Domains that are listed in this term are contacted by the web browser
over HTTPS only. Connection attempts over HTTP are transparently rewritten
to HTTPS. Servers can employ the Strict-Transport-Security header to add
their domain to this list.

DNSaddress. This term defines the address of the DNS server used by the
browser.

Nonces, pendingDNS, and pendingRequests. These terms are used
for bookkeeping purposes, recording the nonces that have been used by the
browser so far, the HTTP(S) requests that await successful DNS resolution, and
HTTP(S) requests that await a response, respectively.

IsCorrupted. This term indicates whether the browser is corrupted (�= ⊥) or
not (= ⊥). A corrupted browser behaves like a web attacker.

Analyzing the BrowserID SSO System with Primary Identity Providers 63

Initial State sp0. In the browser’s initial state, keyMapping, DNSAddress,
secrets, and ids are defined as needed, isCorrupted is set to ⊥, and all other
subterms are 〈〉.

A.2 Web Browser Relation Rp

This relation, outlined in Fig. 4, specifies how the web browser processes incom-
ing messages. The browser may receive special messages that cause it to become
corrupted (first two lines in Fig. 4), in which case it acts like the attacker process.
As explained in Sect. 2.3, there are two types of corruption: close-corruption and
full corruption.

If the browser receives a special trigger message TRIGGER, it non-
deterministically chooses one of two actions: (i) Select one of the current docu-
ments, trigger its JavaScript, and evaluate the output of the script. Scripts can
change the state of the browser (e.g., by setting cookies) and can trigger specific
actions (e.g., following a link or creating an iframe), which are modeled as com-
mands issued by the script (see the list in Fig. 4). (ii) Follow some URL, with
the intuition that it was entered by the user.

As mentioned, some of the above actions can cause the browser to generate
new HTTP(S) requests. In this case, the browser first asks the configured DNS
server for the IP address belonging to the domain name in the HTTP(S) request.
As soon as the DNS response arrives, the browser sends the HTTP(S) request
to the respective IP address.

If the HTTP(S) response arrives, its headers are evaluated and the body of
the request becomes the script of a newly created document that is then inserted
at an appropriate place in the window/document tree. However, if the HTTP(S)
response is a response to an XHR (triggered by a script in a document), the
body of the response is given to the script of that document for processing when
it is called next.

B Additional Privacy Attack Variants

We here present three additional variants of the privacy attack introduced in
Sect. 6.1.

Variant 2: PIF as Attack Source. Step a can also be launched from within a
PIF itself (i.e., the PIF also takes the role of idp.com/index above). This way,
while the user logs in at some r1, the IdP could check whether the user is logged
in at r2, for any r2.

Variant 3: Scanning the Window Structure (I). Instead of using a postMessage
to alert the IdP’s outer document about the existence of the inner PIF document,
the outer document could as well repeatedly scan the window tree of the iframe
containing r’s web site: While the IdP sees almost no information about r’s
document in the iframe (as it is not same origin), it can see the list of subwindows

64 D. Fett et al.

(i.e., the CIF, and possibly other iframes). For these frames, again, it would see
the subwindows, especially the PIF, which it could identify uniquely by checking
whether it is same origin with the IdPs outer window.

Variant 4: Scanning the Window Structure (II). In Variant 2, using a same-
origin check, the malicious IdP can uniquely identify the PIF in the window
structure. This same-origin check could be skipped and it could only be checked
whether a PIF is generated, based on the window structure alone. While this is
less reliable, this attack could be launched by any third party web attacker (not
only the IdP to which the user’s email address belongs) to check whether the
victim is logged in at r or not.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001, pp. 104–115. ACM Press (2001)

2. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: CSF 2010, pp. 290–304. IEEE Computer Society (2010)

3. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Tobarra, M.L.: Formal
analysis of SAML 2.0 Web browser single sign-on: breaking the SAML-based single
sign-on for Google Apps. In: FMSE 2008, pp. 1–10. ACM (2008)

4. Bai, G., Lei, J., Meng, G., Venkatraman, S.S., Saxena, P., Sun, J., Liu, Y., Dong,
J.S.: AUTHSCAN: automatic extraction of web authentication protocols from
implementations. In: NDSS 2013. The Internet Society (2013)

5. Bamberg, W., et al.: Persona FAQ. Mozilla Developer Network Wiki. https://
developer.mozilla.org/en-US/Persona/FAQ. Accessed 29 September 2013

6. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Keys to the cloud: for-
mal analysis and concrete attacks on encrypted web storage. In: Basin, D., Mitchell,
J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 126–146. Springer, Heidelberg (2013)

7. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: CSF 2012, pp. 247–262. IEEE Computer
Society (2012)

8. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW-14, pp. 82–96. IEEE Computer Society (2001)

9. Bugzilla@Mozilla. Bug 1064254 - Identity Injection Attack on Persona by Mali-
cious IdP, September 2014. https://bugzilla.mozilla.org/show bug.cgi?id=1064254
(access restricted)

10. Bugzilla@Mozilla. Bug 1120255 - Privacy leak in Persona, January 2015. https://
bugzilla.mozilla.org/show bug.cgi?id=1120255 (access restricted)

11. Chari, S., Jutla, C.S., Roy, A.: Universally Composable Security Analysis of OAuth
v2.0. IACR Cryptology ePrint Archive, 2011:526 (2011)

12. Dietz, M., Wallach, D.S.: Hardening persona - improving federated web login. In:
NDSS 2014. The Internet Society (2014)

13. Fett, D., Küsters, R., Schmitz, G.: An expressive model for the web infrastructure:
definition and application to the BrowserID SSO System. In: S&P 2014, pp. 673–
688. IEEE Computer Society (2014)

14. Fett, D., Küsters, R., Schmitz, G.: Analyzing the BrowserID SSO system with
primary identity providers using an expressive model of the web. Technical report
(2014). http://arxiv.org/abs/1411.7210

https://developer.mozilla.org/en-US/Persona/FAQ
https://developer.mozilla.org/en-US/Persona/FAQ
https://bugzilla.mozilla.org/show_bug.cgi?id=1064254
https://bugzilla.mozilla.org/show_bug.cgi?id=1120255
https://bugzilla.mozilla.org/show_bug.cgi?id=1120255
http://arxiv.org/abs/1411.7210

Analyzing the BrowserID SSO System with Primary Identity Providers 65

15. HTML5, W3C Recommendation, 28 October 2014
16. Jackson, D.: Alloy: a new technology for software modelling. In: Katoen, J.-P.,

Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 20. Springer, Heidelberg (2002)
17. Kerschbaum, F.: Simple cross-site attack prevention. In: SecureComm 2007, pp.

464–472. IEEE Computer Society (2007)
18. Kumar, A.: A lightweight formal approach for analyzing security of web protocols.

In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp.
192–211. Springer, Heidelberg (2014)

19. Mills, C.: Introducing BrowserID: a better way to sign in. Identity at Mozilla, 14
July 2011. http://identity.mozilla.com/post/7616727542/

20. Mozilla Identity Team: BrowserID Source Code. BrowserID Repository. https://
github.com/mozilla/browserid

21. Mozilla Identity Team: Persona. https://login.persona.org
22. Mozilla Identity Team: Persona. Mozilla developer network. https://developer.

mozilla.org/en/docs/persona. Accessed 15 October 2014
23. Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., Jensen, M.: On break-

ing SAML: be whoever you want to be. In: USENIX Security 2012, pp. 397–412.
USENIX Association (2012)

24. Sun, S.-T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: CCS 2012, pp. 378–390. ACM (2012)

25. Sun, S.-T., Hawkey, K., Beznosov, K.: Systematically breaking and fixing OpenID
security: formal analysis, semi-automated empirical evaluation, and practical coun-
termeasures. Comput. Secur. 31(4), 465–483 (2012)

26. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through Facebook
and Google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: S&P 2012, pp. 365–379. IEEE Computer Society (2012)

27. Web Storage - W3C Recommendation, 30 July 2013. http://www.w3.org/TR/
webstorage/

http://identity.mozilla.com/post/7616727542/
https://github.com/mozilla/browserid
https://github.com/mozilla/browserid
https://login.persona.org
https://developer.mozilla.org/en/docs/persona
https://developer.mozilla.org/en/docs/persona
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/

System Security

A Practical Approach for Adaptive Data
Structure Layout Randomization

Ping Chen1,2,3, Jun Xu1(B), Zhiqiang Lin4, Dongyan Xu3, Bing Mao2,
and Peng Liu1

1 College of Information Sciences and Technology,
The Pennsylvania State University, State College, USA

{pzc10,jxx13,pliu}@ist.psu.edu
2 State Key Laboratory for Novel Software Technology, Department of Computer

Science and Technology, Nanjing University, Nanjing, China
maobing@nju.edu.cn

3 Department of Computer Science, Purdue University, West Lafayette, USA
dxu@cs.purdue.edu

4 Department of Computer Science, University of Texas at Dallas, Richardson, USA
zhiqiang.lin@utdallas.edu

Abstract. Attackers often corrupt data structures to compromise soft-
ware systems. As a countermeasure, data structure layout randomization
has been proposed. Unfortunately, existing techniques require manual
designation of randomize-able data structures without guaranteeing the
correctness and keep the layout unchanged at runtime. We present a sys-
tem, called SALADS, that automatically translates a program to a DSSR
(Data Structure Self-Randomizing) program. At runtime, a DSSR pro-
gram dynamically randomizes the layout of each security-sensitive data
structure by itself autonomously. DSSR programs regularly re-randomize
a data structure when it has been accessed several times after last ran-
domization. More importantly, DSSR programs automatically determine
the randomizability of instances and randomize each instance indepen-
dently. We have implemented SALADS based on gcc-4.5.0 and generated
DSSR user-level applications, OS kernels, and hypervisors. Our experi-
ments show that the DSSR programs can defeat a wide range of attacks
with reasonable performance overhead.

1 Introduction

In programs developed in C or C++ language, encapsulated data objects, such as
struct and class, are widely used to group a list of logically related variables.
Not surprisingly, these encapsulated data structures, the focus of this paper,
are often the target or aid of a wide variety of attacks. For instance, attack-
ers often leverage knowledge about data structures defined in a victim program
to construct successful exploits against it. This is the case for both applica-
tion programs and system programs (e.g., operating system kernels and virtual
machine monitors). More specifically, a data structure contains a set of fields.
Knowledge about a data structure’s layout, namely how the fields neighbour each
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 69–89, 2015.
DOI: 10.1007/978-3-319-24174-6 4

70 P. Chen et al.

other inside the data structure, can be very useful to the attacker. For example,
knowing the layout of accounting/book-keeping data structures, on-line gaming
fraud [10] can be performed by modifying the values of relevant fields; Knowing
the layouts of in-stack or in-heap data structures will help construct memory cor-
ruption exploits [25]; Guided by the layout of the process control block (PCB),
a kernel rootkit is able to hide a process by locating and manipulating certain
psssine attacksthat locate a data structure and manipulate specific fields after
knowing its layout as data structure manipulation attacks.

Randomizing either the location or the layout of the target data struc-
ture will significantly raise the bar for data structure manipulation attacks.
There have been two lines of research towards achieving such randomizing
goals: (1) Address Space Layout Randomization (ASLR) randomly arranges the
base addresses of segments (e.g., stack), which has been widely researched and
deployed. Recently, fine-grained ASLR techniques have been proposed to achieve
randomization at different levels, including page level [5], function level [22],
basic block level [28], and instruction level [19,38]. (2) Data Structure Layout
Randomization (DSLR) [24,34] reorders the fields or inserts dummy fields in
encapsulated data objects (e.g., struct). With DSLR deployed, the layouts of
data structures are randomized to break the mono-culture of programs.

However, ASLR or fine-grained ASLR techniques have two limitations: (1)
ASLR is vulnerable to memory content leakage [9,11,21,30,31,33,35,42]. By
leveraging memory content leakage, an attacker can infer the base addresses of
memory regions (e.g., segments or pages) under ASLR. Knowing the offset of
the target data structure in the containing region, the attacker can figure out
its base address [33]. (2) ASLR can be easily circumvented by rootkits, such
as those leveraging Direct Kernel Object Manipulation (DKOM) [7,21,29]. In
many cases, a rootkit knows the base address of the target data structure even
if ASLR is deployed. For example, kernel global data structures can be located
by referring to kernel symbols (i.e., /proc/kallsyms). In other cases, a rootkit
has no such knowledge, but it has the privilege to read arbitrary memory and
thus can infer such a base address.

In this paper, we present a novel technique, adaptive DSLR, to defend against
data structure manipulation attacks. More specifically, we design a compiler-
based system, called SALADS1, to implement our technique. SALADS trans-
forms a program into a Data Structure Self-Randomizing (DSSR) program. A
DSSR program periodically re-randomizes a data structure after the data struc-
ture has been accessed for a certain number of times since last re-randomization.
The re-randomization is independently and asynchronously performed on each
instance even if they have the same data structure definition. To avoid errors
(e.g., pointer reference corruption), SALADS automatically determines the ran-
domizability of data structure instances without programmer’s input and de-
randomizes a data structure that might have been unsafely randomized.

SALADS can address the two limitations of ASLR: suppose the base address
of the target data structure is exposed when memory content leakage happens or

1 SALADS stands for Self Adaptation of LAyout of Data Structures.

A Practical Approach for Adaptive Data Structure Layout Randomization 71

when a rootkit is launched. The layout of the data structure is randomized when
SALADS is deployed. Therefore, the attacker in general cannot accurately locate
specific fields. Even if the attacker could infer the current layout of the target
data structure, the attacker could be stopped by the adaptation (i.e., dynamic
self-re-randomization). In one attack, the layout inferring part and the data
structure manipulation part are typically completed in chronological order. After
the layout inferring but before the data structure manipulation, DSSR programs
may have already re-randomized the target data structure. Consequently, the
attacker would mistakenly manipulate irrelevant fields.

We refer the existing DSLR technique [24,34] as static DSLR. Compared with
static DSLR, our adaptive DSLR offers several unique features: (1) Instead of
randomizing data structures layout at compile-time/load-time, DSSR programs
generated by SALADS re-randomize data structures at runtime. Without this
feature, static DSLR shares the two limitations with ASLR. When memory con-
tent leakage happens or when a rootkit is launched, the randomized layout of
the target data structure can be reverse engineered (e.g., [6]). Examples of how
to reverse engineer the layout are presented in Sect. 2. Once the layout of the
target data structure is inferred, the attacker could correctly manipulate specific
fields. (2) A DSSR program randomizes each data structure instance indepen-
dently and asynchronously, regardless of their types. Without this feature, static
DSLR can be circumvented in situations where the target data structure is not
initialized. For example, rootkits can speculate the layout of the target data
structure instance by referring another initialized instance of the same type. In
a kernel with static DSLR, the layout inferred in such a way enables the rootkits
to successfully manipulate the expected fields. (3) In case an instance is involved
in a statement that might cause inconsistency or crash, the DSSR program will
restore the instance to its original layout. The restoring process is denoted as
de-randomization.

The main contributions of our work are as follows:

– This is the first effort toward runtime adaptive DSLR that is able to address
the limitations of ASLR in thwarting data structure manipulation attacks.

– We have implemented a protocol system called SALADS, and we show DSSR
programs generated by SALADS can automatically determine the randomiz-
ability of data structures without programmers’ assistance. Meanwhile, SAL-
ADS achieves both cross instance diversity (different randomized layouts for
different instances of the same type) and cross time diversity.

– Our experimental results show that on average the performance overhead
introduced by SALADS is (1) 6.3 % for application programs (randomly
selecting 20 % of data structures to protect in SPECInt2000, httpd-2.0.6,
openssh-2.1.1p4, and openssl-0.9.6d); (2) 16.7 % for OS kernels (by select-
ing 23 security-sensitive data structures to protect in Linux kernel); (3) 4.5 %
for hypervisor (by selecting 20 security-sensitive data structures to protect in
Xen hypervisor).

72 P. Chen et al.

2 Overview

2.1 Threat Model

In this paper we focus on data structure manipulation attacks. We subdivide
such an attack into three steps: (Step-I) attacker gets the memory location of
a data structure instance; (Step-II) attacker figures out its layout; (Step-III)
attacker reads/writes certain fields of the instance.

Data Structure Manipulation with Memory Content Leakage in Appli-
cations. We take the privilege escalation attack against openssh-2.1.1 (CVE-
2001-0144) [13] as an illustrating example. The goal of the attack is to modify
the field pw uid in the instance pw (of type struct passwd) to escalate the
remote shell with root privilege. The three steps in this attack are as follows.
First, the attacker gets to know the base address of pw; Second, the attacker
figures out the layout of pw; Third, the attacker writes the maliciously-crafted
value to pw->pw uid by exploiting an integer truncation bug.

In Fig. 1, we present how to conduct the above privilege escalation attack
under ASLR and static DSLR (the base address and the layout of pw are both
randomized). At Step-I, an attacker can resort to memory content leakage (e.g.,
memory disclosure [33], uninitialized memory tracking [11], side channel [9,30,
42]) (❶). Assuming the attacker has obtained the disclosed memory page that
contains pw, he/she can search the signature of struct passwd2 in the page.

Fig. 1. Privilege escalation in openssh under ASLR and static DSLR

2 Inside struct passwd, pw uid and pw gid are identify numbers with small values
(≤ 0xffff); pw passwd, pw name, pw shell, and pw dir are four pointers and their
values form an arithmetic progression with common difference of 16; pw gecos is 0.

A Practical Approach for Adaptive Data Structure Layout Randomization 73

If the search succeeds, the attacker can locate the base address of pw. At Step-
II, the attacker can reverse engineer the contents of pw to recover locations of
specific fields (e.g., pw uid and pw gid have unique values (see Footnote 2)) (❷).
Since ASLR and static DSLR do not randomize pw at runtime, the attacker can
correctly modify pw uid and pw gid (❸) to escalate the privilege.

Data Structure Manipulation by Rootkits under ASLR and static
DSLR. Many rootkits achieve their goals via manipulating data structures,
such as the one presented in [20]. However, ASLR and static DSLR make such
manipulation more difficult (by randomizing the base address and the layout
of the target data structure). In Sect. 1, we have explained how a rootkit can
bypass ASLR and static DSLR. For instance, taskigt is a rootkit that stealthily
promotes privileges of a process when the process opens a specific proc file. The
rootkit attempts to modify a local data structure instance proc ent of type
proc dir entry. Most fields in proc ent are not initialized, including the tar-
get field read proc (a function pointer). The rootkit can infer read proc in a
global variable proc root of type proc dir entry by reverse engineering (most
fields in proc root are initialized). In this way, the rootkit can locate read proc
in proc ent (read proc in proc ent and proc root have the same offset). Then
the rootkit manipulates read proc, to make it point to a malicious function.

2.2 System Overview

Key Idea. By breaking any of the three steps in the threat model, we would
be able to defeat a data structure manipulation attack. However, since it is
hard to eliminate memory content leakage and rootkits, attackers can succeed at
Step-I and Step-II even if modern defenses are deployed. Our idea is to disrupt
Step-III. Specifically, we adaptively randomize layout of each data structure
instance independently at runtime. The key is that the target instance might
be re-randomized between Step-II and Step-III. Therefore, the attacker may not
accurately access the targeted fields.

Compilation Steps. We design SALADS to realize the above idea. SALADS
is built on top of the GNU GCC compiler. Figure 2 shows the compilation
steps of SALADS, with the white boxes indicating the original GCC compi-
lation phases. As shown in the figure, SALADS adds two key components to

Source
Code

Data Struct
Information

AST-Pass
Parsing Data
Struct &API

DSSR
binary

SSA
&RTL

DSSR
GIMPLE

 Extraction Component Randomization/De-
Randomization Component

GIMPLE Pass-1
DS Layout

Randomization

GIMPLE Pass-2
DS Layout

De-randomization

AST

GIMPLE

Fig. 2. System overview

74 P. Chen et al.

GCC: the extraction component and the randomization/de-randomization com-
ponent. We briefly explain the compilation steps as follows. (1) SALADS parses
the source code into an Abstract Syntax Tree (AST). (2) The extraction com-
ponent (i.e., AST-Pass) traverses the AST to collect required information for
the randomization/de-randomization component. (3) SALADS transforms the
AST into the GIMPLE representation. (4) The randomization component (i.e.,
GIMPLE Pass-1) replaces each statement that accesses data structures with
DSSR statements. These DSSR statements randomize/re-randomize the layout
of the accessed data structures at runtime. (5) The de-randomization component
(i.e., GIMPLE Pass-2) inserts de-randomizing statements before each dangerous
statement to de-randomize involved data structures. We will explain which state-
ments are dangerous later. (6) SALADS compiles the GIMPLE representation
into a DSSR binary in remaining phases (e.g., SSA, RTL). The DSSR binary
can self-rerandomize/de-randomize data structure instances at runtime.

3 Design and Implementation of SALADS

3.1 Extraction Component

As shown in Fig. 2, the extraction component is designed to gather definitions
of data structures and usages of external and shared APIs. The gathered infor-
mation is later used by the randomization/de-randomization component.

Extracting Data Structures. For each definition of data structure encoun-
tered during AST traversal, the extraction component records the name of the
data structure as well as the name, the size and the offset of each field. To cal-
culate the offset or size of a field in a data structure, two challenges need to
be tackled. The first one is the alignment. A compiler often allocates fields in
a data structure on aligned boundaries. In our design, the extracting compo-
nent calculates the offsets of fields based on the compiling options specified by
the programmers (e.g., #param pack(n)). If no such options are available, the
extracting component relies on the default alignment rules to redress the offsets.
The second challenge is how to handle arrays with flexible sizes [1]. If a field is an
array with flexible size, its size cannot be determined by the compiler. In such
a case, SALADS can only arrange this field to the end of the data structure.
Correspondingly, SALADS will mark this field as un-randomizable.

Identifying External and Shared APIs. External APIs refer to functions
that are used but not defined in a program. The extracting component records
usage of all external APIs. For a program, shared APIs are functions defined in
this program but publicly used by other programs. For instance, system calls are
shared APIs in the Linux kernel. Identifying shared APIs in a program requires
knowledge about which functions defined in this program are publicly used by
other programs. Such knowledge is often well documented.

A Practical Approach for Adaptive Data Structure Layout Randomization 75

typedef struct
{

int a;
 char b;

char c;
 char * d;

int * e;
}TEST;

0 4 5 8 12

0 0 0 0 0

4 1 1 4 4

Fo

Ff

Fs

TEST * p; 0 p

Ic Ia

a b c d e

(a) Randomization Record Initialization

1

Ic Ia

0 4 5 8 12
Fo

a b c d e

8 5 4 12 0
Fr

(1) (2) (3)

(4)

(5)

(b) Randomization Record Updating

p

0 4 5 8 12 Fr

shuffle(p)

Fig. 3. Initialization and updating of a randomization record

3.2 Randomization Component

The randomization component (i.e., GIMPLE Pass-1) instruments the GIMPLE
representation. The instrumented program can self-randomize the layout of data
structures at runtime. The instrumentation replaces each statement that con-
tains data structure accesses with a set of DSSR statements, details of which are
presented next.

Data Structure Layout Randomization. First, GIMPLE Pass-1 iterates
statements in the GIMPLE representation. Second, the pass parses each state-
ment to identify data structure field accesses. For each field access, the pass
inserts the DSSR statements before the containing statement. The DSSR state-
ments firstly randomize the layout of the instance. Afterwards, if the access is
a read, the DSSR statements maintain the value of the accessed field in a tem-
porary variable. If the access is a write, the DSSR statements use a temporary
pointer to point to the after-randomized location of the accessed field. Finally the
pass replaces the parsed statement with a new statement. In the new statement,
each data structure field access is replaced with the corresponding temporary
pointer or the temporary variable.

A statement is parsed as follows. First, the statement is parsed into expres-
sions in a right-to-left order. If an expression is compound (e.g., a+b), it will
be decomposed into atomic expressions (e.g., a and b). If an atomic expres-
sion is a data structure field access, the parser records the type of the instance,
the address of the instance, and the name of the field. In particular, the data
structure field access could be nested. For instance, A->B.x involves two nested
accesses: A->B and B.x. In such case, the parser firstly parses the outer access
and then parses the inner access. In the example of A->B.x, A->B is processed
at first and B.x is processed next.

The DSSR statements insertion for data structure field accesses follows the
same order as they are parsed. For an access, the inserted DSSR statements
include: (1) a gimple statement to invoke the Initialize Record routine. The
routine first checks whether this instance is recorded. If not, it initializes a
randomization record. The randomization record contains following metadata
of the instance: Ia (memory address of this instance), Ic (how many times the

76 P. Chen et al.

instance has been accessed since last randomization). A randomization record
also maintains the metadata for each field in the instance: Fo (original offset), Fr

(after-randomized offset), Fs (size), and Ff (randomization flag). The random-
ization flag indicates whether a field is randomizable; (2) a GIMPLE statement
to invoke the Update Record routine. This routine increases Ic by 1 and then
checks whether Ic exceeds a threshold Wm. If so, this routine randomly shuffles
the fields in the memory space of the data structure and records the after-
randomized offsets into Fr; (3) a GIMPLE statement to call the Offset Diff
routine for calculating the offset difference between the randomized layout and
the original layout (in term of fields); (4) a GIMPLE statement to assign the
after-randomized field (or its location) to a temporary variable (or a pointer).

Example. We present an example in Fig. 4 to illustrate how the randomization
component works. Figure 4(a) shows the source code of the program; Fig. 4(b)
shows the original GIMPLE representation; Fig. 4(c) shows the GIMPLE repre-
sentation generated by SALADS. GIMPLE is a three-address representation in
static single assignment form [3]. In a GIMPLE representation, temporary vari-
ables are defined to store the intermediate values for complex expressions. For
example, in Fig. 4(c), to allocate memory for the instance pointed by p, D.2052 is
temporarily defined to store the return value of malloc (line 15) and afterwards
assigned to p (line 16). In particular, we explain how GIMPLE Pass-1 instru-
ments the statement p->a=1. Suppose the definition of data structure TEST
is identified. First, a GIMPLE statement to invoke Initialize Record is inserted
(line 18 Fig. 4(c)). Initialize Record initializes Ia as p and Ic as 0. Also Initial-
ize Record initializes Fs, Fo, and Ff for each field in p. Fs and Fo are determined
by the definition of TEST (line 1–7 Fig. 4(a)); Fr is set as the same with Fo; Ff

is set as 0 (i.e., randomizable). Second, a GIMPLE statement is inserted to call
Update Record (line 19 Fig. 4(c)). Update Record updates Ic to be 1 and Ia to
be p and uses a routine Shuffle(p) to shuffle the layout, which are presented as
step-1 to step-3 in Fig. 3. The results are shown in Fig. 3 after step-4. Third, a
GIMPLE statement is inserted to call Offset Diff (line 20 Fig. 4(c)). Offset Diff

1 typedef struct{
2 int a;
3 char b;
4 char c;
5 char * d;
6 int * e;
7 } TEST;
8
9 void main()
10 {
11 TEST * p;
12 p = (TEST *)malloc
 (sizeof(TEST));
13 TEST q;
14 p->a = 1;
15 q.c = ’ a’ ;
16 }

(a) Source Code

1 main()
2 {
3 void * D.1962;
4 struct TEST * p;
5 extern void * malloc
 (unsigned int);
6 struct TEST q;
7 D.1962 = malloc(16);
8 p = (struct TEST *)
 D.1962;
9 p->a = 1;
10 q.c = 97B;
11 }

(b) GIMPLE Output by GCC-4.5.0

1 main()
2 {
3 void * D.2052;
4 int p.0;
5 int * D.2054;
6 int q.1;
7 char * D.2056;
8 struct TEST * p;
9 extern void * malloc
 (unsigned int);
10 struct TEST q;
11 int D.2057;
12 int * D.2058;
13 int D.2059;
14 char * D.2060;
15 D.2052 = malloc(16);

16 p = (struct TEST *) D.2052;
17 p.0 = (int)p;
18 Initialize_Record(0,p.0);
19 Update_Record(0,p.0);
20 D.2057 = Offset_Diff(0,1);
21 D.2054 = &p->a;
22 D.2058 = D.2054 + D.2057;
23 *D.2058 = 1;
24 q.1 = (int) &q;
25 Initialize_Record(0,q.1);
26 Update_Record(0,q.1);
27 D.2059 = Offset_Diff(0,3);
28 D.2056 = (char *)&q.c;
29 D.2060 = D.2056 + D.2059;
30 *D.2060 = 97B;
31 }

(c) DSSR GIMPLE Output by SALADS

Fig. 4. An example showing how DSSR program generated by SALADS works

A Practical Approach for Adaptive Data Structure Layout Randomization 77

calculates difference between the after-randomization offset and original offset
(presented as step-5 in Fig. 3). For instance, the offset difference for a in p is 8.
Fourth, a GIMPLE statement is inserted to assign the location of the random-
ized field to a pointer D.2058 (line 22 Fig. 4(c)). Finally, the original statement
p->a=1 (line 9 Fig. 4(b)) is replaced with a new statement *D.2058=1 (line 23
Fig. 4(c)).

3.3 De-randomization Component

Data structure randomization may introduce runtime errors. For example, a
randomized data structure passed to an un-instrumented library function will
be accessed based on the original layout. It will cause program errors because
the function may access the irrelevant field in the randomized data structure.

The de-randomization component (i.e., GIMPLE Pass-2) is designed to avoid
such errors. First, the pass scans the GIMPLE representation of a program
to identify dangerous statements. A dangerous statement involves operations
on randomized data structures and such operations might cause consequent
inconsistency or crash. Second, the pass inserts a statement to invoke the de-
randomization routine before a dangerous statement. This routine will restore
the data structures involved in the dangerous statement into their original lay-
outs. The dangerous statements appear in two scenarios as follows.

Pointer Involved Dangerous Statements. There are two types of pointer-
involved dangerous statements: (1) statements that cast a randomized data
structure instance (or a randomized data structure pointer) X to another pointer
Y, but X and Y are of different types. Such a statement is dangerous because the
subsequent point-to-member operators over Y still access fields according to the
original layout; (2) statements that use a pointer to reference a field in a data
structure. Suppose there is a statement int *p=&z.a. When z is re-randomized
after the assignment, the DSSR program cannot inform p. Consequently, p will
point to an irrelevant field instead of a.

For the first type, the inserted de-randomization routine restores X to its
original layout and mark it as un-randomizable. For the second type, the
de-randomization routine restores the fields (e.g., a) referenced by pointers
(e.g., p) to their original locations. Also, the routine marks such fields as un-
randomizable.

External and Shared APIs Involved Dangerous Statements. Statements
invoking external & shared APIs are dangerous if they pass data structure
instances as arguments. For example, when a program calls bind in GNU LIBC
with an instance of data structure sockaddr, the sockaddr instance might be
randomized. However, bind still uses the sockaddr instance based on its original
data structure layout. This will obviously lead to an execution error.

For such an API invoking statement, the inserted de-randomization routine
will restore the data structure instances that are passed as arguments to their
original layouts and mark them as un-randomizable.

78 P. Chen et al.

3.4 Other Practical Issues

When there is a deep copy (e.g., plain assignment and memcpy) from data struc-
ture instance A to another instance B (A and B are with the same type), B shares
the identical randomized layout with A. In our design, we directly copy the ran-
domization record of A to B, except Ia and Ic.

If multiple threads access the same data structure instance, the seed of the
instance might turn into an un-synchronized state. For user space programs, we
leverage pthread mutext lock and pthread mutex unlock to keep the execu-
tion correct. For kernel space software, the DSSR programs rely on the spinlock
interface spin lock and spin unlock to enforce synchronization.

A program might set a written protection attribute for pages that contain
data structure instances. If so, DSSR programs firstly change attributes of these
pages to make them writable and then randomize layouts of the instances.

4 Evaluation

We have implemented SALADS atop gcc-4.5.0 with an extra of 11 K lines of
C code. All evaluation experiments are conducted on an Intel(R) Core(TM) i5
machine with 4GB memory running Fedora Core Release 8 with Linux kernel
version 2.6.23.1. In this section, we present the evaluation of the effectiveness
and the performance of SALADS system.

4.1 Effectiveness of DSSR Application Programs

How DSSR Applications are Generated. We generate DSSR applications
via using SALADS to compile open source programs, including SPECInt2000,
httpd-2.0.6, openssh-2.1.1p4, and openssl-0.9.6d. In principle, we should
select security-sensitive data structures to randomize. However, we have limited
knowledge about such data structures. To be general, we randomly select 20 % of
data structures to randomize in each program. In particular, determined security-
related data structures are manually added to the randomization set.

How Attacks are Launched. We launch two real world attacks. In the first
attack, we exploit the buffer overflow over the array key arg in a data struc-
ture instance session (of type ssl session st) in openssl [14]. During the
exploitation, the attack firstly overwrites the key arg array and injects the
shell codes. Then, the attack uses the pointer field ciphers in session to
calculate the address of the shell codes. By substracting 368 from the pointer
session->ciphers, the attacker can get the starting address of the shell code.
Finally, the attacker redirects the program counter to the shell code. In the sec-
ond attack, we exploit the integer truncation bug in [13], details of which have
been presented before.

We also mimic a memory content leakage attack in the experiment: we insert
a routine in each of the tested programs. The routine does two things. First,
the routine dumps the page that contains the target data structure instance,

A Practical Approach for Adaptive Data Structure Layout Randomization 79

Table 1. Defense results of DSSR applications

Programs CVE # Bugs Data structure ASLR and DSLR SALADS

openssl-0.9.6d CVE-2002-0656 KEY ARG bugs [14] ssl session st × √

openssh-2.1.1 CVE-2001-0144 CRC-32 bug [13] passwd × √

immediately after the program receives inputs (e.g. socket packets). Second,
the routine analyzes the dumped page to locate the base address of the target
instance, based on the signature of the data structure. Signature of passwd
in openssh has been explained previously. For ssl session st, the signature
consists of 23 special fields (4 character arrays with 4 corresponding integer
lengths, 6 pointer values, and 9 integer values). In addition, the routine can
identify fields with unique features: pw uid in pw is a small integer ≤ 0xFFFF;
key arg in session is an 8-byte array which would very likely be separated from
other fields by small values (≤ 0x18).

Effectiveness of DSSR. We compile the selected programs with static DSLR
and SALADS, respectively. During our experiment, we also enable ASLR in
the execution environments. We launch the two attacks to both static DSLR
and SALADS compiled applications. Defense results are shown in Table 1. The
results demonstrate that when memory content leakage happens, both ASLR
and static DSLR cannot defend data structure manipulation attacks. However,
SALADS is robust enough to prevent such attacks.

Looking into the Details. Here we discuss the details of how SALADS defeats
the two attacks. In the attack against openssh, the memory content leakage
enables the attacker to infer the base address of pw and offset of pw uid at
the moment when the leakage happens. The attacker then manipulates the field
pw uid based on the inferred offset. However, a malicious request will trigger at
least 5 accesses to pw before it overflows the target instance. Thus the target
instance is re-randomized before being manipulated. The story is similar for the
attack against openssl: a malicious request will trigger at least 17 accesses to
session before it overwrites key arg.

4.2 Effectiveness of DSSR Kernel and DSSR Hypervisor

How DSSR Linux Kernel and Hypervisor are Generated. Linux kernel-
2.6.23.1 contains 11430 data structure definitions. Randomizing all data struc-
tures would cause unacceptable overhead. In addition, we observe that many
data structures are security in-sensitive and thus, should not be randomized.
So we manually select 23 security-sensitive data structures (often used by the
rootkits) from Linux kernel-2.6.23.1.

Xen-3.2.0 with Linux kernel-2.6.18.8 contains 11983 data structure defini-
tions. We select 20 data structures from Xen-3.2.0 to randomize, which are widely
used in security-sensitive source code files (e.g., mm.c). With the selected data
structures, we compile the Linux kernel-2.6.23.1 and Xen-3.2.0 with SALADS.

80 P. Chen et al.

Table 2. Defense results of deploying DSSR kernel against rootkits

Rootkit name Data structure Description prevented?

hideprocess-2.6 task struct hide one process with
given PID

√

kbdy-2.6 proc dir entry privilege escalation to the
user when open proc
file

√

adore-ng-0.56 task struct, proc dir entry,
module

hide one process when
open proc file

√

taskigt task struct,proc dir entry privilege escalation to
process when open proc
file

√

enyelkm-1.3 proc dir entry, module hide module by modifying
the proc read system
call

√

int3hook module hide process when
hijacking int 3

√

synapsys task struct,module give the root privilege to
certain proess

√

cleaner-2.6 module hide the next module of
the rootkit

√

linuxfu-2.6 task struct hide the process given its
name

√

modhide module hide the module given its
name

√

override task struct hide one process using
injected code

√

rmroots task struct, module destroy static data
structures to hide

√

How Attacks are Launched. We launch 12 widely used rootkits, as shown
in Table 2, in the DSSR Linux kernel. These rootkits manipulate three data
structures: task struct, proc dir entry, and module. We also launch a Blue
Pill attack against Xen-3.2.0, which reads and then manipulates the vcpu data
structure with ring0 privilege. All the launched rootkits can circumvent OS level
ASLR. The rootkits circumvent static DSLR in a similar way as explained before:
speculate the layout of the target instance by referring another known instance
of the same type (e.g., proc root is a global variable of type proc dir entry).

Effectiveness of DSSR. We compile Linux kernel-2.6.23.1 and Xen-3.2.0 with
static DSLR and SALADS, respectively. First, we execute the selected rootk-
its in the static DSLR kernel. These rootkits are enabled to infer the lay-
out the target instance. The effects caused by these rootkits are presented in
column 3 of Table 2 (titled as “Description”). Second, we execute the selected

A Practical Approach for Adaptive Data Structure Layout Randomization 81

Table 3. Randomization Rate of Data structure in Linux kernel-2.6.23.1 (Size: the
memory size of the data structure (bytes); # Operations: the total DSSR statements
inserted to handle operations on the data structure; Ft: the total number of fields in
the data structure; Fr: the number of fields that can be randomized; It: the number of
instances that are used; Ir: the number of randomized instances).

Num Name Size # Operations Ft Fr γ =
Fr

Ft
(%) It Ir δ =

Ir

It
(%)

1 sk buff 180 24770 44 42 95.5 1285 1086 84.5

2 net device 1280 19918 100 91 91.0 76 72 96.1

3 list head 8 15595 2 2 100 197391 160347 81.2

4 task struct 1552 14171 130 97 74.6 386 386 100

5 inode 336 13779 44 25 56.8 5318 4772 89.7

6 device 328 12425 29 18 62.1 393 343 87.3

7 super block 384 8970 38 25 65.8 23 21 91.3

8 pci dev 996 7662 43 41 95.3 37 29 78.4

9 socket 40 5111 8 8 100 450 398 88.4

10 Scsi Host 700 5050 59 56 94.9 40 34 85.0

11 dentry 132 4473 18 11 61.1 5408 5120 94.6

12 urb 104 4452 25 18 72.0 17 17 100

13 scsi cmnd 304 4401 29 26 89.7 72 66 91.7

14 buffer head 56 4226 12 9 75.0 8052 5155 64.0

15 file 132 4206 17 10 58.8 3436 2056 59.8

16 net device stats 92 4105 23 21 91.3 9 7 77.7

17 sock 364 3846 56 46 82.1 764 587 76.8

rootkits in DSSR kernel and enable them to infer the randomized layout as well.
The experiments show two types of results: (1) the rootkit attack is prevented
and the kernel continues to work without problems (hideprocess, synapsys,
linuxfu-2.6 and override); (2) the rootkit attack causes a kernel panic (the
rootkit writes to a pointer which does not point to the location expected by the
rootkit). Third, we launch the Blue Pill attack against static DSLR Xen-3.2.0
and DSSR Xen-3.2.0 and enable it to infer the randomized layout. Experiments
show that static DSLR Xen is attacked but DSSR Xen is protected.

Looking into the Details. Compared with user space programs, the kernel
and the hypervisor contains many more data structure pointers. However, the
SALADS system conducts de-randomization for many pointer involved opera-
tions. One potential issue is that many instances are de-randomized. For Linux
kernel, we calculate the fields randomization rate (the percentage of random-
izable fields in all fields) and instance randomization rate (the percentage of
randomizable instances in all instances) during booting. In Table 3, we present
the results for 17 data structures that are correlated to more operations than
others. Field randomization rate for these data structures is 82.2 % and instance
randomization rate for these data structures is 80.9 % on average.

82 P. Chen et al.

4.3 Performance Overhead

Influence of Threshold Wm on Performance Overhead. In SALADS, we
set up a threshold Wm to control the times of accesses between two successive
randomization. In the first experiment, we use SPECInt2000 benchmark3 to test
how Wm specifically affects the performance overhead introduced by SALADS.
All data structures in these programs are randomized. Wm is set to vary from
1 to 10 and for each value, we measure the average performance overhead. The
normalized results are shown in Fig. 5. It can be observed that the performance
overhead decreases as Wm increases. When Wm grows from 4 to 5, the per-
formance overhead reduces sharply and after that, the performance overhead
does not drop obviously. So we set Wm to be 5 by default. All the following
experiments are done with Wm = 5.

To evaluate the performance overhead introduced by SALADS, we test a
variety of programs, including SPECInt2000, httpd-2.0.6, openssh-2.1.1p4
and openssl-0.9.6d, Linux kernel 2.6.23.1 and Xen-3.2.0.

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

S
P

E
C

In
t2

00
0

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Re-randomization Threshold Wm

‘Overhead’

Fig. 5. Influence of Wm on performance

To evaluate user space appli-
cations, for testing SPECInt2000,
we leverage the official bench-
mark; for testing httpd, we
use apache benchmark; for test-
ing opensshl, we use openssl
speed [2]; for testing openssh,
we upload 1.5 GB test-files using
scp [2] within 1000 times. The
evaluation results are shown in
Fig. 6. The performance overhead
introduced by SALADS ranges
from 0.2 % to 23.5 % on average.
SALADS introduces higher per-
formance overhead in gzip, gap
and twolf. We find that the three
programs leverage plenty of data
structures to encapsulate data objects (e.g. compressed data, interpret dictio-
nary word, and simulate objects) and frequently operate on these data struc-
tures. Consequently, DSSR statements are continuously executed in the three
programs, which would cause high performance overhead.

For DSSR Linux kernel and DSSR Xen-3.2.0, we use the Lmbench [26] to
evaluate the performance overhead. Specifically, we measure the overhead with
the bandwidth and the latency benchmarks. By only randomizing the selected
data structures, DSSR Linux kernel introduces 6.7 % to 28.8 % (16.7 % on aver-
age) runtime overhead, and DSSR Xen-3.2.0 introduces 0.1 % to 14.8 % (4.5 %
on average) runtime overhead. Details are presented in Table 4 in Appendix.

3 We excluded three programs gcc, vortex, and eon in SPECInt2000 since these pro-
grams cannot be compiled with gcc-4.5.0.

A Practical Approach for Adaptive Data Structure Layout Randomization 83

 0%

 20%

 40%

 60%

 80%

 100%

 120%

gz
ip

cr
af

ty

ga
p

bz
ip

2

vp
r

m
cf

pa
rs

er

pe
rl

bm
k

tw
ol

f

ht
tp

d

op
en

ss
h

op
en

ss
l

lin
ux xe
n

R
un

tim
e

O
ve

rh
ea

d

 orig
 rand

Fig. 6. Runtime overhead

 0%

 20%

 40%

 60%

 80%

 100%

 120%

gz
ip

cr
af

ty

ga
p

bz
ip

2

vp
r

m
cf

pa
rs

er

pe
rl

bm
k

tw
ol

f

ht
tp

d

op
en

ss
h

op
en

ss
l

lin
ux xe

n

M
em

or
y

O
ve

rh
ea

d

 orig
 rand

Fig. 7. Memory overhead

4.4 Memory Overhead

We measure the physical memories used by a set of DSSR programs and the
corresponding original programs, at randomly selected time points during 1000
runs. As shown in Fig. 7, the memory overhead introduced by SALADS to DSSR
programs ranged from 0.7 % (openssh-2.1.1p4) to 6.1 % (twolf) on average. To
measure memory overhead in DSSR kernels, we use the dmesg to get the memory
usage of the Linux kernel after it is loaded. Both of the original Linux kernel and
the DSSR Linux kernel are booted for three times to get the average memory
usage. As shown in Fig. 7, the DSSR Linux kernel introduces 8.6 % memory
overhead on average. We use the same method for Linux kernel to measure the
memory overhead introduced by DSSR Xen-3.2.0. As shown in Fig. 7, DSSR
Xen-3.2.0 introduces memory overhead by 4.2 % on average.

5 Discussion

5.1 Analysis of Effectiveness

Our threat model describes a simplified version of data structure manipulation
attacks, which only involves one data structure and one specific field. In practice,
a data structure manipulation attack often involves multiple data structures
and multiple fields. For instance, the rootkit taskigt needs to read/manipulate
uid, gid, euid, egid in task struct and read proc in proc dir entry, for a
successful attack.

Here we discuss the difficulty introduced by SALADS to a data structure
manipulation attack (suppose the original ASLR [32] is deployed). For generality,
we assume (1) the attack needs to explore n data structure instances and the ith

instance contains li fields; (2) the attack needs to read/write mi fields in the ith

instance; (3) the attack attempts to bypass the diversification defenses by brute
force; (4) accesses to these instances are completed via one request. Attacks with
multiple requests are separated into different attacks.

First, if the attack is against an application and no memory content leakage
happens, the attack needs to crack both ASLR and SALADS. To bypass ASLR

84 P. Chen et al.

to refer the base addresses of the n data structures, the attack needs to make
at most 219 × 3 probes in total, because (1) the data structures may exist in
randomized segment of heap, stack, or data; (2) a correct guess of one data
structure in a single segment will reveal all other data structures in the same
segment. Suppose ASLR has been bypassed and the base addresses of all the
instances have been identified. To bypass SALADS to manipulate the correct
fields, the attack needs to conduct

∏n
i=1

(
li
mi

)
probes. Such a conclusion is based

on following facts: (1) all target fields in one single instance are to be accessed in
one request, so the attack needs to guess all mi target fields in the ith instance
in one probe; (2) all the n instances are to be accessed in one request, which
should be probed in one attempt. Summarily, SALADS complements ASLR
to complicate data structure manipulation attacks. For instance, when n = 2,
l1 = 19, l2 = 130, m1 = 1, and m2 = 4, the expected number of probes to crack
SALADS is more than 227 (the values are based on the taskigt rootkit).

Second, if the attack is against an application with memory content leakage
or conducted by a rootkit, ASLR (and the static DSLR) is not effective. However,
SALADS still works, which has been explained previously. Similarly, the attack
needs to make

∏n
i=1

(
li
mi

)
probes to bypass SALADS.

5.2 Limitations

In this section, we discuss the limitations of SALADS. First, our design does
not explicitly protect the randomization records. Suppose an attacker can read
arbitrary memories, including the randomization records. With the records, the
attacker can recover the randomized layout. This is a common problem for com-
piler based defenses, such as Stackguard [12], and G-Free [27]. However, different
from existing works, the leaked seeds might be invalid when the attack uses it.
The time costs by memory content leakage varies from seconds [33] to weeks,
when fine-grained ASLR protection is deployed. Within such a time window, a
DSSR program might update the record for multiple times. To protect the ran-
domization records, one possible solution is to adopt the key protection method
proposed by Harrison [18]. This technique suggests introducing access control to
prevent external code from accessing the key.

Second, an attacker may leverage code-reuse techniques to bypass SAL-
ADS. For example, the attacker could reuse the routines (e.g., Update Record)
to get the memory layout of a data structure. Fortunately, code reuse can
be effectively handled by existing techniques, such as fine-grained ASLR for
instruction areas [16,19,22,28,38] and control flow integrity (CFI) enforce-
ment [4,15,37,40,41].

Third, it is hard to handle the balance between security and efficiency. To
obtain the strongest protection, we should randomize all data structures, which,
however, would introduce high performance overhead. In our current implemen-
tation, we randomize a subset of all data structures, including security-sensitive
data structures. Common security-sensitive data structures include those con-
tains authentication information or function pointers. To handle this limitation,

A Practical Approach for Adaptive Data Structure Layout Randomization 85

we provide users with a white list which contains data structures to be random-
ized. The users can add security-sensitive data structures into this list. In the
near future, we plan to improve our current implementation to randomize more
data structures and reduce the overhead.

6 Related Work

Over the past decade, a large number of techniques have been proposed to achieve
address space randomization (ASR). These techniques introduce diversification
to programs at different granularity [23], including segment level [8,36], page
level [5], function level [22], basic block level [28], instruction level [19,38], and
memory objects level [17,24,34,39].

In particular, Giuffrida et al. [17] proposed a fine-grained OS-level live
randomization technique, including data structure randomization. However,
it has several limitations. First, their technique needs to heavily modify the
microkernel-based OS; our technique can be directly applied to the targets with
light-weight instrumentation. Second, their technique requires to separate a ker-
nel into isolated components, which violates the design principles of modern
kernels. Third, it cannot achieve live randomization in the microkernel; whereas
our technique can be generically applied to applications, OS kernel and hyper-
visor code.

Static DSLR [24,34] was proposed to prevent data structure manipulation
attacks by modifying the definition of a data structure to reorder the fields.
However, static DSLR has several limitations. First, the layout randomized by
static DSLR is determined at compile time. Second, static DSLR requires manual
efforts to determine which data structure can be randomized. Xin et al. [39]
extended static DSLR and proposed using a constraint set to select randomizable
data structures. But their techniques cannot handle nested data structures and
they ignore all data structures associated with pointer operations.

7 Conclusion

In this paper, we present SALADS, an instrumented compiler that automati-
cally translates a program to a DSSR program. At runtime, a DSSR program
adaptively randomizes the layout of each security-sensitive data structure inde-
pendently. The randomizability of a data structure instance is automatically
determined by the DSSR program. Experiments demonstrate both high effec-
tiveness and reasonable performance when applying SALADS to defense against
data structure manipulation attacks. As a technique to introduce artificial diver-
sification, SALADS is robust to protect programs in spite of memory leakage and
practically applicable to protect OS kernels and hypervisors against rootkits.

Acknowledgement. This work was supported in part by ARO W911NF-13-1-0421
(MURI), NSF CCF-1320605, and NSF CNS-1422594, Chinese National Natural Science
Foundation (NSFC 61073027, NSFC 61272078).

86 P. Chen et al.

A Details of Lmbench Results

Table 4. Lmbench results

Latency Linux kernel-2.6.23.1 Linux kernel-2.6.18.8-xen0

orig (ms) r (ms) O (%) orig (ms) r (ms) O(%)

Simple syscall 0.1559 0.1791 14.9 0.2920 0.2949 1.0

Simple read 0.2239 0.2864 27.9 0.4021 0. 4082 1.5

Simple write 0.1972 0.2539 28.8 0.3658 0.3699 1.1

Simple open/close 1.8732 2.3089 23.2 2.7081 2.7323 0.9

Process fork+exit 60.2857 70.3026 16.6 342.8125 386.5949 12.8

Select on 10 fds 0.4458 0.5069 13.7 0.6874 0.6884 0.1

Select on 100 fds 1.3019 1.5419 18.4 1.7559 1.7688 0.7

Protection fault 0.2289 0.2497 9.1 0.5997 0.6009 0.2

Pipe 5.4670 5.8371 6.7 14.2375 16.3477 14.8

AU UNIX sock stream 5.9704 7.0496 18.1 13.1883 14.6609 11.2

Bandwidth orig (MB/s) r (MB/s) O (%) orig (MB/s) r (MB/s) O (%)

File I/O 44.71 38.18 17.1 19.30 18.21 6.0

Mmap I/O 7423.26 6671.53 11.2 3023.09 2896.42 4.4

Mem rd 8359.75 7523.35 11.1 3378.98 3245.22 4.1

Table 4 lists the detailed results of testing DSSR Linux kernel (2nd–4th

columns) and DSSR Xen-3.2.0 (5th–7th columns) with Lmbench. In particularly,
we evaluate the performance overhead introduced by SALADS with two met-
rics: system latency and bandwidth. For DSSR Linux kernel, file operations
(e.g., open/close) have higher performance overhead. Based on our observations,
this is possibly because the file-related data structures (e.g., inode) contains
many nested definitions which require more DSSR statements to complete the
randomization. For DSSR Xen, the randomization mainly affects the local com-
munications (e.g., Pipe) and process-related operations (e.g., process fork). This
is probably because more DSSR statements at these points will be executed to
access the privileged system components (e.g., MMU, I/O peripherals) and cause
traps into the VMM.

References

1. Arrays of length of zero. http://gcc.gnu.org/onlinedocs/gcc/Zero-length.html
2. Openssh benchmark. http://blog.famzah.net/2010/06/11/openssh-ciphers-

performance-benchmark/
3. Gimple (2015). https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html

http://gcc.gnu.org/onlinedocs/gcc/Zero-length.html
http://blog.famzah.net/2010/06/11/openssh-ciphers-performance-benchmark/
http://blog.famzah.net/2010/06/11/openssh-ciphers-performance-benchmark/
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html

A Practical Approach for Adaptive Data Structure Layout Randomization 87

4. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: ACM
Conference on Computer and Communications Security (CCS 2005) (2005)

5. Backes, M., Nürnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical by allowing code sharing. In: USENIX Security Symposium (Security
2014) (2014)

6. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of
kernel data structure invariants. In: Annual Computer Security Applications Con-
ference (ACSAC 2008) (2008)

7. Berre, S.L.: Bypassing windows 7 kernel aslr (2011). http://dl.packetstormsecurity.
net/papers/bypass/NES-BypassWin7KernelAslr.pdf

8. Bhatkar, E., Duvarney, D.C., Sekar, R.: Address obfuscation: an efficient approach
to combat a broad range of memory error exploits. In: USENIX Security Sympo-
sium (Security 2003) (2003)

9. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: IEEE Symposium on Security and Privacy (Oakland 2014) (2014)

10. Bursztein, E., Hamburg, M., Lagarenne, J., Boneh, D.: Openconflict: preventing
real time map hacks in online games. In: IEEE Security and Privacy (Oakland
2011) (2011)

11. Chen, H., Mao, Y., Wang, X., Zhou, D., Zeldovich, N., Kaashoek, M.F.: Linux
kernel vulnerabilities: state-of-the-art defenses and open problems. In: Asia-Pacific
Workshop on Systems (APSys 2011) (2011)

12. Crispin, C., Calton, P., Dave, M., Heather, H., Jonathan, W., Peat, B., Steve,
B., Aaron, G., Perry, W., Qian, Z.: Stackguard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: USENIX Security Symposium (Security
1998) (1998)

13. CVE-2001-0144. Ssh crc-32 compensation attack detector (2001). http://www.
securityfocus.com/bid/2347/discuss

14. CVE-2002-0656. Apache openssl heap overflow exploit (2002). http://www.
phreedom.org/research/exploits/apache-openssl/

15. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Nrnberger,
S., Sadeghi, A.-R.: Mocfi: a framework to mitigate control-flow attacks on smart-
phones. In: Annual Network and Distributed System Security Symposium (NDSS
2012) (2012)

16. Davi, L., Liebchen, C., Sadeghi, A.-R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (just-in-time) return-oriented programming. In: Annual
Network and Distributed System Security Symposium (NDSS 2015) (2015)

17. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system secu-
rity through efficient and fine-grained address space randomization. In: USENIX
Conference on Security Symposium (Security 2012) (2012)

18. Harrison, K., Xu, S.: Protecting cryptographic keys from memory disclosure
attacks. In: Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2007) (2007)

19. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.: Ilr: Where’d my
gadgets go? In: IEEE Symposium on Security and Privacy (Oakland 2012) (2012)

20. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. In: USENIX Security Symposium (Security 2009)
(2009)

21. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space aslr. In: IEEE Symposium on Security and Privacy (Oakland 2013)
(2013)

http://dl.packetstormsecurity.net/papers/bypass/NES-BypassWin7KernelAslr.pdf
http://dl.packetstormsecurity.net/papers/bypass/NES-BypassWin7KernelAslr.pdf
http://www.securityfocus.com/bid/2347/discuss
http://www.securityfocus.com/bid/2347/discuss
http://www.phreedom.org/research/exploits/apache-openssl/
http://www.phreedom.org/research/exploits/apache-openssl/

88 P. Chen et al.

22. Kil, C., Jim, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-
tion (aslp): towards fine-grained randomization of commodity software. In: Annual
Computer Security Applications Conference (ACSAC 2006) (2006)

23. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: Sok: automated software diver-
sity. In: IEEE Symposium on Security and Privacy (Oakland 2014) (2014)

24. Lin, Z., Riley, R.D., Xu, D.: Polymorphing software by randomizing data structure
layout. In: Flegel, U., Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 107–
126. Springer, Heidelberg (2009)

25. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from
binary execution. In: Annual Network and Distributed System Security Symposium
(NDSS 2010), San Diego, CA, February 2010

26. McVoy, L., Staelin, C.: lmbench: portable tools for performance analysis. In:
USENIX Security Symposium (Security 1996) (1996)

27. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free: defeating
return-oriented programming through gadget-less binaries. In: Annual Computer
Security Applications Conference (ACSAC 2010) (2010)

28. Pappas, V., Polychronakis, M., Keromytis, A.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: IEEE Sym-
posium on Security and Privacy (Oakland 2012) (2012)

29. Parvez: Bypassing microsoft windows aslr with a little help by ms-help (2012).
http://www.greyhathacker.net/?p=585

30. Seibert, J., Okhravi, H., Söderström, E.: Information leaks without memory dis-
closures: remote side channel attacks on diversified code. In: ACM Conference on
Computer and Communications Security (CCS 2014) (2014)

31. Serna, F.J.: Cve-2012-0769, the case of the perfect info leak (2012). http://zhodiac.
hispahack.com/my-stuff/security/Flash ASLR bypass.pdf

32. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: ACM Conference on Computer
and Communications Security (CCS 2004) (2004)

33. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.-R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: IEEE Symposium on Security and Privacy (Oakland 2013)
(2013)

34. Stanley, D.M., Xu, D., Spafford, E.H.: Improved kernel security through memory
layout randomization. In: 2013 IEEE 32nd International Performance Computing
and Communications Conference (IPCCC), pp. 1–10. IEEE (2013)

35. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter,
T.: Breaking the memory secrecy assumption. In: European Workshop on System
Security (EUROSEC 2009) (2009)

36. P. Team: Pax address space layout randomization (aslr) (2003). http://pax.
grsecurity.net/docs/aslr.txt

37. Wang, Z., Jiang, X.: Hypersafe: a lightweight approach to provide lifetime hypervi-
sor control-flow integrity. In: IEEE Symposium on Security and Privacy (Oakland
2010) (2010)

38. Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security (CCS 2012) (2012)

39. Xin, Z., Chen, H., Han, H., Mao, B., Xie, L.: Misleading malware similarities
analysis by automatic data structure obfuscation. In: Burmester, M., Tsudik, G.,
Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 181–195. Springer,
Heidelberg (2011)

http://www.greyhathacker.net/?p=585
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

A Practical Approach for Adaptive Data Structure Layout Randomization 89

40. Zhang, C., Wei, T., Chen, Z., Duan, L., McCamant, S., Szekeres, L., Song, D., Zou,
W.: Practical control flow integrity and randomization for binary executables. In:
IEEE Symposium on Security and Privacy (Oakland 2013) (2013)

41. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: USENIX Security
Symposium (Security 2013) (2013)

42. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and
their use to extract private keys. In: ACM Conference on Computer and Commu-
nications Security (CCS 2012) (2012)

Trustworthy Prevention of Code Injection
in Linux on Embedded Devices

Hind Chfouka1, Hamed Nemati2(B), Roberto Guanciale2, Mads Dam2,
and Patrik Ekdahl3

1 University of Pisa, Pisa, Italy
chfouka@di.unipi.it

2 KTH Royal Institute of Technology, Stockholm, Sweden
{hnnemati,robertog,mfd}@kth.se

3 Ericsson AB, Lund, Sweden
patrik.ekdahl@ericsson.com

Abstract. We present MProsper, a trustworthy system to prevent code
injection in Linux on embedded devices. MProsper is a formally veri-
fied run-time monitor, which forces an untrusted Linux to obey the exe-
cutable space protection policy; a memory area can be either executable
or writable, but cannot be both. The executable space protection allows
the MProsper’s monitor to intercept every change to the executable code
performed by a user application or by the Linux kernel. On top of this
infrastructure, we use standard code signing to prevent code injection.
MProsper is deployed on top of the Prosper hypervisor and is imple-
mented as an isolated guest. Thus MProsper inherits the security prop-
erty verified for the hypervisor: (i) Its code and data cannot be tampered
by the untrusted Linux guest and (ii) all changes to the memory layout is
intercepted, thus enabling MProsper to completely mediate every oper-
ation that can violate the desired security property. The verification of
the monitor has been performed using the HOL4 theorem prover and by
extending the existing formal model of the hypervisor with the formal
specification of the high level model of the monitor.

1 Introduction

Even if security is a critical issue of IT systems, commodity OSs are not designed
with security in mind. Short time to market, support of legacy features, and
adoption of binary blobs are only few of the reasons that inhibit the devel-
opment of secure commodity OSs. Moreover, given the size and complexity of
modern OSs, the vision of comprehensive and formal verification of them is as
distant as ever. At the same time the necessity of adopting commodity OSs can
not be avoided; modern IT systems require complex network stacks, application
frameworks etc.

The development of verified low-level execution platforms for system parti-
tioning (hypervisors [11,14], separation kernels [5,15], or microkernels [9]) has
enabled an efficient strategy to develop systems with provable security proper-
ties without having to verifying the entire software. The idea is to partition the
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 90–107, 2015.
DOI: 10.1007/978-3-319-24174-6 5

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 91

system into small and trustworthy components with limited functionality run-
ning alongside large commodity software components that provide little or no
assurance. For such large commodity software it is not realistic to restrict the
adversary model. For this reason, the goal is to show, preferably using formal
verification, that the architecture satisfies the desired security properties, even
if the commodity software is completely compromised.

An interesting usage of this methodology is when the trustworthy components
are used as an aid for the application OS to restrict its own attack surface, by
proving the impossibility of certain malicious behaviors. In this paper, we show
that this approach can be used to implement an embedded device that hosts
a Linux system provably free of binary code injection. Our goal is to formally
prove that the target system prevents all forms of binary code injection even if
the adversary has full control of the hosted Linux and no analysis of Linux itself
is performed. This is necessary to make the verification feasible, since Linux
consists of million of lines of code and even a high level model of its architecture
is subject to frequent changes.

Technically, we use Virtual Machine Introspection (VMI). VMI is a virtual-
ized architecture, where an untrusted guest is monitored by an external observer.
VMI has been proposed as a solution to the shortcomings of network-based and
host-based intrusion detection systems. Differently from network-based threat
detection, VMI monitors the internal state of the guest. Thus, the VMI does not
depend on information obtained from monitoring network packets which may not
be accurate or sufficient. Moreover, differently from host-based threat detection,
VMIs place the monitoring component outside of the guest, thus making the
monitoring itself tamper proof. A further benefit of VMI monitors is that they
can rely on trusted information received directly from the underlying hardware,
which is, as we show, out of the attackers reach.

Our system, MProsper, is implemented as a run-time monitor. The monitor
forces an untrusted Linux system to obey the executable space protection policy
(usually represented as W ⊕ X); a memory area can be either executable or
writable, but cannot be both. The protection of executable space allows MPros-
per to intercept all changes to the executable code performed by a user applica-
tion or by the Linux kernel itself. On top of this infrastructure, we use standard
code signing to prevent code injection.

Two distinguishing features of MProsper are its execution on top of a formally
verified hypervisor (thus guaranteeing integrity) and the verification of its high
level model (thus demonstrating that the security objective is attained). To the
best of our knowledge this is the first time the absence of binary code injection
has been verified for a commodity OS. The verification of the monitor has been
performed using the HOL4 theorem prover and by extending the existing formal
model of the hypervisor [14] with the formal specification of the monitor’s run-
time checks.

The paper is organized as follows: Sect. 2 introduces the target CPU architec-
ture (ARMv7A), the architecture of the existing hypervisor and its interactions
with the hosted Linux kernel, the threat model and the existing formal models;

92 H. Chfouka et al.

Sect. 3 describes the MProsper architecture and design, it also elaborates on the
additional software required to host Linux; Sect. 4 describes the formal model
of the monitor and formally states the top level goal: absence of code injection;
Sect. 5 presents the verification strategy, by summarizing the proofs that have
been implemented in HOL4; Sect. 6 demonstrates the overhead of MProsper
through standard microbenchmarks, it also presents measures of the code and
proof bases; Finally, Sects. 7 and 8 present the related work and the concluding
remarks.

2 Background

2.1 The Prosper Hypervisor

The Prosper hypervisor supports the execution of an untrusted Linux guest [14]
along with several trusted components. The hosted Linux is paravirtualized; both
applications and kernel are executed unprivileged (in user mode) while privileged
operations are delegated to the hypervisor, which is invoked via hypercalls. The
physical memory region allocated to each component is statically defined. The
hypervisor guarantees spatial isolation of the hosted components; a component
can not directly affect (or be affected by) the content of the memory regions allo-
cated to other components. Thus, the interactions among the hosted components
are possible only via controlled communication channels, which are supervised
by the hypervisor.

The Prosper hypervisor and the MProsper monitor target the ARMv7-A
architecture, which is the most widely adopted instruction set architecture in
mobile computing. In ARMv7-A, the virtual memory is configured via page
tables that reside in physical memory. The architecture provides two levels of
page tables, in the following called L1s and L2s. These tables represent the
configuration of the Memory Management Unit (MMU) and define the access
permissions to the virtual memory. As is common among modern architectures,
the entries of ARMv7 page tables support the NX (No eXecute) attribute: an
instruction can be executed only if it is fetched from a virtual memory area
whose NX bit is not set. Therefore, the system executable code is a subset of the
content of the physical blocks that have at least an executable virtual mapping.

To isolate the components, the hypervisor takes control of the MMU and
configures the pagetables so that no illicit access is possible. This MMU configu-
ration can not be static; the hosted Linux must be able to reconfigure the layout
of its own memory (and the memory of the user programs). For this reason the
hypervisor virtualizes the memory subsystem. This virtualization consists of a
set of APIs that enable Linux to request the creation/deletion/modification of
a page table and to switch the one currently used by the MMU.

Similarly to Xen [3], the virtualization of the memory subsystem is accom-
plished by direct paging. Direct paging allows the guest to allocate the page
tables inside its own memory and to directly manipulate them while the tables

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 93

Table 1. DMMU API

request r DMMU behavior

switch(bl) makes block bl the active page table

freeL1(bl) and freeL2(bl) frees block bl, by setting its type to D

unmapL1(bl, idx), unmapL2(bl, idx) unmaps entry idx of the page table
stored in block bl

linkL1(bl, idx, bl′) maps entry idx of block bl to point
the L2 stored in bl′

mapL2(bl, idx, bl′, ex, wt, rd) and
mapL1(bl, idx, bl′, ex, wt, rd)

map entry idx of block bl to point to
block bl′ and granting rights
ex, wt, rd to user mode

createL2(bl) and createL1(bl) makes block bl a potential L2/L1, by
setting its type to L2/L1

are not in active use by the MMU. Once the page tables are activated, the hyper-
visor must guarantee that further updates are possible only via the virtualization
API.

The physical memory is fragmented into blocks of 4 KB. Thus, a 32-bit archi-
tecture has 220 physical blocks. We assign a type to each physical block, that
can be: data: the block can be written by the guest, L1 : contains part of an L1
page table and should not be writable by the guest, L2 : contains four L2 page
tables and should not be writable by the guest. We call the L1 and L2 blocks
“potential” page tables, since the hypervisor allows to select only these memory
areas to be used as page tables by the MMU.

Table 1 summarizes the APIs that manipulate the page tables. The set of
these functions is called DMMU. Each function validates the page type, guar-
anteeing that page tables are write-protected. A naive run-time check of the
page-type policy is not efficient, since it requires to re-validate the L1 page
table whenever the switch hypercall is invoked. To efficiently enforce that only
blocks typed D can be written by the guest the hypervisor maintains a reference
counter, which tracks for each block the sum of descriptors providing access in
user mode to the block. The intuition is that a hypercall can change the type
of a physical block (e.g. allocate or free a page table) only if the corresponding
reference counter is zero.

A high level view of the hypervisor architecture is depicted in Fig. 1. The
hypervisor is the only component that is executed in privileged mode. It logically
consists of three layers: (i) an interface layer (e.g. the exception handlers) that
is independent from the hosted software, (ii) a Linux specific layer and (iii) a
critical core (i.e. the DMMU), which is the only component that manipulates
the sensible resources (i.e. the page tables). Figure 1 demonstrates the behavior
of the system when a user process in the Linux guest spawns a new process.

This design has two main benefits: (i) the critical part of the hypervisor is
small and does not depend on the hosted software and (ii) the Linux-specific layer

94 H. Chfouka et al.

Fig. 1. Hypervisor architecture

enriches the expressiveness of the hypercalls, thus reducing the number of context
switches between the hypervisor and the Linux kernel. From a verification point
of view, to guarantee security of the complete system it is not necessary to
verify functional correctness of the Linux layer; it suffices to verify that this
layer never changes directly the sensitive resources and that its execution does
not depend on the sensitive data. These tasks can be accomplished using sand-
boxing techniques [17] or tools for information flow analysis [2].

2.2 The Attack Model

The Linux guest is not trusted, thus we take into account an attacker that has
complete control of the partition that hosts Linux. The attacker can force user
programs and the Linux kernel to follow arbitrary flows and to use arbitrary data.
The attacker can invoke the hypervisor, including the DMMU API, through
software interrupts and exceptions. Other transitions into privileged memory
are prevented by the hypervisor. The goal of the attacker is “code injection”, for
example using a buffer overflow to inject malicious executable code. This attack
is normally performed by a malicious software that is able to write code into a
data storage area of another process, and then cause this code to be executed.

In this paper we exemplify our monitor infrastructure using code signing.
Signing the system code is a widely used approach to confirm the software author
and guarantee (computationally speaking) that the code has not been altered or
corrupted, by use of a cryptographic hash. Many existing code signing systems
rely on a public key infrastructure (PKI) to provide both code authenticity
and integrity. Here we use code signing to define integrity of the system code:
integrity of an executable physical block stands for the block having a valid

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 95

signature. Similarly, the integrity of the system code depends on the integrity of
all executable physical blocks. The valid signatures are assumed to be known by
the runtime monitor. We refer to this information as the “golden image” (GI)
and it is held by the monitor.

In order to make injected code detectable, we also assume that the attacker is
computationally bound; it can not modify the injected code to make its signature
compliant with the golden image. We stress that our goal is not to demonstrate
the security properties of a specific signature scheme. In fact the monitor can
be equipped with an arbitrary signature mechanism and the signature mech-
anism itself is just one of the possible approaches that can be used to check
integrity of the system code. For this reason we do not elaborate further on the
computational power of the attacker.

2.3 Formal Model of the Hypervisor

Our formal model is built on top of the existing HOL4 model for ARMv7 [6].
This has been extended with a detailed formalization of the ARMv7 MMU, so
that every memory access uses virtual addresses and respects the constraints
imposed by the page tables.

An ARMv7 state is a record σ = 〈regs, coregs ,mem〉 ∈ Σ, where regs, coregs
and mem, respectively, represent the registers, coprocessors and memory. In the
state σ, the function mode(σ) determines the current privilege execution mode,
which can be either PL0 (user mode, used by Linux and the monitor) or PL1
(privileged mode, used by the hypervisor).

The system behavior is modeled by a state transition relation
l∈{PL0,PL1}−−−−−−−−−→⊆

Σ × Σ, representing the complete execution of a single ARM instruction. Non-
privileged transitions (σ PL0−−−→ σ′) start and end in PL0 states. All the other
transitions (σ PL1−−−→ σ′) involve at least one state in privileged level. A transition
from PL0 to PL1 is done by raising an exception, that can be caused by software
interrupts, illegitimate memory accesses, and hardware interrupts.

The transition relation queries the MMU to translate the virtual addresses
and to check the access permissions. The MMU is represented by the function
mmu(σ, PL, va, accreq) → pa ∪ {⊥}: it takes the state σ, a privilege level PL,
a virtual address va ∈ 232 and the requested access right accreq ∈ {rd, wt, ex},
for readable, writable, and executable in non-privileged respectively, and returns
either the corresponding physical address pa ∈ 232 (if the access is granted) or
a fault (⊥).

In [14] we show that a system hosting the hypervisor resembles the following
abstract model. A system state is modeled by a tuple 〈σ, h〉, consisting of an
ARMv7 state σ and an abstract hypervisor state h, of the form 〈τ, ρex, ρwt〉. Let
bl ∈ 220 be the index of a physical block and t ∈ {D,L1, L2}, τ
 bl : t tracks
the type of the block and ρex(bl), ρwt(bl) ∈ 230 track the reference counters: the
number of page tables entries (i.e. entries of physical blocks typed either L1 or
L2) that map to the physical block bl and are executable or writable respectively.

96 H. Chfouka et al.

The transition relation for this model is 〈σ, h〉 α−→ 〈σ′, h′〉, where α ∈ {0, 1},
and is defined by the following inference rules:

– if σ
PL0−−−→ σ′ then 〈σ, h〉 0−→ 〈σ′, h〉; instructions executed in non-privileged

mode that do not raise exceptions behave equivalently to the standard ARMv7
semantics and do not affect the abstract hypervisor state.

– if σ
PL1−−−→ σ′ then 〈σ, h〉 1−→ Hr(〈σ′, h〉), where r = req(σ′); whenever an

exception is raised, the hypervisor is invoked through a hypercall, and the
reached state is resulting from the execution of the handler Hr

Here, req is a function that models the hypercall calling conventions; the target
hypercall is identified by the first register of σ, and the other registers provide
the hypercall’s arguments. The handlers Hr formally model the behavior of the
memory virtualization APIs of the hypervisor (see Table 1).

Intuitively, guaranteeing spatial isolation means confining the guest to man-
age a part of the physical memory available for the guest uses. In our setting,
this part is determined statically and identified by the predicate Gm(bl), which
holds if the physical block bl is part of the physical memory assigned to the
guest partition. Clearly, no security property can be guaranteed if the system
starts from a non-consistent state; for example the guest can not be allowed to
change the MMU behavior by directly writing the page tables. For this reason
we introduce a system invariant IH(〈σ, h〉) that is used to constrain the set of
consistent initial states. Then the hypervisor guarantees that the invariant is
preserved by every transition:

Proposition 1. Let IH(〈σ, h〉). If 〈σ, h〉 i−→ 〈σ′, h′〉 then IH(〈σ′, h′〉).
We use the function content : Σ × 220 → 24096∗8 that returns the content of

a physical block in a system state as a value of 4 KB. Proposition 2 summarizes
some of the security properties verified in [14]: the untrusted guest can not
directly change (1) the memory allocated to the other components, (2) physical
blocks that contain potential page tables, (3) physical blocks whose writable
reference counter is zero and (4) the behavior of the MMU.

Proposition 2. Let IH(〈σ, (τ, ρwt, ρex)〉). If 〈σ, (τ, ρwt, ρex)〉 0−→ 〈σ′, h′〉 then:

2.1 For every bl such that ¬Gm(bl) then content(bl, σ) = content(bl, σ′)
2.2 For every bl such that τ(bl) �= D then content(bl, σ) = content(bl, σ′)
2.3 For every bl if content(bl, σ) = content(bl, σ′) then ρwt(bl) > 0
2.4 For every va, PL, acc we have mmu(σ, va, PL, acc) = mmu(σ′, va, PL, acc).

3 Design

We configured the hypervisor to support the interaction protocol of Fig. 2; the
monitor mediates accesses to the DMMU layer. Since the hypervisor supervises
the changes of the page tables the monitor is able to intercept all modifications

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 97

1. For each DMMU hypercall invoked by a guest, the hypervisor forwards the hy-
percall’s request to the monitor.

2. The monitor validates the request based on its validation mechanism.
3. The monitor reports to the hypervisor the result of the hypercall validation.

Fig. 2. The interaction protocol between the Prosper hypervisor and the monitor

to the memory layout. This makes the monitor able to know if a physical block is
writable: This is the case if there exists at least one virtual mapping pointing to
the block with a guest writable access permission. Similarly it is possible to know
if a physical block is executable. Note that the identification of the executable
code (also called “working set”) does not rely on any information provided by the
untrusted guest. Instead, the monitor only depends on HW information, which
can not be tampered by an attacker.

The first policy enforced by the monitor is code signature: Whenever Linux
requests to change a page table (i.e. causing to change the domain of the working
set) the monitor (i) identifies the physical blocks that can be made executable
by the request, (ii) computes the block signature and (iii) compares the result
with the content of the golden image. This policy is sufficient to prevent code
injection that are caused by changes of the memory layout setting, due to the
hypervisor forwarding to the monitor all requests to change the page tables.

However, this policy is not sufficient to guarantee integrity of the working set.
In fact, operations that modify the content of a physical block that is executable
can violate the integrity of the executable code. These operations cannot be
intercepted by the monitor, since they are not supposed to raise any hypercall.
In fact, a simple write operation in a block typed D does not require the hyper-
visor intermediation since no modification of the memory layout is introduced.
To prevent code injections performed by writing malicious code in an executable
area of the memory, the monitor enforces the executable space protection policy
W ⊕ X, preventing physical blocks from being simultaneously writable and exe-
cutable. As for the hypervisor, a naive run-time check of the executable space
protection is not efficient. Instead, we reuse the hypervisor reference counters: we
accept a hypercall that makes a block executable (writable) only if the writable
(executable) reference counter of the block is zero.

An additional complication comes from the Linux architecture. An unmodi-
fied Linux kernel will not survive the policies enforced by the monitor, thus its
execution will inevitably fail. For example, when a user process is running there
are at least two virtual memory regions that are mapped to the same physical
memory where the process executable resides: (i) the user “text segment” and
(ii) the “kernel space” (which is an injective map to the whole physical mem-
ory). When the process is created, Linux requests to set the text segment as
executable and non writable. However, Linux does not revoke its right to write
inside this memory area using its kernel space. This setting is not accepted by
the monitor, since it violates X ⊕ W , thus making it impossible to execute a
user process.

98 H. Chfouka et al.

Instead of adapting a specific Linux kernel we decided to implement a small
emulation layer that has two functionalities:

– It proxies all requests from the Linux layer to the monitor. If the emulator
receives a request that can be rejected by the monitor (e.g. a request setting as
writable a memory region that is currently executable) then the emulator (i)
downgrades the access rights of the request (e.g. setting them as non writable)
and (ii) stores the information about the suspended right in a private table.

– It proxies all data and prefetch aborts. The monitor looks up in the private
table to identify if the abort is due to an access right that has been previously
downgraded by the emulator. In this case the monitor attempts (i) to down-
grade the existing mapping that conflicts with the suspended access right and
(ii) to re-enable the suspended access right.

Note that a malfunction of the emulation layer does not affect the security of the
monitor. Namely, we do not care if the emulation layer is functionally correct,
but only that it does not access sensible resources directly.

Figure 3 depicts the architecture of MProsper. Both the runtime monitor
and the emulator are deployed as two guests of the Prosper hypervisor. The
Linux layer prepares a list of requests in a buffer shared with the emulation
guest. After the Linux layer returns, the hypervisor activates the emulation guest,
which manipulates the requests (or adds new ones) as discussed before. Then the
hypervisor iteratively asks the monitor to validate one of the pending requests
and upon success it commits the request by invoking the corresponding DMMU
function.

Using a dedicated guest on top of the hypervisor permits to decouple the
enforcement of the security policies from the other hypervisor functionalities,

Fig. 3. MProsper’s architecture

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 99

thus keeping the trusted computing base minimal. Moreover, having the secu-
rity policy wrapped inside a guest supports both the tamper-resistance and the
trustworthiness of the monitor. In fact, the monitor can take advantage from
the isolation properties provided by the hypervisor. This avoids malicious inter-
ferences coming from the other guests (for example from a process of an OS
running on a different partition of the same machine). Finally, decoupling the
run-time security policy from the other functionalities of the hypervisor makes
the formal specification and verification of the monitor more affordable.

4 Formal Model of MProsper

The formal model of the system (i.e. consisting of the hypervisor, the monitor
and the untrusted Linux) is built on top of the models presented in Sect. 2.3.
Here we leave unspecified the algorithm used to sign and check signatures, so
that our results can be used for different intrusion detection mechanisms. The
golden image GI is a finite set of signatures {s1, . . . , sn}, where the signatures are
selected from a domain S. We assume the existence of a function sig : 24096∗8 →
S that computes the signature of the content of a block.

The system behavior is modeled by the following rules:

〈σ,h〉 0−→〈σ′,h′〉
〈σ,h,GI〉 0−→〈σ′,h′,GI〉

〈σ,h〉 1−→〈σ′,h′〉 validate(req(〈σ,h〉),〈σ,h,GI〉)
〈σ,h,GI〉 1−→〈σ′,h′,GI〉

〈σ,h〉 1−→〈σ′,h′〉 ¬validate(req(〈σ,h〉),〈σ,h,GI〉)
〈σ,h,GI〉 1−→ε(〈σ,h,GI〉)

User mode transitions (e.g. Linux activities) require neither hypervisor nor
monitor intermediation. Proposition 2.1 justifies the fact that, by construction,
the transitions executed by the untrusted component can not affect the monitor
state; (i) the golden image is constant and (ii) the monitor code can be stati-
cally identified and abstractly modeled. Executions in privileged mode require
monitor intermediation. If the monitor validates the request, then the standard
behavior of the hypervisor is executed. Otherwise the hypervisor performs a
special operation to reject the request, by reaching the state that is returned
by a function ε. Hereafter, the function ε is assumed to be the identity. Alter-
natively, ε can transform the state so that the requestor is informed about the
rejected operation, by updating the user registers according to the desired calling
convention.

The function validate(req(〈σ, h〉), 〈σ, h,GI〉) represents the validation mech-
anism of the monitor, which checks at run-time possible violations of the secu-
rity policies. In Table 2 we briefly summarize the policies for the different access
requests. Here, PT is a function that yields the list of mappings granted by a page
table, where each mapping is a tuple (vb, pb, wt, ex) containing the virtual block
mapped (vb), the pointed physical block (pb) and the unpriviledged rights to
execute (ex) and write (wt). The rules in Table 2 are deliberately more abstract
that the ones modeled in HOL4 and are used to intuitively present the behavior
of the monitor. For example, the function PT is part of the hardware model and

100 H. Chfouka et al.

Table 2. Security policies for the available access requests

request r validate(r, 〈σ, (τ, ρwt, ρex), GI〉) holds iff

switch(bl) always

freeL1(bl) and freeL2(bl) always

unmapL1(bl, idx), unmapL2(bl, idx)
and linkL1(bl, idx, bl′)

ρex(bl) = 0

mapL2(bl, idx, bl′, ex, wt, rd) and
mapL1(bl, idx, bl′, ex, wt, rd)

soundW⊕X(wt, ex, ρwt, ρex, bl′)∧
soundS(ex, bl′, σ, GI) ∧ ρex(bl) = 0

createL2(bl) and createL1(bl) ∀(vb, pb, wt, ex) ∈ PT (content(bl, σ))
soundW⊕X(wt, ex, ρwt, ρex, pb)∧
soundS(ex, pb, σ, GI)

∀(vb′, pb′, wt′, ex′) ∈ PT (content(bl, σ)).
no-conflict(vb, pb, wt, ex)(vb′, pb′, wt′, ex′)

where
soundW⊕X(wt, ex, ρwt, ρex, bl) = (ex ⇒ ¬wt∧ρwt(bl) = 0)∧(wt ⇒ ¬ex∧ρex(bl) = 0)
soundS(ex, bl, σ, GI) = (ex ⇒ integrity(GI, bl, content(bl, σ)))

no-conflict(vb, pb, wt, ex)(vb′, pb′, wt′, ex′) =

(
(vb �= vb′ ∧ pb = pb′) ⇒
(ex ⇒ ¬wt′ ∧ wt ⇒ ¬ex′)

)

is not explicitly used by the monitor code, that is instead more similar to an
iterative program. This makes our verification more difficult, but it also makes
the monitor model as near as possible to the actual implementation, enabling
further verification efforts that can establish correctness of the implementation.

Note that the monitor always checks that a mapping is not writable and
executable simultaneously. Furthermore, if a mapping grants a writable access
then the executable reference counter of the pointed physical block must be
zero, guaranteeing that this mapping does not conflict (according with the exe-
cutable space protection policy) with any other allocated page table. Similarly,
if a mapping grants an executable access, then the writable reference counter of
the pointed block must be zero.

To formalize the top goal of our verification we introduce some auxiliary
notations. The working set identifies the physical blocks that host executable
binaries and their corresponding content.

Definition 1. Let σ be a machine state. The working set of σ is defined as

WS(σ) = {〈bl, content(bl, σ)〉 | ∃pa, va.mmu(σ, PL0, va, ex) = pa ∧ pa ∈ bl}
By using a code signing approach, we say that the integrity of a physical

block is satisfied if the signature of the block’s content belongs to the golden
image.

Definition 2. Let cnt ∈ 24096∗8 be the 4KB content of a physical block bl and
GI be the golden image. Then integrity(GI, bl, cnt) if, and only if, sig(bl, cnt) ∈
GI.

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 101

Notice that our security property can be refined to fit different anti-intrusion
mechanisms. For example, integrity(GI, bl, cnt) can be instantiated with the exe-
cution of an anti-virus scanner.

The system state is free of malicious code injection if the signature check is
satisfied for the whole executable code. That is:

Definition 3. Let σ be a machine state, bl be a physical block and GI be
the golden image. Then integrity(GI, σ) if, only if, for all 〈bl, cnt〉 ∈ WS(σ),
integrity(GI, bl, cnt).

Finally, we present our top level proof goal: No code injection can succeed.

Proposition 3. If 〈σ, h,GI〉 is a state reachable from the initial state of the
system 〈σ0, h0, GI〉 then integrity(GI, σ).

5 Verification Strategy

Our verification strategy consists of introducing a state invariant I(s) that is
preserved by any possible transition and demonstrating that the invariant guar-
antees the desired security properties.

Definition 4. I(σ, (τ, ρwt, ρex), GI) holds if

IH(σ, (τ, ρwt, ρex)) ∧
∀bl . (¬(τ(bl) = D)) ⇒ ∀(vb, pb, wt, ex) ∈ PT (content(bl, σ)).

soundW⊕X(wt, ex, ρwt, ρex, pb) ∧ soundS(ex, pb, σ,GI)

Clearly, the soundness of the monitor depends on the soundness of the hyper-
visor, thus I requires that the hypervisor’s invariant IH holds. Notice that the
invariant constrains not only the page tables currently in use, but it constrains
all potential page tables, which are all the blocks that have type different from
D. This allows to speed up the context switch, since the guest simply re-activates
a page table that has been previously validated. Technically, the invariant guar-
antees protection of the memory that can be potentially executable and the
correctness of the corresponding signatures.

We verified independently that the invariant is preserved by unprivileged
transitions (Theorem 1) and by privileged transitions (Theorem2). Moreover,
Lemma 1 demonstrates that the monitor invariant guarantees that there is no
malicious content in the executable memory.

Lemma 1. If I(〈σ, (τ, ρwt, ρex), GI〉) then integrity(GI, σ).

Proof. The proof is straightforward, following from soundS of every block that
can be executable according with an arbitrary potential page table. ��

Theorem 1 demonstrates that the invariant is preserved by instructions exe-
cuted by the untrusted Linux. This depends on Lemma2, which shows that the
invariant forbids user transitions to change the content of the memory that is
executable.

102 H. Chfouka et al.

Lemma 2. Let 〈σ, (τ, ρwt, ρex), GI〉 0−→ 〈σ′, h′, GI ′〉 and I(〈σ, h,GI〉) then

∀bl . (¬(τ(bl) = D)) ⇒
⎛

⎝
PT (content(bl, σ′)) = PT (content(bl, σ))∧
∀(vb, pb, wt, ex) ∈ PT (content(bl, σ′)) .

(ex ⇒ content(pb, σ) = content(pb, σ′))

⎞

⎠

Theorem 1. If 〈σ, h,GI〉 0−→ 〈σ′, h′, GI ′〉 and I(〈σ, h,GI〉) then I(〈σ′, h′, GI ′〉).
Proof. From the inference rules we know that h′ = h, GI ′ = GI and that the
system without the monitor behaves as 〈σ, h〉 0−→ 〈σ′, h〉. Thus, Proposition 1 can
be used to guarantee that the hypervisor invariant is preserved (IH(σ′, h′)).

If the second part of the invariant is violated then there must exist a map-
ping in one (hereafter bl) of the allocated page tables that is compliant with the
executable space protection policy in σ and violates the policy in σ′. Namely,
content(bl, σ′) must be different from content(bl, σ). This contradicts Proposi-
tion 2.2, since the type of the changed block is not data (τ(bl) �= D).

Finally we must demonstrate that every potentially executable block con-
tains a sound binary. Lemma2 guarantees that the blocks that are potentially
executable are the same in σ and σ′ and that the content of these blocks is
unchanged. Thus is sufficient to use the invariant I(σ, h,GI), to demonstrate
that the signatures of all executable blocks are correct. ��

To demonstrate the functional correctness of the monitor (Theorem2 i.e. that
the invariant is preserved by privileged transitions) we introduce two auxiliary
lemmas: Lemma 3 shows that the monitor correctly checks the signature of pages
that are made executable. Lemma 4 expresses that executable space protection
is preserved for all hypervisor data changes, as long as a block whose reference
counter (e.g. writable; ρ′

wt) becomes non zero has the other reference counter
(e.g. executable; ρex) zero.

Lemma 3. If 〈σ, h,GI〉 1−→ 〈σ′, (τ ′, ρ′
wt, ρ

′
ex), GI ′〉 and I(〈σ, h,GI〉) then for all

bl, τ ′(bl) �= D ⇒ ∀(vb′, pb′, wt, ex) ∈ PT (content(bl, σ′)).soundS(ex, pb′, σ′, GI).

Lemma 4. Assume (i) I(〈σ, (τ, ρwt, ρex), GI〉), (ii) ∀bl.(ρex(bl) = 0 ∧ ρ′
ex(bl) >

0) ⇒ (ρwt(bl) = 0), and (iii) ∀bl.(ρwt(bl) = 0 ∧ ρ′
wt(bl) > 0) ⇒ (ρex(bl) = 0).

For all blocks bl, if soundW⊕X(wt, ex, ρwt, ρex, bl) then soundW⊕X(wt, ex,
ρ′

wt, ρ
′
ex, bl).

Theorem 2. If 〈σ, h,GI〉 1−→ 〈σ′, h′, GI ′〉 and I(〈σ, h,GI〉) then I(〈σ′, h′, GI ′〉).
Proof. When the request is not validated (¬validate) than the proof is trivial,
since ε is the identity function.

If the request is validated by the monitor and committed by the hypervisor,
then the inference rules guarantee that GI ′ = GI and that the system with-
out the monitor behaves as 〈σ, h〉 0−→ 〈σ′, h〉. Thus, Proposition 1 can be used
to guarantee that the hypervisor invariant is preserved (IH(σ′, h′)). Moreover,
Lemma 3 demonstrates that the soundS part of the invariant holds.

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 103

The proof of the second part (the executable space protection) of the invariant
is the most challenging task of this formal verification. This basically establishes
the functional correctness of the monitor and that its run-time policies are strong
enough to preserve the invariant (i.e. they enforce protection of the potentially
executable space). Practically speaking, the proof consists of several cases: one
for each possible request. The structure of the proof for each case is similar. For
example, for r = mapL2(bl, idx, bl′, ex, wt, rd), we (i) prove that the hypervisor
(modeled by the function Hr) only changes entry idx of the page table stored
in block bl (that is, all other blocks that are not typed D are unchanged), (ii)
we show that only the counters of physical block bl′ are changed, and (iii) we
establish the hypothesis of Lemma 4. This enables us to infer soundW⊕X for the
unchanged blocks and to reduce the proof to only check the correctness of the
entry idx of the page table in the block bl. ��

Finally, Theorem3 composes our results, demonstrating that no code injec-
tion can succeed.

Theorem 3. Let 〈σ, h,GI〉 be a state reachable from the initial state of the
system 〈σ0, h0, GI0〉 and I(〈σ0, h0, GI0〉), then integrity(GI, σ) holds.

Proof. Theorems 1 and 2 directly show that the invariant is preserved for an
arbitrary trace. Then, Lemma1 demonstrates that every reachable state is free
of malicious code injection. ��

6 Evaluation

The verification has been performed using the HOL4 interactive theorem prover.
The specification of the high level model of the monitor adds 710 lines of HOL4
to the existing model of the hypervisor. This specification is intentionally low
level and does not depend on any high level theory of HOL4. This increased
the difficulty of the proof (e.g., it musts handle finite arithmetic overflows), that
consists of 4400 lines of HOL4. However, the low level of abstraction allowed us to
directly transfer the model to a practical implementation and to identify several
bugs of the original design. For example, the original policy for linkL1(bl, idx, bl′)
did not contain the condition ρex(bl) = 0, allowing to violate the integrity of the
working set if a block is used to store an L1 page table and is itself executable.

The monitor code consists of 720 lines of C and the emulator consists of
additional 950 lines of code. Finally, 100 lines have been added to the hypervisor
to support the needed interactions among the hosted components.

We used LMBench to measure the overhead introduced on user processes
hosted by Linux. We focused on the benchmarks “fork”, “exec” and “shell”,
since they require the creation of new processes and thus represent the monitors
worst case scenario. As macro-benchmark, we measured in-memory compression
of two data streams. The benchmarks have been executed using Qemu to emulate
a Beagleboard-Mx. Since we are not interested in evaluating a specific signature

104 H. Chfouka et al.

Table 3. Qemu benchmarks

Benchmark fork exec shell tar -czvf 1.2 KB tar -czvf 2.8 MB

No monitor 10240µs 10174µs 42889µs 0.05 s 20.95 s

P Emu 11792µs 11944µs 48473µs 0.09 s 21.05 s

P Emu+ P Mon 13965µs 13837µs 54303µs 0.10 s 21.02 s

P Emu+ U Mon 17512µs 17154µs 67273µs 0.11 s 20.98 s

scheme, we computed the signature of each physical block as the xor of the con-
tained words, allowing us to focus on the overhead introduced by the monitor’s
infrastructure. Table 3 reports the benchmarks for different prototypes of the
monitor, thus enabling to compare the overhead introduced by different design
choices. “No monitor” is the base configuration, where neither the monitor or
the emulation layer are enabled. In “P Emu” the emulation layer is enabled and
deployed as component of the hypervisor. This benchmark is used to measure
the overhead introduced by this layer, which can be potentially removed at the
cost of modifying the Linux kernel. In “P Emu + P Mon” both the monitor and
the emulation layer are deployed as privileged software inside the hypervisor.
Finally, in “P Emu + U Mon” the monitor is executed as unprivileged guest.

7 Related Work

Since a comprehensive verification of commodity SW is not possible, it is nec-
essary to architect systems so that the trusted computing base for the desired
properties is small enough to be verified, and that the untrusted code cannot
affect the security properties. Specialized HW (e.g. TrustZone and TPM) has
been proposed to support this approach and has been used to implement secure
storage and attestation. The availability of platforms like hypervisors and micro-
kernels extended the adoption of this approach to use cases that go beyond the
ones that can be handled using static HW based solutions.

For example, in [8] the authors use the seL4 microkernel to implement a
secure access controller (SAC) with the purpose of connecting one front-end ter-
minal to either of two back-end networks one at a time. The authors delegate the
complex (and non security critical) functionalities (e.g. IP/TCP routing, WEB
front-end) to untrusted Linuxes, which are isolated by the microkernel from a
small and trusted router manager. The authors describe how the system’s infor-
mation flow properties can be verified disregarding the behavior of the untrusted
Linuxes.

Here, we used the trustworthy components to help the insecure Linux to
restrict its own attack surface; i.e. to prevent binary code injection. Practically,
our proposal uses Virtual Machine Introspection (VMI), which has been first
introduced by Garfinkel et al. [1] and Chen et al. [4]. Similarly to MProsper, other
proposals (including Livewire [1], VMWatcher [7] and Patagonix [13]) use VMI,
code signing and executable space protection to prevent binary code injection in

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 105

commodity OSs. However, all existing proposals rely on untrusted hypervisors
and their designs have not been subject of formal verification.

Among others non trustworthy VMIs, hytux [10], SecVisor [18] and NICKLE
[16] focus on protecting integrity of the sole guest kernel. SecVisor establishes a
trusted channel with the user, which must manually confirm all changes to the
kernel. NICKLE uses a shadow memory to keep copy of authenticated modules
and guarantees that any instruction fetch by the kernel is routed to this memory.

OpenBSD 3.3 has been one of the first OS enforcing executable space pro-
tection (W ⊕ X). Similarly, Linux (with the PaX and Exec Shield patches),
NetBSD and Microsoft’s OSs (using Data Execution Prevention (DEP)) enforce
the same policy. However, we argue that due to the size of the modern kernels,
trustworthy executable space protection can not be achieved without the exter-
nal support of a trusted computing base. In fact, an attacker targeting the kernel
can circumvent the protection mechanism, for example using return-oriented pro-
gramming [20]. The importance of enforcing executable space protection from
a privileged point of view (i.e. by VMI) is also exemplified by [12]. Here, the
authors used model checking techniques to identify several misbehaviors of the
Linux kernel that violate the desired property.

8 Concluding Remarks

We presented a trustworthy code injection prevention system for Linux on
embedded devices. The monitor’s trustworthiness is based on two main prin-
ciples (i) the trustworthy hypervisor guarantees the monitor’s tamper resistance
and that all memory operations that modify the memory layout are mediated,
(ii) the formal verification of design demonstrates that the top security goal is
guaranteed by the run-time checks executed by the monitor. These are distin-
guishing features of MProsper, since it is the first time that absence of binary
code injection has been verified for a commodity OS.

Even if the MProsper’s formal model is not yet at the level of the actual
binary code executed on the machine, this verification effort is important to
validate the monitor design; in fact we were able to spot security issues that
were not dependent on the specific implementation of the monitor. The high
level model of the monitor is actually a state transition model of the implemented
code, operating on the actual ARMv7 machine state. Thus the verified properties
can be transferred to the actual implementation by using standard refinement
techniques (e.g. [19]).

Our ongoing work include the development of a end-to-end secure infrastruc-
ture, where an administrator can remotely update the software of an embedded
device. Moreover, we are experimenting with other run-time binary analysis
techniques that go beyond code signature checking: for example an anti-virus
scanner can be integrated with the monitor, enabling to intercept and stop self-
decrypting malwares.

106 H. Chfouka et al.

Acknowledgments. Work supported by framework grant “IT 2010” from the
Swedish Foundation for Strategic Research, and a project grant from Ericsson AB
through the KTH ACCESS Linnaeus Excellence Centre.

References

1. Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J., Aslam, J., Kaeli, D.: Virtual
machine monitor-based lightweight intrusion detection. SIGOPS Oper. Syst. Rev.
45(2), 38–53 (2011)

2. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low
level code. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1080–1091. ACM (2014)

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Oper.
Syst. Rev. 37(5), 164–177 (2003)

4. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems, HOTOS 2001, Washington,
DC, USA, pp. 133–2001. IEEE Computer Society (2001)

5. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 223–234. ACM (2013)

6. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

7. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based “out-
of-the-box” semantic view reconstruction. In: Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, CCS 2007, New York, NY,
USA, pp. 128–138. ACM (2007)

8. Klein, G.: From a verified kernel towards verified systems. In: Ueda, K. (ed.)
APLAS 2010. LNCS, vol. 6461, pp. 21–33. Springer, Heidelberg (2010)

9. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: Proceedings of SOSP
2009, pp. 207–220. ACM (2009)

10. Lacombe, E., Nicomette, V., Deswarte, Y.: Enforcing kernel constraints by
hardware-assisted virtualization. J. Comput. Virol. 7(1), 1–21 (2011)

11. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V hypervisor with VCC.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809.
Springer, Heidelberg (2009)

12. Liakh, S., Grace, M., Jiang, X.: Analyzing and improving Linux kernel memory
protection: a model checking approach. In: Proceedings of the 26th Annual Com-
puter Security Applications Conference, pp. 271–280. ACM (2010)

13. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: USENIX Security Symposium, pp. 243–258 (2008)

14. Nemati, H., Guanciale, R., Dam, M.: Trustworthy virtualization of the ARMv7
memory subsystem. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J.,
Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939,
pp. 578–589. Springer, Heidelberg (2015)

Trustworthy Prevention of Code Injection in Linux on Embedded Devices 107

15. Richards, R.: Modeling and security analysis of a commercial real-time operating
system kernel. In: Hardin, D.S. (ed.) Design and Verification of Microprocessor
Systems for High-Assurance Applications, pp. 301–322. Springer, Heidelberg (2010)

16. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
VMM-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

17. Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B.,
Chen, B.: Adapting software fault isolation to contemporary CPU architectures.
In: USENIX Security Symposium, pp. 1–12 (2010)

18. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles, SOSP 2007, New
York, NY, USA, pp. 335–350. ACM (2007)

19. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. ACM SIGPLAN Not. 48(6), 471–482 (2013)

20. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, CCS 2007, New York, NY, USA, pp. 552–561.
ACM (2007)

Practical Memory Deduplication Attacks
in Sandboxed Javascript

Daniel Gruss(B), David Bidner, and Stefan Mangard

Graz University of Technology, Graz, Austria
daniel.gruss@iaik.tugraz.at

Abstract. Page deduplication is a mechanism to reduce the memory
footprint of a system. Identical physical pages are identified across bor-
ders of virtual machines and programs and merged by the operating sys-
tem or the hypervisor. However, this enables side-channel information
leakage through cache or memory access time. Therefore, it is consid-
ered harmful in public clouds today, but it is still considered safe to use
in a private environment, i.e., private clouds, personal computers, and
smartphones.

We present the first memory-disclosure attack in sandboxed
Javascript which exploits page deduplication. Unlike previous attacks,
our attack does not require the victim to execute an adversary’s program,
but simply to open a website which contains the adversary’s Javascript
code. We are not only able to determine which applications are running,
but also specific user activities, for instance, whether the user has spe-
cific websites currently opened. The attack works on servers, personal
computers and smartphones, and across the borders of virtual machines.

Keywords: Memory deduplication · Side-channel attack · Javascript-
based attack · Website fingerprinting

1 Introduction

Software-based timing attacks are side-channel attacks which exploit differences
in the execution time to derive secret values used during the computation. These
timing differences arise from the attacked software itself, different memory types
or optimizations implemented in modern computers. For instance, cache attacks
exploit the timing difference between a cache access and a memory access caused
by a cache miss. An attacker process can measure whether a victim process has
evicted one of the attacker’s cache lines [13] or whether a victim program has
reloaded a cache line the attacker previously evicted from the cache [5,20].

A similar timing difference can be observed between a regular memory access
and a pagefault. Upon a pagefault, the operating system loads the data to the
given location in virtual memory and returns control to the process. Apart from
the difference in the memory access time, pagefault handling is transparent to the
user process. This timing difference can be exploited to build a covert channel [17].

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 108–122, 2015.
DOI: 10.1007/978-3-319-24174-6 6

Practical Memory Deduplication Attacks in Sandboxed Javascript 109

Suzaki et al. [16] presented page-deduplication attacks, which enable an
attacker on the same physical machine, to determine whether specific programs
are running, even across the borders of virtual machines. This is possible, because
identical physical pages are merged by the operating system or the hypervisor.
After a page is merged write accesses to this page cause a pagefault which is then
resolved by the operating system. The timing difference the pagefault causes can
be observed by the attacker program. Thus, the attacker learns that somewhere
on the same physical machine another instance of this page exists.

JavaScript-based timing attacks have first been described by Felten et al. [3].
They were able to identify recently visited websites if website elements are
fetched from the local browser cache instead of the network. A similar attack has
been presented by Bortz et al. [2]. More recently Stone [15] presented attacks
which exploit timing differences caused by the modification of HTML5 elements.
Using their approach, an attacker is able to determine whether specific websites
have been visited, and even read pixels from other websites.

In this paper, we present the first page-deduplication attack mounted in sand-
boxed Javascript. This allows a remote attacker to collect private information,
such as whether a program or website is currently opened by a user. In contrast
to existing Javascript-based timing attacks, we do not exploit any weaknesses in
Javascript or the browser, but timing differences caused by optimizations in the
operating system or hypervisor.

Javascript is a scripting language implemented in modern browsers to create
interactive elements on websites. It is strictly sandboxed, so it is not possible to
access files or system services. The language has no representation of pointers
or the virtual address space layout, and less accurate timing information than
native code. Oren et al. [12] already demonstrated in a Javascript-based cache
attack that timer accuracy is high enough to distinguish cache hits from cache
misses. Our attack is possible with less accurate timers, on a microsecond or
millisecond basis.

To demonstrate the power of our attack, we show that we can accurately
determine whether the user has opened specific websites. Our attack can be
applied in a generic way to any system which employs page deduplication, inde-
pendently of the CPU architecture and in particular independently of the CPU
cache structure. This is a significant share of modern personal computers and
smartphones.

With our attack, an adversary is not only able to perform the attack remotely
through a website, on an arbitrary number of victims, but an adversary is
also able to attack a variety of different devices in the same way. Thus, page-
deduplication attacks no longer target one specific system, but instead target
large numbers of internet users simultaneously. For instance, a website can detect
which other websites a user has opened and thereby add more valuable informa-
tion to user profiles. Furthermore, the attack causes negligible CPU and memory
utilization and is thus, hard to detect if placed in a large Javascript framework.

We show that page deduplication must be considered a security threat on
any system and not only on public cloud servers. Therefore, we conclude that
the only effective countermeasure is to disable page deduplication.

110 D. Gruss et al.

Outline. The remaining paper is organized as follows. In Sect. 2, we provide back-
ground information on shared memory and page deduplication, as well as existing
attacks. We describe the implementation of our attack in Sect. 3. In Sect. 4.1,
we present the performance of our attack in a private cloud and in Sect. 4.2,
we present results of our attack on personal computers and smartphones. We
discuss countermeasures against page-deduplication attacks in Sect. 5. Finally,
we conclude in Sect. 6.

2 Background

2.1 Shared Memory

Operating systems and hypervisors use shared memory to reduce physical mem-
ory utilization. Libraries which are used by several programs are loaded into
physical memory only once, and are then shared among the processes using it.
Thus, multiple programs access the same physical pages mapped within their
own virtual address space.

The operating system makes use of shared memory in more cases. When
forking a process, the memory is first shared between the parent process and
the child process. As soon as one of the processes writes into the shared memory
area, a copy-on-write page fault occurs and the operating system creates a copy of
the according memory region. Note that write accesses into non-shared memory
areas do not incur page faults and thus are significantly faster.

Shared memory is not only used when forking a process, but when starting
instances of an already running program, or if a user program explicitly requests
shared memory using system calls like mmap or dlopen. Mapping a file using
one of these methods results in a memory region shared with all other proceses
mapping the same file.

The form of shared memory we target in this paper is content-based page
deduplication. The hypervisor or operating system scans the physical memory
for pages with identical content. If identical pages are found, they are remapped
to one of the pages, while the other pages are marked as free. Thus, mem-
ory is shared between completely unrelated and possibly sandboxed processes,
and even between processes running in different virtual machines. If a process
modifies its shared data, a copy-on-write page fault occurs and the hypervisor
or operating system creates a copy of the memory region. Although searching
for identical pages costs CPU time, page deduplication can increase the system
performance, by reducing the number of block device accesses, as more data
can be held in memory. Therefore, it is especially relevant in small systems like
smartphones, besides the primary application in cloud systems.

2.2 Page-Deduplication Attacks

Page-deduplication attacks are a specific type of side-channel attacks, which
exploit timing differences in write accesses on deduplicated pages. The first

Practical Memory Deduplication Attacks in Sandboxed Javascript 111

attack on page deduplication was presented by Suzaki et al. [16]. They were
able to determine whether specific applications are running in a co-located vir-
tual machine in the cloud. Furthermore, they described the possibility of build-
ing covert communication channels between virtual machines by exploiting page
deduplication.

In the basic attack scheme, an attacker is able to run a spy program on the
victim’s system. However, the spy program may be sandboxed or even run in a
virtual machine. The spy program fills a page with data it suspects to find in the
memory of the victim machine. The hypervisor or operating system constantly
deduplicates identical physical pages. When the spy program tries to write to
the page again, it can measure the elapsed time and infer whether a copy-on-
write page fault occurs or not. Thus, the attacker can determine whether some
other process on the same physical machine has an identical page in memory.
Such attacks can be performed on both, binary code and static data as well as
dynamically generated data.

Owens et al. [14] demonstrated that it is possible to efficiently fingerprint
operating systems in co-located virtual machines by exploiting page deduplica-
tion. Since then, covert channels based on page deduplication [18,19] have been
constructed and evaluated.

At the same time, researchers were able to build more efficient cache attacks
if attacker and victim process share memory [5]. Page deduplication introduces
a way to share memory with a victim process in a co-located virtual machine in
the cloud. The possibility of performing a cache attack on a victim process across
virtual machine borders has first been described by Yarom et al. [20]. Since then,
several page-deduplication-based cache attacks have been demonstrated [8,9].

3 Description of Our Javascript-Based Attack

Our attack follows the same methodology as the page-deduplication attack pre-
sented by Suzaki et al. [16], which was implemented in native code. As our attack
is implemented in Javascript, we face several new challenges, such as setting the
content of a whole page in physical memory or detecting whether and when page
deduplication has occurred.

As described in Sect. 2.2, the first step of a page-deduplication attack is to fill
a page with data we expect to find on the system under attack. In native code,
this done by filling a page-aligned region in an array with the according data.
We found that Javascript engines in common browsers (Firefox and Chrome)
perform a call to their own internal malloc implementation when creating a large
array in Javascript. As a means of optimization, these malloc implementations
align large memory allocations to page borders. Therefore, creating and filling a
large array in Javascript works as in native code, in terms of our attack.

The second step is to wait until the operating system or hypervisor dedupli-
cates our array. In our attacker model, the adversary performs the attack through
a website on every visitor. Therefore, we cannot make assumptions about how
long it takes until page deduplication has been performed. Instead, we repeat-
edly write the same value to the same position on the target page and measure

112 D. Gruss et al.

the time the write access took. We observed no influence of these repeated writes
on whether the page is considered for deduplication. Thus, we can perform the
deduplication check in a regular frequency.

The third step is the measurement of the write-access time, to infer whether
a page has been deduplicated. This is done by measuring the time a write
access on our own page takes. Based on the access time, we decide whether
a copy-on-write page fault occurred. In native x86 code, we use the rdtsc
assembly instruction for this purpose. In Javascript, we can use the function
performance.now(). The accuracy of this function varies from sub-microsecond
to millisecond range. If checking for deduplication of a single page in mem-
ory, our attack requires accurate microsecond measurements. However, usually
more pages are attacked and thus less accurate timers are sufficient. For instance,
when checking for deduplication of a 600 KB image, even an accurate millisecond-
based timer can be used to implement our attack. Thus, performance.now()
is sufficient to distinguish copy-on-write page faults from regular write accesses.
Furthermore, performance.now() is available independently of the underlying
hardware. Therefore, we can attack systems with a variety of different processors
using the same Javascript code, such as personal computers or smartphones.

The only remaining question to perform our attack is how to know the data
we want to fill the page with. Neither static code and data nor dynamically
generated data is necessarily page-aligned. However, if the attacker knows the
content of 8192 bytes contiguous in virtual memory, we can fill 4096 pages with
data from these 8192 bytes, with every possible offset from the page alignment.
Although this allows us to attack systems and programs with random offsets
for the targeted data, we found that this is hardly necessary for most cases. For
instance, we observed that images and CSS style sheets in websites are page-
aligned in memory. This greatly facilitates our attack, as we can trivially extract
the page content from a file and include it in our Javascript code.

The resulting attack applies to a wide range of scenarios, from mobile phone
usage, over personal computers, to multi-tenant cloud systems. A user on a
targeted system accesses a website, which contains the adversary’s Javascript
code. The Javascript code is then executed. After a few minutes, the Javascript
code transmits the results back to the adversary. Our attack not only extracts
sensitive information, like the browsing behavior of a user, but it is also extremely
powerful due to its scalability. Once the Javascript code is deployed on a website,
it automatically attacks anyone who accesses the website. We will demonstrate
the attack in different scenarios in the following section.

4 Practical Attacks and Evaluation

In this section, we demonstrate our attack on a KVM-based private cloud server,
on Windows 8 personal computers and finally on Android smartphones. In all
scenarios, we use the same Javascript source code.

Practical Memory Deduplication Attacks in Sandboxed Javascript 113

4.1 Cross-VM Attack on Private Clouds

Existing page-deduplication attacks have been demonstrated on public IaaS
(Infrastructure-as-a-Service) cloud systems [16,18,19]. In this attack scenario, an
adversary tries to be co-located on the same physical server with a targeted virtual
machine. Once the adversary is co-located, the adversary extracts sensitive infor-
mation from other virtual machines, e.g., whether vulnerable versions of specific
server applications are running, or whether specific files are currently open.

Although public cloud providers reacted and now disable page deduplication
in public IaaS clouds [7], we found that page deduplication is not yet considered
a security problem on private cloud systems and servers. Popular Linux server
distributions enable page deduplication, either by default, or automatically when
reaching a certain memory usage level. For instance, we observed this behavior
on Proxmox VE, Redhat Server and Ubuntu Server if configured as a KVM host.

Therefore, we demonstrate our attack in a private IaaS cloud. This is a
realistic scenario, for instance in companies where users work on thin clients,
connected to a virtual machine in the private IaaS cloud. In this scenario, a
victim working in one virtual machine opens a website containing the malicious
Javascript code, which is then continuously run in the background in a browser
tab. Compared to existing attacks, our attack is possible even if the system
does not allow users to start arbitrary programs, or if the user is well-educated
to avoid executing programs from an untrusted origin. Furthermore, we want to
emphasize that our attack is doubly sandboxed in this scenario, by running in the
Javascript sandbox in the virtual machine separated from the targeted program
in another virtual machine. That is, the adversary is able to extract sensitive
information from the victim’s virtual machine and other virtual machines on the
same server.

The malicious Javascript code has to stay in memory until page deduplication
has been performed. Depending on the system configuration, this can be between
30 sec and several hours. During our tests with 4 GB of physical memory and the
default system configuration, we found that our memory is deduplicated after
3 min.

In order to evaluate the accuracy of our attack in Javascript code, we first
perform the same attack in native x86 code. Figures 1 and 2 show write-access
times on an array containing a 14 MB image file as measured by our native-code
spy program within the same virtual machine, with low and high system load.
This is equivalent to loading 3584 small images (2–4 KB) and measuring the
deduplication of each of them. These write-access times quantify the accuracy
of our page deduplication detection. When the image is loaded, we found no
measurements to be lower than the expected copy-on-write access time. When
having the image not loaded in the browser, we found less than 0.1% of the
measurements to be significantly above the expected regular write-access time.
These 0.1% can lead to false positive copy-on-write detection. However, as there
is a timing difference of at least a factor of 103, we found an even smaller number
of peaks to be above the lowest copy-on-write access times. We subsequently
tested our attack using native code in the cross-VM setting and achieved the

114 D. Gruss et al.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
100

101

102

103

104

105

Page

C
y
cl

es
Image not loaded Image loaded

Fig. 1. Timings measured in native code on an otherwise idle Linux KVM virtual
machine. The graph shows write-access times on an array containing an image file.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
100

101

102

103

104

105

Page

C
y
cl

es

Image not loaded Image loaded

Fig. 2. Timings measured in native code on a Linux KVM virtual machine under high
CPU load. The graph shows write-access times on an array containing an image file.

same accuracy. Therefore, we can accurately determine whether an image has
been deduplicated and thus, has been loaded by a user.

Subsequently, we measured the performance of our Javascript-based attack.
In Figs. 3 and 4, the write-access times on an array containing the same 14 MB
image file are shown, but this time measured by our Javascript spy program.
Even in with full system load and the browser under attack running in a dif-
ferent virtual machine, page deduplication was detected correctly in all of our
measurements. However, in contrast to the native-code implementation of our
spy program, we found up to 0.3% of the pages to be falsely detected as dedu-
plicated when having low system load and 1.1% on average when having a high
system load.

Practical Memory Deduplication Attacks in Sandboxed Javascript 115

0 500 1,000 1,500 2,000 2,500 3,000 3,500
100

101

102

103

104

105

Page

N
a
n
o
se

co
n
d
s

Image not loaded Image loaded

Fig. 3. Timings measured in Javascript on an otherwise idle Linux KVM virtual
machine. The graph shows write-access times on an array containing an image file.

0 500 1,000 1,500 2,000 2,500 3,000 3,500

101

103

105

107

Page

N
a
n
o
se

co
n
d
s

Image not loaded Image loaded

Fig. 4. Timings measured in Javascript on a Linux KVM virtual machine under high
CPU load. The graph shows write-access times on an array containing an image file.

We performed this attack on recent versions of the most commonly used
browsers, Chrome 40 and Firefox 31. As both browsers load the image file to
a page-aligned location in memory, the attack works in exactly the same way
and gives the same results for both browsers. Furthermore, we performed the
same attack on a browser in a different virtual machine. Even in this setting,
we did not find more false positives, and all deduplicated pages were detected
successfully.

In order to demonstrate our attack on a real-world scenario, we determine
the websites currently opened by a user. In this scenario, the adversary creates
arrays containing image data of the websites to detect on the targeted machine.
For demonstration purposes, we examined the 10 most-visited websites [1] and

116 D. Gruss et al.

chose an image or style sheet file from each website, to determine whether it is
currently open in a web browser on the same machine. Furthermore, we generate
several pages filled with zeros and several pages filled with random data, to
measure reference timings for deduplicated and non-deduplicated pages. When
the operating system or hypervisor has tried to deduplicate our pages, the zero-
filled pages will have high write-access times, as they are deduplicated. The
random-filled pages still have low write-access times, as each random-filled page
is unique in the system and therefore not deduplicated. Some websites only
contain very small or very few images. In these cases we combine several images
to perform the attack more reliably. In all cases we had at least 24 KB of data
to measure deduplication.

Figure 5 shows the write-access times to arrays containing image data from
these websites, as well as the zero-filled pages and random-filled pages. We can
clearly see which websites are currently opened in the browser, because of the
higher write-access times, due to the copy-on-write page-fault handling. Based
on such measurements, an adversary is able to spy on users’ browsing behavior
through malicious Javascript code, even across browsers and virtual machine
borders.

4.2 Attack on Personal Computers and Smartphones

Our attack is even more precise if performed on a personal computer or smart-
phone, as the device under attack is only used by a single user at a time. There-

R
an

do
m

Pa
ge

s

Ze
ro

pa
ge

s

A
m
az

on

B
ai
du

Fa
ce
bo

ok

G
oo

gl
e

Q
Q

Ta
ob

ao

T
w
itt

er

W
ik
ip
ed

ia

Ya
ho

o

Yo
ut

ub
e

0

2,000

4,000

6,000

8,000

78

6,781

6,061

170 60 148

5,626

57 39 148

6,642

100

N
a
n
o
se

co
n
d
s

Fig. 5. Write-access times measured in Javascript inside a Linux KVM virtual machine,
for images from frequented websites as well as random-filled an zero-filled pages. We
measured high access times only for the currently opened websites: Amazon, QQ,
Taobao, Wikipedia and Yahoo.

Practical Memory Deduplication Attacks in Sandboxed Javascript 117

fore, we can create accurate profiles of single users. As in the cross-VM attack, the
victim merely needs to access a website containing the malicious Javascript code.

This scenario is not only very simple and realistic, but moreover, it has a huge
impact, as it can be applied to popular operating systems like Windows 8 on per-
sonal computers, or Android on smartphones. Windows 8 and 8.1 have a market
share of around 15% [11] on personal computers and have page deduplication
enabled by default [10]. Android has a market share of 81.5% [6] on smartphones,
but it is device-specific whether page deduplication is enabled by default or not.
However, Google recommends [4] that manufacturers enable page deduplication
by default on memory-constrained devices, and many manufacturers follow this
recommendation. Therefore, we assume that the number of smartphones having
page deduplication enabled, and thus vulnerable to this attack, is significant.

In our attack, the malicious Javascript code runs continuously in the back-
ground in a browser tab. We found that on our Windows 8.1 test machine, page
deduplication has been performed after 15 min on average. On our Android 4.4.4
test device, page deduplication has been performed after 45 min on average. As
in the cloud scenario, we can then detect running applications and which specific
version of an application is running, or even detect which specific websites are
opened by a user. To evaluate the side channel, we again measure the dedu-
plication detection rate for an image loaded in a browser. As we encountered
problems with browsers on smartphones loading the 14 MB image file, we now
use a 2 MB image file. This is equivalent to performing the same test with 512
small images (2–4 KB).

Figure 6 shows our Javascript-based measurements for the image file, using
Firefox 36 on Windows. We can detect page deduplication almost as reliably
as in the private-cloud scenario, with less than 2% false positives. We are able
to perform the attack without changes in Internet Explorer 11 and Firefox 36
on Windows, as both return micro- or nanosecond accurate timings via the
window.performance.now() function. However, Chrome 41 on Windows only
allows measuring time in milliseconds. Thus, we cannot measure the timing
difference for each single page. Instead, we have to measure the time over a large
number of pages at once. When measuring time over 150 write accesses at once,
we are able to distinguish whether these 150 pages were deduplicated or not,
with only millisecond timer accuracy.

When targeting website usage as a real-world scenario, the adversary creates
arrays containing image data of the websites to detect on the targeted machine.
As in the private-cloud scenario, we examined the 10 most-visited websites [1].
Figure 7 shows the write-access times to arrays containing image data from these
websites, as well as the zero-filled pages and random-filled pages. Again, we
clearly see which websites are opened, based on the higher write-access time.

When attacking Android smartphones, we found that although it takes up to
one hour until deduplication is performed, the accuracy is not much worse than
in the other scenarios we tested. We measured up to 0.8% of false positives when
having the image file not loaded in a browser and up to 0.5% false negatives
when having the image file loaded in a browser. This is slightly less accurate than

118 D. Gruss et al.

0 100 200 300 400 500

104

105

Page

N
a
n
o
se

co
n
d
s

Image not loaded Image loaded

Fig. 6. Timings measured in Javascript on Windows 8.1. The graph shows write-access
times on an array containing an image file.

R
an

do
m

Pa
ge

s

Ze
ro

pa
ge

s

A
m
az

on

B
ai
du

Fa
ce
bo

ok

G
oo

gl
e

Q
Q

Ta
ob

ao

T
w
itt

er

W
ik
ip
ed

ia

Ya
ho

o

Yo
ut

ub
e

0

1,000

2,000

3,000

4,000

285

1,976

468

2,775

312

1,536

396 306 285

1,762

2,114

370

N
a
n
o
se

co
n
d
s

Fig. 7. Write-access times measured in Javascript on Windows 8.1, for images from
frequented websites as well as random an zero-filled pages. We measured high access
times only for the currently opened websites: Baidu, Google, Wikipedia and Yahoo.

in the other scenarios. Figure 8 shows the timing difference with and without the
image loaded by a browser. Again, we examined the 10 most-visited websites [1].
Figure 9 shows the write-access times to arrays containing image data from these
websites, as well as the zero-filled pages and random-filled pages. As in all other
scenarios, we also see on Android which websites are opened, based on the higher
write-access time.

Practical Memory Deduplication Attacks in Sandboxed Javascript 119

0 100 200 300 400 500
103

104

105

106

Page

N
a
n
o
se

co
n
d
s

Image not loaded Image loaded

Fig. 8. Timings measured in Javascript on Android 4.4.4. The graph shows write-access
times on an array containing an image file.

R
an

do
m

Pa
ge

s

Ze
ro

pa
ge

s

A
m
az

on

B
ai
du

Fa
ce
bo

ok

G
oo

gl
e

Q
Q

Ta
ob

ao

T
w
itt

er

W
ik
ip
ed

ia

Ya
ho

o

Yo
ut

ub
e

0

2,000

4,000

6,000

8,000

703

7,875

727

1,286
857

4,375 4,200

682 833 730 905

7,875

N
a
n
o
se

co
n
d
s

Fig. 9. Write-access times measured in Javascript on Android 4.4.4, for images from
frequented websites as well as random an zero-filled pages. We measured high access
times only for the currently opened websites: Google, QQ and Youtube.

5 Countermeasures

Our attack shows that even in sandboxed Javascript code, an adversary is able
to extract significant sensitive information from real-world applications if the
underlying system employs page deduplication. Our specific attack can be pre-
vented on application level, i.e., in the browser executing the adversary’s code,
or in the applications under attack. However, countermeasures on this level incur

120 D. Gruss et al.

limitation of functionality. Disabling page deduplication is the only generic effec-
tive countermeasure against page-deduplication attacks.

It is possible prevent or at least weaken our specific attack in Javascript
runtime environments by changing the way data is stored in memory, reducing
the accuracy of timers, or disabling Javascript execution for untrusted code
completely.

Our attack benefits from the fact that we are able to allocate page-sized
physically contiguous memory areas. Thus, we are able to define the value of each
byte on a physical page. Javascript engines could prevent this by adding small
offsets to array indices, so that a few bytes per page cannot be controlled by the
attacker. Consequently, the attacker-controlled memory will not be deduplicated.
This would cause a small performance impact while impeding page-deduplication
attacks in Javascript.

Another optimization we exploit is page alignment of large data, like images,
as performed by modern web browsers. However, adding a random offset to
the page alignment would not prevent our attack. The adversary can create
4096 copies of a targeted page, and thereby perform the same attack with only
a small overhead. Furthermore, such a countermeasure would require manual
modification of existing software, and would incur a performance penalty at the
same time.

Oren et al. [12] suggested reducing the accuracy of Javascript timers as
a countermeasure against Javascript-based cache attacks. However, a reduced
timer accuracy would not prevent our attack. It is easily possible to measure the
timing over a large number of pages and thereby invoke several copy-on-write
page faults, resulting in timing differences in a millisecond range, which can be
detected even with coarse-grained timers.

Our attack could also be prevented by disabling the execution of untrusted
Javascript, i.e., disables Javascript on websites completely. However, this imposes
a significant drawback on functionality of modern browsers and websites. In any
case, the attack is still possible if implemented in a browser plugin or smartphone
application, where Javascript-level countermeasures do not apply.

However, we think that any form of content-based page deduplication implies
a security problem. As writable pages can be generated in any script language,
sandboxed or not, and furthermore, we only require coarse-grained timer accu-
racy, we consider it insecure to perform page deduplication on writable pages.
Considering only read-only pages has already been suggested by Suzaki et al. [16]
as a countermeasure. Apparently, this countermeasure has not been implemented
on the systems we attacked. We assume that one of the reasons is that the hyper-
visor or operating system is not able to distinguish between read-only pages and
writable pages within virtual machines, one of the core applications of page
deduplication.

However, not considering writeable pages would prevent page-deduplication
attacks in Javascript or other script languages which do not support read-only
data. Still, even in case that only read-only pages are merged, an attack could
still be possible through browser plugins or smartphone applications on code and
static data of targeted binaries, as they are able to load read-only pages or even

Practical Memory Deduplication Attacks in Sandboxed Javascript 121

execute native code. Thus, disabling page deduplication completely is the only
way to effectively prevent page-deduplication attacks as presented in this paper.

6 Conclusion

In this paper, we presented the first page-deduplication attack in sandboxed
Javascript. In particular, the attack can be launched from any website. We show
how the attack can be used to determine whether specific images or websites
are currently opened by a user. We demonstrated the attack on private clouds,
personal computers and smartphones. In all scenarios, it is even possible to
mount the attack across the borders of virtual machines. Thus, we conclude
that page deduplication must always be considered vulnerable to attacks as
presented in this paper. Systems which have page deduplication enabled cannot
be considered secure anymore.

The fact that page-deduplication attacks can be launched through websites
marks a paradigm shift, from a targeted attack on a specific system towards
large-scale practical attacks launched on a huge number of devices simultane-
ously. Therefore, we strongly recommend to disable page deduplication.

Acknowledgments.

The research leading to these results has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
grant agreement No 644052 (HECTOR).

Furthermore, this work has been supported by the Austrian Research Promotion

Agency (FFG) and the Styrian Business Promotion Agency (SFG) under grant number

836628 (SeCoS).

References

1. Alexa Internet Inc: The top 500 sites on the web, March 2015. http://www.alexa.
com/topsites

2. Bortz, A., Boneh, D.: Exposing private information by timing web applications.
In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Pro-
ceedings of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada, May 8–12, 2007. pp. 621–628. ACM (2007). http://doi.
acm.org/10.1145/1242572.1242656

3. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Gritzalis, D.,
Jajodia, S., Samarati, P. (eds.) CCS 2000, Proceedings of the 7th ACM Conference
on Computer and Communications Security, Athens, Greece, November 1–4, 2000,
pp. 25–32. ACM (2000). http://doi.acm.org/10.1145/352600.352606

4. Google Inc.: Android 4.4 platform optimizations. https://source.android.com/
devices/tech/low-ram.html (Feb 2015)

5. Gullasch, D., Bangerter, E., Krenn, S.: Cache Games - Bringing Access-Based
Cache Attacks on AES to Practice. In: IEEE Symposium on Security and Privacy -
S&P, pp. 490–505. IEEE Computer Society (2011). http://dx.doi.org/10.1109/SP.
2011.22

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://doi.acm.org/10.1145/1242572.1242656
http://doi.acm.org/10.1145/1242572.1242656
http://doi.acm.org/10.1145/352600.352606
https://source.android.com/devices/tech/low-ram.html
https://source.android.com/devices/tech/low-ram.html
http://dx.doi.org/10.1109/SP.2011.22
http://dx.doi.org/10.1109/SP.2011.22

122 D. Gruss et al.

6. International Data Corporation: Android and iOS Squeeze the Competition,
February 2015. http://www.idc.com/getdoc.jsp?containerId=prUS25450615

7. Irazoqui, G., Eisenbarth, T., Sunar, B.: Jackpot - Stealing Information From Large
Caches via Huge Pages. IACR Cryptology, p. 970, ePrint Archive 2014 (2014).
http://eprint.iacr.org/2014/970

8. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Fine grain Cross-VM Attacks
on Xen and VMware are possible! IACR Cryptology, p. 248, ePrint Archive 2014
(2014). http://eprint.iacr.org/2014/248

9. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-VM
attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS,
vol. 8688, pp. 299–319. Springer, Heidelberg (2014)

10. Karagounis, B., Sinofsky, S.: Reducing runtime memory in Windows 8, Octo-
ber 2011. http://blogs.msdn.com/b/b8/archive/2011/10/07/reducing-runtime-
memory-in-windows-8.aspx

11. Net Applications.com: Desktop Operating System Market Share, February 2015.
http://www.netmarketshare.com/operating-system-market-share.aspx

12. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The Spy in the
Sandbox - Practical Cache Attacks in Javascript. ArXiv e-prints, February 2015

13. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

14. Owens, R., Wang, W.: Non-Interactive OS Fingerprinting Through Memory De-
Duplication Technique in Virtual Machines. In: International Performance Com-
puting and Communications Conference - IPCCC, pp. 1–8. IEEE (2011). http://
dx.doi.org/10.1109/PCCC.2011.6108094

15. Stone, P.: Pixel Perfect Timing Attacks with HTML5. Technical report, Con-
text Information Security, June 2013. http://www.contextis.com/files/Browser
Timing Attacks.pdf

16. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory Deduplication as a Threat to
the Guest OS. In: European Workshop on System Security - EUROSEC, pp. 1–6.
ACM (2011). http://doi.acm.org/10.1145/1972551.1972552

17. Warner, A., Li, Q., Keefe, T.F., Pal, S.: The impact of multilevel security
on database buffer management. In: Martella, G., Kurth, H., Montolivo, E.,
Bertino, Elisa (eds.) ESORICS 1996. LNCS, vol. 1146. Springer, Heidelberg (1996).
http://dx.doi.org/10.1007/978-3-319-11379-1 15

18. Xiao, J., Xu, Z., Huang, H., Wang, H.: A covert channel construction in a virtu-
alized environment. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) the ACM Confer-
ence on Computer and Communications Security, CCS 2012, Raleigh, NC, USA,
October 16–18, 2012, pp. 1040–1042. ACM (2012). http://doi.acm.org/10.1145/
2382196.2382318

19. Xiao, J., Xu, Z., Huang, H., Wang, H.: Security implications of memory deduplica-
tion in a virtualized environment. In: 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), Budapest, Hungary,
June 24–27, 2013, pp. 1–12. IEEE (2013). http://doi.ieeecomputersociety.org/10.
1109/DSN.2013.6575349

20. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In: USENIX Security Symposium,
pp. 719–732. USENIX Association (2014). https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://eprint.iacr.org/2014/970
http://eprint.iacr.org/2014/248
http://blogs.msdn.com/b/b8/archive/2011/10/07/reducing-runtime-memory-in-windows-8.aspx
http://blogs.msdn.com/b/b8/archive/2011/10/07/reducing-runtime-memory-in-windows-8.aspx
http://www.netmarketshare.com/operating-system-market-share.aspx
http://dx.doi.org/10.1109/PCCC.2011.6108094
http://dx.doi.org/10.1109/PCCC.2011.6108094
http://www.contextis.com/files/Browser_Timing_Attacks.pdf
http://www.contextis.com/files/Browser_Timing_Attacks.pdf
http://doi.acm.org/10.1145/1972551.1972552
http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://doi.acm.org/10.1145/2382196.2382318
http://doi.acm.org/10.1145/2382196.2382318
http://doi.ieeecomputersociety.org/10.1109/DSN.2013.6575349
http://doi.ieeecomputersociety.org/10.1109/DSN.2013.6575349
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

Cryptography

Computational Soundness
for Interactive Primitives

Michael Backes, Esfandiar Mohammadi, and Tim Ruffing(B)

CISPA, Saarland University, Saarbrücken, Germany
{backes,mohammadi}@cs.uni-saarland.de, tim.ruffing@mmci.uni-saarland.de

Abstract. We present a generic computational soundness result for
interactive cryptographic primitives. Our abstraction of interactive prim-
itives leverages the Universal Composability (UC) framework, and
thereby offers strong composability properties for our computational
soundness result: given a computationally sound Dolev-Yao model for
non-interactive primitives, and given UC-secure interactive primitives,
we obtain computational soundness for the combined model that encom-
passes both the non-interactive and the interactive primitives. Our
generic result is formulated in the CoSP framework for computational
soundness proofs and supports any equivalence property expressible in
CoSP such as strong secrecy and anonymity.

In a case study, we extend an existing computational soundness result
by UC-secure blind signatures. We obtain computational soundness for
blind signatures in uniform bi-processes in the applied π-calculus. This
enables us to verify the untraceability of Chaum’s payment protocol in
ProVerif in a computationally sound manner.

1 Introduction

Manual security analyses of cryptographic protocols are complex and error-
prone. As a result, various automated verification techniques have been devel-
oped based on so-called Dolev-Yao models, which abstract cryptographic oper-
ations as symbolic terms obeying simple cancellation rules [12,26,35,36,38,40].
Numerous verification tools such as ProVerif [12] and APTE [26] are capable of
reasoning about equivalence properties, e.g., strong secrecy and anonymity.

A wide range of these Dolev-Yao models is computationally sound, i.e., the
security of a symbolically abstracted protocol entails the security of a suit-
able cryptographic realization [3,7,14,20,27,29,31,50,52]. However, virtually
all of these computational soundness results are inherently restricted to non-
interactive primitives such as encryption and signatures.

In contrast, interactive cryptographic primitives such as interactive zero-
knowledge proofs [43], forward-secure key exchange [37], and blind signa-
tures [25], have gained tremendous attention in the scientific community and
widespread deployment in real systems.

The security of interactive primitives is often defined and established in the
Universal Composability (UC) framework [17] or similar frameworks [8,44,48],
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 125–145, 2015.
DOI: 10.1007/978-3-319-24174-6 7

126 M. Backes et al.

which allow to prove strong security guarantees in a composable manner
[23,24,41]. In such frameworks, a primitive is secure if its execution is indis-
tinguishable from a setting in which all parties have a private connection to an
imaginary trusted machine, called ideal functionality, which performs the desired
task locally and in a trustworthy manner.

For interactive primitives, ideal functionalities are a suitable abstraction,
but for non-interactive primitives, DY-style abstractions have two significant
advantages compared to a corresponding abstraction as an ideal functionality
(e.g., for encryption schemes or digital signatures): first, as Dolev-Yao models
do not incorporate shared memory, the verification of concurrent processes that
use Dolev-Yao models is far more efficient, and second, the attacker is purely
defined by symbolic rules and is thus much better suited for automatically deriv-
ing desired properties such as invariants. There is a rich literature on compu-
tationally sound DY-style abstractions. For example, Backes et al. introduced
CoSP, a general framework for computational soundness proofs [3], which decou-
ples the treatment of the Dolev-Yao model from the treatment of the language,
e.g., the applied π-calculus or RCF. Proving x cryptographic Dolev-Yao models
sound for y languages only requires x + y proofs (instead of x · y).

Previous work on computational soundness of verification tools for ideal func-
tionalities [47] does not apply to protocols that combine interactive and non-
interactive primitives with such computationally sound DY-style abstractions.
In this work, we address this gap.

Contribution. We present a generic computational soundness (CS) result for UC-
secure interactive primitives. Given a computationally sound Dolev-Yao model
for non-interactive primitives and given UC-secure interactive primitives, we
show the combined CS for the non-interactive and the interactive primitives.
This allows us to handle protocols that combine interactive primitives with non-
interactive primitives, e.g., protocols that encrypt blind signatures, or proto-
cols that use interactive zero-knowledge proofs about ciphertexts. Our generic
method is compatible with any CS result for non-interactive primitives that is
cast in the CoSP framework for equivalence properties [6].

In a case study, we apply our method to a recent CS result [6]. We obtain
the combined CS for (non-interactive) ordinary signatures and (interactive) blind
signatures. The underlying CS result for non-interactive primitives supports uni-
form bi-protocols, i.e., protocol pairs that always take the same branches and
differ only in the messages that they operate on. Consequently, our case study
supports uniform bi-processes in the applied π-calculus. Finally, we conduct a
computationally sound verification of the untraceability of Chaum’s payment
protocol [25] in ProVerif.

Remark on Supported Equivalence Properties. The aforementioned CS result [6]
is so far the only result established in the CoSP framework for equivalence prop-
erties, and is limited to uniform bi-processes. As a result, it is unclear whether a
larger class of equivalence properties can be expressed within the existing CoSP
framework at all. Thus it is unclear whether our generic result could possibly

Computational Soundness for Interactive Primitives 127

apply to a larger class of equivalence properties, even though we believe that our
core ideas do not fundamentally rely on the specifics of the CoSP framework.
The underlying problem is caused by the current embeddings of languages (such
as the applied π-calculus) into CoSP. These embeddings do not provide a satisfy-
ing solution for concurrency, because they give the attacker full control over the
scheduling of even internal scheduling decisions such as the scheduling of con-
current processes. Yet, CS results established with our generic method cover any
equivalence properties covered by the underlying CS result for non-interactive
primitives. Our work shares this limitation with other state-of-the-art CS results
for equivalence properties [27–29].

Overview. To facilitate understanding, we give a brief overview of the proof strat-
egy taken in the paper. Typical CS results for non-interactive primitives (NIPs)
state that the security of a protocol in a symbolic Dolev-Yao setting DY implies
the security of the protocol in a computational setting, where real cryptographic
algorithms are used instead of DY-style constructors and destructors (Fig. 1a).

Our proof strategy contains two computational settings: one setting with a
computational ideal functionality F and one setting with its UC-secure crypto-
graphic realization IP . For the sake of illustration, we start by explaining our
approach with only a single interactive primitive (Fig. 1b).

(i) We transform the computational ideal functionality F to the symbolic set-
ting by incorporating it into a Dolev-Yao model DY .

(ii) We show CS for the Dolev-Yao model with respect to the ideal functionality
F , which lives in the computational setting.

(iii) Under the assumption that IP is a UC-secure cryptographic realization of
F , we show CS for the Dolev-Yao model DY with respect to the crypto-
graphic realization IP of the interactive primitive.

Next, we consider the setting of the paper (Fig. 1c). It consists of crypto-
graphic realizations IP1, . . . , IPn of several interactive primitives and addition-
ally of a set of cryptographic realizations NIPs of several non-interactive prim-
itives.

(i) We transform the computational ideal functionalities F1, . . . ,Fn to the sym-
bolic setting by incorporating them into Dolev-Yao models DY1, . . . , DYn

(Sect. 5).
(ii) We then consider a unified model (DY1, . . . , DYn,DYNIPs

) that consists of
the Dolev-Yao models for the interactive primitives as well as a single Dolev-
Yao model DYNIPs

that incorporates a set of non-interactive primitives.
Under the assumption that DYNIPs

is computationally sound with respect
to the cryptographic realizations NIPs, we show CS for the unified Dolev-
Yao model with respect to the algorithms (F1, . . . ,Fn, NIPs), i.e., with
respect to the ideal functionalities plus the cryptographic realizations for
the non-interactive primitives (Sect. 6).

(iii) Under the assumption that IP1, . . . , IPn are UC-secure realizations of
F1, . . . ,Fn, we show CS for the unified Dolev-Yao model with respect to
the cryptographic realizations (IP1, . . . , IPn, NIPs) (Sect. 8).

128 M. Backes et al.

Fig. 1. An overview over different types of CS results for non-interactive primitives
(NIPs) and interactive primitives (IPs). Solid arrows represent computational sound-
ness. Dashed arrows represent UC-security.

2 Related Work

There is a successful line of research for computational soundness of trace prop-
erties [10,27,36,39] such as authentication and for static equivalence properties
(i.e., against passive attackers) [2,11,45].

For equivalence properties against active attackers, however, there are only
few previous results. The simulatable DY-style library of Backes et al. [4,7] was
the first result to show computational soundness against active attackers and
for equivalence properties on payloads. For this DY-style library it is not known
how to formalize more properties than the secrecy of payloads.

Cortier and Comon-Lundh [27] show computational soundness for observa-
tional equivalence for symmetric encryption in the applied π-calculus. The scope
of their work is incomparable to our work: their result is restricted to processes
that do not contain private channels and abort if a conditional fails, whereas our
result is restricted to uniform bi-processes.

An alternative approach to secure abstractions has recently been proposed
by Bana and Comon-Lundh [9,10]. Instead of prescribing what an attacker can
do and showing that no deviating computational behavior is possible, they pur-
sue the approach to define what is impossible for an attacker (e.g., break the
encryption) as first-order logic formulas over symbolic representations. Then,
they specify the protocol in question and the existence of a potential attack in
the same symbolic model. In their framework, inconsistency of a set of axioms
implies security of the protocol. An inherent problem with this style of abstrac-
tion is the verification: it is not amenable to general-purpose DY-style verification
tools, e.g., ProVerif [12] or Tarmarin [49].

Computational Soundness for Interactive Primitives 129

With regard to the composability of computational soundness, Böhl et al. [14]
show how a computational soundness result that has been obtained via deduc-
tion soundness [32] can be extended to hash functions, MACs, signatures, and
symmetric and asymmetric encryption. While they add a set of non-interactive
primitives to a given computational soundness result, we add a set of interactive
primitives to a given computational soundness result.

There is other work that leverages the strength of the UC framework. Backes
et al. [5] prove a computational soundness result for SMPC that is parametric in
the same way as our result. However, their result considers only trace properties
and is specific to SMPC. Canetti and Herzog [20], extended by Canetti and Gajek
[19], show computational soundness for UC-secure key exchange protocols and
signatures. There are two major differences to our work. First, their result is
specific to the used primitives, while our result can be used for a large class
of UC-secure interactive primitives. Second, even though their result holds for
equivalence properties, the authors—in contrast to our work—do not show that
their result can be combined with computationally sound Dolev-Yao models for
non-interactive primitives.

Dahl and Damg̊ard [33] show the computational soundness of a certain class
of two-party protocols with respect to UC security, i.e., symbolic security implies
computational UC security. While they use the UC framework to obtain strong,
composable computational security for protocols that use certain non-interactive
primitives, we use the UC framework to obtain ordinary, non-composable com-
putational security for protocols that use UC-secure interactive primitives.

Küsters et al. [46] and Küsters et al. [47] leverage non-interference techniques
for ideal functionalities in Java programs. While their method is capable of cov-
ering a large class of protocols and interactive primitives, it does not encompass
DY-style abstractions of non-interactive primitives such as encryption. Thus,
they have to represent all non-interactive primitives as ideal functionalities.
Since the abstraction that uses ideal functionalities inherently contains shared
memory between protocol parties, automated verification techniques are forced
to deal with numerous interleaving runs and the verification costs significantly
increase with the number of ideal functionalities. We show that UC-secure ideal
functionalities of interactive primitives can be combined with computationally
sound DY-style abstractions of non-interactive primitives, thereby minimizing
the amount of ideal functionalities.

Fournet et al. [42] show computational soundness for the refinement type
system F7 (and later F∗) by relying on ideal functionalities as abstraction. The
required type annotations serve as local invariants and make the verification
feasible, even with shared memory and many interleaving runs. First steps have
been undertaken towards automated type inference [53] for the type annotations;
however, the automation is incomplete and still requires a significant amount of
human interaction. As the type system is for the computational setting (against
a computational attacker), automated type derivation is inherently harder than
in a symbolic setting (against a symbolic attacker).

130 M. Backes et al.

Delaune et al. [34] and Böhl and Unruh [15] transfer simulation-based security
completely into the symbolic setting, including symbolic composition theorems.
However, these results do not guarantee computational soundness.

3 Review of the CoSP Framework for Equivalence

We review the CoSP framework for equivalence properties [6], in which we cast
our computational soundness result.

Symbolic Model. In CoSP, symbolic abstractions of protocols and of the attacker
are formulated in a symbolic model M = (C,N,T,D): a set of free functions
C, an infinite set N of nonces, a set T of terms (formed by constructors and
nonces), and a set D of destructors, i.e., partial functions from terms to terms.

Protocols. Protocols are represented as infinite trees with the following nodes:
computation nodes are used for drawing fresh nonces and applying constructors
and destructors; input nodes and output nodes are used for sending and receiving
terms; control nodes are used for allowing the attacker to schedule the protocol.
A computation node is annotated with its arguments and has two outgoing
edges: a yes-edge, used for the application of constructors, for drawing a nonce,
and for the successful application of a constructor or destructor, and a no-edge,
used for the failed application of a constructor or destructor. Nodes have explicit
references to other nodes whose terms they use.

Symbolic Operations. We model the capabilities of the symbolic attacker as oper-
ations that the attacker can perform on protocol messages. A symbolic operation
is a finite tree, whose nodes are labeled with constructors, destructors, nonces
from the symbolic model M, or pointers to messages that the protocol has sent
to the attacker. There is a natural evaluation function evalO that evaluates a
symbolic operation O in a bottom-up fashion on a list of terms, resulting in a
term or the error symbol ⊥.

Symbolic Execution. A symbolic execution is a path through a protocol tree. For-
mally, a symbolic execution of a protocol Π is a (finite) list of triples (Vi, νi, fi)
as follows. Initially, we have V1 = ε, ν1 is the root of Π, and f1 is an empty
partial function mapping node identifiers to terms. For every two consecutive
tuples (V, ν, f) and (V ′, ν′, f ′) in the list, let ν̃ be the nodes referenced by ν
and define t̃ through t̃j := f(ν̃j). Figure 2 depicts a case distinction over ν for
defining valid successors V ′, ν′, and f ′. Each Vi is called symbolic view.

Given a view V , VOut is the list of terms t contained in (out, t)∈ V . VOut-Meta

is the list of terms l contained in (control, (l, l′)) ∈ V . VIn (the attacker strategy)
is the list of terms that contains only entries of V of the form (in, (∗, O)) or
(control, (∗, l′)), and the first term has been masked with the symbol ∗.

Computational Soundness for Interactive Primitives 131

Fig. 2. Symbolic execution

Symbolic Knowledge and Equivalent Views. The symbolic knowledge of the
attacker comprises the results of all the symbolic operations that the attacker
can perform on messages output by the protocol. Given a view V , the symbolic
knowledge KV is a function from symbolic operations on M of arity |VOut | to
{�,⊥}, where � unifies all results of evalO(VOut) that are not ⊥.

Two views are equivalent if they (i) have the same structure (i.e., the same
order of out, in, and control entries), (ii) have the same out-metadata (i.e.,
VOut-Meta = V ′

Out-Meta), and (iii) lead to the same knowledge (i.e., KV = KV ′).

Symbolic Indistinguishability. Finally, we define two protocols to be symbolically
indistinguishable if the two protocols lead to equivalent views when faced with
the same attacker strategy.

Computational Implementation. On the computational side, the constructors
and destructors in a symbolic model are realized with cryptographic algorithms,
which we call computational implementations. A computational implementation
is a family A = (Ax)x∈C∪D∪NP

of deterministic polynomial-time algorithms AF

for each constructor or destructor F ∈ C∪D well as a probabilistic polynomial-
time (ppt) algorithm AN for drawing protocol nonces N ∈ N.

Computational Execution. The computational execution of a protocol is the
interaction between a ppt machine called the computational challenger and a ppt
attacker A. The transcript of the execution contains the computational coun-
terparts of a symbolic execution. The computational challenger traverses the
protocol tree and interacts with the attacker: at a computation node the corre-
sponding algorithm is run and depending on whether the algorithm succeeds or
outputs ⊥, either the yes-branch or the no-branch is taken; at an output node,
the message is sent to the attacker; at an input node a message is received by
the attacker; and at a control node the attacker is asked which edge to take.

Computational Indistinguishability. The CoSP framework for indistinguishability
properties [6] uses termination-insensitive computational indistinguishability [54]

132 M. Backes et al.

(tic-indistinguishability) to capture that two protocols are computationally
indistinguishable. In comparison to the standard notion of indistinguisha-
bility, tic-indistinguishability does not require the interactive machines to
be polynomial-time; instead, it only considers decisions that were made for
polynomially-bounded prefixes of the interaction.

Given two machines A, B and a polynomial p, we write Pr[〈A|B〉 ⇓p(k) x]
for the probability that the interaction between A and B terminates within p(k)
steps and B outputs x.

Two machines A and B are tic-indistinguishable [54] for a machine A (A ≈A
tic

B) if for all p, there is a negligible function μ such that for all z, a, b ∈ {0, 1}∗

with a �= b, Pr[〈A(k)|A(k, z)〉 ⇓p(k) a] + Pr[〈B(k)|A(k, z)〉 ⇓p(k) b] ≤ 1 + μ(k).
Here, z represents an auxiliary string. We call A and B tic-indistinguishable
(A ≈tic B) if A ≈A

tic B for all ppt machines A.
We define a pair of protocols to be computationally indistinguishable if the

corresponding challengers are tic-indistinguishable. With the previously intro-
duced notions, we define computational soundness, which states that symbolic
indistinguishability implies computational indistinguishability.

Definition 1 (Computational Soundness). Let a symbolic model M and a
class P of efficient protocols be given. A computational implementation A of M
is computationally sound for M if every pair of protocols in P is computationally
indistinguishable whenever it is symbolically indistinguishable.

4 Review of the UC Framework

We briefly review the UC framework [17], as we use it to establish our compu-
tational soundness result. The UC framework is designed to enable a modular
analysis of security protocols. In this framework, the security of a protocol φ
is defined by comparing the protocol with a setting in which all parties have
a private connection to a trusted machine F , called ideal functionality, which
performs the desired protocol task locally. The ideal functionality F serves as
an abstraction of this task. A protocol φ UC-realizes an ideal functionality F if
for all ppt machines A (the attacker) there is a ppt machine S (the simulator)
such that no ppt machine Z (the environment) can distinguish an interaction
with φ and A from an interaction with F and S. The environment is connected
to the protocol and the attacker in the real setting or to the functionality and
the simulator in the ideal setting.

Each machine M has two different input tapes. First, it has a subroutine
input tape, which is used when another machine M ′, e.g., the environment Z,
calls them as a local subroutine. Second, each machine has a network tape, which
is connected to the attacker A or the simulator S.

The order in which computations are performed in UC is as follows. The
execution starts with the environment Z. Its execution pauses whenever it writes
a message to an input tape of another machine M ′. At this point, M ′ is activated
and runs until M ′, in turn, writes a message to a tape of another machine M ′′.

Computational Soundness for Interactive Primitives 133

5 Ideal Functionalities in the Symbolic Model

We abstract interactive primitives in the symbolic model as ideal functionalities.
As a simple example, consider two parties A and B running an interactive key
exchange. For example in the applied π-calculus, this is modeled as three parallel
processes A | P | B, where P is the symbolic key exchange abstraction that
generates a fresh key and sends it to both parties on private channels.

Formalizing Ideal Functionalities. An ideal functionality F in CoSP is symboli-
cally abstracted as a CoSP protocol with only computation nodes; it will serve
as a subroutine in another protocol. Technically, F excepts five parameters state,
sid, sender, input, and rand as input. Since destructors and algorithms in CoSP
are stateless as opposed to machines in UC, we model the state explicitly by
the first parameter. A message sent to F is modeled by the parameters sender
and input, where sender represents an identifier of the sending party and input
the contents. If the message comes from the attacker, sender is null(). The sid
parameter gives F access to its session id. The last parameter rand is a fresh
randomness for F .

For the output, F contains result nodes. They indicate the end of an invoca-
tion of F , and the messages computed by the reached result nodes encode F ’s
output.

Ideal Functionalities in the Symbolic Model. An ideal functionality yields a poten-
tially complex destructor DF with the same behavior as the symbolic operation.
To combine ideal functionalities for interactive primitives with Dolev-Yao models
for non-interactive primitives, we formulate the aforementioned process P , which
models the ideal task, essentially as an application of the destructor DF .

An application of the destructor corresponds to a message sent to the UC
machine implementing the ideal functionality. This allows a CoSP protocol to
use the ideal functionality like a subroutine (as in the UC framework).

Definition 2 (Ideal Destructor). Let F be an ideal model (a set of ideal
functionalities) based on the symbolic model M = (C,N,T,D), and let F ∈ F.

The ideal destructor of F is a destructor DF : T5 → T with (tstate, tsid,
tsender, tinput, trand) �→ tres. Here tres is the term produced by the reached result
node in the symbolic execution of F with parameters tstate, tsid, tsender, tinput, trand.

Extended Symbolic Model. Given destructors DF for F ∈ F and a symbolic
model M = (C,N,T,D) (for non-interaction primitives), the extended symbolic
model is MF := (C,N,T,DF) where DF := D ∪ {DF/5 | F ∈ F}.

6 Ideal Functionalities in the Computational Model

As a first step to prove computational soundness, we explain how to leverage
existing computational soundness results for non-interactive primitives. The for-
mulation of F as a destructor DF enables us to consider an ideal computational

134 M. Backes et al.

execution, in which DF is implemented by a computational variant (called the
canonical algorithm) AF of F .

Definition 3 (Canonical Algorithm). Let an extended symbolic model MF

based on M and a computational implementation A of M be given. The canonical
algorithm of F is the algorithm AF : N × ({0, 1}∗)5 → {0, 1}∗ with (bstate, bsid,
bsender, binput, brand) �→ bres. It runs the an unbounded variant of the computa-
tional execution of F and stops if the first reached result node is reached. (An
attacker is not involved, because F contains only computation nodes.) The out-
put bres is the bitstring computed by the that node. The first argument of AF
represents the security parameter and the other arguments determine the inputs.

Ideal Implementations. Recall that we extend a symbolic model M by ideal
destructors DF , resulting in a new symbolic model MF. Analogously, we extend
a computational implementation A for M by the canonical algorithms AF , given
that each AF is computable in polynomial-time. Writing AF instead of ADF ,
the resulting ideal implementation AF := (Ax)x∈C∪DF∪N implements MF.

Computational Soundness for the Ideal Functionalities. Assume we have a com-
putational soundness result for the implementations of non-interactive primitives
(e.g., Aenc and Adec). That is, the Dolev-Yao model without the special destruc-
tor DF (only consisting of enc and dec) is computational sound. Then we can
show that also the Dolev-Yao model with the destructor DF is computationally
sound given that DF is implemented by AF .

The following lemma states the computational soundness of the ideal func-
tionalities, which are ideal implementations in the computational model. To
establish the lemma, we need some natural protocol conditions (Appendix A).
They ensure (i) that inputs and outputs of the ideal functionalities are actu-
ally plugged to input and output nodes, (ii) that sessions and state are handled
correctly and (iii), that fresh randomness is provided for each call of the ideal
functionality (the rand argument). Within a concrete symbolic calculus, syntac-
tic criteria that imply the protocol conditions can be introduced.

Lemma 1 (Soundness of Ideal Implementations). Let MF be an extended
symbolic model based on M, and let A be a computationally sound implemen-
tation of M for protocols Π in a class of protocols P that fulfills the protocol
conditions (AppendixA). Suppose that MF has the ideal implementation AF.
Suppose that for every Π ∈ P , we have that the full protocol Π̂ is in P .

Then the ideal implementation AF is computationally sound for MF and P .

For the proof of the lemma (see the full version [30]), we construct a full protocol
Π̂ from Π by inlining the calls to ideal implementations: Each computation node
ν with destructor DF is replaced by the tree of the ideal functionality F . The
parameters of F are connected to the nodes referenced by ν and the subtree
rooted at the yes-successor of ν is appended to every result node of F . The
proof basically uses the fact that the full protocol Π̂ does not use any of the
ideal destructors DF . Thus the computational soundness of M applies.

Computational Soundness for Interactive Primitives 135

7 Real Protocols in CoSP

In the ideal computational execution, the interactive primitives are not imple-
mented by their actual cryptographic realizations: while AF is computational,
it is merely an algorithmic representation of the ideal functionality F . To close
the gap to a real interactive protocol, we assume that there is a an interactive
protocol φ that is a UC-secure realization of F .

Formally, we define a real algorithm Aφ, which has the same interface as
an algorithm AF , i.e., it takes bitstrings bstate1 , bsid, bsender, binput, brand as input
and produces a triple (b′

state1 , breceiver, boutput) of bitstrings as output.
The arguments directly correspond to the arguments of canonical algorithms

of ideal functionalities, and the same intuition should be applied in general. In
contrast to an ideal functionality however, there is no “joint state” between the
participants of a real protocol. To enforce this statically, the state argument
state1 only represents the state of one single protocol party P .

Since the algorithms can output a state, each UC protocol can be re-
formulated as a real algorithm in our model. If we have a cryptographic real-
ization for every F in an ideal model F, we can extend a computational imple-
mentation A to a real implementation AΦ. AF and AΦ allow us to compare
an ideal implementation of the interactive primitives with a real one, as in the
UC framework.

To simplify notation, we write Aθ to denote an interactive algorithm that is
either the canonical algorithm for an ideal functionality θ = F or the algorithm
for a real protocol θ = φ.

To make use of the UC framework, we first bring interactive algorithms to
the UC setting by constructing machines in the UC sense from them. We write
μ(θ) for the machine that runs Aθ internally. It basically provides an interface
to a computational CoSP execution that activates μ(θ) whenever Aθ should be
executed. In case that θ = φ is a real algorithm, we require that μ(θ) separates
the state of distinct protocol parties. This models a real protocol execution as
the parties can only communicate via the attacker.

8 Computational Soundness for Interactive Primitives

As a final step, we prove computational soundness for the interactive primitives.
We leverage the composability of UC security: If the real protocol φ is a UC-
secure realization of the ideal functionality F , then instances of F used in a
larger protocol can be replaced securely by instances of φ.

Using the UC framework, we would like to show an analogous result in our
model: if the machine μ(φ) is a UC-secure realization of μ(F), then instances of
the canonical algorithm AF used in a larger protocol can be replaced securely
by instances of the real algorithm Aφ. Consequently, if AF is a computational
sound implementation of the destructor DF , then Aφ is a computational sound
implementation of the destructor DF .

136 M. Backes et al.

We require that the ideal functionality F and the real protocol φ adhere to
few technical conditions. We explain why these conditions are necessary, what
they exactly are, and why they do not constitute fundamental restrictions.

Problems. Our goal is to consider a UC environment Z that runs a computational
CoSP execution but does not handle computation nodes with the destructor DF .
Instead, this task should be delegated to a UC machine. For a interactive algo-
rithm Aθ however, the standard machine μ(θ) does not suffice for this purpose:

One problem stems from the fact that in the CoSP execution run by Z, com-
munication with the attacker happens only when an input or an output node is
reached in the CoSP protocol. However, the machine μ(θ) could just not adhere
to this restriction and exchange messages with the attacker machine even if the
CoSP execution run by Z does not currently process an input or an output node.

The second problem concerns only the ideal setting, and consists of a lack
of information of the environment Z. The CoSP view output by the environ-
ment must contain the communication between F and the simulator S, but this
communication is not visible for Z in UC. In fact, μ(F) and S can exchange
arbitrary messages without even noticed by Z.

To understand why this second problem does not arise in the real setting,
consider w.l.o.g. the dummy attacker Ad that will only relay communication
between the environment Z and the machine μ(φ).1 Thus Z is informed about
all communication between μ(φ) and Ad.

Technical Remedy. In the proof of our main theorem, we build a wrapper machine
μ̃(θ) around every machine μ(θ). It reports to the environment Z that communi-
cation took place between μ(θ) and the attacker, but not what communication.
To ensure that the wrapper machine can be used instead, we assume that the
ideal functionality F and the real protocol φ are good, i.e. we require them to
adhere to one technical condition each. We describe the conditions here only
informal. Exact definitions can be found in the full version [30].

Condition on the Ideal Functionality. The condition on the ideal functionality
basically states that the simulator can force μ(F) to produce output to the
environment. This helps in a situation where the real attacker sends a message
to μ(φ), which sends in turn a message m to the environment. In the ideal setting,
the simulator must force μ(F) to send a message indistinguishable from m to the
environment immediately, without replying to the simulator first, because such
a reply would be reported to the environment by the wrapper machine μ̃(F).

Condition on the Real Protocol. The condition on the real protocol ensures that a
message from the environment to μ(φ) leads to a output message to the attacker
immediately. Here the excluded situation is that the real protocol machine μ(φ)
answers a request from the environment immediately, whereas the ideal machine
1 Canetti shows [17] that it suffices to prove security against a dummy attacker Ad,

which acts as proxy for the environment Z.

Computational Soundness for Interactive Primitives 137

μ(F) would have to talk to the simulator first, which is not possible without
being reported to the environment by the wrapper machine μ̃(F).

Discussion. We stress that both the conditions for the ideal functionality and
the conditions for the real protocol are rather technical requirements instead of
severe restrictions. The conditions are fulfilled by virtually all natural interactive
primitives such as blind signatures [41], zero-knowledge proofs [16], oblivious
transfer [17], and secure function evaluation [17]. In some cases, a technical
reformulation of the ideal functionality or the real protocol is necessary. For
instance, a real protocol that provides access to its results via an request interface
would violate our condition; however it can be formulated such that it reports
the results to the environment without being asked.

Furthermore, the condition for the ideal functionality seems to exclude adap-
tive corruption models. The reason is that these models typically require the ideal
functionality to report parts of its internal state corresponding to a corrupted
party to the simulator, after the simulator decides to corrupt that party. Still,
by modeling corruption in a slightly different but still natural manner, a refor-
mulation is possible. We refer to the full version [30] for a detailed discussion.

The main cause for the two technical conditions is a discrepancy between the
UC framework and the CoSP framework. We use the latter in order to leverage
existing results [6]. As a result, we inherit the restrictions that stem from the
way previous embeddings resolved non-deterministic choices, e.g., concurrent
computations: the distinguisher has full control over all scheduling decisions of
concurrent computations and is fully aware of the execution state with respect to
control flow. As a consequence the distinguisher can observe that communication
between the simulator and the ideal functionality takes place. This is in contrast
to the UC framework, where the distinguisher (the environment) cannot observe
this communication.

Main Result. The main theorem, which is proven in the full version [30], states
that we can extend a computational soundness result for equivalence properties
to a computational soundness result for interactive primitives that are soundly
abstracted by ideal functionalities.

Theorem 1. Let MF be an extended symbolic model based on M, and let AΦ

be a computational implementation of MF based on A. Let P be a class of CoSP
protocols such that every protocol in P fulfills the protocol conditions for interac-
tive primitives (Appendix A). Suppose that every F ∈ F is a good ideal function-
ality and every φ ∈ Φ is a good real protocol (see the full version [30]). Suppose
that for every ideal functionality F ∈ F and the corresponding real protocol
φ ∈ Φ, we have that μ(φ) UC-realizes μ(F).

If A is a computationally sound implementation of M for P with respect to
equivalence properties, then AΦ is a computationally sound implementation of
MF for P with respect to equivalence properties.

138 M. Backes et al.

Limitations. While our result can be used with a wide range of natural two-
party and multi-party primitives in the UC framework, it comes with several
limitations.

First, since UC security is a very strong notion, some interactive primitives
cannot be achieved in the UC framework, or they can only achieved under addi-
tional assumptions, or they require less efficient protocols than under ordinary
security definitions. For instance, zero-knowledge proofs and oblivious-transfer
are impossible without additional assumptions [17,22]. However, these primi-
tives are possible if a common reference string (CRS) and authenticated mes-
sage transfer (e.g., using a public-key infrastructure) is assumed [17,18]. Another
example is UC-secure key exchange, which is, depending on the formulation,
strictly stronger than standard key exchange [21], and thus requires less efficient
protocols. We refer to Canetti [17, 2005 revision] for a comprehensive overview
over different primitives in the UC framework.

Second, our result cannot be used to abstract non-interactive primitives using
the UC framework. (While such abstractions are not desirable for automated
verification (see Sect. 2), they might be desirable to achieve composability.) The
culprit is the condition for the real protocol. Recall that it imposes that the
protocol does not immediately reply to the environment, i.e., to the caller. While
this is a natural assumption for interactive primitives,2 it is very unnatural for
non-interactive primitives. Indeed, all meaningful “protocols” that realize ideal
functionalities for public-key encryption and signatures proposed by Canetti [17]
violate the condition that we impose upon real protocols, because they perform
the cryptographic operation locally without network communication involving
the attacker. However, we are not aware of any natural interactive protocol,
which cannot be reformulated to adhere to the technical conditions outlined
above.

9 Case Study: Untraceable Payments

Untraceable payments, proposed by Chaum [25], allow a payer to perform a
payment to a payee, say a shop, via a bank. In Chaum’s protocol, a payer
basically buys a coupon, i.e., a signed random bitstring, such that the bank
does not know the coupon. Then, the user can pay with this coupon at a shop,
and the shop will check the validity of the coupon with the bank. As the main
cryptographic tool for untraceable payments Chaum suggests blind signatures,
which guarantee that the bank neither learns the message nor the signature while
signing the message.

We verify the untraceability of the payments with the verification tool
ProVerif [12] using a UC-secure abstraction of blind signatures by Fischlin [41].
Our computational soundness theorems entail that the result of ProVerif’s veri-
fication carries over to the computational realization of untraceable payments.
2 It is the very nature of interactive protocols that a message is sent on the network,

i.e., the protocol activates the attacker, before it reports results to the caller.

Computational Soundness for Interactive Primitives 139

Ideal Blind Signatures and Their Realization. Our ideal functionality F for blind
signatures models a scenario with one bank Bank and n users Useri. It consists
of a setup phase and offers a signing oracle to the users. In the setup phase, the
bank generates signature keys or receives them from the attacker. Then, the
functionality distributes the verification keys to the bank Bank and all users.

Upon a signing request (Sign, sid,m, vk ′) from Useri, the functionality for
an honest Useri waits for the attacker to deliver the message, signs the message
m using the stored signing key sk , and sends the result to Useri. For a malicious
Useri, the ideal functionality F informs A about the message. Then it informs
the bank that a signature is being requested.

Fischlin [41] showed the existence of a protocol that UC-realizes an ideal
functionality for blind signatures under standard cryptographic assumptions.
Our functionality differs in details from the one in [41]. Using Fischlin’s con-
struction φ, we can prove realization if we require that the signature scheme,
used by the ideal functionality is unforgeable. The proof is essentially only a
modification of the proof in [41], and can be found in the full version [30].

Computational Soundness of Signatures and Blind Signatures. We rely on a
symbolic model Msig for digital signatures. (It contains also public-key encryp-
tion, which we do not use). The model is computationally sound in CoSP for
uniform bi-protocols with respect to a computational implementation Asig [6].
The aforementioned ideal functionality F for blind signatures and its UC-secure
realization φ yields a CoSP destructor DF and a real implementation Aφ, respec-
tively. Symbolically, we extend Msig by DF , resulting in Msig,bsig. Computation-
ally, we extend Asig by Aφ, resulting in Asig,bsig. Finally, Theorem 1 and the
computational soundness for signatures in uniform bi-processes in the applied
π-calculus [6, Theorem 3] yield the computational soundness of our case study.

Theorem 2. Let Q be an applied-π bi-process on the symbolic model Msig,bsig

that is randomness-safe [6] and fulfills the protocol conditions (Appendix A). If
Q is uniform, then the computational bi-protocol corresponding to Q, which uses
the computational implementation Asig,bsig, is computationally indistinguishable.

Uniform Bi-protocols. We leverage a computational soundness result [6], which is
restricted to uniform bi-protocols. Bi-protocols are pairs of protocols that always
take the same branches and differ only in the messages that they operate on.

Uniform bi-protocols cannot express equivalence between protocols with
processes of different structure. For example, consider a protocol Π1 with a client
process that sends some request to a server twice. If the requests are unlinkable
to each other, then formally, the client process is equivalent to a protocol Π2 with
the parallel composition of two client processes that send one request each. How-
ever, Π1 and Π2 have different structure, i.e., they differ in more than the terms
they operate on. Thus a uniform bi-protocol cannot model this unlinkability.

A uniform bi-process [13] in the applied π-calculus is the counterpart of a
uniform bi-protocol in CoSP. A bi-process is a pair of processes that only differ
in the terms they operate on. Formally, they contain expressions of the form

140 M. Backes et al.

choice[a, b], where a is used in the left process and b is used in the right one.
A bi-process Q can only reduce if both its processes can reduce in the same
way. We consider the variant of the applied π-calculus used for the original
CoSP embedding [3]. The operational semantics is defined in terms of structural
equivalence (≡) and internal reduction (→); for a precise definition of the applied
π-calculus, we refer to [12]. Formally, a bi-process Q in the applied π-calculus
is uniform if left(Q) → Rleft implies that Q → R for some bi-process R with
left(R) ≡ Rleft, and symmetrically for right(Q) → Rright with right(R) ≡ Rright.

Verifying Untraceability in ProVerif. ProVerif [12] is an automated verification
tool that can prove the uniformity of bi-processes in the applied π-calculus [1].
We use a wrapper process (Fig. 3) in the applied π-calculus that enforces the
protocol conditions from Appendix A.

This wrapper maintains the session identifier in a way that is compatible with
UC, maintains the state of the ideal functionality, and offers an interface that is
compatible with our computational soundness result for interactive primitives.

Model in ProVerif. We used ProVerif to model a small untraceable payment
system with two payers and one payee, say a shop owner. We modeled the
scenario in which the bank is compromised and two honest payers purchase
coupons. Then, one of the payers uses the coupon, and the shop owner leaks
the coupon to the bank by cashing it. We modeled the scenario as a process for
the ideal functionality of blind signatures and one bi-process that models both
the payers and the shop owner. Since we consider untraceability, the bank is not
modeled explicitly, it is the attacker.

To help ProVerif terminate, we replaced the process that executes the very
complex destructor DF by an equivalent process consisting of a series of let and if
commands. As there is no communication in the equivalent process, the modified
protocol differs only in the fact that it offers more scheduling possibilities: the
attacker can schedule other processes in the middle of the computation, which is
not possible in the unmodified process with the atomic destructor DF . Thus any
attack possible on the unmodified process is also possible on the modified one.

Our code [51] has about 200 lines of code. ProVerif proves uniformity within
under a second on a machine with an Intel i7 CPU (2GHz) and 4GB RAM.

Even though the symbolic model Msig includes a length function, we did not
include the corresponding length destructor in the case study, because ProVerif
does otherwise not terminate. Nevertheless, our verification is computationally
sound, because the length functions in the underlying result [6] are only necessary
to handle public-key encryption, which is not part of Msig in our case study.

Formally, we present the following lemma, which can be useful beyond our
case study when applying the result of [6]. The lemma states that we can ignore
a destructor d in the symbolic analysis of a bi-protocol, if (i) d is not used in the
bi-protocol and (ii) d can be simulated using other destructors and constructors.

Lemma 2. Let M = (C,N,T,D) be a symbolic model. Consider the model
M′ = (C,N,T,D′) with D′ = D \ {d}. Let Π be a bi-protocol on M′.

Computational Soundness for Interactive Primitives 141

Assume there is a function simD with the following property: given any sym-
bolic operation Od in M, and any view V, but only the symbolic knowledge KM′

V

of M′, simD outputs a symbolic operation OsimD on M′ that simulates d, i.e.,
OsimD(t) = d(Od(t)) for all sequences of terms t ∈ T∗.

Then Π is indistinguishable in the symbolic model M if it is indistinguishable
in the symbolic model M′.

In the full version [30], we prove the lemma and give a function SimLength
that simulates the destructor “length” used in [6].

Plugging everything together, the successful ProVerif verification, Theorem 2,
and Lemma 2 prove for our case study bi-process that any realization adhering to
the implementation conditions ofAsig,bsig [6] is computationally indistinguishable.

Fig. 3. The wrapper for the ideal functionality

Acknowledgments. We thank the reviewers for their helpful and valuable comments.
This work was supported by the German Ministry for Education and Research (BMBF)

142 M. Backes et al.

through funding for the Center for IT-Security, Privacy and Accountability (CISPA)
and the German Universities Excellence Initiative.

A Protocol Conditions

Given a CoSP protocol Π, consider the directed graph ref (Π) which has the
property that a node νs is successor of a node νp if and only if νp references νs

in its annotations. It is a tree because nodes may only reference nodes which are
on the path to the root in the protocol tree. For a node ν of Π, the reference tree
of ν is the subtree of ref (Π) which is rooted at ν and reachable from there. We
say that a node ν is determined by a node ν′ if on the path (through ref (Π))
from ν to ν′ exclusive, every node has exactly one successor. The corresponding
path is called reference path to ν′.

We require that the following criteria are met for for all ideal functionalities
F and all computation nodes ν with a destructor DF .

1. We say that two interactive nodes belong to the same session if and only if
one of them is contained in the reference tree of the state argument node of
the other. Two interactive nodes with destructor DF ∈ F are required to be
part of the same session if and only if they have the same sid argument node.

2. Let ν′ be the bottom-most predecessor of ν that belongs to the same session,
if any. Let be the output computed by ν′ in a computational execution of the
protocol. On the path from ν′ to ν, there are the following nodes:

– Three computation nodes νstate, νreceiver and νoutput which produce the
bitstrings state, receiver and output, respectively. They are determined
by ν′. Their reference paths to ν′ contain only computation nodes and
ν is in the yes-subtree of all these computation nodes.

– If and only if in a computational execution of the protocol, the bitstring
produced by νreceiver is Anull(), an output node referencing νoutput.

3. The state argument of ν is νstate or a computation node with constructor
null().

4. νstate is not referenced by other nodes than ν.
5. The sender argument is a computation node with constructor null if and only

if the input argument is an input node.
6. The rand argument of ν is a computation node νrand with nonce N ∈ N. On

a path trough νrand, there is no other computation node with nonce N . νrand
is not referenced by other nodes than ν.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001, pp. 104–115. ACM (2001)

2. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS
2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

Computational Soundness for Interactive Primitives 143

3. Backes, M., Hofheinz, D., Unruh, D.: CoSP: a general framework for computational
soundness proofs. In: CCS 2009, pp. 66–78. ACM (2009)

4. Backes, M., Laud, P.: Computationally sound secrecy proofs by mechanized flow
analysis. In: CCS, pp. 370–379. ACM (2006)

5. Backes, M., Maffei, M., Mohammadi, E.: Computationally sound abstraction and
verification of secure multi-party computations. In: FSTTCS 2010, pp. 352–363.
Schloss Dagstuhl (2010)

6. Backes, M., Mohammadi, E., Ruffing, T.: Computational soundness results for
ProVerif. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 42–
62. Springer, Heidelberg (2014)

7. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations (extended abstract). In: CCS 2003, pp. 220–230. ACM (2003)

8. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685–1720 (2007)

9. Bana, G., Comon-Lundh, H.: A computationally complete symbolic attacker for
equivalence properties. In: CCS 2014, pp. 609–620 (2014)

10. Bana, G., Comon-Lundh, H.: Towards unconditional soundness: computationally
complete symbolic attacker. In: Degano, P., Guttman, J.D. (eds.) POST 2012.
LNCS, vol. 7215, pp. 189–208. Springer, Heidelberg (2012)

11. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations
of equational theories against passive adversaries. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
652–663. Springer, Heidelberg (2005)

12. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: LICS, pp. 331–340 (2005)

13. Blanchet, B., Fournet, C.: Automated verification of selected equivalences for secu-
rity protocols. In: LICS 2005, pp. 331–340. IEEE (2005)

14. Böhl, F., Cortier, V., Warinschi, B.: Deduction soundness: prove one, get five for
free. In: CCS 2013, pp. 1261–1272. ACM (2013)

15. Böhl, F., Unruh, D.: Symbolic universal composability. In: CSF 2013. IEEE (2013)
16. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-

posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011)

17. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Full and revised version of FOCS 2001 paper. IACR ePrint Archive:
2000/067/20130717:020004 (2013)

18. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–23. Springer, Heidelberg (2001)

19. Canetti, R., Gajek, S.: Universally Composable Symbolic Analysis of Diffie-
Hellman based Key Exchange. IACR ePrint Archive: 2010/303 (2010)

20. Canetti, R., Herzog, J.: Universally composable symbolic security analysis. J. Cryp-
tol. 24(1), 83–147 (2011)

21. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002)

22. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. J. Cryptol. 19(2), 68–86
(2003)

23. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC 2002, pp. 494–503. ACM
(2002)

144 M. Backes et al.

24. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 545–562. Springer, Heidelberg (2008)

25. Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982, pp.
199–203. Plenum Press (1982)

26. Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidel-
berg (2014)

27. Comon-Lundh, H., Cortier, V.: Computational Soundness of Observational Equiv-
alence. In: CCS 2008, pp. 109–118. ACM (2008)

28. Comon-Lundh, H., Cortier, V., Scerri, G.: Security proof with dishonest keys. In:
Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 149–168.
Springer, Heidelberg (2012)

29. Comon-Lundh, H., Hagiya, M., Kawamoto, Y., Sakurada, H.: Computational
soundness of indistinguishability properties without computable parsing. In: Ryan,
M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 63–79.
Springer, Heidelberg (2012)

30. Computational Soundness for Interactive Primitives (full version of this paper).
https://www.infsec.cs.uni-saarland.de/∼mohammadi/interactive.html

31. Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally sound
symbolic secrecy in the presence of hash functions. In: Arun-Kumar, S.,
Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187. Springer,
Heidelberg (2006)

32. Cortier, V., Warinschi, B.: A Composable Computational Soundness Notion. In:
CCS 2011, pp. 63–74. ACM (2011)

33. Dahl, M., Damg̊ard, I.: Universally composable symbolic analysis for two-party
protocols based on homomorphic encryption. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 695–712. Springer, Heidelberg (2014)

34. Delaune, S., Kremer, S., Pereira, O.: Simulation based security in the applied Pi
calculus. In: FSTTCS 2009, pp. 169–180. Schloss Dagstuhl (2009)

35. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

36. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: CSF, pp. 66–80. IEEE (2011)

37. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

38. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

39. Dougherty, D.J., Guttman, J.D.: An algebra for symbolic Diffie-Hellman protocol
analysis. In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp.
164–181. Springer, Heidelberg (2013)

40. Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. In:
FOCS 1983, pp. 34–39. IEEE (1983)

41. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

42. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic veri-
fication. In: CCS 2011, pp. 341–350. ACM (2011)

43. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comp. 18(1), 186–207 (1989)

https://www.infsec.cs.uni-saarland.de/~mohammadi/interactive.html

Computational Soundness for Interactive Primitives 145

44. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2013)

45. Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. In: Biskup, S.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 610–625. Springer, Heidel-
berg (2007)

46. Küsters, R., Scapin, E., Truderung, T., Graf, J.: Extending and applying a frame-
work for the cryptographic verification of java programs. In: Abadi, M., Kremer,
S. (eds.) POST 2014. LNCS, vol. 8414, pp. 220–239. Springer, Heidelberg (2014)

47. Küsters, R., Truderung, T., Graf, J.: A framework for the cryptographic verification
of java-like programs. In: CSF 2012, pp. 198–212. IEEE (2012)

48. Küsters, R., Tuengerthal, M.: The IITM Model: a Simple and Expressive Model
for Universal Composability. IACR ePrint Archive: 2013/025 (2013)

49. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

50. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

51. ProVerif code of the case study. https://www.infsec.cs.uni-saarland.de/
∼mohammadi/paper/case study untraceable payments.zip

52. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographi-
cally sound theorem proving. In: CSFW 2006, pp. 153–166. IEEE (2006)

53. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying high-
erorder programs with the Dijkstra Monad. In: PLDI 2013, pp. 387–398. ACM
(2013)

54. Unruh, D.: Termination-insensitive computational indistinguishability (and appli-
cations to computational soundness). In: CSF 2011, pp. 251–265. IEEE (2011)

https://www.infsec.cs.uni-saarland.de/~mohammadi/paper/case_study_untraceable_payments.zip
https://www.infsec.cs.uni-saarland.de/~mohammadi/paper/case_study_untraceable_payments.zip

Verifiably Encrypted Signatures: Security
Revisited and a New Construction

Christian Hanser1, Max Rabkin2,3(B), and Dominique Schröder2

1 IAIK, Graz University of Technology, Graz, Austria
christian.hanser@iaik.tugraz.at

2 CISPA, Saarland University, Saarbrücken, Germany
mrabkin@mpi-inf.mpg.de

3 International Max Planck Research School for Computer Science,
Saarbrücken, Germany

dschroede@mmci.uni-saarland.de

Abstract. In structure-preserving signatures on equivalence classes
(SPS-EQ-R), introduced at Asiacrypt 2014, each message M in (G∗)�

is associated to its projective equivalence class, and a signature commits
to the equivalence class: anybody can transfer the signature to a new,
scaled, representative.

In this work, we give the first black-box construction of a public-key
encryption scheme from any SPS-EQ-R satisfying a simple new property
which we call perfect composition. The construction does notinvolve any
non-black-box technique and the implication is that such SPS-EQ-R can-
not be constructed from one-way functions in a black-box way. The main
idea of our scheme is to build a verifiable encrypted signature (VES) first
and then apply the general transformation suggested by Calderon et al.
(CT-RSA 2014).

The original definition of VES requires that the underlying signa-
ture scheme be correct and secure in addition to other security prop-
erties. The latter have been extended in subsequent literature, but the
former requirements have sometimes been neglected, leaving a hole in
the security notion. We show that Calderon et al.’s notion of resolution
independence fills this gap.

Keywords: Structure preserving signatures · Verifiably encrypted
signatures · Resolution independence · Public-key encryption

1 Introduction

Structure-preserving signatures on equivalence classes (SPS-EQ-Rs) have been
introduced at Asiacrypt 2014, and a corrected instantiation was given in a joint

C. Hanser—Part of this work was done while visiting CISPA (Saarbrücken,
Germany); supported by COST Action IC1306. Further supported by EU FP7
through project MATTHEW (GA No. 610436) and EU Horizon 2020 through project
PRISMACLOUD (GA No. 644962).

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 146–164, 2015.
DOI: 10.1007/978-3-319-24174-6 8

Verifiably Encrypted Signatures: Security Revisited and a New Construction 147

work with Fuchsbauer [9]. In an SPS-EQ-R, each message M is a vector of group
elements from a group of prime order p, and a signature commits the signer only
to its projective equivalence class [M]R = {λM : λ ∈ Z

∗
p}: anybody can transfer

the signature to a new representative, scaling the message by an arbitrary factor
and obtaining a new signature for the scaled message. SPS-EQ-Rs have many
applications such as anonymous credentials [6] and have appealing properties,
such as being compatible with Groth-Sahai zero-knowledge proofs [15]. In this
work, we show how to construct verifiably encrypted signatures and public-key
encryption from an SPS-EQ-R.

Verifiably Encrypted Signatures. Bob wants to buy a theater ticket with an elec-
tronic check. That is, he wants to exchange one document, signed by himself, for
another document, signed by the theater. If he sends the check before receiving
the ticket, he worries that the theater will cash his check without issuing the
ticket. On the other hand, the theater is not willing to issue the ticket without
receiving a check.

A verifiably encrypted signature scheme (VES), introduced by Boneh et al.
[3], can be used to resolve this impasse. A VES has two forms of signatures:
plain and encrypted. Both forms of signature can be verified, and if the signer
refuses to reveal the plain signature at the end of negotiations, the other party
can appeal to a trusted third party (called the arbiter), who can recreate a plain
signature given the corresponding encrypted signature.

Thus, in our example, the theater can provisionally send Bob a ticket with an
encrypted signature, and once they receive Bob’s signed check they can reveal the
corresponding plain signature, and thus validate the provisional ticket. If they
fail to do so, Bob can take the encrypted signature to the arbiter. The arbiter’s
investigation will reveal that Bob has indeed upheld his side of the deal, and
so recreate the corresponding plain signature, giving Bob the ticket he has paid
for. This protocol has the advantage that the arbiter need not participate unless
there is a dispute.

VES from SPS-EQ-R. We introduce a simple new property for SPS-EQ-R
schemes, called perfect composition, which is satisfied by an existing construction
in the generic group model, and show how to construct VESes from such schemes.
In particular, this is the first VES construction from any kind of structure-
preserving signature scheme, underlining the versatility of SPS-EQ-Rs. In our
construction, each message is associated to a projective equivalence class. To cre-
ate a plain signature, the signer signs one representative; to create an encrypted
signature, she signs another. The scaling factor between these two representatives
depends on the arbiter’s key, allowing the arbiter to recover the plain signature
from the encrypted one using the SPS-EQ-R’s change representative algorithm.

Public-Key Encryption from SPS-EQ-R. If the SPS-EQ-R allows perfect com-
position, then our VES construction satisfies resolution duplication, a property
introduced very recently by Calderon et al. [5], which requires that a signature
extracted by the arbiter is identical to that which would have been created by
the signer. Not only does this prevent discrimination between arbiter-issued and

148 C. Hanser et al.

signer-issued signatures, but VESes satisfying this property imply public-key
encryption. This is particularly interesting because it is not possible to con-
struct PKE from ordinary signatures (or equivalently, from one-way functions)
in a black-box way. Looking at this from the other side, it means that such an
SPS-EQ-R cannot be constructed (black-box) from one-way functions.

1.1 Our Contribution

Our main contribution is twofold:

Verifiably Encrypted Signatures. We propose the first black-box construction of
verifiably encrypted signature scheme from any structure-preserving signature
scheme on equivalence classes satisfying a simple property. This construction
does not combine an encryption scheme with an SPS-EQ-R. Furthermore, all our
security proofs hold in the standard model, under the Diffie-Hellman Inversion
assumption.

We also revisit the security definitions of VES. The original definition of
VES [3] requires that the underlying (ordinary) signature scheme be correct and
secure in addition to other security properties. The latter properties have been
extended in subsequent literature [18,27] but the requirements on the underlying
scheme are sometimes neglected. We show that with this omission, resolution
independence is absolutely essential not only to the unforgeability, but even
to the correctness, of the underlying signature scheme. From the alternative
viewpoint, we show that security including resolution independence is sufficient
for the correctness and security of the underlying signature scheme.

Public-Key Encryption. We propose the first black-box construction of a CPA-
secure public-key encryption scheme from any structure-preserving signature
scheme on equivalence classes allowing perfect composition. The construction
follows the idea of Calderon et. al [5]; it is black-box and does not involve known
non-black-box techniques such as zero-knowledge. Given the well-known impos-
sibility results, this shows that SPS-EQ-Rs allowing perfect composition cannot
be constructed from one-way functions in a black-box way.

1.2 Related Work

Verifiably encrypted signatures and a first instantiation in the random ora-
cle model were proposed by Boneh et al. [3]. After their invention, several
instantiations were suggested in the RO model [26,29] and in the standard
model [8,22,27]. The security model is treated in [3,5,18,27].

Impagliazzo and Rudich [20] show in their seminal work that cryptographic
primitives can be classified as lying in one of two “worlds”. The “Minicrypt”
world contains those primitives that are equivalent to the weakest known assump-
tion, the existence of one-way functions (OWFs), such as digital signatures [14,
17,19,21,24]. The second world, “Cryptomania”, includes primitives that require
stronger assumptions such as public-key encryption (PKE), key-agreement (KA),
oblivious transfer (OT) [4,11,12,25,28] and now SPS-EQ-R.

Verifiably Encrypted Signatures: Security Revisited and a New Construction 149

1.3 Outline

In Sect. 2 we state the preliminaries. In Sect. 3 we discuss the relationship between
resolution independence and the correctness and unforgeability of the underlying
signature scheme of a VES. Then, in Sect. 4, we show how to generically build a
VES from an SPS-EQ-R scheme. In Sect. 5, we then discuss the implication of
PKE by certain SPS-EQ-R. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

A function ε : N → R
+ is called negligible if for all c > 0 there is a k0 such that

ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote
such a negligible function. By a

$← A, we denote that a is chosen uniformly at
random from the set A. We use the notation A(a1, . . . , an; r) if we make the
randomness r used by a probabilistic algorithm A(a1, . . . , an) explicit.

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where we denote G1 and G2 additively and GT multiplicatively. We
write G

∗
i for Gi \ {0Gi

} where i ∈ {1, 2}. Let P and P̂ be generators of G1 and
G2, respectively. We call e : G1 × G2 → GT a bilinear map or pairing if it is
efficiently computable and the following holds:

Bilinearity: e(aP, bP̂) = e(P, P̂)ab ∀ a, b ∈ Zp.

Non-degeneracy: e(P, P̂) �= 1GT
, i.e., e(P, P̂) generates GT .

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3)
otherwise. For Type-2 pairings there is an efficiently computable isomorphism
Ψ : G2 → G1; for Type-3 pairings no such isomorphism is known. Type-3 pairings
are currently the optimal choice in terms of efficiency and security trade-off [7].

Definition 2 (Bilinear Group Generator). A polynomial-time algorithm
BGGen is a bilinear-group generator if it takes as input a security parameter
1κ and outputs BG = (p,G1,G2,GT , e, P, P̂) where the common group order p of
the groups G1,G2 and GT is a prime of bit-length κ, e is a pairing, and P and
P̂ are generators of G1 and G2, respectively.

In this work we assume BGGen to be deterministic.1

Definition 3 (Diffie-Hellman Inversion Assumption (DHI) [23]). Let G
be a group of prime order p with log2 p = κ and let a

$← Z
∗
p. Then, for every PPT

adversary A there is a negligible function ε(·) such that Pr
[
1
aP ← A(P, aP)

] ≤
ε(κ).

1 This is e.g. the case for BN-curves [2], the most common choice for Type-3 pairings.

150 C. Hanser et al.

2.1 Digital Signatures

Definition 4 (Digital Signature Scheme). A digital signature scheme con-
sists of the following polynomial time algorithms:

KeyGen(1κ): A probabilistic algorithm that takes input a security parameter κ ∈
N and outputs a key pair (sk, pk) for message space M.

Sign(m, sk): A probabilistic algorithm that takes input a message m ∈ M, a
secret key sk and outputs a signature σ.

Verify(m,σ, pk): A deterministic algorithm that takes input a message m ∈ M,
a signature σ, a public key pk and outputs 1 if σ is a valid signature for M
under pk and 0 otherwise.

A digital signature scheme is secure if it is correct and existentially unforge-
able under adaptively chosen-message attacks. We define the properties below:

Definition 5 (Correctness). A digital signature scheme (KeyGen,Sign,Verify)
is called correct if

∀κ > 0 ∀(sk, pk) $← KeyGen(1κ) ∀m ∈ M : Verify(m,Sign(m, sk), pk) = 1

Definition 6 (EUF-CMA). A digital signature scheme (KeyGen,Sign,Verify)
is called existentially unforgeable under adaptively chosen-message attacks if
for all PPT algorithms A having access to a signing oracle O(·, sk), there is a
negligible function ε(·) such that:

Pr

[
(sk, pk) $← KeyGen(1κ),
(m∗, σ∗) $← AO(·,sk)(pk)

:
m∗ �∈ Q ∧
Verify(m∗, σ∗, pk) = 1

]

≤ ε(κ),

where Q is the set of queries which A has issued to the signing oracle O.

2.2 Structure-Preserving Signatures on Equivalence Classes

In a structure-preserving signature scheme [1], public keys, messages and sig-
natures consist only of group elements of a bilinear group. The verification
algorithm verifies a signature solely through group membership tests and by
evaluating pairing-product equations.

An SPS-EQ-R scheme is a structure-preserving signature scheme that is
defined either on the message space (G∗

1)
� or (G∗

2)
�, where � > 1 and |G1| =

|G2| = p is prime. Since Z
�
p is a vector space, it is possible to define—in analogy

to the projective space—a projective equivalence relation ∼R that partitions Z�
p

into projective equivalence classes. This equivalence relation then further prop-
agates onto (G∗

i)
� for i ∈ {1, 2}.

Now, an SPS-EQ-R scheme signs such equivalence classes by signing arbi-
trary representatives of such classes. When given a message-signature pair, any-
one can derive a valid message-signature pair for every other representative of
this class. This is done by multiplying each message vector component by the

Verifiably Encrypted Signatures: Security Revisited and a New Construction 151

same scalar and by consistently updating the corresponding signature. Clearly,
this requires unforgeability to be defined with respect to equivalence classes.
This means that after querying signatures for messages Mi, no adversary should
be able to output a forgery for a message M∗ belonging to a class different from
the classes [Mi]R.

We restate the syntax and the security properties of structure-preserving
signatures on equivalence classes from [9,10,16]:

Definition 7 (Structure-Preserving Signature Scheme on Equivalence
Classes (SPS-EQ-R)). An SPS-EQ-R scheme SPSEQ on (G∗

i)
� consists of the

following polynomial-time algorithms:

BGGenR(1κ): A deterministic bilinear-group generation algorithm, which on
input a security parameter κ outputs a bilinear group BG.

KeyGenR(BG, �): A probabilistic algorithm, which on input a bilinear group BG
and a vector length � > 1 outputs a key pair (sk, pk).

SignR(M, sk): A probabilistic algorithm, which on input a representative M ∈
(G∗

i)
� of an equivalence class [M]R and a secret key sk outputs a signature

σ for the representative M of equivalence class [M]R.
ChgRepR(M,σ, λ, pk): A probabilistic algorithm, which on input a representative

M ∈ (G∗
i)

� of an equivalence class [M]R, a signature σ for M , a scalar λ and
a public key pk returns an updated message-signature pair (M ′, σ′), where
M ′ = λM is the new representative and σ′ its updated signature.

VerifyR(M,σ, pk): A deterministic algorithm, which given a representative M ∈
(G∗

i)
�, a signature σ and a public key pk outputs 1 if σ is valid for M under

pk and 0 otherwise.
VKeyR(sk, pk): A deterministic algorithm, which given a secret key sk and a

public key pk checks both keys for consistency and returns 1 on success and
0 otherwise.

Definition 8 (Correctness). An SPS-EQ-R scheme SPSEQ on (G∗
i)

� is called
correct if for all security parameters κ ∈ N, for all � > 1, all bilinear groups
BG ← BGGenR(1κ), all key pairs (sk, pk) $← KeyGenR(BG, �), all messages M ∈
(G∗

i)
� and all λ ∈ Z

∗
p we have:

VKeyR(sk, pk) = 1 and

Pr
[
VerifyR(M,SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), λ, pk), pk) = 1

]
= 1.

Definition 9 (EUF-CMA). An SPS-EQ-R scheme SPSEQ on (G∗
i)

� is called
existentially unforgeable under adaptively chosen-message attacks if, for all PPT
algorithms A having access to a signing oracle O(sk,M), there is a negligible
function ε(·) such that:

Pr

⎡

⎢
⎣

BG ← BGGenR(1κ),
(sk, pk) $← KeyGenR(BG, �),
(M∗, σ∗) $← AO(sk,·)(pk)

:
[M∗]R �= [M]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

⎤

⎥
⎦ ≤ ε(κ),

152 C. Hanser et al.

where Q is the set of queries that A has issued to the signing oracle O.

We now introduce the following new property:

Definition 10. An SPS-EQ-R scheme SPSEQ allows perfect composition if for
all random tapes r and tuples (sk, pk,M, σ, λ) :

VKeyR(sk, pk) = 1 σ ← SignR(M, sk; r) M ∈ (G∗
i)

� λ ∈ Z
∗
p

it holds that (λM,SignR(λM, sk; r)) = ChgRepR(M,σ, λ, pk; 1).

Intuitively, this requires that ChgRepR executed with random coins fixed
to 1 updates only the parts of a signature that are affected by updating the
representative from M to λM , not changing the randomness of SignR.

In [10], a standard model SPS-EQ-R construction is presented. Unfortu-
nately, it does not satisfy the above definition, but the scheme in [9], which is
secure in the generic group model, does.

2.3 Verifiably Encrypted Signatures

Below, we give the abstract model of verifiably encrypted signatures, adapted
from [3].

Definition 11 (Verifiably Encrypted Signature Scheme (VES)). A ver-
ifiably encrypted signature scheme VES consists of the following polynomial time
algorithms:

AKeyGen(1κ): Given a security parameter κ, this probabilistic algorithm outputs
a key pair (ask, apk), where ask is the private key and apk the corresponding
public key of the arbiter.

KeyGen(1κ): Given a security parameter κ, this probabilistic algorithm outputs
a private signing key sk and a public verification key pk for message space
M.

Sign(m, sk): Given a message m ∈ M and a signing key sk, this probabilistic
algorithm outputs a signature σ under sk on m.

Verify(m,σ, pk): Given a message m ∈ M and a public key pk, this deterministic
algorithm outputs 1 iff σ is a valid signature on m under pk and 0 otherwise.

VESign(m, sk, apk): Given a message m ∈ M, a signing key sk and an arbiter
public key apk, this probabilistic algorithm outputs an encrypted signature ω
under sk on message m.

VEVerify(m,ω, pk, apk): Given a message m ∈ M, an encrypted signature ω,
a public key pk and an arbiter public key apk, this deterministic algorithm
outputs 1 if ω is a valid encrypted signature on m under pk and 0 otherwise.

Resolve(m,ω, ask, pk): Given a message m ∈ M, an encrypted signature ω, an
arbiter secret key ask and a public key pk, this (probabilistic) algorithm out-
puts a valid signature σ on m under pk.

Verifiably Encrypted Signatures: Security Revisited and a New Construction 153

We call a VES secure if it is complete, unforgeable, opaque, extractable, abuse
free and resolution independent. We define these properties below.

Completeness says that any honestly computed VES always verifies and that
moreover the arbiter can always extract a valid signature.

Definition 12 (Completeness). A VES VES is complete if for all κ > 0, all
(ask, apk) $← AKeyGen(1κ), all (sk, pk) $← KeyGen(1κ), and all messages m ∈ M,
for ω

$← VESign(m, sk, apk) it holds that

Pr
[
VEVerify(m,ω, pk, apk) = 1

]
= 1 and

Pr
[
Verify(m,Resolve(m,ω, ask, pk), pk) = 1

]
= 1.

Unforgeability says that it should be infeasible to produce a valid encrypted
signature for an unknown secret key.

Definition 13 (Unforgeability). A VESVES is unforgeable if for all PPT algo-
rithms A having access to oracles O ← {VESign(·, sk, apk),Resolve(·, ·, ask, pk),
Sign(·, sk)}, there is a negligible function ε(·) such that:

Pr

⎡

⎢
⎣

(ask, apk) $← AKeyGen(1κ),
(sk, pk) $← KeyGen(1κ),
(m∗, ω∗) $← AO(pk, apk)

:
m∗ �∈ Q ∧
VEVerify(m∗, ω∗, pk, apk) = 1

⎤

⎥
⎦ ≤ ε(κ),

where Q is the set of messages which were queried to the oracles.

Opacity basically requires that only the arbiter should be able to pull out
the underlying signature.

Definition 14 (Opacity). A VES VES is opaque if for all PPT algorithms A
having access to oracles O ← {VESign(·, sk, apk),Resolve(·, ·, ask, pk)}, there is a
negligible function ε(·) such that:

Pr

⎡

⎢
⎣

(ask, apk) $← AKeyGen(1κ),
(sk, pk) $← KeyGen(1κ),
(m∗, σ∗) $← AO(pk, apk)

:
m∗ �∈ Q ∧
Verify(m∗, σ∗, pk) = 1

⎤

⎥
⎦ ≤ ε(κ),

where Q is the set of messages queried to the Resolve oracle.

In addition to the above property, we have to guarantee that it is indeed
possible for the arbiter to extract the underlying signature, which is covered by
the following property.

Definition 15 (Extractability). A VES VES is extractable if for all PPT
algorithms A having access to oracles O ← {Resolve(·, ·, ask, ·)}, there is a neg-
ligible function ε(·) such that:

Pr

⎡

⎣ (ask, apk) $← AKeyGen(1κ),
(pk∗,m∗, ω∗) $← AO(apk)

:
σ

$← Resolve(m∗, ω∗, ask, pk∗) ∧
VEVerify(m∗, ω∗, pk∗, apk) = 1 ∧
Verify(m∗, σ, pk∗) = 0

⎤

⎦ ≤ ε(κ).

154 C. Hanser et al.

Abuse freeness guarantees that even if an adversary is colluding with the
arbiter, it is unable to forge a valid encrypted signature.

Definition 16 (Abuse Freeness). A VES VES is abuse free if for all PPT
algorithms A having access to oracles O ← {VESign(·, sk, apk)}, there is a neg-
ligible function ε(·) such that:

Pr

⎡

⎢
⎣

(ask, apk) $← AKeyGen(1κ),
(sk, pk) $← KeyGen(1κ),
(m∗, ω∗) $← AO(pk, ask, apk)

:
m∗ �∈ Q ∧
VEVerify(m∗, ω∗, pk, apk) = 1

⎤

⎥
⎦ ≤ ε(κ),

where Q is the set of messages queried to the VESign oracle.

Extractability and abuse freeness were introduced by Rückert and Schröder
in [27].

Additionally, Calderon et al. [5] have identified another property that is called
resolution independence. This property is crucial for a VES to be secure, as we
will discuss in Sect. 3.

Definition 17 (Resolution Independence). A VES VES is resolution inde-
pendent if for all κ > 0, all (ask, apk) $← AKeyGen(1κ), (sk, pk) $← KeyGen(1κ),
and all messages m, the outputs of Sign(m, sk) and Resolve(m,VESign(m, sk, apk),
ask, pk) are distributed identically.

In [5], the authors showed that VES constructions imply public key encryp-
tion if they additionally satisfy a property called resolution duplication. Loosely
speaking, a VES is resolution duplicate if the signatures returned by the signer
and the arbiter are identical.

Definition 18 (Resolution Duplication). A VES VES is resolution dupli-
cate if it is resolution independent and fulfills the following properties:

Deterministic Resolution: The algorithm Resolve is deterministic.
Extraction: There exists an additional PPT algorithm Extract(·, ·, ·), such that

for all κ > 0, all (ask, apk) $← AKeyGen(1κ), (sk, pk) $← KeyGen(1κ),m ∈ M,
and random tapes r ∈ {0, 1}∗, it is the case that

Extract(m, sk, r) = Resolve(m,VESign(m, sk, apk; r), ask, pk).

Up to now numerous standard-model VES constructions have been proposed,
but not all constructions so far are resolution-duplicate; in particular not the ones
with a randomized Resolve algorithm [5].

3 The Importance of Resolution Independence

In Boneh et al.’s original definition of a VES [3], the underlying signature scheme
is required to be secure, in addition to the security properties of the encrypted
signatures: completeness, unforgeability and opacity. Rückert and Schröder [27]

Verifiably Encrypted Signatures: Security Revisited and a New Construction 155

added the properties of extractability and abuse freeness, and Calderon et al. [5]
added the properties of resolution independence, but both omit (or are at least
unclear about) the requirement that the underlying signature scheme be secure.
Indeed, the latter paper says that they “additionally provide the adversary with
access to the Sign oracle, as otherwise the underlying signature scheme could be
completely broken and the VES would still be considered unforgeable.” In fact,
it can be completely broken anyway.

We will show that, with this omission, resolution independence is absolutely
essential to not only the unforgeability, but even the correctness, of the underly-
ing scheme. Resolution independence supplies the necessary glue to connect the
security properties of the encrypted scheme to the underlying scheme. Contra-
positively, we show that security including resolution independence is sufficient
for the correctness and security of the underlying signature scheme, so that does
not need to be proven separately. To be clear, we formally define what is meant
by the underlying signature scheme.

Definition 19. Let VES be a VES. Then we call Sig = (SKeyGen,Sign,Verify)
the underlying signature scheme of VES, where SKeyGen(1κ) outputs (sk, pk) $←
KeyGen(1κ).

3.1 Counterexample

We now show that completeness, unforgeability, opacity, extractability and abuse
freeness together do not imply the correctness or security of the underlying
scheme.

Let VES = (AKeyGen,KeyGen,Sign,Verify,VESign,VEVerify,Resolve) be a
VES with messages of length n, and let VES′ = (AKeyGen,KeyGen,Sign′,Verify,
VESign,VEVerify,Resolve) where Sign′(m, sk) computes and outputs Sign(0n, sk).

Theorem 1. If VES is complete, unforgeable, opaque, extractable and abuse free,
then so is VES′.

Proof. The adversary in the unforgeability game must output a valid encrypted
signature, but the set of valid encrypted signatures in VES and VES′ are the same,
and we have only weakened the oracles (by making Sign provide signatures only
on 0n), so unforgeability is preserved. The other properties do not mention the
Sign algorithm at all, so they are unaffected.
�

This scheme is intuitively both incorrect (as the signatures produced by Sign′

cannot be verified) and insecure (as it gives away a forgery as soon as it is called
on a message other than 0n. Nevertheless, VES′ is secure as defined in [27], since
their definition does not include the security of the underlying signature scheme.
It is also much more catastrophically insecure than the separating example in
[5, Sect. 3], which motivated the definition of resolution independence.

Theorem 2. The underlying signature scheme Sig of VES′ is neither correct
nor secure.

156 C. Hanser et al.

3.2 Filling the Gap

Lemma 1. If VES is a complete and resolution independent VES, then its
underlying signature scheme Sig is correct.

Proof. By completeness, for all κ > 0, (ask, apk) $← AKeyGen(1κ), (sk, pk) $←
KeyGen(1κ) and all messages m ∈ M, for ω

$← VESign(m, sk, apk), with proba-
bility 1,

Verify(m,Resolve(m,ω, ask, pk), pk) = 1.

By resolution independence, Resolve(m,ω, ask, pk) is identically distributed to
Sign(m, sk), so with probability 1,

Verify(m,Sign(m, sk), pk) = 1.
�
Lemma 2. If VES is an opaque and resolution independent VES, then its under-
lying signature scheme Sig is EUF-CMA-secure.

Proof. Let VES be a resolution independent VES, and let Sig be the underlying
signature scheme. We assume that there is an efficient adversary A breaking
the EUF-CMA security of Sig with non-negligible probability, and construct an
adversary B that uses A to break the opacity of VES.

B takes as input an arbiter’s public key apk and a signer’s public key pk
(with unknown corresponding private keys ask and sk), and passes pk as input
to A. Whenever A tries to query the Sign oracle on message m, B forwards m
to its VESign oracle, obtaining ω = VESign(m, sk, apk); B then queries (m,ω) to
its Resolve oracle, obtaining σ = Resolve(m,VESign(m, sk, apk), ask, pk), which it
returns to A. When A outputs (m∗, σ∗), B outputs the same.

By resolution independence, Sign(m, sk) and Resolve(m,VESign(m, sk, apk),
ask, pk) are identically distributed, so we perfectly simulate A’s Sign oracle.

If A never queried m∗ to Sign, then B never queried m∗ to Resolve, and so B
has the same non-negligible success probability as A.
�
Theorem 3. If a VES is complete, opaque and resolution independent, then its
underlying signature scheme Sig is correct and secure.

Proof. By Lemmas 1 and 2.
�

4 Verifiably Encrypted Signatures from SPS-EQ-R
In Scheme 1, we show how a VES can be built using any SPS-EQ-R construction
that allows perfect composition as a black box. In particular, the VES construc-
tion only requires the SPS-EQ-R construction to be correct, EUF-CMA secure
and to fulfill perfect composition (Definition 10).

Note 1. Observe that, independently of the instantiation of Scheme 1 with a
concrete SPS-EQ-R, the efficiency of the Verify resp. VEVerify can be improved
by precomputing parts of the pairing product equations that solely depend on
P and pk resp. A and pk, and including the resulting GT elements into (the
updated) user public key pk.

Verifiably Encrypted Signatures: Security Revisited and a New Construction 157

AKeyGen(1κ): Given a security parameter κ, compute BG ← BGGenR(1κ), pick

a
$← Z

∗
p, compute A ← aP and output (ask, apk) ← (a, (BG, A)).

KeyGen(1κ): Given a security parameter κ, compute BG ← BGGenR(1κ) and out-

put (sk, pk)
$← KeyGenR(BG, � = 3).

Sign(m, sk; (r1, r2)): Given a message m ∈ Z
∗
p, secret key sk and a ran-

dom tape (r1, r2) ∈ {0, 1}∗, pick s
$← Z

∗
p using r1 and compute σ′ ←

SignR((msP, sP, P), sk; r2) using the remaining coins r2. Finally, output σ ←
(σ′, sP).

Verify(m, σ, pk): Given a message m ∈ Z
∗
p, a signature σ = (σ′, S) and a public

key pk, output whatever VerifyR((mS, S, P), σ′, pk) outputs.
VESign(m, sk, apk; (r1, r2)): Given a message m ∈ Z

∗
p, secret key sk, the arbiter

public key apk = A and a random tape (r1, r2) ∈ {0, 1}∗, pick s
$← Z

∗
p using

r1 and compute ω′ ← SignR((msA, sA, A), sk; r2) using the remaining coins
r2. Finally, output ω ← (ω′, sA).

VEVerify(m, ω, pk, apk): Given a message m ∈ Z
∗
p, an encrypted signature ω =

(ω′, W), a public key pk and an arbiter public key apk = A, output whatever
VerifyR((mW, W, A), ω′, pk) outputs.

Resolve(m, ω, ask, pk): Given a message m ∈ Z
∗
p, an encrypted signature ω =

(ω′, sA), a public key pk and an arbiter secret key ask ← a, check whether

VEVerify(m, ω, pk, apk) =
?

1 and return ⊥ if this is not the case. Otherwise,
compute ((msP, sP, P), σ′) ← ChgRepR((msA, sA, A), ω, 1

a
, pk; 1) and output

σ ← (σ′, sP).

Scheme 1. A VES Construction from SPS-EQ-R.

In the following, we are going to analyze the security of Scheme 1 and prove
completeness, unforgeability, opacity and abuse freeness as well as resolution
duplication.

Theorem 4. The VES in Scheme 1 is complete.

Proof. The completeness proof of Scheme 1 is straight-forward and therefore
omitted here.
�
Theorem 5. The VES in Scheme 1 is unforgeable given that the underlying
SPS-EQ-R scheme is unforgeable.

Proof. We assume that there is an efficient adversary A winning the unforge-
ability game with non-negligible probability; then we are able to construct an
adversary B that uses A to break the EUF-CMA security of the underlying
SPS-EQ-R scheme with non-negligible probability.

B obtains pkR of the SPS-EQ-R scheme with � = 3 (and thereby implic-
itly the bilinear group BG) from the challenger C of the EUF-CMA security
game, and sets pk ← pkR. Then B picks a

$← Z
∗
p, computes A ← aP and sets

158 C. Hanser et al.

(ask, apk) ← (a, (BG, A)). Next, B sets up a list L ← ∅ to keep track of represen-
tatives queried to C, runs A on (pk, apk) and answers A’s oracle queries to the
Resolve oracle as in the real game and simulates queries to all other oracles as
follows:

Sign(·, sk): If A submits a query for m ∈ Z
∗
p, B queries C’s signing oracle for the

message (msP, sP, P) for s
$← Z

∗
p, gets in return a corresponding signature

σ′, sets L[m] ← L[m] ∪ {(msA, sA,A)} and gives σ ← (σ′, sP) to A.
VESign(·, sk, apk): If A submits a query for m ∈ Z

∗
p, B queries C’s signing oracle

for the message (msA, sA,A) for s
$← Z

∗
p, gets in return a corresponding

signature ω′, sets L[m] ← L[m] ∪ {(msA, sA,A)} and gives ω ← (ω′, sA) as
encrypted signature to A.

If at some point A outputs a valid encrypted message-signature pair (m∗, ω∗ =
(ω′∗,W ∗)), such that it has not previously queried m∗ to any of the oracles, then
B will output ((m∗W ∗,W ∗, A), ω′∗) to C.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game.

By construction, ((m∗W ∗,W ∗, A), ω′∗) constitutes a valid SPS-EQ-R
message-signature pair. It remains to show that for M∗ = (m∗W ∗,W ∗, A), the
class [M∗]R is different from all classes represented by elements in L, if m∗ is differ-
ent from all messages queried to the oracles. VEVerify demands that the third vec-
tor component of M∗ be A, which uniquely determines the representative for each
class and allows for comparison. Now, if there is some Mi = (miWi,Wi, A) ∈ L
queried to the VESign or the Sign oracle coinciding with M∗ in the second compo-
nent, then both vectors still differ in the first component for m∗ �= mi. Likewise,
if they coincide in the first component for m∗ �= mi, then they cannot have equal
second components. Hence, M∗ �= Mi for any Mi in L.
�
Theorem 6. The VES in Scheme 1 is opaque given that the DHI assumption
holds in G1 and that the underlying SPS-EQ-R is unforgeable.

Proof. We assume that there is an efficient adversary A winning the opacity game
with non-negligible probability. Then we are able to construct an adversary B that
uses A either to break with non-negligible probability the EUF-CMA security of
the underlying SPS-EQ-R scheme (Type-1 adversary) if A has neither queried the
VESign nor the Resolve oracle for m∗; or the DHI assumption (Type-2 adversary)
if A has only queried the VESign but not the Resolve oracle for m∗.

In the following, B guesses A’s strategy, i.e., the type of forgery A will con-
duct. We are now going to describe the setup, the initialization of the environ-
ment, the reduction and the abort conditions for each type.
Type-1: B obtains pkR of the SPS-EQ-R scheme with � = 3 (and thereby
implicitly the bilinear group BG) from the challenger C of the EUF-CMA secu-
rity game and sets pk ← pkR. Furthermore, B picks a

$← Z
∗
p, computes A ← aP

and sets (ask, apk) ← (a, (BG, A)). Next, B runs A on (pk, apk) and answers A’s
oracle queries to the Resolve oracle as in the real game and simulates queries to
the other oracle as follows:

Verifiably Encrypted Signatures: Security Revisited and a New Construction 159

VESign(·, sk, apk): If A submits a query for m ∈ Z
∗
p, B queries C’s signing oracle

for the message (msA, sA,A) for s
$← Z

∗
p, then B gets in return a signature

ω′ and outputs (ω′, sA).

If at some point A outputs a valid message-signature pair (m∗, σ∗) with σ∗ =
(σ′∗, S∗), and neither has queried to the VESign nor to the Resolve oracle for
m∗, then B will output ((m∗S∗, S∗, P), σ′∗) to C. In case that A has queried the
VESign oracle for m∗, B will abort.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game, which makes
the simulation perfect.

By construction, ((m∗S∗, S∗, P), σ′∗) constitutes a valid SPS-EQ-R message-
signature pair. It remains to show that for M∗ = (m∗S∗, S∗, P), the class [M∗]R
is different from all classes queried to C, if m∗ is different from all messages
queried to the VESign oracle. Verify demands that the third vector component of
M∗ be P , which uniquely determines the representative for each class and allows
for comparison. Now, if there is some Mi = (miSi, Si, P) coinciding with M∗

in the second component, then both vectors still differ in the first component
for m∗ �= mi. Likewise, if they coincide in the first component for m∗ �= mi,
then they cannot have equal second components. Hence, M∗ �= Mi for any Mi

queried to C.

Type-2: In the following, let p be some fixed probability, which we will set
later. B obtains an instance (P, aP) of the DHI problem in group G1 ∈ BG
(and thereby implicitly the bilinear group BG) from the challenger C. B executes
(sk, pk) $← KeyGenR(BG), runs A on (pk, apk ← (BG, A)) for A ← aP , sets up a
list L ← ∅ and simulates queries to the oracles as follows:

VESign(·, sk, apk): If A submits a query for m ∈ Z
∗
p, B picks s

$← Z
∗
p and random

coins r2, sets
− W ← sA with probability p, or
− W ← s(P + A) with probability 1 − p, and

runs ω′ ← SignR((mW,W,A), sk; r2). Then, it sets ω ← (ω′,W), stores
L[m] ← (s, r2, ω) and returns ω.

Resolve(·, ·, ask, pk): If A submits a query for m ∈ Z
∗
p and ω, then B checks

whether VEVerify(m,ω, pk, apk) =? 1 and returns ⊥ if this is not the case.
Otherwise, it retrieves the entry (s, r2, ω = (ω′,W)) ← L[m]. If W =? s(P +
A), then B aborts. Otherwise, B computes σ′ ← SignR((msP, sP, P), sk; r2)
and returns σ ← (σ′, sP).

If at some point A outputs a valid message-signature pair (m∗, σ∗ = (σ′∗, S∗))
and has queried the VESign oracle for m∗, but not the Resolve oracle, then B
retrieves (s∗, r∗

2 , ω
∗) ← L[m∗]. If S∗ = s∗P , then B aborts. Otherwise, we have

S∗ = s∗(1
aP + P) and B outputs 1

aP ← 1
s∗ S∗ − P as a solution to the DHI

problem.
Note that the distribution of all values returned to A during the simulation

is identical to the distribution of these values during a real game, which makes
the simulation perfect.

160 C. Hanser et al.

Let qR be the number of resolve queries. Then, with probability pqR , B
does not abort during the simulation. Given that the simulation works out, A
outputs a “useful” forgery with probability 1 − p. In total, B is able to return a
solution to the DHI problem with probability pqR(1 − p). The function f(p) =
pqR(1 − p) reaches its maximum for qR

qR+1 and after few calculations we obtain
f(p) = O(1

qR
). Therefore, if A is able to break the opacity of the scheme with

non-negligible probability ε(κ), then B is able to break the DHI assumption with
non-negligible probability O(ε(κ)

qR
).
�

Theorem 7. The VES in Scheme 1 is unconditionally extractable.

Theorem 8. The VES in Scheme 1 is abuse free given that the underlying SPS-
EQ-R scheme is unforgeable.

The following theorem states that Scheme 1 is resolution duplication. In par-
ticular, it is resolution independent, the importance of which was established in
Sect. 3. It will allow also us to derive a PKE scheme (cf. Sect. 5).

Theorem 9. The VES in Scheme 1 is resolution duplicate given that the under-
lying SPS-EQ-R scheme allows perfect composition.

The proofs of Theorems 7–9 are given in AppendixA.

5 Public-Key Encryption from SPS-EQ-R
In this section, we show how to convert any SPS-EQ-R satisfying perfect com-
position (Definition 10) into a public-key encryption scheme. This connection is
somewhat surprising, as it is well known that regular signature schemes do not
imply public-key encryption (in a black-box way). However, there is no contra-
diction as SPS-EQ-R have more structure than a regular signature scheme.

The basic idea is to instantiate the transformation of Calderon et al. [5].
This transformation turns any secure, resolution duplicate VES scheme into a
public-key encryption scheme, in a black-box way. We have already shown how
to construct a secure VES scheme, and that it is resolution duplicate, in Sect. 4.
The basic idea of the transformation is an application of the Goldreich-Levin
trick [14] to the setting of VES. That is, we view 〈σ, r〉 as the hard-core predicate
for VESign, i.e., given ω and r it should be hard to predict the value of 〈σ, r〉.
This intuition is formally shown in the following lemma.

Lemma 3. Let VES be a VES and let b(x, r) := 〈x, r〉 mod 2 for any x and
r such that |x| = |r|. Then, if the VES is opaque for all messages m ∈ M,
all (ask, apk) $← AKeyGen(1κ) and (sk, pk) $← KeyGen(1κ), it is hard to compute
b(σ, r) given m, apk, pk, ω

$← VESign(m, sk, apk), and r
$← {0, 1}|σ|, where σ :=

Resolve(ω, ask, pk).

The proof is given in [5] and follows that of Goldreich [13] closely. It leads
to the following construction of a CPA-secure public-key encryption scheme
(EKeyGen,Enc,Dec) as follows:

Verifiably Encrypted Signatures: Security Revisited and a New Construction 161

– EKeyGen(1κ): Output (apk, ask) $← AKeyGen(1κ).
– Enc(m, apk) : Generate signing keys (sk, pk) $← KeyGen(1κ) and pick a ran-

dom tape r and rσ
$← {0, 1}|σ|. Now, compute ω := VESign(0, sk, apk; r),

σ
$← Extract(m, sk, r), and set c0 := m ⊕ 〈σ, rσ〉. Output c = (pk, ω, rσ, c0).

– Dec(c, ask) : Parse c = (pk, ω, rσ, c0) and return ⊥ if VEVerify(0, ω, pk, apk) =
0. Otherwise, compute σ := Resolve(0, pk, ω, ask, pk) and output m := c0 ⊕
〈σ, rσ〉.

Regarding security, it was shown that the above construction is CPA secure [5]:

Theorem 10. If the verifiably encrypted signature is resolution duplicate
(according to Definition 18) and opaque, then the above scheme is IND-CPA
secure.

6 Conclusion

We have shown that the property of resolution independence is crucial, not only
for constructing public-key encryption from verifiably encrypted signatures, but
even for the correctness and security of the VES.

We gave for the first time a construction of resolution duplicate (and in
particular resolution independent) VES from SPS-EQ-R. Our VES has short
keys and signatures. This result demonstrates further applications of SPS, and
SPS-EQ-R in particular. Using our VES, we constructed public-key encryption.
Since the construction is generic, it proves that SPS-EQ-Rs allowing perfect
composition cannot be constructed from one-way functions.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

3. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

4. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th FOCS, pp. 283–292. IEEE Computer Society Press, Philadelphia, 25–28 Octo-
ber 2008

5. Calderon, T., Meiklejohn, S., Shacham, H., Waters, B.: Rethinking verifiably
encrypted signatures: a gap in functionality and potential solutions. In: Benaloh,
J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 349–366. Springer, Heidelberg (2014)

6. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)

162 C. Hanser et al.

7. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of ψ revisited. Discrete Appl. Math. 159(13), 1311–1322 (2011).
http://www.sciencedirect.com/science/article/pii/S0166218X11001648

8. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011)

9. Fuchsbauer, G., Hanser, C., Slamanig, D.: EUF-CMA-secure structure-preserving
signatures on equivalence classes. Cryptology ePrint Archive, Report 2014/944
(2014). http://eprint.iacr.org/2014/944

10. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015)

11. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS, pp.
325–335. IEEE Computer Society Press, Redondo Beach, 12–14 November 2000

12. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 434–455. Springer, Heidelberg (2007)

13. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

14. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press, Seattle, 15–17 May 1989

15. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

16. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014)

17. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

18. Hess, F.: On the security of the verifiably-encrypted signature scheme of boneh,
gentry, lynn and shacham. Inf. Process. Lett. 89(3), 111–114 (2004)

19. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th FOCS, pp. 230–235. IEEE Computer
Society Press, Research Triangle Park, 30 October - 1 November 1989

20. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, Seattle, 15–17 May 1989

21. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

22. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

23. Pfitzmann, B., Sadeghi, A.-R.: Anonymous fingerprinting with direct non-
repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 401.
Springer, Heidelberg (2000)

24. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press, Baltimore, 14–16 May 1990

25. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

http://www.sciencedirect.com/science/article/pii/S0166218X11001648
http://eprint.iacr.org/2014/944

Verifiably Encrypted Signatures: Security Revisited and a New Construction 163

26. Rückert, M.: Verifiably encrypted signatures from RSA without NIZKs. In: Roy,
B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 363–377. Springer,
Heidelberg (2009)

27. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a con-
struction without random oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)

28. Vahlis, Y.: Two Is a crowd? a black-box separation of one-wayness and security
under correlated inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
165–182. Springer, Heidelberg (2010)

29. Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and
partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003)

A Omitted Proofs

Theorem 7. The VES in Scheme 1 is unconditionally extractable.

Proof. This follows directly from the correctness property of any SPS-EQ-R
scheme. To see this, observe that for (m,ω) with ω = (ω′, sA) it holds that
VEVerifyR((msA, sA,A), ω′, pk) = 1 if and only if VerifyR((msP, sP, P), σ′, pk) =
1, where ((msP, sP, P), σ′) ← ChgRepR((msA, sA,A), ω′, 1

a , pk; 1), since

[(msA, sA,A)]R = [(msP, sP, P)]R.
�
Theorem 8. The VES in Scheme 1 is abuse free given that the underlying SPS-
EQ-R scheme is unforgeable.

Proof. We assume that there is an efficient adversary A winning the abuse free-
ness game with non-negligible probability; then we are able to construct an
adversary B that uses A to break the EUF-CMA security of the underlying
SPS-EQ-R scheme with non-negligible probability.

B obtains pkR of the SPS-EQ-R scheme with � = 3 (and thereby implic-
itly the bilinear group BG) from the challenger C of the EUF-CMA security
game, sets pk ← pkR. Furthermore, B picks a

$← Z
∗
p, computes A ← aP and

sets (ask, apk) = (a, (BG, A)). Next, B runs A on (pk, ask, apk) and answers A’s
oracle queries as follows:

VESign(·, sk, apk): If A submits a query for m ∈ Z
∗
p, B queries C’s signing oracle

for the message (m · sA, sA,A) for s
$← Z

∗
p, gets in return a corresponding

encrypted signature ω′ and gives ω ← (ω′, sA) to A.

If at some point A outputs a valid encrypted message-signature pair (m∗, ω∗ =
(ω′∗,W ∗)), such that it has not previously queried m∗ to any of the oracles, then
B will output ((m∗W ∗,W ∗, A), ω′∗) to C. In case that A has queried the VESign
oracle for m∗, B will abort.

164 C. Hanser et al.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game.

By construction, ((m∗W ∗,W ∗, A), ω′∗) constitutes a valid SPS-EQ-R
message-signature pair. It remains to show that for M∗ = (m∗W ∗,W ∗, A), the
class [M∗]R is different from all classes queried to C, if m∗ is different from all
messages queried to the VESign oracle. VEVerify demands that the third vector
component of M∗ be A, which uniquely determines the representative for each
class and allows for comparison. Now, if there is some Mi = (mi · Wi,Wi, A)
coinciding with M∗ in the second component, then both vectors still differ in
the first component for m∗ �= mi. Likewise, if they coincide in the first com-
ponent for m∗ �= mi, then they cannot have equal second components. Hence,
assuming that m∗ �= mi and M∗ = Mi for some Mi queried to C, immediately
gives a contradiction.
�
Theorem 9. The VES in Scheme 1 is resolution duplicate given that the under-
lying SPS-EQ-R scheme allows perfect composition.

Proof. Here, we have to show (1) that the outputs of Sign(m, sk) and Resolve(m,
VESign(m, sk, apk), ask, pk) are distributed identically, (2) that Resolve is deter-
ministic and (3) that there exists a PPT algorithm Extract(·, ·, ·), such that for all
(ask, apk) $← AKeyGen(1κ), (sk, pk) $← KeyGen(1κ),m ∈ M, and random tapes
r ∈ {0, 1}∗, it is the case that

Extract(m, sk, r) = Resolve(m,VESign(m, sk, apk; r), ask, pk).

Property (2) is easy to see, since Resolve controls the internal randomness of
ChgRepR, runs it with randomness 1 and, thereby, executes it deterministically.
All other parts of Resolve are deterministic as well.

The extract algorithm for Property (3) can be specified as Extract(m, sk, r):=
Sign(m, sk; r) = Sign(m, sk; (r1, r2)) = (SignR((msP, sP, P), sk; r2), sP) where s
is drawn uniformly from Z

∗
p using random coins r1. For the RHS, we have

Resolve(m,VESign(m, sk, apk; r2), ask, pk) =
Resolve(m, (SignR((msA, sA,A), sk; r2), sA), ask, pk) =

(ChgRepR((msA, sA,A),SignR((msA, sA,A), sk; r2),
1
a
, pk; 1)[2], sP),

where s and t are as above. If the underlying SPS-EQ-R scheme allows perfect
composition, this gives the same output as the specified Extract algorithm.
With regard to (1) observe that Property (3) and the fact that the Extract
algorithm can be expressed by Sign implies that the distributions of Sign(m, sk)
and Resolve(m,VESign(m, sk, apk), ask, pk) are identical.
�

Interleaving Cryptanalytic Time-Memory
Trade-Offs on Non-uniform Distributions

Gildas Avoine1,2(B), Xavier Carpent3, and Cédric Lauradoux4

1 INSA de Rennes, IRISA UMR 6074, F-35043 Rennes, France
gildas.avoine@irisa.fr

2 Institut Universitaire de France, Paris, France
3 Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

4 INRIA, Rennes, France

Abstract. Cryptanalytic time-memory trade-offs (TMTO) are famous
tools available in any security expert toolbox. They have been used to
break ciphers such as A5/1, but their efficiency to crack passwords made
them even more popular in the security community. While symmetric keys
are generated randomly according to a uniform distribution, passwords
chosen by users are in practice far from being random, as confirmed by
recent leakage of databases. Unfortunately, the technique used to build
TMTOs is not appropriate to deal with non-uniform distributions. In this
paper, we introduce an efficient construction that consists in partitioning
the search set into subsets of close densities, and a strategy to explore
the TMTOs associated to the subsets based on an interleaved traversal.
This approach results in a significant improvement compared to currently
used TMTOs. We experimented our approach on a classical problem,
namely cracking 7-character NTLM Hash passwords using an alphabet
with 34 special characters. This resulted in speedups ranging from 16 to
76 (depending on the input distribution) over rainbow tables, which are
considered as the most efficient variant of time-memory trade-offs.

1 Introduction

Security experts are often facing the problem of guessing secret values such as
passwords. Performing an exhaustive search in the set of possible secrets is an
ad-hoc approach commonly used. In practice, the search time can usually be
reduced (on average) by exploiting side information on the values to be guessed.
For example, a password cracker checks the most commonly used passwords and
their variants before launching an exhaustive search. This optimization is very
effective, as described in [7,15]. More generally, the distribution of the secrets
can be exploited to reduce the average cryptanalysis time [14].

An alternative to an exhaustive search is the cryptanalytic time-memory
trade-off (TMTO) technique, introduced by Hellman in 1980 [9]. It consists for
an adversary in precalculating values that are then used to speed up the attack
itself. The precalculation is quite expensive but they are done once, and the
cryptanalysis time is significantly reduced if a large memory is used to store
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 165–184, 2015.
DOI: 10.1007/978-3-319-24174-6 9

166 G. Avoine et al.

the precalculation. Nowadays, TMTOs are used by most password crackers, for
example Ophcrack that is considered to be the most efficient password cracker,
which implements a TMTO variant due to Oechslin [16] and known as the rain-
bow tables.

Unfortunately, TMTOs do not behave well with non-uniform distributions of
secrets because TMTOs, by construction, uniformly explore the set of considered
secrets. Duplicating secrets in the search set for instance artificially creates a
non-uniform distribution but this approach does not make sense in practice
due to the excessive waste of memory. Providing an efficient solution would be
very impactful in practice, though, not only for cracking passwords, but also
for solving any problem that can be reduced to a chosen plaintext attack. For
example, anonymization techniques based on hashing email addresses or MAC
addresses are vulnerable targets for non-uniform TMTOs.

This paper introduces a technique to make cryptanalytic time-memory trade-
offs compliant with non-uniform distributions. More precisely, the approach con-
sists in (i) dividing a set into subsets of close densities, and (ii) exploring the
related time-memory trade-offs in an interleaved way (instead of sequentially)
defined by a density-related metric. The technique significantly improves the
cryptanalysis time when considering non-uniform distributions: we applied our
technique to crack passwords and demonstrated that we are up to 76 times
faster than state-of-the-art techniques [16] when considering real-life password
distributions.

After an introduction to TMTOs in Sect. 2, we describe and analyze our
technique in Sect. 3 and explain how to interleave the TMTOs in Sect. 4. Section 5
explains the memory allocation, and Sect. 6 provides experimental results.

2 Cryptanalytic Time-Memory Trade-Offs

2.1 Hellman Scheme

Hellman introduced in [9] a method to do an efficient cryptanalysis of a one-way
function, the cryptanalytic time-memory trade-off (or TMTO). Given y, the goal
is to discover x such that h(x) = y, with h : A → B a one-way function (such as
a hash function or a block cipher). As its name suggests, it is a trade-off between
two simple solutions, the exhaustive search and the lookup table. The exhaustive
search consists in computing h over all possible input values in A, checking every
time if the image corresponds to y. It requires no memory or precalculation, but
on average |A|/2 evaluations of h. The lookup table approach creates offline a
huge table mapping all inputs in A with their image through h. During the online
phase (when queried with an image), this approach requires no h evaluation and
is very quick, but the precalculation cost is N = |A| evaluations of h, and more
importantly the N mappings are saved in memory. Hellman’s method on the
other hand, has an offline cost of O(N), and an online cost of O(N2/M2) for M
units of memory.

Interleaving Cryptanalytic Time-Memory Trade-Offs 167

2.2 Oechslin Scheme

There has been quite a few variants to Hellman’s method, but arguably the
most significant improvement is the rainbow table, introduced by Oechslin in [16].
Rainbow tables are faster in practice than Hellman tables [12,16], and are imple-
mented in many popular tools, especially in the password-cracking scene (see e.g.
Ophcrack [17], RainbowCrack [20]).

Rainbow tables are heavily inspired from Hellman tables and their behavior
is similar. In the offline phase, a series of chains of hashes is built, by alternating
h : A → B, the hash function to be inverted, and ri : B → A, a reduction
function. The goal of the reduction function is to output an arbitrary point in A
in an efficient and deterministic way, and with outputs uniformly distributed in
A (given inputs uniformly distributed in B). A typical reduction function set is:

ri(y) = (y + i) mod |A|.

A different reduction function ri is used at each iteration i (this is the major
difference with Hellman tables where the same reduction function is used in
a table1). Chains start with an arbitrary point in A. They are all of a given
length t, and m chains are built this way. Of all the points in the chains, only
the starting and ending points are saved. Figure 1 depicts the construction of a
rainbow table.

Tables are said to be perfect [4,16] or clean [2] when they contain no merges.
A major advantage of rainbow tables over Hellman tables is that in rainbow
tables, collisions only result in merges when they happened in the same col-
umn (whereas collisions always lead to merges in Hellman tables). In that case,
merging chains result in duplicate ending points. It is therefore very easy to
remove these chains and create clean tables. Clean tables have a maximal size
(on average, only a given number of different ending points may be obtained by

X1,1
r1◦h−−−→ X1,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ X1,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ X1,t

X2,1
r1◦h−−−→ X2,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ X2,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ X2,t

...
...

. . .
...

. . .
...

Xj,1
r1◦h−−−→ Xj,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ Xj,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ Xj,t

...
...

. . .
...

. . .
...

Xm,1
r1◦h−−−→ Xm,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ Xm,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ Xm,t

Fig. 1. Structure of a rainbow table. The framed columns, respectively the starting
points and the ending points, are the parts stored in memory.

1 Multiple tables with different reduction functions are used in both Hellman and
rainbow tables, although there are much more tables in typical settings for Hellman
tables.

168 G. Avoine et al.

computing chains from all possible starting points), and have a bounded proba-
bility of success of about 86 %. In order to have a higher probability of success,
several rainbow tables are computed, using a different reduction function set for
each (a typical number is 4).

The online phase works as follows. Given an image y, the goal is to find x
such that h(x) = y. The first step is to compute rt−1(y), and check whether
it appears in the ending points list. If an ending point Xj,t matches rt−1(y),
a chain is rebuilt from Xj,1 up to Xj,t−1, and h(Xj,t−1) is compared to y. If
they are equal, the search stops here and the preimage is x = Xj,t−1. If they
differ (this situation is called a false alarm and is due to the collisions created
by the reduction functions), the search goes on to the next table, where rt−1(y)
is computed for that table. When all tables are searched in the last column, the
next step is to compute rt−1(h(rt−2(y))) and to proceed to the next column. This
procedure goes on until the answer is found, or until all t columns are searched
through, in which case the search fails (as said previously, the number of tables
can be adjusted to make this event extremely rare).

2.3 Related Works

There exists many variants of the original cryptanalytic time-memory trade-off
introduced by Hellman [9], in particular the distinguished points [8,11,21] and
the rainbow tables [16]. The choice on which variant to apply depends on the
parameters (space size, memory, probability of success), and the applicability of
their various optimizations (see [6,12,16] for discussions on their comparison).
Lately however, rainbow tables have been shown [12] to be superior to the other
trade-offs in most practical scenarios, and maximal tables have the best online
performance (despite being slower to precompute). That being said, the inter-
leaving technique discussed in this paper can be easily adapted to other variants
or to non-maximal rainbow tables.

Maximal-Sized Rainbow Tables. This work focuses on clean maximal-sized
rainbow tables. Clean rainbow tables have been analyzed extensively [4,12]. Some
earlier results on maximal-size rainbow tables from [4] that are relevant for the
rest of the analysis are cited below for reference.

Result 1. The probability of success of a set of � clean rainbow tables of maximal
size is:

P ∗ ≈ 1 − e−2�.

Result 2. The average number of h evaluations during a search in column k
(column 0 being the rightmost one) of a set of � clean rainbow tables of maximal
size with chains of size t is:

Ck = k + (t − k + 1)qt−k+1,

with

qi = 1 − i(i − 1)
t(t + 1)

.

Interleaving Cryptanalytic Time-Memory Trade-Offs 169

Result 3. The average number of h evaluations during the online phase of a set
of � clean rainbow tables of maximal size with m chains of size t on a problem
set of size N is:

T =
t∑

k=1

(

1 −
(
1 − m

N

)�
)(

1 − m

N

)(k−1)� k∑

i=1

�Ck +
(
1 − m

N

)t� t∑

k=1

�Ck.

Rainbow Table Improvements. Rainbow tables have had a few improve-
ments of their own. Although they are not considered in this article, they are
worth mentioning as they are independent and complementary to the interleav-
ing technique.

Checkpoints, introduced by Avoine, Junod and Oechslin in [3] are additional
data related to the chain that is stored alongside the starting points and the
ending points. Their goal is to alleviate the overhead due to false alarms at the
cost of a bit of extra memory.

Efficient storage is important in time-memory trade-offs, as more chains
translates directly into faster online time. Techniques to store starting and end-
ing points efficiently are discussed in [2].

Ending point truncation (as described for instance in [12]) is another effort
to reduce memory usage. Truncating the ending points reduces storage required
for chains, and thus more chains can be stored in the same amount of memory.
A drawback is that it introduces additional false alarms and thus increases online
cost somewhat, but a modest amount of truncation has been shown to be valuable.

Non-uniform Distribution. Working with non-uniform distribution is the
core aspect of our work, and several approaches have been proposed [10,13].

A possible means to favor some passwords over some others is to introduce a
bias in the reduction functions [10]. However, the technique suffers from imple-
mentation issues and is not profitable in practice, as stated in [10].

Markov chains have been used to search through probable passwords instead
of improbable ones [13,15]. This is essentially the adaptation of dictionary
attacks on time-memory trade-offs, as it allows to search for some passwords
at the expense of not covering some others. Interleaving is different in that it
aims at covering a given set, but searching through it in an efficient way, given
its probability distribution. As detailed in Sect. 6, we used statistics on common
passwords to guide the partitioning of the input set. One could alternatively use
the technique described in [13] to determine the partitioning.

3 Interleaving

3.1 Description

The nature of rainbow tables dictates that each point of the input set is recovered
using on average the same time. There is no bias in the coverage either: each

170 G. Avoine et al.

point is covered a priori with the same probability. In order to work efficiently
with a non-uniform input distribution, the technique introduced in this paper
consists in (1) dividing the TMTO into several sub-TMTOs and (2) balancing
the online search between the sub-TMTOs.

The TMTO is divided into several sub-TMTOs such that each subdivision
of the input set is close to be uniform. For instance, if one wants to build a
TMTO against passwords containing alphanumeric and special characters, two
sub-TMTOs can be built on a partition of the input set: alphanumeric passwords
on one side, and passwords containing special characters on the other side. As
illustrated on Fig. 2, this makes sense because the first set (A1) is considerably
larger although most users choose their passwords in the second set (A2). We say
that the first set has a higher password density than the second one. This density
disparity is not exploited in regular TMTOs while Sect. 5 demonstrates that a
TMTO covering a high-density subset should be devoted a higher memory.

Formally, let the input set A be partitioned into n input subsets2 [A]b of size
|[A]b| = [N]b. Each subset has a probability pb that the answer to the challenge in
the online phase lies in [A]b. The part of the trade-off dedicated to [A]b is named
“sub-TMTO b”. The memory is divided and a slice [M]b = ρbM is allocated
for each sub-TMTO b, where M is the total memory available for the trade-off.
Each sub-TMTO b is built on [A]b using a memory of [M]b, exactly in the same
way than a regular TMTO.

Set [A]1 Set [A]2

Fig. 2. Input set divided into two sets of different densities

In order to search through the sub-TMTOs, one naive approach could be to
search through each of them one by one. However, this technique is very slow
when the point to recover ends up being in one of the last sub-TMTOs. A more
efficient approach consists in balancing the search between the sub-TMTOs: at
every step of the online search, the balancer decides which sub-TMTO will be
visited, as illustrated in Fig. 3 when 2 sub-TMTOs are considered. The search in
a sub-TMTO is performed in the same way than in classical rainbow tables. The
order of visits is chosen deterministically in a way that minimizes the average
online time, as described in Sect. 4.

2 For notations that already exist for rainbow tables, the convention adopted through-
out the article to avoid confusion is to surround them with brackets, as summarized
in Table 1.

Interleaving Cryptanalytic Time-Memory Trade-Offs 171

Balancer

Fig. 3. The TMTO balancer defines the order of visit of the sub-TMTOs.

Table 1. Notations used in this paper.

Meaning Notes

n number of subsets (and sub-TMTOs)

[A]b input subset
⋃n

b=1[A]b = A, [A]b ∩ [A]b′ = ∅ ∀ b �= b′

[N]b input subset size [N]b = |[A]b|,
∑n

b=1[N]b = N

pb intrinsic probability of subset [A]b pb = Pr(x ∈ [A]b|h(x)),
∑n

b=1 pb = 1

[M]b memory size for sub-TMTO b
∑n

b=1[M]b = M

ρb memory proportion for sub-TMTO b ρbM = [M]b,
∑n

b=1 ρb = 1

[m]b number of chains of the sub-TMTO b [m]b =
[M]b

2�log2 N�
[t]b length of chains of the sub-TMTO b [t]b =

2[N]b
[m]b

− 1

t̂ total number of steps of the TMTO t̂ =
∑n

b=1[t]b

[Ci]b cost for column i of sub-TMTO b see Theorem2

3.2 Analysis

Notations. In the analysis done in this article, the same number � of tables is
used in each sub-TMTO. It is also possible to use a different number of tables
per sub-TMTO, but this results in a different probability of success for each of
them.

A step is defined as being a search in one column for the � tables of a given
sub-TMTO. One could choose to define a step as being a search in a column for a
single table of a given sub-TMTO, but doing so results in a negligible difference
of performance at the cost of a more complicated analysis and implementation.

The notations used in this paper are presented in Table 1.

Online Phase

Probability of Success. The probability of success is the same in rainbow tables
that use interleaving than in the undivided case, provided clean tables of maximal
size are used.

Theorem 1. The probability of success of a set of interleaved clean rainbow
tables of maximal size is:

P ∗ ≈ 1 − e−2�.

172 G. Avoine et al.

Proof. The probability of success is

P ∗ =
n∑

b=1

piP
∗
i ,

with P ∗
i the probability of success of the sub-TMTO i. Since each sub-TMTO is

a clean rainbow table of maximal size, we have that P ∗
i ≈ 1 − e−2�, as computed

in Result 1. The results follows from
∑n

b=1 pi = 1.

Average Time. The average search time for interleaved rainbow tables is given
in Theorem 2. An example of the average speedup realized is given in Sect. 6.

Theorem 2. The average number of hash operations required in the online
phase of a set of interleaved clean rainbow tables of maximal size, given a set of
n input subset sizes {[N]1, ..., [N]n}, intrinsic probabilities {p1, ..., pn}, numbers
of chains {[m]1, ..., [m]n}, and a vector V = (V1, ..., Vt̂) representing the order of
visits (i.e. Vk is the sub-TMTO chosen at step k) is:

T =
t̂∑

k=1

pVk

[

1 −
(

1 − [m]Vk

[N]Vk

)�
] [

1 − [m]Vk

[N]Vk

](Sk−1)� k∑

i=1

�[CSi
]Vi

+

[
n∑

b=1

pb

(

1 − [m]b
[N]b

)[t]b�
]

n∑

b=1

[t]b∑

s=1

�[Cs]b, (1)

with t̂ =
∑n

b=1[t]b the total maximum number of steps3, and Sk the number of
steps for the sub-TMTO Vk after k steps in total, that is:

Sk = #{i ≤ k|Vi = Vk}.

Proof. The formula is a relatively direct adaptation of the average time in the
undivided case (Result 3) to the interleaved case. Let y be the given hash in the
online phase, and x ∈ A be the the preimage of y. The average cryptanalysis
time for a TMTO is:

T =
t̂∑

k

Pr(search succeeds at step k) × (cost up to step k)

+ Pr(search fails) × (cost of a complete search).

Vk is the sub-TMTO chosen to visit at some step k. Vk has been visited Sk −1
times until step k. The probability Pr(search succeeds at step k) is therefore:

pVk

(

1 −
(

1 − [m]Vk

[N]Vk

)�
)(

1 − [m]Vk

[N]Vk

)(Sk−1)�

. (2)

3 t̂ is used instead of t in order to avoid confusion with the number of columns of the
undivided TMTO, which is a different number.

Interleaving Cryptanalytic Time-Memory Trade-Offs 173

The first factor in (2) is simply Pr(x ∈ [A]Vk
) (the search may not succeed

otherwise). Then, for the search to succeed at step k (or step Sk within the sub-
TMTO Vk), it must have failed up to now. This is the third factor in (2). The
expression [m]Vk

[N]Vk
is the probability that x lies within any column of any table of

the sub-TMTO Vk, provided that x ∈ [A]Vk
. The expression

(
1 − [m]Vk

[N]Vk

)(Sk−1)�

is then just the probability that x is not in any of the (Sk − 1)� first columns
visited, provided that x ∈ [A]Vk

. Finally, the second factor in (2) expresses the
probability that x lies within one of the � columns visited at this step4, provided
that x ∈ [A]Vk

and that it has not been found up to now.
The value “cost up to step k” is the sum of the cost of each step up to the

current one. For each step i ≤ k, the sub-TMTO visited is Vi (and it is its Si-th
visit), and the associated cost is [CSi

]Vi
(see Result 2).

The probability Pr(search fails) is:

n∑

b=1

pb

(

1 − [m]b
[N]b

)[t]b�

. (3)

A failed search means that x is not in any of the [t]b columns of the sub-TMTO
b where b is such that x ∈ [A]b. Since the subsets [A]i form a partition of A, the

law of total probability gives (3). The factor
(
1 − [m]b

[N]b

)[t]b�

is the probability that
x is not in any of the [t]b columns of the sub-TMTO b, given x ∈ [A]b.

Finally, the “cost of a complete search” is the sum of the cost of each step in
all sub-TMTOs, that is

∑n
b=1

∑[t]b
s=1 �[Cs]b. This expression could also be written

∑t̂
k=1 �[CSk

]Vk
, but the former expression is closer to its counterpart in Theo-

rem3 and also highlights that the cost of failure is independent of the order of
visits V .

Note that Theorem 2 for interleaved rainbow tables is a generalization of
Result 3 for classical rainbow tables. In particular, if n = 1 and V = (1, 1, ..., 1)
with |V | = t, Theorem 2 gives the same equation as Result 3.

Worst-Case Time. A drawback of the interleaving is that it has in general a
worse worst-case time than an undivided TMTO. The worst-case in interleaved
rainbow tables corresponds to the second factor of the last term in (1), that is:

n∑

b=1

[t]b∑

s=1

�[Cs]b. (4)

Note that it is independent of the subset probabilities and the order of visits.

4 Note that one would normally stop the search as soon as x is found rather than
continuing with all � tables of this step. This results in a more complex formula for
the average time, and a negligible difference numerically.

174 G. Avoine et al.

Offline Phase. Precalculation of an interleaved TMTO consists in precalcula-
tion of each sub-TMTO independently. Precalculation of a clean rainbow table
set of m chains requires to build m1 = αm chains, where α is a factor depending
on how close to tables of maximal size the implementer wants to get (typical
numbers for α are 20–50).

The precalculation cost is the same regardless of the order of visit (since this
only regards the online phase), and asymptotically independent of the memory
allocation for each sub-TMTO. In particular, it is the same as in the undivided
case, as shown in Theorem 3.

Theorem 3. The number of hash operations required in the precalculation phase
of a set of interleaved clean rainbow tables, given a set of n input subset sizes
{[N]1, ..., [N]n}, numbers of chains {[m]1, ..., [m]n}, and given α, the overhead
factor for clean tables, is:

P ≈ 2α�N.

Proof. The precalculation consists in computing, for each sub-TMTO b and for
each of its � tables, [m1]b = α[m]b chains of [tb] points.

P =
n∑

b=1

�[m1]b[t]b.

By replacing the definition of [t]b for clean tables, we get

P =
n∑

b=1

�[m1]b

(
2[N]b
[m]b

− 1
)

≈
n∑

b=1

�2α[N]b.

The approximation
(

2[N]b
[m]b

− 1
)

≈ 2[N]b
[m]b

is good because, typically, [t]b � 1. For
unusually small tables, the cost is slightly overestimated. The conclusion follows
from

∑n
b=1[N]b = N

Storage. In this analysis, a naive storage consisting in storing both the starting
and ending points on �log2 N� bits is used. This explains why the number of
chains [m]b is given as [M]b

2�log2 N� in Table 1.
Other options could be envisaged, such as storing the starting points on

�log2[m1]b� bits and the ending points on �log2[N]b� bits, or even better, using
prefix-suffix decomposition or compressed delta encoding [2]. These storage tech-
niques improve the memory efficiency and therefore implicitly the global efficiency
of the trade-off. In fact, they are even more beneficial for interleaved sub-TMTOs
than for an undivided TMTO, because sub-TMTOs operate on smaller subsets,
and can therefore benefit from a more substantial reduction of the memory.

However, taking these into account makes both the analysis of interleaved
sub-TMTOs and their comparison with an undivided TMTO quite a bit more
complex. It is nevertheless strongly encouraged to take these storage improve-
ments into consideration for practical implementations, and for figuring out the
optimal memory allocation (as discussed in Sect. 5.2) for such practical imple-
mentations.

Interleaving Cryptanalytic Time-Memory Trade-Offs 175

4 Order of Visit

4.1 Discussion

This section discusses the order of visit of the columns of the sub-TMTOs. Before
every step during the search, a decision is made regarding in which sub-TMTO
to search through during this step. This decision should be made easily and
quickly, and the goal is to have an order of visit that minimizes the average
search time.

What is suggested is that a metric is computed for each sub-TMTO b. This
metric is defined as being the probability to find a solution in [A]b at the next
step, divided by the average amount of work at the next step in sub-TMTO b
(Definition 1).

Definition 1. The metric associated to the k-th step of sub-TMTO b is:

η(b, k) =
Pr(x found at the k-th step in sub-TMTO b)
E[work for the k-th step in sub-TMTO b]

,

with x, an answer in the online phase.

The sub-TMTO that should be visited is the one with the highest metric.
This metric is quantified for the rainbow scheme case in Sect. 4.2.

4.2 Analysis

It has been shown in [4] that the probability for the preimage to be in any column
is m/N . This probability is thus independent of the column visited. Moreover, it
may be seen from Result 2 that the cost is monotonically increasing towards the
left columns in a rainbow table. This means that it is always preferable to visit
the rightmost column that is not yet visited first. Therefore, the metric is only
computed for each sub-TMTO rather than for each column, since the choice of
the column is implicitly the rightmost one5.

Theorem 4. The metric associated to the k-th step of sub-TMTO b is:

η(b, k) =
pb ×

(

1 −
(
1 − [m]b

[N]b

)�
)(

1 − [m]b
[N]b

)(k−1)�

�[Ck]b
.

Proof. The numerator in Definition 1 is the probability addressed in equation (2)
in the proof of Theorem2. The denominator, the expected work required at step
k in sub-TMTO b is denoted [Ck]b, and is computed as indicated in Result 2.
Since the search is done in � tables, the total work done at this step on average
is �[Ck]b.
5 Note that in rainbow tables with checkpoints [3], this is not entirely the case (columns

where checkpoints are placed often have a slightly cheaper cost than the the column
immediately to their right, for instance). Nevertheless, the search is performed from
right to left as well in such tables (see [3]), and experiments show that the gain of
reorganizing columns visit for taking this into account is extremely small.

176 G. Avoine et al.

The Lemma 1 provided below helps demonstrating Theorem5.

Lemma 1. The metric η(b, k) from Theorem4 is a decreasing function of k.

Proof. The numerator of η(b, k) is decreasing, because both
(

1 −
(
1 − [m]b

[N]b

)�
)

and pb are constant, and because
(
1 − [m]b

[N]b

)(k−1)�

is decreasing (since [m]b
[N]b

> 0).
The denominator is an increasing function of k since the cost of a step is

increasingly expensive towards the left of a rainbow table.

Theorem 5. The metric given in Theorem4 is optimal, that is it minimizes
T from Theorem2 given a set of n input subset sizes {[N]1, ..., [N]n}, intrinsic
probabilities {p1, ..., pn} and numbers of chains {[m]1, ..., [m]n}.
Proof. See AppendixA.

5 Input Set Partition and Memory Allocation

5.1 Input Set Partition

Dividing a set into subsets generates a time overhead for the online phase of the
time-memory trade-off. Doing so is worth it if the gain outweighs this overhead.
The ratio pb

[N]b
represents the individual probability of occurrence for each point

of the [A]b subset, and is intuitively a measure of the “density” of [A]b. It makes
sense to divide a set when it contains subsets of unbalanced densities. A TMTO
covering a high-density subset should be devoted a higher memory and searched
through more rapidly than usual, and vice versa. Once the considered set is
partitioned into subsets, one may compute the expected online time given using
Theorem 2.

5.2 Memory Allocation

Given a partition {[N]1, ..., [N]n} of the input set and their intrinsic probabili-
ties {p1, ..., pn}, a memory size must be assigned to each subset. Given [N]b, we
have [M]b = ρbM . The expression T given in Theorem 2 is not simple enough to
determine analytically an optimal memory allocation. Instead, the memory allo-
cation can be done solving an optimization problem that consists in minimizing
T by changing the variables ρ1, ..., ρn.

When the number of subsets n is small, the memory allocation can be found
easily with a grid search. That is, T is evaluated at discretized values of the
parameters ρ1, ..., ρn (with

∑n
i=1 ρi = 1), and the point where T is minimal is

kept as the selected memory allocation.
This technique however becomes quite costly when the number of subsets

n is too large, or when the desired resolution of the discretization is too thin.
Metaheuristic techniques of local search such as Hill Climbing [19] can be used
instead to search for the optimal memory allocation more efficiently.

Interleaving Cryptanalytic Time-Memory Trade-Offs 177

6 Results

In this section, the interleaving technique is illustrated on password cracking.

6.1 Statistics

In order to determine the password distribution, two publicly-available datasets
have been considered: “RockYou” and “10 million combos”. The RockYou
dataset originated from www.rockyou.com, a gaming website that lost 32.6 mil-
lion unencrypted passwords in 2009. Among those passwords 14.3 million are
unique. The 10 million combos was released by Mark Burnett in 2015. This 10
million passwords dataset contains passwords from various hack sources accord-
ing to the author from which 5.18 million are unique. These datasets are for
example used for wordlist attacks by the well-known password crackers Hash-
cat [1] and John the Ripper [18].

Tables 2 and 3 present some statistics on these datasets (the results are shown
up to length of 7). Each cell of the two tables represents the per mille of passwords
that have the length indicated on the left, and that correspond to the character
set indicated on the top. More precisely: “Special” relates to passwords with at
least a special character6,“Lower” to passwords containing only lowercase letters,
“Upper” to passwords containing only uppercase letters, “Digit” to passwords
containing only digits, “Alpha” to passwords containing only letters (at least
one lowercase and one uppercase), “Alnum” to passwords containing letters and
digits (at least one letter and one digit). Such statistics can then be used to feed
the parameters for the interleaving technique.

Table 2. Statistics for the “RockYou” dataset (expressed in per mille).

Length Special Lower Upper Digit Alpha Alnum

0 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.002 0.000 0.002 0.000 0.000

2 0.000 0.024 0.002 0.005 0.000 0.001

3 0.002 0.153 0.010 0.032 0.003 0.006

4 0.007 1.384 0.052 0.634 0.026 0.055

5 0.283 28.930 1.401 6.550 0.511 3.013

6 3.022 122.316 4.528 69.899 2.131 58.435

7 5.709 83.980 3.034 19.684 1.848 78.546

6 Here, a special character is one of {!"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~� . These
are the characters denoted as such in the “XP special” table of the Ophcrack soft-
ware [17].

www.rockyou.com

178 G. Avoine et al.

Table 3. Statistics for the “10 million combos” dataset (expressed in per mille).

Length Special Lower Upper Digit Alpha Alnum

0 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000 0.000

3 0.004 0.292 0.026 0.153 0.034 0.083

4 0.057 17.357 0.490 14.212 0.515 1.890

5 0.145 31.451 0.804 7.427 1.489 8.194

6 0.782 117.591 2.965 70.308 6.604 56.200

7 1.024 74.965 1.742 20.857 3.306 64.425

6.2 RockYou

We decided to set A to the set of passwords of the special character set (96
characters) of length 7 or less, which corresponds to the same set covered in
the “XP special” table of the Ophcrack software [17]. Likewise, we set the total
memory to 8 GB, which is about the memory used for this table. With these
settings, an undivided TMTO has an average cryptanalysis time of T = 6.27×109

operations (obtained from Result 3).
We chose the following partition: [A]1 is set to the passwords of length 7

(exactly) that contain at least one special character, and [A]2 the rest of the
passwords. This gives the following parameters for the RockYou dataset:

[N]1 = 967 − 627 = 7.16 × 1013 p1 = 0.0143

[N]2 = N − [N]1 = 4.31 × 1012 p2 = 0.9857.

The probabilities are taken from Table 2, and are adjusted such that the sum of
probabilities up to length 7 is 1.

Figure 4 represents T according to ρ1: the memory allocation is optimal when
ρ1 = 0.5957, with T = 3.81×108 operations, which represents a speedup of about
16.45 with respect to the undivided case7.

6.3 10 Million Combos

This second dataset presents comparable statistics to RockYou. Applying the
same partitioning, we have:

[N]1 = 967 − 627 = 7.16 × 1013 p1 = 0.0026

[N]2 = N − [N]1 = 4.31 × 1012 p2 = 0.9974.

7 For instance, in terms of time elapsed on a laptop capable of performing 3 × 106

SHA-1 operations per second, and on a memory of 8 GB, this corresponds to 34’50”
(for the undivided case) reduced to 2’07” (for the interleaved case) on average.

Interleaving Cryptanalytic Time-Memory Trade-Offs 179

Fig. 4. Memory allocation for the RockYou database: the solid line represents the
average number of operations as a function of the proportion ρ1 of the memory devoted
to the first sub-TMTO. The cross mark is the optimal memory allocation, and the
dashed line represents the cost of an undivided TMTO, about 16.45 times slower.

This partitioning yields an even better result: T = 1.42 × 108 at the optimal
memory division ρ1 = 0.4695, which represents a speedup of 44.29. This further
improvement with respect to RockYou is due to p1 being even smaller in the
case of the 10 million combos dataset, which results in a stronger disparity in
the densities of A1 and A2.

In order to improve further the gain, one may partition A into more subsets.
This was tried with three subsets: we sorted the cells of Table 3 in increasing
order of density, and chose the partitioning that produced the best results (see
AppendixB for details on the subsets chosen). These subsets correspond to:

[N]1 = 7.16 × 1013 p1 = 0.0026

[N]2 = 4.27 × 1012 p2 = 0.1962

[N]3 = 4.67 × 1010 p2 = 0.8012.

The average time is of 8.20 × 107, which represents a speedup of 76.48. The
optimal memory decomposition was found using Hill Climbing [19]:

ρ1 = 0.5604 ρ2 = 0.3931 ρ3 = 0.0466.

Partitioning into four subsets or more did not yield a better speedup in our
experiments.

6.4 Discussion

Interleaving produces a gain over the classical method of 16.45, 44.29 and 76.48,
respectively for RockYou with 2 subsets, 10 million combos with 2 subsets, and
10 million combos with 3 subsets. The gain thus strongly depends on the input
distribution, and can be arbitrarily big. On the other hand, interleaving may not
be profitable at all when the input distribution is close to uniform.

Increasing the number of subsets allows for a finer division of the input
set, and is worthwhile when the resulting subsets have important differences of

180 G. Avoine et al.

density. It has however an overhead, which means that in practice (at least for
the distributions described in Sect. 6.1), the optimal size of the partitioning is
relatively small.

Barkan, Biham and Shamir showed [5] that the cost of a search using a time-
memory trade-offs is theoretically lower-bounded. With an appropriate input
distribution, one could go below that bound using interleaving, which may seem
to be in contradiction with the results of [5]. However, these results were provided
in a context of uniform input distribution, so the bound is not violated since the
assumptions are different.

7 Conclusion

This paper introduces a technique to magnify the efficiency of cryptanalytic time-
memory trade-offs when the considered distribution of secrets is non-uniform.
It consists – during the precalculation phase – in dividing the input set into
smaller subsets of unbalanced densities and applying a time-memory trade-off
on every subset. As importantly, the contribution also consists of a method to
interleave – during the attack phase – the exploration of the time-memory trade-
offs. For that, a metric to select at each step the time-memory trade-off to be
explored is introduced, and a proof of optimality is provided.

Questions such as how the efficiency changes when a TMTO built on some
distribution is applied to another distribution, or whether it is possible to find
optimal memory division analytically remain to be explored.

The efficiency of the technique is practically demonstrated to crack
7-character passwords selected in a 96-character alphabet. Password length and
alphabet size have been chosen in compliance with tools currently used by secu-
rity experts to crack LM Hash passwords. The password distributions used to
evaluate the efficiency of the technique come from recently leaked password data-
bases of well-known websites. It has been shown that the time required to crack
such passwords is divided by up 76 when the technique introduced in this paper
is applied, compared to current methods. The efficiency can be even better when
considering distributions with a higher standard deviation. As far as we know,
this is the first time an improvement on time-memory trade-off divides by more
than two the cracking time since Hellman’s seminal work.

Acknowledgments. We thank the anonymous reviewers for their constructive com-
ments.

A Proof of Theorem 5

For the sake of clarity, the following simplified notations are used in this proof:

f(b, k) = pb

(

1 −
(

1 − [m]b
[N]b

)�
)(

1 − [m]b
[N]b

)(k−1)�

,

g(b, k) = �[Ck]b.

Interleaving Cryptanalytic Time-Memory Trade-Offs 181

Let V be a vector describing an arbitrary order of visit. Let V ∗ be a vector
describing the order of visit dictated by the metric given in Theorem4. V is thus
an arbitrary permutation of V ∗. Sk (resp. S∗

k) is defined as in Theorem 2, that
is how many times Vk (resp. V ∗

k) has been visited up to step k included:

Sk = #{i ≤ k|Vi = Vk},

S∗
k = #{i ≤ k|V ∗

i = V ∗
k }.

Additionally, let σ(b, k) be the position of the k-th apparition of the sub-TMTO
b in V (and σ∗(b, k) its V ∗ equivalent). In particular, the following identity binds
these notations:

σ(Vi, Si) = σ∗(V ∗
i , S∗

i) = i ∀ 1 ≤ i ≤ t̂.

The goal is to minimize (1), that is:

T =
t̂∑

k=1

pVk

[

1 −
(

1 − [m]Vk

[N]Vk

)�
] [

1 − [m]Vk

[N]Vk

](Sk−1)� k∑

i=1

�[CSi
]Vi

+

[
n∑

b=1

pb

(

1 − [m]b
[N]b

)[t]b�
]

n∑

b=1

[t]b∑

s=1

�[Cs]b

=
t̂∑

k=1

f(Vk, Sk)
k∑

i=1

g(Vi, Si) + constant.

Note that the second term of this expression is constant, regardless of the choice
for V . Therefore, in order to prove the optimality of the metric and thus the
optimality of the choice of V ∗, it suffices to show that G ≥ G∗, with:

G =
t̂∑

k=1

f(Vk, Sk)
k∑

i=1

g(Vi, Si), (5)

G∗ =
t̂∑

k=1

f(V ∗
k , S∗

k)
k∑

i=1

g(V ∗
i , S∗

i), (6)

and with V any permutation of V ∗. Equation 5 can be re-written such that sub-
TMTOs are considered in consecutive order rather than considering them in the
order of visit (this is a mere re-ordering of the terms in the sum):

G =
n∑

b=1

[t]b∑

k=1

f(b, k)
σ(b,k)∑

i=1

g(Vi, Si),

and likewise for the sum in (6). It is now possible to factorize the difference
G − G∗ as such:

G − G∗ =
n∑

b=1

[t]b∑

k=1

f(b, k)

⎡

⎣
σ(b,k)∑

i=1

g(Vi, Si) −
σ∗(b,k)∑

i=1

g(V ∗
i , S∗

i)

⎤

⎦ . (7)

182 G. Avoine et al.

Some terms cancel each other out in the two sums of the bracketed factor in (7),
i.e. terms that appear in both sums. Let Δ+

b,k (resp. Δ−
b,k) be the set of positions

in V (resp. V ∗) that only appear in the left (resp. right) sum. Formally,

Δ+
b,k = {j < σ(b, k) | σ∗(Vj , Sj) > σ∗(b, k)},

Δ−
b,k = {j < σ∗(b, k) | σ(V ∗

j , S∗
j) > σ(b, k)}.

This allows to rewrite the difference (7) as:

G − G∗ =
n∑

b=1

[t]b∑

k=1

f(b, k)

⎡

⎢
⎣

∑

i∈Δ+
b,k

g(Vi, Si) −
∑

i∈Δ−
b,k

g(V ∗
i , S∗

i)

⎤

⎥
⎦ . (8)

By construction, the following implication holds between Δ+ and Δ−:

σ(b, k) ∈ Δ+
b′,k′ ⇐⇒ σ∗(b′, k′) ∈ Δ−

b,k. (9)

Indeed, we have:

σ(b, k) ∈ Δ+
b′,k′

⇐⇒ σ(b, k) < σ(b′, k′) ∧ σ∗(Vσ(b,k), Sσ(b,k)) > σ∗(b′, k′)
⇐⇒ σ(b, k) < σ(b′, k′) ∧ σ∗(b, k) > σ∗(b′, k′) (10)

The first equivalence is the definition of Δ+
b,k, and the second comes from the

fact that Vσ(b,k) = b and Sσ(b,k) = k, by definition of V and S. Likewise,

σ∗(b′, k′) ∈ Δ−
b,k

⇐⇒ σ∗(b′, k′) < σ∗(b, k) ∧ σ(V ∗
σ∗(b′,k′), S

∗
σ∗(b′,k′)) > σ(b, k)

⇐⇒ σ∗(b′, k′) < σ∗(b, k) ∧ σ(b′, k′) > σ(b, k) (11)

The implication (9) comes from the equivalence between (10) and (11). As a
particular case of (9), we have:

j ∈ Δ−
b,k ⇐⇒ σ(b, k) ∈ Δ+

V ∗
j ,S∗

j
.

This means that for each negative term −f(b, k)g(V ∗
j , S∗

j) in (8), there is also
a positive counterpart f(V ∗

j , S∗
j)g(b, k). This allows to rewrite the difference (8)

as a simple sum of opposed crossed terms:

G − G∗ =
∑ [

f(V ∗
j , S∗

j)g(b, k) − f(b, k)g(V ∗
j , S∗

j)
]
. (12)

We have that σ∗(b, k) > j = σ∗(V ∗
j , S∗

j), for all j ∈ Δ−
b,k, by definition of Δ−

b,k.
Moreover, since the metric used to construct V ∗ is decreasing (see Lemma 1),
we have that:

η(b, k) ≥ η(b′, k′),
f(b, k)g(b′, k′) ≥ f(b′, k′)g(b, k),

for all b, k, b′, k′ such that σ∗(b, k) < σ∗(b′, k′). Using this fact in (12) shows that
each term of the sum is positive, and thus G ≥ G∗.

Interleaving Cryptanalytic Time-Memory Trade-Offs 183

B Subsets of 10 Million Combos

The partition in three subsets that yields the best speedup on the 10 million
combos dataset is depicted in Table 4.

Table 4. Subset indices for the partitioning done on 10 million combos.

Length Special Lower Upper Digit Alpha Alnum

0 3 3 3 3 3 3

1 3 3 3 3 3 3

2 3 3 3 3 3 3

3 3 3 3 3 3 3

4 3 3 3 3 3 3

5 2 3 3 3 3 3

6 2 3 3 3 2 3

7 1 3 2 2 2 2

References

1. Atom: The Hashcat password cracker (2014). http://hashcat.net/hashcat/
2. Avoine, G., Carpent, X.: Optimal storage for rainbow tables. In: Lee, H.-S.,

Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 144–157. Springer, Heidelberg
(2014)

3. Avoine, G., Junod, P., Oechslin, P.: Time-memory trade-offs: false alarm detection
using checkpoints. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 183–196. Springer, Heidelberg (2005)

4. Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur. TISSEC
11(4), 1–22 (2008)

5. Barkan, E., Biham, E., Shamir, A.: Rigorous Bounds on cryptanalytic time/memory
tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 1–21. Springer,
Heidelberg (2006)

6. Barkan, E.P.: Cryptanalysis of ciphers and protocols. Ph.D. thesis, Technion -
Israel Institute of Technology, Haifa, Israel, March 2006

7. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70
million passwords. In: IEEE Symposium on Security and Privacy - S&P 2012,
San Francisco, CA, USA. IEEE Computer Society, May 2012

8. Denning, D.: Cryptography and Data Security, p. 100. Addison-Wesley, Boston
(1982)

9. Hellman, M.: A cryptanalytic time-memory trade off. IEEE Trans. Inf. Theory IT
26(4), 401–406 (1980)

10. Hoch, Y.Z.: Security analysis of generic iterated hash functions. Ph.D. thesis,
Weizmann Institute of Science, Rehovot, Israel, August 2009

http://hashcat.net/hashcat/

184 G. Avoine et al.

11. Hong, J., Jeong, K.C., Kwon, E.Y., Lee, I.-S., Ma, D.: Variants of the distinguished
point method for cryptanalytic time memory trade-offs. In: Chen, L., Mu, Y.,
Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 131–145. Springer, Heidelberg
(2008)

12. Lee, G.W., Hong, J.: A comparison of perfect table cryptanalytic tradeoff algo-
rithms. Cryptology ePrint Archive, report 2012/540 (2012)

13. Lestringant, P., Oechslin, P., Tissières, C.: Limites des tables rainbow et comment
les dépasser en utilisant des méthodes probabilistes optimisées (in French). In: Sym-
posium sur la sécurité des technologies de l’information et des communications -
SSTIC, Rennes, France, June 2013

14. Massey, J.L.: Guessing and entropy. In: International Symposium on Information
Theory - ISIT 1994, Trondheim, Norway, p. 204. IEEE, June 1994

15. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: ACM Conference on Computer and Communications Security -
CCS 2005, Alexandria, VA, USA, pp. 364–372. ACM, November 2005

16. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

17. Oechslin, P.: The ophcrack password cracker (2014). http://ophcrack.source
forge.net/

18. Peslyak, A.: The John the Ripper password cracker (2014). http://www.openwall.
com/john/

19. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, vol. 2. Pearson
Education, Upper Saddle River (2003)

20. Shuanglei, Z.: The RainbowCrack project (2014). http://project-rainbowcrack.
com/

21. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: A time-memory
tradeoff using distinguished points: new analysis & FPGA results. In: Kaliski, B.S.,
Koç, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 593–609. Springer,
Heidelberg (2002)

http://ophcrack.sourceforge.net/
http://ophcrack.sourceforge.net/
http://www.openwall.com/john/
http://www.openwall.com/john/
http://project-rainbowcrack.com/
http://project-rainbowcrack.com/

Efficient Message Authentication Codes
with Combinatorial Group Testing

Kazuhiko Minematsu(B)

NEC Corporation, Kawasaki, Japan
k-minematsu@ah.jp.nec.com

Abstract. Message authentication code, MAC for short, is a symmetric-
key cryptographic function for authenticity. A standard MAC verification
only tells whether the message is valid or invalid, and thus we can not
identify which part is corrupted in case of invalid message. In this paper
we study a class of MAC functions that enables to identify the part
of corruption, which we call group testing MAC (GTM). This can be
seen as an application of a classical (non-adaptive) combinatorial group
testing to MAC. Although the basic concept of GTM (or its keyless
variant) has been proposed in various application areas, such as data
forensics and computer virus testing, they rather treat the underlying
MAC function as a black box, and exact computation cost for GTM
seems to be overlooked. In this paper, we study the computational aspect
of GTM, and show that a simple yet non-trivial extension of parallelizable
MAC (PMAC) enables O(m + t) computation for m data items and t
tests, irrespective of the underlying test matrix we use, under a natural
security model. This greatly improves efficiency from naively applying
a black-box MAC for each test, which requires O(mt) time. Based on
existing group testing methods, we also present experimental results of
our proposal and observe that ours runs as fast as taking single MAC
tag, with speed-up from the conventional method by factor around 8 to
15 for m = 104 to 105 items.

Keywords: Message authentication code · Combinatorial group
testing · Data corruption · Provable security

1 Introduction

Message authentication code (MAC) is a symmetric-key cryptographic function
for authenticity. A MAC function, F , takes a secret key K and a message M to
produce a tag T = F (K,M). A legitimate user with key K first takes (M,T)
and later verifies the validity of a tuple (M ′, T ′), which may be corrupted from
(M,T), by computing T ′′ = F (K,M ′) and checking if T ′′ = T ′ holds or not.
While MAC-based integrity check is simple and efficient, if verification fails one
can not obtain any further information on what part of message is corrupted. On
the other extreme side, by partitioning data into m items, say 4K-byte sectors of

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 185–202, 2015.
DOI: 10.1007/978-3-319-24174-6 10

186 K. Minematsu

HDD, and taking tags for each item, we can always identify all corrupted items.
However this can be impractical due to a huge impact to the storage.

This tread-off between the number of tags and the information on corrup-
tion can be improved by taking multiple MAC tags for overlapping parts of data
items. If we carefully choose overlapping parts it allows us to identify the cor-
rupted items if they are few. This is an interesting application of combinatorial
group testing (CGT) to message authentication, as pointed out by literatures in
various applications areas. Here, CGT is a method to identify defectives from
a large number of samples using group tests (see Du and Hwang [15] for a
good summary). For example, Goodrich et al. [20] proposed a MAC scheme
combined with CGT for data forensics applications. Crescenzo et al. [11] pro-
posed a MAC scheme for corruption localization not only restricted to identifica-
tion. For schemes other than MAC, Crescenzo, Jiang and Safavi-Naini proposed
corruption-localizing hash schemes [12] and it was further improved and extended
at [8,10] incorporating the theory of CGT. We can find various applications
such as computer virus testing [13] and HDD integrity check [17]. Relationship
between CGT and signature batch verification was studied by Zaverucha and
Stinson [30].

CGT has been extensively studied from the viewpoints of combinatorics and
coding theory. In particular, non-adaptive CGT (NCGT) using t tests for m
items is specified by a t × m binary test matrix, and there are numerous results
on the efficient matrix constructions with primary focus on the number of tests
(rows), both deterministic and randomized, see e.g. Du and Hwang [15] and Ngo
and Du [24]. In application of NCGT to MAC, we first choose a test matrix
and then take MAC tags following the chosen test matrix. We call such com-
bined MAC scheme group testing MAC (GTM). GTM can in principle use any
of known test matrix designs. In this paper, we study the computational cost of
GTM. This has not been deeply explored by previous researches as they assume
MAC function as a black box. Naturally we need to compute t MAC tags for
distinct parts of m items, and standard MAC needs O(m) time for computing
a tag for m items (assuming constant item length). Hence the computation cost
is O(w) where w is the weight of test matrix, which is at most O(mt). In prac-
tice GTM requires many overlapping items between distinct tests to have good
ability in corruption identification, thus the computation cost is quite higher
than taking single tag for all items as long as MAC function is used as a black
box. In this paper, we show that a special form of MAC enables to reduce the
computation cost of GTM to O(m + t) for any matrix of t tests and m items.
The crux of our proposal is the introduction of a parallelizable MAC defined
over a vector space which efficiently handles empty string (bit string of length
zero) without computation. This is a simple yet non-trivial extension of a paral-
lelizable blockcipher-based MAC called PMAC [7,26]. Additionally our scheme
also enables efficient incremental update of data items in the same manner to
PMAC, and even the update of test matrix. To analyze the security of our pro-
posal we consider several formal security notions, and show that our scheme is
secure with respect to them, in a concrete provable security framework proposed
by Bellare et al. [3]. Our notions are rather straightforward extension of those for
deterministic MAC [5,6], and have some similarities with those seen in [12,20].

Efficient Message Authentication Codes with Combinatorial Group Testing 187

We also present experimental implementation of our scheme, using existing
NCGT matrix constructions and AES blockcipher. We show that our scheme
achieves essentially the same speed as the single tag computation, which is the
speed of AES itself if each item is sufficiently long. The factor of speed-up com-
pared to the conventional scheme is dependent on the matrix, and in our experi-
ments it is expected to be around 8 to 15 for 104 to 105 items. The implementation
results show that differences from theory and practice are quite small.

2 Preliminaries

Let {0, 1}• be the set of all binary strings, including the empty string ε. We write
the bit length of X ∈ {0, 1}• by |X|. Here |ε| = 0. We define {0, 1}∗ def= {0, 1}• \
ε. We define a vector space consisting of m non-empty strings as {0, 1}∗m def=
({0, 1}∗)m. Similarly let {0, 1}•m def= ({0, 1}•)m as a vector space consisting of m
possibly empty strings, which we call extended vector space. Here note that (ε, v)
and (v, ε) for v �= ε are distinct elements of {0, 1}•2. Let M = (M [1], . . . , M [m])
and M ′ = (M ′[1], . . . ,M ′[m]) be vectors of m strings in {0, 1}∗m. We define
diff(M,M ′) = {i : M [i] �= M ′[i]} and Δ(M,M ′) = (Y [1], . . . , Y [m]) where
Y [i] = 1 if M [i] �= M ′[i] and otherwise Y [i] = 0. Let x � 1 = x and x � 0 = ε
for any x ∈ {0, 1}∗, and for B = (B[1], . . . , B[m]) ∈ {0, 1}m, we let M � B =
(M [1]�B[1], . . . ,M [m]�B[m]) ∈ {0, 1}•m. Moreover, let M �B ∈ {0, 1}∗m be a
vector obtained by removing all empty strings from M �B. For example if M =
(M [1],M [2],M [3],M [4]) and B = (1, 0, 1, 0) we have M �B = (M [1], ε,M [3], ε)
and M � B = (M [1],M [3]).

For n × m binary matrix M, Mi denotes the i-the row, Mi,j denotes the

entry at i-th row and j-th column. We let I(Mi)
def= {j : Mi,j = 1}. We also let

Hw(M) =
∑

i |I(Mi)| to denote the hamming weight of M.

Keyed Function and Random Function. For keyed function F : K×X → Y

with key K ∈ K, we may simply write FK : X → Y if key space is obvious, or
even write as F : X → Y if being keyed with K is obvious. If EK : X → X

is a keyed permutation, or a blockcipher, EK is a permutation over X for every
K ∈ K. Its inverse is denoted by E−1

K . A tweakable keyed permutation, also known
as tweakable blockcipher (TBC) [23] is a family of keyed permutation (blockci-
pher) over X indexed by a public parameter called tweak V ∈ V. It is written as
ẼK : V×X → X. The encryption of TBC is written as C = ẼV

K(M) for plaintext
M , tweak V and ciphertext C, and the decryption is written as M = Ẽ−1,V

K (C).
For two keyed functions, FK , F ′

K′ : X → Y, we say they are compatible, i.e. they
have the same input and output domains. Here, the key spaces are not necessar-
ily identical. Let Func(n,m) be the set of all functions {0, 1}n → {0, 1}m, and
let Perm(n) be the set of all permutations over {0, 1}n. A uniform random func-
tion (URF) having n-bit input and m-bit output is a function family uniformly
distributed over Func(n,m). We write X

$← X to denote the uniform sampling
of X over X. Then a URF is expressed as R

$← Func(n,m). A uniform random

188 K. Minematsu

permutation (URP) over n-bit space is similarly denoted by P
$← Perm(n). We

also define tweakable URP. Let V be a set of tweak and PermV(n) be the set of
all functions V × {0, 1}n → {0, 1}n such that, for any f ∈ PermV(n) and v ∈ V,
f(v, ∗) is a permutation. A tweakable n-bit URP with tweak V ∈ V is denoted by
P̃

$← PermV(n). In addition, a URF R : V × X → Y is also called a tweakable
URF when V ∈ V is used as a tweak in the application we discuss, and we also
write it as R̃ : V × X → Y.

Pseudorandom Function. For c oracles, O1, O2, . . . , Oc, AO1,O2,...,Oc denotes
the adversary A querying these c oracles. Let FK , GK′ : X → Y be two com-
patible keyed functions, and let A be an adversary trying to distinguish them
using queries with 1-bit final output. Then the (chosen-plaintext attack, CPA)
advantage of A is defined as

AdvcpaFK ,GK′ (A) def= Pr[AFK ⇒ 1] − Pr[AGK′ ⇒ 1],

where AFK ⇒ 1 denotes the event that A’s final output is 1 after queries
to FK . The probability is defined over a uniform sampling of K and internal
randomness of A. If F and G are tweakable, a tweak in a query is arbitrarily
chosen by the adversary. Using URF R compatible with FK , we define

AdvprfFK
(A) def= AdvcpaFK ,R(A).

In a similar manner, using URP P compatible with a keyed permutation EK

we define AdvprpEK
(A) def= AdvcpaEK ,P(A). For tweakable keyed permutation ẼK , we

also define Advtprp
˜EK

(A) def= Advcpa
˜EK ,˜P

(A), where P̃ is a tweakable URP compatible

with ẼK .
If adversary A is with time complexity, it means the total computation time

and memory of A required for query generation and final decision, in some fixed
model. If there is no description on time complexity of A, it means A has no
computational restriction. Conventionally we say FK is a pseudorandom function
(PRF) if AdvcpaFK

(A) is negligible for all practical adversaries (though the formal
definition [19] requires FK to be a function family). Similarly we say FK is a
pseudorandom permutation (PRP) if AdvprpFK

(A) is negligible and FK is invertible.
Tweakable PRP (TPRP) is similarly defined with Advtprp

˜EK
(A). We also introduce

the notion of tweakable PRF, which is essentially a PRF containing tweak space
as a part of input.

3 MAC for Corruption Identification

3.1 Combinatorial Group Testing

We start with a brief introduction of CGT and its application to MAC. CGT
was originally formulated by Dorfman [14] for medical testing of blood supplies
during World War II. Formally, let us assume that we have a set of m items,

Efficient Message Authentication Codes with Combinatorial Group Testing 189

M = {M [1], . . . ,M [m]}, and each item is either normal or defective. The goal
is to identify the defective items among M using group testing, that is, we
choose a subset S ⊂ M and query if S contains at least one defective item.
A response to a query is said to be positive if it indicates the existence of at
least one defective, and otherwise said to be negative. We usually assume a
prior knowledge or assumption about the maximum number of possible defective
items, and the central question of CGT is how to form effective tests to identify
all defective items. If each query is not depending on responses of other queries,
the scheme is called non-adaptive CGT (NCGT), which is specified by a t × m
binary test matrix Q. Here, t denotes the number of tests and Qi,j = 1 denotes
that M [j] is included in the i-th test. The construction of test matrix is deeply
related to the combinatorics and coding theory and there are numerous studies
on the construction of test matrix. See Du and Hwang [15] for a collection of
these results. It is known that we need t = O(d2 log m) non-adaptive tests to
identify all defective items if there are at most d defective items, hence we can
greatly reduce the number of tags from naively taking m tags. When d = 1
there is a simple Hamming code based matrix achieving t = �log m�. For d > 1
deterministic construction achieving Θ(d2 log m) is known [25], however, finding
a construction achieving the minimum number of tests (not asymptotically) is
generally not easy and remains as a vital research topic.

A conventional approach to GTM is as follows, which is also seen in the previous
studies [11,20]. For m data items represented as a vector M = (M [1], . . . , M [m])
∈ {0, 1}∗m, we first prepare a conventional MAC function defined over input space
of {0, 1}∗ (or {0, 1}•), say HMAC, and using it with an appropriate input encoding,
we build a MAC function for vector space MACK : {0, 1}∗m → {0, 1}n. We also
prepare a t × m test matrix Q. Then for each Qi we compute

T [i] = MACK(M � Qi) (1)

to obtain the legitimate MAC tag vector, T = (T [1], . . . , T [t]). Later, given
potentially corrupted items, M ′ = (M ′[1], . . . ,M ′[m]), and T , we compute T ′ =
(T ′[1], . . . , T ′[t]) where T ′[i] = MACK(M ′ �Qi), and compare T and T ′, obtain
Z = Δ(T, T ′). From the property of Q, if 0 ≤ |diff(M,M ′)| ≤ d holds true Z
is uniquely mapped to Δ(M,M ′), i.e. the indexes of all corrupted items. This
procedure is also called decoding in the field of CGT. It is possible to prove
that producing T ′ such that Z does not correctly indicate Δ(M,M ′) implies a
successful forgery against MACK (See Sect. 3.6).

As mentioned there are plenty of efficient construction methods for Q from
the literature, deterministic or random, with various additional properties, and
we can basically adopt any of them with any MAC. What we here ask is the com-
putation cost given Q. Defining the unit of computation as an internal operation
of MAC to process each item, e.g. the compression function of HMAC-SHA2,
the conventional approach described above, taking MAC as a black box, gener-
ally requires O(Hw(Q)) ≤ O(mt) computation, which can be significantly larger
than O(m), the time for taking one MAC tag for M . Once given Q and MACK

it is possible to find some optimizations, however this will be cumbersome as we

190 K. Minematsu

need ad-hoc optimization for each Q. In the following, we show that a simple
parallelizable MAC enables to reduce the computation cost to O(m + t) for any
Q with t rows. Usually m is much greater than t thus our result implies that
GTM can run mostly as fast as single MAC computation.

3.2 MAC for Extended Vector Space

Let V and V′ be sets of integers used as tweak spaces. Let FK : V × {0, 1}∗ →
{0, 1}n be a keyed function and let FK : V × {0, 1}• → {0, 1}n be defined as
FK(i, x) = FK(i, x) if x �= ε and FK(i, x) = 0n otherwise, for any i ∈ V. Let
GK′ : V′ × {0, 1}n → {0, 1}n be a tweakable keyed permutation over n bits. We
may write F i

K(x) and Gj
K′(z) to denote FK(i, x) and GK′(j, z).

Let gtm[FK , GK′] be a MAC function which takes an extended vector X ∈
{0, 1}•m for fixed m and outputs an n-bit tag with tweak h ∈ V′, defined as

gtm[FK , GK′](h,X) = Gh
K′(F 1

K(X[1]) ⊕ . . . ⊕ Fm
K (X[m])). (2)

For example, if m=3 and a, b ∈ {0, 1}∗, gtm[FK , GK′](h, (a, ε, b))= Gh
K′(F 1

K(a)⊕
F 3

K(b)) holds. Assuming |X[i]| ≤ n for all i ≤ m and the use of n-bit blockcipher
EK for instantiations of F and G, gtm is similar to parallelizable blockcipher-based
MAC called PMAC [7,26]. However, we observe important differences that in
PMAC the input X is in {0, 1}• and we apply partitioning to X into n-bit
blocks, and the last item X[m] is directly XORed to the state. Moreover, PMAC
does not allow X[i] to be empty for any i,1 thus to process X ∈ {0, 1}•m with
PMAC we need some encoding of X into {0, 1}•. In Sect. 3.6 we will prove that
gtm[FK , GK′] is a tweakable PRF: V′ × {0, 1}•m → {0, 1}n if FK is a tweakable
PRF with tweak space V = {1, . . . , m}, and GK′ is an n-bit tweakable PRP with
tweak space V′.

We stress that (2) is not secure if input space contains extended vectors
of different number of strings (i.e. m can be changed). Indeed, if m could be
changed we have the same outputs for X = (X[1]) and X ′ = (X[1], ε). Such
attack can be prevented by taking the number of component strings as a part
of G’s tweak. We prefer (2) for its simplicity and the fact that gtm for fixed m
is enough to provide a secure GTM for any fixed-size, t × m test matrix.

3.3 Efficient Group Testing MAC

Given a t × m test matrix Q and a list of m items denoted by M ∈ {0, 1}∗m,
now what we want to compute is

T [i] = gtm[FK , GK′](i,M � Qi) for all i = 1, . . . , t. (3)

Since any test that includes M [j] adds F j
K(M [j]) to its internal state, F j

K(M [j])
can be shared for all tests that include M [j]. In other words, the computation

1 Unless entire input is an empty string.

Efficient Message Authentication Codes with Combinatorial Group Testing 191

of (3) can be done by reading each M [j], computing F j
K(M [j]), and XORing

to the state memory block for the i-th test (denoted by S[i]) for all i such that
Qi,j = 1. Then we compute T [i] = Gi

K′(S[i]) for all i. This requires m calls
of F and t calls of G using t state memory blocks for any Q. Note that such
computation can not be done by a black-box application of PMAC with input
encoding (from {0, 1}•m to {0, 1}•).

We write this procedure as GTM[FK , GK′].Tag, which uses gtm as a subrou-
tine but in a decomposed way described above. It is shown in Fig. 1. A simple pro-
cedure for the corruption identification, also known as naive decoder, is to apply
GTM[FK , GK′].Tag for the (possibly corrupted) data items, and removes all data
items which is included in a test with negative outcome, i.e. a test that correctly
passed. The remaining items are considered to be corrupted. This procedure
is defined as GTM[FK , GK′].Ident. Moreover, we require that GTM[FK , GK′] to
work as an ordinal MAC for the whole data items or each subset specified by
Qi. The corresponding verification functions are defined as GTM[FK , GK′].Verify
and GTM[FK , GK′].Verify(i) shown in Fig. 1. The corresponding security notions
will be described in Sect. 3.4.

In the definition of GTM we assume M ∈ {0, 1}∗m, however extension to
M ∈ {0, 1}•m is trivially possible by additional input encoding for F .

Properties. We remark that gtm[FK , GK′] is parallelizable. It also supports
incremental update in the same manner to PMAC. For example, if we have T [i] =

Algorithm
GTM[FK , GK].Tag(M):

1. for i = 1 to t do
2. S[i] ← 0n

3. for j = 1 to m do
4. Z ← F j

K(M [j])
5. for i = 1 to t do
6. if Qi,j = 1
7. then S[i] ← S[i] ⊕ Z
8. for i = 1 to t do
9. T [i] ← Gi

K (S[i])
10. T ← (T [1], . . . , T [t])
11. return T

Algorithm
GTM[FK , GK].Verify(M ,T):

1. T ← GTM[FK , GK].Tag(M)

2. if T = T return
3. else return ⊥

Algorithm
GTM[FK , GK].Verify(i)(M ,T [i]):

1. T ← GTM[FK , GK].Tag(M)

2. if T [i] = T [i] return
3. else return ⊥

Algorithm
GTM[FK , GK].Ident(M ,T):

1. P ← {1, . . . ,m}
2. T ← GTM[FK , GK].Tag(M)
3. for i = 1 to t do
4. if T [i] = T [i] do P ← P \ I(Qi)
5. return P

Fig. 1. GTM[FK , GK′] with t × m test matrix Q.

192 K. Minematsu

gtm[FK , GK′](i,M �Qi) for some i and j with Qi,j = 1, re-computation of T [i]
with incremental update of M [j] to M ′[j] �= M [j] requires two invocations of F
and G, i.e., we apply G−1,i

K′ to T [i] and compute F j
K(M [j])⊕F j

K(M ′[j]) to renew
the state, and finally apply Gi

K′ to the state to renew T [i]. This incremental
update is useful when the data is large and frequently updated by items.

We also remark that even the incremental update of Q (i.e. a change in the
test matrix) is efficiently handled. For instance, if we want to change Qi,j = 0 to
Qi,j = 1 then we add F j

K(M [j]) to G−1,i
K′ (T [i]). However, we have not investigated

the practical application of this functionality.

3.4 Security Notions

To consider the security of our proposal, we need formal security notions. Gen-
erally GTM can be considered as an extension of deterministic MAC, having
input in {0, 1}∗m and output in ({0, 1}n)t with a t × m binary matrix Q as a
public parameter, equipped with corruption identification procedure in addition
to tagging and verification procedures. Therefore we make our notions as nat-
ural extensions of those for deterministic MACs [5,6]. We intend to define our
notions so that they can be satisfied if item subset specified by a test (i.e. {M [j] :
Qi,j = 1}) is processed by a PRF, independent for each test, and the underlying
Q is appropriate for both MAC and corruption identification. We later show that
GTM[FK , GK′] is in fact secure with respect to our notions.

Let Q be a t × m binary matrix. Let MACK : M → T with M = {0, 1}∗m

and T = ({0, 1}n)t be a GTM scheme using test matrix Q. We also let MAC
(i)
K :

M → {0, 1}n for i = 1, . . . , t to denote the corresponding MAC for the i-th test,
that is, MACK(M) = (MAC

(1)
K (M), . . . ,MAC

(t)
K (M)).

To define the security notions for MAC, we introduce several oracles.

Definition 1. Let M,M ′ ∈ M = {0, 1}∗m and T, T ′, T̂ ∈ T = ({0, 1}n)t.
Let MACK.Tag be tagging oracle which takes M and returns output as T =
MACK(M). Let MACK.Verify be the verification oracle which takes (M ′, T ′) ∈
M × T and evaluates T̂ = MACK(M ′), and returns � if T ′ = T̂ (i.e. it
is valid) and otherwise ⊥ (i.e. it is invalid). We define verification-i oracle
MACK.Verify(i) which takes (M ′, T ′[i]) to compute T̂ [i] = MAC

(i)
K (M ′) and

returns � if T̂ [i] = T ′[i], and ⊥ otherwise. We also define identification ora-
cle MACK.Ident which takes (M ′, T ′) and computes the index set of possibly
corrupted items, simply obtained by evicting I(Qi) from {1, . . . , m} for all i such
that i-th test is failed.

By setting MACK = GTM[FK , GK′], these oracles are formally defined
by Fig. 1.

We define the following three security notions. Let OT , OV , O
(i)
V , and OI

respectively denote tagging, verification, verification-i, and identification oracles
for MACK. Here we fix the number of items, m, and t × m test matrix Q.

1. Tag vector forgery (TVF). Let A1 be the adversary who queries (OT ,OV).
Suppose A1 obtains (M1, T1), . . . , (Mq, Tq) via q (adaptive, chosen-plaintext)

Efficient Message Authentication Codes with Combinatorial Group Testing 193

queries to OT (where (Mi, Ti) ∈ {0, 1}∗m × ({0, 1}n)t) and then determines
(M ′, T ′) ∈ {0, 1}∗m × ({0, 1}n)t as a query to OV . We say A1 forges if A1

receives � from OV and (M ′, T ′) �= (Mi, Ti) for all i = 1, . . . , q. The advantage
of A1 is defined as

AdvmacMACK
(A1)

def= Pr[AOT ,OV

1 forges]. (4)

We say MACK is secure against tag vector forgery if AdvmacMACK
(A1) is negligibly

small for all practical adversaries.
2. Tag string forgery (TSF). Fix i ∈ {1, . . . , t}. Let A2 be the adversary who

queries (OT ,O
(i)
V). Suppose A2 first obtains (Mj , Tj) for j = 1, . . . , q via q

queries to OT , and then determines a query to O
(i)
V as (M ′, T ′[i]). We say A2

forges if A2 receives � from O
(i)
V and (M ′ � Qi, T

′[i]) �= (Mj � Qi, Tj [i]) for
all j = 1, . . . , q. The advantage of A2 is defined as

Advmac(i)MACK
(A2)

def= Pr[AOT ,O
(i)
V

2 forges], (5)

and we say MACK is secure against tag string forgery if Adv
mac(i)
MACK

(A2) is
negligibly small for all practical adversaries, for all i = 1, . . . , t.

3. Corruption misidentification (CM). Let A3 be a d-corruptive adversary
who first performs q distinct queries to OT and obtains (M1, T1), . . . , (Mq, Tq),
and then queries (M ′, T ′) to OI such that T ′ = Ti for some i and 1 ≤
|diff(M ′,Mi)| ≤ d. We say A3 forges if (1) we have Ti = Tj for some i �= j
or (2) all Tis are unique and OI returns P ⊆ {1, . . . , m} such that P �=
diff(M ′,Mi) (where index i is uniquely determined from T ′). We define

Advident(d)MACK
(A3)

def= Pr[AOT ,OI

3 forges]. (6)

For some fixed d, we say MACK is secure against corruption misidentification
if Advident(d)MACK

(A3) is negligibly small for all practical d-corrupting adversaries.

We will call these notions as TVF, TSF, and CM-security respectively. Note that
in CM-security we safely let the adversary win if it finds a tag vector collision
while querying OT . Finally we say MACK is secure if it is secure with respect to
all three notions.

Requirements on Test Matrix. To fulfill all of our security notions, test
matrix Q needs to satisfy some conditions. We naturally assume that all rows of
Q are unique. In the standard scenario of NCGT, it is known that Q should be
at least d-separable2, that is, unions (bitwise logical OR) of up to d columns of
Q are all distinct. Here a union can include no column of Q which is all-zero vec-
tor, and thus Q cannot have all-zero column. A stronger definition is d-disjunct
which means that any union of up to d columns does not contain a column

2 It is also written as d-separable, and in this case d-separable means that unions of
exactly d columns are distinct.

194 K. Minematsu

of Q. This notion is useful in practice since if Q is d-disjunct, correct decod-
ing (corruption identification in our case) is always possible by naive decoder
mentioned earlier which simply evicts all items used in at least one test that
was negative. Moreover, we could always detect the existence of more than d
defective items. See e.g. [15,16,24] for more details. Following these observations
we set GTM[FK , GK′].Ident as naive decoder and require Q to be d-disjunct for
CM-security with d-corrupting adversaries. The existence of all-zero column also
immediately implies a trivial attack against TVF-security.

TSF-security is independent of Q because Qi specifies the input space of
MAC

(i)
K , and if MAC

(i)
K is an independent, secure MAC for each i, TSF-security

is trivially satisfied for any Q.
For TVF-security, however, we require that Q contains an all-one row, which

shows a separation between TSF and TVF-securities.

Proposition 1. For any GTM using t×m test matrix Q, if Q does not contain
an all-one row, TVF-security can be broken using at most t + 1 queries.

Proof. Let us assume Q has no all-one row. Let a and b be two distinct
non-empty strings. Then, for each i = 1, . . . , t the adversary queries Mi =
(Mi[1], . . . , Mi[m]) to the tagging oracle, where Mi[j] = a if Qi,j = 1 and
Mi[j] = b if Qi,j = 0, and receives Ti = (Ti[1], . . . , Ti[t]). Then the adver-
sary queries (M ′, T ′) to the verification oracle, where M ′ = (a, . . . , a) and
T ′[j] = Tj [j]. This query is always accepted. ��
Consequently we require the following.

Definition 2. We say t×m test matrix Q is sound for d-corruptive adversaries,
if Q is d-disjunct and contains an all-one row.

In the following, without loss of generality we assume that if Q is sound for
d-corruptive adversaries, Q1 is the all-one row.

3.5 Remarks

Multiple Verification Queries. For simplicity the notions defined at Sect. 3.4
require that the adversary uses one query to OV or O

(i)
V or OI . They can be

extended so that the adversary can use qv > 1 queries to these oracles, and from
the result of [4] we could generally prove that if MACK is secure with the case
qv = 1, it is also secure when qv > 1. A more rigorous analysis will be given in
the full version.

The Need of Tag String Security. We remark that TSF-security notion is
rather optional as if MACK is secure against tag vector forgery, any forgery is
detectable by checking a tag for the all-one row. We think however one may want
to quickly check authenticity of a part of data items (M �Qi) by computing tag
for Qi. Tag computation for M � Qi can be significantly faster than computing
a tag for the all-one row. If MACK is only TVF-secure and not TSF-secure,

Efficient Message Authentication Codes with Combinatorial Group Testing 195

a forgery against M � Qi may not be detected until a user performs a tag
verification for the all-one row.

Extending CM-security. Notions of TVF and TSF securities allow the adver-
sary to freely choose tags at the final query, while that of CM-security does not
(i.e. adversary can not arbitrarily choose T ′ in querying OI , only to choose it
from T1, . . . , Tq). However this is unlikely to hold when MAC tags are stored at
the same storage as data items. In addition, a user may be interested in cor-
ruption localization, that is, finding a superset of corrupted items (i.e. allowing
some false positives in the guess) if exact identification of all corrupted items is
difficult. These important extensions are already mentioned and independently
studied. For example, corruption localization was studied by [8,11–13], and iden-
tification of corrupted items under tag corruption was described at [20].

We remark that these extensions also have been studied in the field of CGT
design. If M � Qi for some i is not corrupted but T [i] = gtm(i,M � Qi) is cor-
rupted to T ′[i], the corresponding test is considered as invalid, that is, a false
positive occurs at the i-th test. Test matrix that can tolerate false positives, and
even false negatives3, has been studied in the literature, such as Cheraghchi [9],
Thierry-Mieg [27] and Ngo et al. [25]. Some of these papers also study the case
where final output is only required to be a superset of corrupted items with
an allowable margin, which is a form of corruption localization. By using test
matrices from these studies, it would be possible to built a GTM scheme having
CM-security notion with some extended model allowing a more freedom in choos-
ing a query to OI (e.g. (M ′, T ′) with |diff(M ′,Mi)| ≤ d1 and |diff(T ′, Ti)| ≤ d2
for some d1, d2) and corruption identification with some false positives. Formal-
izing these ideas and providing a concrete security result using existing results
on CGT will be an interesting future direction.

3.6 Provable Security of GTM

We first prove that gtm[FK , GK′] is a tweakable PRF for input domain {0, 1}•m,
tweak space V = {1, . . . , t}. In what follows we fix the t × m test matrix Q and
assume it is sound for d-corruptive adversaries.

Theorem 1. Let gtm[R̃, P̃] : V × {0, 1}•m → {0, 1}n be the tweakable keyed
function defined as (2), using a tweakable URF, R̃, compatible with FK and
tweakable URP, P̃, compatible with GK′ . Then we have

Advprf
gtm[˜R,˜P]

(A) ≤ q2

2n
(7)

for any adversary A using q queries.

3 It corresponds to successful MAC forgeries, which we consider negligibly small chance
to occur.

196 K. Minematsu

Proof. Let gtm[R̃, R̃′] be the function that substitutes P̃ with R̃′, an independent
tweakable URF compatible with P̃. Let R̃gtm be the tweakable URF compatible
with gtm[R̃, P̃]. Then we have

Advprf
gtm[˜R,˜P]

(A) ≤ Advcpa
gtm[˜R,˜P],gtm[˜R,˜R′]

(A′) + Advcpa
gtm[˜R,˜R′],˜Rgtm

(A′′) (8)

for some adversaries A′, A′′ using q queries. The first term in the right hand
side of (8) is simply bounded by an extended form of PRP/PRF switching
lemma (e.g. [6]) and we have Advcpa

gtm[˜R,˜P],gtm[˜R,˜R′]
(A′) ≤ q2/2n+1. To analyze the

second term, let (Vi,Xi) ∈ {1, . . . , t} × {0, 1}•m with Xi = (Xi[1], . . . , Xi[m])
be the i-th query of A′′ accessing gtm[R̃, R̃′]. From the assumption we have
(Vi,Xi) �= (Vj ,Xj) if i �= j. Let Si =

⊕
j=1,...,m,Xi[j] �=ε R̃j(Xi[j]), which denotes

the i-th input (with tweak Vi) to R̃′ for the i-th query made by A′′ accessing to
gtm[R̃, R̃′]. Here R̃j is not computed for input being ε following (2).

Since gtm[R̃, R̃′] can be seen as a variant of classical Carter-Wegman MAC,
the second term is bounded by the collision probability of (V, S) against non-
adaptive strategy in the same manner to the analysis of [6,26], and we have

Advcpa
gtm[˜R,˜R′],˜Rgtm

(A′′) ≤ max Pr
gtm[˜R,˜R′]

[(Vi, Si) = (Vj , Sj) for some i �= j] (9)

≤ max
∑

i<j,Vi=Vj

Pr
gtm[˜R,˜R′]

[Si = Sj], (10)

where the maximum is taken for (V1,X1), . . . , (Vq,Xq). Without loss of generality
we focus on the event S1 = S2 and assume X1[1] �= X2[1] and V1 = V2. If
X1[1] �= ε and X2[1] �= ε, S1 ⊕ S2 = R̃(1)(X1[1]) ⊕ R̃(1)(X2[1]) ⊕ δ, where δ is
independent of R̃(1) (as it is a sum of some outputs of R̃(2), . . . , R̃(m) or 0n). If
X1[1] = ε and X2[1] = x �= ε (or vice versa), S1 ⊕ S2 = R̃(1)(x) ⊕ δ holds. For
both cases the probability of S1 ⊕ S2 = 0n is clearly 1/2n. Thus the right hand
side of (10) is bounded by

(
q
2

)
/2n < q2/2n+1. This concludes the proof. ��

Theorem 2. Let R̃ and P̃ be the tweakable URF and tweakable URP compatible
with FK and GK′ in GTM[FK , GK′]. Then, we have

Advmac
GTM[˜R,˜P]

(A1) ≤ 5t2q2

2n
, (11)

Adv
mac(i)

GTM[˜R,˜P]
(A2) ≤ 5t2q2

2n
for all i = 1, . . . , t, (12)

Adv
ident(d)

GTM[˜R,˜P]
(A3) ≤ 6t2q2

2n
, (13)

where Aj for j = 1, 2, 3 uses q queries to OT and a query to OV (for j = 1) or
O

(i)
V (for j = 2) or OI (for j = 3).

Efficient Message Authentication Codes with Combinatorial Group Testing 197

Proof. For (11), let R̃gtm be the tweakable URF compatible with gtm[R̃, P̃]. Let
Ri : {0, 1}∗ci → {0, 1}n be the independent URF where ci = |I(Qi)|, and let
R̃GTM be an ideal primitive for GTM[R̃, P̃], which takes M ∈ {0, 1}∗m and outputs
T = (T [1], . . . , T [t]) for T [i] = Ri(M � Qi). We observe that a tagging query to
GTM[R̃, P̃] yields queries to gtm[R̃, P̃](i, ·) for each i = 1, . . . , t. Thus we have

Advmac
GTM[˜R,˜P]

(A1) ≤ Advcpa
GTM[˜R,˜P],˜RGTM

(A′
1) + Advmac

˜RGTM
(A1) (14)

≤ Advprf
gtm[˜R,˜P]

(A′′
1) +

1
2n

(15)

≤ t2(q + 1)2

2n
+

1
2n

, (16)

where A′
1 uses q +1 queries, and A′′

1 uses t(q +1) queries. The second inequality
follows from the fact that, to forge R̃GTM, the adversary has to guess T ′[1] =
R1(M ′ � Q1) = R1(M ′) given tags for M1, . . . , Mq for certain M ′ �=∀ Mi. Thus
T ′[1] is independent and uniformly random over n bits. The last inequality fol-
lows from Theorem 1.

For (12), the bound is similarly derived as

Adv
mac(i)

GTM[˜R,˜P]
(A2) ≤ Advcpa

GTM[˜R,˜P],˜RGTM

(A′
2) + Adv

mac(i)
˜RGTM

(A2) (17)

≤ Advprf
gtm[˜R,˜P]

(A′′
2) +

1
2n

(18)

≤ (tq + 1)2

2n
+

1
2n

(19)

where A′′
2 uses (tq+1) queries to gtm[R̃, P̃](i, ·) or R̃gtm(i, ·). The second inequality

follows from that the adversary needs to guess Ri(M ′�Qi) for some M ′ satisfying
M ′ � Qi �= M1 � Qi, . . . , Mq � Qi, and the last follows from Theorem 1.

For (13), we observe that the adversary must find a pair of distinct M and
M ′ causing an exploitable collision between tag strings, throughout accessing
tagging oracle, since otherwise it reduces to the original combinatorial prob-
lem setting where tests never fail, and thus the identification oracle never
fails due to d-disjunctness of Q. Here, an exploitable collision means that
there exists a pair of distinct (M,M ′) such that for some i ∈ {1, . . . , t} with
M � Qi �= M ′ � Qi we have T [i] = T ′[i], for (T [1], . . . , T [t]) = GTM[R̃, P̃](M)
and (T ′[1], . . . , T ′[t]) = GTM[R̃, P̃](M ′). Here, note that an exploitable collision
at the final identification query directly means a win but an exploitable collision
invoked at tagging queries also implies a win. Hence the advantage is bounded
by the probability of exploitable collision throughout the game.

We then define a collision-finding game, where adversary A (adaptively)
queries a tagging oracle implementing a GTM, MACK. Let Mi ∈ {0, 1}∗m be
the i-th query and Ti ∈ ({0, 1}n)t be the i-th response. We assume A never
makes duplicate queries, and say A wins there is an exploitable collision, i.e.
Ti[h] = Tj [h] for some 1 ≤ i < j ≤ q and h ∈ {1, . . . , t}, and we denote the
probability of win by AdvcollMACK

(A). Then we have

198 K. Minematsu

Adv
ident(d)

GTM[˜R,˜P]
(A3) ≤ Advcoll

GTM[˜R,˜P]
(A′

3) (20)

≤ Advprf
gtm[˜R,˜P]

(A′′
3) + Advcoll

˜RGTM
(A′

3) (21)

≤ t2(q + 1)2

2n
+

t(q + 1)2

2n+1
, (22)

where A′
3 uses (q + 1) queries, A′′

3 uses t(q + 1) queries. The first term of the
last inequality follows from Theorem 1, and the second term follows from the
fact that R̃GTM’s outputs are completely random and a simple counting of events
(Ti[h] = Tj [h] for some 1 ≤ i < j ≤ q and h ∈ {1, . . . , t}) having probability
1/2n. This concludes the proof. ��
Practical Instantiations. The above analysis shows security bounds based
on information-theoretic primitives, however we can easily derive the security
bounds with practical instantiations having computational security. For con-
crete instantiations, R̃ in gtm[R̃, P̃] can be instantiated by HMAC-SHA2 or
CMAC [2] with AES, where tweak is (e.g.) encoded into a fixed-length sequence
and prepended to to input. Also P̃ can be instantiated by a computationally-
secure TBC. It can be instantiated by a blockcipher mode of operation such as
XEX [26] or a dedicated constructions, such as Threefish [18] or TBCs by Jean
et al. [22] which are used in their proposals for CAESAR competition for authen-
ticated encryption [1]. If we use CMAC with n-bit URP for R̃ and XEX with
another n-bit URP for P̃, and each data item is at most n� bits, then combining
the provable security bounds of CMAC, shown by Iwata and Kurosawa [21],
and XEX and Theorem 2, the resulting security bounds (for TVF, TSF and
CM) are shown to be O(σ2/2n), where σ = q�w ≤ q�mt and w = Hw(Q) with
a small constant. When URP is substituted with a real blockcipher, deriving
computational counterparts is also standard, see e.g. Bellare et al. [3].

4 Experimental Implementation

We implemented our algorithm with two existing CGT methods. The first is
Shifted Traversal Design (STD) by Thierry-Mieg [27]. Thierry-Mieg and Bailly
also developed a tool to produce CGT test matrix based on STD, Interpool [28].
The second is Chinese Reminder Sieve (CRS) proposed by Eppstein et al. [16].

The first method, STD, is based on the repetition and rotation of sub-matrix.
A parameter set of STD is written as (n, q, k), where n denotes the number of
items, q denotes the number of tests in a layer and k denotes the number of
layers. Here k specifies redundancy in the design and each item is included
exactly in k tests. We need q to be a prime and q < n and k ≤ q + 1. The
number of tests is q · k. Each test contains �n/q� or �n/q� + 1 items. Let Γ(q, n)
be min{γ : qγ+1 ≥ n}. Then STD can identify t corrupted items if t ·Γ(q, n) ≤ q
and k = t · Γ(q, n) + 1 hold. Moreover with E observation errors (false positives
or negatives) it works if t · Γ(q, n) + 2E ≤ q and k = t · Γ(q, n) + 2E + 1 hold.
See [27] for details.

Efficient Message Authentication Codes with Combinatorial Group Testing 199

The second method, CRS, is based on number theory and its test matrix is
specified by a sequence of powers of primes, (t1, . . . , tk) = (pe1

1 , . . . , pek

k), satisfy-
ing

∏
j tj ≥ nd, where n denotes the number of items and d denotes the number

of corrupted items that can be identified. Test matrix consists of k sub-matrices
and j-th sub-matrix is determined by tj and has tj rows (tests). Thus CRS con-
sists of t =

∑
j tj tests. Reference [16] suggests a backtracking search to find an

appropriate sequence (t1, . . . , tk) and shows a Python code doing it.

Details. We chose several parameter settings for both STD and CRS methods,
and implemented our algorithm for tag computation. Verification and corruption
identification procedures are not implemented at this moment. For STD we chose
(n, q, k) = (940, 13, 13) with 169 tests and (2000, 11, 11) with 121 tests, and for
CRS we chose (n, d) = (104, 2) and (104, 5) and (105, 2). Number of tests are 89,
378, and 131 respectively. We did not include the all-one row as the effect to
performance is quite small.

To implement GTM[FK , GK′], we used CMAC for F j
K , where tweak j is

encoded as a 4-byte sequence and prepended to the input, and used XEX for Gi
K′ ,

both with AES-128. Each tag is 16 bytes. For storing a large binary test matrix,
a natural way is to have an array, A[i][j], which denotes the j-th item index to be
included in the i-th test, as employed by Interpool. In C language we can store
it as a two-dimensional array of pointers. This expression, which we call item-
index expression, is however quite inefficient to implement GTM[FK , GK′].Tag
in Fig. 1, since it incurs a search over A for every item. Instead we made the
inverse array, B[i][j], which denotes the j-th test index used in the i-th item,
which we call test-index expression. Using this expression the algorithm of Fig. 1
is easily implemented, where lines 4 and 5 are replaced with simple successive
reading of array B.

For comparison we also implemented a conventional computation of
gtm[FK , GK′], which uses gtm[FK , GK′](i, ·) as a black-box tweakable MAC func-
tion for each test index i, using item-index array. This needs Hw(Q) calls of F
and t calls of G.

We used a standard C implementation of AES using four 1K-byte tables,
called T-tables, on Intel CPU (Ivybridge Core i7 3770, 3.4 GHz), running 64-bit
Windows. Here AES-128 runs at 13.3 cycles/byte.

The implementation results are shown in Table 1 for STD and Table 2 for
CRS, where each item has a fixed length, from 16 to 2048 bytes, shown in
the first row. The data items are randomly generated. The figures denote the
average cycles for input byte (i.e. total cycles divided by the total bytes of all
data items). These tables show that the speed of our algorithm is much faster
than the conventional one, and it is mostly the same as AES itself if each data
item is more than 1K bytes. In theory the speed-up of the proposed scheme from
the conventional one is proportional to Hw(Q)/(m + t) for m items and t tests.
The actual speed-up factor is 8 to 15 in our experiments for data items of 2K
bytes, and the difference from the ratio Hw(Q)/(m + t) is quite small.

200 K. Minematsu

Table 1. Implementation results for STD, with parameter (n, q, k).

Parameter (940, 13, 13), Hw(Q) = 12, 220, Hw(Q)/(m + t) = 11.01

(m, t) = (940, 169) 16 32 64 128 256 512 1024 2048

Proposed 63.4 64.0 26.8 20.5 17.3 15.7 14.8 14.4

Conventional 430.2 312.2 249.4 219.8 200.4 190.8 186.7 184.0

Parameter (2000, 11, 11), Hw(Q) = 22, 220, Hw(Q)/(m + t) = 10.47

(m, t) = (2000, 121) 16 32 64 128 256 512 1024 2048

Proposed 55.3 33.9 27.3 20.2 16.8 15.1 14.5 14.1

Conventional 361 259.7 206.9 180.7 166.8 159.5 155.9 153.8

Table 2. Implementation results for CRS, with parameter (n, d).

Parameter (104, 5), Hw(Q) = 150, 000, Hw(Q)/(m + t) = 14.45

(m, t) = (104, 378) 16 32 64 128 256 512 1024 2048

Proposed 60.9 37.6 25.8 20 17.1 15.6 14.8 14.5

Conventional 492.4 353.5 285 251.4 233 226.9 218.2 215.5

Parameter (104, 2), Hw(Q) = 80, 000, Hw(Q)/(m + t) = 7, 92

(m, t) = (104, 89) 16 32 64 128 256 512 1024 2048

Proposed 51 30.8 22.6 18.4 16.4 15.3 14.7 14.5

Conventional 259.5 189.7 156.1 135.5 125.7 121.2 117.7 116.3

Parameter (105, 2), Hw(Q) = 1, 000, 000, Hw(Q)/(m + t) = 9.98

(m, t) = (105, 131) 16 32 64 128 256 512 1024 2048

Proposed 49.7 31.9 23 18.6 16.3 15.1 14.5 14.1

Conventional 319.6 237.5 190.7 171.6 158.1 148.9 144.1 141.5

5 Concluding Remarks

This paper has studied a class of MAC function which is used with combinato-
rial group testing to identify the part of corruption. While such MAC function
generally needs O(mt) computation for m data items and t tests, we propose
to use a variant of PMAC to reduce the cost to O(m + t) irrespective of the
contents of these tests. From our experiments, we observe that an AES-based
implementation of our scheme can in fact run as fast as AES itself for practical
size of problems. An important next direction is to investigate practical impact
of our proposal to real-life security applications for which a group testing MAC
is useful.

Interestingly, the idea shown here can not work fine in the keyless setting,
say by replacing F and G by keyless hash functions, since the resulting incre-
mental hash function is quite weak against generalized birthday attack [29], and
thus we need to greatly increase the internal state (the output size of F). The
problem here seems deeply related to the construction of secure, space-efficient
incremental hash function, and needs further study.

Efficient Message Authentication Codes with Combinatorial Group Testing 201

Acknowledgments. The author would like to thank Kengo Mori, Jun Furukawa and
Toshihiko Okamura for fruitful discussions, and Hiroyasu Kubo for initial-stage imple-
mentation, and anonymous reviewers for helpful comments.

References

1. CAESAR : competition for authenticated encryption: security, applicability, and
robustness. http://competitions.cr.yp.to/index.html/

2. Recommendation for block cipher modes of operation: the CMAC mode for authen-
tication. NIST special publication 800–38B (2005), national institute of standards
and technology

3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment
of symmetric encryption. In: FOCS 1997, pp. 394–403. IEEE Computer Society
(1997). http://dx.doi.org/10.1109/SFCS.1997.646128

4. Bellare, M., Goldreich, O., Mityagin, A.: The Power of verification queries in
message authentication and authenticated encryption. Cryptology ePrint Archive,
Report 2004/309 (2004). http://eprint.iacr.org/

5. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

6. Black, J.A., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000)

7. Black, J.A., Rogaway, P.: A block-cipher mode of operation for parallelizable
message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 384–397. Springer, Heidelberg (2002). http://dx.doi.org/10.1007/
3-540-46035-7 25

8. De Bonis, A., Di Crescenzo, G.: Combinatorial group testing for corruption localiz-
ing hashing. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 579–
591. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-22685-4 50

9. Cheraghchi, M.: Noise-resilient group testing: limitations and constructions.
Discrete Appl. Math. 161(1–2), 81–95 (2013). http://dx.doi.org/10.1016/j.dam.
2012.07.022

10. Di Crescenzo, G., Arce, G.: Data forensics constructions from cryptographic
hashing and coding. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.)
IWDW 2011. LNCS, vol. 7128, pp. 494–509. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-32205-1 39

11. Di Crescenzo, G.D., Ge, R., Arce, G.R.: Design and analysis of DBMAC, an error
localizing message authentication code. In: GLOBECOM 2004, pp. 2224–2228.
IEEE (2004). http://dx.doi.org/10.1109/GLOCOM.2004.1378404

12. Di Crescenzo, G., Jiang, S., Safavi-Naini, R.: Corruption-localizing hashing. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 489–504. Springer,
Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-04444-1 30

13. Di Crescenzo, G.D., Vakil, F.: Cryptographic hashing for virus localization. In:
Jahanian, F. (ed.) WORM 2006. pp. 41–48. ACM Press (2006). http://doi.acm.
org/10.1145/1179542.1179550

14. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943)

15. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications: Series on
Applied Mathematics. World Scientific, Singapore (2000). http://books.google.co.
jp/books?id=KW5-CyUUOggC

http://competitions.cr.yp.to/index.html/
http://dx.doi.org/10.1109/SFCS.1997.646128
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-46035-7_25
http://dx.doi.org/10.1007/3-540-46035-7_25
http://dx.doi.org/10.1007/978-3-642-22685-4_50
http://dx.doi.org/10.1016/j.dam.2012.07.022
http://dx.doi.org/10.1016/j.dam.2012.07.022
http://dx.doi.org/10.1007/978-3-642-32205-1_39
http://dx.doi.org/10.1109/GLOCOM.2004.1378404
http://dx.doi.org/10.1007/978-3-642-04444-1_30
http://doi.acm.org/10.1145/1179542.1179550
http://doi.acm.org/10.1145/1179542.1179550
http://books.google.co.jp/books?id=KW5-CyUUOggC
http://books.google.co.jp/books?id=KW5-CyUUOggC

202 K. Minematsu

16. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group
testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–
1375 (2007). http://dx.doi.org/10.1137/050631847

17. Fang, J., Jiang, L.Z., Yiu, S., Hui, L.C.: Hard disk integrity check by hashing with
combinatorial group testing. In: CSA 2009, pp. 1–6 (2009). http://dx.doi.org/10.
1109/CSA.2009.5404206

18. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T.,
Callas, J., Walker, J.: Skein hash function. SHA-3 Submission (2008). http://www.
skein-hash.info/

19. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Algorithms and Combinatorics. Springer, Heidelberg (1998)

20. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data
forensics. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 206–221. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/
11496137 15

21. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

22. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-
45608-8 15

23. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-45708-9 3

24. Ngo, H.Q., Du, D.Z.: A Survey on combinatorial group testing algorithms with
applications to DNA library screening. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science (2000)

25. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable error-correcting list disjunct
matrices and applications (Extended Abstract). In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 557–568. Springer, Heidelberg
(2011). http://dx.doi.org/10.1007/978-3-642-22006-7 47

26. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 16–31. Springer, Heidelberg (2004). http://dx.doi.org/10.1007/
978-3-540-30539-2 2

27. Thierry-Mieg, N.: A new pooling strategy for high-throughput screening: the
shifted transversal design. BMC Bioinform. 7, 28 (2006). http://www.
biomedcentral.com/content/pdf/1471-2105-7-28.pdf

28. Thierry-Mieg, N., Bailly, G.: Interpool: interpreting smart-pooling results. Bioin-
formatics 24(5), 696–703 (2008)

29. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). http://dx.doi.org/
10.1007/3-540-45708-9 19

30. Zaverucha, G.M., Stinson, D.R.: Group testing and batch verification. In: Kuro-
sawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 140–157. Springer, Heidelberg
(2010). http://dx.doi.org/10.1007/978-3-642-14496-7 12

http://dx.doi.org/10.1137/050631847
http://dx.doi.org/10.1109/CSA.2009.5404206
http://dx.doi.org/10.1109/CSA.2009.5404206
http://www.skein-hash.info/
http://www.skein-hash.info/
http://dx.doi.org/10.1007/11496137_15
http://dx.doi.org/10.1007/11496137_15
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/978-3-642-22006-7_47
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://www.biomedcentral.com/content/pdf/1471-2105-7-28.pdf
http://www.biomedcentral.com/content/pdf/1471-2105-7-28.pdf
http://dx.doi.org/10.1007/3-540-45708-9_19
http://dx.doi.org/10.1007/3-540-45708-9_19
http://dx.doi.org/10.1007/978-3-642-14496-7_12

Symmetric-Key Based Proofs of Retrievability
Supporting Public Verification

Chaowen Guan1(B), Kui Ren1, Fangguo Zhang1,2,3, Florian Kerschbaum4,
and Jia Yu1,5

1 Department of Computer Science and Engineering,
University at Buffalo, Buffalo, USA

{chaoweng,kuiren}@buffalo.edu, isszhfg@mail.sysu.edu.cn
2 School of Information Science and Technology, Sun Yat-sen University,

Guangzhou, China
3 Guangdong Key Laboratory of Information Security Technology,

Guangzhou, China
4 SAP, Karlsruhe, Germany
florian.kerschbaum@sap.com

5 College of Information Engineering, Qingdao University, Qingdao, China

Abstract. Proofs-of-Retrievability enables a client to store his data on
a cloud server so that he executes an efficient auditing protocol to check
that the server possesses all of his data in the future. During an audit,
the server must maintain full knowledge of the client’s data to pass, even
though only a few blocks of the data need to be accessed. Since the first
work by Juels and Kaliski, many PoR schemes have been proposed and
some of them can support dynamic updates. However, all the existing
works that achieve public verifiability are built upon traditional public-
key cryptosystems which imposes a relatively high computational burden
on low-power clients (e.g., mobile devices).

In this work we explore indistinguishability obfuscation for building a
Proof-of-Retrievability scheme that provides public verification while the
encryption is based on symmetric key primitives. The resulting scheme
offers light-weight storing and proving at the expense of longer verifica-
tion. This could be useful in apations where outsourcing files is usually
done by low-power client and verifications can be done by well equipped
machines (e.g., a third party server). We also show that the proposed
scheme can support dynamic updates. At last, for better assessing our
proposed scheme, we give a performance analysis of our scheme and a
comparison with several other existing schemes which demonstrates that
our scheme achieves better performance on the data owner side and the
server side.

Keywords: Cloud storage · Proofs of retrievability · Indistinguishabil-
ity obfuscation

1 Introduction

Nowadays, storage outsourcing (e.g., Google Drive, Dropbox, etc.) is becoming
increasingly popular as one of the applications of cloud computing. It enables
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 203–223, 2015.
DOI: 10.1007/978-3-319-24174-6 11

204 C. Guan et al.

clients to access the outsourced data flexibly from any location. However, the
storage provider (i.e., server) is not necessarily trusted. This situation gives rise
to a need that a data owner (i.e., client) can efficiently verify that the server
indeed stores the entire data. More precisely, a client can run an efficient audit
protocol with the untrusted server where the server can pass the audit only
if it maintains knowledge of the client’s entire outsourced data. Formally, this
implies two guarantees that the client wants from the server: Authenticity and
Retrievability. Authenticity ensures that the client can verify the correctness of
the data fetched from the server. On the other hand, Retrievability provides
assurance that the client’s data on the server is intact and no data loss has
occurred. Apparently, the client should not need to download the entire data
from server to verify the data’s integrity, since this may be prohibitive in terms
of bandwidth and time. Also, it is undesirable for the server to read all of the
client’s outsourced data during an audit protocol.

One method that achieves the above is called Proofs of Retrievability (PoR)
which was initially defined and constructed by Juels and Kaliski [1]. Mainly, PoR
schemes can be categorized into two classes: privately verifiable ones and pub-
licly verifiable ones. Note that privately verifiable PoR systems normally only
involve symmetric key primitives, which are cheap for the data owner in encrypt-
ing and uploading its files. However, in such systems the guarantees of the data’s
authenticity and retrievability largely depend on the data owners themselves due
to the fact that they need to regularly perform verifications (e.g., auditing) in
order to react as early as possible in case of a data loss. Nowadays, users create
and upload data everywhere using low power devices, such as mobile phones.
Obviously, such privately verifiable PoR system would inevitably impose expen-
sive burdens on low power data owners in the long run. On the other hand, in
this scenario with low power users, it is reasonable to have a well equipped server
(trusted or semi-trusted) perform auditing on behalf of data owner which requires
publicly verifiable PoR systems. However, all of the existing PoR schemes that
achieve public verifiability are constructed based on traditional public key cryp-
tography which implies more complex and expensive computations compared to
simple and symmetric key cryptographic primitives. (This observation can also
be spotted in outsourced computing schemes that support public verification
[34–36].) That means a PoR scheme using public key cryptographic primitives
incurs relatively expensive overheads on low-capability clients. One might want
to construct a public verifiable PoR scheme without relying on traditional pub-
lic key cryptographic primitives. One cryptographic primitive that can help to
overcome this constraint is indistinguishability obfuscation (iO) which achieves
that obfuscations of any two distinct (equal-size) programs that implement the
same functionality are computationally indistinguishable from each other. iO
has become so important since the recent breakthrough result of Garg et al. in
[2]. Garg et al. proposed the first candidate construction of an efficient indis-
tinguishability obfuscator for general programs which are written as boolean
circuits. Subsequently, Sahai and Waters [3] showed the power of iO as a cryp-
tographic primitive: they used iO to construct denial encryption, public-key
encryption, and much more from pseudorandom functions. Most recently, by

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 205

exploiting iO, Ramchen et al. [4] built a fully secure signature scheme with fast
signing and Boneh et al. [5] proposed a multiparty key exchange protocol, an
efficient traitor tracing system and more.

Our work. In this paper, we explore this new primitive, iO, for building PoR.
In particular, we modify Shacham and Waters’ privately verifiable PoR scheme
[6] and apply iO to construct a publicly verifiable PoR scheme. Our results share
a similar property with Ramchen et al.’s signing scheme [4], that is, storing and
proving are fast at the expense of longer public verification. Such “imbalance”
could be useful in applications where outsourcing files is usually done by low-
power client and verifications can be done by well equipped machines (a semi-
trusted third party). Our contributions are summarized as follows:

1. We explore building proof-of-retrievability systems from obfuscation. The
resulting PoR scheme offers light-weight outsourcing, because it requires only
symmetric key operations for the data owner to upload files to the cloud
server. Likewise, the server also requires less workload during an auditing
compared to existing publicly verifiable PoR schemes.

2. We show that the proposed PoR scheme can support dynamic updates by
applying the Merkle hash tree technique. We first build a modified B+ tree
over the file blocks and the corresponding block verification messages σ. Then
we apply the Merkle hash tree to this tree for ensuring authenticity and
freshness.

3. Note that the current iO construction candidate will incur a large amount of
overhead for generating obfuscation, but it is only a one-time cost during the
preprocessing stage of our system. Therefore its cost can be amortized over
plenty of future operations. Except for this one-time cost, we show that our
proposed scheme achieves good performance on the data owner side and the
cloud server side by analysis and comparisons with other recent existing PoR
schemes.

Indistinguishability obfuscation indeed provides attractive and interesting fea-
tures, but the current iO candidate construction offers impractical generation
and evaluation. Given the fact that the development of iO is still in its nascent
stages, in Appendix, we discuss several possible future directions in works on
obfuscation in addition to those discussed in [2].

1.1 Related Work

Proof of Retrievability and Provable Data Possession. The first PoR
scheme was defined and constructed by Juels and Kaliski [1], and the first Prov-
able Data Possession (PDP) was concurrently defined by Ateniese et al. [7].
The main difference between PoR and PDP is the notion of security that they
achieve. Concretely, PoR provides stronger security guarantees than PDP does.
A successful PoR audit guarantees that the server maintains knowledge of all
of the client’s outsourced data, while a successful PDP audit only ensures that

206 C. Guan et al.

the server is retaining most of the data. That means, in a PDP system a server
that lost a small amount of data can still pass an audit with significant probabil-
ity. Some PDP schemes [8] indeed provide full security. However, those schemes
requires the server to read the client’s entire data during an audit. If the data is
large, this becomes totally impractical. A detailed comparison can be found in
[9]. Since the introduction of PoR and PDP they have received much research
attention. On the one hand, subsequent works [6,10–12] for static data focused
on the improvement of communication efficiency and exact security. On the
other hand, the works of [13–15] showed how to construct dynamic PDP scheme
supporting efficient updates. Although many efficient PoR schemes have been
proposed since the work of Juels et al., only a few of them supports efficient
dynamic update [16–18].

Observe that in publicly verifiable PoR systems, an external verifier (called
auditor) is able to perform an auditing protocol with the cloud server on behalf
of the data owner. However, public PoR systems do not provide any security
guarantees when the user and/or the external verifier are dishonest. To address
this problem Armknecht et al. recently introduced the notion of outsourced proofs
of retrievability (OPoR) [19]. In particular, OPoR protects against the collusion
of any two parties among the malicious auditor, malicious users and the mali-
cious cloud server. Armknecht et al. proposed a concrete OPoR scheme, named
Fortress, which is mainly built upon the private PoR scheme in [6]. In order to
be secure in the OPoR security model, Fortress also employs a mechanism that
enables the user and the auditor to extract common pseudorandom bits using a
time-dependent source without any interaction.

Indistinguishability Obfuscation. Program obfuscation aims to make com-
puter programs “unintelligible” while preserving their functionality. The formal
study of obfuscation was started by Barak et al. [20] in 2001. In their work,
they first suggested a quite intuitive notion called virtual black-box obfusca-
tion, for which they also showed impossibility. Motivated by this impossibility,
they proposed another important notion of obfuscation called indistinguishability
obfuscation (iO), which asks that obfuscations of any two distinct (equal-size)
programs that implement the same functionalities are computationally indistin-
guishable from each other. A recent breakthrough result by Garg et al. [2] pre-
sented the first candidate construction of an efficient indistinguishability obfus-
cator for general programs that are written as boolean circuits. The proposed
construction was build on the multilinear map candidates [21,22].

The works of Garg et al. [2] also showed how to apply indistinguishability
obfuscation to the construction of functional encryption schemes for general cir-
cuits. In subsequent work, Sahai and Waters [3] formally investigated what can
be built from indistinguishability obfuscation and showed the power of indis-
tinguishability obfuscation as a cryptographic primitive. Since then, many new
applications of general-purpose obfuscation have been explored [24–28]. Most
recently, the works of Boneh et al. [5] and Ramchen et al. [4] re-explore the con-
structions of some existing cryptographic primitives through the lens of obfusca-
tion, including broadcast encryption, traitor tracing and signing. Those proposed

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 207

constructions indeed obtain some attractive features, although current obfus-
cation candidates incur prohibitive overheads. Precisely, Boneh et al.’s broad-
cast encryption achieves that ciphertext size is independent of the number of
users, and their traitor tracing system achieves full collusion resistance with
short ciphertexts, secret keys and public keys. On the other hand, Ramchen
et al. [4] proposed an imbalanced signing algorithm, which is ideally significantly
faster than comparable signatures that are not built upon obfuscation. Here
“imbalanced” means the signing is fast at the expense of longer verification.

2 Preliminaries

In this section we define proof-of-retrievability, indistinguishability obfuscation,
and variants of pseudorandom functions (PRFs) that we will make use of. All the
variants of PRFs that we consider will be constructed from one-way functions.

2.1 Proofs of Retrievability

Below, we give the definition of publicly verifiable PoR scheme in a way similar
to that in [6]. A proof of retrievability scheme defines four algorithms, KeyGen,
Store, Prove and Verify, which are specified as follows:

(pk, sk) ←KeyGen(1λ). On input the security parameter λ, this randomized
algorithm generates a public-private keypair (pk, sk).

(M∗, t) ←Store(sk,M). On input a secret key sk and a file M ∈ {0, 1}∗, this
algorithm processes M to produce M∗, which will be stored on the server,
and a tag t. The tag t contains information associated with the file M∗.

(0, 1) ← Audit(Prove,Verify). The randomized proving and verifying algo-
rithms together define an Audit-protocol for proving file retrievability. During
protocol execution, both algorithms take as input the public key pk and the
file tag t output by Store. Prove algorithm also takes as input the processed
file description M∗ that is output by Store, and Verify algorithm takes as
input public verification key V K. At the end of the protocol, Verify outputs
0 or 1, with 1 indicating that the file is being stored on the server. We denote
a run of two parties executing such protocol as:

{0, 1} ← (Verify(pk, V K, t) � Prove(pk, t,M∗)).

Correctness. For all keypairs (pk, sk) output by KeyGen, for all files M ∈
{0, 1}∗, and for all (M∗, t) output by Store(sk,M), the verification algorithm
accepts when interacting with the valid prover:

(Verify(pk, V K, t) � Prove(pk, t,M∗)) = 1.

208 C. Guan et al.

2.2 Obfuscation Preliminaries

We recall the definition of indistinguishability obfuscation from [2,3].

Definition 1. Indistinguishability Obfuscation (iO). A uniform PPT machine
iO is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the
following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT distinguisher (Samp,D), there exists
a negligible function negl(·) such that the following holds: if for all security
parameters λ ∈ N, Pr[∀x,C0(x) = C1(x) : (C0;C1; τ) ← Samp(1λ)] > 1 −
negl(λ), then we have

|Pr[D(τ, iO(λ,C0)) = 1 : (C0;C1; τ) ← Samp(1λ)]−
Pr[D(τ, iO(λ,C1)) = 1 : (C0;C1; τ) ← Samp(1λ)]| ≤ negl(λ).

2.3 Puncturable PRFs

A pseudorandom function (PRF) is a function F : K×M → Y with K
$← K such

that the function F (K, ·) is indistinguishable from random. A constrained PRF
[29] is a PRF F (K, ·) that is able to evaluate at certain portions of the input
space and nowhere else. A puncturable PRF [3,29] is a type of constrained PRF
that enables the evaluation at all bit strings of a certain length, except for any
polynomial-size set of inputs. Concretely, it is defined with two PPT algorithms
(EvalF ,PunctureF) such that the following two properties hold:

– Functionality Preserved under Puncturing. For every PPT algorithm
A with input 1λ outputs a set S ⊆ {0, 1}n, for all x ∈ {0, 1}n\S, we have

Pr[EvalF (K{S}, x) = F (K,x) : K
$← K,K{S} ← PunctureF (K,S)] = 1

– Pseudorandom at Punctured Points. For every pair of PPT algorithms
(A1,A2) such that A1(1λ) outputs a set S ⊆ {0, 1}n and a state σ, consider

an experiment where K
$← K,K{S} ← PunctureF (K,S). It holds that

|Pr[A2(σ,K{S}, S, F (K,S)) = 1)]−
Pr[A2(σ,K{S}, S, Um(λ)·|S|) = 1]| ≤ negl(λ)

3 Security Definitions

The security definitions of Authenticity and Retrievability in [17,18] are essen-
tially equivalent to the security definition of Soundness in [6]. Note that the
security definitions in [17,18] are for dynamic PoR systems, while the one in
[6] considers only static PoR systems. The only difference between a static PoR

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 209

scheme and a dynamic PoR scheme is that the latter one supports secure dynamic
updates, including modification, deletion and insertion. This affects the access
to oracles in the security game. Below we present the security definitions for
static PoR systems in the same way as [17,18] and then point out how to obtain
the security definitions for dynamic PoR systems based on the static one.

3.1 Security Definitions on Static PoR

Authenticity. Authenticity requires that the client can always detect if any
message sent by the server deviates from honest behavior. More precisely, con-
sider the following game between a challenger C, a malicious server S̃ and an
honest server S for the adaptive version of authenticity:

– The challenger initializes the environment and provides S̃ with public para-
meters.

– The malicious sever S̃ specifies a valid protocol sequence P = (op1, op2, · · · ,
oppoly(λ)) of polynomial size in the security parameter λ. The specified oper-
ations opt can be either Store or Audit. C executes the protocol with both S̃
and an honest server S.

If at execution of any opj , the message sent by S̃ differs from that of the honest
server S and C does not output reject, the adversary S̃ wins and the game results
in 1, else 0.

Definition 2. A static PoR scheme is said to satisfy adaptive Authenticity, if
any polynomial-time adversary S̃ wins the above security game with probability
no more than negl(λ).

Retrievability. Retrievability guarantees that whenever a malicious server can
pass the audit test with non-negligible probability, the server must know the
entire content of M; and moreover, M can be recovered by repeatedly running
the Audit-protocol between the challenger C and the server S̃. More precisely,
consider the following security game:

– The challenger initializes the environment and provides S̃ with public para-
meters.

– The malicious server S̃ specifies a protocol sequence P = (op1, op2, · · · ,
oppoly(λ)) of polynomial size in terms of the security parameter λ. The speci-
fied operations opt can be either Store or Audit. Let M be the correct content
value.

– The challenger C sequentially executes the respective protocols with S̃. At the
end of executing P , let stC and st

˜S be the final configurations (states) of the
challenger and the malicious server, respectively.

– The challenger now gets black-box rewinding access to the malicious server in
its final configuration st

˜S . Starting from the configurations (stC , st
˜S), the chal-

lenger runs the Audit-protocol repeatedly for a polynomial number of times
with the server S̃ and attempts to extract out the content value as M′.

210 C. Guan et al.

If the malicious server S̃ passes the Audit-protocol with non-negligible probability
and the extracted content value M′ �= M, then this game outputs 1, else 0.
Definition 3. A static PoR scheme is said to satisfy Retrievability, if there exists
an efficient extractor E such that for any polynomial-time S̃, if S̃ passes the
Audit-protocol with non-negligible probability, and then after executing the Audit-
protocol with S̃ for a polynomial number of times, the extractor E outputs content
value M′ �= M only with negligible probability.
The above says that the extractor E will be able to extract out the correct
content value M′ = M if the malicious server S̃ can maintain a non-negligible
probability of passing the Audit-protocol. This means the server must retain full
knowledge of M.

3.2 Security Definitions on Dynamic PoR
The security definitions for dynamic PoR systems are the same as those for static
PoR systems, except that the oracles which the malicious server S̃ has access to
are including Read, Write and Audit. Precisely, the security game for Authenticity
is the same as the for static PoR schemes, except that the malicious server S̃
can get access to Read, Write and Audit oracles. This means that the specified
operations opt by S̃ in the protocol sequence P = (op1, op2, · · · , oppoly(λ)) can
be either Read, Write or Audit. Similarly, the security game for Retrievability is
the same as that for static PoR systems, except that the malicious server S̃ can
get access to Read, Write and Audit oracles. Note that the winning condition for
both games remain unchanged.

4 Constructions

In this section we first give the construction of a static publicly verifiable PoR
system. Then we discuss how to extend this static PoR scheme to support effi-
cient dynamic updates.

Before presenting our proposed constructions, we analyze a trivial construc-
tion of a publicly verifiable PoR scheme using iO. Let n be the number of file
blocks, λ1 be the size of a file block (here assume every file block is equally
large), λ2 be the size of a block tag σ and I be the challenge index set requested
by the verifier. Since iO can hide secret information, which is embedded into the
obfuscated program, from the users, one might construct a scheme as: (1) set
the tag for a file block mi as the output of a PRF F (k,mi) with secret key k;
(2) embed key k into the verification program and obfuscate it; (3) this veri-
fication program simply checks the tags for the challenged file blocks to see if
they are valid outputs of the PRF. Observe that this verification program takes
as inputs a challenge index set, the challenged file blocks and the correspond-
ing file tags. Therefore, the circuit for this verification program will be of size
O(poly(|I| · log n + |I| · λ1 + |I| · λ2)), where |I| is the size of index set I and
poly(x) is a polynomial in terms of x. Clearly, this method also costs much a lot
of bandwidth due to the fact that it does not provide an aggregated proof.

While in our construction we modify the privately verifiable PoR scheme
in [6]. For consistency with the above analysis, assume that file blocks are not

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 211

further divided into sectors. Then the verification program takes as input a
challenge index set I, an aggregation of the challenged file blocks μ and an
aggregated σ′. Consequently the circuit for the verification program will have
size O(poly(|I| · log n + λ1 + λ2)), which is much smaller than that in the trivial
construction. Clearly, the trivial construction will lead to a significantly larger
obfuscation of the verification program.

Similarly, we analyze the circuit’s size when a file block is further split into
s sectors, as the scheme in [6] did. Let the size of a sector in a file block be λ3.
The circuit size in the trivial construction will remain unchanged, O(poly(|I| ·
log n + |I| · λ1 + |I| · λ2)). While the circuit in our construction will have size
O(poly(|I| · log n + s · λ3 + λ3)) ≈ O(poly(|I| · log n + λ1 + λ3)), which is still
much smaller than that in the trivial construction. As we can see, exploiting iO
is not trivial although it is a powerful cryptographic primitive.

4.1 Static Publicly Verifiable PoR Scheme

We modify Shacham and Waters’ privately verifiable PoR scheme in [6] and
combine it with iO to give a publicly verifiable PoR scheme. Recall that in the
scheme in [6], a file F is processed using erasure code and then divided into n
blocks. Also note that each block is split into s sectors. This allows for a tradeoff
between storage overhead and communication overhead, as discussed in [6].

Before presenting the construction of the proposed static PoR scheme, we
give a brief discussion on how we apply indistinguishability obfuscation to the
PoR scheme in [6]. For doing that, we need to utilize a key technique introduced
in [3], named punctured programs. At a very high-level, the idea of this technique
is to modify a program (which is to be obfuscated) by surgically removing a key
element of the program, without which the adversary cannot win the security
game it must play, but in a way that does not change the functionality of the
program. Note that, in Shacham and Waters’ PoR scheme, for each file block, σi

is set as fprf (i) +
∑s

j=1 αjmij , where the secret key kprf for PRF f is specific
for one certain file M . That means for different files, it uses different PRF key
kprf ’s. As to make it a punctured PRF that we want in the obfuscated program,
we eliminate this binding between PRF key kprf and file M , and the same PRF
key kprf will be used in storing many different files. Thus, the PRF key kprf

will be randomly chosen in client KeyGen step, not in Store step. The security
will be maintained after this modification, due to the fact that it still provides
σi with randomness without adversary getting the PRF key.

The second main change is related to the construction of a file tag t.
Note that, in Shacham and Waters’ scheme, t = n‖c‖MACkmac

(n‖c), where
c = Enckenc

(kprf‖α1‖ · · · ‖αs). In our proposed scheme, the randomly selected
elements α1, · · · , αs will be removed. Instead, we use another PRF key fprf ′ to
generate s pseudorandom numbers, which will reduce the communication cost by
(s · �log p�), where log p means each element αi ∈ Zp. As a consequence of these
two changes, the symmetric key encryption component c is no longer needed and
σi will be made as fprf (i) +

∑s
j=1 fprf ′(j) · mij .

212 C. Guan et al.

Let F1(k1, ·) be a puncturable PRF mapping �log N�-bit inputs to �log Zp�. Here
N is a bound on the number of blocks in a file. Let F2(k2, ·) be a puncturable
PRF mapping �log s�-bit inputs to �log Zp�. Let SSigssk(x) be the algorithm
generating a signature on x.

KeyGen(). Randomly choose two PRF key k1 ∈ K1, k2 ∈ K2 and a random
signing keypair (svk, ssk) R← SKg. Set the secret key sk = (k1, k2, ssk). Let
the public key be svk along with the verification key VK which is an indis-
tinguishability obfuscation of the program Check defined as below.

Store(sk,M). Given file M and secret key sk = (k1, k2, ssk), proceed as follows:
1. apply the erasure code to M to obtain M ′;
2. split M ′ into n blocks, and each block into s sectors to get {mij} for

1 ≤ i ≤ n, 1 ≤ j ≤ s;
3. set the file tag t = n‖SSigssk(n)
4. for each i, 1 ≤ i ≤ n, compute σi = F1(k1, i) +

∑s
j=1 F2(k2, j) · mij ;

5. set as the outputs the processed file M ′ = {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,
the corresponding file tag t and {σi}, 1 ≤ i ≤ n.

Verify(svk, V K, t). Given the tag t, parse t = n‖SSigssk(n) and use svk to verify
the signature on t; if the signature is invalid, reject and halt. Otherwise, pick
a random l-element subset I from [1, n], and for each i ∈ I, pick a random
element vi ∈ Zp. Send set Q = {(i, vi)} to the prover.

Parse the prover’s response to obtain μ1, · · · , μs, σ ∈ Z
s+1
p . If parsing fails,

reject and halt. Otherwise, output VK(Q = {(i, vi)}i∈I , μ1, · · · , μs, σ).
Check:
Inputs: Q = {(i, vi)}i∈I , μ1, · · · , μs, σ
Constants: PRF keys k1, k2

if σ =
∑

(i,vi)∈Q vi · F1(k1, i) +
∑s

j=1 F2(k2, j) · μj then output 1
else output ⊥

Prove(t,M ′). Given the processed file M ′, {σi}, 1 ≤ i ≤ n and an l-element
set Q sent by the verifier, parse M ′ = {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s and
Q = {(i, vi)}. Then compute

μj =
∑

(i,vi)∈Q

vimij for 1 ≤ j ≤ s, and σ =
∑

(i,vi)

viσi,

and send to the prove in response the values μ1, · · · , μs and σ.

4.2 PoR Scheme Supporting Efficient Dynamic Updates

A PoR scheme supporting dynamic updates means that it enables modification,
deletion and insertion over the stored files. Note that, in the static PoR scheme,
each σi associated with mij1≤j≤s is also bound to a file block index i. If an
update is executed in this static PoR scheme, it requires to change every σi cor-
responding to the involved file blocks, and the cost could probably be expensive.
Let’s say the client needs to insert a file block Fi into position i. We can see
that this insertion manipulation requires to update the indices in σj ’s for all
i ≤ j ≤ n. On average, a single insertion incurs updates on n/2 σj ’s.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 213

In order to offer efficient insertion, we need to disentangle σi from index i.
Concretely, F1(k1, ·) should be erased in the computing of σi, which leads to a
modified σ′

i =
∑s

j=1 F2(k2, j) · mij . However, this would make the scheme inse-
cure, because a malicious server can always forge, e.g., σ′

i/2 =
∑s

j=1 F2(k2, j) ·
(mij/2) for file block {mij/2}1≤j≤s with this σ′

i.
Instead, we build σi as F1(k1, ri)+

∑s
j=1 F2(k2, j) ·mij , where ri is a random

element from Zp. Clearly, we can’t maintain the order of the stored file blocks
without associating σi with index i. To provide the guarantee that every up-
to-date file block is in the designated position, we use a modified B+ tree data
structure with standard Merkle hash tree technique.

Observe that, unlike Shacham and Waters’ scheme where the file is split into
n blocks after being erasure encoded, the construction here assumes that each file
block is encoded ‘locally’. (Cash et al.’s work [17] also started with this point.)
That is, instead of using an erasure code that takes the entire file as input, we
use a code that works on small blocks. More precisely, the client divides the file
M into n blocks, i.e., M = (m1,m2, · · · ,mn), and then encodes each file block
mi individually into a corresponding codeword block ci = encode(mi). Next, the
client performs the following PoR scheme to create σi for each ci. Auditing works
as before: The verifier randomly selects l indices from [1, n] and l random values,
and then challenges the server to respond with a proof that is computed with
those l random values and corresponding codewords specified by the l indices.
Note that, in this construction, each codeword ci will be further divided into s
sectors, (ci1, ci2, · · · , cis) during the creation of σi. A more detailed discussion
about this and analysis of how to better define block size can be found in the
appendices in [6,17].

Let F1(k1, ·) be a puncturable PRF mapping �log N�-bit inputs to �log Zp�. Here
N is a bound on the number of blocks in a file. Let F2(k2, ·) be a puncturable
PRF mapping �log s�-bit inputs to �log Zp�. Let Enck/Deck be a symmetric key
encryption/decryption algorithm, and SSigssk(x) be the algorithm generating a
signature on x.

KeyGen(). Randomly choose puncturable PRF keys k1 ∈ K1 k2 ∈ K2,
a symmetric encryption key kenc ∈ Kenc and a random signing keypair
(svk, ssk) R← SKg. Set the secret key sk = (k1, k2, kenc, ssk). Let the public
key be svk along with the verification key VK which is an indistinguishability
obfuscation of the program CheckU defined as below.

Store(sk,M). Given file M and secret key sk = (k1, k2, kenc, ssk), proceed as
follows:
1. split M ′ into n blocks and apply the erasure code to each block mi to

obtain the codeword block m′
i, then divide each block m′

i into s sectors to
get {m′

ij} for 1 ≤ i ≤ n, 1 ≤ j ≤ s;
2. for each i, 1 ≤ i ≤ n, choose a random element ri ∈ Zp and compute

σi = F1(k1, ri) +
∑s

j=1 F2(k2, j) · m′
ij ;

3. set c = Enckenc
(r1‖ · · · ‖rn) and the file tag t = n‖c‖SSigssk(n‖c);

4. set as the outputs the processed file M ′ = {m′
ij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,

the corresponding file tag t and {σi}, 1 ≤ i ≤ n.

214 C. Guan et al.

Verify(svk, V K, t). Given the file tag t, parse t = n‖c‖SSigssk(n‖c) and use
svk to verify the signature on t; if the signature is invalid, reject and halt.
Otherwise, pick a random l-element subset I from [1, n], and for each i ∈ I,
pick a random element vi ∈ Zp. Sent set Q = {(i, vi)} to the prover.

Parse the prover’s response to obtain μ1, · · · , μs, σ ∈ Z
s+1
p . If parsing fails,

reject and halt. Otherwise, output VK(Q = {(i, vi)}i∈I , μ1, · · · , μs, σ, t).

CheckU:
Inputs: Q = {(i, vi)}i∈I , μ1, · · · , μs, σ, t
Constants: PRF keys k1, k2, symmetric encryption key kenc

n‖c‖SSigssk(n‖c) ← t
r1, · · · , rn ← Deckenc

(c)
if σ =

∑
(i,vi)∈Q vi · F1(k1, ri) +

∑s
j=1 F2(k2, j) · μj then output 1

else output ⊥
Prove(t,M ′). Given the processed file M ′, {σi}, 1 ≤ i ≤ n and an l-element

set Q sent by the verifier, parse M ′ = {m′
ij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s and

Q = {(i, vi)}. Then compute

μj =
∑

(i,vi)∈Q

vim
′
ij for 1 ≤ j ≤ s, and σ =

∑

(i,vi)

viσi,

and send to the prove in response the values μ1, · · · , μs and σ.

Modified B+ Merkle tree. In our construction, we organize the data files
using a modified B+ tree, and then apply a standard Merkle Hash tree to pro-
vides guarantees of freshness and authenticity. In this modified B+ tree, each
node has at most three entries. Each entry in leaf node is data file’s σ and is
linked to its corresponding data file in the additional bottom level. The internal
nodes will no longer have index information. Before presenting the tree’s con-
struction, we first define some notations. We denote an entry’s corresponding
computed σ by label(·), the rank of an entry (i.e., the number of file blocks that
can be reached from this entry) by rank(·), descendants of an entry by child(·),
left/right sibling of an entry by len(·)/ren(·).
– entry w in leaf node: label(w) = σ, len(w) (if w is the leftmost entry, len(w) =

0) and ren(w) ((if w is the rightmost entry, ren(w) = 0);
– entry v in internal node and root node: rank(v), child(v) len(v) and ren(v),

where len(v) and ren(v) conform to the rules above.

An example is illustrated in Fig. 1a. Following the definitions above, entry v1
in root node R contains: (1) rank(v1) = 3, because w1, w2 and w3 can be reached
from v1; (2) child(v1) = w1‖w2‖w3; (3) len(v1) = 0; (4) ren(v1) = v2. Entry w2 in
leaf node W1 contains: (1) label(w2) = σ2; (2) len(w2) = w1; (3) ren(w2) = w3.
Note that the arrows connecting the entries in leaf nodes with F ’s means that
each entry is associated with its corresponding file block. Precisely, e.g., entry w1

is associated with the first data block F1 and label(w1) = σ1.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 215

Fig. 1. An example of a modified B+ tree.

To search for a σ and its corresponding file block, we need two additional
values of each entry, low(·) and high(·). low(·) gives the lowest-position data
block that can be reached from an entry, and high(·) defines the highest-position
data block that can be reached from an entry. Observe that these two values need
not be stored for every entry in the tree. We can compute them on the fly using
the ranks. For the current entry r, assume we know low(r) and high(r). Let
child(r) = v1‖v2‖v3. Then low(vi)’s and high(vi)’s can be computed with entry’s
rank value in the following way: (1) low(v1) = low(r) and high(v1) = low(v1)+
rank(v1)−1; (2) low(v2) = high(v1)+1 and high(v2) = low(v2)+ rank(v2)−1;
(3) low(v3) = high(v2) + 1 and high(v3) = high(r).

Using the entries’ rank values, we can reach the i-th data block (i.e., i-th
entry) in the leaf nodes. The search starts with entry v1 in root node. Clearly,
for the start entry of the tree, we have low(v1) = 1. On each entry v during the
search, if i ∈ [low(v), high(v)], we proceed the search along the pointer from v
to its children; otherwise, check the next entry on v’s right side. We continue
until we reach the i-th data block. For instance, say we want to read the 6-th
data block in Fig. 1a. We start with entry v1, and the search proceeds as follows:

1. compute high(v1) = low(v1) + rank(v1) − 1 = 3;
2. i = 6 /∈ [low(v1), high(v1)], then check the next entry, v2;
3. compute low(v2) = high(v1) + 1 = 4, high(v2) = low(v2) + rank(v2) − 1 = 6;
4. i ∈ [low(v2), high(v2)], then follow the pointer leading to v2’s children;
5. get child(v2) = w4‖w5‖w6;

216 C. Guan et al.

6. now in leaf node, check each entry from left to right, and find w6 be the entry
connecting to the wanted data block.

Now it is only left to define the Merkle hash tree on this modified B+ tree.
Note that in our modified B+ tree, each node have at most 3 entries. Let upper
case letter denote node and lower case one denote entry. For each entry, the
hashing value is computed as follows:

– Case 0: w is an entry in a leaf node, compute f(w) = h(label(w)) = h(σ),
– Case 1: v is an entry in an internal node and it’s descendent is node V ′,

compute f(v) = h(rank(v)‖f(V ′)).

For each node (internal node or leaf node) consisting of entries v1, v2, v3 from left
to right, we define f(V) = h(f(v1)‖f(v2)‖f(v3)). For instance, in Fig. 1.a, the
hashing value for the root node is f(R) = h(f(v1)‖f(v2)‖f(v3)), where f(vi) =
h(rank(vi)‖f(Wi)) and f(Wi) = h(f(w(i−1)∗3+1)‖f(w(i−1)∗3+2)‖f(w(i−1)∗3+3)).

With this Merkle hash tree built over the modified B+ tree, the client keeps
track of the root digest. Every time after fetching a data block, the client fetches
its corresponding σ as well. Also the client receives the hashing values associated
with other entries in the same node along the path from root to the data block.
Then the client can verify the authenticity and freshness with the Merkle tree.
Say the client needs to verify the authenticity and freshness of block F3 in Fig. 1a,
where he/she possesses the root digest f(R). The path from root to F3 will be
(R → W1). For verification, besides σ3, the client also receives f(w1), f(w2) in
node W1 and f(v2), f(v3) in node R.

Update. The main manipulations are updating the data block and updating
the Merkle tree. Note that the update affects only nodes along the path from a
wanted data block to root on the Merkle tree. Therefore, the running time for
updating the Merkle tree is O(logn). Also to update the Merkle tree, some hash-
ing values along the path from a data block to root are needed from the server.
Clearly, the size of those values will be O(logn). Update operations include Modi-
fication, Deletion and Insertion. The update operations over our modified B+ tree
mostly conform to the procedures of standard B+ tree. A slight difference lies
in the Insertion operation when splitting node, due to the fact that our modified
B+ tree doesn’t have index information.

First, we discuss Modification and Deletion. To modify a data block, the client
simply computes the data block’s new corresponding σ and updates the Merkle
tree with this σ to obtain a new root digest. Then the client uploads the the new
data block and the new σ. After receiving this new σ, the server just needs to
update the Merkle tree along the path from the data block to root. To delete a
data block, the server simply deletes the unwanted data block by the client and
then updates the Merkle tree along the path from this data block to root.

Next, we give the details of Insertion. If the leaf node where the new data
block will be inserted is not full, the procedure is the same as Modification.
Otherwise, the leaf node needs to be split, and then the entry that leads to this
leaf node will also be split into two entries, with one entry leading to each leaf
node. Note that unlike operations on standard B+ tree, we don’t copy the index

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 217

of the third entry (i.e., the index of the new generated node) to its parent’s node.
Instead, we simply create a new entry with a pointer leading to the node and
record the corresponding information as defined above. If the root node needs
to be divided, the depth of this Merkle tree will increment by 1. An example
of updating is shown as Fig. 1b and c. Say the client wants to insert a new file
block F10 in the 7-th position. First, it locates the position in the way mentioned
above. Note that we can locate the 6-th position or the 7-th position. Here we
choose to locate the 6-th position and insert a new entry w10 behind w6 in left
node W2 . (If choosing to locate the 7-th position, one should put the new entry
before w7.) Next, the information corresponding to this new file block F10 will
be written into entry w10 with a pointer pointing from w10 to F10, as shown in
Fig. 1b. Since it exceeds the maximum number of entries that a node can have,
this leaf node W2 needs to be split into two leaf nodes, W ′

2 and W4 with two non-
empty entries in each node (this conforms to the rules of updating a B+ tree), as
shown in Fig. 1c. At the same time, a new entry v4 is created in the root node R
with a pointer leading v4 to leaf node W4. Similarly, this root node R is split into
two internal nodes, V1 and V1. Finally, a new root note R′ is built, which has two
entries and two pointers leading to V1 and V2, respectively. Note that, now the
root node has entries r1 and r2, where r1 is the start entry of this tree, meaning
low(r1) = 1. We also have rank(r1) = rank(V1) = rank(v1) + rank(v2) = 5 and
rank(r2) = 5.

4.3 Security Proofs

Theorem 1. The proposed static PoR scheme satisfied Authenticity as specified
in Sect. 3.1, assuming the existence of secure indistinguishability obfuscators,
existentially unforgeable signature schemes and secure puncturable PRFs.

Theorem 2. The proposed static PoR scheme satisfies Retrievability as specified
in Sect. 3.1.

The detailed proof for Theorem 1 is given in the full version of this paper [23].
The proof for Theorem 2 will be identical to that in [6], because in our scheme, a
file is processed using erasure code before being divided into n blocks, the same
as that in [6] where the proof was divided into two parts, Sects. 4.2 and 4.3.

5 Analysis and Comparisons

In this section, we give an analysis of our proposed scheme and then compare it
with other two recently proposed schemes.

Our scheme requires the data owner to generate an obfuscated program dur-
ing the preprocessing stage of the system. With the current obfuscator candidate,
it indeed costs the data owner a somewhat large amount of overhead, but this
is a one-time effort which can be amortized over plenty of operations in the
future. Thus, we focus on the analysis on the computation and communication
overheads incurred during writing and auditing operations rather than those in

218 C. Guan et al.

Table 1. Comparison with existing dynamic PoRs.

Scheme Write cost on
server

Write
bandwidth

Auditing cost
server read

Verifiability Dynamic

Iris [16] O(β) O(β) O(βλ
√

n) Private YES

Cash et al. [17] O(βλ(log n)2) O(βλ(log n)2) O(βλ(log n)2) Private YES

Shi et al. [18] O(β log n) +
O(λ log n)

O(β) +
O(λ log n)

O(βλ log n) Public YES

This paper O(β) +
O(λ log n)

O(β) +
O(λ log n)

O(βλ) Public YES

the preprocessing step. Like the private PoR system in [6] the data owner can
efficiently store files on the cloud server, and it takes the cloud server less over-
head during an auditing protocol than in a public-key-based scheme. The cost
on the client device is mainly incurred by the operations over symmetric key
primitives, which are known to be much faster than public key cryptographic
primitives. The cost analysis on the server side is shown as Table 1.

In Table 1 showing a comparison with existing dynamic PoR schemes we let
β be the block size in number of bits, λ be the security parameter and n be the
number of blocks. We compare our scheme with the state-of-the-art scheme [18],
since a comparison between Shi et al.’s scheme and Cash et al.’s scheme is given
in [18]. Note that Shi et al.’s scheme needs amortized cost O(β log n) for writing
on the server side, due to the fact that an erasure-coding needs to be done on
the entire data file after Θ(n) updates, while our scheme uses an erasure code
that works on file blocks, instead of taking the entire file as inputs (more details
and discussions can be found in Sect. 4). That means, in our system modifying
a block does not require a change of the erasure codes of the entire file. Thus,
the cost for writing is only proportional to the block size being written. On the
other hand, during an auditing protocol, Shi et al.’s scheme incurs overhead
O(βλ log n) on the server side, due to the features of the server-side storage
layout. In their scheme, one single file will be stored as three parts, including
raw data part R, erasure-coded copy of the entire file C and hierarchical log
structure part H that stores the up-to-date file blocks in erasure-coded format.
Thus, during one auditing operation, Shi et al.’s scheme needs to check O(λ)
random blocks from C and O(λ) random blocks from each filled level in H.
While, in our scheme, the server performs every writing over the wanted block
directly, not storing the update block separately. Thus, our scheme only requires
O(λ) random blocks of one file to check authenticity during auditing. (Note that
this O(λ) usually would be Ω(

√
nβ) if no pseudorandom permutation over the

locations of the file blocks is performed, because a small number proportional
to O(λ) might render the system insecure. Please refer to [17] for more details.)
Note that it is most likely that the auditing protocol is executed between a
well-equipped verification machine and the server, and the operations on server

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 219

side only involve symmetric key primitives. Therefore, it will not have noticeable
effects on the system’s overall performance.

Clearly, the improvement in our work mainly results from iO’s power that
secret keys can be embedded into the obfuscated verification program without
secret keys being learnt by user. However, the current obfuscator candidate [2]
provides a construction running in impractical, albeit polynomial, time. (Note
that it is reasonable and useful that the obfuscated program is run on well-
equipped machines.) Although iO’s generation and evaluation is not fast now
[30], studies on implementing practical obfuscation are developing fast [31]. It
is plausible that obfuscations with practical performance will be achieved in the
not too distant future. Note that the improvement on obfuscation will directly
lead to an improvement on our schemes.

6 Conclusions

In this paper, we explore indistinguishability obfuscation to construct a publicly
verifiable Proofs-of-Retrievability (PoR) scheme that is mainly built upon sym-
metric key cryptographic primitives. We also show how to modify the proposed
scheme to support dynamic updates using a combination of a modified B+ tree
and a standard Merkle hash tree. By analysis and comparisons with other exist-
ing schemes, we show that our scheme is efficient on the data owner side and the
cloud server side. Although it consumes a somewhat large amount of overheads
to generate an obfuscation, it is only a one-time effort during the preprocess-
ing stage of the system. Therefore, this cost can be amortized over all of future
operations. Also note that the improvement on obfuscation will directly lead to
an improvement on our schemes.

Acknowledgments. This work is supported in part by US National Science Founda-
tion under grant CNS-1262277 and the National Natural Science Foundation of China
(Nos. 61379154 and U1135001).

A Discussions and Future Directions Towards iO
As pointed out in [2], the current obfuscation constructions runs in impractical
polynomial-time, and it is an important objective to improve the efficiency for
iO usage in real life applications. Also Apon et al.’s showed the inefficiency in
iO’s generation and evaluation in [30]. In this section, we give discussions on
three possible future directions in Obfuscation, in addition to those in [2].

A.1 Outsourced and Joint Generation of Indistinguishability
Obfuscation

Image the scenario in our proposed publicly verifiable PoR system, where users
store their data on the same cloud server using the same PoR scheme but with

220 C. Guan et al.

different secret keys. One naive approach with iO would be requiring each user
to generate his/her own individual obfuscated program for public verification.
This means that each user needs to afford the prohibitively expensive overhead
for iO’s generation on his/her own. Note that for the same PoR scheme, the
verification procedures are the same but with different user’s secret key. Also note
that each user “embeds” his/her own secret keys into the obfuscated verification
in a way that anyone else can’t learn anything about the embedded secret values.
Hence, we can have several users jointly and securely generate one obfuscated
verification program, where each user uses his/her own secret key as part of the
input to the generation. One promising way could be using Secure multiparty
computation. Observe that this generated obfuscated program has almost the
same computation as the one with only one user’s secret key embedded. The only
differences between this jointly generated obfuscation and the individual-user-
generated obfuscation are that (1) the jointly generated obfuscation is implanted
with more than one user’s secret key; (2) the jointly generated obfuscation needs
one more step to identify which user’s secret key it will use.

On the other hand, outsourced computing is useful in applications where
relatively low-power devices need to compute expensive and time-consuming
functions. Clearly, as for relatively low-power individual computers, the overhead
caused by the current iO construction candidate is impractical. Thus, it would
be promising to find a specific way to efficiently outsource iO’s generation.

A.2 Reusability and Universality of Indistinguishability Obfuscation

Reusability is related to iO’s joint generation to some extent. In the scenario
considered above, the jointly generated obfuscated program is embedded with a
group of users’ private key. This means that the same obfuscated program can
be used by verifiers on behalf of different users in this group.

Universality is relevant to an obfuscated program’s functionalities. More
Concretely, an universal iO is supposed to support multiple functionalities. A
straightforward example would be the obfucation-based functional encryption
scheme in [2]. Recall that in their construction, the secret key skf for a function
f is an obfuscated program. For this obfuscated program to become universal,
skf would need to be associated with more than one function. In this case,
e.g., an universal obfuscated program skf can be associated with a class of
similar functions f = (f1, f2, · · · , fk). This means that skf ’s holder can obtain
f1(m), f2(m), · · · , fk(m) from an encryption of m.

Recently, Hohenberger et al. [32] has shown that iO can provide some other
cryptographic primitives with universality. They employed iO to construct uni-
versal signature aggregators, which can aggregate across schemes in various alge-
braic settings (e.g., RSA, BLS). Prior to this universal signature aggregator, the
aggregation of signatures can only be built if all the signers use the same signing
algorithm and shared parameters. On the contrary, the universal signature aggre-
gator enables the aggregation of the users’ signatures without requiring them to
execute the same signing behavior, which indicates a compressed authentication
overhead.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 221

A.3 Obfuscation for Specific Functions

The current iO construction candidate provides a way for obfuscating general cir-
cuits and runs in impractical polynomial-time. Note that an obfuscation designed
for some particular simple function with practical performance, such as comput-
ing two vectors’ inner product, can also be wanted. (like Wee’s work in STOC’05
[33]) This means that we want to obfuscate such simple functions in a practical
way that might be specific for those functions. Note that, for example, a practi-
cal obfuscated program computing the inner product of two vectors, where one
vector is an input to this program and the other one is embedded into the pro-
gram without user learning its knowledge, could be useful in applications like
computational biometrics. Also, it is really likely that such a practical obfus-
cation for a specified function can be used as a building block to construct an
obfuscation supporting more complex functionalities by combining with other
existing practical cryptographic primitives.

References

1. Juels, A., Kaliski, Jr., B.S.: PORs: Proofs of retrievability for large files. In: ACM
CCS, pp. 584–597 (2007)

2. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

3. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

4. Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation. In: ACM
CCS, pp. 659–673 (2014)

5. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

6. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

7. Giuseppe, A., Randal, B., Reza, C., Herring, J., Kissner, L., Peterson, Z., Song, D.:
Provable data possession at untrusted stores. In: ACM CCS, pp. 598–609 (2007)

8. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

9. Küpçü, A.: Efficient cryptography for the next generation secure cloud: protocols,
proofs, and implementation. Lambert Academic Publishing, Saarbrücken (2010)

10. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319–333. Springer, Heidelberg (2009)

11. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implemen-
tation. In: The ACM Workshop on Cloud Computing Security, pp. 43–54 (2009)

12. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

13. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: SecureComm 2008, pp. 9:1–9:10. ACM, New York (2008)

222 C. Guan et al.

14. Dynamic provable data possession. In: ACM CCS, pp. 213–222 (2009)
15. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and

data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

16. Stefanov, E., van Dijk, M., Juels, A., Oprea, A.: Iris: a scalable cloud file system
with efficient integrity checks. In: ACSAC, pp. 229–238 (2012)

17. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 279–295. Springer, Heidelberg (2013)

18. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability.
In: ACM CCS, pp. 325–336 (2013)

19. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced
proofs of retrievability. In: ACM CCS, pp. 831–843 (2014)

20. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.: On
the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

21. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

23. Guan, C., Ren, K., Zhang, F., Kerschbaum, F., Yu, J.: A symmetric-key based
proofs of retrievability supporting public verification. full version. http://ubisec.
cse.buffalo.edu/files/PoR from iO.pdf

24. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26–51. Springer, Heidelberg (2014)

25. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

27. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

28. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

29. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

30. Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation. IACR Cryptol. ePrint Arch. 2014, 779 (2014)

31. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding bar-
rington’s theorem. In: ACM CCS, pp. 646–658 (2014)

32. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. IACR
Cryptol. ePrint Arch. 2014, 745 (2014)

http://ubisec.cse.buffalo.edu/files/PoR_from_iO.pdf
http://ubisec.cse.buffalo.edu/files/PoR_from_iO.pdf

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 223

33. Wee, H.: On obfuscating point functions. In: STOC, pp. 523–532 (2005)
34. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-

ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

35. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

36. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: ASIACCS, pp. 85–86 (2012)

DTLS-HIMMO: Achieving DTLS Certificate
Security with Symmetric Key Overhead

Oscar Garcia-Morchon(B), Ronald Rietman, Sahil Sharma, Ludo Tolhuizen,
and Jose Luis Torre-Arce

Philips Group Innovation, Research, Eindhoven, The Netherlands
{oscar.garcia,ronald.rietman,sahil.sharma,ludo.tolhuizen,

jose.luis.torre.arce}@philips.com

Abstract. Billions of devices are being connected to the Internet creat-
ing the Internet of Things (IoT). The IoT not only requires strong secu-
rity, like current Internet applications, but also efficient operation. The
recently introduced HIMMO scheme enables lightweight and collusion-
resistant identity-based key sharing in a non-interactive way, so that any
pair of Internet-connected devices can securely communicate.

This paper firstly reviews the HIMMO scheme and introduces two
extensions that e.g. enable implicit credential verification without the
need of traditional digital certificates. Then, we show how HIMMO can
be efficiently implemented even in resource-constrained devices, enabling
combined key agreement and credential verification more efficiently than
using ECDH-ECDSA. We further explain how HIMMO helps to secure
the Internet and IoT by introducing the DTLS-HIMMO operation mode.
DTLS, the datagram version of TLS, is becoming the standard secu-
rity protocol in the IoT, although it is very frequently discussed that
it does not offer the right performance for IoT scenarios. Our design,
implementation, and evaluation show that DTLS-HIMMO operation
mode achieves the security properties of the DTLS-Certificate security
suite while exhibiting the overhead of symmetric-key primitives without
requiring changes in the DTLS standard.

Keywords: HIMMO · Lightweight · (D)TLS · Quantum · TTP
infrastructure.

1 Introduction

The Internet of Things (IoT) is connecting billions of smart devices deployed
in critical applications like healthcare, distributed control systems, smart cities
and smart energy. The IoT not only needs strong security solutions, like today’s
Internet, but also efficient approaches to secure the data exchanges between
smart devices, and between smart devices and the Internet.

The Transport Layer Security (TLS) [5] and its Datagram version (DTLS)
are two of the most important protocols used to secure the Internet. DTLS is
becoming the security standard to secure the IoT since it is required by many
Machine to Machine standards such as LWM2M. However, it is very frequently
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 224–242, 2015.
DOI: 10.1007/978-3-319-24174-6 12

DTLS-HIMMO: Achieving DTLS Certificate Security 225

discussed that DTLS and its cipher suites are too heavy for many IoT use cases.
In some cases, resource limitations (e.g., memory or energy) of end devices may
prohibit the support of the standard algorithms. In other cases, the large num-
ber of devices and lack of user interface make the managing of large amounts of
credentials for all those devices extremely complex. In some situations, devices
are managed over a cellular connection and each extra byte of consumed band-
width incurs costs. It is estimated that currently 70 % of the IoT devices have
security risks and are often poorly managed [1]. At the same time, the advent of
quantum computers will endanger all key agreement primitives used in (D)TLS
except pre-shared keys [3]. Thus, there is a need for a solution that is secure,
efficient, scalable, simple to use, and if possible, quantum-secure.

The HIMMO scheme [10] is a fully-collusion resistant key pre-distribution
scheme that enables lightweight identity-based key sharing between devices in a
single message, which is ideal for real-time IoT interactions. This paper builds
on the HIMMO scheme and describes a couple of extensions, e.g., enabling
implicit credential verification without the need of traditional digital certificates.
Next, we show how HIMMO can be efficiently implemented even on resource-
constrained devices. We further put HIMMO in the context of the IoT and
describe the design, implementation, and evaluation of the (D)TLS-HIMMO
operation mode as a lightweight alternative to existing public-key based solu-
tions. This new operation mode for (D)TLS allows us to achieve security prop-
erties of a (D)TLS-certificate exchange – key agreement, mutual authentication
of client and server, and verification of credentials – with the resource needs of
symmetric-key primitives.

The rest of this paper is organized as follows. Section 2 describes the features
of IoT scenarios, security needs, and relevant IoT security standards. Section 3
reviews the HIMMO scheme. Section 4 presents an efficient algorithm for key
agreement and performance results. Section 5 introduces the (D)TLS-HIMMO
operation mode. In Sect. 6, we compare DTLS-HIMMO with existing (D)TLS
alternatives. Section 7 concludes this paper and discusses future work.

2 Preliminaries

We consider a network of low-resource devices that should be capable to pairwise
communicate with each other. In order to secure this communication, each pair
of devices should be able to generate a common key. In the HIMMO scheme and
in the extensions we discuss in this paper, one or more Trusted Third Parties
(TTPs) provide all devices with secret information, termed keying material, that
will be used in generating such common keys. It is assumed that the TTP can
provide the keying material in a secure manner.

2.1 Security Standards in the Internet (of Things)

The Internet is protected by two main standard protocols, the Internet Protocol
Security (IPSec) and the Transport Layer Security (TLS). IPSec offers security

226 O. Garcia-Morchon et al.

at network layer while TLS protects exchange of information between applica-
tions at transport layer. Both IPSec and TLS have an initial phase enabling
authentication of peers, agreement on a session key, negotiation on the cipher-
suite, etc. Afterwards, the data flow can be secured in the sense of confidentiality,
authenticity, integrity and freshness by making use of the agreed session keys.

The TLS protocol runs on top of TCP and is used to secure our HTTP Inter-
net connections when we access the bank online, we do the tax computation, or
when we access some healthcare services. The Internet is further evolving to
connect many smart objects creating the Internet of Things (IoT) comprising
smart meters, healthcare devices, etc. In a typical use case, devices communi-
cate end-to-end with a back-end server, reporting information such as energy
consumption, maintenance data, etc. by means of protocols such LWM2M that
are protected by Datagram Transport Layer Security (DTLS), the equivalent
of TLS running on UDP. Note that DTLS builds on TLS, and therefore both
protocols are very similar, the only differences are a few extensions ensuring
that protocol can run on UDP. There are more than 200 known cipher-suites
for TLS, e.g. see [2]. OpenSSL is one of the most common and used libraries
implementing TLS and most of its different cipher-suites. For the Internet of
Things, other libraries such as CyaSSL1 are also popular due to their smaller
footprint and simple API supporting more than 70 cipher-suites.

2.2 DTLS-PSK

Pre Shared Key (PSK) mode is a set of ciphersuites applicable to both TLS and
DTLS [6]. Although not in common use on the Internet, (D)TLS-PSK is widely
employed by IoT devices since it has very low resource needs. The ciphersuite
TLS PSK WITH AES 128 CCM 8 [13], for instance, uses PSK as the authenti-
cation and key exchange algorithm.

In DTLS-PSK, both clients and servers may have pre-shared keys with different
parties, the client indicates which key to use with the PSK-identity in the Clien-
tKeyExchange message. The server may help the client in selecting the identity
to use with the PSK-identity-hint in the ServerKeyExchange message. For IoT
devices, the PSK identity can be based on the domain name of the server and,
thus, thePSK-identity-hint neednot be sent by the server [17], so theServerKeyEx-
change is optional. The credentials (the pre-shared keys themselves) are stored as
part of hardware modules, such as SIM cards, and sometimes, on the firmware of
resource-constrained devices themselves. The session keys for the DTLS record ses-
sion are derived from the PSK using the TLS Pseudo Random Function (PRF) as
defined in [5]. The cookie exchange is used to prevent denial of service attacks on
the server. The Constrained Application Protocol (CoAP) [16] mandates the use
of TLS PSK WITH AES 128 CCM 8 for the use with shared secrets [17].

1 Cyassl. http://www.yassl.com/yaSSL/Products-cyassl.html.

http://www.yassl.com/yaSSL/Products-cyassl.html

DTLS-HIMMO: Achieving DTLS Certificate Security 227

2.3 Attack Model and Security Goals

With the HIMMO-DTLS extension, we aim at ensuring all security proper-
ties of DTLS-PSK [6] including also the capability of credential verification.
This work does not provide other security features such as perfect forward secrecy
or non-repudiation. We assume that the TTP can securely distribute the keying
materials to the devices. However, an attacker can later monitor, eavesdrop, and
modify message exchanges. We further assume that the attacker can compromise
arbitrary devices and extract secret keying material which he can combine to
attack the system.

3 HIMMO and HIMMO Extensions

HIMMO is a Key Pre-Distribution Scheme (KPS), a concept introduced by Mat-
sumoto and Imai in 1987 [12]. An elegant and efficient KPS, based on symmetric
polynomials, has been introduced by Blundo et al. [4]. There was no KPS that
is both efficient and not prone to efficient attacks of multiple colluding (or com-
promised) nodes, see the references in [9], until recently the HIMMO scheme
solved this problem. This section reviews the operation of the HIMMO scheme
that enables any pair of devices in a system to directly agree on a common
symmetric-key based on their identifiers and a secret key generating polynomial
as introduced in [10]. The underlying security principles on which HIMMO relies
have been analyzed in [7,8]. Furthermore, this section describes two protocol
extensions of the HIMMO scheme as described in [9].

We use the following notation: for each integer x and positive integer M ,
we denote by 〈x〉M the unique integer y ∈ {0, 1, . . . ,M − 1} such that x ≡ y
mod M .

3.1 HIMMO Operation

Like any KPS, HIMMO requires a trusted third party (TTP), and three phases
can be distinguished in its operation [12].

In the setup phase, the TTP selects positive integers B, b,m and α, where
m ≥ 2. The number B is the bit length of the identifiers that will be used in
the system, while b denotes the bit length of the keys that will be generated.
The TTP generates the public modulus N , an odd number of length exactly
(α+1)B + b bits (so 2(α+1)B+b−1 < N < 2(α+1)B+b). It also randomly generates
m distinct secret moduli q1, . . . , qm of the form qi = N −2bβi, where 0 ≤ βi < 2B

and at least one of β1, . . . , βm is odd. Finally, the TTP generates the secret
root keying material, that consists of the coefficients of m bi-variate symmetric
polynomials of degree at most α in each variable. For 1 ≤ i ≤ m, the i-th root
keying polynomial R(i)(x, y) is written as

R(i)(x, y) =
α∑

j=0

α∑

k=0

R
(i)
j,kxjyk with 0 ≤ R

(i)
j,k = R

(i)
k,j ≤ qi − 1. (1)

228 O. Garcia-Morchon et al.

In the keying material extraction phase, the TTP provides each node ξ
in the system, with 0 ≤ ξ < 2B , the coefficients of the key generating polyno-
mial Gξ:

Gξ(y) =
α∑

k=0

Gξ,kyk (2)

where

Gξ,k =
〈 m∑

i=1

〈
α∑

j=0

R
(i)
j,kξj〉qi

〉
N

. (3)

In the key generation phase, a node ξ wishing to communicate with node
η with 0 ≤ η < 2B , computes:

Kξ,η =
〈〈Gξ(η)〉N

〉
2b (4)

It can be shown that Kξ,η and Kη,ξ need not be equal. However, as shown in
Theorem 1 in [9], for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}. (5)

In order to perform key reconciliation, i.e. to make sure that ξ and η use the same
key to protect their future communications, the initiator of the key generation
(say node ξ) sends to the other node, simultaneously with an encrypted message,
information on Kξ,η that enables node η to select Kξ,η from the candidate set
C = {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}. No additional communication thus is
required for key reconciliation. The key Kξ,η will be used for securing future
communication between ξ and η. As an example of information used for key
reconciliation, node ξ sends to node η the number r = 〈Kξ,η〉2s , where s =
�log2(4m + 1)	. Node η can efficiently obtain the integer j such that |j| ≤ 2m
and Kξ,η ≡ Kη,ξ + jN mod 2b by using that jN ≡ Kξ,η − Kη,ξ ≡ r − Kη,ξ

mod 2s. As N is odd, the latter equation allows for determination of j. As r
reveals the s least significant bits of Kξ,η, only the b − s most significant bits
Kξ,η, that is, the number
2−sKξ,η�, should be used as key.

3.2 Implicit Certification and Verification of Credentials

Implicit certification and verification of credentials is further enabled on top
of the basic HIMMO scheme. A node that wants to register with the system
provides the TTP with its credentials, e.g., device type, manufacturing date,
etc. The TTP, which can also add further information to the node’s credentials
such as a unique node identifier or the issue date of the keying material and its
expiration date, obtains the node’s identity as ξ = H(credentials), where H is
a public hash function. When a first node with identity ξ wants to securely send
a message M to a second node with identity η, the following steps are taken.

– Step 1: Node ξ computes a common key Kξ,η with node η, and uses Kξ,η to
encrypt and authenticate its credentials and M , say e = EKξ,η

(credentials|M).

DTLS-HIMMO: Achieving DTLS Certificate Security 229

– Step 2: Node ξ sends (ξ, e, r) to node η, where r is data helping node η to find
Kξ,η.

– Step 3: Node η receives (ξ′, e′, r′). Using r′, it computes its common key Kη,ξ′

with ξ′ to decrypt e′ obtaining the message M and verifying the authenticity
of the received message. Furthermore, it checks whether the credentials′ in e′

correspond with ξ′, that is, it validates if ξ′ = H(credentials ′).

This method not only allows for direct secure communication of message M , but
also for implicit certification and verification of ξ’s credentials because the key
generating polynomial assigned to a node is linked to its credentials by means
of H. If the output size of H is long enough, e.g., 256 bits, the input (i.e., the
credentials) contains a unique node identifier, and if H is a secure one-way hash
function, then it is infeasible for an attacker to find any other set of credentials
leading to the same identity ξ. The fact that credential verification might be
prone to birthday attacks motivates the choice for the relation between identifier
and key sizes, namely, B = 2b. In this way, the scheme provides an equivalent
security level for credential verification and key generation. The capability for
credential verification enables e.g. the verification of the expiration date of the
credentials (and the keying material) of a node, or verification of the access roles
of the sender node ξ.

3.3 Enhancing Privacy by Using Multiple TTPs

Using multiple TTPs was introduced by Matsumoto and Imai [12] for KPS and
can also be elegantly supported by HIMMO [9]. In this set-up, a number of
TTPs provide a node with keying materials linked to the node’s identifier dur-
ing the keying material extraction phase. Upon reception, the device combines
the different keying materials by adding the coefficients of the key generating
polynomials modulo N . Without increasing the resource requirements at the
nodes, this scheme enjoys two interesting properties. First, privacy is enhanced
since a single TTP cannot eavesdrop the communication links. In fact, all TTPs
should collude to monitor the communication links. Secondly, compromising a
sub-set of TTPs does not break the overall system.

4 Implementation and Performance

HIMMO has been designed keeping in mind that we want to achieve very good
performance. In this section, we explain how the key generation algorithm in
Eq. 4 can be implemented in a very efficient way for the specific choice N =
2B(α+1)+b − 1, taking into account that the size of the identifiers (B bits) is
small compared to the size of the coefficients of the polynomial Gξ ((α+1)B + b
bits). Algorithm 1 shows this optimized key generation algorithm that applies an
approximation of the well-known Horner algorithm for evaluating polynomials
in which the specific choice of N is taken into account. In the appendix, we

230 O. Garcia-Morchon et al.

motivate some steps of the algorithm and show that

〈〈
α∑

j=0

Gξ,jη
j〉N 〉2b ∈ {key , 〈key + 1〉2b}. (6)

Algorithm 1. Optimized key generation
1: INPUT: B, b, α, η, Gξ,j with j ∈ {0, . . . , α}
2: OUTPUT: key
3: key ← 〈Gξ,α〉2b

4: temp ← �Gξ,α

2b �
5: for j = α − 1 to 0 do

6: temp ← temp × η + � Gξ,j

2(α−1−j)B+b �
7: key ← 〈key × η〉2b + 〈Gξ,j〉2b

8: key ← 〈key + � temp

2(j+2)B �〉2b

9: temp ← � 〈temp〉
2(j+2)B

2B �
10: end for
11: return key

We note that part of the coefficients Gξ,j with j ∈ {0, . . . , α} is not used in
Algorithm 1. This allows for a further optimization in which only the required
parts of the coefficients are stored, namely the b least significant bits and the jB
most significant bits of each coefficient Gξ,j .

Figure 1 provides a brief summary of the performance of the HIMMO scheme
implemented in C and assembler on the 8-bit CPU ATMEGA128L. The first
graph shows the key generation time for α = 26 as a function of b = B. In the
next two graphs we see – as a function of α and for b = B = 128 – the key
generation time and the size of the key generating function.

0

100

200

300

400

500

600

700

64 96 128 160 192 224 256

msec

b=B
0

100

200

300

400

500

600

18 22 26 30 34 38 42

msec

α 0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

18 22 26 30 34 38 42

Bytes

α

Fig. 1. HIMMO Performance: on the left, performance for α = 26 as a function of
b = B; in the middle and right, performance for b = B = 128 as a function of α.

DTLS-HIMMO: Achieving DTLS Certificate Security 231

Table 1. HIMMO performance and comparison with ECDH and ECDH+ ECDSA.

CPU

time

Key mater-

ial+ code

RAM Exchanged

data

Security properties

ECDH [11] 3.97 s 16018 B 1774 B 480 B Key agreement

ECDH+ECDSA [11] 11.9 s 35326 B 3284 B 704 B Key agreement and credential

verification

HIMMO 0.290 s 7560 B 1220 B 448 B Key agreement and credential

verification

Table 1 compares the performance HIMMO using security parameters α = 26
and 2b = B = 160 with that of ECDH and/or ECDSA for a security level of
80 bits. We illustrate a simple interaction scenario between two nodes: a first
node ξ wants to send in a secure way information to η, and η wants to securely
receive the message from ξ and verify its credentials. The first two protocols
involve communicating before node ξ can send an encrypted message, whereas
HIMMO allows node ξ to directly compute the key with η based on its identifier
and send the encrypted message. Also, notice that ECDH only provides key
agreement, to get key agreement and verification of credentials, it is needed to use
also ECDSA, increasing the resource requirements. For this implementation, we
use the ATMEGA128L processor running at 8 MHz since it is a typical resource-
constrained device used in the IoT. Other less constrained devices are emerging
featured by longer word size (32-bit) and slightly higher clock frequency. In
Table 1, CPU refers to the overall computing needs, the memory refers to the
amount of information that needs to be stored in flash, RAM is the RAM memory
needs, exchanged data refers to the amount of data exchanged between ξ and η,
and finally, the security properties illustrate the features of the security protocols.

5 (D)TLS-HIMMO

TLS and DTLS are two of the protocols to protect the Internet today, while
DTLS is becoming the standard for the IoT. Existing (D)TLS operational modes
have pros and cons. PSK is efficient but does not scale well. Raw-public key scales
well but does not offer authentication and is prone to man-in-the-middle attacks.
Certificate-based schemes are too expensive in some scenarios, in particular IoT
related ones, and most of those schemes would also be broken with quantum
computers. This motivates our research in a new (D)TLS cipher suite based on
HIMMO that:

– has the low operational cost of DTLS-PSK,
– enables mutual authentication and credential verification as with certificate-

based schemes,
– is scalable like public-key cryptography and infrastructure,
– is resilient to attacks using quantum computers.

To this end, we extend the DTLS-PSK mode, which is based on identities,
without changing the standard so that it can work with HIMMO. The main dif-
ference from the usual PSK profile lies in using identities to generate a pairwise

232 O. Garcia-Morchon et al.

symmetric key and, then, deriving the session keys from the pairwise symmet-
ric key. A TTP provisions keying material to client nodes and the server as
shown in Eq. 2 during an initial setup (e.g. manufacture stage). HIMMO can be
directly used in (D)TLS-PSK mode by exchanging HIMMO’s identifiers in the
ClientKeyExchange and ServerKeyExchange messages. Creation of a new profile
to indicate DTLS-HIMMO (e.g. TLS DTLS-HIMMO WITH AES 128 CCM 8)
can also be considered, but requires standardization.

5.1 DTLS-HIMMO Configurations

The existing PSK profile, such as the one used in TLS PSK WITH AES
128 CCM 8, involves the exchange of two fields, the PSK-identity and PSK-
identity-hint, in the ClientKeyExchange and ServerKeyExchange messages
respectively. Instead of sending a PSK identifier, we use these fields, which can
be up to 128 bytes long [17], to exchange HIMMO information.

Table 2 illustrates these fields of information with exemplary lengths. First,
we find an identifier/flag indicating the use of DTLS-HIMMO. Next, we find a
DTLS-HIMMO message type. The third and fourth field refer to the number
of TTPs and their identifiers, respectively. These are the TTPs associated with
generating and distributing the key material of the client and server. These two
fields are followed by an identifier field. Next, we optionally find the HIMMO
credentials length as well as the credentials themselves. Finally, a field that
contains the key reconciliation data is optionally present. The interpretation of
the identifier field and the absence of presence of the optional fields is derived
from the Message Type field.

This message format is used in the PSK-identity-hint and PSK-identity fields
of the ServerKeyExchange and ClientKeyExchange messages. With these fields
we can enable different ways of using HIMMO with DTLS-PSK. If only the
HIMMO identifier is exchanged in the identifier field, then only mutual authen-
tication is achieved between client and server. Alternatively, the client, or server,
or both of them might exchange their credentials. The credentials could be any
information that today is exchanged in regular digital certificates and, for IoT
scenarios, information such as manufacturer, device type, date of manufacturing,
etc. In this case, the exchange enables unilateral or mutual implicit credential
verification of the parties. We note that in this case, the identifier field does not
contain the HIMMO identifier but a unique random value that concatenated

Table 2. Exemplary format of the PSK-identity-hint and PSK-identity fields enabling
DTLS-HIMMO; Length in Bytes; N = Number of TTPs; M = mandatory, O = optional

HIMMO

flag

Message

type

Number of

TTPs

TTP

ID

Identifier HIMMO cre-

dentials

length

HIMMO cre-

dentials

Reconcilliation

data

Length 2 1 1 N B 1 0 . . . (122 −
B − N)

N

M/O M M M M M O O O

DTLS-HIMMO: Achieving DTLS Certificate Security 233

Table 3. Modes of operation of DTLS-HIMMO profile

Client sends HIMMO’s ID Client sends HIMMO’s credentials

Server sends HIMMO’s ID Messages exchanged

ClientKeyExchange: Client ID and

Reconciliation data

ServerKeyExchange: Server ID

ClientKeyExchange: Clients credentials

and Reconciliation data

ServerKeyExchange: Server ID

Computations

Two HIMMO evaluations Two HIMMO evaluations One hash

evaluation

Properties

Mutual authentication Mutual authentication Verification of

client’s credentials

Server sends HIMMO’s

credentials

Messages exchanged

ClientKeyExchange: Client ID and

Reconciliation data

ServerKeyExchange: Servers

credentials

ClientKeyExchange: Clients credentials

and Reconciliation data

ServerKeyExchange: Servers

credentials

Computations

Two HIMMO evaluations One hash

evaluation

Two HIMMO evaluations Two hash

evaluations

Properties

Mutual authentication Verification of

server’s credentials

Mutual authentication Verification of

the credentials of client and server

with the information in the HIMMO credentials length and HIMMO creden-
tials is hashed to obtain the HIMMO identifier. The reason for this construction
was explained in Sect. 3.2. Finally, we note that the reconciliation data is only
exchanged in the ClientKeyExchange message since it is the server the one per-
forming this operation.

These two different options give rise to four (two each for client and server)
different combinations whose features are explained in Table 3.

5.2 (D)TLS-HIMMO Handshake

The HIMMO enabled PSK message exchanges comprises multiple steps:

– Step 1: The client sends a ClientHello message to the server indicating use of
the PSK mode, such as the TLS PSK WITH AES 128 CCM 8.

– Step 2: The usual HelloVerifyRequest message, with a cookie, is sent from the
server to the client.

– Step 3: The client replies back with ClientHello along with the cookie.
– Step 4: The server replies with ServerHello, ServerKeyExchange and Server-
HelloDone. The PSK-identity-hint of the ServerKeyExchange contains the
DTLS-HIMMO fields as in the exemplary format shown in Table 2.

– Step 5: The client sends the ClientKeyExchange with the PSK-identity field
containing the DTLS-HIMMO fields as shown in Table 2. It also sends the
usual ChangeCipherSpec and Finished messages to the server.

– Step 6: The Server would send back the usual ChangeCipherSpec and Finished
messages to the client.

234 O. Garcia-Morchon et al.

The client computes the symmetric pairwise key as follows:

– Step 1: If the server sent its credentials, as indicated in the DTLS-HIMMO
fields, compute ID-Server = H(Server Identifier || Server HIMMO Credentials
Length || Server HIMMO-credentials). In case the server sent the HIMMO
identifier then set ID-Server = Server HIMMO-Identifier.

– Step 2: If the client is also using credentials, compute ID-Client =
H(Client Identifier
||Client HIMMO Credentials Length||Client HIMMO-credentials). Otherwise,
set ID-Client = Client HIMMO-Identifier.

– Step 3: Compute the pairwise key KID-Client, ID-Server as shown in Eq. 4.

Similarly, the server, upon receipt of the ClientKeyExchange message com-
putes the pairwise key as:

– Step 1: Depending upon whether the client sent its credentials or its HIMMO
identifier, compute ID-Client as shown in the steps followed by the client
before. In the same manner, depending upon whether the server uses creden-
tials or its HIMMO identifier, compute ID-Server.

– Step 2: Compute the pairwise key KID-Server, ID-Client using the key reconcil-
iation data sent by the client to arrive at the symmetric pairwise key.

Note that the respective key generating polynomials (Gξ,k in Eq. 2) in the devices
would be configured with either the HIMMO identifier or the hash of the con-
catenation of the identifier, the length of the credentials and the credentials for
its identity ξ, depending upon which mode of operation is used (see Table 3).
Once the client and server have computed the pairwise key, it can be part of
the input to the standard (D)TLS pseudo-random function used to derive the
session keys for the DTLS session as is done with the PSK profile. The DTLS
Finished message authenticates the handshake, and thus, authenticates both
parties as having the correct keying material. If the communicating peer is using
HIMMO credentials for the key exchange, then the successful completion of the
Finished message implies that the credentials it provided are correct and, thus,
authenticates the credentials of the peer.

5.3 Privacy Protection

Protecting the privacy of the communication links is fundamental. HIMMO and
its extensions can be used to ensure the privacy of the involved communication
parties.

A first aspect is the protection of the exchanged credentials that might con-
tain some private information that should not be exposed to the other party,
if not authenticated before, or to a passive eavesdropper. This can be achieved
by the following simple extension of the DTLS handshake. The credentials are
encrypted with the pairwise key shared with the other party. For instance, in
the DTLS-HIMMO exchange, the client protects its credentials by encrypting
them with the HIMMO key shared with the server and that is computed after

DTLS-HIMMO: Achieving DTLS Certificate Security 235

the reception of the ServerKeyExchange message. Thus, the ClientKeyExchange
could contain the Client’s HIMMO identifier and encrypted HIMMO credentials.
The server uses the HIMMO identifier to obtain the common pairwise key, and
decrypts the client’s credentials. Neither a fake server nor an attacker eavesdrop-
ping the communication is able to learn the client’s credentials.

The usage of raw-public keys with out-of-band verification or of digital cer-
tificates requires some type of public-key infrastructure that allows validating
the authenticity of the involved public-keys or installing the digital certificates
in a secure way. A certification authority (CA), or a hierarchy of CAs, plays this
role in today’s public-key infrastructure (PKI). HIMMO relies on a TTP whose
role is similar to that of a CA. Like a CA, the TTP is in charge of validating the
identity of a joining node and securely distributing its key generating function.
The difference is that a single TTP could be misused and the TTP (or anyone
having access to it) could eavesdrop or alter the ongoing data exchanges between
any pair of nodes in a passive way. As explained in Sect. 3.3, the usage of mul-
tiple TTPs avoids this situation, since each device then registers with several
TTPs and combines the received key generating polynomials from each TTP. In
this way, the generated keys between any pair of entities of the system depend
on the information shared by all the involved TTPs. An active attacker that
can compromise a TTP can act as follows: he sets up a new server and tries
to make a client authenticate to that server by setting the number of TTPs in
the ServerKeyExchange message equal to one. One way to protect against this
attack is a policy that a client only authenticates if the number of TTPs in the
SeverKeyExchange message is at least two.

5.4 TTP Infrastructure

The introduction of an infrastructure of TTPs for the DTLS-HIMMO profile
would mean the creation of an alternative to today’s PKI. As outlined above,
each entity in the system would register with a number of TTPs and receive the
corresponding key generating polynomials, each linked to the same or related cre-
dentials. Each entity would store this information either combined, as explained
in Sect. 3.3, or independently. In this case, the TTP identifiers can be exchanged
between client and server during a DTLS-HIMMO handshake. In a first step,
the server provides in the ServerKeyExchange message the TTP identifiers from
which it received its key generating polynomials. In a second step, the client
answers with the common or chosen TTPs in the ClientKeyExchange message.

Such an infrastructure brings new challenges but also advantages. Today, if a
CA is compromised, then it is not possible to easily recover since certificates are
often not signed by more than one CA. On the other hand, if they are, recov-
ering is feasible, but this rapidly increases the bandwidth and computational
requirements since all those certificates need to be exchanged and verified. This
is not the case for above TTP Infrastructure since the capture of a single TTP
does not break the whole system and using more than a TTP (e.g., t) involves
practically the same bandwidth and computational resources as when a single
one is used.

236 O. Garcia-Morchon et al.

5.5 Security Considerations of (D)TLS-HIMMO

In [9], it is shown that a collusion attack in HIMMO amounts to solving
a close vector problem in a certain lattice, and that the minimum required
number of nodes, and thus the lattice dimension, is (α + 1)(α + 2)/2. If α is
large enough, α > 25, an approximate solution of this close vector problem,
using the default LLL [14] implementation of Sage [15], and Babai’s nearest
plane algorithm, fails to give a good result, while the lattice dimension becomes
too large for exact methods, for which the running time and memory require-
ments grow exponentially in the lattice dimension. While it is quite likely that
more elaborate approximate classical algorithms would give better results, thus
increasing the minimum required value of α somewhat, currently no quantum
algorithm exists that would speed up the approximate lattice methods, nor is it
foreseen that the quantum speed-ups in the exact lattice algorithms, which use
enumeration techniques, are sufficient to crack HIMMO for these values of α.
Therefore, the scheme presented in this paper could be an interesting approach
to ensure secure digital communications in the Internet in a post-quantum world.

6 Performance of DTLS-HIMMO and Comparison with
Existing (D)TLS Alternatives

We have implemented the DTLS-HIMMO operation mode such that the client
and server run on a Intel Core i5-3437U @ 1.90 GHz with Windows 7 Enterprise.
The DTLS-HIMMO extension is carried out by using DTLSv1.2 in PSK mode as
starting point as explained in Sect. 5. The HIMMO-based DTLS operation modes
include: (i) HIMMO enabling mutual authentication, (ii) HIMMO enabling
mutual authentication and server verification, and (iii) HIMMO enabling mutual
authentication and client and server verification. We compare DTLS-HIMMO
with (iv) DTLS in PSK mode, (v) DTLS certificates enabling server verifica-
tion only and (vi) DTLS certificates with both server and client verification.
Both modes are implemented using the ECDHE and ECDSA using the NIST
secp256r1 curve for ECC computations. All of the analyzed DTLS operation
modes rely on a 128-bit AES in CCM operation mode to secure the DTLS
record layer.

Table 4 provides a qualitative comparison of the above DTLS modes of oper-
ation against their performance and security properties. Performance-wise we
discuss the resource requirements on the client and server and the communica-
tion overhead. Security-wise we consider the capability of the handshakes for key
agreement, authentication, information verification, and scalability.

Due to the identity-based nature of HIMMO, the verification of the client or
server credentials only costs one additional hash computation. For this reason,
the communication overhead can be kept at a very low level compared with cer-
tificates. For ECDHE + ECDSA, key agreement and verification of information
requires several scalar ECC point multiplications, while HIMMO only requires
a polynomial evaluation.

DTLS-HIMMO: Achieving DTLS Certificate Security 237

Table 4. Qualitative comparison of the HIMMO based PSK profile with other algo-
rithms. All algorithms allow for key agreement

DTLS Client CPU Server CPU Handshake Authentication Information Scalability
mode Needs Needs size verification

DTLS-HIMMO HIMMO key HIMMO key Low Mutual No Gξ(x)
generation generation installation

Key reconciliation
DTLS-HIMMO(SA) 1 SHA-256 HIMMO key Server Gξ(x)

(Server HIMMO key generation Low Mutual authentication installation
authentication) generation Key reconciliation
DTLS-HIMMO 1 SHA-256 1 SHA-256 Server Gξ(x)

(Mutual HIMMO key HIMMO key Low Mutual and installation
authentication) generation generation Client

Key reconciliation
PSK - - Low Mutual No Installation

of PSKs
ECDHE + ECDSA Three ECC point One ECC point High Unilateral Server Root

(Server multiplications multiplication verification Certificate
authentication) installation

ECDHE + ECDSA Three ECC point Three ECC point Server Root
(Mutual multiplications multiplication Higher Mutual and client Certificate

authentication) verification installation

This qualitative comparison is supported by the experimental results in which
we have measured (i) the elapsed time, (ii) the amount of data exchanged, and
(iii) the ratio between data exchanged and payload in three different scenarios
for different DTLS modes of operation:

– the DTLS connection is established and 1 KB of data are exchanged,
– the DTLS connection is established and 10 KB of data are exchanged, and
– the DTLS connection is established and 100 KB of data are exchanged.

Figure 2 depicts the total amount of exchanged data for all the cipher suites.
This includes the headers of the underlying protocols (UDP, IP, etc.) as well as
the transfer of 1 KB of data. On the left side of Fig. 3 we see the required time
to establish a secure connection and send the data for different cipher suites. On
the right side of this figure we observe the ratio between the required bandwidth
and the exchanged payload. In both figures, from top to bottom: (1) ECDH-
ECDSA with mutual authentication, (2) ECDH-ECDSA with server authenti-
cation, (3) HIMMO with mutual verification of client’s and server’s credentials
(t = 5, B = 256, b = 32, α = 17), (4) HIMMO with mutual authentication
(t = 5, B = 32, b = 32, α = 50) and (5) PSK. We notice that DTLS-PSK is the
fastest followed by DTLS-HIMMO without credential verification capabilities.
DTLS-HIMMO with credential verification capabilities becomes slightly more
expensive since B needs to be larger than the generated key in this case. We
also observe that the value of the security parameter α does not heavily impact
the performance of the scheme remaining around a factor 8 faster than the ECC
alternative. We note that in this experiment HIMMO is configured to generate a
key 128 bit long by combining five (t = 5) instances in parallel. For the cases of
mutual authentication and mutual credential verification we use HIMMO para-
meters (B = 32, b = 32, α = 50) and (B = 256, b = 32, α = 17) respectively. This
implies that an attacker has to deal with lattices of dimensions as high as 1377
and 1368, respectively, for the HI problem [8]. It is also worth noting that in all
cases the cryptographic operations involved in the transfer of data are negligible

238 O. Garcia-Morchon et al.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

(5)

(4)

(3)

(2)

(1)

Payload

Overhead

Fig. 2. Exchanged data.

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100

(1)

(2)

(3)

(4)
(5)

0 50 100 150 200

(5)

(4)

(3)

(2)

(1)

ms

Handshake 1 KB

9 KB 90KB

KB KB KB

Fig. 3. DTLS connection time (left) and ratio between total exchanged data and pay-
load (right).

compared with the DTLS handshake. Figure 2, right side, shows that the usage
of schemes relying on long keys might not be the best solution for use cases in
which little payload needs to be exchanged.

These figures together with Fig. 1 show several advantages of HIMMO com-
pared with other alternatives. The first one is that IoT applications that involve
the exchange of little data, frequently under 10 KB, can benefit from HIMMO
since it offers a better ratio between the amount of transmitted payload and
the overall amount of transmitted data. This is due to HIMMO’s identity based
nature that does not require the exchange of public-keys or long certificates. As
a result, the underlying constrained networks are less overloaded, thus enabling
IoT applications with less costs to network operators. The second advantage is
that same back-end can handle many more clients with the same resources. This
prevents potential DoS attacks and decreases again the price to enable those
applications. Finally, we remark that Fig. 3 shows the DTLS connection time
between two powerful devices. In a real world IoT scenario one of those devices
will have much lower capabilities. However, HIMMO can be still implemented
in a very efficient way as illustrated in Fig. 1.

DTLS-HIMMO: Achieving DTLS Certificate Security 239

7 Conclusions

The HIMMO scheme is the first Key Pre-distribution scheme that is simultane-
ously efficient and secure (in terms of collusion resistance). Specific choices of
the HIMMO parameters enable very efficient implementations that, combined
with the implicit credential certification and verification, improve the perfor-
mance of related public-key schemes by one order of magnitude. HIMMO can
be embedded in TLS and DTLS, the security protocols used to secure the Inter-
net, without requiring any changes in the standards, but offering a significantly
improved performance security trade-off. In fact, the DTLS-PSK mode can be
extended with HIMMO to achieve functionality that today is only possible with
public-key cryptography and a public-key infrastructure, but at the speed and
memory requirements of a symmetric-key handshake. The DTLS-HIMMO hand-
shake offers mutual authentication of client and server, implicit verification of
their credentials costing a single hash computation, client’s privacy-protection
by sending its credentials in encrypted format, and support of multiple TTPs.

We finally remark that HIMMO is post-quantum secure as known attacks
involve solving a close vector problem in a lattice for which currently no quantum
algorithm exists that would speed up the approximate lattice methods, nor is it
foreseen that the quantum speed-ups in the exact lattice algorithms, which use
enumeration techniques, are sufficient to crack HIMMO.

Appendix: Proof of Correctness of Optimized Algorithm

Algorithm 1 is an approximation to Horner’s algorithm for polynomial evaluation
modulo N , taking into account that N is of the special form N = 2(α+1)B+b and
that the argument η is small. In this appendix, we motivate some of the steps in
Algorithm 1, and prove (6) which states that the output of the algorithm nearly
is the wanted key.

Each intermediate value in Horner’s algorithm for computing 〈∑α
j=0 Gξ,jη

j〉N

is obtained as
〈tempj〉N = 〈tempj+1 × η + Gξ,j〉N

for j = α− 1, . . . , 0. As 0 ≤ η < 2B , we can write tempj+1 × η +Gξ,j = tempj =
tempH

j × 2(α+1)B+b + tempL
j , where tempH

j and tempL
j are b and (α + 1)B + b

bits long, respectively. As N = 2(α+1)B+b − 1, we thus have that 〈tempj〉N =
〈tempH

J + tempL
j 〉N ≈ tempH

j + tempL
j . This is only an approximation because

there might be a carry in the addition of tempH
j and tempL

j , requiring a second
reduction. We will show that this second reduction is needed at most once during
the calculation, and ignoring it leads to a difference of one (mod 2b) between the
wanted key and the value returned by the algorithm, so that (6) is satisfied.
The modular reduction happens when the value of key is updated with the
contribution of the MSB stored in temp after being shifted (j + 2)B bits and
added to key (Line 8).

240 O. Garcia-Morchon et al.

We now state and prove the main property of Algorithm 1. Let b,B, α be
positive integers and let N := 2(α+1)B+b − 1. For 0 ≤ i ≤ α, let 0 ≤ Gi ≤ N − 1,
and let 0 ≤ η ≤ 2B − 1. We are interested in obtaining the key K, defined as

K := 〈〈
α∑

i=0

Giη
i〉N 〉2b . (7)

For 0 ≤ i ≤ α − 1, we write

Gi = γi2(α−i−1)B+b + δi with 0 ≤ δi ≤ 2(α−i−1)B+b − 1. (8)

We rewrite Algortihm 1, where we added indices to the variables that will be
useful in the analysis the algorithm:

kα := 〈Gα〉2b ; τα :=
Gα

2b �;
for j := α − 1 downto 0 do
begin σj := τj+1 × η + γj ;

kj := 〈kj+1 × η + 〈Gj〉2b +
 σj

2(j+2)B �〉2b ;

τj :=
 〈σj〉
2(j+2)B

2B �
end;
key:= k0

Theorem 1. If α < 2B, then either K = key or K = 〈key + 1〉2b .

For proving the above theorem, we define Λα, Λα−1, . . . , Λ0 as

Λα := Gα and for 0 ≤ j ≤ α − 1, Λj := ηΛj+1 + Gj −
 σj

2(j+2)B
�N. (9)

By induction on j, it is easy to see that for 0 ≤ j ≤ α, Λj ≡ ∑α
i=j Giη

i−j

mod N. Note that
∑α

i=j Giη
i−j is the j-th iterate of the evaluation of

∑α
i=0 Giη

i

using Horner’s algorithm.
We will show below (Proposition 2) that for each j,

0 ≤ Λj − τj2(α−j)B+b ≤ (α − j + 1)2(α−j)B+b.

As a consequence, if α < 2B , then 0 ≤ Λ0−τ02αB+b < N. The algorithm implies
that 0 ≤ τ0 ≤ 2B − 1, and so 0 ≤ τ0 ≤ Λ0 < N + 2B − 1. As

∑α
j=0 Gjη

j ≡ Λ0

mod N , we conclude that 〈∑α
j=0 Gjη

j〉N = 〈Λ0〉N ∈ {Λ0, Λ0 − N}, and so

K ∈ {〈Λ0〉2b , 〈Λ0 + 1〉2b}. (10)

In Proposition 3, we show that Λj ≡ kj for 0 ≤ j ≤ α. Combining this result
with (10) proves the theorem.

For 0 ≤ j ≤ α, we define

rj := Λj − 2(α−j)B+bτj .

DTLS-HIMMO: Achieving DTLS Certificate Security 241

Proposition 1. For 0 ≤ j ≤ α − 1, we have that rj = 2(α−j−1)B+b〈σj〉2B +
ηrj+1 + δj +
 σj

2(j+2)B �.
Proof. Let 0 ≤ j ≤ α − 1. From the definitions of Λj , Λj+1, rj rj+1 and σj we
readily find that

rj = 2(α−1−j)B+b(σj − 2Bτj) + ηrj+1 + ηδj −
 σj

2(j+2)B
�N.

Writing σj =
 σj

2(j+2)B �2(j+2)B + 〈σj〉2(j+2)B , and using that N = 2(α+1)B+b − 1,
we obtain that

rj = 2(α−1−j)B+b(〈σj〉2(j+2)B − 2Bτj) +
 σj

2(j+2)B
� + ηrj+1 + ηδj .

The proposition now follows from observing that

〈σj〉2(j+2)B = 2B
〈σj〉2(j+2)B

2B
� + 〈〈σj〉2(j+2)B 〉2B = 2Bτj + 〈σj〉2B .

�
Proposition 2. For 0 ≤ j ≤ α we have that rj ≤ (α − j + 1)2(α−j)B+b − 1.

Proof. By induction on j. As rα = 〈Gα〉2b ≤ 2b − 1, the proposition is true for
j = α.
Now let 0 ≤ j ≤ α−1. The algorithm immediately implies that τj+1 ≤ 2(j+2)B−1
(make distinctions for j = α − 1 and j < α − 1 for showing this). Moreover,

γj =
 Gj

2(α−j−1)B
� ≤ Gj

2(α−j−1)B+b
≤ N − 1

2(α−j−1)B+b
≤ 2(j+2)B − 1.

We conclude that

σj = τj+1η + γj < 2(j+2)B(η + 1) < 2(j+3)B , and so

 σj

2(j+2)B
� ≤ 2B − 1. (11)

According to (8), we have that δj ≤ 2(α−1−j)B+b−1, and clearly 〈σj〉2B ≤ 2B−1.
Combining these inequalities with (11) and Proposition 2, we infer that

rj ≤ 2(α−j−1)B+b(2B − 1) + (2(α−1−j)B+b − 1) + ηrj+1 + (2B − 1)

= 2(α−j)B+b + ηrj+1 + 2B − 2 < 2(α−j)B+b + 2B(rj+1 + 1).

According to the induction hypothesis, rj+1 ≤ (α − j)2(α−j−1)B+b − 1, and so

rj ≤ (α − j + 1)2(α−j)B+b − 1.

�
Proposition 3. For 0 ≤ j ≤ α, we have that kj = 〈Λj〉2b .

Proof. By induction on j. The proposition is true for j = α.
Now let 0 ≤ j ≤ α − 1. The definition of Λj implies that

Λj = ηΛj+1+Gj −� σj

2(j+2)B
�(2(α+1)B+b −1) ≡ η〈Λj+1〉2b + 〈Gj〉2b + � σj

2(j+2)B
� (mod 2b).

As kj+1 ≡ Λj+1 (mod 2b), the definition of kj implies the proposition. �

242 O. Garcia-Morchon et al.

References

1. HP report: Internet of Things Research Study. www.fortifyprotect.com. Accessed
21 August 2014

2. TLS Ciphersuites. https://www.thesprawl.org/research/tls-and-ssl-cipher-suites
3. NIST workshop on cybersecurity in a post-quantum world (2015). http://www.

nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
4. Blundo, C., de Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Per-

fectly secure key distribution for dynamic conferences. Inf. Comput. 146, 1–23
(1998)

5. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176

6. Eronen, P., Tschofenig, H.: Pre-Shared Key Ciphersuites for Transport Layer Secu-
rity (TLS). RFC 4279 (Proposed Standard), December 2005

7. Garćıa-Morchón, O., Gómez-Pérez, D., Gutiérrez, J., Rietman, R., Tolhuizen, L.:
The MMO problem. In: Proceedings of ISSAC 2014, pp. 186–193. ACM (2014)

8. Garćıa-Morchón, O., Rietman, R., Shparlinski, I.E., Tolhuizen, L.: Interpolation
and approximation of polynomials in finite fields over a short interval from noisy
values. Exp. Math. 23, 241–260 (2014)

9. Garćıa-Morchón, O., Gómez-Pérez, D., Gutiérrez, J., Rietman, R., Schoenmak-
ers, B., Tolhuizen, L.: HIMMO - A Lightweight, Fully Colluison Resistant Key-
Predistribution Scheme. Cryptology ePrint Archive, Report 2014/698 (2014).
http://eprint.iacr.org/

10. Garcia-Morchón, O., Tolhuizen, L., Gomez, D., Gutierrez, J.: Towards full collusion
resistant ID-based establishment of pairwise keys. In: Extended abstracts of the
Third Workshop on Mathematical Cryptology (WMC 2012) and the Third Inter-
national Conference on Symbolic Computation and Cryptography (SCC 2012), pp.
30–36 (2012)

11. Liu, A., Ning, P.: Tinyecc: a configurable library for elliptic curve cryptography
in wireless sensor networks. In: Proceedings of the 7th International Conference
on Information Processing in Sensor Networks, IPSN 2008, pp. 245–256. IEEE
Computer Society, Washington, DC (2008)

12. Matsumoto, T., Imai, H.: On the key predistribution system: a practical solution
to the key distribution problem. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 185–193. Springer, Heidelberg (1988)

13. McGrew, D., Bailey, D.: AES-CCM Cipher Suites for Transport Layer Security
(TLS). RFC 6655 (Proposed Standard), July 2012

14. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm - Survey and Applications.
Springer, Heidelberg (2010)

15. Sage. http://www.sagemath.org
16. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol

(CoAP). RFC 7252 (Proposed Standard), June 2014
17. Tschofenig, H.: A Datagram Transport Layer Security (DTLS) 1.2 Profile for the

Internet of Things, August 2014

www.fortifyprotect.com
https://www.thesprawl.org/research/tls-and-ssl-cipher-suites
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://eprint.iacr.org/
http://www.sagemath.org

Short Accountable Ring Signatures
Based on DDH

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi(B),
Jens Groth, and Christophe Petit

University College London, London, UK
e.ghadafi@ucl.ac.uk

Abstract. Ring signatures and group signatures are prominent crypto-
graphic primitives offering a combination of privacy and authentication.
They enable individual users to anonymously sign messages on behalf of
a group of users. In ring signatures, the group, i.e. the ring, is chosen
in an ad hoc manner by the signer. In group signatures, group mem-
bership is controlled by a group manager. Group signatures additionally
enforce accountability by providing the group manager with a secret
tracing key that can be used to identify the otherwise anonymous signer
when needed. Accountable ring signatures, introduced by Xu and Yung
(CARDIS 2004), bridge the gap between the two notions. They provide
maximal flexibility in choosing the ring, and at the same time maintain
accountability by supporting a designated opener that can identify sign-
ers when needed.

We revisit accountable ring signatures and offer a formal security
model for the primitive. Our model offers strong security definitions
incorporating protection against maliciously chosen keys and at the same
time flexibility both in the choice of the ring and the opener. We give
a generic construction using standard tools. We give a highly efficient
instantiation of our generic construction in the random oracle model by
meticulously combining Camenisch’s group signature scheme (CRYPTO
1997) with a generalization of the one-out-of-many proofs of knowledge
by Groth and Kohlweiss (EUROCRYPT 2015). Our instantiation yields
signatures of logarithmic size (in the size of the ring) while relying solely
on the well-studied decisional Diffie-Hellman assumption. In the process,
we offer a number of optimizations for the recent Groth and Kohlweiss
one-out-of-many proofs, which may be useful for other applications.

Accountable ring signatures imply traditional ring and group signa-
tures. We therefore also obtain highly efficient instantiations of those
primitives with signatures shorter than all existing ring signatures as
well as existing group signatures relying on standard assumptions.

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007–
2013)/ERC Grant Agreement n. 307937 and EPSRC grant EP/J009520/1.
P. Chaidos was supported by an EPSRC scholarship (EP/G037264/1 – Security
Science DTC).

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 243–265, 2015.
DOI: 10.1007/978-3-319-24174-6 13

244 J. Bootle et al.

Keywords: Accountable ring signatures · Group signatures ·
One-out-of-many zero-knowledge proofs

1 Introduction

Significant effort has been devoted to the study of signature schemes with privacy
properties that allow a signer to remain anonymous within a set of users. Two
prominent examples of anonymous signature schemes are ring signatures [RST01]
and group signatures [CvH91]. Ring signatures allow a signer to choose any ad
hoc set of users, i.e. a ring, and sign anonymously on behalf the ring. Group
signatures also allow a signer to sign anonymously on behalf of a group of users
but here group membership is controlled by a designated group manager. The
advantage of group signatures is accountability; in case of abuse, the group
manager can revoke anonymity and identify the signer.

Accountable ring signatures [XY04] bridge the gap between ring signatures
and group signatures. They offer the flexibility of freely choosing the ring of
users when creating a signature and at the same time enforce accountability
by including an opener who can open a signature and reveal who signed it.
The combination of flexibility and accountability allows applications where ring
signatures or group signatures are less suitable. Consider, for instance, an online
forum that wants to offer anonymity to users but also wants to be able to trace
people who violate the code of conduct. A forum can achieve this by allowing
user posts with accountable ring signatures where the owner is the specified
opener. This system is decentralized and flexible since different fora can have
their own opener keys and users do not have to register with each individual
forum they post to. Another potential application is an auction system where
bids are public but unsuccessful bidders want anonymity. Bidders sign bids with
the seller as opener and at the end of the auctions the seller can disclose the
winner in a verifiable way.

Our Contribution. We introduce a new security model for accountable ring
signatures. The signer specifies, in addition to a set of users that could have
produced the signature, the public key of an opening entity, which will be able
to remove anonymity. This opening mechanism offers protection against misbe-
having signers while at the same time not relying on a single, centralized group
manager. Our security definitions are stringent and when possible incorporate
protection against maliciously chosen keys.

We provide a generic construction of accountable ring signatures from stan-
dard cryptographic tools. We also give a concrete instantiation, combining ideas
from Camenisch’s group signature [Cam97] with a generalization of the one-
out-of-many proof of knowledge of Groth and Kohlweiss [GK15]. The most effi-
cient ring and group signatures [ACJT00,CL02,CKS09,BBS04,DKNS04,CG05,
Ngu05,GK15] in the literature are in the random oracle model [FS87] and so

Short Accountable Ring Signatures Based on DDH 245

is ours. However, the only other assumption we make is the hardness of the
well-established decisional Diffie-Hellman problem.1

From a technical viewpoint, we offer two optimisations of Groth-Kohlweiss
one-out-of-many proofs. One perspective on their proof system is that they form
a binary tree and prove that one of the leaves is selected. We generalise their
approach to n-ary trees, allowing us to fine-tune the parameters for better per-
formance. For N = nm, our optimisations reduce the number of group elements
in the 1-out-of-N proof from 4m to 2m with little impact on the number of field
elements or computational cost. Also, while their proofs can be used for ElGamal
encryption, which is what we need for our scheme, this imposes an overhead in
all parts of their protocol. We deploy more efficient Pedersen commitments in
some parts of the proof, thus limiting the overhead of ElGamal.

The end result is an accountable ring signature scheme with efficient compu-
tation and very small signatures. Namely, for a ring with N = poly(λ) users, we
obtain signatures of size approximately 5

2λ log2 N bits, which is smaller than all
existing group and ring signatures based on standard assumptions.

Related Work. Accountable ring signatures were informally defined by Xu and
Yung [XY04]. Their security model mitigates the trust on the opener by using
several openers and a threshold decryption mechanism, whereas we reduce the
trust in the opener by allowing users to choose arbitrary openers (and leaving
it to the verifier to decide whether they trust the opener). It would be easy to
generalize our definitions to accommodate threshold decryption as well. Xu and
Yung rely on the tamper-resistance of smart cards to ensure that the signatures
contain some footprint of the signer. In our model, we require the signer to
provide a proof that his signature is well-formed. Finally, Xu and Yung require
the existence of trapdoor permutations whereas we rely on the hardness of the
Decision Diffie-Hellman (DDH) problem.

Our security model for accountable ring signatures is also very similar to the
identity escrow extension by Dodis et al. [DKNS04], except that we allow for an
arbitrary choice of opener and we require openers to prove correctness of their
decisions. The construction in [DKNS04] relies on the strong RSA assumption
whereas we rely on, in our opinion, the more established DDH assumption.

Traceable ring signatures [FS08] and linkable ring signatures [LWW04] also
offer some restricted form of accountability. In traceable ring signatures, any
couple of signatures produced by the same user will reveal her identity. In link-
able group signatures, it is possible to efficiently decide whether two signatures
were produced by the same user but without revealing his identity. Unique ring
signatures [FZ13] encompass both traceable and linkable ring signatures.

Formal security models for group signatures were introduced by Bellare
et al. [BMW03] in the static case and by Kiayias and Yung [KY05] and
Bellare et al. [BSZ05] in the partially dynamic case where users can join the

1 An important advantage of working over a discrete logarithm group is that so do
many standard signature schemes, e.g., DSS. We therefore already have many users
with suitable public verification keys in a standard cyclic group, e.g., NIST’s 256-bit
elliptic curve group P. 256.

246 J. Bootle et al.

group at any time. A formal security model for ring signatures was provided by
Bender et al. [BKM09].

The first practical and provably secure group signature was due to Ateniese
et al. [ACJT00]. Their scheme was later improved by Camenisch and Lysyan-
skaya to allow efficient revocation of group member using dynamic accumulators
[CL02]. Both schemes yield signatures of constant size and are based on the
DDH and the strong RSA assumptions, in the random oracle model. Boneh
et al. [BBS04] also constructed constant size group signatures under the strong
Diffie-Hellman and the Decision Linear assumption in pairing groups. Other
pairing-based schemes include [ACHdM05,NSN04,CG05,BW07,Gro07,CKS09,
LPY12]. Recently, Langlois et al. [LLNW14] gave an efficient lattice-based group
signature scheme supporting revocation, based on the hardness of approximat-
ing the shortest independent vectors problem in lattice of dimension n within a
factor Õ(n1.5). Our scheme achieves roughly the same signature sizes as theirs
under an arguably more standard and better understood assumption.

Constant-size ring signatures can also be based on the strong RSA assump-
tion [DKNS04] and on pairing assumptions [Ngu05]. Very recently, Groth and
Kohlweiss provided a ring signature scheme based on the discrete logarithm
assumption in the random oracle model, which is asymptotically more efficient
than previous ones. Our accountable ring signature scheme extends Groth and
Kohlweiss’ scheme to enforce accountability and due to our optimisations, we
get a performance improvement as well.

2 Defining Accountable Ring Signatures

We write y = A(x; r) when the algorithm A on input x and randomness r
outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ)
if |f(λ) − g(λ)| = λ−ω(1). We say f is negligible if f(λ) ≈ 0 and that f is
overwhelming if f(λ) ≈ 1. By PPT we mean running in probabilistic polynomial
time in the relevant security parameter λ.

An accountable ring signature scheme over a PPT setup Setup is a tuple of
polynomial-time algorithms (OKGen,UKGen,Sign,Vfy,Open, Judge).

Setup(1λ): Given the security parameter, produces public parameters pp used
(sometimes implicitly) by the rest of the scheme. The public parameters
define key spaces PK,DK,VK,SK with efficient algorithms for sampling and
deciding membership.

OKGen(pp): Given the public parameters pp, produces a public key pk ∈ PK and
secret key dk ∈ DK for an opener. Without loss of generality, we assume dk
defines pk deterministically and write pk = OKGen(pp, dk) when computing
pkfrom dk.

UKGen(pp): Given the public parameters pp, produces a verification key vk ∈
VK and a secret signing key sk ∈ SK for a user. We can assume sk deter-
ministically determines vk and write vk = UKGen(pp, sk) when computing
vk from sk.

Short Accountable Ring Signatures Based on DDH 247

Sign(pk,m,R, sk): Given an opener’s public key, a message, a ring (i.e. a set of
verification keys) and a secret key, produces a ring signature σ. The algorithm
returns the error symbol ⊥ if the inputs are malformed, i.e., if pk /∈ PK, R �⊂
VK, sk /∈ SK or vk = UKGen(pp, sk) /∈ R.

Vfy(pk,m,R, σ): Given an opener’s public key, a message, a ring and a signa-
ture, returns 1 if accepting the signature and 0 otherwise. We assume the
algorithm always returns 0 if the inputs are malformed, i.e., if pk /∈ PK or
R �⊂ VK.

Open(m,R, σ, dk): Given a message, a ring, a ring signature and an opener’s
secret key, returns a verification key vk and a proof ψ that the owner of vk
produced the signature. If any of the inputs are invalid, i.e., dk /∈ DK or σ
is not a valid signature using pk = OKGen(pp, dk), the algorithm returns ⊥.

Judge(pk,m,R, σ, vk, ψ): Given an opener’s public key, a message, a ring, a
signature, a verification key and a proof, returns 1 if accepting the proof and
0 otherwise. We assume the algorithm returns 0 if σ is invalid or vk /∈ R.

An accountable ring signature scheme should be correct, fully unforgeable,
anonymous and traceable as defined below.

Definition 1 (Perfect correctness). An accountable ring signature scheme is
perfectly correct if for any PPT adversary A

Pr

⎡

⎣
pp ← Setup(1λ); (vk, sk) ← UKGen(pp);

(pk,m,R) ← A(pp, sk);σ ← Sign(pk,m,R, sk) :
If pk ∈ PK, R ⊂ VK, vk ∈ R then Vfy(pk,m,R, σ) = 1

⎤

⎦ = 1.

We remark that correctness of the opening algorithm (w.r.t. an honestly gener-
ated opener key) is implied by the other requirements.

Full unforgeability ensures that an adversary, who may control the opener,
can neither falsely accuse an honest user of producing a ring signature nor forge
ring signatures on behalf of an honest ring. The former should hold even when
all other users in the ring are corrupt. This requirement combines the non-
frameability of group signatures [BSZ05] and the unforgeability of ring signatures
[BKM09] requirements.

Definition 2 (Full Unforgeability). An accountable ring signature scheme is
fully unforgeable if for any PPT adversary A

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pp ← Setup(1λ); (pk, vk,m,R, σ, ψ) ← AUKGen,Sign,Reveal(pp) :(
vk ∈ QUKGen \ QReveal ∧ (pk, vk,m,R, σ) /∈ QSign

∧ Judge(pk,m,R, σ, vk, ψ) = 1
)

∨
(
R ⊂ QUKGen \ QReveal ∧ (pk, ·,m,R, σ) /∈ QSign

∧ Vfy(pk,m,R, σ) = 1
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≈ 0.

248 J. Bootle et al.

– UKGen runs (vk, sk) ← UKGen(pp) and returns vk. QUKGen is the set of
verification keys vk that have been generated by this oracle.

– Sign is an oracle that on query (pk, vk,m,R) returns σ ← Sign(pk,m,R, sk)
if vk ∈ R∩QUKGen. QSign contains the queries and responses (pk, vk,m,R, σ).

– Reveal is an oracle that when queried on vk ∈ QUKGen returns the corre-
sponding signing key sk. QReveal is the list of verification keys vk for which
the corresponding signing key has been revealed.

Anonymity ensures that a signature does not reveal the identity of the ring
member who produced it without the opener explicitly wanting to open the par-
ticular signature. We allow the adversary to choose the secret signing keys of the
users which implies anonymity against full key exposure attacks [BKM09] where
the users’ secret signing keys have been revealed. Our definition also captures
unlinkability as used in [XY04]: if an adversary can link signatures by the same
signer, it can break anonymity.

Definition 3 (Anonymity). An accountable ring signature scheme is anony-
mous if for any PPT adversary A

Pr
[

pp ← Setup(1λ); b ← {0, 1}; (pk, dk) ← OKGen(pp) :
AChalb,Open(pp, pk) = b

]

≈ 1
2
.

– Chalb is an oracle that the adversary can only call once. On query
(m,R, sk0, sk1) it runs σ0 ← Sign(pk,m,R, sk0); σ1 ← Sign(pk,m,R, sk1).
If σ0 �= ⊥ and σ1 �= ⊥ it returns σb, otherwise it returns ⊥.

– Open is an oracle that on a query (m,R, σ) returns Open(m,R, σ, dk). If σ
was obtained by calling Chalb on (m,R), the oracle returns ⊥.

Traceability ensures that the specified opener can always identify the ring
member who produced a signature and that she is able to produce a valid proof
for her decision.

Definition 4 (Traceability). An accountable ring signature scheme is trace-
able if for any PPT adversary A

Pr

⎡

⎣
pp ← Setup(1λ); (dk,m,R, σ) ← A(pp);

pk ← OKGen(pp, dk); (vk, ψ) ← Open(m,R, σ, dk) :
Vfy(pk,m,R, σ) = 1 ∧ Judge(pk,m,R, σ, vk, ψ) = 0

⎤

⎦ ≈ 0.

Tracing soundness ensures that a signature cannot trace to two different
users; only one person can be identified as the signer even when all users as
well as the opener are fully corrupt. Similarly to the setting of group signa-
tures [SSE+12], this requirement is vital for some applications, e.g., where users
might be rewarded for signatures they produced, or to avoid shifting blame when
signatures are used as evidence of abuse.

Definition 5 (Tracing Soundness). An accountable ring signature scheme
satisfies tracing soundness if for any PPT adversary A

Pr
[

pp ← Setup(1λ); (m,σ,R, pk, vk1, vk2, ψ1, ψ2) ← A(pp) :
∀i ∈ {1, 2}, Judge(pk,m,R, σ, vki, ψi) = 1 ∧ vk1 �= vk2

]

≈ 0.

Short Accountable Ring Signatures Based on DDH 249

2.1 Ring and Group Signatures from Accountable Ring Signatures

We will now relate accountable ring signatures to ring signatures and group
signatures by showing that the latter are implied by accountable ring signatures.

Ring Signatures. Traditional ring signatures [RST01] do not have an opener
and their security requires anonymity of the signer and unforgeability [RST01,
BKM09]. By simply regarding the opener’s public key as part of the signature
and ignoring the opening and judge algorithms, we obtain a traditional ring
signature scheme from an accountable ring signature. Correctness and anonymity
follow from those of the accountable ring signature, whereas unforgeability is
implied by full unforgeability and traceability.

Group Signatures. Bellare et al. [BMW03] defined group signatures for static
groups, where the population of the group is fixed once and for all at the setup
time, and where the group manager additionally acts as the designated opener.
Besides, correctness, their model requires full anonymity and full traceability.
The latter requires that an adversary in possession of the group master secret
key who can corrupt members of the group, cannot produce a new signature
that does not trace to a user in set of corrupt users. An accountable ring signa-
ture satisfying our security definitions gives rise to a group signature scheme as
follows: We fix the group manager as the designated opener and set the corre-
sponding decryption key as the group master secret key gmsk used as the tracing
key. In the setup, the group members generate their personal key pairs and we
publish the ring containing the public keys of the members as part of the group
signature public key. Group signatures are then just accountable ring signatures
w.r.t. this ring. Full anonymity follows from the anonymity of the accountable
ring signature scheme, whereas full traceability follows from full unforgeability
and traceability.

The group public key in our scheme is quite large since it grows linearly in
the number of members. However, this is a cost that can be amortized over many
signatures. An advantage of the group signature scheme on the other hand is that
it can easily be made dynamic. The group manager can enrol or remove users by
adding or deleting their verification keys from the group public key [DKNS04].
In the dynamic group signature scheme, the group public key is changing and
group signatures must be verified against the group as it was at the time of
signing, but for scenarios where the group is not changing too often or where
great flexibility is desired this is a price worth paying.

3 Preliminaries

We define here the tools and assumptions we use.

Cyclic Groups and Assumptions. A group generator G is a PPT algorithm
that on input 1λ (for a security paremeter λ) returns a description gk = (G, q, g)
of a group G of prime order q and a generator g. We assume the group has asso-
ciated polynomial time algorithms for computing group operations and deciding
membership.

250 J. Bootle et al.

The Discrete Logarithm (DL) assumption holds relative to G if for all PPT
adversaries A

Pr
[
gk = (G, q, g) ← G(1λ);x ← Zq;h := gx : A(gk, h) = x

]
≈ 0.

The Decisional Diffie-Hellman (DDH) assumption holds relative to G if for
all PPT adversaries A

Pr
[

gk = (G, q, g) ← G(1λ);x, y, z ← Zq; b ← {0, 1};
h := gx;u := gy; v := g(1−b)xy+bz : A(gk, h, u, v) = b

]

≈ 1
2
.

The DDH assumption relative to G implies the DL assumption relative to G.
The DDH assumption is believed to hold when G is an appropriately chosen
subgroup of elliptic curve groups or multiplicative groups of large characteristic
finite fields.

One-way Function. A function f : X → Y (over setup gk, which defines
the function f , the domain X and range Y) is one-way if f is polynomial-time
computable and is hard to invert, i.e. for all PPT adversaries A

Pr
[
gk ← G(1λ);x ← X; y := f(x) : A(gk, y) = x

]
≈ 0.

We will instantiate f via group exponentiation, i.e. x → gx with domain Zq

and range G. The one-wayness of f is then implied by the DL assumption.

Non-Interactive Zero-Knowledge (NIZK) Proofs. A NIZK proof system
(over a setup gk) for an NP-relation R defining the language LR := {s |
∃w : (s, w) ∈ R}, where s is a statement and w is a witness, is a tuple of
polynomial-time algorithms (CRSGen,Prove,PVfy). CRSGen(gk) generates a
common reference string crs; Prove(crs, s, w) returns a proof π that (s, w) ∈ R;
PVfy(crs, s, π) verifies that π is a valid proof for s ∈ LR outputting a bit accord-
ingly.

Perfect completeness of the proof system requires that for any crs generated
by CRSGen and any pair (s, w) ∈ R we have Pr[PVfy(crs, s,Prove(crs, s, w))] =
1. Additionally, we require soundness and zero-knowledge, which are as follows:

– Soundness: For all PPT adversaries A, we have

Pr
[

gk ← G(1λ); crs ← CRSGen(gk); (s, π) ← A(gk, crs) :
PVfy(crs, s, π) = 1 ∧ s /∈ LR

]

≈ 0.

– Zero-Knowledge: There exist PPT algorithms (SimCRSGen,SimProve), where
SimCRSGen(gk) outputs a simulated reference string crs and possibly a simu-
lation trapdoor τ , and SimProve(crs, s, τ) produces a simulated proof (without
knowing a witness). We require that

Pr
[
gk ← G(1λ); crs ← CRSGen(gk) : AProve(gk, crs) = 1

]

≈Pr
[
gk ← G(1λ); (crs, τ) ← SimCRSGen(gk) : ASim(gk, crs) = 1

]
,

where on query (s, w) ∈ R, Sim returns π ← SimProve(crs, s, τ).

Short Accountable Ring Signatures Based on DDH 251

Sigma-Protocols. We will in our instantiation use NIZK proofs in the ran-
dom oracle model obtained by applying the Fiat-Shamir transformation [FS87]
to interactive Σ-protocols, which are 3-move protocols that allow a prover to
convince a verifier that a certain statement is true.

A Σ-protocol for a relation R w.r.t. a setup gk is a tuple (Gcrs,P,V). Gcrs(gk)
generates a common reference string crs; P(crs, s, w) generates an initial message
a; P(x) computes a response z to a random challenge x. V(crs, s, a, x, z) verifies
the proof and outputs 1 for acceptance or 0 for rejection.

Besides completeness, we require Σ-protocols to have Special Honest Verifier
Zero-Knowledge (SHVZK) and n-Special Soundness [GK15]:

– SHVZK: Given any statement s ∈ LR and any verifier challenge x, it is possible
to simulate a transcript of the protocol.

– n-Special Soundness: For any statement s, from n accepting transcripts
{(a, xi, zi)}n

i=1 for s ∈ LR where the challenges xi are distinct, we can extract
w s.t. (s, w) ∈ R.

Signature of Knowledge. A Signature of Knowledge (SoK) for an NP-relation
R w.r.t. a setup gk is a tuple (SoKSetup,SoKSign,SoKVerify). SoKSetup(gk)
outputs public parameters pp; SoKSign(pp, s, w,m) outputs a signature σSoK

on m if (s, w) ∈ R; SoKVerify(pp, s,m, σSoK) outputs 1 if σSoK is a valid sig-
nature on m or 0 otherwise. The (game-based) security definition for signa-
tures of knowledge (SimExt) [CL06], besides correctness, requires Simulatability
and Extractability. We consider a stronger generalisation of the latter called
f -extractability [BCKL08]:

– Simulatability: There are PPT algorithms (SoKSimSetup,SoKSimSign),
where SoKSimSetup(gk) outputs public parameters pp and some trapdoor
τ , whereas SoKSimSign(pp, τ, s,m) outputs a signature σSoK, such that

Pr
[
gk ← G(1λ); (pp, τ) ← SoKSimSetup(gk) : ASoKSim(gk, pp) = 1

]

≈ Pr
[
gk ← G(1λ); pp ← SoKSetup(gk) : ASoKSign(gk, pp) = 1

]
,

for all PPT adversaries A, where SoKSim(s, w,m) returns SoKSimSign(pp, τ,
s,m) if (s, w) ∈ R and ⊥ otherwise.

– f -Extractability: For all PPT adversaries A, there exists a polynomial time
algorithm SoKExtract such that:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

gk ← G(1λ); (pp, τ) ← SoKSimSetup(gk);
(s,m, σSoK) ← ASoKSim(gk, pp);
y ← SoKExtract(pp, τ, s,m, σSoK) :

(s,m, σSoK) ∈ QSoKSim ∨ SoKVerify(pp, s,m, σSoK) = 0
∨ (∃w s.t. (s, w) ∈ R ∧ y = f(w)

)

⎤

⎥
⎥
⎥
⎥
⎦

≈ 1·

In the above, QSoKSim is a list of queries to the SoKSimSign oracle. Note that
our extractability definition is stronger than that of [CL06], as we allow the

252 J. Bootle et al.

adversary to ask for signatures w.r.t. statements for which it does know the
witness. In the definition, if f is the identity function, we get the standard
notion of extractability.

Signatures of knowledge in the random oracle model can be efficiently realized
by applying the Fiat-Shamir transformation to Σ-protocols. Applying the trans-
formation to Σ-protocols having quasi-unique responses (i.e. given an accept-
ing transcript, it is infeasible to find a different accepting response w.r.t. the
same initial message and challenge) provides weak simulation-extractability
[FKMV12], where the extractor needs to rewind the prover. To get straight-
line f -extractability, i.e. without rewinding [Fis05], we additionally encrypt a
function f of the witness with a public key in the reference string and prove
that the encrypted value is consistent with the witness. This way we get both
full weak extractability and straightline f -extractability simultaneously.

Commitment Scheme. A non-interactive commitment scheme (over a setup
gk) consists of two polynomial-time algorithms (CGen,Comck), where CGen(gk)
outputs a commitment key ck, and Comck is a randomized algorithm that on
input a message m and a randomness r outputs a commitment c. To open a
commitment, one reveals m and r allowing anyone to verify that c is indeed a
commitment to m. We require that the scheme is hiding and binding. Hiding
requires that for all PPT stateful adversaries A

Pr
[

gk ← G(1λ); ck ← CGen(gk); (m0,m1) ← A(gk, ck);
b ← {0, 1}; c ← Comck(mb) : A(c) = b

]

≈ 1
2
.

Binding requires that for all polynomial-time stateful adversaries A

Pr
[

gk ← G(1λ); ck ← CGen(gk); (m0, r0,m1, r1) ← A(gk, ck) :
m0 �= m1 ∧ Comck(m0, r0) = Comck(m1, r1)

]

≈ 0.

Pedersen commitments [Ped91] are of the form c = grhm where r ← Z
∗
q ,

h ← G and m ∈ Zq. They are perfectly hiding and computationally binding
assuming the DL assumption holds. We exploit the fact that the Pedersen com-
mitment scheme is homomorphic, i.e., for all correctly generated gk, ck and all
m,m′, r, r′ ∈ Zq

Comck(m; r) · Comck(m′; r′) = Comck(m + m′; r + r′).

We will use a variant of the Pedersen commitment scheme to commit to multiple
messages at once as shown in Fig. 1.

Fig. 1. Pedersen commitment to multiple elements.

Short Accountable Ring Signatures Based on DDH 253

IND-CPA Public-Key Encryption. A public-key encryption scheme (over
setup gk) consists of three algorithms (PKEGen,Enc,Dec). PKEGen(gk) is a
probabilistic algorithm that generates a public key and decryption key pair
(pk, dk). Without loss of generality, we assume pk can be efficiently computed
given dk and write pk = PKEGen(gk, dk) for this computation which returns ⊥
if dk is not valid. Enc(pk,m) is a probabilistic algorithm which returns a cipher-
text c if all its inputs are valid and ⊥ otherwise. Dec(dk, c) is a deterministic
algorithm that decrypts the ciphertext and returns either the message m or the
failure symbol ⊥. We assume that gk, which is an implicit input to Enc and
Dec, defines the public key, decryption key, message, randomness and ciphertext
spaces PK, DK, M, Rnd and C.

We also require that the scheme is indistinguishable under chosen plaintext
attacks (IND-CPA), i.e., for all PPT stateful adversaries A

Pr
[

gk ← G(1λ); (pk, dk) ← PKEGen(gk)
(m0,m1) ← A(gk, pk); b ← {0, 1}; c ← Enc(pk,mb)

: A(c) = b

]

≈ 1
2
,

where we require A outputs m0,m1 ∈ M.
We will in our instantiation use ElGamal encryption described in Fig. 2,

which is IND-CPA secure if the DDH assumption holds relative to G where gk =
(G, q, g) ← G(1λ). We also note that ElGamal ciphertexts are homomorphic,
similarly to Pedersen commitments. We have PK := G

∗, DK := Z
∗
q , M := G,

Rnd := Zq, and C := G
2.

Fig. 2. ElGamal encryption.

4 Constructing Accountable Ring Signatures

Our generic construction (shown in Fig. 3) uses a one-way function f , an IND-
CPA public-key encryption scheme, a signature of knowledge, and a zero-
knowledge proof of membership, all of which share the same setup gk. The
setup gk defines domain SK and range VK for f , and key, message, randomness
and ciphertext spaces PK,DK,M,Rnd,C for the encryption scheme. The range
of f and the message space of the encryption scheme need to be compatible such
that VK ⊆ M.

The idea is that an opener will have a key pair for the encryption scheme and
the user will have a secret key sk and corresponding verification key vk = f(sk).
To sign a message m w.r.t. a ring R, the signer first encrypts her verification
key under the opener’s public key and provides a signature of knowledge on
m proving the ciphertext encrypts a verification key in the ring and that she
knows the secret key associated with the encrypted verification key. To open a

254 J. Bootle et al.

Fig. 3. A generic construction for accountable ring signatures.

signature, the opener decrypts the ciphertext to obtain the user’s verification
key and provides an NIZK proof of correct decryption.

The relations Rsig and Ropen associated with the signature of knowledge and
the NIZK system, respectively, are as follows:

Rsig :=
{ (

(pk,R, c), (sk, r)
)

:
R ⊂ VK ∧ vk := f(sk) ∈ R ∧ c = Enc(pk, vk; r)

}

·

Ropen :=
{ (

(pk, c, vk), dk
)

:
pk = PKEGen(gk; dk) ∈ PK ∧ vk = Dec(dk, c) ∧ vk ∈ VK

}

·
We prove the following theorem in AppendixA.

Theorem 1. The accountable ring signature construction in Fig. 3 is perfectly
correct, anonymous, fully unforgeable, traceable, and satisfies tracing soundness
if the building blocks satisfy the security definitions in Sect. 3.

Since all the building blocks can be constructed from (doubly enhanced) trap-
door permutations, we get as a corollary that trapdoor permutations imply the
existence of accountable ring signatures.

5 Efficient Instantiation

We give here an efficient instantiation of the generic construction from Fig. 3.
The instantiation is secure in the random oracle model under the well-established
DDH assumption. As specified in Sect. 3, we instantiate f with group exponen-
tiation and the IND-CPA encryption scheme with ElGamal. We will get the
Signature of Knowledge and NIZK proof for the relations Rsig and Ropen by
applying the Fiat-Shamir transform to suitable Σ-protocols for these relations.
Thanks to the straightline f -Extractability of our instantiation of the signature

Short Accountable Ring Signatures Based on DDH 255

of knowledge, we can answer the adversary’s Open queries in the anonymity
game by extracting vk = f(sk) from σSoK without rewinding.

Details of the Σ-Protocols. For all Σ-protocols, the setup includes the
group description gk and the common reference string crs := (ck, ek), where
ck ← CGen(gk), (ek, τ) ← PKEGen(gk) and ek = gτ for τ ← Z

∗
q , for the Peder-

sen commitment scheme and the ElGamal encryption scheme, respectively. The
proofs of the lemmata can be found in AppendixB.

Committed bits. We first give a Σ-protocol for a commitment B having an
opening consisting of sequences of bits, where in each sequence there is exactly
one 1. More precisely, we give in Fig. 4 a Σ-protocol (Gcrs,P1,V1) for the relation

R1 =

{
(B, (b0,0, . . . , bm−1,n−1, r)) :

(∀i, j : bj,i ∈ {0, 1}) ∧ (∀j :
∑n−1

i=0 bj,i = 1) ∧ B = Comck(b0,0, . . . , bm−1,n−1; r)

}

The main idea is to prove that bj,i(1 − bj,i) = 0 for all i, j, and also that∑n
i=1 bj,i = 1.

Fig. 4. Σ-protocol for relation R1.

Lemma 1. The Σ-protocol in Fig. 4 is perfectly complete, perfect SHVZK, com-
putational 3-special sound and has quasi-unique responses.

List Containing Encryption of 1. We now describe a Σ-protocol that a
list of N ElGamal ciphertexts (c0, . . . , cN−1) includes an encryption of 1. More
precisely, we give a Σ-protocol (Gcrs,P2,V2) (see Fig. 5) for the relation:

R2 =
{

(({ci}N−1
i=0), (�, r)) : (∀i, ci ∈ G

2) ∧ � ∈ {0, . . . , N − 1} ∧ c� = Encek(1; r)
}

This generalizes easily to other homomorphic encryption and commitment
schemes.

Since we can pad the list with copies of the last ciphertext (at little extra
cost in the protocol), we may assume N = nm. We will later discuss the effi-
ciency implications of different choices of n. The idea behind our Σ-protocol is
to prove knowledge of an index � for which the product

∏N−1
i=0 c

δ�,i

i is an encryp-
tion of 1, where as usual δ�,i = 1 when i = � and δ�,i = 0 otherwise. We have
δ�,i =

∏m−1
j=0 δ�j ,ij

, where � =
∑m−1

j=0 �jn
j and i =

∑m−1
j=0 ijn

j are the n-ary
representations of � and i respectively.

256 J. Bootle et al.

The prover first commits to m sequences of n bits (δ�j ,0, . . . , δ�j ,n−1). It runs
the Σ-protocol in Fig. 4 to prove that the commitment is well-formed. On receiv-
ing a challenge x, the prover discloses elements fj,i = δ�j ,ix + aj,i as in Fig. 4.
Observe that for every i ∈ {0, . . . , N − 1}, the product

∏m−1
j=0 fj,ij

is the evalu-
ation at x of the polynomial pi(x) =

∏m−1
j=0 (δ�j ,ix + aj,i). For 0 ≤ i ≤ N − 1, we

have:

pi(x) =
m−1∏

j=0

δ�j ,ij
x +

m−1∑

k=0

pi,kxk = δ�,ix
m +

m−1∑

k=0

pi,kxk, (1)

for some coefficients pi,k depending on � and aj,i. Note that pi,k can be computed
by the prover independently of x, and that p�(x) is the only degree m polyno-
mial amongst p0(x), . . . , pN−1(x). From these coefficients and some random noise
values ρk, the prover computes ciphertexts Gk :=

∏N−1
i=0 c

pi,k

i · Encek(1; ρk) and
includes them in the initial message. These ciphertexts are then used to cancel
out the low degree terms in (1). Namely, if c� is an encryption of 1, the following
product is an encryption of 1 for any x

N−1∏

i=0

c
∏m−1

j=0 fj,ij

i ·
m−1∏

k=0

G−xk

k =

(
N−1∏

i=0

c
δ�,i

i

)xm

.

Fig. 5. Σ-protocol for a list c0, . . . , cN−1 containing an encryption of 1

Lemma 2. Let m ≥ 2. The Σ-protocol in Fig. 5 is perfectly complete, SHVZK,
(m + 1)-special sound and has quasi-unique responses.

Correct Signature. We give in Fig. 6 a Σ-protocol for the relation Rsig ={
((pk,m,R, c), (sk, r)) : sk ∈ Zq ∧ vk = gsk ∈ R ⊂ G

∗ ∧ c = Encpk(vk; r)
}

Lemma 3. The Σ-protocol in Fig. 6 is perfectly complete, SHVZK, m+1-special
sound and has quasi-unique responses.

Lemma 4. Applying the Fiat-Shamir transformation to the protocol in Fig. 6
with SoKSetup as in Sect. 5 produces a signature of knowledge in the random
oracle model, that is extractable and straightline f-extractable.

Short Accountable Ring Signatures Based on DDH 257

Fig. 6. Σ-protocol for Rsig.

Proof. For simulatability, SoKSimSetup is identical to SoKSetup and SoKSimSign
programs the random oracle to simulate proofs. Simulatability then follows from
SHVZK.

For extractability we rely on rewinding, m + 1 special soundness and quasi-
unique responses, using [FKMV12]. For straightline f -extractability, we use the
trapdoor τ to decrypt d in the proof transcript and obtain vk = f(sk). ��
Correct Opening. Writing out the details of ElGamal encryption we get

Ropen =
{

((pk, c, vk), dk) :
dk ∈ Zq ∧ pk = gdk �= 1 ∧ c = (u, v) ∈ G

2 ∧ vk ∈ G ∧ (v/vk)dk = u

}

Fig. 7. Σ-protocol for correct decryption.

Lemma 5. The Σ-protocol in Fig. 7 is perfectly complete, perfect SHVZK, per-
fect 2-special sound and has unique responses. Also, applying the Fiat-Shamir
transformation to it produces a NIZK proof.

Efficiency of Our Schemes. The efficiency of our schemes is determined by
the signature of knowledge of Fig. 6. For a ring of N = nm users, this requires the
prover to send m+4 ElGamal ciphertexts, 4 Pedersen commitments and m(n−
1) + 6 elements of Zq. A full accountable ring signature includes an additional
ElGamal encryption, i.e. 2m+12 group elements and m(n−1)+6 field elements
in total.

A signature can be computed using mN + 3mn + 2m + 12 group exponen-
tiations as follows. Computing A, C and D in the bit proof requires 2mn + 3
exponentiations since exponentiation by (1 − 2bi,j) amounts to a multiplication.
By construction of ci in Fig. 6, the first components of all ci are identical in

258 J. Bootle et al.

Fig. 5, so computing the first components of all Gk costs 2m exponentiations.
The second components of all Gk requires mN + m exponentiations. We also
need 9 exponentiations to compute B in Fig. 5, d, A and B in Fig. 6, and the
ElGamal encryption of the public key.

Signatures can be verified using N + 2mn + 2m + 15 group exponentiations
as follows: N +2m+3 exponentiations for the last verification equation in Fig. 5,
2mn+4 for the equations in Figs. 4 and 8 for the first two verification equations
in Fig. 6.

Our schemes can be instantiated over any group G where the DDH problem
is computationally hard. Let us say the security parameter λ determines the
bit size of the field elements as |q| ≈ λ bits and let N = poly(λ). When group
elements are much larger than field elements, say more than a factor λ, it is
convenient to choose a large n. For instance, setting n = λ + 1 (in which case
m = O(1)) the communication complexity amounts to a constant number of
group elements and mλ+6 field elements. When group and field elements are of
roughly the same size, as can be the case for elliptic curve groups, our signatures
have total size m(n + 1) + 18 elements. Setting n = 4 gives communication of
roughly 5 log4 N + 18 = 5

2 log2 N + 18 elements.
In Fig. 8, we compare our instantiation with prior work. Since our signatures

require a logarithmic number of group elements, they enjoy shorter sizes than
all previous signatures based on RSA and/or DDH assumptions, for sufficiently
large security parameters. Indeed, a constant number of RSA ring elements typ-
ically requires O(λ3) bits whereas the elliptic curve instantiation of our protocol
achieves O(λ log N) bit size. As long as λ is large enough and N ≤ 2λ2

, our sig-
natures will be shorter. Our signatures are also a factor 2.8 shorter than Groth
and Kohlweiss ring signatures.

Fig. 8. Efficiency comparison between our instantiation and most efficient group and
ring signatures based on RSA and/or DDH assumptions. Z∗

n,Z,G,Z∗
q represent the size

of RSA ring elements, integers, group elements and field elements, respectively.

A Proof of Theorem 1

Proof. Perfect correctness follows from that of the building blocks and is easy
to verify. Lemmata 6–9 complete the rest of the proof.

Short Accountable Ring Signatures Based on DDH 259

Lemma 6. The accountable ring signature scheme in Fig. 3 is anonymous.

Proof. We start by replacing the algorithm SoKSetup of the signature of knowl-
edge with SoKSimSetup, and when answering the challenge query, we use
SoKSimSign instead of SoKSign. By the SimExt security of the SoK, the adver-
sary has a negligible probability in distinguishing between the two settings. This
ensures that the signature of knowledge σSoK reveals no information about the
underlying witness.

Next, we replace the algorithm CRSGen of the NIZK system with
SimCRSGen and when answering opening queries, we use SimProve instead of
Prove. By the zero-knowledge property of the NIZK system, the adversary has
a negligible probability in distinguishing between the two settings.

Now, we modify the Open oracle into Open′ such that instead of decrypting
the ciphertext, we run SoKExtract to extract the verification key vk from the
signature of knowledge σSoK. By the SimExt security of the signature of knowl-
edge, with overwhelming probability in each query, we get the same vk as the
plaintext of c.

As we are no longer using the decryption algorithm, by the IND-CPA security
of the encryption scheme, the probability of A winning the anonymity game is
close to 1

2 .

Lemma 7. The accountable ring signature scheme in Fig. 3 is fully unforgeable.

Proof. We start by running the Setup algorithm as normal with the exception
that here we replace SoKSetup with SoKSimSetup. We forward pp to the adver-
sary. By the simulatability of the signature of knowledge, the adversary has
a negligible probability in distinguishing between the two settings. From now
on, we use SoKSimSign instead of SoKSign when answering Sign queries. The
adversary can win in two ways:

– Case I: The adversary forges a valid ring signature on a message m w.r.t.
an honest ring R where (pk, ·,m,R, σ) /∈ QSign. By the SimExt security of
the signature of knowledge, we can extract a valid witness for the statement
(pk,R, c) ∈ LRsig from which we obtain (vk, sk) such that vk := f(sk) ∈ R.
We use this to break the one-wayness of the function f which contradicts the
security of the function f .

– Case II: The adversary outputs a valid ring signature σ := (c, σSoK) on a
message m w.r.t. a ring R and a proof ψ that the honest user with key vk
produced the signature while such user never did so.
We start by guessing the user the adversary is going to frame. We have a
probability 1

η(λ) of guessing correctly, where η(λ) is a polynomial representing
an upper bound on the number of honest users A uses in the game. By the
soundness of the NIZK system, ψ is a proof for a valid statement (pk, c, vk) ∈
LRopen . In the game, we abort if A asks for the secret key of the user we
guessed. For all other honest users, we have chosen their key pairs ourselves
and thus know their secret keys.

260 J. Bootle et al.

Again, by the SimExt of the signature of knowledge, with overwhelming prob-
ability, we can extract a valid witness for the statement (pk,R, c) ∈ LRsig from
σSoK, from which we obtain (vk, sk) such that vk := f(sk) ∈ R. We use this
to break the one-wayness of f which contradicts the security of the function f .

Lemma 8. The accountable ring signature scheme in Fig. 3 is traceable.

Proof. By the security of the signature of knowledge, we are able to extract a
valid witness from σSoK part of the valid signature σ = (c, σSoK) the adversary
outputs. The witness thus satisfies vk = f(sk) where vk ∈ R ⊂ VK, pk ∈ PK
and c = Enc(pk, vk; r) for some r ∈ Rnd and sk ∈ SK.

Since pk = PKEGen(gk; dk), we see from pk �= ⊥ that dk ∈ DK. Correctness
of the encryption algorithm implies that Dec(dk, c) = vk, which is the first part
of the opening algorithm’s output. Now the opening algorithm has a statement
(pk, c, vk) and a corresponding witness dk. By the completeness of the NIZK
proof system, ψ will verify correctly. This means that the Judge algorithm will
output 1 which is a contradiction.

Lemma 9. The construction satisfies tracing soundness if SoK is SimExt
secure, the NIZK proof system is sound and the encryption scheme is perfectly
correct.

Proof. The SimExt security of the signature of knowledge ensures that from any
signature σSoK (w.r.t. a statment s) output by the adversary, we can extract
a valid witness w such that (s, w) ∈ Rsig which eliminates the case that the
adversary forges a signature for a statement s∗ /∈ LRsig . If this is not the case,
we can use such an adversary to construct another adversary against the SimExt
security of the signature of knowledge.

The soundness of the NIZK system for the relation Ropen ensures that cipher-
text c contained in the ring signature decrypts to vk, which eliminates the case
that the adversary can produce a proof ψ for a statement s∗ /∈ LRopen . Finally,
the perfect correctness of the public-key encryption scheme (which is regarded as
a perfectly-binding commitment scheme) ensures that a ciphertext has a unique
decryption.

B Security Proofs of Our Σ-Protocols

B.1 Proof of Lemma 1

Proof. Perfect completeness follows by inspection. The SHVZK simulator, given
a challenge x, can simulate the transcript by picking f0,1, . . . , fm−1,n−1, zA, zC ←
Zq, C ← G and computing fj,0 := x − ∑n−1

i=1 fj,i, A := Comck(f0,0, . . .,
fm−1,n−1, zA)B−x, D = Comck({fi,j(x − fi,j)}m−1,n−1

i,j=0 ; zC)C−x. In both sim-
ulations and real proofs, f0,1, . . . , fm−1,n−1, zA, zC and C are independent, uni-
formly random and uniquely determine {fj,0}m−1

j=0 , A,D, so the simulation is
perfect. We also have quasi-unique responses, since two different valid answers

Short Accountable Ring Signatures Based on DDH 261

f0,1, . . . , fm−1,n−1, zA, zC and f ′
0,1, . . . , f ′

m−1,n−1, z
′
A, z′

C to one challenge would
break the binding property of BxA and CxD.

We prove 3-special soundness in three parts. First, we show that any answers
to 3 (actually 2) different challenges provide an opening of B. Second, we
show that these answers imply that committed values are bits. Finally, we
show that they imply that the sum of the committed values is 1. For the first
part, suppose that a prover has answered two different challenges x, x′ correctly
with answers (f0,1, . . . , fm−1,n−1, zA, zC) and (f ′

0,1, . . . , f
′
m−1,n−1, z

′
A, z′

C). Since
we have BxA = Comck(f0,0, . . . , fm−1,n−1; zA) and Bx′

A = Comck(f ′
0,0, . . .,

f ′
m−1,n−1; z

′
A), from the first verification equation we have Bx−x′

= Comck(f0,0−
f ′
0,0, . . . , fm−1,n−1 − f ′

m−1,n−1; zA − z′
A). Thus bi,j = fi,j−f ′

i,j

x−x′ , with r = zA−z′
A

x−x′ ,
gives us an opening of B. The first verification equation also gives an opening
(a0, . . . , a0; rA) of A using aj,i = fj,i − xbj,i and rA = zA − xr. Note that by the
binding properties of the commitment scheme, the prover cannot know a second
opening of A or B, and must respond to any challenge with fj,i = bj,ix + aj,i.
We can get openings of C and D to values cj,i, dj,i from the second equation in
a similar way.

By the second verification equation, the values satisfy cj,ix + dj,i = fj,i(x −
fj,i) = bj,i(1− bj,i)x2 +(1−2bj,i)aj,ix−a2

j,i. If this holds for three different x, x′

and x′′ then the polynomials are identical. So, bj,i(1 − bj,i) = 0 and bj,i ∈ {0, 1}
for all i, j.

By construction we have
∑n−1

i=0 fj,i =
∑n−1

i=0 bj,ix+
∑n−1

i=0 aj,i = x for all j = 0,

. . . , m − 1. This holds for two challenges x and x′. Therefore
∑n−1

i=0 bj,i = 1. ��

B.2 Proof of Lemma 2

Proof. First we prove perfect completeness. By the perfect completeness of the
Σ-protocol in Fig. 4 we have that V1 always accepts. Correctness of the last
equation follows from the homomorphic property of ElGamal encryption since

N−1∏

i=0

c
∏m−1

j=0 fj,ij

i ·
m−1∏

k=0

G−xk

k =
N−1∏

i=0

c
pi(x)
i ·

m−1∏

k=0

(
N−1∏

i=0

c
pi,k

i · Enc(1; ρk)
)−xk

=
N−1∏

i=0

c
pi(x)
i ·

m−1∏

k=0

(
N−1∏

i=0

c
−pi,kxk

i · Enc(1;−xkρk)
)

=
N−1∏

i=0

c
pi(x)
i ·

N−1∏

i=0

c
−∑m−1

k=0 pi,kxk

i · Enc
(

1;−
m−1∑

k=0

xkρk

)

=
N−1∏

i=0

c
δ�,ix

m

i · Enc
(

1;−
m−1∑

k=0

xkρk

)

= cxm

� Enc
(

1;−
m−1∑

k=0

xkρk

)

= Enc(1; rxm) · Enc
(
1;−∑m−1

k=0 xkρk

)
= Enc(1; z).

We now describe a special honest verifier zero-knowledge simulator. It picks
B ← G and G1, . . . , Gm−1 ← G

2. It runs the SHVZK simulator for P1 to
simulate A,C,D, zA, zC , f0,1, . . . , fm−1,n−1 and computes the fj,0’s accordingly.
It picks z ← Zq and computes G0 from the last verification equation.

By the DDH assumption, G1, . . . , Gm−1 in a real proof are indistinguish-
able from picking random pairs in G

2 as in the simulation. We get independent,

262 J. Bootle et al.

uniformly random B and z in both real proofs and simulations. By the per-
fect SHVZK of the simulator for P1 we also have the same distribution of
A,B,C, fj,i, zA, zC as in a real proof. Finally, G0 is uniquely determined by the last
verification equation in both real proofs and in simulations, so the two are indistin-
guishable. The last verification equation uniquely determines z, thus quasi-unique
responses follow from the quasi-unique responses of the underlying Σ-protocol
for R1.

Now we prove the protocol is (m+1)-special sound. Suppose an adversary can
produce (m + 1) different accepting responses (f (0)

j,i , z(0)), . . . , (f (m)
j,i , z(m)) with

respect to m+1 different challenges x(0), . . . , x(m) and the same initial message.
Assume that m > 1. We use 3-special soundness of the Σ-protocol for R1 to
extract openings δ�j ,i, aj,i for B and A with δ�j ,i ∈ {0, 1} and

∑n−1
i=0 δ�j ,i = 1.

The openings define � :=
∑m−1

j=0 �jn
j , where �j is the index of the only 1 in

the sequence (δ�j ,0, . . . , δ�j ,n−1). Following the proof, all answers satisfy f
(e)
j,i =

δ�j ,ix
(e) + aj,i for 0 ≤ e ≤ m, with overwhelming probability due to the binding

property of the commitment scheme.
From δ�j ,i, aj,i we can compute the polynomials pi(x) =

∏m−1
j=0 (δ�j ,ix + aj,i).

Note that p�(x) is the only such polynomial with degree m in x. Based on
this observation we rewrite the last verification equation as: cxm

� · ∏m−1
k=0 G̃xk

k =
Enc(1; z). Here the G̃k values are derived from the initial statement and
δ�j ,i, aj,i. This equation holds for x(0), . . . , x(m). Consider the Vandermonde
matrix with the eth row given by (1, x(e), . . . , (x(e))m). The x(e) values are
distinct, so the matrix is invertible. We can thus obtain a linear combina-
tion θ0, . . . , θn of the rows producing the vector (0, . . . , 0, 1). We deduce c� =
∏m

e=0

(

c
(x(e))

m

� · ∏m−1
k=0 G̃

(x(e))
k

k

)θe

= Enc
(
1;

∑m
e=0 θez

(e)
)
, which provides an

opening of c� to the plaintext 1 with randomness r =
∑m

e=0 θez
(e). ��

B.3 Proof of Lemma 3

Proof. Perfect completeness follows by direct verification and the perfect com-
pleteness of (P2,V2). The SHVZK simulator chooses za, zb, zs ← Zq and d ← G

2

at random and computes A,B from the verification equations. It runs the per-
fect SHVZK simulator for P2 to get a2 and z2. By the DDH assumption, d is
indistinguishable from the ciphertexts in the real proof. In Both real proofs and
simulations, za, zb, zt are uniformly random and uniquely determine A,B giving
us SHVZK. Since the verification equations uniquely determine za, zb and zs and
(P2,V2) has quasi-unique responses, so must this protocol.

For (m + 1)-special soundness, consider accepting answers za, zb, zs and
z′

a, z′
b, z

′
s to distinct challenges x and x′. From the first verification equation

we get cx−x′
= Encpk(gzs−z′

s ; za −z′
a) giving sk = zs−z′

s

x−x′ and r = za−z′
a

x−x′ . The sec-
ond verification equation gives dx−x′

= Encpk(gzs−z′
s ; zb − z′

b) so d also encrypts
gsk. Finally, (m+1)-special soundness of the Σ-protocol for R2 then shows that
gsk ∈ R. ��

Short Accountable Ring Signatures Based on DDH 263

B.4 Proof of Lemma 5

Proof. Perfect completeness follows by direct verification. The SHVZK simulator
picks z ← Zq and computes A,B from the verification equations. Both in real
proofs and simulated proofs z is uniformly random and the verification equations
determine the initial message uniquely, so we have perfect simulation. As the first
verification equation determines z we have unique responses.

For 2-special soundness, let z and z′ be accepting answers to distinct chal-
lenges x, x′. The first verification equation gives pkx−x′

= gz−z′
, so dk = z−z′

x−x′ .
The second gives ux−x′

= (v/vk)z−z′
, which shows u = (v/vk)dk. Thus, vk was

encrypted in (u, v). ��

References

ACHdM05. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practi-
cal group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385 (2005). http://eprint.iacr.org/

ACJT00. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

BBS04. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer,
Heidelberg (2004)

BCKL08. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures
and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008.
LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

BKM09. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions,
and constructions without random oracles. J. Cryptology 22(1), 114 (2009)

BMW03. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signa-
tures: formal definitions, simplified requirements, and a construction based
on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656. Springer, Heidelberg (2003)

BSZ05. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005)

BW07. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

Cam97. Camenisch, J.L.: Efficient and generalized group signatures. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer,
Heidelberg (1997)

CG05. Camenisch, J.L., Groth, J.: Group signatures: better efficiency and new
theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS,
vol. 3352, pp. 120–133. Springer, Heidelberg (2005)

CKS09. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilin-
ear maps and efficient revocation for anonymous credentials. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer,
Heidelberg (2009)

http://eprint.iacr.org/

264 J. Bootle et al.

CL02. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

CL06. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg
(2006)

CvH91. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991)

DKNS04. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification
in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

Fis05. Fischlin, M.: Communication-efficient non-interactive proofs of knowl-
edge with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 152–168. Springer, Heidelberg (2005)

FKMV12. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-
malleability of the Fiat-Shamir transform. In: Galbraith, S., Nandi, M.
(eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer,
Heidelberg (2012)

FS87. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

FS08. Fujisaki, E., Suzuki, K.: Traceable ring signature. IEICE Trans. 91–A(1),
83 (2008)

FZ13. Franklin, M., Zhang, H.: Unique ring signatures: a practical construction.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 162–170. Springer,
Heidelberg (2013)

GK15. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret
and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015)

Gro07. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180.
Springer, Heidelberg (2007)

KY05. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214.
Springer, Heidelberg (2005)

LLNW14. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signa-
ture scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014)

LPY12. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free
revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 571–589. Springer, Heidelberg (2012)

LWW04. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group
signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V.
(eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg
(2004)

Ngu05. Nguyen, L.: Accumulators from bilinear pairings and applications. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer,
Heidelberg (2005)

Short Accountable Ring Signatures Based on DDH 265

NSN04. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free
group signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASI-
ACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

Ped91. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992)

RST01. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidel-
berg (2001)

SSE+12. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the
security of dynamic group signatures: preventing signature hijacking. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 715–732. Springer, Heidelberg (2012)

XY04. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach.
In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.)
Smart Card Research and Advanced Applications VI. IFIP, vol. 153, pp.
271–286. Springer, Boston (2004)

Updatable Hash Proof System
and Its Applications

Rupeng Yang1,2, Qiuliang Xu1(B), Yongbin Zhou2(B), Rui Zhang2(B),
Chengyu Hu1, and Zuoxia Yu1,2

1 School of Computer Science and Technology,
Shandong University, Jinan 250101, China
orbbyrp@gmail.com, xql@sdu.edu.cn

2 State Key Laboratory of Information Security (SKLOIS), Institute of Information
Engineering (IIE), Chinese Academy of Sciences (CAS), Beijing, China

{zhouyongbin,r-zhang}@iie.ac.cn

Abstract. To tackle with physical attacks to real world cryptosystems,
leakage resilient cryptography was developed. In this setting, the adver-
sary is allowed to have access to the internal state of a cryptographic
system, thus violates the black-box reduction used in cryptography. Espe-
cially when considering continual memory leakage (CML), i.e., there is
no predetermined bound on the leakage of the internal information, the
task is extremely tough.

In this paper, we solve this problem by introducing a new primitive
called updatable hash proof system (UHPS). A UHPS can be viewed as a
special Hash proof system (HPS), which served as a fundamental tool in
constructing public key encryption (PKE) schemes in both leakage-free
and leaky settings. A remarkable property of UHPS is that by simply
substituting the HPS component with a UHPS component in a PKE
scheme, one obtains a new PKE scheme secure in the CML setting. More-
over, the resulting PKE scheme enjoys the same advantage of the original
HPS-based PKE, for instance, still “compatible” with known transforms
[8,20,24,32]. We then give instantiations of UHPS from widely-accepted
assumptions, including the symmetric external Diffie-Hellman assump-
tion and the d-linear assumption. Interestingly, we notice that when
instantiated with concrete assumptions, the resulting chosen-ciphertext
secure PKE scheme is by far the most efficient.

1 Introduction

Side-channel attacks are fatal for a real-world cryptosystem. Notably, such
attacks can violate the black-box “provable” security of schemes [3,5,17,21,22,
30,34]. For instance, the only known working attack for AES is via side-channel
attacks [30]. Moreover, it is also possible to launch such an attack remotely,
e.g., the timing attacks could break OpenSSL run on a network server [5].

R. Yang — This work was mainly done when doing the internship at SKLOIS, IIE,
CAS.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 266–285, 2015.
DOI: 10.1007/978-3-319-24174-6 14

Updatable Hash Proof System and Its Applications 267

Even worse, via the cold-boot attack, one can read the secret keys stored in
the memory directly [17].

As for a countermeasure, engineers are always required to implement the
scheme in an environment approximate to the theoretical assumptions, e.g.,
using extra protection circuits, adding random circles to CPU occupations, or
adding metal shields against electromagnetic radiation. But in a word, there is
no guarantee whether they have actually realized the design goal.

Leakage Resilient Cryptography. On the other hand, theorists intended to
investigate this problem in a more rigorous way, so the leakage resilient cryptog-
raphy came up. Micali and Reyzin [27] first introduced the notion of physically
observable cryptography, where they assumed “computation and only compu-
tation leaks information” about the internal state. Many works follows their
approach [12,14,31]. However, their assumption could not capture the cold-boot
attack (memory attack) [17], namely, information leakage of the whole internal
state can appear any time during the life span of the scheme.

To cope with memory attacks, Akavia et al. [2] proposed the bounded memory
leakage (BML) model, where adversaries can obtain arbitrary function of the
whole secret state, as long as the total leakage is limited to a certain amount of
bits. But this model is not strong enough since the adversary may launch many
attacks and it is not evident to bound the information leakage to a predetermined
value.

One way to capture more realistic attackers is to relax the restriction imposed
on the leakage function. Dodis et al. [10] proposed the auxiliary input model
where the leakage can be arbitrary large and only with the restriction that the
secret key is computationally hard to compute given the leakage information.

Another (and maybe a more realistic) way is to consider continual leakage
directly. Brakerski et al. [4] and Dodis et al. [9] proposed the continual memory
leakage (CML) model. In their models, the entire lifetime of the scheme is parti-
tioned into some periods, and at the end of each period, the internal secret state
of the scheme is updated. The adversary is allowed to obtain bounded leakage
from the entire internal secret state during each time period, just as in the BML
setting, but the total leakage over the lifetime of the scheme is unbounded.

Continual Memory Leakage Model. One may think that it is easy to con-
struct cryptographic schemes in the CML setting. For example, one can con-
struct continual memory leakage resilient (CML) public key encryption (PKE)
schemes by generating multiple independent instances of a normal PKE scheme,
encrypting messages under all public keys and decrypting with a fresh secret key
at each time period. However, this does not satisfy realistic requirements. One
reason is that the size of the public key and ciphertexts depend on the number
of time periods throughout the lifetime of the scheme. Besides, secret keys not
used at present must be stored in some external leak-free storage and key updat-
ing can only be executed privately. To exclude such trivial solution, which will
not provide actual guidance in practice, the compactness (i.e. all parameters are
independent of number of time periods) and the ability of publicly key updating

268 R. Yang et al.

(i.e. secret keys can be updated with only the public parameters) are required
for constructions of cryptographic schemes in the CML setting.

In fact, it is rather involved to construct cryptographic schemes in the CML
setting. When considering CML-PKE schemes, only a few constructions are
known so far [4,11,23,26]. Most of them are based on concrete number-theoretic
assumptions directly. Especially, no practical chosen-ciphertext (CCA) secure
PKE schme has been presented in this model yet. Therefore, new techniques for
constructing CML-PKE schemes are desired.

Hash Proof System. Since first introduced by Cramer and Shoup [8], hash
proof system (HPS) gained great success in constructing various cryptographic
schemes, such as password-based authenticated key exchange [15], lossy trapdoor
functions [19], (leak-free) CCA-secure PKE schemes [8,24] and PKE schemes in
the BML setting [18,28,32,33].

Especially, when constructing PKE schemes in the BML setting, the tech-
nique of HPS is essential to obtain leakage resilience. The bottom line is that
multiple secret keys are mapped to a single public key in an HPS-based PKE
scheme, thus the adversary cannot determine which secret key is in use even
bounded leakage is given. Meanwhile, honestly generated ciphertexts are com-
putationally indistinguishable from dishonest ciphertexts, whose decryptings are
not determined by the public key but the secret key decrypting it. So the BML
adversary cannot decrypt ciphertexts of an HPS-based PKE scheme (actually,
they cannot obtain any information from these ciphertexts).

Considering that attacks launched in each time period in the CML setting
can just be viewed as bounded memory attacks, one may naturally think that
by augmenting HPS with the publicly key updating ability, it can be applied to
construct CML-PKE schemes straightforwardly. But this simple idea seems not
working: the publicly key updating ability seems incompatible with HPS.

To see this, recall that an HPS is based on a collection of hash functions
indexed by a set of secret keys. When evaluating the hash function on an element
in the domain, different secret keys may lead to the same result, and we say such
secret keys are “equivalent on this element”. All secret keys are mapped to some
public keys and those mapped to the same public key will be equivalent on every
element in a specific subset of its domain. Also, the subset membership problem
(SMP), which demands a PPT algorithm to distinguish a uniform element in
this subset from a uniform element in its complement, is hard in HPS, and that
leads to the ciphertexts indistinguishability in an HPS-based PKE scheme.

When updating secret keys of HPS in the CML setting, one should generate
a new secret key mapped to the same public key. Thus the new key and the old
key will be equivalent on every element in the specific subset. But they will not
be equivalent on every element in the domain. So an adversary can break the
underlying SMP of HPS via the “GUC attack”, namely, generating a secret key,
updating it, and checking whether they are equivalent on the challenge element.

Therefore, the following two questions arise naturally: Whether HPS is still
effective for building PKEs in the CML setting? If yes, how?

Updatable Hash Proof System and Its Applications 269

HPS

[CPA, LF/BML]

HPS

[CCA, LF/BML]

Known

UHPS

[CPA, CML]

UHPS

[CCA, CML]

Sec. 4.2

Sec. 4.1, 4.3

Sec. 4.2

replace

replace

Fig. 1. Constructing CML-PKE schemes from UHPS and its relation with HPS-based
PKE schemes.

1.1 Our Results

In this paper, we investigate these two questions and pose affirmative answers
to them. More precisely, we show that in general, an HPS based PKE scheme
is in fact secure against continuous memory attacks, as long as the underlying
HPS fulfill some additional requirements.

First, we require that secret keys are updated in some pattern, namely,
updated keys and old keys are equivalent on elements in a superset of the spe-
cific subset. Next, as a substitute of the SMP, we require that elements chosen
uniformly from the specific subset and from that superset are computationally
indistinguishable. We remark that the GUC attack is not applicable to this indis-
tinguishability. But updating secret keys with certain patterns will cause new
problems since the adversary is able to obtain leakage about secret keys continu-
ally and thus may learn this pattern (we will discuss how this threatens security
of PKE schemes in the proof sketch of Theorem5). Therefore, we require that all
updated keys appear independent and uniform to the adversary, although they
are updated with certain patterns.

We call an HPS with these properties “updatable hash proof system”
(UHPS), and show how to instantiate it with some widely-accepted assump-
tions, e.g. the symmetric external Diffie-Hellman (SXDH) assumption and the
d-linear assumption in bilinear groups. Interestingly, our instantiations are just
extensions of the DDH-based HPS in [8] and one can realize them via modifying
existing implementations of DDH-based HPS.

270 R. Yang et al.

The functionalities of UHPS are summarized in Fig. 1. In particular, by
simply substituting the HPS component in an HPS-based PKE with a UHPS
component, one obtains a CML-PKE scheme. Interestingly, we show that well-
known transforms that upgrade weak (e.g. CPA-secure) PKE schemes into strong
(i.e. CCA-secure) PKE schemes are still effective for the resulting CML-PKE
schemes. The reason why UHPS is effective in constructing CML-PKE is that
honest ciphertexts and dishonest ciphertexts are still indistinguishable when
secret keys are updated in some pattern. Also, the key indistinguishability in
UHPS can guarantee that real secret keys as well as the pattern are hidden from
CML adversaries. So they cannot obtain any information from these ciphertexts
just as in the BML setting.

We remark that when instantiated with concrete assumptions, our CCA-
secure CML-PKE schemes are much more efficient compared to known results.
To show this, we give a brief overview of known constructions of CCA-secure
CML-PKE schemes in Sect. 1.2, and give a concrete efficiency comparison
between these schemes and our schemes in Sect. 5.2. Besides, we observe that
several frameworks for constructing hybrid encryption schemes, including the
framework of “constrained CCA (CCCA) secure KEM + authenticated encryp-
tion (AE) scheme” [20] and the tag KEM/DEM framework [1], are also robust
in the CML setting. Also, it is worth noting that PKE schemes in Wichs’s PhD
thesis [36] can be viewed as instantiations of our CPA-secure PKE schemes. In
fact, our work provides a modular way to reconsider their schemes and makes
the construction of CML-PKE schemes more concise and conceptual simpler.

1.2 Related Work

Now we give a brief overview of approaches applicable to construct CCA-secure
CML-PKE schemes. In principle, the Naor-Yung paradigm [29,35] is robust
against continuous memory attacks. That is to say, in the CML setting, one
can transform any CPA-secure PKE scheme to be CCA-secure. Alternatively,
the CHK transformation [6] can also provide CCA-secure CML-PKE schemes
given suitable building blocks, e.g., identity based encryption schemes with con-
tinual master key leakage resilience [26]. Recently, a contemporaneous work [23]
also shows that one can construct CCA-secure CML-PKE schemes from a vari-
ant of lossy trapdoor function. We remark that due to lack of suitable underlying
building blocks, the latter two approaches are only applicable to a weaker CML
setting where no leakage is allowed during key update.

2 Preliminaries

In this section, we review some useful notations and notions.

Notations. Let S be a finite set, we use ‖S‖ and U(S) to denote the size of

S and the uniform distribution over S respectively. Also, we write x
$← S to

indicate that x is sampled uniformly from S. For a bit string s ∈ {0, 1}∗, we

Updatable Hash Proof System and Its Applications 271

use ‖s‖ to denote the length of s. We use [n] to denote the set {1, 2, . . . , n}
for any positive integer n. We write negl(·) to denote a negligible function. Let
X = {Xn}n∈N and Y = {Yn}n∈N be two ensembles of random variables. We use
X s≈ Y to denote that X and Y are statistically indistinguishable and use X c≈ Y
to denote that X and Y are computationally indistinguishable.

Linear Algebra. Let q be a prime, we introduce some notations of linear algebra
over Zq. We use bold uppercase letters (X) to denote matrices and lowercase
letters with arrow (�x) to denote vectors. All vectors used in this paper are column
vectors. Let �v1, . . . , �vm be m vectors in Z

n
q , then we denote by span(�v1, . . . , �vm)

the linear space spanned by these vectors. Assuming V is a subspace of Zn
q with

dimension d < n, we denote by V⊥ the orthogonal space of V. We use Rkd(Zn×k
q)

to denote the set of n × k-matrices with rank d.

Entropy and Extractors. The min-entropy of a discrete random variable X,
which measures the worst case predictability of X, is defined as H∞(X) = −
log(maxx Pr[X = x]). It is often useful to work with the average case of min-
entropy that was first defined in [13] as H̃∞(X | Y) = − log(Ey←Y [maxx Pr[X =
x | Y = y]]). To obtain nearly perfect randomness from sources with high (average
case) min-entropy, one can use the (average case) randomness extractor.

Definition 1 ([13]). A function Ext : X × {0, 1}t → Y is an (average case)
(k, ε)-strong extractor if for all pairs of random variables (X, I) such that X

is distributed over X and H∞(X | I) ≥ k (H̃∞(X | I) ≥ k), it holds that
Δ((Ext(X, R), R, I), (Y, R, I)) ≤ ε where R is uniform over {0, 1}t and Y is
uniform over Y.

Such (average case) randomness extractors can be constructed directly from
any universal hash family [7] as long as k ≥ log(‖Y‖) + 2 log (1/ε), and the later
primitive can be further constructed directly from natural algebraic operations
(e.g. linear combination in Zq for a prime q).

3 Updatable Hash Proof System

In this section, we define the notion of UHPS, which is a variant of HPS. Since we
intend to use UHPS to construct PKE schemes in the CML setting, publicly key
updating ability is demanded and we need properties to support this in UHPS.
But as stated in Sect. 1, HPS with publicly key updating ability will suffer from
the GUC attack, which breaks the intractability of underlying SMP. Thus we
need a substitute of SMP immune to this attack. This is formalized as the subset
indistinguishability in UHPS. However, to apply the subset indistinguishability,
all secret keys have to be updated in some pattern, which may bring new prob-
lems as the adversary may learn this pattern via requesting continual leakage.
Therefore, we define some key indistinguishabilities in UHPS here to solve these
potential problems. Although several additional properties are defined in UHPS,
we observe that they have already been fulfilled by existing instantiations of
HPS to some degree and will not take too much extra overhead.

272 R. Yang et al.

Similar to a normal HPS, a UHPS is based on a collection of hash functions
H = {Hsk : C → K}sk∈SK. Also there exists an efficiently computable projection
ϕ from SK to PK, and a specific set V ⊂ C such that for any sk1, sk2 ∈ SK,
ϕ(sk1) = ϕ(sk2) if and only if ∀x ∈ V, Hsk1(x) = Hsk2(x). Further, for every
x ∈ V, there exists a witness w ∈ W proving this. Besides, for any x /∈ V,
H∞(Hsk(x)|ϕ(sk)) is usually required to be large enough when sk

$← SK, and
this is formalized as the universality in UHPS.

Here, we provide the publicly key updating ability via algebraic operations
and require that UHPS is key homomorphic, i.e. SK and K are finite groups
with an efficiently computable operation “+” and ∀sk1, sk2 ∈ SK,∀x ∈ C, we
have Hsk1+sk2(x) = Hsk1(x) + Hsk2(x). Now, we can update a secret key sk
by adding it with a specific secret key sk∗ s.t. ∀x ∈ V,Hsk∗(x) = 0. Since
∀x ∈ V,Hsk+sk∗(x) = Hsk(x)+Hsk∗(x) = Hsk(x), we have ϕ(sk+sk∗) = ϕ(sk),
which indicates that the new key and the old key are mapped to the same
public key.

For secret keys will be updated continually, fresh updating key is required
each time. So we require span(sk∗), which is a specific set such that ∀sk∗′ ∈
span(sk∗),Hsk∗(x) = 0 → Hsk∗′(x) = 0, to be efficiently samplable given an
initial updating key sk∗. To generate the initial updating key, we also demand
that ∀L ⊆ C, ker(L) = {sk | ∀x ∈ L, Hsk(x) = 0} is efficiently samplable given
a trapdoor T ∈ T for L. Besides, due to the requirement for security proofs of
PKE schemes, we require that given trapdoors T1, T2 ∈ T for subsets L1, L2 ⊆ C
respectively, it is efficient to generate a trapdoor T3 ∈ T for L1 ∪ L2.

We stress that although we have provided mechanisms to update secret
keys in UHPS, we will not fix an updating policy, and one can choose various
approaches to performing key update in different scenarios.

Now we present the formal definition.

Definition 2. Let λ be a polynomial of the security parameter n, and indicates
the bits of challenge information that can be obtained by the distinguisher for
“partial key indistinguishability”. A λ-UHPS H consists of five algorithms:

– Instance Generation. H.Param(1n): The instance generation algorithm
takes as input the security parameter 1n, and outputs an instance H =
(C,V,H,K,SK,PK, T ,W, ϕ) of UHPS with a trapdoor T ∗ ∈ T for V. Here,
all sets in H are finite non-empty sets.

– Subset Sampling. H.V Samp(H): The subset sampling algorithm outputs

x
$← V with a witness w ∈ W for x ∈ V.

– Complement Sampling. H.ISamp(H): The complement sampling algo-

rithm outputs x
$← C\V with a trapdoor T ∈ T for {x}. We remark that

we can tolerant a negligible statistical error here, namely, we only require that
the sampled elements are statistically indistinguishable from U(C\V).

– Public Evaluation. H.Pub(H, pk, x, w): Given pk ∈ PK and x ∈ V with its
witness w ∈ W, the public evaluation algorithm outputs k ∈ K.

– Private Evaluation. H.P riv(H, sk, x): Given sk ∈ SK and x ∈ C, the
private evaluation algorithm outputs k = Hsk(x).

Updatable Hash Proof System and Its Applications 273

Moreover, we require that H has four basic properties, indicating its correctness
and hardness requirements:

1. Correctness. For any instance H, any (sk, pk) s.t. pk = ϕ(sk), and any
x ∈ V with its witness w, we have H.Pub(H, pk, x, w) = H.P riv(H, sk, x).

2. Subset Indistinguishability. As a substitute of SMP, this indicates the
indistinguishability between elements in V and not in V, namely, for arbi-
trary positive integer l, let (H, T ∗) ← H.Param(1n), x

$← V, sk1, . . . , skl
$←

ker(V), x′ $← C\V, and sk′
1, . . . , sk

′
l

$← ker(V ∪ {x′}), then we have
(H, x, sk1, . . . , skl)

c≈ (H, x′, sk′
1, . . . , sk

′
l).

3. Full Key Indistinguishability. For any PPT adversary A = (A1,A2), it is
hard to distinguish whether two secret keys are “linearly dependent”, i.e. for
some function δ negligible in n, we have

Pr[(H , T ∗) ← H.Param(1n);T ← A1(H, T ∗); b $← {0, 1};

sk, sk1
$← ker(L); sk0

$← span(sk) : A2(sk, skb) = b] − 1
2

= δ

where L is a subset of C for which T is a trapdoor.
4. Partial Key Indistinguishability. When only partial information is

revealed, it is hard to determine whether an updating key is legal. More
precisely, for arbitrary function f with range {0, 1}λ, let (H, T ∗) ←
H.Param(1n), x

$← C\V, sk1, sk2
$← ker(V ∪ {x}), sk′

2
$← ker(V), then we

have (H, sk1, f(H , sk1, sk2), x)
s≈ (H, sk1, f(H , sk1, sk

′
2), x). Note that the

function f must be independent of x.

In order to indicate how secret keys mapped to the same public key behave
in evaluating hash functions on elements not in V, we define the “universality”
of UHPS similarly to that of normal HPS with only minimal variance due to the
need of keeping some algebra properties of UHPS.

Definition 3 (Universal UHPS). Let τ be a function on n. Then a UHPS is
τ -universal if for each instance H, for any pk ∈ PK and any x ∈ C\V, we
have H∞(HSK(x) | ϕ(SK) = pk) ≥ τ where SK is a random variable with
distribution U(SK).

Definition 4 (Universal2 UHPS). Let τ be a function on n. Then a UHPS is
τ -universal2 if for each instance H, we can augment it with an efficiently com-
putable functions η from C ×K to Y, and for any pk ∈ PK, any x, x∗ ∈ C\V s.t.
x = x∗, any y ∈ Y, we have H∞(η(x,HSK(x)) | ϕ(SK) = pk, η(x∗,HSK(x∗)) =
y) ≥ τ , where SK is a random variable with distribution U(SK).

Interestingly, universal2 UHPS can be constructed directly from universal
ones by applying the approach in [8] and we give more details about the con-
struction in the full version.

274 R. Yang et al.

4 Building CML-PKE from UHPS

In this section, we demonstrate the usefulness of UHPS: By substituting a HPS
component in the PKE schemes with a UHPS components, some well-established
paradigms remain effective in building CML-PKE schemes. As a by-product,
the new schemes from UHPS can inherit many interesting features from the
corresponding HPS-based schemes. For example, all CCA-secure PKE schemes
constructed in this paper can be transformed into tag-KEM/DEM [1], therefore,
can be extended to threshold PKE schemes in the CML setting; besides, the
scheme from UHPS plus AE can be formalized in the “CCCA KEM + AE”
framework. In general, UHPS is applicable to almost all known HPS-based PKE
schemes.

Key update is a must for CML-PKE schemes. This is because otherwise the
adversary can learn the entire secret state by repeatedly requesting more and
more leakage, and no security can be guaranteed then. An adversary considered
in this case is further allowed to learn any bounded leakage information (namely,
up to λM bits) in each time period. In some cases, we will consider update phases
separately, so we also give another bound λU on the size of leakage during key
updating. We remark that no information can be leaked after the challenge phase,
since otherwise the adversary can embed the challenge ciphertext into the leakage
query and obtain information about the message. We give the formal definition
of PKE schemes in the CML setting as well as its security definition with various
security level (namely, the CPA-security and the adaptive CCA-security1) in the
full version.

Two scenarios are mainly considered in the CML setting, namely, the one not
allowing leakage during key update (i.e. λU = 0) and the one allowing leakage
during key update (i.e. λU = λM > 0). The primary difference between con-
structions of PKE schemes in these two cases is that constructions in the latter
case have a more involved key update algorithm. Here, we focus on constructions
in the former case and only consider constructions in the latter case in Sect. 4.3.
Due to the limit of space, all security proofs and some constructions are omitted
and will be given in the full version.

4.1 A CPA-Secure Scheme

We start with a CPA-secure CML-PKE scheme from UHPS, which will help
us understand how UHPS functions in constructing CML-PKE schemes. The
resulting PKE scheme Π1, which is a variant of the HPS-based CPA-secure
PKE scheme [8], consists of four algorithms:

– Parameters. Denote n as the security parameter. Let H be a τ -universal
λ-UHPS and (H, T ∗) ← H.Param(1n) be an instance of H. Let Ext : K ×
{0, 1}d → {0, 1}ι be an average case (τ, δ)-strong extractor where δ is negligible

1 We only consider adaptive CCA secuirty in this paper, so we will just write CCA
instead of adaptive CCA for short.

Updatable Hash Proof System and Its Applications 275

in n and τ − ι ≥ 2 log (1/δ). Sample sk∗ $← ker(V) with T ∗. The public
parameter of Π1 is Params = (H, sk∗, Ext).

– Key Generation. The key generation algorithm of Π1 samples sk
$← SK

and evaluates pk = ϕ(sk). Then it sets PK = pk and SK = sk + sk∗′ where

sk∗′ $← span(sk∗).
– Encryption. Given a public key PK = pk, to encrypt a message M ∈ {0, 1}ι,

the encryption algorithm samples rand
$← {0, 1}d and runs H.V Samp(H) to

sample C
$← V with a witness w. Then it evaluates K = H.Pub(H, pk, C,w),

and Ψ = Ext(K, rand)⊕M , Finally, it outputs CT = (C, Ψ, rand) as cipher-
text.

– Decryption. Given a secret key SK = sk, to decrypt a ciphertext CT =
(C, Ψ, rand), the decryption algorithm computes K ′ = H.P riv(H, sk, C)
and outputs M ′ = Ψ ⊕ Ext(K ′, rand).

– Key Update. Given a secret key SK = sk, the update algorithm samples
sk∗′ $← span(sk∗) and outputs a new key SK ′ = sk + sk∗′.

Correctness. Let SKi = sk(i) be the secret key obtained by applying the
update algorithm i times to the initial secret key generated by KeyGen and
PK = pk be the public key. It is obvious that the correctness holds if for any
honestly generated ciphertext CT = (C, Ψ, rand), and for arbitrary natural
number i, we have H.P riv(H, sk(i), C) = H.Pub(H, pk, C,w) where w is the
witness for C ∈ V. This follows directly from the correctness of UHPS because
ϕ(sk(i)) = ϕ(sk + sk∗′) = pk, where sk∗′ ∈ span(sk∗).

Security. Security of Π1 is guaranteed by Theorem 5 stated as follows.

Theorem 5. Π1 is secure against chosen-plaintext attacks in the CML setting
with period leakage amount λM = λ and λU = 0.

Proof Sketch. Similarly to security proofs of PKE schemes constructed from a
normal HPS, we prove Theorem 5 by first altering the way in which the challenge
ciphertext is generated, i.e., a challenge ciphertext CT ∗ = (C∗, Ψ∗, rand∗) s.t.
C∗ /∈ V is generated instead. This is indistinguishable from an honestly gen-
erated ciphertext due to the subset indistinguishability of UHPS. However, we
cannot subsequently apply the universal property of UHPS to complete the proof
directly. This is because all secret keys throughout lifetime of the scheme will still
decrypt CT ∗ correctly, and the adversary who can obtain leakage about these
secret keys continually may learn enough knowledge to break the scheme. There-
fore, we should argue that such leakage information will not provide the adver-
sary with practical assistance. It is sufficient to establish the indistinguishability
between the real secret keys (i.e. secret keys generated and updated honestly)
and the ideal secret keys (i.e. secret keys chosen uniformly over keys mapped
to the public key). We do this in two steps. First we apply the full key indis-
tinguishability of UHPS to argue that real secret keys and “semi-ideal” secret
keys are indistinguishable. Here we use “semi-ideal” to denote secret keys gen-
erated honestly and updated with fresh updating keys chosen uniformly from

276 R. Yang et al.

ker(V ∪ {C∗}). However, semi-ideal secret keys can still decrypt CT ∗ correctly.
Fortunately, indistinguishability between semi-ideal secret keys and ideal secret
keys can be derived from partial key indistinguishability of UHPS since the
adversary can only obtain bounded leakage in each time period.

4.2 CCA-Secure Schemes

Then we move on to CCA-secure CML-PKE schemes, which is the main con-
tribution of UHPS. Generally, the bottom line to construct CCA-secure PKE
schemes is to prevent the adversary from querying unintended ciphertexts whose
decryption will damage the security of the scheme. This is usually performed by
applying a suitable authentication.

Three main paradigms are proposed to construct CCA-secure PKE schemes
from HPS. In [8], the construction applies a universal2 HPS to provide the
authentication and applies a universal HPS to mask the message. Another app-
roach is to employ a single universal2 HPS together with an AE scheme to
provide both the authentication and the privacy [24]. Besides, in [32], a new
paradigm avoiding the usage of universal2 HPS is given and it applies a univer-
sal HPS to mask the message and a one time lossy filter (OT-LF) to provide
the authentication. We observe that UHPS is applicable to all these three par-
adigms. More precisely, by substituting HPS with corresponding UHPS, we can
obtain CCA-secure PKE scheme in the CML setting.

We remark that our universal2 UHPS is far less efficient compared to our
universal UHPS and it has a much larger secret key, thus the scheme from
universal UHPS plus OT-LF can achieve both the best efficiency and the best
leakage rate (which will be defined in Sect. 5.2) among all three schemes. So
we only present its construction here, and give the other two constructions in
AppendixA.

Roughly speaking, an OT-LF is a family of functions indexed by a public key
Fpk as well as a tag t. Each function will be injective unless the tag comes from
some specific set. Moreover, it is hard to generate or even recognize such non-
injective tags without a trapdoor Ftd associated with Fpk. We refer the reader
to [32] for more details about OT-LF. The presented PKE scheme Π2 consists
of four algorithms:

– Parameters. Denote n as the security parameter. Let H be a τ -universal
λ-UHPS and (H, T ∗) ← H.Param(1n) be an instance of H. Let LF =
(LF.Gen,LF.Eval, LF.LTag, LF.DITag) be a (K, �LF)-OT-LF with the tag
space C × {0, 1}l × {0, 1}d × Tc. Let Ext : K × {0, 1}d → {0, 1}ι be an
average case (τ − �LF , δ)-strong extractor where δ is negligible in n and

τ −�LF −ι ≥ 2 log (1/δ). Sample sk∗ $← ker(V) with T ∗. The public parameter
of Π2 is Params = (H, sk∗, Ext, LF).

– Key Generation. The key generation algorithm of Π2 samples sk
$← SK,

evaluates pk = ϕ(sk), and runs LF.Gen(1n) to obtain Fpk. Then it sets PK =

(pk, Fpk) and SK = sk + sk∗′ where sk∗′ $← span(sk∗).

Updatable Hash Proof System and Its Applications 277

– Encryption. Given a public key PK = (pk, Fpk), to encrypt a message M ∈
{0, 1}ι, the encryption algorithm samples rand

$← {0, 1}d, tc
$← Tc, and runs

H.V Samp(H) to sample C
$← V with a witness w. Then it evaluates K =

H.Pub(H, pk, C,w), Ψ = Ext(K, rand) ⊕ M , and Υ = LFFpk,t(K) where
t = (ta, tc) and ta = (C, Ψ, rand). Finally, it outputs CT = (C, Ψ, rand, Υ, tc)
as ciphertext.

– Decryption. Given a secret key SK = sk, to decrypt a ciphertext CT =
(C,Ψ, rand, Υ, tc), the decryption algorithm computes K ′ = H.P riv(H, sk, C)
and checks whether Υ = LFFpk,t(K ′) where t = ((C,Ψ, rand), tc). If Υ =
LFFpk,t(K ′), the decryption algorithm outputs M ′ = Ψ ⊕ Ext(K ′, rand). Oth-
erwise, it rejects with ⊥.

– Key Update. Given a secret key SK = sk the update algorithm samples
sk∗′ $← span(sk∗) and outputs a new key SK ′ = sk + sk∗′.

Correctness of Π2 follows directly from correctness of Π1 and security of Π2

is guaranteed by Theorem 6 stated as follows.

Theorem 6. Π2 is secure against a posteriori chosen-ciphertext attacks in the
CML setting with period leakage amount λM = min(λ, τ − (ι + �LF + ω(log n)))
and λU = 0.

Proof Sketch. Proof of Theorem6 is similar to that of Theorem 5, however, the
simulator has to deal with decryption oracle queries here. Fortunately, all decryp-
tion oracle queries can be answered by the simulator directly until the “partial
key indistinguishability” of UHPS is employed in the proof. As this is a sta-
tistical indistinguishability, the simulator can answer decryption oracle queries
unless the decryption of the submitted ciphertext is not determined by the pub-
lic key. This occurs only when a ciphertext CT = (C, Ψ, rand, Υ, tc) with C /∈ V
is queried. But such queries cannot pass the verification in the decryption algo-
rithm with a non-negligible probability. To see this, recall that H̃∞(Hsk(C)) is
large when C /∈ V since the underlying UHPS is universal and leakage in each
time period is bounded, where sk is the current secret key. Also, it is hard for the
adversary to sample a non-injective function of OT-LF. Therefore, the adversary
can generate the correct Υ with only a negligible probability. We remark that for
privacy, lossy function of OT-LF need to be used when generating the challenge
ciphertext and that is why we should use an OT-LF rather than a family of
injective one-way functions.

4.3 PKE Schemes with Leakage During Key Update

We stress that, our claim that UHPS is effective in constructing CML-PKE
schemes is in fact valid in the setting where leakage during key update is allow-
able. Compared to PKE schemes in Sects. 4.1 and 4.2, which are only proved
secure in the CML setting without leakage during key update, schemes secure in
this section have nothing more than a better key updating policy. This is based

278 R. Yang et al.

on the ideas of [11,25]. More precisely, the secret key of the PKE scheme con-
sists of multiple secret keys of UHPS, and can be updated by computing linear
combinations of secret keys of UHPS consist in it.

As more involved algebra operations are introduced here, three additional
properties of UHPS are required. First, we require that for each instance H
and any secret key sk ∈ SK, we have span(sk) = {r ◦ sk | r ∈ Z} where
r ◦ sk is denoted as the key obtained by adding sk r times. Assume the order
of K is q, then for any secret key sk, we can sample sk′ $← span(sk) by just

sampling r
$← Zq and computing sk′ = r ◦ sk. Next, we require that q is

prime. The last requirement is that ker(V) is m-decomposable, namely, ker(V)
can be represented by m uniform and independent keys in ker(V). More pre-

cisely, for any l ≥ m, let ski
$← ker(V) for i ∈ [l], then with all but negligible

probability, we have “sampling sk′ $← ker(V)” is equivalent to “first sampling

sk′
1

$← span(sk1), . . . , sk′
l

$← span(skl) then computing sk′ = sk′
1 + . . . + sk′

l”,
where the probability is taken over the choices of ski. Although look unusual,
these requirements is satisfied by the construction in Sect. 5.1. We remark that
we will use the augmented notion of UHPS with these additional requirements
throughout Sect. 4.3.

Now, we are ready to give a formal description of our constructions. Due to
the limit of space, we only give a construction with CPA-security here and give
CCA-secure ones in the full version. The presented scheme Π3 consists of four
algorithms:

– Parameters. Denote n as the security parameter. Let H be a τ -universal λ-
UHPS and (H, T ∗) ← H.Param(1n) be an instance of H. Assume the order
of K is q and ker(V) is m-decomposable. Let Ext : K × {0, 1}d → {0, 1}ι be
an average case (τ, δ)-strong extractor where δ is negligible in n and τ − ι ≥
2 log (1/δ). Sample sk∗ $← ker(V) with T ∗. Let l, a be positive integers. The
public parameter of Π3 is Params = (H, sk∗, Ext, q,m, l, a)

– Key Generation. The key generation algorithm of Π3 samples sk
$← SK

and evaluates pk = ϕ(sk). Then it sets PK = pk and SK =
[
sk1, . . . , skl

]ᵀ

where ski = sk + ri ◦ sk∗ and ri
$← Zq for i ∈ [l].

– Encryption. Given a public key PK = pk, to encrypt a message M ∈ {0, 1}ι,

the encryption algorithm samples rand
$← {0, 1}d and runs H.V Samp(H) to

sample C
$← V with a witness w. Then it evaluates K = H.Pub(H, pk, C,w),

and Ψ = Ext(K, rand)⊕M , Finally, it outputs CT = (C, Ψ, rand) as cipher-
text.

– Decryption. Given a secret key SK =
[
sk1, . . . , skl

]ᵀ, to decrypt a cipher-
text CT = (C,Ψ, rand), the decryption algorithm computes K ′=H.P riv
(H, sk1, C) and outputs M ′ = Ψ ⊕ Ext(K ′, rand).

– Key Update. Given a secret key SK =
[
sk1, . . . , skl

]ᵀ, the update algorithm

samples A′ $← Rka(Zl×l
q), computes A by setting Ai,j = A′

i,j/(
∑l

k=1 A
′
i,k),

Updatable Hash Proof System and Its Applications 279

which implies A · [1, . . . , 1]ᵀ = [1, . . . , 1]ᵀ, and outputs a new key SK ′ =
A ◦ SK.

Correctness. Let SKi =
[
sk

(i)
1 , . . . , sk

(i)
l

]ᵀ
be the secret key obtained by

applying the update algorithm i times to the initial secret key generated by
KeyGen and PK = pk be the public key. As shown in the proof of the cor-
rectness of Π1, to prove the correctness of Π3, it is sufficient to prove that for
arbitrary natural number i, we have ϕ(sk(i)

1) = pk. We first write the initial
secret key SK0 as SK0 =

[
sk1, . . . , skl

]ᵀ =
[
r1 ◦ sk∗ + sk, . . . , rl ◦ sk∗ + sk

]ᵀ
=

[
r1, . . . , rl

]ᵀ ◦ sk∗ +
[
1, . . . , 1

]ᵀ ◦ sk, where r1, . . . , rl ∈ Zq. Assume that for any
positive integer j, the jth update matrix is Aj , then we have

SKi = Ai · Ai−1 . . .A1 ◦ SK0

= Ai · Ai−1 . . .A1 · [
r1, . . . , rl

]ᵀ ◦ sk∗ + Ai · Ai−1 . . .A1 · [
1, . . . , 1

]ᵀ ◦ sk

=
[
r′
1, . . . , r

′
l

]ᵀ ◦ sk∗ +
[
1, . . . , 1

]ᵀ ◦ sk

Thus, we have sk
(i)
1 = r′

1 ◦ sk∗ + sk for some r′
1 ∈ Zq which can lead to the fact

that ϕ(sk(i)
1) = pk as we need.

Security. Security of Π3 is guaranteed by Theorem 7 stated as follows.

Theorem 7. Π3 is secure against chosen-plaintext attacks in the CML setting
with period leakage amount λM = min(λ/2, (a − 2m − 3) log q − ω(log n)) and
λU = λM if a ≤ l − m.

5 Instantiations of Updatable Hash Proof System

In this section, we give instantiations of UHPS from widely-accepted number the-
oretic assumptions, such as the SXDH assumption and the d-linear assumption.
Interestingly, one can in fact implement our instantiations simply via modifying
existing implementations of DDH-based HPS in [8], since the former are just
extensions of the latter. Here, we extend the original 2-dimensional vector space
to a high dimensional one; moreover, as specific secret keys will be made public
when constructing PKE schemes, secret keys will be group elements rather than
integers; to keep the function of secret keys, we will also base on a bilinear group
instead of a normal group. Due to the limit of space, we omit the instantiation
from the d-linear assumption here and give it in the full version. Besides instan-
tiations of UHPS, in Sect. 5.2, we also consider parameters of our PKE schemes
when built from concrete instantiations of UHPS.

Let G1, G2 and GT be three groups of prime order q, and g, h be generators of
G1 and G2 respectively. Let e be a bilinear map e : G1×G2 → GT . Our instantia-
tion works on the bilinear group (G1,G2,GT , q, g, h, e). Let R = {ri,j}i∈[m],j∈[n]

be a matrix in Z
m×n
q , we denote by gR the matrix {gri,j}i∈[m],j∈[n] ∈ G

m×n
1 .

Similar definitions hold in G2 and GT as well. Let �a, �b be two vectors in
Z

n
q , we define e(g�a, h

�b) = e(g, h)�a
ᵀ·�b. This can be computed efficiently since

e(g, h)�a
ᵀ·�b = e(g, h)

∑n
i=1 aibi =

∏n
i=1 e(g, h)aibi =

∏n
i=1 e(gai , hbi).

280 R. Yang et al.

5.1 Instantiation from the SXDH Assumption

The instantiation Ξ is described as follows. Each instance H of Ξ works with a
bilinear group (G1,G2,GT , q, g, h, e). More precisely, let κ be a positive integer,
then C, K and SK in H are G

κ
1 , GT and G

κ
2 respectively. Also, for any x =

g
�β in C and sk = h�s in SK, we have Hsk(x) = e(g�β , h�s). Now, let �p be a

vector in Z
κ
q . Then we define V to be gspan(�p) and for any x = gr·�p in V, the

witness for x ∈ V is r ∈ Zq. We also define PK to be GT and ϕ to be the
function ϕ(sk) = Hsk(g�p). Note that for any sk1 = h�s1 and sk2 = h�s2 in
SK, we have ϕ(sk1) = ϕ(sk2) if and only if �s1 − �s2 ∈ span(�p)⊥ if and only
if ∀x ∈ V,Hsk1(x) = Hsk2(x). It is easy to check that K and SK are groups
as we need. Also, for any sk1 = h�s1 and sk2 = h�s2 in SK, we can evaluate
sk3 = sk1 + sk2 by setting sk3 = h�s1+�s2 , and ∀x ∈ C, assuming x = g

�β , we
have Hsk3(x) = e(g�β , h�s1+�s2) = e(g�β , h�s1) · e(g�β , h�s2) = Hsk1(x) + Hsk2(x). For
any secret key sk = h�s, we define span(sk) = {hr·�s | r ∈ Zq}. It is easy to see
that this is in fact the set {sk′ | ∀x ∈ C,Hsk(x) = 0 → Hsk′(x) = 0}. For
any L ⊆ C, let L be the vector space spanned by exponents of all elements in L.
Obviously, for any sk = h�s in SK, sk ∈ ker(L) if and only if �s ∈ L⊥, so we can
set the trapdoor for L to be a basis of L. Also, given trapdoors T1, T2 ∈ T (i.e.
T1 and T2 are basis of vector spaces) for subsets L1, L2 ⊆ C respectively, we can
evaluate the trapdoor T3 for L1 ∪L2 by just evaluating a basis for span(T1 ∪T2).

In addition, algorithms of Ξ works as follows:
– Instance Generation. To generate an instance of Ξ, the instance generation

algorithm first samples a bilinear group (G1, G2, GT , q, g, h, e) from distribu-
tions in an ensemble indexed by n where the SXDH assumption holds. Then it
samples �p

$← Z
κ
q and sets public parameters as described above. The trapdoor

T ∗ for V is exactly the vector �p.
– Subset Sampling. The subset sampling algorithm first samples u

$← Zq,
then sets w = u and x = (g�p)u.

– Complement Sampling. The complement sampling algorithm first samples
�β

$← Z
κ
q then sets x = g

�β and T = �β. Note that x is statistically indistinguish-
able from a uniform element in C\V.

– Public Evaluation. Given a public key pk = e(g, h)α and an element x ∈ V
with its witness w = u, the public evaluation algorithm sets k = (e(g, h)α)u.

– Private Evaluation. Given a secret key sk = h�s and an element x = g
�β in

C, the private evaluation algorithm computes k = Hsk(x) = e(g�β , h�s).

Theorem 8. Under the SXDH assumption, Ξ is a log(q)-universal ((κ −
4) log(q) − ω(log(n)))-UHPS if κ ≥ 5.

Due to the limit of space, we give the proof to Theorem8 in the full version.

5.2 Parameters

Now we discuss the security level and efficiency of our CML-PKE schemes from
the SXDH assumption, namely, in what extent our PKE schemes can resist CML
adversaries and how much they will cost when implemented in practice.

Updatable Hash Proof System and Its Applications 281

Generally, the degree of leakage resilience of a scheme can be measured by
the leakage rate, which indicates the ratio of the tolerated leakage amount to the
size of the secret state in each time period, i.e. the leakage rate ρ = λM/‖sk‖.
Via simple computation, we can get the leakage rate of each scheme when instan-
tiated with the SXDH assumption, and they are 1−o(1), 1

5 −o(1) and 1
442 −o(1)

for Π1, Π2 and Π3 respectively. We observe that Π1 can achieve a better leak-
age rate compared to Π2. This is because to achieve CCA-security, we must
ensure that the adversary is not able to get an authentication, which prevent
the adversary from querying “bad ciphertexts”, via the leakage. So the allowed
leakage amount is smaller in this case. Besides, Π3 have a much worse leakage
rate compared to Π1 and Π2 since it has a much larger secret key.

We would also like to give an efficiency comparison between constructions of
CCA-secure CML-PKE schemes based on UHPS and other known constructions.
For simplicity, we only compare the best efficiency that can be achieved for each
approach. Computation and communication overhead caused by operations such
as signature and normal hash function are ignored as they are very low. Besides,
our comparison is under a security level of 128, which means that breaking
these schemes is as hard as breaking a 128-bit block cipher. The comparison
is summarized in Table 1. Here, we use “NY” to denote the scheme constructed
under the Naor-Yung paradigm, and the building blocks include the PKE scheme
in [36], a normal Elgamal PKE scheme, and the Groth-Sahai proof system [16];2

we use “CHK” to denote the scheme constructed by applying the CHK transform
[6] to the identity-based encryption scheme in [26]; we use “LTDF” to denote
the CCA-secure PKE scheme presented in [23]; we use “ours” to denote Π2

instantiated from the SXDH assumption. We remark that the construction from
CHK transform works in composite-order groups while other three constructions
work in prime-order groups, so basic operations will execute slower in this case.

Table 1. Efficiency Comparison.

PKE schemes ‖g‖ ‖gt‖ CT overhead Enc Dec Upd

NY 256 3072 16‖g‖ + 2‖gt‖ [0,24] [0,49] [5,0]

CHK 3072 6144 4‖g‖ + ‖gt‖ [6,0] [12,4] [12,0]

LTDF 256 3072 9‖g‖2 + ‖g‖ [4‖g‖ + 1,0] [4‖g‖ + 1,4‖g‖] [4,0]

Ours 256 3072 5‖g‖ + ‖gt‖ [11,0] [5,5] [5,0]

Here, ‖g‖ and ‖gt‖ denote the size of group elements in G1 and GT respec-
tively and “CT overhead” denotes the difference between ciphertext and plaintext
length.Moreover, “Enc”, “Dec” and “Upd” represent computation overhead during
encryption, decryption and key update respectively and an element “[a, b]” means
there will be a exponentiations and b pairings executed in corresponding algorithm.

2 This can only achieve a weaker non-adaptive CCA security, but we just compare
with it for simplicity.

282 R. Yang et al.

Acknowledgments. We appreciate the anonymous reviewers for their valuable sug-
gestions. This work was supported by the National Natural Science Foundation of China
(Grant No. 61173139, 61472416 and 61272478), and Strategic Priority Research Pro-
gram of the Chinese Academy of Sciences (Grant No. XDA06010701, XDA06010703).

A Omitted Constructions in Sect. 4.2

In this section, we present the omitted constructions of CCA-secure CML-PKE
schemes discussed in Sect. 4.2, namely, the one from twin UHPS, and the one
constructed from universal2 UHPS plus AE. We only give the formal description
of each schemes here and give their security analysis in the full version.

CCA-secure CML PKE from twin UHPS. The presented PKE scheme Π4

consists of four algorithms:

– Parameters. Denote n as the security parameter. Let H be a τ -universal
λ-UHPS and (H, T ∗) ← H.Param(1n) be an instance of H. Let Ext : K ×
{0, 1}d → {0, 1}ι be an average case (τ, δ)-strong extractor where δ is negligible
in n and τ − ι ≥ 2 log (1/δ). Consider a variant of H which is identical to H
except that its hash functions will further take strings in {0, 1}d and {0, 1}ι as
input but these extra inputs will be ignored when evaluating hash functions.
Let H† be a τ -universal2 UHPS constructed from this variant via the approach
in [8]. Let H† be an instance of H†. Recall that H† can be generated with H
directly and T ∗ is exactly the trapdoor for H†. Also for any L ∈ C, combining
multiple secret keys of H in ker(L) will lead to a secret key sk† of H† in

ker(L × {0, 1}d × {0, 1}ι). Assume SK† = SKκ. Then sample sk∗ $← ker(V)
with T ∗ where sk∗ is a secret key of H. Set sk∗† = (sk∗, . . . , sk∗). The public
parameter of Π4 is Params = (H, sk∗,H†, sk∗†, Ext).

– Key Generation. The key generation algorithm of Π4 samples sk
$← SK,

sk† $← SK† and evaluates pk = ϕ(sk), pk† = ϕ†(sk†). Then it sets PK =

(pk, pk†) and SK = (sk, sk†) where sk = sk + sk∗′, sk† = sk† + sk∗†′, sk∗′ $←
span(sk∗), and sk∗†′ $← span(sk∗†).

– Encryption. Given a public key PK = (pk, pk†), to encrypt a message

M ∈ {0, 1}ι, the encryption algorithm samples rand
$← {0, 1}d and runs

H.V Samp(H) to sample C
$← V with a witness w. Then it evalu-

ates K = H.Pub(H, pk, C,w), Ψ = Ext(K, rand) ⊕ M , and K† =
η((C, rand, Ψ),H†.Pub(H†, pk†, (C, rand, Ψ), w)). Finally, it outputs CT =
(C, Ψ, rand, K†) as ciphertext.

– Decryption. Given a secret key SK = (sk, sk†), to decrypt a cipher-
text CT = (C, Ψ, rand, K†), the decryption algorithm computes K†′ =
η((C, rand, Ψ),H†.P riv(H†, sk†, (C, rand, Ψ))) and checks whether K†′ =
K†. If K†′ = K†, the decryption algorithm computes K ′ = H.P riv(H, sk, C)
and outputs M ′ = Ψ ⊕ Ext(K ′, rand). Otherwise, it rejects with ⊥.

Updatable Hash Proof System and Its Applications 283

– Key Update. Given a secret key SK = (sk, sk†), the update algorithm

samples sk∗′ $← span(sk∗), sk∗†′ $← span(sk∗†), and outputs a new key SK ′ =
(sk′, sk†′) where sk′ = sk + sk∗′ and sk†′ = sk† + sk∗†′.

Correctness of Π4 can be proved similarly to that of Π1 and security of Π4 is
guaranteed by Theorem9 stated as follows.

Theorem 9. Π4 is secure against a posteriori chosen-ciphertext attacks in the
CML setting with period leakage amount λM = min(λ, τ −ω(log n)) and λU = 0.

CCA-secure CML PKE from UHPS plus AE. The presented PKE scheme
Π5 consists of four algorithms:

– Parameters. Denote n as the security parameter. Let H be a τ -universal2
λ-UHPS and (H, T ∗) ← H.Param(1n) be an instance of H. Assume the
range of η is Y. We further require that τ = log(‖Y‖) and this can be fulfilled
by our instantiated UHPS. Let AE = (AE.Enc,AE.Dec) be an AE scheme.

Sample sk∗ $← ker(V) with T ∗. The public parameter of Π5 is Params =
(H, sk∗,AE).

– Key Generation. The key generation algorithm of Π5 samples sk
$← SK

and evaluates pk = ϕ(sk). Then it sets PK = pk and SK = sk + sk∗′ where

sk∗′ $← span(sk∗).
– Encryption. Given a public key PK = pk, to encrypt a message M , the

encryption algorithm first runs H.V Samp(H) to sample C
$← V with a

witness w. Then it evaluates K = η(C,H.Pub(H , pk, C,w)), and Ψ =
AE.Enc(K,M). Finally, it outputs CT = (C, Ψ) as ciphertext.

– Decryption. Given a secret key SK = sk, to decrypt a ciphertext CT =
(C, Ψ), the decryption algorithm computes K ′ = η(C,H.P riv(H, sk, C)),
and outputs M ′ = AE.Dec(K ′, Ψ).

– Key Update. Given a secret key SK = sk the update algorithm samples
sk∗′ $← span(sk∗) and outputs a new key SK ′ = sk + sk∗′.

Correctness of Π5 follows directly from correctness of Π1 and security of Π5

is guaranteed by Theorem 10 stated as follows.

Theorem 10. Π5 is secure against a posteriori chosen-ciphertext attacks in the
CML setting with period leakage amount λM = min(λ, log(1/ε) − ω(log n)) and
λU = 0 if AE is ε-secure.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: a new frame-
work for hybrid encryption and a new analysis of kurosawa-desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

284 R. Yang et al.

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510. IEEE (2010)

5. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security
Symposium, p. 1. USENIX Association (2003)

6. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

7. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: STOC, pp.
106–112. ACM (1977)

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)

9. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520. IEEE (2010)

10. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621–630. ACM (2009)

11. Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS, pp. 688–697. IEEE (2011)

12. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010)

13. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

14. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–
302. IEEE (2008)

15. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer,
Heidelberg (2003)

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

17. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60. USENIX
Association (2008)

18. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013)

19. Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor functions. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
627–643. Springer, Heidelberg (2012)

Updatable Hash Proof System and Its Applications 285

20. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

21. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

22. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

23. Koppula, V., Pandey, O., Rouselakis, Y., Waters, B.: Deterministic public-key
encryption under continual leakage. Cryptology ePrint Archive, Report 2014/780
(2014). http://eprint.iacr.org/

24. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

25. Lewko, A., Lewko, M., Waters, B.: How to leak on key updates. In: STOC, pp.
725–734. ACM (2011)

26. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

27. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

28. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

29. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437. ACM (1990)

30. Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an asic
aes implementation. In: Information Technology: Coding and Computing, pp. 546–
552. IEEE (2004)

31. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

32. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg
(2013)

33. Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple con-
struction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 19–36. Springer, Heidelberg (2014)

34. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, p. 200. Springer, Heidelberg (2001)

35. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553. IEEE (1999)

36. Wichs, D.: Cryptographic resilience to continual information leakage. Ph.D. thesis,
New York University (2011)

http://eprint.iacr.org/

Server-Aided Revocable
Identity-Based Encryption

Baodong Qin1,2, Robert H. Deng1(B), Yingjiu Li1, and Shengli Liu3

1 School of Information Systems, Singapore Management University,
Singapore 178902, Singapore

{robertdeng,yjli,bdqin}@smu.edu.sg
2 Southwest University of Science and Technology, Mianyang 621010, China

3 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
slliu@sjtu.edu.cn

Abstract. Efficient user revocation in Identity-Based Encryption (IBE)
has been a challenging problem and has been the subject of several
research efforts in the literature. Among them, the tree-based revocation
approach, due to Boldyreva, Goyal and Kumar, is probably the most
efficient one. In this approach, a trusted Key Generation Center (KGC)
periodically broadcasts a set of key updates to all (non-revoked) users
through public channels, where the size of key updates is only O(r log N

r
),

with N being the number of users and r the number of revoked users,
respectively; however, every user needs to keep at least O(logN) long-
term secret keys and all non-revoked users are required to communicate
with the KGC regularly. These two drawbacks pose challenges to users
who have limited resources to store their secret keys or cannot receive
key updates in real-time.

To alleviate the above problems, we propose a novel system model
called server-aided revocable IBE. In our model, almost all of the work-
loads on users are delegated to an untrusted server which manages users’
public keys and key updates sent by a KGC periodically. The server
is untrusted in the sense that it does not possess any secret informa-
tion. Our system model requires each user to keep just one short secret
key and does not require users to communicate with either the KGC or
the server during key updating. In addition, the system supports dele-
gation of users’ decryption keys, namely it is secure against decryption
key exposure attacks. We present a concrete construction of the sys-
tem that is provably secure against adaptive-ID chosen plaintext attacks
under the DBDH assumption in the standard model. One application of
our server-aided revocable IBE is encrypted email supporting lightweight
devices (e.g., mobile phones) in which an email server plays the role of
the untrusted server so that only non-revoked users can read their email
messages.

Keywords: IBE · Revocation · Decryption key exposure

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 286–304, 2015.
DOI: 10.1007/978-3-319-24174-6 15

Server-Aided Revocable Identity-Based Encryption 287

1 Introduction

Identity-Based Encryption (IBE) [26] eliminates the need for a Public Key
Infrastructure (PKI) as in the traditional Public-Key Encryption (PKE) sys-
tems. In an IBE system, each user is allowed to use an arbitrary string (e.g.,
email address or phone number) as his/her public key. The corresponding decryp-
tion key is computed by a trusted authority, called Key Generation Center
(KGC). Identity-based encryption has been thoroughly studied using pairing,
e.g., [5,7,23] or other mathematical tools [6,8]. IBE has also been generalized to
hierarchical IBE [12], fuzzy IBE [22] and attribute-based encryption [11]. In the
IBE setting, as well as in all its generalizations, it is important and necessary
to provide a means to revoke (compromised) users from the system. In the PKI
setting, efficient revocation (e.g., [1,10,19,20]) is achievable via publicly avail-
able certificate revocation lists. However, realizing efficient user revocation in
the IBE setting has been quit challenging.

To address the challenge of key revocation in IBE, Boneh and Franklin
(BF) [5] suggested that a sender encrypts a message using a recipient’s iden-
tity concatenated with the current time period, i.e., id||t, and the KGC issues
a decryption key DKid||t for every non-revoked user and over every time period.
Unfortunately, the BF approach is inefficient: the KGC must generate O(N − r)
new decryption keys in each time period, where N is the total number of users
and r is the number of revoked users in the time period t. Hence, the work-
load on the KGC is proportional to N . Moreover, each non-revoked user need
to maintain a secure channel with the KGC to get his/her new decryption key.

Boldyreva, Goyal and Kumar (BGK) [3] proposed and formalized the notion
of revocable IBE. They presented an efficient R-IBE scheme based on the fuzzy
IBE scheme of Sahai and Waters [22] and the tree-based revocation scheme of
Naor et al. [19] in the selective-ID security model. In their scheme, each user
keeps a tuple of long term secret keys. The KGC publicly broadcasts a set of
key updates in each time period, so that only non-revoked users can compute
new decryption keys from their long term secret keys and the key updates.
Compared with the BF approach, the BGK approach significantly reduces the
total size of key updates from linear to logarithmic (i.e., O(r log N

r)) in the
number of users. Nevertheless, in practice, the BGK approach may suffer from
the following two limitations: (1) all non-revoked users need to communicate
with the KGC and update their decryption keys periodically; and (2) the sizes
of both key updates and users’ secret keys grow logarithmically in the number of
users, i.e., O(r log N

r) and O(log N), respectively. The first limitation cannot be
avoided due to the system model of revocable IBE; while the second limitation,
as explained in Lee et al. [21], is inherent in the tree-based revocation approach.
Other revocable IBE schemes [13,17,18,21,24,25] that follow the BGK revocable
IBE model also have such limitation(s). A natural question that arises is whether
the two limitations can be overcome in a new system model for revocable IBE?

Our Contributions and Results. In this paper, we propose a novel revocable IBE
system model to overcome the two limitations in the BGK approach. Our idea

288 B. Qin et al.

is based on the observation that in the BGK approach, almost all of the work-
load on the user side can be delegated to an untrusted third party server. Our
system model, referred to as Server-aided Revocable IBE (SR-IBE), is depicted
in Fig. 1. Specifically, the SR-IBE system, consists of four types of parities: a
KGC, senders, recipients and a server, and works as follows:

1. (Key Distribution: KGC −→ recipients and server) At the system setup phase,
the KGC issues a long-term secret key and a corresponding tuple of long-term
public keys for every recipient/user. The former is given to a recipient while
the latter is given to the server.

2. (Encryption: sender −→ server) A sender encrypts a message for an identity
and a time period. The resulting ciphertext is sent to the server.

3. (Partial Decryption: server −→ recipient) The server transforms the cipher-
text to a partially decrypted ciphertext using a transformation key corre-
sponding to the recipient’s identity and the time period embedded in the
ciphertext.

4. (Decryption: recipient) The recipient recovers the sender’s message from the
partially decrypted ciphertext using his/her long-term secret key or a dele-
gated decryption key for the current time period.

5. (Key Updates: KGC −→ server) In each key updating period, the KGC deliv-
ers a set of key updates to the server rather than to all non-revoked users.
The server combines the key updates and the stored users’ public keys to
generate the transformation keys in the current time period for all users.

As in the standard revocable IBE, the KGC in SR-IBE is assumed to be
fully trusted and cannot be compromised. However, the server in our model
is assumed to be untrusted in the sense that it does not keep any secret data
and only performs public storage and computation operations according to the
system specifications. This notion of untrusted server is much weaker than the
notion of semi-trusted third party in the literature which is normally assumed

Fig. 1. System model of our server-aided revocable IBE

Server-Aided Revocable Identity-Based Encryption 289

to hold some secret keys and cannot collude with other parties. We stress that
in both cases, the server (or the third party) should perform correct operations
and give correct results to the users (or the other parties). We will propose
a formal security model (see Sect. 3) for RS-IBE, capturing all known threats
as considered in the standard R-IBE model. We will also construct a concrete
SR-IBE scheme. Remarkably, even assuming an untrusted server, our scheme
achieves the following advantages simultaneously:

– It is provably secure against both adaptive-ID attacks and decryption exposure
attacks under the Decisional Bilinear Diffie-Hellman (DBDH) assumption in
the standard model, which is the refined security model for revocable IBE
proposed by Seo and Emura.

– The size of every user’s private key is constant (i.e., O(1)).
– No communication is required between users and the KGC during key update.
– The size of key updates from the KGC to the server is logarithmic (i.e.,

O(r log N
r)) in the number of users, as in the tree-based approach.

To show the advantages of our approach, we give a detailed comparison of our
scheme with some representative non-server-aided revocable IBEs [3,5,17,18,24]
and a server-aided revocable IBE [14] in Tables 1 and 2, respectively. Clearly, in
our SR-IBE, non-revoked users do not need to communicate with the KGC or
the server, while in all previous approaches, including the server-aided approach
of [14], users must communicate with either the KGC or the server during every
key update period. Additionally, almost all the workload on users in the previous
approaches is taken over by the server in our SR-IBE while without sacrificing
security (i.e., the scheme is still secure in the refined full security model of [24]).
It is worth noting that the approach in [21] solved the second problem existed
in the tree-based approach using multilinear maps, but the size of the public
parameter linearly depends on the number of users and its security is proved in
the selective revocation list model, which is weaker than the adaptive-ID model.

The authors of [14] showed how to delegate workload of the KGC to a semi-
trusted server, which they referred to as outsourced KGC. In their approach,
though the size of secret keys kept by each user is constant, the outsourced KGC
must manage an outsourced master secret key and a large number of secret key
shares (linear to the number of users) due to their revocation strategy of ran-
domly splitting the master secret key for each user. Hence, the approach in [14]
can not prevent collusion attacks between the outsourced KGC and revoked
users, which is indicated in Table 2.

The above feature of our SR-IBE is especially attractive for lightweight user
devices such as mobile phones. An excellent application scenario of the SR-IBE
is secure email system in which the email server stores users’ public keys, and
performs key updates and partial decryptions; while email recipients only need to
store their (constant size) secret keys and using them to recover email content
from partially decrypted messages. In addition, the SR-IBE system supports
delegation of decryption keys. When a user is away from office for a period of
time, he can delegate his decryption keys over this period to his colleagues or
assistants.

290 B. Qin et al.

Table 1. Comparison with non-server-aided revocalbe IBE schemes

Schemes BF [5] BGK [3] LCFZZ [18] LV [17] SE [24] PLL [21] LLP [13] Ours 4.2
User Server

PP Size O(1) O(1) O(1) O(κ) O(κ) O(N + κ) O(1) O(κ)
PK Size - - - - - - - - O(N log N)
SK Size O(1) O(log N) O(1) O(log N) O(log N) O(1) O(log1.5 N) O(1) -
CT Size O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
KU Size O(N − r)O(r log N

r
) O(r) O(r log N

r
)O(r log N

r
) O(1) O(r) - O(r log N

r
)

Dec. Cost O(1) O(1) O(r) O(1) O(1) O(1) O(1) O(1) O(1)
DKE Resis. � × × × � � � �

Model Full Selective Selective Full Full SelectiveRL Full Full
AssumptionRO, BDH DBDH DBDH DBDH DBDH MDHE Static DBDH
N is the total number of users, r is the number of revoked users and κ is the security parameter. The meanings
of those abbreviations can be followed easily or found in the paper. “-” means that the item does not exist in the
corresponding scheme.

Table 2. Comparison with server-aided revocable IBE schemes

Schemes SK Size KU Size DKE Resis. Model Assumption Collusion

User Server KGC-Server Server-User with User

LLCJL [14] O(1) O(N − r) - O(N − r) � Full RO, DBDH ×
Ours Sect. 4.2 O(1) - O(r log N

r
) - � Full DBDH �

Other Related Works and Discussion. Revocation with mediator [2,4,9,16] has
been studied in the IBE setting, where an online semi-trusted third party (i.e.,
mediator) holds shares of all users’ secret keys and helps users to decrypt cipher-
texts. User revocation is managed by the mediator by disabling the decryption
service for revoked users. As a result, this approach is subject to collusion attack
between the mediator and revoked users. Our SR-IBE system model seems sim-
ilar to but is inherently different from the mediator approach. In SR-IBE, user
revocation is controlled by the KGC, but not the server. The server simply
functions as a publicly accessible computer. Without the server, users still can
decrypt their ciphertexts as they can reconstruct their transformation keys from
the public keys and public key updates.

Li et al. [14] proposed an efficient method to delegate the key update workload
of the trusted KGC to an outsourced semi-trusted KGC. The functionality of
the outsourced KGC is similar to that of the mediator discussed earlier. For each
user, the outsourced KGC splits an outsourced master secret into two shares:
one is used to compute key updates and the other is used to compute the secret
key for the user. To revoke a user, instead of stopping decryption service as
in the mediator approach, the outsourced KGC stops sending key updates to
the revoked user. So, the outsourced KGC cannot collude with revoked users
and the size of key updates is linear to the number of users. Recently, Liang
et al. [15] proposed a cloud-based revocable IBE with ciphertext delegation. They
employed a similar secret key split technique as in [14] to achieve revocation
and hence the size of key updates grows linearly with the number of system
users. Besides identity revocation, they also considered ciphertext delegation
through a proxy re-encryption technique so that revoked users cannot decrypt
old ciphertexts.

Server-Aided Revocable Identity-Based Encryption 291

The work in [27] combined revocable encryption with the standard IBE to
directly revoke users by specifying a receiver and a set of revoked users in a
ciphertext. This approach requires a sender to know the set of revoked users and
hence it does not follow the notion of revocable IBE considered in this paper.

Organization. The rest of this paper is organized as follows. Section 2 introduces
some basic cryptographic notions. The formal definition and security model for
SR-IBE are given in Sect. 3. The main construction and security proof of our
scheme are presented in Sects. 4 and 5 respectively. Summary is given in Sect. 6.

2 Preliminaries

Notations. Throughout the paper, N denotes the set of natural numbers and
κ ∈ N denotes the security parameter. If S is a finite set, then s ←R S denotes
the operation of picking an element s from S uniformly at random. If X is a
random variable over S, then we write x ← X to denote the process of sampling
a value x ∈ S according to the distribution X. We call a function negl negligible
in κ, if for every positive polynomial poly(·) there exists an N such that for all
κ > N , negl(κ) < 1/poly(κ). A probabilistic polynomial-time (PPT) algorithm
A is an algorithm that on input x, computes A(x) using randomness and its
running time is bounded by poly(κ).

Bilinear Groups. Let G,GT be groups of prime order p and let g be a generator
of G. An efficiently computable map ê : G×G → GT is a (symmetric) pairing if
it satisfies the following two conditions:

– (Bilinearity) For all a, b ∈ Zp, we have ê(ga, gb) = ê(g, g)ab;
– (Non-degeneracy) For any generator g of G, ê(g, g) is a generator of GT (i.e.,

ê(g, g) �= 1).

We denote by BP(κ) a bilinear group generator, which takes as input a security
parameter κ, and outputs a description of bilinear groups G = (G,GT , ê, p, g).

The DBDH Assumption. Let G = (G,GT , ê, q, g) ← BP(κ). The Decisional
Bilinear Diffie-Hellman (DBDH) assumption states that, for any PPT algo-
rithm, it is hard to distinguish the tuple (G, ga, gb, gc, ê(g, g)abc) from the tuple
(G, ga, gb, gc, Z), where a, b, c ←R Zp and Z ←R GT .

The Waters IBE Scheme [28]. Let G be a group of prime order p. For an
identity id = (b1, . . . , bn) ∈ {0, 1}n and U = (u0, u1, . . . , un) ∈ G

n+1, we denote
by FWat,U (id) = u0 ·

∏n
i=1 ubi

i the hash function used in the IBE scheme of Waters.
The Waters IBE scheme consists of the following five PPT algorithms:

SysWat(κ): On input κ, output a system parameter ppWat = (G, h, U), where
G ← BP(κ), h ←R G and U ←R G

n+1.
SetupWat(ppWat): On input ppWat, output master public key MPKWat = g1 = gα

and master secret key MSKWat = hα, where α ←R Zp.
PrivKGWat(MSKWat, id): On input MSKWat and an identity id ∈ {0, 1}n, output

user’s secret key SKid = (hα · FWat,U (id)r, gr), where r ←R Zp.

292 B. Qin et al.

EncWat(MPKWat, id,M): On input MPKWat, id ∈ {0, 1}n and message M ∈ G,
choose z ←R Zp and output CTid = (C0, C1, C2) where C0 = ê(g1, h)z · M ,
C1 = gz, C2 = FWat,U (id)z.

DecWat(SKid, CTid): On input SKid = (d1, d2) and CTid = (C0, C1, C2), output
M = C0 · K−1, where K = ê(d1, C1) · ê(d2, C2)−1.

We adopt the standard (adaptive) ID-CPA security of IBE as defined, e.g.,
in [5]. From [28], we have the following theorem.

Theorem 1 (Security of the Waters IBE [28, Theorem 1]). Under the
DBDH assumption, the Waters IBE scheme is ID-CPA secure and the secu-
rity proof induces to a factor of O(nQ) reduction loss, where Q is the number of
private key queries.

3 Definition and Security of SR-IBE

Definition 1 (SR-IBE). A SR-IBE scheme involves four parties: a key
generation center (KGC), sender, recipient and a third party (i.e., a server).
Algorithms among these parties are defined as follows:

pp ← Sys(κ): This is the system parameter generation algorithm run by the
KGC. It takes as input a security parameter κ and outputs a system para-
meter pp, shared by all parities.

(MPK,MSK,RL,ST) ← Setup(pp, N): This is the setup algorithm run by the
KGC. It takes as input the system parameter pp and a maximal number of
users N , and outputs a master public key MPK, a master secret key MSK,
an initial revocation list RL and state ST.

(PKid,ST) ← PubKG(MSK, id,ST): This is the public key generation algorithm
run by the KGC. It takes as input a master secret key MSK, the recipient’s
identity id and state ST, and outputs a public key PKid for the recipient, and
an updated state ST. The public key PKid is sent to the server (through a
public channel).

(KUTK,t,ST) ← TKeyUp(MSK, t,RL,ST): This is the transformation key update
generation algorithm run by the KGC. It takes as input a master secret key
MSK, a time period t, a revocation list RL and a state ST, and outputs a
transformation key update KUTK,t and an updated state ST. The key update
KUTK,t is sent to the server (through a public channel).

TKid,t ← TranKG(PKid,KUTK,t): This is the transformation key generation algo-
rithm run by the server. It takes as input a public key PKid for identity id
and a transformation key update KUTK,t for time period t, and outputs a
transformation key TKid,t.

SKid ← PrivKG(MSK, id): This is the private key generation algorithm run by the
KGC. It takes as input a master secret key MSK and the recipient’s identity
id, and outputs a private key SKid for the recipient. The private key must be
sent to the recipient through a secure channel.

Server-Aided Revocable Identity-Based Encryption 293

DKid,t ← DecKG(SKid, t): This is the decryption key generation algorithm run
by the recipient himself. It takes as input his private key SKid and a time
period t, and outputs a decryption key DKid,t for time period t.

CTid,t ← Enc(MPK, id, t,M): This is the encryption algorithm run by the sender.
It takes as input a master public key MPK, the recipient’s identity id, a time
period t and a message M , and outputs a ciphertext CTid,t. The ciphertext
is sent into the server.

CT ′
id,t ← Transform(TKid,t, CTid,t): This is the ciphertext transformation algo-
rithm run by the server. It takes as input a transformation key TKid,t and
a ciphertext CTid,t, and outputs a partially decrypted ciphertext CT ′

id,t. The
partially decrypted ciphertext CT ′

id,t is publicly sent to the recipient.
M/ ⊥← Dec(DKid,t, CT ′

id,t): This is the decryption algorithm run by the recipi-
ent. It takes as input a decryption key DKid,t and a partially decrypted cipher-
text CT ′

id,t, and outputs a message M or the special symbol ⊥.
RL ← Revoke(id, t,RL,ST): This is the revocation algorithm run by the KGC. It

takes as input an identity id, a time period t, a revocation list RL and state
ST, and outputs an updated revocation list RL.

Correctness. The correctness requires that for all security parameter κ and all
message M , if the recipient is not revoked at time period t and if all parties
follow the prescribed algorithms, then we have Dec(DKid,t, CT ′

id,t) = M .
Next, we give the semantic security against adaptive IDentity Chosen

Plaintext Attacks for Server-aided Revocable IBE scheme (shorted as SR-ID-
CPA security). We begin by introducing the oracles that can be accessed adap-
tively and repeatedly by an adversary.

– (Public Key Oracle) Osr−ibe
PubKG (·): On input an identity id, it outputs a public

key PKid by running PubKG(MSK, id,ST).
– (Transformation Key Update Oracle) Osr−ibe

TKeyUp(·): On input a time period t, it
outputs KUTK,t by running TKeyUp(MSK, t,RL,ST).

– (Private Key Oracle) Osr−ibe
PrivKG (·): On input an identity id, it outputs a private

key SKid through running PrivKG(MSK, id).
– (Decryption Key Oracle) Osr−ibe

DecKG (·, ·): On input an identity id and a time
period t, it outputs DKid,t by running DecKG(SKid, t), where SKid is obtained
via PrivKG(MSK, id).

– (Revocation Oracle) Osr−ibe
Revoke (·, ·): On input an identity id and a time period t,

it outputs an updated revocation list RL by running Revoke(id, t,RL,ST).

Definition 2 (SR-ID-CPA Security). Let Oibe
sr denote the family of the ora-

cles defined above. We say a SR-IBE scheme is SR-ID-CPA secure, if for any
PPT adversary A, the function Advsr−id−ibe

SR−IBE,A(κ) is negligible in κ, where

Advsr−id−cpa
SR−IBE,A(κ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b :

pp ← Sys(κ)
(MPK,MSK,RL,ST) ← Setup(pp)
(id∗, t∗,M0,M1) ← AOibe

sr (MPK)
b ←R {0, 1}
CTid∗,t∗ ← Enc(MPK, id∗, t∗,Mb)
b′ ← AOibe

sr (CTid∗,t∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

294 B. Qin et al.

In the above definition, the following conditions must hold:

1. M0,M1 ∈ M and |M0| = |M1|, where M is the message space.
2. Osr−ibe

TKeyUp(·) and Osr−ibe
Revoke (·, ·) can be queried only in non-decreasing order of

time.
3. Osr−ibe

Revoke (·, ·) can not be queried on time t if Osr−ibe
TKeyUp(·) has been queried on

time t.
4. If the private key generation oracle Osr−ibe

PrivKG (·) is queried on the challenge
identity id∗, the revocation oracle Osr−ibe

Revoke (·, ·) must be queried on (id∗, t) for
any t ≤ t∗.

5. If id∗ is not revoked at time t∗, Osr−ibe
DecKG (·, ·) can not be queried on (id∗, t∗).

The above security notion essentially captures the following scenarios:
(1) a revoked user cannot access ciphertexts encrypted under a future time
period; (2) a compromised decryption key for (id, t) only endangers the privacy
of ciphertexts encrypted under (id, t); (3) Except the KGC, all other parities can
collude. A user’s decryption key is updated by the user himself; hence, no com-
munication is required between the user and the KGC once the user’s private
key was distributed. Moreover, all communications between the KGC and the
server take place over a public channel which can be accessed by the adversary.
The server does not hold any secret data, it simply functions as a computing
device.

4 Construction of SR-IBE Scheme

4.1 The Node Selection Algorithm: KUNodes

In this subsection, we recall the node selection algorithm KUNodes as in previous
revocable IBE systems [3,24]. This algorithm computes a minimal set Y of nodes
for which transformation key updates have to be published so that the server
can generate the transformation keys corresponding to non-revoked users.

Fig. 2. Illustration of KUNodes Algorithm

Server-Aided Revocable Identity-Based Encryption 295

We employ similar notations as in [3]. For a binary tree BT with N leaves,
corresponding to N users, we denote by root the root node of the tree BT. If θ is
a leaf node, we let Path(θ) stand for the set of nodes on the path from θ to root
(both θ and root are inclusive). If θ is a non-leaf node, then θl and θr denote left
and right children of θ. The node selection algorithm KUNodes takes as input
the binary tree BT, the revocation list RL and a revocation time t, and works
as follows: it first marks all ancestors of users that were revoked by revocation
time t as revoked nodes. Then, it outputs all the non-revoked children of revoked
nodes. A simple pictorial depiction of KUNodes is given in Fig. 2. Below is the
formal definition.

KUNodes(BT,RL, t) //Node selection algorithm
X,Y ← ∅
∀(θi, ti) ∈ RL, if ti ≤ t, then add Path(θi) to X
∀x ∈ X, if xl /∈ X, then add xl to Y; if xr /∈ X, then add xr to Y
If Y = ∅, then add root to Y
Return Y

4.2 The Construction

We assume that the identity space is {0, 1}n and the time space is T . The
message space M is the same as that of the underlying group. Our SR-IBE
scheme consists of the following algorithms:

Sys(κ): On input a security parameter κ, the KGC does the following:

1. Choose G = (G,GT , p, g, ê) ← BP(κ).
2. Choose a random element h ←R G.
3. Choose a random n+1-dimensional vector U = (u0, u1, . . . , un) ←R G

n+1

and a random 2-dimensional vector (v0, v1) ←R G
2.

4. Define and return pp = (G, h, U, v0, v1).

Setup(pp, N): On input pp and a maximal number of users N , the KGC does
the following:

1. Choose two random exponents α, β ←R Zp and set g1 = gα+β .
2. Initialize the revocation list RL = ∅ and the state ST := BT, where BT is

a binary tree with N leaves.
3. Define MPK = g1 and MSK = (hα, hβ).
4. Return (MPK,MSK,RL,ST).

PubKG(MSK, id,ST): Parse MSK as (hα, hβ) and ST as BT. The KGC does the
following:

1. Pick an unassigned leaf note θ from BT and store id in this node.
2. For each node x ∈ Path(θ), it does the following:

(a) Recall gx,1 from BT. If it is undefined, choose gx,2 ←R G, set gx,1 =
hα/gx,2 and store the pair (gx,1, gx,2) in node x.

296 B. Qin et al.

(b) Choose rx ←R Zp.
(c) Compute (Px,1, Px,2) = (gx,1 · FWat,U (id)rx , grx).

3. Return PKid = {(x, Px,1, Px,2)}x∈Path(θ) and an updated state ST.

TKeyUp(MSK, t,RL,ST): Parse MSK as (hα, hβ) and ST as BT. For all x ∈
KUNodes(BT,RL, t), the KGC does the following:

1. Fetch gx,2 from BT. If it is not defined, similar as in the public key gen-
eration algorithm, choose (gx,1, gx,2) ∈ G × G such that gx,1 · gx,2 = hα

and store it in the node x.
2. Choose sx ←R Zp.
3. Compute (Qx,1, Qx,2) = (gx,2 · (v0vt

1)
sx , gsx).

4. Return KUTK,t = {(x,Qx,1, Qx,2))x∈KUNodes(BT,RL,t) to the server.

TranKG(PKid,KUTK,t): On input PKid and KUTK,t, the server generates a trans-
formation key for (id, t) as follows: Parse PKid as {(x, Px,1, Px,2)}x∈I and
KUid,t as {(x,Qx,1, Qx,2)}x∈J for some sets of nodes I, J . If I ∩ J = ∅ (i.e.,
no pair (i, j) ∈ I × J such that i = j), return ⊥; else choose an arbitrary
x ∈ I ∩J and r′

x, s′
x ←R Zp, compute and return TKid,t = (TK1, TK2, TK3),

where
⎧
⎪⎨

⎪⎩

TK1 = Px,1 ·Qx,1 · FWat,U (id)r
′
x · (v0vt1)s

′
x
(
= hα · FWat,U (id)rx+r′

x · (v0vt1)sx+s′
x
)

TK2 = Px,2 · gr′
x

(
= grx+r′

x
)

TK3 = Qx,2 · gs′
x

(
= gsx+s′

x
)

.

PrivKG(MSK, id): Parse MSK as (hα, hβ), the KGC does the following:

1. Choose rid ←R Zp.
2. Compute (Did,1,Did,2) = (hβ · FWat,U (id)rid , grid).
3. Return SKid = (Did,1,Did,2).

DecKG(SKid, t): Parse SKid as (Did,1,Did,2). The user chooses r′
id, s

′
t ←R Zp, and

then computes and returns DKid,t = (D1,D2,D3), where
⎧
⎨

⎩

D1 = Did,1 · FWat,U (id)r′
id · (v0vt

1)
s′
t

(
= hβ · FWat,U (id)rid+r′

id · (v0vt
1)

s′
t

)

D2 = Did,2 · gr′
id

(
= grid+r′

id

)

D3 = gs′
t

(
= gs′

t

)
.

Encrypt(MPK, id, t,M): To encrypt a message M under identity id and time
period t, the sender chooses z ←R Zp and sets CT = (C0, C1, C2, C3), where

C0 = ê(g1, h)z · M C1 = gz C2 = FWat,U (id)z C3 = (v0vt
1)

z.

It returns CTid,t = (id, t, CT) to the server.

Transform(TKid,t, CTid,t): Parse TKid,t as (TK1, TK2, TK3) and CTid,t as
(id, t, C0, C1, C2, C3). It computes

K1 =
ê(C1, TK1)

ê(C2, TK2) · ê(C3, TK3)

(
= ê(gα, h)z

)

Then, it sets C ′
0 = C0/K1 and returns CT ′

id,t = (id, t, C ′
0, C1, C2, C3) to the

recipient.

Server-Aided Revocable Identity-Based Encryption 297

Decrypt(DKid,t, CT ′
id,t): Parse DKid,t as (D1,D2,D3) and CT ′

id,t as (id, t, (C ′
0, C1,

C2, C3)). It computes

K2 =
ê(C1, D1)

ê(C2, D2) · ê(C3, D3)

(
=

ê(gz , hβ · FWat,U (id)rid+r′
id · (v0vt1)st+s′

t)

ê(FWat,U (id)z , grid+r′
id) · ê((v0vt1)z , gst+s′

t)
= ê(gβ , h)z

)

and returns M = C ′
0/K2.

5 Security Proof

Correctness of the scheme can be verified by direct calculation. We omit it here
and only focus on its security proof below.

Theorem 2. If there exists a PPT adversary A breaking the SR-ID-CPA secu-
rity of the proposed SR-IBE scheme, then we can construct a PPT adversary B
breaking the ID-CPA security of the Waters IBE scheme. Moreover,

Advsr−id−cpa
SR−IBE,A(κ) ≤ 2Q|T | · Advid−cpa

IBEWat,B(κ)

where Q is the maximal number of oracle queries issued by the adversary A and
T is the set of revocation time periods.

Proof Outline. Here, we only highlight the center idea of proof. We refer the
interested reader to Appendix A for the formal proof.

At a high level, we can view our scheme as a combination of a traditional
revocable IBE scheme of Seo and Emura [24] (with master secret key hα) and a
two-level HIBE scheme derived from the Waters IBE scheme [28] (with master
secret key hβ). The first component is again built from the Waters IBE scheme.
The long-term private keys, hold by users in RIBE, are now publicly delegated
to the server. Each user actually holds one of the first level secret keys of the
underlying two-level HIBE scheme as his long-term private key. In the proof, we
divide the adversaries into the following two distinct types.

Type I Adversary: The adversary issues a query to the private key oracle
Osr−ibe

PrivKG (·) with the challenge identity id∗. So, the identity id∗ must be revoked
before the challenge time t∗.

Type II Adversary: The adversary never issues a query to the private key ora-
cle Osr−ibe

PrivKG (·) with the challenge identity id∗, but it may query the decryption
key oracle Osr−ibe

DecKG (·, ·) with (id∗, t) as long as t �= t∗.

We can view our proof as a reduction to either the security of the underlying
revocable IBE scheme or the security of the HIBE scheme according to which
type of adversaries our scheme is faced with. For the first type of adversary, it
can obtain the challenge first-level secrete key of the HIBE scheme, and hence
any decryption key. So, we cannot reduce our security to the underlying HIBE.
Instead, we reduce it to the security of the underlying RIBE. The RIBE oracle
can answer all public key queries and transformation key update queries issued by

298 B. Qin et al.

the adversary since the challenge identity must be revoked before the challenge
time. For the second type of adversary, the adversary does not query the private
key of the challenge identity, so it can query for long-term public keys and key
updates even for challenge identity and time period. In this case, it is possible
to reduce our security to that of the underlying HIBE since the adversary is
forbidden to query the decryption key for challenge identity and time period.

6 Conclusion

In this paper, we proposed a new system model for revocable IBE, named server-
aided revocable IBE (SR-IBE). The model has two desirable features which make
it especially suitable for users with limited computation, communication, and
storage capabilities. First, SR-IBE delegates almost all of the workload imposed
on users in previous non-server aided revocable IBE systems to an untrusted
third party server. Second, SR-IBE only requires each user to store a short long-
term private key such that a user can update decryption keys all by himself,
without having to communicate with either the KGC or the third party server.
We also presented a concrete SR-IBE scheme and proved that it is secure against
both adaptive-ID attacks and decryption exposure attacks under the decisional
Bilinear Diffie-Hellman assumption in the standard model. An ideal application
of the SR-IBE is secure Email systems supporting mobile users in which Email
servers could naturally double as the untrusted third party server.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
The work of Robert H. Deng was supported by Singapore Ministry of Education Aca-
demic Research Fund Tier 1 under the research grant 14-C220-SMU-06. The work of
Shengli Liu was supported by the National Natural Science Foundation of China (NSFC
Grant No. 61170229 and 61373153), the Specialized Research Fund for the Doctoral
Program of Higher Education (Grant No. 20110073110016), and the Scientific innova-
tion projects of Shanghai Education Committee (Grant No. 12ZZ021).

A Proof of Theorem 2

Proof. Let A be the adversary that breaks the SR-ID-CPA security of the above
SR-IBE scheme. We construct an adaptive ID-CPA adversary (simulator) of the
Waters IBE scheme using A as a subroutine.

The simulator is given a challenge instance of the Waters IBE scheme, includ-
ing a system parameter ppWat = (G, h, U), a master public key MPKWat = gγ∗

for some unknown exponent γ∗, private key generation oracle Oibe
PrivKGWat

(·) and
an encryption oracle Oibe

EncWat
(·, ·, ·)1. The simulator first randomly guesses the

challenge revocation time period t∗ ←R T .
In the proof, the simulator has to randomly guess which type of adversaries

(as described in Sect. 5) is going to be.
1 The encryption oracle is defined as follows: on input (id,M0,M1), output CTWat

id =
(C0, C1, C2) ← EncWat(id,Mb), where b ←R {0, 1}.

Server-Aided Revocable Identity-Based Encryption 299

Proof (Proof of Type I Adversary). Let Q be the maximal number of queries
issued by the adversary. The simulator randomly guesses i∗ ←R {1, . . . , Q},
assuming that id∗ firstly appears in the i∗-th query among all queries issued
by the adversary. We show at the end of the proof that the guess holds with
probability 1/Q. Additionally, the simulator randomly chooses an unassigned
leaf node θ∗ for storing the challenge identity id∗.

The simulator simulates the SR-ID-CPA game as follows:

System Parameter: The simulator chooses random exponents a, b ←R Zp and
sets v0 = ht∗ · ga, v1 = h−1 · gb. The simulator returns pp = (ppWat, v0, v1)
to the adversary and holds (a, b).

Setup: The simulator chooses a random exponent β ←R Zp. It sets MPK =
g1 = MPKWat and MSK = (hγ∗−β , hβ), where γ∗ − β = α is unknown to the
simulator. The simulator sends MPK to the adversary. It holds hβ , an empty
revocation list RL and an initial state of a binary tree ST := BT.

Private Key Oracle and Decryption Key Oracle: Since the simulator
knows the master secret key part hβ , it can answer all queries issued by the
adversary to these two oracles. If the i∗-th query appears among the queries
issued to these two oracles, the simulator knows the challenge identity id∗

and stores it in the pre-assigned leaf node θ∗.
Transformation Key Update Oracle: When A issues a transformation key

update generation query on time period t, the simulator does the following:

1. For all x ∈ KUNodes(BT,RL, t), fetch ηx from node x of BT if it is defined.
Otherwise, randomly choose ηx ∈ G and store it in the node x.

2. Choose sx ←R Zp.
3. Compute (x,Qx,1, Qx,2) as follows:

(Qx,1, Qx,2) ={
(η−1

x · h−β · (v0vt
1)

sx , gsx) If x /∈ Path(θ∗)

(η−1
x · h−β · h(t∗−t)sx · g

a+bt
t−t∗
1 · g(a+bt)sx , g

1
t−t∗
1 · gsx) Otherwise

.

4. Return KUTK,t = {(x,Qx,1, Qx,2)}x∈KUNodes(BT,RL,t) to the adversary.

Remark 1. For all x ∈ Path(θ∗), if t �= t∗, (Qx,1, Qx,2) can be rewritten in the

form (Qx,1, Qx,2) =
(
η−1

x · hγ∗−β · (v0vt
1)

s′
x , gs′

x

)
for some unknown exponent

s′
x = − γ∗

t∗−t + sx.

Public Key Oracle: Let jPK denote A’s jPK-th query issued to the public key
oracle. When A issues a public key generation query on identity id, if the
identity id firstly appears in A’s queries, the simulator randomly chooses an
unassigned leaf node θ and stores id in θ. We consider the following three
cases:
Case 1: jPK < i∗. In this case, id �= id∗. So, the simulator can query the

Waters user key generation oracle Oibe
PrivKGWat

(·) on identity id and obtain a

300 B. Qin et al.

Waters “private key” (d1, d2) for identity id. For each node x ∈ Path(θ),
the simulator recalls ηx if it is defined. If not, it chooses ηx ←R G

and stores ηx in node x. Then, it chooses rx ←R Zp and computes
(x, Px,1, Px,2) as follows

(Px,1, Px,2) =
{

(ηx · d1 · FWat,U (id)rx , d2 · grx) If x /∈ Path(θ∗)
(ηx · FWat,U (id)rx , grx) Otherwise .

The simulator returns PKid = {(x, Px,1, Px,2)}x∈KUNodes(BT,RL,t) to the
adversary.

Case 2: jPK = i∗. In this case, the simulator knows the challenge identity id∗

and stores it in the pre-assigned leaf node θ∗. For each x ∈ Path(θ∗), the
simulator recalls ηx if it is defined. If not, it chooses ηx ←R G and stores
ηx in node x. It then chooses rx ←R Zp and computes (x, Px,1, Px,2) as
follows

(Px,1, Px,2) = (ηx · FWat,U (id∗)rx , grx).

The simulator returns PKid∗ = {(x, Px,1, Px,2)}x∈Path(θ∗) to the adver-
sary.

Case 3: jPK > i∗. In this case, the simulator knows the challenge identity
id∗2. If id �= id∗, the simulator does the same process as in Case 1.
Otherwise, it does the same process as in Case 2.

Remark 2. Observe that for each node x ∈ BT, the pair of values (gx,1, gx,2)
is well defined. For example, if x /∈ Path(θ∗), the simulator in fact implicitly
defined gx,1 = ηx · hγ∗

and gx,2 = η−1
x · h−β so that gx,1 · gx,2 = hγ∗−β . So, from

the above constructions of transformation key updates and public keys, if an
identity id is not revoked at time period t, the transformation key TKid,t always
has the form TKid,t = (hγ∗−β · FWat,U (id)rx · (v0vt

1)
sx , grx , gsx) for some random

exponents rx, sx ←R Zp.

Challenge Ciphertext: When A issues a challenge ciphertext query (id∗, t∗,
M0, M1), the simulator submits (id∗,M0,M1) to the Waters encryption
oracle Oibe

EncWat
(·, ·, ·) and obtains the Waters challenge ciphertext CTWat

id∗ =
(CWat

0 , CWat
1 , CWat

2) where

CWat
0 = ê(MPKWat, h)z · Mb CWat

1 = gz CWat
2 = FWat,U (id∗)z

for some unknown random exponent z ←R Zp. The simulator computes
C3 = (CWat

1)a+bt∗ and returns CTid∗,t∗ = (CWat
0 , CWat

1 , CWat
2 , C3) to A.

Guess: Finally, A outputs a bit b′. The simulator forwards it to its own chal-
lenger.

Discussion 1. Since the simulated master public key MPK = MPKWat and C3 =
Ca+bt∗

1 = (v0vt∗
1)z, the simulated challenge ciphertext has the right distribution

as that in the original SR-ID-CPA game. Recall that all the oracles are also well
2 It may be obtained from previous queries issued to other oracles.

Server-Aided Revocable Identity-Based Encryption 301

simulated. So, if the simulator correctly guesses the challenge time period t∗ and
the index i∗, the simulator perfectly simulates Type I adversary A’s environment
in the SR-ID-CPA game. Recall that all guesses are randomly and independently
chosen from the corresponding sets and the simulated SR-ID-CPA game only
depends on the simulator’s guesses, not depending on the adversary’s behaviour.
So, the simulator successfully simulates the SR-ID-CPA game with probability
at least 1/(Q|T |), i.e., Advsr−id−cpa

SR−IBE,A(κ) ≤ Q|T | · Advid−cpa
Wat,B (κ), where B is an

adversary (the simulator) attacking the Waters IBE scheme.

Proof (Proof of Type II Adversary). The simulator simulates the SR-ID-CPA
game for Type II adversary as follows:

System Parameter: The simulator chooses a, b ←R Zp and sets v0 = ht∗ · ga,
v1 = h−1 ·gb. It returns pp = (ppWat, v0, v1) to the adversary and holds (a, b).

Setup: The simulator chooses α ←R Zp and implicitly sets β = γ∗−α. It defines
MPK = MPKWat and MSK = (hα, hβ), where hβ = hγ∗−α is unknown. The
simulator sends MPK to the adversary, and holds hα, an empty revocation
list RL and a state of a binary tree ST := BT.

Public Key Oracle and Transformation Key Update Oracle: Note that,
the simulator knows the master secret key part hα. So, it can answer all the
queries issued by the adversary to these two oracles.

Private Key Oracle: Recall that a Type II adversary does not query the
private key SKid∗ . When the adversary issues a private key generation query
for identity id, the simulator can answer it as follows:

1. Forward id to the Waters private key oracle Oibe
PrivKGWat

(·) and obtain a
Waters private key (d1, d2) for identity id.

2. Set Did,1 = h−α · d1 and Did,2 = d2.
3. Return SKid = (Did,1,Did,2) to A.

Decryption Key Oracle: When A issues a decryption key generation query on
(id, t), the simulator first checks whether t = t∗. If so, we must have id �= id∗.
The simulator first involves private key oracle with id to obtain private key
SKid and thereby the decryption key DKid,t∗ . Otherwise (i.e., t �= t∗), the
simulator does the following:

1. Choose rid, st ←R Zp.
2. Compute D1 = h−α ·FWat,U (id)rid ·h(t∗−t)st ·(gβ∗

)− a+bt
t∗−t ·g(a+bt)st , D2 = grid

and D3 = (gβ∗
)− 1

t∗−t · gst .
3. Return DKid,t = (D1,D2,D3) to A.

Challenge Ciphertext Oracle: When A issues a challenge ciphertext query
with (id∗, t∗,M0,M1), the simulator does the following:

1. Forward (id∗,M0,M1) to the Waters encryption oracle Oibe
EncWat

(·, ·, ·),
which will outputs a challenge ciphertext of the Waters IBE scheme
CTWat

id∗, = (CWat
0 , CWat

1 , CWat
2).

2. Compute C3 = (CWat
1)a+bt∗ .

3. Define (C0, C1, C2) = (CWat
0 , CWat

1 , CWat
2).

302 B. Qin et al.

4. Return CTid∗,t∗ = (C0, C1, C2, C3) to A.
Guess: Finally, the adversary outputs a guess bit b′, which is also the guess bit

of the simulator.

Discussion 2 Similar to previous analysis, the challenge ciphertext is well dis-
tributed. Recall that a valid Waters private key for identity id is of the form
SKWat

id = (d1, d2) = (hγ∗ · FWat,U (id)rid , grid), where rid ←R Zp. So,

(Did,1,Did,2) = (h−α · d1, d2) = (hβ · FWat,U (id)rid , grid)

is a valid SR-IBE private key for identity id. For decryption key generation
oracle, if t = t∗, we must have id �= id∗ and hence the decryption key is
well defined. If t �= t∗, the decryption key DKid,t can be rewritten as the form
(D1,D2,D3) = (hγ∗−α · FWat,U (id)rid · (v0vt

1)
s′
t , grid , gs′

t) for some unknown expo-
nent s′

t = − γ∗

t∗−t + st. So, in this case, the decryption key oracle is also well
defined. To conclude, if the simulator correctly guesses the challenge revocation
time, the simulator perfectly simulates the SR-ID-CPA game for the Type II
adversary A. Since the guess is independent of the adversary’s behaviour, we
have Advsr−id−cpa

SR−IBE,A(κ) ≤ |T | · Advid−cpa
IBEWat,B(κ), where B is an adversary (i.e., the

simulator) attacking the Waters IBE scheme.

Finally, we discuss the probability of the events that the simulator correctly
guess the type of adversary. Since the adversary’s behaviour is independent of
the simulator’s guess, with probability exactly 1/2 the guess is correct. So,

Advsr−id−cpa
SR−IBE,A(κ) ≤ 2 ·max(Q · |T |+ |T |) ·Advid−cpa

IBEWat,B(κ) = 2Q|T | ·Advid−cpa
IBEWat,B(κ).

So, the reduction loss in our security proof is 2Q|T |. Since the Waters IBE scheme
has been proven secure under the DBDH assumption with reduction loss O(nQ),
our SR-IBE scheme is secure under the DBDH assumption with O(nQ2|T |)
reduction loss, which is the same as in previous revocable IBE schemes [17,24].
This completes the proof of Theorem 2. ��

References

1. Aiello, W., Lodha, S.P., Ostrovsky, R.: Fast digital identity revocation. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 137–152. Springer, Hei-
delberg (1998)

2. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004)

3. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient
revocation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) CCS 2008, pp. 417–426.
ACM (2008)

4. Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of public
key certificates and security capabilities. In: Wallach, D.S. (ed.) 10th USENIX
Security Symposium, Washington, D.C., USA, 13–17 August 2001. USENIX
(2001)

Server-Aided Revocable Identity-Based Encryption 303

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidel-
berg (2001)

6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS 2007, pp. 647–657. IEEE Computer Society (2007)

7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

8. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

9. Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated RSA. In:
Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidelberg
(2003)

10. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

11. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS 2006, pp. 89–98. ACM (2006)

12. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer,
Heidelberg (2002)

13. Lee, K., Lee, D.H., Park, J.H.: Efficient revocable identity-based encryption via
subset difference methods. IACR Cryptology ePrint Arch. 2014, 132 (2014)

14. Li, J., Li, J., Chen, X., Jia, C., Lou, W.: Identity-based encryption with outsourced
revocation in cloud computing. IEEE Trans. Comput. 99(PrePrints), 1 (2013)

15. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revoca-
ble identity-based proxy re-encryption scheme for public clouds data sharing. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712, pp.
257–272. Springer, Heidelberg (2014)

16. Libert, B., Quisquater, J.: Efficient revocation and threshold pairing based cryp-
tosystems. In: Borowsky, E., Rajsbaum, S. (eds.) PODC 2003, pp. 163–171. ACM
(2003)

17. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryp-
tion. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer,
Heidelberg (2009)

18. Lin, H., Cao, Z., Fang, Y., Zhou, M., Zhu, H.: How to design space efficient revo-
cable IBE from non-monotonic ABE. In: Cheung, B.S.N., Hui, L.C.K., Sandhu,
R.S., Wong, D.S. (eds.) ASIACCS 2011, pp. 381–385. ACM (2011)

19. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

20. Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE J. Sel.
Areas Commun. 18(4), 561–570 (2000)

21. Park, S., Lee, K., Lee, D.H.: New constructions of revocable identity-based encryp-
tion from multilinear maps. IACR Cryptology ePrint Arch. 2013, 880 (2013)

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

304 B. Qin et al.

23. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Okinawa, Japan,
pp. 135–148 (2000)

24. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security
model and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 216–234. Springer, Heidelberg (2013)

25. Seo, J.H., Emura, K.: Revocable identity-based cryptosystem revisited: security
models and constructions. IEEE Trans. Inf. Forensics Secur. 9(7), 1193–1205
(2014)

26. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

27. Su, L., Lim, H.W., Ling, S., Wang, H.: Revocable IBE systems with almost
constant-size key update. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol.
8365, pp. 168–185. Springer, Heidelberg (2014)

28. Waters, B.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

Efficient Zero-Knowledge Proofs
for Commitments from Learning

with Errors over Rings

Fabrice Benhamouda1, Stephan Krenn2(B), Vadim Lyubashevsky3,
and Krzysztof Pietrzak4

1 ENS, CNRS, INRIA, and PSL, Paris, France
fabrice.ben.hamouda@ens.fr

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

3 ENS, INRIA, Paris, France
lyubash@di.ens.fr

4 IST Austria, Klosterneuburg, Austria
pietrzak@ist.ac.at

Abstract. We extend a commitment scheme based on the learning with
errors over rings (RLWE) problem, and present efficient companion zero-
knowledge proofs of knowledge. Our scheme maps elements from the ring
(or equivalently, n elements from Fq) to a small constant number of ring
elements. We then construct Σ-protocols for proving, in a zero-knowledge
manner, knowledge of the message contained in a commitment. We are
able to further extend our basic protocol to allow us to prove additive
and multiplicative relations among committed values.

Our protocols have a communication complexity of O(Mn log q) and
achieve a negligible knowledge error in one run. Here M is the constant
from a rejection sampling technique that we employ, and can be set
close to 1 by adjusting other parameters. Previously known Σ-protocols
for LWE-related languages only achieved a noticeable or even constant
knowledge error (thus requiring many repetitions of the protocol), or
relied on “smudging” out the error (which necessitates working over large
fields, resulting in poor efficiency).

Keywords: Commitment schemes · Ring learning with errors · Zero-
Knowledge Proofs of Knowledge

1 Introduction

Commitment schemes are among the most widely used cryptographic primitives.
They allow one party, the committer, to commit to a message m to another

This work was done while the second author was at IBM Research – Zurich. This
work was partly funded by the ERC Grants 321310–PERCY and 259668–PSPC, and
by the French ANR-13-JS02-0003 JCJC Project CLE.

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 305–325, 2015.
DOI: 10.1007/978-3-319-24174-6 16

306 F. Benhamouda et al.

party. At a later point in time, the committer may reveal m by opening the
commitment c. The scheme is said to be secure if it is binding and hiding. The
former property says that the committer cannot open c to a message different
from m, and the latter ensures that only knowing c gives no information about
m to the receiver.

In higher-level protocols, commitments are often used to link different build-
ing blocks, e.g., encryption-, signature-, and revocation schemes in constructions
of group signatures or anonymous credentials [CKL+14]. In such situations, it is
often necessary to prove properties of a message m contained in a commitment,
without revealing any additional information about m. This is done via so-called
zero-knowledge proofs of knowledge (ZK-PoK). These are two-party protocols
which allow a prover to convince a verifier that it knows some secret piece of
information, without revealing anything else than what is already revealed by
the claim itself [GMR85]. As the efficiency of ZK-PoKs of commitments directly
affects the efficiency of many higher-level systems, generic constructions such
as [GMW86,GMR85] are too inefficient for practical use. A large amount of
research effort has therefore been expended in improving the efficiency of such
protocols for concrete proof goals. We continue this direction by presenting the
so far most efficient ZK-PoKs for lattice-based commitment schemes.

Our constructions are proved secure under the learning with errors over rings
(RLWE) assumption. Informally, it says that tuples (a, a.s + e) ∈ R2

q are com-
putationally indistinguishable from (a, u) ∈ R2

q , where a, s, u are uniformly ran-
dom in Rq and e is drawn according to some low-weight distribution χ. We
use Rq = Zq[x]/〈xn + 1〉, which as a vector space is isomorphic to Z

n
q (one

can identify a = a1 + a2x + · · · + anxn−1 ∈ Rq with (a1, . . . , an) ∈ Z
n
q). For

appropriately chosen parameters there exists a quantum reduction from certain
worst-case problems on ideal lattices to the RLWE-problem [LPR10].

1.1 Our Contributions

In this paper is to construct efficient commitments and zero-knowledge proofs
from the RLWE-assumption. To the best of our knowledge, our protocols are the
first to achieve a negligible knowledge error in one run for lattice-based crypto
systems.

In detail, our contributions are as follows:

– Efficient Commitment Schemes from RLWE. We first construct a per-
fectly binding and computationally hiding string commitment scheme. Com-
mitting to a message is done as in Xie et al. [XXW13], but we relax require-
ments on valid openings to be able to realize better ZK proofs while still
preserving the binding property of the scheme.

– Efficient ZK-PoK for Committed Values. We then give a simple and
efficient zero-knowledge protocol for proving knowledge of committed val-
ues. The protocol differs substantially from previous protocols for RLWE, and
improves over them in the following ways: On the one hand, our protocol

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 307

already achieves a negligible knowledge error in a single run. Previous proto-
cols only achieved a noticeable knowledge error, e.g., Ling et al. [LNSW13] or
Xie et al. [XXW13], and thus many repetitions are required to get meaningful
security, resulting in a low efficiency. On the other hand, we only require that
the modulus is polynomially larger than the error in the RLWE problem. The
construction of Asharov et al. [AJLA+12], which achieves a knowledge error
of 1/2, relied on “smudging out” (or “drowning”) the error, which required
stronger assumptions as the modulus-error ratio had to be super-polynomial.
Our protocols can be turned into concurrently zero-knowledge arguments of
knowledge without any additional computational costs.

– Efficient ZK-PoK for Relations. Starting from our basic ZK-PoK we then
construct protocols for proving that committed values m1,m2,m3 ∈ Rq satisfy
m3 = m1 + m2 as well as m3 = m1m2.

1.2 Related Work

At Asiacrypt’12, Jain et al. [JKPT12] presented a commitment scheme whose
hiding property relies on the learning parity with noise (LPN) assumption, which
is defined like LWE but over bits, i.e., for q = 2. Similar to our work, they give a
Σ-protocol to prove any relation among committed values. A single run of their
preimage proof requires O(n log n) bits of communication, where each committed
message is from {0, 1}n. However, their protocols only achieve a knowledge error
of 2/3, and thus reaching a success probability of a malicious prover negligible
in k, requires O(kn log n) bits of communication. The main open problem of
[JKPT12] was to find a commitment scheme and protocols whose security is
based on LPN or a related problem, and which avoids the dependency on k.

Xie et al. [XXW13] generalized the commitment scheme from Jain et al.
[JKPT12] from LPN to RLWE, and gave companion protocols for their scheme.
However, their zero-knowledge proofs still require Stern-like techniques [Ste93],
and therefore only achieve a knowledge error of 2/3. Our commitment scheme
is closely related to theirs and may be seen as a generalization as we relax
the requirements on valid openings. In their construction, a commitment c to a
message m can be opened by revealing r and a short e such that c = am+br+e ,
where a , b, c, e ∈ Rk

q and m, r ∈ Rq. Getting a bit ahead, we relax the openings
such that we also accept openings of the form c = am + br + f−1e , where
f ∈ Rq is an additional small polynomial. We will prove that commitments are
still binding, and show that this relaxation allows us to overcome the constant
knowledge-error “barrier” for the commitment scheme by employing rejection
sampling techniques introduced by Lyubashevsky [Lyu09,Lyu12].

Recently, Benhamouda et al. [BCK+14] improved the efficiency of ZK-PoKs
for RLWE-based encryption schemes. As encryption schemes can also be seen as
commitment schemes, it is worthwhile comparing their result to ours. They give
a protocol for proving relations of the form y = as + e (for y, a, s, e ∈ Rq and
s, e short) that has a knowledge error of 1/(2n), where n is the dimension of
the ring, and thus also overcomes the above barrier. However, their protocol has
a soundness gap in the sense that it only proves that the prover knows a valid

308 F. Benhamouda et al.

representation of 2y, not of y itself, which is still sufficient for many applications
as illustrated in their work. We improve over their results by reaching a negligible
knowledge error already in one run of the protocol (compared to 1/(2n)) and by
not having such a soundness gap. On the other hand, our protocol requires the
ring Rq to have a large subring that is a field, whereas the protocol in [BCK+14]
does not require such a property.

Asharov et al. [AJLA+12] constructed Σ-protocols for several specific lan-
guages related to the standard LWE-problem. However, they do not give (effi-
cient, i.e., direct) constructions for proving relations among LWE-secrets. Fur-
thermore, their protocols have a super-polynomial knowledge-gap, i.e., the norm
of the error known to a potentially malicious prover can only be guaranteed to
be super-polynomially larger than that known to an honest party, while this gap
is only polynomial in our case. This allows us to prove the security of our scheme
under weaker assumptions, and to use a smaller modulus in the RLWE-problem,
giving better efficiency.

Apart from these very closely related works, a large number of crypto-
graphic applications based on the LWE-assumption has been proposed, start-
ing with the work of Regev [Reg05]. This includes (fully homomorphic)
encryption [BV11a,Gen09,LP11,LPR10,Reg05], signature schemes [DDLL13,
GPV08,Lyu09,Lyu12,Rüc10], pseudorandom functions [BPR12] and hash func-
tions [KV09,PR06]. Similarly, efficient (non-)interactive zero-knowledge proofs
and arguments have been a vivid topic of research, see, e.g., [AJLA+12,BDP00,
CD97,CD98,CD09,DPSZ12,GS08,IKOS07,KR06,KMO90,KP98] and the refer-
ences therein. Finally, starting with a different motivation, the idea of commit-
ting to the first message in a Σ-protocol was also used by Damg̊ard [Dam00],
where it was shown how to obtain concurrent zero-knowledge for any Σ-protocol.
We commit to the first message to get zero-knowledge in the first place, and
we will discuss how the concurrency results also apply to our constructions in
Sect. 4.1.

1.3 Roadmap

In Sect. 2 we recap some basic definitions on ZK proofs and LWE. Then, in Sect. 3
we present our commitment scheme, and give protocols for proving knowledge of,
and relations among, the contents of commitments in Sect. 4. We finally briefly
conclude in Sect. 5.

2 Preliminaries

We denote vectors by bold lower-case letters (a , b, . . .) and algorithms by sans-

serif letters (A,B, . . .). We write a
$← A for a set A if a was uniformly drawn

from A, a
$← D for a distribution D if a was drawn according to D, and a

$← A
if a is the output of a randomized algorithm A.

For two distributions D,E, we write D
c∼ E, if D and E are computationally

indistinguishable. Furthermore, we use the notation Pr[E : Ω] to denote the

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 309

probability of event E over the probability space Ω. For instance, Pr[x = y :

x, y
$← D] denotes the probability that x = y if x, y were drawn according to a

distribution D.
The language induced by a binary relation R is defined as

L(R) = {c : ∃w such that (c, w) ∈ R} .

We finally assume that elements of Zq (q odd) are represented by elements
from

{− q−1
2 , . . . , q−1

2

}
.

2.1 Commitment Schemes

We now formally define commitment schemes.

Definition 2.1. A commitment scheme consists of three algorithms (KGen,
Com, Ver) such that:

– On input 1�, the key generation algorithm KGen outputs a public commitment
key pk.

– The commitment algorithm Com takes as inputs a message m from a message
space M and a commitment key pk, and outputs a commitment/opening pair
(c, d).

– The verification algorithm Ver takes a key pk, a message m, a commitment c
and an opening d and outputs accept or reject.

A commitment scheme has to satisfy the following security requirements:

– Correctness: Ver outputs accept whenever the inputs were computed by an
honest party, i.e.,

Pr[Ver(pk,m, c, d) = accept : m ∈ M, (c, d) $← Com(m,KGen(1�))] = 1.

– Binding : A commitment cannot be opened to different messages. A scheme
is said to be perfectly binding if this holds unconditionally, i.e., with over-
whelming probability over the choice of the public key pk

$← KGen(1�) we
have that:

((Ver(pk,m, c, d) = accept) ∧ (Ver(pk,m′, c, d′) = accept)) ⇒ m = m′.

On the other hand, a scheme is said to be computationally binding if no PPT
adversary can come up with a commitment and two different openings, i.e.,
for every PPT adversary A there exists a negligible function negl such that:

Pr
[
Ver(pk,m, c, d) = Ver(pk,m′, c, d′) :pk

$← KGen(1�),

(c,m, d,m′, d′) $← A(pk)
]

≤ negl(n).

310 F. Benhamouda et al.

– Computational hiding : A commitment computationally hides the committed
message: for every probabilistic polynomial time (PPT) adversary A there is
a negligible function negl such that:

Pr

[

b = b′ :
pk

$← KGen(1�), (m0,m1, aux)
$← A1(pk),

b
$← {0, 1}, (c, d) = Com(mb, pk), b′ $← A2(c, aux)

]

≤ 1
2

+ negl(n).

A scheme is called a trapdoor commitment scheme, if KGen additionally outputs a
trapdoor td for the public key, such that there exists an efficient algorithm taking
(c, d) = Com(m, pk), m, td and m′ ∈ M as inputs, that outputs d′ such that
Ver(pk,m′, c, d′) = accept. Note that trapdoor commitment schemes can only be
computationally binding. See, e.g., Fischlin [Fis01] for a detailed discussion of
such schemes.

For the sake of simplicity, we will not state pk explicitly as an input in the
following.

2.2 Zero-Knowledge Proofs and Σ-Protocols

Informally, a zero-knowledge proof of knowledge is a two party protocol between
a prover and a verifier, which allows the former to convince the latter that it
knows some secret piece of information, without revealing anything about the
secret apart from what the claim itself already reveals. For a formal definition
we refer to Bellare and Goldreich [BG93]. The ZK proofs constructed in this
paper will be instantiations of the following definition, which is a straightforward
generalization of the standard notion of Σ-protocols [Cra97,Dam10]:

Definition 2.2. Let (P,V) be a two-party protocol, where V is PPT, and let
R,R′ be a binary relation such that R ⊆ R′. Then (P,V) is called a Σ′

m-protocol
for R,R′ with challenge set C, public input c and private input w, if and only if
it satisfies the following conditions:

– 3-move form: The protocol is of the following form:
• The prover P computes a commitment t and sends it to V.
• The verifier V draws a challenge d

$← C and sends it to P.
• The prover sends a response s to the verifier.
• Depending on the protocol transcript (t, d, s), the verifier accepts or

rejects the proof.
The protocol transcript (t, d, s) is called accepting, if the verifier accepts the
protocol run.

– Completeness: Whenever (c, w) ∈ R, the verifier V accepts with probability
at least 1 − α.

– Special soundness: There exists a PPT algorithm E (the knowledge extrac-
tor) which takes m accepting transcripts (t, d1, s1), . . . , (t, dm, sm) satisfying
di �= dj for i �= j as inputs, and outputs w′ such that (c, w′) ∈ R′.

– Special honest-verifier zero-knowledge: There exists a PPT algorithm
S (the simulator) taking c ∈ L(R) and d ∈ C as inputs, that outputs triples
(t, d, s) whose distribution is (computationally) indistinguishable from accept-
ing protocol transcripts generated by real protocol runs.

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 311

We now discuss some additional points regarding Definition 2.2. First, the
standard definition for Σ-protocols found in the literature considers the case
where m = 2, R = R′ and α = 0. In this case, it is well known that the
protocol is also a proof of knowledge for the same relation R with knowledge
error 1/|C| [Dam10]. However, it can be seen that the proof given there also
generalizes to other constants m with a knowledge error of (m − 1)/|C| if 1 −
α > (m − 1)/|C|, and special cases of this result were already used implicitly
in previous work, e.g., [JKPT12,Ste93]. Second, the modification that R ⊆ R′

means that the protocol is honest-verifier zero-knowledge and complete whenever
the prover uses a secret witness w such that (c, w) ∈ R, but the verifier is
only assured that the prover supplied a witness w′ such that (c, w′) ∈ R′. For
many interesting relations this gap allows for much more efficient protocols,
e.g., Fujisaki et al. [FO97,DF02] or Benhamouda et al. [BCK+14]. If this gap
is reasonably small, as is the case in the protocols we present, one still obtains
sufficient security guarantees from the protocol. Finally, the above definition
only guarantees privacy to the prover against honest-but-curious verifiers, i.e.,
verifiers not deviating from the protocol. This issue can be solved generically
using techniques of, e.g., Damg̊ard et al. [DGOW95] or Fiat and Shamir [FS87];
furthermore, for our concrete protocols it can be solved without any extra costs,
cf. Lemma 4.3.

2.3 Learning with Errors

The learning with errors (LWE) problems was first introduced by Regev [Reg05].
Informally, it asks to distinguish slightly perturbed random linear equations
from truly random ones. LWE has been shown to be as hard as certain worst-case
problems on lattices, and has served as a basis for a large variety of cryptographic
schemes. Unfortunately, schemes built upon LWE are inherently inefficient due to
a large overhead in the use of the problem. This drawback has been resolved by
Lyubashevsky et al. [LPR10] by introducing the ring learning with noise problem,
which still enjoys strong hardness guarantees. The following formulation is a
special case of the problem restricted to the ring Z[x]/〈xn + 1〉, with n a power
of two:

Definition 2.3. Let R = Z[x]/〈xn + 1〉 and Rq = R/qR, and let χ be a distrib-
ution over R.

The (decisional) ring learning with errors assumption (denoted by RLWEq,χ)
states that:

{(ai, ai · s + ei)} c∼ {(ai, ui)} ,

for any polynomial number of samples, where ai
$← Rq, ei

$← χ, ui
$← Rq, and

s
$← Rq is secret.

We further recapitulate the definition of Normal distributions:

312 F. Benhamouda et al.

Definition 2.4. The continuous Normal distribution on R
m centered at v with

standard deviation σ is defined by the density function

ρm
v,σ(x) =

(
1√
2πσ

)m

e− ‖x−v‖2

2σ2 .

We avoid the subscript v if v = 0m.
The discrete Normal distribution on Z

m centered at v with standard deviation
σ is defined by the density function Dm

v,σ(x) = ρm
v,σ(x)/ρσ(Zm), where ρσ(Zm) =∑

z∈Zm ρm
σ (z) is the scaling factor required to obtain a probability distribution.

For convenience, sampling the normal distribution over a ring R, we will still
write Dv ,σ even though it is not a 1-dimensional distribution. Lyubashevsky
et al. [LPR10] showed the search and the decisional version of RLWEq,χ are
polynomially related, and that there exists a quantum reduction from the worst-
case approximate shortest vector problem on ideal lattices to RLWEq,χ.1

2.4 Rejection Sampling

For proving the zero-knowledge property of our protocol, it is essential that all
the responses of the prover can be simulated without knowing the secret key. We
thus need that the response elements are from a distribution which is independent
of the secret key. In our protocol, however, all the potential responses will be from
a shifted distribution D�

v ,σ for 	 = kn and some vector v depending on the secret
key. To correct for this, we employ rejection sampling [Lyu09,Lyu12], where a
potential response is only output with a certain probability, and otherwise the
protocol is aborted.

Informally, the following theorem states that if σ ∈ Θ̃(‖v‖), then the rejection
sampling procedure will result in a distribution statistically close to D�

σ, which is
independent of v as required. The technique only requires a constant number of
iterations before a value is output, and furthermore the output is also statistically
close for every v ′ with norm at most ‖v‖. For concrete parameters we refer to
the original work of Lyubashevsky [Lyu12].

Theorem 2.5 ([Lyu12]). Let V be a subset of Z� in which all elements have
norms less than T , and let h be a probability distribution over V . Then, for any
constant M , there exists a σ = Θ̃(T) such that the output distributions of the
following algorithms A,F are statistically close:
A:
v

$← h; z
$← D�

v,σ;
output (z, v) with probability
min

(
exp

(
−2〈z,v〉+‖v‖2

2σ2

)
, 1

)

F:
v

$← h; z
$← D�

σ;

output (z, v) with probabil-
ity 1

M

Moreover, the probability that A outputs something is exponentially close to that
of F, i.e., 1/M .
1 The work of [LPR10] showed the hardness for decisional RLWE only for rings where

xn +1 splits completely modulo q. Employing the modulus switching technique from
[BV11b], it was shown in [BLP+13] that the problem remains hard for any q.

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 313

In [Lyu12], it is also shown that if σ = αT for a positive α, then M =
e12/α+1/(2α2), the output of A is within a statistical distance of 2−100

M of the
output of F, and the probability that A outputs something is at least 1−2−100

M .

3 Commitments from Ring-LWE

In the following we describe our commitment scheme. Table 1 lists the para-
meters being used and the requirements we pose on them.

– KGen: The public commitment key pk = (a , b) is computed as a , b
$←

(Zq[x]/〈xn + 1〉)k, where q ≡ 3 mod 8 is prime, and n is a power of 2.
– Com: To commit to a message m ∈ Zq[x]/〈xn +1〉, the commitment algorithm

draws r
$← Zq[x]/〈xn + 1〉 and e

$← Dk
σe

conditioned on ‖e‖∞ ≤ n, and
outputs

c = am + br + e ,

and the opening information for c is given by (m, r, e , 1).
– Ver: Given a commitment c, a message m′, a randomness r′, as well as e ′ and

f ′, the verifier accepts, if and only if

am′ + br′ + f ′−1e ′ = c ∧ ‖e ′‖∞ <

⌊
n4/3

2

⌋

∧ ‖f ′‖∞ ≤ 1 ∧ deg f ′ <
n

2
.

The scheme above is a generalization of that by Xie et al. [XXW13], as we
allow for the additional small polynomial f in valid openings. While an honest
party can always set f = 1 when opening c and therefore the completeness
property is not affected by this relaxation, the immediate question arises whether
the given construction is still binding, i.e., whether a malicious user still cannot

Table 1. Overview of parameters used in this document.

Parameter Semantics/Restrictions

n degree of polynomial, power of 2, typical values are 29 or 210

γ integer parameter controlling the size of the modulus

q prime number, ≡ 3 mod 8 and ≥ nγ

k multiplicative overhead of commitment size

σe standard deviation of the error in the commitment scheme; Õ(n3/4)

κ integer, where 1/|C| = 1/
(

n/2
κ

)
bounds the knowledge error of our

proofs; for instance, n = 29, κ = 21 or n = 210, κ = 17 give a
knowledge error of less than 2−100

C domain of challenges; C = {d ∈ {0, 1}n : ‖d‖1 ≤ κ ∧ deg d < n/2}
ση standard deviation of the randomness for e in the protocols; Õ(n5/4)

314 F. Benhamouda et al.

open a commitment to two different messages. We give a formal security proof
in the following.

We want to stress that the above modification will be at the heart for the con-
struction of efficient zero-knowledge proofs of the contained message in Sect. 4.

Theorem 3.1. Let γ > 6 and q, k be polynomial in n such that the following is
satisfied:

q ≥ nγ ≥ n6 and k >
18γ

3γ − 16
. (1)

Then, under the RLWE-assumption, the above scheme is a computationally hiding
and perfectly binding commitment scheme with overwhelming probability over the
choices of the public commitment key.

Proof. Correctness is trivial to see.

Computational Hiding. First note that by, e.g., [Lyu12, Lemma 4.4], the prob-

ability that e
$← Dk

σe
has ‖e‖∞ > n is negligible, and thus the conditional

distribution of e in Com is statistically close to a discrete Normal distribution.
Now, by the RLWE-assumption, br + e is pseudorandom, and thus so is c.

Binding. For the binding property, we have to show that

c = am′ + br′ + f ′−1e ′ = am′′ + br′′ + f ′′−1e ′′

implies that m′ = m′′, if ‖e ′‖∞, ‖e ′′‖∞ < n4/3/2, ‖f ′‖∞, ‖f ′′‖∞ ≤ 1, and
deg f ′,deg f ′′ < n/2, or, alternatively, that

am + br = f ′−1e ′ − f ′′−1e ′′

implies that m = 0 with overwhelming probability over the choices of a , b.
Assume by contradiction that this holds for some fixed m, r, e′, e′′, f ′, f ′′ with

m �= 0 and e′, e′′, f ′, f ′′ being sufficiently small. Because of the assumption on n
and q, we have that xn+1 splits into two irreducible factors α(x), β(x) [SSTX09,
Lemma 3]. Now, since m �= 0 mod (xn + 1), we also have that m �= 0 mod α(x)
or m �= 0 mod β(x), and thus a im takes at least qn/2 different values. We then
have that

Pr

⎡
⎢⎣
⎛
⎜⎝
a1m + b1r

...
akm + bkr

⎞
⎟⎠ =

⎛
⎜⎝

f ′−1e ′
1 − f ′′−1e ′′

1

...
f ′−1e ′

k − f ′′−1e ′′
k

⎞
⎟⎠ : a , b

$← (Zq[x]/〈xn + 1〉)k

⎤
⎥⎦ ≤ 1

qkn/2
.

Now, taking a union bound over all m, r, e′, e′′, f ′, f ′′ we get that the overall
probability that there exists such an m �= 0 is at most

q2n(n4/3)2kn32n/2

qkn/2
≤ q2n(q4/(3γ))2kn32n/2

qkn/2
= 3nq(2+(8

3γ − 1
2)k)n.

This is negligible in n if 3q2+(8/(3γ)−1/2)k ≤ 1/2, which holds if the requirements
from (1) are satisfied. ��

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 315

4 Zero-Knowledge of Proofs of Knowledge

In this section we first present a protocol for proving knowledge of valid openings
of commitments as defined in the previous section. We then give protocols which
allow one to prove that the messages m1,m2,m3 contained in commitments
c1, c2, c3 satisfy m3 = m1 + m2 or m3 = m1m2, respectively. Together this
allows one to prove knowledge of arbitrary algebraic circuits.

In this entire section we let (aKGen, aCom, aVer) be an arbitrary auxiliary
string commitment scheme. For simplicity, the reader may think of it as the
scheme from Sect. 3, or as well just as a random oracle. We write (caux, daux) =
aCom(s), where caux is the commitment and daux is the opening of caux.

4.1 Preimage Proofs

Protocol 4.1 is a Σ′
2-protocol for showing knowledge of a valid opening for a single

commitment. It is honest-verifier zero-knowledge whenever the commitment was
honestly computed, and is sound with respect to valid openings. In particular,
whenever a potentially malicious prover can make the verifier accept with more
than negligible probability, it must know a valid opening of c. We stress that
this gap between the zero-knowledge and the soundness property is in line with
previous protocols, e.g., for discrete logarithms in groups of hidden order [DF02],
where the prover is also guaranteed security only for a subset of valid openings.
However, this gap is meaningful, as our commitment scheme is still perfectly
binding also for the larger set of valid openings, and so the proof still guarantees
knowledge of the unique valid opening of c.

Theorem 4.2. If the auxiliary commitment scheme is perfectly binding, then
Protocol 4.1 is an honest-verifier zero-knowledge proof of knowledge with knowl-
edge error 1/

(
n/2
κ

)
for the following relations:

RLWE = {((a, b, c), (m, r, e)) : c = am + br + e ∧ ‖e‖∞ ≤ n} and

R′
LWE =

{
((a, b, c), (m, r, e, f)) : c = am + br + f−1e ∧ ‖e‖∞ ≤ �n4/3/2�,

‖f‖∞ ≤ 1,deg f <
n

2

}
.

Proof. The theorem is proved by showing that the protocol is a Σ′
2-protocol

for the given relation. The claim then follows directly from the discussion in
Sect. 2.2.

The 3-move-form is obvious.

Completeness. An honest prover responses with a probability close to 1
M . In this

case we get:

t + dc = aμ + bρ + η + dam + dbr + de

= a(μ + dm) + b(ρ + dr) + (η + de) = asm + bsr + se .

316 F. Benhamouda et al.

P[c;m, r, e] V[c]

μ, ρ
$← Zq [x]/〈xn + 1〉

η
$← Dk

ση

t = aμ + bρ + η

(caux, daux) = aCom(t)
caux �

d
$← C

d�

sm = μ + dm

sr = ρ + dr

se = η + de

abort with probability exp

(
−2〈se ,de〉+‖de‖2

2σ2
η

)

daux, t , sm, sr, se �

aVer(caux, daux, t)
?
= accept

t + dc
?
= asm + bsr + se

‖se‖∞
?
≤ �n4/3/4�

Protocol 4.1: Simple preimage proof. The verifier accepts, iff all conditions marked
with “?” are satisfied.

Furthermore, we have that with overwhelming probability

‖se‖∞ = ‖η + de‖∞ ≤ ‖η‖∞ + κ‖e‖∞ ≤ �n4/3/4�,

as the standard deviations of Dσe
,Dση

are significantly smaller than n4/3.

Special Soundness. Let the extractor E be given two accepting protocol tran-
scripts (caux, d′, (d′

aux, t
′, s′

m, s′
r, s

′
e)) and (caux, d′′, (d′′

aux, t
′′, s′′

m, s′′
r , s′′

e)), where
d′ �= d′′. By the perfect binding property of aCom we get that t ′ = t ′′ = t . By
subtracting the verification equations performed by the verifier we then obtain:

Δdc = aΔm + bΔr + Δe ,

where we set Δd = d′ − d′′, Δm = s′
m − s′′

m, Δr = s′
r − s′′

r and Δe = s′
e − s′′

e .
As deg Δd < n/2, we also have that Δd is invertible in Rq. We get the witness
(Δ−1

d Δm,Δ−1
d Δr,Δd,Δe), where ‖Δd‖∞ ≤ 1 and ‖Δe‖ ≤ �n4/3/2�.

Honest-Verifier Zero-Knowledge. Taking a challenge d as an input, the simulator
first draws uniformly random elements s′

m, s′
r

$← Zq[x]/〈xn + 1〉, and s′
e to be

⊥ with probability 1 − 1/M and distributed according to Dση
with probability

1/M . If s′
e �= ⊥, it computes (c′

aux, d
′
aux) = aCom(t ′ = as′

m + bs′
r + s′

e − dc) and

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 317

outputs (c′
aux, d, (d′

aux, t
′, s′

m, s′
r, s

′
e)). (Note that s′

i and d uniquely determine t ′

in the protocol and in the simulation.) Otherwise the simulator sets (c′
aux, d

′
aux) =

aCom(0) and outputs (c′
aux, d,⊥).

It follows from Theorem 2.5 that the distribution conditioned on the prover
not outputting ⊥ is indistinguishable from real protocol runs. From the same
theorem, it follows that aborts occur with probability 1−1/M for every value of
de . In case of an abort, the indistinguishability follows from the hiding property
of aCom and the fact that for every d, there is an equal chance of an abort
happening. ��
Lemma 4.3. If the auxiliary commitment scheme is a trapdoor commitment
scheme, then Protocol 4.1 is a concurrently secure zero-knowledge argument of
knowledge with knowledge error 1/

(
n/2
κ

)
for the relation specified in Theorem 4.2.

The proof is similar to Damg̊ard [Dam00] who gives a generic construction to
achieve concurrent ZK for any Σ-protocol. However, our technique had a slightly
different origin as our protocols are inherently based on the auxiliary commit-
ment scheme to achieve honest-verifier zero-knowledge. The lemma literally also
applies for the subsequent protocols.

On the Abort Probability. From Theorem 2.5 and [Lyu12] it follows that the
probability that the prover does not abort is exponentially close to 1

M , where
M ∈ O(exp(‖de‖

ση
)). Thus, on average M repetitions of the protocol are required.

By choosing ση sufficiently large, M can be made arbitrarily small at the cost
of requiring larger parameters, see also Lyubashevsky [Lyu12].

Number of Rounds. By nesting the executions, the expected number of rounds
until a successful protocol run is about 2M . Alternatively, when only aiming for
arguments of knowledge, one can also use the idea of Damg̊ard et al. [DPSZ12],
who compute many independent first messages and send a Merkle-tree commit-
ment of those in the first step. While on average requiring more computation on
the prover side, this approach gives a constant 3-round protocol.

4.2 Proving Linear Relations

Protocol 4.4 allows one to prove knowledge of messages m1,m2,m3 contained
in c1, c2, c3, where the mi additionally satisfy a linear relation of the form
m3 = x1m1 + x2m2 for arbitrary public xi ∈ Zq[x]/〈xn + 1〉. The construction
uses a standard technique: Three instances of Protocol 4.1 are run in parallel for
m1,m2,m3 using the same challenge, but instead of choosing the randomness μ3

for m3 in the prover’s first step at random, it is computed such that μ1, μ2, μ3

satisfy the claimed linear relation. Verifying now whether the smi
also satisfy

that linear relation is enough for the verifier to be guaranteed that the supplied
messages have the correct form.

318 F. Benhamouda et al.

P[ci;mi, ri, ei] V[ci]

μ1, μ2, ρ1, ρ2, ρ3
$← Zq [x]/〈xn + 1〉

μ3 = x1μ1 + x2μ2

η1, η2, η3
$← Dk

ση

ti = aμi + bρi + ηi for i = 1, 2, 3

(caux, daux) = aCom(t1, t2, t3)
caux �

d
$← C

d�

smi = μi + dmi for i = 1, 2

sri = ρi + dri for i = 1, 2, 3

sei = ηi + dei for i = 1, 2, 3

abort-checks for sej

daux, ti, smi , sri , sei �

aVer(caux, daux, (t1, t2, t3))
?
= accept

sm3 = x1sm1 + x2sm2

ti + dci
?
= aismi + bsri + sei for i = 1, 2, 3

sei

?
≤ �n4/3/4� for i = 1, 2, 3

Protocol 4.4: Proving linear relations. The abort-checks are as in Protocol 4.1 and
Theorem 2.5.

Theorem 4.5. If the auxiliary commitment scheme is perfectly binding, then
Protocol 4.4 is an honest-verifier zero-knowledge proof of knowledge with knowl-
edge error 1/

(
n/2
κ

)
for the following relations:

RLLWE =

{

((a, b, x1, x2, c1, c2, c3), (m1,m2,m3, r1, r2, r3, e1, e2, e3)) :

3∧

i=1

(ci = ami + bri + ei ∧ ‖ei‖∞ ≤ n) ∧ m3 = x1m1 + x2m2

}

,

and R′
LLWE is defined accordingly.

Proving Inhomogeneous Relations. As for, e.g., DLOG based protocols, inhomo-
geneous relations like m3 = x1m1 + x2m2 + x3 can be proved by first removing
the inhomogeneity: If ci is a commitment to mi, both parties first compute
c′
3 = c3 − ax3, and the prover sets m′

3 = m3 − x3. The parties then perform
Protocol 4.4 for c1, c2, c

′
3 and m1,m2,m

′
3 and the homogeneous linear relation

m′
3 = x1m1 + x2m2.

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 319

4.3 Proving Multiplicative Relations

In this section we show how one can prove knowledge of mi, ri, e i, i = 1, 2, 3
such that ci = ami + bri + e i, and additionally m3 = m1 · m2. We begin by
giving the intuition behind the protocol.

(i) The prover first proves knowledge of the contents of c1, c2, c3 by running
3 instances of Protocol 4.1 in parallel.

(ii) Similar to Protocol 4.4, the verifier will check the multiplicative relation
by combining the responses for m1,m2,m3 accordingly. Unfortunately, in
contrast to linear proofs where we have sm1 + sm2 = sm3 for an honest
prover, we have that sm1sm2 �= sm3 . We tackle this problem by letting
the prover commit to the arising cross-terms μ1m2 + μ2m1 and μ1μ2 in a
second part. The according commitments are denoted by c+ and c×. Again
using two instances of Protocol 4.1, the prover now proves that it knows
the openings of those two commitments.

(iii) The third part of the proof now establishes the multiplicative relation. It is
based on the following observation: from (i) and (ii) it follows that:

c̃ = asm1sm2 − d2c3 − c× − dc+

= a
(
μ1μ2 − m× + d(μ1m2 + μ2m1 − m+) + d2(m1m2 − m3)

)

+ b(−d2r3 − r× − dr+) + (−d2e3 − e× − de+),

for some m×,m+. Note here that the error term (−d2e3 − e× − de+) of c̃
has small norm, because e3, e×, e+ have small norm and ‖d‖1 ≤ κ.
Now, for an honest prover it can easily be seen that c̃ = b r̃ + ẽ for r̃ and
ẽ as defined in the protocol, i.e., c̃ is a commitment to 0. On the other
hand, if a prover can prove that for at least three different challenges d, the
multiplicative relation follows. This can be seen as follows. If

μ1μ2 − m× + d(μ1m2 + μ2m1 − m+) + d2(m1m2 − m3) = 0,

for three different values of d, this coefficient must be the zero-polynomial
(in the indeterminate d), and thus m3 = m1m2. This is because a quadratic
polynomial in Rq can only have at most two distinct roots in C. The proof
of this claim is straightforward and thus omitted.

Theorem 4.6. If the auxiliary commitment scheme is perfectly binding, then
Protocol 4.7 is an honest-verifier zero-knowledge proof of knowledge with knowl-
edge error 2/

(
n/2
κ

)
for the following relations:

RMLWE =

{

((a, b, x1, x2, c1, c2, c3), (m1,m2,m3, r1, r2, r3, e1, e2, e3)) :

3∧

i=1

(ci = ami + bri + ei ∧ ‖ei‖∞ ≤ n) ∧ m3 = m1m2

}

,

and R′
MLWE is defined accordingly.

320 F. Benhamouda et al.

P[ci;mi, ri, ei] V[ci]

(i) μ1, μ2, μ3, ρ1, ρ2, ρ3
$← Zq [x]/〈xn + 1〉

η1, η2, η3
$← Dk

ση

ti = aμi + bρi + ηi for i = 1, 2, 3

(ii) m+ = μ1m2 + μ2m1

m× = μ1μ2

r+, r×
$← Zq [x]/〈xn + 1〉

e+, e×
$← Dk

σe

c+ = am+ + br+ + e+

c× = am× + br× + e×
μ+, μ×, ρ+, ρ×

$← Zq [x]/〈xn + 1〉
η+, η×

$← Dk
ση

t+ = aμ+ + bρ+ + η+

t× = aμ× + bρ× + η×

(iii) ρ̃
$← Zq [x]/〈xn + 1〉

η̃
$← Dk

ση

t̃ = bρ̃ + η̃

(caux, daux) = aCom(t+, t×, ti, t̃ , c+, c×)
caux �

d
$← C

d�

(i) + (ii) smi = μi + dmi for i = 1, 2, 3,+, ×
sri = ρi + dri for i = 1, 2, 3,+, ×
sei = ηi + dei for i = 1, 2, 3,+, ×

(iii) sr̃ = ρ̃ + dr̃

ẽ = −d2e3 − e× − de+

r̃ = −d2r3 − r× − dr+
sẽ = η̃ + dẽ

abort-checks for sẽ , sej

daux, t+, t×, ti, t̃ , c+, c×, smi , sri , sei , sr̃, sẽ�

aVer(caux, daux, (t+, t×, ti, t̃ , c+, c×))
?
= accept

(i) + (ii) ti + dci
?
= aismi + bsri + sei for i = 1, 2, 3,+, ×

sei

?
≤ �n4/3/4� for i = 1, 2, 3,+, ×

(iii) c̃ = asm1sm2 − d2c3 − c× − dc+

t̃ + dc̃
?
= bsr̃ + sẽ

sẽ
?
≤ �n4/3/4�

Protocol 4.7: Proving multiplicative relations. The abort-checks are as in Protocol
4.1 and Theorem 2.5

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 321

5 Conclusion

We presented a simple and efficient string commitment scheme whose security is
based on the hardness of the RLWE-problem, or, equivalently, on the hardness of
solving certain problems on ideal lattices. Additionally we gave constructions for
zero-knowledge proofs of knowledge of valid openings of such commitments, and
for proving arbitrary relations among such messages. By achieving a negligible
knowledge error in our protocols, we solve an open problem stated in previous
work, e.g., Jain et al. [JKPT12].

A Proofs

A.1 Proofs of Theorem 4.5

The theorem is proved by showing that the protocol is a Σ′
2-protocol for the

given relation. The claim then follows directly from the discussion in Sect. 2.2.
The proof is essentially a straightforward adaption of that of Theorem 4.2.

Completeness. This follows directly from the completeness of Protocol 4.1 and:

x1sm1 + x2sm2 = x1(μ1 + dm1) + x2(μ2 + dm2)
= (x1μ1 + x2μ2) + d(x1m1 + x2m2) = μ3 + dm3 = sm3 ,

Special Soundness. Given two accepting transcripts, we can extract witnesses
(Δmi

,Δri
,Δd,Δei

) for ci (i = 1, 2, 3) analogously to Theorem 4.2. The only
thing that remains to show is that the linear relation Δm3 = x1Δm1 + x2Δm2 is
indeed satisfied. This can be seen as follows:

Δm3 = s′
m3

− s′′
m3

= (x1s
′
m1

+ x2s
′
m2

) − (x1s
′′
m1

+ x2s
′′
m2

)
= x1(s′

m1
− s′′

m1
) + x2(s′

m2
− s′′

m2
) = x1Δm1 + x2Δm2 .

Special Honest-Verifier Zero-Knowledge. The simulator is essentially given by
three independent instances of that for Protocol 4.1, except that s′

m3
= x1s

′
m1

+
x2s

′
m2

. The correctness of this simulation is shown by a standard argument, cf.,
e.g., [BGK+09,JKPT12].

A.2 Proofs of Theorem 4.6

The theorem is proved by showing that the protocol is a Σ′
3-protocol for the

given relation. The claim then follows directly from the discussion in Sect. 2.2.

Completeness. It is easy to see that V accepts with overwhelming probability
when P does not abort.

Special Soundness. This follows from the soundness of Protocol 4.1 and 4.4 and
the above considerations.

322 F. Benhamouda et al.

Special Honest-Verifier Zero-Knowledge. The intuition is the following: By the
hiding property of our commitment scheme, c+ and c× computationally do not
reveal any information about the secrets. Furthermore, as Protocol 4.1 is zero-
knowledge, sm1 , sm2 and consequently c̃ do not reveal anything to the verifier
either. The claim then follows from the proof of Theorem 4.2.

More formally, the simulator first computes c̃′ as a commitment to 0, and
similarly for c′

+. It then runs the simulator for c1, c2, c3 and, assuming that no
aborts happened, computes c′

× = c̃′ + d2c3 − as′
m1

s′
m2

+ dc+. It now runs the
simulator for c′

×, c′
+, c̃′, and, again assuming no aborts, computes an auxiliary

commitment, and outputs a transcript by appropriately arranging the messages.
If in any step an abort occurred, it sets (c′

aux, d
′
aux) = aCom(0) and returns

(c′
aux, d,⊥). It can now be shown that the simulator outputs transcripts that are

computationally indistinguishable from real protocol runs. Note therefore that
even though the error distributions of c̃′ and c̃ (and of c′

× and c×, respectively)
are not identical, the resulting commitments cannot be distinguished under the
RLWE-assumption.

References

[AJLA+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012)

[BCK+14] Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.:
Better zero-knowledge proofs for lattice encryption and their application
to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014)

[BDP00] Boyar, J., Damg̊ard, I., Peralta, R.: Short non-interactive cryptographic
proofs. J. Cryptology 13(4), 449–472 (2000)

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer,
Heidelberg (1993)

[BGK+09] Bangerter, E., Ghadafi, E., Krenn, S., Sadeghi, A.-R., Schneider, T.,
Smart, N.P., Tsay, J.-K., Warinschi, B.: Final Report on Unified Theoret-
ical Framework of Efficient Zero-Knowledge Proofs of Knowledge. CACE
Project Deliverable (2009)

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classi-
cal Hardness of Learning with Errors. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) STOC 2009, pp. 575–584. ACM (2013)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 719–737. Springer, Heidelberg (2012)

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: FOCS (2011)

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 323

[CD97] Cramer, R., Damg̊ard, I.: Linear zero-knowledge - a note on efficient zero-
knowledge proofs and arguments. In: Leighton, F.T., Shor, P.W. (eds.)
STOC 97, pp. 436–445. ACM (1997)

[CD98] Cramer, R., Damg̊ard, I.B.: Zero-knowledge proofs for finite field arithmetic
or: can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)

[CD09] Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge
protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–
191. Springer, Heidelberg (2009)

[CKL+14] Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G.,
Pedersen, M.Ø.: Formal treatment of privacy-enhancing credential sys-
tems. Cryptology ePrint Archive, Report 2014/708 (2014). http://eprint.
iacr.org/

[Cra97] Cramer, R.: Modular Design of Secure yet Practical Cryptographic Proto-
cols. Ph.D. thesis, CWI and University of Amsterdam (1997)

[Dam00] Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
418–430. Springer, Heidelberg (2000)

[Dam10] Damg̊ard, I.: On Σ-Protocols, Lecture on Cryptologic Protocol Theory,
Faculty of Science. University of Aarhus (2010)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012)

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

[DF02] Damg̊ard, I.B., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

[DGOW95] Damg̊ard, I.B., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier
vs dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg
(1995)

[Fis01] Fischlin, M.: Trapdoor Commitment Schemes and Their Applications.
Ph.D. thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main
(2001)

[FO97] Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove
modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (eds.) STOC 2009, pp. 169–178. ACM (2009)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: STOC, pp. 291–304 (1985)

[GMW86] Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements
in zero-knowledge and a methodology of cryptographic protocol design.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987)

http://eprint.iacr.org/
http://eprint.iacr.org/

324 F. Benhamouda et al.

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Dwork, C. (eds.) STOC 2008, pp.
197–206. ACM (2008)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008)

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) STOC
2007, pp. 21–30. ACM (2007)

[JKPT12] Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient
zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer,
Heidelberg (2012)

[KMO90] Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge
proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 545–
546. Springer, Heidelberg (1990)

[KP98] Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof
system for NP with general assumptions. J. Cryptology 11(1), 1–27 (1998)

[KR06] Kalai, Y.T., Raz, R.: Succinct non-interactive zero-knowledge proofs with
preprocessing for LOGSNP. In: FOCS 2006, pp. 355–366. IEEE Computer
Society (2006)

[KV09] Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-
based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009)

[LNSW13] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs
of knowledge for the ISIS problem, and applications. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer,
Heidelberg (2013)

[LP11] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–
339. Springer, Heidelberg (2011)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

[Lyu09] Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–
755. Springer, Heidelberg (2012)

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC 2005, pp. 84–93. ACM (2005)

[Rüc10] Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg
(2010)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)

Efficient Zero-Knowledge Proofs for Commitments from Ring-LWE 325

[Ste93] Stern, J.: A new identification scheme based on syndrome decoding. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer,
Heidelberg (1994)

[XXW13] Xie, X., Xue, R., Wang, M.: Zero knowledge proofs from Ring-LWE. In:
Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol.
8257, pp. 57–73. Springer, Heidelberg (2013)

Making Any Identity-Based Encryption
Accountable, Efficiently

Aggelos Kiayias1 and Qiang Tang2(B)

1 National and Kapodistrian University of Athens, Athens, Greece
aggelos@di.uoa.gr

2 University of Connecticut, Storrs, USA
qtang84@gmail.com

Abstract. Identity-Based Encryption (IBE) provides a compelling solu-
tion to the PKI management problem, however it comes with the serious
privacy consideration that a trusted party (called the PKG) is required to
generate (and hence also know) the secret keys of all users. This inher-
ent key escrow problem is considered to be one of the major reasons
hindering the wider utilization of IBE systems. In order to address this
problem, Goyal [20] introduced the notion of accountable authority IBE
(A-IBE), in which a judge can differentiate the PKG from the user as the
source of a decryption software. Via this “tracing” mechanism, A-IBE
deters the PKG from leaking the user’s secret key and hence offers a
defense mechanism for IBE users against a malicious PKG.

All previous works on A-IBE focused on specialized constructions try-
ing to achieve different properties and efficiency enhancements. In this
paper for the first time we show how to add accountability to any IBE
scheme using oblivious transfer (OT), with almost the same ciphertext
efficiency as the underlying IBE. Furthermore, we extend our generic con-
struction to support identity reuse without losing efficiency. This prop-
erty is desirable in practice as users may accidentally lose their secret
keys and they -naturally- prefer not to abandon their identities. How to
achieve this property was open until our work. Along the way, we first
modify the generic construction and develop a new technique to provide
public traceability generically.

1 Introduction

Identity-Based Encryption (IBE) was introduced by Shamir [31], to remove the
need for maintaining a certificate based public-key infrastructure (PKI). Long
time after the concept was proposed, Boneh and Franklin constructed the first
practical IBE [8] in the random oracle model [4]. Since then, IBE has gotten
more attention and a lot of alternative schemes have emerged with an extended
set of properties, cf. [5,6,11,19,22,29,32,33].

Although significant progress has been made in constructing secure and effi-
cient IBE schemes, a critical problem of IBE is that a trusted authority, called
PKG, is required to generate secret keys for all users. The possibility of the cor-
ruption of this authority (or just her temporary misbehavior due to an insider
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 326–346, 2015.
DOI: 10.1007/978-3-319-24174-6 17

Making Any Identity-Based Encryption Accountable, Efficiently 327

attack) is considered one of the most important reasons hindering the deploy-
ment of IBE systems in practice [1,18,21]. The problem is inherent since there
is no user-side secret that is used when generating the secret key corresponding
to an arbitrarily formed identity; it follows that there is no built-in incentive for
the PKG in a standard IBE system to protect the users’ secret information.

Beyond the obvious privacy problem (the unavoidable fact that the PKG
can decrypt all users’ ciphertexts) there is also a more serious attack that can
take place: the PKG may share the users’ secret keys. One may address this by
arguing that such malicious behavior can be detectable by the user: for instance,
a decryption program B leaked to the public (e.g., uploaded on a public forum)
can be noticed by the user. In such case, the user could conceivably bring the
program to court and sue the PKG, thus the PKG would be deterred from such
behavior. However, notice that both user and PKG are capable of producing B
thus the device itself can not be used as conclusive proof about who is at fault.

In order to make the above detect-then-punish mechanism effective, Goyal
introduced the concept of accountable authority IBE, (A-IBE in short) [20],
where a convincing proof can be provided from which a judge can make a decision
about who is at fault. In order to achieve this characteristic, every identity must
be corresponded with super-polynomially many secret keys, and the PKG and
the user jointly generate a secret key for the user so that the PKG does not
know which key is chosen by the user. Using the secret key received by the user,
any third party, a judge for example, can tell whether the decryption device
is made from the user secret key or not, thus the judge (and the public) can
identify unequivocally the creator of the device. A number of works followed up
this seminal result, [21,25,26,28,34], further refining the notion of A-IBE.

Still, the adoption of A-IBE in practice is hindered by a couple of facts. First,
many constructions are inefficient (in the sense that they require linear in the
security parameter number of group elements, cf. Fig. 1) or that the designs are
incompatible with existing practical deployments such as RFC 5091 [12]. Second,
when a user accidentally loses his key, in all existing A-IBE schemes, the user and
the PKG have to discard this identity and generate a new key for the user using
a different identity (otherwise, it enables malicious users to frame the PKG).
This artifact brings users annoying inconvenience. These put forth the main
motivations in our work: is it possible to add accountability to any existing (that
is potentially already deployed, e.g., RFC 5091) IBE system, with a minimum
cost? furthermore, we ask whether such generic transformation can be extended
to allow identity reuse, without losing efficiency? If such transformation exists,
users may choose to “upgrade” their IBE scheme to be accountable without
requiring a modification to the basic algorithms of the underlying IBE.

Our Contributions. In this work, we address both problems listed above. First,
we propose a generic construction of an A-IBE (in the so-called weak black-box
model with full security against malicious users, see definition in Appendix A)
that uses any existing IBE in a black-box way. And this generic construction
has ciphertext size only 2 times the underlying IBE ciphertext size. (we call this
construction S-I). The key observation behind our construction is that users can

328 A. Kiayias and Q. Tang

choose from a set of secret-keys that are based on an extended form of their
identity. When encrypting messages it is possible for the sender to use only two
ciphertexts to guarantee an honest user to decrypt. However, it is also possible to
generate a set of tracing ciphertexts that can reveal part of the “fingerprint” of
the secret-key that was assigned obliviously to the user by the PKG. The presence
of the partial fingerprint in a user decoder that is found publicly incriminates
the user, otherwise, incriminates the PKG.

We then consider how to allow identity reuse. This property is not
known whether achievable before, even with specifically tailored constructions. We
achieve it while maintaining the generic nature and the small size ciphertext. The
main challenge for achieving identity reuse in A-IBE setting is that a malicious user
can obtain multiple secret keys corresponding to the same identity by claiming to
the PKG that she lost the key. Such malicious user could then implement a pirate
box B using one key, and reveal another key to the judge. A secret key tracing algo-
rithmmayerroneously accuse thePKG,as, bydefinition, thekeyused to implement
B is different to the key that the user is currently using.

Our strategy is to add public traceability to our generic construction that
will enable the judge to differentiate among all the secret keys that were ever
obtained by a user for the same identity. Note that in S-I, part of the user
fingerprint is recovered, if there is a public reference for the user fingerprint, it
might be possible for the judge to check whether the recovered string matches.
In order to implement this idea, we improve the generic construction S-I to allow
the tracing algorithm to recover the whole “fingerprint” while maintaining the
ciphertext size still to be small (at most logarithmic overhead, and we call it
S-II). With this new feature of S-II we developed, it is possible to deposit the
fingerprint (using a one way function) that the user chooses for selecting the
secret key to the PKG in a secure way so that: (i) it enables the judge to use
a public tracing key T to determine whether a recovered fingerprint matches
the fingerprint, and (ii) it prevents a malicious PKG from producing a pirate
box without being traced with the help of T . The main technical part is to
design a proper one way function for the secure deposit of the bitstring, together
with an efficient zero-knowledge proof for the consistency between the privately
deposited fingerprint and that used in the OT protocol, bit by bit.

The intuition for S-II follows from the observation that if the “fingerprint” is
generated from an error correcting code, a linear fraction of it could be enough
to reveal the whole string. With a careful probabilistic analysis, we see that
with slightly longer ciphertexts, one is able to retrieve a larger fraction of the
fingerprint from a pirate box. (this new mechanism also allows the length of the
fingerprint to be reduced asymptotically, so as the secret key size). This feature
of S-II makes it a steppingstone for further allowing identity re-use and pub-
lic traceability. Our A-IBE tracing mechanisms are inspired by previous works
related to traitor tracing [10] and leakage-deterring cryptosystems [24].

With such public traceability, the scheme can be further extended to support
identity reuse. Each identity now will have multiple extended forms (instead of
one in S-II), and for each extended form indexed by a state, the user can use

Making Any Identity-Based Encryption Accountable, Efficiently 329

Fig. 1. Comparisons of all existing A-IBEs, ciphertext size means the number of group
elements; ‘s’ means selective, ‘a’ means adaptive; w, bb0, bb1 mean white box, weak
black-box and full black-box traceability respectively; S-I, S-III are our constructions.

an independent string as a fingerprint to request one secret key. During the
i-th key generation protocol for an identity, the PKG will store a public tracing
key Ti and the updated state about the current version of the extended form
for each identity in a public directory. The encryption algorithm will use the
current version of the extended form of identity. The tracing algorithm will run
on all versions of the extended form of the identity, extract (potentially multiple)
fingerprints; subsequently, it will check whether they match the public tracing
keys. In this way, the tracing algorithm can decide that the key inside the pirate
box is the one the user is currently using or whether it is one of the keys claimed
to be lost, or is a key originating from the PKG. A malicious user can never
frame the PKG using a key claimed to be lost, and a PKG can not evade the
tracing algorithm if she ever leaks a decryption box for the user identity (even
for previous versions of extended form of identity).

Note that after adding public traceability and id-reuse to our generic con-
struction, the ciphertext efficiency and the generic nature are still the same as
in S-II. The model that T has to be stored for each user is the same as the
only existing paper [25] (that was based on Gentry IBE [19]) providing public
traceability.1 Finally it is worth to point out that our construction allows these
two properties to be optional services by the PKG and the user may opt-in or
opt-out to such properties at will when she requests a key from the PKG.

We remark that our generic transformations can go beyond IBE and can be
easily adapted to apply to more advanced systems like attribute based encryption
[22,29]. The performance comparison of all A-IBE schemes (including ours) is
summarized in Fig. 1.

Related Work. In [20], Goyal proposed the notion of A-IBE and gave two con-
structions. The first one is traceable only in the white-box model (requires the key
material of the pirate box) while the second one is in the weak black-box model.
We call those constructions G-I, G-II and both have ciphertext size that includes a
linear number of group elements. In the followingwork of [21],Goyal et al. proposed
a construction having traceability in the full black-box model, but at the price of
having (i) secret key and ciphertext size that has linear in the security parameter

1 In fact, it is not hard to see (explained in Sect. 3.1) that the size of the public tracing
key has to grow linearly with the number of users.

330 A. Kiayias and Q. Tang

number of group elements, (ii) security against malicious users only in a selective
model (where the adversary needs to commit to its move ahead at the beginning of
the game). Libert and Vergnaud [26] made an improvement on G-I, and they gave
anA-IBEwith constant group elements in the ciphertext that is proven traceable in
the weak black box model. Sahai and Seyalioglu [28] improved the security against
dishonest users, and achieved full security against dishonest users, but their con-
struction still has a linear size ciphertext. Lai et al. [25] proposed the first scheme
with public traceability that the authority is required to store a public tracing key
for each user which is later used to generate tracing ciphertext, and it is also trace-
able in the weak black-box model. Our public traceability can be based on any IBE
anduses adifferent tracing technique thatwe candirectly comparewhether a recov-
ered fingerprint matches the one contained in the public tracing key. Concurrent
to our work an E-print technical report [34] proposed an A-IBE with traceability
in the full black-box model, adaptive security against malicious user and constant
size ciphertext under non-standard assumptions. All these works rely on a highly
specific structure, specifically, Gentry IBE [19] as in [20,25,26,34] or fuzzy IBE [29]
as in [20,21,28]; their techniques for accountability do not adapt in other settings
straightforwardly (and specifically none can be applied to current real world IBE’s
such as those of RFC5091 directly). Also, none of those works allows public trace-
ability (except [25]) or identity reuse.

There are also other proposals to deal with the key escrow problem in IBE. In
[8], Boneh and Franklin gave a simple solution where multiple authorities distrib-
utively produce the PKG master secret key. However, in principle, those PKGs
still may collude to leak user’s secret leaving the user defenseless; Al-Riyami
and Paterson proposed the concept of certificateless public key cryptography
[1], and attempted to combine both the advantages of certificate-based PKI and
IBE. The authority only has a partial secret key k1, and it jointly generates
secret key together with the user who has her own secret k2. However, part of
the public key must be in a specific form corresponding to k2 and thus it can not
be as expressive as IBE. Hence such systems may be of more narrow applica-
bility compared to proper IBE schemes. Au et al. [2] proposed the notion of
retrievability that from two secret keys of a user, one can compute the master
secret key. The notion of retrievability is interesting but it is achieved only in the
white box model. Chow [14] considers the notion of anonymous ciphertext indis-
tinguishability, which requires that the PKG cannot learn the recipient identity
from a ciphertext, thus hoping that the authority is not able to figure out which
secret key to use to decrypt. This is an interesting notion as well, but only mean-
ingful in an IBE system with an extremely large number of users; furthermore
it does not protect against a PKG that targets a specific user and publishes the
decryption algorithm (which is the main defense objective of A-IBE).

2 Generic Construction of A-IBE with Constant Size
Ciphertext

Due to space limit, we refer the definitions and security models for A-IBE to
Appendix A. In this section, we give a generic construction of A-IBE secure in

Making Any Identity-Based Encryption Accountable, Efficiently 331

the weak dishonest-PKG model from any IBE scheme using 1-out-of-2 OT, and
it only has ciphertext size two times the underlying IBE scheme.

The intuition behind this generic transformation is that for each identity ID,
there are exponentially many secret keys, each of which has a unique “finger-
print”. Each user will select his key with a random “fingerprint” using an OT
protocol. Given only an oracle access to a decryption box B implemented using
one key, part of the fingerprint can be retrieved. When a decryption box is found,
the recovered partial “fingerprint” is able to reveal the source of the box.

Specifically, 2� identities (ID||1||0, ID||1||1), . . ., (ID||�||0, ID||�||1) are all
considered as the same user with identity ID.2 During KeyGen, for each pair
of secret keys corresponding to identities ID||i||0, and ID||i||1, user randomly
selects one of them using a 1-out-of-2 OT.3 The “fingerprint” of the user selected
key corresponds to the bit string of length � he uses in the OT protocols. Enc
randomly selects an index r, and simply encrypts the same message under both
ID||r||0, ID||r||1, thus sender does not need to know the fingerprint of the user
with ID. Note the user has one key per location, i.e., one key corresponding to
the identity ID||r||0 or ID||r||1 for each r, thus he can decrypt. Also Trace
can attempt to recover each bit of the fingerprint from a decryption box by
feeding ciphertexts containing different messages for the location, i.e., for an
index i, c0, c1 are fed, where cb =Enc(ID||i||b,mpk,mb). The semantic security
of the underlying IBE suggests that the box will not distinguish these tracing
ciphertexts from regular ciphertexts, and the answer mb reveals the i−th bit of
the user fingerprint. Whenever λ bits are recovered, and all of them equal to the
corresponding bits in the user “fingerprint”, the user will be accused, otherwise
the PKG will be accused. Essentially, a malicious PKG can evade the tracing
algorithm only if she guesses correctly λ random bits.

One may notice that a malicious user may put as few keys as possible, e.g.,
only one key corresponding to ID||t||bt for some t, into a pirate box B and thus
for the other indices, there is no hope to recover the fingerprint bits. However,
since B has to provide some minimum functionality, i.e., answering correctly with
some noticeable probability δ, (formally, Pr[B(Enc(m, ID,mpk)) = m] ≥ δ), if
we choose � large enough (λ/δ through our probabilistic analysis), there must
be at least λ keys contained in the pirate box to maintain the δ-correctness.
In particular, we can argue that there exist at least λ indices, the box decrypts
ciphertext generated using those indices, with probability at least δ/λ. Then as
elaborated above, once a key is used, we can recover the corresponding bit.

2.1 Detailed Construction

We call this generic construction S-I, for an IBE scheme (Setup, KeyGen, Enc,
Dec), the details of S-I are as follows:

2 Doing above may reduce the original identity space, however, this problem can be
easily addressed by extending the identity string O(log �) bits longer.

3 Unlike ABE schemes, our generic construction does not have to provide collusion-
resistance, as for each index, a user can obtain only one key.

332 A. Kiayias and Q. Tang

– Setup(λ, δ): This algorithm inputs the security parameter λ and the correct-
ness parameter δ, it runs the Setup algorithm of the underlying IBE and
outputs master key pair (mpk,msk), and a parameter � = λ/δ.

– KeyGen This is a protocol between PKG and a user A with identity ID,
1. PKG generates 2� secret keys {ki,b}i=1,...,�,b=0,1, using KeyGen of the

underlying IBE, where ki,b = KeyGen(msk, ID||i||b).
2. User A randomly chooses a bit string b̄ = b1, . . . , b� with length �.
3. A executes � (1,2)-OT protocols with the PKG in parallel. In the i-th

execution, A inputs bi, PKG inputs ki,0, ki,1 and A receives ki,bi .
The protocol ends with A outputting skID = {ski = (bi, ki,bi)}i=1,...,�.

– Enc(ID,mpk,m): To encrypt a message m for user A, the algorithm randomly
chooses an index r ∈ {1, . . . , �} and outputs ciphertext C = (r, cr,0, cr,1),
where for b ∈ {0, 1}, cr,b = Enc(ID||r||b,mpk,m).

– Dec(C, skID): On input ciphertext C and the secret keys of user A, the
decryption algorithm parses the ciphertext and runs the underlying IBE
decryption algorithm, it returns m = Dec(cr,br , skr).

– TraceB(ID, δ, {bi}) This is a two stage protocol. In the first stage, the judge
J interacts with user A4 to get his secret string and verify its validity.
1. A sends b̄ and a pirate decryption box B to J .
2. J parses b̄, and then randomly selects 2� messages {ri,0, ri,1}i=1,...,�,

and asks A to decrypt one of the ciphertext {ci,0, ci,1}, where
ci,b = Enc(ID||i||b,mpk, ri,b) for i = 1, . . . , �. A decrypts {ci,bi} and sends

back {r′
i,bi

}, J then checks ri,bi
?= r′

i,bi
for all i ∈ {1, . . . , �}.

If not, J outputs “user”; otherwise, J runs the following algorithm:
1. For each i ∈ {1, . . . , �}, J repeats the following N times (the exact num-

ber of N will be specified in the analysis) to define a bit si. In each
run, J randomly selects m0,m1, and feeds B with (i, ci,0, ci,1), where
ci,b = Enc(ID||i||b,mpk,mb) for b = 0, 1. J records a b for si if B returns
mb, otherwise, J records a ⊥.

2. After the repetitions for each i, J takes the majority of the non-⊥ records
as the value for si; if all records are ⊥, then si is undefined.

3. Suppose si1 , . . . , sit are the defined bits. If sij = bij for all j ∈ {1, . . . , t}
and t ≥ λ, J returns “user”; otherwise, J returns “PKG”.

Remark. Our tracing algorithm is conditioned on the fact that the box has a
noticeable correctness δ for random messages, and the box is resettable.

A Note about Fully Black-Box Traceability. We can see from the tracing
algorithm of S-I that given access to a decryption oracle, the PKG learns the
bit string that the user chose to select the secret keys, thus further learns the
chosen secret keys of the user. One possible remedy is to introduce a mechanism
that only the judge can create a valid tracing ciphertext, i.e., regular ciphertext
pair is augmented with a ZK proofs of the statement that “either they contain
equal plaintexts or I am the judge”. This prevents the PKG from learning any
4 It can be easily made non-interactive if the user proves that he has the right keys.

Making Any Identity-Based Encryption Accountable, Efficiently 333

information about the user fingerprint via access to a decryption oracle, but also
at the same time enables the judge to trace. One downside of this mechanism
is that the judge needs to keep some private state thus we will have to work on
a slightly weaker model. Due to lack of space, we defer the details of achieving
fully black-box recoverability in this model to the full version. We will focus on
the other advanced properties, e.g., identity reuse, which is not known whether
achievable before in the standard model of A-IBE in the rest of the paper.

2.2 Security Analysis

We will give intuitions about the security properties of S-I and for the proof, we
mainly focused on the most involved part dealing with malicious users.

IND-ID-CPA Security. ID||i||0, ID||i||1 are considered two different identi-
ties and thus our generic construction S-I is simply a double encryption of a same
message using two different identities. It follows easily that a double encryption
is as secure as the underlying IBE.

Security in the Weak Dishonest-PKG Game. Note that the Trace algo-
rithm does not outputs “PKG” only when the recovered string is composed of
two parts: an all-⊥ part, and a bitstring which is at least λ bits long and matches
the corresponding substring of the user secret string. All other cases, including
an all-⊥ string is recovered, or any single bit recovered is different with the
corresponding bit of the user “fingerprint”, the PKG is accused.

The receiver security of the OT protocol executed in KeyGen guarantees
that a malicious PKG can only guess each bit of the secret string, thus she can
fools the Trace algorithm with probability negligibly close to 2−λ. Specifically,
in the execution of the i-th OT protocol, the malicious PKG can not distinguish
the transcript created by an user inputting a random bit r from the transcript
created using the selected bit bi. We can do a sequence of game changes and end
up with a game that all OT transcripts are created using independently selected
random bits r̄ = r1, . . . , r�. In the last game, since b̄ = b1, . . . , b� are independent
of the transcripts, we can let the malicious PKG output a box and the judge
recovers a substring with length at least λ first, and then select b̄. It follows
easily that the corresponding substring of b̄ matches the recovered substring of
r̄, with probability at most 2−λ.

Security in the Adaptive Dishonest-User Game. Our main observation
that if the box is leaked by a user, the judge will always be able to accuse
her, relies on the following reasons. First, since the user has only one key for
each location, due to the semantic security of the underlying IBE (and the OT
sender security), the user has to report to the judge honestly her secret string.
Furthermore, the box B is not able to tell a tracing ciphertext (the pair of
the ciphertext encrypting different messages) from a normal ciphertext, thus
B will have δ-correctness during tracing. We will analyze that the box has to
decrypt using the keys with probability δ/λ for at least λ indices to maintain
such correctness. Again, for each index i, B can never succeed in decrypting

334 A. Kiayias and Q. Tang

m1−b if only ki,b is inside, thus for the indices it responds, it has to reveal the
correct bits after enough repetitions.

Theorem 1. (1). S-I is IND-ID-CPA secure if the underlying IBE scheme is
IND-ID-CPA secure; (2). S-I is secure in the weak dishonest-PKG game if the
underlying 1-out-of-2-OT protocol satisfies the receiver security; (3). S-I is secure
in the adaptive dishonest-user game if the underlying IBE is IND-ID-CPA
secure, and the 1-out-of-2-OT protocol satisfies the (simulatable) sender security.

Proof. The security properties (1) and (2) follow easily from the explanation
above, we will focus on property (3).

First, it is not hard to see that in the first phase of the Trace protocol, the
user has to submit the same string she selected. This can be shown via a sequence
of game changes. In the original game, the adversary A runs the OT protocols one
by one for � times (or in parallel), during the KeyGen protocol, and answers the
decryption queries during the first phase of the Trace algorithm. In the modified
� games, the OT protocols are replaced with an oracle (one by one) that on
inputting a bit, outputting the corresponding secret key. The indistinguishability
of these game changes are ensured by the (simulatable) sender security of the
OT protocol (see the composition lemma of Canetti [13]).

In the last game, during KeyGen A has only oracle access to the OT
instances, which can be “controlled” by a simulator. Now suppose the adver-
sary answers correctly for the decryption request ci,1−bi at some index i with
probability Δi, there exists a simulator S playing the role of PKG with A as a
user, can break the IND-ID-CPA security of the underlying IBE. S can answer
all the OT queries perfectly with the corresponding secret keys, (which can be
asked to the IND-ID-CPA game challenger directly). S simply uses ID||i||1 − bi

as the challenge identity. S selects m0,m1 as the challenge message, and forwards
the challenge ciphertexts to the adversary. If A answers mb, S answers b, other-
wise, a random bit. It is straightforward that S breaks the IND-ID-CPA security
with advantage Δi

2 (which can be derived as follows: Δi · 1 + (1 − Δi) 12 − 1
2).

Let δi = Pr[B decrypts correctly | i is selected]. We divide the indices i ∈
{1, . . . , �} in two sets, Bad and Good, we define i ∈ Good if and only if δi ≥ δ0,
where δ0 = δ/λ. Next, we lower bound n = |Good|. If n < λ, then:

Pr[B works correctly] =

�∑
i=1

Pr[B works correctly|i is selected] Pr[i is selected]

≤ [1 · (λ − 1) + δ0 · (� − n + 1)]
1

�
=

λ − 1

�
+

δ(� − n + 1)

�λ
≤ λ − 1

�
+

δ

λ
=

λ

�
= δ

thus, we can conclude that for at least λ indices, the box will answer correctly
with probability at least δ/λ.

Next, similar to the analysis for the first stage of the protocol, we can show
that the probability that B decrypts to the other message selected in the Trace
algorithm (m1−bi , which is with high entropy) will be a negligible function.
Following the standard Chernoff bound, we can see that if we run the Trace

Making Any Identity-Based Encryption Accountable, Efficiently 335

algorithm with the a number of N = O(δ−2
0 log2 λ) repetitions, the correct value

of bi would form a majority of the non-⊥ records for si.
Summarizing the above facts, if a box B implemented using one key from

the user and it has δ-correctness, there will be at least λ indices that the Trace
algorithm recovers the correct bits, (⊥ for all other indices), it returns “user”. ��

3 Generic Construction of A-IBE Allowing Public
Traceability and Identity Reuse

In this section, we consider how to add advanced properties of A-IBE generically,
without influencing the ciphertext efficiency much. And for a general definition
and security models capturing the advanced properties, we refer to Appendix A.

3.1 A General Framework Allowing Identity Re-use

As elaborated in the introduction, a user may accidentally lose his secret key, in
all previous works, the user has to change a different identity to request a new
key. Allowing identity re-use in such cases is highly desirable. The main difficulty
for achieving id reuse lies in the fact that a malicious user can obtain multiple
keys (for a same ID) by claiming to the PKG that she lost her key. Then she will
implement a pirate box using one key and reveal a different key to the judge for
the tracing algorithm, trying to frame the PKG.

Necessity of Public Traceability and Linear Size Tracing Key. To defend
against the above attack, a correct tracing algorithm on inputting two keys
requested using the same identity should not always output “PKG”. It follows
that the judge has to be able to identify a “lost” key using some public infor-
mation, which in turn “implies” public traceability.

Note that in S-I, each user chooses a “fingerprint” b1 . . . b� when requesting
a key. If the Trace algorithm is able to recover the whole “fingerprint” from the
pirate box, and there is a public reference, e.g., a value T = f(b1 . . . b�) for a
one way function f , then the judge can publicly check whether the pirate box
is from the user or not. In particular, T is generated by the user during the key
generation, and he proved in zero-knowledge that the bits of the pre-image of
T are consistent with those used in the OT protocols. We will first revise S-I
to enable the tracing algorithm to recover the whole fingerprint, and explain in
detail in the next section about the one way function and the ZK proofs.

Before we go into technical details of constructions, we first argue that the
public tracing key has to grow linear to the number of the identities. To see this,
suppose there are N different identities, di is the binary random variable that
denotes the judge output when seeing a key kIDi

for identity IDi, and T is the
public tracing key. It is obvious that without the tracing key, each di is a uni-
formly random bit (and they are mutually independent), thus H(d1, . . . , dN) =
N ; while given T , all {di} will be determined, thus H(d1, . . . , dN |T) = 0, from
the chain rule, we can see H(T) = H(d1, . . . , dN , T) ≥ H(d1, . . . , dN) = N . Thus
the length of T grows linearly to the number of identities used in the system.

336 A. Kiayias and Q. Tang

Recovering All Bits of Each User Fingerprint. As one may notice, the
Trace algorithm of S-I can recover only λ bits, thus for the above public tracing
strategy to work, we have to improve the construction of S-I so that one can
publicly recover the user “fingerprint” perfectly. A simple observation is that
if one can recover a larger fraction of bits, e.g., a linear fraction of �, one may
use an error correcting code to generate the fingerprint and recover the whole
string by decoding a string having a linear fraction of correct bits. However, the
probabilistic analysis of S-I will not hold if we set n = |Good| to be O(�). We
further observe that if we use slightly more indices for encryption, (splitting the
message, and using the S-I encryption algorithm at each index for the shares),
the pirate box has to contain more keys to maintain the δ-correctness. Through
a careful analysis, if we use t = 5 ln 2

δ pairs of identities for encryption, B has to
include at least 4

5 fraction of the keys to maintain δ-correctness. Interestingly,
the secret key length of is reduced to O(log 1

δ). We present here the modified
generic construction, (named S-II) with only the difference with S-I. We will
show how to augment S-II to allow id-reuse and analyze the security in the next
sections.

– Setup(λ, δ): Same as S-I, except � = O(log 1
δ), and it also generates an error

correcting code ECC : {0, 1}�0 → {0, 1}�, (e.g., [23].) which corrects at least
�
5 -bit errors.

– KeyGen: Same as S-I, except that the bitstring of user A is generated by
first selecting a random bitstring r̄ with length �0, then applying the ECC to
r̄ and produces b̄ = b1, . . . , b�.

– Enc(ID,mpk,m, δ): To encrypt a message m for user A, the algorithm first
randomly chooses a subset S = {s1, . . . , st} ⊂ {1, . . . , �} with size t(δ) =
5 ln 2

δ . It then chooses t− 1 random messages m2, . . . , mt and computes m1 =
m − ∑t

i=2 mi and uses the Enc algorithm of the underlying IBE to encrypt
each mi. The algorithm outputs ciphertext C = {(si, ci,0, ci,1)}i=1,...,t, where
for b ∈ {0, 1}, ci,b = Enc(ID||si||b,mpk,mi).

– Dec(C, skID): On input ciphertext C and the secret key of user A, the decryp-
tion algorithm parses the ciphertext and then runs the underlying IBE decryp-
tion algorithm, and it selects the secrect keys corresponding to si and returns
m =

∑t
i=1 mi, where mi = Dec(sksi

, ci,bi).
– TraceB(ID, δ, {bi}) The first stage is the same as that of S-I except that the

user submits r̄ and the judge J applies the ECC to get b̄ himself. If J does
not output “user” in the first stage, it runs the following:

1. For each i ∈ {1, . . . , �}, J randomly selects a subset S ⊂ {1, . . . , �} of size
t until i ∈ S, and let us denote S = {s1, . . . , st} and i = sk; J randomly
samples m,m′ and other t−1 messages m1, . . . , mk−1, mk+1, . . . , mt uni-
formly, and he computes mk,0 = m − ∑

j �=k mj ,mk,1 = m′ − ∑
j �=k mj .

For j = 1, . . . , t, J feeds the box B with {(sj , cj,0, c
1
j)}, where for

j 	= k, cj,b = Enc(ID||sj ||b,mj), and ck,b is encryption of mk,b, i.e.,
ck,b = Enc(ID||sk||b,mk,b) for both b = 0, 1. J records a 0 for bi if
the box returns m, 1 if the box returns m′ and ⊥ otherwise.

Making Any Identity-Based Encryption Accountable, Efficiently 337

2. After repeating the above N times (the exact number of N will be spec-
ified in the analysis), J takes the majority of the non-⊥ symbols in the
records as the value for bi. If bi is not defined, let bi = 0.

3. J runs the decoding algorithm of ECC on b̄, and gets a bitstring r̄′ or
⊥. If r̄ = r̄′, J returns “user”, otherwise, it returns “PKG”.

Allowing Identity Re-Use. Now with the above briefly explained intuition of
public traceability, a user can use different secret string {bk

1 , . . . , b
k
� } to choose

the k−th secret key. The PKG keeps different public tracing key for each string,
and the judge can indeed differentiate among the keys of the same identity and
the PKG as long as he can extract the “fingerprints” correctly. (For detailed
construction, see Sect. 3.3). To provide some collision resilience to the generic
construction S-II, we extend it further to keep a state stID for each identity,
so that each secret key request for a same identity can actually correspond to
different extended identities. In more detail, in S-II, an identity ID is represented
using a group of identities {ID||i||bi}i=1,...,�,bi=0,1. With a state stID denoting
the number of key requested for ID, the modified extended identities would be
{ID||stID||i||bk

i }i=1,...,�;bki =0,1;k=stID .
For the k-th time the user requests a key using bk

1 , . . . , b
k
� , the PKG adds

a new public tracing key Tk = fk(bk
1 , . . . , b

k
�) to the public directory, and also

updates stID to be k + 1.5 The sender first figures out the state, then he can
simply run Enc of S-II using ID||stID as identity. The Trace algorithm runs
the S-II tracing algorithm on all ID||1, . . . , ID||stID, with a smaller correctness
parameter δ/stID, and extracts fingerprints (potentially more than one). If all of
the fingerprints match the corresponding public tracing keys (except the stID−th
one), they are considered as lost keys then no one will be accused; If the one that
the user is using (the stID-th key) matches TstID , the user would be accused,
otherwise the PKG will be accused.6

We can see that we use the underlying IBE as a black-box, thus this improved
construction (named S-III) is still a general transformation from IBE to A-IBE.

3.2 Building Blocks for Public Traceability

OT Instantiation. We choose the Bellare-Micali OT [3] as an example, and
construct efficent zero-knowledge proofs for the consistency. (In principle any OT
is applicable if we do not insist on efficient ZK proofs). The sender S (the PKG in
our setting) sets up the system parameters (including a prime q, group Gq with
a random generator g, and a random value C ∈ Zq). The receiver R(with input
b) randomly chooses PKb = gx and computes PK1−b = C/PKb, then R sends
PK0 to S; the sender computes PK1 = C/PK0 and encrypts the messages
m0,m1 to be transmitted, using ElGamal encryption [17] with PK0, PK1 as
5 A malicious PKG may put different public tracing keys, however this is trivially

detectable by the user and proves to the judge.
6 Note that if the recovered fingerprint corresponds to one of the lost keys, it is impos-

sible to decide whether it is from the user or from someone else who gets the lost
key, not erroneously accusing the PKG is the best possible security in this case.

338 A. Kiayias and Q. Tang

public keys respectively, i.e., {(grb ,H(PKrb

b) ⊕ mb)}b=0,1 are returned to R,
where H is modeled as a random oracle. It is well-known that this OT protocol
satisfies information theoretic receiver security, and simulatable sender security
under the CDH assumption [27].

Public Tracing Key Generation. We first describe the one way function
tailored for our A-IBE scheme. Suppose ḡ = (g1,0, g1,1), . . . , (g�,0, g�,1) ∈ G2�, for
each i, gi,0 · gi,1 = C for a random group element C, and b̄ = b1 . . . b� ∈ {0, 1}�,
we define fḡ(b1 . . . b�) =

∏�
i=1 gi,bi . We will show that fḡ(·) is one way. Let us

first look at a related one way function, suppose g̃ = (g1, . . . , g�) ∈ G� and for
b1 . . . b� ∈ {0, 1}�, f̃g̃(b1 . . . b�) is defined by

∏�
i=1 gbi

i . It is implicit that f̃g̃(·)
is one way in a couple of papers, e.g., in [9], b1 . . . b� is the secret key and
g̃, h = f̃g̃(b1 . . . b�) are the public keys for their circular secure encryption scheme.
We will omit the proof of one-wayness for f̃ , and we prove the one-wayness of
our function f in the following lemma.

Lemma 1. If there exists a PPT adversary A breaks the one way security of f
with advantage δ, then there exists another PPT adversary B breaks the one way
security of f̃ with advantage δ/�.

Proof. When B receives the public keys g̃ = g1, . . . , g� from the f̃ challenger C,
B selects a random C and prepares g1,0, . . . , g�,0 such that for each i, gi,0 = gi,
he also prepares g1,1, . . . , g�,1 in a way that gi,1 = C/gi,0 for all i. B sends A
C, ḡ = (g1,0, g1,1), . . . , (g�,0, g�,1) as public keys.

Once B receives the challenge X = f̃g̃(b1 . . . b�) for some b1 . . . b�, B selects a
random t ∈ {1, . . . , �}, computes Y = C�−t · ∏�

i=1 gi · X−2 and sends Y to A. B
forwards the bit string b′

1 . . . b′
� returned by A as her answer to the challenger C.

Note that if the bitstring b1 . . . b� has Hamming weight � − t, i.e., t of them
are 0, then Y =

∏�
i=1 gi,bi . To see this, suppose S = {i|bi = 0}, and |S| = t,

Y = C�−t · ∏�
i=1 gi/

∏�
i=1 g2bi

i =
∏

i∈S gi · ∏
i�∈S(C/gi). Thus with probability

1/�, B guesses t correctly, and in turn, B produces a valid value of fḡ(b1 . . . b�).
In this case under our assumption, A will invert correctly with probability δ. We
can conclude that B breaks the one way security of f̃ with probability δ/�. ��

The public tracing key T will be h = fPK(b1 . . . b�), together with PK which
are {(PK1,0, PK1,1) . . . , (PK�,0, PK�,1)} used in the OT protocols.

Efficient Zero-Knowledge Proof for Consistency. Next, we provide an
efficient zero-knowledge proof protocol for the consistency between the public
tracing key and the bit string selected by the user in the OT protocol. Essentially,
we need to prove that each bit of the pre-image of the public tracing key is used
for selecting one secret key in each call of the OT protocol. For the public tracing
key h, the user first commits {PKi,bi} to be {ci}, and proves in zero-knowledge
for the following statements, ∃g1, . . . , g�:

h =
�∏

i=1

gi ∧�
i=1 [ci opens to gi ∧ (gi = PKi,0 ∨ gi = PKi,1)] ∧ PoK for logg h.

Making Any Identity-Based Encryption Accountable, Efficiently 339

Before we describe the detailed ZK proofs, we first explain how we can prove
a commitment opens to a value. We will use a homomorphic commitment scheme
from the BBS encryption [7]. It has the public keys in the form of (g, u, v, w),
where ux = vy = w, and x, y are private keys. The ciphertext (which is a
commitment as well) for m is C̄ = (C1, C2, C3) where C1 = ur1 , C2 = vr2 , C3 =
wr1+r2m. One can easily prove a BBS commitment C̄ opens to a message m
in zero-knowledge using the following Σ−protocol: the proof is in the form of
(a1, a2, c, z1, z2), where a1 = Ct1

1 , a2 = Ct2
2 are the first round messages sent by

the prover, a random value c is returned by the verifier and z1 = t1 + cx, z2 =
t2+cy are calculated by the prover, The verifier checks Cz1

1 ·Cz2
2 = a1·a2·(C3/m)c.

Now we are ready to construct the efficient ZK proofs. (1). Prove the first
clause, which is equivalent to prove

∏�
i=1 ci opens to h. (2). Prove ci opens to

either PKi,0 or PKi,1. This can be done easily using the OR proof [15] of the
two Σ−protocol. More specifically, suppose bi = 1, the proof is in the form of
(a1,0, a2,0, a1,1, a2,1, c, z1,0, z2,0, z1,1, z2,1), where (a1,0, a2,0, c0, z1,0, z2,0) is simu-
lated and using c1 = c − c0, and generates the proof of (a1,1, a2,1, c1, z1,1, z2,1).
The verifier checks C

z1,0+z1,1
1 · C

z2,0+z2,1
2 = a1,0 · a1,1 · a2,0 · a2,1 · (C3/m)c. (3)

Repeat step (2) for each commitment ci to do an “And” proof. (4) Do a regular
proof of knowledge about the exponent of h using e.g., Schnorr proof [30].

All these Σ−protocols can be made zero-knowledge following the standard
technique, e.g., let the verifier commits to the challenge value c first, and they
can be made non-interactive by applying the FS heuristic [16].

Finally, let us check whether the soundness is enough for ensuring h is gen-
erated in the honest way, i.e. h =

∏�
i=1 PKi,bi . Suppose there is an adver-

sary A convinces the verifier and uses one PKi,1−bi when generating h. We can
see that A can be separated into two independent parts (A1,A2). A1 prepares
{PKi,0, PKi,1} and the corresponding exponents, and A2 finishes the ZK proofs.
It follows that if we replace A1 with another algorithm A′

1 which simply receives
{PKi,0, PKi,1} and the corresponding exponents from an oracle, the modified
adversarial algorithm A′ = (A′

1,A2) behaves identically as A.
According to the special soundness of the proof of knowledge part, a simulator

can run A′ (A2 part) to extract logg h =
∑

j �=i αj,bj + αi,1−bi , where αj,b =
logg PKj,b for j ∈ {1, . . . , �} and b = 0, 1. As the simulator can “control” the
oracle of A′

1, and prepare {PKj}j �=i accordingly for A′
1, thus he knows the

exponents {αj,bj} and recovers αi,1−bi and further logg C = αi,bi + αi,1−bi thus
breaks the discrete log assumption, where C is the system parameter in the OT
protocol. (for the case that more than one PKi,bi are used in generating h, a
similar argument can be made to recover logg C).

3.3 Concrete Construction and Security Analysis

With the building blocks we developed above, we now describe the concrete
algorithms of our generic A-IBE construction allowing public traceability and
identity reuse (named S-III). We only describe the difference with S-II here.

– Setup(λ, δ): Same as S-II.

340 A. Kiayias and Q. Tang

– KeyGen: For the k-th key requests from user A for an identity ID, the Key-
Gen protocol of S-II is run for identity ID||k, and user returns skID,k. During
the KeyGen, the OT described above [3] is utilized to transmit secret keys.
Suppose PKk = {(PKk

i,0, PKk
i,1)} are the first round messages of the user.

After the OT protocols are done, A sends the PKG his public tracing key
hk =

∏�
i=1 PKk

i,bi
and proves in zero-knowledge (we call this proof πk) for

the consistency using protocol described in Sect. 3.2. The PKG outputs a new
public tracing key Tk = (hk, PKk), adds them to the list of public tracing
keys TID for ID and updates the stID to be k. The PKG outputs (TID, stID)
and the user outputs secret key skID,k.

– Enc(ID,mpk,m, stID, δ): It runs the Enc of S-II with identity ID||stID.
– Dec(C, skID,stID): It runs the Dec of S-II with identity ID||stID.
– TraceB(ID, δ/stID, TID): The first stage is the same as S-II using ID||stID.

If the judge does not output “user”, the following is run. The second stage
of the Trace algorithm of S-II is repeated for all identities from ID||1 to
ID||stID. For ID||k, the algorithm recovers a bitstring bk

1 , . . . , b
k
� or ⊥, and

it records a flag tk for this run. For k = 1, . . . , stID − 1, if the recovered
string is ⊥ or fPKk

(bk
1 , . . . , b

k
�)=hk, where hk, PKk are from Tk, then tk =

0; otherwise tk = 2. For k = stID, if no string is extracted, tstID = 0; if
fPKstID

(bstID
1 , . . . , bstID

�)=hstID , then tstID = 1; otherwise, tstID = 2.
The algorithm returns ⊥ if for all k = 1, . . . , stID, tk = 0; it returns “user” if
tstID = 1; it returns “PKG”, otherwise.

Remark that using δ/stID for tracing is necessary, as from our definition of
δ−correctness in this case is only for a random state (see Appendix A).

Security Analysis of S-III. Due to lack of space, we provide here only some
high-level intuition for S-III, and mainly on the difference with S-I.

IND-ID-CPA Security. This is very similar to that of S-I, except that there
are extra public tracing keys TID, while they are only related with the bit strings
for selecting the keys, thus independent with the real secret keys. Also S-III uses
multiple extended form of identities, but all of them can be seen as different
identities of the underlying IBE scheme. The semantic security is not influenced.

Security in the Weak Dishonest-PKG Game. Note that a malicious PKG
can evade the Trace algorithm only when the recovered string matches one of
the fingerprints contained in the public tracing key. The difference with S-I is
that the malicious PKG receives extra public tracing keys {Ti = (hi, PKi)},
and ZK proof transcripts {πi}. If an adversary A (malicious PKG) is able to
produce a pirate box which fools the Trace algorithm, it can be easily turned
to an algorithm that breaks the OT receiver security or the one-wayness of f .

In more detail, we can argue the security via a sequence of game changes
by first replacing each OT transcript with one generated using a random bit r.
The indistinguishability can be guaranteed by the information theoretic receiver
security of the Bellare-Micali OT. In the next game changes, the ZK proofs
will be replaced with simulated transcripts, and the indistinguishability can be

Making Any Identity-Based Encryption Accountable, Efficiently 341

guaranteed by the zero-knowledge property of the proofs. Now in the last game,
what the adversary sees are only simulated transcripts (OT and ZK proofs)
which are independent with the actual fingerprints, there exists a simulator S
who can use A to break the one-way security of f . In particular, S randomly
picks an one way function instance, i.e., S embeds the public keys and a value
h received from the one way security challenger and sets it to be the i-th public
tracing key, and sends them (together with a simulated proof) to A. Then from
the pirate box outputted by A, with probability 1/stID, the recovered string is
the pre-image of h, thus S breaks the one way security.

Security in the Adaptive Dishonest User Game. A malicious user may try
to frame the PKG by outputting a box with recovered fingerprint not matching
any of the public tracing keys for the target identity, and it is possible unless
one of the following events happens: for at least one index i, the adversary A,
(1). learns the secret key of ID||i||1 − bi during the OT protocol; (2). is able to
decrypt ciphertext under ID||i||1−bi for which she does not have the secret key;
(3). cheats in the ZK proof of consistency during KeyGen. We can similarly
do a sequence of game changes that first replace the OT instance to be oracle,
the indistinguishability is guaranteed by the simulatable sender security of OT.
We then argue from a box, the tracing algorithm must extract one of the whole
fingerprints of the keys. This is similar to the proof of Theorem 1, we will focused
on the main difference about the probabilistic argument. We can see that if the
sender splits the message into t(δ) = 5 ln 2

δ pieces, the user has to put at least 4
5

fraction of keys for each state into the box B to ensure δ-correctness, and this
fraction is enough for the ECC decoding to recover the whole original fingerprint.
The probabilistic argument. Let δi = Pr[B decrypts correctly | i ∈ S]. We divide
the indices i ∈ {1, . . . , �} in two sets, Bad and Good, we define i ∈ Good if and
only if δi ≥ δ0, where δ0 = δ/�2. In order to upper bound the size of Bad consider
the following. Let D be the event of correct decryption,

Pr[D] = Pr[D | S∩Bad = ∅]·Pr[S∩Bad = ∅]+Pr[D | S∩Bad 	= ∅]·Pr[S∩Bad 	= ∅],

Regarding Pr[S ∩Bad = ∅] observe that if k = |Bad|, this probability is bounded
by p(k, t) = Ct

�−k/Ct
� =

∏t−1
i=0(1 − k

�−i) ≤ (1 − k
�)t. From inequality ex ≥ 1 + x,

we can get p(k, t) ≤ e−kt�. Regarding Pr[D | S ∩ Bad 	= ∅], note that it is
bounded by

∑
i∈Bad δi ≤ �δ0 = δ/� (This follows from the fact that Pr[F | ∪n

i=1

Ai] ≤ ∑n
i=1 Pr[F |Ai], for any event F,Ai). We can now derive the following, δ ≤

Pr[D] ≤ e−tk/�+δ/�, from which we obtain the upper bound k ≤ �
t ·ln(δ−δ/�)−1,

since δ − δ/� ≥ δ/2, when we set t = 5 ln(2δ−1) into the above bound for k, and
in this case k ≤ �/5.

Now in the last game, the adversary has only oracle access to OT which can
be controlled by the simulator if from the outputted box, the simulator recovers
a different fingerprint, the simulator can break the one way security using the
extractor as explained at the end of Sect. 3.2.
Public traceability is obvious, and identity reuse follows also straightforwardly
as for each state, the identities are considered as independent “user”, the above

342 A. Kiayias and Q. Tang

argument implicitly captures this property. We summarize the security proper-
ties of S-III in the following theorem:

Theorem 2. (1). S-III is secure in the IND-ID-CPA model if the underlying IBE
is IND-ID-CPA secure. (2). S-III is secure in the weak dishonest PKG game if
the proof π is zero-knowledge, f is one way and the OT has receiver security. (3).
S-III is secure in the adaptive dishonest user game, if the underlying IBE is
IND-ID-CPA secure, the proof π is sound, and the CDH assumption holds.

4 Conclusions and Open Problems

We presented a generic transformation from IBE to A-IBE, with ciphertext size
to be only twice large as the underlying IBE. We further refine the generic
construction, and for the first time achieve identity reuse. We believe that the
efficient generic transformations with preferable advanced properties can be an
important step towards a wider deployment of A-IBE thus may potentially stim-
ulate the adoption of IBE schemes in practice.

There are still several interesting open problems relating to the authority
accountability in IBE schemes. One is to consider efficient generic construction
of A-IBE with fully blackbox traceability directly, the other is to do a systematic
study about proactive deterring mechanisms for IBE schemes.

Acknowledgements.. We thank Hong-Sheng Zhou for the early discussions. We
thank the anonymous reviewer to point out the simplification for S-I. The authors
were supported by the ERC project CODAMODA.

A Preliminaries

1-out-of-2 Oblivious Transfer Protocol. Briefly speaking, a 1-out-of-2 OT
protocol [27] is between a sender S and a receiver R. S has two messages (m0,m1)
as input, and R chooses one of them according to a bit b. S should not know b,
while R should not have any knowledge of m1−b.

We only provide a half simulation type of definition (cf. [27]). For sender
security, we make a comparison to the ideal implementation in which there is
a trusted party receiving m0,m1 from S and b from R, and sends R the message
mb. We require that ∀m0,m1 and any efficient adversary A as the receiver,
there is a simulator plays as the receiver in the ideal world that, the output
distribution of the simulator and A are computationally indistinguishable. For
receiver security, suppose t0, t1 represent the trascript sent by the receiver
w.r.t input 0 and 1 respectively, we require that the sender can not distinguish
the distribution of t0 and t1.
Accountable authority identity-based encryption. Here we provide a gen-
eral definition for an A-IBE scheme, it is composed of the following algorithms:

Making Any Identity-Based Encryption Accountable, Efficiently 343

– Setup(λ, δ) This algorithm takes the security parameter λ and the correctness
parameter δ as input and outputs master key pair (mpk,msk) and the system
parameters t(δ), �(δ).

– KeyGen This is a stateful protocol between a user and the PKG in which
the user has an identity ID and mpk, and the PKG has mpk,msk, ID as
inputs respectively. It ends with the user outputting her secret key skID or ⊥
if the secret-keys are malformed, and the PKG output a tracing key TID and
a current state stID.

– Enc(ID,mpk,m, stID) This algorithm inputs a receiver identity ID, mas-
ter public key mpk, the message m and potentially a public state stID, and
outputs the ciphertext C.

– Dec(C, skID) This algorithm takes ciphertext C and user secret key skID as
input, and outputs the plaintext m.

– TraceB(ID, δ, TID). This algorithm inputs a pirate decryption box B for ID,
correctness parameter δ and a tracing key TID as input, it outputs “user”,
“PKG” or “⊥”.

Note that the algorithms can be stateless as usual if identity reuse is not required.
When TID is public, then the A-IBE scheme has public traceability.

δ-correctness of a decryption device B, for regular A-IBE schemes, it is
defined as Pr[B(C) = m : C = Enc(ID,mpk,m)] ≥ δ; while for A-IBE schemes
allowing identity re-use, the box might contain a couple of keys for one identity
corresponding to different states, we require that for a randomly selected state,
it works with δ correctness, thus the δ-correctness in this case is defined as
Pr[B(C) = m : C = Enc(ID,mpk,m, i) ∧ i ← {1, . . . , stID}] ≥ δ. Note that
according to the pigeonhole principle, there exists at least one state j, Pr[B(C) =
m : C = Enc(ID,mpk,m, j)] ≥ δ/stID, and this is important for the tracing
algorithm of S-III.
IND-ID-CPA security. This is similar to the standard semantic security for
IBE schemes. Consider the following game between the adversary A and the
challenger C:

– Setup C runs Setup, and sends A the system public key: mpk.
– Phase 1 A runs the KeyGen protocol with the challenger for several dis-

tinct adaptively chosen identities ID1, .., IDq and gets the decryption keys
skID1 , .., skIDq

.
– Challenge A submits two equal length messages m0,m1 and an identity ID

that is not appearing in the queries of Phase 1. C flips a random coin b and
encrypts mb with ID. The ciphertext C is passed on to A.

– Phase 2 This is identical to Phase 1 and A is not allowed to query for ID.
– Guess The adversary outputs a guess b′ of b.

The advantage of the adversary A is defined as |Pr[b′ = b] − 1/2|; we say an
A-IBE is IND-ID-CPA secure if A’s advantage is negligible.

Note that for A-IBE schemes with public traceability, the adversary also gets
the public tracing key T .

344 A. Kiayias and Q. Tang

Besides standard semantic security, for an A-IBE scheme, there are two addi-
tional security properties that have to be considered. The first is security against
a malicious PKG. Any A-IBE scheme, should prevent the PKG from learning
useful information which can help her to leak a decryption program B (we will
also call it a decryption “box”) on behalf of a certain identity and evade the
tracing algorithm. The second is security against malicious users. In this per-
spective, a group of colluding users should not be able to make a working box
B that frames the PKG. Depending of the form of B, one may consider various
models for the tracing algorithm. Specifically, if the tracing algorithm only needs
oracle access to B, we call it traceable in the black-box model. Common variants
of the black-box model exist depending on whether the PKG is given access to
the decryption oracle that corresponds to the secret key the user gets (called the
“fully black-box model” if yes, and the “weak black-box model” otherwise).

Weak (Black-Box) Dishonest-PKG Game. Consider the following game
between a PPT adversary A and a PPT challenger C:

– Setup: The adversary acts as a malicious PKG, generates system public keys
and sends C mpk. Also A specifies an identity ID.

– KeyGen: C and A then engage in the KeyGen protocols of A-IBE acting as
a user and PKG respectively. In each run, they jointly generate a decryption
key and a tracing key TID and state stID for the identity ID. If neither party
aborts, then C gets a decryption key skID for user ID as output.

– Create Decryption Box: The adversary outputs a decryption box B.

The adversary A wins the game if the following conditions hold true:

B has δ-correctness ∧ TraceB(ID, skID) 	= “PKG”.

In a full dishonest-PKG game, A is also allowed to ask decryption queries. In
other weaker (non-black-box) models, the tracing algorithm might have non-
black-box access to the pirate box B.

Adaptive Dishonest-User Game. In this game, a set of malicious users col-
lude to create a decoder box, trying to frame the PKG.

– Setup C runs the A-IBE Setup algorithm, and sends A mpk;
– Secret Key Queries The adversary runs the KeyGen protocols with

C, playing the role of different users and PKG respectively, for adaptively
chosen identities ID1, .., IDq for different times. A gets the corresponding
secret keys {skID1}, .., {skIDq

} and C outputs the corresponding tracing keys
TID1 , . . . , TIDq

and the states stID1 , . . . , stIDq
.

– Create Decryption Box The adversary outputs an identity ID together
with a decryption box B for ID.

The adversary wins if the followings hold true:

B has δ-correctness ∧ TraceB(ID, skID) = “PKG”.

Weaker model also exists, i.e., in the selective dishonest-user game, the adversary
is required to declare the ID to be attacked at the beginning.

Making Any Identity-Based Encryption Accountable, Efficiently 345

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer,
Heidelberg (2003)

2. Au, M.H., Huang, Q., Liu, J.K., Susilo, W., Wong, D.S., Yang, G.: Trace-
able and retrievable identity-based encryption. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 94–110.
Springer, Heidelberg (2008)

3. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer,
Heidelberg (1989)

4. Bellare, M., Rogaway, P.: Random oracles are practical: Aa paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles-. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg
(2001)

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

10. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM Con-
ference on Computer and Communications Security, pp. 501–510 (2008)

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

12. Boyen, X., Martin, L.: Identity-Based Cryptography Standard (IBCS) #1: Super-
singular Curve Implementations of the BF and BB1 Cryptosystems. RFC 5091
(Informational), December (2007)

13. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

14. Chow, S.S.M.: Removing escrow from identity-based encryption. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg
(2009)

15. Cramer, R., Damg̊aard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

17. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

346 A. Kiayias and Q. Tang

18. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

19. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

20. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007)

21. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: ACM Conference on Computer and Communications Secu-
rity, pp. 427–436 (2008)

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

23. Guruswami, V., Indyk, P.: Expander-based constructions of efficiently decodable
codes. FOCS 2001, 658–667 (2001)

24. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryp-
tosystems. In: ACM Conference on Computer and Communications Security,
pp. 943–954 (2013)

25. Lai, J., Deng, R.H., Zhao, Y., Weng, J.: Accountable authority identity-based
encryption with public traceability. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 326–342. Springer, Heidelberg (2013)

26. Libert, B., Vergnaud, D.: Towards black-box accountable authority ibe with short
ciphertexts and private keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 235–255. Springer, Springer (2009)

27. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

28. Sahai, A., Seyalioglu, H.: Fully secure accountable-authority identity-based encryp-
tion. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS,
vol. 6571, pp. 296–316. Springer, Heidelberg (2011)

29. Sahai, A., Waters, B.: Fuzzy Identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

30. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
Heidelberg (1990)

31. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

32. Waters, B.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

33. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

34. Yuen, T.H., Chow, S.S.M., Zhang, C., Yiu, S.-M.: Exponent-inversion signatures
and ibe under static assumptions. IACR Cryptol. ePrint Arch. 2014, 311 (2014)

Practical Threshold Password-Authenticated
Secret Sharing Protocol

Xun Yi1(B), Feng Hao2, Liqun Chen3, and Joseph K. Liu4

1 School of CS and IT, RMIT University, Melbourne, Australia
Xun.yi@rmit.edu.au

2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
3 Hewlett-Packard Laboratories, Bristol, UK

4 Faculty of Information Technology, Monash University, Melbourne, Australia

Abstract. Threshold password-authenticated secret sharing (TPASS)
protocols allow a client to secret-share a secret s among n servers and
protect it with a password pw, so that the client can later recover s
from any subset of t of the servers using the password pw, but so that
no coalition smaller than t learns anything about s or can mount an
offline dictionary attack on the password pw. Some TPASS protocols
have appeared in the literature recently. The protocol by Bagherzandi
et al. (CCS 2011) leaks the password if a client mistakenly executes
the protocol with malicious servers. The first t-out-of-n TPASS protocol
for any n > t that does not suffer from this shortcoming was given by
Camenisch et al. (CRYPTO 2014). This protocol, proved to be secure in
the UC framework, requires the client to involve in many communication
rounds so that it becomes impractical for the client. In this paper, we
present a practical TPASS protocol which is in particular efficient for
the client, who only needs to send a request and receive a response. In
addition, we have provided a rigorous proof of security for our protocol
in the standard model.

Keywords: Threshold password-authenticated secret sharing protocol ·
ElGamal encryption scheme · Shamir secret sharing scheme · Diffie-
Hellman problems

1 Introduction

Threshold password-authenticated secret sharing (TPASS) protocols consider a
scenario [5], inspired by the movie “Memento” in which the main character suf-
fers from short-term memory loss, leads to an interesting cryptographic problem,
can a user securely recover his secrets from a set of servers, if all the user can or
wants to remember is a single password and all of the servers may be adversarial?
In particular, can he protect his previous password when accidentally trying to
run the recovery with all-malicious servers? A solution for this problem can act
as a natural bridge from human-memorisable passwords to strong keys for cryp-
tographic tasks. Practical applications include secure password managers (where
the shared secret is a list of strongly random website passwords) and encrypting
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 347–365, 2015.
DOI: 10.1007/978-3-319-24174-6 18

348 X. Yi et al.

data in the cloud (where the shared secret is the encryption key) based on a
single master password.

The first TPASS protocol was given by Bagherzandi et al. [1]. It is built on the
PKI model, secure under the decisional Diffie-Hellman assumption, using non-
interactive zero-knowledge proofs. The basic idea is: The client initially generates
an ElGamal public and private key pairs (sk, pk = gsk) [7] and secret-shares sk
among servers using an t-out-of-n secret sharing [15] and outputs public parame-
ters including the public key pk and the encryptions E(gpw, pk) and E(s, pk) of
password pw and secret s, respectively, under the public key pk. When retrieving
the secret from the servers, the client encrypts the password pw′ he remembers
and sends the encryption E(gpw

′
, pk) to the servers, each of which computes

and returns Ai = [E(gpw, pk)/E(gpw
′
, pk)]ti = E(gti(pw−pw′), pk). The client then

computes A =
∏n

i=1 Ai and sends it to the servers. In the end, t servers cooperate
to decrypt B = E(s, pk)A = E(sg

∑

ti(pw−pw′), pk) and sends partial decryptions
to the client through secure channels, respectively. When pw′ = pw, the client is
able to retrieve the secret s by combining t partial decryptions. This protocol is
secure against honest-but-curious adversaries but not malicious adversaries. A
protocol against malicious adversaries was also given by Bagherzandi et al. [1]
using non-interactive zero-knowledge proofs.

In Bagherzandi et al. protocol, it is easy to see that the client must correctly
remember the public key pk and the exact set of servers, as he sends out an
encryption of his password attempt pw′ he remembers. If pk can be tampered
with and changed so that the adversary knows the decryption key, then the
adversary can decrypt pw′. Although the protocol actually encrypt gpw

′
, the

malicious servers can perform an offline dictionary attack on gpw
′
to obtain the

password pw′.
Authenticating to the wrong servers is a common scenario when users are

tricked in phishing attacks. To overcome this shortcoming, Camenisch et al. [5]
proposed the first t-out-of-n TPASS protocol for any n > t that does not require
trusted, user-specific state information to be carried over from the setup phase.
The protocol requires the client to only remember a username and a password,
assuming that a PKI is available. If the client misremember his list of servers and
tries to retrieve his secret from corrupt servers, the protocol prevents the servers
from learning anything about the password or secret, as well as from planting a
different secret into the user’s mind than the secret that he stored earlier.

The construction of Camenisch et al. protocol is inspired by Bagherzandi
et al. protocol based on a homomorphic threshold encryption scheme, but the
crucial difference is that in the retrieval protocol of Camenisch et al., the client
never sends out an encryption of his password attempt. Instead, the client derives
an encryption of the (randomised) quotient of the password used at setup and
the password attempt. The servers then jointly decrypt the quotient and ver-
ify whether it yields “1”, indicating that both passwords matched. In case the
passwords were not the same, all the servers learn is a random value.

Camenisch et al. protocol, proved to be secure in the UC framework,
requires the client to involve in many communication rounds so that it becomes

Practical Threshold Password-Authenticated Secret Sharing Protocol 349

impractical for the client. The client has to do 5n + 15 exponentiations in G for
the setup protocol and 14t + 24 exponentiations in the retrieval protocol. Each
server has to perform n + 18 and 7t + 28 exponentiations in these respective
protocols.

Our Contribution. We provide a practical t-out-of-n TPASS protocol for any
n > t. The basic idea is: The client initially secret-shares a password, a secret
and the digest of the secret with n servers, such as t out of the n servers can
recover the secret. When retrieving the secret from the servers, the client submits
to the servers A = gr1g

pwC
2 , where r is randomly chosen and pwC is the password,

and then t servers cooperate to generate and return an ElGamal encryption of
the secret and an ElGamal encryption of the digest of the secret, both under
the public key gr1. In the end, the client then decrypts the two ciphertexts and
accepts the secret if one decrypted value is another’s digest.

Our protocol is significantly more efficient than Camenisch et al. protocol [5]
in terms of communication rounds for the client and computation and commu-
nication complexities as well. In our protocol, the client only needs to send a
request and receive a response. In addition, the client needs to do 3n evaluations
of polynomials of degree t − 1 in Zq for the initialization and 7 exponentiations
for the retrieval protocol. Each server only needs to do t + 10 exponentiations
in the retrieval protocol. The computation and communication complexities for
the client are independent of the number of the servers n and the threshold t.

We have provided a rigorous proof of security for our protocol in the standard
model. Like Camenisch et al. protocol [5], our protocol can protect the password
of the client even if he communicates with all-malicious servers by mistake. In
addition, it prevents the servers from planting a different secret into the user’s
mind than the secret that he stored earlier.

Related Work. A close work related to TPASS is threshold password - authen-
ticated key exchange (TPAKE), which lets the client agree on a fresh session
key with each of the servers, but does not allow the client to store and recover
a secret. Depending on the desired security properties, one can build a TPASS
scheme from a TPAKE scheme by using the agreed-upon session keys to transmit
the stored secret shares over secure channels [1].

The first TPAKE protocols, due to Ford and Kaliski [8] and Jablon [9],
were not proved secure. The first provably secure TPAKE protocol, a t-out-
of-n protocol in a PKI setting, was proposed by MacKenzie et al. [12]. The
1-out-of-2 protocol of Brainard et al. [3] is implemented in EMC’s RSA Dis-
tributed Credential Protection [14]. Both protocols either leak the password or
allow an offline dictionary attack when the retrieval is performed with corrupt
servers. The t-out-of-n TPAKE protocols by Di Raimondo and Gennaro [13]
and the 1-out-of-2 protocol by Katz et al. [11] are proved secure in a hybrid
password-only/PKI setting, where the user does not know any public keys, but
the servers and an intermediate gateway do have a PKI. These protocols actually
remain secure when executed with all-corrupt servers, but are restricted to the
cases that n > 3t and (t, n) = (1, 2). Based on identity-based encryption (IBE),

350 X. Yi et al.

an 1-out-of-2 protocol where the client is required to remember the identities of
the two servers besides his password, was proposed by Yi et al. [17]. In case that
the public parameters for IBE can be tampered and changed by the adversary,
the protocol leaks the password.

In addition, the 1-out-of-2 TPASS by Camenisch et al. [4] leaks the password
when the client tries to retrieve his secret from a set of all-malicious servers.

2 Definition of Security

In this section, we define the security for TPASS protocol on the basis of the
security models for PAKE [2,10].

Participants, Initialization, Passwords, Secrets. A TPASS protocol
involves three kinds of protocol participants: (1) A group of clients (denoted
as Client), each of which requests TPASS services from t servers on the network;
(2) A group of n servers S1,S2, · · · ,Sn (denoted as Server = {S1,S2, · · · ,Sn}),
which cooperate to provide TPASS services to clients on the network; (3) A gate-
way (GW), which coordinates TPASS. We assume that User = Client

⋃
Server

and Client
⋂
Server = ∅. When the gateway GW coordinates TPASS, it simply

forwards messages between a client and t servers.
Prior to any execution of the protocol, we assume that an initialization phase

occurs. During initialization, the n servers cooperate to generate public parame-
ters for the protocol, which are available to all participants.

We assume that the client C chooses its password pwC independently and
uniformly at random from a “dictionary” D = {pw1, pw2, · · · , pwN} of size N ,
where N is a fixed constant which is independent of any security parameter.
The client then secretly shares the password with the n servers such that any t
servers can restore the password.

In addition, we assume that the client C chooses its secret sC independently
and uniformly at random from Z

∗
q , where q is a public parameter. The client

then secretly shares the secret with the n servers such that any t servers can
recover the secret.

We assume that at least n−t+1 servers are trusted not to collude to determine
the password and the secret of the client. The client C needs to remember pwC

only to retrieve its secret sC .

Execution of the Protocol. In the real world, a protocol determines how
users behave in response to input from their environments. In the formal model,
these inputs are provided by the adversary. Each user is assumed to be able
to execute the protocol multiple times (possibly concurrently) with different
partners. This is modeled by allowing each user to have unlimited number of
instances with which to execute the protocol. We denote instance i of user U
as U i. A given instance may be used only once. The adversary is given oracle
access to these different instances. Furthermore, each instance maintains (local)
state which is updated during the course of the experiment. In particular, each
instance U i is associated with the following variables, initialized as NULL or
FALSE (as appropriate) during the initialization phase.

Practical Threshold Password-Authenticated Secret Sharing Protocol 351

– sidiU is a variable containing the session identity for an instance U i. The session
identity is simply a way to keep track of the different executions of a partic-
ular user U . Without loss of generality, we simply let this be the (ordered)
concatenation of all messages sent and received by instance U i.

– siC is a variable containing the secret sC for a client instance Ci. Retrieval of
the secret is, of course, the ultimate goal of the protocol.

– acciU and termi
U are boolean variables denoting whether a given instance U i

has been accepted or terminated, respectively. Termination means that the
given instance has done receiving and sending messages, acceptance indicates
successful termination. When an instance U i has been accepted, sidiU is no
longer NULL. When a client instance Ci has been accepted, siC is no longer
NULL.

– stateiU records any state necessary for execution of the protocol by U i.
– usediU is a boolean variable denoting whether an instance U i has begun exe-

cuting the protocol. This is a formalism which will ensure each instance is
used only once.

The adversary A is assumed to have complete control over all communications
in the network (between the clients and servers, and between servers and servers)
and the adversary’s interaction with the users (more specifically, with various
instances) is modelled via access to oracles. The state of an instance may be
updated during an oracle call, and the oracle’s output may depend upon the
relevant instance. The oracle types include:

– Send(C, i,M) – This sends message M to a client instance Ci. Assuming
termi

C = FALSE, this instance runs according to the protocol specification,
updating state as appropriate. The output of Ci (i.e., the message sent by
the instance) is given to the adversary, who receives the updated values of
sidiC , acciC , and termi

C . This oracle call models an active attack to the protocol.
If M is empty, this query represents a prompt for C to initiate the protocol.

– Send(S, j, U,M) – This sends message M to a server instance Sj , supposedly
from a user U (either a client or a server) or even a set of servers. Assuming
termj

S = FALSE, this instance runs according to the protocol specification,
updating state as appropriate. The output of Sj (i.e., the message sent by
the instance) is given to the adversary, who receives the updated values of
sidjS , accjS , and termj

S . If S is corrupted, the adversary also receives the entire
internal state of S. This oracle call also models an active attack to the protocol.

– Execute(C, i,S) – If the client instance Ci and t server instances, denoted as
S, have not yet been used, this oracle executes the protocol between these
instances and outputs the transcript of this execution. This oracle call repre-
sents passive eavesdropping of a protocol execution. In addition to the tran-
script, the adversary receives the values of sid, acc, and term for client and
server instances, at each step of protocol execution. In addition, if any server
in S is corrupted, the adversary is given the entire internal state of the server.

– Corrupt(S) – This sends the password and secret shares of all clients stored in
the server S to the adversary. This oracle models possible compromising of a
server due to, for example, hacking into the server.

352 X. Yi et al.

– Corrupt(C) – This query allows the adversary to learn the password of the
client C and then the secret of the client, which models the possibility of
subverting a client by, for example, witnessing a user typing in his password,
or installing a “Trojan horse” on his machine.

– Test(C, i) – This oracle does not model any real-world capability of the adver-
sary, but is instead used to define security. If acciC = TRUE, a random bit b
is generated. If b = 0, the adversary is given siC , and if b = 1 the adversary is
given a random number. The adversary is allowed only a single Test query, at
any time during its execution.

Correctness. To be viable, a TPASS protocol must satisfy the following notion
of correctness: If a client instance Ci and t server instances S runs an honest
execution of the protocol with no interference from the adversary, then acciC =
accjS = TRUE for any server instance Sj in S.

Freshness. To formally define the adversary’s success we need to define a notion
of freshness for a secret of a client, where freshness of the secret is meant to
indicate that the adversary does not trivially know the value of the secret. We
say a secret siC is fresh if (1) C is not corrupted and (2) at least n − t + 1 out of
n servers are not corrupted.

Advantage of the Adversary. Informally, the adversary succeeds if it can
guess the bit b used by the Test oracle. We say an adversary A succeeds if it
makes a single query Test(C, i) to a fresh client instance Ci, with acciC = TRUE
at the time of this query, and outputs a single bit b′ with b′ = b (recall that b is
the bit chosen by the Test oracle). We denote this event by Succ. The advantage
of adversary A in attacking protocol P is then given by

AdvPA(k) = 2 · Pr[Succ] − 1

where the probability is taken over the random coins used by the adversary
and the random coins used during the course of the experiment (including the
initialization phase).

An adversary can always succeed by trying all passwords one-by-one in an
on-line impersonation attack. A protocol is secure if this is the best an adversary
can do. The on-line attacks correspond to Send queries. Formally, each instance
for which the adversary has made a Send query counts as one on-line attack.
Instances with which the adversary interacts via Execute are not counted as on-
line attacks. The number of on-line attacks represents a bound on the number
of passwords the adversary could have tested in an on-line fashion.

Definition 1. Protocol P is a secure TPASS protocol if, for all dictionary size
N and for all PPT adversaries A making at most Q(k) on-line attacks, there
exists a negligible function ε(·) such that for a security parameter k,

AdvPA(k) ≤ Q(k)/N + ε(k)

Practical Threshold Password-Authenticated Secret Sharing Protocol 353

3 Our TPASS Protocol

3.1 Description of Our Protocol

Initialization. Given a security parameter k ∈ Z
∗, the initialization includes:

Parameter Generation: On input k, the n servers agree on a cyclic group G of
large prime order q with a generators g1 and a hash function H : {0, 1}∗ → Zq.
Then the n servers cooperate to generate g2, like [16], such that none knows the
discrete logarithm of g2 based on g1 if one out of the n server is honest. The
public parameters for the protocol is params = {G, q, g1, g2,H}.

Password Generation: On input params, each client C ∈ Client with identity
IDC uniformly draws a string pwC , the password, from the dictionary D =
{pw1, pw2, · · · , pwN}. The client then randomly chooses a polynomial f1(x) of
degree t − 1 over Zq such that pwC = f1(0), and distributes {IDC , i, f1(i)} to
the server Si via a secure channel, where i = 1, 2, · · · , n.

Secret Sharing: On input params, each client C ∈ Client randomly chooses s
from Z

∗
q . The client then randomly chooses two polynomials f2(x) and f3(x) of

degree t − 1 over Zq such that s = f2(0) and H(gs2) = f3(0), and distributes
{IDC , i, f2(i), f3(i)} to the server Si via a secure channel, where i = 1, 2, · · · , n.
We define the secret sC as gs2.

Protocol Execution. Given the public params = {G, q, g1, g2,H}, the client C
(knowing its identity IDC and password pwC) runs TPASS protocol P with t
servers (each server knowing {ID, i, f1(i), f2(i), f3(i)}) to retrieve the secret sC
as shown in Fig. 1.

In Fig. 1, TPASS protocol is executed in three phases as follows.

Retrieval Request. Given the public parameters {G, g1, g2, q,H}, the client C
with the identity IDC validates if q is a large prime and gq1 = gq2 = 1. If so,
the client, who remembers the password pwC , randomly chooses r from Z

∗
q and

computes
A = gr1g

−pwC
2 .

Then the client submits msgC = 〈IDC , A〉 to the gateway GW for the n servers.

Remark. The purpose for the client to validate the public parameters is to
ensure that the discrete logarithm over {G, q, g1, g2} is hard in case that the
adversary can change the public parameters.

Retrieval Response. After receiving the request msgC from the client C, the gate-
way GW forwards it to t available servers to response the request. Without loss
of generality, we assume that the first t servers, denoted as S = {S1,S2, · · · ,St},
cooperate to generate a response as follows.

Based on the identity IDC of the client, each server Si (i = 1, 2, · · · , t)
randomly chooses ri, ci, di from Z

∗
q and computes

Bi = gri1 g
aif1(i)
2 , Ci = gci1 ,Di = gdi

1 , δi = g
H(IDC ,A,Bi,Ci,Di)
1

354 X. Yi et al.

Fig. 1. Our TPASS protocol P

Practical Threshold Password-Authenticated Secret Sharing Protocol 355

where ai =
∏

1≤j≤t,j �=i
j

j−i .
Then Si broadcasts msgi = 〈IDC , δi, Bi, Ci,Di〉 in S in two phases. In the

commit phase, Si broadcasts its commitment 〈IDC , δi〉. After receiving all com-
mitments 〈IDC , δj〉 (1 ≤ j ≤ t), Si broadcasts its opening 〈IDC , Bi, Ci,Di〉 in
the reveal phase.

Each server Si verifies if δj = g
H(IDC ,A,Bj ,Cj ,Dj)
1 for all j �= i. If so, based on

the identity IDC of the client, Si computes

C =
t∏

j=1

Cj ,D =
t∏

j=1

Dj , hi = H(IDC , A,C,D)

Ei = g
aif2(i)hi

2 C−ri(A
t∏

j=1

Bj)ci , Fi = g
aif3(i)hi

2 D−ri(A
t∏

j=1

Bj)di

and sets accSi
= TRUE.

Then Si sends msg∗
i = {IDC , C,D,Ei, Fi} to the gateway GW.

The gateway GW computes

E =
t∏

i=1

Ei, F =
t∏

i=1

Fi

and returns to the client with msgS = {IDC , C,D,E, F}.

Secret Retrieval. After receiving the response msgS = {IDC , C,D,E, F} from
the gateway, the client computes

h = H(IDC , A,C,D), S = (E/Cr)h
−1

, T = (F/Dr)h
−1

and verifies if T = g
H(S)
2 . If so, the client sets accC = TRUE and ⊥ otherwise.

3.2 Correctness and Efficiency

Correctness. Assume that a client instance Ci and t server instances S run
an honest execution of our TPASS protocol P with no interference from the
adversary. With reference to Fig. 1, it is obvious that accSj

= TRUE for 1 ≤ j ≤ t.
In addition, we have

C =
t∏

j=1

Cj = g
∑t

j=1 cj
1

D =
t∏

j=1

Dj = g
∑t

j=1 dj

1

Ei = g
aif2(i)hi

2 C−ri(A
t∏

j=1

Bj)ci

356 X. Yi et al.

= g
aif2(i)hi

2 g
−ri

∑t
j=1 cj

1 (gr1g
−pwC
2 g

∑t
j=1 rj

1 g
pwC
2)ci

= g
aif2(i)hi

2 g
−ri

∑t
j=1 cj

1 g
ci
∑t

j=1 rj
1 gcir1

Fi = g
aif3(i)hi

2 D−ri(A
t∏

j=1

Bj)di

= g
aif3(i)hi

2 g
−ri

∑t
j=1 dj

1 (gr1g
−pwC
2 g

∑t
j=1 rj

1 g
pwC
2)di

= g
aif3(i)hi

2 g
−ri

∑t
j=1 dj

1 g
di

∑t
j=1 rj

1 gdir
1

h = h1 = h2 = · · · = ht

= H(IDC , A,C,D)

E =
t∏

i=1

Ei =
t∏

i=1

g
aif3(i)h
2 g

−ri
∑t

j=1 dj

1 g
di

∑t
j=1 rj

1 gdir
1

= gsh2 g
−∑t

i=1 ri
∑t

j=1 cj
1 g

∑t
i=1 ci

∑t
j=1 rj

1 g
r
∑t

i=1 ci
1

= gsh2 Cr

F =
t∏

i=1

Fi =
t∏

i=1

g
aif3(i)h
2 g

−ri
∑t

j=1 dj

1 g
di

∑t
j=1 rj

1 gdir
1

= g
H(gs

2)h
2 g

−∑t
i=1 ri

∑t
j=1 dj

1 g
∑t

i=1 di

∑t
j=1 rj

1 g
r
∑t

i=1 di

1

= g
H(gs

2)h
2 Dr

We can see that (C,E) and (D,F) are in fact the EGamal encryptions of gsh2 and
g
H(gs)h
2 under the public key gr1, respectively. Therefore, we have accC = TRUE

because

h = H(IDC , A,C,D)

S = (E/Cr)h
−1

= (gsh2)h
−1

= gs2

T = (F/Dr)h
−1

= (gH(gs
2)h

2)h
−1

= g
H(gs

2)
2

T = g
H(S)
2 .

In summary, our TPASS protocol has correctness.

Efficiency. In our TPASS protocol, the client needs to compute 7 exponenti-
ations in G and send or receive 5 group elements in G. Each server needs to
compute t + 10 exponentiations in G and send or receive 4t + 5 group elements
in G.

The client involves only two communication rounds with the gateway, i.e.,
sending msgC to the gateway and receiving msgS from the gateway. Each server
Si participates in six communication rounds with other servers and the gateway,
i.e., receiving msgC from the gateway, broadcasting the commitment 〈IDC , δi〉
to other servers, receiving 〈IDC , δj〉 for all j �= i from other servers, broadcasting
〈IDC , Bi, Ci,Di〉, receiving 〈IDC , Bj , Cj ,Dj〉 for all j �= i, and finally sending
msg∗

i to the gateway.

Practical Threshold Password-Authenticated Secret Sharing Protocol 357

The performance comparison of Camenisch et al. protocol [5] and our protocol
can be shown in Table 1.

Table 1. Performance comparison of Camenisch et al. protocol and our protocol

Camenisch et al. protocol [5] Our protocol

Public keys Client: username Client: username

Server Si: epki, spki, tpki Server Si: none

Private keys Client: pwC Client: pwC

Server Si: eski, sski, tski Server Si: f1(i), f2(i), f3(i) where

E(pwC , pk), E(s, pk), pk =
∏

epki
∑

aif1(i) = pwC ,
∑

aif2(i) = s

E(pwC , tpk), E(s, tpk), tpk =
∏

tpki and
∑

aif3(i) = H(gs2)

Setup Comp. Client: 5n+ 15 (exp.) Client: 3n polynomial evaluations

Complexity Server: n+ 18 (exp.) Server: none

Setup Comm. n(2.5n+ 18.5)|g| Client: 3n|q|
Complexity Server: 3|q|
Setup Comm. 4 Client: 1

Round Server: 1

Retrieve Comp. Client: 14t+ 24 (exp.) Client: 7 (exp.)

Complexity Server: 7t+ 28 (exp.) Server: t+ 10 (exp.)

Gateway: 0 (exp.)

Retrieve Comm. (t+ 1)(36.5 + 2.5n Client: 5|g|
Complexity +10.5t(t+ 1))|g| Server: (4t+ 5)|g|

Gateway: (4t+ 5)|g|
Retrieve Comm. 10 Client: 2/Server: 6

Rounds Gateway: 4

In Table 1, exp. represent the computation complexity of a modular expo-
nentiation, |g| is the size of a group element in G and |q| is the size of a group
element in Zq. In Camenisch et al. protocol [5], a hash value is counted as half
a group element.

In our initialization, the client secret-shares the password, secret and the
digest of the secret with the n servers via n secure channels which may be
established with PKI. In the setup protocol of Camenisch et al., the client setups
the shares with the n servers based on PKI. Our retrieval protocol does not rely
on PKI, but the retrieval protocol of Camenisch et al. still requires PKI. In view
of this, our retrieval protocol can be implemented easier than Camenisch et al.
retrieval protocol.

From Table 1, we can see that our retrieval protocol is significantly more
efficient than the retrieval protocol of Camenisch et al. not only in communica-
tion rounds for client but also in computation and communication complexities.
In particular, the performance of the client in our retrieval protocol is indepen-
dent of the number of the servers and the threshold.

358 X. Yi et al.

4 Security Analysis

Based on the security model defined in Sect. 2, we have the following theorem:

Theorem 1. Assuming that the decisional Diffie-Hellman (DDH) problem [6] is
hard over {G, q, g1} and H is a collision-resistant hash function, then our TPASS
protocol P illustrated in Fig. 1 is secure according to Definition 1.

Proof. In the security analysis, we consider the worst case where t − 1 servers
have been corrupted and only one server is honest in our protocol as shown in
Fig. 1. Without loss of generality, we assume that the first server S1 is honest
and the rest have been corrupted.

Given an adversary A attacking the protocol, we imagine a simulator S that
runs the protocol for A.

First of all, the simulator S initializes the system by generating public para-
meters params = {G, q, g1, g2,H}. Next, Server = {S1,S2, · · · ,Sn} and Client sets
are determined. For each C ∈ Client, a password pwC and a secret sC are chosen
at random and then secret-shared with the n servers. In addition, the digest of
the secret H(sC) is also secret-shared with the n servers.

The public parameters params and the shares {IDC , i, f1(i), f2(i), f3(i)} for
i = 2, 3, · · · , t are provided to the adversary. When answering to any oracle
query, the simulator S provides the adversary A with the internal state of the
corrupted servers Si (i = 2, 3, · · · , t).

We view the adversary’s queries to its Send oracles as queries to four different
oracles as follows:

– Send(C, i) represents a request for instance Ci of client C to initiate the pro-
tocol. The output of this query is msgC = 〈IDC , A〉.

– Send(S1, j, C,msgC) represents sending message msgC to instance Sj1 of the
server S1, supposedly from the client C. The input of this query is msgC =
〈IDC , A〉 and the output of this query is msg1 = 〈IDC , δ1, B1, C1,D1〉.

– Send(S1, j,S2,S3, · · · ,St,M) represents sending message M to instance Sj1 of
the server S1, supposedly from the servers S2,S3, · · · ,St. The input of this
query is M = msg2‖msg3‖ · · · ‖msgt and the output of this query is msg∗

1 =
〈IDC , C,D,E1, F1〉 or ⊥.

– Send(C, i,msgS) represents sending the message msgS to instance Ci of the
client C. The input of this query is msgS = 〈IDC , C,D,E, F 〉 and the output
of this query is either acciC = TRUE or ⊥.

When A queries the Test oracle, the simulator S chooses a random bit b.
When the adversary completes its execution and output a bit b′, the simulator
can tell whether the adversary succeeds by checking if (1) a single Test query was
made regarding some fresh client session, and (2) b′ = b. Success of the adversary
is denoted by event Succ. For any experiment P , we denote AdvPA = 2·Pr[Succ]−1,
where Pr[·] denotes the probability of an event when the simulator interacts with
the adversary in accordance with experiment P .

Practical Threshold Password-Authenticated Secret Sharing Protocol 359

We will use some terminology throughout the proof. A given message is
called oracle-generated if it was output by the simulator in response to some
oracle query. The message is said to be adversarially-generated otherwise. An
adversarially-generated message must not be the same as any oracle-generated
message.

We refer to the real execution of the experiment, as described above, as P0.
We introduce a sequence of transformations to the experiment P0 and bound the
effect of each transformation on the adversary’s advantage. We then bound the
adversary’s advantage in the final experiment. This immediately yields a bound
on the adversary’s advantage in the original experiment.

As shown in the appendix, we have AdvP0
A (k) ≤ Q(k)/N + ε(k) for some

negligible function ε(·). This completes the proof of the theorem. �

In our retrieval protocol, the client sends out one message A = gr1g
pwC
2 only

after validating the public parameters {G, q, g1, g2}. Even if the client commu-
nicates with all malicious servers by mistake and the adversary can change the
public parameters, our retrieval protocol does not leak the password because r
in A is randomly chosen from Z

∗
q by the client.

In addition, in the appendix, we have modified the definition of the security
in order to take into account the attack where the adversary attempts to plant a
different secret into the user’s mind than the secret that he stored earlier. This
attack is restricted to online dictionary attack.

5 Conclusion

In this paper, we have presented a practical t-out-of-n TPASS protocol for any
n > t that protects the password of the client when he tries to retrieve his secret
from all corrupt servers as well as prevents the adversary from planting a different
secret into the user’s mind than the secret that he stored earlier. Our protocol
is significantly more efficient than existing TPASS protocols. Furthermore, we
have provide a rigorous proof of security for our protocol in the standard model.

Our future work will study how efficiently to detect the corrupted servers
and implement our protocol in light-weight mobile devices to support cloud-
based services/management.

Appendix: Security Proof

Experiment P1: In this experiment, the simulator interacts with the adversary
as P0 except that the adversary does not succeed, and the experiment is aborted,
if any of the following occurs:

1. At any point during the experiment, an oracle-generated message (e.g., msgC ,
msgi, msg∗

i , or msgS) is repeated.

360 X. Yi et al.

2. At any point during the experiment, a collision occurs in the hash function
H (regardless of whether this is due to a direct action of the adversary, or
whether this occurs during the course of the simulator’s response to an oracle
query).

It is immediate that events 1 occurs with only negligible probability, event
2 occurs with negligible probability assuming H as collision-resistant hash func-
tions. Put everything together, we are able to see that

Claim 1. If H is a collision-resistant hash function, |AdvP0
A (k) − AdvP1

A (k)| is
negligible.

Experiment P2: In this experiment, the simulator interacts with the adversary
A as in experiment P1 except that the adversary’s queries to Execute oracles
are handled differently: in any Execute(C, i,S), where the adversary A has not
queried corrupt(C), the password pwC in msgC = 〈IDC , A〉 where A = gr1g

pwC
2

is replaced with a random number pw in Z
∗
q .

Because r in A = gr1g
pwC
2 is randomly chosen from Z

∗
q by the simulator, the

adversary cannot distinguish gr1g
pwC
2 with gr1g

pw
2 . Therefore, we have

Claim 2. |AdvP1
A (k) − AdvP2

A (k)| is negligible.

Experiment P3: In this experiment, the simulator interacts with the adversary
A as in experiment P2 except that: for any Execute(C, i,S) oracle, where the
adversary A has not queried corrupt(C) and corrupt(S1), a1f1(1) in msg1 =
〈IDC , δ1, B1, C1,D1〉 where B1 = gr11 g

a1f1(1)
2 is replaced by a random number

in Z
∗
q .

Although the adversary who has corrupted S2,S3, · · · ,St can obtain B′
1 =

B1g
a2f1(2)+···+atf1(t)
2 = gr11 g

pwC
2 for B1, he cannot distinguish gr11 g

pwC
2 with gr11 gpw2

for a randomly chosen pw because r1 is randomly chosen by the simulator.
This leads that he cannot distinguish gr11 ga1f1

2 = gr11 g
pwC−a2f1(2)−···−atf1(t)
2 with

gr11 g
pw−a2f1(2)−···−atf1(t)
2 for a randomly chosen pw. Therefore, we have

Claim 3. |AdvP2
A (k) − AdvP3

A (k)| is negligible.

Experiment P4: In this experiment, the simulator interacts with the adver-
sary A as in experiment P3 except that: for any Execute(C, i,S) oracle, where
the adversary A has not queried corrupt(C) and corrupt(S1), E1 in msg∗

1 =
〈IDC , C,D,E1, F1〉 is replaced with a random element in the group G.

The difference between the current experiment and the previous one is
bounded by the probability to solve the decisional Diffie-Hellman (DDH) prob-
lem over {G, q, g1}. More precisely, we have

Claim 4. If the decisional Diffie-Hellman (DDH) problem over {G, q, g1} is
hard, |AdvP3

A (k) − AdvP4
A (k)| is negligible.

Practical Threshold Password-Authenticated Secret Sharing Protocol 361

If |AdvP3
A (k) − AdvP4

A (k)| is non-negligible, we show that the simulator can
use A as a subroutine to solve the DDH problem with non-negligible probability
as follows.

Given a DDH problem (gx1 , gy1 , Z), where x, y are randomly chosen from Z
∗
q

and Z is either gxy1 or a random element z from G, the simulator replaces gr1 in
A = gr1g

pwC
2 with gx1 , C1 = gc11 with gy1 , and (gc11 , gc1r1) in

E1 = g
a1f2(1)h1
2 g

−r1
∑t

j=1 cj
1 g

c1
∑t

j=1 rj
1 gc1r1

with gy1 , Z, respectively, where rj (j = 1, 2, · · · , t) and cj (j = 2, 3, · · · , t) are
randomly chosen by the simulator. When Z = gxy, the experiment is the same
as the experiment P3. When Z is a random element z in G, the experiment is the
same as the experiment P4. If the adversary can distinguish the experiments P3

and P4 with non-negligible probability, the simulator can solve the DDH problem
with non-negligible probability.

Experiment P5: In this experiment, the simulator interacts with the adver-
sary A as in experiment P4 except that: for any Execute(C, i,S) oracle, where
the adversary A has not queried corrupt(C) and corrupt(S1), F1 in msg∗

1 =
〈IDC , C,D,E1, F1〉 is replaced with a random element in the group G.

Like the experiment P4, we have

Claim 5. If the decisional Diffie-Hellman (DDH) problem is hard over
{G, q, g1}, |AdvP4

A (k) − AdvP5
A (k)| is negligible.

Experiment P6: In this experiment, the simulator interacts with the adversary
A as in experiment P5 except that: for any Execute(C, i,S) oracle, where the
adversary A has not queried corrupt(C) and corrupt(S1), the secret sC of the
client is replaced with a random element in the group G.

Given a DDH problem (gx1 , gy1 , Z), where x, y are randomly chosen from Z
∗
q

and Z is either gxy1 or a random element z from G, the simulator replaces gr1 in
A = gr1g

pwC
2 with gx1 , C1 = gc11 with gy1 , and (gr1, g

c1r
1) in

sC = (E/Cr)h
−1

= (E/g
r
∑t

i=1 ci
1)h

−1
= (E/(gr

∑t
i=2 ci

1 grc11))h
−1

with gx1 , Z, respectively, where h = H(IDC , A,C,D), cj (j = 2, 3, · · · , t) are
randomly chosen by the simulator. When Z = gxy, the experiment is the same
as the experiment P5. When Z is a random element z in G, the experiment is the
same as the experiment P6. If the adversary can distinguish the experiments P5

and P6 with non-negligible probability, the simulator can solve the DDH problem
with non-negligible probability. Therefore, we have

Claim 6. If the decisional Diffie-Hellman (DDH) problem is hard over
{G, q, g1}, |AdvP5

A (k) − AdvP6
A (k)| is negligible.

In experiment P6, the adversary’s probability of correctly guessing the bit b
used by the Test oracle is exactly 1/2 when the Test query is made to a fresh

362 X. Yi et al.

client instance Ci invoked by an Execute(C, i,S) oracle. This is so because the
secret sC is chosen at random from G, and hence there is no way to distinguish
whether the Test oracle outputs a random secret or the “actual” secret (which
is a random element, anyway). Therefore, all passive adversaries cannot win
the game.

The rest of the proof concentrates on the instances invoked by Send oracles.

Experiment P7: In this experiment, the simulator interacts with the adversary
A as in experiment P6 except that the adversary’s queries to Send(C, i) oracles
are handled differently: in any Send(C, i), where the adversary A has not queried
corrupt(C), the password pwC in msgC = 〈IDC , A〉 where A = gr1g

pwC
2 is replaced

with a random number pw in Z
∗
q .

Like the experiment P2, we have

Claim 7. |AdvP6
A (k) − AdvP7

A (k)| is negligible.

Experiment P8: In this experiment, the simulator interacts with the adversary
A as in experiment P7 except that the adversary’s queries to Send(S1, j, C,msgC)
oracles are handled differently: in any Send(S1, j, C,msgC), where the adver-
sary A has not queried corrupt(C) and corrupt(S1), a1f1(1) in msg1 =
〈IDC , B1, C1,D1〉 where B1 = gr11 g

a1f1(1)
2 is replaced by a random number in Z

∗
q .

Like the experiment P3, we have

Claim 8. |AdvP7
A (k) − AdvP8

A (k)| is negligible.

Experiment P9: In this experiment, the simulator interacts with the
adversary A as in experiment P8 except that the adversary’s queries to
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt) oracles are handled differently: in any
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt), where A has not queried corrupt(C) and
corrupt(S1), E1 in msg∗

1 = 〈IDC , C,D,E1, F1〉 is replaced with a random element
in the group G.

If msgC ,msg2,msg3, · · · ,msgt are all oracle-generated, we can replace E1

with a random element in G as in the experiment P4.
If some of msgC ,msg2,msg3, · · · ,msgt are adversarially-generated, the adver-

sary A cannot produce A, (Bj , Cj ,Dj) (j = 2, 3, · · · , t), such as A
∏t

j=1 Bj

excludes B1 and δj = g
H(IDC ,A,Bj ,Cj ,Dj)
1 for j = 2, 3, · · · , t still hold because

A and the commitments δj (j = 2, 3, · · · , t) must be broadcast and received by
the server S1 at first and H is a collision-resistant hash function.

Because B1 = gr11 g
a1f1(1)
2 , we have

E1 = g
a1f2(1)h1
2 C−r1(A

t∏

j=1

Bj)ci

= g
a1f2(1)h1
2 C−r1(A

t∏

j=2

Bj)cigc1r11 (gc12)a1f1(1).

Practical Threshold Password-Authenticated Secret Sharing Protocol 363

Given a DDH problem (gx1 , gy1 , Z), where x, y are randomly chosen from Z
∗
q

and Z is either gxy1 or a random element z from G, the simulator replaces g2
with gx1 , C1 = gc11 with gy1 , and (gc11 , gc12) in the above E1 with gy1 , Z, respectively,
where r1 is randomly chosen by the simulator. When Z = gxy, the experiment
is the same as the experiment P8. When Z is a random element z in G, the
experiment is the same as the experiment P9. If the adversary can distinguish
the experiments P8 and P9 with non-negligible probability, the simulator can
solve the DDH problem with non-negligible probability. Therefore, we have

Claim 9. If the decisional Diffie-Hellman (DDH) problem is hard over {G, q, g1},
|AdvP8

A (k) − AdvP9
A (k)| is negligible.

Experiment P10: In this experiment, the simulator interacts with the
adversary A as in experiment P9 except that the adversary’s queries to
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt) oracles are handled differently: in any
Send(S1, j,S2, · · · ,St,msg2‖ · · · ‖msgt), where A has not queried corrupt(C) and
corrupt(S1), F1 in msg∗

1 = 〈IDC , C,D,E1, F1〉 is replaced with a random element
in the group G.

Like the experiment P9, we have

Claim 10. If the decisional Diffie-Hellman (DDH) problem is hard over
{G, q, g1}, |AdvP9

A (k) − AdvP10
A (k)| is negligible.

Experiment P11: In this experiment, the simulator interacts with the adversary
A as in experiment P10 except that we change the definition of the adversary’s
success as follows: (1) If the adversary queries Send(S1, j, C,msgC) oracle to a
fresh client instance Ci for adversarially-generated msgC = 〈IDC , A′〉 where
A′ = gr

′
1 g

pw′
C

2 , which results in T ′ = g
H(S′)
2 where h′ = H(IDC , A′, C ′,D′),

S′ = (E′/C ′r′
)h

′−1
, T ′ = (F ′/D′r′

)h
′−1

and C ′,D′, E′, F ′ are generated by t hon-
est servers and the honest gateway according the protocol, the simulator halts
and the adversary succeeds (let Succ1 denote this event); (2) If the adversary
ever queries Send(C, i,msgS) oracle to a fresh client instance Ci for adversarially-
generated msgS = 〈IDC , C ′,D′, E′, F ′〉, which results in acciC = TRUE, the sim-
ulator halts and the adversary succeeds (let Succ2 denote this event); Otherwise
the adversary’s success is determined as in experiment P10.

The distribution on the adversary’s view in experiments P10 and P11 are
identical up to the point when either Succ1 or Succ2 occurs. If both Succ1 and
Succ2 never occur, the distributions on the view are identical. Therefore, we have

Claim 11. AdvP10
A (k) ≤ AdvP11

A (k).

Remark. The modified definition of security takes into account the attack where
the adversary attempts to plant a different secret into the user’s mind than the
secret that he stored earlier.

In experiment P11, msgC , msg1, msg∗
1 in Execute and Send oracles have

become independent of the password pwC used by the client C and the secret
sC and g

H(sC)
2 in the view of the adversary A, if A has not require Corrupt(C)

and Corrupt(S1). In view of this, any off-line dictionary attack cannot succeed.

364 X. Yi et al.

The adversary A succeeds only if one of the following occurs: (1) Succ1 occurs;
(2) Succ2 occurs; (3) neither Succ1 nor Succ2 occurs, the adversary wins the game
by a Test query to a fresh instance Ci.

To evaluate Pr[Succ1] and Pr[Succ2], we consider three cases as follows.
Case 1. The adversary A forges msg′

C = 〈IDC , A′〉 where A′ = gr
′

1 g
pw′

C
2 by

choosing his own r′ from Z
∗
q and pw′

C from the dictionary D. In this case, if
Succ1 occurs, the adversary can conclude that the password used by the client
is pw′

C . Therefore, the probability Pr[Succ1] = Q1(k)/N , where Q1(k) denotes
the number of queries to Send(S1, j, C,msgC) oracle.

Case 2. Given msgC = 〈IDC , A〉, the adversary A forges msgS =
〈IDC , C ′,D′, E′, F ′〉 by choosing his own s′, c′, d′ from Z

∗
q and pw′

C from the

dictionary D and computing C ′ = gc
′

1 ,D′ = gd
′

1 , E′ = gs
′h′

2 (Ag
pw′

C
2)c

′
, F ′ =

g
H(gs′

2)h′

2 (Ag
pw′

C
2)d

′
where h′ = H(IDC , A,C ′,D′). When pwC = pw′

C , we have
acciC = TRUE. Therefore, in this case, the probability Pr[Succ2] = Q2(k)/N ,
where Q2(k) denotes the number of queries to Send(C, i,msgS) oracle.

Case 3. Given msgC = 〈IDC , A〉, the adversary A forwards msgC to t
servers twice to get two responses msgS = 〈IDC , C,D,E, F 〉 and msg′

S =
〈IDC , C ′,D′, E′, F ′〉. Then the adversary A sends to the client a forged mes-

sage msgS = 〈IDC , C ′/C,D′/D, gs
∗h∗

2 E′/E, g
H(gs∗

2 h∗)
2 F ′/F 〉, where E′/E =

g
s(h′−h)
1 (C ′/C)r, F ′/F = g

H(gs
1)(h

′−h)
1 (D′/D)r, h = H(IDC , A,C,D), h′ =

H(IDC , A,C ′,D′), h∗ = H(IDC , A,C ′/C,D′/D) and s∗ is chosen from Z
∗
q

by the adversary. The client accepts msgS if and only if h′ = h. Because H
is a collision-resistant hash function, the probability Pr[Succ2] is negligible in
this case.

In summary, Pr[Succ1 ∨ Succ2] = Q(k)/N , where Q(k) denotes the number
of on-line attacks.

In experiment P11, the adversary’s probability of success when neither Succ1
nor Succ2 occurs is 1/2. The preceding discussion implies that

PrP11
A [Succ] ≤ Q(k)/N + 1/2 · (1 − Q(k)/N)

and thus the adversary’s advantage in experiment P11

AdvP11
A (k) = 2PrP11

A [Succ] − 1
≤ 2Q(k)/N + 1 − Q(k)/N − 1
= Q(k)/N

The sequence of claims proved above show that

AdvP0
A (k) ≤ AdvP11

A (k) + ε(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·). This completes the proof of the theorem.

References

1. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: ACM CCS 2011, pp. 433–444 (2011)

Practical Threshold Password-Authenticated Secret Sharing Protocol 365

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Eurocrypt 2000, pp. 139–155 (2000)

3. Brainard, J., Juels, A., Kaliski, B., Szydlo, M.: Nightingale: a new two-server app-
roach for authentication with short secrets. In: 12th USENIX Security Symposium,
pp. 201–213 (2003)

4. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable
two-server password-authenticated secret sharing. In: ACM CCS 2012, pp. 525–536
(2012)

5. Camenisch, J., Lysyanskaya, A., Lysyanskaya, A., Neven. G.: Memento: How to
reconstruct your secrets from a single password in a hostile environment. In: Crypto
2014, pp. 256–275 (2014)

6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
32(2), 644–654 (1976)

7. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

8. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a pass-
word. In: 5th IEEE International Workshop on Enterprise Security (2000)

9. Jablon, D.: Password authentication using multiple servers. In: CT-RSA 2001, pp.
344–360 (2001)

10. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Eurocrypt 2001, pp. 457–494 (2001)

11. Katz, J., MacKenzie, P., Taban, G., Gligor, V.: Two-server password-only authen-
ticated key exchange. In: ACNS 2005, pp. 1–16 (2005)

12. MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. J. Cryptol. 19(1), 27–66 (2006)

13. Di Raimondo, M., Gennaro, R.: Provably secure threshold password-authenticated
key exchange. J. Comput. Syst. Sci. 72(6), 978–1001 (2006)

14. RSA, The Security Division of EMC: New RSA innovation helps thwart ”smash-
and-grab” credential theft. Press release (2012)

15. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
16. Yi, X., Ling, S., Wang, H.: Efficient two-server password-only authenticated key

exchange. IEEE Trans. Parallel Distrib. Syst. 24(9), 1773–1782 (2013)
17. Yi, X., Hao, F., Bertino, E.: ID-based two-server password-authenticated key

exchange. In: ESORICS 2014, pp. 257–276 (2014)

On Security of Content-Based Video Stream
Authentication

Swee-Won Lo(B), Zhuo Wei, Robert H. Deng, and Xuhua Ding

School of Information Systems,
Singapore Management University, Singapore, Singapore

{sweewon.lo.2009,robertdeng,xhding}@smu.edu.sg

Abstract. Content-based authentication (CBA) schemes are used to
authenticate multimedia streams while allowing content-preserving
manipulations such as bit-rate transcoding. In this paper, we survey
and classify existing transform-domain CBA schemes for videos into two
categories, and point out that in contrary to CBA for images, there
exists a common design flaw in these schemes. We present the princi-
ples (based on video coding concept) on how the flaw can be exploited
to mount semantic-changing attacks in the transform domain that can-
not be detected by existing CBA schemes. We show attack examples
including content removal, modification and insertion attacks. Noting
that these CBA schemes are designed at the macroblock level, we discuss,
from the attacker’s point of view, the conditions in attacking content-
based authenticated macroblocks.

Keywords: Content-based authentication · Attack · H.264/AVC

1 Introduction

Video editing tools widely used for synthesizing videos are often being used to
maliciously manipulate content of videos for commercial or political purposes, or
with the intention to evade law (e.g. surveillance streams). Without an authen-
tication mechanism in place, both the sending and receiving entities could not
verify the integrity of a video transmitted through open and insecure networks.

There are two general approaches for multimedia authentication [36], namely
Cryptographic-Based Authentication (CrBA) and Content-Based Authentica-
tion (CBA). As its name suggests, CrBA schemes (e.g. [8,43]) use cryptographic
techniques such as hash function and digital signature algorithm to compute
authentication data for the multimedia object. To verify its integrity, a verifier
recomputes the hash of the object and verifies it against the digital signature.
One of the shortcomings of CrBA schemes is that they are sensitive to random
errors due to lossy networks; they are also unable to authenticate objects that
usually undergo content-preserving manipulations such as bit-rate transcoding.
A CBA scheme (e.g., [5,32,41]) authenticates the semantic meaning of a multi-
media object by extracting an invariant feature from the object and computing
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 366–383, 2015.
DOI: 10.1007/978-3-319-24174-6 19

On Security of Content-Based Video Stream Authentication 367

authentication data (using keyed-hash function or digital signature algorithm) on
the feature. The integrity of the object can be verified as long as its feature (i.e.,
semantic meaning) is unchanged. Hence, CBA schemes are more error-tolerant
as compared to CrBA schemes and they allow content-preserving manipulations
on the object; some also have the ability to localize tampered regions.

Existing CBA schemes for videos may perform feature extraction in either
the pixel, transform or bitstream domain. In this paper, we focus on transform-
domain CBA schemes for the following reasons: Although pixel-domain feature
extraction is robust to content-preserving manipulations and random errors, it
is more computational intensive since the verifier needs to fully decode the video
before verification. In retrospect, bitstream-domain feature extraction is more
efficient, but it is sensitive to random errors and content-preserving manipu-
lations; since the authentication data is embedded at the bitstream level, it
also affects the video quality. Transform-domain CBA schemes are designed
to trade off between efficiency, error-tolerance and video quality. In a nut-
shell, in a transform-domain CBA scheme, the authenticator extracts an invari-
ant transform-domain feature and computes the authentication data, which is
embedded back to the video as a watermark. During verification, a verifier
extracts feature from the received video, and verifies it against the extracted
authentication data (i.e., watermark). Thus, both feature extraction and water-
mark extraction are pivotal in a CBA scheme to ensure that a video can be
securely authenticated.

It is worth noting that earlier work on CBA first focused on the authentica-
tion of still images. For example in [2] and [11], the CBA scheme extracts and
authenticates feature from the transform coefficients of JPEG and JPEG 2000
images, respectively. These schemes have been proven to be highly efficient and
are able to detect semantic-changing attacks. Since video is a sequence of frames,
and each frame is essentially a still image, many existing CBA schemes for video
adopt a similar design convention as that for images. The work of [5,14,32],
for example, extract a transform-domain feature from the frame’s coefficients
(hereinafter called the payload), and show that the feature can detect semantic-
changing attacks while remain unchanged under bit-rate transcoding. For appli-
cations such as surveillance videos that may lose vital details if transcoded, the
work of [10,25] extract a fragile feature from the frame header and show that
both semantic-changing attacks and bit-rate transcoding cause an avalanche
change on the header parameters that inevitably destroys the feature.

The work of [7] summarizes three most common security problems in CBA
schemes for images, namely undetected modifications, information leakage and
protocol weakness. For example, in [9], the authors point out that due to indepen-
dent pixel-/block-wise feature and watermark extraction, the schemes in [37] and
[40] are vulnerable to collage attacks; an attacker can swap pixels or blocks within
an image (or among database of images authenticated using the same secret key) to
produce a counterfeit image. To thwart this attack, [18] proposes to extract feature
from one block and embed its watermark into another randomly selected block.
However, due to information leakage in watermark generation, the secret block

368 S.-W. Lo et al.

relationship graph can be exposed by an attacker [3]. A similar flaw in [16,17] has
also been exploited by [38] to expose the secret relationship graph via a verifica-
tion device attack [7]. While there are many studies on security of CBA schemes
for images, not many have been done for videos. To the best of our knowledge, the
work that addresses security of CBA schemes for video is that of [34], where a flaw
in watermark generation in [28] is identified.

The main focus of this paper is to study the security of existing transform-
domain CBA schemes as a mean to integrity-protect videos transmitted through
open and insecure network. We first survey and categorize existing transform-
domain CBA schemes into two categories, namely header- and payload-protected
CBA schemes, and we point out a common design flaw in these schemes: the
transform-domain feature extracted and authenticated in these schemes is insuf-
ficient to securely authenticate a video. We note that while both categories of
schemes are able to detect semantic-changing attacks performed in the pixel
domain, they are unable to detect attacks performed in the transform domain.
We show that unlike images, where the payload (coefficients) represent its overall
semantic meaning, the payload and the header of a video have a strong inter-
dependency relationship. This relationship, when maliciously exploited, changes
the semantic meaning of the final, decoded video to a similar effect as attacks
in the pixel domain, and these attacks cannot be detected by the CBA schemes.
We discuss the ways that the relationship can be exploited and we show sev-
eral attack examples (some of which were given in [19]). Finally, we discuss in
depth the attacks that manipulate the header of a video, and the conditions of
the attack, given the attacker’s desired attack content. Note that although our
attacks are performed on H.264/AVC-encoded videos, they are also applicable to
CBA-protected videos encoded by other standards such as MPEG-2, MPEG-4
and H.264/SVC due to the same underlying video coding concept.

2 The H.264 Video Coding Standard

Most video coding standards including MPEG-2, MPEG-4 and H.264 achieve
compression by identifying similarities in the spatial (within frame) and the tem-
poral (between frames) dimensions. In the H.264 standard, a prediction model
takes as input a raw video frame and outputs a residual frame. The raw frame
is first partitioned into units (each of size 16× 16 pixels) called macroblocks,
which may be further partitioned into 16 (4× 4)-blocks. Given a raw macroblock
Ori, the prediction model searches for the most perceptually similar macroblock
within a searchable region, i.e., neighbouring macroblocks in the same frame
(intra prediction) or in adjacent frames (inter-prediction), and uses the most
similar macroblock as reference to generate a prediction macroblock Pred. The
prediction macroblock is (pixel-wise) subtracted from the raw macroblock to
obtain the residual macroblock Res as in (1). The residual macroblock is then
transformed, quantized and entropy encoded to the bitstream domain.

Figure 1 shows the syntax of a H.264 macroblock. In this figure, para-
meter type indicates whether the macroblock is intra- or inter-predicted.

On Security of Content-Based Video Stream Authentication 369

Fig. 1. The syntax elements of a H.264 macroblock.

Each (intra/inter) macroblock can be partitioned into sub-blocks of different
sizes, which is conveyed by the parameter partition size. For an intra macroblock,
prediction mode conveys the Directional Prediction Mode (DPM) indicating the
location of reference macroblock(s) and the method of generating prediction
macroblock; for an inter macroblock, this parameter conveys the reference frame
index pointing to a previously-decoded frame and the Motion Vector (MV) indi-
cating the displacement of the reference macroblocks from the raw macroblock.
Coded Block Pattern (CBP) indicates the existence of non-zero coefficients in
the macroblock, followed by the Quantization parameter (QP). We collectively
refer these prediction parameters as the macroblock header. The quantized luma
and chroma coefficients are referred to as the macroblock payload.

At the decoder, the decoded macroblock Dec is obtained as in (2) after recon-
structing the prediction macroblock Pred∗ (using the macroblock header) and
the residual macroblock Res∗ (using the macroblock payload). Note that for a
non-tampered macroblock, the quantity α is due to lossy compression and is
negligible, and Dec is perceptually similar to Ori. We can also observe an inter-
dependent relationship between the macroblock header and payload from (2).

Encoder: Res = Ori − Pred (1)
Decoder: Dec = Pred∗ + Res∗ = Ori + α (2)

In the next section, we show the attacks that can be performed on each cate-
gory by exploiting the relationship between macroblock header and its payload.

3 Common Design Flaw in Existing Content-Based Video
Authentication Schemes

We describe a generic CBA model which is followed by most of the CBA schemes
in the literature and classify existing schemes based on the domain of feature
extraction in Sects. 3.1 and 3.2, respectively. The design flaw of the CBA schemes
is described in detail in Sect. 3.3 and we show how the flaw can be exploited to
achieve semantic-changing attacks without being detected by the CBA schemes.

3.1 Content-Based Authentication Model

A transform-domain CBA scheme for video works at the macroblock level, in
compatible with video coding standards such as MPEG-2, MPEG-4 and H.264

370 S.-W. Lo et al.

that use block-based coding. Given a macroblock in the transform domain, a
CBA scheme first identifies the feature extraction domain and the prediction
parameter(s) or coefficients to extract feature F from. The feature F , together
with the authenticator’s private key sk, serve as inputs to the feature authenti-
cation phase that outputs a watermark WF . In the watermark embedding phase,
a different secret key k is used to identify a set of embedding locations and WF

is embedded into the macroblock following a set of embedding rules. The water-
marked macroblock is then entropy encoded into a bitstream and transmitted to
a verifier. Upon receiving the bitstream, the verifier performs entropy-decoding
and watermark extraction by identifying the extraction domain, locations and
extraction rules to output the watermark WF . The verifier then performs the
same feature extraction operation to output a feature F ′ of the macroblock
and verifies it against WF using the authenticator’s public key pk (which corre-
sponds to the authenticator’s private key sk) in the feature verification phase.
Upon successful verification, the verifier proceeds to decode the macroblock.

3.2 Classification of Existing Schemes

We classify existing CBA schemes for video into two categories, namely payload-
and header-protected CBA schemes.

Payload-Protected Schemes. Payload-protected schemes extract and
authenticate a feature from the macroblock payload (i.e., coefficients) that is
able to detect semantic-changing attacks and survive bit-rate transcoding. The
watermark computed from the feature is embedded back into the coefficients in
the payload, or into the prediction parameters in the header. For embedding into
payload, the rule of evaluating LSB [5,32,35,41], zero/non-zero coefficients [42]
or energy relationship between coefficients [4,35] are used, whereas for embed-
ding into header, the rule of evaluating LSB [14,28] of MVs is used.

Header-Protected Schemes. In the work of [10,25], a feature is extracted,
respectively, from the DPMs of intra frames and the partition sizes of mac-
roblocks. Their schemes are shown to reliably detect semantic-changing attacks
as well as unauthorized bit-rate transcoding due to the fragile nature of header
parameters. The watermark is embedded into the payload using the LSB evalu-
ation rule due to limited embedding capacity in the header.

Remark. We note that there are several CBA schemes that extract feature from
the payload and motion vectors [15,30,41] in the header. For clarity sake, we do
not classify them but as we will discuss and show in the remainder of the paper,
almost all prediction parameters in the header have interdependent relationship
with the payload that can be exploited to achieve semantic-changing attacks;
these schemes are still susceptible to our attacks in the transform domain.

On Security of Content-Based Video Stream Authentication 371

3.3 The Design Flaw and Its Exploitation

The common flaw of existing transform-domain CBA schemes is that the feature
extracted is insufficient to truly represent the video semantic. This is because
they did not take into account the interdependent relationship between predic-
tion parameters in the macroblock header with the coefficients in the macroblock
payload. By exploiting this relationship, attacks performed in the transform
domain can not only change the video semantic, they are also undetectable by
the CBA schemes.

Exploiting the Flaw in Payload-Protected Schemes. Unlike images where
image pixels were directly transformed and quantized [31], a video’s macroblock
coefficients convey the relationship between the macroblock pixel content and its
prediction macroblock, i.e., the residual macroblock Res. If an attacker finds an
attack prediction macroblock Pred′ to replace the original prediction macroblock
Pred∗, the targeted macroblock Dec could be modified to the attacker’s desired
attack macroblock Dec′ (see (2)). Hereafter, we base our discussion at the (4× 4)-
block level since it is the smallest coding unit.

To find an attack prediction block, an attacker proceeds as follow. Firstly,
identify the “searchable region” and the candidate reference blocks that generate
the suitable Pred′ to obtain Dec′. In intra-prediction, the searchable region is
the four neighbouring blocks (left, above-and-to-the-left, above, and above-and-
to-the-right of) the targeted block whereas in inter-prediction, the searchable
region is within an area centering on the targeted block [44]. To replace Pred∗

with Pred′, modify the prediction mode (e.g., DPM, MV and reference frame
index) of the targeted block Dec.

Depending on the video content, it is possible that a suitable Pred′ is unavail-
able. If so, a workaround that indirectly modifies the residual block Res without
being detected by payload-protected schemes can be performed using the effect of
QP. At the encoder, a larger QP in forward quantization removes insignificant
coefficients. At the decoder, given a set of coefficients, a larger QP in inverse
quantization magnifies the residual samples whereas a smaller QP suppresses
the samples. If a decoder receives a corrupted QP, inverse quantization results
in a different set of coefficients that may misrepresent the residual samples in
Res. Note that this cannot be detected by payload-protected schemes because
the magnifying/suppressing happens during the decoding process, which is only
executed after integrity verification. Having different QPs across macroblocks
in a frame is not uncommon; macroblock-layer rate control in H.264 has been
proven to improve coding efficiency [21] whereas earlier standards (e.g., MPEG-
4) and the H.264 High Profile allow different QPs for DC and AC coefficients
[6,27].

If the targeted macroblock spans across targeted and non-targeted content, it
is more complicated to modify its prediction mode because the attacker needs to
find a suitable attack prediction macroblock of the same size that changes only
the targeted content while keeping the non-targeted content intact. By modifying
the macroblock partition size, the targeted macroblock can be partitioned into

372 S.-W. Lo et al.

sub-blocks, such that the targeted content is isolated in a sub-block, and then
perform a search for the suitable attack prediction sub-block thereof.

Remarks. Attacks on payload-protected schemes involve replacing the original
prediction block with an attack prediction block in order to change the content
of a targeted block. Given the searchable region which is constrained in one
frame (intra frames) or within the same video (inter frames), arbitrary content
insertion attacks cannot be realized. However, content removal and modification
attacks are possible as will be shown in Sect. 4. We also note that prediction mode
parameters such as DPM, MV and reference frame index are coded differentially
between successive blocks. If these parameters are changed, it may affect the
corresponding parameter of subsequent (targeted/non-targeted) blocks, causing
them to use a wrong/different prediction block for decoding. This may result
in error propagation that occur in the form of visual distortion on the decoded
frame. In Sect. 4, we show an example of such error propagation, and show that
the visual distortion can be corrected to a certain degree by either restoring the
prediction mode of affected blocks, or by restricting their choice of prediction
block to a more suitable one.

Exploiting the Flaw in Header-Protected Schemes. Although header-
protected schemes can detect both content-preserving and semantic-changing
manipulations, they are more insecure compared to payload-protected schemes.
Since the payload represents the residual block with samples that are integers
ranging from −255 to +255, an attacker can perform a simple but powerful attack
using reverse engineering. Since the verifier has no prior information about the
original block, an attacker can replace them with a new block with different
content Dec′ and compute the new residual block Res′ such that Res′ = Dec′ −
Pred, where Pred is the original prediction block. The attacker then performs
forward transform and quantization to obtain a new set of transform coefficients,
replacing the original coefficients in the payload.

Complying with Watermark Extraction. Apart from ensuring that the
transform-domain attacks do not alter the authenticated feature, it is also vital
to ensure that the tampered data obeys the watermark extraction rule. Water-
mark extraction includes: extract location identification and extraction based on
extraction rules. Although random extraction locations is deemed vital for secu-
rity reason [22], we argue that it is more important for copyright protection where
the attack objective is to find and destroy the watermark; a successful attack in
our approach depends more heavily on complying with the watermark extrac-
tion rules. For verification efficiency, existing CBA schemes perform extraction by
evaluating either the LSB or zero/non-zero coefficients as mentioned in Sect. 3.2.
Such characteristics can always be engineered in the coefficients or MVs. Since
DPMs can be categorized into sets generating similar prediction blocks [24], an
attacker can select DPMs within the same set to satisfy the even/odd evaluation.

On Security of Content-Based Video Stream Authentication 373

4 Attack Examples on Existing CBA Schemes

In this section, we demonstrate transform-domain attack examples1 that can be
applied on each category of CBA schemes as discussed in Sect. 3.3. More specif-
ically, we show content removal and content modification attacks on payload-
protected schemes, and content insertion attack on header-protected schemes.
Our attacks are implemented using the JM reference software [12]. We emulate
the attacker’s interception and replacement of macroblock stream by modify-
ing the decoder’s ‘read’ data. The video sequences used in our attacks are the
352 × 288 News, Bridge and Waterfall sequences [1] and a 384 × 288 surveillance
sequence [33], all encoded in IBBBBBBBP format with QP = 28 for intra frames
and QP = 30 for inter frames.

4.1 Content Removal Attacks

A content removal attack is the act of replacing an object with its background
information.

Figure 2a, b, c, d, and e show the first five frames of the original News
sequence, where Fig. 2a is an intra frame and Fig. 2b, c, d, and e are inter frames.
The aim of the attack is to remove content of the targeted blocks, i.e., the balle-
rina, by finding new attack prediction blocks such that the end result is a set of
attacked blocks that convey the background information, i.e., the walls. Notice
that in Fig. 2a, the targeted blocks are surrounded by reference blocks conveying
similar content, i.e., the walls. This is an example where the attack prediction
blocks are the original prediction blocks and it implies that the samples in the
(targeted) residual blocks have high magnitude since they do not have similar
prediction blocks to be used for compression (see (1)). Hence, the workaround
by manipulating QP of the targeted blocks to suppress their residual samples
is executed. Subsequently, if necessary, the DPMs of the targeted blocks (e.g.,
torso of the ballerina) are modified to use background blocks as attack prediction
blocks.

Since intra frames are used as (one of the) reference frame(s) to generate
prediction blocks for the subsequent inter frames, the content of the attacked
intra frame will “propagate” to the inter frames during decoding. The residuals
of the original content in inter frames were completely removed by modifying
the MV of targeted blocks in the inter frames. The final result of the removal
attack is shown in Fig. 2f, g, h, i, and j.

Due to differential coding of prediction mode parameters, there is a risk of
error propagation after one is manipulated. Figure 3a shows an example of error
propagation due to erroneous DPM decoding in an intra frame, which is resolved
by correcting the DPM of the affected block(s) to use a more suitable prediction
block for decoding. The result of this correction is shown in Fig. 3b.

There are also cases where QP manipulation is not needed. Figure 4a shows
the first frame of the Bridge sequence. In this example, it is sufficient to modify

1 Source files can be viewed at https://sites.google.com/site/smusvc/Authentication.

https://sites.google.com/site/smusvc/Authentication

374 S.-W. Lo et al.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Content removal attack on News sequence, with the original frames shown in
(a)–(e) and attack frames in (f)–(j).

(a) Distorted frame (b) Corrected frame

Fig. 3. An example of visual distortion due to DPM decoding error and its corrected
version.

(a) Original frame (b) Attacked frame

Fig. 4. Content removal attack on Bridge sequence.

the DPMs of targeted blocks, i.e., the left pier, to use the background informa-
tion, i.e., the river, as attack prediction blocks. The result of the removal attack
is shown in Fig. 4b. In this case, QP manipulation is not needed because the
original prediction blocks are obtained from the top of the targeted blocks and
they are semantically similar, thus, the residual blocks have samples of small
magnitude. Replacing the original prediction blocks with the attack prediction
blocks on the left (i.e., the river) replaces the content of the targeted blocks with
the content of the attack prediction blocks.

On Security of Content-Based Video Stream Authentication 375

(a) Original frame (b) Attacked frame

Fig. 5. Content replacement attack on Waterfall sequence.

(a) Original frame (b) Original timing (c) Attacked timing

Fig. 6. Content replacement attack on a surveillance sequence.

4.2 Content Modification Attacks

In this subsection, we show two examples of content modification attacks on
payload-protected schemes that includes content replacement and content relo-
cation attacks.

Content replacement is the act of replacing (or “overwriting”) the content of
a targeted block with that of its desired attack block. In our first example, we
perform content replacement attack on the intra frame of the Waterfall sequence.
As shown in Fig. 5, the DPMs of a large set of targeted blocks are modified to
“extend” the effect of attack prediction blocks, i.e., the trees, such that they
cover the original blocks, i.e., the waterfall.

In the second example, the reference frame index is modified to achieve con-
tent replacement in inter frames. In addition, the partition size parameter is
also modified to facilitate the attack. Figure 6b shows the timing information
extracted from a surveillance frame in Fig. 6a. This timing information is encoded
using 16× 16 macroblocks, where the upper half of each macroblock covers the
timing information (targeted) while the lower half covers the surveillance back-
ground (non-targeted). Tampering with the reference frame index will affect both
the timing information and the surveillance background. By manipulating the
partition size parameter such that each targeted 16 × 16 macroblock is par-
titioned into sixteen 4 × 4 blocks, the targeted content is isolated from the
non-targeted content. The reference frame index of the targeted blocks can then
be modified independently without affecting the non-targeted blocks. Figure 6c
shows the result of this attack; when the attacked frames are inserted into the
video sequence, a scrambled timing information is observed.

376 S.-W. Lo et al.

(a) Original frame (b) Tampered frame

Fig. 7. Content relocation attack on a surveillance sequence.

Fig. 8. Content insertion attack on header-protected CBA schemes.

Content relocation is the act of changing the position of an object from
one location to another. This attack is typically difficult to achieve on intra
frames because each intra block is predicted from its neighbouring blocks; to
perform a meaningful content relocation that is affected by, and will be affecting,
neighbouring blocks is intuitively hard. For an inter block, however, this attack
can be achieved by modifying the MV using a concept similar to content removal.
Figure 7a shows a frame extracted from the surveillance sequence. In this attack,
the MVs of the targeted blocks, i.e., the dustbin, are modified such that they use
a new content, i.e., the man, as attack prediction blocks. Subsequently, the blocks
containing the man is removed using the content removal attack methodology
presented in the previous subsection. The result of this attack is shown in Fig. 7b.

4.3 Content Insertion Attacks

For completeness, we show an example of content insertion attack on header-
protected schemes since this attack is not possible on payload-protected schemes.
Figure 8 shows an example of content insertion attack on header-protected CBA
schemes, where the original frame is shown in Fig. 6a. Taking the samples of
arbitrary image of a clock, the residual blocks are obtained by subtracting the
original prediction blocks from the samples. The residual blocks are then trans-
formed and quantized, and inserted into the macroblock payload.

4.4 Summary and Remarks

In summary, we showed that contrary to images, the video header and payload
must be simultaneously integrity protected since their interdependency relation-
ship can be exploited by attacks performed in the transform domain. For attacks

On Security of Content-Based Video Stream Authentication 377

on payload-protected schemes, DPM, MV and reference frame index affect the
generation of prediction block, which when combined with the residual block
could semantically change the targeted block. While DPM selects prediction
blocks from neighbouring blocks, MV and reference frame index select them
from a wider search range. An advanced attacker may modify the macroblock
type (intra/inter) and remove or insert bogus prediction mode relevant to the
new macroblock type; we leave attacks of such nature as future work. Addi-
tionally, the QP is a header parameter that can be used as a workaround to
inexplicitly modify the residual block while the partition size can be modified to
facilitate search for a suitable prediction block. For attacks on header-protected
schemes, it is vital that the distribution of tampered coefficients tallies with
the coded block pattern (CBP) in the header, otherwise a decoding error may
occur. We acknowledge that authenticating the CBP in the header will impose
a higher level of difficulty on the attacks, however, in existing header-protected
schemes, this parameter is often left unprotected. In the literature, there are also
CBA schemes that authenticate both the payload and the MVs in the header
[15,30,41]. However, as we have shown in our attack examples, these schemes
are still vulnerable to attacks such as DPM attacks on intra blocks, reference
frame index and/or partition size attacks on inter blocks.

We also note some interesting observations on H.264/SVC - the scalable
extension of H.264/AVC that is used to encode the sequences used in this study.
In SVC, a mandatory base layer (BL) that is backward compatible with AVC
is encoded. Using BL as reference to generate prediction, one or more enhance-
ment layers (ELs) that gradually improve the resolution or quality of the video
are encoded. If header-protected CBA schemes are applied on an SVC stream,
attacks on the payload of BL and ELs are possible (and powerful). On the
other hand, if coefficients-protected CBA schemes are applied, our attacks are
applicable to the BL and the effect could propagate to the ELs. Thus, noting
the importance of the BL, the work of [36] cryptographically protects the BL to
prevent any form of malicious tampering2. Although there are minimal header
parameters in the ELs [29], we observe the following important parameters, e.g.,
the motion prediction flag and residual prediction flag. For the ELs, a motion
prediction flag of ‘1’ indicates that the EL directly uses header parameters of its
reference (base) layer; otherwise, it carries its own header parameters. A resid-
ual prediction flag of ‘1’, on the other hand, indicates that the EL’s payload
R′
EL is obtained by subtracting the upsampled BL payload RBL from the payload

obtained via AVC-like encoding REL; otherwise, R′
EL = REL. An advanced attacker

could then opt to modify these flags and to manipulate the video semantic. In
short, content-based authentication for SVC present several interesting research
problems to be explored.

2 Pixel-domain CBA scheme is used in [36] to protect the ELs and thus is out of the
scope of study for this paper.

378 S.-W. Lo et al.

5 Discussions

We have shown that semantic-changing attacks on videos authenticated by
payload- or header-protected CBA schemes are possible by modifying, respec-
tively, the header or the payload of the targeted block(s). Moreover, these attacks
cannot be detected by the respective CBA schemes.

Since the attacks on header-protected schemes are relatively straightforward,
we focus the following discussions on the attacks on payload-protected schemes.
As shown in Sect. 4, a targeted block will convey a semantically different content
as compared to its original content if a suitable attack prediction block is found
from the searchable region. In this section, we analyze (from an attacker’s point
of view) that given the desired attack block and the unmodifiable residual block,
whether it is possible for an attacker to obtain the suitable attack prediction
block. Our analysis is performed on a 4× 4-block level, where a macroblock M
is represented as follow:

M =

M(B0) M(B1) M(B4) M(B5)
M(B2) M(B3) M(B6) M(B7)
M(B8) M(B9) M(B12) M(B13)
M(B10) M(B11) M(B14) M(B15)

where M(Bi) denotes the i-th (4 × 4)-block of M, and can be represented by a
4 × 4 matrix. Using the same convention, an original and prediction macroblock
(denoted Dec and Pred respectively), are made up of Dec(Bi) and Pred(Bi) for
i = 0, · · · , 15. The list of notations is shown in Table 1.

Generally, the average value of a 4× 4-block is a good approximation of the
block’s samples [20,23,39] due to the high correlation between samples in the
block. Since the residual block may consist of positive and negative integers, we

Table 1. List of notations

Notations Descriptions

Dec, Res, Pred Original decoded, residual and prediction macroblock,
respectively, each containing 16 4 × 4-blocks

Dec(B), Res(B),
Pred(B)

Original decoded, residual and prediction 4 × 4-block,
respectively

d̄(B), p̄(B) Average of the samples in Dec(B) and Pred(B), respectively

r̂(B) Median of residual samples in Res(B)

Dec′(B), Res′(B),
Pred′(B)

An attack decoded, residual and prediction 4 × 4-block,
respectively

d̄′(B), r̂′(B), p̄′(B) Average of the samples in Dec′(B), Res′(B), Pred′(B),
respectively

E(Res) =
∑3

i,j=0

ri,j
16

Energy of the residual samples in Res(B), where ri,j is the
residual sample at position (i, j) in Res(B)

⊕, � Pixel-/Sample-wise addition and subtraction, respectively

On Security of Content-Based Video Stream Authentication 379

use the median of the residual samples to indicate the relationship between the
original block and the original prediction block. In other words, if r̂(B) > 0, then
Dec(B) is perceptually brighter than Pred(B); otherwise, Dec(B) is perceptually
darker than Pred(B). In addition, we let E(Res) be the energy of the residual
samples in Res(B) as defined in Table 1.

Given an original (targeted) block Dec(B) with d̄(B) and the residual block
Res(B) having a median r̂(B), we discuss the conditions on the desired attack
block Dec′(B) in terms of d̄′(B) such that the attacker can find an attack predic-
tion block Pred′(B), where Dec′(B) = Pred′(B) ⊕ Res(B). The following analysis
can be applied to the attacks on both intra and inter blocks.

Case 1A. When most of the residual samples are positive, i.e., r̂(B) > 0, it
implies that the original (targeted) block Dec(B) is perceptually brighter than
the original prediction block Pred(B), i.e., d̄(B) > p̄(B). If the desired attack block
Dec′(B) is to be perceptually brighter than Dec(B), we say that an attacker finds
an attack prediction block Pred′(B) if and only if d̄′(B) ≥ d̄(B) + 2r̂(B).

To prove this, suppose d̄(B) < d̄′(B) < d̄(B) + 2r̂(B). Substituting (2):

p̄(B)+r̂(B) < p̄′(B) + r̂(B) < p̄(B) + r̂(B) + 2r̂(B)
p̄(B) < p̄′(B) < p̄(B) + 2r̂(B) (3)

Referring to (3), we say that an attack prediction block Pred′(B) with p̄′(B)
cannot be found. Otherwise, by computing Res′(B) = Dec(B) � Pred′(B), the
upper and lower bound of r̂′(B) is:

r̂′(B)UB = d̄(B) − p̄(B) = r̂(B), and
r̂′(B)LB = d̄(B) − (p̄(B) + 2r̂(B)) = −r̂(B)

In other words, −r̂(B) < r̂′(B) < r̂(B). This implies that compared to the
original prediction block Pred(B), the attack prediction block Pred′(B) generates
smaller residual samples if it is used to encode Dec(B). This contradicts the
video coding rule, where Pred(B) is initially chosen to encode Dec(B) because
it generates the smallest Sum of Absolute Errors, SAE =

∑3
i,j=0 |di,j − pi,j |,

where di,j is the sample of Dec(B) at position (i, j) and pi,j is the sample of
Pred(B) at position (i, j), compared to all other candidate prediction blocks in
the searchable region [27]. This case can be demonstrated in the attack shown in
Fig. 4b. If Pred′(B) cannot be found, the workaround by manipulating QP can
be implemented to suppress the residual samples so that the available candidate
prediction blocks can be used to obtain Dec′(B).

Case 1B. When most of the residual samples are positive, i.e., r̂(B) > 0, but the
desired attack block Dec′(B) is to be perceptually darker than the original block
Dec(B), then the minimum value for a sample d′

i,j in Dec′(B) must be equal to the
residual sample ri,j in Res(B). This is because the minimum sample for Dec′(B) is
when Pred′(B) = 0 (see (2)), otherwise, if d̄′(B) < r̂(B), then by substituting (2),

380 S.-W. Lo et al.

Table 2. Summary of Cases 1A, 1B, 2A and 2B.

r̂(B) > 0 r̂(B) < 0

Dec′(B) is perceptually brighter than Dec(B) Case 1A Case 2A

d̄′(B) − d̄(B) ≥ 2r̂(B) d̄(B) < d̄′(B) ≤ 255 − |r̂(B)|
Dec′(B) is perceptually darker than Dec(B) Case 1B Case 2B

r̂(B) ≤ d̄′(B) < d̄(B) d̄′(B) − d̄(B) ≤ −2|r̂(B)|

we get p̄′(B) + r̂(B) < r̂(B) and the samples in the attack prediction block is
less than zero, which is not feasible. Thus, we write, in approximation, r̂(B) ≤
d̄′(B) < d̄(B). This condition is demonstrated in the attack shown in Fig. 2, where
the background information (the walls) is perceptually darker than the targeted
blocks (the ballerina), but the residuals samples are too large for Dec′(B) to
satisfy this condition. The QP can then be manipulated to suppress/magnify
the residual samples as deemed necessary.

Case 2A. When most of the residual samples are negative, i.e., r̂(B) < 0, the
original block Dec(B) is perceptually darker than the original prediction block
Pred(B). Suppose the desired attack block Dec′(B) is to be perceptually brighter
than Dec(B), we say that a sample d′

i,j in Dec′(B) is upper bounded by 255−|ri,j |
in Res(B) as dictated by (2). Thus, we can write in approximation that d̄(B) <
d̄′(B) ≤ 255 − |r̂(B)|. A similar analysis to Case 1B can be applied, where if
d̄′(B) > 255 − |r̂(B)|, then the attacker must find an attack prediction block
Pred′(B) where p̄′(B) > 255, which is not possible. This condition can be observed
in the attack shown in Fig. 5b.

Case 2B. When most of the residual samples are negative, i.e., r̂(B) < 0, but
the desired attack block Dec′(B) is to be perceptually darker than the original
block Dec(B), then we say that an attacker can find an attack prediction block
Pred′(B) if and only if d̄′(B) ≤ d̄(B)−2|r̂(B)|. This condition can be obtained by
a similar prove by contradiction as in Case 1A, whereas an illustration example
is shown in the upper torso, especially the head of the ballerina in Fig. 2a.

Table 2 summarizes the conditions for the above cases. When the attack block
Dec′(B) cannot satisfy the conditions in any of the cases above, then the attacker
cannot find an attack prediction block Pred′(B) such that Dec′(B) = Pred′(B) ⊕
Res(B). A workaround can then be performed by modifying the unprotected QP
to suppress or magnify the residual samples depending on the available candidate
attack prediction blocks.

6 Conclusions and Future Work

We have shown that existing content-based authentication (CBA) schemes
designed for videos are insecure due to insufficient feature extraction. The over-
looked interdependent relationship between the header and payload parameters
can be exploited to perform semantic-changing attacks in the transform domain.
We showed several semantic-changing attack examples that are performed in the

On Security of Content-Based Video Stream Authentication 381

transform domain and our attacks cannot be detected by the schemes. We dis-
cussed in detail the conditions at which an attack on payload-protected CBA
schemes can succeed given a desired attack content and the unmodifiable pay-
load, and if not, a workaround for it.

A possible countermeasure to our attacks is to use more complicated water-
mark extraction rules. However, unlike images, real-time extraction is vital for
video authentication [26] which makes straight-forward watermark extraction
rules such as those surveyed in this paper highly preferred. Another possible
countermeasure is to extract and authenticate features from both the header
and payload domains. In practical applications, transcoding requires full decod-
ing of intra frames and partial decoding of inter frames. The transcoding of
intra frames drastically changes the header and payload [13], and to the best of
our knowledge, there is no work that addresses this problem. Transcoding inter
frames changes the payload while the remaining data in the header remains
unchanged. Although existing payload-domain schemes are able to extract a
stable feature from the coefficients, but sparsely-distributed coefficients in inter
frames (especially after transcoding) are commonly overlooked, thereby leaving
them vulnerable to tampering. Thus far, we observed a stable feature from the
header of intra frames and we are working on extracting a stable feature from
the header of inter frames. Our future research is to design a secure and efficient
authentication scheme that overcomes the vulnerability of existing schemes and
is robust against bit-rate transcoding (performed by semi-trusted intermediary
proxies) as described above.

Acknowledgement. This work was partly supported by National Natural Science
Funds of China (Grant No. 61402199).

References

1. Arizona State University: Video trace library. http://trace.eas.asu.edu/index.html
2. Bianchi, T., Rosa, A.D., Piva, A.: Improved DCT coefficient analysis for forgery

localization in JPEG images. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2011), pp. 2444–2447 (2011)

3. Chang, C., Fan, Y., Tai, W.: Four-scanning attack on hierarchical digital water-
marking method for image tamper detection and recovery. Pattern Recogn. 41(2),
654–661 (2008)

4. Dai, Y., Thiemert, S., Steinebach, M.: Feature-based watermarking scheme for
MPEG-I/II video authentication. In: SPIE Security, Steganography, and Water-
marking of Multimedia Contents VI, vol. 5306, pp. 325–335 (2004)

5. Du, R., Fridrich, J.: Lossless authentication of MPEG-2 video. In: 2002 Interna-
tional Conference on Image Processing (ICIP), vol. 2, pp. II-893–II-896 (2002)

6. Ebrahimi, T., Horne, C.: MPEG-4 natural video coding - an overview. Signal
Process. Image Commun. 15(4–5), 365–385 (2000)

7. Fridrich, J.: Security of fragile authentication watermarks with localization. In:
SPIE, Security and Watermarking of Multimedia Contents IV, vol. 4675, pp. 691–
700 (2002)

http://trace.eas.asu.edu/index.html

382 S.-W. Lo et al.

8. Hefeeda, M., Mokhtarian, K.: Authentication schemes for multimedia streams:
quantitative analysis and comparison. ACM Trans. Multimedia Comput. Com-
mun. Appl. 6(1), 1–24 (2010)

9. Holliman, M., Memon, N.: Counterfeiting attacks on oblivious block-wise indepen-
dent invisible watermarking schemes. IEEE Trans. Image Process. 9(3), 432–442
(2000)

10. Horng, S.J., Farfoura, M.E., Fan, P., Wang, X., Li, T., Guo, J.M.: A low cost fragile
watermarking scheme in H.264/AVC compressed domain. Multimedia Tools Appl.
72(3), 2469–2495 (2014)

11. Hu, H.T., Hsu, L.Y.: Exploring DWT-SVD-DCT feature parameters for robust
multiple watermarking against JPEG and JPEG2000 compression. Comput.
Electr. Eng. 41, 52–63 (2015)

12. Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q.6).: JM Reference Software Manual (2009)

13. Kim, D., Choi, Y., Kim, H., Yoo, J., Choi, H., Seo, Y.: The problems in digital
watermarking into intra-frames of H.264/AVC. Image Vis. Comput. 28(8), 1220–
1228 (2010)

14. Kuo, T.Y., Lo, Y.C., Lin, C.I.: Fragile video watermarking technique by motion
field embedding with rate-distortion minimization. In: International Conference on
Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP), pp.
853–856 (2008)

15. Lin, C.Y., Chang, S.F.: Issues and solutions for authenticating MPEG video. In:
SPIE International Conference on Security and Watermarking of Multimedia Con-
tents, vol. 3657, pp. 54–56 (1999)

16. Lin, C.Y., Chang, S.F.: Semi-fragile watermarking for authenticating JPEG visual
content. In: SPIE Security and Watermarking of Multimedia Contents, pp. 140–151
(2000)

17. Lin, C.Y., Chang, S.F.: A robust image authentication method distinguishing
JPEG compression from malicious manipulation. IEEE Trans. Circuits Syst. Video
Technol. 11(2), 153–168 (2001)

18. Lin, P., Hsieh, C., Huang, P.: A hierarchical digital watermarking method for image
tamper detection and recovery. Pattern Recogn. 38(12), 2519–2529 (2005)

19. Lo, S.W., Wei, Z., Deng, R.H., Ding, X.: Generic attacks on content-based video
stream authentication. In: IEEE International Conference on Multimedia and Expo
Workshops (ICMEW), pp. 1–6 (2014)

20. Luo, Z., Song, L., Zheng, S., Ling, N.: H.264 advanced video control perceptual
optimization coding based on JND-directed coefficient suppression. IEEE Trans.
Circuits Syst. Video Technol. 23(6), 935–948 (2013)

21. Ma, S., Gao, W., Zhao, D., Lu, Y.: A study on the quantization scheme in
H.264/AVC and its application to rate control. In: Advances in Multimedia Infor-
mation Processing, PCM, pp. 192–199 (2004)

22. Mansouri, A., Aznaveh, A.M., Torkamani-Azar, F., Kurugollu, F.: A low complex-
ity video watermarking in H.264 compressed domain. IEEE Trans. Inf. Forensics
Secur. 5(4), 649–657 (2010)

23. Naccari, M., Pereira, F.: Advanced H.264/AVC-based perceptual video coding:
architecture, tools and assessment. IEEE Trans. Circuits Syst. Video Technol.
21(6), 806–819 (2011)

24. Park, J.S., Song, H.J.: Selective intra prediction mode decision for H.264/AVC
encoders. World Acad. Sci. Eng. Technol. 13, 51–55 (2006)

25. Park, S.W., Shin, S.: Authentication and copyright protection scheme for
H.264/AVC and SVC. J. Inf. Sci. Eng. 27(1), 129–142 (2011)

On Security of Content-Based Video Stream Authentication 383

26. Podilchuk, C.I., Delp, E.J.: Digital watermarking: algorithms and applications.
IEEE Signal Process. Mag. 18(4), 33–46 (2001)

27. Richardson, I.E.: The H.264 Advanced Video Compression Standard, 2nd edn.
Wiley, Chichester (2010)

28. Saadi, K.A., Bouridane, A., Guessoum, A.: Combined fragile watermark and digital
signature for H.264/AVC video authentication. In: 17th European Signal Process-
ing Conference, pp. 1799–1803 (2009)

29. Schwarz, H., Merpe, D., Wiegand, T.: Overview of the scalable video coding exten-
sion of the H.264/AVC standard. IEEE Trans. Circuits Syst. Video Technol. 17(9),
1103–1120 (2007)

30. Shahabuddin, S., Iqbal, R., Shirmohammadi, S., Zhao, J.: Compressed-domain
temporal adaptation-resilient watermarking for H.264 video authentication. In:
IEEE International Conference on Multimedia and Expo (ICME), pp. 1752–1755
(2009)

31. Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 still image compres-
sion standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001)

32. Sun, Q., He, D., Tian, Q.: A secure and robust authentication scheme for video
transcoding. IEEE Trans. Circuits Syst. Video Technol. 16(10), 1232–1244 (2006)

33. The CAVIAR team: EC funded CAVIAR project/IST 2001 37540. http://
homepages.inf.ed.ac.uk/rbf/CAVIAR/

34. Ting, G.C., Goi, B.M., Lee, S.W.: Cryptanalysis of a fragile watermark based
H.264/AVC video authentication scheme. Appl. Mech. Mater. 145, 552–556 (2011)

35. Wang, Y., Pearmain, A.: Blind MPEG-2 video watermarking robust against geo-
metric attacks: a set of approaches in DCT domain. IEEE Trans. Image Process.
15(6), 1536–1543 (2006)

36. Wei, Z., Wu, Y., Deng, R., Ding, X.: A hybrid scheme for authenticating scalable
video codestreams. IEEE Trans. Inf. Forensics Secur. 9(4), 543–553 (2014)

37. Wong, P.: A watermark for image integrity and ownership verification. In: IS and
TS PICS Conference, pp. 374–379 (1998)

38. Wu, Y., Xu, C.: A fault-induced attack to semi-fragile image authentiation schemes.
In: SPIE on Visual Communications and Image Processing, vol. 5150, pp. 1875–
1883 (2003)

39. Yang, X., Lin, W., Lu, Z., Ong, E., Yao, S.: Motion-compensated residue pre-
processing in video coding based on just-noticeable-distortion profile. IEEE Trans.
Circuits Syst. Video Technol. 15(6), 742–752 (2005)

40. Yeung, M., Mintzer, F.: An invisible watermarking technique for image verification.
In: International Conference on Image Processsing (ICIP), pp. 680–683 (1997)

41. Yin, P., Yu, H.H.: A semi-fragile watermarking system for MPEG video authentica-
tion. In: IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), vol. 4, pp. IV-3461–IV-3464 (2002)

42. Zhang, W., Zhang, R., Liu, X., Wu, C., Niu, X.: A video watermarking algorithm
of H.264/AVC for content authentication. J. Networks 7(8), 1150–1154 (2012)

43. Zhao, Y., Lo, S.W., Deng, R.H., Ding, X.: An improved authentication scheme
for H.264/SVC and its performance evaluation over non-stationary wireless mobile
networks. In: 6th International Conference on Network and System Security (NSS),
pp. 192–206 (2012)

44. Zhao, Z., Liang, P.: A statistical analysis of H.264/AVC FME mode reduction.
IEEE Trans. Circuits Syst. Video Technol. 21(1), 53–61 (2011)

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

Oblivious Maximum Bipartite Matching Size
Algorithm with Applications to Secure

Fingerprint Identification

Marina Blanton(B) and Siddharth Saraph

Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN, USA

{mblanton,ssaraph}@nd.edu

Abstract. The increasing availability and use of biometric data leads
to situations when sensitive biometric data is to be handled by entities
who may not be fully trusted or otherwise are not authorized to have
full access to such data. This calls for mechanisms of provably protecting
biometric data while still allowing the computation to take place. Our
focus is on privacy-preserving matching of two fingerprints (authenti-
cation or identification purposes) using traditional minutia-based repre-
sentation of fingerprints that leads to the most discriminative fingerprint
comparisons. Unlike previous work in the security literature, we would
like to focus on algorithms that are guaranteed to find the maximum
number of minutiae that can be paired together between two finger-
prints leading to more accurate comparisons. To address this problem,
we formulate it as a flow network problem and reduce it to finding maxi-
mum matching size in bipartite graphs. The resulting problem is in turn
reduced to computing the rank of a (non-invertible) matrix, formed as
a randomized adjacency matrix of the bipartite graph. We then provide
data-oblivious algorithms for matrix rank computation and consecutively
finding maximum matching size in a bipartite graph and also extend
the algorithms to solve the problem of accurate fingerprint matching.
These algorithms lead to their secure counterparts using standard secure
two-party or multi-party techniques. Lastly, we implement secure finger-
print matching in the secure two-party computation setting using garbled
circuit evaluation. Our experimental results demonstrate that the tech-
niques are efficient, leading to performance similar to that of other fastest
secure fingerprint matching techniques, despite higher complexity of our
solution that higher accuracy demands.

1 Introduction

The motivation for this work comes from the need to protect sensitive biometric
data when it is being used in a growing range of applications. In particular,
biometric authentication and other uses of biometric data are becoming more
prevalent today in a variety of applications, which was prompted in part by recent
advances in biometric recognition. Large-scale collections of biometric data in

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 384–406, 2015.
DOI: 10.1007/978-3-319-24174-6 20

Oblivious Maximum Bipartite Matching Size Algorithm 385

use today include fingerprint, face, and iris images collected by the US Depart-
ment of Homeland Security (DHS) from visitors [44]; fingerprint and iris images
collected by the government of India from (more than billion) citizens [41]; iris,
fingerprint, and face images collected by the United Arab Emirates (UAE) Min-
istry of Interior from visitors [43]; and adoption of biometric passports in several
countries. It is evident that biometric authentication and identification have
advantages over alternative mechanisms such as good accuracy and unforgeabil-
ity of biometry. Biometric data, however, is highly sensitive and, once leaked,
cannot be revoked or replaced. This calls for stringent protection of biometric
data while at rest and when used in applications.

The above means that biometric data cannot be easily shared between orga-
nizations or agencies, but there are often legitimate reasons for computing with
biometric data that belong to different entities. As an example, a private inves-
tigator can be interested in knowing whether a biometric she captured appears
in the government’s criminal database, but without disclosing the biometric if
no matches are found. Similarly, two organizations or collaborating governments
might want to determine which individuals, if any, appear simultaneously in
their respective databases without revealing any additional information. A solu-
tion to enabling such computation while protecting privacy of the data is to
employ secure multi-party computation techniques, which compute the result
without disclosing any additional information.

In this work we would like to specifically treat the problem of secure com-
putation with fingerprint data due to popularity and good accuracy of this type
of biometry. We would like to cover as many settings where biometric data may
used in computation by not fully trusted entities (or data sharing is restricted by
law or other provisions) as possible. At the most basic level the problem is for-
mulated as having one party A who possesses private input (fingerprint X) and
another party B who possesses another private input (fingerprint Y). The par-
ties would like to compute a function of their private inputs without disclosing
any information other than the agreed-upon computation output. In the context
of fingerprint matching, this can correspond to biometric authentication (com-
paring X and Y) and also biometric identification (when one party, e.g., B has
a biometric database D and the computation consists of securely comparing X
to all Y ∈ D and identifying all biometrics that matched (if any) or determining
the closest match). Another setting in which secure processing of biometric data
is relevant is that of computation outsourcing by one or more data owners. In
such a case, the computation still consists of comparing two biometrics to each
other, but the security requirements are such that the servers that carry out the
computation must learn no information about the data they process. Regardless
of the setting, the core of the computation consists of comparing two fingerprints
to each other, which is what we are to address. When standard secure compu-
tation techniques are used for implementing this computation, other described
variants can be easily realized.

Prior literature [3,9,10,36] already contains solutions for secure finger-
print matching. All such publications introduce secure two-party computation

386 M. Blanton and S. Saraph

protocols for fingerprint comparisons after feature extraction and fingerprint
alignment (if any). From this list, [9,10,36] offer solutions for minutia-based
representations of fingerprints, which have the most discriminative power and
are the only type of fingerprint representation suitable for biometric identifi-
cation. What, however, we aim in this work is improving the precision of the
matching step while maintaining efficiency of the algorithm. In particular, a
minutia-based fingerprint representation consists of a number of minutiae in a
two-dimensional space.1 Roughly speaking, matching of minutiae from one fin-
gerprint with minutiae from another fingerprint consists of computing distances
between the minutiae and marking two minutiae as a possible match if the cor-
responding distances are within certain thresholds. The next step consists of
pairing points from X with “possible match” points from Y and the number of
points that could be paired together determines whether the fingerprints were a
match or not. A simple way to determine the pairing is to associate a point from
X to the closest point from Y that has not already been paired with another
point from X. A more involved algorithm (as suggested in the fingerprint lit-
erature), on the other hand, would try to find a pairing of the largest possible
size, where a point from X is paired with a “possible match” point from Y , but
not necessarily the closest to it. This results in more accurate matching of two
fingerprints [16,24,45], but incurs higher computational cost.

The latter approach has not been explored in the security literature and
requires new techniques for secure processing of the data. We note that the
new techniques are necessary even if a general-purpose mechanism for securing
computation (such as garbled circuits or secret sharing) are to be used. In this
work, we reduce the problem to that of computing the size of the maximum flow
in a bipartite graph and build techniques for solving it in secure computation
context. Thus, the main contribution of this work consists of the design of a
data-oblivious algorithm for maximum matching size of a bipartite graph, which
proceeds by computing the rank of a randomized adjacency matrix of the graph
and has complexity O(|V |3 log(|V |)). Data-oblivious execution is defined as con-
sisting of instructions and accessing memory locations independent of the data,
which makes such algorithms suitable for secure computation and outsourcing.
To the best of our knowledge, data-oblivious or privacy-preserving algorithms
that protect the structure of the graph for the problem of maximum matching in
a flow network have been treated in the literature only for general graphs and the
available algorithms have complexities O(|V |4) and higher. Beyond the applica-
tion of the solution to fingerprint matching, the algorithm may be applicable
to other domains and be of independent interest. When the solution is used for
fingerprint matching, despite higher complexity of the algorithm than earlier

1 In what follows, we refer to a single element of fingerprint representation as a minutia,
which typically consists of coordinates in a two-dimensional space, orientation, and
optionally minutia type. The fingerprint representation may also be expanded with
additional information or extra fields associated with each minutia, which are the
result of fingerprint pre-processing.

Oblivious Maximum Bipartite Matching Size Algorithm 387

techniques, we show through experimental evaluation that the solution never-
theless offers good performance.

2 Related Work

Secure Multi-party Computation (SMC). Work on SMC was initiated by
Yao’s [46] who showed that any function can be securely evaluated by repre-
senting it as a boolean circuit. Since then a large number of both general and
special-purpose techniques followed and their overview is beyond the scope of
this work. We only mention that there are a number of tools and compilers
(Fairplay [30], VIFF [14], Sharemind [13], PICCO [47], etc.) that can securely
evaluate functions on private data in several settings.
Secure Computation with Biometric Data. In the context of biometric
matching, results available today include work on secure face recognition ([15,35]
and others), DNA matching ([7,42], and others), iris code comparisons ([8,9]),
fingerprint comparisons ([3,10,36]), and speaker authentication ([1,34]). Each
biometric type has a unique representation and the corresponding algorithm for
comparing two biometrics, which prompted the need to design separate solutions
for different biometric modalities.

The first privacy-preserving protocol for fingerprint identification is due to
Barni et al. [3] who utilize the so-called FingerCode approach [23] for comparing
two fingerprints and built a solution using a homomorphic encryption scheme.
FingerCode-based algorithm is not as discriminative as minutia-based matching
and is not suitable for biometric identification, despite offering computational
advantages.

Blanton and Gasti [9,10] provide privacy-preserving protocols for both Fin-
gerCode and minutia-based fingerprint representations. Their solution utilizes
homomorphic encryption and garbled circuit evaluation. To compare fingerprints
X and Y consisting of mX and mY minutiae, respectively, the solution in [10]
proceeds by first computing the adjacency matrix of size mXmY , which indi-
cates which points from X and Y are a possible match. That is, the cell at row
i and column j is set if the spatial (Euclidean) distance between point i in X
and point j in Y as well as the difference in their orientation are within specific
thresholds. Then the algorithm considers each minutia i of X in turn matching
it with the closest unmatched minutia j in Y among its possible matches in
the adjacency matrix. At the end, the size of the computed matching is com-
pared to the threshold to determine whether the fingerprints are related. As
mentioned earlier, this approach may fail to find the best matching for the input
fingerprints, and we use it as the starting point for our solution. The protocol’s
complexity is O(mXmY).

Lastly, Shahandashti et al. [36] design a privacy-preserving protocol for
minutia-based fingerprint matching using homomorphic encryption. The com-
putation is based on evaluation of polynomials in encrypted form and a pair
of minutiae i ∈ X and j ∈ Y are added to the matching if they are a possi-
ble match. Note that the computation introduces an error every time a minutia

388 M. Blanton and S. Saraph

from X or Y has more than one possible match. The complexity of the solu-
tion is dominated by O(mXmY (|T | + |DE | + |Da|)) cryptographic operations,
where |T | is the number of minutia types, |DE | is the number of all possible
squared Euclidean distances between two points and |Da| is the number of all
possible squared angular distances between point orientations. Because the com-
plexity is quadratic in the domain size of point location values, this approach is
substantially slower than others for a typical set of parameters.
Data-Oblivious Protocols. Data-oblivious algorithms and their use in secure
computation are receiving an increasing amount of attention. When a data-
oblivious algorithm is implemented using secure multi-party computation tech-
niques, where each operation is properly secured, the overall algorithm is guar-
anteed to leak no information about the data (through its structure or accessed
memory locations). In addition to advances in the performance of secure multi-
party computation techniques that make performance of complex algorithms
practical, the emergence of cloud computing also facilitated work on data-
oblivious algorithms suitable for computation outsourcing.

To the best of our knowledge, secure data-oblivious algorithms for maximum
flow have appeared in [2,12]. The complexity of the algorithm from [2] that
protects the structure of the graph is O(|V |5) based on Edmonds-Karp algorithm
and O(|V |4) based on Push-Relabel algorithm, where |V | is the number of nodes
in the graph. The oblivious algorithm proposed in [12] provides a solution of
complexity O(|V |3|E| log(|V |)) based on Ford-Fulkerson algorithm, where |E| is
the number of edges in the graph.
Oblivious RAM (ORAM). ORAM techniques ([19,39] and others) were
designed to hide memory access patterns from the external server where the
memory resides and are applicable to the secure multi-party computation frame-
work. In our setting, they can be used to protect information about what data
item needs to be read (e.g., a specific vertex or edge of the graph) and thus
can be applied to make any algorithm data-oblivious. Each ORAM access (read-
ing or writing a data block) has complexity at least O(log n2), where n is the
total memory size. ORAM constructions assume there is a single client with
a small amount of trusted memory who knows what block it needs to read or
write. When a non-oblivious algorithm is securely evaluated by a number of
computational parties, there is no such client and it now needs to be obliviously
simulated by the computational parties. Currently, there are still challenges for
efficiently realizing ORAM techniques within the secure computation framework.
The publications we are aware on this topic are [29] in the two-party and [25]
in the multi-party settings, where the cost of a single ORAM access increases
by a factor of O(log n). This work is complementary to ORAM as it provides
an alternative mechanism for achieving data-obliviousness of a number of algo-
rithms (and consecutively their secure versions). Because the benefits of ORAM
become significant only for large input sizes [25], in our problem domain alter-
native techniques will be preferred as providing faster performance (e.g., [25]
compares ORAM-based techniques for SMC to a naive oblivious array imple-
mentation that touches all elements of the array to retrieve an item at a private

Oblivious Maximum Bipartite Matching Size Algorithm 389

location and suggests that ORAM techniques are faster only when the size of
the data is over 1000 items).

3 Security Model

In this work, we use standard security models for secure multi-party computa-
tion. We primarily focus on security in presence of semi-honest participants (also
known as honest-but-curious or passive), who follow the prescribed behavior,
but might try to compute additional information from the information obtained
during protocol execution. The protocols, however, can be extended to achieve
stronger security in presence of fully malicious (also known as active) adversaries
who can arbitrary deviate from the prescribed computation. Regardless of the
model, it is required that the participants do not learn anything about private
input data beyond the agreed-upon output. Consequently, security is defined
using simulation argument, which we provide in Appendix A due to space con-
siderations. We choose to use a general setup with n parties carrying out the
computation. For the problem we study, the most common setting is going to
be n = 2, but we also would like to offer a solution that works for n > 2 and is
also suitable for outsourcing to multiple computational nodes.

Because this work treats a graph problem, where the graph is derived from
private data, the graph structure graph (e.g., node connectivity) is sensitive
information that cannot be revealed to the participants. For that reason, any
solution must be data-independent or oblivious, in which the sequence of exe-
cuted instructions and accessed memory locations must be independent of the
data. Achieving data-obliviousness can be realized by using a randomized algo-
rithm (as in ORAM) where these sequences must be indistinguishable for differ-
ent inputs or a deterministic algorithm where the sequences are the same for all
possible inputs. In this work, we pursue the second option.

4 Fingerprint Background

To understand how the solution we develop for maximum matching in bipartite
graphs is used to address the problem of fingerprint matching, we present the
background related to fingerprint representations and comparisons before moving
to the algorithm itself.

Fingerprint identification is a well-studied area with many available
approaches [31]. The most popular and widely used techniques extract infor-
mation about minutiae from a fingerprint and store it as a set of points in
the two-dimensional plane. Fingerprint matching normally consists of finding a
matching between two sets of points so that the number of minutiae pairings is
maximized. In more detail, a biometric X is often represented as a set of mX

points X = 〈(x1, y1, α1), . . ., (xnX
, ynX

, αnX
)〉, where xi and yi denote the coor-

dinates of minutia i and αi denotes minutia’s orientation. Optionally, a minutia
can also have its type included in the fingerprint representation and biometric
X might also include secondary features. A minutia Xi = (xi, yi, αi) in X and

390 M. Blanton and S. Saraph

minutia Yj = (x′
j , y

′
j , α

′
j) in Y are considered matching if the spatial distance

(normally Euclidean distance) between them is smaller than a given threshold
d0 and the orientation difference between them is smaller than a given threshold
α0. In other words, the matching condition for minutiae Xi and Yj is computed
as:
√

(x′
j − xi)2 + (y′

j − yi)2 < d0 ∧ min(|α′
j − αi|, 360◦ − |α′

j − αi|) < α0. (1)

The tolerance values d0 and α0 are necessary to account for errors introduced by
feature extraction algorithms (e.g., quantizing) and small skin distortions. Two
points within a single fingerprint are also assumed to lie within at least distance
d0 of each other.

Before fingerprint matching is performed, the two fingerprints need to be
aligned, which maximizes the number of matching minutiae. Alignment can be
either absolute (each fingerprint is pre-aligned independently using the core point
or other information) or relative (fingerprint features are used to guide finger-
print alignment relative to each other). Relative alignment is more accurate that
absolute, while absolute alignment is performed much faster in the context of
secure computation. In particular, with absolute alignment, each fingerprint is
aligned independently and locally without secure computation. To increase the
accuracy of matching when absolute alignment is used, a fingerprint can be
stored using a small number of slightly different alignments, all of which are
compared to another fingerprint, and the result of the comparison is a match
if at least one representation matches the second biometric. To the best of our
knowledge, relative alignment has not been investigated in secure multi-party
computation literature and we leave it as a direction for future research. The
matching step, however, always needs to be performed, and this constitutes the
focus of this work.

A simple way to determine a pairing between minutiae of fingerprints X and
Y consists of considering each minutia Xi from X in turn and pairing it with the
closest minutia Yj in Y that satisfies the matching predicate in Eq. 1 and which
has not already been paired with another minutia from X. If no such minutia Yj

from Y exists, Xi is not added to the pairing. We denote the result of applying
the minutia matching predicate in Eq. 1 to minutiae Xi and Yj by mm(Xi, Yj).

This approach was used in prior secure fingerprint matching solutions, but it
does not find the optimum assignment (i.e., the one that maximizes the number
of mates). That is, sometimes minutia Xi should be paired with another minutia
Yj , which is not the closest to Xi, to result in an assignment of the largest size.
According to fingerprint literature [24,45], the optimum pairing can be achieved
by formulating the problem as an instance of maximum flow, where fingerprints
X and Y are used to create a flow network. In particular, we form a bipartite
graph in which minutia points from X and Y form the nodes of the first and
second partitions, respectively. The edges are created as follows: there is an edge
from node Xi ∈ X to Yj ∈ Y iff mm(Xi, Yj) = 1. To use the resulting bipartite
graph as a flow network, we create an additional source node s and connect it
to all nodes from X using (directional) edges of capacity 1. Similarly, we create

Oblivious Maximum Bipartite Matching Size Algorithm 391

a sink node and connect each node from Y to the sink node t using edges of
capacity 1. Then each edge from Xi to Yj also has capacity 1 (in one direction
only). We refer the reader to [24,45] for additional detail.

The problem of fingerprint matching in the maximum flow formulation can
be solved using one of the known algorithms such as Ford-Fulkerson [17] and
others. For n-minutia fingerprints, the optimal pairing can be found in O(n2)
time using Ford-Fulkerson algorithm because each node Xi is connected to at
most a constant number of nodes from Y . In a privacy-preserving setting, how-
ever, when information about connections between minutiae in X and Y (and
thus the structure of the graph) must remain private, the complexity of this
algorithm increases at least by a factor n. Finding a pairing of optimal size was
considered impractical in [10], but in this work we show that with the techniques
we develop, performance of fingerprint matching can be comparable to or even
faster than performance of simpler and not as accurate matching in [10] (which
is currently the fastest secure minutia-based fingerprint matching).

In this work, we assume that fingerprints X and Y result in a match if the
number of paired minutiae exceeds a fixed (known to all parties) threshold T (T
can be a function of the number of minutiae in X and Y , but is fixed once the
sizes are known).2

5 Working Toward the Solution

Our primary objective now is to provide an oblivious algorithm for solving the
maximum flow problem in a flow network formed by a bipartite graph (which in
the fingerprint matching application corresponds to two fingerprints X and Y).
Note that in our application it is not necessary to compute the matching itself
and instead the size of the matching is sufficient to determine if two fingerprints
X and Y are related. This means that it is sufficient to determine the rank of
the matrix formed as described above to solve the fingerprint matching problem.

In the search for an approach suitable for solving the maximum flow problem
in a data-oblivious way, we chose to concentrate on solutions that work with
adjacency matrix representation of the graph. Note that because our graph is
bipartite, we only need to consider an approach that works for a bipartite graph
and not necessarily for a general graph. Our starting point was the work of
Mucha and Sankowski [32] that presents a randomized algorithm for finding
maximum matching in an n-node graph in O(nω) time, where ω is the exponent
of the best known matrix multiplication algorithm and currently ω < 2.38. The
solution of [32] assumes that a perfect matching of size n/2 is present, which it
will compute. This is not the case for our application, and to use this solution
on a graph without perfect matching, we resort to techniques of Ibarra and
Moran [21] (which are applicable to bipartite graphs only). The most crucial
result listed in [32] that we need is due to Lovasz [28] and can be stated as
follows: Let G = (V,U,E) be a bipartite graph with nodes V ∪ U and edges
2 In the event that the value of T comes from one of the participants and needs to be

protected, the solution can be easily modified to compute with private T .

392 M. Blanton and S. Saraph

Algorithm 1. A = RandAdjMat(A′ =
{A′

ij}1≤i≤nX ,1≤j≤nY
)

1: for i = 0, . . ., nX do
2: for j = 0, . . ., nY do

3: rij
R← [1, R];

4: Aij = A′
ij · rij ;

5: end for
6: end for
7: return A;

Algorithm 2. B = GE(A =
{Aij}1≤i≤nX ,1≤j≤nY

)
1: for i = 1, . . ., nX do
2: for j = i + 1, . . ., nX do
3: for k = i, . . ., nY do
4: Ajk = Ajk − Aik · A−1

ii · Aji

5: end for
6: end for
7: end for

E, where |V | = |U | = n/2, V = {v1, . . ., vn/2} and U = {u1, . . ., un/2}. Let an
adjacency matrix A = A(G) be formed by setting an element Aij of A at row i
and column j to a random value from the set [1, R] for some R if (vi, uj) ∈ E
and to 0 otherwise. In other words, a matrix cell is set to a random value of a
predefined bitlength if the corresponding nodes are adjacent and to 0 otherwise.
Then the rank of A is at most the size of the maximum matching, where the
equality holds with probability at least 1 − n

2R . This means that if R is set to
2κ, where κ is a desired correctness parameter, the rank will be equal to the
size of the maximum matching with all but at most a negligible probability
in κ. For example, if we set κ = 20, computing the rank of the randomized
adjacency matrix will give the solution to the size of the maximum matching
with probability 1 − negl(20).

Because the algorithm above assumes a randomized adjacency matrix as the
input, the pre-processing step will consist of creating such a matrix. If a regular
adjacency matrix is given, it can be randomized using a simple approach shown
in Algorithm 1. In other cases, the matrix needs to be computed, and we defer
the description of how it can be done in the context of fingerprint matching to
Sect. 7. In Algorithm 1, notation z

R← S denotes that the value of z is chosen
uniformly at random from set S.

The next step is to compute the rank of A. A standard way to achieve this is
to apply Gaussian elimination (LU decomposition) to A. The simplest algorithm
for doing so runs in O(n3) time for an n × n matrix and asymptotically lower
solutions (of the same complexity as that of matrix multiplication) are possible.
Before we proceed with further discussion, we include a (non-secure) solution
of complexity O(n3) based on Gaussian elimination. When it is applied to a
bipartite graph with nX and nY nodes in the first and second partition, respec-
tively, its complexity is O((nX)2nY) assuming that nX ≤ nY (and O((nY)2nX)
otherwise). To fully explore our options, in the full version of this work [11]
we also consider an alternative approach for matrix rank computation based on
Gram-Schmidt orthogonalization process.

The Gaussian elimination algorithm that takes a randomized adjacency
matrix A and converts it to a row echelon form is given in Algorithm 2.

Oblivious Maximum Bipartite Matching Size Algorithm 393

It assumes that nX ≤ nY ; otherwise, the matrix dimensions are swapped by
using the transpose of A. Following [21], after forming matrix A, we carry out
all operations in a field (of size R) in this and other algorithms. That is, we treat
A as consisting of random field elements and all consecutive operations are in a
field (which is the reason for using multiplicative inverse in place of division). We
present the simplest version of the Gaussian elimination algorithm that works
only for invertible matrices (with nX = nY) and which results in a matrix with
only non-zero entries on the diagonal formed by elements Aii and zero elements
below the diagonal. In a more general case, some of the matrix rows or columns
may either be initially zero or become zero during the computation, and the
matrix does not have to be square. In those cases, during the ith iteration, the
algorithm may swap row i+1 with another row at a higher index so that row i+1
contains a non-zero element at the leftmost position (or lowest column index)
among all rows with indices i + 1 and higher. A column may also be “skipped”
during the computation if all of its entries at row i and below are zero, i.e., the
leftmost non-zero element at row i is at position > i. In that case, the compu-
tation will be of the form Ajk = Ajk − Aik · A−1

it · Ajt for t > i. We note that in
the application of fingerprint matching the adjacency matrix is likely to contain
a large number of zero elements and we need to use the general algorithm that
works for arbitrary matrices. Then the rank of the matrix is computed as the
number of non-zero rows (or columns) once the matrix has been converted to a
row echelon form.

Lastly, we note that in the traditional setting, when some rows and/or
columns are initially zero, they can be eliminated from the matrix before the
algorithm is executed because they cannot contribute to the matrix rank. This
reduces complexity of the algorithm for sparse matrices, but is not applicable
to secure computation because the size of the reduced matrix is likely to reveal
information about the size of the matching.

Returning to our prior discussion of rank computation, recall that its asymp-
totic complexity can be lower than O(n3) for n × n matrices and equal to the
complexity of matrix multiplication. Upon examining matrix multiplication algo-
rithms of sub-cubic time, we came to the conclusion that only Strassen’s algo-
rithm [40] has practical importance to matrices those size is not huge. Its com-
plexity is O(nlog2 7) ≈ O(n2.807) for n×n matrices or O(nlog2 3.5

X nY) for matrices
of size nX × nY with nX ≤ nY . While this algorithm has reduced numerical
stability, it is not an issue when the computation is carried out in a finite field
(i.e., on integers without rounding errors).

The original Strassen’s algorithm [40] is applicable only to invertible matri-
ces. Solodovnikov [38] later showed how the algorithm can be extended to finding
the rank of an arbitrary matrix, which can be used as a starting point for a secure
solution. The algorithm is rather complex involving several matrix transforma-
tions and produces matrices the size of which determines the rank. While it is
possible to make the algorithm oblivious (the most important change will be
to force matrices to always be of the same size by padding them with dummy
rows or columns), we choose not to expand on this further due to the limited

394 M. Blanton and S. Saraph

applicability of the algorithm to fingerprint matching. In particular, Strassen’s
matrix multiplication outperforms the standard O(n3) matrix multiplication on
matrices with sizes ≥ 100 for each dimension, but the number of minutiae in a
fingerprint (which define the matrix size) is normally much lower.

6 Oblivious Rank Computation Algorithms

Developing data-oblivious algorithms for computing the rank of a non-invertible
matrix of size nX × nY constitutes the core of this work. In this section, we
describe the intuition behind our solution for rank determination followed by its
detailed description.

To ensure data-oblivious execution, we must require that the sequence of exe-
cuted instruction does not depend on the data. This, in particular, means that
execution associated with conditional statements is to be modified. In all algo-
rithms we develop, we always execute both branches of conditional statements
and the values which may be modified inside conditional statements will be set
based on the result of evaluating the condition. In more detail, statements of the
type “if (cond) then a = v1 else a = v2” will be transformed into evaluating the
condition cond first and then setting

a = cond · v1 + (1 − cond) · v2 = (cond ∧ v1) ∨ (cond ∧ v2) (2)

Here, ∨ and ∧ denote bitwise OR and AND, respectively. When only one branch
is present, the branch gets executed, but the affected values are either updated
or kept unchanged depending on the result of the condition evaluation. For
example, statements of the type “if (cond) then a = v1” can be rewritten as
“a = a + cond · (v1 − a)”.

When working on Gaussian elimination suitable for secure computation, a
major issue we are to overcome is to make the execution oblivious in presence of
zero rows and columns. That is, regardless of having zero columns (that need to
be skipped) or zero rows (that need to be swapped), we want the algorithm to
always execute the same instructions and always access the same matrix cells.
For that reason, at each iteration of the solution, we choose to push all zero
columns to the right and all zero rows to the bottom. This will allow us to work
with row i and column i during the ith iteration of the algorithm (assuming that
some non-zero row and column still remain at iteration i). Furthermore, once all
non-zero rows and columns have been processed, we cannot reveal this fact and
have to continue the computation without affecting its correctness.

To realize swapping of zero rows and columns in an oblivious way, we utilize
data-oblivious compaction. Compaction of a sequence of values allows one to
move all non-zero elements to the beginning and thus any zero element will
appear only after all non-zero elements. Our goal of pushing zero columns and
rows to the end can also be achieved by using oblivious sorting, but we choose
compaction for performance reasons. Thus, as the first step of each iteration
i, we compute whether any given (partial) row and column at position i and
higher contains at least a single non-zero element. Note that we only need to

Oblivious Maximum Bipartite Matching Size Algorithm 395

consider matrix elements with both row and column indices i and higher and
this is why only a part of each row and column is checked. For example, for
row j ≥ i only cells at position i ≤ k ≤ nY can be non-zero and are checked.
Similarly, for column j ≥ i only cells at rows i ≤ k ≤ nX are relevant and
checked. After this step, all zero rows and columns are pushed to the end using
oblivious compaction.

At this point we know that the current row and column with index i have at
least one non-zero element, but the algorithm requires that the leading coefficient
of the (partial) current row i is non-zero. To satisfy this, we add all rows with
indices i + 1 and higher to the current row i. This has no effect on correctness
of the computation (and is a common operation in Gaussian elimination), but
ensures that the element Aii �= 0. This is because when (partial) column i has at
least one non-zero element, the probability that the sum of its elements (which
are random values from [1, R]) results in 0 is 1/R. Thus, with overwhelming
probability (in R’s bitlength) Aii �= 0 when (partial) column i has at least one
non-zero element and correctness of the computation is preserved.

The only part of the algorithm that remains to be modified for oblivious
execution is ensuring that the computation can proceed in exactly the same
way once all non-zero rows and columns have been processed. That is, for some
iteration i of the algorithm all remaining (partial) rows and columns will be
zero. To ensure that the algorithm can execute exactly the same steps without
revealing this fact and without affecting correctness, the only place we have to
modify is computation of the inverse of Aii. When Aii = 0, Aii does not have a
multiplicative inverse, and we set Aii = 1 in that case. Then because 1−1 = 1,
multiplying any value by 1−1 (as on line 4 of Algorithm 2) will have no effect.
To ensure that Aii is unchanged when Aii �= 0, we set Aii to Aii + c, where c is
the bit corresponding to the result of comparing Aii to 0.

The overall oblivious algorithm for computing matrix rank based on Gaussian
elimination is given in Algorithm 3. Lines 2–5 and 7–10 compute row and column
flags, respectively, that indicate whether the (partial) rows/columns consist of
only zero elements. These flags are used in row-wise and column-wise compaction
on lines 6 and 11, respectively. Lines 12–16 update row i to ensure that its leading
element is non-zero if non-zero rows still remain. Line 17 adjusts the element Aii

for the purpose of computing its inverse as described above. Next, lines 18–23
compute the ith iteration of Gaussian elimination. After executing lines 1–24,
matrix A is in a row echelon form and all that remains is to compute its rank by
adding the number of non-zero elements on the diagonal Aii. This is performed
on lines 25–28, after which the rank is returned.

To realize oblivious compaction, we build on tight order-preserving com-
paction from [20], which was subsequently used for SMC in [6]. The algorithm
proceeds in log2 n rounds on input of a sequence of n values. At round i (for
0 ≤ i ≤ log n − 1), an element at position j is either obliviously moved 2i ele-
ments left or is not moved. The former happens when the ith least significant
bit in the number countj of zero elements that precede the jth element is 1. We
refer the reader for additional details to [6,20] and provide our realization of it

396 M. Blanton and S. Saraph

Algorithm 3. rank = OblGERank({Aij}1≤i≤nX ,1≤j≤nY
)

1: for i = 1, . . ., nX − 1 do
2: for j = i, . . ., nX do
3: Set rowflagj =

∨nY
k=i Ajk;

4: Set rj = (rowflagj
?

�= 0);
5: end for
6: Use compaction to “sort” partial

rows i, . . ., nX using keys rj , where
row j is (Aji, . . ., AjnY), so that all
rows with rj = 0 are moved to the
bottom of A.

7: for j = i, . . ., nY do
8: Set colflagj =

∨nX
k=i Akj ;

9: Set cj = (colflagj
?

�= 0);
10: end for
11: Use compaction to “sort” partial

columns i, . . ., nY using keys cj ,
where column j is (Aij , . . ., AnXj),
so that all columns with cj = 0 are
moved in the right in A.

12: for j = i + 1, . . ., nX do
13: for k = i, . . ., nY do
14: Set Aik = Aik + Ajk;
15: end for
16: end for
17: Set Aii = Aii + (Aii

?
= 0);

18: Compute A−1
ii ;

19: for j = i + 1, . . ., nX do
20: for k = i, . . ., nY do
21: Set Ajk = Ajk−Aik ·A−1

ii ·Aji;
22: end for
23: end for
24: end for
25: Set ranksum = 0;
26: for i = 1, . . ., nX do

27: Set ranksum = ranksum+(Aii

?

�= 0);
28: end for
29: Return ranksum;

Algorithm 4. 〈y1, . . ., yn〉 = Comp(〈x1, . . ., xn〉)
1: count1 = 1 − x1;
2: for i = 2, . . ., n do
3: counti = counti−1 + 1 − xi;
4: end for
5: Let bi,j denote the ith least signifi-

cant bit of countj for j = 1, . . ., n and
i = 0, . . ., �log n� − 1

6: for i = 0, . . ., �log n� − 1 do
7: for j = 1, . . ., n do

8: if j ≥ 2i then
9: xj = (1 − bi,j)xj ;

10: end if
11: if j + 2i ≤ n then
12: xj = xj + bi,j+2i · xj+2i ;
13: end if
14: end for
15: end for
16: Return 〈x1, . . ., xn〉;

with new optimizations in Algorithm 4. It is written for the special case when
the input consists of bits and moves all non-zero elements to the beginning of
the input sequence. When this algorithm is used in Algorithm 3, it will take
1-bit rj ’s or cj ’s according to which the values need to be moved, but instead of
moving individual elements, the entire (partial) rows or columns are moved.

In the most general case, the element xj at position j is either kept unchanged
or replaced with element xj+2i during the ith iteration of the algorithm. This
corresponds to the computation xj = (1−bi,j)xj +bi,j+2i ·xj+2i , where bi,j is the
ith least significant bit of countj . At most one of xj and xj+2i is guaranteed to
be non-zero at any given time. When, however, j + 2i exceeds the total number
of elements, xj is either kept or erased, i.e., xj = (1 − bi,j)xj . In addition, for
the first 2i − 1 elements of the sequence, bi,j is always 0, which means that we

Oblivious Maximum Bipartite Matching Size Algorithm 397

Algorithm 5. A = AdjMat(X = 〈xi, yi, αi〉1≤i≤mX
, Y = 〈x′

i, y
′
i, α

′
i〉1≤i≤mY

)
1: for i = 0, . . ., mX do
2: for j = 0, . . ., mY do

3: if (
√

(x′
j − xi)2 + (y′

j − yi)2 < d0) ∧ (min(|α′
j − αi|, 360◦ − |α′

j − αi|) < α0)

then
4: Aij

R← [1, R];
5: else
6: Aij = 0;
7: end if
8: end for
9: end for

10: return A;

do not need to multiply xj by (1 − bi,j) and instead set xj = xj + bi,j+2i · xj+2i .
This logic (for one general and two special cases) is presented on lines 8–13 of
Algorithm 4 in an optimized form.

The complexity of the oblivious compaction algorithm is O(n log n) for an
n-element input. In our case, each invocation of compaction is executed on mX −
i+1 rows (resp., mY − i+1 columns) each of size mY − i+1 (resp., mX − i+1).
This gives us that the total cost of compaction at all iterations of the algorithm is
O(m2

XmY log mX) for rows and O(m2
XmY log mY) columns. This dominates the

algorithm’s complexity, as the remaining work is O(m2
XmY). However, according

to our experimental results in Sect. 8, the cost of compaction is small compared
to the remaining computation.

In [11] we also present an alternative algorithm based on Gram-Schmidt
process.

7 Oblivious Fingeprint Macthing Algorithms

Now we proceed with showing how the above rank computation algorithm can be
used to realize oblivious fingerprint matching. To accomplish this, we first need to
obliviously build a randomized adjacency matrix from the information contained
in two fingerprints. We also need to modify the rank computation algorithms to
implement its over-the-threshold version, in which instead of reporting the rank,
the output consists of a single bit indicating whether the rank is above the
desired threshold.

The regular (non-oblivious) way of computing the adjacency matrix accord-
ing to Eq. 1 is presented in Algorithm 5. It simply consists of comparing each
minutia from X to each minutia in Y and setting the corresponding matrix cell
to a random element if the minutiae are a possible match and to 0 otherwise. To
make the algorithm oblivious, we have to restructure the computation associated
with the conditional statement. Our oblivious algorithm for computation of the
adjacency matrix is given as Algorithm 6. For performance reasons, we eliminate

398 M. Blanton and S. Saraph

Algorithm 6. A = OblAdjMat(X = 〈xi, yi, αi〉1≤i≤mX
, Y = 〈x′

i, y
′
i, α

′
i〉1≤i≤mY

)

1: for i = 0, . . ., mX do
2: for j = 0, . . ., mY do

3: c1 = ((x′
j − xi)

2 + (y′
j − yi)

2 ?
<

(d0)
2);

4: c2 = (αi

?≥ α′
j);

5: a1 = αi − α′
j ;

6: a2 = α′
j − αi;

7: a3 = c2 · a1 + (1 − c2)a2;

8: c3 = (a3

?
< α0);

9: c4 = ((360 − a3)
?
< α0);

10: c = c1 ∧ (c3 ∨ c4);

11: rij
R← [1, R];

12: Aij = c · rij ;
13: end for
14: end for
15: return A;

square root computation when computing the Euclidean distance (squared dis-
tances are used). Also, in the algorithm a3 corresponds to |αi −α′

j | and (c3 ∨ c4)

to min(|α′
j − αi|, 360◦ − |α′

j − αi|)
?
< α0.

To obtain an over-the-treshold version of the rank computation algorithm,
we note that the necessary changes are rather simple. In particular, to produce
of an over-the-threhold version of Algorithm 3, all we need is to return the result

of comparison (ranksum
?≥ T) on line 29 instead of ranksum itself.

Given our oblivious algorithm, it is now not difficult to realize it in the secure
computation framework. Because of space considerations, we refer the reader to
Appendix B and [11] for our secure protocols in both two-party and multi-party
settings.

8 Implementation and Performance

To evaluate performance of our techniques, we implement our oblivious finger-
print matching algorithm in a secure computation framework. Our implementa-
tion is based on two-party garbled circuit evaluation and utilizes a tool called
JustGarble [5] for efficient circuit garbling and garbled circuit evaluation.

We build Boolean circuits for Algorithm 6 followed by the over-the-threshold
version of Algorithm 3 (as described in Sect. 7), with optimizations tailored to
specifics of modern garbling techniques. In particular, recent garbled circuit-
based techniques allow for XOR gates to be implemented without any use of
cryptographic operations, which allows them to become virtually free [26]. This
means that a circuit that minimizes the use of non-XOR gates will have per-
formance advantages over other circuits of comparable size with a smaller per-
centage of XOR gates. One specific optimization that we were able to apply
is minimizing the number of non-XOR gates in evaluation of conditional state-
ments. In detail, recall that conditional statements are re-written as given in
Eq. 2. The second formula, expressed in terms of Boolean operations, is more
suitable for use in Boolean circuits, but we also notice that the bitwise OR oper-
ation can be replaced with bitwise XOR operation. This is due to the fact that
at most one clause (i.e., c ∧ v1 or c ∧ v2) can be non-zero at any time and thus

Oblivious Maximum Bipartite Matching Size Algorithm 399

Table 1. Performance of secure two-party fingerprint matching using JustGarble.

Correctness Metric Biometric size (in minutiae)

parameter 10 15 20 25 30

10 TG 81.80 84.05 85.29 85.99 87.14

TE 50.49 53.18 53.91 54.85 54.74

Gates 1,843,602 5,238,622 11,543,713 21,741,388 36,796,263

15 TG 81.30 83.18 84.33 85.25 85.05

TE 52.12 53.37 54.16 54.57 54.12

Gates 4,307,707 11,496,802 24,619,823 45,690,373 76,695,248

20 TG 80.66 82.35 83.15 82.77 82.85

TE 53.02 53.92 54.25 53.80 53.56

Gates 8,392,862 21,156,282 43,964,983 80,226,158 133,311,283

XOR would accomplish the same functionality as OR or addition. This applies
to computation in all of Algorithms 3, 4, and 6. Also note that in compaction
algorithm extracting individual bits of counts requires no computation because
of bitwise representation of all values.

We measure performance of the algorithms for different numbers of minutiae
in fingerprints being compared and different values of the correctness parameter.
Note that using synthetic data affects neither performance nor accuracy of the
secure algorithm. We varied the number of minutiae in both fingerprints from
10 to 30 and also varied the size of the field FR with R’s bitlength ranging
from 10 to 20. Recall that according to [28], the probability that the rank of a
randomized adjacency matrix is not equal to the size of the maximum matching
is at most n/R for n-minitia fingerprints. This means that in our experiments
the probability that the result is incorrect is approximately between ≤ n/103

and ≤ n/106. In the implementation, we assume that coordinates xi, yi of each
minutia are represented in a 2-dimensional space of size 250 × 250 (i.e., xi, yi ∈
[0, 249]) and thus the bitlength of each coordinate is 8. Then angle αi is provided
in degrees from range [0, 359] and thus each αi is represented using 9 bits. In
our experiments, circuits with 30 million gates and larger were divided into sub-
circuits as the current implementation of JustGarble requires that the entire
circuit resides in memory for garbling/evaluation. All experiments were run on
a 3.2 GHz machine with Red Hat Linux and 4 GB of memory and are given in
Table 1. Each experiment was run 100 times, and the double median (i.e., the
median of 10 medians) is reported.

In Table 1, TG denotes the time it takes to garble the circuit measured in
the average number of CPU cycles per gate (as in [5]). Similarly, TE indicates
evaluation time, also measured in the number of CPU cycles per gate. We also
provide the total number of gates for each circuit. Note that the number of cycles
per gate can vary in different circuits, which is often because circuits contain
different percentages of XOR gates (which require substantially less work to

400 M. Blanton and S. Saraph

create and evaluate than other gates). From Table 1, we can see a slight increase
in the per-gate runtimes as the number of minutiae in fingerprints increases and
a slight decrease in the runtimes as the correctness parameter decreases. This can
be attributed to the varying composition of the circuits from XOR and non-XOR
gates. For example, when the correctness parameter increases, a larger portion of
the circuit corresponds to field operations that have a higher percentage of XOR
gates than other operations. We also observed that paritioning a circuit into
small circuits and evaluating the sub-circuits circuits results in slightly faster
overall per-gate time compared to the original time, which is due to improved
cache performance.

We note that the overall execution consists of circuit garbling, oblivious trans-
fer (OT) for one of the parties’ inputs, and garbled circuit evaluation. Circuit gar-
bling and transfer of the garlbed circuit can typically be performed in advance,
assuming that the sizes of inputs are known. Similarly, the most expensive por-
tion of OT (which uses public-key operations) can be performed in advance. This
means that the online phase will consist of garbled circuit evaluation and com-
munication of inputs associated with the remaining portion of OT. Using an OT
extension [22], the number of public-key operations associated with any number
of input bits is reduced to a constant corresponding to a security parameter (on
the order of 96–128). Furthermore, all public-key operations can be performed
in the offline phase and the online phase involves only communicating a number
of bits linear in the number of inputs of the circuit evaluator and performing a
similar number of hash function operations. Recall that in our application the
number of inputs for each party is the number of bits in fingerprint represen-
tation (i.e., 25mX or 25mY), which is very small compared to the size of the
computation. This means that the cost of OT will not have a noticeable impact
on the overall runtime of our solution.

To provide additional information about runtime of our secure fingerprint
identification protocols, we translate the numbers from Table 1 into execution
times in Fig. 1 in Appendix C. We obtain runtimes on the order of a second
or less, which is an acceptable delay for fingerprint authentication. Additional
results can be found in [11].

Before we conclude this section, we comment on the performance of our
solution compared to that of other secure fingerprint matching protocols. As
mentioned earlier, the only secure fingerprint matching protocols that use minu-
tia representations we are aware of are from [10,36]. They are based on pairing
a minutia with the closest possible match minutia and all possible match minu-
tiae, respectively, which does not achieve the same accuracy as in our solution
and requires substantially less work. Implementation results are only given in
[10] and the runtimes are similar to what we obtain in our solution. (And while
no implementation results were reported in [36], we anticipate that performance
of that solution will be substantially slower than the solution from [10].) The
computation in [10] was structured as comparing fingerprint X to a number
of fingerprints Y in a database D. This incurs a one-time cost (per X) and a
recurring cost per record Y in D. This means that if we compare X to a single

Oblivious Maximum Bipartite Matching Size Algorithm 401

fingerpring Y , the one-time cost will still be present. For fingerprints consisting
of 20 minutiae, [10] reports about 5 sec of offline work per Y (total for both
parties) and about 4 more seconds for one-time offline work. The online work is
approximately 0.85 second per Y . We note that our solution requires even lower
overall work for the same fingerprint sizes, but the online work may be higher for
large values of the correctness parameter. If we increase the number of minutia
points in a fingerprint, the runtime of our solution is expected to increase more
rapidly than the runtime of the solution from [10] because of higher complexity
of the algorithm we use.

9 Conclusions

This work is motivated by privacy-preserving fingerprint matching in the secure
computation framework, using standard minutia-based representation of finger-
prints. We show that the maximum (optimal) number of minutiae that match
between two fingerprints can be determined by modeling the problem as a flow
network in bipartite graphs. Towards this end, we investigate the problem of
maximum matching size in a bipartite graph and reduce it to the problem of
finding the rank of an adjacency matrix, which has the same complexity as that
of matrix multiplication. We build a data-oblivious algorithm for rank com-
putation based on Gaussian elimination, the complexity of which is cubic in
the number vertices in the graph (or the number of minutiae in fingerprints).
While it is possible to make algorithms of lower asymptotic complexity (such
as Strassen’s matrix multiplication and its extension to rank computation for
non-singular matrices) data-oblivious, we choose to concentrate on simpler algo-
rithms because of smaller constants behind the big-O notation. More advanced
techniques of lower asymptotic complexity are also of limited applicability to the
problem of fingerprint matching because simpler solutions with higher complex-
ity outperform them on rather small input sizes (the number of minutiae) used
in fingerprint matching. Our data-oblivious algorithms for matrix rank, maxi-
mum flow size in bipartite graphs and fingerprint matching consequently lead
to secure protocols for respective problems using available secure two-party and
multi-party techniques. Our implementation builds and evaluates secure two-
party protocol for fingerprint matching put forward in this work. Despite hav-
ing more complex computation to achieve improved accuracy, we show through
experiments that performance of our techniques is suitable for this application
and is comparable to the performance of other secure fingerprint matching tech-
niques that perform simpler minutia matching.

Acknowledgments. This work was supported in part by grants CNS-1223699 and
CNS-1319090 from the National Science Foundation and FA9550-13-1-0066 from the
Air Force Office of Scientific Research. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors and do not nec-
essarily reflect the views of the funding agencies.

402 M. Blanton and S. Saraph

A Security Definitions

Security in the semi-honest setting is defined using simulation argument: the
protocol is secure if the view of protocol execution for each party is computa-
tionally or information-theoretically indistinguishable from the view simulated
using that party’s input and output only. This implies that the protocol execution
does not reveal any additional information to the participants. The definition
below formalizes this:

Definition 1. Let parties P1, . . ., Pn engage in a protocol Π that computes func-
tion f(in1, . . ., inn) = (out1, . . ., outn), where ini and outi denote the input and
output of Pi, respectively. Let VIEWΠ(Pi) denote the view of Pi during the exe-
cution of Π. That is, Pi’s view is formed by its input, internal random coin tosses
ri, and messages m1, . . .,mk passed between the parties during protocol execu-
tion: VIEWΠ(Pi) = (ini, ri,m1, . . .,mk). Let I = {Pi1 , Pi2 , . . ., Pit} denote a
subset of the parties for t < n and VIEWΠ(I) denote the combined view of the
parties in I during the execution of Π (i.e., the union of the views of the parties
in I). We say that protocol Π is t-private in presence of semi-honest adver-
saries if for each coalition I of size at most t there exists a probabilistic polyno-
mial time simulator SI such that {SI(inI , f(in1, . . ., inn)} ≡ {VIEWΠ(I), outI},
where inI =

⋃
Pi∈I{ini}, outI =

⋃
Pi∈I{outi}, and ≡ denotes computational or

information-theoretic indistinguishability.

The second standard, and stronger, malicious security model assumes the
participants can behave arbitrarily including deviating from the computation
and aborting the execution. Security in this setting is shown using a different
security definition, which we omit here due to space considerations and instead
refer the reader, e.g., to [18].

B Secure Protocols

The data-oblivious algorithms that we developed lead to secure protocols for
computing maximum bipartite matching size, matrix rank, and fingerprint
matching in secure multi-party computation framework. That is, because the
execution is now data-oblivious, we can combine each algorithm with available
secure arithmetic techniques to provably protect private data throughout the
computation. We list two possibilities.

Our first solution is to employ two-party garbled circuit evaluation (origi-
nally proposed in [46]). This technique represents the function to be evaluated
as a Boolean circuit and one participant, circuit generator, encodes the circuit
using two random labels for each (binary) wire. The second participant, circuit
evaluator, evaluates the garbled circuit on private inputs in a way that it sees
the labels used during function evaluation, but their meaning (i.e., 0 or 1) is
not known. After the evaluator computes the output labels, it sends them to
the circuit generator, who determines their meaning (it is also possible for the

Oblivious Maximum Bipartite Matching Size Algorithm 403

evaluator to learn the output or for both parties to learn the same or individ-
ual outputs). To choose labels corresponding to the private inputs, the parties
engage in Oblivious Transfer (OT), as a result of which the evaluator obtains
labels corresponding to its inputs and the other party learns nothing. The labels
for the circuit generator’s inputs are sent directly to the evaluator (who does
not know their meaning). There are many available OT realizations and their
extensions such as, e.g., [33] and [22]. Using garbled circuit evaluation, we can
state the following result:

Theorem 1. Assuming the existence of secure garbled circuit evaluation tech-
niques and OT, our algorithms result in 1-private protocols for maximum bipar-
tite matching size, matrix rank, and fingerprint matching with two participants
P1 and P2.

We refer the reader to [11] for the proofs of Theorems 1 and 2.

The second technique we suggest is threshold linear secret sharing in the
multi-party setting (such as Shamir’s secret sharing [37]). It allows n > 2 parties
to securely evaluate a function on shares of private data. Before the computa-
tion starts, all private data are split into shares and the shares are distributed
among the computational parties who carry out the computation on protected
data. After the computation, the shares of the result are communicated to the
participants who are entitled to learning the result and reconstruct the output
from the shares. Note that the participants who provide the data do not have
to coincide with computational parties, but instead the sets of input providers,
output recipients, and computational parties can be arbitrary with respect to
each other. This makes the framework suitable for a variety of settings including
secure computation outsourcing by one or more clients to a number of servers.

With linear secret sharing techniques, any linear combination of secret shared
data is computed locally by each participant, but multiplication requires their
interaction and constitutes a basic (interactive) building block. With (n, t)-
threshold linear secret sharing techniques, each private value is split into n shares
(and distributed to n participants) such that t or fewer shares information-
theoretically reveal no information about the shared value, while t + 1 shares
allow the value to be reconstructed. For semi-honest participants, it is typically
the case that t < n/2. Any function can be expressed in this framework, and
optimized designs of commonly used operations are available.

Theorem 2. Assuming the existence of secure (n, t)-threshold linear secret
sharing scheme, our algorithms result in t-private protocols for maximum bipar-
tite matching size, matrix rank, and fingerprint matching with n participants and
t < n/2.

For both two-party techniques based on garbled circuit evaluation and multi-
party techniques based on linear secret sharing, there are general mechanisms
for converting solutions secure in the semi-honest model to solutions secure in
the stronger malicious model (see, e.g., [27] for garbled circuits and [4] for secret

404 M. Blanton and S. Saraph

sharing among many others). This means that if we apply such techniques to our
computation, we automatically obtain protocols secure in the malicious model.
We omit the details here.

C Additional Performance Results

In Fig. 1, we report circuit evaluation times for experiments with 15 and 20
minutiae. The runtimes were computed from the circuit sizes, per-gate evaluation
times, and the machine’s clock rate as described in Sect. 8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 15 20

T
im

e
(s

ec
)

Correctness parameter

15 minutiae
20 minutiae

Fig. 1. Performance of garbled circuit evaluation for fingerprint matching.

References

1. Aliasgari, M., Blanton, M.: Secure computation of Hidden Markov Models. In:
International Conference on Security and Cryptography (SECRYPT) (2013)

2. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Financial Cryptography, pp. 239–257 (2013)

3. Barni, M., Bianchi, T., Catalano, D., Di Raimondo, M., Labati, R., Failla, P., Fiore,
D., Lazzeretti, R., Piuri, V., Scotti, F., Piva, A.: Privacy-preserving fingercode
authentication. In: ACM Workshop on Multimedia and Security (MM&Sec), pp.
231–240 (2010)

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

5. Bellare, M., Hoang, V., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-
key blockcipher. In: IEEE Symposium on Security and Privacy, pp. 478–492 (2013)

6. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. Cryp-
tology ePrint Archive Report 2011/464 (2011)

7. Blanton, M., Aliasgari, M.: Secure outsourcing of DNA searching via finite
automata. In: DBSec, pp. 49–64 (2010)

8. Blanton, M., Aliasgari, M.: Secure outsourced computation of iris matching. J.
Comput. Secur. 20(2–3), 259–305 (2012)

Oblivious Maximum Bipartite Matching Size Algorithm 405

9. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint iden-
tification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp.
190–209. Springer, Heidelberg (2011)

10. Blanton, M., Gasti, P.: Secure and efficient iris and fingerprint identification. In:
Ngo, D., Teoh, A., Hu, J. (eds.) Biometric Security (2015)

11. Blanton, M., Saraph, S.: Secure and oblivious maximum bipartite matching size
algorithm with applications to secure fingerprint identification. Cryptology ePrint
Archive Report 2014/596 (2014)

12. Blanton, M., Steele, A., Aliasgari, M.: Data-oblivious graph algorithms for secure
computation and outsourcing. In: ASIACCS, pp. 207–218 (2013)

13. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

14. Damg̊ard, I., Geisler, M., Krøig̊ard, M.: Asynchronous multiparty computation:
Theory and implementation. In: Public Key Cryptography (PKC), pp. 160–179
(2009)

15. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

16. Fan, K.-C., Liu, C.-W., Wang, Y.-K.: A fuzzy bipartite weighted graph matching
approach to fingerprint verification. IEEE Trans. Syst. Man Cybern. 5, 4363–4368
(1998)

17. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press (1962)
18. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-

bridge University Press, Cambridge (2004)
19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious

RAMs. J. ACM (JACM) 43(3), 431–473 (1996)
20. Goodrich, M.: Data-oblivious external-memory algorithms for the compaction,

selection, and sorting of outsourced data. In: SPAA, pp. 379–388 (2011)
21. Ibarra, O., Moran, S.: Deterministic and probabilistic algorithms for maximum

bipartite matching via fast matrix multiplication. Inf. Process. Lett. 13(1), 12–15
(1981)

22. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

23. Jain, A., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint match-
ing. IEEE Trans. Image Process. 9(5), 846–859 (2000)

24. Jea, T.-Y., Govindaraju, V.: A minutia-based partial fingerprint recognition sys-
tem. Pattern Recogn. 38(10), 1672–1684 (2005)

25. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. Cryptology
ePrint Archive Report 2014/137 (2014)

26. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

27. Kreuter, B., shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium (2012)

28. Lovasz, L.: On determinants, matchings and random algorithms. Fundam. Comput.
Theor. 79, 565–574 (1979)

406 M. Blanton and S. Saraph

29. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

30. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party compu-
tation system. In: USENIX Security Symposium, pp. 287–302 (2004)

31. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recogni-
tion, 2nd edn. Springer, London (2009)

32. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In:
IEEE Symposium on Foundations of Computer Science, pp. 248–255 (2004)

33. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
34. Pathak, M., Portelo, J., Raj, B., Trancoso, I.: Privacy-preserving speaker authen-

tication. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp.
1–22. Springer, Heidelberg (2012)

35. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–
244. Springer, Heidelberg (2010)

36. Shahandashti, S.F., Safavi-Naini, R., Ogunbona, P.: Private fingerprint matching.
In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 426–
433. Springer, Heidelberg (2012)

37. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
38. Solodovnikov, V.: Extension of Strassen’s estimate to the soultion of arbitrary

systems of linear equations. USSR Comput. Maths. Math. Phys. 19, 21–33 (1978)
39. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:

Path ORAM: An extremely simple oblivious RAM protocol. In: CCS, pp. 299–310
(2013)

40. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356
(1969)

41. The Corbett Report. India fingerprints, iris scanning over one billion peo-
ple. http://www.corbettreport.com/india-fingerprinting-iris-scanning-over-one-
billion-people/

42. Troncoso-Pastoriza, J., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient DNA searching through oblivious automata. In: CCS, pp. 519–528 (2007)

43. UAE Iris Collection. http://www.cl.cam.ac.uk/∼jgd1000/UAEdeployment.pdf
44. U.S. Dhs Office of Biometric Identity Management. http://www.dhs.gov/obim
45. Wang, C., Gavrilova, M., Luo, Y., Rokne, J.: An efficient algorithm for fingerprint

matching. In: International Conference on Pattern Recognition (ICPR), pp. 1034–
1037 (2006)

46. Yao, A.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)
47. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private

distributed computation. In: CCS, pp. 813–826 (2013)

http://www.corbettreport.com/india-fingerprinting-iris-scanning-over-one-billion-people/
http://www.corbettreport.com/india-fingerprinting-iris-scanning-over-one-billion-people/
http://www.cl.cam.ac.uk/~jgd1000/UAEdeployment.pdf
http://www.dhs.gov/obim

Practical Invalid Curve Attacks on TLS-ECDH

Tibor Jager(B), Jörg Schwenk(B), and Juraj Somorovsky(B)

Horst Görtz Institute for IT Security, Ruhr University Bochum,
Bochum, Germany

tibor.jager@rub.de

Abstract. Elliptic Curve Cryptography (ECC) is based on cyclic
groups, where group elements are represented as points in a finite plane.
All ECC cryptosystems implicitly assume that only valid group elements
will be processed by the different cryptographic algorithms. It is well-
known that a check for group membership of given points in the plane
should be performed before processing.

However, in several widely used cryptographic libraries we analyzed,
this check was missing, in particular in the popular ECC implementa-
tions of Oracle and Bouncy Castle. We analyze the effect of this missing
check on Oracle’s default Java TLS implementation (JSSE with a SunEC
provider) and TLS servers using the Bouncy Castle library. It turns out
that the effect on the security of TLS-ECDH is devastating. We describe
an attack that allows to extract the long-term private key from a TLS
server that uses such a vulnerable library. This allows an attacker to
impersonate the legitimate server to any communication partner, after
performing the attack only once.

1 Introduction

Elliptic Curve Cryptography (ECC) is one of the cornerstones of modern cryptog-
raphy, due to its security and performance features. It is implemented in nearly
every cryptographic application, ranging from Bluetooth device level encryption
to securing cloud applications via TLS. Mathematically speaking, an elliptic
curve is a set of points in a plane (in cryptography: a finite plane), together
with a single (associative) operation, namely point addition. The set of points
are those that satisfy an equation of the form

y2 = x3 + ax + b (1)

and point addition can be defined as a geometric operation in the plane. Each
set of elements together with an operation forms an algebraic group, if the set is
closed under the given operation, if the operation is associative, and if a neutral
element exists. Elliptic curves satisfy all these axioms, and thus can be used
in any cryptosystem that operates on a mathematical group. For cryptographic
applications it is also required that certain assumptions hold in the group G, e.g.,
the hardness of the discrete logarithm problem, or the CDH and DDH assump-
tions. An elliptic curve Ea,b therefore has to be chosen carefully to guarantee
that these assumptions hold.
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 407–425, 2015.
DOI: 10.1007/978-3-319-24174-6 21

408 T. Jager et al.

Now a finite plane also contains points outside the elliptic curve Ea,b, and thus
these points are not group elements of G. However they resemble group elements:
They have two coordinates, and the functions defining the group operation can
be applied to them. They just don’t satisfy Eq. (1) with the given parameters a
and b. If we use these points with the functions defining our EC cryptosystem,
we may get strange results, since the group laws may not apply to them, or they
may lie in a diffrent group where the cryptographic assumptions are not valid.

So strictly speaking, any cryptographic application using a cyclic group G
should check that any operand that is supposed to be a group element of G
is indeed contained in G. Indeed, it is well-known that this check is in general
necessary to provide security [2,3,6,15]. But is this check always implemented in
the cryptographic libraries that are used in practical applications?

It is also not clear for which specific applications this is inherently necessary.
Even though it is considered good practice to always perform a test of group
membership, we show that sometimes developers of even popular implementa-
tions of elliptic curve cryptography omit the check. Which impact does a missing
check of group membership have on the specific application TLS?

To answer these questions, we studied the eight most important crypto-
graphic libraries, which are used in TLS-ECDH (and many other applications).
We found that a check for group membership was missing in three of these
libraries, and this omitted check allows to compromise the security of a TLS
implementation completely in two libraries (Oracle SunEC, Bouncy Castle), pro-
vided that a TLS-ECDH cipher suite is used.

TLS-(EC)DH. Transport Layer Security (TLS) is a security standard originally
designed to protect HTTP traffic, but which is today used as a de facto security
standard for many applications, e.g. EAP-(T)TLS, IMAPS and secure websock-
ets. TLS consists of two main parts: The Record Layer encryption, which pro-
tects transported data using a MAC-then-PAD-then-ENCRYPT approach, and
the Handshake Protocol, which negotiates cryptogra pgorihms and keys to be
used by the Record Layer. Three different types of key agreement can be used
in the Handshake protocol:

– TLS-RSA: The client chooses a random PreMasterSecret pms, encrypts it
with the RSA public key of the server (contained in the server certificate),
and sends this cryptogram to the server.

– TLS-DH: Here the server certificate contains a static Diffie-Hellman share gs,
and the client chooses a fresh DH share gx. The PreMasterSecret is computed
as pms := (gs)x = (gx)s.

– TLS-DHE: Here the server also chooses a fresh DH share gy, and signs this
value (plus some additional values). This signature can be verified using the
server certificate. The PreMasterSecret is computed as pms := (gy)x =
(gx)y.

Since only a mathematical group structure is required in the Diffie-Hellman
key exchange, we can also use elliptic curves in the last two key agreement

Practical Invalid Curve Attacks on TLS-ECDH 409

Fig. 1. Structure of the SSL/TLS Handshake protocol for TLS ECDH cipher suites.

schemes. These variants are denoted as TLS-ECDH and TLS-ECDHE, respec-
tively. The attacks described in this paper are applicable to TLS-ECDH. The
structure of this handshake is described in Fig. 1. Our goal is to compute the
private server key s. We may learn the public server key sP from the server
certificate sent in the Certificate message, but since the Discrete Logarithm
assumption (DLP)1 holds in the elliptic curve group, we cannot compute s from
this value.

Attacks on TLS. TLS can be attacked at three points: At the TLS handshake,
at the Record Layer, and by using a specific TLS extension. The impact of each
attack may range from low to high criticality.

Except where weak export cipher suites were used, the TLS Record Layer
seemed secure. This situation changed with the BEAST attack published in
2011 [19]. Although the impact of this attack was low, it showed the practi-
cal vulnerability of the MAC-then-PAD-then-ENCRYPT scheme used. Critical
attacks followed soon: Lucky 13 [1] and POODLE [17]. However, with these
attacks only parts of the plaintext exchanged could be decrypted, and thus the
criticality lay in the fact that e.g. HTTP session cookies could be decrypted.

1 Group operations can be written as additive or multiplicative operations. Elliptic
curves traditionally use additive notation, so for EC this assumption could be rela-
beled “discrete factor assumption”. However, DLP is the standard term used for this
assumption.

410 T. Jager et al.

The first critical attack on the TLS handshake, which is hard to mitigate
and thus resurfaces from time to time, is the famous adaptive chosen ciphertext
attack by Daniel Bleichenbacher [5]. With this attack, a single TLS session could
be completely broken by computing the PreMasterSecret from an intercepted
ClientKeyExchange message, and from server error messages or timing mea-
surements. Another example of an attack on the TLS handshake is the attack
by Brumley et al., who analyzed a bug in EC computation of OpenSSL [6]. The
bug allowed the authors to apply practical attacks against TLS servers using
NIST secp256r1 and secp384r1 curves, and to extract EC private keys.

Even more critical was the Heartbleed vulnerability,2 which was not based
on a cryptographic attack, but on an implementation error of the OpenSSL
Heartbeat extension: An attacker could read the server’s private key directly
from the memory of the OpenSSL process.

In this paper we describe a cryptographic attack on the TLS handshake which
also recovers the private key of the server. Our attack is however less critical than
Heartbleed, most importantly because the widely-used OpenSSL library is not
affected, and TLS-DH cipher suites are less frequently used in practice than
TLS-DHE or TLS-RSA cipher suites.

Our Attack. As a starting point, we used the invalid curve attack sketched by
Biehl et al. in [3] and explained in more detail by Antipa et al. [2]. The basic
idea is to define several different elliptic curves in the same plane as the original
curve, by varying the parameter b. The groups defined by these curves may have
arbitrary order within a certain range, and this order may be divisible by small
primes 2, 3, 5, 7, 11,

For example, if we find a parameter b′ where the order of the corresponding
group is divisible by 7, then we can find a point P ′ on this curve that generates
a subgroup of order 7. If we send this point P ′ to the TLS server, then there are
only 7 different values for sP ′. Thus if we could learn sP ′, we could compute s
mod 7. If we do this for enough different small primes, we can apply the Chinese
Remainder theorem to compute the private server key s.

This attack however only works if the result of the EC computation is directly
available to the adversary, which is not the case for TLS-ECDH: The resulting
value sP ′ is only used internally by the server as the PreMasterSecret pms.
Thus we never directly see this value, but we can guess this value and check it
against the server.

Therefore we used the strategy of Brumley et al. [6], and adapted the attack
on TLS-ECDH in the following way:

1. We start like in the attacks of [2,3] by generating several different curves with
subgroups of small prime order.

2. For each of these small prime orders pi, we send a generator Gi of the corre-
sponding subgroup in the ClientKeyExchange message to the server.

2 http://heartbleed.com/.

http://heartbleed.com/

Practical Invalid Curve Attacks on TLS-ECDH 411

3. Additionally, we guess the value sGi, which can only be one of the p values
generated by Gi. Using this guessed value as the PreMasterSecret pms, we
compute the MasterSecret ms and the ClientFinished message.

4. If we guessed correctly, the server will accept the ClientFinished message,
and respond with the ServerFinished message. In that case, we have learned
s2 mod pi.

Results. We studied eight TLS-ECDH implementations. TLS servers based on
Oracle’s default Java TLS implementation using the SunEC provider, and the
Bouncy Castle library were vulnerable to the presented attack. The WolfSSL
library did not validate EC points, but it was not vulnerable. We provide an
explanation for this behavior in AppendixA. The results are summarized in
Table 1.

Table 1. Overview on the tested libraries

Lib Bouncy

Castle

Java

1.50

MatrixSSL

1.3.10

mbed

TLS

1.3.10

OpenSSL

1.0.2a

LibreSSL

2.1.6

SunEC

Security

Provider

1.8

SunPKCS11-

NSS

Security

Provider

1.7

WolfSSL

3.4.6

point

check?

no yes yes yes yes no yes no

vuln.? yes no no no no yes no no

We were able to perform the attack against a TLS server with a SunEC
provider with about 3300 server queries, and a server based on the Bouncy Cas-
tle library with about 17,000 server queries. Both test servers used the secp256r1
NIST curve. The significantly larger values for SunEC resulted from an uniden-
tified computation error in the ECC library:3 Certain computations resulted in
False Positives, and the probability for False Positives was proportional to the
inverse of the size of the chosen small group. Thus we had to choose larger primes
for our attack, and consequently the average number of guesses increased.

Contribution. The contributions of this paper are the following:

– We adapt attacks of [2,3] to TLS-ECDH, and present a representative study
on TLS libraries using TLS-ECDH cipher suites.

– We show that three out of eight analyzed libraries do not include curve point
validations, and that two of them are vulnerable to invalid curve attacks. This
allowed us to reveal TLS long-term private keys with a few thousands of server
requests.

– We present a modified algorithm that allowed us to attack a TLS server using
the SunEC security provider even in the presence of invalid EC computations,
with high probability.

3 We were not able to investigate this in more detail, because the source code is not
publicly available.

412 T. Jager et al.

– We give additional practical arguments why group membership checks are of
prime importance in cryptographic applications.

2 Invalid Curve Attacks on ECC

2.1 A Brief Recap of Elliptic Curve Cryptography

In this section we give a brief introduction to elliptic curve cryptography, mainly
in order to introduce our notation. We refer to [7,13] for a more verbose treat-
ment of elliptic curves.

Let F be a finite field (e.g., F = Zp for prime p) with characteristic not equal
to 2 or 3. An elliptic curve in Weierstrass form over F is described by curve
parameters π := (F, a, b), where a, b ∈ F. Let

Eπ := {(x, y) ∈ F
2 : y2 = x3 + ax + b} ∪ {O∞}

denote the set of solutions (x, y) to the Weierstrass equation y2 = x3 + ax + b
over F defined by π, along with a special symbol O∞ which is called the point at
infinity. Let +π : Eπ × Eπ → Eπ denote the map that takes as input two points
P,Q ∈ F

2 and outputs the point R ∈ F
2 computed as

R = P +π Q :=

{
ADDπ(P,Q) if P �= Q,

DBLπ(P) if P = Q.

Here, ADDπ and DBLπ denote the algorithms depicted in Fig. 2.

ADD(P, Q) :

(xP , yP) := P ; (xQ, yQ) := Q
If P = O∞ then Return Q
If Q = O∞ then Return P
λ := (yP − yQ)/(xP − xQ)
xR := λ2 − xP − xQ

yR := yP + λ(xR − xP)
Return (xR, yR)

DBL(P) :

(xP , yP) := P
If P = O∞ then Return P
λ := (3x2

p − a)/(2yP)
xR := λ2 − 2xP

yR := yP + λ(xR − xP)
Return (xR, yR)

Fig. 2. Algorithms DBL and ADD for point doubling and addition. Note that both algo-
rithms are independent of the curve parameter b.

Remark 1. Note that algorithm ADDπ depends only on P , Q, and the field F, but
not on the curve parameters a and b. Similarly, DBLπ depends only on P , the field
F and curve parameter a, but not on curve parameter b. Thus, the computation
of the group operation +π is independent of curve parameter b. This is a crucial
property for the attack described below.

Practical Invalid Curve Attacks on TLS-ECDH 413

The set of points Eπ along with the group law +π forms an algebraic group
Gπ = (Eπ,+π). We will write P + Q shorthand for P +π Q when the reference
to parameters π is clear. For n ∈ N we write nP for the n-fold sum P + · · · + P .

In the sequel we will furthermore write [P]x to denote the x-coordinate of a
point P . If P is the point at infinity, we set [P]x := ∅, where ∅ is an arbitrary
constant.

2.2 Invalid Curve Attacks on Elliptic Curves in TLS

The idea of small subgroup attacks is due to Lim and Lee [14], who described
such attacks for groups of integers modulo a prime. The special case of small
subgroup attacks, that are based on submitting invalid elliptic curve points (more
precisely, points that lie on a different curve) were, to our best knowledge, first
described in [3]. The attack used in this paper is based on the attack sketched
in [3], and explained in detail in [2]. It consists of two phases, an offline pre-
computation phase which must only be performed once for each elliptic curve
parameters π := (F, a, b), and an online attack phase.

Offline precomputations. First, the attacker performs the following computa-
tions, which need to be performed only once for each particular choice of elliptic
curve parameters π := (F, a, b) defining an elliptic curve group of order q.

1. Let p1, . . . , pn be the first n primes, such that
∏n

i=1 pi > q2. The attacker
first computes integers b1, . . . , bn ∈ Zp such that (F, a, bi) defines an elliptic
curve of order qi such that pi divides qi. To this end, the attacker sets b1 =
· · · = bn = 0, and repeats the following algorithm until bi �= 0 for all i.
(a) Choose b∗ $← Zp at random.
(b) Count the number w of points on the curve E(F,a,b∗), by running the

Schoof-Elkies-Atkin algorithm [7].
(c) For each i ∈ {1, . . . , n}, check if pi | w. If this holds, set bi := b∗.

Note that the elliptic curve group defined by (F, a, bi) has a small subgroup
of order pi, where all pi are very small. Note also that it is sufficient to have
n ≤ 2 · log2 q. By the prime number theorem, we may furthermore expect that
the largest prime pn has size about pn ≈ n · ln n. Thus, all primes p1, . . . , pn

are very small, in the order of O(log q · log log q). Assuming heuristically that
the number of points w on the curve defined by (F, a, b∗) is distributed nearly
uniformly over the interval [q−2

√
q+1, q+2

√
q+1] (the interval given by the

Hasse-Weil bounds [7]) for uniformly random b∗ ∈ Zp, finding all bi-values is
expected to take about pn iterations of the above algorithm.
For example, if q < 2193 is a 192-bit prime, then n = 60 and pn = 283 is
sufficient. For a 256-bit prime q < 2257 we may have n = 76 and pn = 383.

2. Next, the attacker determines points G1, . . . , Gn such that Gi generates the
subgroup of order pi of the curve defined by (F, a, bi).

For example, performing the above computations on a virtual machine run-
ning Ubuntu 12.04 LTS Server x64 with eight 2.3 GHz CPUs and 4 GB RAM
takes about 90 min for the NIST P-192 curve, and about 5 h for the NIST P-256
curve, when both computations are started in parallel.

414 T. Jager et al.

Online attack. In the online attack phase, the attacker interacts with a “target
server”. This server may, for example, be a TLS server implementing TLS-DH
cipher suites. In order to describe the attack independently of a particular server
(which would require to go into the details of the service provided by this server
and its implementation), we describe the attack with “oracles” that capture
the required behavior of a server in an abstract manner. We show later how to
instantiate these oracles in practice.

In the sequel let O be an oracle that performs computations on a curve
described by parameters π := (F, a, b). The oracle internally keeps a random
secret s ∈ Zq. On input G ∈ G, the oracle computes sG by applying the double-
and-add algorithm, using the DBL and ADD procedures from Fig. 2. Finally, the
oracle returns [sG]x, the x-coordinate of point sG.4

Given the results (bi, Gi, pi)1≤i≤n from the precomputation phase and oracle
O, the actual attack proceeds as follows.

1. First, A queries the oracle O n times, on inputs G1, . . . , Gn. Given Gi, the
oracle computes and returns [sGi]x. Note that Gi does not lie on the curve
defined by the “real” parameters π := (F, a, b), but on the curve defined by
adversarially-chosen parameters (F, a, bi). However, since the DBL and ADD
procedures implemented by O are independent of b, the oracle will perform
this computation correctly.

2. Next, A computes the points t · Gi for all t ∈ {0, 1, . . . , (pi + 1)/2}.5 Then it
defines si to the unique value t, such that [sGi]x = [tGi]x. Note that either
si ≡ s mod pi, or −si ≡ s mod pi. Note also that s2i ≡ (−si)2 mod pi,
thus, s2i is a uniquely determined value.

Since the group operations implemented by O are independent of elliptic
curve parameter b, and we assume that the oracle does not check whether the
given point Gi lies on the correct curve E(F,a,b), the oracle implicitly performs
all computations on a different curve E(F,a,bi) having a small subgroup of
order pi. This allows A to determine the unique value s2i mod pi for all
i ∈ {1, . . . , n}.

3. Finally, A computes the secret s by determining the unique integer s ∈ Z

such that s2 < q2 and s2 ≡ s2i mod pi for all i ∈ {1, . . . , n}, by applying
the Chinese Remainder Theorem (CRT) and the fact that the primes pi have
been chosen such that

∏n
i=1 pi > q2.

The nice trick of computing with s2i mod pi is from [3]. It overcomes the
issue that we learn either si mod pi or −si mod pi, but without being able
to test immediately which one is correct, by performing all CRT computations
with the unique values s2i mod pi and finally computing the square root of
the result s2 over Z.

4 Note that keys in elliptic curve cryptography are often derived only from the x-
coordinate of a point, which motivates this abstraction.

5 In principle, this step can also be precomputed. However, we will later have to
consider a slightly different setting (and thus a different oracle) where this precom-
putation is not possible, therefore we explain it here.

Practical Invalid Curve Attacks on TLS-ECDH 415

Remark 2. We will later describe an oracle O which takes as input Gi, and
immediately returns s2i mod pi (instead of [sGi]x as above). This essentially
makes Step 2 of the online attack phase obsolete (in particular the computation
of the values tGi), and show how to realize this oracle in practice. Obviously,
the above attack works identically with this oracle, by simply omitting Step 2.
Describing the above attack with this particular oracle would, however, conceal
the idea behind the invalid curve attack.

Remark 3. This attack can easily be prevented by replacing O with an oracle
which checks whether a given point G lies on the “right” curve, that is, the
defined by π = (F, a, b) before performing any computation. This is easy, by
testing whether y2 ≡ x3 + ax + b mod p. Note also that the test of group
membership is relatively inexpensive, as it requires to compute only a small
number of multiplications modulo p, which does not increase the complexity of
computing sP significantly. Nevertheless, we will show the practical relevance of
this attack.

3 Transport Layer Security

In the TCP/IP reference model, the TLS protocol is located between the trans-
port layer and the application layer. Its main purpose is to protect insecure
application protocols like HTTP or IMAP. It is also used as a building block in
other protocols, like EAP-TLS authentication for WiFi networks.

The first (inofficial) version was developed in 1994 by Netscape, named Secure
Sockets Layer. In 1999, SSL version 3.1 was officially standardized by the IETF
Working Group and renamed to Transport Layer Security [8], version 1.0. Since
then, two updates of the TLS specification were released, versions 1.1 [9] and
1.2 [10]. Version 1.3 is currently under development [11].

Cipher suites. TLS is rather a protocol framework than a fixed protocol that
allows communicating parties to choose from a large number of different algo-
rithms for the various cryptographic tasks performed in the protocol (key agree-
ment, authentication, encryption, integrity protection). A cipher suite is a con-
crete selection of algorithms for all required cryptographic tasks. For example,
a connection established with the cipher suite TLS_RSA_WITH_AES_128_CBC_SHA
uses RSA-PKCS#1 v1.5 public-key encryption [12] to establish a key, and sym-
metric AES-CBC encryption with 128-bit key and SHA-1-based HMACs. Cipher
suite TLS_DHE_WITH_AES_128_CBC_SHA uses the same symmetric algorithms, but
establishes the key from a Diffie-Hellman key exchange with ephemeral expo-
nents6 and RSA-PKCS#1 v1.5 signatures [12] for authentication.

The TLS RFCs [8–10] and their extensions [4] specify a large number of
different cipher suites. They can be divided into three large groups, depend-
ing on the key agreement algorithm used: In TLS RSA cipher suites, the client
6 That is, both communicating partners choose random exponents for each execution

of the Diffie-Hellman protocol within TLS. Alternatively, there exist TLS DH cipher
suites, where the server uses a static exponent.

416 T. Jager et al.

chooses a random PremasterSecret, encrypts it with the public RSA key of
the server, and sends this cryptogram within the ClientKeyExchange message
to the server. In TLS DH and TLS DHE, the Diffie-Hellman key exchange is used
to establish the PremasterSecret. The difference between these two families is
that in TLS DH, the server DH share is static and contained in the server certifi-
cate, whereas in TLS DHE, only a signature verification key is contained in the
server certificate, and an ephemeral server DH share is contained in an addi-
tional ServerKeyExchange message. Both Diffie-Hellman variants can also be
used with elliptic curves, in which case the substring “EC” is added to the cipher
suite name. In this paper, we only consider cipher suites from the TLS ECDH
family.

3.1 The TLS-ECDH Handshake

At the beginning of each TLS session the TLS Handshake protocol is executed,
to negotiate a cipher suite and cryptographic keys. In the following, we give a
brief overview of the TLS ECDH Handshake for all versions up to the latest version
1.2, in as much detail as required to explain our attack. Note that the sequence
of messages exchanged in the handshake depends on the selected cipher suite.

Handshake overview. Let us first give an overview of the messages sent in the
TLS Handshake. See also Fig. 1. A TLS handshake is initiated by a TLS client
with a ClientHello message. This message contains information about the TLS
version, a list of references to TLS cipher suites proposed by the client, and a
client nonce rC .

The server now responds with the messages ServerHello, Certificate, and
ServerHelloDone. The ServerHello message contains a reference to a cipher
suite, selected by the server from the list proposed by the client, the selected
TLS version, and a server nonce rS . The Certificate message contains an X.509
certificate with the server’s public key; in case of TLS ECDH the public key must
be a point sP on the elliptic curve. The ServerHelloDone message indicates the
end of this step.

The client responds with a ClientKeyExchange, which contains the
ephemeral DH share of the client, i.e. a point qP on the curve, where q was
chosen randomly, and P is the base point.

Finally, both parties send the ChangeCipherSpec and Finished messages.
The former notifies the receiving peer that subsequent TLS messages will be
protected (i.e. encrypted and MACed) using the newly negotiated cipher suite.
The Finished message contains a MAC over all exchanged messages, and is
necessary to protect against certain attacks (see [16]).

After the handshake has finished, the peers can start to exchange payload
data, which are protected by the negotiated cryptographic algorithms and keys.

TLS ECDH cipher suites. In TLS ECDH, the ClientKeyExchange message contains
the client’s contribution qP to a EC-based Diffie-Hellman key exchange. Com-
bined with the value sP from the server certificate, the PremasterSecret is

Practical Invalid Curve Attacks on TLS-ECDH 417

computed as pms := [q(sP)]x = [s(qP)]x. Note that only the x-coordinate of the
resulting point is used as a PremasterSecret.

Using the TLS-PRF function, which is essentially a pseudorandom function
based on an iterated HMAC, in a first step the MasterSecret ms is derived
from pms:

ms := TLS-PRF(pms; rC , rS , labelms).

In a second step, the cryptographic keys and the Finished messages are
derived using the MasterSecret as the key of the TLS-PRF:

keys := TLS-PRF(ms; rC , rS , labelkeys),
F in := TLS-PRF(ms; transcript)

Note that there is no explicit server authentication. The server authenticates
implicitly, by being able to compute the Finished message correctly. This mes-
sage depends on the PremasterSecret, thus the server must have been able to
compute pms.

On client authentication via TLS. Note that we have described only server-
authentication. It is in principle also possible to authenticate clients crypto-
graphically in the TLS handshake, however, this would require client certificates.
If an application requires client-authentication, then it is common to implement
this by running an additional protocol over the established TLS channel, e.g. by
transmitting a password. TLS is most commonly used with server-only authen-
tication, therefore we focus on this setting.

4 Invalid Curve Attack on TLS-ECDH

In Sect. 2.2 we described an invalid curve attack on elliptic curve cryptosystem.
In this section we will show how to obtain the required oracle responding with
s2i mod pi, given a point Gi on a curve (F, a, bi) with a small subgroup of order
pi from a TLS server. We assume that this TLS server supports TLS-ECDH
cipher suites. Moreover, the server does not validate whether a point sent by
the client belongs to a specified curve or not, and implements the group law
in a way which is “compatible” with both the real parameters (F, a, b) and the
adversarially-chosen parameters (F, a, bi). As explained above, the latter holds
in particular if the server implements the standard double-and-add algorithm
for multiplication of elliptic curve points with scalars.

The main difficulty in constructing such an oracle from a TLS server is that
the server does not directly respond with a result of a multiplication sG. Instead,
it uses this result internally to derive cryptographic keys, and expects a suitable
TLS ClientFinished message. Thus, we will construct an oracle O which will
establish several TLS connections to verify a guessed value sGi, by sending
ClientFinished messages. More precisely, given a point Gi and its order pi

prepared by the attacker A, the oracle O proceeds as follows (see also Fig. 3):

418 T. Jager et al.

t=0t=0

Gi
G

i

pms = (t G
i
)
x

t<=p i /2t<=p
i /2

Gi
G

i

pms = (t Gi)x

pi ,G i

s i
2 mod p i

s i =ts
i
=t

Fig. 3. Constructing an oracle O from a vulnerable TLS server supporting TLS-ECDH
cipher suites.

1. O sets t = 0.
2. O starts a TLS handshake with a ClientHello message containing

TLS-ECDH cipher suites (e.g., TLS ECDH ECDSA WITH AES 128 CBC SHA).
It receives TLS messages from the server and sends to the server a
ClientKeyExchange message containing point Gi.

3. O guesses the PremasterSecret and sets it to pms = [tGi]x. Based on the
PremasterSecret, O computes the MasterSecret and derives all keys needed
for encryption and HMAC computations. O uses the derived keys to authen-
ticate and encrypt the ClientFinished message.

4. If the TLS server accepts the ClientFinished message and responds with
a ServerFinished message, the guessed PremasterSecret was correct and
it holds that s ≡ ±t mod pi. O sets si := t and responds with s2i mod pi.
Otherwise, if the server responds with a TLS alert message and terminates
the connection, the guessed PremasterSecret was incorrect. O increments t
and proceeds with Step 2.

Note that O needs at most pi/2 TLS handshake executions to get s2i mod pi,
and pi/4 executions on average.

This oracle allows the attacker A to execute the full attack and recover
server’s private key. A first queries O n times, on inputs (Gi, pi), where i ∈
{1, 2 . . . , n}. It receives equations s2 ≡ s2i mod pi. Afterwards, A computes s2

using the CRT and finally obtains the server’s secret s.

Practical Invalid Curve Attacks on TLS-ECDH 419

5 Practical Evaluation

In this section we describe the invalid curve attacks on real implementations.
To test the TLS implementations and libraries, we implemented a TLS client
capable of sending invalid EC points in the ClientKeyExchange message, and
complete a valid TLS handshake with a given PremasterSecret. In case an
analyzed implementation was vulnerable to the attack, we used our TLS client
to perform the complete attack. Otherwise, we analyzed why the attack was
impossible. We conducted all the tests on a localhost, with a machine running
on Xubuntu 14.10, with an Intel i7 processor (2.6 GHz).

5.1 Analyzed TLS Libraries

In order to use cryptographic libraries in Java dynamically, a system of cryp-
tographic service providers was introduced. A cryptographic service provider
“refers to a package or set of packages that supply a concrete implementa-
tion of a subset of cryptography features.”7 Java offers developers crypto-
graphic providers, which are shipped directly with the Java installation (e.g.,
a SunEC provider for EC computation). The developers can however bind fur-
ther providers like a Bouncy Castle provider to extend the default behavior of
the installed providers.

For testing purposes, we set up a simple TLS server based on the Java
Secure Socket Extension (JSSE)8. JSSE is used, for instance, in JBoss Applica-
tion Server,9 Apache Tomcat,10 or Apache Camel framework.11 We dynamically
exchanged different cryptographic security providers to test their behavior while
processing invalid EC points: Bouncy Castle, SunEC 1.8, and SunPKCS11-NSS
1.7. Further C/C++ libraries were tested with TLS test servers provided by
these libraries.

– Bouncy Castle Java 1.50. Bouncy Castle12 is a Java-based cryptography
library, which can be bound to an implementation as a cryptographic provider.
This library was heavily used for EC computations in Java 6, since Java 6 did
not support EC by default. It can however also be used with further Java ver-
sions. In our work, we first tested Bouncy Castle 1.50 and then reevaluated
our results with the 1.52 version.

– MatrixSSL 3.7.1. MatrixSSL is a C implementation designed specifically for
small and embedded devices.13

7 http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/
CryptoSpec.html#Provider.

8 http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/
JSSERefGuide.html.

9 http://jbossas.jboss.org/.
10 https://tomcat.apache.org/.
11 http://camel.apache.org/.
12 https://www.bouncycastle.org/java.html.
13 http://www.matrixssl.org/.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#Provider
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#Provider
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://jbossas.jboss.org/
https://tomcat.apache.org/
http://camel.apache.org/
https://www.bouncycastle.org/java.html
http://www.matrixssl.org/

420 T. Jager et al.

– mbed TLS 1.3.10. mbed TLS (formerly known as PolarSSL) is a lightweight
C++ implementation also designed for small devices.14

– OpenSSL 1.0.2a and LibreSSL 2.1.6. OpenSSL is a cryptographic library with
a TLS functionality.15 LibreSSL is a fork of OpenSSL, created in 2014.16 Our
analysis revealed that the relevant EC implementation parts contain the same
code, thus we treat them together as one library.

– SunEC Security Provider 1.8. SunEC is an Oracle Java security provider,
which supports EC computations.17 It is by default included in Oracle JDK
7 and 8, and in OpenJDK 8. In our tests, we used the SunEC provider dis-
tributed with Oracle JDK 1.8.0 40.

– SunPKCS11-NSS Security Provider 1.7. SunPKCS11-NSS is a Java security
provider created as a wrapper over Mozilla’s NSS library.18 It is used as a
default provider in OpenJDK 7 to support elliptic curves.

– WolfSSL 3.4.6. WolfSSL (formerly known as CyaSSL) is an embedded TLS
library for small devices, written in C.

5.2 Attacks on Bouncy Castle

Analysis with our TLS client showed that a TLS server based on the Bouncy
Castle library does not verify whether a given point lies on the right curve. For
the point multiplication, the standard double-and-add algorithm is used. This
allowed us to apply the attack described in Sect. 4 in a straightforward way.

Our evaluation with a secp256r1 elliptic curve revealed that the attacker
needs about 3300 real server queries to get the private server key. In our localhost
setup the online attack phase took about 155 s, see Table 2.

Table 2. Number of queries and time needed to execute the attack against a TLS
server using the Bouncy Castle library in version 1.50. Note that a real attack over
the Internet would last about ten to hundred times longer, depending on the server
response times.

Elliptic curve # of oracle queries # of server queries Duration [sec]

secp256r1 74 3300 155

We informed Bouncy Castle developers about this problem in their official
developer mailing list.19 It was patched one month after our disclosure, with the
Bouncy Castle version 1.51. We are not sure whether our disclosure influenced
the patch, since we got no official response.
14 https://mbed.org/technology/mbed-tls/.
15 https://www.openssl.org/.
16 http://www.libressl.org/.
17 http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.

html#SunEC.
18 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS.
19 http://bouncy-castle.1462172.n4.nabble.com/EC-Implementation-problems-

td4657043.html.

https://mbed.org/technology/mbed-tls/
https://www.openssl.org/
http://www.libressl.org/
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunEC
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunEC
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
http://bouncy-castle.1462172.n4.nabble.com/EC-Implementation-problems-td4657043.html
http://bouncy-castle.1462172.n4.nabble.com/EC-Implementation-problems-td4657043.html

Practical Invalid Curve Attacks on TLS-ECDH 421

5.3 Attacks on SunEC Security Provider

Our analysis of a TLS server using the SunEC security provider indicated that
the SunEC provider is also vulnerable to the attacks described above. The server
based on this provider processed invalid EC points and we were able to exe-
cute valid TLS handshakes. However, a full attack execution was not successful.
Further analysis revealed that the SunEC provider introduced failures in the
EC point multiplication, which resulted in wrong responses of the oracle con-
structed using the TLS server. Since the SunEC provider is implemented as a
closed source, we needed to provide a black box analysis of the EC multiplication
implementation.

Several tests with the EC computation showed that the probability of an
invalid point multiplication depends on the order of the elliptic curve. More
precisely, point multiplications on an elliptic curve group with order pi < 100
returned a valid result with a probability of less than 60 %. Multiplications on
elliptic curves with an order pi ≈ 300 returned a valid result with a probability
of more than 90 %. Elliptic curves of an order pi ≈ 1000 computed correctly with
a probability of about 98 %. See some exemplary results in Fig. 4, which depicts
the SunEC computation correctness probability as a dependency of the elliptic
curve order. The results were generated by applying 100 computations on 256
bit elliptic curves with random scalars.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

20

40

60

80

100

Elliptic Curve Order

V
al
id

C
om

pu
ta
tio

ns
(i
n
%
)

Fig. 4. Exemplary results showing dependency between the elliptic curve order and the
percentage of valid EC computations executed by the SunEC provider: When working
with custom elliptic curves with a small order (pi < 100), only about one half of the
computations were correct. This forced us to use elliptic curves with higher orders.

This is not a unique behavior of an EC implementation. A similar docu-
mented behavior of an invalid EC multiplication was observed in 2007 [18], when
OpenSSL incorrectly multiplied specific points on a secp384r1 NIST curve. The
reason was an incorrect handling of carry bits by the OpenSSL library. In our

422 T. Jager et al.

tests, we were however not able to analyze the reason for the incorrect computa-
tion by the SunEC provider due to the fact that the source code is not publicly
available.

The SunEC provider behavior forced us to use elliptic curves with an order
pi > 1000, where the probability of a valid point multiplication was about ρ ≈
98%. This resulted in a success probability ρs := ρn ≈ 36% for computing a
valid server secret s, where n = 50 is the number of oracle queries to attack a
server using the secp256r1 curve. In order to increase the chance of computing
a valid secret, we adapted the algorithm as follows:

1. The attacker A sends to the oracle (n + n′) queries, where
∏n

i=1 pi > q2 and
n′ are additional attack queries.

2. A computes
(
n+n′

n

)
possible values for the secret s.

3. A tests, which of the possible secrets is correct, such that the base point
multiplied by the secret returns server public key sP .

Note that both the second and the third steps are offline steps, which can be
executed after querying the server.

This adapted algorithm resulted in an overall success probability of

ρs :=
n′

∑

i=0

(
n + i

n

)

· ρ(n+n′−i) · (1 − ρ)i.

We could for example compute a valid server secret s with a probability ρs ≈
75% with n′ = 3 additional attack queries.

Table 3. Number of queries and time needed to execute the attack against a TLS
server using the SunEC security provider. Note that a real attack over the Internet
would last about ten to hundred times longer, depending on the server response times.

Elliptic curve # of oracle queries # of server queries Duration [sec]

secp192r1 40 14732 346

secp256r1 52 16897 412

In Table 3 we summarize our attack results. As can be seen, using elliptic
curves of a higher order resulted in lesser oracle queries, but in higher number of
total server queries (in comparison to the attacks on Bouncy Castle presented in
Table 2). We could execute the attacks in less than 7 min, in our localhost setup.

We informed Oracle security team about this vulnerability. Oracle is going
to provide a patch in the Oracle Critical Patch Update in July 2015.

6 Attack Impact and Countermeasures

Checking whether a given point lies on the correct curve is a simple and effective
countermeasure against the attacks described in this paper, its computational

Practical Invalid Curve Attacks on TLS-ECDH 423

complexity is negligible in comparison to a full scalar multiplication of an ellip-
tic curve point. The library providing elliptic curve point multiplication should
therefore always validate whether the incoming point lies on the elliptic curve.
Unfortunately, this seems not generally known to implementers of elliptic curve
cryptography. Our attacks showed practical examples where this validation was
omitted, and highlights that it is dangerous even in applications where the attack
of [2] is not immediately applicable. The mentioned vulnerable implementations
are already fixed or currently being fixed.

The described attack can be compared with the Heartbleed bug in the sense
that the attack leaks the server’s long-term private key to an attacker, and thus
enables the attacker to impersonate the server in the future. However, we stress
that TLS-ECDH cipher suite are less frequently used in practice than TLS-
ECDHE or TLS-RSA ciphersuites, thus, the practical impact of these attacks is
not as dramatic as the Heartbleed bug. Nevertheless, it is highly recommended
to revoke and replace certificates used for static ECDH cipher suites in case the
TLS server uses one of the vulnerable libraries or runs on a vulnerable Oracle
JDK version, and supports TLS-ECDH cipher suites. This includes for example
a JBoss Application Server, Apache Tomcat, or Apache Camel framework.

The attack on TLS is an important and particularly interesting special case.
However, we stress that the omitted point validation in the considered libraries
may also enable attacks on other protocols and applications beyond TLS. Thus,
it is furthermore advisable to replace vulnerable elliptic curve libraries in any
application using elliptic curve cryptography with secure ones, and to revoke
and replace certificates for static ECDH cipher suites used in these applications.

A Further Analysis

In Table 4, we provide further analysis of secure TLS libraries and their EC
computation processing. Our analysis furthermore includes the Bouncy Castle
1.52 library version, which contains a fix to the attack presented in this paper.
We investigate whether the libraries use the standard double-and-add algorithm
or a specific window method, where the point validation takes place (before or
after point multiplication, or directly after point decoding), and what is the
response of the TLS server.

As can be seen, most of the libraries use a window multiplication method
and an explicit point validation function. An exception is the WolfSSL library,
which does not verify whether the incoming EC point lies on the curve. We
were able to send an arbitrary point in the ClientKeyExchange message and let
the server compute a PremasterSecret using this point. However, the invalid
curve attacks were not applicable, because the library uses a specific window
multiplication method and this method depends on the curve parameter b of
π := (F, a, b). We still recommend the developers to fix this issue and implement
explicit point validation.

In case of the SunPKCS11-NSS security provider, we were not able to analyze
the source code and find out which multiplication method was used or whether

424 T. Jager et al.

Table 4. Analysis of secure TLS libraries and their processing of elliptic curve multi-
plication.

Bouncy Castle 1.52

Multiplication Window method
Package
AbstractECMultiplier.multiply
custom.sec.SecP256R1FieldElement.multiply

Point Validation After multiplication math.ec.ECAlgorithms.validatePoint
Handshake Termination Fatal Alert, Internal Error

MatrixSSL 3.7.1
Multiplication Window method crypto/pubkey/ecc.c: function eccMulmod
Point Validation Point decoding crypto/pubkey/ecc.c: function eccTestPoint
Handshake Termination Fatal Alert, Decode Error

mbed TLS 1.3.10
Multiplication Window method library/ecp.c: function ecp mul comb
Point Validation Before multiplication library/ecp.c: function ecp check pubkey sw
Handshake Termination Connection termination, no Alert message

OpenSSL 1.0.2a (and LibreSSL 2.1.6)
Multiplication Window method crypto/ec/ec mult.c: function ec wNAF mul

Point Validation Point decoding
crypto/ec/ecp oct.c: function EC POINT is on curve,
invoked by ec GFp simple oct2point

Handshake Termination Connection termination, no Alert message

SunPKCS11-NSS Security Provider 1.7
Multiplication – –
Point Validation – –

Handshake Termination
Fatal Alert, Internal Error
Caused by:InvalidKeySpecException: Could not create EC public key
atP11ECKeyFactory.engineGeneratePublic(P11ECKeyFactory.java:169)

WolfSSL 3.4.6
Multiplication Window method wolfcrypt/src/ecc.c: function ecc mulmod
Point Validation No validation –
Handshake Termination Connection termination, no Alert message

the point validation takes place. Our table thus just includes a visible stack trace
provided by the tested TLS server.

References

1. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, pp. 526–
540, Berkeley, California, USA, 19–22 May 2013. IEEE Computer Society Press
(2013)

2. Antipa, A., Brown, D., Menezes, A., Struik, R., Vanstone, S.: Validation of elliptic
curve public keys. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 211–
223. Springer, Heidelberg (2002)

Practical Invalid Curve Attacks on TLS-ECDH 425

3. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000)

4. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492
(Informational), May 2006. Updated by RFCs 5246, 7027

5. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998)

6. Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and
elimination of an ECC-related software bug attack. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 171–186. Springer, Heidelberg (2012)

7. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete
Mathematics and its Applications (Boca Raton). Chapman and Hall/CRC Press,
Boca Raton (2006)

8. Dierks, T., Allen, C.: The TLS Protocol Version 1.0. RFC 2246 (Proposed Stan-
dard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746, 6176

9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1.
RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated by
RFCs 4366, 4680, 4681, 5746, 6176

10. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176

11. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3.
draft-ietf-tls-tls13-04, January 2015

12. Kaliski, B.: PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational),
March 1998. Obsoleted by RFC 2437

13. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, Boca Raton (2007)

14. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249–263. Springer, Heidelberg (1997)

15. McGrew, D., Igoe, K., Salter, M.: Fundamental Elliptic Curve Cryptography Algo-
rithms. RFC 6090 (Informational), February 2011

16. Meyer, C., Schwenk, J.: SoK: lessons learned from SSL/TLS attacks. In: Kim, Y.,
Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 172–189. Springer,
Heidelberg (2014)

17. Möller, B., Duong, T., Kotowicz, K.: This POODLE Bites: Exploiting the SSL 3.0
Fallback, September 2014. Technical report

18. Reimann, H.: Bn nist mod 384 gives wrong answers. openssl-dev mailing list #1593
(2007). http://marc.info/?t=119271238800004

19. Rizzo, J., Duong, T.: Here Come The ⊕ Ninjas, Ekoparty, May 2011

http://marc.info/?t=119271238800004

Crypto Applications and Attacks

Challenging the Trustworthiness of PGP:
Is the Web-of-Trust Tear-Proof?

Alessandro Barenghi, Alessandro Di Federico, Gerardo Pelosi(B),
and Stefano Sanfilippo

Department of Electronics, Information and Bioengineering – DEIB,
Politecnico di Milano, Milano, Italy

{alessandro.barenghi,alessandro.difederico,
gerardo.pelosi,stefano.sanfilippo}@polimi.it

Abstract. The OpenPGP protocol provides a long time adopted and
widespread tool for secure and authenticated asynchronous communi-
cations, as well as supplies data integrity and authenticity validation
for software distribution. In this work, we analyze the Web-of-Trust on
which the OpenPGP public key authentication mechanism is based, and
evaluate a threat model where its functionality can be jeopardized. Since
the threat model is based on the viability of compromising an OpenPGP
keypair, we performed an analysis of the state of health of the global
OpenPGP key repository. Despite the detected amount of weak key-
pairs is rather low, our results show how, under reasonable assumptions,
approximately 70 % of the Web-of-Trust strong set is potentially affected
by the described threat. Finally, we propose viable mitigation strategies
to cope with the highlighted threat.

Keywords: Web-of-Trust · WoT · OpenPGP · GPG · PGP

1 Introduction

The continuous increase in the size of computing systems, and the amount of
data processed and exchanged by them calls for a widespread and trustwor-
thy infrastructure for secure communications, encompassing both synchronous
data transport and asynchronous messaging. Secure and endpoint-authenticated
transport is nowadays provided by the Transport Layer Security (TLS) proto-
col [6], which is regarded as the most widespread solution when it comes to
interactive communications between a server and a client. By contrast, the main
workhorse in providing both confidentiality of the contents and sender authen-
ticity, when it comes to secure e-mails, is the Open Pretty Good Privacy
(OpenPGP) protocol [3]. The use of OpenPGP has been recently encouraged
as a practical countermeasure to dragnet surveillance actions involving e-mail
inspection. In particular the Free Software Foundation has promoted a cam-
paign [29] to foster its use even among non technically-savvy users. Finally, the
OpenPGP protocol is widely used to ensure data authentication and integrity of

c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 429–446, 2015.
DOI: 10.1007/978-3-319-24174-6 22

430 A. Barenghi et al.

binary packages of both all the Debian and RedHat derived GNU/Linux distri-
butions, and a significant number of other popular ones such as Arch, Slackware
and Gentoo. Therefore, the authenticity of the software binaries installed on
the overwhelming majority of GNU/Linux systems is provided by OpenPGP
signatures.

Since 2010, the official implementation of the OpenPGP protocol is available
as a commercial technology by Symantec Corp., even if its source code is publicly
available for peer review [28]. In addition to its employment as a solution to pro-
vide confidentiality and sender-authentication for e-mails, Symantec’s products
also employ the same protocol for securing files and documents. The OpenPGP
protocol, first defined in the RFC2440 [4] and then amended and extended in the
RFC4880 [3] by the Internet Engineering Task Force (IETF), has its best known
implementations both in proprietary solutions (e.g., the Google Chrome browser
extension called end-to-end [26], which has also been forked and adopted by
Yahoo! Mail [32]) and in the free alternative GNU Privacy Guard (GPG) soft-
ware suite [13].

The security services offered by OpenPGP all hinge on the requirement to
perform sound public key authentication. The adopted approach relies on a
distributed, asynchronous trust model as an alternative to both the hierarchi-
cal Public Key Infrastructure (PKI) [5,7], and the distributed and synchronous
approach of Perspectives [31]. The mainstay of the OpenPGP protocol is its Web-
of-Trust (WoT), which provides a way to establish the binding of a public key
to an identity through having a number of peers a specific user trusts acting as
certification authorities for it. This is realized through having all the OpenPGP
users sign the public key-identity pairs belonging to anyone they could directly
verify the identity of (e.g., via meeting in person). This practice, under the
“small world assumption”, grows a tightly knit network of trust-relationships,
which allows anyone to authenticate public key-identity pairs.

Contribution. In this work we provide a survey of the state of health of the key
material employed by OpenPGP, and globally distributed via a public network
of keyservers. Subsequently, we describe a practical threat model, aiming at
invalidating the public key authentication mechanism provided by OpenPGP,
on the basis of a broken keypair either directly or indirectly authenticated by a
trustworthy user. We evaluate the effective applicability of the proposed threat
model, as a result of the weak keypairs we detected, reporting the portion of
the most trusted subset of the OpenPGP WoT for which the authentication
mechanism can be fooled. Finally, we suggest viable countermeasures to mitigate
the effect of the described threat, and evaluate their actuation cost.

Organization of the paper. Section 2 provides a detailed overview of the
inner workings of the OpenPGP protocol, and a survey of the current state of
the WoT, Sect. 3 proposes our threat scenario, Sect. 4 reports the state of health
of the global key storage, and Sect. 5 evaluates the applicability of the described
threat, and proposes mitigation measures.

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 431

2 OpenPGP Infrastructure

A user in OpenPGP is associated with one or more user-IDs, each of which is
composed by a text string usually including his real name and e-mail address.
Each user generates a bundle of public key/private key pairs. Among the public
key/private key pairs, one is denoted as a primary key pair, while each one of
the others is denoted as a subkey pair. Conventionally, the primary key pair is
employed only for signing purposes, while subkey pairs are employed to either
encrypt or sign messages. The message encryption function employs a hybrid
scheme using a combination of symmetric key cryptography for speed, and pub-
lic key cryptography for ease of secure symmetric-key exchange between the
sender and the receiver of the data transfer. In particular, OpenPGP employs
a symmetric key cipher, with a randomly generated ephemeral key, to encrypt
the message to be transferred. The ephemeral key is sent encrypted with the
recipient’s public key along with the encrypted message.

Users issue certificates to each other to authenticate the binding between
user-IDs and public keys (primary or subkey). This is obtained signing with
their primary private keys a subset of certificate data including the user-ID and
one public key. A certificate contains one primary public key, and at least a self-
signature binding it to the user-ID. In addition, it may contain several signatures
verifiable via public keys of other users. The global distribution of OpenPGP cer-
tificates is realized via a network of public key directories, known as keyservers,
which provide a synchronized billboard accessible via either a dedicated inter-
face over HTTP, known as the HKP protocol [25]. We note that the available
implementations of the OpenPGP keyserver do not support TLS, although it is
possible to add it employing a reverse proxy. The synchronization across key-
servers is maintained with a set-reconciliation algorithm [17], which guarantees
that the uploading of a certificate on one of the servers will be mirrored by all the
others. The servers are not required to perform any integrity or sanity checks.

2.1 Key Management

Each user keeps his own local key storage, known as keyring, containing a number
of certificates, plus his own private keys (which are never disclosed). The keyring
is complemented with two local maps, stored in the so-called trust-db. The first
map associates each public key in the keyring to its trust level, i.e., the amount
of trust the owner of the trust-db has in the actions of the public key owner.
The second one binds each public key in the keyring to its validity level, i.e., the
extent to which the keyring owner deems the key authentic.

Trust level assignment. The admissible trust values, according to the default
trust model of GPG are: (i) ultimate, which is reserved for the keyring owner’s
public keys; (ii) full, (iii) marginal, (iv) untrusted, (v) undefined, and (vi)
unknown. Trust levels from (i) to (iv) can only be explicitly assigned by the user
through a direct interaction with the OpenPGP client. This is typically done
after the user has ascertained the identity and trustworthiness of the public key

432 A. Barenghi et al.

owner either meeting her in person, or by any other means he sees fit. The
unknown trust level is automatically assigned by the OpenPGP client to a new
public key whenever it is imported into the keyring. Whenever a public key
contained in the keyring is employed to verify a signature on a different public
key, the client checks whether its trust level is set to unknown, and, if possible,
asks the user to provide one. In case it is not possible to obtain an explicit trust
level from the user, the client sets the trust level to undefined.

Validity level computation. The admissible validity values for a public key
are: (i) full, (ii) marginal, (iii) untrusted, and (iv) unknown. The validity level
of a public key is computed by the OpenPGP client employing the certificates
contained in the keyring, and both the trust and validity values in the trust-db.
The public key is deemed authentic if its validity level is full. Whenever a new
public key is imported into the user keyring, its validity is automatically set to
the unknown level. The computation of the validity level of a public key takes
place every time it needs to be employed, and its validity level in the trust-db is
unknown. All public keys having an ultimate trust level have their validity level
set to full. Public keys carrying a signature verified with a public key having an
ultimate trust level are considered to have full validity. Thus any piece of key
material carrying a signature verifiable by the public key of the keyring owner
is considered fully valid. Subsequently, all the public keys carrying a signature
verified by a fully valid, fully trusted public key are assigned a full validity
level. If the signature on a public key is verified by a fully valid, but marginally
trusted public key its validity level is set to marginal. Whenever three such
signatures are verified on the same public key, its validity level is promoted to
full. Signatures which can be verified by public keys with an untrusted trust
level are not taken into account in the computation. If a signature on a public
key is verified by a public key having an undefined trust level, the signed public
key validity is set to undefined. The aforementioned validity level computation
rules allow the client to assign a value to the validity of a signed public key
taking into account the one which verifies the signature. This process effectively
creates chains of validity dependence among public keys, where each signed one
depends on the one verifying the signature to be validated.

Revocations management. The revocation of both public keys and signatures
made to certify the binding between an identity and a public key are performed
creating a revocation signature. Three types of revocation signatures are possi-
ble: (i) a primary key revocation, (ii) a subkey revocation, and (iii) a signature
revocation, which voids the authenticity of a signature, regardless of whether
it is correctly verified by the corresponding public key or not. The OpenPGP
revocation management allows to mark a signature as non revocable: in this case,
all the revocation signatures on it are ignored. Finally, it is possible to indicate
an expiration date for both public keys and signatures.

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 433

2.2 The OpenPGP Web-of-Trust

Each OpenPGP user is endowed with a keyring and a trust-db, which represent
the means by which he will authenticate the public keys contained in the former.
The most common way to analyze the effectiveness of the authentication mecha-
nism is to examine the certifier-certified relation among the different public keys
of the keyring. This certifier-certified relation is commonly represented in terms
of a directed graph [30] with public keys as nodes and signatures as directed
edges exiting from the certifying node and entering into the certified one. Such
a representation implies that the public key contained in the source node can
be used to verify a signature on the destination node. The direction of the arcs
is a convention chosen for the sake of clarity: we note that the authors of [30]
employ arcs in the opposite direction. This graph is known as the Web-of-Trust
(WoT) of a keyring, although it is indeed the certifier-certified relationship being
represented, instead of the user specified trust.

Table 1. Contents of the OpenPGP keyservers as of March 2015, reporting a ≈41 %
increase of the number of certificates w.r.t. the figures reported in 2011 by [30]

Total Revoked Expired

Primary public keys (certificates) 3, 867, 397 181, 833 13, 754

Public subkeys 3, 597, 910 27, 670 2

Signatures 13, 866, 817 78, 976 1, 828, 630

Willing to obtain information on the state of all the publicly available cer-
tificates, we analyzed the contents of the distributed keyserver network as if it
were a single large keyring, and its corresponding WoT. We obtained a snapshot
of the whole keyserver contents as of March 2015, of which we report a synoptic
overview in Table 1. Note that it is possible for an OpenPGP user to generate
a keypair and never upload the corresponding certificate on the keyservers. The
number of subkeys is smaller than the number of primary keys: this is caused
by the old certificate formats of OpenPGP (Ver. 3 and earlier) not mandating
the generation of separate subkeys to relieve the primary keypair from encryp-
tion uses. We also note that the amount of revoked keys is comparatively small
(≈4.7 %), and the number of expired ones is almost negligible (0.35 %). In par-
ticular, we ascertained that 99.6 % of the primary public keys do not have an
expiration date set, which may be ascribed to the optional nature of the expi-
ration date field [3]. We report the presence of 3, 828, 825 unique user-IDs, thus
pointing strongly at a one-to-one correspondence between user-IDs and primary
public keys for most of the OpenPGP users, although the standard [3] allows for
multiple user-IDs. The mean number of identity-public key binding signatures
per certificate, including the mandatory self-signature, is 2.08, pointing to the
whole WoT as a rather sparse graph. The current global keyring contains 33, 136
non revocable signatures.

434 A. Barenghi et al.

100 101 102 103 104 105

100

101

102

103

104

105

106

Size of SCC

N
um

be
r

of
SC

C
s

(a)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

r=2

r=3

r=4

r=5

r=6

r=10

Size of the r-certified set [×104]

C
ou

n
t

of
r-

ce
rt

ifi
ed

se
ts

[
×1

0
4
]

(b)

Fig. 1. Structural features of the WoT and the strong set as of March 2015. (a) reports
the number of distinct SCCs of the WoT and their size. (b) depicts the distribution of
the r-certified sets sizes over the strong set (GPG default: r = 5, in blue) (Color figure
online)

The concept of Strongly Connected Components (SCCs) of a directed graph
is a key tool to analyze the usefulness of the WoT [30]. A SCC is a maxi-
mally connected subgraph where there is at least one path between every node
pair. Computing the number of SCCs and their size yields the data reported
in Fig. 1(a), taking into account only non-revoked and non-expired public keys
and signatures. Examining the sizes of the SCCs, it can be noticed that around
300 k nodes are indeed isolated (top left point in figure), and all but one SCCs
have a size smaller than or equal to 117. The largest SCC of the WoT (bottom
right point in figure), is composed by 59, 466 primary public keys, and is com-
monly known as the strong set. The strong set is significantly less sparse than
the rest of the WoT: its nodes have an average of 27.39 signatures on them.
However, we note that the distribution of signatures on each certificate of the
strong set (incoming arcs in nodes) is rather skewed: in particular, only ≈18 %
of the strong set users have more than 27 signatures. The nodes in the strong set
are the ones able to better exploit the structure of the WoT to perform public
key authentication since, in principle, there is a path between any two of them.
However, a bound on the allowed certifier-certified chains length exists, limiting
their length to 5 in both in the original PGP and in the GPG trust model; thus,
not all the strong set paths are useful. In fact, the maximum length among all
such paths, known as the graph diameter, is 27, and only 38.7 % of the distances
between pairs of strong set nodes are smaller or equal to 5. To the end of ana-
lyzing the effectiveness of the OpenPGP WoT as a public key certifier, we define
the concept of r-certified set as follows.

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 435

Definition 1 (r-certified set). Let n be a node of the WoT, and r be an integer
r ≥ 1. The set of nodes reachable from n via a valid certifier-certified chain of
length shorter or equal to r is defined as the r-certified set of n.

Since each OpenPGP user acts as both user and certification authority, the size
of the r-certified set of a given node n is a measure of: (i) the extent of the
strong set which is actually useful for n to perform public key authentication
when acting as a user, and (ii) the usefulness of n as a certification authority.

Figure 1(b) reports the evaluation of the count of r-certified sets for the nodes
in the strong set, and r ∈ {2, 3, 4, 5, 6, 10}. Considering the case of the PGP and
GPG default value r = 5, highlighted in blue, it can be seen how only a little more
than 10 k nodes have a r-certified set exceeding 40 k in size (represented by the
values on the bottom right corner), out of ≈60 k, while around 15 k nodes have an
r-certified set not exceeding 10 k in size (values on the top left corner). Lowering
the maximum certifier-certified chain length r yields an effective decrease of
the usefulness of the strong set, up to the point where, with r = 2, no nodes
have a r-certified set larger than 10 k elements. By contrast, increasing the chain
length boosts the certifying capability of the nodes, at the expense of the need
for a longer trust chain to be effectively exploited. For instance, for r = 10
the overwhelming majority of the nodes have an r-certified set exceeding 50 k
elements out of ≈60 k, at the expense of the requirement to trust a rather long
certifier-certified chain.

3 Threats to the WoT Authentication Capabilities

In this section we provide a description of the scenario and the threat model to
OpenPGP public key authentication capabilities.

Fig. 2. Compromising a fully trusted key scenario. A queries the keyserver network
for B’s certificate, receiving instead one forged by E . Blue portions of the picture are
forged by the adversary E , red portions are compromised by E , black portions are
genuine (Color figure online)

Assume a user, A, wants to retrieve an OpenPGP certificate containing the
public key of whom she wants to communicate with, B. A will query a keyserver

436 A. Barenghi et al.

to retrieve B’s certificate. A malicious keyserver, or an adversary able to act
as an active man-in-the-middle, say E , is willing to supply a forged OpenPGP
certificate to A, as depicted in Fig. 2. If B’s certificate is considered authentic
by A after running the signature validation procedure, both the confidentiality,
and the authenticity of the messages between A and B are compromised.

Compromising a fully trusted key. Assume A is trusting a public key PT
pub,

with full trust level. If the adversary E is able to compromise T ’s keypair,
i.e., she is able to obtain T ’s private key, she will be able to forge a certificate
containing an arbitrary public key PE

pub, generated by herself. She will use this
to forge a certificate binding B’s identity ID−B to her public key PE

pub, and
perform a self signature on (PE

pub, ID−B) with PE
pri. Subsequently, E will compute

a signature on (PE
pub, ID−B) with T ’s private key PT

pri, and append it to the
forged certificate CertB (depicted in blue in Fig. 2).

Upon receiving the forged certificate, A will verify both signatures and, trust-
ing the actions of T fully, she will consider PE

pub fully valid, according to the
key authentication mechanism described in Sect. 2.

A noteworthy point is the fact that E generates the forged certificate for B
from scratch. In case a certificate for B is already present on the keyservers, E
simply refrains from synchronizing the forged one, effectively presenting to A
a different view on the state of the distributed key storage with respect to the
other keyservers. This strategy is viable as the SKS synchronization protocol
between keyservers allows each member to choose which certificates should be
included in the synchronization, without any enforcement on the inclusion of all
of them. In case a certificate for B is not present, E can refrain from performing
an active man-in-the-middle attack, and simply upload the forged certificate on
the global directory, leaving the delivery to A up to the keyserver network.

Compromising a key verified by a fully trusted one. Consider the alter-
nate scenario where A is trusting I fully, and has I’s certificate in her own
keyring, as depicted in Fig. 3(a). E has compromised T ’s keypair and has gen-
erated a keypair PE

pri,P
E
pub which she desires to substitute to the legitimate one

for B. A gets to know that T is on a certifier-certified chain leading to B (for
instance using an online tool [23]), and fetches CertT from the keyserver with the
intent of verifying the signature made with PT

pri present in CertB. The resulting
state of A’s keyring is depicted in Fig. 3(a), and the trust level of PT

pub is set to
unknown. Subsequently, A attempts to compute the validity of PE

pub contained in
CertB. To this end A requires a definite validity level for PT

pub, which is computed
to be full, through verifying both I’s and T ’s signatures on CertT and knowing
that PI

pub is fully trusted. A’s client will ask A to set a trust value for PT
pub

in order to proceed with the validation of PE
pub. Assume A sets the trust level

of PT
pub, to full on the basis that I and T cross-signed their certificates, thus

providing reasonable evidence for the presence of a mutual trust relationship
among them. This assumption is reasonable especially whenever both T and I
are members of the strong set, and thus highly regarded in terms of reliability in
the use of OpenPGP. We note that, in case A decides against setting the trust

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 437

level to full, she will be forfeiting the usefulness of this WoT path as a mean
for authenticating B’s public key, effectively decreasing the WoT usefulness as a
public key authenticator from A’s point of view. Once the trust level for PT

pub is
set to full, A will set the validity level of PE

pub to full as it is correctly signed
by PT

pub, thus effectively believing E ’s forgery.
By induction on the length of the certifier-certified chains of the aforemen-

tioned scenario, E will be able to forge an arbitrary certificate whenever A fully
trusts a key containing in its (r − 1)-certified set the compromised key T (recall
that r ≥ 1). Figure 3(b) reports an example of WoT, including the forged PE

pub,
and the compromised PT

pub, drawn, together with their signatures, in blue and
red respectively. The portion of the graph (both keys and signatures) drawn in
black is genuine and non compromised. The red-filled nodes are the ones having
in the (r−1)-certified set the compromised public key PT

pub considering the GPG
default value r = 5. If A trusts any one of the red-filled nodes, and extends the
trust to the ones which have mutual signatures with respect to it, E will be able
to forge a certificate for an arbitrary identity and get it validated by A. In this
respect, we note that, if A requires mutual signatures between a trusted node
and one with an unknown trust level to extend her trust, it is possible for E to
forge T ’s signature on PI

pub (the red arc from PT
pub to PI

pub in Fig. 3(b), should
it be missing. We can thus state our attacker model as follows.

Definition 2 (Threat model). Consider the OpenPGP public key authentica-
tion scheme based on the PGP/GPG trust model with a certifier-certified chain
bound r = 5 and the WoT signature verification infrastructure. Assume an adver-

Fig. 3. Compromising a key verified by a fully trusted one scenario. Subfigure (a)
represents the state of A’s keyring and trust-db after fetching the certificate for the
compromised key CertT . Subfigure (b) depicts a sample WoT, highlighting the extent
to which the attack is successful (red filled nodes), and the immune portion (green
filled ones). Items drawn in blue are forged by E , the ones in red are compromised by
E , the black ones are genuine (Color figure online)

438 A. Barenghi et al.

sary E able to compromise the keypair of a user T ,
(
PT
pri , PT

pub

)
. E is also able to

either act as a keyserver or perform active man-in-the-middle between a targeted
user A and A’s keyserver of choice. Whenever A tries to fetch the certificate of
another user B, the adversary E is able to forge a valid CertB, provided: (i) the
public key of the compromised keypair, PT

pub, is within r − 1 certifier-certified
steps from a public key deemed fully trusted and fully valid by A and (ii) A
extends her trust to the intermediate certifier public keys.

Consequentially, compromising a well connected public key in the WoT will
yield a potentially larger attack surface against the target user A. In particular,
compromising nodes in the strong set has the maximum potential for certificate
forgery, both due to the strongly connected nature of the strong set (each of
its nodes has an average of 27.39 signatures in contrast with the 2.08 average
of the global WoT as mentioned in Sect. 2.2), and to the potential willingness
of A to trust them as certifiers. Note that the capability of E of performing
signatures on behalf of T allows her to connect PT

pub to the strong set as long as
T ’s certificate contains a signature from a strong set member. This observation
allows to extend the effectiveness of the described threat model to keys which
are not members of the strong set, as we will highlight in Sect. 5.

The practical impact of the described attacker model is thus dependent on
the robustness of the generated keypairs, and the location of their public keys
within the OpenPGP WoT. In the following we will examine the factors allowing
E to compromise a keypair present in the current OpenPGP global keyring, thus
meeting the former requirement.

4 State of Health of the OpenPGP Global Keyring

In the following, we report, for each one of the asymmetric key cryptosystems
employed to perform signatures in OpenPGP, the possible issues on the key
material which may lead to compromise a keypair. A similar analysis, tackling
keypairs employed in the SSL/TLS and SSH protocols was performed in [11].
The asymmetric key ciphers available for signature purposes in OpenPGP are
RSA [24], DSA [19], ElGamal [8] and ECDSA [9]. ECDSA signatures have been
recently introduced in OpenPGP and currently account for a negligible portion
(<0.01 %) of the total keypairs, and were thus ignored in our analysis. Table 2
reports, for each examined issue, the number of affected keypairs, and the number
of signatures performed by strong set members on their certificate.

Note that the expiration of a compromised key does not prevent an adversary
from performing the certificate forgery. In fact the expiration date of a key
can be updated by performing a new self-signature which is feasible by the
adversary, as he owns the corresponding private key. Moreover, in the man-in-
the-middle scenario, we note that the adversary is also able to drop revocation
signatures, thus practically voiding their effect. However, willing to take into
account the scenario where the adversary uploads a forged certificate for a non-
existent recipient, and does not need to perform an active man-in-the-middle
attack, we will assume that revoked keys are unusable.

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 439

Table 2. Report on the state of health of the global OpenPGP keyring, highlighting
which issues are present, how many keypairs are affected, and how many of them were
signed by strong set members

Cryptosystem Keypair issue Public keys

Affected Not revoked Signed by strong set

RSA �log2 N� < 600 8, 260 89.48 % 1.79 %

600 ≤ �log2 N� ≤ 800 11, 205 91.79 % 2.03 %

Prime modulus 1 100.00 % 100.00 %

Common primes 4 100.00 % 0.00 %

DSA None – – –

ElGamal Use as a signing key 1, 383 89.73 % 2.60 %

Any MD5 Hash function 155, 760 89.79 % 3.78 %

4.1 RSA Cryptosystem

The RSA algorithm is a very popular choice in the OpenPGP ecosystem both
for signing and encryption purposes. In particular, it gained popularity in 2009,
when the first version of GnuPG using it as default algorithm for the key gener-
ation process was released (i.e., Ver. 1.4.10). An RSA public key is constituted
of a pair of integers (e,N) where N is obtained as the product of two large, ran-
domly chosen primes p and q, having substantially the same bit-size. The RSA
private key d is computed as d = e−1 mod ϕ(N), where Euler’s Totient function
ϕ(·) can be evaluated only by the keypair owner who knows the factorization of
the modulus N , since ϕ(N) = (p−1)(q −1). The values of p, q and ϕ(N) should
be kept as secret as the value d. The security margin of the RSA cryptosystem
hinges on the difficulty of factoring N , provided nothing else is known on the
form of the two factors: p and q [14]. In the following, we present the aspect
on which we focused our attention during the analysis of the RSA public keys
contained in the WoT.

Outdated key sizes. The OpenPGP system has a long history, which means
that a good share of the key-pairs were generated in an era when security margins
were significantly lower, and were never revoked. Nowadays RSA keys using
a modulo N smaller than 768 bits are considered weak, as it was proven the
practical feasibility of factoring one in [12], while factoring 512-bit RSA moduli
was proven to be feasible in about 10 h of computation time on Amazon EC2
for a cost around 100 USD [10]. Moreover, as shown in [2], the cost of factoring
multiple RSA moduli with the same size increases less than linearly with their
number. As a consequence, we consider all the 8, 260 RSA moduli smaller than
600 bits to be compromised, and the 11, 205 ones using a modulus between 600
and 800 bits-long as nearly compromised. As reported in Table 2 only ≈10 % of
the keys were revoked, and none of them are part of the strong set. However,
there are more than 1, 000 signatures from the strong set vouching for their

440 A. Barenghi et al.

authenticity, thus meeting the requirement of Sect. 3 for 1.79 % keys smaller
than 600 bits, and 2.03 % of the ones between 600 and 800 bits.

Prime modulus. If the modulus N is prime, ϕ (N) can be trivially computed
as ϕ (N) = N − 1, thus allowing an adversary to compute the private exponent
d. We found a single instance of this issue, running a primality test on all the
moduli of the RSA public keys available. This compromised key does not belong
to the strong set, but was signed by one of its members.

Common primes. Given two moduli n = p · q and n′ = p′ · q′, if they share
a factor (e.g., p = p′), then it is possible to efficiently factor both. In fact,
computing the greatest common divisor (using Euclid’s algorithm), it is possible
to obtain the common factor p = p′, and, via trivial division operations, the q
and q′ too. Looking for common primes is a technique which has been proven
successful in discovering flaws in the TLS certificate pool [11]. The causes for
the repeated use of the same primes were either a low entropy availability on
the generating system, in particular on embedded devices or during the boot
process, or simply faulty PRNG implementations. The results of our survey
point to substantially different results: only two pairs of public key shared a
common prime, thus providing good evidence of the soundness of the prime
generators employed in OpenPGP implementations. We note that none of the
public keys sharing primes were in the strong set, nor they were signed by one of
its members, and thus are not exploitable in the described threat model. We also
report the presence of 253 RSA moduli which are not the product of two large
primes. They share a large amount of small factors and the self signatures on
the corresponding public keys are not valid, nor there are other valid signatures
on them.

4.2 Digital Signature Algorithm

The examination of keypairs generated to perform signatures with the DSA
algorithm were found to be sound, and passed all the tests mandated by the [19]
standard (prime generation methodology, check on the order of the generator).
The only keys found not to be passing the tests were belonging to corrupted
certificates where neither the public key was respecting the constraints of [19],
nor the signatures made by others on it were verified correctly.

4.3 ElGamal Cryptosystem

The ElGamal cryptosystem is formed by two primitives, signature and encryp-
tion, based on the Discrete Logarithm Problem [1,8] over a multiplicative cyclic
subgroup of order q of Z∗

p, the set of equivalence classes of signed integers mod-
ulo p, with both p, q primes and p ≥ 21024, q ≥ 2160. The ElGamal signature
algorithm produces an output longer than DSA, and, for this reason, it has
been historically discouraged. Thus, ElGamal keys are assigned two separate
algorithm identifiers depending on whether they are only employed to perform
encryptions, or if they are also used for signatures. In 2004, Nguyen et al. [20]

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 441

discovered a significant flaw in how ElGamal signatures were implemented in
GPG. The ElGamal signature requires the generation of an unpredictable ran-
dom integer l of the same bit-size of p. The issue with the GPG implementation
of the ElGamal signature is that l is generated as an unpredictable random inte-
ger q bits long, with q � p, for efficiency reasons. This allows to recover the
ElGamal private key exploiting the material of a single signature. Since all the
ElGamal primary keys must have signed their own certificate, we consider them
to be all compromised. It is interesting to note how the WoT still contains 1, 241
unrevoked keys ElGamal public keys allowed to perform signatures, and bearing
signatures from members of the strong set.

4.4 MD5 Based Signatures

In digital signatures, the choice of the cryptographic hash to be employed to
reduce the signed content size to a fixed length is crucial. The MD5 hash algo-
rithm has been proven vulnerable to a specific collision attack, where it is possi-
ble for an attacker to choose the prefix of the colliding messages. In particular,
Stevens et al. [27] exploited the aforementioned issue to construct a rogue X.509
certificate, splicing out a valid signature, and forging a set of certificate contents
colliding with the signed hash. This was possible especially as the X.509 standard
allows an arbitrary comment field to be placed as the suffix of the material to
be hashed [5]. The same attack can be performed also on a OpenPGP certificate
signature, since the RFC4880 [3] allows to add arbitrary subpackets at the end of
the data to be signed. Despite, RFC4880 explicitly discourages the use of MD5,
signatures made with it are still quite widespread. In fact, our analysis shows
that ≈115 k unrevoked keys performed at least a MD5 signature, and 3.78 % of
them were signed by a strong set member as reported in Table 2.

5 Vulnerability Evaluation

In this section we provide concrete evidence of the extent of applicability of the
attack scenario described in Sect. 3 against the public OpenPGP keyring. To
this end, all the certificates in the public keyring were parsed and stored in a
database, from which the relevant data was extracted and further processed.

In order to avoid GPG-specific parsing behaviors, we adopted a parsing
library [15] independently built on RFC4880 OpenPGP format specifications.
The library was modified to extract the RSA and DSA/ElGamal signature mate-
rial for subsequent analysis steps and to make the parsing process more robust
towards recoverable errors caused by corrupted entries in packets.

We point out that parsing the dumps available for keyserver bootstrapping,
split in chunks of 10 k–50 k certificates, results in a few non recoverable errors,
due to corrupted packet metadata, which in turn cause the parser to go out-
of-sync with the underlying format. The issue was made worse by the lack of
synchronization points, as an OpenPGP certificate bundle has no recognizable
trailer to skip to. In fact, when such an error is encountered, the parsing process

442 A. Barenghi et al.

cannot proceed further and the rest of the chunk is discarded. Such an issue was
encountered in [30], and prevented the parsing of around 50 k certificates. How-
ever, we observed that the main implementation of the SKS server [16] reported
no errors in importing the certificate dumps, while the GnuPG client fails in
parsing them in the same way our parser does. Combining the observations
above, we decided to bootstrap our own instance of the SKS keyserver with the
provided dump and re-export the dataset as a separate file for each certificate
bundle. By doing so, we were able to limit the impact of unrecoverable parsing
errors to the single certificate in which they were located. All the certificates in
the public keyring dump were correctly parsed.

We imported the information contained in the global keyring into a MySQL
5.5.41 database with MyISAM backend. The parsing stage lasted approximately
3 h and resulted in 10 GB of database files being stored on disk. The underlying
schema was modeled on the content of the OpenPGP packets composing a cer-
tificate bundle, with a table for each packet type. With said database in place,
the various datasets used for the analysis presented in this paper were gathered
as SQL queries and prepared for further processing steps. In particular, each
analysis step was coded as a Python script with specified dependencies onto the
results of previous steps. The whole set of analysis was then orchestrated by a
makefile, making the whole process fully automatic and therefore easily repro-
ducible. The WoT was exported as a graph, with arcs being trust signatures and
keys as nodes, and all connectivity and reach-ability measures and the related
graph processing were carried on using graph-tool [22], a comprehensive Python
toolkit for graph analysis. The fastgcd tool [11] was used to find common RSA
primes in an efficient way. With the aforementioned infrastructure in place, and
after performing the analyses which produced the results shown in Table 2 and
described in Sect. 4, we proceeded to compute the portion of the WoT affected
by the threat model described in Sect. 3.

Figure 4 reports the amount of public keys which allow an adversary to forge
an arbitrary certificate, should one of them be trusted by an end-user, and
should the end-user trust the certifier-certified chain up to the compromised
key. Full grey bars take into account only public keys belonging to the strong set,
while thatched bars represent keys not in the strong set. In particular, Fig. 4(a)
reports the amount of certifiers which pose a risk in being trusted, considering
as compromised all the short and mis-generated RSA, Elgamal keypairs: in both
cases compromising the keypair (i.e., computing the private key) is feasible with
limited resources, and further signatures made with the compromised keypairs
will be accepted by any client as valid. We note that such a key compromise
is performed fully offline, and thus is most likely not alerting the legitimate
keypair owner. Figure 4(b) complements the previous information reporting the
extent of the risk whenever spliced MD5-based signatures can be reused, and
RSA keypairs with a modulus size between 600 and 800 bits are compromised.
These two cases will either require a significant amount of computational effort to
compromise the keypair, or yield signatures which may be discarded by modern

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 443

Fig. 4. Number of public keys affected by the attack described in Sect. 3 as a function
of r. Subfigure (a) reports the amount of public keys which allow an adversary to forge
a certificate considering short (≤600 bits) RSA moduli, mis-generated RSA keypairs
and ElGamal keypairs employed for signature purposes. Subfigure (b) provides the
same results for RSA keys with insufficient sized moduli (between 600 and 800 bit in
length) and keys which performed at least an MD5 based signature. The red dashed
line marks the size of the strong set

clients (GPG stopped taking into account MD5-based signatures starting from
June 2014, with GnuPG 2.0.23).

Considering the default bound on the length of certifier-certified trust chains,
r = 5, the reported results show that around 70 % of the keys in the strong set of
the WoT are affected by the described threat scenario if all the keypairs breakable
with limited resources are effectively broken. This significant amount of keys is
cut down to 37 % of the strong set, if the user is willing to cap the length of
the maximum chain on the WoT to r = 4 (or, equivalently, not to extend her
trust), and is further cut down to 8 % in case r = 3. However, we note that such
a restriction also reduces the effectiveness of the strong set as an authenticator
(see Fig. 1(b)), and thus comes at a usability expense. In particular, this link
between the effectiveness of the threat and the size of the longest certifier chain
r would allow a threat coverage of above 87 % in case the default chain length
were one step longer, i.e., r = 6. Moreover, in the extreme case where it is
desired for the overwhelming majority of the users to be able to use the entire
strong set as a certifier, setting r = 10 (as shown in Fig. 1(b) and described in
Sect. 2), substantially the whole strong set (99.6 % of the keys) are affected by
the described threat. The effects of either compromising moderately sized RSA
moduli, or splicing MD5 signatures yields similar effects to the aforementioned
ones, as reported in Fig. 4(b), although providing a slightly higher coverage of
the strong set (83 % of the keys for r = 5).

444 A. Barenghi et al.

Mitigation strategies. We now propose three viable mitigation strategies for
the described threat scenario. A first approach to counteract the actions of the
adversary, while preserving usefulness of WoT, is to employ redundant chains of
authentication to validate a public key. However, this approach requires two, or
more, disjoint paths on the WoT to be present in order to effectively thwart the
certificate forgery. To evaluate the practical feasibility of such an approach, we
computed how many public keys in the strong set are the unique way to reach a
portion of it (i.e., removing one of such keys would split a portion of the strong
set out). There are 8, 804 such nodes (14.8 % of the strong set), thus pointing
to a lack of practical viability of such an approach, especially for certification
chains of lengths up to 5. An alternate approach is to prevent the attacker from
successfully impersonating a keyserver, fetching the certificates from multiple
ones. In this case, even if a single malicious keyserver tries to present a “split
world”-view to a targeted user, fetching certificates from multiple servers and
comparing them will allow to detect the malicious intent. This approach is rather
feasible in practical terms, although it may be a concern in rare cases where the
user is trusting only a single keyserver to be safe.

Finally, we point out that the nature of the OpenPGP protocol makes the
phase out of an outdated hash algorithm trickier than in a common hierarchical
PKI infrastructure. In fact, cases such as the current one with MD5, need to be
tackled through dropping altogether the support for it. However, such a solution
may potentially endanger the soundness of the WoT in case many signatures
are removed from it, as it could happen dropping the support for SHA-1 based
signatures (which currently constitute 88.9 % of the entire WoT arcs). To the
end of preventing a significant alteration in the WoT structure, it is advisable
to exploit the nature of OpenPGP certificates, which allow for more than one
signature coming from the same issuer to be appended. To allow a graceful
phase out of SHA-1, or any other hash which should be phased out, it is thus
sufficient to modify the OpenPGP clients so that signatures on the same key
material signed with SHA-1 are made, exploiting a better algorithm (e.g., the
OpenPGP message standard supports SHA-2-256). As it is already happening
in the public web PKI [18,21], this operation should be performed while it is not
yet possible to find meaningful collisions on SHA-1. This allows a graceful, and
transparent deployment of a stronger hash algorithm, allowing safe disposal of
SHA-1 signatures, should the need come anywhen in the future.

6 Conclusion

In this paper we proposed a threat scenario to the authentication capability
of the OpenPGP WoT, relying on the possibility for an adversary to perform
a man in the middle attack, trying to forge a requested certificate. Under the
described threat scenario, the adversary needs to compromise a keypair and get
the target user to be trusting the compromised keypair certifiers to be able to
forge a certificate for an arbitrary identity. Willing to provide an evaluation of
the impact of the threat, we performed a survey of the current state of health

Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof? 445

of the OpenPGP WoT, both in structural terms, and concerning the security
of the individual keypairs. The results show how, in a context where public
key authentication can be performed indirectly exploiting verification made by
trusted users, even a limited amount of broken or outdated keys can have a
dramatic impact on the security of the whole system. Another relevant aspect
that emerged from our analysis is the impact of the recent decision to reject
MD5-based signatures by some OpenPGP clients, namely GnuPG. A unilateral
decision to disable MD5 for public key authentication effectively removed more
than 432 k signatures for the WoT, without any preemptive measures being taken
to compensate for the loss. For this reasons we suggest a strategy to perform
a graceful phase-out of SHA-1, which is currently used in the vast majority
of OpenPGP signatures, through a signature refreshment strategy amenable to
automation, performed by the clients, using a more modern algorithm.

References

1. Barenghi, A., Beretta, M., Di Federico, A., Pelosi, G.: Snake: an end-to-end
encrypted online social network. In: Bourgeois, J., Magoulès, F. (eds.) 2014 IEEE
International Conference on High Performance Computing and Communications,
6th IEEE International Symposium on Cyberspace Safety and Security, 11th IEEE
International Conference on Embedded Software and Systems, HPCC/CSS/ICESS
2014, Paris, France, 20–22 August 2014. IEEE (2014)

2. Bernstein, D.J., Lange, T.: Batch NFS. In: Joux, A., Youssef, A. (eds.) SAC 2014.
LNCS, vol. 8781, pp. 38–58. Springer, Heidelberg (2014)

3. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP Message
Format. RFC 4880, updated by RFC 5581 (2007)

4. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP Message Format.
Internet RFC 2440 (1998)

5. Chokhani, S., Ford, W.: Internet X.509 Public Key Infrastructure Certificate Policy
and Certification Practices Framework. RFC 2527, obsoleted by RFC 3647 (1999)

6. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, updated by RFCs 5746, 5878, 6176 (2008)

7. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

8. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

9. Hall, T.A., Keller, S.S.: The FIPS 186–4 Elliptic Curve Digital Signature Algo-
rithm Validation System. NIST (2014). http://csrc.nist.gov/groups/STM/cavp/
documents/dss2/ecdsa2vs.pdf

10. Heininger, N.: Factoring as a Service. CRYPTO 2013 Rump session (2013). https://
www.cis.upenn.edu/nadiah/projects/faas/

11. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: Kohno, T. (ed.)
Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10
August 2012, pp. 205–220. USENIX Association (2012)

12. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmer-
mann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf
https://www.cis.upenn.edu/nadiah/projects/faas/
https://www.cis.upenn.edu/nadiah/projects/faas/

446 A. Barenghi et al.

13. Koch, W.: The GNU Privacy Guard (2015). https://www.gnupg.org
14. Lenstra, A.K.: Integer factoring. Des. Codes Crypt. 19(2/3), 101–128 (2000)
15. McGee, D.: PGP Packet Parser Library (2015). https://github.com/toofishes/

python-pgpdump
16. Minsky, Y., Clizbe, J., Fiskerstrand, K.: Synchronizing Key Server (SKS) Software

Package (2015). https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
17. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal

communication complexity. IEEE Trans. Inf. Theory 49(9), 2213–2218 (2003)
18. Mozilla Security Engineering Team: Phasing Out Certificates with SHA-1

based Signature Algorithms (2014). https://blog.mozilla.org/security/2014/09/
23/phasing-out-certificates-with-sha-1-based-signature-algorithms/

19. National Institute of Standards and Technology: Digital Signature Standard (DSS).
Federal Information Processing Standards Publication (FIPS) 186-4. U.S. Depart-
ment of Commerce (2013). http://dx.doi.org/10.6028/NIST.FIPS.186-4

20. Nguyên, P.Q.: Can we trust cryptographic software? Cryptographic flaws in GNU
privacy guard v1.2.3. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 555–570. Springer, Heidelberg (2004)

21. Palmer, C., Sleevi, R.: Gradually Sunsetting SHA-1 (2014). http://blog.chromium.
org/2014/09/gradually-sunsetting-sha-1.html

22. Peixoto, T.P.: The Graph-tool Python Library (2014). http://figshare.com/
articles/graph tool/1164194

23. Penning, H.P.: PGP Pathfinder and Key Statistics (2015). http://pgp.cs.uu.nl/
24. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
25. Shaw, D.: OpenPGP HTTP Keyserver Protocol (HKP). Expired Internet-Draft

(2013). http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
26. Somogyi, S.: End-to-End Chrome Browser Extension (2015). https://github.com/

google/end-to-end/wiki
27. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,

de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009)

28. Symantec Corp.: Symantec Encryption (PGP) Docs. Article Tech202483 (2015)
29. The Free Software Foundation: Email Self-Defense Campaign (2015). https://

emailselfdefense.fsf.org/
30. Ulrich, A., Holz, R., Hauck, P., Carle, G.: Investigating the OpenPGP web of

trust. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 489–507.
Springer, Heidelberg (2011)

31. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improving SSH-style
host authentication with multi-path probing. In: Isaacs, R., Zhou, Y. (eds.) 2008
USENIX Annual Technical Conference, Boston, MA, USA, 22–27 June 2008, pp.
321–334. USENIX Association (2008)

32. Zhu, Y., et al.: End-to-End for Yahoo! Mail (2015). https://github.com/yahoo/
end-to-end

https://www.gnupg.org
https://github.com/toofishes/python-pgpdump
https://github.com/toofishes/python-pgpdump
https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
https://blog.mozilla.org/security/2014/09/23/phasing-out-certificates-with-sha-1-based-signature-algorithms/
https://blog.mozilla.org/security/2014/09/23/phasing-out-certificates-with-sha-1-based-signature-algorithms/
http://dx.doi.org/10.6028/NIST.FIPS.186-4
http://blog.chromium.org/2014/09/gradually-sunsetting-sha-1.html
http://blog.chromium.org/2014/09/gradually-sunsetting-sha-1.html
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
http://pgp.cs.uu.nl/
http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
https://github.com/google/end-to-end/wiki
https://github.com/google/end-to-end/wiki
https://emailselfdefense.fsf.org/
https://emailselfdefense.fsf.org/
https://github.com/yahoo/end-to-end
https://github.com/yahoo/end-to-end

Transforming Out Timing Leaks, More or Less

Heiko Mantel and Artem Starostin(B)

Computer Science Department, TU Darmstadt, Darmstadt, Germany
{mantel,Starostin}@mais.informatik.tu-darmstadt.de

Abstract. We experimentally evaluate program transformations for
removing timing side-channel vulnerabilities wrt. security and overhead.
Our study of four well-known transformations confirms that their per-
formance overhead differs substantially. A novelty of our work is the
empirical investigation of channel bandwidths, which clarifies that the
transformations also differ wrt. how much security they add to a pro-
gram. Interestingly, we observe such differences even between transfor-
mations that have been proven to establish timing-sensitive noninterfer-
ence. Beyond clarification, our findings provide guidance for choosing a
suitable transformation for removing timing side-channel vulnerabilities.
Such guidance is needed because there is a trade-off between security and
overhead, which makes choosing a suitable transformation non-trivial.

1 Introduction

Side channels are unintended communication channels that transmit informa-
tion during the execution of programs. Running time [4,15,34], power consump-
tion [35], EM radiation [26,49], cache behavior [48], and other characteristics
can cause side channels. Side channels might reveal information about secrets
processed by a program, and this makes them a serious security concern. Timing
side channels are particularly critical since they can be exploited remotely [4,15].

The idea of program transformations, in general, dates back to the seven-
ties [33] and since then has attracted a lot of attention for improving programs,
e.g., [5,12,16]. More specifically, a spectrum of program transformations has
been proposed for removing timing side-channel vulnerabilities [2,13,38,47]. The
objective of such transformations is to improve the security of programs. That
a program is secure wrt. timing side channels can be formalized by a timing-
sensitive noninterference-like property (see, e.g., [2]). That a transformation is
sound wrt. its objective can then be shown by proving that each transformed
program satisfies the property based on a timing-sensitive program semantics [2].

The objective of our research project was to improve the understanding of
program transformations for eliminating timing side-channel vulnerabilities. We
wanted to better understand how much security is added by such transforma-
tions at which costs, in practice. Hence, we chose an experimental approach.
In our study we focused on four well-known source-to-source transformations:
cross-copying [2], conditional assignment [47], transactional branching [13], and
unification [38]. Each of these transformations is transparent in the sense that it
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 447–467, 2015.
DOI: 10.1007/978-3-319-24174-6 23

448 H. Mantel and A. Starostin

does not change a sequential program’s input/output behavior. Hence, the only
negative consequence of these transformations is the overhead that they induce.

Our experimental results clarify that all four program transformations reduce
the capacity of timing side channels. These capacity reductions are substantial,
but they differ between the transformations. Regarding negative consequences,
our experimental results show that all four program transformations cause some
performance overhead. The worst-case overhead substantially differs between the
transformations, ranging from 18 to 372 % in our experiments.

Previously, the effectiveness of program transformations for removing timing
side-channel vulnerabilities was evaluated mostly analytically. In [2,13,38], it is
proven that cross-copying, transactional branching, and unification, respectively,
establish timing-sensitive noninterference. In [47], it is proven that conditional
assignment establishes the program counter security (PC-Security). The only
prior experimental study of the effectiveness of transformations is the investiga-
tion of cross-copying in [3]. The overhead of program transformations also was
evaluated mostly analytically, based on the code-size blow-up wrt. the definitions
of transformations. The only prior experimental study of the overhead induced
by transformations is the investigation of conditional assignment in [47].

In contrast to most prior work, we perform our evaluation empirically. We
measure the running time of baseline and transformed programs in a series of
experiments. From these experimental results, we estimate the performance over-
head induced by a transformation by computing the percentage increase of a
program’s mean running time caused by the transformation. We estimate the
effectiveness of a transformation by computing the percentage reduction of the
timing side-channel capacity in a program achieved by the transformation. We
run all our experiments on a contemporary laptop using realistic Java programs.

Our observation, which might be surprising, is that there are substantial dif-
ferences in the capacity reduction even between transformations that have been
proven before to establish fairly similar definitions of timing-sensitive noninter-
ference. This suggests that analytical investigations of the security established
by such program transformations are not yet satisfactory wrt. practice.

In summary, the two main novel contributions of this article are

– the quantification of the positive and negative consequences of different pro-
gram transformations based on experiments, and

– the clarification of the trade-off between performance overhead and security
in this context.

In addition, we provide guidance for selecting a suitable transformation by
exploiting our results of the performance and security evaluations in combination.

The article is structured as follows. In Sect. 2, we define the class of timing
side channels relevant for this article. In Sect. 3, we recall the aforementioned
transformations and explain our implementations of them. In Sect. 4, we intro-
duce our benchmark programs and our experimental setup. In Sects. 5 and 6
we present the performance and security evaluation, respectively. In Sect. 7 we

Transforming Out Timing Leaks, More or Less 449

analyze the performance-security trade-off. After a discussion of related work in
Sect. 8, we conclude in Sect. 9.

2 Timing Side Channels

An illustrative example [34] of a timing side channel can be found in the square-
and-multiply modular exponentiation. Such exponentiation is used, e.g., during
private-key operations in RSA [50] for computing R = yk mod n, where n is pub-
lic, y can be eavesdropped by the attacker, and k is the secret key. A vulnerable
Java implementation containing a timing side channel is given in Fig. 1.

public int modExp(int y, int k) {
int r = 1;
for (int i = 0; i < 32; i++) {

if (k % 2 == 1)
r = (r ∗ y) % n;

y = (y ∗ y) % n;
k >>= 1;

}
return r % n;

}

Fig. 1. Square-and-multiply modu-
lar exponentiation.

The secret key is stored in integer parame-
ter k. It is processed bitwise starting from the
least significant bit. Each bit of k is tested.
If the current bit is set, extra multiplication
and modulo operations are performed (high-
lighted lines in Fig. 1). Since these extra oper-
ations are performed only for the set bits of
the secret key, the running time of this imple-
mentation varies depending on the number
of the set bits. More concretely, the running
time encodes the Hamming weight of the
secret key. Therefore, the Hamming weight
of the secret key is leaked through the timing
behavior in one run.

This example illustrates how a conditional statement may result in a timing
side channel. If the Boolean condition of a conditional statement contains secret
information, then the resulting timing side channel leaks secret information.
We will refer to conditional statements that may result in timing side channels
leaking secret information as critical conditionals.

Previously proposed program transformations for removing timing side chan-
nels [2,13,38,47] aim at eliminating timing side channels that result from critical
conditionals, like the one in the above example program. This is the class of tim-
ing side channels on which we focus in this article.

3 Program Transformations

We consider four transformations: cross-copying [2], conditional assignment [47],
transactional branching [13] and unification [38]. Their original definitions from
the respective articles assume special statements like skip, dummy assignments,
etc. Such statements are not available in real-world programming languages
by default. In order to analyze program transformations in practice one first
needs to implement the missing special statements. These implementations are
not obvious because for each special statement there is a spectrum of design
decisions.

450 H. Mantel and A. Starostin

The four transformations were defined for different programming languages.
For instance, transactional branching was defined for an object-oriented pro-
gramming language in [13], while unification was defined for a simple language
with conditionals and loops in [38]. For our comparison, we use a language that
provides all features that are in the intersection of the languages in [2,13,38,47].
This resulting language is a high-level programming language that restricts bod-
ies of critical conditionals to contain only assignments to variables or fields of
primitive data types or arrays, and other conditional statements.

3.1 Cross-Copying

Cross-copying [2] pads the branches of critical conditionals in order to equal-
ize the timing behavior of both branches. Technically, cross-copying appends
a sequence of dummy statements that shall mimic the timing behavior of one
branch to the respective other branch, hence the name “cross-copying”. The
inserted dummy statements perform the same computations as the statements
that shall be mimicked, but dummy statements do not update program variables
that are relevant for the program’s behavior.

Realization in [2]. Padding is realized with the help of a special statement
SkipAsn x e. It shall take the same time to execute as the assignment x :=
e, but that does not change the value of x. SkipAsn-versions of all assignments
in one branch of a critical conditional are appended to the other branch, and
vice versa. For instance, the critical conditional from Fig. 1 is transformed to

if (k % 2 == 1) { r = (r ∗ y) % n; } else { SkipAsn r ((r ∗ y) % n); }
Our Implementation in Java. We implement SkipAsn by assignments to dummy
variables. For each statement SkipAsn x e that needs to be inserted, we intro-
duce a dummy field xSkip assuming xSkip is not present in the original program.
We implement then SkipAsn x e by xSkip = e. Such implementation is transpar-
ent because assignments to dummy fields do not affect the values in the original
computation while introducing the desired delays in the running time.

3.2 Conditional Assignment

Conditional assignment [47] removes critical conditionals, so that both branches
are consecutively executed. Boolean conditions of the removed conditionals are
encoded directly in the assignments from both branches of the original code.
The encoding is done with the help of bit masks and bitwise logical operators.

Realization in [47]. Function Mask(b) is used for encoding a boolean condition b
of a critical conditional. It satisfies Mask(false)=0 and Mask(true)=2l−1, where
l is the length in bits of the variables assigned under the critical conditional. Sup-
pose that in a program, x is assigned et if b evaluates to true, and ef if b evaluates
to false. Then, in the transformed program, x is assigned (m & et)| (˜m & ef),
where m = Mask(b) and &, |, and ˜ are bitwise conjunction, disjunction, and
negation. For instance, the critical conditional from Fig. 1 is transformed to

r = (Mask(k % 2 == 1) & ((r ∗ y) % n)) | (˜Mask(k % 2 == 1) & r);

Transforming Out Timing Leaks, More or Less 451

Our Implementation in Java. In [47], it is shown that Mask can be implemented
in C without conditional statements by defining Mask(b) as −b. Such implemen-
tation is not suitable for Java because type casting from booleans to integers is
not allowed in Java. We came up with a different solution: Mask(a == b) is
implemented for 32-bit integers as ˜(((a−b)>>31) | ((b−a)>>31)), where >> is
the sign-extending right shift. Such implementation is correct because Java uses
two’s complement integer numbers, and the check whether two integers a and b
are equal is equivalent to checking ¬(((a − b) < 0) ∨ ((b − a) < 0)).

3.3 Transactional Branching

Transactional branching [13] leverages a transaction mechanism for cross-
copying. Each branch of a critical conditional is wrapped in a transaction and
sequentially composed with the respective other branch. The transaction of the
original branch is committed, while the transaction of the cross-copied branch
is aborted.

Realization in [13]. Three transaction primitives are used. BeginT starts a new
transaction. AbortT aborts a transaction dismissing all changes made since
BeginT. CommitT commits a transaction making all changes since BeginT
effective. The original branch is wrapped by the pair BeginT-CommitT. The
cross-copied branch is wrapped by the pair BeginT-AbortT. For instance, the
critical conditional from Fig. 1 is transformed to

if (k % 2 == 1) { BeginT; AbortT; BeginT; r = (r ∗ y) % n; CommitT; }
else { BeginT; r = (r ∗ y) % n; AbortT; BeginT; CommitT; }

Our Implementation in Java. We implement transaction primitives by methods
that operate on copies of variables that are not yet committed. For each assign-
ment x := e under a critical conditional we introduce a field xCopy assuming
that xCopy is not present in the original program. We implement then BeginT
as xCopy = x, AbortT as x = xCopy, and leave the body of CommitT empty.
Such implementation is correct because it straightforwardly realizes the required
functionality of the transaction primitives.

3.4 Unification

Unification [38] is similar to cross-copying in the sense that dummy statements
are added to the branches of critical conditionals in order to equalize the timing
behavior of both branches. In contrast to cross-copying, these dummy statements
might be inserted into the branches instead of being appended only at the end of
branches. A unification algorithm is used to determine where dummy statements
need to be inserted into each branch, hence the name “unification”. Unification
can be viewed as an optimization of cross-copying that inserts never more, but
often fewer dummy statements into a program.

452 H. Mantel and A. Starostin

Realization in [38]. In [38], unification assumes a program semantics in which
execution of every statement consumes one time unit, but its adaptation
to a more fine-grained timing-sensitive program semantics is straightforward.
Padding is realized in [38] using the special statement Skip. It has no effect on
the values of variables, but its execution consumes one time unit. For instance,
the critical conditional from Fig. 1 is transformed to

if (k % 2 == 1) { r = (r ∗ y) % n; } else { Skip; }
Note that the advantage of unification over cross-copying does not become appar-
ent in this example, because the critical conditional in the original program lacks
an else-branch.

Our Implementation in Java. In our implementation of unification, we use the
same dummy statements as in our implementation of cross-copying. Such imple-
mentation is transparent because assignments to dummy fields do not affect the
values in the original computation while introducing the desired delays.

4 Our Benchmark Programs and Experimental Setup

An existing suite of benchmark Java programs that contain timing side-channel
vulnerabilities would be an ideal candidate for an empirical evaluation of pro-
gram transformations for removing such vulnerabilities. To the best of our knowl-
edge, there is unfortunately no such suite. That is why, we identify meaningful
candidates for benchmark programs ourselves. We choose four programs: (i)
square-and-multiply modular exponentiation from RSA [50], (ii) computation of
a share’s value [2], (iii) Kruskal’s algorithm for calculating the minimum span-
ning tree (MST) of a graph [40], and (iv) modular multiplication from the IDEA
cipher [41]. These four programs should not be seen as a complete benchmark
that is sufficient to investigate transformations in full detail. However, since these
programs come from different domains and have different degree of sophistica-
tion, they offer themselves as meaningful candidates for our experiments.

4.1 Our Benchmark Programs

Modular Exponentiation. Program modExp is the square-and-multiply modular
exponentiation discussed in Sect. 2. The security concern is that the Hamming
weight of the secret key k is leaked via a timing side channel.

Share’s Value. Program shareValue computes the total market value of a specified
share form the user’s portfolio. In [2], similar program was used to illustrate
timing side channels. The portfolio is represented by two arrays, ids and qty, that
store identifiers of shares and the number of corresponding shares possessed by
the user, respectively. Which shares are possessed by the user is a secret. Method
public int shareValue(int [] ids , int [] qty) computes the total market value of a
specified share from the portfolio. The security concern is that the fact whether
the user possess the specified share is leaked via a timing side channel.

Transforming Out Timing Leaks, More or Less 453

Kruskal’s Algorithm. Program kruskal implements Kruskal’s algorithm [40] for
calculating the minimum spanning tree of a graph. Kruskal’s algorithm is used
among others for compression of database queries and responses to them [29].
In case a secret is stored in a database, both queries and responses may contain
secret information. Method public int [] kruskal (int [] g) computes the MST for
graph g represented by its adjacency array. The security concern is that the
number of graph’s vertices is leaked via a timing side channel.

Modular Multiplication. Program mulMod16 is a modular multiplication from
the IDEA cipher’s [41] implementaion in cryptographic library FlexiProvider [1].
The encryption and decryption of this IDEA’s implementation use mulMod16{
several times for computing with the secret key. Method private int

mulMod16(int a, int b) implements multiplication modulo 216+1 for operands a
and b. The security concern is that 16 bits of the secret key leak via a timing side
channel. Corresponding timing side-channel attacks have been reported [32,43].

4.2 Our Experimental Setup

We run all experiments on a typical laptop, a Lenovo ThinkPad T510 with Intel
Core i7 CPU @2.67 GHz×4 and 4 Gb RAM under Ubuntu 12.04 LTS with Open-
JDK 64-Bit Server VM. We measure the running time of programs in nanosec-
onds using System.nanoTime(). We want to stay close to the program semantics
in which the transformations have been originally defined. In particular, we
want to avoid aggressive compiler optimizations that might revert transforma-
tions. Because of that we disable the JIT compilation. This might be seen as a
simplification of a practical environment, however the main goal of this research
project is to empirically evaluate theoretical concepts of different program trans-
formations and to clarify the relationship between them. It is not the goal of this
research project to fully solve the problem of timing side channels in practice.

5 A Performance Evaluation

Our goal is to quantify the performance overhead induced by program transfor-
mations in practice. Estimating performance of Java programs in a statistically
sound fashion requires a careful experimental design and analysis of the obtained
data. We guide our decisions for such a design and analysis by the principles of
statistically rigorous Java performance evaluation by Georges et al. [28].

5.1 Experimental Design

We estimate the running time of Java programs by random sampling. We draw
each sample of the running time from a different invocation of the Java VM. This
is necessary because the running time samples drawn from the same invocation
will not be independent. We measure the running time of a program directly
after the invocation of the Java VM, i.e., we do not perform any warm-up com-
putations. It has been recognized [28] that because of the JIT compilation the

454 H. Mantel and A. Starostin

performance of Java programs may improve after certain amount of warm-up
computation is made. We however excluded the JIT compilation from our setup.

To estimate the running time of a program, we first generate a vector of
random inputs. We run the program on each input in a freshly invoked Java VM.
We measure the running time of the program within each Java VM invocation
in nanoseconds using System.nanoTime(). The measured time value constitutes
a sample of the running time. From all collected samples, we reject outliers that
lie further than three median absolute deviations from the median.

5.2 Experiments and Experimental Results

We apply each of the 4 transformations to each of the 4 benchmark programs.
By that we obtain 17 unique programs: 4 baseline and 13 transformed ones.
We obtain 13 unique transformed programs instead of 16 because the resulting
programs for cross-copying and unification coincide for modExp, shareValue, and
kruskal. Next, we perform the timing measurements for these 17 programs.

The inputs to modExp are pairs of random integers. The inputs to shareValue
are pairs of arrays of random integers. Each array has 10 elements. The inputs to
kruskal are random graphs. Each graph has 7 vertices and 7 edges. That is, each
input is an array of 15 integers: The first element stores the number of vertices,
and the next 14 elements store 7 edges as the pairs of source and target vertices.
The inputs to mulMod16 are pairs of random integers.

We collect 1000 samples of the running time for each baseline and transformed
programs. From these samples we compute 95 % confidence intervals [11] for the
estimated mean running time. The results are presented in Fig. 2.

modExp

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

B CCCA TB U

shareValue

 0

 2000

 4000

 6000

 8000

 10000

 12000

B CCCA TB U

kruskal

 0

 5000

 10000

 15000

 20000

 25000

B CCCA TB U

mulMod16

 0

 2000

 4000

 6000

 8000

 10000

 12000

B CCCA TB U

modExp shareValue kruskal mulMod16

baseline (B) 5528.56±8.67 6544.11±7.65 8264.75±12.09 2201.58±3.96
cross-copying (CC) 6530.77±8.3 7306.83±5.79 9326.25±9.87 4116.23±5.42
cond. assign. (CA) 6468.12±6.93 7095.51±6.62 9450.69±10.56 3751.69±5.43
trans. bran. (TB) 13808.48±10.17 11284.31±11.15 21348.65±92.77 10393.93±10.97
unification (U) 6530.77±8.3 7306.83±5.79 9326.25±9.87 2231.09±3.93

Fig. 2. Estimated mean running time, in ns, 95 % confidence intervals.

Transforming Out Timing Leaks, More or Less 455

5.3 Our Findings in the Performance Evaluation

In order to clarify how much overhead is introduced by transformations, we use
the estimated mean running time to compute the percentage increase of the
running time due to each transformation. The result of this is given in Fig. 3.

We observe that program transformations generally introduce some perfor-
mance overhead. The observed overhead substantially differs between the trans-
formations. Altogether, the observed overhead varies from 1 to 372 %. The worst-
case overhead of transformations among different benchmark programs varies
from 18 to 372 %. The experimental results suggest that transactional branching
introduces the largest overhead that varies from 72 to 372 %. We observe moder-
ate difference between the overhead introduced by cross-copying and conditional
assignment. For mulMod16 we observe substantial difference between unification
and all other transformations. In this case, unification introduces only a marginal
overhead of about 1 %.

modExp

 0
 20
 40
 60
 80

 100
 120
 140
 160

CC CA TB U

shareValue

 0
 10
 20
 30
 40
 50
 60
 70
 80

CC CA TB U

kruskal

 0
 20
 40
 60
 80

 100
 120
 140
 160

CC CA TB U

mulMod16

 0
 50

 100
 150
 200
 250
 300
 350
 400

CC CA TB U

modExp shareValue kruskal mulMod16 worst case

cross-copying (CC) 18.13 11.66 12.84 86.97 86.97
cond. assignment (CA) 16.99 8.43 14.35 70.41 70.41
trans. branching (TB) 149.77 72.43 158.31 372.11 372.11
unification (U) 18.13 11.66 12.84 1.34 18.13

Fig. 3. Performance overhead based on the estimated mean running time, in %.

Comparison with Findings in [47]. The only prior experimental study of the over-
head induced by transformations is the investigation of conditional assignment
by Molnar et al. in [47]. The experiments were done on three programs imple-
mented in C. The experimental results in [47] indicate a much larger overhead
for conditional assignment than the one observed in our experiments. The worst
case overhead observed in [47] is about 480 %. Interestingly, in [47] a modular
exponentiation from RSA and a modular multiplication from IDEA are also used
as benchmark programs. For these programs, the overhead observed in [47] is
about 150 and 200 %, respectively. We, however, observe an overhead of only 17
and 70 % for our versions of these programs, respectively. Note that the versions
of these programs in [47] and in our work originate from different cryptographic
libraries and are implemented in C and Java, respectively.

456 H. Mantel and A. Starostin

6 A Security Evaluation

Our goal is to quantify the effectiveness of program transformations in prac-
tice. In the spirit of Millen [46], we model a timing side channel as a discrete
information-theoretic channel [21] with input X and output Y . The input alpha-
bet of the channel models the space of secret inputs to a program and the out-
put alphabet models possible timing observations. We measure the correlation
between the secret inputs and possible timing observations with the Shannon’s
channel capacity [51], denoted C(X;Y). We statistically estimate [17] the chan-
nel capacity C(X;Y) from empirically collected timing observations. To quantify
the positive effects of a transformation we compute the percentage reduction of
the timing side-channel capacity achieved by the transformation.

6.1 Experimental Design

For each benchmark program we design the following experiment to which we
will refer as the distinguishing experiment. We generate two distinct secret input
values for a program. Our security concern is that the fact whether the program
has received the first or the second secret input value is leaked via a timing
side channel. For each of the two secret input values we repeatedly run the
program. For each run we freshly invoke the Java VM. We measure the run-
ning time of the program within each Java VM invocation in nanoseconds using
System.nanoTime(). The resulting value of the time measurement constitute a
sample of the running time. From all collected samples, we reject outliers that
lie further than three median absolute deviations from the median. We augment
each sample with a Boolean variable that stores whether the sample resulted
from the first or from the second secret input value. We pass the list of such
augmented samples into the procedure for statistical measurement of informa-
tion leakage [17]. This procedure estimates the capacity C(X;Y) of the timing
side channel using iterative Blahut-Arimoto algorithm [8,14].

6.2 Experiments

Similarly to our performance evaluation, we run our security evaluation exper-
iments on 4 baseline and 13 transformed programs. We run a distinguishing
experiment for each of these 17 programs.

Two distinct secret inputs for each of the programs are generated as follows.
In modExp, the timing side channel of our interest results from a critical

conditional with the Boolean condition over parameter k. Hence, we supply two
different secret inputs to k: fixed integers with the Hamming weight of 5 and of
25, respectively. The other parameter of modExp receives a fixed integer.

In shareValue, the timing side channel of our interest results from a critical
conditional with the Boolean condition over parameter ids. Hence, we supply two
different secret inputs to ids: an array of 10 fixed integers that does not contain
the value representing the user’s specified share, and an array of 10 fixed integers

Transforming Out Timing Leaks, More or Less 457

that contains at one element a value representing the user’s specified share. The
other parameter of shareValue receives an array of 10 fixed integers.

In kruskal, the timing side channel of our interest results from a critical condi-
tional with the Boolean condition depending on parameter g. Hence, we supply
two different secret inputs to g: an array encoding a fixed graph with 5 vertices
and 7 edges, and an array encoding a fixed graph with 7 vertices and 7 edges.

In mulMod16, the timing side channel of our interest results from a critical
conditional with the Boolean condition over parameter a. Hence, we supply two
different secret inputs to a: a fixed integer whose 16 least significant bits are all
zeros, and a fixed integer whose 16 least significant bits contain ones and zeros.
The other parameter of mulMod16 receives a fixed integer.

We collect 10000 samples of the running time for each of the two secret inputs
for each baseline and each transformed version of benchmark programs.

6.3 Experimental Results

Already just by visualizing the collected samples of the running time one can
get a first impression about timing side channels in each program and about the
effects of program transformations on these timing side channels.

Figure 4a depicts a portion of the collected running time samples for the
baseline version of modExp. Blue (filled) boxes correspond to the first 800 run-
ning time samples that resulted from executing modExp on the secret input with
the Hamming weight of 5. Red (unfilled) boxes correspond to the first 800 run-
ning time samples that resulted from executing modExp on the secret input with
the Hamming weight of 25. Figure 4b depicts the frequency with which different
running time samples occurred in the experiment. Again, blue (filled) and red
(unfilled) bars correspond to the samples that resulted from executing modExp
on the secret inputs with the Hamming weights of 5 and 25, respectively. On
both Figs. 4a and b we can clearly observe differences in the running time values
that correspond to two different secret input values. This gives us a hint that
modExp indeed contains a timing side channel.

Similarly, Fig. 4c depicts a portion of the collected running time samples for
modExp transformed with cross-copying. Figure 4d depicts the frequency with
which different running time samples occurred in the experiment. Blue and red
(filled and unfilled, respectively) correspond to the running time samples that
resulted from executing the transformed program on the secret inputs with the
Hamming weights of 5 and 25, respectively. In contrast to Figs. 4a and b, we
cannot observe much difference in the running time values that correspond to
two different secret input values. This gives us a hint that cross-copying was
effective in removing the timing side channel in modExp.

From the collected samples we estimate the capacity of the timing side chan-
nels using a procedure for statistical measurement of information leakage [17].
The resulting estimated capacity is depicted in Fig. 5. Since in our distinguishing
experiments the size of the secret is 1 bit, the maximal possible capacity of the
timing side channel in each program is also 1 bit.

458 H. Mantel and A. Starostin

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4900 5000 5100 5200 5300 5400 5500

 4900

 5000

 5100

 5200

 5300

 5400

 5500

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5900 6000 6100 6200 6300 6400

 5900

 6000

 6100

 6200

 6300

 6400

(a) (b)

(c) (d)

Fig. 4. Running time values and frequencies of their occurrence in the distinguishing
experiment for modExp in the baseline and cross-copied versions.

modExp

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

shareValue

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

kruskal

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

mulMod16

 0

 0.2

 0.4

 0.6

 0.8

 1

B CC CA TB U

modExp shareValue kruskal mulMod16

baseline (B) 0.5833±0.0142 0.2586±0.0132 0.1216±0.0104 0.7115±0.0121
cross-copying (CC) 0.0202±0.004 0.2204±0.0134 0.0974±0.0097 0.1943±0.0115
cond. assign. (CA) 0.0007±0.0014 0.0±0.0008 0.0743±0.0087 0.0±0.0007
trans. bran. (TB) 0.0062±0.0034 0.1657±0.012 0.0244±0.0066 0.1266±0.0114
unification (U) 0.0202±0.004 0.2204±0.0134 0.0974±0.0097 0.0727±0.0069

Fig. 5. Estimated capacity of timing side channels, in bits, 95 % confidence intervals.

Transforming Out Timing Leaks, More or Less 459

6.4 Our Findings in the Security Evaluation

The results of our experiments show that executing each benchmark program
opens timing side channels that have various capacities. The experimental results
also show that all program transformations in all experiments reduce the capacity
of timing side channels, i.e., all considered transformations have positive effects
wrt. side-channel mitigation. In order to clarify how large these positive effects
of transformations are, we use the estimated capacity of timing side channels
to compute the percentage reduction of the side channel’s capacity due to each
transformation. The result of this is given in Fig. 6.

We observe that program transformations generally reduce the capacity
of timing side channels, and that the observed reduction substantially differs
between the transformations. Altogether, the observed reduction varies from
about 15 to 100 %. We also observe that the reduction of the capacity of timing
side channels varies between cross-copying, transactional branching, and unifica-
tion. These transformations have been previously proven in [2,13,38] to establish
respective definitions of timing-sensitive noninterference.

The transformation “conditional assignment” has been proven in [47] to
establish PC-Security. We observe that, in shareValue and mulMod16, condi-
tional assignment completely removes timing side channels, and, in modExp, it
achieves a 99.88 % reduction of the estimated timing side-channel capacity. For
these three programs, conditional assignment removes timing side channels more
effectively than the other transformations. One might wonder: Why is conditional
assignment so much worse for kruskal, achieving a reduction of only 38.9 % and
being outperformed by transactional branching? We investigated this question
and suspect that the remaining timing side-channel capacity in kruskal is caused
by the recursive function find (see Fig. 9 in the appendix).

Our experimental results clarify that, in practice, there are differences in the
effectiveness of program transformations for removing timing side-channel vul-
nerabilities. The differences are substantial, and therefore our results indicate
that there is still much to be understood about such transformations. Under
which conditions should a program developer prefer one transformation over
another? Can a program developer maximize the positive effects of a transfor-
mation by his programming style, and, if yes, how? Such questions will require
answers until we fully understand how to use program transformations for writ-
ing programs that are free from timing-side channel vulnerabilities.

Comparison with Findings in [3]. The only prior experimental study of the effec-
tiveness of transformations is the investigation of a Java bytecode implementa-
tion of cross-copying by Agat in [3]. This investigation had a qualitative nature
and did not consider bandwidths of timing side channels. The experiments were
done on synthetic benchmark programs. In contrast to our findings, no signifi-
cant timing differences for the transformed programs have been observed. There
might be several reasons for that: The transformation was implemented in Java
bytecode, and different experiments, programs, and a setup were used.

460 H. Mantel and A. Starostin

modExp

 0

 20

 40

 60

 80

 100

CC CA TB U

shareValue

 0

 20

 40

 60

 80

 100

CC CA TB U

kruskal

 0

 20

 40

 60

 80

 100

CC CA TB U

mulMod16

 0

 20

 40

 60

 80

 100

CC CA TB U

modExp shareValue kruskal mulMod16

cross-copying (CC) 96.54 14.77 19.9 72.69
cond. assign. (CA) 99.88 100.0 38.9 100.0
trans. branching (TB) 98.94 35.92 79.93 82.21
unification (U) 96.54 14.77 19.9 89.78

Fig. 6. Reduction of the estimated capacity of timing side channels, in %.

7 Navigating in the Performance-Security Trade-Off

Usually security comes at a price. Our evaluation of the overhead introduced by
four program transformations for removing timing side-channel vulnerabilities
shows that these transformations are no exception. But what is the relationship
between the security and its price?

In this section we attempt to explore this relationship for the considered pro-
gram transformations. In Fig. 7 we plot together the results of our performance
and security evaluations. The ordinate denotes the values of the performance
overhead from Fig. 3. The abscissa denotes the values of the side-channel capac-
ity reduction from Fig. 6. Red crosses, yellow triangles, blue circles, and green
boxes correspond to cross-copying, conditional assignment, transactional branch-
ing, and unification, respectively. There are four markers of each marker type.
Each marker corresponds to an experiment with one benchmark program.

We are interested in analyzing which transformations satisfy a performance-
security requirement of the form “We are willing to pay α percent in performance
overhead for 1 % of side-channel capacity reduction” for different values of α. Let
p denote the performance overhead in percent, and let s denote the side-channel
capacity reduction in percent. Equation p=αs represents the above performance-
security requirement. In Fig. 7 we plot beams that satisfy the equation p = αs
for different values of α. Whenever all four markers of the same marker type lie
below the beam for particular α, the transformation that corresponds to this
marker type satisfies the performance-security requirement for this α. We vary
α from 0 to 5 with the step 0.25.

Our experimental results suggest: (1) Conditional assignment satisfies p =
0.75s. (2) Unification satisfies p = s. (3) Cross-copying satisfies p = 1.25s. (4)
Transactional branching satisfies p=4.75s. (In three cases, it satisfies p=2.25s.)

We conclude that conditional assignment satisfies our performance-security
requirement of interest for the smallest value of α among all transformations.
Furthermore, the above list allows us to identify the ordering between the trans-

Transforming Out Timing Leaks, More or Less 461

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

pe
rf

or
m

an
ce

 o
ve

rh
ea

d,
 in

 %

side-channel capacity reduction, in %

cross-copying
cond. assign.

trans. branching
unification

p=0.75s
p=s

p=1.25s
p=2.25s
p=4.75s

Fig. 7. Analyzing performance-security requirements for transformations.

formations wrt. how expensive is the security offered by them. This list can
serve as an initial guidance for reducing the search space of candidate program
transformations that one may want to deploy in practice.

One weakness of the considered requirement is that it suggests that a trans-
formation not impacting performance, but only very slightly decreasing the side-
channel capacity might be considered superior to any other transformation. This
weakness can be overcome by requiring in addition all transformations to achieve
a minimum threshold in reduction of the side-channel capacity. Naturally, further
performance-security requirements may also be of one’s interest. In this section,
we illustrate how one can use our experimental results for analyzing how good
different program transformations satisfy such requirements.

8 Related Work

There is a large body of work on the analysis of side channels from the attacker’s
perspective, e.g., [4,15,19,26,32,34,35,48,49]. Timing side channels have been
for the first time exploited by Kocher to attack an implementation of RSA [34].

A successful attack against an implementation proves that the implementa-
tion is vulnerable. On the contrary, timing-sensitive noninterference-like prop-
erties have been used to express that an implementation is secure wrt. timing
side channels [2,13,23,30,38]. Noninterference-like properties express very strong
security, which usually implies that an attacker cannot gain any information
about given secrets. In practice, however, some leakage might be unavoidable.

Quantitative theories of information-flow security allow one to limit how
much information is actually leaked [52]. In the eighties, Millen [46] proposed to
use the Shannon’s channel capacity [51] for quantifying the capacity of covert
channels. Later, attention was attracted by the development of new leakage

462 H. Mantel and A. Starostin

measures that more closely express the danger of real attacks, most notably min-
entropy [52] and g-leakage [7]. Generalizing the Shannon’s capacity, a theory of
channel capacity applicable to g-leakage has also been recently proposed [6].

For quantitative analysis of side channels, in general, Köpf and Basin [36]
present an information-theoretic model of side-channel attacks that allows quan-
tification of the information revealed to an attacker. Macé et al. [44] propose
an approach for information-theoretic evaluation of side-channel resistant logic
styles. Standaert et al. [53] present a framework for analysis of side-channel
attacks that enables comparisons of different implementations wrt. side channels.

For quantitative analysis of timing side channels, Köpf and Backes [10] pro-
pose an approach for quantifying resistance to unknown-message side-channel
attacks and use this approach to assess the resistance of cryptographic imple-
mentations against timing attacks. Köpf and Smith [39] derive leakage bounds
for blinded cryptography under timing attacks. Doychev et al. [24] present a tool
for automatic derivation of upper bounds on the cache side-channel leakage in
x86 binaries, including cache-related side channels that are based on timing.

Yet, there seems to be a deficit of reports on empirical quantitative evaluation
of timing side channels. We are aware only of the work by Cock et al. [19] who
present an empirical evaluation of timing side channels on the seL4 microkernel.
The results of our own research project contribute to this line of research.

Related to side channels, the problem of covert channels [42] has also
attracted a lot of attention. For covert channels that are based on timing, there
are reports on their informal [55], analytical [45], and empirical [19,27] analysis.

Besides program transformations [2,13,38,47], there is a spectrum of other
techniques for controlling timing side channels. Hu [31] proposes to reduce timing
channels by adding noise to the observable timing signal. Kocher [34] proposes
blinding that unpredictably changes the correlation between the secret input of
a cryptographic operation and its observable running time. Chevallier-Mames et
al. [18] propose side-channel atomicity, a method to convert a cryptographic algo-
rithm into an algorithm protected against simple side-channel attacks. Köpf and
Dürmuth [37] improve blinding to allow a choice between the strength of the
security guarantee and the resulting performance overhead. Svenningsson and
Sands [54] present a method for controlled declassification of the side-channel
leakage. Coppens et al. [20] propose to remove timing side channels by a transfor-
mation in a compiler backend. Askarov et al. [9] introduce black-box mitigators
for controlling timing side channels in a system by delaying the system’s outputs.
Zhang et al. [56] leverage this approach for a programming language. Crane et
al. [22] propose automated software diversity to mitigate cache side channels.

While performance costs of side-channel mitigation are generally addressed
in the literature, e.g., in [20,23,37,47,56], a trade-off between the performance
and security in this context is explored to a lesser extent. Köpf and Dürmuth [37]
study such a trade-off for their countermeasure. Di Pierro et al. [23] investigate
such a trade-off for a probabilistic variant of cross-copying, but only analyt-
ically. Doychev and Köpf [25] propose a game-theoretic approach for finding
cost-effective configurations for countermeasures against side channels.

Transforming Out Timing Leaks, More or Less 463

9 Conclusion

We presented the first systematic empirical evaluation of source-to-source trans-
formations for removing timing side-channel vulnerabilities wrt. security and
overhead. Our experimental results suggest that there are substantial differences
between the transformations both in the introduced performance overhead and
in the achieved reduction of timing side-channel capacities. In prior work, such
transformations were analyzed mostly theoretically. However, it was speculated
that some of the transformations are of unclear practical significance due to
their potential inefficiency [54] or ineffectiveness [38]. In this research project,
we obtain objective numbers that allow one to clarify such concerns wrt. one’s
own criteria of efficiency and effectiveness. Beyond this clarification, our findings
provide guidance for choosing a suitable program transformation. Such choice is
non-trivial because of the trade-off between security and performance.

Our work deepens the understanding about the effectiveness and efficiency
of program transformations for removing timing side-channel vulnerabilities in
practice, but this is only a first step in the empirical evaluation of such trans-
formations. As future work, we will experimentally investigate effects of JIT
compilation on program transformations. We also plan to consider alternative
implementations of transformations as well as alternative measures of leakage.

Acknowledgements. We thank Boris Köpf, David Sands, and the anonymous review-
ers for valuable comments. We thank Patrick Metzler for help in the early phase of this
work. This work has been partially funded by the DFG as part of project E2 within
the CRC 1119 CROSSING and by CASED (www.cased.de).

A Source Code of Benchmarks

(see Figs. 8, 9, and 10)

public int shareValue(int[] ids, int[] qty) {
shareVal = 0;
int i = 0;
while (i < ids.length) {
int id = ids[i];
int val = lookupVal(id) ∗ qty[i];
if (id == SPECIAL SHARE)
shareVal = shareVal + val;

i++;
}
return shareVal;

}

Fig. 8. Benchmark program shareValue, the critical conditional is highlighted.

www.cased.de

464 H. Mantel and A. Starostin

public int[] kruskal(int[] g) {
int[] mst = new int[g.length];
par = new int[g.length];
for (int i = 0; i < par.length; ++i) {
mst[i] = −1;
par[i] = i;

}
int idx = 0;
for (int i = 1; i < g.length; i += 2) {
int src = find(g[i]);
int tgt = find(g[i + 1]);
if (src != tgt) {
mst[++idx] = src;
mst[++idx] = tgt;
par[src] = tgt;

}
}
mst[0] = idx / 2 + 1;
return mst;

}

private int find(int x) {
if (par[x] != x)
return find(par[x]);

return x;
}

Fig. 9. Benchmark program kruskal, the critical conditional is highlighted.

private int mulMod16(int a, int b) {
int p;
a &= mulMask;
b &= mulMask;
if (a == 0) {
a = mulModulus − b;

} else if (b == 0) {
a = mulModulus − a;

} else {
p = a ∗ b;
b = p & mulMask;
a = p >>> 16;
a = b − a + (b < a ? 1 : 0);

}
return a & mulMask;

}

Fig. 10. Benchmark program mulMod16, the critical conditional is highlighted.

Transforming Out Timing Leaks, More or Less 465

References

1. FlexiProvider (Version 1.7p7) (2013). http://www.flexiprovider.de
2. Agat, J.: Transforming out Timing Leaks. In: POPL 2000, pp. 40–53. ACM (2000)
3. Agat, J.: Type Based Techniques for Covert Channel Elimination and Register

Allocation. PhD thesis, Chalmers University of Technology (2000)
4. AlFardan, N.J., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS

Record Protocols. In: S&P 2013, pp. 526–540. IEEE (2013)
5. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak

memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

6. Alvim, M.-S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and Multiplicative Notions of Leakage, and Their Capacities. In: CSF
2014, pp. 308–322. IEEE (2014)

7. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring Informa-
tion Leakage using Generalized Gain Functions. In: CSF 2012, pp. 265–279. IEEE
(2012)

8. Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Trans. Inf. Theory 18(1), 14–20 (1972)

9. Askarov, A., Zhang, D., Myers, A.C., Predictive Black-Box Mitigation of Timing
Channels. In: CCS 2010, pp. 297–307. ACM (2010)

10. Backes, M., Köpf, B.: Formally bounding the side-channel leakage in unknown-
message attacks. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 517–532. Springer, Heidelberg (2008)

11. Baron, M.: Probability and Statistics for Computer Scientists. CRC Press (2006)
12. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-

execution through static program transformation. In: Giese, H., Rosu, G. (eds.)
FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 186–202. Springer,
Heidelberg (2012)

13. Barthe, G., Rezk, T., Warnier, M.: Preventing Timing Leaks Through Transac-
tional Branching Instructions. In: QAPL 2005, pp. 33–55. Elsevier (2006)

14. Blahut, R.E.: Computation of channel capacity and rate-distortion functions. IEEE
Trans. Inf. Theory 18(4), 460–473 (1972)

15. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011)

16. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

17. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information
leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
390–404. Springer, Heidelberg (2010)

18. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

19. Cock, D., Ge, Q., Murray, T.C., Heiser, G.: The last mile: an empirical study of
timing channels on seL4. In: CCS 2014, pp. 570–581. ACM (2014)

20. Coppens, B., Verbauwhede, I., De Bosschere, K., De Sutter, B.: Practical miti-
gations for timing-based side-channel attacks on modern x86 processors. In: S&P
2009, pp. 45–60. IEEE (2009)

21. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd ed. Wiley (2006)

http://www.flexiprovider.de

466 H. Mantel and A. Starostin

22. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: NDSS 2015. The Inter-
net Society (2015)

23. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic timing covert channels: to
close or not to close? Int. J. Inf. Sec. 10(2), 83–106 (2011)

24. Doychev, G., Feld, D., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for
the static analysis of cache side channels. In: USENIX Security 2013, pp. 431–446.
USENIX (2013)

25. Doychev, G., Köpf, B.: Rational protection against timing attacks. In: CSF 2015.
IEEE (2015)

26. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

27. Gay, R., Mantel, H., Sudbrock, H.: An empirical bandwidth analysis of interrupt-
related covert channels. In: QASA 2013 (2013)

28. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance
evaluation. In: OOPSLA 2007, pp. 57–76. ACM (2007)

29. Guttoski, P.B., Sunyé, M.S., Silva, F.: Kruskal’s algorithm for query tree optimiza-
tion. In: IDEAS 2007, pp. 296–302. IEEE (2007)

30. Hedin, D., Sands, D.: Timing aware information flow security for a JavaCard-like
Bytecode. El. Notes Th. Comp. Science 141(1), 163–182 (2005)

31. Hu, W.-M.: Reducing timing channels with fuzzy time. In: S&P 1991, pp. 8–20.
IEEE (1991)

32. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

33. Knuth, D.: Structured programming with go to statements. ACM Comput. Surv.
6(4), 261–301 (1974)

34. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

35. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

36. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: CCS 2007, pp. 286–296. ACM (2007)

37. Köpf, B., Dürmuth, M.: A provably secure and efficient countermeasure against
timing attacks. In: CSF 2009, pp. 324–335. IEEE (2009)

38. Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. Int. J. Inf. Sec. 6(2–3), 107–131 (2007)

39. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tograph under timing attacks. In: CSF 2010, pp. 44–56. IEEE (2010)

40. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. American Math. Soc. 7(1), 48–50 (1956)

41. Lai, X.: On the design and security of block ciphers. PhD thesis, ETH Zürich
(1992)

42. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

43. Lux, A., Starostin, A.: A tool for static detection of timing channels in Java. J.
Crypt. Eng. 1(4), 303–313 (2011)

Transforming Out Timing Leaks, More or Less 467

44. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information theoretic evaluation of
side-channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

45. Mantel, H., Sudbrock, H.: Comparing countermeasures against interrupt-related
covert channels in an information-theoretic framework. In: CSF 2007, pp. 326–340.
IEEE (2007)

46. Millen, J.K.: Covert channel capacity. In: S&P 1987, pp. 60–66. IEEE (1987)
47. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security

model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006)

48. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

49. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

50. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

51. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.
27(379–423), 623–656 (1948)

52. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

53. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

54. Svenningsson, J., Sands, D.: Specification and Verification of Side Channel Declas-
sification. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp.
111–125. Springer, Heidelberg (2010)

55. Wray, J.C.: An analysis of covert timing channels. In: S&P 1991, pp. 2–7. IEEE
(1991)

56. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: PLDI 2012, pp. 99–110. ACM (2012)

Small Tweaks Do Not Help: Differential Power
Analysis of MILENAGE Implementations

in 3G/4G USIM Cards

Junrong Liu1, Yu Yu1,2,3(B), François-Xavier Standaert4, Zheng Guo1,5,
Dawu Gu1(B), Wei Sun1, Yijie Ge1, and Xinjun Xie6

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China

{liujr,yyuu,guozheng,dwgu,ruudvn}@sjtu.edu.cn
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

4 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
fstandae@uclouvain.be

5 Shanghai Viewsource Information Science and Technology Co., Ltd,
Shanghai, China

6 Shanghai Modern General Recognition Technology Corporation, Shanghai, China

Abstract. Side-channel attacks are an increasingly important concern
for the security of cryptographic embedded devices, such as the SIM
cards used in mobile phones. Previous works have exhibited such attacks
against implementations of the 2G GSM algorithms (COMP-128, A5). In
this paper, we show that they remain an important issue for USIM cards
implementing the AES-based MILENAGE algorithm used in 3G/4G
communications. In particular, we analyze instances of cards from a vari-
ety of operators and manufacturers, and describe successful Differential
Power Analysis attacks that recover encryption keys and other secrets
(needed to clone the USIM cards) within a few minutes. Further, we
discuss the impact of the operator-defined secret parameters in MILE-
NAGE on the difficulty to perform Differential Power Analysis, and show
that they do not improve implementation security. Our results back up
the observation that physical security issues raise long-term challenges
that should be solved early in the development of cryptographic imple-
mentations, with adequate countermeasures.

Keywords: Side-channel attacks · Mobile network security · SIM cards
cloning

1 Introduction

The mathematical and physical security of cryptographic algorithms used in
cellular networks has been a long standing concern. Starting with the reverse
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 468–480, 2015.
DOI: 10.1007/978-3-319-24174-6 24

Small Tweaks Do Not Help: Differential Power Analysis 469

engineering of the COMP-128 algorithm (i.e. the A3/A8 algorithms used to
authenticate GSM subscribers and generate session keys), Briceno, Goldberg
and Wagner first showed that its compression function was fatally flawed due
to a lack of diffusion. The resulting “narrow pipe attack” takes roughly 131,000
challenge-response pairs to recover a GSM SIM card master key [10]. Further-
more, several cryptanalytic results have been published about the A5 algorithm
– i.e. the stream cipher used to encrypt the GSM communications based on a
session key (see, e.g. [6–9,15]). Besides, different implementations of COMP-128
deployed in actual SIM cards have also been proved susceptible to Differential
Power Analysis (DPA). For example, it was shown in [18] that a specialized
(so-called partitioning) side-channel attack could lead to the cloning of 8-bit
GSM SIM cards after monitoring its power consumption for only a couple of
minutes. More recently, Zhou et al. reached a similar conclusion for implemen-
tations in 16-bit CPUs [20]. The latter reference also discussed the negative
impact of closed-source algorithms (such as COMP-128) on physical security,
as it limits the amount of research on dedicated countermeasures against phys-
ical attacks for these algorithms. As a result of this state-of-the-art, the move
towards UMTS/LTE and the 3G/4G communication technology, whose security
is based on standardized algorithms, was a very welcome improvement.

In this paper, we pay attention to the implementation of the MILENAGE
algorithm in 3G/4G USIM cards, for which the recommended underlying primi-
tive is the Advanced Encryption Standard (AES) Rijndael. MILENAGE is typ-
ically used for authentication and key agreement in UMTS/LTE networks. As
for previous works on side-channel analysis against SIM cards, this focus is moti-
vated by the fact that breaking this part of the system is most damaging, since
it allows eavesdropping, card cloning, and therefore bypassing the one-time-
password authentication mechanism with mobile phones. In this context, we
evaluated the security of eight commercial USIM cards, coming from a variety
of operators and manufacturers, in order to tackle two main questions.

First, are the AES implementations used by MILENAGE systematically
protected by state-of-the-art countermeasures against side-channel attacks? We
answer this question negatively, as the different cards against which we per-
formed experiments did not exhibit any particular mechanisms to prevent such
attacks, leading to the same conclusions as [20] regarding the need to consider
physical security issues early in the development of cryptographic products.

Second and more importantly, we analyzed the impact of small tweaks in
MILENAGE – such as the use of secret (operator-defined) constants – regard-
ing the difficulty of performing the attacks. As a main contribution, we show
that these secrets have very limited impact on the attacks complexity. In par-
ticular, they do not bring the security improvements that would be expected
from unknown-plaintexts, and allow successful divide-and-conquer key recover-
ies after a few minutes of power consumption measurements, as standard unpro-
tected implementations of the AES in similar devices. The latter result is of more
general interest, since it applies to any implementation of MILENAGE.

470 J. Liu et al.

Cautionary Note. The experiments presented in this paper were performed
more than one year before submission to ESORICS 2015. We contacted the oper-
ators with feedbacks and suggestions (on countermeasures against side-channel
analysis) before publication of the results. Upgrades towards more physically
secure implementations are under development (or maybe already deployed).
We do not claim that the USIM cards we measured and analyzed are reflec-
tive of the majority of deployed USIM cards and the paper does not contain
any specific detail allowing to reveal the operators and manufacturers that were
considered.

2 Background

2.1 The UMTS/LTE Infrastructure

The Universal Mobile Telecommunications System (UMTS) and Long-Term
Evolution (LTE) are respectively third generation (3G) and fourth generation
(4G) mobile cellular systems for networks based on the Global System for Mobile
Communication (GSM) standard. The technologies have been developed and
maintained by the 3rd Generation Partnership Project (3GPP), and they have
been widely adopted in many countries in Asia, Europe and the USA (see [3,4] for
a list of mobile operators who adopt the 3G/4G technologies). For convenience,
we only provide a simplified overview of the infrastructure by considering only
two parties (omitting intermediate nodes such as Visitor Location Registers),
namely, the Universal Subscriber Identity Module (USIM), which is typically a
smart card embedded in a subscriber’s telephony device, and an Authentication
Center (AuC), which is a security function running on the operator’s server.
The cryptographic protocol engaged between two parties is symmetric, so that
USIM and AuC need to share necessary information such as a unique identifier
IMSI (International Mobile Subscriber Identity), a symmetric master key K, and
operator-defined secrets OPc (operand code), r1, . . . , r5, c1, . . . , c5.

3G/4G authentication and key agreement. Unlike GSM whose authen-
tication was one-way and based on flawed algorithms, UMTS and LTE enforce a
mutual authentication and key agreement (AKA) protocol, which in turn builds
upon an AES-based algorithm called MILENAGE. As shown in Fig. 1, the 3G
authentication starts with a user id request and a response from USIM with
its unique IMSI. Upon the authentication request, the AuC samples a random
RAND, assigns a sequence number SQN, and computes the MILENAGE algo-
rithm (a suite of AES-based functions f1, . . ., f5) with the symmetric key K
and the AMF (Authenticated and key Management Field) constant to produce
as output the masked (i.e. XORed with anonymity key AK) sequence number
SQN ⊕AK, tag MAC, expected response XRES, cipher key CK and integrity
key IK. The USIM then receives RAND and AUTN = (SQN⊕ AK, AMF, MAC),
and computes with MILENAGE symmetrically to recover SQN, and to obtain
XMAC (the expected MAC), response RES, CK and IK. The USIM rejects if
the SQN is out of the expected range or the MAC is not the same as XMAC,

Small Tweaks Do Not Help: Differential Power Analysis 471

SIM UMTS Networks AuC

IMSI,K (IMSI,K) for every subscriberuser id request

IMSI (identifying K)
IMSI

K,RAND,SQN,AMF

f1, f2, f3, f4, f5,OPc

SQN⊕AK,MAC,XRES,CK,IKRAND,AUTN=(SQN⊕AK,AMF,MAC)

f1, f2, f3, f4, f5,OPc

K,RAND,AUTN

SQN,XMAC,RES,CK,IK RES

Reject if SQN out of range
or XMAC�=MAC

encrypted communication under session key (CK,IK)

Reject if XRES�=RES

Fig. 1. Simplified AKA protocol between a USIM card and an AuC in 3G networks.

and the AuC rejects if the response is not as expected (RES �= XRES). The 4G
protocol slightly differs from the 3G one described in the figure (see, e.g. [5,
Fig. 1] for the details). However, none of its changes are relevant to our attacks.
Note that while mostly based on public algorithms, MILENAGE still includes
a slight amount of secrets in its specifications, e.g., the (fixed) parameter OPc
is usually kept secret by mobile operators. Once an adversary recovers all the
secrets stored in the USIM, he can clone it by loading the same configuration into
a blank card. As mentioned in introduction, the next sections will investigate
the impact of these secret parameters for physical security.

2.2 The MILENAGE Algorithm

The MILENAGE algorithm [13] is a suite of mathematical functions, f1, . . .,
f5, that are based on the AES-128. For the purposes of this paper, it suffices
to consider the computation of this algorithm on the USIM side of the AKA
protocol, as depicted in Fig. 2. In particular, we will focus on f5. It is used to
compute AK = f5k(RAND) and thus allows to recover SQN = (SQN⊕ AK) ⊕
AK, which is in turn used to compute XMAC = f1k(SQN, RAND, AMF). Note
that if XMAC does not equal to MAC, the USIM authentication will terminate
and signal an error message, which means the rest of the functions (i.e. f2, f3
and f4) will not be computed. Therefore, f5 is a target of choice for our power
analysis investigations. Yet, we mention that other functions f1, f2, f3 and f4
are similarly defined, and we refer to [16] for details on their specifications.

472 J. Liu et al.

f5

RAND AUTN

SQN ⊕ AK MACAMF

f1 f2

AK ⊕

XMAC CKRES IK

K

f3 f4

SQN

Fig. 2. Illustration of the computation of MILENAGE on a USIM.

RAND ⊕

OPc

Ek ⊕

OPc

rotate
by r2

⊕

c2

Ek ⊕

OPc

AK

Fig. 3. Illustration of f5.

As depicted Fig. 3, f5 takes RAND, OPc and K as 16-byte inputs, and computes:

M1 = Ek(RAND ⊕ OPc), M2 = Rotater2(M1 ⊕ OPc),
M3 = Ek(M2 ⊕ c2), AK = M3 ⊕ OPc, (1)

where ⊕ denotes bitwise XOR, Rotater2 denotes rotate-by-r2-bits, and Ek is the
AES-128 [12].

Operator-defined parameters. OPc is a secret value chosen by the oper-
ator and fixed once for all its USIMs. Other parameters such as r1, . . . , r5 and
c1, . . . , c5 have default values suggested by 3GPP specification [1], but they are
also configurable (to secret values) by operators.

2.3 Side-channel Attacks

Side-channel attacks generally exploit the existence of data-dependent and phys-
ically observable phenomenons caused by the execution of computing tasks in
microelectronic devices. Typical examples of such information leakages include
the power consumption and the electromagnetic radiation of integrated circuits.
We will focus on the first one in the rest of this paper. The literature usually
divides such attacks in two classes. First, Simple Power Analysis (SPA) attempts
to interpret the power consumption of a device and deduce information about its

Small Tweaks Do Not Help: Differential Power Analysis 473

performed operations. This can be done by visual inspection of the power con-
sumption measurements in function of the time. SPA in itself does not always
lead to key recovery, e.g. with block ciphers, distinguishing the encryption rounds
does not reveal any sensitive information. Yet, it can be a preliminary step
in order to reduce the computational requirements of more advanced attacks.
Second, Differential Power Analysis (DPA) intends to take advantage of data-
dependencies in the power consumption patterns. In its standard form [14], DPA
is based on a divide-and-conquer strategy, in which the different parts of a secret
key (usually denoted as “subkeys”) are recovered separately. The attack is best
illustrated with an example. Say one targets the first round of a block cipher,
where the plaintext is XORed with a subkey and sent through a substitution
box S. DPA is made of three steps:

1. For different plaintexts xi and subkey candidates k∗, the adversary pre-
dicts intermediate values in the implementation, e.g. the S-box outputs
vk

∗
i = S(xi ⊕ k∗).

2. For each of these predicted values, the adversary models the leakages. For
example, if the target block cipher is implemented in a CMOS-based micro-
controller, the model can be the Hamming weight (HW) of the predicted
values1: mk∗

i = HW(vk
∗

i).
3. For each subkey candidate k∗, the adversary compares the modeled leakages

with actual measurements, produced with the same plaintexts xi and a secret
subkey k. In the univariate DPA attacks (that we will apply), each mk∗

i is
compared independently with many single points in the traces, and the subkey
candidate that performs best is selected by the adversary.

Different statistical tools have been proposed to perform this comparison. In our
experiments, we will consider a usual DPA distinguisher, namely Pearson’s corre-
lation coefficient [11]. In this case, and denoting a leakage sample produced with
plaintext xi and subkey k as lki , the adversary selects the subkey candidate as:

k̃ = argmax
k∗

∑
i(m

k∗
i − mk∗

) · (lki − l
k
)

√
∑

i(m
k∗
i − mk∗)2 · ∑

i(l
k
i − l

k
)2
, (2)

where mk∗
and l

k
are the sample means of the models and leakages. By repeating

this procedure for every subkey (and enumarting if needed [19]), the complete
master key is finally recovered.

1 This assumption relates to the observation that in CMOS circuits, a significant part
of the power consumption is dynamic, i.e. caused by the switching activity. A first-
order approximation of this switching activity is given by the Hamming weight of
the intermediate values produced when performing the cryptographic computations.

474 J. Liu et al.

Fig. 4. The actual measurement setup for our experiments.

3 DPA Against MILENAGE Implementations in USIM
Cards

3.1 Measurement Setup and Target USIM Cards

As depicted in Fig. 4, we used a self-made card reader (with a resistor inserted for
power acquisition) and ran some open source software [2] on a PC to control the
test cards and execute the MILENAGE algorithm. At the same time, we used
a LeCroyScope oscilloscope to acquire the power traces, and connected it with
a Card-to-Terminal adapter providing an external DC power (+5V). Finally,
we used MP300 SC2 to intercept the authentication messages between USIM
and AuC, which provides useful information for our experiments (e.g. whether
authentication succeeds or not). Our target USIM cards are listed in Table 1.
They all include secret OPc. As for the other configurable parameters (r1, c1,
. . ., r1, c5), some of the USIM cards use standard (public) suggested values, and
the rest use secret ones.

To initiate the authentication, the PC (which plays the role of AuC) typically
communicates with the USIM in the language of application protocol data unit
(APDU) as following:

00 A4 08 04 02 2 F 00 select file with 2(0x02)-byte argument 2 F 00

00 C0 00 00 1C get response of 29(0x1C) bytes

00 B2 01 04 26 read records

00 A4 04 04 10 A0 00 00 00 87 10 02 FF 86 11 04 89 FF FF FF FF

select file with 16(0x10)-byte argument A0**FF

00 C0 00 00 35 get response of 53(0x35) bytes

00 A4 00 04 02 6 F 07 select file with 2(0x02)-byte argument 6 F 07

00 C0 00 00 19 get response of 25(0x19) bytes

Small Tweaks Do Not Help: Differential Power Analysis 475

Table 1. List of target USIM cards with anonymized operators, manufacturers and
countries of origin. (C1-1 stands for continent 1, country 1). The data and time com-
plexity are measured respectively by the number of power traces and the total amount
of time needed for the attack (including power acquisition, data processing and DPA).

USIM Operator Manufacturer Technology Secrets # of traces Time

#1 C1-1 C1-I 3G UMTS K, OPc 200 10min

#2 C1-1 C2-II 3G UMTS K, OPc 200 10min

#3 C1-1 C1-III 3G UMTS K, OPc 200 10min

#4 C1-2 C3-I 3G UMTS K, OPc, r1, . . ., r5, c1, . . ., c5 1000 60min

#5 C2-1 C2-I 3G UMTS K, OPc, r1, . . ., r5, c1, . . ., c5 1000 70min

#6 C1-3 C1-IV 4G LTE K, OPc, r1, . . ., r5, c1, . . ., c5 1000 60min

#7 C1-3 C1-II 4G LTE K, OPc, r1, . . ., r5, c1, . . ., c5 1000 60min

#8 C2-2 C2-II 4G LTE K, OPc, r1, . . ., r5, c1, . . ., c5 1000 80min

00 B0 00 00 09 read binary

00 88 00 81 22 10 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

---------------10 BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB

run authentication on 16(0x10)-byte RAND=(AA**AA),AUTN=(BB**BB)

where the ‘−’s are padded for alignment only. Roughly speaking, one needs to
apply a sequence of “select file” APDUs from the master file (through the direc-
tory tree) to reach the application that invokes MILENAGE. The last APDU
runs MILENAGE on two 16-byte arguments “AA. . .AA” and “BB. . .BB” (high-
lighted in blue), which can be replaced with any values for RAND and AUTN.
Note finally that the structure of the APDU is defined by ISO/IEC 7816-4, but
the “command data” fields (highlighted in red) of some APDUs may vary for
different manufacturers. In the latter cases, we used some brute force search in
order to remove the uncertainties.

3.2 Attack Strategy

In order to recover OPc and K from the USIM, we interact with the card and
execute the AKA protocol based on full knowledge of the inputs being processed
(i.e. RAND and AUTN), which allows us to collect power consumption traces for
the implementation of MILENAGE. We then perform DPA using the Hamming
weight model with the following steps.

1. Recovering K ⊕OPc. As illustrated in Fig. 5, the (known) RAND is XORed
with (secret) OPc before going through Ek (i.e. the AES-128 encryption [12]).
In this step, we therefore focus on the first round of Ek, where the 16-byte
plaintext RAND⊕OPc is parsed as a 4 × 4 byte state matrix. This 16-byte
plaintext is first bitwise XORed with 16-byte secret key in AddRoundKey.
Then, each updated state byte is replaced by another one using the S-box (16
invertible lookup tables) in SubBytes. As a result, a simple DPA attack can
be performed by considering the output of SubBytes as target intermediate

476 J. Liu et al.

value, viewing RAND (instead of RAND⊕ OPc) as plaintext, and OPc⊕K
(rather than K) as the first round key.

2. Recovering K (and OPc). Given that K⊕OPc is already known, we just need
to recover either K or OPc. A straightforward way to do this is to target at
the XOR operation between RAND and OPc2, but DPA usually works better
after a non-linear operation (as explained in [17]). Therefore, a much better
approach is to attack the second block cipher round. That is, upon successful
key recovery in the first round, we obtain the output of the first round (i.e. x2

in Fig. 5), which enables us to perform another DPA on the second round to
recover the 2nd round key RK2, from which we compute the corresponding
encryption key K.

3. Recovering the other secret parameters. One of our target USIMs contained
secret values for r1, . . . , r5 and c1, . . . , c5, which can also be recovered with
a divide-and-conquer side-channel attack, as we now explain for c2 and r2
(the same techniques applies to the other secret parameters). Based on the
previous attacks, we now know the 128-bit intermediate result prior to the
Rotater2 operation (illustrated in Fig. 3), say v0v1 . . . v127. Rotater2 is simply
a right cyclic shift of this known value by r2 bits. In order to recover r2, we
first write it as a multiple of some i plus remainder j, i.e. r2 = 8i + j. Then
we consider the sequence:

(vjvj+1 . . . vj+7)
︸ ︷︷ ︸

byte 0

. . . (vj+120. . .v127v0 . . . vj−1)
︸ ︷︷ ︸

byte 15

(3)

which represents v0v1 . . . v127 rotated by j bits. Assuming that the power trace
is correlated with the Hamming weight of every individual byte of this rotated
value, we can simply make guesses about j (which has only 8 possibilities) and
test these guesses with a correlation analysis between the Hamming weight of
any byte in (3) and the power trace. Once we recovered j, we then take into
account the fact that the sequence was shifted by 8i + j bits, which means
that the correlations for the 16 bytes above should appear in the order of byte
numbers 15− i+1, . . ., 15, 0, . . ., 15− i. Therefore, we can again identify the
value of i by doing a correlation analyses (with Hamming weight model) for
every byte, and finding out the order in which significant correlations appear
for those bytes. Eventually, a simple attack as previously described can be
used against the second Ek in Fig. 3 to recover c2.

3.3 Experimental Results

For conciseness, we show power traces and coefficients plots for one of the USIM
cards we investigated (with secret parameters). Results were essentially similar
for the other USIM cards. In all cases, successful attacks were obtained based
on several hundred power traces that were acquired in a few minutes, and pre-
processed with a low-pass filter. We began with SPA to identify the relevant
2 Which succeeded as well, but less efficiently than the following proposal.

Small Tweaks Do Not Help: Differential Power Analysis 477

RAND ⊕
OPc

S⊕
RK1=K

x y

1st round

x2… S⊕

2nd round

y2 …

RK2

Fig. 5. AES S-box lookups for the first two rounds.

Fig. 6. An overview of a power trace.

parts of the power traces, sent the USIM card authentication commands with
randomized inputs for this purpose, and as expected received a “user authenti-
cation reject” error due to the mismatch of XMAC and MAC (or SQN out of
range). For illustration, Fig. 6 gives a view of an entire power trace collected,
where we identify 4 similar parts, and each part has 10 rounds. We observe that
the last round is less obvious to spot than the other ones, which can be justified
by the fact that AES-128 computes no MixColumns in its last round. Note that
in this case, the power consumption we measured only corresponds to that of
f1 (to compute XMAC for verification) and f5 (to obtain AK and thus recover
SQN) since f2, f3 and f4 are not computed on an authentication failure. We
could therefore safely assume that the first two parts represent the two AES
executions of f5, and the last two parts of the trace correspond to the two AES
executions of f1.

We aligned the traces corresponding to the randomized inputs with a stan-
dard pattern matching method. That is, we choose a unique pattern close to
the part of the traces of our interest (e.g. the header part of Fig. 6), used cross-
correlation tools to identify this pattern in all the traces in an automated manner,
and then aligned the traces based on those cross-correlations. This simple tech-
nique was sufficient in our experiments, due to the relatively low noise level of
our traces.

Thanks to the iterative nature of the AES, we could then divide the traces
into segments that correspond to their respective rounds. Furthermore, for each
round we identified the parts of the AddRoundKey and MixColumns operations,
by comparing the differences between that round and the 10-th round. Figure 7
is a zoomed-in view of the trace segment nearby the first round, where the four
operations AddRoundKey, SubBytes, ShiftRows, and MixColumns are identified.
We could also verify with correlation analysis that the part of trace prior to
AddRoundKey corresponds to the operation of RAND⊕ OPc. The fact that all
operations appeared to be carried out sequentially gave us strong hints that the
MILENAGE algorithm was implemented in software. This suggested that trying
an attack with a Hamming weight leakage model might be a good option.

478 J. Liu et al.

Fig. 7. A zoomed-in view of part of a power trace.

Fig. 8. DPA result on SubBytes to recover K ⊕ OPc.

We finally discuss the key recovery following the strategies described in
Sect. 3.2.

1. Recovering K ⊕OPc. We focused on the SubBytes part of Fig. 7 and per-
formed our DPA attack exactly as described in the previous section. The
result of the correlation analysis for the first byte is shown in Fig. 8. Note
that the peak was clearly sufficient to recover all key bytes without ambi-
guity. Furthermore, the time at which they appeared were in line with our
previous assumptions regarding when the S-box computations take place.

2. Recovering K (and OPc). As previously detailed, a straightforward DPA
against the second AES round allowed us to recover the second subkey, from
which K (and OPc) can be derived. Correlation plots (and hence, attack
efficiencies) were similar as for recovering K ⊕ OPc.

3. Recovering the Other Secret Parameters. As mentioned in Sect. 3.2, we can
write r2 = 8i+j and find out the value of j by correlating the Hamming weight
of any single byte from (3) (with different hypothetical values about j) with
the power trace. As depicted in Fig. 9, we indeed obtained high correlations
upon correct guesses about j. We then correlated all bytes in (3) (based on the
correct value of j) to the power trace, and we expected to see that correlations
occur in sequential order for bytes 15−i+1, . . ., 15, 0, . . ., 15−i. For instance,
the value of i in Fig. 9 should be 8. Eventually, we performed an additional
DPA against the second Ek in Fig. 3 to recover c2⊕K (and thus c2), which
yielded not particular challenge. The process for recovering other parameters
r1, c1, r3, c3, . . ., r5 and c5 is identical.

4. Correctness Verification. We used MP300 SC2 to acquire the actual messages
(RAND and AUTN) communicated between the USIM card and the AuC.

Small Tweaks Do Not Help: Differential Power Analysis 479

Based on the K and OPc values we recovered thanks to side-channel analysis,
XMAC can be calculated accordingly. We could therefore verify that our
calculated XMAC equals to the MAC contained in AUTN, and thus confirm
that the key recovery of K and OPc was successful in all cases.

Fig. 9. Correlation traces between the Hamming weight of the bytes in (3) and the
power trace, where traces 0, 1, . . ., 15 correspond to bytes 0, 1, . . ., 15, and are drawn
in different colors.

4 Conclusions

Technically, the results in this work are essentially based on known techniques
(i.e., differential power analysis attacks). Yet, they are useful to illustrate that
the move to AES-based encryption algorithms in 3G/4G USIM cards did not
systematically take advantage of state-of-the-art countermeasures against side-
channel attacks. Indeed, the USIM cards we analyzed essentially relied on plain
(unprotected) software implementations of the AES. Besides, it is interesting
to observe that the (minor) obfuscation of the MILENAGE specification with
operator-defined secrets has essentially no impact on side-channel security. Need-
less to say, it would be interesting to exploit the broad literature on secure AES
implementations to improve this situation.

Acknowledgments. This research work was supported in parts by the National Basic
Research Program of China (Grant 2013CB338004) and the European Commission
through the ERC project 280141 (CRASH). Yu Yu was supported by the National
Natural Science Foundation of China Grant (Nos. 61472249, 61103221). F.-X. Stan-
daert is a research associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.).
Zheng Guo was supported by the National Natural Science Foundation of China Grant
(Nos. 61402286, 61202371). Dawu Gu was supported by the National Natural Science
Foundation of China Grant (No. 61472250), the Doctoral Fund of Ministry of Educa-
tion of China (No. 20120073110094), the Innovation Program by Shanghai Municipal
Science and Technology Commission (No. 14511100300), and Special Fund Task for
Enterprise Innovation Cooperation from Shanghai Municipal Commission of Economy
and Informatization (No. CXY-2013-35).

480 J. Liu et al.

References

1. 3GPP specification: 35.206 (Specification of the MILENAGE algorithm set).
http://www.3gpp.org/DynaReport/35206.htm

2. Cryptography for mobile network - C implementation and Python bindings.
https://github.com/mitshell/CryptoMobile

3. List of LTE networks. http://en.wikipedia.org/wiki/List of LTE networks
4. List of UMTS networks. http://en.wikipedia.org/wiki/List of UMTS networks
5. Security Technology for SAE/LTE. https://www.nttdocomo.co.jp/english/binary/

pdf/corporate/technology/rd/technical journal/bn/vol11 3/vol11 3 027en.pdf.
Accessed 6 January 2015

6. Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM
encrypted communication. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 600–616. Springer, Heidelberg (2003)

7. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM stream cipher. In: Roy,
B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 43–51. Springer,
Heidelberg (2000)

8. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

9. Bogdanov, A., Eisenbarth, T., Rupp, A.: A hardware-assisted realtime attack on
A5/2 without precomputations. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 394–412. Springer, Heidelberg (2007)

10. Briceno, M., Goldberg, I., Wagner, D.: GSM Cloning (1998). http://www.isaac.cs.
berkeley.edu/isaac/gsm-faq.html. Accessed 6 January 2015

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

13. Gindraux, S.: From 2G to 3G: a guide to mobile security. In: 3rd International
Conference on 3G Mobile Communication Technologies, pp. 308–311 (2002)

14. Mangard, S., Oswald, E., Standaert, F.: One for all - all for one: unifying standard
differential power analysis attacks. IET Inform. Secur. 5(2), 100–110 (2011)

15. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 1–18.
Springer, Heidelberg (2004)

16. Niemi, V., Nyberg, K.: UMTS Security. Wiley Online Library (2003)
17. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE

2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)
18. Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S.: Partitioning attacks: or how to

rapidly clone some GSM cards. In: 2002 IEEE Symposium on Security and Privacy,
Berkeley, California, USA, pp. 31–41 (2002)

19. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

20. Zhou, Y., Yu, Y., Standaert, F.-X., Quisquater, J.-J.: On the need of physical secu-
rity for small embedded devices: a case study with COMP128-1 implementations
in SIM cards. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 230–238.
Springer, Heidelberg (2013)

http://www.3gpp.org/DynaReport/35206.htm
https://github.com/mitshell/CryptoMobile
http://en.wikipedia.org/wiki/List_of_LTE_networks
http://en.wikipedia.org/wiki/List_of_UMTS_networks
https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol11_3/vol11_3_027en.pdf
https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol11_3/vol11_3_027en.pdf
http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html
http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html

Risk Analysis

Should Cyber-Insurance Providers Invest
in Software Security?

Aron Laszka1(B) and Jens Grossklags2

1 Vanderbilt University, Nashville, TN, USA
laszka.aron@gmail.com

2 Pennsylvania State University, University Park, PA, USA

Abstract. Insurance is based on the diversifiability of individual risks:
if an insurance provider maintains a large portfolio of customers, the
probability of an event involving a large portion of the customers is neg-
ligible. However, in the case of cyber-insurance, not all risks are diversi-
fiable due to software monocultures. If a vulnerability is discovered in a
widely used software product, it can be used to compromise a multitude
of targets until it is eventually patched, leading to a catastrophic event
for the insurance provider. To lower their exposure to non-diversifiable
risks, insurance providers may try to influence the security of widely used
software products in their customer population, for example, through
vulnerability reward programs.

We explore the proposal that insurance providers should take a proac-
tive role in improving software security, and provide evidence that this
approach is viable for a monopolistic provider. We develop a model which
captures the supply and demand sides of insurance, provide computa-
tional complexity results on the provider’s investment decisions, and
propose different heuristic investment strategies. We demonstrate that
investments can reduce non-diversifiable risks and can lead to a more
profitable cyber-insurance market. Finally, we detail the relative merits
of the different heuristic strategies with numerical results.

Keywords: Economics of security · Cyber-insurance · Software secu-
rity · Vulnerability discovery

1 Introduction

Most software suffers from vulnerabilities. Partly, the reason is technical and
related to the inherent complexity of software development projects. In addi-
tion, economic factors play a significant role. For example, software companies
may find it undesirable to invest heavily in the security of their products because
customers may not immediately reward such actions (in particular, when they
impact the time-to-market, or create backwards-compatibility issues). However,
the quality of software critically impacts the security of most parts of an orga-
nization’s information system. Moreover, popular software products influence
the security of many organizations. Even though systems may be independently
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 483–502, 2015.
DOI: 10.1007/978-3-319-24174-6 25

484 A. Laszka and J. Grossklags

owned and administrated, they may often exhibit similar software configurations
leading to so-called monoculture risks [3,12].

It is a matter of considerable debate on how to address these monoculture
risks. For example, organizations may desire some security warranties for the
software they deploy, however these are not offered as part of software licenses for
commercial software which may even contain substantial warranty disclaimers.
In response, a number of public policy changes have been proposed. For example,
assigning loss liability for security breaches related to insecure software products
to software vendors has been argued to be beneficial [27] and can be welfare-
enhancing [2]. But such proposals have not found sufficient policy support.

Some organizations have partially taken matters into their own hands by
improving the security of software which is critical for their own operations. For
example, Samsung and Google have invested a significant amount of resources
into making key software products, such as the Linux kernel, more secure by
finding and patching vulnerabilities [8]. In addition, several large companies
are now running software and web vulnerability rewards programs to limit the
risks related to their own businesses. However, these isolated efforts cannot fully
address the security risks related to the diverse landscape of widely used software
products, such as popular web-based content-management systems etc.

As an alternative, companies of various sizes may wish to purchase cyber-
insurance to transfer risks related to the consequences of potentially insecure
software. This raises the question whether cyber-insurers would find the prospect
of offering such contracts attractive.

From an insurance provider’s perspective, the total risk related to each
insured company can be decomposed into two parts: diversifiable risk and non-
diversifiable risk (also known as systematic risk or market risk). Diversifiable risk
arises from vulnerabilities that pertain to a particular company. For example, the
possibility of insider attacks, hardware failures, weak passwords, configuration
errors, and human mistakes all contribute to the diversifiable risk of a company
(e.g., [22]). In contrast, monoculture risks associated with widely used software
products in its client base are a key contributor to non-diversifiable risk of a
cyber-insurer.

The existence of diversifiable risk is typically desirable from the perspective of
an insurance provider: it provides incentives for companies to purchase insurance,
and insurers can account for those risks by maintaining a large and diverse
portfolio. In contrast, non-diversifiable risk can cause significant fluctuations in
the arrival of cyber-insurance claims, which requires an insurer to set aside a
substantial safety capital and may provide a price-barrier impeding the growth
of the cyber-insurance market [6].

Insurance providers often incentivize companies to reduce risk with security
investments by offering premium reductions. However, typical security invest-
ments such as the purchase of security products (including firewalls, IDS, and
IPS) and the hiring of auditors who can point out and fix company-specific vul-
nerabilities do not address non-diversifiable risks. Further, most companies lack
both the resources and expertise to make valuable contributions to improving

Should Cyber-Insurance Providers Invest in Software Security? 485

the security of widely used software products. Consequently, these incentives
lower the level of diversifiable risk without having a significant impact on the
level of non-diversifiable risk. An insurer would prefer the reverse outcome to
increase revenue and to limit its exposure to significant risks.

In this paper, we tackle two interrelated issues. First, we propose a model
about the insurability of monoculture risks. Second, we propose to lower these
risks by investigating a scenario which provides direct incentives to increase the
security of widely used software products.

More specifically, we explore the proposal that cyber-insurers should take
a proactive approach to improve the security of widely used software products
in its customer population and to reduce its aggregate non-diversifiable risk.
Specifically, we study whether an insurance provider would find it beneficial to
adhere to the following two propositions: (1) An insurer should not ask compa-
nies to individually invest in security in exchange for lower premiums, which is
the currently dominant practice. (2) An insurer should rather invest the surplus
from the resulting higher premiums into making widely used software products
more secure. Measures facilitated by the insurer could include: (1) targeted direct
investments in software companies (similar to economically targeted investments
of public funds which aim to provide positive collateral benefits [15]), (2) vulner-
ability reward programs which benefit the software used by its customers, and
(3) the hiring of external developer teams for popular open-source software.

For the case of a monopolistic cyber-insurer, we provide evidence that this
approach is viable. We develop a model which captures the supply and demand
sides for insurance when security outcomes are related to the software prod-
ucts chosen by the insured companies, and insurers can invest in the security of
the utilized software. We provide theoretical results highlighting the computa-
tional complexity of the insurer’s decision-making problem, and propose differ-
ent heuristic strategies to allocate an investment budget to software security. We
demonstrate how investments in software security reduce the occurrence of non-
diversifiable risk and lower the insurer’s required safety capital. We further detail
the relative merits of the different heuristic strategies with numerical analysis.

The proposed approach would constitute a paradigm change for insurance.
We argue that novel ways to overcome the currently existing impediments are
needed to make cyber-insurance viable for non-diversifiable risks. The approach
is feasible because insurance companies are strongly incentivized to lower the
magnitude of non-diversifiable risks to reduce their probability of ruin, and they
have access to privileged information which could guide their investment deci-
sions. Finally, the approach would have significant positive spillover effects on
home users and other typically uninsured entities.

The remainder of this paper is organized as follows. In Sect. 2, we sum-
marize relevant previous work from the areas of cyber-insurance and software-
security investments. In Sect. 3, we introduce our modeling framework for cyber-
insurance. Then, we present our theoretical and numerical results in Sects. 4
and 5, respectively. Finally, in Sect. 6, we provide concluding remarks and out-
line future work.

486 A. Laszka and J. Grossklags

2 Related Work

2.1 Cyber-Insurance

A key objective of our work is to improve the insurability of risks from an
insurer’s perspective. A functioning market for cyber-insurance and a good
understanding of the insurability of diversifiable and non-diversifiable risks both
matter, because they signal that stakeholders are able to manage modern threats
that cause widespread damage across many systems [1,5]. However, the market
for cyber-insurance is developing at a frustratingly slow pace due to several
complicating factors, which are discussed in the detailed review of the security
economics and cyber-insurance literature by Böhme and Schwartz [7].

In particular, from an attacker’s perspective, a group of defenders might
appear as a very appealing target because of a high correlation in the risk
profiles of the defended resources. For example, even though systems may be
independently owned and administrated, they may exhibit similar software con-
figurations leading to monoculture risks [3,12]. Böhme and Kataria study the
impact of correlation which is readily observable for an insurer and found that
the resulting insurance premiums to make the risks insurable would likely endan-
ger a market for cyber-insurance [6]. Similarly, Chen et al. study correlated risks
by endogenizing node failure distribution and node correlation distribution [9].
Lelarge and Bolot model interdependent security with insurance, but assume
that there is an insurance provider with an exogenously priced premium [23].
Johnson et al. study the viability of insurance in the presence of weakest-link
interdependencies [17].

Non-diversifiable risks may also be caused by interdependent security issues,
which have been thoroughly studied outside the context of cyber-insurance
(e.g., [13,28]). These works have been reviewed by Laszka et al. [20]. Recently,
Johnson et al. investigated interdependent security from an insurance provider’s
perspective [18,19,21]. They found that real-world networked systems can
exhibit substantial non-diversifiable risk, and that estimating the magnitude of
this risk is a complex problem due to both theoretical and practical challenges.

2.2 Software Security Investments

Potential improvements to software security frequently focus on finding vulner-
abilities in deployed code which is also most relevant to our context (since we
focus on widely used software). Public vulnerability disclosure programs (VDP),
such as the BugTraq mailing list that emerged more than 20 years ago, have
been an important source for companies and the public to receive vulnerability
reports from white hats. See also recent work on the Wooyun VDP [29]. However,
there has always been a debate on whether VDPs are beneficial to society [10].
On the one hand, Rescorla showed that the pool of vulnerabilities in a software
product is very deep with respect to the effort and potential impact of vulnera-
bility discovery efforts [26]. On the other hand, Ozment showed that the pool of
vulnerabilities in OpenBSD 2.2 is being depleted and vulnerability rediscovery

Should Cyber-Insurance Providers Invest in Software Security? 487

is common. He concludes that vulnerability hunting by white hats is socially
beneficial [25].

Conceptual work has discussed different approaches to organize and design
vulnerability markets [4]. For example, Ozment proposed a vulnerability auction
mechanism that allows a software company to measure its software quality as well
as encourage vulnerability discovery at an acceptable cost [24]. In addition, some
companies such as Facebook, Google and Mozilla have established vulnerability
reward programs (VRP) that pay white hats to hack. A study based on the
Google VRP and Mozilla VRP has shown that harvesting vulnerabilities from
the white hat community is cost effective, and compares favorably to hiring
full-time vulnerability researchers [11].

3 Model

Now, we present our modeling framework for studying security investments for
cyber-insurance. First, in Sect. 3.1, we describe our model of software-security
investments and how software security determines the probability of a company
suffering an incident. Then, in Sect. 3.2, we discuss cumulative risks, that is, the
expected value and variability of the aggregate loss over all companies. Next,
in Sect. 3.3, we first describe the demand-side of the insurance model, which
is based on utility-maximizing risk-averse companies. Finally, in Sect. 3.4, we
discuss the supply-side and how the insurance provider’s profit is affected by
individual and cumulative risks. For a list of symbols used in this paper, see
Table 1.

3.1 Software Security and Individual Risks

We assume that there are N software products that the insurance provider might
invest into, and we let di denote the amount of resources that the provider invests
into the ith product. For every software product, there is a non-zero probability
that a new vulnerability is discovered and exploited before it is patched. We
call this probability the vulnerability level of software i and let Vi(di) denote
its value. We assume that the vulnerability level Vi decreases exponentially with
the value of the provider’s investment, that is,

Vi(di) = BV i · e−γidi , (1)

where BV i is the level of vulnerability when there is no security investment
from the provider, and γi is the efficiency of security investments into software
product i.

We assume that there are M companies that want to purchase insurance
from the provider. Each company j may use any subset Sj of all the N software
products in our model. We assume that each software product i ∈ Sj has a
vulnerability with Vi probability independently of the other software products,
and a company suffers an incident if any of its software products has a vulnera-
bility. Furthermore, a company may also suffer an incident due to an individual

488 A. Laszka and J. Grossklags

Table 1. List of Symbols

Symbol Description

Constants

BV i base vulnerability level of software i

γi efficiency of investing into software i

IRj individual risk of company j

Wj base wealth of company j

Lj loss of company j in case of an incident

I interest rate for the insurer

ε insurer’s probability of ruin

Variables and Functions

Vi vulnerability level of software i

Rj risk level of company j

di insurer’s investment into securing software i

D insurer’s sum investment into securing soft-
ware products (i.e., D =

∑
i di)

S insurer’s safety capital

vulnerability, such as a configuration error, which occurs with IRj probability.
Formally, the probability of company j suffering an incident, denoted by Rj , is

Rj = 1 − (1 − IRj)
∏

i∈Sj

(1 − Vi) . (2)

3.2 Cumulative Risk

In the previous subsection, we described a stochastic risk model that captures
security vulnerabilities and individual incidents. Now, consider an aggregate out-
come of this model:

1. each software product i had a vulnerability with probability Vi(di) (indepen-
dently of the other software products);

2. every company j that uses a vulnerable software had an incident;
3. each remaining company j had an incident with probability IRj (indepen-

dently of the other companies).

We are interested in the total amount of losses over all companies due to inci-
dents. Let Lj denote the loss suffered by company j when an incident happens,
and let TL denote the sum of the loss values Lj over all the companies j that
suffered incidents (either due to vulnerable software or due to individual vulner-
abilities).

First, notice that we can compute the expected total amount of losses E[TL]
easily as

E[TL] =
∑

j

LjRj , (3)

Should Cyber-Insurance Providers Invest in Software Security? 489

where each Rj can be computed efficiently (i.e., in polynomial time) using
Eq. (2).

On the other hand, measures of variability (e.g., variance) and quantiles can-
not be computed simply from the companies’ risk levels Rj , due to the correla-
tions between the incident events caused by the software products. For example,
consider two companies with R1 = R2 = 0.5 and L1 = L2 = 1. Then, from these
values only, we cannot determine the probability of both companies suffering an
incident (i.e., the probability Pr[TL = 2]): It is possible that the two companies
use completely different sets of software, which means that there are no correla-
tions between the incidents and Pr[TL = 2] = 0.25. However, it is also possible
that both companies use exactly the same set of software and IR1 = IR2 = 0,
which means that there is perfect correlation and Pr[TL = 2] = 0.5. In Sect. 4.1,
we will show that computing certain properties of TL, which are crucial to pro-
viding insurance, is in fact computationally hard.

3.3 Demand-Side Model

For a functioning cyber-insurance market, we need both demand and supply:
companies that are willing to purchase insurance and insurers that are willing
to provide it.

Now, we introduce our demand-side model, which is based on utility-
maximizing risk-averse companies. As it is usual in the literature (see, e.g., [6]),
we assume that companies have Constant Relative Risk Aversion (CRRA) util-
ity functions. Furthermore, we also assume that the constant of the relative risk
aversion is equal to 1, which means that for a given amount of wealth w, a
company’s utility is ln(w). Finally, we let the initial wealth of company j (i.e.,
the amount of wealth when no incident occurs) be denoted by Wj . Then, the
expected utility of company j is

Rj ln(Wj − Lj) + (1 − Rj) ln(Wj) . (4)

In the above equation, the first term corresponds to the case when the company
suffers an incident and loses Lj , which happens with probability Rj , and the sec-
ond term corresponds to the case when the company does not suffer an incident,
which happens with probability 1 − Rj .

Since companies are risk averse, they are interested in trading off expected
wealth for decreased risks. In the case of purchasing insurance, this means that
the company pays a fixed premium pj to the provider, but in case of an incident,
the provider will pay the amount of loss Li suffered by the company. Hence, when
company j purchases insurance for premium pj , its expected utility is simply

ln(Wj − pj) . (5)

As companies are assumed to be utility maximizing, it is optimal for company
j to purchase insurance if and only if its utility with insurance is greater than
or equal to its expected utility without insurance. Building on Eqs. 5 and 4, we
can express the condition for purchasing insurance as

490 A. Laszka and J. Grossklags

ln(Wj − pj) ≥ Rj ln(Wj − Lj) + (1 − Rj) ln(Wj) (6)

Wj − pj ≥ eRj ln(Wj−Lj)+(1−Rj) ln(Wj) (7)

pj ≤ Wj − eRj ln(Wj−Lj)+(1−Rj) ln(Wj) . (8)

In our model, we assume that all companies purchase insurance from the
provider, who chooses the maximum premiums such that purchasing insurance
is the optimal choice for the companies.

3.4 Supply-Side Model

Next, we discuss the final piece in our model, the supply-side of insurance.
We assume a monopolist insurance provider who maximizes its expected profit,
where profit is defined as the difference between income and expenditure. Besides
maximizing its profit, the insurance provider is also risk-averse in the sense that
it keeps the probability of ruin below a certain threshold by setting aside a safety
capital, which we will discuss shortly.

First, the insurance provider’s income is the sum of all the premiums paid
by the companies, that is,

Income =
∑

j

pj . (9)

Since the provider is assumed to be a monopolist, it can ask for the maximal
premium (see Eq. 8); hence, we can compute the income as

Income =
∑

j

Wj − eRj ln(Wj−Lj)+(1−Rj) ln(Wj) . (10)

We assume that insurance premiums are flexible in the sense that the premium
values pj are affected by the provider’s investments di: higher investment values
di lead to lower vulnerability values Vi, which in turn lead to lower risk levels
Rj and lower premiums pj . The flexibility of premiums poses challenges to the
provider, which we will discuss in Sect. 5.3.

Second, the insurance provider’s expected expenditure is

Expenditure = E[TL] +
∑

i

di + A + I · S , (11)

where

– E[TL] is the expected total amount of claims (i.e., the sum of the losses suffered
by the companies),

–
∑

i di is the total amount of investments into software security,
– A is the sum of all administrative costs,
– I is the interest rate,
– and S is the safety capital required to keep the probability of ruin below a

given probability ε.

Should Cyber-Insurance Providers Invest in Software Security? 491

The safety capital is set aside by the provider to ensure that it remains
solvent. To see why this capital is required, consider the total amount of losses
TL: On average, the insurance provider has to pay the expected value E[TL] of
these losses (hence the first term in the right-hand side of Eq. (11)). However, in
many outcomes, the realization of the total amount of losses TL exceeds E[TL];
hence, the provider has to set aside S to be able to pay all the claims. More
formally, the safety capital is the amount necessary to ensure that

Pr[TL > E[TL] + S] ≤ ε . (12)

Since this capital has to be set aside, the provider bears the opportunity cost I ·S.

4 Theoretical Results and Heuristic Investment
Strategies

In this section, we study the computational problems faced by the insurance
provider. First, in Sect. 4.1, we show that determining whether a given safety
capital is sufficient is computationally hard. Then, in Sect. 4.2, we prove that
simulations can approximate the amount of necessary safety capital and, hence,
the provider’s profit. Finally, in Sect. 4.3, we propose efficient heuristic invest-
ment strategies.

4.1 Complexity of Computing the Optimal Safety Capital

Assume for the following analysis that the security-investment values di are
given and fixed for every software product i, and the insurance provider’s deci-
sion space is limited to choosing the amount of safety capital S. Recall from
Eq. (11) that higher amounts of safety capital lead to higher expenditures for
the provider. Consequently, a rational and profit-maximizing provider will try
choose the minimum amount of safety capital that will keep its probability of
ruin below a threshold ε. We show that this problem is computationally chal-
lenging by proving that its decision version, that is, determining whether a given
amount of safety capital keeps the probability of ruin below ε, is an NP-hard
problem.

Theorem 1. Given a safety capital S and a threshold probability of ruin ε,
determining whether the probability of the total amount of losses TL exceeding
S + E[TL] is greater than or equal to ε is NP-hard.

The proof of the theorem can be found in AppendixA.1.

4.2 Approximating the Loss Distribution

From Theorem 1, we have that it is computationally hard to find the minimal
amount of safety capital that keeps the provider’s probability of ruin below
a given threshold ε. Consequently, computing the provider’s profit for given

492 A. Laszka and J. Grossklags

security-investment values (d1, . . . , dN) is also computationally hard, since the
provider’s expenditure is determined by the amount of safety capital.

However, we can approximate the minimal amount of safety capital using
simulations as follows. First, generate K outcomes of the risk model as described
in Sect. 3.2, and let tl1, tl2, . . . , tlK be the realizations of TL. Second, let the
approximate safety capital Ŝ be the �(1−ε)K�-th smallest realization (note that
if multiple realizations have the same value, they have to be counted separately).
The following theorem shows that the probability of ruin for the approximate
safety capital Ŝ converges quickly to the actual probability of ruin.

Theorem 2. Let TL1, TL2, . . . , TLK be K independent random variables having
the same distribution as TL, and let Ŝ be the �(1 − ε)K�-th smallest of these
random variables. Then,

Pr[TL > Ŝ] ≤ ε +
1
K

. (13)

The proof of the theorem can be found in AppendixA.2.

4.3 Investment Strategies

Since computing the provider’s profit is challenging, so is finding the investments
(d1, . . . , dN) that maximize the profit. In this subsection, we propose heuristic
investment strategies, which we will evaluate numerically in Sect. 5.

First, suppose that we are given an aggregate investment amount D, and our
goal is to find the optimal investments (d1, . . . , dN) satisfying

∑
i di = D, that

is, we have to divide the aggregate amount D among the N software products.
Here, we propose four heuristic strategies for dividing D: uniform, most-used,
proportional, and greedy. Then, we can find good investments (d1, . . . , dN) using
these heuristics by searching for the best value of D, which is a simple scalar
optimization problem.

Uniform. The uniform strategy invests the same amount into all software prod-
ucts. Formally, for every software product i,

di =
D

N
. (14)

The rationale behind this heuristic is that the provider needs to mitigate all
common vulnerabilities in order to decrease non-diversifiable risks.

Most-Used. The most-used strategy invests only into the most popular soft-
ware product. Let Pi denote the number of companies that use software product
i, that is, Pi = |{j : i ∈ Sj}|. Then, for every software product i,

di =

{
D if Pi = maxl Pl

0 otherwise.
(15)

Should Cyber-Insurance Providers Invest in Software Security? 493

The rationale behind this heuristic is that the provider needs to invest into the
most-used software only, since vulnerabilities in less popular software cannot
cause a large number of incidents.

Proportional. The proportional strategy invests into each software product an
amount that is proportional to the number of companies using that software.
Formally, for every software product i,

di =
Pi∑
l Pl

. (16)

This heuristic is a middle ground between the first two heuristics, combining
their advantages.

Greedy. The greedy strategy divides the aggregate investment amount D
according to the following greedy algorithm. First, let the investment into each
software be zero. Then, the investments are increased iteratively: in every itera-
tion, compute for each software product i how much would the profit increase if
we invested an additional δ into software i, and invest into the software product
for which the profit increase is maximal. Formally, the greedy strategy divides
the aggregate investment amount D as follows:

∀i : di ← 0
while

∑
i di < D do

for i = 1, . . . , N do
Profiti ← Profit(d1, . . . , di−1, di + δ, di+1, . . . , dN)

end for
i∗ ← argmaxiProfiti

di∗ ← di∗ + δ
end while

5 Numerical Results

In this section, we present numerical results on our insurance modeling frame-
work. With these results, we strive to answer two important questions:

– Can the insurance provider increase its expected profit by investing into soft-
ware security?

– Which heuristic investment strategy leads to the highest expected profit?

First, in Sect. 5.1, we describe how we instantiate our model. Then, in Sect. 5.2,
we present the resulting loss distributions both in the case of no software-security
investments and in the case of substantial investments. Finally, in Sect. 5.3, we
compare the various investment strategies in terms of expected profit to answer
the above questions.

494 A. Laszka and J. Grossklags

5.1 Setup

We instantiated the model with exemplary values to illustrate the relative effect
of the investment strategies. First, we generated a set of 15 software products
such that, for each software i,

– base vulnerability BV i was randomly drawn from [0.09, 0.11],
– investment efficiency γi was randomly drawn from [0.9, 1.1].

Second, we generated a set of 1500 companies such that, for each company j,

– individual risk IRj was randomly drawn from [0.4, 0.6],
– base wealth Wj was randomly drawn from [10, 20],
– loss in case of an incident Lj was randomly drawn from [0.25 · Wj , 0.75 · Wj].

For each company, we choose 3 software products to be used by the company
using a popularity-based preferential-attachment model as follows. For the first
few companies, the set of software products used by the company was chosen
uniformly at random. For the remaining companies, the probability of choosing
each software was proportional to the number of companies already using the
software. This process models the widely-observed phenomena in which busi-
nesses and people tend to choose more popular software products with higher
probability, leading to a long-tailed usage distribution [14,16].

Finally, we let the insurance provider’s probability of ruin ε be 0.1%, the
interest rate I be 5%, and the administrative costs A be 0 (i.e., negligible). Note
that the value of administrative costs does not affect our analysis, since it is a
constant term in the provider’s profit, which does not depend on the investment
strategy.

5.2 Distribution of the Total Amount of Losses

Figure 1a shows the distribution of the total amount of losses (or, equivalently,
the total amount of claims) without any security investments from the provider.
We can see that the distribution has a very heavy tail with multiple local max-
ima, each of which corresponds to vulnerabilities being discovered in one or
more widely used software products. Due to this heavy tail, the provider has to
set aside a substantial safety capital to avoid ruin: even though the expected
amount of claims to be paid is only E[TL] = 7 032 (marked by dotted blue
line on the plot), the amount exceeds 10 510 with probability 0.1%, that is,
Pr[TL > 10 510] = 0.1% (marked by dashed red line on the plot). Consequently,
in order to keep the probability of ruin below 0.1%, the provider has to set aside
a safety capital of 10 510 − 7 032 = 3 478.

Figure 1b shows the distribution of the total amount of losses with uniform
security investments di = 7.5 into every software product i. As expected, we can
see that the investments decrease both the expected value of the total amount of
losses (i.e., total amount of claims) and the necessary safety capital. The expected
amount of claims to be paid is E[TL] = 5 536 (marked by dotted blue line on
the plot), while the 0.999% quantile is 6 051, that is, Pr[TL > 6 051] = 0.1%
(marked by dashed red line on the plot). Hence, the amount of safety capital
that the provider needs to set aside is only 6 051 − 5 536 = 515.

Should Cyber-Insurance Providers Invest in Software Security? 495

0 0.5 1

·104

0

1

2

3

·10−2

Total losses TL

P
ro

b
a
b
il
it
y

(a) without any investments
(E[TL] = 7 032 and QTL(0.999) = 10 510)

0 0.5 1

·104

0.15

0.1

0.05

Total losses TL

P
ro

b
a
b
il
it
y

(b) with uniform investments di = 7.5
(E[TL] = 5 536 and QTL(0.999) = 6 051)

Fig. 1. Probability distribution of the total amount of losses with and without invest-
ments. The dotted blue lines mark the expected values, while the dashed red lines mark
the 99.9 % quantiles QTL(0.999) of the distributions (Color figure online).

5.3 Security Investment Strategies

Now, we compare the various investment strategies that we have introduced
in Sect. 4.3. For each investment strategy, we compute the insurance provider’s
income (see Eq. (10)), expenditure (see Eq. (11)), and profit for aggregate invest-
ment amounts D =

∑
i di ranging from 0 to 200. In each case, we divide the

aggregate investment amount D among the software products according to the
investment strategy (e.g., with uniform strategy, we let di = D

N), and approxi-
mate the resulting expenditure value using 500 000 simulations of the risk-model
outcome.

Recall from Sect. 3.4 that insurance premiums are flexible, that is, the pre-
mium values take into account the reductions in risk levels due to the provider’s
security investments. Consequently, as we increase the value of security invest-
ments, we will see a decrease not only in the provider’s expenditure, but also in
its income due to the decreasing premium values. If we assumed fixed premiums,
that is, if the premium values were determined by the base vulnerability levels,
then the provider’s profit would be strictly higher. Hence, by assuming flexible
premiums, we study the conservative scenario, where investments are less bene-
ficial for the insurer (or where the benefits of the security investments are shared
between the insurer and the insured companies).

First, Fig. 2a shows the provider’s income, expenditure, and profit for the uni-
form investment strategy. We observe that, as expected, the provider’s expen-
diture drops sharply at first as we increase the investments, due to the rapid
decrease in the non-diversifiable risks caused by software vulnerabilities and,
hence, in the necessary safety capital. However, once the aggregate investment
amount reaches around 110, further investments cannot significantly decrease

496 A. Laszka and J. Grossklags

0 100 200

6,000

7,000

8,000

Aggregate investment D

In
c
o
m
e
a
n
d

E
x
p
e
n
d
it
u
re

800

850

900

950

P
ro

fi
t

(a) uniform investment strategy

0 100 200

7,000

7,500

8,000

Aggregate investment D

In
c
o
m
e
a
n
d

E
x
p
e
n
d
it
u
re

700

800

P
ro

fi
t

(b) most-used investment strategy

Fig. 2. Income (green), expenditure (red), and profit (blue) of the uniform and the
most-used investment strategies for various aggregate security investments. Please note
that the scale of the vertical axis for the most-used strategy differs from that for the
other strategies (Color figure online).

the necessary safety capital; hence, the expenditure starts increasing due to the
increasing cost of investments. The provider’s income also drops sharply at first
as we increase the investments, due to the rapid decrease in risk levels and,
hence, in premium values. Even though the income decreases monotonically for
all investment values, once the aggregate investment reaches around 70, the
decrease becomes negligible.

On the other hand, the insurance provider’s profit is a highly irregular func-
tion of the aggregate investment amount, with many local maxima. These irreg-
ularities are caused by the combined effects of decreases in expenditure and
income, which make finding the optimal investment amount non-trivial. In this
example, the maximum profit for the uniform investment strategy is 962, and
the maximizing aggregate investment is 107.5. Note that this is substantially
better than the case of zero investments, where the profit is only 810.

Second, Fig. 2b shows the provider’s income, expenditure, and profit for the
most-used investment strategy. Similarly to what we observed for the uniform
strategy, we see that the provider’s expenditure and income drop sharply at first
as we increase the investment, while the profit increases rapidly. However, the
profit quickly reaches its maximum value 840 at the investment value 5; and after
this point, it decreases monotonically. The explanation for this is the following:
securing the most used software eliminates the non-diversifiable risk caused by
it, which has a substantial impact due to the large number of companies that are
affected; however, once this software product is secure, any further investments
will only increase the insurance provider’s investment costs without eliminating
the non-diversifiable risks caused by the other software. Compared to the other
investment strategies, the most used strategy is clearly inferior.

Third, Fig. 3a shows the provider’s income, expenditure, and profit for the
proportional investment strategy. Again, we see that the income and expenditure
take a sharp drop at first, after which the income decreases slowly but monoton-
ically, while the expenditure starts increasing after reaching its minimum at the

Should Cyber-Insurance Providers Invest in Software Security? 497

0 100 200

6,000

7,000

8,000

Aggregate investment D

In
c
o
m
e
a
n
d

E
x
p
e
n
d
it
u
re

800

850

900

950

P
ro

fi
t

(a) proportional investment strategy

0 100 200

6,000

7,000

8,000

Aggregate investment D

In
c
o
m
e
a
n
d

E
x
p
e
n
d
it
u
re

800

850

900

950

P
ro

fi
t

(b) greedy investment strategy

Fig. 3. Income (green), expenditure (red), and profit (blue) of the proportional and the
greedy investment strategies for various aggregate security investments (Color figure
online).

0 50 100 150 200
800

850

900

950

Aggregate investment D

P
ro

fi
t

Fig. 4. Profits of the proportional (solid line), uniform (dashed line), most-used (dotted
line), and greedy (red line) investment strategies for various investment values. Please
note that the profit of the most-used strategy is outside of the plotted vertical range
for investment values 50 and above (Color figure online).

aggregate investment 90. However, the profit is a surprisingly smooth function
of the investment: it is approximately concave with only a few local maxima,
none of which deviate from the general trend substantially.1 For this strategy,
the maximum profit is 967 and the maximizing investment value is 77.5, which
means that this strategy is slightly better than the uniform strategy, but the
difference is not significant.

Fourth, Fig. 3b shows the provider’s income, expenditure, and profit for the
greedy investment strategy with increment size δ = 2. We see that the income,
expenditure, and profit functions are all very similar to the ones plotted for

1 Note that these deviations do not diminish as we increase the number of iterations.

498 A. Laszka and J. Grossklags

the proportional strategy. However, both the maximal profit value 972 and the
maximizing investment value 96 are greater than those of the proportional strat-
egy, which shows that this strategy is superior. Furthermore, compared to not
investing in security, the maximum profit of the greedy strategy is 20% higher.

Finally, Fig. 4 compares the proportional (solid line), uniform (dashed line),
most-used (dotted line) and greedy (red line) investment strategies for various
aggregate investment amounts. This comparison shows how the greedy strategy
outperforms the other strategies: For lower investment amounts, where the pro-
portional strategy is optimal (among the considered strategies), the profit of the
greedy strategy is almost indistinguishable from that of the proportional strat-
egy. After the proportional strategy reaches its maximum at 77.5, the greedy
strategy keeps increasing, until it reaches its maximum at 96. Then, the profit
of the greedy strategy decreases until it reaches the maximum of the uniform
strategy at 96, after which the profits of the uniform and greedy strategies are
almost indistinguishable.

6 Conclusion

In this paper, we have introduced a model for cyber-insurance which incorpo-
rates software-security investments. Based on this model, we have shown that the
insurance provider’s decision-making involves computationally hard problems,
and we have proposed different heuristics for security investments. Using numer-
ical results, we have demonstrated that security investments can substantially
decrease non-diversifiable risks and increase the profitability of cyber-insurance.
Our results show that the viability of the cyber-insurance market, which has been
growing very slowly, could be increased through software-security investments.
Even though this approach requires a paradigm shift for insurance providers, we
believe that they are strongly incentivized to take such a more proactive role.

Our proposal would have significant positive spillover effects on home users
and other typically uninsured entities. In future work, we aim to quantify this
effect and to also explore the viability of the approach in competitive insurance
markets when multiple insurers have to make decisions about which software
products to improve.

Acknowledgments. We thank the reviewers for their comments. We gratefully
acknowledge the support by the National Science Foundation under Award CNS-
1238959, and by the Penn State Institute for CyberScience.

A Proofs

A.1 Proof of Theorem1

Proof. We prove NP-hardness by showing that a well-known NP-hard problem,
the Set Cover Problem, can be reduced to the above decision problem in polyno-
mial time. Given an instance of the Set Cover Problem, that is, a base set U , a

Should Cyber-Insurance Providers Invest in Software Security? 499

set of subsets F , and limit k on the number of subsets, we construct an instance
of our problem as follows:

– For every element of the base set U , there exists a corresponding company.
– For every set in F , there exists a corresponding software product.
– Let the vulnerability level Vi of every software be 1

|F|! .
– Let the individual risk IRj and loss Lj of every company be 0 and 1, respec-

tively.
– Let company j use software i if and only if the corresponding element j is a

member of the corresponding set i.
– Let the safety capital S be |U | − 1 − E[TL].
– Finally, let the probability ε be 1

|F|!k .

Firstly, observe that the above reduction can be performed out in polynomial
time.

Next, observe that, in the above instance of our problem, the safety capital S
is insufficient to cover all claims if and only if TL =

∑
j Lj = |U |, that is, if and

only if all companies suffer an incident. Since the individual risk IRj of every
company is 0, this can happen iff, for every company i, there is a vulnerable
software product j that is used by i. In other words, it can happen iff the sets
in F corresponding to the compromised software form a cover of the base set
U . Hence, it remains to show that the probability of the compromised software
forming a set cover is greater than or equal to ε if and only if there exists a set
cover of size at most k.

First, suppose that there exists a set cover C such that |C| ≤ k. Then, the
probability of all the software products corresponding to the sets in C being
vulnerable is 1

|F|!k . Since C is a set cover, for every company j, there exists a
software product i such that j uses i. Thus, with probability at least 1

|F|!k , every
company will suffer an incident and the total amount claims TL will exceed
S + E[TL].

Second, suppose that, for every set cover C, |C| > k. Then, the probability of
every company suffering an incident is

Pr[TL > S + E[TL]] = Pr
[

some collection C of software
forming a cover of U is vulnerable

]
(17)

= Pr
[

some collection C of software
such that |C| > k is vulnerable

]
(18)

=
|F|∑

l=k+1

(|F|
l

)(
1

|F|!
)l

(19)

< |F|!
(

1
|F|!

)k+1

(20)

=
(

1
|F|!

)k

= ε . (21)

500 A. Laszka and J. Grossklags

Since the inequality is strict, we have that the probability of ruin is less than ε
if there is no set cover size at most k, which concludes our proof. 	

A.2 Proof of Theorem2

Proof. Let A1, A2, . . . , AK , AK+1 be K + 1 independent random variables hav-
ing the same distributions as TL. Then, since all the random variables in
A1, . . . , AK+1 are independent, it follows readily from the definition of Ŝ
that Pr[TL > Ŝ] is equal to the probability of a randomly chosen vari-
able in A1, . . . , AK+1 being greater than �(1 − ε)K� of the other variables in
A1, . . . , AK+1.

Now, we introduce an upper bound for the latter probability as follows.
Suppose that we order the realizations a1, . . . , aK+1 of the random variables
A1, . . . , AK+1 according to their values, with equal realizations being ordered in
an arbitrary way. Then, the probability of a randomly chosen variable Ai being
greater than �(1−ε)K� other variables is less than or equal to the probability of
choosing a random variable whose realization is not among of the first �(1−ε)K�
realizations, that is, choosing a random variable whose realization is among the
last K + 1 − �(1 − ε)K� realizations. Note that the two probabilities are not
necessarily equal because multiple realizations may have the same value. Since
we choose a variable from A1, . . . , AK+1 at random, the probability of picking
one whose realization is among the last K + 1 − �(1 − ε)K� realizations is

K+1−�(1−ε)K�
K+1 (22)

= K+1−(K−�εK�)
K+1 (23)

= 1+�εK�
K+1 (24)

≤ 1+εK
K (25)

= ε + 1
K . (26)

Consequently, Pr[TL > Ŝ] has to be less than or equal to ε + 1
K . 	

References

1. Anderson, R.J.: Liability and computer security: nine principles. In: Gollmann, D.
(ed.) ESORICS 1994. LNCS, vol. 875, pp. 231–245. Springer, Heidelberg (1994)

2. August, T., Tunca, T.: Who should be responsible for software security? A com-
parative analysis of liability policies in network environments. Manag. Sci. 57(5),
934–959 (2011)

3. Birman, K., Schneider, F.: The monoculture risk put into context. IEEE Secur.
Priv. 7(1), 14–17 (2009)

4. Böhme, R.: A comparison of market approaches to software vulnerability disclo-
sure. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 298–311. Springer,
Heidelberg (2006)

5. Böhme, R.: Towards insurable network architectures. IT - Inf. Technol. 52(5),
290–293 (2010)

Should Cyber-Insurance Providers Invest in Software Security? 501

6. Böhme, R., Kataria, G.: Models and measures for correlation in cyber-insurance.
In: Proceedings of the 5th Workshop on the Economics of Information Security
(WEIS) (2006)

7. Böhme, R., Schwartz, G.: Modeling cyber-insurance: Towards a unifying frame-
work. In: Proceedings of the 9th Workshop on the Economics of Information Secu-
rity (WEIS) (2010)

8. Brodkin, J.: Google and Samsung soar into list of top 10 Linux contribu-
tors (2013). http://arstechnica.com/information-technology/2013/09/google-and-
samsung-soar-into-list-of-top-10-linux-contributors/

9. Chen, P., Kataria, G., Krishnan, R.: Correlated failures, diversification, and infor-
mation security risk management. MIS Q. 35(2), 397–422 (2011)

10. Egelman, S., Herley, C., van Oorschot, P.: Markets for zero-day exploits: ethics
and implications. In: Proceedings of the 2013 New Security Paradigms Workshop
(NSPW), Banff, Canada, pp. 41–46 (2013)

11. Finifter, M., Akhawe, D., Wagner, D.: An empirical study of vulnerability rewards
programs. In: Proceedings of the 22nd USENIX Security Symposium, Washington,
DC, August 2013

12. Geer, D., Pfleeger, C., Schneier, B., Quarterman, J., Metzger, P., Bace, R.,
Gutmann, P.: Cyberinsecurity: The cost of monopoly. How the dominance of
Microsoft’s products poses a risk to society (2003)

13. Grossklags, J., Christin, N., Chuang, J.: Secure or insure?: a game-theoretic analy-
sis of information security games. In: Proceedings of the 17th International World
Wide Web Conference, pp. 209–218 (2008)

14. Hanson, W., Putler, D.: Hits and misses: Herd behavior and online product pop-
ularity. Mark. Lett. 7(4), 297–305 (1996)

15. Hoffer, D.: A survey of economically targeted investments: opportunities for public
pension funds (2004). http://www.vermonttreasurer.gov/sites/treasurer/files/pdf/
misc/econTargetInvestReport20040216.pdf

16. Huang, J., Chen, Y.: Herding in online product choice. Psychol. Mark. 23(5), 413–
428 (2006)

17. Johnson, B., Böhme, R., Grossklags, J.: Security games with market insurance.
In: Baras, J.S., Katz, J., Altman, E. (eds.) GameSec 2011. LNCS, vol. 7037, pp.
117–130. Springer, Heidelberg (2011)

18. Johnson, B., Laszka, A., Grossklags, J.: The complexity of estimating systematic
risk in networks. In: Proceedings of the 27th IEEE Computer Security Foundations
Symposium (CSF), pp. 325–336 (2014)

19. Johnson, B., Laszka, A., Grossklags, J.: How many down? toward understanding
systematic risk in networks. In: Proceedings of the 9th ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS), pp. 495–500 (2014)

20. Laszka, A., Felegyhazi, M., Buttyan, L.: A survey of interdependent information
security games. ACM Comput. Surv. 47(2), 23:1–23:38 (2014)

21. Laszka, A., Johnson, B., Grossklags, J., Felegyhazi, M.: Estimating systematic risk
in real-world networks. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 412–430. Springer, Heidelberg (2014)

22. Laszka, A., Johnson, B., Schöttle, P., Grossklags, J., Böhme, R.: Managing the
weakest link. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 273–290. Springer, Heidelberg (2013)

23. Lelarge, M., Bolot, J.: Economic incentives to increase security in the internet: the
case for insurance. In: Proceedings of the 33rd IEEE International Conference on
Computer Communications (INFOCOM), pp. 1494–1502 (2009)

http://arstechnica.com/information-technology/2013/09/google-and-samsung-soar-into-list-of-top-10-linux-contributors/
http://arstechnica.com/information-technology/2013/09/google-and-samsung-soar-into-list-of-top-10-linux-contributors/
http://www.vermonttreasurer.gov/sites/treasurer/files/pdf/misc/econTargetInvestReport20040216.pdf
http://www.vermonttreasurer.gov/sites/treasurer/files/pdf/misc/econTargetInvestReport20040216.pdf

502 A. Laszka and J. Grossklags

24. Ozment, A.: Bug auctions: vulnerability markets reconsidered. In: Proceedings of
the 3rd Workshop on the Economics of Information Security (WEIS), Minneapolis,
MN, May 2004

25. Ozment, A.: The likelihood of vulnerability rediscovery and the social utility of
vulnerability hunting. In: Proceedings of the 4th Workshop on the Economics of
Information Security (WEIS), Cambridge, MA, June 2005

26. Rescorla, E.: Is finding security holes a good idea? IEEE Secur. Priv. 3(1), 14–19
(2005)

27. Schneier, B.: Schneier on security: liability changes everything (2003). https://
www.schneier.com/essays/archives/2003/11/liability changes ev.html

28. Varian, H.: System reliability and free riding. In: Camp, J., Lewis, S. (eds.) Eco-
nomics of Information Security, pp. 1–15. Kluwer Academic Publishers, Dordrecht
(2004)

29. Zhao, M., Grossklags, J., Chen, K.: An exploratory study of white hat behaviors in
a web vulnerability disclosure program. In: Proceedings of the 2014 ACM Workshop
on Security Information Workers (SIW), pp. 51–58 (2014)

https://www.schneier.com/essays/archives/2003/11/liability_changes_ev.html
https://www.schneier.com/essays/archives/2003/11/liability_changes_ev.html

Lightweight and Flexible Trust Assessment
Modules for the Internet of Things

Jan Tobias Mühlberg(B), Job Noorman, and Frank Piessens

iMinds-DistriNet, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
jantobias.muehlberg@cs.kuleuven.be

Abstract. In this paper we describe a novel approach to securely obtain
measurements with respect to the integrity of software running on a low-
cost and low-power computing node autonomously or on request. We
propose to use these measurements as an indication of the trustwor-
thiness of that node. Our approach is based on recent developments in
Program Counter Based Access Control. Specifically, we employ San-
cus, a light-weight hardware-only Trusted Computing Base and Pro-
tected Module Architecture, to integrate trust assessment modules into
an untrusted embedded OS without using a hypervisor. Sancus ensures
by means of hardware extensions that code and data of a protected
module cannot be tampered with, and that the module’s data remains
confidential. Sancus further provides cryptographic primitives that are
employed by our approach to enable the trust management system to
verify that the obtained trust metrics are authentic and fresh. Thereby,
our trust assessment modules can inspect the OS or application code and
securely report reliable trust metrics to an external trust management
system. We evaluate a prototypic implementation of our approach that
integrates Sancus-protected trust assessment modules with the Contiki
OS running on a Sancus-enabled TI MSP430 microcontroller.

Keywords: Internet of Things ·Wireless sensor networks · Trust assess-
ment · Trust management · Protected software modules

1 Introduction

In the past decades, security research and security practice has focused on desk-
top and server environments. While threats to these systems grew with increased
interconnectivity and deployment in safety-critical environments, elaborate secu-
rity mechanisms were added. Of course these mechanisms impose certain costs in
terms of a performance decrease on the host system. However, with the availabil-
ity of more potent hardware, these costs quickly became acceptable to a degree
where virus scanners, firewalls and intrusion detection systems can operate in
the background of every modern off-the-shelf PC.

Ongoing developments in our ever-changing computing environment have
lead to a situation where every physical object can have a virtual counterpart
on the Internet. These virtual representations of things provide and consume
c© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 503–520, 2015.
DOI: 10.1007/978-3-319-24174-6 26

504 J.T. Mühlberg et al.

services and can be assigned to collaborate towards achieving a common goal.
While this Internet of Things (IoT) brings us unpreceded convenience through
novel possibilities to acquire and process data from our environment, the situa-
tion with respect to the safe and secure deployment and use of such extremely
interconnected devices is quite different from the server-and-desktop world [26].

Devices in the IoT may be equipped with inexpensive low-performance micro-
controllers that provide just enough computing power to periodically perform
their intended tasks, i.e. obtain sensor readings and communicate with other
nodes. Many nodes are required to operate autonomously for extended periods
of time, solely relying on battery power as they are deployed in environments
where maintenance is difficult or even impossible. Yet, all these devices are inter-
connected and thereby exposed to physical as well as virtual attacks. Even if we
do not consider malicious attempts to disrupt a node’s function, the autonomous
mode of operation, exposure to harsh environmental conditions and the resource
scarceness of small microcontrollers, make these systems prone to malfunction
and the effects of software aging [7] – while other systems may critically depend
on the reliability and timeliness of information obtained from these devices.

The problem of trustworthiness and trust management of low-power low-
performance computing nodes has been discussed in previous research, in partic-
ular in the context of Wireless Sensor Network (WSNs) [12,16,19]. Importantly,
most techniques proposed in this field focus on observing the communication
behaviour and on validating the plausibility of sensor readings obtained from
network nodes so as to assess the trustworthiness of these nodes. This approach
to trust management is suitable to detect the systematic failure or misbehav-
iour of single nodes. However, failures or misbehaviour of a node may not be
detected immediately: the quality of readings from a sensor may degrade gradu-
ally, software failures may lead to non-deterministic behaviour or a node may be
captured by an attacker, exposing benign and malicious behaviour alternately.
In all these cases the malfunctioning node may produce a number of measure-
ments that are accepted as trustworthy by the network before the network will
begin to distrust the node. We believe that this shortcoming can be mitigated
by employing light-weight security mechanisms that guarantee the integrity and
secrecy of programs and data directly on WSN or IoT nodes. An approach to do
so with only marginal interference with legacy code is presented in this paper.

Our Contribution. We describe a novel approach to securely obtain measurements
with respect to the integrity of the software that runs on a minimalist comput-
ing node autonomously or on demand. We use these measurements as an indica-
tion of the trustworthiness of that node. Our approach is based on Sancus [23], a
light-weight hardware-only Trusted Computing Base (TCB) and Protected Mod-
ule Architecture (PMA) [28]. Sancus allows us to integrate trust assessment mod-
ules into a largely unmodified and untrusted embedded Operating System (OS)
without using techniques such as virtualisation and hypervisors, which would incur
unacceptable performance overheads for many embedded applications.

Sancus targets low-cost embedded systems which have no virtual memory.
Recent research on Program Counter Based Access Control (PCBAC) [30] shows

Lightweight and Flexible Trust Assessment Modules 505

that, in this context, the value of the program counter can be used unambigu-
ously to identify a specific software module. Whenever the program counter is
within the address range associated with the module’s code, the module is said to
be executing. Memory isolation can then be implemented by configuring access
rights to memory locations based on the current value of the program counter.

Sancus also provides attestation by means of built-in cryptographic prim-
itives to provide assurance of the integrity and isolation of a given Protected
Module (PM) to a third party. By using this feature, our trust assessment mod-
ules can be deployed dynamically, limiting memory consumption and restricting
attacker adaptation. The module may then inspect the OS or application code
and securely report trust metrics to an external trust management system.

Beyond trust assessment, our approach can be used to remotely test and
debug code on a node and to facilitate the deployment of formally verified code in
an untrusted context [1]. We describe and evaluate a prototypic implementation
of our approach that integrates Sancus-protected trust assessment modules with
the Contiki [9] OS, running on a Sancus-enabled TI MSP430 microcontroller, a
single-address-space architecture with no memory management unit. The source
code of the evaluation scenario is available at http://distrinet.cs.kuleuven.be/
software/sancus/esorics15/.

2 Background

This section provides background information on the IoT and the Contiki OS,
which enables extremely light-weight hardware such as TI MSP430 microcon-
trollers to be active components in the IoT. We emphasise on safety and security
limitations of this setup and outline key features of the Sancus PMA as a way
to cope with these limitations.

2.1 Contiki and the IoT

Contiki [9] is one of the most used OSs in the IoT. It is open source and designed
for portability and to have a small memory footprint. Contiki readily runs on
a range of different hardware platforms, including a number of small 8-bit and
16-bit microcontrollers, including the TI MSP430. On these machines, a Contiki
system that supports full IPv6 networking can be deployed in less that 10 KiB
of RAM and 30 KiB of ROM. While the IoT certainly requires the use of light-
weight software on similarly light-weight, low-cost and low-power hardware, the
use of this kind of configurations comes at the expense of safety and security.
That is, microcontrollers such as the TI MSP430 do not feature the hierarchi-
cal protection domains, virtual memory and process isolation that are known
as key mechanisms to implement safe and secure operation in the server and
desktop world. Moreover, implementing computationally expensive cryptogra-
phy and complex secure networking protocols is often contradictory with the
constraints on power consumption and computation power on tiny autonomous
devices. As a result, one would expect WSNs or the IoT in general to become a

http://distrinet.cs.kuleuven.be/software/sancus/esorics15/
http://distrinet.cs.kuleuven.be/software/sancus/esorics15/

506 J.T. Mühlberg et al.

safety hazard and a key target for attacks in the near future [26]. Recent attacks
on Internet connected light bulbs [6] already give an outline of this future.

In particular the lack of protection domains on extremely light-weight hard-
ware makes it very difficult to implement extensible systems securely since soft-
ware components cannot easily be isolated from each other. In the remainder of
this section we present the features of Sancus, a hardware-only TCB and PMAs
that aims to mitigate this difficulty.

2.2 PMAs and Sancus

Sancus [23] guarantees strong isolation of software modules, which are generally
referred to as Protected Modules or PM, through low-cost hardware extensions.
Moreover, Sancus provides the means for remote parties to attest the state of,
or communicate with, the isolated software modules.

Isolation. Like many PMAs [28], Sancus uses Program Counter Based Access
Control (PCBAC) [30] to isolate PMs. Software modules are represented by a
public text section containing the module’s executable code and a private data
section containing data that should be kept private to the module. The core
of the PCBAC model is that the private data section of a module can only be
accessed from code in its public text section. In other words, if and only if the
program counter points to within a module’s code section, memory access to
this module’s data section is allowed.

To prevent instruction sequences in the code section from being misused
by external code to extract private data, entry into a module’s code section
should be controlled. For this purpose, PMAs allow modules to designate certain
addresses within their code section as entry points. Code that does not belong
to a module’s code section is only allowed to jump to one of its entry points. In
Sancus, every module has a single entry point at the start of its code section.
Table 1 gives an overview of the access control rules enforced by Sancus.

Attestation. Sancus allows external parties to verify the correct isolation of a
module as well as to securely communicate with it. For this, Sancus extends the
underlying MSP430 processor with a cryptographic core that includes symmetric

Table 1. Memory access control rules enforced by Sancus using the traditional Unix
notation. Each entry indicates how code executing in the “from” section may access
the “to” section. The “unprotected” section refers to code that does not belong to
a PM.

From/to Entry Text Data Unprotected

Entry r-x r-x rw- rwx

Text r-x r-x rw- rwx

Unprotected/

Other SM r-x r-- --- rwx

Lightweight and Flexible Trust Assessment Modules 507

authenticated encryption and key derivation primitives. Sancus also defines a key
hierarchy to ease the establishment of a shared symmetric key.

The root of this hierarchy is a node master key, KN . This node-unique key
is known only to the owner of the node and is not accessible by software. Each
software provider that wants to deploy modules on a node gets assigned a unique
ID, SP, by the node’s owner. This ID is then used to derive a software provider
key, KN,SP, from KN and the software provider is provided with this key along
with its ID. The last level in the key hierarchy is the software module key,
KN,SP,SM. This key is derived from KN,SP using the module identity SM. The
identity of a module is defined as the concatenation of the contents of its text
section and the load addresses of its text and data sections.

When a module is isolated, the hardware will first derive KN,SP and then use
that key to derive KN,SP,SM. Sancus enforces that this key is only accessible by
the newly isolated module. This construction ensures that (1) the key KN,SP,SM

can only be used by a module with identity SM deployed by software provider
SP on node N ; and (2) isolation has been enabled for this module.

Since the software provider has access toKN,SP, it can also calculateKN,SP,SM.
The latter key can then be used as the basis for attestation and secure communica-
tion. Indeed, because of the properties listed above, if the software provider receives
a message created with KN,SP,SM, it will have strong guarantees that this message
was created by a module with identity SM isolated on node N .

3 Trust Assessment Modules

Our approach to trust assessment is designed to integrate seamlessly with the
deployment of low-cost and low-power hardware in WSNs and in the IoT. In
particular, we make use of a Sancus-enabled CPU to run a protected trust
assessment module and to facilitate secure and authenticated communication
with a remote operator of this module. This operator can be, for example, a
human operator with a particular interest in inspecting a specific device, or a
trust management system that keeps track of the integrity and trustworthiness
of a larger network of devices. Our trust assessment module executes as a PM,
in isolation from a base of largely unmodified and generally untrusted OS and
application code. Yet, our approach partially relies on services provided by this
untrusted code, e.g. networking, scheduling and memory management, in a way
such that failure is detected by the trust assessment module or by the remote
operator. Trust assessment modules are capable of inspecting and modifying the
state of the untrusted OS and applications autonomously or on request, giving
the operator a trustworthy means of assessing the integrity of the software on a
node and to take actions accordingly.

In this section we describe the process of deploying and communicating with
Sancus-protected trust assessment modules and discuss inspection targets and
trust metrics. We further outline weaknesses and attack scenarios to our app-
roach. While the examples in this section are given with respect to the Contiki
OS and its internals, we believe that our approach can be easily adapted to sup-
port other OSs in the domain of the IoT, such as TinyOS [18] or FreeRTOS [5].

508 J.T. Mühlberg et al.

3.1 Module Deployment

This section describes how the operator of a trust assessment module can deploy
such a module on a Sancus-enabled computing node. We focus on getting assur-
ance of correct deployment and on establishing a secure and authenticated
communication channel with the module. The principal deployment process
is originally described in [23], where details on the underlying cryptographic
machinery are given. Figure 1 illustrates the process and highlights the TCB. In
summary, each Sancus-enabled computing node N possesses a unique node mas-
ter key, KN , which is managed by the hardware, not directly accessible by the
software running on the node, and shared only with the Infrastructure Provider
(IP). It is the responsibility of the IP to manage the hardware and deployment
of the nodes, and to derive a software provider key, KN,SP , for each party that
is to install PMs on the node N . We refer to these parties as Software Provider
(SPs); they are identified by a unique public ID SP . KN,SP is computed using
a key derivation function that takes KN and SP as input. The computing node
includes a hardware implementation of this derivation function so as to inde-
pendently compute KN,SP . Thus, KN,SP is shared between the IP, an SP and a
specific node N .

The SP, in our scenario equivalent with the operator or Trust Management Sys-
tem, may now deploy a trust assessment module on N . This module can be sent as
a binary program over an untrusted network and be loaded by an untrusted loader
on the node. Each software module has a unique identity SM , which comprises of
the module’s text section (code) and the effective start and end-addresses of the

Fig. 1. Deployment of a trust assessment module on a Sancus node. The TCB, from
the perspective of the operator, is shaded in orange.

Lightweight and Flexible Trust Assessment Modules 509

loaded module’s text- and protected data sections. As the module is loaded, the
Sancus-enabled hardware computes a secret softwaremodule key KN,SP,SM , which
is derived from KN,SP and SM , and stored in hardware. Software cannot access
KN,SP,SM directly but may use it to encrypt or decrypt data. The SP may derive
KN,SP,SM if he is provided with a symbol table of the linked module, containing
the start and end-addresses of the module’s text- and protected data sections and
the effective addresses of library code used by the module. This layout informa-
tion is not confidential and may be transferred by the module loader back to the SP
without integrity protection.1 As can be seen, the proceeding outlined above estab-
lishes a shared secret between the SP and the correctly deployed PM SM on node
N . All further data exchanged between these two parties can be encrypted with
KN,SP,SM , providing a secure and authenticated channel. Nonces may be used to
guarantee freshness of messages.

The trust assessment module SM is now ready to execute on the computing
node and may access all data and code on that node, with the exception of
data belonging to other PMs. Consequentially, the module may inspect arbitrary
address ranges and report its findings to the operator as an indication of the
trustworthiness of the node. In the following section we discuss a number of
these trust indicators in detail.

3.2 Trust Indicators

Our approach to trust assessment readily supports measuring a number of trust
indicators as listed and explained in detail below. Importantly, our system is
not limited to these indicators and we believe that additional or alternative
indicators may be more suitable for specific application scenarios. Research, in
particular in the context of software aging and software rejuvenation [7] names
many such indicators that may be securely measured using our approach.

Code Integrity. A particularly useful measurement is code integrity. Sancus-
enabled hardware features a keyed cryptographic hash function to compute a
Message Authentication Code (MAC) of a section of memory using the module’s
secret key. This MAC may then either be reported to the remote operator or
be compared with a MAC stored in the secret section of the trust assessment
module in autonomous operation. Code integrity checks with a MAC are used
by the trust assessment module to establish whether a particular section of
code has been modified, which is then securely communicated to the operator.
Unexpected code modifications may be caused by an attack against the device
or by a malfunction. Candidates for integrity checks are core functions of the OS
such as the scheduler, the memory management system or the network stack,
or application code. MACing all code sections is technically feasible but may
impose unacceptable computational overheads.
1 It is possible for an attacker to modify the module or layout information during load-

ing. However, this will be detected as soon as SM communicates with SP. Successful
communication attests that SM has not been compromised during deployment to N
and that the hardware protection has been correctly activated.

510 J.T. Mühlberg et al.

OS Data Structures. Trust assessment modules are further capable of inspect-
ing and reporting the content of internal data structures of the OS. Interesting
candidates for this are the process table or the interrupt vector table. Similar to
code integrity checks, unexpected changes of these data structures are a strong
indication of a malfunction or a successful attack against a device.

Available Resources. A group of indicators that is heavily used in the domain of
software aging is the availability of resources such as memory and swap space:
as software runs for extended periods of time, small memory leaks can accu-
mulate and degrade performance, eventually leading to failure. In the context
of Contiki and the MSP430 we use the general availability of program memory
and data memory and the size of the largest available chunks of these as trust
indicators. The chunk size is an important characteristic as our architecture does
not feature a Memory Management Unit that could mitigate the fragmenting
effect of repeated allocation and deallocation. Importantly, reliably measuring
the availability of program and data memory requires implementing part of the
allocator, typically a OS component, as part of the trust assessment TCB.

Application Data Structures. Similar to monitoring OS data structures, we have
experimented with using application data as trust indicators. For example, on
WSN nodes that run a webserver, activity can be measured by monitoring the
length of the request queue. Also static content that is used to compile dynamic
websites can be inspected to detect modification due to a bug or a malicious
attempt. Generally all these measures are highly specific with respect to critical
use cases of a node.

Event Occurrence and Timing. A key feature of our trust assessment infrastruc-
ture is to monitor and attest intentional activity on a node. More specifically,
by integrating part of the OS’s scheduler into the TCB, our approach can attest
when critical code on a node has been executed. This allows an operator to infer
which parts of a node are behaving within expected parameters.

Combined Indicators. In particular in the context of autonomous operation of
a trust assessment module, combining trust indicators is desired so as to auto-
matically adapt to changing deployment scenarios. In particular, we have experi-
mented with modules that combine the inspection of OS data structures, i.e. the
process table, and periodically performing integrity checks on the functions asso-
ciated with each process. This can be interleaved with measuring the frequency
of process invocation and execution times, giving the operator a detailed pic-
ture of the behaviour of a computing node and allowing for specific autonomous
responses to faults.

3.3 Fault Recovery

As a trust assessment module or the operator detect anomalies on a node, the mod-
ule is even capable of responding to the situation. Responses may range from a

Lightweight and Flexible Trust Assessment Modules 511

simple reset of the node over a more thorough investigation of the fault up to
actively manipulating the system state and restoring damaged code and data.

4 Evaluation

We have implemented the approach described in the previous section as a num-
ber of flexibly configurable trust assessment modules that can be loaded into
a Contiki OS at runtime. In this section we evaluate our implementation with
respect to overheads in terms of module sizes and runtime. We further discuss
security gains, attack scenarios and their mitigation.

4.1 Scenario and Implementation

Our prototypic implementation is based on a developmental version of Contiki
3.x running on a Sancus-enabled openMSP430 [15,23]. We evaluate an appli-
cation scenario in which the trust assessment module regularly reports on the
application processes running on a node, periodically checks the integrity of a
number of code sections of these processes and integrates with Contiki’s sched-
uler to detect and log process invocations. We have further added a public entry
point to the trust assessment module that allows an application to register invari-
ant address ranges, which are then included in periodic integrity checks. This
section gives an overview of entry points and the internal behaviour of our trust
assessment module and the demo scenario.

As outlined in Table 2, our example module provides a number of entry points
to be called from unprotected code. Most importantly, the TAMainFunc is invoked
by the scheduler. In a first run, it will initialise internal data structures of the
module and then populate these data structures with initial measurements from
the unprotected OS. This involves shadowing part of the scheduler’s process list
and MACing the process functions and the interrupt vector table. Subsequent

Table 2. Entry Points of our trust assessment module.

Function Name Description

TAMainFunc Main entry point controlling initialisation and periodic
behaviour

TARegisterInvar Can be used by application code and internally to register
an address range for regular integrity checks

TASecureCallProcess Used by the OS scheduler to invoke application functions;
the trust assessment module extends the call with
counting the number of invocations and measuring time

TAInvarsStatus Returns an encrypted status report on the integrity checked
address ranges

TAProcessStatus Returns an encrypted status report on the processes
currently running on a node

512 J.T. Mühlberg et al.

Table 3. Size and execution time of different trust assessment components on an
MSP430 running at 20MHz: 1 cycle corresponds to 50 ns. Function sizes include pro-
tected helper functions.

Function Size in Bytes Runtime in Cycles Description

TACoreEnable 58 236,440 Enables module protection and initiates key

generation

TAMainFunc 430 578 Main function, initialisation

73,678 . . . validation run (5 processes, 9 integrity checks)

TARegisterInvar 402 1,242 Stores meta-data and MACs of 32 B

10,762 . . . 199 B

19,930 . . . 399 B

TACheckInvars 498 69,659 Checks integrity of 9 address ranges (1833 B)

TAAddProcess 568 ≤ 18,374 Shadows and entry from the process list and

determines length of process function

TACheckProcesses 288 2,371 Checks shadowed process data against process list

(5 processes)

TASecureCallProcess 392 266 Process invocation with no logging

≤ 731 . . . logs time and number of invocations

TAInvarsStatus 202 10,254 Encrypts meta-data on integrity-checked code and

data (160 B + 16 B nonce)

TAProcessStatus 202 17,488 Encrypts meta-data on running processes (320 B +

16 B nonce)

total 3,742 n/a Code (.text) and data (part of .bss)

invocations result in the current state of the unprotected OS being compared
with the internal state of the module. In addition, TASecureCallProcess is used
by the scheduler to start process functions. As this function is part of the trust
assessment module, it can securely log which process is invoked and keep track
of meta data. Of course, all data, including MACs and meta data on process
invocations is stored in the trust assessment module’s private data section. The
functions TAInvarsStatus and TAProcessStatus return a snapshot of this data,
encrypted with the module’s KN,SP,SM and using a nonce to guarantee freshness.
Thus, the module’s state can be reported to the operator for further assessment.

To test the effectiveness of our trust assessment module, our scenario inte-
grates a number of trivial application processes and a “malicious” process that
aims to perform alterations to OS data and application code. Specifically, our
attacker is invoked by an event timer. With every invocation it performs one
of the following random actions: do nothing, modify a function pointer in the
process list, remove an entry from the process list, overwrite a process function, or
modify an entry in the interrupt vector. Event timing and the Contiki’s scheduler
typically result in alternating invocation of the attacker and the trust assessment
module. Expectedly, all changes performed by the attacker are detected with the
next invocation of the trust assessment module.

4.2 Overheads

Our evaluation shows at what expenses the alterations made by the attacker
are detected. In Table 3 we list measurements of the size of our trust assessment

Lightweight and Flexible Trust Assessment Modules 513

components and these components’ execution time. All code of the demo scenario
is compiled either with MSP430-GCC 4.6.32 if no Sancus features are involved,
or with the LLVM-based Sancus toolchain3. The trust assessment module is
executed on an MSP430 configured with 41 KiB of program memory4 and 16 KiB
of data memory, running at 20 MHz. In Table 3 we report execution times in
terms of CPU cycles. With the given clock speed, 1 cycle corresponds to 50 ns
and 10,000 cycles correspond to 0.5 ms. For our evaluation, the MSP430 CPU
is programmed on a Xilinx Spartan-6 FPGA. This renders a precise assessment
of overheads in terms of power consumption infeasible. For a discussion of the
power consumption of the Sancus extensions we refer the reader to [23].

As can be seen from Table 3, our approach does imply non-negligible over-
heads. Whether these overheads are acceptable depends largely on the con-
straints on reactivity and energy consumption versus safety and security require-
ments in a specific deployment scenario. Our trust assessment module is designed
to keep the cost of periodic validation tasks small, typically below 70,000 cycles
(3.5 ms), at the expense of incurring higher initial overheads. Overall, most over-
heads are caused by the use of Sancus-provided cryptographic operations. The
performance and security provided by these operations is evaluated in [23].

As mentioned in Sect. 3.2 certain trust indicators, such as logging process
invocations, required us to modify the Contiki core. These modifications are
always very small, i.e., replacing a call to a Contiki internal function with a
PM-equivalent. Yet, the resulting overhead is considerably high due to switch-
ing protection domains – 26 cycles for an unprotected call and return versus
160 cycles for calling a protected entry point function. Due to passing arguments,
return values, and logging the function invocation with a time stamp, process
invocations through TASecureCallProcess incurs an overhead of 731 cycles.

With respect to runtime performance it is important to mention that Sancus
does not support interruption of protected code execution. Thus, protected mod-
ules run with interrupts disabled, which may lead to important interrupts not
being served by the OS and certain properties of the unprotected code potentially
being broken. Examples for this could be real-time deadlines not being met due
to extensive integrity checks. This issue can be mitigated by splitting up peri-
odic validation tasks, e.g., do not perform all integrity checks but only one per
scheduled invocation of the trust assessment module. Similar approaches have
been used to perform expensive validation tasks in desktop and server environ-
ments [14]. Ongoing research aims to resolve this issue by making Sancus PMs
fully interruptible and re-entrant. Mechanisms for securely handling interrupts
in the context of PMAs have been discussed in [8,17]. The non-interruptibility
of Sancus PMs also makes it necessary to use trampoline functions that re-
enable and again disable interrupts when transferring control to an application

2 http://www.ti.com/tool/msp430-gcc-opensource/.
3 http://distrinet.cs.kuleuven.be/software/sancus/.
4 ROM is often used as program memory in embedded devices. On platforms that

support module deployment at runtime, as we do, program memory is writable.

http://www.ti.com/tool/msp430-gcc-opensource/
http://distrinet.cs.kuleuven.be/software/sancus/

514 J.T. Mühlberg et al.

process in TASecureCallProcess, incurring relatively high overheads for sched-
uled process invocations.

We do neither evaluate nor provide an integration with a trust management
system. In particular, we do not evaluate the infrastructure that has to be in
place to load a software module at runtime, and to communicate with a PM
on the OS level. This infrastructure performs fairly generic tasks, yet its imple-
mentation is highly dependent on the deployment scenario. Contiki and many
other embedded OSs provide module loaders and a network stack that is fully
sufficient to implement the required functionality. Yet, the performance of these
components depend on the storage and communication hardware connected to
the MSP430 and is, thus, beyond the scope of this paper.

4.3 Security Evaluation

Bootstrapping Autonomous Operation. An obvious issue of the scenario pre-
sented and evaluated here is with respect to the suggested autonomous mode
of operation: the trust assessment module automatically discovers running
processes and then periodically checks the discovered data structures and code
sections for unexpected changes. Of course, an attacker may tamper with these
sections at or before boot time, effectively preventing detection in regular checks.
In our scenario it would be the responsibility of the operator to request and
evaluate the output of TAInvarsStatus and TAProcessStatus to detect such
modifications. Alternatively, a trust assessment module may also be provided
with a list of expected processes and MACs by the operator at runtime, using
encrypted communication.

Communication Failure. While the code and the internal state of the PM
cannot be tampered with, it is of course possible that malfunctions or an suc-
cessful attack against the node prevent the trust assessment module from suc-
cessfully communication with the operator or from executing altogether. Yet,
this is detected by the operator who then may conduct actions appropriate for
the deployment scenario.

Preventing Invocation of the Trust Assessment Module. In the evaluated appli-
cation scenario, the trust assessment module is invoked by the scheduler and
its entry point is stored in the unprotected process list. This gives the attacker
process the opportunity to tamper with the pointer to the entry point, allow-
ing it to disable execution of the trust assessment module. Alternatively, an
attacker or a malfunction may disable interrupts while preventing control flow
from returning to the scheduler. In our evaluation scenario these attack would
not be detected by the trust assessment module directly but rather by the oper-
ator who would not be able to communicate with the module.

For autonomous operation, this attack can be easily mitigated by configuring
the trust assessment module to be invoked as an interrupt service routine for
a non-maskable timed interrupt. We can simulate this behaviour by using the
watchdog as a source of timed interrupts, which we have implemented as an

Lightweight and Flexible Trust Assessment Modules 515

optional configuration option in our evaluation scenario. To ensure that the
module will complete its tasks, this approach requires the worst-case execution
time of the trust assessment module to be smaller than the interrupt rate. It
is possible to guarantee that the watchdog configuration is not modified by an
attacker by making the control register and the respective entry in the interrupt
vector table part of the secret section of a PM. In combination with extensive
integrity checks, this approach also hinders stealthy attacks where malicious
code would attempt to restore a valid system state before the trust assessment
module is executing. Yet, using a non-maskable interrupt to invoke the trust
assessment infrastructure requires some consideration: It must be possible to
determine the worst-case execution time of the trust assessment module and it
must be acceptable to interrupt application code for that time as the PM itself
is non-interruptible. Using a scheduler to invoke the trust assessment module
allows for more permissible policies that prevent starvation of applications.

Attacker Adaptation. As mentioned in the previous paragraph, a stealthy attacker
that is well adapted to a specific trust assessment module may be able to hide
code or data in address ranges that are not inspected by the module. The attacker
may also restore inspected memory content to the state that is expected by the
trust assessment module right before inspection takes place. Our approach to trust
assessment counters these attacks by allowing the operator to deploy trust assess-
ment modules at runtime, confronting the attacker with an unknown situation.
Alternatively, a generic module may inspect targets by request from the operator
rather than controlled by a deterministic built-in policy.

Process Accounting. Our trust assessment module features logging and report-
ing a time stamp of the latest invocation and the total number of invocations of
scheduled processes. Of course, these numbers are only exact as long as processes
are called through the scheduler, which passes the call through our trust assess-
ment module. As processes may be invoked without using the scheduler, the
numbers reported by our module represent a lower bound on the actual number
of invocations. If more precise measures are needed for a particular process, this
process should be implemented as a PM and perform its own accounting.

Extending the TCB. Of course, the safety and security of a node could be
improved greatly by implementing larger parts of the OS, e.g. the scheduler,
or applications as PMs. PMAs imply a number of complications that are a
direct consequence of the strong isolation guarantees provided: resource sharing
between components is generally prohibited, yet it is often desired for efficiently
implementing communication between components. In Sancus, for example, one
would have to explicitly copy the protected state of a module so as to share it
with another module or unprotected code. While technically feasible, we believe
that it is not trivial to re-implement a more complex code base as a set of neatly
separated PMs. Alternatively one could think of compiling an entire embedded
OS together with its applications as a single PM. This would ensure integrity but

516 J.T. Mühlberg et al.

does not provide for isolation between components and severely restricts run-
time extensibility and the use of dynamic memory. Thus, the trust assessment
modules provided here present a pragmatic approach to measure and improve
safety and security of an IoT node while not interfering with the existing code
on that node. This results in low development overheads and runtime overheads
that should be acceptable for many deployment scenarios.

5 Related Work

This section discusses some related work in the domains of WSNs, trust assess-
ment on high-end systems, and PMAs. Where applicable, we compare the work
with our contributions. Note that this section is not meant as an exhaustive expo-
sition on trust assessment – a domain that can be interpreted rather broadly –
but as an overview of the work that we consider closely related to ours.

5.1 Trust Management in Wireless Sensor Network

Many schemes for trust management in WSNs have been devised by researcher
over the years [12,16,19]. Most of these schemes deal with the problem of distrib-
uting trust management over a network of sensor nodes. Individual nodes usually
obtain trust values about neighboring nodes by observing their externally visible
behavior. These trust values are then propagated through the network allowing
nodes to make decisions based on the trustworthiness of other nodes.

Although our approach does not deal directly with distributed networks, it
can be used to enhance trust metrics used by existing trust management systems.
Indeed, our trust assessment modules can provide nodes with a detailed view on
the internal state of their neighbors; allowing them to make better informed deci-
sions about their trustworthiness. Moreover, since the produced trust metrics are
attested, the bar is significantly raised for existing attacks on trust management
systems where malicious nodes try to impersonate good nodes.

5.2 Trust Assessment on Desktop and Server Systems

Techniques similar to our trust assessment modules have been described for the
domain of desktop and server systems. Copilot [24] and Gibraltar [4] employ
specialised PCI hardware to access OS kernel memory with negligible runtime
overhead. Both systems detect and report modifications to kernel code and data.

A number of approaches use virtualisation extensions of modern general pur-
pose CPU. Here, a hypervisor is employed to inspect a guest operating system.
SecVisor [27] protects legacy OSs by ensuring that only validated code can be
executed in kernel mode. Similarly, NICKLE [25], shadows physical memory in
a hypervisor to store authenticated guest code. At runtime, kernel mode instruc-
tions are then only loaded from shadow memory and an attempt to execute code
that is not shadowed is reported as an attack. Hello rootKitty [14] inspects guest
memory from a hypervisor to detect and restore maliciously modified kernel data

Lightweight and Flexible Trust Assessment Modules 517

structures. Due to frequent transitions between execution hypervisor and guest
code, and expensive address translation between those domains, these inspec-
tion systems typically incur significant performance overheads. HyperForce [13]
mitigates this problem by securely injecting the inspection code into the guest
and forcing guest control flow to execute this code.

Our approach to trust assessment using PMs on a Sancus-enabled TI MSP430
provides isolation guarantees that are equivalent to executing the trust assess-
ment code in a hypervisor. Yet, our PM executes in the same address space as
the OSs and application, which makes expensive domain switches and address
mapping unnecessary. In addition, Sancus provides attestation features in hard-
ware that the above systems do not employ. On modern desktop architectures,
these features can be implemented using the Trusted Platform Module.

Sancus enables the implementation of effective security mechanisms on
extremely light-weight and low-power hardware. In terms of inspection abili-
ties and isolation guarantees, these mechanisms are similar to the state-of-the-
art in the desktop and server domain. Our approach to trust assessment mod-
ules illustrates that, using Sancus, comprehensive inspection mechanisms can be
implemented efficiently, incurring runtime overheads that should be acceptable
in many deployment scenarios with stringent safety and security requirements.

5.3 Alternatives to Sancus

The trust assessment infrastructure proposed in this paper is built upon San-
cus [23], a PMA [28]. A number of PMAs have been proposed and can be used
to implement our approach, as long as memory isolation and attestation features
are provided, which we discuss below.

A PMA is typically employed as a core component of a TCB. The key feature
of all PMA is to provide memory isolation for software components. That is, to
enable the execution of a security sensitive component, a PM, so that access to
the component’s runtime state is limited to the TCB, the component itself, and if
supported, to other modules specifically chosen by the protected component. In
addition, execution of the module’s code is guaranteed to happen in a controlled
way so as to prevent code misuse attacks [2]: a module may specify a public
Application Programming Interface (API) to be used by other modules. A range
of PMAs for general purpose CPU has been presented in the last years, including
Intel SGX [21], ARM TrustZone [3], TrustVisor [20] and Fides [29].

Recent research [10,17] has brought PMA techniques to small embedded
microprocessors at an acceptable cost. PMAs such as SMART [10], TrustLite [17]
as well as Sancus [23] utilise the PCBAC [30] approach to provide isolation
an thereby guarantee the integrity of software modules executing on low-power
embedded processors.

A second crucial feature of many trusted computing platforms is the ability to
provide assurance of the integrity and isolation of a given PM to a third party. This
party can be, e.g. another module on the same hosts or a software component on
a remote host. We refer to the process of providing this assurance as attestation,

518 J.T. Mühlberg et al.

which is typically implemented by means of cryptographic primitives that oper-
ate on the PM’s identity. Attestation can be reused to establish a shared secret
for secure communication between the PM and a third party. To the best of our
knowledge, only Intel SGX, SMART and Sancus readily implement attestation.

6 Conclusions

In this paper we present an approach to trust assessment for extremely light-weight
and low-power computing nodes as they are often used in the Internet of Things
(IoT). Insteadof relyingon the externally observablebehaviourof anode,wedeploy
flexible trust assessment modules directly on the node. These modules are execut-
ing in isolation from an unprotected OS and application code. Yet, the modules
are capable of inspecting the unprotected domain and report measurements that
are indicative for the trustworthiness of a node to a trust management system. We
employ Sancus [23] to guarantee isolation, to facilitate remote attestation of the
correct deployment of a trust assessment module, and to secure communication
between a module and a trust management system. Sancus is a Protected Module
Architectureaswell as aminimalhardware-onlyTrustedComputingBase. In terms
of inspection abilities and isolation guarantees, Sancus-protected trust assessment
modules are similar to using virtualisation technology or specialised security hard-
ware in the desktop and server domain.

We have implemented our approach to trust assessment modules on a Sancus-
enabled TI MSP430 microcontroller. Our results demonstrate that, using San-
cus, comprehensive inspection mechanisms can be implemented efficiently, incur-
ring runtime overheads that should be acceptable in many deployment scenar-
ios with stringent requirements with respect to safety and security. Indeed, we
believe that our approach enables many state-of-the-art inspection mechanisms
and countermeasures against attacks to be adapted for IoT nodes and in the
domain of Wireless Sensor Networks, which are in dire need of modern security
mechanisms [26]. These mechanisms include integrity checks and data structure
inspection as discussed in this paper. Yet, more complex mechanisms such as
automatic invariant detection and validation [14], stack inspection [11] or pro-
tection against heap overflows [22] are in scope for our approach.

In the future we aim to improve performance and scalability of the inspec-
tion and reporting process by making Sancus modules fully interruptible and
re-entrant. We are further interested in investigating alternative trust indica-
tors and fault recovery mechanisms, and integrate our trust assessment modules
with a trust management system. Finally we will investigate the deployment of
formally verified code in an untrusted context [1] for Sancus, which can lead to
proving the absence of runtime errors for Sancus-protected security critical code
that runs on an IoT node.

Acknowledgements. This research is partially funded by the Intel Labs University
Research Office, the Research Fund KU Leuven, and by the FWO-Vlaanderen.
Job Noorman holds a PhD grant from the Agency for Innovation by Science and
Technology in Flanders (IWT).

Lightweight and Flexible Trust Assessment Modules 519

References

1. Agten, P., Jacobs, B., Piessens, F.: Sound modular verification of c code executing
in an unverified context. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015,
pp. 581–594. ACM (2015)

2. Agten, P., Strackx, R., Jacobs, B., Piessens, F.: Secure compilation to modern
processors. In: 2012 IEEE 25th Computer Security Foundations Symposium (CSF
2012), pp. 171–185. IEEE, August 2012

3. Alves, T., Felton, D.: Trustzone: integrated hardware and software security. ARM
white paper 3(4), 18–24 (2004)

4. Baliga, A., Ganapathy, V., Iftode, L.: Detecting kernel-level rootkits using data
structure invariants. IEEE Trans. Dependable Secure Comput. 8(5), 670–684
(2011)

5. Barry, R.: FreeRTOS: A portable, open source, mini real time kernel (2010). http://
www.freertos.org/

6. Chapman, A.: Hacking into internet connected light bulbs (2014). http://www.
contextis.com/resources/blog/hacking-internet-connected-light-bulbs/

7. Cotroneo, D., Natella, R., Pietrantuono, R., Russo, S.: A survey of software aging
and rejuvenation studies. J. Emerg. Technol. Comput. Syst. 10(1), 8:1–8:34 (2014)

8. de Clercq, R., Piessens, F., Schellekens, D., Verbauwhede, I.: Secure interrupts
on low-end microcontrollers. In: 2014 IEEE 25th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 147–152.
IEEE (2014)

9. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: 29th Annual IEEE International Conference
on Local Computer Networks, pp. 455–462 (2004). http://www.contiki-os.org/

10. Eldefrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: secure and minimal
architecture for (establishing a dynamic) root of trust. In: 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, USA (2012)

11. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using
call stack information. In: 2003 Symposium on Security and Privacy, pp. 62–75.
USENIX Association (2003)

12. Fernandez-Gago, M., Roman, R., Lopez, J. : A survey on the applicability of
trust management systems for wireless sensor networks. In: Third International
Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing,
SECPerU 2007, pp. 25–30 (2007)

13. Gadaleta, F., Nikiforakis, N., Mühlberg, J.T., Joosen, W.: HyperForce: hypervisor-
enforced execution of security-critical code. In: Gritzalis, D., Furnell, S., Theohari-
dou, M. (eds.) SEC 2012. IFIP AICT, vol. 376, pp. 126–137. Springer, Heidelberg
(2012)

14. Gadaleta, F., Nikiforakis, N., Younan, Y., Joosen, W.: Hello rootKitty: a light-
weight invariance-enforcing framework. In: Lai, X., Zhou, J., Li, H. (eds.) ISC
2011. LNCS, vol. 7001, pp. 213–228. Springer, Heidelberg (2011)

15. Girard, O.: openMSP430 (2009). http://opencores.org
16. Granjal, J., Monteiro, E., Silva, J.S.: Security in the integration of low-power wire-

less sensor networks with the internet: a survey. Ad Hoc Netw. 24(Part A), 264–287
(2015)

17. Koeberl, P., Schulz, S., Sadeghi, A.-R., Varadharajan, V.: Trustlite: a security
architecture for tiny embedded devices. In: Proceedings of the Ninth European
Conference on Computer Systems, EuroSys 2014, pp. 10:1–10:14. ACM (2014)

http://www.freertos.org/
http://www.freertos.org/
http://www.contextis.com/resources/blog/hacking-internet-connected-light-bulbs/
http://www.contextis.com/resources/blog/hacking-internet-connected-light-bulbs/
http://www.contiki-os.org/
http://opencores.org

520 J.T. Mühlberg et al.

18. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D.,
Hill, J., Welsh, M., Brewer, E., Culler, D.: Tinyos: an operating system for sensor
networks. In: Weber, W., Rabaey, J.M., Aarts, E. (eds.) Ambient Intelligence,
pp. 115–148. Springer, Heidelberg (2005)

19. Lopez, J., Roman, R., Agudo, I., Fernandez-Gago, C.: Trust management systems
for wireless sensor networks: best practices. Comput. Commun. 33(9), 1086–1093
(2010)

20. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: Trustvi-
sor: efficient tcb reduction and attestation. In: Proceedings of the 2010 IEEE Sym-
posium on Security and Privacy, SP 2010, pp. 143–158. IEEE (2010)

21. McKeen, F.,Alexandrovich, I., Berenzon,A.,Rozas,C.V., Shafi,H., Shanbhogue,V.,
Savagaonkar, U.R.: Innovative instructions and software model for isolated execu-
tion. In: Proceedings of the 2nd International Workshop on Hardware and Architec-
tural Support for Security and Privacy, HASP 2013, pp. 10:1–10:1. ACM (2013)

22. Nikiforakis, N., Piessens, F., Joosen, W.: HeapSentry: kernel-assisted protection
against heap overflows. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA 2013.
LNCS, vol. 7967, pp. 177–196. Springer, Heidelberg (2013)

23. Noorman, J., Agten, P., Daniels, W., Strackx, R., Van Herrewege, A., Huygens, C.,
Preneel, B., Verbauwhede, I., Piessens, F.: Sancus: low-cost trustworthy extensible
networked devices with a zero-software trusted computing base. In: Proceedings
of the 22nd USENIX Conference on Security, SEC 2013, pp. 479–494. USENIX
Association (2013)

24. Petroni Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot-a coprocessor-
based kernel runtime integrity monitor. In: USENIX Security Symposium, pp.
179–194. USENIX Association (2004)

25. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
VMM-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

26. Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer 44(9),
51–58 (2011)

27. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, pp. 335–350. ACM
(2007)

28. Strackx, R., Noorman, J., Verbauwhede, I., Preneel, B., Piessens, F.: Protected
software module architectures. In: Reimer, H., Pohlmann, N., Schneider, W. (eds.)
ISSE 2013 Securing Electronic Business Processes, pp. 241–251. Springer,
Heidelberg (2013)

29. Strackx, R., Piessens, F.: Fides: selectively hardening software application com-
ponents against kernel-level or process-level malware. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS 2012, pp. 2–13.
ACM (2012)

30. Strackx, R., Piessens, F., Preneel, B.: Efficient isolation of trusted subsystems in
embedded systems. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST,
vol. 50, pp. 344–361. Springer, Heidelberg (2010)

Confidence Analysis for Nuclear Arms Control:
SMT Abstractions of Bayesian Belief Networks

Paul Beaumont1, Neil Evans2(B), Michael Huth1, and Tom Plant2

1 Department of Computing, Imperial College London, London SW7 2AZ, UK
{paul.beaumont09,m.huth}@imperial.ac.uk

2 AWE Aldermaston, Reading, Berkshire RG7 4PR, UK
{Neil.Evans,Tom.Plant}@awe.co.uk

Abstract. How to reduce, in principle, arms in a verifiable manner that
is trusted by two or more parties is a hard but important problem.
Nations and organisations that wish to engage in such arms control
verification activities need to be able to design procedures and control
mechanisms that capture their trust assumptions and let them compute
pertinent degrees of belief. Crucially, they also will need methods for
reliably assessing their confidence in such computed degrees of belief in
situations with little or no contextual data. We model an arms control
verification scenario with what we call constrained Bayesian Belief Net-
works (cBBN). A cBBN represents a set of Bayesian Belief Networks
by symbolically expressing uncertainty about probabilities and scenario-
specific constraints that are not represented by a BBN. We show that
this abstraction of BBNs can mitigate well against the lack of prior data.
Specifically, we describe how cBBNs have faithful representations within
a Satisfiability Modulo Theory (SMT) solver, and that these representa-
tions open up new ways of automatically assessing the confidence that we
may have in the degrees of belief represented by cBBNs. Furthermore, we
show how to perform symbolic sensitivity analyses of cBBNs, and how
to compute global optima of under-specified probabilities of particular
interest to decision making. SMT solving also enables us to assess the
relative confidence we have in two cBBNs of the same scenario, where
these models may share some information but express some aspects of
the scenario at different levels of abstraction.

1 Introduction

AWE’s Arms Control Verification Research programme supports and advises
UK Government, through the UK Ministry of Defence (MOD), on verification
measures that might be put into operation in the context of future arms con-
trol agreements. Specifically, the UK may one day be involved in a bilateral
or multilateral agreement regarding the monitoring or reduction of arms. Any
such agreement would very likely contain provisions for verifying that parties
to this agreement are indeed compliant with their obligations expressed within
said agreement. These provisions may be in the form of inspections, deployment

c© British Crown Owned Copyright 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 521–540, 2015.
DOI: 10.1007/978-3-319-24174-6 27

522 P. Beaumont et al.

of monitoring equipment, use of satellite imagery, agreement of formal notice
periods for certain activities and so forth.

An understanding of the reliability of such provisions and their interaction
will be paramount: an agreement is more likely to be signed, and honoured,
if all parties can be confident that the agreement’s provisions allow them to
verify compliance of other parties with the agreement. These provisions will be
informed by strategic and conflicting interests of the parties. We propose to fur-
ther such understanding by using mathematical analysis in this problem space,
based on mathematical representations of arms control verification scenarios. In
such scenarios, we are primarily interested in three types of quantities:

– Trust: a bias in the processing of imperfect information about another party
– Degree of Belief : the amount we believe a proposition is true
– Confidence: a measure of the uncertainty we should have in our degree of

belief in a proposition.

Assuming that verification measures have been deployed, a mathematical repre-
sentation of an arms control verification scenario should then allow a party to
have high confidence in its degrees of belief (even if these degrees of belief are
low), regardless of what trust it places in other parties. Such trust may, e.g., be
based on past dealings between the parties or may be affected by the conduct
exhibited within the verification activities themselves.

Mathematical representations should therefore give us measures of Trust,
Degree of Belief, and Confidence so that we can investigate the trade-offs
between these measures, assess their relative merits, or perform optimisation –
e.g. to determine extremal cases of interest. Other desired capabilities of such
mathematical representations are:

(1) ability of non-technical users (e.g. diplomats) to understand these represen-
tations and their results

(2) ability to represent both subjective (e.g. expert opinion) and objective data
(3) ability to determine which representational aspects or results are due to

different subjective modelling decisions
(4) ability to represent and analyse dynamic, time-dependent scenarios
(5) ability to perform optimisation for measures of interest and their trade-offs
(6) ability to certify or formally prove that analysis outputs are correct.

In this paper, we explore the suitability of one such mathematical representation,
Bayesian Belief Networks (BBNs) – see e.g. [10] – against the aforementioned
desired capabilities in understanding the measures of Confidence, Degrees of
Belief, and Trust.

We assume that little or no prior data is available for modelling arms con-
trol verification scenarios. This prevents us from using methods for estimating
probabilities within BBNs. Moreover, control mechanisms may be subject to non-
probabilistic, logical rules so we want to enrich BBNs with logical constraints.
Thus we propose to use symbolic representations of both the uncertainty of prob-
abilities within a BBN and of logical constraints of such a symbolic BBN. These

Confidence Analysis for Nuclear Arms Control 523

constrained BBNs (cBBN) generalise BBNs in that the latter have no such uncer-
tainty and no logical constraints. cBBNs also generalize Credal networks (see e.g.
[9]), where the latter abstract probabilities of BBNs with convex intervals – a
particular form of uncertainty – but cannot capture logical constraints.

To get the ability to assess confidence in degrees of belief of cBBNs, we
develop techniques for determining whether one or more cBBNs are satisfiable at
the same time, where satisfiability witnesses are BBNs that meet all constraints
expressed in the cBBNs. We also show how to compute optimal such witnesses
for measures of interest such as the probability of a cBBN node that informs
decision making or such as the worst-case sensitivity of a node in a cBBN.
Technically, we achieve this by specifying cBBNs in the Satisfiability Modulo
Theories (SMT) solver Z3 [20], and by formulating confidence queries directly
in SMT.

The contributions of this paper are therefore in proposing a new approach
and methods for representing and analysing Bayesian Belief Networks, with a
concrete application in national security in mind. We also demonstrate that our
new methods genuinely enrich the modelling capabilities that exist to date in this
application domain, notably (2), (3), and (5) above. We also began a case study
[3] demonstrating that our approach can accommodate the temporal capability
in (4) but we cannot report on this within the scope of this paper.

We note that our approach, an SMT-based analysis of constrained BBNs,
can not only express logical rules of arms control verification, it can also use
such logical rules to ensure a consistent relationship between different levels
of abstraction in the comparison of two or more cBBNs that model the same
arms verification control scenario. Our SMT-based approach is also consistent
with realising the capabilities listed in (1) and (6) above, and scoping out the
potential for this is subject to future work. The reader is hoped to appreciate
that this paper emphasises the exposition of our new methods and their utility
for this case study, at the expense of providing less detail on the more routine
tool building activities that support and animate these methods.

We emphasise that our methods are of general interest to those who model
any security aspects with BBNs but have little contextual data that informs
their models or to those that may need to constrain these BBNs logically.

Outline of Paper: In Sect. 2 we present our arms control verification scenario
and model it with a simple Bayesian Belief Network. The scenario is designed to
be comprehensible to a non-expert of the application domain. Section 3 contains
a gentle introduction to Satisfiability Modulo Theory solving and explains how
constrained Bayesian Belief Networks can be represented as input for an SMT
solver. Our methods for assessing the confidence in constrained Bayesian Belief
Networks are developed in Sect. 4. The context of our work and related work are
discussed in Sect. 5 and the paper concludes and discusses future work in Sect. 6.

524 P. Beaumont et al.

2 An Arms Control Verification Scenario

Consider two fictitious nation states (referred to as “nations” below to avoid
confusion with “states” of a BBN), N1 and N2, the latter of which is tasked with
identifying whether boxes A and B belonging to the former and installed in a
controlled inspection facility contain nuclear weapons. Nation N2 is also given
declarations from nation N1 as to what is supposed to be in these boxes. The
purpose of this inspection within an arms control agreement may be that the
contents of the boxes are on their way for decommissioning, destroying, storage,
civilian reuse, etc. Our mathematical model of the scenario does not reflect what
may happen to the material post-inspection, but more detailed models may well
reflect this. It should be noted that the models of this case study are created by
nation N2 in order to assess this scenario.

Nation N1 declares that one box does indeed include nuclear weapons, and
that the other does not. To illustrate that we can also add some gamification
(unrealistic in a real scenario), let us assume that nation N1 won’t reveal in which
box the nuclear weapon might be, and that the inspecting party is allowed to
inspect only one of these two boxes. The inspecting party, say nation N2 or some
third party, is given a radiation detector with a specific, known sensitivity and
known false-error reporting rate. The detector shows a green or red light based
on whether nuclear materials in a particular ratio of a particular isotope are
present or not. No other information bar this colour outcome is provided, which
establishes an information barrier that can hide, e.g., important weapon design
secrets of nation N1 – a requirement for agreeing to such inspections [18].

The design of the detector has been agreed upon by both nations N1 and N2.
Nation N2 believes that it may be possible for nation N1 to spoof a radioactive
signal (or indeed block a radioactive signal through under-saturation or over-
saturation of gamma signals), to fool the detector, or indeed, to have just placed
radioactive material in the boxes, but no weapon (in which case, nation N2 even
needs to consider its degree of belief of nation N1 being able to build a nuclear
weapon). There is also a possibility that the nuclear material may have been
enriched to a physical state that is outside the detectable ratio range of the
detector, but nation N2 thinks this is unlikely.

There are of course multiple ways of modelling this scenario. One advantage of
our approach developed below is that it is able to compare different such models
analytically and automatically. In this case study, we consider a simple and a
more detailed model – both of which have some nodes in common (demonstrating
that we can accommodate such overlap). The simple BBN model is depicted in
Fig. 1. In a BBN, nodes represent (probabilistic) events. Such events may be
conditional on other events (their parent nodes in a dependency graph). In our
simple model, we have the following set of nodes:

– Box: which box will be inspected, that choice will determine whether nation
N2 expects nuclear weapons to be present or not

– Spoof: determining nation N2’s belief in a spoofed signal
– Detectable Ratio: probability that the fissile material of the object in the box

has an isotopic ratio that the system is designed to give a green light for

Confidence Analysis for Nuclear Arms Control 525

Fig. 1. Simple Bayesian Belief Network modelling our nuclear arms verification scenario

– Detector Light: accounts for false positive and false negative rates of the detec-
tor itself, and determines the green/red light state on the detector

– Conversation Belief: models whether or not external discussions with nation
N1 would lead nation N2 to believe declarations of nation N1

– Ability to Build: captures nation N2’s uncertainty over the technical abilities
of nation N1, irrespective of the detector result

– Believe Weapons Present: the overall belief of nation N2 in a nuclear weapon
being present in the inspected box.

The BBN B in Fig. 1 shows the dependency graph of the simple model. For
example, the belief in the presence of nuclear weapons depends (through incom-
ing edges) on the events Detector Light, Ability to Build, and Conversation Belief.
Each node in the BBN B has a probability table from which one can compute its
probability. For node Box we see that the inspection of a box is determined by
flipping a fair coin. For node Believe Weapons Present, this probability table lists
the probability distributions conditionally on the three aforementioned parent
events. The probabilities used in this scenario are fictitious but convey plausible
perceived levels of trust and degrees of belief.

Figure 2 shows how to compute probabilities for all nodes via the Law of Total
Probability, by “summing out” conditional probabilities so that probabilities at
a node are expressed in terms of probabilities of its parent nodes only.

3 Expressing Constrained BBNs in an SMT Solver

Satisfiability modulo theories [1,20] is an approach to automated deduction sup-
ported with robust and powerful tools that combine the state-of-the-art of deduc-

526 P. Beaumont et al.

i j k P(BWP = T | AB = i,CB = j,DL = k) · P(AB = i) · P(CB = j) · P(DL = k)

i j k P(BWP = T AB = i CB = j DL = k)

Fig. 2. Two ways of computing node marginal P(BWP = T) for Believe Weapons
Present (BWP): via summing (first line) over all possible combinations of the condi-
tional probability, multiplied by the parent marginals Ability to Build (AB), Conversation
Belief (CB), Detector Light (DL); or via the joint probability distributions (second line)

tive theorem proving with that of SAT solving for propositional logic. We choose
Z3 as SMT solver within our tool, although it would be relatively easy to replace
it with another solver such as CVC3 [2].

The SMT solver Z3 has a declarative input language for defining constants,
functions, and assertions about them [20]. Figure 3 shows Z3 input code to illus-
trate that language and its key analysis directives. On the left, constants of Z3
type Bool and Real are declared. Then an assertion defines that the Boolean
constant q means that x is greater than y+1, and the next assertion insists that
q be true. The directives check-sat and get-model instruct Z3 to find a witness
of the satisfiability of the conjunction of all visible assertions, and to report such
a witness (called a model, but we will refer to Z3 models as “witnesses” to avoid
any ambiguous use of the word “model” in the paper). On the right of Fig. 3, we
see what Z3 reports for the input on the left: sat states that there is a witness;
other possible replies are unsat (there cannot be a witness), and unknown (Z3
does not know whether or not a witness exists).

(declare-const q Bool) sat

(declare-const x Real) (model

(declare-const y Real) (define-fun q () Bool true)

(assert (= q (> x (+ y 1)))) (define-fun y () Real (-2.0))

(assert q) (define-fun x () Real 0.0)

(check-sat))

(get-model)

Fig. 3. Left: sample Z3 input code with a directive to find and to generate a witness.
Right: raw Z3 output for the left input code (edited to save space), saying that the
conjunction of all assertions is satisfiable, and supporting this claim with a witness.

We encode a BBN in SMT using an automated code generator we have
written; it converts a specification of a BBN given in a form similar to that seen
in Fig. 1 automatically into SMT code. All state variables of a BBN node are
declared in SMT by an appropriate enumeration type. In our simple BBN B,
these are mostly Boolean variables or tuples of such Boolean variables. But in
general, such variables may take on other values such as integers.

The probability of a node is expressed in SMT as an arithmetic constraint
that captures the definition of that probability as a function of the probabil-
ity of its parent nodes and its own probability table. Although this is merely

Confidence Analysis for Nuclear Arms Control 527

restating the familiar definitions for BBNs (see e.g. [10] and Fig. 2), we carefully
circumscribe any use of divisions (occurring through the use of Bayes’ Theorem)
as equivalent equations of multiplicative terms. This syntactic change avoids
the use of division, whose presence complicates automated reasoning and often
makes an SMT solver report analysis result unknown.

We add constraints that ensure that all probabilities for all nodes add up to
1. Doing this will likely detect any accidental transcription errors in the specifica-
tions of probability tables and, more importantly, will ensure that the semantics
of a cBBN (where some or all probabilities are under-specified) is still that of
a set of concrete BBN that “refine” it by resolving such under-specifications to
concrete probability distributions – in the spirit of abstract interpretation [8].

Having this SMT encoding in place, it is now easy to extend it to a cBBN.
For example, suppose that we want to relax the probability for when the detector
reports a green light in the BBN of Fig. 1 in the state in which box A is inspected,
nation N2 believes that the signal is being spoofed, and nation N2 believes that
a detectable ratio of radioactive material is being used. In that state, we want to
change the probability distribution from 0.4 and 0.6 to α and 1−α, respectively,
where α is constrained to be in a convex interval, say the interval [0.3, 0.4]. The
choice of such intervals may be informed by external sources such as expert
opinions, and the interval may have further non-convex restrictions via logical
constraints of the cBBN.

We can represent this in our SMT encoding by declaring a real variable α,
and using it and its complement 1−α in place of 0.4 and 0.6 in the assertions of
our SMT encoding that contain references to these probabilities (e.g. definitions
of overall probabilities at nodes). Additionally, we add the assertion that α be in
[0.3, 0.4] by adding (assert (and (<= 0.3 α) (<= α 0.4))) to the SMT code for
this model. In this manner, we can generalise the BBN B in Fig. 1 to a cBBN,
referred to as C subsequently, in SMT. We note that we can relax more than one
such probability in a similar manner and Z3 seems to cope well with multiple
such relaxations.

Let us now turn to discussing how we can ask questions about cBBNs in
SMT. The simplest possible question is to ask whether the SMT encoding of a
cBBN is satisfiable, and failure of satisfiability would point out crude encoding
or modelling errors. But we may use the power of an SMT solver to ask more
interesting questions. For example, we may ask whether the probability of a
node in a cBBN is always below a certain threshold (a form of vacuity checking
[15]). Our tool allows us to declare such an analysis and to generate Z3 input
code that, when run, will try to answer this whilst reflecting all probabilistic
constraints represented in the network (its BBN aspect) and all arithmetic or
logical constraints (the relaxations of concrete probabilities and logical rules that
make a BBN into a cBBN). In the next section, we discuss richer questions that
would not be solvable with BBN tools, and how we use SMT to answer them.

So far we have only discussed encodings of cBBNs that reflect no means of
updating evidence. BBNs can model hard evidence, which changes the proba-
bilities in a BBN upon observation of an event as seen for example in Fig. 4.

528 P. Beaumont et al.

These changes propagate through the BBN and algorithms exist that compute
this propagation of belief update (see e.g. [10]); our tool uses the Junction Tree
Algorithm [17] to that end.

P(Box = A | SO = T) =
P(SO = T | Box = A) · P(Box = A)

∑
i P(SO = T | Box = i) · P(Box = i)

Fig. 4. Updated marginal for node Box (Box) via Bayes’ Rule once Spoof On (SO) is
observed as true

Our tool can accommodate the processing of hard evidence in cBBNs as fol-
lows. Since probabilistic uncertainty is expressed via symbolic parameters, we use
a Python script of the Junction Tree algorithm supplied within an open-source
BBN package from eBay at github.com/eBay/bayesian−belief−networks to
compute the updated probabilities symbolically. Then we remove the assertions
in the SMT code that express the marginal probabilities and replace them (where
applicable) with the symbolic assertions computed by this algorithm to reflect
the marginals after their update based on this hard evidence. Note that this
process is independent of any logical, non-probabilistic constraints of the cBBN
and won’t modify the SMT code of such constraints.

This update mechanism is external to the SMT solver and needs to post-
process the SMT code of the cBBN before the modified SMT code can be further
analysed, but now with the hard evidence properly reflected. Furthermore, it
is important to realise that the propagation of hard evidence is different from
analysing “soft” evidence. In our model we also pull out events of interest by just
adding a constraint to our SMT code saying that a state variable at a node has
a particular value – without propagating this as one would do for hard evidence.

4 Assessing Confidence in cBBNs

Our SMT encodings of constrained BBNs allow new forms of analysis, one of
them being a comparison of different such models. To demonstrate this, we
present the dependency graph of a more detailed model B′ in Fig. 5.

The BBN B′ shares some nodes with the BBN B, and has the same probability
tables for these nodes. But B′ refines some nodes of B to take a more nuanced
view of the ability to spoof and the assessment of whether a detectable ratio of
nuclear material is present. The new nodes are:

– Intention to Mislead: the belief of nation N2 about nation N1’s said intent
– Deliberately Saturates: probability of nation N1 to saturate the information

barrier, dependent on nation N1’s intention to mislead
– Manufactured Gamma: probability of manufactured gamma being used, also

dependent on nation N1’s intention to mislead

Confidence Analysis for Nuclear Arms Control 529

Fig. 5. More detailed BNN B′ of scenario (probabilities of new nodes are in Fig. 11 in
the appendix)

– Ratio of Plutonium: models said ratio, depends on events Box, Manufactured
Gamma, and Deliberately Saturates, and informs event Detector Light.

We write C′ for the constrained BBN that relaxes B′ with the same uncertainty
α as C relaxes B, and pose the following questions:

Q1 For the constrained BBN C, what is the maximal/minimal probability of
nation N2 believing that a weapon is present given that nation N2 is uncer-
tain about the prior probability of the detector light turning green?

Q2 How different can the probabilities of nation N2 believing that a weapon is
present be between cBBNs C and C′, i.e. when nation N2 is uncertain about
the prior probability of the detector light going green?

Q3 Can the constrained BBNs C and C′ return different results when we ask
whether the probability of nation N2 believing that a weapon is present can
be above a threshold, which we are uncertain about?

Q4 For what threshold ranges can such different results for Q3 occur?

Almost all of these questions require us to compute optimal values of a poten-
tially non-linear objective function. We realise this in our tool by implementing
unbounded binary search through the Python API for the SMT solver Z3. The
pseudo code for this computation is depicted in Fig. 12 in the appendix for the
case of global maxima. This method computes optimal values within a desired
accuracy δ > 0, and also truncates the mantissa of witness real numbers to a
size commensurate to the value of δ. We do this as larger mantissas tend to
increase the complexity of reasoning in the SMT solver within the unbounded
binary search.

4.1 Optimising a Probability over Uncertainty

Let us reconsider the cBBN C obtained from the BBN B so that the probability
distribution for Detector Light is α and 1 − α and where α is constrained to be

530 P. Beaumont et al.

in the interval [0.3, 0.4]. We then maximise the variable of the SMT encoding of
C that represents the overall probability of event Believe Weapons Present.

COP Believeweaponspresent represents the largest joint probability con-
tributing to the marginal and C 4 S1 is the marginal probability for event Believe
Weapons Present. The witness returned by the SMT solver for this query is shown
in Fig. 6.

[Believeweaponspresent = 1,

COP_Believeweaponspresent = 72836577/320000000,

C_4_S1 = 100021751/160000000,

x = 2/5,

Abilitytobuild = 1, Conversationbelief = 1, ...]

Fig. 6. Excerpt of the witness of the SMT solver (hand-edited to save space) for our
SMT-based encoding of cBBN C, where variable x denotes the value of α from [0.3, 0.4]
for which event Believe Weapons Present has maximal probability C 4 S1 given that our
event of interest is Believeweaponpresent = T

The real values of a witness are rational numbers since SMT solvers use exact
arithmetic – another aspect that helps to establish Confidence in computed
degrees of belief. The maximal value of C 4 S1 is 100021751/160000000 which
equals 0.6251, and this maximal value is attained when the α (modelled as x in
the SMT code) has value 2/5 = 0.4. Witness values relevant to this optimisation
query are those of x and C 4 S1; but the witness reported in Fig. 6 also offers
some states of the event for which the maximal joint probability (with the node’s
parents), COP Believeweaponspresent, is attained.

We find that the global minimum of C 4 S1 is 0.6233, occurring when x is 0.3.

4.2 Optimisation for Hard Evidence

We can also optimise probabilities in cBBNs for hard evidence. The Junction
Tree Algorithm (JTA) implemented in the aforementioned open-source code of
eBay can also be executed for symbolic input such as for the variable x in the
SMT representation of C. We then take this symbolic output of the JTA and
post-process it so that divisions are expressed in terms of multiplications (where
possible). Figure 7 illustrates what kind of assertions this adds to the SMT model
of C, where x is the variable that captures the uncertainty in C.

s.add((C_4_S1*0.15) == (0.0158175*x+0.09513975))

s.add((C_4_S2*(0.095*x+0.88845)) == (0.02014*x+0.1883514))

Fig. 7. Some marginal probabilities revised by hard evidence via the symbolic Junction
Tree Algorithm, post-processed to replace divisions with equivalent multiplications

Confidence Analysis for Nuclear Arms Control 531

Then we update the relevant portions of the SMT representation with this
symbolic input to reflect the hard evidence. Thereafter, we can compute maxima
in the same manner as described above.

To illustrate, let us now think of Believeweaponspresent = T as our para-
meter of interest and let us consider Spoof = T as hard evidence. Then we trans-
form C and its SMT representation as just outlined, and compute the maximum
for C 4 S1 over this transformed SMT code, and find that this is 135289/200000
which equals 0.6764. We can similarly compute the minimum of C 4 S1 and find
that this equals 6659/10000 = 0.6659.

Note that if nation N2 definitely observes the crude node Spoof On, its confi-
dence increases that a weapon is present. We can see this here since the maximal
probability increases from 0.6251, when x is 0.4, to 0.6764, when x is also 0.4,
but Spoof = T. If nation N2 knew that always Box = A (instead of also allowing
for Box = B in our gamified scenario), then observing spoofing would lead to a
drop in confidence as it would hint that there is no weapon. The results above
though are in keeping with the probabilities assigned in the node tables for the
gamified scenario which crudely models that a spoofed signal can be used to
both hide and mimic a weapon.

4.3 Confidence in Comparison of cBBNs

Consider two cBBNs that have a common node whose probability will support
decision making. We want to compute the maximal difference that these respec-
tive probabilities could have, in order to assess with confidence by how much
they could differ in principle. We illustrate how this can be done in SMT by
considering again the CBBN C for the simple model, and the BBN B′ for the
detailed model (noting that BNNs are also cBBNs). The event of interest in both
models is Believe Weapons Present. We want to compute the maximal difference
of the joint probability of this event (with its parent nodes) in both models,
expressed in our SMT model as

(declare-const DIFF Real)

(assert (= DIFF (abs

(- COP_Believeweaponspresent_mod1 COP_Believeweaponspresent_mod2))))

where the suffixes mod1 and mod2 separate the name spaces for these two cBBNs
within the same SMT model. Since these cBBNs contain also common aspects,
we use the logical constraints of the SMT language to specify the “semantic glue”
between these common aspects. Doing so prevents the computation of values for
DIFF that would arise from inconsistent instances of these two cBBNs. Figure 8
illustrates how this is done for the two models considered here. In many cases,
we just state that variables have the same meaning.

In other cases, we need to provide glue between different levels of abstraction.
For example, that state SpoofOn = F and only that state of the simple model is
mapped to a certain level of ratio of element Pu in the detailed model. Specif-
ically, in the scenario only a ratio of About 10:1 is deemed acceptable (see the
last table in Fig. 11 of the appendix for how ratio levels are modelled in B′);

532 P. Beaumont et al.

(assert (= Box_mod1 Box_mod2))

(assert (= DetectorLight_mod1 DetectorLight_mod2))

(assert (= Believeweaponspresent_mod1 Believeweaponspresent_mod2))

(assert (ite (= SpoofOn_mod1 2) (= RatioOfPu_mod2 3) (not (= RatioOfPu_mod2

3))))

Fig. 8. Excerpts of SMT code that semantically connects common aspects of C and B′:
e.g. its if−then−else assertion logically relates Spoof On of C to Ratio of Pu of B′

all other levels would indicate a spoof. The figure shows such an assertion with
ite (if-then-else) where integers encode states of these variables, e.g., 3 encodes
ratio About10 : 1.

Now we can compute the maximum of DIFF, which equals 0.0921. The witness
for this tells us that the simple model has probability 0.0843 and the detailed
one probability 0.176 which realise this difference. In fact, we could in principle
extract two BBNs from that witness to study how these probabilities come about.

4.4 Two-Dimensional Difference Analysis

We may also compute such maximal differences for a probability of interest as a
function of how uncertainty in two models gets resolved. Let x be the probability
for Conversation Belief being true in the simple model, whereas y denotes the
corresponding probability in the detailed model. We can now maximise DIFF
above again, but for each data point (x, y) in [0, 1] × [0, 1] at some granularity.
The result of this analysis is seen in Fig. 9.

Fig. 9. 3-D plot showing the maximum of variable DIFF where x and y axes represent
the probability of ConversationBelief = T in the simple, respectively, detailed model

Confidence Analysis for Nuclear Arms Control 533

If both models have the same priors, meaning when x = y, we would expect
both models to agree most. And we do see a trough of DIFF at the x = y axis
even though it is somewhat shifted and distorted by the different ways in which
these models represent event Detector Light, for example.

4.5 Computing Agreement Intervals

We are interested in the probability of event Believe Weapons Present in both
cBBNs C and B′. Let us write pr and pr′ for this probability in these models,
respectively. Consider a threshold th such that truth of th < pr, respectively,
th < pr′, would support a decision, e.g., for nation N2 to declare that the inspec-
tion has been successful. We want to understand for which values th these two
cBBNs would agree on that decision. Using their common SMT representation
discussed above, we can ask whether

((th < pr) ∧ (pr′ ≤ th)) ∨ ((th < pr′) ∧ (pr ≤ th))

is satisfiable in that SMT model. If not, then the two models would support
the same decision for threshold value th. Using our global maximum method,
where th is now the variable to optimise, we can compute ranges of th for which
both models agree in their support of the decision of successful inspections. One
such interval of agreement that we can compute for these models is [0.307, 1.0],
implying that thresholds at or above 0.307 render the same decisions.

4.6 Sensitivity Analyses

We refer to [16] for a discussion of pertinent sensitivity analysis of Bayesian
Belief Networks called Bound, Score, and Vertex Proximity (respectively), and
their use in an application of digital forensics.

We conducted such sensitivity analyses for our models as well (not shown
here). Such methods don’t rely on SMT and complement the approach advocated
in this paper. But we claim that there is benefit in leveraging our SMT-based
approach to compute symbolic sensitivity results. Figure 10 shows such results
for sensitivity analysis Score [16], for the cBBN C. These symbolic assertions can
then be further analysed within an SMT model, e.g., to compute maximal values
of these expressions to learn worst-case sensitivities.

5 Wider Context of Work and Related Work

We first put the research reported in this paper into a wider context of the
problem space. Article VI of the Treaty on the Non-Proliferation of Nuclear
Weapons (NPT) states that each of the parties to the Treaty

“. . . undertakes to pursue negotiations in good faith on effective mea-
sures relating to cessation of the nuclear arms race at an early date
and to nuclear disarmament, and on a treaty on general and complete
disarmament under strict and effective international control.”

534 P. Beaumont et al.

Fig. 10. Sensitivity of cBBN C with respect to event Believe Weapons Present, as a
function of the sole parameter x that is under-specified in C. The last row computes
symbolic averages of all node sensitivities

The UK and Norway have explored, since 2007, how effective verification
procedures could be established that could play a vital part in meeting the oblig-
ations set out in Article VI [14,18]. This collaboration made clear that security
and safety requirements are essential for the creation of verification technologies
and processes, and that more effort is needed at devising such technologies and
processes such that all parties can gain and maintain confidence in them. In the
past 15 years, the US and UK engaged in a technical cooperation that explored
and evaluated methodologies and technologies for the verification of arms control
treaties [24]. This work showed that it is feasible to monitor and verify nuclear
warheads, components and processes; but it also identified the need for further
research. Our work reported here can be seen as making a contribution to meth-
ods that would allow parties to build and sustain confidence in particular arms
control verification mechanisms.

We now discuss related work outside this problem space. Robust optimisation
is an approach to optimisation in which one seeks a measure of robustness against
deterministic uncertainty in parameters of the optimisation problem [4]. Robust
optimisation has already been applied in computer security, e.g. to model human
adversaries in complex security resource allocation problems [21]. Mixed Integer
Linear Programming (MILP) and its non-linear variant MINLP can express
constraints stated in propositional logic, but – unlike SMT – seem unable to
express relational or functional structure within atomic propositions. Robust
optimisation has been applied to MINLP problems of scheduling under bounded
uncertainty [13]. This is related to our work in [3] where we use SMT to robustly
compute optimal schedules for nuclear arms inspection regimes over measures of
interest to participating parties.

Confidence Analysis for Nuclear Arms Control 535

Z3opt is an SMT solver based on Z3 that incorporates optimisation within the
SMT solver itself, including the ability to compute Pareto fronts [19]. Our work
in [3] scales better if we use Z3opt instead of Z3 plus our own optimisation seen
in Fig. 12 in the appendix. However, we were not able to use Z3opt successfully
for the work reported in this paper, which may be due to the fact that we here
work with non-linear objective functions.

Next, we discuss additional work on sensitivity analysis of BBNs. One such
analysis studies the sensitivity of queries in BBNs to changes of a sole parame-
ter, including an understanding of which changes would realise a given query
constraint [7]. It seems possible to extend such work to multiple parameters at
moderate computational overheads [6]. In [23] it is noted that naive Bayesian
classifiers perform quite well even in the presence of inaccuracies, and that stan-
dard sensitivity functions suffice to describe scenario sensitivities [23].

In [11], methods from constructive real analysis are used to decide whether
a formula is satisfiable if the values occurring in it can be perturbed by at most
a specified, uniform value δ > 0. This approach can support a good range of
non-linear functions, including some transcendental ones, and can be applied
to solutions of Lipschitz-continuous ordinary differential equations. This should
therefore also enable a form of robust optimisation.

Our introduction is similar to the motivation given in [22], which poses
a problem to the European Study Group with Industry (ESGI 107), held in
Manchester in March 2015 [22]. Although our introduction shares this exposi-
tion of the problem, our paper advocates the use of BBNs, and cBBNs as their
suitable abstractions, as one method of probing scenarios in application domain.

We view our approach as complementing other approaches in that problem
domain – be they based on game theory, economic considerations of trust cul-
tures, policy and reputation based formalisms, dynamical systems and so forth.
For example, we considered predicates asking whether the probability of a cBBN
node can be above some threshold; and such predicates may inform rules within
policy-based languages that evaluate trust – of which the language Peal and its
tool PEALT is a more recent example [12].

6 Conclusions

We have proposed the use of BBNs in the modelling and assessment of nuclear
arms verification scenarios, because such networks have several desirable fea-
tures, e.g., their ability to represent both subjective and objective data that can
interact in the model. BBNs formulated for this problem domain contain Trust,
e.g., in the form of biases expressed as probabilities; and they capture Degrees
of Belief by computing probabilities of events. However, in this problem domain
it is paramount to assess the Confidence that we have in such degrees of belief.
Yet in this problem space Confidence is hard to come by, given that little or
no prior data are available to inform probabilities within model BBNs.

In this paper, we addressed this modelling problem by abstracting BBNs to
constrained BBNs, which are subject to logical constraints and whose probabil-
ities may contain symbolic uncertainties. We then addressed the corresponding

536 P. Beaumont et al.

analysis problem by representing these cBBNs in Satisfiability Modulo Theories,
so that SMT solvers can answer queries about one or more of such cBBNs.

We demonstrated these new capabilities by developing constrained BBNs
that model a particular arms control verification scenario, and by then analysing
scenario-specific queries over those constrained BBNs but expressed in SMT.
The types of queries that we analysed included the optimisation of the overall
probability of an event in a constrained BBN, optimisation for hard evidence
and its resulting model update, optimisation to determine worst-case differences
between two cBBNs that model the same scenario, the computation of threshold
ranges for which two constrained BBNs would inform decisions in the same
manner, and worst-case sensitivities of critical nodes in a constrained BBN.

Our approach has several advantages: the query language is open-ended,
queries merely have to be expressible in SMT; satisfiability witnesses for queries
found by an SMT solver subsume the description of concrete BBNs that can
subsequently be fed into BBN tools for external validation and feedback to non-
expert users; and we may add logical constraints freely, for example to provide
consistency between levels of abstractions of two or more constrained BBNs.

In future work, we want to design a domain-specific language in which we can
specify constrained BBNs as well as a host of analysis methods, including those
represented in this paper. And we want to write code generators that transform
such specifications into SMT code. Finally, it would be of great interest to certify
unsatisfiability results (e.g. that a computed maximum probability really is a
global maximum). In that context, it is worth noting that Z3 can provide proofs
of unsatisfiability, and there has been work on independently certifying such
proofs in interactive theorem provers [5].

Acknowledgements. The authors from Imperial College London would like to thank
AWE for sponsoring a PhD studentship under which the research reported in this paper
was carried out.

Open Access of Research Data and Code: The Python code for the queries and
models of this paper, and raw SMT analysis results are publicly available at https://
bitbucket.org/pjbeaumont/beaumontevanshuthplantesorics2015/

A Ancillary Material

In order to make this paper more self-contained, we provide in this appendix
two figures that show probability tables of our more detailed Bayesian Belief
Network and details of our optimisation algorithms, respectively.

https://bitbucket.org/pjbeaumont/beaumontevanshuthplantesorics2015/
https://bitbucket.org/pjbeaumont/beaumontevanshuthplantesorics2015/

Confidence Analysis for Nuclear Arms Control 537

Box
A B

0.5 0.5

Ability to Build
Y N

0.6 0.4

Conversation Belief
T F

0.75 0.25

Manufactured Gamma
Saturates/Intention T F

T T 0.99 0.01
T F 0.01 0.99
F T 0.3 0.7
F F 0.0 1.0

Intention to mislead
Box T F

A 0.2 0.8
B 0.1 0.9

Deliberately saturates
Box/Intention T F

A T 0.8 0.2
A F 0.02 0.98
B T 0.7 0.3
B F 0.01 0.99

Detector Light
Ratio of Pu G R

Significantly less 0.05 0.95
Less 0.2 0.8

Around 10:1 0.01 0.99
More 0.2 0.8

Significantly more 0.95 0.05

Believe Weapons Present
Ability/Conversation/Detector T F

Y T G 0.99 0.01
Y T R 0.6 0.4
Y F G 0.55 0.45
Y F R 0.3 0.7
N T G 0.85 0.15
N T R 0.5 0.5
N F G 0.5 0.5
N F R 0.2 0.8

Saturates Gamma Box Significantly less Less Around 10:1 More Significantly more

T T G 0.4 0.09 0.02 0.09 0.4
T T R 0.4 0.1 0.0 0.1 0.4
T F G 0.5 0.4 0.1 0.0 0.0
T F R 0.2 0.2 0.2 0.2 0.2
F T G 0.0 0.1 0.25 0.25 0.4
F T R 0.0 0.0 0.1 0.3 0.6
F F G 0.0 0.15 0.7 0.15 0.0
F F R 0.2 0.2 0.2 0.2 0.2

Fig. 11. Probability tables for model B′ of the arms verification control scenario. The
last two tables specify node Believe Weapons Present and node Ratio of Pu, respectively

538 P. Beaumont et al.

def maxopt(X, delta):

unbounded search begins

r = s.check()

if r == unsat:

return unsat

else:

t = s.model()

while r == sat:

s.push()

s.add(X > 2*t[X])

r = s.check()

if r == sat:

t = s.model()

s.pop()

unbounded search ended

bisection method begins

v = t[X]

v = float(v.as_decimal(10)[:-1])

max = 2*v

min = v

while (max-min) > delta:

s.push()

s.add(((max-min)/2)+min <= X)

r = s.check()

if r == sat:

min = ((max-min)/2)+min

else:

max = ((max-min)/2)+min

s.pop()

y = (max_min)/2

bisection method ended

return y

Fig. 12. Pseudo-code that returns the global maximum of real variable X within an
accuracy of δ > 0, where X is declared in the SMT input and is the subject of this
optimisation. Variable s is an instance of the SMT solver, and expression s.model()
refers to a witness found by that solver on its current input. The use of float above
controls the mantissas of max and min to be commensurate with the desired accuracy δ
to mitigate the complexity of reasoning. Directives push and pop control the visibility
of assertions for incremental satisfiability checks

Confidence Analysis for Nuclear Arms Control 539

References

1. Barrett, C., de Moura, L., Ranise, S., Stump, A., Tinelli, C.: The SMT-LIB ini-
tiative and the rise of SMT (HVC 2010 award talk). In: Raz, O. (ed.) HVC 2010.
LNCS, vol. 6504, p. 3. Springer, Heidelberg (2010)

2. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

3. Beaumont, P., Evans, N., Huth, M., Plant, T.: Modelling and analysis of con-
strained iterative systems: a case study in nuclear arms control. Submitted to
AVoCS 2015, June 2015

4. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series
in Applied Mathematics. Princeton University Press, 9-16, Princeton (2009)

5. Böhme, S., Weber, T.: Fast LCF-Style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010)

6. Chan, H., Darwiche, A.: Sensitivity analysis in bayesian networks: From single to
multiple parameters. CoRR abs/1207.4124 (2012)

7. Chan, H., Darwiche, A.: When do numbers really matter? CoRR abs/1408.1692
(2014)

8. Cousot, P., Cousot, R.: Abstract interpretation: past, present and future. In: Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, July 14–18, 2014, p.
2 (2014)

9. Cozman, F.G.: Credal networks. Artif. Intell. 120(2), 199–233 (2000)
10. Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Net-

works. CRC Press, Boca Raton (2013)
11. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfia-

bility over the reals. CoRR abs/1204.3513 (2012)
12. Huth, M., Kuo, J.H.-P.: PEALT: an automated reasoning tool for numerical aggre-

gation of trust evidence. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014
(ETAPS). LNCS, vol. 8413, pp. 109–123. Springer, Heidelberg (2014)

13. Lin, X., Janak, S.L., Floudas, Ch.A.: A new robust optimization approach for
scheduling under uncertainty: I. Bounded uncertainty. Comput. Chem. Eng. 28(6–
7), 1069–1085 (2004)

14. Kingdom of Norway and the United Kingdom of Great Britain and Northern Ire-
land: The United Kingdom - Norway Initiative: Further Research into the Veri-
fication of Nuclear Warhead Dismantlement. In: 2015 Review Conference on the
Parties to the Treaty on the Non-Proleferation of Nuclear Weapons, NPT/CONF
2015, WP.31, New York, USA, 27 April–22 May 2015

15. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. STTT
4(2), 224–233 (2003)

16. Kwan, M.Y.K., Overill, R.E., Chow, K., Tse, H., Law, F.Y.W., Lai, P.K.Y.: Sen-
sitivity analysis of bayesian networks used in forensic investigations. In: Peterson,
G., Shenoi, S. (eds.) Advances in Digital Forensics VII. IFP AICT, vol. 361, pp.
231–243. Springer, Heidelberg (2011)

17. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Roy. Stat. Soc.
Ser. B (Methodol.) 50(2), 157–224 (1988)

540 P. Beaumont et al.

18. Ministry of Defence of the United Kingdom: the UK/Norway initiative: report on
the UKNI nuclear weapons states workshop, March 2010

19. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - An optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015)

20. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

21. Pita, J., John, R., Maheswaran, R.T., Tambe, M., Yang, R., Kraus, S.: A robust
approach to addressing human adversaries in security games. In: Proceedings of
AAMAS 2012, pp. 1297–1298 (2012)

22. Plant, T., Stapleton, M.: Decision support for nuclear arms control. Problem State-
ment for ESGI 107, Manchester, UK, 23–27 March 2015

23. Renooij, S., van der Gaag, L.C.: Evidence and scenario sensitivities in naive
Bayesian classifiers. Int. J. Approx. Reasoning 49(2), 398–416 (2008)

24. US NISA, US NAPC, UK Ministry of Defence and AWE: Joint U.S. - U.K. Report
on Technical Cooperation for Arms Control (2015)

Author Index

Akram, Raja Naeem II-541
Al-Ameen, Mahdi Nasrullah II-438
Almousa, Omar II-209
Avoine, Gildas I-165

Backes, Michael I-125
Barenghi, Alessandro I-429
Beaumont, Paul I-521
Benhamouda, Fabrice I-305
Bidner, David I-108
Blanton, Marina I-384
Bootle, Jonathan I-243

Cao, Zhenfu II-270
Carpent, Xavier I-165
Cerulli, Andrea I-243
Chaidos, Pyrros I-243
Chari, Suresh N. II-396
Chen, Liqun I-347
Chen, Ping I-69
Chen, Xiaofeng II-252
Chfouka, Hind I-90
Choo, Kim-Kwang Raymond II-146
Chrétien, Rémy II-230
Chua, Tong-Wei II-355
Chua, Zheng Leong II-312
Clarkson, Michael R. II-520
Cortier, Véronique II-230
Cui, Helei II-40
Cuppens, Frédéric II-642
Cuppens-Boulahia, Nora II-642

Dam, Mads I-90
Decker, Christian II-561
Delaune, Stéphanie II-230
Deng, Robert H. I-286, I-366
Di Federico, Alessandro I-429
Diao, Wenrui II-20
Ding, Xuhua I-366
Dong, Xiaolei II-270
Du, Minxin II-186
Du, Shaoyong II-417
Dubus, Samuel II-642

Ekdahl, Patrik I-90
Evans, Neil I-521

Faber, Sky II-123
Fatema, Kanis II-438
Fett, Daniel I-43
Fetter-Degges, Jonathan II-520
Foster, Jeffrey S. II-520

Garcia-Morchon, Oscar I-224
Gates, Chris II-396
Ge, Yijie I-468
Ghadafi, Essam I-243
Grossklags, Jens I-483
Groth, Jens I-243
Gruhn, Michael II-376
Gruss, Daniel I-108
Gu, Dawu I-468
Guan, Chaowen I-203
Guanciale, Roberto I-90
Guo, Zheng I-468
Guthrie, James II-561

Hanser, Christian I-146
Hao, Feng I-347
Hassanshahi, Behnaz II-577
He, Meiqi II-186
Heiderich, Mario I-23
Hou, Y. Thomas II-61
Hu, Chengyu I-266
Hu, Hong II-312
Hu, Shengshan II-186
Hua, Jingyu II-417
Huth, Michael I-521

Jager, Tibor I-407
Jarecki, Stanislaw II-123
Jeon, Jinseong II-520
Jia, Yaoqi II-577
Jonker, Hugo II-3

Kanoun, Waël II-642
Kerschbaum, Florian I-203, II-81

Kiayias, Aggelos I-326
Krawczyk, Hugo II-123
Krenn, Stephan I-305
Küsters, Ralf I-43

Laszka, Aron I-483
Lauradoux, Cédric I-165
Li, Ninghi II-396
Li, Ximeng II-500
Li, Yingjiu I-286
Li, Zhou II-20
Liang, Kaitai II-146
Liang, Zhenkai II-312, II-577
Ligatti, Jay II-481
Lim, Hoon Wei II-81
Lin, Jingqiang II-332
Lin, Zhiqiang I-69
Liu, Joseph K. I-347, II-146
Liu, Junrong I-468
Liu, Peng I-69
Liu, Shengli I-286
Liu, Xiangyu II-20
Lo, Swee-Won I-366
Lou, Wenjing II-61
Luo, Xiapu II-293
Lyubashevsky, Vadim I-305

Mangard, Stefan I-108
Mantel, Heiko I-447
Mao, Bing I-69
Markantonakis, Konstantinos II-541
Mauw, Sjouke II-3
Mayes, Keith II-541
Micinski, Kristopher II-520
Minematsu, Kazuhiko I-185
Mödersheim, Sebastian II-209
Modesti, Paolo II-209
Mohammadi, Esfandiar I-125
Molloy, Ian M. II-396
Mühlberg, Jan Tobias I-503
Mukhopadhyay, Dibya II-599
Müller, Tilo II-376

Nemati, Hamed I-90
Nguyen, Quan II-123
Nielson, Flemming II-500
Nielson, Hanne Riis II-500
Niemietz, Marcus I-23
Ning, Jianting II-270
Noorman, Job I-503

Papillon, Serge II-642
Park, Youngja II-396
Peeters, Roel II-622
Pelosi, Gerardo I-429
Petit, Christophe I-243
Phuong, Tran Viet Xuan II-252
Piessens, Frank I-503
Pietrzak, Krzysztof I-305
Plant, Tom I-521
Pulls, Tobias II-622

Qin, Baodong I-286

Rabkin, Max I-146
Ray, Donald II-481
Ren, Kui I-203, II-186
Rietman, Ronald I-224
Rosu, Marcel II-123
Ruffing, Tim I-125

Safavi-Naini, Reihaneh II-167
Samarji, Léa II-642
Sanfilippo, Stefano I-429
Saraph, Siddharth I-384
Saxena, Nitesh II-599
Saxena, Prateek II-312, II-577
Schmitz, Guido I-43
Schröder, Dominique I-146
Schwenk, Jörg I-23, I-407
Scielzo, Shannon II-438
Seidel, Jochen II-561
Seitzer, Maximilian II-376
Sharma, Sahil I-224
Shirvanian, Maliheh II-599
Shulman, Haya I-3
Somorovsky, Juraj I-407
Standaert, François-Xavier I-468
Starostin, Artem I-447
Steiner, Michael II-123
Sufatrio, II-355
Sun, Wei I-468
Susilo, Willy II-252

Tan, Darell J.J. II-355
Tang, Qiang I-326, II-101
Thing, Vrizlynn L.L. II-355
Tolhuizen, Ludo I-224
Torre-Arce, Jose Luis I-224
Torres, Christof Ferreira II-3

542 Author Index

Viganò, Luca II-209

Waidner, Michael I-3
Wang, Bing II-61
Wang, Cong II-40
Wang, Ding II-456
Wang, Jun II-101
Wang, Ping II-456
Wang, Qian II-186
Wang, Wei II-332
Wang, Xinyu II-40
Wang, Ze II-332
Wang, Zhan II-332
Wang, Zhibo II-186
Wattenhofer, Roger II-561
Wei, Lifei II-270
Wei, Zhuo I-366
Wright, Matthew II-438

Xia, Luning II-332
Xie, Xinjun I-468
Xu, Dongyan I-69
Xu, Jun I-69

Xu, Qiuliang I-266
Xu, Zenglin II-396

Yang, Guomin II-252
Yang, Rupeng I-266
Yang, Yanjiang II-146
Yap, Roland H.C. II-577
Yi, Xun I-347
Yin, Haoyang II-293
Yu, Jia I-203
Yu, Yu I-468
Yu, Zuoxia I-266
Yuan, Xingliang II-40

Zhang, Fangguo I-203
Zhang, Kehuan II-20
Zhang, Liang Feng II-167
Zhang, Rui I-266
Zhang, Yueqian II-293
Zheng, Yao II-61
Zhong, Sheng II-417
Zhou, Jianying II-146
Zhou, Yongbin I-266
Zhou, Zhe II-20

Author Index 543

	Foreword
	Organization
	Contents – Part I
	Contents – Part II
	Networks and Web Security
	Towards Security of Internet Naming Infrastructure
	1 Introduction
	2 Related Work
	2.1 Understanding the DNS Infrastructure
	2.2 Misconfigured Networks
	2.3 DNS Security

	3 Studying DNS Name Servers
	3.1 Recursive Authoritative Name Servers
	3.2 Why Use Server-Side Caches?
	3.3 Who Operates and Uses RANS?
	3.4 Methodology for Detecting RANSes

	4 Evaluating (in)Security of RANSes
	4.1 Services Coresidence
	4.2 Source Port Randomisation
	4.3 DNSSEC
	4.4 Implications of Vulnerable RANSes

	5 Conclusions
	A Overview: DNS and DNSSEC
	References

	Waiting for CSP -- Securing Legacy Web Applications with JSAgents
	1 Introduction
	2 Related Work
	3 JSAgents Architecture
	3.1 Building Blocks
	3.2 JSAgents Core Library
	3.3 JSAgents Modules
	3.4 JSAgents Policy Files

	4 Security Evaluation
	5 Performance Evaluation
	6 Future Work
	A Comparable Approaches
	A.1 From XSS Filters to CSP 1.0
	A.2 Content Security Policy

	References

	Analyzing the BrowserID SSO System with Primary Identity Providers Using an Expressive Model of the Web
	1 Introduction
	2 The Web Model
	2.1 Communication Model
	2.2 Web System
	2.3 Web Browsers

	3 General Security Properties
	4 The BrowserID System
	4.1 Overview
	4.2 Implementation Details

	5 Analysis of BrowserID: Authentication Properties
	5.1 Modeling of BrowserID with Primary IdPs
	5.2 Authentication Properties of the BrowserID System
	5.3 Identity Injection Attack on BrowserID with Primary IdPs
	5.4 Security of the Fixed System

	6 Privacy of BrowserID
	6.1 Privacy Attacks on BrowserID
	6.2 Fixing the Privacy of BrowserID

	7 Related Work
	8 Conclusion
	A Browser Model
	A.1 Browser State: Zp and sp0
	A.2 Web Browser Relation Rp

	B Additional Privacy Attack Variants
	References

	System Security
	A Practical Approach for Adaptive Data Structure Layout Randomization
	1 Introduction
	2 Overview
	2.1 Threat Model
	2.2 System Overview

	3 Design and Implementation of SALADS
	3.1 Extraction Component
	3.2 Randomization Component
	3.3 De-randomization Component
	3.4 Other Practical Issues

	4 Evaluation
	4.1 Effectiveness of DSSR Application Programs
	4.2 Effectiveness of DSSR Kernel and DSSR Hypervisor
	4.3 Performance Overhead
	4.4 Memory Overhead

	5 Discussion
	5.1 Analysis of Effectiveness
	5.2 Limitations

	6 Related Work
	7 Conclusion
	A Details of Lmbench Results
	References

	Trustworthy Prevention of Code Injection in Linux on Embedded Devices
	1 Introduction
	2 Background
	2.1 The Prosper Hypervisor
	2.2 The Attack Model
	2.3 Formal Model of the Hypervisor

	3 Design
	4 Formal Model of MProsper
	5 Verification Strategy
	6 Evaluation
	7 Related Work
	8 Concluding Remarks
	References

	Practical Memory Deduplication Attacks in Sandboxed Javascript
	1 Introduction
	2 Background
	2.1 Shared Memory
	2.2 Page-Deduplication Attacks

	3 Description of Our Javascript-Based Attack
	4 Practical Attacks and Evaluation
	4.1 Cross-VM Attack on Private Clouds
	4.2 Attack on Personal Computers and Smartphones

	5 Countermeasures
	6 Conclusion
	References

	Cryptography
	Computational Soundness for Interactive Primitives
	1 Introduction
	2 Related Work
	3 Review of the CoSP Framework for Equivalence
	4 Review of the UC Framework
	5 Ideal Functionalities in the Symbolic Model
	6 Ideal Functionalities in the Computational Model
	7 Real Protocols in CoSP
	8 Computational Soundness for Interactive Primitives
	9 Case Study: Untraceable Payments
	A Protocol Conditions
	References

	Verifiably Encrypted Signatures: Security Revisited and a New Construction
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Outline

	2 Preliminaries
	2.1 Digital Signatures
	2.2 Structure-Preserving Signatures on Equivalence Classes
	2.3 Verifiably Encrypted Signatures

	3 The Importance of Resolution Independence
	3.1 Counterexample
	3.2 Filling the Gap

	4 Verifiably Encrypted Signatures from SPS-EQ-R
	5 Public-Key Encryption from SPS-EQ-R
	6 Conclusion
	References
	A Omitted Proofs

	Interleaving Cryptanalytic Time-Memory Trade-Offs on Non-uniform Distributions
	1 Introduction
	2 Cryptanalytic Time-Memory Trade-Offs
	2.1 Hellman Scheme
	2.2 Oechslin Scheme
	2.3 Related Works

	3 Interleaving
	3.1 Description
	3.2 Analysis

	4 Order of Visit
	4.1 Discussion
	4.2 Analysis

	5 Input Set Partition and Memory Allocation
	5.1 Input Set Partition
	5.2 Memory Allocation

	6 Results
	6.1 Statistics
	6.2 RockYou
	6.3 10 Million Combos
	6.4 Discussion

	7 Conclusion
	A Proof of Theorem
	B Subsets of 10 Million Combos
	References

	Efficient Message Authentication Codes with Combinatorial Group Testing
	1 Introduction
	2 Preliminaries
	3 MAC for Corruption Identification
	3.1 Combinatorial Group Testing
	3.2 MAC for Extended Vector Space
	3.3 Efficient Group Testing MAC
	3.4 Security Notions
	3.5 Remarks
	3.6 Provable Security of GTM

	4 Experimental Implementation
	5 Concluding Remarks
	References

	Symmetric-Key Based Proofs of Retrievability Supporting Public Verification
	1 Introduction
	1.1 Related Work
	2 Preliminaries
	2.1 Proofs of Retrievability
	2.2 Obfuscation Preliminaries
	2.3 Puncturable PRFs

	3 Security Definitions
	3.1 Security Definitions on Static PoR
	3.2 Security Definitions on Dynamic PoR

	4 Constructions
	4.1 Static Publicly Verifiable PoR Scheme
	4.2 PoR Scheme Supporting Efficient Dynamic Updates
	4.3 Security Proofs

	5 Analysis and Comparisons
	6 Conclusions
	A Discussions and Future Directions Towards i O
	A.1 Outsourced and Joint Generation of Indistinguishability Obfuscation
	A.2 Reusability and Universality of Indistinguishability Obfuscation
	A.3 Obfuscation for Specific Functions
	References

	DTLS-HIMMO: Achieving DTLS Certificate Security with Symmetric Key Overhead
	1 Introduction
	2 Preliminaries
	2.1 Security Standards in the Internet (of Things)
	2.2 DTLS-PSK
	2.3 Attack Model and Security Goals

	3 HIMMO and HIMMO Extensions
	3.1 HIMMO Operation
	3.2 Implicit Certification and Verification of Credentials
	3.3 Enhancing Privacy by Using Multiple TTPs

	4 Implementation and Performance
	5 (D)TLS-HIMMO
	5.1 DTLS-HIMMO Configurations
	5.2 (D)TLS-HIMMO Handshake
	5.3 Privacy Protection
	5.4 TTP Infrastructure
	5.5 Security Considerations of (D)TLS-HIMMO

	6 Performance of DTLS-HIMMO and Comparison with Existing (D)TLS Alternatives
	7 Conclusions
	References

	Short Accountable Ring Signatures Based on DDH
	1 Introduction
	2 Defining Accountable Ring Signatures
	2.1 Ring and Group Signatures from Accountable Ring Signatures

	3 Preliminaries
	4 Constructing Accountable Ring Signatures
	5 Efficient Instantiation
	A Proof of Theorem 1
	B Security Proofs of Our -Protocols
	B.1 Proof of Lemma 1
	B.2 Proof of Lemma 2
	B.3 Proof of Lemma 3
	B.4 Proof of Lemma 5

	References

	Updatable Hash Proof System and Its Applications
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Updatable Hash Proof System
	4 Building CML-PKE from UHPS
	4.1 A CPA-Secure Scheme
	4.2 CCA-Secure Schemes
	4.3 PKE Schemes with Leakage During Key Update

	5 Instantiations of Updatable Hash Proof System
	5.1 Instantiation from the SXDH Assumption
	5.2 Parameters

	A Omitted Constructions in Sect.4.2
	References

	Server-Aided Revocable Identity-Based Encryption
	1 Introduction
	2 Preliminaries
	3 Definition and Security of SR-IBE
	4 Construction of SR-IBE Scheme
	4.1 The Node Selection Algorithm: KUNodes
	4.2 The Construction

	5 Security Proof
	6 Conclusion
	A Proof of Theorem 2
	References

	Efficient Zero-Knowledge Proofs for Commitments from Learning with Errors over Rings
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Roadmap
	2 Preliminaries
	2.1 Commitment Schemes
	2.2 Zero-Knowledge Proofs and -Protocols
	2.3 Learning with Errors
	2.4 Rejection Sampling

	3 Commitments from Ring-LWE

	4 Zero-Knowledge of Proofs of Knowledge
	4.1 Preimage Proofs
	4.2 Proving Linear Relations
	4.3 Proving Multiplicative Relations

	5 Conclusion
	A Proofs
	A.1 Proofs of Theorem 4.5
	A.2 Proofs of Theorem 4.6
	References

	Making Any Identity-Based Encryption Accountable, Efficiently
	1 Introduction
	2 Generic Construction of A-IBE with Constant Size Ciphertext
	2.1 Detailed Construction
	2.2 Security Analysis

	3 Generic Construction of A-IBE Allowing Public Traceability and Identity Reuse
	3.1 A General Framework Allowing Identity Re-use
	3.2 Building Blocks for Public Traceability
	3.3 Concrete Construction and Security Analysis

	4 Conclusions and Open Problems
	A Preliminaries
	References

	Practical Threshold Password-Authenticated Secret Sharing Protocol
	1 Introduction
	2 Definition of Security
	3 Our TPASS Protocol
	3.1 Description of Our Protocol
	3.2 Correctness and Efficiency

	4 Security Analysis
	5 Conclusion
	References

	On Security of Content-Based Video Stream Authentication
	1 Introduction
	2 The H.264 Video Coding Standard
	3 Common Design Flaw in Existing Content-Based Video Authentication Schemes
	3.1 Content-Based Authentication Model
	3.2 Classification of Existing Schemes
	3.3 The Design Flaw and Its Exploitation

	4 Attack Examples on Existing CBA Schemes
	4.1 Content Removal Attacks
	4.2 Content Modification Attacks
	4.3 Content Insertion Attacks
	4.4 Summary and Remarks

	5 Discussions
	6 Conclusions and Future Work
	References

	Oblivious Maximum Bipartite Matching Size Algorithm with Applications to Secure Fingerprint Identification
	1 Introduction
	2 Related Work
	3 Security Model
	4 Fingerprint Background
	5 Working Toward the Solution
	6 Oblivious Rank Computation Algorithms
	7 Oblivious Fingeprint Macthing Algorithms
	8 Implementation and Performance
	9 Conclusions
	A Security Definitions
	B Secure Protocols
	C Additional Performance Results
	References

	Practical Invalid Curve Attacks on TLS-ECDH
	1 Introduction
	2 Invalid Curve Attacks on ECC
	2.1 A Brief Recap of Elliptic Curve Cryptography
	2.2 Invalid Curve Attacks on Elliptic Curves in TLS

	3 Transport Layer Security
	3.1 The TLS-ECDH Handshake

	4 Invalid Curve Attack on TLS-ECDH
	5 Practical Evaluation
	5.1 Analyzed TLS Libraries
	5.2 Attacks on Bouncy Castle
	5.3 Attacks on SunEC Security Provider

	6 Attack Impact and Countermeasures
	A Further Analysis
	References

	Crypto Applications and Attacks
	Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof?
	1 Introduction
	2 OpenPGP Infrastructure
	2.1 Key Management
	2.2 The OpenPGP Web-of-Trust

	3 Threats to the WoT Authentication Capabilities
	4 State of Health of the OpenPGP Global Keyring
	4.1 RSA Cryptosystem
	4.2 Digital Signature Algorithm
	4.3 ElGamal Cryptosystem
	4.4 MD5 Based Signatures

	5 Vulnerability Evaluation
	6 Conclusion
	References

	Transforming Out Timing Leaks, More or Less
	1 Introduction
	2 Timing Side Channels
	3 Program Transformations
	3.1 Cross-Copying
	3.2 Conditional Assignment
	3.3 Transactional Branching
	3.4 Unification

	4 Our Benchmark Programs and Experimental Setup
	4.1 Our Benchmark Programs
	4.2 Our Experimental Setup

	5 A Performance Evaluation
	5.1 Experimental Design
	5.2 Experiments and Experimental Results
	5.3 Our Findings in the Performance Evaluation

	6 A Security Evaluation
	6.1 Experimental Design
	6.2 Experiments
	6.3 Experimental Results
	6.4 Our Findings in the Security Evaluation

	7 Navigating in the Performance-Security Trade-Off
	8 Related Work
	9 Conclusion
	A Source Code of Benchmarks
	References

	Small Tweaks Do Not Help: Differential Power Analysis of MILENAGE Implementations in 3G/4G USIM Cards
	1 Introduction
	2 Background
	2.1 The UMTS/LTE Infrastructure
	2.2 The MILENAGE Algorithm
	2.3 Side-channel Attacks

	3 DPA Against MILENAGE Implementations in USIM Cards
	3.1 Measurement Setup and Target USIM Cards
	3.2 Attack Strategy
	3.3 Experimental Results

	4 Conclusions
	References

	Risk Analysis
	Should Cyber-Insurance Providers Invest in Software Security?
	1 Introduction
	2 Related Work
	2.1 Cyber-Insurance
	2.2 Software Security Investments

	3 Model
	3.1 Software Security and Individual Risks
	3.2 Cumulative Risk
	3.3 Demand-Side Model
	3.4 Supply-Side Model

	4 Theoretical Results and Heuristic Investment Strategies
	4.1 Complexity of Computing the Optimal Safety Capital
	4.2 Approximating the Loss Distribution
	4.3 Investment Strategies

	5 Numerical Results
	5.1 Setup
	5.2 Distribution of the Total Amount of Losses
	5.3 Security Investment Strategies

	6 Conclusion
	A Proofs
	A.1 Proof of Theorem1
	A.2 Proof of Theorem2

	References

	Lightweight and Flexible Trust Assessment Modules for the Internet of Things
	1 Introduction
	2 Background
	2.1 Contiki and the IoT
	2.2 PMAs and Sancus

	3 Trust Assessment Modules
	3.1 Module Deployment
	3.2 Trust Indicators
	3.3 Fault Recovery

	4 Evaluation
	4.1 Scenario and Implementation
	4.2 Overheads
	4.3 Security Evaluation

	5 Related Work
	5.1 Trust Management in Wireless Sensor Network
	5.2 Trust Assessment on Desktop and Server Systems
	5.3 Alternatives to Sancus

	6 Conclusions
	References

	Confidence Analysis for Nuclear Arms Control: SMT Abstractions of Bayesian Belief Networks
	1 Introduction
	2 An Arms Control Verification Scenario
	3 Expressing Constrained BBNs in an SMT Solver
	4 Assessing Confidence in cBBNs
	4.1 Optimising a Probability over Uncertainty
	4.2 Optimisation for Hard Evidence
	4.3 Confidence in Comparison of cBBNs
	4.4 Two-Dimensional Difference Analysis
	4.5 Computing Agreement Intervals
	4.6 Sensitivity Analyses

	5 Wider Context of Work and Related Work
	6 Conclusions
	A Ancillary Material
	References

	Author Index

